
Applied Network
Security Monitoring

Applied Network
Security Monitoring

Collection, Detection, and
Analysis

Chris Sanders

Jason Smith

David J. Bianco, Technical Editor

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Syngress is an imprint of Elsevier

Acquiring Editor: Chris Katsaropoulos

Editorial Project Manager: Benjamin Rearick

Project Manager: Punithavathy Govindaradjane

Designer: Matthew Limbert

Copyeditor: Ellen Sanders

Syngress is an imprint of Elsevier

225 Wyman Street, Waltham, MA 02451, USA

Copyright# 2014 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic

or mechanical, including photocopying, recording, or any information storage and retrieval system,

without permission in writing from the publisher. Details on how to seek permission, further information

about the Publisher’s permissions policies and our arrangements with organizations such as the

Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website:

www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher

(other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden

our understanding, changes in research methods or professional practices, may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating

and using any information or methods described herein. In using such information or methods they

should be mindful of their own safety and the safety of others, including parties for whom they have

a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume

any liability for any injury and/or damage to persons or property as a matter of products liability,

negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas

contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Application submitted

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-417208-1

Printed and bound in the United States of America

14 15 16 17 18 10 9 8 7 6 5 4 3 2 1

For information on all Syngress publications, visit our website at store.elsevier.com/Syngress

http://www.elsevier.com/permissions
http://store.elsevier.com/Syngress

This book is a product of strength gained through love. This book is dedicated to

God, my wife Ellen, and all those who continue to love and support me.

“But those who hope in the Lord will renew their strength. They will soar on

wings like eagles, they will run and not grow weary, they will walk and not be faint.”

Isaiah 40:31 (NIV)

Acknowledgements

2 Corinthians 12 says, “But he said to me, ‘My grace is sufficient for you, for my

power is made perfect in weakness.’ Therefore I will boast all the more gladly about

my weaknesses, so that Christ’s power may rest on me.”

Writing Applied NSM was nothing short of a testament to God’s power being

made perfect in weakness. This book was easily one of the most difficult projects

I’ve ever taken on, and it was faith in Him that allowed me to persevere. Because

of Him, this book and everything I do is possible, and I sincerely hope that my work

here can serve as a witness to God’s awesome power.

This book was made possible through the direct and indirect contributions of a

great number of people. I’d like to take this opportunity to acknowledge them.

Ellen, you are my love, my support, my strength, and my biggest fan. None of this

would be possible without you. I want to thank you for putting up with the stress, the

despair, the crazy hours, and the overall madness that comes from the book writing

process. I also want to thank you for helping to copyedit the book. I suppose that

English major finally came in handy. I love you, and I’m so proud to be your

husband.

Mom and Dad, I am the person I am because of your influence. Everything I do is,

and will continue to be, a tribute to the character you both exhibit and the love you

both shared. I love you, Dad. RIP, Mom.

Sanders Family, although we are a small group, the love shared between us is

something that is immense, and is so important to me. Even though we are far apart,

I know you love and support me and I’m thankful for that.

Perkins Family, The way you’ve welcomed me into your lives has been truly

amazing, and I’m blessed to have your love and support.

Jason Smith, you are quite literally the smartest person I’ve ever had the pleasure

of meeting. More than being a great co-worker and co-author, you’ve always proven

to be a great friend. I don’t hesitate to say that you’ve been like a brother to me. I’m

eternally grateful for it all.

David Bianco and Liam Randall, I can’t thank you enough for contributing to this

book. Your contributions are valued more than you can imagine.

Regarding my coworkers (past and present), I’ve always believed that if a person

surrounds himself with good people, he will become a better person. I have the good

fortune of working with some great people who are some of the best and brightest in

the business. I want to give special thanks to my InGuardians family: Jimmy, Jay,

Suzanne, Teresa, John, Tom, Don, Rad, Larry, Jaime, James, Bob, and Alec. I want

to extend special appreciation to Mike Poor, who wrote the foreword for this book

and continues to be one of my packet ninja idols.

Syngress staff, thank you for allowing me the opportunity to write this book, and

helping this dream become a reality.

xi

The technical content and direction of this book is a product of more individuals

than I could possibly name, but I’m going to try anyway. In addition to those listed

above, I’d like to thank the following people for their contribution; whether it was

reviewing a chapter or letting me bounce some ideas off of you, this wouldn’t be

possible without all of you:

Alexi Valencia, Ryan Clark, Joe Kadar, Stephen Reese, Tara Wink, Doug Burks,

Richard Bejtlich, George Jones, Richard Friedberg, Geoffrey Sanders, Emily

Sarneso, Mark Thomas, Daniel Ruef, the rest of the CERT NetSA team, Joel Esler,

the Bro team, Mila Parkour, Dustin Weber, and Daniel Borkmann.

Chris Sanders

xii Acknowledgements

About the Authors

Chris Sanders, Lead Author

Chris Sanders is an information security consultant, author, and researcher originally

from Mayfield, Kentucky. That’s thirty miles southwest of a little town called Pos-

sum Trot, forty miles southeast of a hole in the wall named Monkey’s Eyebrow, and

just north of a bend in the road that really is named Podunk.

Chris is a Senior Security Analyst with InGuardians. He has extensive experience

supporting multiple government and military agencies, as well as several Fortune

500 companies. In multiple roles with the US Department of Defense, Chris signif-

icantly helped to further the role of the Computer Network Defense Service Provider

(CNDSP) model, and helped to create several NSM and intelligence tools currently

being used to defend the interests of the nation.

Chris has authored several books and articles, including the international best

seller “Practical Packet Analysis” form No Starch Press, currently in its second edi-

tion. Chris currently holds several industry certifications, including the SANS GSE

and CISSP distinctions.

In 2008, Chris founded the Rural Technology Fund. The RTF is a 501(c)(3) non-

profit organization designed to provide scholarship opportunities to students from

rural areas pursuing careers in computer technology. The organization also promotes

technology advocacy in rural areas through various support programs. The RTF has

provided thousands of dollars in scholarships and support to rural students.

When Chris isn’t buried knee-deep in packets, he enjoys watching University of

Kentucky Wildcat basketball, being a BBQ Pitmaster, amateur drone building, and

spending time at the beach. Chris currently resides in Charleston, South Carolina

with his wife Ellen.

Chris blogs at http://www.appliednsm.com and http://www.chrissanders.org.

He is on Twitter as @chrissanders88.

Jason Smith, Co-Author

Jason Smith is an intrusion detection analyst by day and junkyard engineer by

night. Originally from Bowling Green, Kentucky, Jason started his career mining

large data sets and performing finite element analysis as a budding physicist. By

dumb luck, his love for data mining led him to information security and network

security monitoring, where he took up a fascination with data manipulation and

automation.

Jason has a long history of assisting state and federal agencies with hardening

their defensive perimeters and currently works as a Security Engineer with Mandi-

ant. As part of his development work, he has created several open source projects,

many of which have become “best-practice” tools for the DISA CNDSP program.

xiii

http://www.appliednsm.com
http://www.chrissanders.org

Jason regularly spends weekends in the garage building anything from arcade

cabinets to open wheel racecars. Other hobbies include home automation, firearms,

monopoly, playing guitar, and eating. Jason has a profound love of rural America, a

passion for driving, and an unrelenting desire to learn. Jason is currently living in

Frankfort, Kentucky.

Jason blogs at http://www.appliednsm.com. He is on Twitter as @automayt.

David J. Bianco, Contributing Author

Before coming to work as a Hunt Team Lead at Mandiant, David spent five years

helping to build an intelligence-driven detection and response program for a Fortune

5 company. There, he set detection strategies for a network of nearly 600 NSM sen-

sors in over 160 countries and led response efforts for some of the company’s most

critical incidents, mainly involving targeted attacks. He stays active in the security

community, blogging, speaking, and writing.

You can often find David at home watching Doctor Who, playing one of his four

sets of bagpipes, or just goofing around with the kids. He enjoys long walks nearly

anywhere except the beach.

David blogs at http://detect-respond.blogspot.com. He is on Twitter as

@DavidJBianco.

Liam Randall, Contributing Author

Liam Randall is the Managing Partner with San Francisco based Broala LLC- the

Bro Core Teams consulting group. Originally, from Louisville, KY, he worked his

way through school as a sysadmin while getting his Bachelors in Computer Science

at Xavier University. He first got his start in security writing device drivers and XFS

based software for Automated Teller Machines.

Presently he consults on high volume security solutions for the Fortune 50,

Research and Education Networks, various branches of the armed service, and other

security focused groups. He has spoken at Shmoocon, Derbycon, MIRcon and reg-

ularly teaches Bro training classes at security events.

A father and a husband, Liam spends his weekends fermenting wine, working in

his garden, restoring gadgets, or making cheese. With a love of the outdoors, he and

his wife like competing in triathlons, long distance swimming, and enjoying their

community.

Liam blogs at http://liamrandall.com/. He is on Twitter as @Hectaman.

xiv About the Authors

http://www.appliednsm.com
http://detect-respond.blogspot.com
http://liamrandall.com/

Foreword

Learning how to build and operate a network security monitoring infrastructure is a

daunting task. Chris Sanders and his team of authors have crafted a framework for

NSM, and provide the reader with a codified plan to put network security monitoring

into practice.

Medium and large organizations are being crushed by the amount of data they are

collecting. With event counts exceeding 100 million events in some instances, hav-

ing a monitoring infrastructure and standard operating procedures that can scale is

critical.

Seek and ye shall find: the inverse is also true. It makes no sense to collect data,

and potentially even do the detection, but skip on the analysis. This book you hold in

your hands gives you the keys to each of the steps in the NSM cycle: collection,

detection and analysis.

In the late 1930’s, many civilian pilots argued for the right to use their skills in

defense of their country. The time has come again for civilians to take a more active

role in the defense of our nation. We are under attack; make no mistake. Manufactur-

ing, chemical, oil and gas, energy, andmany critical sectors of our civilian society are

bearing the brunt of a coordinated and systematic series of attacks. While pundits

ponder on the future possibility of cyber war, the practitioners on the front line

are neck deep in it.

My call is not one to arms, but one to analysis. Got root? Then you must analyze

your logs. Most cyber attacks leave traces, and it is up to each and every system oper-

ator to review their logs for signs of compromise. That said, the operator should be

reviewing logs for the purpose of improving system performance and business ana-

lytics. Improving system performance alone can help provide a return on investment

to the business, not to mention what business analytics can do in the right hands.

At InGuardians, we get called in to do incident response in cases of large data

breaches. Most organizations currently log relevant data from core network devices,

proxies, firewalls, systems and applications. That data is stored for an extended

period of time, with no apparent ROI. In many cases we are able to identify current

and previous breaches through log analysis alone.

The next time you are at your console, review some logs. You might think. . . “I

don’t know what to look for". Start with what you know, understand, and don’t care

about. Discard those. Everything else is of interest.

Semper Vigilans,

Mike Poor

xv

Preface

I love catching bad guys. Ever since I was a little kid, I wanted to catch bad guys in

some fashion or another.Whether it was adorning a cape made from the nearest towel

I could find or running around the house playing cops and robbers with my childhood

friends, I lived for the thrill of serving justice to wrongdoers of all sorts. As hard as

I tried however, I was never quite able to channel my rage into an ability that would

allow me to grow into a giant green monster, and no matter how many spider bites I

received I never developed the ability to shoot web from my wrists. I also realized

pretty quickly that I wasn’t quite cut out for law enforcement.

Once these realities set in and I realized that I was nowhere near rich enough to

build a bunch of fancy gadgets and fly around at night in a bat suit, I ended up turning

my attention to computers. Several years later, I’ve ended up in a position where I am

able to live my childhood dreams of catching bad guys, but not in the sense that I had

originally imagined.

I catch bad guys through the practice of network security monitoring (NSM).

That’s what this book is about. NSM is based upon the concept that prevention even-

tually fails. This means that no matter how much time you invest in securing your

network, eventually the bad guys win. When this happens, you must be organization-

ally and technologically positioned to be able to detect and respond to the intruder’s

presence so that an incident may be declared and the intruder can be eradicated with

minimal damage done.

“How do I find bad stuff on the network?”

The path to knowledge for the practice of NSM typically begins with that ques-

tion. It’s because of that question that I refer to NSM as a practice, and someone who

is a paid professional in this field as a practitioner of NSM.

Scientists are often referred to as practitioners because of the evolving state of the

science. As recently as the 1980s, medical science believed that milk was a valid

treatment for ulcers. As time progressed, scientists found that ulcers were caused

by bacteria called Helicobacter pylori and that dairy products could actually further

aggravate an ulcer.1 Perceived facts change because although we would like to

believe most sciences are exact, they simply aren’t. All scientific knowledge is based

upon educated guesses utilizing the best available data at the time. As more data

becomes available over time, answers to old questions change, and this redefines

things that were once considered facts. This is true for doctors as practitioners of

medical science, and it is true for us as practitioners of NSM.

Unfortunately, when I started practicing NSM there weren’t a lot of reference

materials available on the topic. Quite honestly, there still aren’t. Aside from

the occasionally bloggings of industry pioneers and a few select books, most

1Jay, C. (2008, November 03). Why it’s called the practice of medicine. Retrieved from http://www.

wellsphere.com/chronic-pain-article/why-it-s-called-the-practice-of-medicine/466361

xvii

http://www.wellsphere.com/chronic-pain-article/why-it-s-called-the-practice-of-medicine/466361
http://www.wellsphere.com/chronic-pain-article/why-it-s-called-the-practice-of-medicine/466361

individuals seeking to learn more about this field are left to their own devices. I

feel that it is pertinent to clear up one important misconception to eliminate

potential confusion regarding my previous statement. There are menageries of

books available on the topics TCP/IP, packet analysis, and various intrusion

detection systems (IDSs). Although the concepts presented in those texts are

important facets of NSM, they don’t constitute the practice of NSM as a whole.

That would be like saying a book about wrenches teaches you how to diagnose a

car that won’t start.

This book is dedicated to the practice of NSM. This means that rather than simply

providing an overview of the tools or individuals components of NSM, I will speak to

the process of NSM and how those tools and individual components support the

practice.

AUDIENCE
Ultimately, this book is intended to be a guide on how to become a practicing NSM

analyst. My day-to-day job responsibility includes the training of new analysts, so this

book is not only to provide an education text for the masses, but also to provide a book

that can serve as the supportive text of that training process. That being the case, my

intent is that someone can read this book from cover to cover and have an introductory

level grasp on the core concepts that make a good NSM analyst.

If you are already a practicing analyst, then my hope is that this book will pro-

vide a foundation that will allow you to grow your analytic technique to make you

much more effective at the job you are already doing. I’ve worked with several

good analysts who were able to become great analysts because they were able

to enhance their effectiveness with some of the techniques and information I’ll pre-

sent here.

The effective practice of NSM requires a certain level of adeptness with a variety

of tools. As such, the book will discuss several of these tools, but only from the stand-

point of the analyst. When I discuss the Snort IDS, the SiLK analysis tool set, or other

tools, those tasked with the installation and maintenance of those tools will find that I

don’t speak too thoroughly to those processes. When the time arises, I will reference

other resources that will fill the gaps there.

Additionally, this book focuses entirely on free and open source tools. This is not

only in effort to appeal to a larger group of individuals who may not have the budget

to purchase commercial analytic tools such as NetWitness or Arcsight, but also to

show the intrinsic benefit of using open source, analyst designed tools that provide

more transparency in how they interact with data.

PREREQUISITES
The most successful NSM analysts are usually those who have experience in other

areas of information technology prior to starting security-related work. This is

because they will have often picked up other skills that are important to an analyst,

xviii Preface

such as an understanding of systems or network administration. In lieu of this expe-

rience, I’ve created a brief listing of books I really enjoy that I think provide insight

into some important skills useful to the analyst. I’ve tried my best to write this book

so that a significant amount of perquisite knowledge isn’t required, but if you have

the means, I highly recommend reading some of these books in order to supplement

information provided in Applied Network Security Monitoring.

TCP/IP Illustrated, Vol 1, Second Edition: The Protocols by Kevin Fall and

Dr. Richard Stevens (Addison Wesley 2011)

A core understanding of TCP/IP is one of the more crucial skills required to prac-

tice NSM effectively. The classic text by the late Dr. Richard Stevens has been

updated by Kevin Fall to include the latest protocols, standards, best practices,

IPv6, security primers by protocol, and more.

The Tao of Network Security Monitoring, by Richard Bejtlich (Addison Wesley,

2004).

Richard Bejtlich helped to define a lot of the concepts that underlie the practice of

NSM. As a matter of fact, I will reference his book and blog quite often throughout

Applied NSM. Although Richard’s book is nearly ten years old, a lot of the material

in it continues to make it a relevant text in the scope of NSM.

Practical Packet Analysis, by Chris Sanders (No Starch Press, 2010).

I’m not above shameless self-promotion. Whereas Dr. Stevens book provides a

thorough in-depth reference for TCP/IP, PPA discusses packet analysis at a practical

level usingWireshark as a tool of choice.Wewill examine packets in this book, but if

you’ve never looked at packets before then I recommend this as a primer.

Counter Hack Reloaded, by Ed Skoudis and Tom Liston (Prentice Hall, 2006).

I’ve always thought this book was one of the absolute best general security books

available. It covers a bit of everything, and I recommend it to everyone regardless of

their level of experience. If you’ve never done security-related work, then I’d say

Counter Hack Reloaded is a must read.

CONCEPTS AND APPROACH
Applied NSM is broken down into three primary sections: Collection, Detection, and

Analysis. I will devote individual chapters to the discussion of tools, techniques, and

procedures related to these core areas. I’m a simple country boy from Kentucky, so I

try my best to write in a simple tone without a lot of added fluff. I also try to take

typically advanced concepts and break them down into a series of repeatable steps

whenever possible. As with any book that addresses generalized concepts, please

keep in mind that when a concept is presented it will not cover every potential sce-

nario or edge case. Although I may cite something as a best practice, this book ulti-

mately constitutes theories based upon the collective research, experience, and

opinions of its contributors. As such, it may be the case that your research,

xixPreface

experience, and opinions lead you to a different conclusion regarding the topic

being presented. That’s perfectly fine; that’s why NSM is a practice.

Chapter 1: The Practice of Applied Network Security Monitoring

The first chapter is devoted to defining network security monitoring and its

relevance in the modern security landscape. It discusses a lot of the core ter-

minology and assumptions that will be used and referenced throughout the book.

Part 1: Collection

Chapter 2: Planning Data Collection

The first chapter in the Collection section of ANSM is an introduction to data

collection and an overview of its importance. This chapter will introduce the

Applied Collection Framework, which is used for making decisions regarding

what data should be collected using a risk-based approach.

Chapter 3: The Sensor Platform

This chapter introduces the most critical piece of hardware in an NSM

deployment: the sensor. First, we will look at a brief overview of the various NSM

data types, and the types of NSM sensors. This will lead us to discuss important

considerations for purchasing and deploying sensors. Finally, we will cover the

placement of NSM sensors on the network, including a primer on creating

network visibility maps for analyst use.

Chapter 4: Session Data

This chapter discusses the importance of session data, along with a detailed

overview of the SiLK toolset for the collection of NetFlow data. We will also

briefly examine the Argus toolset for session data collection and parsing.

Chapter 5: Full Packet Capture Data

This chapter begins with an overview of the importance of full packet capture

data. We will examine several tools that allow for full packet capture of PCAP

data, including Netsniff-NG, Daemonlogger, and Dumpcap. This will lead to a

discussion of different considerations for the planning of FPC data storage and

maintenance of that data, including considerations for trimming down the amount

of FPC data stored.

Chapter 6: Packet String Data

This chapter provides an introduction to packet string (PSTR) data and its

usefulness in the NSM analytic process. We will look at several methods for

generating PSTR data with tools like Httpry and Justniffer. We will also look at

tools that can be used to parse and viewPSTR data, including Logstash andKibana.

Part 2: Detection

Chapter 7: Detection Mechanisms and Indicators of Compromise, and Signatures

This chapter examines the relationship between detection mechanisms and

Indicators of Compromise (IOC). We will look at how IOCs can be logically

organized, and how they can be effectivelymanaged for incorporation into anNSM

xx Preface

program. This will include a system for classifying indicators, as well asmetrics for

calculating and tracking the precision of indicators that are deployed to various

detection mechanisms. We will also look at two different formats for IOC’s,

OpenIOC and STIX.

Chapter 8: Reputation-Based Detection

The first specific type of detection that will be discussed is reputation-based

detection. We will discuss the fundamental philosophy of reputation-based

detection, alongwith several resources for examining the reputationof devices.This

discussion will lean towards solutions that can automate this process, and will

demonstrate how to accomplish this with simple BASH scripts, or by using Snort,

Suricata, CIF, or Bro.

Chapter 9: Signature-Based Detection with Snort and Suricata

The most traditional form of intrusion detection is signature-based. This chapter

will provide a primer on this type of detection and discuss the usage of the Snort

and Suricata intrusion detection systems. This will include the usage of Snort and

Suricata, and a detailed discussion on the creation of IDS signatures for both

platforms.

Chapter 10: The Bro Platform

This chapter will cover Bro, one of the more popular anomaly-based detection

solutions. It will review of the Bro architecture, the Bro language, and several

practical cases that demonstrate the truly awesome power of Bro as an IDS and

network logging engine.

Chapter 11: Anomaly-Based Detection with Statistical Data

This chapter will discuss the use of statistics for identifying anomalies on the

network. This will focus on the use of various NetFlow tools like rwstats and

rwcount. We will also discuss methods for visualizing statistics by using Gnuplot

and the Google Charts API. This chapter will provide several practical examples

of useful statistics that can be generated from NSM data.

Chapter 12: Using Canary Honeypots for Detection

Previously only used for research purposes, canary honeypots are a form of

operational honeypot that can be used as an effective detection tool. This chapter

will provide an overview of the different types of honeypots, and how certain

types can be used in an NSM environment. We will look at several popular

honeypot applications that can be used for this purpose, including Honeyd,

Kippo, and Tom’s Honeypot. We will also briefly discuss the concept of

Honeydocs.

Part 3: Analysis

Chapter 13: Packet Analysis

The most critical skill an NSM analyst can have is the ability to interpret and

decipher packet data that represents network communication. To do this

effectively requires a fundamental understanding of how packets are dissected.

xxiPreface

This chapter provides that fundamental backing and shows how to break down

packet fields on a byte by byte basis. We demonstrate these concepts using

tcpdump and Wireshark. This chapter will also cover basic to advanced packet

filtering techniques using Berkeley Packet Filters and Wireshark Display Filters.

Chapter 14: Friendly and Threat Intelligence

The ability to generate intelligence related to friendly and hostile systems can

make or break an investigation. This chapter begins with an introduction to the

traditional intelligence cycle and how it relates to NSM analysis intelligence.

Following this, we look at methods for generating friendly intelligence by

generating asset data from network scan and leveraging PRADS data. Finally, we

examine the types of threat intelligence and discuss some basic methods for

researching tactical threat intelligence related to hostile hosts.

Chapter 15: The Analysis Process

The final chapter discusses the analysis process as a whole. This begins with a

discussion of the analysis process, and then breaks down into examples of two

different analysis processes; relational investigation and differential diagnosis.

Following this, the lessons learned process of incident morbidity and mortality

is discussed. Finally, we will look at several analysis best practices to conclude

the book.

IP ADDRESS DISCLAIMER
Throughout this book, several examples are provided where IP addresses are men-

tioned, in both raw data and in screenshots. In most every case, and unless otherwise

specified, these IP addresses were randomized using various tools. Because of this,

any reference to any public IP address belonging to an organization is purely coin-

cidental, and by no means represents actual traffic generated by those entities.

COMPANION WEBSITE
There were quite a few things we wanted to include in this book that we simply wer-

en’t able to fit in or find a place for. As a result, we created a companion website

that contains all kinds of additional thoughts on various NSM topics, along with

code snippets and other tips and tricks. If you like what you read in the coming chap-

ters, then consider checking out the companion website at http://www.appliednsm.

com.While it wasn’t updated too much during the production of the book, we plan to

provide regular contributions to this blog after the book’s release. Any errata for the

book will also be located here.

CHARITABLE SUPPORT
We are incredibly proud to donate 100% of the author royalties from this book to

support five unique charitable causes.

xxii Preface

http://www.appliednsm.com
http://www.appliednsm.com

Rural Technology Fund

Rural students, even those with excellent grades, often have fewer opportunities for

exposure to technology than their urban or suburban counterparts. In 2008, Chris

Sanders founded the Rural Technology Fund. The RTF seeks to reduce the digital

divide between rural communities and their urban and suburban counterparts. This

is done through targeted scholarship programs, community involvement, and the

general promotion and advocacy of technology in rural areas.

Our scholarships are targeted at students living in rural communities who have a

passion for computer technology and intend to pursue further education in that field.

A portion of the royalties from this book will go to support these scholarship pro-

grams, and to provide Raspberry Pi computers to rural schools.

More Info: http://www.ruraltechfund.org

Hackers for Charity

Established by Johnny Long, HFC employs volunteer hackers (no questions asked)

and engages their skills in short “microprojects” designed to help charities that can-

not afford traditional technical resources. In addition to this, HFC is also on the

ground in Uganda, East Africa to support aid organizations working to help some

of the world’s poorest citizens. They provide free computer training, technical sup-

port, networking services, and more. They have supported many local schools with

the addition of computers and training software. In addition, HFC also provides food

to East African children through their food program.

More Info: http://www.hackersforcharity.org

Kiva

Kiva is the first online lending platform that allows people to donate money directly

to people in developing countries through multiple field companies. Kiva includes

personal stories of each person who requests a loan so that donors can connect with

those individuals. Simply put, Kiva facilitates loans that change lives. Funds donated

from the sale of Applied NSM will go to provide these loans.

More Info: http://www.kiva.org

Hope for the Warriors®

The mission of Hope For TheWarriors® is to enhance the quality of life for post-9/11

service members, their families, and families of the fallen who have sustained

physical and psychological wounds in the line of duty. Hope For The Warriors®

is dedicated to restoring a sense of self, restoring the family unit, and restoring hope

for our service members and our military families.

More Info: http://www.hopeforthewarriors.org

Autism Speaks

Autism is a very complex condition characterized in varying degrees by difficulties in

social interaction, communication, and repetitive behaviors. The U.S. Centers for

Disease Control Estimate that 1 in 88 American children have some form of autism.

xxiiiPreface

http://www.ruraltechfund.org
http://www.hackersforcharity.org
http://www.kiva.org
http://www.hopeforthewarriors.org

Autism Speaks is an organization dedicated to changing the future for all who

struggle with autism spectrum disorders. They accomplish this through funding bio-

medical research related to the causes, prevention, treatment, and cure of autism.

Autism Speaks also provides autism advocacy and support for families of autistic

individuals.

More Info: http://autismspeaks.org

CONTACTING US
My contributing authors and I put a lot of time and effort into our work, so we are

always excited to hear from people who have read our writing and want to share their

thoughts. If you would like to contact us for any reason, you can send all questions,

comments, threats, and marriage proposals directly to us at the following locations:

Chris Sanders, Lead Author

E-mail: chris@chrissanders.org

Blog: http://www.chrissanders.org; http://www.appliednsm.com

Twitter: @chrissanders88

Jason Smith, Co-Author

E-mail: jason.smith.webmail@gmail.com

Blog: http://www.appliednsm.com

Twitter: @automayt

David J. Bianco, Contributing Author and Tech Editor

E-mail: davidjbianco@gmail.com

Blog: http://detect-respond.blogspot.com/; http://www.appliednsm.com

Twitter: @davidjbianco

Liam Randall, Technical Contributor

E-mail: liam@bro.org

Blog: http://liamrandall.com; http://www.appliednsm.com

Twitter: @liamrandall

xxiv Preface

http://autismspeaks.org
mailto:chris@chrissanders.org
http://www.chrissanders.org
http://www.appliednsm.com
mailto:jason.smith.webmail@gmail.com
http://www.appliednsm.com
mailto:davidjbianco@gmail.com
http://detect-respond.blogspot.com/
http://www.appliednsm.com
mailto:liam@bro.org
http://liamrandall.com
http://www.appliednsm.com

CHAPTER

The Practice of Applied
Network Security Monitoring 1
CHAPTER CONTENTS

Key NSM Terms ... 3

Asset ..3

Threat ..3

Vulnerability ...4

Exploit ..4

Risk ...4

Anomaly ...5

Incident ..5

Intrusion Detection ... 5

Network Security Monitoring .. 6

Vulnerability-Centric vs. Threat-Centric Defense .. 9

The NSM Cycle: Collection, Detection, and Analysis .. 9

Collection ...10

Detection ..10

Analysis ..11

Challenges to NSM .. 11

Defining the Analyst ... 12

Critical Skills ..13

Baseline Skills .. 13

Specializations .. 13

Classifying Analysts ...14

Level One (L1) Analyst ... 14

Level Two (L2) Analyst ... 15

Level Three (L3) Analyst .. 15

Measuring Success ..15

Create a Culture of Learning ... 16

Emphasize Teamwork .. 17

Provide Formalized Opportunities for Professional Growth 17

Encourage Superstars .. 17

Reward Success ... 18

Learn from Failure ... 18

Exercise Servant Leadership ... 18

1

Security Onion ... 19

Initial Installation ..19

Updating Security Onion ..21

Running NSM Services Setup ...21

Testing Security Onion ...22

Conclusion .. 24

The current state of security for Internet-connected systems makes me think of the

Wild West. The West represented a lot of things to Americans at that time. As a

mostly untapped resource, the west was seen a vast undiscovered land of opportunity.

As more and more people journeyed west, small communities were established and

individuals and families alike were able to prosper. With this prosperity and success,

inevitably there came crime. Towns were dispersed and law was exclusively local-

ized, allowing rogue groups of desperados to roam from town to town, robbing and

pillaging local resources. The lack of coordination and communication between “the

law” in these towns meant that the desperados rarely got caught unless they happened

to be gunned down by a local sheriff.

Fast-forward to the modern era and the picture isn’t painted too differently. The

Internet represents a similar land of untapped opportunity where someone is only a

domain name and a little elbow grease away from achieving the American dream.

Just like the West however, the Internet is not without its own group of desperados.

Whereas the West had bank robbers and hijackers, we now contend with botnet mas-

ters and click jackers. We are also currently suffering from similar problems with

localized law enforcement. The threat we face is global, yet every country, and in

some cases individual states, operate within their own disparate set of laws.

In the West, the crux of the issue was that the criminals were organized and law

enforcement wasn’t. Although the computer security field has improved drastically

over the past ten years; on a global scale, defenders are still playing catch up to the

groups who are able to operate global criminal networks. Unfortunately, this isn’t

something that is fixable overnight, if ever.

This reality puts the focus on the individuals in the trenches to do whatever is

possible to defend computer networks and the data contained within them from these

criminals. It is my belief that the most effective way to do this is through the practice

of Network Security Monitoring (NSM).

NSM is the collection, detection, and analysis of network security data. Informa-

tion security has traditionally been divided into many different focus areas, but I tend

to lean most towards the way the United States Department of Defense (US DoD)

categorizes the domains of Computer Network Defense (CND) per DoD 8500.2.1

These are:

Protect. The protect domain focuses on securing systems to prevent exploitation

and intrusion from occurring. Some of the functions that typically occur within this

1US Department of Defense Instruction 8500.2, Information Assurance (IA) Implementation (6 Feb-

ruary 2003) - http://www.dtic.mil/whs/directives/corres/pdf/850002p.pdf.

2 CHAPTER 1 The Practice of Applied Network Security Monitoring

http://www.dtic.mil/whs/directives/corres/pdf/850002p.pdf

domain include vulnerability assessment, risk assessment, anti-malware manage-

ment, user awareness training, and other general information assurance tasks.

Detect.This domain centers on detecting compromises that are actively occurring

or have previously occurred. This includes network security monitoring and attack

sense and warning.

Respond. The third domain focuses on the response after a compromise has

occurred. This includes incident containment, network and host-based forensics,

malware analysis, and incident reporting.

Sustain. The final CND domain deals with the management of the people, pro-

cesses, and technology associated with CND. This includes contracting, staffing and

training, technology development and implementation, and support systems

management.

As you may have guessed, this book deals primarily in the Detect domain, but if

done correctly, the benefits of proper NSM will extend to all domains of CND.

KEY NSM TERMS
Before diving in, there are several terms that must be defined due to their extensive

use throughout this book. With NSM and network security being a relatively new

science, it’s hard to find common, discrete definitions for a lot of these terms.

The sources I’ve chosen most closely align with US DoD documentation, CISSP cer-

tification literature, and other NSM text. They have been mostly paraphrased, and

directly quoted and cited as appropriate.

Asset

An asset is anything within your organization that has value. At an easily quantifiable

level, this may include computers, servers, and networking equipment. Beyond this,

assets will also include data, people, processes, intellectual property, and reputation.

When I refer to an “asset” I will generally be referring to something within the

scope of your trusted network. This may also include networks that are separate from

yours, but still considered trusted (think of government allies, subsidiary organiza-

tions, or supply chain partners). I will use the terms asset, good guy, target, victim,

and friendly interchangeably.

Threat

A threat is a party with the capabilities and intentions to exploit a vulnerability in an

asset. A threat is relative, as a threat to a civilian might be different than a threat to a

large corporation. Furthermore, a threat to an emerging nation might be different

than that of a global superpower.

Threats can primarily be classified in two categories: structured and unstructured.

A structured threat utilizes formal tactics and procedures and has clearly defined

objectives. This often includes organized criminals, hacktivist groups, government

3Key NSM Terms

intelligence agencies, and militaries. These are typically groups of individuals;

although, it’s not unheard of for a single individual to represent an structured threat.

A structured threat almost always pursues targets of choice, chosen for a specific

reason or goal.

An unstructured threat lacks the motivation, skill, strategy, or experience of a

structured threat. Individuals or small loosely organized groups most often represent

this type of threat. Unstructured threats typically pursue targets of opportunity, which

are selected because they appear easily vulnerable.

Regardless of the scope or nature of the threat, they all have something in com-

mon: they want to steal something from you. This can be stolen money, intellectual

property, reputation, or simply time.

I will use the terms threat, bad guy, adversary, attacker, and hostile

interchangeably.

Vulnerability

A vulnerability is a software, hardware, or procedural weakness that may provide an

attacker the ability to gain unauthorized access to a network asset.

This might take the form of improperly written code that allows for exploitation

via a buffer overflow attack, an active network port in a public area that presents the

opportunity for physical network access, or even an improperly devised authentica-

tion system that allows an attacker to guess an victim’s username. Keep in mind that

a human can also be considered a vulnerability.

Exploit

An exploit is the method by which a vulnerability is attacked. In the case of software

exploitation, this may take the form of a piece of exploit code that contains a payload

that allows the attacker to perform some type of action on the system remotely, such as

spawning a command shell. In a web application, a vulnerability in the way the appli-

cation processes input and output may allow an attacker to exploit the application with

SQL injection. In another scenario, an attacker breaking into an office building by tail-

gating off of another user’s access card swipe would be considered an exploit.

Risk

The study of risk management is extensive, and as such there are several different

definitions for risk. In relation to NSM, I think the most appropriate definition of risk

is the measurement of the possibility that a threat will exploit a vulnerability.

Although most managers desire some quantifiable metric, often times quantifying

risk is a fruitless endeavor because of the intrinsic difficulty in placing a value on

network and data assets.

I will frequently discuss things that may add or decrease the level of a risk to an

asset, but I won’t be speaking in depth on calculations for quantifying risk beyond

what is necessary for defining a collection strategy.

4 CHAPTER 1 The Practice of Applied Network Security Monitoring

Anomaly

An anomaly is an observable occurrence in a system or network that is considered out

of the ordinary. Anomalies generate alerts by detection tools such as an intrusion

detection systems or log review applications. An anomaly may include a system

crash, malformed packets, unusual contact with an unknown host, or a large amount

of data being transferred over a short period of time.

Incident

When an event is investigated, it may be reclassified as part of an incident. An inci-

dent is a violation or imminent threat of violation of computer security policies,

acceptable use policies, or standard security practices2. More simply stated, an inci-

dent means that something bad has happened, or is currently happening on your net-

work. This might include the root-level compromise of a computer, a simple

malware installation, a denial of service attack, or the successful execution of mali-

cious code from a phishing e-mail. Keep in mind that all incidents include one or

more events, but most events will not directly represent an incident.

INTRUSION DETECTION
Prior to the coining of the term NSM, the detect domain was typically described sim-

ply as Intrusion Detection. Although NSM has been around for nearly ten years, these

terms are often used interchangeably. These are not synonyms, but rather, intrusion

detection is a component of modern NSM.

The detect domain built solely around the old paradigm of intrusion detection

often had a few distinct characteristics:

Vulnerability-Centric Defense. The most common model of the computer net-

work attacker breaking into a network is by exploiting a software vulnerability. Since

this model is so simple and clear cut, it’s what most early intrusion detection pro-

grams were built around. The intrusion detection system (IDS) is deployed with

the goal of detecting the exploitation of these vulnerabilities.

Detection in Favor of Collection. The majority of effort placed on this domain

lies within detection. While data collection was occurring, it was often unfocused

and collection strategies weren’t tied to detection goals. A lack of focus on collection

often fostered the mindset “too much data is always better than not enough” and

“capture everything and sort it out later”.

Mostly Signature-Based. The exploitation of a software vulnerability is often a

fairly static action that can be developed into an IDS signature rather easily. As such,

traditional intrusion detection relied on having knowledge of all known vulnerabil-

ities and developing signatures for their detection.

Attempts to Fully Automate Analysis. The simplistic vulnerability-centric intru-

sion detection model lends itself to the belief that most IDS generated alerts can be

trusted with reasonably high confidence. As such, this paradigm often relies on little

5Intrusion Detection

involvement by human analysts, and attempts to automate post-detection analysis as

much as possible.

While moderately successful in its time, the current state of security has led us to

a point where traditional intrusion detection isn’t effective. The primary reason for

this is the failure of the vulnerability-centric defense.

Bejtlich provides one of the better explanations for this.2 Consider a scenario

where several houses in a neighborhood experience break-ins. When this happens,

the police could respond by putting up barbed wire fences around the other houses

in the neighborhood. They could also install large steel doors on all of the houses or

put bars on all of the windows. This would be considered a vulnerability-centric

approach. It’s not surprising that you don’t often hear of law enforcement doing

such things. That’s because the criminals will simply find other vulnerabilities in

the houses to exploit if they are determined and are targeting that specific

neighborhood.

NETWORK SECURITY MONITORING
NSM has advanced in large part thanks to the military, which has traditionally been

one of the biggest proponents of this defensive mindset. That’s no real surprise given

the military’s extensive use of information technology, the critical importance of

their operations, and the high confidentiality of the data they generate.

United States Information Operations (IO) doctrine3 mentions that a com-

mander’s IO capabilities should be used to accomplish the following:

• Destroy: To damage a system or entity so badly that it cannot perform any

function or be restored to a usable condition without being entirely rebuilt.

• Disrupt: To break or interrupt the flow of information.

• Degrade: To reduce the effectiveness or efficiency of adversary command,

control, or communication systems, and information collection efforts or means.

IO can also degrade the morale of a unit, reduce the target’s worth or value, or

reduce the quality of adversary decisions and actions.

• Deny: To prevent the adversary from accessing and using critical information,

systems, and services.

• Deceive: To cause a person to believe that which is not true. Seeking to mislead

adversary decision makers by manipulating their perception of reality.

• Exploit: To gain access to adversary command and control systems to collect

information or to plant false or misleading information.

• Influence: To cause others to behave in a manner favorable to friendly forces.

2Bejtlich, Richard, TaoSecurity Blog, “Real Security is Threat Centric” (Nov 2009). http://taosecurity.

blogspot.com/2009/11/real-security-is-threat-centric.html
3United States Department of Defense Joint Publication 3-13, “Information Operations” (13 February

2006). http://www.carlisle.army.mil/DIME/documents/jp3_13.pdf

6 CHAPTER 1 The Practice of Applied Network Security Monitoring

http://taosecurity.blogspot.com/2009/11/real-security-is-threat-centric.html
http://taosecurity.blogspot.com/2009/11/real-security-is-threat-centric.html
http://www.carlisle.army.mil/DIME/documents/jp3_13.pdf

• Protect: To take action to guard against espionage or capture of sensitive

equipment and information.

• Detect: To discover or discern the existence, presence, or fact of an intrusion into

information systems.

• Restore: To bring information and information systems back to their original

state.

• Respond: To react quickly to an adversary’s or others’ IO attack or intrusion.

Many of these goals are interconnected. The majority of NSM is dedicated to

Detect in an effort to better Respond. On occasion, this may include elements of other

areas. In this book, we will touch on deception and degradation to some extent when

we talk about honeypots.

The detect portion of this IO doctrine also lines up with the US DoD definition of

Attack Sense and Warning (AS&W).4 AS&W is the detection, correlation, identifi-

cation and characterization of intentional unauthorized activity, including computer

intrusion or attack, across a large spectrum coupled with the notification to command

and decision-makers so that an appropriate response can be developed. AS&W also

includes attack/intrusion related intelligence collection tasking and dissemination;

limited immediate response recommendations; and limited potential impact

assessments.

NSM is considered the new paradigm for the detect domain and has its own set of

characteristics that are drastically different than traditional intrusion detection:

Prevention Eventually Fails. One of the hardest realities for an individual with

the defender’s mindset to accept is that they will eventually lose. No matter how

strong your defenses are or what proactive steps have been taken, eventually a moti-

vated attacker will find a way to get in.

Beyond information security, the reality is that the defender will always be play-

ing catch-up. When the defender builds a stronger bunker, the attacker builds a big-

ger bomb. When the defender starts using a bulletproof vest, the attacker starts using

armor-piercing bullets. It should be no surprise that when a defender deploys enter-

prise grade firewalls or ensures that his servers are fully patched, the attacker will

utilize social engineering attacks to gain a foothold onto the network or utilize a

zero-day exploit to gain root access to your patched server.

Once someone accepts that they will eventually be compromised, they can shift

their mindset to one that doesn’t solely rely on prevention, but rather, puts an addi-

tional focus on detection and response. In doing this, when the big compromise hap-

pens, your organization is positioned to respond effectively and stop the bleeding.

Focus on Collection. The previous mindset where all data sources that are avail-

able were collected and thrown into a central repository has resulted in deployments

that are incredibly cost ineffective to manage. Not only that, but they don’t provide

4United Stated Department of Defense Directive O-8530.1, “Computer Network Defense (CND)”

(8 January 2001). http://www.doncio.navy.mil/uploads/0623IYM47223.pdf

7Network Security Monitoring

http://www.doncio.navy.mil/uploads/0623IYM47223.pdf

any real value because the right types of data aren’t available and the detection tools

can’t scale with the amount of data they are forced to contend with.

If an ounce of prevention is worth a pound of cure, then I wouldn’t hesitate to say

that an ounce of collection is worth a pound of detection. In order to perform any type

of detection or analysis, you must have data to parse. If you can perform the same

level of detection with less data, then you are saving CPU cycles and being more

efficient. Furthermore, if you can provide the human analyst with only the data they

need, they can make sound decisions much faster, which can make the difference in a

small compromise or a full on data breach.

Cyclical Process. Old paradigm intrusion detection is a linear process. You

receive an alert, you validate the alert, you respond as necessary, and then you

are done. This linear process is both naive and irresponsible. Placing every network

security incident in a vacuum does not serve the purpose of defending the network.

Although some compromises do take place in a matter of seconds, skilled attackers

are often slow and methodical, sometimes taking months to manifest the goals of

their attack.

In order to move away from this vacuum approach, it is necessary that the process

of detecting and responding to intrusion be cyclical. That means that collection

should feed detection, detection should feed analysis, and analysis should feed back

into collection. This allows the defender to build intelligence over time that may be

used to better serve the defense of the network.

Threat-Centric Defense.All of the characteristics I’ve discussed thus far have led

to the concept of threat-centric defense. Whereas vulnerability-centric defense

focuses on the “how”, threat-centric defense focuses on the “who” and “why”. Spe-

cifically, you must ask yourself who would be interested in attacking your network,

and why would they stand to gain from such an action?

Threat-centric defense is a much harder to perform than its predecessor. This is

because it requires two things: extensive visibility into your network, and the ability

to collect and analyze intelligence related to the intent and capability of attackers.

The former of these is incredibly easy to accomplish for just about any organization

with a proper time investment. The latter is much harder when you are operating in

any industry other than the federal government, but it is certainly not impossible.

Consider the scenario we discussed previously of robberies in a neighborhood.

Instead of a vulnerability-centric approach that may involve additional prevention

mechanisms such as barbed wire fences and steel doors, in a threat-centric approach,

the police closely examine the houses that were broken into. They look for similar-

ities, or indicators that are common amongst the break-ins, to include a determination

of the attacker’s perceived goals. With this intelligence, the police can build a profile

of the criminals. Combining this intelligence into something resembling a threat pro-

file, law enforcement can then check prior arrest records to see if they can locate

criminals who have used similar tactics in the past. This type of analysis combined

with other forms of attribution can ultimately lead to the arrest of the criminal,

preventing further break-ins. This approach is the essence of threat-centric defense

and NSM.

8 CHAPTER 1 The Practice of Applied Network Security Monitoring

VULNERABILITY-CENTRIC VS. THREAT-CENTRIC DEFENSE
Consider a hockey match where your goal is defended by either a brick wall or a

goalie. Initially, the brick wall might seem like the best option. Someone who thinks

vulnerability-centric prefers a brick wall. The brick wall seems solid at first because

it protects most of the goal and the attacker can only get in if they break through it.

Over time however, shots do break through the brick wall. Eventually, entire bricks

might get knocked out. Sure, you can replace the bricks, but while you are replacing

one brick, another might get knocked loose.

Someone who thinks threat-centric prefers to have a goalie backing them up.

Sure, it’s very important that the goalie stops all of the shots. However, when the

occasional shot does beat the goalie, the goalie will notice that the shot was low

and on the stick side. The next time the goalie encounters the same shooter, you better

believe that they will be keeping an eye on the low stick side and will be a lot less

likely to allow that to happen again.

The key difference is that the brick wall never changes its tactics and never learns.

The goalie, on the other hand, learns the habits of a particular shooter. The goalie

learns, the goalie adapts, and the goalie thrives.

Although vulnerability-centric defense and threat-centric defense both seek to

defend the network, they attempt it in different ways. Table 1.1 outlines the differ-

ences I’ve just discussed.

THE NSM CYCLE: COLLECTION, DETECTION, AND ANALYSIS
The NSM Cycle consists of three distinct phases: Collection, Detection, and Anal-

ysis. This book is organized into three sections for each of these phases (Figure 1.1).

Table 1.1 Vulnerability-Centric vs. Threat-Centric Defense

Vulnerability Centric Threat Centric

Relies on prevention Knows that prevention eventually fails

Focus on detection Focus on collection

Assumes universal view of all

threats

Knows that threats use different tools, tactics, and

procedures

Analyzes every attack in a

vacuum

Combines intelligence from every attack

Heavy reliance on signature-

based detection

Utilizes all-source data

Minimal ability to detect

unknown threats

Stronger ability to detect adversarial activities beyond

known signatures

Linear process Cyclical process

9The NSM Cycle: Collection, Detection, and Analysis

Collection

The NSM cycle begins with its most important step, collection. Collection occurs

with a combination of hardware and software that are used to generate, organize,

and store data for NSM detection and analysis. Collection is the most important part

of this cycle because the steps taken here shape an organization’s ability to perform

effective detection and analysis.

There are several types of NSM data and several ways it can be collected. The

most common categories of NSM data include Full Content Data, Session Data, Sta-

tistical Data, Packet String Data, and Alert Data. Depending on organizational needs,

network architecture, and available resources, these data types may be used primarily

for detection, exclusively for analysis, or for both.

Initially, collection can be one of the more labor-intensive parts of the NSM cycle

due to the amount of human resources required. Effective collection requires a con-

certed effort from organizational leadership, the information security team, and net-

work and systems administration groups.

Collection includes tasks such as:

• Defining where the largest amount of risk exists in the organization

• Identifying threats to organizational goals

• Identifying relevant data sources

• Refining collection portions of data sources

• Configuring SPAN ports to collect packet data

• Building SAN storage for log retention

• Configuring data collection hardware and software

Detection

Detection is the process by which collected data is examined and alerts are generated

based upon observed events and data that are unexpected. This is typically done

through some form of signature, anomaly, or statistically based detection. This

results in the generation of alert data.

FIGURE 1.1

The NSM Cycle

10 CHAPTER 1 The Practice of Applied Network Security Monitoring

Detection is most often a function of software, with some of the more popular

software packages being the Snort IDS and Bro IDS from a network intrusion detec-

tion system (NIDS) perspective, and OSSEC, AIDE or McAfee HIPS from a host

intrusion detection system (HIDS) perspective. Some Security Information and

Event Management (SIEM) applications will utilize both network and host-based

data to do detection based upon correlated events.

Although the bulk of detection is done by software, some detection does occur by

manual analysis of data sources. This is especially the case with retrospective

analysis.

Analysis

Analysis is the final stage of the NSM cycle, and it occurs when a human interprets

and investigates alert data. This will often involve gathering additional investigative

data from other data sources, researching open source intelligence (OSINT) related

to the type of alert generated by the detection mechanism, and performing OSINT

research related to any potentially hostile hosts.

There are multitudes of ways that analysis can be performed, but this may include

tasks such as:

• Packet analysis

• Network forensics

• Host forensics

• Malware analysis

Analysis is the most time consuming portion of the NSM cycle. At this point an

event may be formally escalated to the classification of an incident, wherein incident

response measures can begin.

The loop on the NSM Cycle is closed by taking the lessons learned from the

detection and analysis phase for any given anomaly and further shaping the collec-

tion strategy of the organization.

CHALLENGES TO NSM
As with any paradigm shift, the introduction of NSM and threat-centric security has

been met with a fair share of challenges. The primary issue is that NSM is an imma-

ture science in itself, and it exists within another immature science that is information

technology as a whole. While some effort has been put forth to standardize various

nomenclature and protocols, there is still a wide disparity in what is written and what

is actually implemented. This is evident in the operating systems we use, the appli-

cations that run on them, and the protocols they talk to each other with.

Focusing on information security specifically, a conversation about the same

topic with three different people may use three different sets of nomenclature. This

is incredibly limiting from a training perspective. One of the reasons the medical

field is so successful in training of new physicians is that regardless of what medical

11Challenges to NSM

school someone graduates from, they all (in theory) have the same baseline level of

knowledge prior to entering residency. Further, based upon standardization of resi-

dency program requirements and medical board testing, all resident physicians are

expected to maintain a similar level of competency in order to practice medicine

as an attending physician. This is all based upon acceptance of common theory, prac-

tice, and requirements. The fact that NSM lacks this regulation means that we have a

group of practitioners that often speak on different wavelengths. Furthermore,

although these practitioners are saying the same thing, they are often speaking dif-

ferent languages. Again, medicine has a few thousand years of a jump start on NSM,

so it’s something that we have and will continue to make great strides in, but for now,

it’s a problem that won’t likely be going away soon.

Another issue plaguing NSM is the amount of skill required to practice effec-

tively. Simply put, there aren’t enough people with the experience and knowledge

required to meet demand. In a struggling economy where a large number of people

are having difficulty finding employment, it is staggering to see the large number of

jobs available for someone with NSM or other similar skills. Although NSM can cer-

tainly be an entry-level security job, it requires experience to be done at a senior level

in order to guide junior staff members. These mid to senior level staffers are quite

hard to keep employed as they often end up in higher paying consulting roles, or

migrating to some sort of management position.

A final issue worth mentioning as a large challenge to the advancement of NSM is

the cost required to establish and maintain an NSM program. Although this high cost

of entry is usually associated with the hardware required to collect and parse the

amount of data generated from NSM functions, the bulk of the cost is commonly

a result of the workforce required to do the analysis portion of NSM, and to support

the NSM infrastructure used by the analysts. This is compounded for larger organi-

zations that require 24 � 7 � 365 NSM. Unfortunately, another cost point is added

for organizations that require the use of commercial SIEM software. Although these

packages aren’t always necessary, when they are deemed an organizational “must”

they can often be accompanied with six to seven figure price tags.

DEFINING THE ANALYST
The biggest defining characteristic of an NSM program is the human analyst. The

analyst is the individual who interprets alert data, analyzes and investigates that data

along with related data, and determines whether the event is a false positive or

requires further investigation. Depending on the size and structure of the organiza-

tion, an analyst may also take part in the incident response process or perform other

tasks such as host-based forensics or malware analysis.

The human analyst is the crux of the organization. It is the analyst who is poring

through packet captures looking for a single bit that’s out of place. This same analyst

is expected to be up to date on all of the latest tools, tactics, and procedures that the

12 CHAPTER 1 The Practice of Applied Network Security Monitoring

adversary may use. The simple fact is that the security of your network depends on

the human analysts’ ability to do their job effectively.

Critical Skills

There are several important skills that an analyst should have. I generally define

baseline knowledge that is good for all analysts to possess, and then define areas

of specialization that will set an analyst apart. In an ideal world, an analyst would

have two or three areas of specialization, but practically when I’ve managed teams

I ask for them to have at least one.

Baseline Skills
• Threat-Centric Security, NSM, and the NSM Cycle

• TCP/IP Protocols

• Common Application Layer Protocols

• Packet Analysis

• Windows Architecture

• Linux Architecture

• Basic Data Parsing (BASH, Grep, SED, AWK, etc)

• IDS Usage (Snort, Suricata, etc.)

• Indicators of Compromise and IDS Signature Tuning

• Open Source Intelligence Gathering

• Basic Analytic Diagnostic Methods

• Basic Malware Analysis

Specializations
There are several specializations that an analyst might possess. Some of these

include:

Offensive Tactics. This specialty generally focuses on penetration testing and

security assessments. Analysts specializing in this area will attempt to gain access

to attack the network in the same way an adversary would. These types of exercises

are crucial for identifying weaknesses in the way other analysts perform their duties.

In addition, analysts who are knowledgeable in offensive tactics are typically better

equipped to recognize certain attacker activity when performing NSM analysis. Spe-

cific knowledge and skills useful to the offensive tactics specialty include network

reconnaissance, software and service exploitation, backdoors, malware usage, and

data exfiltration techniques.

Defensive Tactics. The defensive tactician is the master of detection and analysis.

This specialty usually involves the analyst conceptualizing new development tools

and analytic methods. This analyst will also be counted on to keep abreast of new

tools and research related to network defense, and to evaluate those tools for use

within the organization’s NSM program. Specific knowledge and skills useful to

the defensive tactics specialty include a more detailed knowledge of network

13Defining the Analyst

communication, extensive knowledge of IDS operation and mechanics, IDS signa-

tures, and statistical detection.

Programming. Being able to write code is a useful ability in almost any facet of

information technology, especially in information security and NSM. An analyst

who is proficient in programming will be able to develop custom detection and anal-

ysis solutions for an NSM team. Additionally, this person will often be very good at

parsing large data sets. Generally, someone who chooses to specialize in program-

ming for the purposes of NSM should have a very strong understanding of the Linux

BASH environment. Once they have done this, they should become well versed in an

interpreted language such as Python or PERL, a web language such as PHP or Java,

and eventually, a compiled language such a C or Cþþ.

Systems Administration.Although systems administration itself is a more general

skill, it is possible to specialize in systems administration as it relates to NSM. Ana-

lysts with this specialty are heavily involved with collection processes such as con-

figuring IDS and moving data around so that it may be properly ingested by various

detection software packages. An analyst may also perform sensor hardening and the

development of friendly host intelligence collection. An in-depth knowledge of both

Windows and Linux platforms is the basis for the specialization, along with an adept

understanding of data and log collection.

Malware Analysis. Performing NSM will frequently result in the collection of

known and suspected malware samples. It should be expected that any analyst could

do basic malware sandboxing in order to extract indicators, but if an organization

ever detects the use of targeted malware, it is immensely valuable to have someone

with the ability to perform a higher level of malware analysis. This includes knowl-

edge of both dynamic and static analysis.

Host-Based Forensics. An individual specializing in host-based forensics gains

intelligence from an asset that has been compromised by doing a forensic analysis

of the host. This intelligence can then be used to refine the collection processes within

the organization. This knowledge can also be used to evaluate and implement new

host-based detection mechanisms, and to generate new indicators of compromise

based upon the analysis of host-based artifacts. Useful skills in this specialty include

hard drive and file system forensics, memory forensics, and incident time line creation.

Classifying Analysts

Generally, I’ve seenmost organizations classify analysts as either junior or senior level

based upon their years of experience. I prefer amore discretemethod of classifying ana-

lysts basedupon three levelsof ability.This isuseful for hiringand scheduling, aswell as

providing analysts achievable goals to advance their careers. This type ofmodel doesn’t

necessarily fit within every organization, but it provides a good starting point.

Level One (L1) Analyst
The entry-level analyst is considered to be at L1. This analyst possesses a reasonable

grasp on several of the baseline skills listed previously, but will likely not have set-

tled into any particular specialization. A typical L1 will spend the majority of their

14 CHAPTER 1 The Practice of Applied Network Security Monitoring

time reviewing IDS alerts and performing analysis based upon their findings. The

biggest factor that can contribute to the success of an L1 is getting more experience

under their belt. The more protocols, packets, and events that are seen, the better an

analyst is equipped to handle the next event that comes down the wire. This can be

related to the career advancement of a surgeon, who becomes better with every sur-

gery they perform. In most organizations, the majority of analysts fall within the L1

classification.

Level Two (L2) Analyst
The L2 analyst is one who has a solid grasp of the majority of the baseline skills.

Usually, this analyst has selected at least one specialization and has begun to spend

time outside of normal event review and investigation trying to enhance their skills

in that area. The L2 serves as a mentor to the L1, and will begin to identify ‘best

practices’ within the scope of an organization’s NSM program. The L2 will become

increasingly involved with helping to shape the detection processes within the

team by creating signatures based upon other network events or OSINT research.

The L2 analyst also develops the ability to look through various data sources man-

ually to attempt to find potential events instead of solely relying upon automated

detection tools.

Level Three (L3) Analyst
The level three (L3) analyst is the most senior analyst within an organization. These

analysts are adept at all of the baseline skills and at least one specialty. They are the

thought leaders within the organization and rather than spending their time reviewing

events, they are primarily tasked with mentoring other analysts, developing and pro-

viding training, and providing guidance on complex investigations. The L3 analyst is

also primarily responsible for helping to develop and enhance the organization’s col-

lection and detection capabilities, which may include conceptualizing or developing

new tools, as well as evaluating existing tools.

Measuring Success

Measuring the success or failure of an NSM program is often handled incorrectly by

most organizations. If a compromise occurs, senior management views this as a crit-

ical failure of their security team as a whole. Under a vulnerability-centric model

where prevention is relied upon fully, this might be an appropriate thought pattern.

However, once an organization accepts that prevention eventually fails, they should

also expect compromises to occur. Once this mindset becomes prevalent, you should

not measure the effectiveness of an NSM program by whether a compromise occurs,

but rather, how effectively it is detected, analyzed, and escalated. In the scope of an

intrusion, NSM is ultimately responsible for everything that occurs from detection to

escalation, with the goal of geting the appropriate information to incident responders

as quickly as possible once it is determined that an incident has occurred. Of course,

in anything but larger organizations the NSM teammay also be the incident response

team, but the functions are still logically separate. Ultimately, instead of asking “why

15Defining the Analyst

did this happen?”, the questions leadership should be asking your NSM team after a

compromise are, “how quickly were we able to detect it, how quickly were we able to

escalate it to response, and how we can adjust our NSM posture to be better prepared

next time?”

Most readers of this book will be analysts rather than managers, but I’ve included

this section so that its contents may be shared with management, and in the hopes that

readers may one day be in a position to impact some of these changes.

The most important part of an NSM program, and the people who will ultimately

be responsible for answering these questions, are the human analysts. I’ve had the

privilege to work with and observe several security teams from organizations of

all sizes, and I’ve seen several good programs and several bad programs. There

are a lot of ways to create a great NSM team, but all of the organizations that

I’ve witnessed failing at providing effective security through NSM have one thing

in common: they fail to recognize that the human analyst is the most important facet

of the mission.

Rather than investing in and empowering the analysts, these organizations invest

in expensive software packages or unnecessary automation. Two years down the

road when a large compromise happens, the stakeholders who made these decisions

are left wondering why their SIEM solution and its seven figure price tag didn’t catch

a compromise that started six months prior.

Worse yet, these organizations will scrimp on staffing until they only utilize

entry-level staff without the required experience or background to perform the task

at hand. Although some entry-level staffers are expected, a lack of experienced tech-

nical leadership means that your junior level analysts won’t have an opportunity to

grow their expertise. These are often the same organizations that refuse to provide

adequate training budgets, whether this is financial budgeting or time budgeting.

There are several common traits amongst successful NSM teams:

Create a Culture of Learning
NSM thrives on ingenuity and innovation, which are the products of motivation and

education. It is one thing to occasionally encourage education with periodic training

opportunities, but it is a completely different animal to create an entire work culture

based on learning. This means not only allowing for learning, but facilitating,

encouraging, and rewarding it.

This type of culture requires overcoming a lot of the resistance associated with a

typical workplace. In a traditional workplace, it might be frowned on to walk into an

office and see several employees reading books or working on personal technical

projects that don’t relate to reviewing events or packets. It might even be unfathom-

able for the majority of the staff to abscond from their desks to discuss the finer points

of time travel in front of a whiteboard. The truth of the matter is that these things

should be welcomed, as they increase morale and overall happiness, and at the

end of the day your analysts go home with an excitement that makes them want

to come back with fresh ideas and renewed motivation the next day.

16 CHAPTER 1 The Practice of Applied Network Security Monitoring

Although somemembers of the old guard will never be able to accept such a work

environment, it’s proven to be very successful. Google is an example of an organi-

zation that has created a successful culture of learning, and a large portion of their

success is directly related to that.

This mantra of a culture of learning can be summed up very simply. In every

action an analyst takes, they should either be teaching or learning. No exceptions.

Emphasize Teamwork
It’s a bit cliché, but the team dynamic ensures mutual success over individual suc-

cess. This means that team building is a must. Ensuring team cohesiveness starts with

hiring the right people. An individual’s capacity to perform is important, but their

ability to mesh with existing team members is of equal importance. I’ve seen mul-

tiple instances where one bad apple has soured the whole bunch.

At some point, something bad is going to happen that requires an extensive time

commitment from all parties involved. Analysts who trust each other and genuinely

enjoy spending time together are going to be much more effective at ensuring the

incident is handled properly. As an added bonus, a cohesive team will help promote

a learning culture.

Provide Formalized Opportunities for Professional Growth
One of the biggest fears of managers is that their staff will become highly trained and

certified and then leave the organization for greener pastures. Although this does

happen, it shouldn’t steer an organization away from providing opportunities.

In interviewing NSM analysts who have left various organizations, it’s rarely

ever something as simple as a higher salary that has caused them to jump ship.

Rather, they almost always cite that they weren’t provided enough opportunity for

growth within their organization. Generally, people don’t like change. Changing

jobs, especially when it involves relocating, is a big step and something people would

generally like to avoid if at all possible. This means that you are likely to keep your

staff if you can provide opportunities for professional certifications, advancements in

position, or migrations to management roles. Simply having a clearly defined path

for this type of advancement can often make the difference. This is one of the reasons

why having something like the L1/L2/L3 classification system can benefit an

organization.

Encourage Superstars
Information security is notorious for having a culture of people with incredibly large

egos. Although there is something to be said for being humble, you can’t change the

personal traits that are built into someone and you have to do your best to work with

it. If your organization has an employee with a big ego, then turn him into a superstar.

People who have an excessive amount of confidence typically desire to succeed in a

big way, so if you can make this happen then they will thrive. This is done by chal-

lenging them, providing learning opportunities, and instilling responsibility in them.

A superstar is rare, so some will flounder when it’s crunch time. If this happens, then

17Defining the Analyst

the reality check often serves to lessen a big ego. If the person continually succeeds,

then you’ve found your superstar.

Once you have a superstar, people will want to imitate their success. Their great-

ness pushes others to be more than they thought they were capable of, and everybody

benefits. As long as your superstar isn’t negatively impacting others by being rude,

abrasive, or otherwise overbearing, then he is an asset. The difference between Allen

Iverson and Kobe Bryant is that Allen Iverson played great, where as Kobe Bryant

made everyone around him great. That’s why Iverson’s 76ers didn’t have any cham-

pionships, and Bryant’s Lakers had 5 under their respective tenures. Make your

superstar into a Kobe Bryant.

Reward Success
Positive reinforcement can be a monumental difference maker in morale. If an ana-

lyst finds something that nobody else found, everybody should know about it. Fur-

thermore, if an analyst stays late for five hours to follow up on an incident, you

should let them know you appreciate their efforts. Themechanism for reward doesn’t

particularly matter as long as it is something desirable.

Learn from Failure
Analytical work can get mundane quickly. This is especially the case in a smaller

environment where there simply just aren’t as many events or significant attacks

occurring. When this occurs, it becomes very easy for analysts to miss something.

Instead of punishing the entire group, take this as another learning opportunity.

FROM THE TRENCHES

One of my favorite ways to promote learning from failure is another concept taken from the

medical field. Many times when a patient dies and the death could have been medically

prevented, the treating physician and a team of additional physicians will convene for ameeting

called Morbidity andMortality (M&M).5 In this meeting, the treating physician will present how

the patient was cared for and the additional physicians will provide constructive questioning

and thoughts on alternative steps that could have been taken. These sessions are often feared,

but whenmoderated effectively and kept positive, they can enact a great deal of positive change

when similar situations come back around. This concept will be discussed in depth in the

Analysis section of this book.

Exercise Servant Leadership
The most successful organizations I’ve had the privilege to work with are those who

practice the concept of servant leadership. Servant leadership is something that has

been around for quite a while, and I was introduced to it as a University of Kentucky

basketball fan from UK coach John Calipari.

5Campbell, W.B., “Surgical Morbidity and Mortality Meetings” (1988). http://www.ncbi.nlm.nih.gov/

pmc/articles/PMC2498614/?tool¼pmcentrez

18 CHAPTER 1 The Practice of Applied Network Security Monitoring

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2498614/?tool=pmcentrez
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2498614/?tool=pmcentrez
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2498614/?tool=pmcentrez

The premise of servant leadership is that rather than establishing leadership based

upon a title or some given authority, servant leaders achieve results by giving priority

to the needs of their colleagues. This humble mindset is one in which you look to help

others achieve their mission so that the organization will prosper. This has the poten-

tial to breed an organization that isn’t anchored by one strong leader, but rather, a

group of leaders with different strengths and weaknesses working in harmony to

achieve a common mission. Although it sounds like a lofty goal, with the right

mindset and buy in from all parties involved, this type of environment can become

a reality.

SECURITY ONION
Moving forward, this book will go beyond theory and contain several practical dem-

onstrations and examples. To level the playing field, I’ve chosen to do all of these

demonstrations using Security Onion, a Linux distribution designed for intrusion

detection and NSM. Security Onion is the product of Doug Burks and a handful

of contributors, and is one of my absolute favorite teaching and learning tools. With

its simple setup process, you can have a full NSM collection, detection, and analysis

suite deployed in less than 15minutes. The value of Security Onion goes well beyond

that of an educational tool, as I’ve seen several smaller organizations leverage it for

production use as well. As a matter of fact, I use for my home office and personal

networks.

Initial Installation

If you plan on following along with the exercises in this book, then I recommend

downloading and installing Security Onion (SO). It already has several of the tools

I will discuss preinstalled, including Snort, Bro, Argus, and more. If you have an old

physical machine laying around and a couple of extra network cards, then you can

actually place it on your home network to examine real traffic. However, for the pur-

poses of this book, installing Security Onion into a virtual machine is perfectly

acceptable. VMWare Player or VirtualBox work great for this.

Once you have virtualization software setup, you will want to download the Secu-

rity Onion ISO file. The latest version of this file can be found linked from http://

securityonion.blogspot.com/. This page also contains a great number of helpful

resources for installing and configuring various aspects of Security Onion. Once

you’ve completed the download, follow these steps in order to get Security Onion

up and running:

1. Create a new virtual machine within the virtualization platform you are using. It

is recommended that you provide at least 1 GB of RAM for each monitored

network interface, and a minimum of 2 GB total. You should also ensure your

network interfaces are connected to the virtual machine at this time.

19Security Onion

http://securityonion.blogspot.com/
http://securityonion.blogspot.com/

2. Mount the downloaded ISO as a virtual CD/DVD drive in your virtualization

software.

3. When you start the VM, allow it to boot to fully into the live operating system.

Once this process completes, select the “Install SecurityOnion” icon on the

desktop to begin installing the operating system to the virtual disk.

4. Follow the prompts presented to you by the XUbuntu installer. During this

installation, you will be asked for a number of items, including how you

would like to configure disk partitioning, the time zone you are located in,

Internet connectivity, the name of the system, and a username and password for

your user account (shown in Figure 1.2). These options can be configured to

your liking, but it is important that you do not choose the option to encrypt your

home folder, and that you do not enable automatic updates. These options are

disabled by default. Once you have completed XUbuntu installation, you will be

prompted to reboot the system.

This completes the operating system installation process.

FIGURE 1.2

Configuring User Information During Security Onion Installation

20 CHAPTER 1 The Practice of Applied Network Security Monitoring

Updating Security Onion

Once you’ve completed the operating system installation and the machine reboots,

the next step is ensuring Security Onion is up to date. Even if you’ve just downloaded

the ISO, it is likely that there are updates to SO packages. An update can be initiated

by issuing the following command from a command prompt:

sudo apt-get update && sudo apt-get dist-upgrade

This process may take a while depending on the number of updates released since

the last ISO was generated. Once this is finished, you should then have a fully up to

date installation of Security Onion.

Running NSM Services Setup

In order to get NSM services up and running on Security Onion you must

complete its automated setup process. Once you have logged into SO, follow

these steps:

1. Initiate the setup process by clicking the “Setup” icon on the desktop.

2. After entering your password again, you will be prompted to configure /etc/

network/interfaces. Select “Yes.” If you have multiple interfaces, you

will be prompted to choose one interface as the management interface, which is

the interface you will use to access the system. If you only have a single

interface, that interface will be used for management. Proceed through this

process by choosing the static IP address option and configuring the interface’s

IP address, subnet mask, default gateway, DNS server address, and local

domain name. You will be asked to confirm this information, and the

system will be rebooted.

FROM THE TRENCHES

Even if you would normally configure your interfaces manually, it is highly recommended

that you allow SO to perform this step for you. In doing so, it will perform several optimization

steps to ensure that your monitor interfaces are properly configured to capture all possible

network traffic.

3. Initiate the setup process again by clicking the “Setup” icon on the desktop.

4. Skip the network configuration process since that has already been completed.

5. Choose “Quick Setup.” (You can select advanced setup, but the quick setup will

suffice for our purposes here. Feel free to explore more advanced setup options on

your own.)

6. If you have multiple interfaces, you will be prompted to select a monitoring

interface. Select the appropriate interface(s).

7. Enter a username and password for use by various NSM services.

21Security Onion

8. When prompted to enable ELSA, choose “Yes.”

9. Finally, you will be prompted to confirm the configuration of the sensor

(Figure 1.3). Selecting “Yes, proceed with the changes!” will instruct SO to apply

the changes.

Once you’ve completed this setup, Security Onion will provide you with the loca-

tion of several important log and configuration files. If you encounter any issues with

setup or notice that a service hasn’t started correctly, you can examine the setup log

at /var/log/nsm/sosetup.log. The remainder of this book will assume you completed

this setup with the quick setup configuration unless otherwise specified.

Testing Security Onion

The fastest way to ensure that NSM services on Security Onion are running is to force

Snort to generate an alert from one of its rules. Prior to doing this, I like to update the

rule set used by Snort. You can do this by issuing the command sudo rule-update.

This will used the PulledPork utility to download the latest set of rules from Emerg-

ing Threats, generate a new sid-map (used to map rule names to their unique iden-

tifiers) and restart Snort so that the new rules are applied. The partial output of this

command is shown in Figure 1.4.

FIGURE 1.3

Confirming the Setup Changes

22 CHAPTER 1 The Practice of Applied Network Security Monitoring

To test the functionality of the NSM services, launch Snorby by selecting the

Snorby icon on the desktop. You will be prompted to login with the e-mail address

and password you provided during the setup process. Next, click the “Events” tab at

the top of the screen. At this point, it’s likely this window will be empty.

In order to generate a Snort alert, open another tab within the browser window

and browse to http://www.testmyids.com.

Now, if you switch back over to the tab with Snorby opened and refresh the

Events page, you should see an alert listed with the event signature “GPL

ATTACK_RESPONSE id check returned root” (Figure 1.5). If you see this alert,

then congratulations! You’ve successfully setup your first NSM environment with

Security Onion! Feel free to examine the alert by clicking on it and viewing the out-

put in Snorby. We will return to examine Snorby more closely in later chapters.

FIGURE 1.4

Output of the Rule Update

23Security Onion

http://www.testmyids.com

This alert should appear pretty quickly, but if you don’t see it after a few minutes,

then something isn’t working correctly. You should reference the Security Onion

website for troubleshooting steps, and if you are still running into trouble you should

try the Security Onion mailing list or their IRC channel #securityonion on Freenode.

These processes are up to date as of Security Onion 12.04, which was the newest

version available during the writing of this book. If you find that this process has

changed since the book’s writing, then you should reference the SO wiki for up

to date procedures: https://code.google.com/p/security-onion/w/list. We will come

back to Security Onion many times throughout the course of this book, but if you’d

like to learn more about it in the meantime, the SO wiki is the best resource.

CONCLUSION

This chapter introduced NSM and threat-centric security, along with several other

related concepts. We also looked at Security Onion and detailed the process of instal-

ling and configuring an NSM environment in only a few minutes. If you are new to

NSM, then it is incredibly important that you understand the concepts presented in

this chapter, as they provide the foundation for the rest of Applied NSM. The remain-

der of this book is broken into the three parts of the NSMCycle: collection, detection,

and analysis.

FIGURE 1.5

The Test Snort Alert Shown in Snorby

24 CHAPTER 1 The Practice of Applied Network Security Monitoring

https://code.google.com/p/security-onion/w/list

CHAPTER

Planning Data Collection 2
CHAPTER CONTENTS

The Applied Collection Framework (ACF) ... 28

Define Threats ..29

Quantify Risk ..30

Identify Data Feeds ...32

Narrow Focus ..32

Case Scenario: Online Retailer ... 34

Identify Organizational Threats ...35

Theft of Customer PII (Confidentiality) .. 35

Disruption of E-Commerce Service (Availability) .. 36

Unintended Use of E-Commerce Service (Integrity) 36

Quantify Risk ..36

Identify Data Feeds ...37

Theft of Customer PII – Web Application Compromise 37

Disruption of E-Commerce Server – External Asset Compromise 38

Narrow Focus ..41

Conclusion .. 42

Collection occurs with a combination of hardware and software that are used to gen-

erate and collect data for NSM detection and analysis. If you are an analyst reading

this book, you may think this section isn’t entirely relevant to you. That is all too

wrong. An effective analyst can be described in a lot of ways (I prefer Packet Ninja),

but ultimately, the analystmust be amaster of their data. Thismeans knowingwhat data

is available, where that data comes from, how it is collected, why it is collected, and

what you can do with it. A good analyst can make bad data useful and good data great.

All too often, analysts tend to pass the buck on collection. This typically results in

an NSM team where collection is a process owned by a separate systems or network-

ing group, or where a single analyst serves as “the collection guy”. Segmenting this

knowledge to another group or creating isolated pockets of knowledge doesn’t serve

the NSMmission and results in analysts who don’t fully understand the data they are

analyzing.

Most organizations fit into one of three categories:

• Organizations with no NSM infrastructure in place that are just beginning to

define their data collection needs.

27

• Organizations that already perform intrusion detection, but have never taken an

in-depth look at the data they are collecting.

• Organizations that have invested a great deal of time in defining their

collection strategy, and are constantly evolving that strategy as a part of the

NSM Cycle.

This section is dedicated to collection from scratch in hopes that all three types of

organizations can benefit from the concepts discussed.

THE APPLIED COLLECTION FRAMEWORK (ACF)
Abraham Lincoln said, “If I had six hours to chop down a tree, I’d spend the first four

hours sharpening my axe.” I can’t think of a more fitting quote to describe the impor-

tance of data collection.

I stated earlier that a skilled analyst must be a master of their data. This is often

hard to do because many organizations don’t fully understand their data. They didn’t

take a structured approach to defining the threats to their organization, but rather,

simply grabbed whatever ad-hoc data they had available to build their program

around. This over abundance of data can lead to servers with an insufficient amount

of disk resources for data retention, where excess staffing is required to sift through

too many events and false positives, or where detection and analysis tools can’t scale

effectively with the amount of data they are expected to parse.

Playing the role of network defenders, we generally hate surprises. Although we

often think that surprise is a function of uncertainty, it is also a function of complex-

ity.1 Having an over abundance of data that may not be relevant to realistic

organizational threats is a fast way to increase complexity.

Decreasing the complexity of data collection is where the Applied Collection

Framework (ACF) comes into play (Figure 2.1). The ACF is a loose set of steps that

help an organization evaluate what data sources should be the focus of their collec-

tion efforts.

The ACF is not completed in a vacuum. To be successful, it requires collabora-

tion with senior leadership right from the start. The security team and other stake-

holders will be responsible for taking information gleaned from these early

Narrow

Focus

Identify

Data

Feeds

Quantify

Risk

Define

Threats

FIGURE 2.1

The Applied Collection Framework (ACF)

1Bracken, P. (2008). Managing strategic surprise. Cambridge, MA: Cambridge University Press.

28 CHAPTER 2 Planning Data Collection

Figure 2.1

meetings and making it actionable. The ACF involves four distinct phases: Identify

threats to your organization, quantify risk, identify relevant data feeds, and refine the

useful elements.

Define Threats

In order to practice threat-centric security you must have some ability to define

what threats you face. In this case, I don’t mean general threats such as rival com-

panies, script kiddies, hacktivism groups, or nations. Instead, you should identify

threats specific to organizational goals.

When identifying threats associated with your organization, you should always

start with the question, “What is the worst case scenario as it relates to the surviv-

ability of the organization?” The answer must come straight from the top, which is

why it is crucial that information security personnel work with senior leadership dur-

ing the initial phases of defining collection requirements.

It helps to frame these threats by whether they negatively impact confidentiality,

integrity, or availability. Consider the following examples:

• A manufacturing organization relies on their production occurring on a 24� 7�

365 basis to meet demand by creating the products that generate revenue. When

something occurs that interrupts production, it costs the organization

dramatically. Therefore, production interruption might be the biggest threat to the

organization. This is a threat to availability.

• A law firm expects that its information will remain confidential. Often times,

legal firms handle information that could cost organizations millions of dollars,

or even cost people their lives. The conversations between legal partners and their

clients are of the utmost importance. The threat that a third party could intercept

these conversations could be the biggest threat a law firm faces. This is a threat to

confidentiality.

• An online reseller relies on website sales in order to generate revenue. If their

website is inaccessible for even a few minutes, it may result in a large number of

lost sales and revenue. In this case, inability to complete sales might be the

biggest threat to the organization. This is a threat to availability.

• A commodity trading company relies heavily on the ability to communicate

information to overseas partners during the trading day in order to execute

trades that generate revenue. If this information is inaccurate, it could cause

a ripple effect resulting in millions of dollars in losses based upon automated

trading algorithms. The biggest threat to this organization would be a

deliberate or accidental error in data fed into these algorithms. This is a threat

to integrity.

• A biomedical company focuses all of its effort on researching new

pharmaceuticals. The data generated from this research is the nest egg of the

organization, and represents the combined results of the money provided by their

investors. Should a competitor gain access to the information, it could potentially

29The Applied Collection Framework (ACF)

cause the entire organization to fail. The threat of theft of intellectual property

could be the biggest threat faced by this biomedical company. This is a threat to

confidentiality.

In reality, most organizations will have several threats that they are concerned

about. In these cases, senior leadership should prioritize all of these threats so that

they can be considered appropriately.

Once threats have been identified, it is up to information security personnel to dig

deeper into these organizational threats so that the technology underlying them can

be addressed. This is done by understanding the infrastructure within the network and

asking the right questions to the primary stakeholders involved with the identified

business processes.

Let’s more closely examine the biomedical company mentioned in the last

bullet point above. This company is heavily invested in its intellectual property,

and has identified that the greatest threat to its organization’s survivability is the loss

of that intellectual property. Considering that, the following questions, could be

asked:

• What devices generate raw research data, and how does that data traverse

the network?

• From what devices do employees process raw research data?

• On what devices is processed research data stored?

• Who has access to raw and processed research data?

• Is raw or processed research data available from outside the network?

• What paths into the internal network are available externally?

• What level of access do temporary employees have to research data?

Depending on the answers provided, you should be able to start building a picture

of what assets within the network are most critical to protecting this sensitive data.

The goal is to systematically determine the methods by which the network could be

compromised, possibly leading to a theft of the intellectual property. A broad resul-

tant list may look something like this:

• Web Server Compromise

• Database Server Compromise

• File Server Compromise

• Disgruntled Employee Data Exfiltration

Quantify Risk

Once a list of potential technical threats has been identified, those threats must be

prioritized. One way to achieve this is to calculate the risk posed by each potential

threat by determining the product of impact and probability. This is represented by

the equation Impact (I) � Probability (P)¼Risk (R).

30 CHAPTER 2 Planning Data Collection

Impact takes into consideration how a given threat, should it manifest itself,

could affect the organization. This is measured on a scale of 1 to 5, with 1 meaning

that the threat would have little impact, and 5 meaning that the threat would have a

large impact. Determining impact can take into account things such as financial loss,

the ability to recover lost data, and the amount of time required to resume normal

operations.

Probability represents the likelihood that a threat will manifest itself. This is also

measured on a scale of 1 to 5, with 1 meaning that there is a low probability that the

threat will manifest itself, and 5 meaning that the threat has a high probability of

manifestation. The determination of probability can include consideration of an

asset’s exposure or attack surface visible to the threat, the level of intimacy with

the network required to execute an attack, or even the likelihood that someone would

be able to gain physical access to an asset. Over enough time, the probability of a

vulnerability being exploited increases. When we create probability rankings they

represent the moment in time in which they are created, which means that they

should be revisited over time.

The product of impact and probability is the level of risk, or the “risk weight” the

threat poses to the security of the network in relation to the organization’s business

goals. This is measured on a scale of 1 to 25. This is broken down into three

categories:

• 0-9: Low Risk

• 10-16: Medium Risk

• 17-25: High Risk

In performing this assessment for the biomedical company, our prioritization of

the technical threats could look like Table 2.1.

Although impact and probability are meant to provide some ability to quantify

metrics associated with threats, these numbers are still subjective. Because of this,

it is important that these numbers are generated by committee and that the same

group of individuals participate in the ranking of all identified threats. Some orga-

nizations choose to elicit third parties to help quantify these risks, and I’ve seen this

done successfully in conjunction with network penetration tests.

Table 2.1 Quantifying Risk for a Biomedical Company

Threat Impact Probability Risk

Web Server Compromise 3 4 12

Database Server Compromise 5 3 15

Disgruntled Employee Data Exfiltration 5 4 20

File Sever Compromise 5 4 20

31The Applied Collection Framework (ACF)

Identify Data Feeds

The next phase of the ACF involves actually identifying the primary data feeds that

might provide NSM detection and analysis value. Starting with the technical threat

that has the highest risk weight, you must consider where evidence of the threat’s

manifestation can be seen.

Let’s examine the threat of File Server Compromise. While defining this threat,

you should have identified this server’s architecture, its location on the network, who

has access to it, and the pathways that data can take to and from it. Based upon this

information, you can examine both network-based and host-based data feeds. This

list might end up looking something like this:

• Network-Based:

• File Server VLAN - Full Packet Capture Data

• File Server VLAN – Session Data

• File Server VLAN - Throughput Statistical Data

• File Server VLAN - Signature-based NIDS Alert Data

• File Server VLAN - Anomaly-based IDS Alert Data

• Upstream Router - Firewall Log Data

• Host-Based:

• File Server - OS Event Log Data

• File Server - Antivirus Alert Data

• File Server - HIDS Alert Data

You’ll notice that this is broad, but that’s okay. The goal here is just to begin iden-

tifying valuable data sources. We will get more granular in the next step.

Narrow Focus

The final phase of the ACF is to get intimately granular with the data sources

you’ve selected. This can be the most technically in-depth step, and involves

reviewing every data source individually to gauge its value. You may find that

some data sources have such a high storage, processing, or management overhead

compared to the value they provide, that they aren’t worth collecting. Ultimately,

your organization will have to perform a cost/benefit analysis of the desired data

sources to determine if they value they provide is worth the cost of implementa-

tion and maintenance. From the cost perspective, this analysis should take into

account the amount of hardware and software resources, as well as the support

staff that are required to maintain the generation, organization, and storage of

the data resource. To analyze the benefit side of this equation, you should exam-

ine the number of documented occurrences in which the data source in question

was referenced or desired in an investigation. Your time spent performing this

process might include doing things such as defining what types of PCAP data

you explicitly want to capture or which Windows security log events are the most

important to retain.

32 CHAPTER 2 Planning Data Collection

Common questions you will ask during this process might include:

• What can you filter out of PCAP traffic from a specific network segment?

• Which system event logs are the most important?

• Do you need to retain both firewall permits and denies?

• Are wireless authentication and association logs valuable?

• Should you retain logs for file access and/or creation and/or modification?

• Which portions of the web application do you really need web logs for?

You should also begin to define the amount and duration of each data type you

would like retain. This can be phrased as an operational minimum and an operational

ideal. The operational minimum is the minimum required amount necessary to per-

form near real-time detection, and the operational ideal is the preferred amount of

data needed for retrospective detection and as an investigative data source for

analysis.

Given the broad list we established in the previous phase, getting granular could

result in this list:

• Network-Based:

• Full Packet Capture Data

- All ports and protocols to/from file server

- All SMB traffic routed outside of VLAN

• Session Data

- All records for VLAN

• Data Throughput Statistical Data

- Long-term data throughput statistics for file server

- Daily, Weekly, Monthly averages

• Signature-Based NIDS Alert Data

- All alerts for the segment

- Rules focusing on Windows systems and the SMB protocol

• Anomaly-Based NIDS Alert Data

- Alerts focusing on file server OS changes

- Alerts focusing on rapid or high throughput file downloads

• Firewall Log Data

- Firewall Denies (External ! Internal)

• Host-Based:

• System Event Log Data

- Windows Security Log

• Logon Successes

• Logon Failures

• Account Creation and Modification

- Windows System Log

• File System Permission Changes

• Software Installation

• System Reboots

33The Applied Collection Framework (ACF)

• Antivirus Alert Data

- Detected Events

- Blocked Events

• OSSEC Host-Based IDS

- Alerts Related to Critical System File Changes

- Alerts Related to Rapid Enumeration of Files

- Alerts Related to Account Creation/Modification

Given this list, you should be able to provide the details of what data you need

to the appropriate systems and networking teams. At this point, infrastructure will

need to be appropriately engineered to support your data collection requirements.

Don’t worry too much about infrastructure cost at this point. That is a business

decision to be made once you’ve completed the ACF. The goal of this framework

is to identify the data you want to collect, and exactly how important you think it is.

If budget limitations won’t allow for ideal collection, you should at least have a

playbook that will tell you what you can sacrifice. This can be based upon a

cost/benefit analysis as described earlier. They key here is that you can justify your

collection needs by relating them directly to business goals and threats to business

continuity.

If you’ve not had a lot of experience with NSM collection, then you may not

know exactly how much value certain data sources can provide. This experience will

come, and in the mean time you will run into instances where you decide there are

certain data feeds that can be ditched, or where you find it pertinent to start collecting

additional data in one form or another. The documents generated from this process

are never finalized. It is crucial to understand that you are never “finished” with NSM

collection. NSM collection is a living, breathing process, and as you do more detec-

tion and analysis and as your network grows you will constantly need to revisit your

collection strategy.

The companion website to this book provides the templates shown in the images

above that should help you perform the steps of the ACF. Once you’ve completed

their first iteration, these templates are an excellent resource for your analysts to

familiarize themselves with the data being collected.

CASE SCENARIO: ONLINE RETAILER
Let’s examine a scenario where an online retailer is establishing an NSM capability

for the first time. Our fictitious company, Purple Dog Inc. (PDI), uses their website to

market and sell crafts and knick-knacks produced by other suppliers. They have no

traditional brick-and-mortar stores, so their entire revenue stream depends upon their

ability to make sales from their website.

I’ve included a diagram of the PDI network in Figure 2.2. This is a fairly typical

network design with publicly accessible servers in a DMZ behind an edge router.

Users and internal network servers reside in various VLANs behind a core router.

34 CHAPTER 2 Planning Data Collection

You’ll notice that this diagram doesn’t include any sensors. That is because we have

yet to establish our collection requirements.

Identify Organizational Threats

Since PDI produces no goods of their own, they are essentially a middleman for the

sale and distribution of a product. If you were to ask their executive management

what their worst fears are, it would probably result in a list like this:

Fear 1: “All of our customers credit card information getting stolen. We will have

to pay huge fines, our customers won’t trust us anymore, and business will suffer.”

Fear 2: “Something bad happens to our website causing it to be inaccessible for an

extended time. At a certain point, this might threaten the continuity of the business.”

Fear 3: “An individual finds a bug that allows them to place orders on the website

without paying for them. This could result in lost revenues.”

Now, let’s convert those fears from “executive speak” to actual threats.

Theft of Customer PII (Confidentiality)
The PDI e-commerce site collects and stores customer Personally Identifiable Infor-

mation (PII) data that includes credit card information. This database is not directly

accessible from the Internet. In one scenario, an attacker could compromise the

FIGURE 2.2

Purple Dog Inc. Network Diagram

35Case Scenario: Online Retailer

Figure 2.2

database that stores this information through a vulnerability in the web application

connected to it. Alternatively, an attacker could access this information by

compromising the workstation of an employee who can access this database, such

as a developer.

Disruption of E-Commerce Service (Availability)
An adversary could perform an attack that makes the e-commerce website inaccessible

to customers. This could occur through a denial of service attack that overwhelms

the servers or the network they reside on. This could also occur if an attacker were

able to compromise an externally facing asset and orchestrate an action that makes

these services unavailable. Lastly, an attacker could compromise a portion of the inter-

nal network that would allow them to pivot into the network segment containing the

e-commerce servers, and orchestrate an action that makes these services unavailable.

Unintended Use of E-Commerce Service (Integrity)
An attacker could perform an attack that allows them to utilize the web application in

an unintended manner, which includes the purchase of products without the exchange

of money. The most likely scenario would be that an attacker finds and exploits a bug

in the e-commerce web application from an external vantage point. Alternatively, an

attack of this manner could occur if an adversary were able to compromise an internal

user who had access to the back-end database that supports the e-commerce site.

Quantify Risk

With a list of threats to the organization, we can prioritize these threats based upon

the probability of a threat manifesting itself, and the impact of the threat should it

come to reality. Based upon the threat identified in the previous step, the risk asso-

ciated with each threat in this scenario is calculated in Table 2.2.

Table 2.2 Quantified Risk for PDI Threats

Threat Impact Probability Risk

Theft of customer PII—web application

compromise

4 4 16

Theft of customer PII—internal user compromise 4 2 8

Disruption of e-commerce service—DoS 4 2 8

Disruption of e-commerce service—external asset

compromise

5 3 15

Disruption of e-commerce service—internal asset

compromise

5 2 10

Unintended use of e-commerce service—web

application compromise

2 4 8

Unintended use of e-commerce service—internal

asset compromise

2 1 2

36 CHAPTER 2 Planning Data Collection

Now that this list has been created, it can be prioritized, as shown in Table 2.3.

Based upon this table, we are now able to say that the greatest threat to the orga-

nization is the disruption of e-commerce services from the compromise of an exter-

nally facing asset, and the least concerning threat of these listed is the unintended use

of e-commerce services as a result of an internal asset being compromised. We will

use this information to shape the choices we make in the next step.

Identify Data Feeds

With priorities established, it is possible to identify the data sources that are useful

for NSM detection and analysis. For the sake of brevity, we will look at just a few of

the higher risk threats.

Theft of Customer PII – Web Application Compromise
The threat presenting the most risk to the organization is customer PII being stolen as

a result of a web application compromise. This presents a potentially large attack

surface from the perspective of the web application, but a rather small attack surface

from the perspective of network assets.

Starting with the network side of the house, it’s crucial that we can collect and

inspect web server transactions with external users so that we can detect any anom-

alous behavior. In order to do this, a sensor can be placed at the network edge to col-

lect full packet capture data, session data, or packet string data. This will also allow

for the use of signature and anomaly-based NIDS.

We can also gain visibility into the actions of the web server by collecting its

application-specific log data.

Because the web application provides indirect user access to a back-end database, it

is also critical that these transactions are inspected. The database server resides in the

Table 2.3 Prioritized Risk for PDI Threats

Threat Impact Probability Risk

Theft of customer PII—web application

compromise

4 4 16

Disruption of e-commerce service—external

asset compromise

5 3 15

Disruption of e-commerce service—internal

asset compromise

5 2 10

Unintended use of e-commerce service—web

application compromise

2 4 8

Disruption of e-commerce service—DoS 4 2 8

Theft of customer PII—internal user compromise 4 2 8

Unintended use of e-commerce service—internal

asset compromise

2 1 2

37Case Scenario: Online Retailer

internal network, so this will require a second sensor placed so that it has visibility here.

Again, this provides for collection of full packet capture data, session data, and packet

string data, and allows the use of signature and anomaly-based NIDS.

Finally, the database server will likely generate its own application-specific logs

that can provide visibility into its actions.

The result of this planning produces a list of the following data sources:

• DMZ Sensor – Full Packet Capture Data

• DMZ Sensor – Session Data

• DMZ Sensor – Packet String Data

• DMZ Sensor – Signature-Based NIDS

• DMZ Sensor – Anomaly-Based NIDS

• Internal Sensor – Full Packet Capture Data

• Internal Sensor – Session Data

• Internal Sensor – Packet String Data

• Internal Sensor – Signature-Based NIDS

• Internal Sensor – Anomaly-Based NIDS

• Web Server Application Log Data

• Database Server Application Log Data

Disruption of E-Commerce Server – External Asset Compromise
The next threat of high concern is that an externally facing asset will be compromised,

leading to the disruption of e-commerce services. Since this could include a web appli-

cation compromise, this aspect of the attack surface will be included in this assessment.

At PDI, the only two externally facing assets are the e-commerce web servers

themselves, with ports 80 and 443 open for web services, and the company mail

servers, with port 25 open for SMTP.

Starting with the existing network infrastructure, the collection of firewall logs

can be incredibly useful as an investigative data source.

Next, because of the importance of these systems in the context of this threat, it is

critical that a sensor exists to collect network data traversing their interfaces. The

DMZ sensor described when assessing the last threat provides adequate placement

for the coverage needed here.

If these systems are compromised externally, it will likely be done through the

compromise of one of the externally facing services. In order to provide adequate

detection and analysis of this type of issue, application specific logs will be collected.

This includes web, database, and mail server logs.

Beyond the addition of another type of server, the concern of a compromise at the

system level is what greatly expands the attack surface in this scenario. In order to

ensure that adequate data exists for detection and analysis of events related to this

type of compromise, we will also collect operating system and security logs, along

with antivirus log data and host-based IDS alert data.

This planning produces this list of data sources:

• Edge Firewall Log Data

• DMZ Sensor – Full Packet Capture Data

38 CHAPTER 2 Planning Data Collection

• DMZ Sensor – Session Data

• DMZ Sensor – Packet String Data

• DMZ Sensor – Signature-Based NIDS

• DMZ Sensor – Anomaly-Based NIDS

• Web Server Application Log Data

• Database Server Application Log Data

• Mail Server Application Log Data

• Web and Mail Server OS and Security Log Data

• Web and Mail Server Antivirus Alert Data

• Web and Mail Server HIDS Alert Data

Disruption of E-Commerce Server – Internal Asset Compromise
The next highest priority threat on our list is that an internal asset compromise will

lead to a disruption of e-commerce services. Because the e-commerce web servers

are still the final targets for the adversary, that part of the attack surface will remain

the same, resulting in a furthered need for a DMZ sensor.

The only VLANs that have access to the DMZ from within the internal network

are the servers in VLAN 200 and the developer users in VLAN 103. This provides

another reason to deploy a sensor at the network core so that data from these devices

can be collected.

If an attacker were to compromise a developer’s machine, they would have access

to the DMZ. This means that we should probably collect the relevant system and

security logs from the developer workstations, along with HIDS and Antivirus alert

data. We are also interested in what is actually traversing the link from the internal to

DMZ network, so firewall logs from the core router are worth collecting.

If the attacker were able to compromise a machine on the internal network, one

thing they would likely attempt to do is increase their foothold on the network by

compromising the Windows Active Directory environment. As such, it is important

that logs from the domain controller are collected as well. Assuming the primary

domain controller is handling DNS for the enterprise, those logs are also incredibly

useful in determining if clients are attempting to resolve potentially malicious hos-

tnames related to an attacker downloading additional tools, or exerting some form of

command and control on the network.

This planning produces this list of data sources:

Network-Based

• Edge Firewall Log Data

• Core Firewall Log Data

• DMZ Sensor – Full Packet Capture Data

• DMZ Sensor – Session Data

• DMZ Sensor – Signature-Based NIDS

• DMZ Sensor – Anomaly-Based NIDS

• Internal Sensor – Full Packet Capture Data

• Internal Sensor – Session Data

• Internal Sensor – Packet String Data

39Case Scenario: Online Retailer

• Internal Sensor – Signature-Based NIDS

• Internal Sensor – Anomaly-Based NIDS

Host-Based

• Web Server, Database Server, and Domain Controller Application Log Data

• Web Server, VLAN 200, and VLAN 103 OS and Security Log Data

• Web Server, VLAN 200, and VLAN 103 Antivirus Alert Data

• Web Server, VLAN 200, and VLAN 103 HIDS Alert Data

The lists of data sources generated from these perceived threats aren’t meant to

cover every possible scenario, but they do represent a fair number of potential

defense scenarios.

Identifying a plethora of data sources that could be useful for NSM detection

and analysis results in a modification of the original network diagram. This new

diagram includes the placement of the DMZ and internal sensors, and outlines the

visibility zones they create (Figure 2.3). We will talk more about sensor placement

in the next chapter.

FIGURE 2.3

Updated Network Diagram Including Sensor Placement

40 CHAPTER 2 Planning Data Collection

Figure 2.3

Narrow Focus

The last step in this process is to take the primary data sources that have been iden-

tified and refine those so that only useful aspects of that data are collected. There are

limitless possible ways to approach this, but in this case, our fictitious company

decided the following subsets of data were deemed to be feasible for collection based

upon their own cost/benefit analysis.

For this scenario, the following refined set of data sources has resulted:

Network-Based:

• Edge Firewall Log Data

• Internal ! External Denies

• Core Firewall Log Data

• External ! Internal Permits/Denies

• Internal ! External Denies

• DMZ Sensor – Full Packet Capture Data

• External ! Internal Web Ports

• External ! Internal Mail Ports

• Internal ! External Mail Ports

• DMZ Sensor – Session Data

• All Records

• DMZ Sensor – Signature-Based NIDS

• Rules focusing on web application attacks: SQL injection, XSS, etc.

• Rules focusing on web server attacks

• Rules focusing on mail server attacks

• DMZ Sensor – Anomaly-Based NIDS

• Rules focusing on web and mail content anomalies

• Internal Sensor – Full Packet Capture Data

• Internal ! Web Server IPs

• Internal ! Dev User VLAN 103

• External ! Server VLAN 200

• Internal Sensor – Session Data

• All Records

• Internal Sensor – Packet String Data

• Dev User VLAN 103 ! External

• Internal Sensor – Signature-Based NIDS

• Rules focusing on database attacks

• Rules focusing on domain controller administration actions and attacks

• General malware rules

• Internal Sensor – Anomaly-Based NIDS

• Rules focusing on anomalous database interaction

Host-Based:

• Mail Server, Web Server, Database Server, and Domain Controller Application

Log Data

41Case Scenario: Online Retailer

• Mail Server – Account Creation and Modification

• Web Server – Transactions from Billing Processing Subdomain

• Web Server – Transactions from Administration Subdomain

• Database Server – Account Creation and Modification

• Database Server – Billing Transactions

• Database Server – Administration Transactions

• Domain Controller – Account Creation and Modification

• Domain Controller – Computer Creation and Modification

• Mail Server, Web Server, VLAN 200, and VLAN 103 OS and Security Log Data

• Account Creation and Modification

• Installed Software Notifications

• System Update Notifications

• System Reboot Notification

• Mail Server, Web Server, VLAN 200, and VLAN 103 Antivirus Alert Data

• All Alert Data

• Mail Server, Web Server, VLAN 200, and VLAN 103 HIDS Alert Data

• Alerts Related to Critical System File Changes

• Alerts Related to Account Creation/Modification

CONCLUSION

In this chapter we introduced some of the driving forces behind data collection and

discussed a framework for deciding what types of data should be collected. The case

scenario here provides a high-level overview of the steps that an organization might

take in determining what their data collection needs are, but this knowledge

shouldn’t be applied in a vacuum. The concepts presented in the remainder of this

book will help to strengthen the decision-making that goes into defining collection

requirements.

42 CHAPTER 2 Planning Data Collection

CHAPTER

The Sensor Platform 3
CHAPTER CONTENTS

NSM Data Types .. 45

Full Packet Capture (FPC) Data ..45

Session Data ...45

Statistical Data ...45

Packet String (PSTR) Data ...45

Log Data ...45

Alert Data ...46

Sensor Type .. 47

Collection-Only ..47

Half-Cycle ...47

Full Cycle Detection ..48

Sensor Hardware ... 49

CPU ...49

Memory ..51

Hard Disk Storage ...52

Step One: Calculate the Traffic Collected .. 52

Step Two: Determine a Feasible Retention Period for Each Data Type 53

Step Three: Add Sensor Role Modifiers .. 53

Network Interfaces ..54

Load Balancing: Socket Buffer Requirements ..56

SPAN Ports vs. Network Taps ...56

Bonding Interfaces .. 59

Sensor Operating System .. 61

Sensor Placement .. 61

Utilize the Proper Resources ..62

Network Ingress/Egress Points ..62

Visibility of Internal IP Addresses ...63

Proximity to Critical Assets ...66

Creating Sensor Visibility Diagrams ...68

Securing the Sensor ... 70

Operating System and Software Updates ...70

Operating System Hardening ..70

Limit Internet Access ...71

43

Minimal Software Installation ...71

VLAN Segmentation ...71

Host-Based IDS ...72

Two-Factor Authentication ..72

Network-Based IDS ...72

Conclusion .. 73

The most important non-human component of NSM is the sensor. By definition, a

sensor is a device that detects or measures a physical property and records, indicates,

or otherwise responds to it. In the NSM world, a sensor is a combination of hardware

and software used to perform collection, detection, and analysis. Within the NSM

Cycle, a sensor might perform the following actions:

• Collection

• Collect PCAP

• Collect Netflow

• Generate PSTR Data from PCAP Data

• Generate Throughput Graphs from Netflow Data

• Detection

• Perform Signature-Based Detection

• Perform Anomaly-Based Detection

• Perform Reputation-Based Detection

• Use Canary Honeypots for Detection

• Detect Usage of Known-Bad PKI Credentials with a Custom Tool

• Detect PDF Files with Potentially Malicious Strings with a Custom Tool

• Analysis

• Provide Tools for Packet Analysis

• Provide Tools for Review of Snort Alerts

• Provide Tools for Netflow Analysis

Not every sensor performs all three functions of the NSM Cycle: however, the

NSM sensor is the workhorse of the architecture and it is crucial that proper thought

be put into how sensors are deployed and maintained. Having already stated how

important collection is, it is necessary to respect that the sensor is the component

that facilitates the collection. It doesn’t matter how much time you spend defining

the threats to your network if you hastily throw together sensors without due

process.

There are four primary architectural concerns when defining how sensors

should operate on your network. These are the type of sensor being deployed,

the physical architecture of the hardware being used, the operating system plat-

form being used, and the placement of the sensor on the network. The tools

installed on the sensor that will perform collection, detection, and analysis tasks

are also of importance, but those will be discussed in extensive detail in subse-

quent chapters.

44 CHAPTER 3 The Sensor Platform

NSM DATA TYPES
Later chapters of this book will be devoted entirely to different NSM data types, but

in order to provide the appropriate context for discussing sensor architecture, it

becomes pertinent to provide a brief overview of the primary NSM data types that

are collected for detection and analysis.

Full Packet Capture (FPC) Data

FPC data provides a full accounting for every data packet transmitted between two

endpoints. The most common form of FPC data is in the PCAP data format. While

FPC data can be quite overwhelming due to its completeness, its high degree of gran-

ularity makes it very valuable for providing analytic context. Other data types, such

as statistical data or packet string data, are often derived from FPC data.

Session Data

Session data is the summary of the communication between two network devices.

Also known as a conversation or a flow, this summary data is one of the most flexible

and useful forms of NSM data. While session data doesn’t provide the level of detail

found in FPC data, its small size allows it to be retained for a much longer time,

which is incredibly valuable when performing retrospective analysis.

Statistical Data

Statistical data is the organization, analysis, interpretation, and presentation of other

types of data. This can take a lot of different forms, such as statistics supporting the

examination of outliers from a standard deviation, or data points identifying positive

or negative relationships between two entities over time.

Packet String (PSTR) Data

PSTR is derived from FPC data, and exists as an intermediate data form between FPC

data and session data. This data format consists of clear text strings from specified

protocol headers (for instance, HTTP header data). The result is a data type that pro-

vides granularity closer to that of FPC data, while maintaining a size that is much

more manageable and allows increased data retention.

Log Data

Log data refers to raw log files generated from devices, systems, or applications. This

can include items such as web-proxy logs, router firewall logs, VPN authentication

logs, Windows security logs, and SYSLOG data. This data type varies in size and

usefulness depending upon its source.

45NSM Data Types

Alert Data

When a detection tool locates an anomaly within any of the data it is configured to

examine, the notification it generates is referred to as alert data. This data typically

contains a description of the alert, along with a pointer to the data that appears anom-

alous. Generally, alert data is incredibly small in size as it only contains pointers to

other data. The analysis of NSM events is typically predicated on the generation of

alert data.

When thinking about these data types holistically, its useful to be able to frame

how their sizes compare. The largest data format is typically FPC data, followed by

PSTR data, and then session data. Log, alert, and statistical data are generally min-

iscule compared to other data types, and can vary wildly based upon the types of data

you are collecting and the sources you are utilizing.

Quantifying these size differences can often be helpful, especially when attempt-

ing to determine sensor space requirements. This can vary drastically based upon the

type of network environment. For instance, a user-heavy network might result in the

Full Packet

Capture

PSTR

Session Alert,

Statistical,

and

Log

(Variable)

FIGURE 3.1

NSM Data Size Comparison

46 CHAPTER 3 The Sensor Platform

Figure 3.1

generation of a lot more PSTR data than a server-heavy network segment. With that

in mind, we have compiled the data from several different network types to generate

some basic statistics regarding the size of particular data types given a static time

period. Once again, log, alert, and statistical data are not included in this chart.

CAUTION

While the numbers shown in Table 3.1 provide a baseline of relative data sizes for the examples

in this chapter, the relation between PSTR data, session data, and full packet capture data will

vary wildly depending upon the types of network data you are capturing. Because of this, you

should sample network traffic to determine the ratios that are accurate in your environment.

SENSOR TYPE
Depending on the size and threats faced by a network, sensors may have varying

roles within the phases of the NSM Cycle.

Collection-Only

A collection-only sensor simply logs collected data such as FPC and session data to

disk, and will sometimes generate other data (statistical and PSTR) based upon what

has been collected. These are seen in larger organizations where detection tools

access collected data remotely to perform their processing. Analysis is also done sep-

arately from the sensor, as relevant data is pulled to other devices as needed.

A collection-only sensor is very barebones with no extra software installed, and

analysts rarely have the ability to access it directly.

Half-Cycle

A half-cycle sensor performs all of the functions of a collection-only sensor, with the

addition of performing detection tasks. For instance, a half-cycle sensor will log

PCAP data to disk, but will also run a NIDS (such as Snort) either in real-time from

the NIC or in near-real-time against PCAP data that is written to disk. When analysis

must occur, data is pulled back to another device rather than the analysis being

performed on the sensor itself. This is the most common type of sensor deployment,

with analysts accessing the sensor directly on occasion to interact with various

detection tools.

Table 3.1 NSM Data Size Comparison

FPC PSTR Flow

Multiplier 100 % 4 % 0.01 %

Data Size (MB) 1024 40.96 .1024

47Sensor Type

Full Cycle Detection

The last type of sensor is one in which collection, detection, and analysis are all per-

formed on the sensor. This means that in addition to collection and detection tools, a full

suite of analysis tools are installed on the sensor. This may include individual analysts

profiles on the sensor, a graphical desktop environment, or the installationof aNIDSGUI

such as Snorby. With a full cycle detection sensor, almost all NSM tasks are performed

from the sensor. These types of sensors are most commonly seen in very small organi-

zations where only a single sensor exists or where hardware resources are limited.

In most scenarios, a half cycle sensor is preferred. This is primarily due to the ease

of implementing detection tools on the same system that data is collected. It is also

much safer and more secure for analysts to pull copies of data back to dedicated anal-

ysis computers for their scrutiny ,rather than interacting with the raw data itself. This

prevents mishandling of data, which may result in the loss of something important.

Although analysts will need to interact with sensors at some level, they shouldn’t be

using them as a desktop analysis environment unless there is no other option. The

sensor must be protected as a network asset of incredible importance.

FIGURE 3.2

Sensor Types

48 CHAPTER 3 The Sensor Platform

Figure 3.2

SENSOR HARDWARE
Once the proper planning has taken place, it becomes necessary to purchase sensor

hardware. The most important thing to note here is that the sensor is, indeed, a

server. This means that when deploying a sensor, server-grade hardware should

be utilized. I’ve seen far too many instances where a sensor is thrown together from

spare parts, or worse, I walk up to an equipment rack and see a workstation lying on

its side being used as the sensor. This type of hardware is acceptable for a lab or

testing scenario, but if you are taking NSM seriously, you should invest in reliable

hardware.

A concerted engineering effort is required to determine the amount of hardware

resources that will be needed. This effort must factor in the type of sensor being

deployed, the amount of data being collected by the sensor, and the data retention

desired.

We can examine the critical hardware components of the sensor individually.

Before doing this, however, it helps to set up and configure a temporary sensor to

help you determine your hardware requirements. This can be another server, a work-

station, or even a laptop.

Prior to installing the temporary sensor, you should know where the sensor would

be placed on the network. This includes the physical and logical placement that

determines what network links the sensor will monitor. Determining sensor place-

ment is discussed in depth later in this chapter.

Once the sensor has been placed on the network, you will utilize either a SPAN

port or a network tap to get traffic to the device. Then you can install collection,

detection, and analysis tools onto the sensor to determine the performance require-

ments of individual tools. Keep in mind that you don’t necessarily need a temporary

sensor that is so beefy that it will handle all of those tools being enabled at once.

Instead, you will want to enable the tools individually to calculate their performance

load, and then total the results from all of the tools you will be utilizing to assess the

overall need.

CPU

The amount of CPU resources required will mostly depend on the type of sensor

being deployed. If you are deploying a collection-only sensor, then it is likely

you will not need a significant amount of processing power, as these tasks aren’t

incredibly processing intensive. The most CPU intensive process is typically detec-

tion, therefore, if you are deploying a half or full cycle sensor, you should plan for

additional CPUs or cores. If you expect significant growth, then a blade chassis might

be an enticing option, as it allows for the addition of more blades to increase CPU

resources.

An easy way to begin planning for your sensor deployment is to map the number

of cores required on the system to the tools being deployed. The specific require-

ments will vary greatly from site to site depending on the total bandwidth to be mon-

itored, the type of traffic being monitored, the ruleset(s) selected for signature-based

49Sensor Hardware

detection mechanisms like Snort and Suricata, and the policies loaded into tools like

Bro.We will examine some of the performance considerations and baselines for each

of these tools in their respective sections.

If you’ve deployed a test sensor, you can monitor CPU usage with SNMP, or a

Unix tool such as top (Figure 3.3) or htop.

FIGURE 3.3

Monitoring Sensor CPU Usage with TOP

50 CHAPTER 3 The Sensor Platform

Figure 3.3

Memory

The amount of memory required for collection and detection is usually smaller

than for analysis. This is because analysis often results in multiple analysts run-

ning several instances of the same tools successively. Generally, a sensor should

have an abundance of memory, but this amount should increase drastically if a

full cycle sensor is being deployed. Since memory can be difficult to plan for,

it is often best to purchase hardware with additional memory slots to allow for

future growth.

Just like was discussed earlier regarding CPU usage, tools like top or htop can be

used to determine exactly howmuchmemory certain applications utilize (Figure 3.4).

Remember that it is critical that this assessment be done while the sensor is seeing

traffic throughput similar to the load it will experience while in production.

Practically speaking, memory is relatively inexpensive, and some of the latest

network monitoring tools attempt to take advantage of that fact. Having a large

amount of memory for your tools will help their performance under larger data

loads.

FIGURE 3.4

Monitoring Sensor Memory Utilization with HTOP

51Sensor Hardware

Figure 3.4

Hard Disk Storage

One of the areas organizations have the most difficulty planning for is hard disk stor-

age. This is primarily because there are so many factors to consider. Effectively plan-

ning for storage needs requires you to determine the placement of your sensor and the

types of traffic you will be collecting and generating with the sensor. Once you’ve

figured all of this out, you have to estimate future needs as the network grows in size.

With all of that to consider, it’s not surprising that even after a sensor has been

deployed, storage needs often have to be reevaluated.

The following series of steps can help you gauge the storage needs for a sensor.

These steps should be performed for each sensor you are deploying.

Step One: Calculate the Traffic Collected
Utilizing a temporary sensor, you should begin by calculating data storage needs by

determining the amount of NSM data collected over certain intervals. I like to

attempt to collect at least 24 hours of data in multiple collection periods, with one

collection period on a weekday and another on a weekend. This will give you an

accurate depiction of data flow encompassing both peak and off-peak network times

for weekdays and weekends. Once you’ve collected multiple data sets, you should

then be able to average these numbers to come up with an average amount of data

generated per hour.

In one example, a sensor might generate 300 GB of data PCAP in a 24-hour

period during the week (peak), and 25 GB of data on the weekend (off peak).

In order to calculate the daily average, we multiply the peak data total with

the number of weekdays (300 GB x 5 Days¼1500 GB), and multiply the off peak

data total with the number of weekend days (25 GB x 2 Days¼50 GB). Next, we

add the two totals (1500 GBþ50 GB¼1550 GB), and find the average daily total

by dividing that number by the total number of days in a week (1550 GB / 7

Days¼221.43 GB). This can then be divided by the number of hours in a day

to determine the average amount of PCAP data generated per hour (221.43 GB

/ 24 Hours¼9.23 GB).

The result of these calculations for multiple data formats can be formatted in a

table like the one shown in Table 3.2.

Table 3.2 Sensor Data Collection Numbers

Daily (Peak) Daily (Off Peak) Daily Average Hourly Average

PCAP 300 GB 25 GB 221.43 GB 9.23 GB

Flow 30.72 MB 2.56 MB 16.64 MB 0.69 MB

PSTR 12 GB 102.4 MB 6.05 GB 258.1 MB

9.48 GB

52 CHAPTER 3 The Sensor Platform

Step Two: Determine a Feasible Retention Period for Each Data Type
Every organization should define a set of operational minimum and ideal data reten-

tion periods for NSM data. The operational minimum is the minimal requirements

for performing NSM services at an acceptable level. The operational ideal is set

as a reasonable goal for performing NSM to the best extent possible. Determining

these numbers depends on the sensitivity of your operations and the budget you have

available for sensor hardware. When these numbers have been determined, you

should be able to apply them to the amount of data collected to see how much space

is required to meet the retention goals. We’ve taken the data from Table 3.2 and mul-

tiplied it with example minimum and ideal numbers. This data has been placed in

Table 3.3.

Step Three: Add Sensor Role Modifiers
In most production scenarios, the sensor operating system and tools will exist on one

logical disk and the data that is collected and stored by the sensor will exist on

another. However, in calculating total disk space required, you need to account

for the operating system and the tools that will be installed. The storage numbers

discussed up to this point assume a collection-only sensor. If you plan on deploying

a half cycle sensor, then you should add an additional 10% to your storage require-

ments to accommodate for detection tools and the alert data generated from them. If

you will be deploying a full cycle sensor, then you should add 25% for both detection

and analysis tools and data. Once you’ve done this, you should add an additional 10-

25% based upon the requirements for the operating system, as well as any anticipated

future network growth. Keep in mind that these numbers are just general guidelines,

and can vary wildly depending on the organization’s goals and the individual net-

work. These modifiers have been applied to our sample data in Table 3.4.

Although I didn’t do this in Table 3.4, I always recommend rounding up when

performing these calculations to give yourself plenty of breathing room. It is typi-

cally much easier to plan for additional storage before the deployment of a sensor

rather than having to add more storage later.

While planning, it is important to keep in mind that there are numerous tech-

niques for minimizing your storage requirements. The most common two techniques

are varying your retention period for certain data types or simply excluding the

Table 3.3 Required Space for Data Retention Goals

Daily

Average

Operational

Minimum

Minimum

Requirement

Operational

Ideal

Ideal

Requirement

PCAP 221.43 GB 1 Day 221.43 GB 3 Days 664.29 GB

Flow 16.64 MB 90 Days 1.46 GB 1 Year 5.93 GB

PSTR 6.05 GB 90 Days 544.50 GB 1 Year 2.16 TB

2.21 GB 2.81 TB

53Sensor Hardware

collection of data associated with certain hosts or protocols. In the former, your orga-

nization might decide that since you are collecting three months of PSTR data, you

only need twelve hours of FPC data. In the latter you may configure your full packet

captures to ignore especially verbose traffic such as nightly backup routines or

encrypted traffic such as SSL/TLS traffic. While both techniques have positives

and negatives, they are the unfortunate outcome of making decisions in an imperfect

world with limited resources. An initial tool you may use in the filtering of traffic to

all of your sensor processes is the Berkeley Packet Filter (BPF). Techniques for using

BPF’s to filter traffic will be discussed in Chapter 13.

Network Interfaces

The Network Interface Card (NIC) is potentially the most important hardware com-

ponent in the sensor, because the NIC is responsible for collecting the data used for

all three phases of the NSM Cycle.

A sensor should always have a minimum of two NICs. One NIC should be used

for accessing the server, either for administration or analysis purposes. The other

NIC should be dedicated to collection tasks. The NIC used for administration typi-

cally doesn’t need to be anything special, as it will not be utilized beyond that of a

typical server NIC. The degree of specialization required for the collection NIC

depends upon the amount of traffic being captured. With quality commodity NICs,

such as the popular Intel or Broadcom units, and the correct configuration of a load

balancing network socket buffer, such as PF_Ring, it is rather trivial to monitor up to

1 Gbps of traffic without packet loss.

The number of NICs used will depend on the amount of bandwidth sent over the

link and the types of taps selected. It is important to remember that there are two

channels on a modern Ethernet: a Transmit (TX) channel and a Receive (RX) chan-

nel. A standard 1 Gbps NIC is cable of transporting an aggregate 2 Gbps; 1 Gpbs in

each direction, TX and RX. If a NIC sees less than 500Mbps (in each direction), you

should be relatively safe specifying a single 1 Gbps NIC for monitoring. We say “rel-

atively” though, because a 1 Gbps NIC connected to a router with a 500 Mbps/500

Mbps uplink could buffer traffic for transmission, allowing peaks in excess of the

Table 3.4 Completed Hard Disk Storage Assessment

Minimum Requirement Ideal Requirement

PCAP 221.43 GB 664.29 GB

Flow 1.46 GB 5.93 GB

PSTR 544.50 GB 2.16 TB

Sub-Total 2.21 GB 2.81 TB

110% Half-Cycle Sensor 226.3 MB 287.74 GB

115% Anticipated Growth 339.46 MB 431.62 GB

Total 2.76 GB 3.51 TB

54 CHAPTER 3 The Sensor Platform

uplink throughput to happen. Advanced network taps can assist in mitigating these

types of performance mismatches. We will provide more guidance on network taps

in the next section.

In order to gauge exactly what throughput you will need for your collection NIC,

you should perform an assessment of the traffic you will be collecting. The easiest

method to assess the amount of traffic on a given link will be to inspect, or to set up,

some simple aggregate monitoring on your router or switch. The two most important

aggregate numbers are:

• Peak to peak traffic (Measured in Mbps)

• Average bandwidth (throughput) per day (Measured in Mbps)

For example, you may have an interface that you plan to monitor that is a 1 Gbps

interface, with an average throughput of 225Mbps, an average transmit of 100Mbps,

an average receive of 350 Mbps, and with sustained bursts to 450 Mbps. Whatever

NIC you plan to utilize should be able to handle the sustained burst total as well as the

average throughput.

CAUTION

Traffic is bi-directional! A 1 Gbps connection has amaximum throughput of 2 Gbps - 1 Gbps TX

and 1 Gbps RX.

An additional input into your sensor design will be the composite types of net-

work protocol traffic you will be seeing across the specific link. This may vary

depending on the time of day (e.g. backup routines at night), the time of year

(e.g. students in session), and other variables. To do this, configure the SPAN port

or network tap the sensor will be plugged into, and then plug a temporary sensor into

it that has a high throughput NIC to determine the type of data traversing this link.

Suggested methods of analysis include capturing and analyzing NetFlow data, or

capturing PCAP data to replay through analysis tools offline.

These measurements should be taken over time in order to determine the peak

traffic levels and types of traffic to expect. This should help you to determine

whether you will need a 100 Mbps, 1 Gbps, 10 Gbps, or larger throughput NIC. Even

at low throughput levels, it is important that you purchase enterprise-level hardware

in order to prevent packet loss. The 1 Gbps NIC on the shelf at Wal-Mart might only

be $30, but when you try to extract a malicious PDF from a stream of packets only to

find that you are missing a few segments of data, you will wish you had spent the

extra money on something built with quality.

To capture traffic beyond 1 Gbps, or to maximize the performance of your sensor

hardware, there are a variety of advanced high performance network cards available.

The three most common vendors ,from most to least expensive, are Napatech,

Endace, and Myricom. Each of these cards families provides various combinations

of a variety of high performance features such as on card buffers, hardware time

stamping, advanced network socket drivers, GBIC interface options, and more.

55Sensor Hardware

The enterprise NIC market is a very fast moving area. Currently, we recommend

Myricom products, as they seem to be an incredible value and perform highly when

paired with the propriety Myricom network socket buffer.

In cases where you find that your sensor is approaching the 10 Gbps throughput

barrier, you will likely either have to reconsider the sensor placement, or look into

some type of load-balancing solution. This amount of data being collected and writ-

ten to disk could also cause some additional problems related to hard disk I/O.

Load Balancing: Socket Buffer Requirements

Once the traffic has made its way to the network card, special consideration must

be paid to balancing the traffic within a sensor across the various processes or

application threads. The traditional Linux network socket buffer is not suited to high

performance traffic analysis; enter Luca Deri’s PF_Ring. The general goal of

PF_Ring is to optimize the performance of network sockets through a variety of tech-

niques such as a zero copy ring buffer where the NIC bypasses copying network traf-

fic to kernel space by directly placing it in user space; thus saving the operating

system an expensive context switch. This makes the data collection process faster

and more efficient.

One way to conceptualize PF_Ring is to think of it taking your network traffic and

fanning it out for delivery to a variety of tools. It can operate in two modes: either per

packet round robin, or by ensuring an entire flow is delivered to a single process or

thread within a sensor. In PF_Ring’s current implementation, you can generate a 5-

tuple hash consisting of the source host, destination host, source port, destination port

and protocol. This algorithm ensures that all of the packets for a single TCP flow and

mock UDP/ICMP flows are handled by a specific process or thread.

While PF_Ring isn’t the only option for use with common detection tools like

Bro, Snort, or Suricata, it is the most popular, and it is supported by all three of these.

For high performance sensor applications or designing sensors for operation in

environments in excess of 1 Gbps, significant performance gains may be achieved

through the use of aftermarket network sockets. With the sponsorship of Silicom,

ntop.org now offers a high performance network socket designed for use with com-

modity Intel NICs called PF_RingþDNA. Presently licensed per port, the

PF_RingþDNA performance tests are impressive and should be on your list of

options to evaluate. Licensed per card, the Myricom after market driver for use with

their own brand of card presently seems to be the best value.

SPAN Ports vs. Network Taps

Although they are not a part of the physical server that acts as a sensor, the device you

utilize to get packets to the sensor is considered a part of the sensor’s architecture.

Depending on where you place the sensor on your network, you will either choose to

utilize a SPAN port or a Network Tap.

A SPAN port is the simplest way to get packets to your sensor because it utilizes

preexisting hardware. A SPAN port is a function of an enterprise-level switch that

56 CHAPTER 3 The Sensor Platform

allows you to mirror one or more physical switch ports to another port. In order to

accomplish this, you must first identify the port(s) whose traffic is desirable to the sen-

sor. This will most often be the port that connects an upstream router to the switch, but

could also be several individual ports that important assets reside on. With this infor-

mation in hand, you can configure the traffic inbound/outbound from this port to be

mirrored to another port on the switch, either through aGUI or command line interface,

depending on the switch manufacturer. When you connect your collection NIC on the

sensor to this port, you will see the exact traffic from the source port you are mirroring

from. This is depicted in Figure 3.5, where a sensor is configured to monitor all traffic

from a group of network assets to a router bymirroring the port the router is attached to

over to the sensor.

MORE INFORMATION

While port mirror is a common feature on enterprise-level switches, it is a bit harder to find on

small office and home (SOHO) switches. Miarec maintains a great listing of SOHO switches

with this functionality at http://www.miarec.com/knowledge/switches-port-mirroring.

Most switches allow a many-to-one configuration, allowing you to mirror mul-

tiple ports to a single port for monitoring purposes. When doing this, it’s important to

consider the physical limits of the switch. For instance, if the ports on the switch are

100 Mbps, and you mirror 15 ports to one port for collection, then it is likely that the

collection port will become overloaded with traffic, resulting in dropped packets.

I’ve also seen some switches that, when sustaining a maximum load over a long time,

will assume the port is caught in some type of denial of service or broadcast storm

and will shut the port down. This is a worst-case scenario, as it means any collection

processes attached to this port will stop receiving data.

Another method for getting packets to your sensor is the use of a network tap. A tap

is a passive hardware device that is connected between two endpoints, andmirrors their

traffic to another port designed for monitoring. As an example, consider a switch that is

24-Port Switch

Sensor

Router
Network Assets

Port 1 Port 2-23

Attached to Port 24

Mirrored Traffic from Port 1

FIGURE 3.5

Using a SPAN Port to Capture Packets

57Sensor Hardware

http://www.miarec.com/knowledge/switches-port-mirroring
Figure 3.5

plugged into an upstream router. This connection utilizes a single cable with one end of

the cable plugged into a port in the switch, and another cable plugged into a port on the

router. Using a tap, there will be additional cabling involved. The end of one cable is

plugged into a port on the switch, and the other end of that cable is plugged into a port

on the tap. On the next cable, one end of the cable is plugged into a port on the tap, and

the other end is plugged into a port on the router. This ensures that traffic is transmitted

successfully between the router and the switch. This is shown in Figure 3.6.

In order to monitor the traffic intercepted by the tap you must connect it to your

sensor. The manner in which this happens depends on the type of tap being utilized.

The most common type of tap is an aggregated tap.With an aggregated tap, a cable has

one end plugged into a single monitor port on the tap, and the other end plugged into

the collection NIC on the sensor. This will monitor bidirectional traffic between the

router and switch. The other common variety of tap is the non-aggregated tap. This

type will have two monitor ports on it, one for each direction of traffic flow. When

using a non-aggregated tap, you must connect both monitor ports to individual NICs

on the sensor. Both types of taps are shown in Figure 3.7.

Router

Tap

Switch

Sensor

FIGURE 3.6

Using a Network Tap to Capture Packets

Inbound Traffic
Outbound TrafficRouter

Tap

Switch

Sensor

Bidirectional Traffic Router

Tap

Switch

Sensor

Aggregated Tap Non-Aggregated Tap

NIC1
NIC1 NIC2

FIGURE 3.7

Aggregated and Non-Aggregated Taps

58 CHAPTER 3 The Sensor Platform

Figure 3.6
Figure 3.7

Taps are typically the preferred solution in high performance scenarios. They

come in all shape and sizes and can scale up to high performance levels. You get

what you pay for with taps, so you shouldn’t spare expense when selecting a tap

to be used to monitor critical links.

While both taps and SPAN ports can get the job done, in most scenarios, taps are

preferred to SPAN ports due to their high performance and reliability.

Bonding Interfaces
When using a non-aggregated tap, you will have at least two separate interfaces on

your sensor. One interface monitors inbound traffic from the tap, and the other mon-

itors outbound traffic. Although this gets the job done, having two separate data

streams can make detection and analysis quite difficult. There are several different

ways to combine these data streams using both hardware and software, but I prefer a

technique called interface bonding. Interfacing bonding allows you to create a virtual

network interface that combines the data streams of multiple interfaces into one. This

can be done with software.

As an example, let’s bond two interfaces together in Security Onion. As you can

see by the output shown in Figure 3.8, the installation of Security Onion I’m using

has three network interfaces. Eth2 is the management interface, and eth0 and eth1 are

the collection interfaces.

For the purposes of this exercise, let’s assume that eth0 and eth1 are connected to

a non-aggregated tap, and that they are both seeing unidirectional traffic. An example

of the same traffic stream sniffed from both interfaces can be seen in Figure 3.9.

FIGURE 3.8

Network Interfaces on the System

59Sensor Hardware

Figure 3.8

In this figure, the results of an ICMP echo request and reply generated from the ping

command are shown. In the top window, notice that only the traffic to 4.2.2.1 is seen,

where as in the bottom window, only the traffic from 4.2.2.1 is seen.

Our goal is to combine these interfaces into their own interface to make analysis

easier. In Security Onion this can be done using bridge-utils, which is now included

with it. You can set up a temporary bridge using the following commands:

sudo ip addr flush dev eth0

sudo ip addr flush dev eth1

sudo brctl addbr br0

sudo brctl addif br0 eth0 eth1

sudo ip link set dev br0 up

This will create an interface named br0. If you sniff the traffic of this interface,

you will see that the data from eth0 and eth1 are now combined. The end result is a

single virtual interface. As seen in Figure 3.10, while sniffing traffic on this interface

we see both sides of the communication occurring:

If you wish to make this change persistent after rebooting the operating system,

you will need to make a few changes to Security Onion, including disabling the

graphical network manager and configuring bridge-utils on the /etc/network/inter-

faces file. You can read more about those changes here:

• http://code.google.com/p/security-onion/wiki/NetworkConfiguration

• https://help.ubuntu.com/community/NetworkConnectionBridge

FIGURE 3.9

Unidirectional Traffic Seen on Each Interface

60 CHAPTER 3 The Sensor Platform

http://code.google.com/p/security-onion/wiki/NetworkConfiguration
https://help.ubuntu.com/community/NetworkConnectionBridge
Figure 3.9

SENSOR OPERATING SYSTEM
The most common sensor deployments are usually some flavor of Linux or BSD.

Every flavor has its upsides and downsides, but it usually boils down to personal

preference. Most people who have DoD backgrounds prefer something Red Hat

based such as CentOS or Fedora, because the DoD mostly utilizes Red Hat Linux.

A lot of the more “old school” NSM practitioners prefer FreeBSD or OpenBSD due

to their minimalistic nature. While the particular flavor you choose may not matter, it

is very important that you use something *nix based. There are a variety of reasons

for this, but the most prevalent is that most of the tools designed for collection, detec-

tion, and analysis are built to work specifically on these platforms. In 2013, Linux

seems to be the most popular overall choice, as hardware manufactures seem to uni-

versally provide up to date Linux drivers for their hardware.

SENSOR PLACEMENT
Perhaps the most important decision that must be made when planning for NSM data

collection is the physical placement of the sensor on the network. This placement

determines what data you will be able to capture, what detection ability you will have

in relation to that data, and the extent of your analysis. The goal of sensor placement

is to ensure proper visibility into the data feeds that have been established as critical

to the NSM process within the organization. If you are using the methods described

in this book to make that determination, then you likely decided what data was the

most important for collection by going through the applied collection framework dis-

cussed in chapter two.

FIGURE 3.10

Bidirectonal Traffic from the Virtual Interface

61Sensor Placement

Figure 3.10

There is no tried and true method for determining where to best place a sensor on

the network, but there are several tips and best practices that can help you avoid com-

mon pitfalls.

Utilize the Proper Resources

Good security doesn’t occur in a vacuum within an organization, and sensor place-

ment shouldn’t either. While the placement of a sensor is a goal of the security team,

determining how to best integrate this device into the network is more within the

realm of network engineering. With that in mind, the security team should make

every effort to engage network engineering staff at an early stage of the placement

process. Nobody knows the network better than the people who designed it andmain-

tain it on a daily basis. They can help guide the process along by ensuring that the

goals are realistic and achievable within the given network topology. Of course, in

some cases the network engineering staff and the security team might consist of a

solitary person, and that person might be you. In that case, it makes scheduling meet-

ings a lot easier!

The document that is usually going to provide the most insight into the overall

design of a network or individual network segment is the network diagram. These

diagrams can vary wildly in detail and design, but they are critical to the process

so that the network architecture can be visualized. If your organization doesn’t have

network diagrams, then this would be a good time to to make that happen. Not only

will this be crucial in determining visibility of the sensor, but it will also help in the

creation of visibility diagrams for use by your analysts. We will talk about those

diagrams later in this section.

Network Ingress/Egress Points

In the ideal case, and when the appropriate resources are available, a sensor should be

placed at each distinct ingress/egress point into the network including Internet gate-

ways, traditional VPNs, and partner links. In smaller networks, this may mean

deploying a sensor at one border on the network edge. You will find that many large

organizations have adopted a hub and spoke model where traffic from satellite

offices are transported back to the main office via VPN, MPLS, or other point-to-

point technology to centrally enforce network monitoring policies. This setup will

require a wider dispersion of sensors for each of these ingress/egress points.

The diagram shown in Figure 3.11 represents a network architecture that might be

found in a larger organization with many ingress/egress points. Note that all of the

routers shown in this diagram are performing Network Address Translation (NAT)

functions.

In this case, notice that there are four separate sensors deployed:

A. At the corporate network edge

B. At the research network edge

C. At the ingress point from a business partner network

D. At the edge of the wireless network

62 CHAPTER 3 The Sensor Platform

Ultimately, any truly negative activity occurring on your network (except for

physical theft of data) will involve data being communicated into or out of the net-

work. With this in mind, sensors placed at these ingress/egress points will be posi-

tioned to capture this data.

Visibility of Internal IP Addresses

When performing detection and analysis, it is critical to be able to determine which

internal device is the subject of an alert. If your sensor is placed on the wrong side of a

NAT device such as a router, you could be shielded from this information.

The diagram shown in Figure 3.12 shows two different scenarios for a single net-

work. The network itself is relatively simple, in which the corporate network exists

behind an internal router that forms a DMZ between itself and the edge router, which

connects to the Internet.

The devices downstream from the internal router have IP addresses in the

172.16.16.0/24 range. The router has an internal LAN IP address of 172.16.16.1,

and an external WAN interface of 192.168.1.254. This forms a DMZ between the

internal router and the edge router.

Edge Router

Internet

(Primary)

Inline Tap

Sensor A

Switch

Users

Sensor B

Research Network Router

Inline Tap

Switch

Internal Router

Switch

Sensor CInline Tap

Business

Partner

Network

Switch

Sensor D Inline Tap

Wireless Access Points

Wireless Users

FIGURE 3.11

Placing Sensors at Network Ingress/Egress Points

63Sensor Placement

Figure 3.11

There are two scenarios shown here. In scenario A, the sensor is placed upstream

from the internal router, in the DMZ. The alert shown in Figure 3.13 represents what

happens when a user in the group of internal hosts falls victim to a drive-by download

attack that causes them to download a malicious PDF file associated with the Phoe-

nix exploit kit.

Internal Router

Internal Hosts

172.16.16.0/24

Internet

Sensor

Internal Router

Internal Hosts

172.16.16.0/24

Internet

Sensor

Scenario A – External Placement

Scenario B – Internal Placement

Ext Interface

192.168.1.254

Int Interface

172.16.16.1

Ext Interface

192.168.1.254

Int Interface

172.16.16.1

Tap

Tap

Edge Router

Edge Router

FIGURE 3.12

A Simple Network with Two Sensor Placement Examples

FIGURE 3.13

A User in Scenario A Generating an Alert

64 CHAPTER 3 The Sensor Platform

Figure 3.12
Figure 3.13

This alert indicates that the device at 192.168.1.254 attempted to download a PDF

from the host at 1.2.3.4, and that this PDF is linked to the Phoenix exploit kit. The

problem with this is that 192.168.1.254 is the external IP address of the internal

router, and this doesn’t give us any indication of which internal host actually initiated

this communication. Pulling NetFlow data yields the results shown in in Figure 3.14.

With this sensor placement, you will not see any internal IP addresses in the

172.16.16.0/24 range. This is because the internal router is utilizing NAT to mask

the IP addresses of the hosts inside that network. The data collected by this sensor

gives us absolutely no ability to adequately investigate the alert further. Even if you

had other data sources available such as antivirus or HIDS logs, you wouldn’t know

where to begin looking. This becomes especially complex on a network with hun-

dreds or thousands of hosts on a single network segment.

In scenario B, the sensor is placed downstream from the router. Figure 3.15 shows

that the same malicious activity generates the same alert, but provides different

information.

FIGURE 3.14

NetFlow Data from Scenario A

FIGURE 3.15

A User in Scenario B Generating an Alert

65Sensor Placement

Figure 3.14
Figure 3.15

Here we can see the same external address of the site hosting the malicious file

(1.2.3.4), but instead of the external IP of the internal router, we actually see the

proper internal IP of the host that needs to be examined for further signs of infection.

NetFlow data shows this as well in Figure 3.16.

It is critical that your collected data serves an analytic purpose. This example

applies just as much to sensors placed within internal network segments as it does

to network segments that are only one hop away from the Internet. You should

always ensure that you are on the right side of routing devices.

Proximity to Critical Assets

In the introductory material of this book, we discussed how casting a wide net and

attempting to collect as much data as possible can be problematic. This should be

taken into account when you place your sensors. If you’ve taken the time to properly

determine which data feeds are mission critical in light of the threats your organiza-

tion faces, you should have defined which assets are the most important to protect.

With this in mind, if you have limited resources and can’t afford to perform collec-

tion and detection at all of your network’s ingress/egress points, you can logically

place your sensors as close as possible to these critical assets.

Figure 3.17 shows an example of a mid-sized network belonging to a biomedical

research firm. In planning for collection, this firm decided that the devices they are

most concerned with protecting are those within the research network, as they con-

tain the organization’s intellectual property. This image shows three possible sensor

placements.

In an ideal world with unlimited money, time, and resources we might want to

deploy all of these sensors in order gain the best visibility of the network. However,

that just isn’t always realistic.

FIGURE 3.16

NetFlow Data from Scenario B

66 CHAPTER 3 The Sensor Platform

Figure 3.16

Our first thought might be to place a sensor on the network edge, which is what is

depicted with sensor A. If this is the only sensor placed on this network, it becomes

responsible for collection and detection for the entire enterprise. As we’ve already dis-

cussed, thismodel doesn’t always scale well and ultimately results in incredibly expen-

sive hardware and an inability to perform thorough collection, detection, and analysis.

Next, we might consider placing the sensors at the border of each physical site, as

shown with sensors B1 and B2. This essentially splits the workload of sensor A in

half, with a sensor for both the NYC and ATL locations. While this does have some

performance benefits, we still have two sensors that are responsible for processing a

wide variety of data. The sensor at the NYC site alone must have detection signatures

that will encompass possible threats related to different servers on the network

servers segment, as well as users. This still isn’t focusing on the biggest perceived

threat to the organization.

Finally, we come to sensor C, which is placed so that it has visibility into the

research network at the ATL location. This segment contains users who are actively

involved in research, and the servers where their data is stored. Based upon the risk

analysis that was completed for this network, the biggest threat to the organization

Edge RouterInternet

General Users

NYC

Inline Tap

Sensor B1

Sensor A

NYC Border Router

Inline Tap

Switch

Switch

NYC

Network Servers

NYC Internal Router

Switch

General Users

ATL

Sensor B2

ATL Border Router

Inline Tap

Switch

ATL

ATL Internal Router

Switch

Research Servers

Sensor CInline Tap

FIGURE 3.17

A Mid-Sized Network with Three Sensor Placement Examples

67Sensor Placement

Figure 3.17

would be a compromise on this network segment. Therefore, this is where I would

place my first sensor. Because this network is smaller in size, less powerful hardware

can be used. Additionally, detection mechanisms can be deployed so that a trimmed

down set of signatures that only encompass the technologies on this part of the net-

work can be used.

In a scenario like this one, it would be ideal if the resources were available to place

more than one sensor. Perhaps a combination of sensor A and C might be the best

‘bang for your buck.’ However, if the assets that represent the highest level of risk

in the company are those in research server segment, then that is a great place to start.

Creating Sensor Visibility Diagrams

When a sensor has been placed on the network, it is critical that analysts know where

that sensor exists in relation to the assets it is responsible for protecting, as well as

other trusted and untrusted assets. This is where network diagrams become incred-

ibly useful for reference during an investigation.

Most organizations would be content to take a network diagram that was created by

the systems administration or network engineering staff and point to where the sensor

is physically or logically placed. While this can be useful, it isn’t really the most effi-

cient way to present this information to anNSManalyst. These diagrams aren’t usually

made for the NSM analyst, and can often induce a state of information overload where

non-relevant information prevents the analyst from fully understanding the exact archi-

tecture as it relates to protected and trusted/untrusted assets. In other terms, I would

consider giving an NSM analyst a network engineering diagram equivalent to provid-

ing a cook with the DNA sequence of a tomato. If the cook wants to know about the

particulars of what comprises a tomato’s flavor then he can reference that information,

but in most cases, he just needs the recipe that tells him how to cook that tomato. With

NSM analysis, it is always beneficial if detailed network diagrams are available to ana-

lysts, but inmost cases a simplified diagram is better suited to their needs. The ultimate

goal of the sensor visibility diagram is for an analyst to be able to quickly assess what

assets a particular sensor protects, and what assets fall out of that scope.

A basic sensor visibility diagram should contain AT LEAST the following

components:

• The high-level logical overview of the network

• All routing devices, proxies, or gateways that affect the flow of traffic

• External/Internal IP addresses of routing devices, proxies, and gateways

• Workstations, servers or other devices -- these should be displayed in

groupings and not individually, unless they are particularly critical devices

• IP address ranges for workstation, server, and device groupings

• All NSM sensors, and appropriately placed boxes/areas that define the hosts

the sensor is responsible for protecting. These boxeswill usually be placed to define

what hosts the sensor will actually collect traffic from. While the traffic from a

nested subnet might only show the IP address of that subnet’s router’s external

interface, the traffic will still be captured by the sensor unless otherwise excluded.

68 CHAPTER 3 The Sensor Platform

As an example, let’s consider the network that was described in Figure 3.17 ear-

lier. I’ve redrawn this image in Figure 3.18 to represent the visibility of each sensor,

incorporating the items listed above. The differing zones can typically be most

effectively defined by colored or shaded boxes, but since this book is printed in

black and white, I’ve used boxes with different types of line dashes to represent

each monitored zone. In this case, each sensor is monitoring all of the traffic in

the subnets nested below its subnet, so each zone is overlapping the zone for the

upstream network.

I would often have these diagrams laminated and placed at an analyst’s desk

for quick reference during an investigation. They work great for a quick reference

document, and can be a launching point for an analyst to find or request additional

documentation relevant to the investigation, such as a more detailed diagram

of a specific network segment or information associated with a particular

trusted host.

192.168.30.1192.168.20.1

192.168.1.2

Edge RouterInternet

192..0.2.180

General Users

NYC

Inline Tap

192.168.1.1

Sensor B1

Sensor A

NYC Border Router

Inline Tap

Switch

192.168.2.1

NYC

Network Servers

NYC Internal Router

192.168.2.2

Switch
General Users

ATL

Sensor B2

ATL Border Router

Inline Tap

Switch

192.168.3.1

ATL

ATL Internal Router

192.168.3.2

Switch

192.168.1.3

Research Servers

Sensor CInline Tap

Switch

Sensor A – 192.168.0.0/16

Sensor B1 – 192.168.2.0/24
Sensor B2 – 192.168.3.0/24
Sensor C – 192.168.30.0/24

FIGURE 3.18

A Sensor Visibility Diagram

69Sensor Placement

Figure 3.18

SECURING THE SENSOR
In the realm of sensitive network devices, the security of the sensor should be con-

sidered paramount. If your sensor is storing full packet capture data, or even just

PSTR data, it is very likely that these files will contain incredibly sensitive network

information. Even an unskilled attacker could use these files to extract entire files,

passwords, or other critical data. An attacker could even use a sensor that is only

storing session data to help them garner information about the network that might

allow them to expand their foothold within the network. Several steps that can be

taken to ensure the sanctity of your sensors.

Operating System and Software Updates

The single most important thing you can do to aid in the security of any system is to

ensure that the software running on it and the underlying operating system are both

up to date with the latest security patches. Even though your sensors shouldn’t be

visible from the Internet, if your network gets compromised through some other

means and an attacker can move laterally to a sensor via a months-old remote code

execution vulnerability in your operating system, it’s game over.

I’ve seen many instances where people neglect patching sensor software and

operating systems because the sensor doesn’t have Internet access. As a result, it

becomes too much of a hassle to perform updates on a regular basis. In such

instances, one solution is to set up some type of satellite update server within your

network to ensure these updates are occurring in a timely manner. While this is extra

management overhead, it does reduce a significant amount of risk to your sensors if

they are not being updated frequently enough. One other solution would be to limit

access to those domains required for software and system updates with the use of an

internal web proxy, but this may prove challenging based on the placement of your

sensor in the network.

Operating System Hardening

In addition to ensuring that the operating system of your sensor is up to date, it

is critical that it is based upon secure configuration best practices before sensor

software is even installed. There are several approaches to operating system secu-

rity best practices. If your organization falls under any type of formal compliance

standard such as HIPAA, NERC CIP, or PCI, then it is likely that you already

employ some type of secure OS configuration standards. Federal and Defense sec-

tor agencies are also no stranger to these, as operating system security is enforced

via any number of certification and accreditation processes, such as DIACAP or

DITSCAP.

If you aren’t guided by any formal compliance standard, there are several

publicly available resources that can serve as a good starting point. Two of these

that I really like are the Center for Internet Security (CIS) benchmarks

70 CHAPTER 3 The Sensor Platform

(http://benchmarks.cisecurity.org/) and the NSA Security Guides for Operating

Systems (http://www.nsa.gov/ia/mitigation_guidance/security_configuration_

guides/operating_systems.shtml).

Limit Internet Access

In most instances, your sensor should not have unfettered Interner access. If the sen-

sor were to become compromised, this would make it trivially easy for an attacker to

exfiltrate sensitive data from the sensor. I typically do not provide Internet access to

sensors at all, although in some cases Internet access can be limited to only critically

important domains (such as those required for software and system updates) with the

use of an internal web proxy.

Importantly, your sensor processes will most likely be configured to download

IDS signatures or reputation-based intelligence from the Internet at periodic inter-

vals. Additionally, accessing data sources for intelligence services, such as Bro’s

real-time usage of the Team Cymru Malware Hash Registry and the International

Computer Science Institutes SSLObservatory, is a growing trend. You should ensure

that your sensor can receive this data, but it might be preferable to have a single sys-

tem configured to download these updates, and have sensors pointed to that internal

device for updates.

Minimal Software Installation

A sensor is a specialized piece of hardware designed for a specific purpose. This spe-

cialization warrants that only necessary software be installed on the sensor. We rec-

ommend using a minimal operating system installation and only installing what

software is needed to perform the required collection, detection, and analysis tasks

for your type of sensor deployment. Furthermore, any unneeded services should be

disabled and additional unused packages installed with the operating system should

be removed. This ultimately increases sensor performance, and minimizes the poten-

tial attack surface.

The most common mistake I see in slimming down a server installation is when a

sensor administrator forgets to remove compilers from a sensor. It is often the case

that a compiler will be required to install NSM tools, but under no circumstances

should the compiler be left on this system, as it provides an additional tool for an

attacker to use against your network should the sensor be compromised. In a best

case scenario, sensor tools are actually compiled on another system and pushed

out to the sensor rather than being compiled on the sensor itself.

VLAN Segmentation

Most sensors should have at least two network connections. The first interface is used

for the collection of network data, while the second will be used for the administra-

tion of the sensor, typically via SSH. While the collection interface shouldn’t be

assigned an IP address or be allowed to talk on the network at all, the administration

71Securing the Sensor

http://benchmarks.cisecurity.org/
http://www.nsa.gov/ia/mitigation_guidance/security_configuration_guides/operating_systems.shtml
http://www.nsa.gov/ia/mitigation_guidance/security_configuration_guides/operating_systems.shtml

interface will be required to exist logically on the network at some location. If the

network environment supports the segmentation of traffic with Virtual Local Area

Networks (VLANs), then this should be taken advantage of, and the sensor manage-

ment interface placed into a secure VLAN that is only accessible by the sensor

administrator.

Host-Based IDS

The installation of some form of host-based intrusion detection (HIDS) on the sensor

is critical. These systems provide detection of modifications to the host through a

variety of means, including the monitoring of system logs and system file modifica-

tion detection. Several commercial varieties of HIDS exist, but there are also free

pieces of software available, such as OSSEC or the Advanced Intrusion Detection

Environment (AIDE). Keep in mind that the HIDS software is used to detect a poten-

tial intrusion on the system it resides on, so the logs it generates should be sent to

another server on the network. If they are stored locally and only periodically exam-

ined, this presents an opportunity for an attacker to modify or delete these logs before

they can be examined.

Two-Factor Authentication

As an attacker, an NSM sensor is a target of great value. The raw and processed net-

work data found on a sensor can be used to orchestrate or further a variety of attacks.

Therefore, it is important to protect the authentication process used to access the sen-

sor. Using a password-only authentication presents a scenario in which an attacker

could harvest that password from another source and then access the sensor. Because

of this, having two forms of authentication for sensors is recommended.

Network-Based IDS

It is crucial that the administration interface of the sensor be monitored as a high

value network asset. It should come as no surprise that one of the best ways to do

this is to subject this interface to the same NIDS detection used for the rest of the

network. Of course, this software is probably running on the sensor itself. The easy

solution is to mirror the administration interface’s network traffic to the monitoring

interface. This is an easy step to take, but one that is often overlooked.

One of the best things you can do to ensure that your sensor isn’t communicating

with any unauthorized hosts is to identify which hosts are permitted to talk to the

sensor and create a Snort rule that will detect communication with any other device.

For example, assuming that a sensor at 192.168.1.5 is only allowed to talk to the

administrator’s workstation at 192.168.1.50 and the local satellite update server at

192.168.1.150, the following rule would detect communication with any other host:

alert ip ![192.168.1.50,192.168.1.150] any <> 192.168.1.50 any (msg:

”Unauthorized Sensor Communication”; sid:5000000; rev:1;)

72 CHAPTER 3 The Sensor Platform

CONCLUSION

There is a lot of planning and engineering that goes into proper sensor creation,

placement, and capacity planning. Like many topics, this is something that could

nearly be its own separate book. This chapter was intended to provide an overview

of the main concepts that should be considered when performing those actions. In

addition to the concepts introduced here, it is a good practice to speak with col-

leagues and other organizations to see how they’ve deployed their sensors in light

of their organizational goals and network architecture. This will provide a good base-

line knowledge for determining the who, what, when, where, and why of NSM

sensors.

73Conclusion

CHAPTER

Session Data 4
CHAPTER CONTENTS

Flow Records ... 76

NetFlow ..79

NetFlow v5 and v9 .. 79

IPFIX ..80

Other Flow Types ...81

Collecting Session Data ... 81

Hardware Generation ...81

Software Generation ..82

Fprobe ... 82

YAF ... 82

Collecting and Analyzing Flow Data with SiLK .. 83

SiLK Packing Toolset ...83

SiLK Flow Types ..85

SiLK Analysis Toolset ..86

Installing SiLK in Security Onion ..87

Filtering Flow Data with Rwfilter ...87

Piping Data Between Rwtools ...88

Other SiLK Resources ..92

Collecting and Analyzing Flow Data with Argus .. 92

Solution Architecture ...93

Features ...93

Basic Data Retrieval ..94

Other Argus Resources ...95

Session Data Storage Considerations .. 95

Conclusion .. 97

Session data is the summary of the communication between two network devices.

Also known as a conversation or a flow, this summary data is one of the most flexible

and useful forms of NSM data. If you consider full packet capture equivalent to a

recording of every phone conversation someone makes from a their mobile phone,

then you might consider session data to be equivalent to having a copy of the phone

log on the bill associated with that mobile phone. Session data doesn’t give you the

“What”, but it does give you the “Who, Where, and When”.

75

When session or flow records are generated, the record will usually include the

protocol, source IP address and port, the destination IP address and port, a timestamp

of when the communication began and ended, and the amount of data transferred

between the two devices. The various forms of session data that we will look at in this

chapter will include other information, but these fields are generally common across

all implementations of session data. A sample of flow data is shown in Figure 4.1.

While session data doesn’t provide the level of detail found in full packet capture

data, it does have some unique strengths that provide significant value to NSM ana-

lysts. As wewill learn in the next chapter, the biggest challenge to FPC solutions is that

the size of this data prohibits most organizations from retaining any significant amount

of it. As such, this limits the ability to catch all types of traffic, or to perform retrospec-

tive analysis that might be relevant to current investigations. This weakness of FPC

data is actually a strength of session data. Since session data is merely a collection

of text records and statistics, it is incredibly small in size. The result is that it is easy

to create large scale flow storage solutions. FPC data retention is generally thought of

in terms of minutes or hours, but session data retention can be thought of in terms of

months or years. I’ve even seen organizations choose to keep flow data indefinitely.

An additional benefit of session data and its smaller size is that it’s much quicker

to parse and analyze. This is convenient for both the analyst who is attempting to

quickly comb through data, and analysis tools that are attempting to detect anomalies

or generate statistics. Because of this, other data types, including statistical data that

we will talk about in the Chapter 11, are often generated from session data.

In this chapter we will discuss how flows are generated, methods for session

data collection, and explore two of the more popular session data analysis solutions,

SiLK andArgus.However, before going into detail about the differences between anal-

ysis solutions, it’s important to understand the differences between the types of flow

data. This bookwill highlight themost commonly used flow types, NetFlowand IPFIX.

FLOW RECORDS
A flow record is an aggregated record of packets. The aggregation can occur differ-

ently depending upon which tool is being used to generate and parse the data.

FIGURE 4.1

Sample Flow Records

76 CHAPTER 4 Session Data

Figure 4.1

ANALYST NOTE

In this book, we concentrate mostly on SiLK, so this section describes how SiLK aggregates

data to form flow records.

A flow record is identified based upon five attributes that make up the standard

5-tuple. The 5-tuple is a set of data whose attributes are source IP address, source

port, destination IP address, destination port, and transport protocol. When a flow

generator parses a packet, the 5-tuple attributes are examined and recorded, and a

new flow record is created with 5-tuple data as well as any other fields defined

by the flow type you are using (NetFlow v5, NetFlow v9, IPFIX, etc).

When a new packet is analyzed and contains the same 5-tuple attribute values, then

that data is appended to the flow record that already exists. Datawill be appended to this

flow record for as long as packets matching the 5-tuple attribute values are observed.

There are three conditions in which a flow record might be terminated (Figure 4.2):

1. Natural Timeout: Whenever communication naturally ends based upon the

specification of the protocol. This is tracked for connection-oriented protocols,

and will look for things like RST packets or FIN sequences in TCP.

2. Idle Timeout: When no data for a flow has been received within thirty

seconds of the last packet, the flow record is terminated. Any new packets

with the same 5-tuple attribute values after this thirty seconds has elapsed

will result in the generation of a new flow record. This value is configurable.

3. Active Timeout: When a flow has been open for thirty minutes, the flow

record is terminated and a new one is created with the same 5-tuple attribute

values. This value is configurable.

Whenever packets are observedwith new 5-tuple attribute values, a new flow record

is created. There can be a large number of individual flow records open at any time.

I like to visualize this by imagining a man sitting on an assembly line. The man

examines every packet that crosses in front of him. When he sees a packet with a

unique set of 5-tuple attribute values, he writes those values on a can, collects the

data he wants from the packet and places it into the can, and sits it to the side. When-

ever a packet crosses the assembly line with values that match what is written on this

can, he throws the data he wants from the packet into the can that is already sitting

there. Whenever one of the three conditions for flow termination listed above are

met, he puts a lid on the can, and sends it away.

FIGURE 4.2

Flow Idle and Active Termination

77Flow Records

Figure 4.2

As you might expect based upon this description, flows are generated in a uni-

directional manner in most cases (some tools, such as YAF, can generate bidirec-

tional flows). For instance, with unidirectional flows, TCP communication

between 192.168.1.1 and 172.16.16.1 would typically spawn at least two flow

records, one record for traffic from 192.168.1.1 to 172.16.16.1, and another for traf-

fic from 172.16.16.1 to 192.168.1.1 (Table 4.1).

A more realistic scenario might be to imagine a scenario where a workstation

(192.168.1.50) is attempting to browse a web page on a remote server

(192.0.2.75). This communication sequence is depicted in Figure 4.3.

Table 4.1 Two Unidirectional Flow Records for a Single Communication Sequence

sIP dIP sPort dPort Pro Packets Bytes Flags Type

192.168.1.1 172.16.16.1 3921 445 6 52 1331 FS PA Out

172.16.16.1 192.168.1.1 445 3921 6 1230 310931 FS PA In

FIGURE 4.3

Web Server Communication Sequence

78 CHAPTER 4 Session Data

Figure 4.3

In this sequence, the client workstation (192.168.1.50) must first query a DNS

server (4.2.2.1) located outside of his local network segment. Once a DNS response

is received, the workstation can communicate with the web server. The flow records

generated from this (as seen by the client workstation) would look like Table 4.2:

A good practice to help wrap your mind around flow data is to compare flow

records and packet data for the same time interval. Viewing the two data types

and their representations of the same communication side-by-side will help you to

learn exactly how flow data is derived. Next, we will look at a few of the major flow

types.

NetFlow

NetFlow was originally developed by Cisco in 1990 for use in streamlining routing

processes on their network devices. In the initial specification, a flow record was

generated when the router identified the first packet in new network conversations.

This helped baseline network conversations and provided references for the router to

compare to other devices and services on the network. These records were also used

to identify and summarize larger amounts of traffic to simplify many processes, such

as ACL comparisons. They also had the added benefit of being more easily parseable

by technicians. Twenty-three years later, we have seen advancement of this specifi-

cation through nine versions of NetFlow, including several derivative works. The

features of these versions vary greatly and are used differently by individuals in var-

ious job functions, from infrastructure support and application development to

security.

NetFlow v5 and v9
The two most commonly used NetFlow standards are V5 and V9. NetFlow V5 is by

far the most accessible NetFlow solution because most modern routing equipment

supports NetFlow V5 export. NetFlow V5 flow records offer standard 5-tuple infor-

mation as well all of the necessary statistics to define the flow aggregation of the

packets being summarized. These statistics allow analysis engines to streamline

Table 4.2 Flow Records Generated by Web Browsing

sIP dIP sPort dPort Pro Packets Bytes Flags Type

192.168.

1.50

4.2.2.1 9282 53 17 1 352 Out

4.2.2.1 192.168.

1.50

53 9282 17 1 1332 In

192.168.

1.50

192.0.2.

75

20239 80 6 1829 12283 FS PA Outweb

192.0.2.75 192.168.

1.50

80 20239 6 2923 309103 FS PA Inweb

79Flow Records

the parsing of this information. Unlike NetFlow V9 and IPFIX, NetFlow V5 does not

support the IPV6 protocol, which may limit its ability to be used in certain

environments.

NetFlow V9 is everything V5 is, but so much more. NetFlow V9 provides a new

template that offers quite a bit more detail in its logging. Whereas NetFlow V5 offers

20 data fields (two of those are padding), NetFlow V9 has 104 field type definitions.

These modified field types can be sent via a templated output to comprise the con-

figurable record. Thus, an administrator can use NetFlow V9 to generate records that

resemble V5 records by configuring these templates. NetFlowV9 also provides IPV6

support. If you’d like to know more about the differences in NetFlow V5 and V9,

consult Cisco’s documentation.

Mike Patterson of Plixer provides one of the best and most entertaining examples

on the comparison of NetFlow V5 and NetFlow V9 in a three-part blog at Plixer.

com.
1 He states that the lack of V9 usage is almost entirely due to a lack of demand

for the increased utility that V9 can offer. Mike argues that NetFlow V5 is like a

generic hamburger. It will fulfill your needs, but generally do nothing more. How-

ever, depending on your situation, you might only desire sustenance. In that case, a

generic hamburger is all you need. The generic hamburger is an easy and cheap way

to satisfy hunger, providing only the bare minimum in features, but it is everything

you need. NetFlow V9 on the other hand, is an Angus cheeseburger with all the trim-

mings. Most administrators either have minimal requirements from NetFlow data

and don’t require the extra trimmings that NetFlow V9 offers, or they don’t have

a method of interacting with the data as they did with NetFlow V5. Both of these

reasons account for a lack of NetFlow V9 adoption.

IPFIX

IPFIX has a lot in common with NetFlow V9 as it is built upon the same format.

IPFIX is a template-based, record-oriented, binary export format.2 The basic unit

of data transfer in IPFIX is the message. A message contains a header and one or

more sets, which contain records. A set may be either a template set or a data set.

A data set references the template describing the data records within that set. IPFIX

falls into a similar area as NetFlow V9 when it comes to adoption rate. The differ-

ences between NetFlow V9 and IPFIX are functional. For instance, IPFIX offers var-

iable length fields to export custom information, where NetFlow V9 does not. It also

has a scheme for exporting lists of formatted data. There are a number of differences

between NetFlow V9 and IPFIX, but one word really defines them; IPFIX is “flex-

ible”. I use this word specifically because the extension to NetFlow V9 that makes it

very similar to IPFIX is call “Flexible NetFlow”, but that version falls out of the

scope of this book.

1http://www.plixer.com/blog/general/cisco-netflow-v5-vs-netflow-v9-which-most-satisfies-your-hun

ger-pangs/
2http://www.tik.ee.ethz.ch/file/de367bc6c7868d1dc76753ea917b5690/Inacio.pdf

80 CHAPTER 4 Session Data

http://www.plixer.com/blog/general/cisco-netflow-v5-vs-netflow-v9-which-most-satisfies-your-hunger-pangs/
http://www.plixer.com/blog/general/cisco-netflow-v5-vs-netflow-v9-which-most-satisfies-your-hunger-pangs/
http://www.tik.ee.ethz.ch/file/de367bc6c7868d1dc76753ea917b5690/Inacio.pdf

Other Flow Types

Other flow technologies exist that could already be in use within your environment, but

the question of accessibility and analysis might make them difficult to implement in a

manner that is useful for NSM purposes. Juniper devices may offer Jflow while Citrix

has AppFlow. One of the more common alternatives to NetFlow and IPFIX is sFlow,

which uses flow sampling to reduce CPU overhead by only taking representative sam-

plings of data across the wire. Variations of sFlow are becoming popular with vendors,

with sFlow itself being integrated intomultiple networking devices and hardware solu-

tions. These other flow types leverage their own unique traits, but also consider that

while you might have an accessible flow generator, be sure you have a means of col-

lecting and parsing that flow data to make it an actionable data type.

In this book, we try our best to remain flow type agnostic. That is to say that when

we talk about the analysis of flow data, it will be mostly focused on the standard

5-tuple that is included in all types of flow data.

COLLECTING SESSION DATA
Session data can be collected in a number of different ways. Regardless of the

method being used, a flow generator and collector will be required. A flow generator

is the hardware or software component that creates the flow records. This can be done

from either the parsing of other data, or by collecting network data directly from a

network interface. A flow collector is software that receives flow records from the

generator, and stores them in a retrievable format.

Those who are already performing FPC data collection will often choose to gen-

erate flow records from this FPC data. However, in most cases, the FPC data you are

collecting will be filtered, which means you will be unable to generate flow records

for the network traffic that isn’t captured. Furthermore, if there is packet loss during

your FPC capture, you will also lose valuable flow data. While this type of filtering is

useful for maximizing disk utilization when capturing FPC data, the flow records

associated with this traffic should be retained. This method of flow data generation

isn’t usually recommended.

The preferred method for session data generation is to capture it directly off of the

wire in the same manner that FPC data or NIDS alert data might be generated. This

can either be done by software on a server, or by a network device,like a router. For

the purposes of this chapter, we will categorize generation by devices as “hardware

generation” and generation by software as “software generation”.

Hardware Generation

In many scenarios, you will find that you already have the capability to generate some

version of flow data by leveraging existing hardware. In these situations, you can sim-

ply configure a flow-enabled router with the network address of a destination collector

and flow records from the router’s interface will be sent to that destination.

81Collecting Session Data

While hardware collection may sound like a no-brainer, don’t be surprised when

your network administrator denies your request. On routing devices that are already

being taxed by significant amounts of traffic, the additional processing required to

generate and transmit flow records to an external collector can increase CPU utili-

zation to the point of jeopardizing network bandwidth. While the processing over-

head from flow generation is minimal, this can cause a significant impact in high

traffic environments.

As you might expect, most Cisco devices inherently have the ability to generate

NetFlow data. In order to configure NetFlow generation on a Cisco router, consult

with the appropriate Cisco reference material. Cisco provides guides specifically for

configuring NetFlow with Cisco IOS, which can be found here: http://www.cisco.

com/en/US/docs/ios/netflow/command/reference/nf_cr_book.pdf.

Software Generation

The majority of NSM practitioners rely on software generation. The use of software

for flow generation has several distinct advantages, the best of which is the flexibility

of the software deployment. It is much easier to deploy a server running flow gen-

eration software in a network segment than to re-architect that segment to place a

flow generating router. Generating flow data with software involves executing a dae-

mon on your sensor that collects and forwards flow records based upon a specific

configuration. This flow data is generated from the data traversing the collection

interface. In most configurations, this will be the same interface that other collection

and detection software uses.

Now, we will examine some of the more common software generation solutions.

Fprobe
Fprobe is an example of a minimalist NetFlow generation solution. Fprobe is avail-

able in most modern Linux distribution repositories and can be installed on a sensor

easily via most package management systems, such as yum or apt.

If outside network connections are not available at your sensor location, the pack-

age can be compiled and installed manually with no odd caveats or obscure options.

Once installed, Fprobe is initiated by issuing the fprobe command along with the

network location and port where you are directing the flow data. As an example,

if you wanted to generate flow data on the interface eth1, and send it to the collector

listening on the host 192.168.1.15 at port 2888, you would issue the following

command:

fprobe -i eth1 192.168.1.15:2888

YAF
YAF (Yet Another Flowmeter) is a flow generation tool that offers IPFIX output.

YAF was created by the CERT Network Situation Awareness (NetSA) team, who

designed it for generating IPFIX records for use with SiLK (which will be discussed

this later in this chapter).

As mentioned before, NetFlow v5 provides unidirectional flow information. This

can result in redundant data in flow statistics that, on large distributed flow collection

82 CHAPTER 4 Session Data

http://www.cisco.com/en/US/docs/ios/netflow/command/reference/nf_cr_book.pdf
http://www.cisco.com/en/US/docs/ios/netflow/command/reference/nf_cr_book.pdf

systems, can substantially affect data queries. To keep up with naturally increasing

bandwidth and to provide bidirectional flow information for analysts, IPFIX was

deemed to be a critical addition to SiLK, and YAFwas created as an IPFIX generator.

A bonus to using YAF is the ability to use the IPFIX template architecture with SiLK

application labels for more refined analysis that you cannot get through the NetFlow

V5 5-tuple.

Depending on your goals and the extent of your deployment, YAF might be a

necessity in your IDS environment. If so, installing YAF is fairly straightforward.

This book won’t go into detail on this process, but there are a few details that can

help streamline the process. Before compiling YAF, please make sure to review

the NetSA documentation thoroughly. NetSA also has supplementary install tutorials

that will take you through the installation and initialization of YAF. This documen-

tation can be found here: https://tools.netsa.cert.org/confluence/pages/viewpage.

action?pageId¼23298051.

COLLECTING AND ANALYZING FLOW DATA WITH SiLK
SiLK (System for Internet-Level Knowledge) is a toolset that allows for efficient

manageable security analysis across networks. SiLK serves as a flow collector,

and is also an easy way to quickly store, access, parse, and display flow data. SiLK

is a project currently developed by the CERT NetSA group, but like most great secu-

rity tools, it was the result of necessity being the mother of invention. Originally

dubbed “Suresh’s Work”, SiLK was the result of an analyst needing to parse flow

in a timely and efficient way, without the need for complex CPU intensive scripts.

SiLK is a collection of C, Python, and Perl, and as such, works in almost any UNIX-

based environment.

The importance of documentation is paramount. No matter how great of a tool,

script, or device you create, it is nothing if it can only be used by the developer. The

documentation for SiLK is second to none when it comes to truly helpful reference

guides for an information security tool. To emphasize the importance of this docu-

mentation, the following sections will use this guide as both reference, and as part of

a basic scenario in how to use SiLK.3 It is not an overstatement to suggest that the

SiLK documentation and the community that supports the tool are easily some of

the best features of the SiLK project.

SiLK Packing Toolset

The SiLK toolset operates via two components: the packing system and the analysis

suite. The packing system is the method by which SiLK collects and stores flow data

in a consistent, native format. The term “packing” refers to SiLK’s ability to com-

press the flow data into a space-efficient binary format ideal for parsing via SiLK’s

3http://tools.netsa.cert.org/silk/docs.html

83Collecting and Analyzing Flow Data with SiLK

https://tools.netsa.cert.org/confluence/pages/viewpage.action?pageId=23298051
https://tools.netsa.cert.org/confluence/pages/viewpage.action?pageId=23298051
https://tools.netsa.cert.org/confluence/pages/viewpage.action?pageId=23298051
http://tools.netsa.cert.org/silk/docs.html

analysis suite. The analysis suite is a collection of tools intended to filter, display,

sort, count, group, mate, and more. The analysis tool suite is a collection of command

line tools that provide an infinite level of flexibility. While each tool itself is incred-

ibly powerful, each tool can also be chained together with other tools via pipes based

on the logical output of the previous tool.

In order to utilize SiLK’s collection and analysis features, you must get data to

it from a flow generator. When the collector receives flow records from a gener-

ator, the records are logically separated out by flow type. Flow types are parsed

based upon a configuration file that determines if the records are external-to-

internal, internal-to-external, or internal-to-internal in relation to the network

architecture.

In SiLK, the listening collection process is a tool known as rwflowpack.

Rwflowpack is in charge of parsing the flow type, determining what sensor

the data is coming from, and placing the refined flow data into its database for pars-

ing by any of the tools within the analysis toolset. This workflow is shown in

Figure 4.4.

FIGURE 4.4

The SiLK Workflow

84 CHAPTER 4 Session Data

Figure 4.4

The execution of Rwflowpack is governed by a file named rwflowpack.conf, as

well as optional command line arguments that can be issued during execution. The

most common method to initiate rwflowpack is the command:

service rwflowpack start

Rwflowpack will confirm that the settings in the silk.conf and sensor.conf files

are configured correctly and that all listening sockets identified by sensor.conf are

available. If everything checks out, Rwflowpack will initialize and you will receive

verification on screen.

While the packing process in SiLK is straightforward, it has more options that can

be utilized outside of just receiving and optimizing flow data. The SiLK packing sys-

tem has eight different tools used to accept and legitimize incoming flows. As pre-

viously mentioned, rwflowpack is a tool used to accept flow data from flow

generators defined by SiLK’s two primary configuration files, silk.conf and sen-

sor.conf, and then convert and sort the data into specific binary files suitable for

SiLK’s analysis suite to parse. Forwarding flow data directly to an rwflowpack lis-

tener is the least complicated method of generating SiLK session data. Often the need

arises for an intermediary to temporarily store and forward data between the gener-

ator and collector. For this, flowcap can be utilized. In most cases, flowcap can be con-

sidered a preprocessor to rwflowpack in that it first takes the flow data and sorts it into

appropriate bins based on flow source and a unit or time variable. The SiLK documen-

tation describes this as storing the data in “one file per source per quantum,” with a

quantum being either a timeout or a maximum file size. The packing system also

has a number of postprocessing abilities with tools such as rwflowappend, rwpack-

checker, and rwpollexec. Rwflowappend and Rwpackchecker do exactly what they

say; rwflowappend will append SiLK records to existing records and rwpackchecker

checks for data integrity and SiLK file corruptions. Rwpollexec will monitor the

incoming SiLK data files and run a user-specified command against each one. Rwflo-

wappend, rwpackchecker and rwpollexec can be referred to as postprocessors because

they further massage the SiLK data after rwflowpack has converted the raw flows into

binary SiLK files. Themoral of this story is that there aremore than enoughways to get

your data to rwflowpack for conversion into SiLK binary files.

SiLK Flow Types

SiLK organizes flows into one of several types that can be used for filtering and sort-

ing flow records. This is handled based upon the network ranges provided for internal

and external ipblocks in the sensor.conf configuration file used by rwflowpack

(Figure 4.5). These flow types are:

• In: Inbound to a device on an internal network

• Out: Outbound to a device on an external network

• Int2int: From an internal network to the same, or another internal network

• Ext2ext: From an external network to the same, or another external network

• Inweb: Inbound to a device on an internal network using either port 80, 443,

or 8080.

85Collecting and Analyzing Flow Data with SiLK

• Outweb: Outbound to a device on an external network using either port 80, 443,

or 8080.

• Inicmp: Inbound to a device on an internal network using ICMP (IP Protocol 1)

• Outicmp: Outbound to a device on an external network using ICMP (IP Protocol 1)

• Innull: Inbound filtered traffic or inbound traffic to null-ipblocks specified in

sensor.conf

• Outnull: Outbound filtered traffic or outbound traffic to null-ipblocks specified in

sensor.conf

• Other: Source not internal or external, or destination not internal or external

Understanding these flow types will be helpful when using some of the filtering

tools we will talk about next.

SiLK Analysis Toolset

The analysis toolset is where you will spend the majority of your time when working

with flow data. There are over 55 tools included in the SiLK installation, all of which

are useful, with some being used more frequently. These analysis tools are meant to

work as a cohesive unit, with the ability to pipe data from one tool to another seam-

lessly. The most commonly used tool in the suite is rwfilter. Rwfilter takes the SiLK

binary files and filters through them to provide only the specific data that the analyst

requires. We’ve spoken at length about how the size of flow records allow you to

store them for a significant time, so it becomes clear that there must be a convenient

way to apply filters to this data in order to only see data that is relevant given your

specific task. For instance, an analyst might only want to examine a week of data

from a year ago, with only source IP addresses from a particular subnet, with all des-

tination addresses existing in a specific country. Rwfilter makes that quick and easy.

The output of rwfilter, unless specified, will be another SiLK binary file that can con-

tinue to be parsed or manipulated via pipes. The tool is very thoroughly covered in

the SiLK documentation and covers categories for filtering, counting, grouping, and

more. As this is the collection section of the book, we will only cover a few brief

scenarios with the analysis toolset here.

FIGURE 4.5

SiLK Flow Types

86 CHAPTER 4 Session Data

Figure 4.5

Installing SiLK in Security Onion

In this book, we don’t go into the finer details of how to install each of these tools, as

most of those processes are documented fairly well, and most of them come pre-

installed on the Security Onion distribution if you want to test them. Unfortunately,

at this time of this writing, SiLK doesn’t come preinstalled on Security Onion like all

of the other tools in this book. As such, you can find detailed instructions on this

installation process on the Applied NSM blog at: http://www.appliednsm.com/

silk-on-security-onion/.

Filtering Flow Data with Rwfilter

The broad scope of flow collection and the speed of flow retrieval with SiLKmakes a

strong case for the inclusion of flow collection in any environment. With SiLK, vir-

tually any analyst can focus the scope of a network incident with a speed unmatched

by any other data type. The following scenarios present a series of common situations

in which SiLK can be used to either resolve network incidents, or to filter down a

large data set to a manageable size.

One of the first actions in most investigations is to examine the extent of the

harassment perpetrated by an offending host with a single IP address. Narrowing this

down from PCAP data can be extremely time consuming, if not impossible. With

SiLK, this process can start by using the rwfilter command along with at least

one input, output, and partitioning option. First is the --any-address option, which

will query the data set for all flow records matching the identified IP address. This

can be combined with the --start-date and --end-date options to narrow down the spe-

cific time frame we are concerned with. In addition to this, we will provide rwfilter

with the –type¼all options, which denotes that we want both inbound and outbound

flows, and the --pass¼ stdout option, which allows us to pass the output to rwcut (via

a pipe symbol) so that it can be displayed within the terminal window. This gives us

an rwfilter command that looks like this:

rwfilter --any-address¼1.2.3.4 --start-date¼2013/06/22:11 --end-

date¼2013/06/22:16 --type¼all --pass¼stdout | rwcut

Denoting only a start-date will limit your search to a specific quantum of

time based on the smallest time value. For instance, --start-date¼2013/06/22:11

will display the entirety of the filter matched flow data for the 11th hour of

that day. Similarly, if you have –start-date¼2013/06/22, you will receive the entire

day’s records. The combination of these options will allow you to more accurately

correlate events across data types and also give you 1000 ft visibility on the

situation itself.

For example, let’s say that you have a number of events where a suspicious IP

(6.6.6.6) is suddenly receiving significant encrypted data from a secure web server

shortly after midnight. The easiest way to judge the extent of the suspicious traffic is

to run the broad SiLK query:

87Collecting and Analyzing Flow Data with SiLK

http://www.appliednsm.com/silk-on-security-onion/
http://www.appliednsm.com/silk-on-security-onion/

rwfilter --start-date¼2013/06/22:00 --any-address¼6.6.6.6 --type

¼all --pass¼stdout | rwcut

If the data is too expansive, simply add in the partitioning option “--aport¼443”

to the previous filter to narrow the search to just the events related to the interactions

between the suspicious IP and any secure web servers. The --aport command will

filter based upon any port that matches the provided value, which in this case is port

443 (the port most commonly associated with HTTPS communication).

rwfilter --start-date¼2016/06/22:00 --any-address¼6.6.6.6 --aport

¼443 --type¼all --pass¼stdout | rwcut

After looking at that data, you might notice that the offending web server is com-

municating with several hosts on your network, but you want to zero in on the

communication occurring from one specific internal host (192.168.1.100) to the sus-

picious IP. In that case, instead of using the --any-address option, we can use the

--saddress and --daddress options, which allow you to filter on a particular source

and destination address, respectively. This command would look like:

rwfilter --start-date¼2013/06/22:00 --saddress¼192.168.1.100

--daddress¼6.6.6.6 --aport¼443 --type¼all --pass¼stdout | rwcut

Piping Data Between Rwtools

An analyst often diagnoses the integrity of the NSM data by evaluating the health of

incoming traffic. This example will introduce a number of rwtools and the funda-

mentals of piping data from one rwtool to another.

It is important to understand that rwfilter strictly manipulates and narrows down

data fed to it from binary files and reproduces other binary files based on those filter

options. In previous examples we have included the --pass¼ stdout option to send the

binary data which matches a filter to the terminal output. We piped this binary data to

rwcut in order to convert it to human readable ASCII data in the terminal window.

In this sense, we have already been piping data between rwtools. However, rwcut is

the most basic rwtool, and the most essential because it is almost always used to

translate data to an analyst in a readable form. It doesn’t do calculations or sorting,

it simply converts binary data into ASCII data and manipulates it for display at the

user’s discretion through additional rwcut options.

In order to perform calculations on the filtered data, you must pipe directly from

the filtered data to an analysis rwtool. For this example, we’ll evaluate rwcount, a

tool used to summarize total network traffic over time. Analyzing the total amount

of data that SiLK is receiving can provide an analyst with a better understanding of

the networks that he/she is monitoring. Rwcount is commonly used for the initial

inspection of new sensors. When a new sensor is brought online, it comes with many

caveats. How many end users are you monitoring? When is traffic the busiest? What

should you expect during late hours? Simply getting a summary of network traffic is

what rwcount does. Rwcount works off of binary SiLK data. This means that piping

data to it from rwfilter will give you an ASCII summary of any data matching

your filter.

88 CHAPTER 4 Session Data

Consider a scenario where you want to evaluate howmuch data is being collected

by your SiLK manager. We’ll use rwfilter to output all of the data collected for an

entire day, and we will pipe that data to rwcount:

rwfilter --start-date¼2013/6/22 --proto¼0-255 --pass¼stdout --type

¼all | rwcount --bin-size¼60

This command will produce a summary of traffic over time in reference to total

records, bytes, and packets per minute that match the single day filter described. This

time interval is based upon the --bin-size option, which we set to 60 seconds. If you

increase the bin size to 3600, you will get units per hour, which is shown in

Figure 4.6. As mentioned before, rwfilter requires, at minimum, an input switch,

a partitioning option, and an output switch. In this case, we want the input switch

to identify all traffic (--type¼all) occurring on 2013/6/22. In order to pass all data,

we will specify that data matching all protocols (--proto¼0-255) should pass to

stdout (--pass¼ stdout). This will give us all of the traffic for this time period.

You’ve now seen basic scenarios involving filtering flow records using rwfilter,

and the use of rwcount, a tool that is of great use in profiling your networks at a high

level. We’ll now combine these two tools and add another rwtool called rwsetbuild.

Rwsetbuild will allow you to build a binary file for SiLK to process using various

partitioning options. Quite often, you’ll find you need a query that will consider mul-

tiple IP addresses. While there are tools within SiLK to combine multiple queries,

rwsetbuild makes this unnecessary as it will streamline the process by allowing

you to generate a flat text list of IP addresses and/or subnets (we’ll call it testIP-

list.txt), and run them through rwsetbuild with the following command:

rwsetbuild testIPlist.txt testIPlist.set

FIGURE 4.6

Output of Flow Data Parsed by Rwcount

89Collecting and Analyzing Flow Data with SiLK

Figure 4.6

Having done this, you can use the --anyset partitioning option with rwfilter to

filter flow records where any of the IP addresses within the list appear in either source

or destination address fields. The command would look like:

rwfilter --start-date¼2014/06/22 --anyset¼/home/user/testIPlist.set

--type¼all --pass¼stdout | rwcut

This ability can be leveraged to gather a trove of useful information. Imagine you

have a list of malicious IP addresses that you’re asked to compare with communi-

cation records for your internal networks. Of particular interest is how much data

has been leaving the network and going to these “bad” IP addresses. Flow data is

the best option for this, as you can couple what you’ve learned with rwsetbuild

and rwcount to generate a quick statistic of outbound data to these malicious devices.

The following process would quickly yield a summary of outbound data per hour:

1. Add IP addresses to a file called badhosts.txt.

2. Create the set file with the command:

rwsetbuild badhosts.txt badhosts.set

3. Perform the query and create the statistic with the command:

rwfilter --start-date¼2013/06/22 --dipset¼badhosts.set --type¼all

--pass¼stdout | rwcount --bin-size¼3600

The next scenario is one that I run into every day, and one that people often ask

about. This is a query for “top talkers”, which are the hosts on the network that are

communicating the most.

Top talker requests can have any number of variables involved as well, be it top-

talkers outbound to a foreign country, top talking tor exit nodes inbound to local

devices, or top talking local devices on ports 1-1024. In order to accomplish tasks

such as these, we are interested in pulling summary statistics that match given filters

for the data we want. If you haven’t already guessed it, the tool we’re going to use is

creatively named rwstats. Piping rwfilter to rwstats will give Top-N or Bottom-N

calculations based on the results of the given filter. In this example, we’ll analyze

the most active outbound connections to China. Specifically, we’ll look at commu-

nications that are returning data on ephemeral ports (>1024). This can be accom-

plished with the following command:

rwfilter--start-date¼2013/06/22--dcc¼cn--sport¼1024-65535--type¼all

--pass¼stdout | rwstats --top --count¼20 --fields¼sip --value¼bytes

You will note that this rwfilter command uses an option we haven’t discussed

before, --dcc. This option can be used to specify that we want to filter based upon

traffic to a particular destination country code. Likewise, we could also use the com-

mand --scc to filter based upon a particular source country. The ability to filter data

based upon country code doesn’t work with an out-of-the-box SiLK installation.

In order to utilize this functionality and execute the command listed above, you will

have to complete the following steps:

90 CHAPTER 4 Session Data

1. Download the MaxMind GeoIP database with wget:

wget http://geolite.maxmind.com/download/geoip/database/

GeoLiteCountry/GeoIP.dat.gz

2. Unzip the file and convert it into the appropriate format:

gzip -d -c GeoIP.dat.gz | rwgeoip2ccmap --encoded-

input>country_codes.pmap

3. Copy the resulting file into the appropriate location:

cp country_codes.pmap /usr/local/share/silk/

The results of this query take the form shown in Figure 4.7.

In this example, rwstats only displays three addresses talking out to China,

despite the --count¼20 option on rwstats that should show the top twenty IP

addresses. This implies that there are only three total local IP addresses talking

out to China in the given time interval. Had there been fifty addresses, you would

have only seen the top 20 local IP addresses. The --bytes option specifies that the

statistic should be generated based upon the number of bytes of traffic in the com-

munication. Leaving off the –value option will default to displaying the statistic for

total number of outbound flow records instead.

The next logical step in this scenario would be to find out who all of these

addresses are talking to, and if it accepts the traffic. Narrowing down the results

by augmenting the rwfilter portion of the command in conjunction with altering

the fields in rwstats will provide you with the actual Chinese addresses that are being

communicated with. We’ve also used the --saddress option to narrow this query

down to only the traffic from the host who is exchanging the most traffic with China.

rwfilter --start-date¼2013/06/22 --saddress¼192.168.1.12 --dcc¼cn

--sport¼1024-65535 --type¼all --pass¼stdout | rwstats --top --

count¼20 --fields¼dip --value¼bytes

Finally, utilizing the rwfilter commands in previous scenarios, you can retrieve the

flow records for each host in order to gauge the type of data that is being transferred.

You can these use this information, along with the appropriate timestamps, to retrieve

other useful forms of data that might aid in the investigation, such as PCAP data.

FIGURE 4.7

The Results of the Rwstats Query

91Collecting and Analyzing Flow Data with SiLK

http://geolite.maxmind.com/download/geoip/database/GeoLiteCountry/GeoIP.dat.gz
http://geolite.maxmind.com/download/geoip/database/GeoLiteCountry/GeoIP.dat.gz
Figure 4.7

Other SiLK Resources

SiLK and YAF are only a small portion of the toolset that NetSA offers. I highly

recommend that you check out the other public offerings that can work alongside

SiLK. NetSA offers a supplementary tool to bring SiLK to the less unix-savvy with

iSiLK, a graphical front-end for SiLK. Another excellent tool is the Analysis Pipe-

line, an actively developed flow analysis automation engine that can sit inline with

flow collection. Once it has been made active with an appropriate rule configuration,

the Analysis Pipeline can streamline blacklist, DDOS, and beacon detection from

SiLK data so that you don’t need to script these tools manually.

While the documentation is an excellent user reference for SiLK and is an invalu-

able resource for regular analysts, SiLK also has complementary handbooks and

guides to help ignite the interests of amateur session data analysts or assist in gen-

erating queries for the seasoned professional. The ‘Analyst Handbook’ is a compre-

hensive 107 page guide to many SiLK use cases.
4 This handbook serves as the

official tutorial introduction into using SiLK for active analysis of flow data. Other

reference documents pertain to analysis tips and tricks, installation information, and

a full PySiLK starter guide for those wanting to implement SiLK as an extension

to python. We highly recommended perusing the common installation scenarios

to get a good idea of how you will be implementing SiLK within your environment.

COLLECTING AND ANALYZING FLOW DATA WITH ARGUS
While Applied NSM will focus on SiLK as the flow analysis engine of choice, we

would be remiss if we didn’t at least mention Argus. Argus is a tool that also happens

to be the product of some of CERT-CC’s early endeavors in the field of flow analysis.

Argus first went into government use in 1989, becoming the world’s first real-time

network flow analyzer.5 Starting in 1991, CERT began officially supporting Argus.

From there, Argus saw rapid development until 1995 when it was released to the

public.

Argus defines itself as a definitive flow solution that encompasses more than just

flow data, but instead provides a comprehensive systematic view of all network traf-

fic in real time. Argus is a bi-directional flow analysis suite that tracks both sides of

network conversations and reports metrics for the same flow record.6While offering

many of the same features as other IPFIX flow analysis solutions, Argus has its own

statistical analysis tools and detection/alerting mechanisms that attempt to separate it

from other solutions. In the next few sections, I’ll provide an overview of the basic

solution architecture and how it is integrated within Security Onion. In doing so, I

won’t rehash a lot of concepts I’ve already covered, but instead, will focus on only

4http://tools.netsa.cert.org/silk/analysis-handbook.pdf
5http://www.qosient.com/argus/presentations/Argus.FloCon.2012.Tutorial.pdf
6http://qosient.com/argus/argusnetflow.shtml

92 CHAPTER 4 Session Data

http://tools.netsa.cert.org/silk/analysis-handbook.pdf
http://www.qosient.com/argus/presentations/Argus.FloCon.2012.Tutorial.pdf
http://qosient.com/argus/argusnetflow.shtml

the essentials to make sure you can capture and display data appropriately. As men-

tioned before, Argus sets itself apart in a few key ways, so I’ll provide examples

where these features might benefit your organization more than the competing flow

analysis engines.

Solution Architecture

Even though Argus comes packaged within Security Onion, it is important to under-

stand the general workflow behind obtaining and verifying the data. Even with Secu-

rity Onion, you might find yourself troubleshooting NSM collection issues, or you

might desire to bring in data from external devices that aren’t deployed as Security

Onion sensors. In these events, this section should give you an understanding of the

deployment of Argus and how its parts work together to give you a flow analysis

package with little overhead.

We are going to frame this discussion with Argus as a standalone rollout. Argus

consists of two main packages. This first package is simply known as the generic

“Argus” package, which will record traffic seen at a given network interface on

any device. That package can then either write the data to disk for intermittent trans-

fer or maintain a socketed connection to the central security server for constant live

transfer. This is the component that will typically reside on a sensor, and will transmit

data back to a centralized logging server.

The second Argus package is referred to as the Argus Client package. This pack-

age, once deployed correctly, will read from log files, directories, or a constant

socket connection for real-time analysis. These client tools do more than collect data

from the external generator; they will serve as the main analysis tools for the duration

of your Argus use. With that said, you will need the client tools on any device that

you do Argus flow analysis from.

There isn’t much difference in the workflow of Argus and other flow utilities. The

basic idea is that a collection interface exists that has a flow-generating daemon on it.

That daemon sees the traffic, generates flows, and forwards the flow data to a central

collection platform where storage and analysis of that data can occur.

Features

Argus is unique because it likely has more features built into it than most other flow

analysis tools. A standalone deployment of Argus can do more than basic flow

queries and statistics. Since partial application data can be retrieved with the collec-

tion of IPFIX flow data imported into Argus, it can be used to perform tasks such as

filtering data based upon HTTP URLs. I mention that Argus is powerful by itself,

because in today’s NSM devices we generally have other tools to perform these addi-

tional tasks. This makes mechanisms like URL filtering redundant if it is working on

top of other data types such as packet string data. Since we are referring to the basic

installation of Argus within Security Onion, I will not be discussing the additional

Argus application layer analysis. In Chapter 6 we will be talking about packet string

data and how it can perform those tasks for you.

93Collecting and Analyzing Flow Data with Argus

Basic Data Retrieval

Data retrieval in different flow analysis tools can result in a déjà vu feeling due to

the similarity in the data ingested by the tools. Ultimately, it is the query syntax and

statistic creation abilities of these tools that differ. Argus has what appears to be a

basic querying syntax on initial glance; however, the learning curve for Argus

can be steep. Given the large number of query options and the vague documentation

available for the tool online, the man pages for the tools will be your saving grace

when tackling this learning curve.

The most useful tool within the Argus Client suite of tools is ra. This tool will

provide you with the initial means to filter and browse raw data collected by Argus.

Ra must be able to access a data set in order to function. This data can be provided

through an Argus file from the –r option, from piped standard input, or from a remote

feed. Since we are working so intimately with Security Onion, you can reference the

storage directory for Argus files in /nsm/sensor_data/<interface>/argus/. At first

glance, ra is a simple tool, and for the most part, you’ll probably find yourself making

basic queries using only a read option with a Berkeley Packet Filter (BPF) at the end.

For example, you might have a suspicion that you have several geniuses on your net-

work due to HTTP logs revealing visits to www.appliednsm.com. One way to view

this data with Argus would be to run the command:

ra –r /nsm/sensor_data/<interface>/argus/<file>- port 80 and host

67.205.2.30

Sample output from this command is shown below in Figure 4.8.

The nicest benefit of Argus over competing flow analysis platforms is its ability

to parse logs using the same BPFs that tools like Tcpdump use. This allows for quick

FIGURE 4.8

Sample Argus Output with ra

94 CHAPTER 4 Session Data

http://www.appliednsm.com
Figure 4.8

and effective use of the simplest functions of ra and Argus. After understanding the

basic filter methodology for ra, you can advance the use of ra with additional options.

As I stated before, ra can process standard input and feed other tools via standard

output. In doing so, you can feed the data to other Argus tools. By default, ra will

read from standard-in if the –r option is not present. Outputting ra results to a file

can be done with the –w option. Using these concepts, we could create the following

command:

cat /nsm/sensor_data/<interface>/argus/<file>| ra -w - - ip and host

67.205.2.30 | racluster -M rmon -m proto –s proto pkts bytes

This example will use ra to process raw standard input and send the output to

standard out via the -w option. This output is then piped to the racluster tool. Racluster

performs ra data aggregation for IP profiling. In the example, racluster is taking the

result of the previous ra command and aggregating the results by protocol. A look at

the manual page for ra reveals that it also accepts racluster options for parsing the

output. The example command shown above would produce an output similar to

what is shown in Figure 4.9.

Other Argus Resources

Though this book won’t cover the extensive use of Argus from an analysis stand-

point, it is still worth reviewing in comparison to other flow analysis suites like SiLK.

When choosing a flow analysis tool each analyst must identify which tool best suits

his/her existing skill set and environment. The ability to use BPFs in filtering data

with ra makes Argus immediately comfortable to even the newest flow analysts.

However, advanced analysis with Argus will require extensive parsing skills and

a good understanding of the depth of ratools to be successful. If you want to learn

more about Argus, you can visit http://qosient.com/argus/index.shtml, or for greater

technical detail on how to work with Argus, go to http://nsmwiki.org/index.php?

title¼Argus.

SESSION DATA STORAGE CONSIDERATIONS
Session data is miniscule in size compared to other data types. However, flow

data storage cannot be an afterthought. I’ve seen situations where a group will set

FIGURE 4.9

Sample Ra and Racluster Output

95Session Data Storage Considerations

http://qosient.com/argus/index.shtml
http://nsmwiki.org/index.php?title=Argus
http://nsmwiki.org/index.php?title=Argus
http://nsmwiki.org/index.php?title=Argus
Figure 4.9

up flow as their only means of network log correlation, only to realize that after a

month of data collection, they can’t query their logs anymore. This results from

improper flow rollover. Flow data can gradually increase in size to an unmanageable

level if left unchecked. There is no specific recommendation on the amount of stor-

age you’ll need for flow data, as it depends on the data that is important to you,

and how much throughput you have. With that said, just because are able to define

a universal filter for all traffic you are collecting doesn’t mean you should. Even

though you might not be collecting FPC data for certain protocols, such as encrypted

GRE tunnels or HTTPS traffic, you should still keep flow records of these

communications.

To estimate the amount of storage space needed for flow data, the CERT NetSA

team provides a SiLK provisioning worksheet that can help. It can be found at: http://

tools.netsa.cert.org/releases/SiLK-Provisioning-v3.3.xlsx.

There are many ways to manage your network log records, but I find one of the

simplest and easiest to maintain is a simple cron job that watches all of your data and

does rollover as necessary or based upon a time interval. Many of your data capture

tools will feature rollover features in the process of generating the data; however,

you’ll likely have to manage this rollover manually. This can be the case with flow

data, though many organizations opt to only roll over flow data when required. One

solution to limit the data is to simply create a cron job that cleans the flow data direc-

tory by purging files that are older that X days. One SiLK specific example of a cron

job that will do this is:

30 12 * * * find /data/silk/* -mtime +29 -exec rm {} \;

In this example, the /data/silk/ directory will be purged of all data files 30 days or

older. This purge will occur every day at 12:30 PM. However, be careful to make

sure that you’re not removing your configuration files if they are stored in the same

directory as your data. Many organizations will also like to keep redundant storage of

flow data. In that case, the following will move your data to a mounted external USB

storage device.

*/30****rsync--update-vr/data/silk//mnt/usb/data/silk/&>/dev/null

This command will copy all new flow files every 2 minutes. The method used to

implement this cron job will vary depending on which operating system flavor you

are using. In this spirit, it should be noted that SiLK also includes features to repeat

data to other sites.

I like to include control commands like these in a general “watchdog” script

that ensures services are restarted in the event of the occasional service failure or sys-

tem reboot. In this watchdog script, I also include the periodic updating or removal of

data, the transfer and copying of redundant data, status scripts that monitor sensor

health, and the service health scripts that make sure processes stay alive. This has

the added benefit of eliminating errors upon sensor startup, as the services in question

will begin one the cron job starts rather than with all other kernel startup processes.

Ultimately, the greatest benefit of a centralized watchdog script is that it will

provide a central point of reference for safely monitoring the health of your sensors,

96 CHAPTER 4 Session Data

http://tools.netsa.cert.org/releases/SiLK-Provisioning-v3.3.xlsx
http://tools.netsa.cert.org/releases/SiLK-Provisioning-v3.3.xlsx

which includes ensuring that data is constantly flowing. The script below can be

used to monitor YAF to make sure it is constantly running. Keep in mind that

the script may require slight modifications to work correctly in your production

environment.

#!/bin/bash

function SiLKSTART {

sudo nohup /usr/local/bin/yaf --silk --ipfix¼tcp --live¼pcap --

out¼192.168.1.10 --ipfix-port¼18001 --in¼eth1 --applabel --max-

payload¼384 --verbose --log¼/var/log/yaf.log &

}

function watchdog {

pidyaf¼$(pidof yaf)

if [-z “$pidyaf”]; then

echo “YAF is not running.”

SiLKSTART

fi

}

watchdog

Rwflowpack is another tool that you may want to monitor to ensure that it is

always running and collecting flow data. You can use the following code to monitor

its status:

#!/bin/bash

pidrwflowpack¼$(pidof rwflowpack)

if [-z “$pidrwflowpack”]; then

echo “rwflowpack is not running.”

sudo pidof rwflowpack | tr ’ ’ ’\n’ | xargs -i sudo kill -9 {}

sudo service rwflowpack restart

fi

CONCLUSION

In this chapter we provided an overview of the fundamental concepts associated with

the collection of session data. This included an overview of different types of session

data like NetFlow and IPFIX, as well as a detailed overview of data collection and

retrieval with SiLK, and a brief overview of Argus. I can’t stress the importance of

session data enough. If you are starting a new security program or beginning to

develop an NSM capability within your organization, the collection of session data

is the best place to start in order to get the most bang for your buck.

97Conclusion

CHAPTER

Full Packet Capture Data 5
CHAPTER CONTENTS

Dumpcap ... 101

Daemonlogger .. 102

Netsniff-NG .. 104

Choosing the Right FPC Collection Tool ... 105

Planning for FPC Collection .. 106

Storage Considerations ..106

Calculating Sensor Interface Throughput with Netsniff-NG and IFPPS107

Calculating Sensor Interface Throughput with Session Data109

Decreasing the FPC Data Storage Burden ... 111

Eliminating Services ..111

Eliminating Host to Host Communication ..113

Managing FPC Data Retention ... 115

Time-Based Retention Management ..115

Size-based Retention Management ...116

Conclusion .. 120

The type of NSM data with the most intrinsic value to the analyst is Full Packet Cap-

ture (FPC) data. FPC data provides a full accounting for every data packet transmit-

ted between two endpoints. If we compare the investigation of computer-related

crime to human-focused crime, having FPC data from a device under investigation

would be equivalent to having a surveillance-video recording of a human suspect

under investigation. Ultimately, if an attacker accesses a system from the network,

there will be evidence of it within FPC data.

FPC data can be quite overwhelming due to its completeness, but it is this high

degree of granularity that is valuablewhen it comes to providing analytic context. It does

comewith a price, however, as it can be quite storage intensive to capture and store FPC

data for an extended period of time. Some organizations find that they simply don’t have

the resources to effectively incorporate FPC data into their NSM infrastructure.

The most common form of FPC data is the PCAP data format (Figure 5.1). The

PCAP format is supported bymost open source collection, detection, and analysis tools

and has been the gold standard for FPC data for quite a while. Several libraries exist for

creating software that can generate and interactwith PCAP files, but themost popular is

Libpcap, which is an open source packet capture library that allows applications to

99

interact with network interface cards to capture packets. Originally created in 1994, its

main objectivewas to provide a platform-independentAPI that could be used to capture

packets without the need for operating system specific modules. A large number of

applications used in packet collection and analysis utilize Libpcap, including several

of the tools discussed in this book, like Dumpcap, Tcpdump, Wireshark, and more.

Since libraries like Libpcap make the manipulation of PCAP data so easy, often

other NSM data types, such as statistical data or packet string data are generated from

PCAP data.

Recently, the PCAP-NG format has evolved as the next version of the PCAP

file format. PCAP-NG provides added flexibility to PCAP files, including allowing

for comments to be inserted into packet captures (Figure 5.2). This feature is

incredibly helpful to analysts when storing examined files for later analysis by

themselves or other analysts. Most of the tools mentioned in this book support

PCAP-NG.

FROM THE TRENCHES

You can determine the format of a packet capture file by using the capinfos tool that is provided

with Wireshark (which we will talk about more in Chapter 13). To do this, execute the command

capinfos–t<file>. If the file is just a PCAP file, capinfos will tell you that it is a “libpcap”

file. If it is a PCAP-NG file, it will refer to it as “pcapng.”

FIGURE 5.1

Sample PCAP Data as seen in Wireshark

100 CHAPTER 5 Full Packet Capture Data

Figure 5.1

In this chapter we will explore several popular FPC collection solutions and high-

light some of the benefits of each one. In addition to this, we will examine some strat-

egies for implementing FPC solutions into your network in the most economical

manner possible.

DUMPCAP
One of the easiest ways to get up and running with full packet capture is by utilizing

Dumpcap. The Dumpcap tool is included with Wireshark, which means that most

analysts already have it on their system whether they know it or not. Dumpcap is

a simple tool designed solely for the purpose of capturing packets from an interface

and writing them to disk. Dumpcap utilizes the Libpcap packet capture library to cap-

ture packets and write them in PCAP-NG format.

If you are using Security Onion then Wireshark is already installed, which means

that you already haveDumpcap. If not, thenyou can download theWireshark suite from

http://www.wireshark.org. Once you’ve downloaded and installed Wireshark (along

with the bundled Libpcap driver, required for packet capture), you can begin logging

packets by invoking the Dumpcap tool and specifying a capture interface, like this:

dumpcap –i eth1

This command will begin capturing packets and writing them to a randomly

named file in the current working directory, and will continue to do so until stopped.

Dumpcap provides some other useful options for crafting how packet data is stored

and captured:

• -a<value>: Specifies when to stop writing to a capture file. This can be time

duration, a file size, or a number of written files. Multiple conditions can be used

together.

• -b<options>: Causes Dumpcap to write to multiple files based upon when

certain criteria are met. This can be time duration, a file size, or a number of

written files. Multiple conditions can be used together.

FIGURE 5.2

A Commented Packet Leveraging PCAP-NG

101Dumpcap

http://www.wireshark.org
Figure 5.2

• -B<value>: Specifies the buffer size, which is the amount of data stored before

writing to disk. It is useful to attempt to increase this if you are experiencing

packet loss.

• -f< filter>: Berkeley Packet Filter (BPF) command(s) for filtering the capture file.

• -i< interface>: Capture packets from the specified interface

• -P: Save files as PCAP instead of PCAP-NG. Useful when you require backwards

compatibility with tools that don’t support PCAP-NG yet.

• -w< filename>: Used to specify the output file name.

In order to get this commandmore “production ready”, wemight invoke the com-

mand like this:

dumpcap –i eth1 –b duration:60 –b files:60 –w NYC01

This command will capture packets from the eth1 interface (-i eth1), and store

them in 60 files (-b files:60), each containing 60 seconds worth of captured traffic

(-bduration:60). When the 60th file has been written, the first file starts being over-

written. These files will be numbered using the string we specified and adding the

number of the file, and a date time stamp (-w NYC01).

While Dumpcap is simple to get up and running, it does have its limitations. First

of all, it doesn’t always stand up well in high performance scenarios when reaching

higher throughput levels, which may result in dropped packets. In addition, the sim-

plicity of the tool limits its flexibility. This is evident in the limited number of con-

figuration options in the tool. One example of this can be found in how Dumpcap

outputs captured data. While it will allow you to specify text to prepend to packet

capture filenames, it does not provide any additional flexibility in controlling the

naming of these files. This could prove to be problematic if you require a specific

naming convention for use with a custom parsing script or a third party or commer-

cial detection or analysis tool that can read PCAP data.

Dumpcap is a decent FPC solution if you are looking to get up and running

quickly with a minimal amount of effort. However, if you require a great degree

of flexibility or are going to be capturing packets on a high throughput link, you will

probably want to look elsewhere.

DAEMONLOGGER
Designed byMarty Roesch, the original developer of the Snort IDS, Daemonlogger is a

packet logging application designed specifically for use in NSM environments. It uti-

lizes the Libpcap packet capture library to capture packets from the wire, and has two

operating modes. Its primary operating mode is to capture packets from the wire and

write them directly to disk. Its other mode of operation allows it to capture packets

from the wire and rewrite them to a second interface, effectively acting as a soft tap.

The biggest benefit Daemonlogger provides is that, like Dumpcap, it is simple to

use for capturing packets. In order to begin capturing, you need only to invoke the

command and specify an interface.

daemonlogger –i eth1

102 CHAPTER 5 Full Packet Capture Data

This option, by default, will begin capturing packets and logging them to the cur-

rent working directory. Packets will be collected until the capture file size reaches 2

GB, and then a new file will be created. This will continue indefinitely until the

process is halted.

Daemonlogger provides a few useful options for customizing how packets are

stored. Some of the more useful options include:

• -d: Run as a daemon

• -f< filename>: Load Berkeley Packet Filters (BPF’s) from the specified file

• -g<group>: Run as the specified group

• -i< interface>: Capture packets from the specified interface

• -l<directory>: Log data to a specified directory

• -M<pct>: In ring buffermode, log packet data to a specified percentage of volume

capacity. To activate ring buffer mode, you’ll also need to specify the -r option.

• -n<prefix>: Set a naming prefix for the output files (Useful for defining sensor

name)

• -r: Activates ring buffer mode

• -t<value>: Roll over the log file on the specified time interval

• -u<user>: Run as the specified user

With these options available, a common production implementation might look

like this:

daemonlogger –i eth1 –d –f filter.bpf –l /data/pcap/ -n NYC01

When this command is invoked, Daemonlogger will be executed as a daemon (-d)

that logs packets captured from interface eth1 (-i eth1) to files in the directory /data/

pcap (-l/data/pcap). These files will be prepended with the string NYC01 to indicate

the sensor they were collected from (-n NYC01). The data that is collected will be fil-

tered based upon the BPF statements contained in the file filter.bpf (-f filter.bpf).

Daemonlogger suffers from some of the same deficiencies as Dumpcap when it

comes to performance. While Daemonlogger does perform better than Dumpcap at

higher throughput levels, it can still suffer as throughput levels increase to those seen

in some larger enterprise environments.

Daemonlogger also provides limited ability to control output file names. It will

allow you to specify text to prepend to packet capture files, but it follows that text

with the time the capture was created in epoch time format. There is no way to spec-

ify the date/time format that is included in the file name. Additional scripting can be

done to rename these files after they’ve been created, but this is another process that

will have to be managed.

Daemonlogger currently sets itself apart from the crowd by offering a ring buffer

mode to eliminate the need for manual PCAP storage maintenance. By specifying the

–r –M<pct>option in Daemonlogger, you can tell it to automatically remove older

data when PCAP storage exceeds the specified percentage. In certain cases this might

be essential, however if you’re already gathering other types of data, this storage

maintenance is probably already being taken care of by other custom processes, like

the ones we will talk about later in this chapter.

103Daemonlogger

Once again, Daemonlogger is a great FPC solution if you are looking to get up

and running quickly with a minimal amount of effort. It is incredibly stable, and I’ve

seen it used successfully in a variety of enterprise environments. The best way to

determine if Daemonlogger is right for you is to give it a try on a network interface

that you want to monitor and see if you experience any packet loss.

NETSNIFF-NG
Netsniff-NG is a high-performance packet capture utility designed by Daniel Bork-

mann. While the utilities we’ve discussed to this point rely on Libpcap for capture,

Netsniff-NG utilizes zero-copy mechanisms to capture packets. This is done with the

intent to support full packet capture over high throughput links.

One of the neat features of Netsniff-NG is that it not only allows for packet cap-

ture with the RX_RING zero-copy mechanism, but also for packet transmission with

TX_RING. This means that it provides the ability to read packets from one interface

and redirect them to another interface. This feature is made more powerful with the

ability to filter captured packets between the interfaces.

In order to begin capturing packets with Netsniff-NG, we have to specify an input

and output. In most cases, the input will be a network interface, and the output will be

a file or folder on disk.

netsniff-ng –i eth1 –o data.pcap

This command will capture packets from the eth0 interface (-i eth1) and write

them to a file called data.pcap in the currently directory (-o data.pcap) until the

application is stopped. If you execute this command, you’ll also notice that your

screen fills with the contents of the packets you are capturing. In order to prevent

this behavior, you’ll need to force Netsniff-NG into silent mode with the -s flag.

When you terminate the process (which can be done by pressing CtrlþC),

Netsniff-NG will generate some basic statistics related to the data it’s captured.

We see these statistics in Figure 5.3.

FIGURE 5.3

Netsniff-NG Process Output

104 CHAPTER 5 Full Packet Capture Data

Figure 5.3

Netsniff-NG provides a lot of the features found in the other FPC applications

we’ve discussed. Some of these options include:

• -g<group>: Run as the specified group

• -f< file name>: Load Berkeley Packet Filters (BPF’s) from a specified file

• -F<value>: A size or time interval used to determine when to end capture in

single-file mode, or roll over to the next file in ring buffer mode.

• -H: Sets the process priority to high

• -i< interface>: Capture packets from the specified interface

• -o< file>: Output data to the specified file

• -t< type>: Only handle packets of defined types (host, broadcast, multicast,

outgoing)

• -P<prefix>: Set a naming prefix for the output files (Useful for defining sensor

name)

• -s: Run silently. Don’t print capture packets to screen

• -u<user>: Run as the specified user

With these options available, a common production implementation might look

like this:

netsniff-ng -i eth1 –o /data/ -F 60 -P “NYC01”

This command will run Netsniff-NG in ring buffer mode, which is noted by the

usage of an output directory instead of a file name in the –o parameter (-o /data/).

This will generate a new PCAP file every 60 seconds (–F 60), and every file will be

prefixed with the sensor name NYC01 (-P “NYC01”).

In our testing, Netsniff-NG is the best performing FPC utilities in this book when

it comes to very high throughput links. It performs so well, that it is included with

Security Onion as the de facto FPC utility.

CHOOSING THE RIGHT FPC COLLECTION TOOL
We have discussed three unique FPC solutions, and in each description mentioned

the overall performance of each tool. While Dumpcap and Daemonlogger will gen-

erally work fine in most situations with little to no packet loss, you will need a tool

like Netsniff-NG to operate in environments with extremely high sustained traffic

rates. Without scaling up your collection tools to meet your throughput requirements,

you will be wasting CPU cycles and gathering incomplete data. There is nothing

more frustrating for an analyst than trying to reassemble a data stream only to find

that a packet is missing and your efforts are all for naught.

The history of FPC collection tools mostly revolves around which can generate

data “the best”. While sometimes “best” is a reference to being feature rich, it has

classically been that new FPC solutions are created to meet the requirements of

newer, faster networks. This is not to say that the best FPC collection tool is the

one that can ingest data the fastest, but instead the one that drops the least amount

of packets on your sensor and that also contains enough features to ensure that data is

stored in a format accessible by your detection and analysis tools.

105Choosing the Right FPC Collection Tool

The three tools mentioned earlier are included in this book because they are all

proven to get the job done in various network environments, and are a few of the most

well-known and widely deployed free solutions. With that in mind, you must choose

the best fit for your organization based upon the criteria that are the most important

to you.

PLANNING FOR FPC COLLECTION
Collection of FPC data should take high priority when architecting your sensor for a

multitude of reasons. One reason for this is that you can generate almost all other

major data types from previously collected FPC data. With that said, FPC data is

a “primary” data type that is always collected directly off the wire. FPC data will

always be the largest of any data type per time quanta. This means that for any given

amount of time, the amount of hard disk space that is consumed by FPC data will

surpass that of any other data type. This is not to say that FPC data will always take

up the vast percentage of your disk. Many organizations place an extraordinary

amount of value in retrospective log analysis and correlation, and as such, can often

devote an equal or larger amount of disk space to other types of logs, like Bro logs. Of

course, the result might be that you can only store 24 hours of PCAP data compared

to the 1 year of Bro logs. The takeaway here is that a lot of the data you collect will

either be derived from PCAP data or will be affected by its expansive storage

requirements.

The key consideration you must keep in mind when deploying an FPC solution is

throughput, or the average rate of network traffic over the interface(s) that you’re

monitoring. Determining the throughput over a particular monitor port should be

done before the first purchase of a sensor is made to ensure that the sensor will have

the resources necessary to support collection and detection at the scale necessary.

Attempting to engineer these requirements for a sensor after you’ve bought hardware

is usually a recipe for disaster.

Storage Considerations

The first and most obvious consideration when generating FPC data is storage. PCAP

takes up a lot of space relative to all other data types; so determining the amount of

FPC data you want to store is critical. This decision begins by choosing a retention

strategy that is either time-based or size-based.

A time-based strategy says that you will retain PCAP data for at LEAST a spe-

cific time interval, for example, 24 hours. A size-based strategy says that you will

retain a minimum amount of PCAP data, usually allocated by a specific hard drive

volume, for example, 10 TB of PCAP data (limited by a 10 TB RAID array). With

both of these strategies, your organization should attempt to define operational min-

imums and operational ideals. The operational minimum is the minimal requirement

for performing NSM services at an acceptable level and defines the time or size unit

106 CHAPTER 5 Full Packet Capture Data

representing the least amount of data you can store. The operational ideal is set as a

reasonable goal for performing NSM to the best extent possible and defines the time

or size unit representing the amount of data you would like to store in an ideal sit-

uation. In doing this, you should always have the minimum amount, but strive for the

ideal amount.

Deciding between a time- or size-based FPC data collection can depend on a vari-

ety of factors. In some regulated industries where specific compliance standards

must be met, an organization may choose to use time-based FPC collection to align

with those regulations, or simply because their organization is more attuned to store

data based upon time intervals. In organizations where budgets are tighter and hard-

ware is limited, NSM staff may choose to use a size-based strategy due to hard limits

on available space. It is also common to see organizations use a size-based strategy

on networks that are very diverse or rapidly growing, due to an inability to accurately

gauge the amount of storage required for time-focused collection.

When planning for time-based retention, in theory, gauging the average through-

put across an interface can allow you to determine how much data, per time interval,

that you can store given a fixed amount of drive space. For example, if you determine

that your interface sees 100 MB/s throughput on average and you have 1 TB of hard

drive space reserved, you can theoretically store over 24 days of FPC data. However,

it is a common pitfall to rely solely on the average throughput measurement. This is

because this measurement doesn’t account for throughput spikes, which are short

periods of time where throughput might dramatically increase. These spikes may

occur for a number of reasons, and might be a result of regularly scheduled events

like off site backups or application updates, or random events such as higher than

average web browsing activity. Since FPC is a primary data type, these spikes

can also result in an increase of other data that is derived from it. This compounds

the effect of data spikes.

Due to the nature of network traffic, it is difficult to predict peak throughput

levels. Because of this, organizations that choose a time-based retention plan are

forced to choose a time interval that is considerably shorter than their hardware

can handle in order to provide an overflow space. Without that overflow, you risk

losing data or temporarily toppling your sensor.

Managing FPC data based on the total amount of stored data is a bit more straight

forward and carries with it inherent safety features. With this method, you define the

maximum amount of disk space that FPC data can occupy. Once the stored data

reaches this limit, the oldest FPC data is removed to make room for newly collected

data. Aswe saw before, Daemonlogger is an FPC solution that has this feature built in.

Calculating Sensor Interface Throughput with Netsniff-NG and IFPPS

We’ve talked a lot about how the collection and storage of FPC data depends on

being able to reliably determine the total throughput of a sensor’s monitoring inter-

face. Now, we will look at methods for calculating throughput statistics. The first

method involves using a tool called ifpps, which is a part of the Netsniff-NG suite

107Planning for FPC Collection

of tools. In Security Onion, Netsniff-NG is installed without ifpps, so if you want to

follow along you will need to install it manually by following these steps:

1. Install the libncurses-dev prerequisite with APT

sudo apt-get install libncurses-dev

2. Download Netsniff-NG with GIT

git clone https://github.com/borkmann/netsniff-ng.git

3. Configure, Make, and Install only ifpps

./configure

make && sudo make install ifpps_install

After installing ifpps, you can make sure it installed correctly by running it with

the –h argument to see its possible arguments, or just cut to the chase and run this

command, which will generate a list of continuously updating network statistics;

ifpps -d<INTERFACE>

Ifpps will generate statistics detailing the current throughput of the selected inter-

face, as well as other data related to CPU, disk I/O and other system statistics. A

sample of this output is shown in Figure 5.4.

The “/t” seen beside each statistic represents the time interval at the top right of

the output and can be changed prior to execution using the -t option. The default

time value is 1000ms.

Ifpps will give you a live snapshot of an interface’s throughput at any given point

in time, which can be a useful statistic when combined with a large sample size.

Using this method, you want to ensure that you collect multiple peak and off-peak

samples and average those together for accurate measurement of average throughput.

FIGURE 5.4

Generating Network Statistics with ifpps

108 CHAPTER 5 Full Packet Capture Data

https://github.com/borkmann/netsniff-ng.git
Figure 5.4

Unfortunately, ifpps is a bit limited in functionality. It doesn’t provide any func-

tionality for applying a filter to the interface you are capturing from, so if you are

slimming down your FPC collection like we will talk about later, this might not

be the best tool for the job.

Calculating Sensor Interface Throughput with Session Data

Perhaps the most flexible way to calculate throughput statistics is to consult session

data. Now we will walk through an example of calculating throughput using SiLK’s

rwfilter, rwcount, and rwstats tools that we referenced in the last chapter.

To begin, we will use rwfilter to select a specific time interval. The easiest way to

do this is to with data from a single business day, which we will call “daily.rw”

rwfilter --start-date¼2013/10/04 --proto¼0- --type¼all --pass¼

daily.rw

This filter is basic, and will select all session data collected on October 4th and

save it to the daily.rw file. You can verify that data exists in this file by using the

following command to view a sample of it:

cat daily.rw | rwcut | head

Once you’ve confirmed that you have your day’s worth of data, you can begin

breaking it down to determine how much data you actually have coming across

the wire. We will continue this example with a sample data set we’ve generated.

To do this, we call on the rwcount tool:

cat daily.rw | rwcount --bin-size¼60

This command will feed our data set to rwcount, which will provide a summary of

the amount of data per minute traversing the sensor. This time interval is determined

by the --bin-size setting, which instructs rwcount to group things in bins of 60 sec-

onds. These results are shown in Figure 5.5.

FIGURE 5.5

Data Throughput per Minute with Rwcount During Off-Peak Times

109Planning for FPC Collection

Figure 5.5

In the figure above you will notice that we see roughly 1.5 GB per minute travers-

ing the sensor during off-peak hours at 00:00 UTC (which is 8 PM EST). However, if

you look at the figure below (Figure 5.6) we see that traffic gets as high as 8-9 GB per

minute during peak business hours at 17:00 UTC (which is 3 PM EST).

To calculate an average throughput for the day, you can increase the bin-size in

the rwcount command to count the total data for a single day, which is 86400

seconds.

cat daily.rw | rwcount --bin-size¼86400

Our results are shown in Figure 5.7.

Using this calculation, we arrive at a total byte count of 4915977947088.87. We

will want to get this number into something more manageable, so we can divide it by

1024 three times (4915977947088.87 � 1024�3) to arrive at a total of 4578.36 GB.

To arrive at the average throughput for this link on this day, we can take this byte

count and divide it by the time quanta whose average we want to ascertain. This

is 1440 minutes if you wish to have average number of bytes/minute, or 86400 sec-

onds if you wish to have average number of bytes/second. This yields 3.18 GB bytes

FIGURE 5.6

Throughput per Minute with Rwcount During Peak Times

FIGURE 5.7

Calculating Average Throughput per Day

110 CHAPTER 5 Full Packet Capture Data

Figure 5.6
Figure 5.7

per minute (4578.36 / 1440) or 54.26 MB per second ((4578.36 / 86400) � 1024).

While doing these calculations, all numbers were rounded to two places after the

decimal point.

DECREASING THE FPC DATA STORAGE BURDEN
In an ideal world you could collect FPC data for every host, port, and protocol on

your network and store it for a long time. In the real world, there are budgets and

limitations that prevent that and sometimes we need to limit the amount of data

we collect. Here we will talk about different strategies for eliminating the amount

of FPC data you are retaining in order to get the best “bang for your buck” when

it comes to data storage for NSM purposes.

Eliminating Services

The first and easiest method of paring down the amount of FPC data that is retained is

to eliminate traffic generated by individual services. One way we can identify ser-

vices that are a good fit for this strategy is to use rwstats, which can provide us with

great detail on exactly how much the retention of data related to various ports, pro-

tocols, and hosts can affect your FPC data storage footprint. Rwstats is covered in

extensive detail in Chapter 11, but we will go ahead and dive into it a bit here

too. We will use two different rwstats commands to determine the ports associated

with the largest volume of inbound and outbound traffic.

First, we’ll use rwstats to determine which ports are responsible for the most

inbound communication within our example network. We will do that by calculating

the source ports responsible for the most traffic, with this command:

cat daily.rw | rwstats --fields¼sport --top --count¼5 --value¼bytes

This command takes our original data set and feeds it to rwstats, which calculates

the top 5 (--top --count¼5) source ports (--fields¼sport) where the largest

amount of data transfer occurred, by bytes (--value¼¼bytes). The result is shown

in Figure 5.8.

FIGURE 5.8

Top Communicating Source Ports

111Decreasing the FPC Data Storage Burden

Figure 5.8

As you can see in the figure above, the majority of the traffic on this network

segment is port 80 traffic, which we will assume is related to HTTP traffic. Specif-

ically, 44% of the observed traffic is HTTP. Of course, HTTP traffic is immensely

valuable for NSM detection and analysis so we probably want to keep this for now.

However, if you look at the next line you will see that more than 16% of the total data

transferred over the course of a day originated from source port 443. For the complete

picture, let’s also take a look at the top 5 destination ports to get insight into outbound

communication, using this command:

cat daily.rw | rwstats --fields¼dport --top --count¼5 --value¼bytes

The output from this command is shown in Figure 5.9.

The figure above shows that over 4% of traffic is destined to TCP/443, resulting

in the conclusion that on a given business day, roughly 20.9% of all traffic travers-

ing the monitoring interface of our sensor is TCP/443. Therefore, filtering out TCP/

443 traffic will increase your total FPC data retention by 20.9% per business on

average.

It is common for organizations to eliminate the collection of encrypted data that is

a part of HTTPS communication. While the header information from encrypted data

or statistics relating to it can be actionable, the encrypted data itself often isn’t. This

is a good example of maximizing your FPC data storage by eliminating retention of

data that doesn’t necessarily help you get the most bang for your buck when it comes

to storage.

With TCP/443 traffic eliminated, we can revert back to our previous throughput

calculation to see exactly howmuch of a dent it makes in those figures. We can mod-

ify our existing data set by using rwfilter to prune any TCP/443 traffic from our daily.

rw file like this:

cat daily.rw | rwfilter --input-pipe¼stdin --aport¼443 --fail

¼stdout| rwcount --bin-size¼86400

This command takes the existing daily.rw dataset and passes that data to another

filter that will “fail out” any records that have port 443 as a source or destination

FIGURE 5.9

Top Communicating Destination Ports

112 CHAPTER 5 Full Packet Capture Data

Figure 5.9

address. That data is piped directly to rwcount to again present a statistic that shows

total data traversing the sensor based on the new filter (Figure 5.10).

The figure above represents the exact same data as before, however this time with

any TCP/443 traffic taken out. When we calculate the throughput values, we can see

that this yields statistics of 2.52 GB per minute, or 42.9 MB per second. The result

shows that removing TCP/443 traffic has indeed reduced the total amount of data that

would be collected by �20.9% during a business day.

This type of action can be taken for other ports containing encrypted data as well,

such as ports used for encrypted VPN tunnels. While it might not be a good fit for

every organization to consider, starting with removing encrypted data from FPC col-

lection is just one example of how to reduce the burden of FPC data storage by elim-

inating the retention of traffic from specific services This also pays dividends later

when it is time to parse FPC data for the creation of secondary data types during col-

lection, as well as when parsing data for detection and analysis. Let’s look at some

more ways that we can decrease the storage burden of FPC data.

Eliminating Host to Host Communication

Another way to reduce the amount of FPC data being stored is to eliminate the stor-

age of communication between specific hosts.

Since we’ve already evaluated how much traffic will be reduced by dropping

TCP/443 communication, let’s continue by removing that data from our next exam-

ple. As you recall from earlier, we can “fail” anything that matches various criteria,

so we will take advantage of that. In this example, we will look at the top-talking

source and destination IP addresses remaining in the traffic after removing port

443 using this command:

cat daily.rw | rwfilter --input-pipe¼stdin --aport¼443 --fail-

¼stdout| rwstats --fields¼sip,dip --top --count¼5 --value¼bytes

This command sends our existing data set through another rwfilter command that

removes any traffic matching TCP/443 on any port. This data is then piped to rwstats,

which generates the top talking source and destination IP pairs (--fields¼sip,dip)

by the total amount of bytes transferred (--value¼bytes). The result is shown in

Figure 5.11.

FIGURE 5.10

Throughput Statistics for the Same Day without TCP/443 Traffic

113Decreasing the FPC Data Storage Burden

Figure 5.10

In the figure above we see that 19% of the communication on this network seg-

ment occurs between the hosts with the addresses 141.239.24.49 and 200.7.118.91.

In order to determine whether this communication is a good candidate for exclusion

from FPC data collection, you will have to dig a little deeper. Ideally, you would have

friendly intelligence regarding the internal host you are responsible for, and would be

able to identify the service that is responsible for this large amount of traffic. One

way to do this with rwstats is to use the following query:

cat daily.rw | rwfilter --input-pipe¼stdin --saddress¼141.239.24.49

--daddress¼200.7.118.91 --pass¼stdout| rwstats --fields¼sport --

top --count¼10 --value¼bytes

The results of this query are shown in Figure 5.12.

In this case, it looks like all of this communication is occurring on port 22.

Assuming this is a legitimate connection, this probably means that some form of

SSH VPN exists between these two devices. If you don’t have any ability to decrypt

and monitor this traffic (such as through an intermediate proxy), then this would

probably be a good candidate for exclusion from FPC data collection. This process

can be repeated for other “top talkers” found on your network.

Using the strategies we’ve outlined here, we have successfully reduced the

amount of FPC data being stored by around 40%. This means that your sensor

can hold 40%more actionable data. Unfortunately, we can’t provide clear-cut exam-

ples of things that can be eliminated from FPC data storage in every network, because

every network and every organization’s goals are so different. However, following

FIGURE 5.11

Identifying Top Talking IP Pairs

FIGURE 5.12

Examining Communication Between These Hosts

114 CHAPTER 5 Full Packet Capture Data

Figure 5.11
Figure 5.12

the instructions provided in Chapter 2 for appropriately planning your data collection

should help you make these determinations.

CAUTION

At the beginning of this chapter wementioned thatmultiple other data types, such as PSTR, are

often derived from FPC data. If your environment works in this manner, you should be aware of

this when eliminating certain data types from FPC collection. For instance, if you generate

PSTR data from FPC data and eliminate port 443 traffic, you won’t be able to generate packet

strings from the HTTPS handshake, which will create a gap in network visibility. This might not

be avoidable when space is limited, but if you still wish to keep this PSTR data you will have to

find another way to generate it, such as doing so with another process directly from the wire.

MANAGING FPC DATA RETENTION
Since FPC data eats up more disk space than any other data type per second, it is

likely that it will be FPC data that causes your sensor to go belly up if data retention

and rollover isn’t handled properly. I’ve seen even the most mature SOCs experience

scenarios where a data spike occurs and it causes FPC data to be written to disk faster

than it can be deleted. This can result in all sorts of bad things. Ideally, your FPC data

storage exists on a volume that is separate from your operating system in order to

prevent this from happening. However, even then I’ve even seen instances where

FPC data was stored on shared dynamically expanding virtual storage, and a sus-

tained spike in data led to other virtual devices being deprived of resources, ulti-

mately leading to system crashes. There are dozens of other scenarios like this

that can lead to the dreaded 2 AM phone call that nobody likes to make to systems

administrators. With that in mind, this section is devoted to the management of FPC

data; specifically, purging old data.

There are a number of ways to manage FPC data, but we will approach this from a

simple perspective that only uses tools built in to most Linux distributions. This is

because these tools are effective, and can be scripted easily. While some of the tech-

niques we describe in this section might not fit your environment perfectly, we have

confidence that they can be adapted fairly easily.

Earlier, we discussed the two most common strategies that organizations use for

storing FPC data: time-based and size-based. The method for managing these two

strategies varies.

Time-Based Retention Management

Using a time-based retention strategy is fairly easy to manage in an automated fash-

ion. The linux find utility can easily search for files with modify times that are of a

certain age. For instance, in order to find files older than 60 minutes within the /data/

pcap/ directory, simply run the following command;

115Managing FPC Data Retention

find /data/pcap -type f -mtime +60

From that command you can generate a file list of PCAPs that you wish to delete.

This command can be modified by pairing it with xargs in order to remove data that

meets this criteria. The following one-liner will remove any data older than 60

minutes.

find /data/pcap -type f -mtime +60 | xargs -i rm {}

Size-based Retention Management

Managing FPC data that is using a size-based retention strategy is a bit more difficult.

This method of data retention deletes the oldest PCAP files once the storage volume

exceeds a set percentage of utilized disk space. Depending on your FPC collection

deployment, this method can be challenging to implement. If you are able to use Dae-

monlogger, it has the capability to do this type of data purging on its own, as was

described earlier. If you are using a tool that doesn’t have this feature built in, purging

data in this manner requires a bit more critical thinking.

One way to handle this is through a BASH script. We’ve provided such a script

here:

#!/bin/bash

This script deletes excess PCAP when the “percentfull” reaches the pre-

defined limit.

Excess PCAP is when the total amount of data within a particular PCAP

directory

reaches the percent amount defined about, out of the total amount of

drive space

on the drive that it occupies. For the purpose of consistency, the per-

centfull amount

is uniform across all PCAP data sources.

Refer to the “Data Removal Configuration (DRC)” at the bottom of this

script for settings.

#Example DRC;

Data Removal Configuration

#dir¼“/data/pcap/eth1/”

#percentage¼1

#datamanage $dir $percentage

#dir¼“/data/pcap/eth2/”

#percentage¼3

#datamanage $dir $percentage

116 CHAPTER 5 Full Packet Capture Data

##

FUNCTION

##

totaldiskspace¼$(df | grep SOsensor-root | awk ’{print $2}’)

function datamanage {

Initial data evaluation
datadirectory¼“$1”

datapercent¼“$2”

datasize¼$(du -s $datadirectory | awk ’{print $1}’)

diskstatus¼$(df | grep SOsensor-root | awk ’{print $5}’ | egrep

-o ’[0-9]{1,3}’)

datapercentusage¼$(echo“scale¼2;$datasize/$totaldiskspace

* 100” | bc | sed ’s/\..*//g’)

echo “Data usage in $datadirectory is at $datapercentusage% of

hard drive capacity)”

Data Removal Procedure

while [“$datapercentusage” -gt “$datapercent”]; do

filestodelete¼$(ls -tr1 $datadirectory | head -

20)

printf %s “$filestodelete” | while IFS¼read -r ifile

do

echo $ifile

if [-z $datadirectory$ifile]; then

exit

fi

echo “Data usage in $data directory

($datapercentusage%) is greater than your desired amount ($datapercent%

of hard drive)”

echo “Removing $datadirectory$ifile”

sudo rm -rf $datadirectory$ifile

du -s $datadirectory

datasize¼$(du -s $datadirectory | awk ’{print

$1}’)

done

datasize¼$(du -s $datadirectory | awk ’{print $1}’)

datapercentusage¼$(echo “scale¼2; $datasize /

$totaldiskspace * 100” | bc | sed ’s/\..*//g’)

du -s $datadirectory

datasize¼$(du -s $datadirectory | awk ’{print $1}’)

datapercentusage¼$(echo “scale¼2; $datasize /

$totaldiskspace * 100” | bc | sed ’s/\..*//g’)

117Managing FPC Data Retention

done

}

Data Removal Configuration

pidofdiskclean¼$(ps aux | grep diskclean.sh | wc -l)

echo $pidofdiskclean

if [“$pidofdiskclean” -le “4”]; then

dir¼“/data/pcap/eth1/”

percentage¼40

datamanage $dir $percentage

dir¼“/data/pcap/eth2/”

percentage¼40

datamanage $dir $percentage

wait

echo “”

fi

To use the script above you must configure the volume name where data is stored

by editing the dir variable. Additionally, you must configure the Data Removal Con-

figuration section near the bottom of the script to indicate the directories where PCAP

data is stored, and the amount of empty buffer space you wish to allow on the volume.

The script will take these variables and determine the percentage of utilized space

that is taken up by the data within it. If it determines that this percentage is above the

allowable amount, itwill remove theoldest filesuntil thepercentage is ata suitable level.

This script can be placed in a scheduled cron job that runs on a regular basis, such

as every hour, every 10 minutes, or every 60 seconds. How frequently it runs will

depend on how much of an empty space buffer you allow, and how much throughput

you have. For instance, if you only leave 5% of empty buffer space and have a large

amount of throughput, you will want to ensure the script runs almost constantly to

ensure that data spikes don’t cause the drive to fill up. On the flip side, if you allow

30% of empty buffer space and the link you’re monitoring has very little throughput,

you might be fine only running this script every hour or so.

In a scenario where your sensor is under a high load and empty buffer space is

very limited, your cron job has a chance of not running in time to remove the oldest

files. However, if you run the script constantly, for instance on a sleep timer, you can

still run the risk of slower script performance in calculating disk space requirements

during execution. To split the difference, it is often ideal to require the script to cal-

culate disk space, determine if the directory is too full, and then delete the 10 oldest

files, instead of just the individual oldest file. This will increase script performance

dramatically, but can result in less than maximum retention (but not by much). The

script below will perform that task in a manner similar to the first script we looked at.

#!/bin/bash

This script deletes excess pcap when the “percentfull” reaches the pre-

defined limit.

118 CHAPTER 5 Full Packet Capture Data

Excess pcap is when the total amount of data within a particular pcap

directory

reaches the percent amount defined about, out of the total amount of

drive space

on the drive that it occupies. For the purpose of consistency, the per-

centful amount

is uniform across all pcap data sources.

Refer to the “Data Removal Configuration (DRC)” at the bottom of this

script for settings.

#Example DRC;

Data Removal Configuration

#dir¼“/data/pcap/eth6/”

#percentage¼1

#datamanage $dir $percentage

#dir¼“/data/pcap/eth7/”

#percentage¼3

#datamanage $dir $percentage

##

FUNCTION

##

totaldiskspace¼$(df | grep SOsensor-root | awk ’{print $2}’)

function datamanage {

Initial data evaluation

datadirectory¼“$1”

datapercent¼“$2”

datasize¼$(du -s $datadirectory | awk ’{print $1}’)

diskstatus¼$(df | grep SOsensor-root | awk ’{print $5}’ | egrep -o ’[0-9]

{1,3}’)

datapercentusage¼$(echo “scale¼2; $datasize / $totaldiskspace * 100” |

bc | sed ’s/\..*//g’)

echo “Data usage in $datadirectory is at $datapercentusage% of hard

drive capacity)”

Data Removal Procedure

while [“$datapercentusage” -gt “$datapercent”]; do

filestodelete¼$(ls -tr1 $datadirectory | head -

10)

echo $filestodelete

printf %s “$filestodelete” | while IFS¼read -r ifile

do

echo $ifile

119Managing FPC Data Retention

if [-z $datadirectory$ifile]; then

exit

fi

echo “Data usage in $datadirectory

($datapercentusage%) is greater than your desired amount ($datapercent%

of hard drive)”

echo “Removing $datadirectory$ifile”

sudo rm -rf $datadirectory$ifile

done

datasize¼$(du -s $datadirectory | awk ’{print $1}’)

datapercentusage¼$(echo “scale¼2; $datasize /

$totaldiskspace * 100” | bc | sed ’s/\..*//g’)

done

}

Data Removal Configuration

pidofdiskclean¼$(ps aux | grep diskclean.sh | wc -l)

echo $pidofdiskclean

if [“$pidofdiskclean” -le “4”]; then

Data Removal Configuration

dir¼’/data/pcap/eth1/’

percentage¼10

datamanage $dir $percentage

dir¼“/data/pcap/eth2/”

percentage¼10

datamanage $dir $percentage

wait

fi

While the code samples provided in this section might not plug directly into your

environment and work perfectly, they certainly provide a foundation that will allow

you to tweak them for your specific collection scenario. As another resource, consider

examining the scripts that Security Onion uses to manage the retention of packet data.

These scripts use similar techniques, but are orchestrated in a slightly different manner.

CONCLUSION

FPC data is the most thorough and complete representation of network data that can be

collected. As a primary data type, it is immensely useful by itself. However, its use-

fulness is compoundedwhen you consider that somany other data types can be derived

from it. In this chapter we examined different technologies that can be used for col-

lecting and storing FPC data. We also discussed different techniques for collecting

FPC data efficiently, paring down the amount of FPC data you are collecting, and

methods for purging old data. As we move on through the remainder of the collection

portion of this book, you will see how other data types can be derived from FPC data.

120 CHAPTER 5 Full Packet Capture Data

CHAPTER

Packet String Data 6
CHAPTER CONTENTS

Defining Packet String Data .. 122

PSTR Data Collection ... 124

Manual Generation of PSTR Data ..126

URLSnarf ...127

Httpry ...128

Justniffer ..130

Viewing PSTR Data .. 135

Logstash ...135

Raw Text Parsing with BASH Tools ...143

Conclusion .. 146

A dilemma that a lot of NSM teams run into is the inability to effectively search

through large data sets in the course of retrospective analysis; that is, analysis on data

older than a few days. In what many would consider the “best case scenario”, an

organization might be collecting both full packet capture data and session data,

but it is likely that the FPC data is only kept for a few days, or a couple of weeks

at most.

In this scenario, we have two problems. First, session data lacks the granularity

needed to ascertain detailed information about what occurred in network traffic. Sec-

ond, FPC data has such large storage requirements that it simply isn’t reasonable to

store enough of it to be able to perform retrospective analysis effectively.

This leaves us in a scenario where we must examine data older than our FPC data

retention period, and where the session data that is available will leave a lot of unan-

swered questions. For instance, with only session data available, the following com-

mon retrospective analysis scenarios wouldn’t be possible:

• Locating a unique HTTP User Agent that is associated with a newly attributed

adversary

• Determine which users received a phishing e-mail that recently resulted in a

compromise

• Searching for file download activity occurring after a newly identified and

potentially malicious HTTP requests

One answer to this predicament is the collection of packet string data, or PSTR

data (pronounced pee-stur), which is what this chapter is dedicated to. In this chapter,

121

we will look at the defining qualities of PSTR data and how it can be collected man-

ually or using tools like Httpry or Justniffer. While the collection of PSTR data is

simple and its utility is limitless, the concept is fairly new, so there aren’t a ton of

organizations utilizing this data type just yet. However, with it having the wide con-

textual breadth of full packet capture and the speed, small storage footprint, and sta-

tistical parsing ability of session data, it is the closest solution you’ll find to a suitable

middle ground between FPC and session data that is useful in near real-time and ret-

rospective analysis alike.

DEFINING PACKET STRING DATA
Packet String Data is a term that is generally defined by the way you choose to use it.

Loosely, it is a selection of important human-readable data that is derived from full

packet capture data. This data can appear in many different forms. For instance, some

SOCs choose to generate PSTR data that is specifically formatted to present header

data from common application layer protocols (such as HTTP or SMTP), without

unnecessary payload data involved. I carefully use the term “unnecessary” because

in the analysis of PSTR data, the idea is not to extract files or analyze traffic byte by

byte. The goal is to enable the analyst to get a snapshot view of the data to answer

questions that might arise in retrospective analysis. An example of this type of PSTR

data is shown in Figure 6.1.

FIGURE 6.1

Log Style PSTR Data Showing an HTTP Request and Response

122 CHAPTER 6 Packet String Data

Figure 6.1

The example in Figure 6.1 represents data commonly accessed by analysts for use

in retrospective analysis. Here there are two PSTR records showing the full HTTP

request and response headers for an individual HTTP communication sequence. This

is a fairly robust implementation where a great deal of the application layer header

information is stored. Figure 6.2 shows an example where only a single field is

stored.

In this example, the PSTR data implementation only stores HTTP URL requests.

While many organizations initially choose to store PSTR data for retrospective anal-

ysis, this example represents data that is collected on a near real-time basis. This

allows the data to have multiple uses, including being more efficiently used by auto-

mated reputation detection mechanisms, discussed in Chapter 8. This can be much

faster than attempting the same task while parsing FPC data.

A third common implementation of PSTR data is a payload focused deployment,

and is concentrated entirely on the packet payload data occurring after the applica-

tion layer protocol header. This data includes a limited number of non-binary bytes

from the payload, which might provide a snapshot into the packet’s purpose. In sim-

pler terms, think of it as running the Unix strings tool against packet capture data.

Figure 6.3 shows an example of this type of data.

The data shown in Figure 6.3 is a snapshot of the human readable data from a

user’s web browsing. Specifically, you can see the content of the page being visited

without too much additional detail. This is efficient for data storage because unread-

able characters aren’t stored. The disadvantage of using payload style PSTR data is

the overhead required to generate it. Further, there is a fair amount of excess data that

comes along with it. Just because a byte can be translated into a readable ASCII char-

acter doesn’t mean it necessarily makes sense. You can see this with the collection of

random stray characters in the Figure above. The storage of these additional, but not

very useful bytes, can become burdensome. Lastly, there are few streamlined ways of

generating payload style PSTR data, so you will almost certainly be relying on a col-

lection of custom written scripts and other utilities to generate it. Because of this, the

overall efficiency might not be up to par when compared to other types of data

FIGURE 6.2

Log Style PSTR Data Showing a Requested HTTP URL

123Defining Packet String Data

Figure 6.2

generated by more refined tools. In regard to multiline PSTR formats, the best bang

for your buck is usually to opt for a log style format, such as that for request and

response headers seen in Figure 6.1.

PSTR DATA COLLECTION
We’ve already discussed FPC data at length, and with that in mind, you might con-

sider PSTR data to be “partial packet capture.” Because of this, it should come as no

surprise that some organizations choose to generate PSTR data from FPC data that

has already been collected. In contrast to this, it is also possible to collect PSTR data

directly from the monitoring port on a sensor, in a manner similar to the way that FPC

is collected.

Regardless of whether you choose to collect PSTR data from the wire, or gen-

erate it from FPC data, it is beneficial to perform this kind of collection from the

same source that you’re gathering other data from, which is the NSM sensor. This

helps avoid data correlation errors with other data types during analysis. For

FIGURE 6.3

Payload Style PSTR Data

124 CHAPTER 6 Packet String Data

Figure 6.3

instance, I’ve encountered some organizations that choose to generate PSTR data

for HTTP communication from web content filtering devices. This can create a sce-

nario where the segment that the web content filter is watching is not in the scope of

the NSM visibility window analysts are concerned with, and thus, can’t be used to

enhance the analysis process. In addition, when you collect or generate PSTR data

from your NSM sensor, you are ultimately in control of it. If you choose to generate

this data from another device, especially those provided by third-party vendors, you

would be required to accept only the data the vendor makes available, which might

be subject to some additional parsing which isn’t entirely clear. As with all NSM

data, you should maintain a paranoid level of vigilance with how your data is created

and parsed.

Before we start collecting or generating PSTR data, a few items must be consid-

ered. First, you must consider the extent of the PSTR data you wish to collect. The

ideal solution is one that focuses on collecting as much essential application layer

data from clear text protocols as long-term storage will permit. Since there are mul-

tiple variations of PSTR data that can be collected, the amount of storage space that

this data will utilize is wildly variable. Thus, you should utilize some of the methods

discussed in Chapter 3 to determine how much storage you can expect to be utilized

by PSTR data, based upon the data format you’ve selected and the makeup of your

network assets. This requires that you deploy a temporary sensor with PSTR data

collection/generation tools installed on it so that you can sample data at multiple time

intervals, and extrapolate that data over longer time periods. This may result in

changing the extent of the PSTR data you wish to store in order to be able to retain

this data for a longer time.

In parallel with determining the type of PSTR data you will create, you should

also consider the time period for which it is retained. FPC data retention is often

thought of in terms of hours or days, while session data retention is often thought

of in terms of quarter years or years. PSTR data should fall somewhere in between,

and should be thought of in terms of weeks or months to fill the void between FPC

and session data.

When assessing the storage needs for PSTR data, you should take into account

that it is wildly variable. For instance, during lunch time, you might see that the

amount of HTTP traffic is at a peak and the amount of traffic generated from other

protocols more closely associated with business processes has dipped. This might not

impact the total amount of PCAP data being collected during this time period, but it

will noticeably increase the amount of PSTR data being collected.

There are a number of free and open source applications that can perform both

collection of PSTR data from the wire and generation of the data from FPC data.

No matter how you choose to generate this data, it must be functional. When eval-

uating a PSTR data collection or generation solution, you should ensure that the

resulting data is standardized such that it is usable in relation to your detection

and analysis tools and processes. In the remainder of this section we will look

at some of these tools.

125PSTR Data Collection

Manual Generation of PSTR Data

Before we look at some tools that can be used to automatically generate PSTR data,

let’s look at some alternative ways of generating PSTR data by utilizing tools built

into the Linux BASH environment. To generate a baseline, we start by parsing the

ASCII data from a PCAP file. With PSTR data, the only data you care to see are

collections of human readable characters, so we limit our results by piping the data

through the Linux utility “strings”. From here, there are multiple variations of data

that you can choose to generate, depending on whether you want to generate log or

payload style PSTR data.

The log style script below will generate data similar to that show in Figure 6.2,

with single line logs detailing the URI associated with the user’s request.

#!/bin/bash

#Send the ASCII from the full packet capture to stdout

/usr/sbin/tcpdump -qnns 0 -A -r test.pcap | \

#Normalizes the PCAP

strings |\

#Parse out all timestamp headers and Host fields

grep -e ’[0\-9][0\-9]\:[0\-9][0\-9]\:[0\-9][0\-9].[0\-9]\{6\}\|

Host:’| grep -B1 “Host:” |\

#Clean up the results

grep -v -- “--"| sed ’s/\(Host.*$\)/\1\n/g’| \

tr “\n” “-” | sed ’s/--/\n/g’| sed ’s/-Host:/ -/g’

The payload style script below will generate multiline PSTR log data delimited by

a series of dashes. This example extracts all readable strings from all protocols. There

are currently few ways to generate this type of data outside of manually generating it.

#!/bin/bash

#Send the ASCII from the full packet capture to stdout

/usr/sbin/tcpdump -qnns 0 -A -r test.pcap |\

#Normalizes the PCAP

strings |\

#Remove all empty lines

sed ’/○$/d’ |\

#Splits each record with an empty line

sed ’/[0-9][0-9]\:[0-9][0-9]\:[0-9][0-9].[0-9]\{6\} IP [0-9]\{1,3\}

\.[0-9]\{1,3\}.[0-9]\{1,3\}.[0-9]\{1,3\}/{x;p;x;}’ |\

#Adds a delimiter between records by replacing the empty lines

sed ’s/∧$/\-

\-\-\-/g’ |\

#Removes duplicate special characters

sed ’s/[∧[:alnum:][:space:]_():-]\+/./g’

126 CHAPTER 6 Packet String Data

While manual solutions are generally slower in processing data, there is no

limit to the amount of customization you can perform on that incoming data.

Now we will look at some tools that can be used to efficiently generate log style

PSTR data.

URLSnarf

The Dsniff suite is a collection of tools that can be useful for network security pur-

poses. The collection of Dsniff tools can be separated into two classifications. Some

of these tools are used for more offensive purposes, while the rest, and most signif-

icant for our purposes, are the snarf tools that are used to passively monitor the net-

work for interesting information pertaining to files, emails, web requests and more.

The tool that we are most interested in for this book is URLsnarf.

URLsnarf passively collects HTTP request data and stores it in common log for-

mat (CLF). The Dsniff suite holds a special place in my heart because its tools have

been around for a long time, and due to the simplicity of installation and execution of

all its tools. URLsnarf is no exception. In the most scenarios, you can install the

Dsniff suite via your favorite package management solution. The Dsniff tool suite

is not installed on Security Onion by default, so if you wish to use it you can install

it with apt:

sudo apt-get install dsniff

With the Dsniff tools installed, you can verify the installation of URLsnarf

by running the command with no arguments. Upon execution with no parameters

specified, URLsnarf will passively listen on an interface and dump collected

data to standard output, visible in your terminal window. By default, it will

listen on interface eth0 and it is hardcoded to sniff for traffic on TCP port

80, 8080 and 3128.

URLsnarf only contains 4 options;

• -p: Allows the user to run URLsnarf against an already captured PCAP file

• -i: Specify a network interface

• -n: Parse data without resolving addresses DNS addresses

• -v<expression>: By default, you can specify a specific URL as an expression at

run time to display only URLs matching that expression. The –v option allows

you to specify an expression that will result in displaying all results that do NOT

match the stated URL.

Due to the standard log output, I find it easier to parse the output by piping it to

BASH command line tools such as grep, cut, and awk rather than specifying the

expressions with the –v option. In Figure 6.4 below, I first captured the traffic using

tcpdump and then fed it to URLsnarf with the -p option. Though reading from PCAP

with tcpdump is not a requirement, it is likely that you will be utilizing existing FPC

data in a production environment. By leaving off the -p option, you will be reading

data off the wire.

127PSTR Data Collection

The output shown in Figure 6.4 is a set of standardized logs detailing the HTTP

requests from my visit to appliednsm.com. At first glance, the usefulness of this tool

is limited to storing logs for retrospective analysis. However, with a careful applica-

tion of command line kung-fu, this output can translate into serious on-the-fly exam-

ination of user traffic across a large network.

While URLsniff is incredibly simple to use, this simplicity can cause problems. If

you desire less verbosity in its output, then the data must be manipulated with an

external tool. If you desire more verbose output, you are out of luck; URLsnarf will

not allow for multiline data output like some other tools do.

Httpry

Httpry is a specialized packet sniffer for displaying and logging HTTP traffic. As

you might ascertain from its name, httpry can only parse HTTP traffic. Unlike

URLsnarf however, httpry has a lot more options when dealing with the data it

can collect, parse, and output. It will allow for the capture and output of any

HTTP header in any order. It is the ability to customize the output of each of these

tools that make it useful in generating PSTR data that is useful in your environ-

ment. Due to the increased amount of customization and post processing that can

be performed, the learning curve for httpry is a bit steeper than something like

URLsnarf.

Httpry is not included on Security Onion by default, but can be installed fairly

easily by building the application from source. In order to do this, you will complete

the following steps:

1. Install the libpcap development library, a prerequisite for compiling Httpry

sudo apt-get install libpcap-dev

2. Download the tarball from Jason Bittel’s Httpry website

wget http://dumpsterventures.com/jason/httpry/httpry-0.1.7.tar.gz

FIGURE 6.4

Sample Data from URLsnarf

128 CHAPTER 6 Packet String Data

http://appliednsm.com
http://dumpsterventures.com/jason/httpry/httpry-0.1.7.tar.gz
Figure 6.4

3. Extract the archive

tar -zxvf httpry-0.1.7.tar.gz

4. Change into the Httpry directory and then make and install the application

make && sudo make install

Once installation is completed, you can run the program with no arguments to

start gathering HTTP traffic from port 80 on the lowest numbered network interface.

In Figure 6.5 below, we show httpry reading traffic from a file using the –r argument

and generating output.

Httpry provides several command line arguments, but here are a few of the most

useful for getting started:

• -r< file>: Read from an input PCAP file instead of performing a live capture

• -o< file>: Write to an httpry log file (needed for parsing scripts)

• -i< interface>: Capture data from a specified interface

• -d: Run httpry as a daemon

• -q: Run in quiet-mode, suppress non-critical output such as banners and statistics

The default logging format for httpry isn’t always the ideal output for parsing in

every environment. Fortunately, with very little command line magic, this data can

be converted into something more easily parseable for detection mechanisms and

analysis tools. Httpry has several built-in scripts that can manipulate the output to

allow better analysis of the data output. By using the -o switch, you can force the

data collected by httpry to be output by one of these plugins. Some of these plugins

include the ability to output hostname statistics, HTTP log summary information,

and the ability to convert output to common log formats, allowing you to generate

similar results to what you would have seen from URLsnarf. You’ll notice that the

fields are slightly different from URLsnarf output, and due to common log format

varying slightly, parsers might see differences.

FIGURE 6.5

Example Httpry Data

129PSTR Data Collection

Figure 6.5

The ability to create parsing scripts allows for seamless integration of plugins that

can automate a PSTR data solution based on httpry. To do the conversions, it requires

a separate script called parse_log.pl. This script is located in the httpry scripts/plu-

gins/ directory, and works by utilizing the plugins stored in that directory. As an

example, the commands shown below can be utilized for a single parsing script.

In this case, we are using the common log format for producing httpry data in a for-

mat that is versatile for parsing by detection and analysis tools.

1. Run Httptry and direct the output to a file

httpry –o test.txt

2. Parse the Output

perl scripts/parse_log.pl -p scripts/plugins/common_log.pm test.txt

This command works in a bit of an unexpected manner. If you attempt to

generate output with httpry and then pipe it to something that modifies its output,

the process will fail due to the lack of proper column headers. Instead, the httpry

output must be written to a file first with the -o option. Then, the parse_log.pl

script can be executed to parse the data. An example of this output is shown

in Figure 6.6.

Generating PSTR data with httpry is typically significantly faster than using

URLsnarf to perform the same task. With that said, it is really the flexibility of data

output that makes httpry a nice solution for many NSM environments.

Justniffer

Justniffer is a full-fledged protocol analysis tool that allows for completely custom-

izable output, making it useful for generating any TCP specific PSTR data beyond

only HTTP traffic. Justniffer was primarily developed for streamlining the network

troubleshooting process, and to focus on requests and responses in network traffic to

provide only pertinent information used in narrowing down communication issues.

This, of course, is exactly what we want to do with PSTR data generated for NSM

purposes. In addition to capturing clear-text protocol headers, Justniffer can also be

enhanced with simple scripts to do things like streaming its output directly from the

FIGURE 6.6

Example Httpry Output Parsed into a Common Format

130 CHAPTER 6 Packet String Data

Figure 6.6

wire to a local folder, sorted by host, with a BASH script. In another commonly used

example; Justniffer includes a Python script called Justniffer-grab-http-traffic, which

will extract files transferred during HTTP communication. Justniffer can also be

extended to do performance measuring of response times, connection times, and

more. The versatility of Justniffer makes it incredibly useful for a variety of PSTR

data collection scenarios.

Justniffer is not included on Security Onion by default, so if you want to try it out

then you are going to have to install it yourself. This can be done with these steps:

1. Add the appropriate PPA repository

sudo add-apt-repository ppa:oreste-notelli/ppa

2. Update the repository

sudo apt-get update

3. Install Justniffer with APT

sudo apt-get install justniffer

If you are installing Justniffer on a different distribution, the installation process

might require additional steps. These installation steps can be found at http://

justniffer.sourceforge.net/#!/install.

While getting started with Justniffer is fairly simple, getting the exact output you

want can be tricky. With no command line arguments, Justniffer will function by

capturing data on interface eth0, and displaying all HTTP traffic in a format nearly

identical to the one used by URLsnarf. Justniffer provides some other useful com-

mand line arguments:

• -i< interface>: Select an interface to capture traffic on

• -f< file>: Read from a selected PCAP file

• -p< filter>: Apply a packet filter

• -l< format>: Specify how the output string will appear

• -u: Encode unprintable characters as dots

The output Justniffer generates by default is a good start, but let’s generate some

more interesting logs using the original examples in this chapter. If you recall, the

first example we discussed was generating full request and response header data

for HTTP communications, and was shown in Figure 6.1. Justniffer makes easy work

of this with the request.header and response.header format keywords, utilized here:

sudo justniffer -f packets.pcap -p “tcp port 80” -u -l “%newline%request.

header%newline%response.header”

In this example we use the -f option to read a packet capture file (this could easily

be substituted for –i< interface> to perform this action live from the wire), the -p

option to specify a BPF, the -u option to convert unprintable characters to periods

(.), and the -l option to specify our own custom log format. The result of this com-

mand is shown in Figure 6.7, and displays two HTTP transactions.

131PSTR Data Collection

http://justniffer.sourceforge.net/#!/install
http://justniffer.sourceforge.net/#!/install

You’ll notice that this example produces similar traffic to that of the original

example, but it isn’t entirely useful for analysis due to a critical lack of information.

In order to analyze this data appropriately, we need to know the hosts responsible for

the communication, and the timestamp indicating when the communication

occurred. You have the “what”, but you need the “who” and “when”. We can extend

this example by explicitly telling Justniffer to print those fields. Justniffer currently

contains 85 different formatting options ranging from simple spacial delimiters to

various elemental formatting options relating to requests, responses, and perfor-

mance measurements. In order to get the formatting we desire, we’re going to need

a few more format keywords as well as a custom delimiter at the beginning of each

multi-line log. This command is shown here:

sudo justniffer –f packets.pcap -p “tcp port 80” -u -l

“------------------------------- %newline%request.timestamp - %

source.ip ->%dest.ip %newline%request.ader%newline%response.time-

stamp - %newline%response.header”

An example of output generated from this command is shown in Figure 6.8.

As you can see, we now have two entire HTTP transactions, complete with the

hosts responsible for the communication and a timestamp detailing when the com-

munication happened. We now have the who, the what, and the when. Later we’ll

discuss several methods of parsing this data, both with BASH scripts and free open

source tools.

FIGURE 6.7

Sample Custom Justniffer Data

132 CHAPTER 6 Packet String Data

Figure 6.7

We can also use Justniffer to generate data similar to the example shown in

Figure 6.2, which is a minimal single line log that shows only the communication

timestamp, the source and destination IP address, and the URL requested. Using only

a few special delimiters and the request.url variable, we generate this output with the

following command:

sudo justniffer –f packets.pcap -p “tcp port 80” -u -l “%request.time-

stamp - %source.ip ->%dest.ip - %request.header.host%request.url”

The output of this command is shown in Figure 6.9.

FIGURE 6.9

Single Line Justniffer Traffic Modified for Analysis

FIGURE 6.8

Multiple Line Justniffer Traffic Modified for Analysis

133PSTR Data Collection

Figure 6.9
Figure 6.8

Getting this type of output from URLsnarf would take a serious amount of com-

mand line kung-fu.

So far, we’ve been focused on HTTP logs because some of these tools are only

HTTP aware. Justniffer, however, is a fully functional TCP protocol analyzer, and as

such, can parse other non-HTTP traffic with ease. For instance, Justniffer can also be

used for pulling clear-text SMTP or POPmail records from FPC data or directly from

the wire.

To get results similar to what we’ve already seen, but for SMTPmail data, we can

tell Justniffer to look at port 25 traffic with this command:

justniffer -f packets.pcap -r -p “port 25”

An example of this data is shown in Figure 6.10.

FIGURE 6.10

Generating SMTP PSTR Data with Justniffer

134 CHAPTER 6 Packet String Data

Figure 6.10

VIEWING PSTR DATA
As with all NSM data, a proper PSTR data solution requires a synergy between the

collection and viewing mechanisms. A more customized collection mechanism can

require more unique parsing methods. In this section we will examine potential solu-

tions that can be used to parse, view, and interact with PSTR data using several of the

data formatting examples we’ve already created.

Logstash

Logstash is a popular log parsing engine that allows for both multi-line and single

line logs of various types, including common formats like syslog and JSON for-

matted logs, as well as the ability to parse custom logs. As a free and open-source

tool, it is an incredibly powerful log collector that is relatively easy to set up

in large environments. As an example, we will configure Logstash to parse logs

that are being collected with URLsnarf. Since Logstash 1.2.1 was released, it

includes the Kibana interface for viewing logs, so we’ll also discuss some of

its features that can be used for querying the data you need, without getting

the data you don’t.

Logstash isn’t included in Security Onion, so if you want to follow along you will

need to download it from the project website at www.logstash.net. Logstash is con-

tained entirely in one java package, so you’ll need the Java Runtime Environment

(JRE) installed (http://openjdk.java.net/install/, or simply sudo apt-get install

java-default). At this point, you can simply execute the program.

In order to parse any type of data, Logstash requires a configuration file that

defines how it will receive that data. In a real world scenario, you will probably have

a steady stream of data rolling in from a logging source, so in this example, we’ll look

at data being written to a specific location. In this example, we’ll call the configu-

ration file urlsnarf-parse.conf. This is a very simple configuration:

input {

file {

type ¼>“urlsnarf”

path ¼>“/home/idsusr/urlsnarf.log”

}

}

output {

elasticsearch { embedded ¼>true }

}

This configuration tells Logstash to listen to data of any kind being written to

/home/idsusr/urlsnarf.log and to consider any log written to that file to be a “urlsnarf”

type of log, which is the log type we are defining. The output section of this config-

uration file starts an Elasticsearch instance inside of Logstash to allow for indexing

and searching of the received data.

135Viewing PSTR Data

http://www.logstash.net
http://openjdk.java.net/install/

Once we have a configuration file, we can start up Logstash to initiate the log

listener for when we start generating data. To begin Logstash with the Kibana

web front end enabled, issue this command;

java -jar logstash-1.2.1-flatjar.jar agent -f urlsnarf-parse.conf -- web

The output of this command is shown in Figure 6.11.

This command will initiate the agent, specifying urlsnarf-parse.conf with the –f

option. Ending the commandwith “ -- web “will ensure that Kibana is started alongwith

the logging agent.The initial startup can take aminute, and since theLogstash output isn’t

too verbose, you can verify that Logstash is running by invoking netstat on the system.

sudo netstat –antp | grep java

If everything is running properly, you should see several ports initiated by the

java service opened up. This is shown in Figure 6.12.

FIGURE 6.11

Executing Logstash

FIGURE 6.12

These Open Ports Indicate Logstash is Running Properly

136 CHAPTER 6 Packet String Data

Figure 6.11
Figure 6.12

Once these are running, go ahead and confirm that the Kibana front end is func-

tioning by visiting http://127.0.0.1:9292 in your web browser, replacing 127.0.0.1

with the IP address of the system you’ve installed Logstash on. This will take you

directly to the main Kibana dashboard.

CAUTION

If you’ve installed Logstash on a Security Onion system and are attempting to access the Kibana

web interface from another system (such as your Virtual Machine host system), you will not be

able to by default. This is because of the firewall enabled on the system. You can add an

exception to the firewall with this command: sudo ufw allow 9292/tcp

Now that Logstash is listening and the Kibana front-end is functional, you can

send data to the file specified in urlsnarf-parse.conf. To create data to parse, you

can use your existing installation of the Dsniff tool set and start URLsnarf, sending

its output data to a file.

sudo urlsnarf > /home/idsusr/urlsnarf.log

After URLsnarf is initialized, open a web browser (or use curl from the com-

mand line) and visit a few sites to generate some data. Once you’ve finished, use

CtrlþC to end the URLsnarf process. After stopping the data collection, go back

to the Kibana front end and confirm that logs are arriving in the browser. If they are,

you should see some data displayed on the screen, similar to Figure 6.13. If they

are not, try making sure you’ve selected the correct time span towards the top of the

dashboard.

FIGURE 6.13

Viewing Log Data in Kibana

137Viewing PSTR Data

http://127.0.0.1:9292
Figure 6.13

This figure represents “raw” log files that are being ingested, which are for the

most part unparsed. So far, if you examine a log, only the timestamp in which it

arrived and the hostname of the current device are present. This is because you

haven’t specified a filter in the Logstash configuration so that it knows how to parse

the individual fields within each log entry. These filters make up the meat of the con-

figuration and define how logs are indexed.

With that said, let’s extend the flexibility of Logstash by defining custom filters to

generate stateful information so that Kibana can really stretch its legs. Logstash uses

GROK to combine text patterns and regular expressions to match log text in the order

that you wish. GROK is a powerful language used by Logstash to make parsing eas-

ier than it would normally be when using regular expressions. We will address get-

ting a stateful understanding of the URLsnarf log format shortly, but let’s start with a

simpler example in order to understand the syntax. In this example we’ll create a

filter that matches text fields in a log that we generated with Justniffer in

Figure 6.14, but this time with the addition of a “sensor name” at the end.

To show how Logstash handles basic matches as opposed to prebuilt patterns,

we’ll use a “match” filter in the configuration. The basic configuration containing

match filters should look like this;

input {

file {

type ¼>“Justniffer-Logs”

path ¼>“/home/idsusr/justniffer.log”

}

}

filter {

grok {

type ¼>“Justniffer-Logs”

match ¼>[“message”, “insertfilterhere”]

}

}

output {

elasticsearch { embedded ¼>true }

}

We’ll use the existing built-in GROK patterns to generate the data we need for the

configuration, which we’ll call justniffer-parse.conf. These patterns can be found at

FIGURE 6.14

Custom Justniffer Data with a Sensor Name to be Parsed

138 CHAPTER 6 Packet String Data

Figure 6.14

https://github.com/logstash/logstash/blob/master/patterns/grok-patterns. But before

we start examining which patterns we want to tie together, the first thing to do is look

at the log format and define what fields we want to identify. This data format breaks

down like this:

datestamp timestamp – IP ->IP – domain/path – sensorname SENSOR

Now we need to translate this into GROK, which is where the GROK debug-

ger comes in. The debugger is located at http://grokdebug.herokuapp.com/. Here

you simply place the log string you want to match in the top line, and in the pat-

tern line enter the GROK pattern you think will match it. The application will

show you which data is matched. The key when developing GROK formatted

strings is to start with small patterns and extend them gradually to match the

entire log line (Figure 6.15).

In order to match the log line we are working with, we will use this pattern:

%{DATE:date} %{TIME:time} - %{IP:sourceIP} ->%{IP:destIP} - %{URI-

HOST:domain}%{URIPATHPARAM:request} - %{DATA:sensor} SENSOR

You’ll notice we included field labels next to each field, which will identify the

fields. Applying the filter to the full configuration file gives us a complete config-

uration that will parse all incoming Justniffer logs matching the format we specified

earlier. This is our resulting configuration file:

input {

file {

type ¼>“Justniffer-Logs”

path ¼>“/home/idsusr/justniffer.log”

}

}

filter {

FIGURE 6.15

Using the Grok Debugger

139Viewing PSTR Data

https://github.com/logstash/logstash/blob/master/patterns/grok-patterns
http://grokdebug.herokuapp.com/
Figure 6.15

grok {

type ¼>“Justniffer-Logs”

match ¼>[“message", “%{DATE:date} %{TIME:time} - %{IP:sourceIP}

->%{IP:destIP} - %{URIHOST:domain}%{URIPATHPARAM:request} - %{DATA:

sensor} SENSOR”]

}

}

output {

elasticsearch { embedded ¼>true }

}

Once you have this configuration, you can go ahead and start the Logstash col-

lector with this command that uses our new configuration file:

java -jar logstash-1.2.1-flatjar.jar agent -f justniffer-parse.conf --

web

When Logstash is up and running, you can start gathering data with the following

Justniffer command that will generate log data in the format matching the configu-

ration we’ve just created:

sudo justniffer -p “tcp port 80” -u -l “%request.timestamp - %source.ip -

>%dest.ip - %request.header.host%request.url - IDS1 SENSOR” >> /home/

idsusr/justniffer.log

Once running, you will once again want to browse to a few websites in order to

generate logs. As you gather data, check back into Kibana and see if your logs are

showing up. If everything has gone correctly, you should have fully parsed custom

logs! Along with viewing these fully parsed logs, you can easily search through them

in Kibana’s “Query” field at the bottom of the main dashboard page, or you can nar-

row down the display parameters to define only the fields you wish to see with the

“Fields” Event filter to the left of the query field, shown in Figure 6.16.

FIGURE 6.16

Examining Individual Logs in Kibana

140 CHAPTER 6 Packet String Data

Figure 6.16

You can also examine metrics for a given field by clicking the field name in the

list on the left side of the screen. Figure 6.17 shows field metrics for the Host field,

which shows all of the hosts visited in the current logs.

This Justniffer log example provides an excellent way to dive into custom parsing

of logs with Logstash. However, some log types will be more extensive and difficult

to parse. For instance, if we examine URLsnarf logs, we see that they are nearly iden-

tical to Apache access logs, with the exception of a character or two. While Logstash

would normally be able to handle Apache access logs with ease, these additional

characters can break the built-in filters. For this example, we will look at creating

our own GROK filter for replacing the existing filter pattern for Apache access

logs in order to adequately parse the URLsnarf logs. Our new filter will take into

account the difference and relieve the incongruity created by the

additional hyphens. Since the filters are so similar to the built-in pattern, we

can manipulate this pattern as needed. The latest GROK patterns can be found at

the Logstash GIT repository, https://github.com/logstash/logstash/blob/master/pat

terns/grok-patterns. If you examine the COMBINEDAPACHELOG filter

carefully, you’ll see the issue falls with the lack of a simple hyphen, which has been

added below.

COMBINEDAPACHELOG %{IPORHOST:clientip} %{USER:ident} %{USER:auth} \[%

{HTTPDATE:timestamp}\] “(?:%{WORD:verb} %{NOTSPACE:request}(?: HTTP/

FIGURE 6.17

Examining Field Metrics in Kibana

141Viewing PSTR Data

https://github.com/logstash/logstash/blob/master/patterns/grok-patterns
https://github.com/logstash/logstash/blob/master/patterns/grok-patterns
Figure 6.17

%{NUMBER:httpversion})?|%{DATA:rawrequest})” %{NUMBER:response}|-

(?:%{NUMBER:bytes}|-) %{QS:referrer} %{QS:agent}

The above filter looks complicated, and that’s because it is. The break down of it

is an exercise best left for the GROK debugger. Our changes to the original filter

include correcting the hyphen and commented out the inner quotation marks. We

can add this GROK filter into the base configuration we created earlier, resulting

in this completed configuration file:

input {

file {

type ¼>“urlsnarf”

path ¼>“/home/idsusr/urlsnarf.log”

}

}

filter {

grok {

type ¼>“urlsnarf”

match ¼>[“message", “%{IPORHOST:clientip} %{USER:ident} %{USER:

auth} \[%{HTTPDATE:timestamp}\] \"(?:%{WORD:verb} %{NOTSPACE:

request} (?: HTTP/%{NUMBER:httpversion})?|%{DATA:rawrequest})\” (%

{NUMBER:response}|-) (?:%{NUMBER:bytes}|-) %{QS:referrer} %{QS:

agent}”]

}

}

output {

elasticsearch { embedded ¼>true }

}

Without using a GROK filter, these logs would look like Figure 6.18 in Kibana,

with most of the data appearing as a single line that doesn’t allow for any advanced

analytics based upon fields.

The new log field description is fully parsed using the filter as seen in Figure 6.19.

FIGURE 6.18

The Log Data Without GROK

142 CHAPTER 6 Packet String Data

Figure 6.18

As you can see, the combination of Logstash, Kibana, and GROK makes a pow-

erful trio that is convenient for parsing logs like the ones generated by PSTR data. If

you want to learn more about these tools, you should visit the Logstash website at

http://logstash.net/.

Raw Text Parsing with BASH Tools

The combination of Logstash and Kibana is an excellent way to parse single line

PSTR data, but those tools might not be the best fit in every environment. Depending

on how you are sourcing your data, you might find yourself in need of a broader tool-

set. Even in cases where log search utilities are present, I always recommend that

whenever flat text logs are being used, they should be accessible by analysts directly

in some form. In the following examples, we’ll take a look at sample PSTR data that

includes multi-line request and response headers.

Earlier we generated PSTR data with Justniffer, and for this example, we will

start by doing it again:

sudo justniffer -i eth0 -p “tcp port 80” -u -l “-------

------------------------ %newline%request.timestamp - %source.ip ->

%dest.ip %newline%request.header%newline%response.timestamp - %new-

line%response.header”>pstrtest.log

This should generate data that looks similar to what is shown in Figure 6.7, and

store that data in a file named pstrtest.log.

Parsing raw data with BASH tools such as sed, awk, and grep can sometimes

carry a mystical aura of fear that is not entirely deserved. After all, parsing this kind

FIGURE 6.19

The New Log Data with GROK

143Viewing PSTR Data

http://logstash.net/
Figure 6.19

of text is one of the most documented and discussed topics in Unix related forums,

and I have yet to come across an unresolvable parsing issue. From the example data

above, we can gather a significant amount of useful information for analysis. From a

tool perspective, we can search and parse this with grep quite easily. For instance we

can search for every Host seen in the data set by performing a simple search for the

“Host” field, like this:

cat pstrtest.log | grep “Host:”

This will result in printing every line that contains the word “Host:” in any con-

text, even if it is not the context you wish for. To make sure that it is looking for only

lines beginning with the term “Host:”, try extending grep with the –e option and the

carrot (∧) symbol:.

cat pstrtest.log | grep -e “∧Host: “

The carrot symbol matches “beginning of a line”, and for every line that

has “Host: “ after the beginning of the line, it will match. Currently, this search is

case sensitive. To make it case insensitive, add the –i option. Searching with grep

is the easiest and most common use for the tool, however, it can be extended to per-

form powerful regular expression searching, parsing, and massaging of data. For

instance, let’s consider searching for Etags of a very specific format, as shown in

Figure 6.20.

You’ll notice that while most of these entries share similar formats, some will

contain additional characters, such having more than one hyphen (-). The fifth line

in Figure 6.14 is an example of this, so let’s search for examples matching it. In the-

ory, we are searching for all lines starting with the text “ETag”, and followed by a

specific value with two hyphens. We will print only the ETags themselves. The fol-

lowing command will accomplish this goal:

cat pstrtest.log | grep -e “○ETag” | grep -oP “\”.*?\-.*?\-.*?\“” | sed ’s/

“//g’

FIGURE 6.20

Using Grep to Search for Etags in PSTR Data

144 CHAPTER 6 Packet String Data

Figure 6.20

Despite what appears to be a rather complicated command, it does exactly what we

asked. Since this one-liner has multiple elements, let’s break them down individually:

1. cat pstrtest.log

First, we dump to output of the pstrtest.log file to the screen (standard output)

2. grep –e “∧ETag”

Next, we pipe the output of the file to grep, where we search for lines containing

the text “ETag” at the beginning of a line.

3. grep -oP “\”.*?\-.*?\-.*?\“”

The ETags that are found are piped to another grep command that utilizes a

regular expression to locate data in the proper format. This format is any number

of characters (.*?) between a quote and a hyphen, followed by any number of

characters between that hyphen and another, followed by any number of

characters and another quote.

4. sed ‘s/”//g’

Next, we pipe the output of the last Grep command to Sed to remove any

quotation marks from the output.

In this example, we introduced Sed into the equation. The sed command is useful

for searching and replacing text. In this case, it looks at every line, and replaces every

instance of double quotes (“) with nothing. More simply put, it removes all double

quotes. The output of this command is shown in Figure 6.21.

Another useful way to massage data is to simply sort and count what you have.

This might sound like a simple task, and it is, but it is incredibly useful. For example,

let’s take a look at the User Agent string in the HTTP header information that can be

contained within PSTR data. We can perform some rudimentary detection by sorting

these User Agent strings from least to most visited. This can often times reveal sus-

picious activity and possible indicators due to user agent strings that are unexpected.

cat pstrtest.log | grep -e “○User Agent: “ | sort | uniq -c | sort –n

In this example we have taken our PSTR data and outputted only lines beginning

with “User Agent:”. From here, we pipe this data to the sort command to order the

FIGURE 6.21

The Output of Specific ETag Results from PSTR Data

145Viewing PSTR Data

Figure 6.21

results. This data is then piped to the uniq command, which parses the data by count-

ing each uniq line and providing the total number of times it occurs in a left column.

Finally, we pipe that data once more to the sort command and utilize the –n string to

sort the data by the count of occurrences. We are left with the data shown in

Figure 6.22.

Analyzing this data immediately reveals that a few unique and potentially suspi-

cious user agents exist in this communication. From that point, you could perform a

more thorough investigation surrounding this communication. This is an example of

generating some basic statistical data from PSTR data.

CONCLUSION

Packet String Data, in any of its possible forms, is critical for maximizing efficiency

in detection and analysis. Given the speed of access, the depth of data, the general

ease of deployment, and the lack of intensive storage requirements, PSTR data pro-

vides the perfect bridge between FPC and session data. In this chapter we defined

PSTR data and discussed a number of ways to collect and parse this data type. In

later chapters, we will reference instances in which analysis can be enhanced by

referencing PSTR data.

FIGURE 6.22

Sorted User Agent Data

146 CHAPTER 6 Packet String Data

Figure 6.22

CHAPTER

Detection Mechanisms,
Indicators of Compromise,
and Signatures

7
CHAPTER OUTLINE

Detection Mechanisms ... 149

Indicators of Compromise and Signatures .. 151

Host and Network Indicators ..151

Static Indicators ..152

Variable Indicators ...155

Indicator and Signature Evolution ...157

Tuning Signatures ...158

Precision .. 159

Critical Indicator and Signature Criteria ...160

Managing Indicators and Signatures ... 162

Simple Indicator and Signature Management with CSV Files163

Master Indicator/Signature List .. 163

Indicator/Signature Revision Table ... 166

Indicator and Signature Frameworks ... 168

OpenIOC ...169

STIX ...171

Conclusion .. 173

The detection phase of Network Security Monitoring is all about knowing your

detection capabilities, understanding adversarial tactics, and then applying those

capabilities to detect when an adversary acts. This process occurs when collected

data is examined and anomalies are identified.

In this first chapter of the Detection section of Applied NSM, we will define detec-

tion mechanisms, indicators of compromise (IOCs), and signatures, and then exam-

ine how the IOCs are comprised, and how they can be derived from network attacks.

We will also look at several best practices for successful management of IOCs and

signatures, and some common IOC and signature frameworks.

DETECTION MECHANISMS
Generally, detection is a function of software that parses through collected data in

order to generate alert data. This software is referred to as a detection mechanism.

The alert data that is generated by the detection mechanism is presented to an analyst,

149

and that’s when detection ends and analysis begins. This process may sound hands-off,

but that couldn’t be farther from the truth. To perform detection successfully, you must

take great care in choosing detection mechanisms and feeding them appropriately.

The majority of the detection mechanisms discussed in this book are network-

based intrusion detection systems (NIDS). These can be divided into two primary

categories: signature-based and anomaly-based detection.

Signature-based detection is the oldest form of intrusion detection, and it works

by combing through data to find matches for specified patterns. Some patterns can be

simple, like an IP address or a text string. Other patterns can be more complex, such

as a particular number of null bytes occurring after a specific string while utilizing a

specific protocol. When these patterns are broken down into objective platform-

independent pieces of data, they become indicators of compromise. When they

are expressed in the platform-specific language of a detection mechanism, they

become signatures.

A subset of signature-based detection is reputation-based detection, which

attempts to detect communication between friendly hosts on the network you are pro-

tecting and hosts on the Internet that are believed to be malicious based upon their

participation in previous malicious actions. This essentially results in detection based

upon a series of simple signatures that are usually based upon IP addresses or domain

names.

We will cover several popular signature-based detection mechanisms, including

Snort and Suricata in Chapter 9. We will also examine reputation-based detection

mechanisms using multiple tools in Chapter 8.

Anomaly-based detection is a newer form of intrusion detection that is gaining

popularity rapidly thanks to tools like Bro. Anomaly-based detection relies upon

observing network occurrences and discerning anomalous traffic through heuristics

and statistics. Instead of simply alerting whenever a specific pattern is seen, an

anomaly-based detection mechanism has the ability to recognize attack patterns that

deviate from normal network behavior. This type of detection is infinitely more pow-

erful, but more difficult to implement. We will look into using Bro as an anomaly-

based detection mechanism in Chapter 10, and performing statistical anomaly-based

detection in Chapter 11.

A newly evolving subset of anomaly-based detection is the use of honeypot-

based detection mechanisms. Honeypots have been used for many years to collect

malware and attack samples for research purposes, but they have detection applica-

tions as well. This occurs by configuring honeypot systems to mirror production sys-

tems. These honeypots often contain known vulnerabilities, but have no actual

confidential data on them. Instead, they are configured for an extensive level of log-

ging, and often paired with other types of NIDS or HIDS. Detection with honeypots

will be discussed in Chapter 12.

The detection mechanisms you will deploy depend on the maturity of your security

program. Most SOCs start with only a signature-based mechanism and will wait to

achieve confidence with that technology before moving on to something more

advanced like an anomaly-based mechanism. This evolution lends itself well to the

150 CHAPTER 7 Detection Mechanisms, IOCs, and Signatures

healthy development of a SOC. I’ve seenmany organizations that try to implement the

whole gamut of detection-mechanisms right off the bat, and end up failing because

they just simply can’t handle developing these capabilities simultaneously.

INDICATORS OF COMPROMISE AND SIGNATURES
The detection mechanisms we just discussed are useless if they are not properly fed

and cared for. This involves the development, maintenance, and implementation of

IOCs and Signatures.

An IOC is any piece of information that can be used to objectively describe a

network intrusion, expressed in a platform-independent manner. This could include

a simple indicator such as the IP address of a command and control (C2) server or a

complex set of behaviors that indicate that a mail server is being used as a malicious

SMTP relay. IOCs can come in a variety of shapes and sizes, and can be formatted in

different ways to be digested by various detection mechanisms. While one tool may

be able to parse IP addresses in a comma-delimited list, another may require that

they are inserted into a SQL database. Although the presentation of the IOC has

changed, the IOC itself remains consistent. Furthermore, a single behavioral IOC

may have to be broken down into several individual components and deployed to

multiple detection mechanisms to be made actionable on a network. When an

IOC is taken and used in a platform-specific language or format, such as a Snort

Rule or a Bro-formatted file, it becomes part of a signature. A signature can contain

one or more IOCs.

The remainder of this chapter is devoted to the classification and management of

these indicators and signatures.

ANALYST NOTE

Throughout this book, the term IOC may simply be referred to as an indicator. It is important to

understand that the term “indicator” can have varying definitions depending upon your

audience. For instance, someone who works in the defense sector might think you are talking

about behavioral or attribution indicators rather than objective pieces of information that

describe an intrusion.

Host and Network Indicators

The broadest and most common manner in which indicators are classified is either as

host-based or network-based. This basic level of classification helps frame the indi-

cator so you can plan the detection mechanism it will be used with.

A host-based IOC is a piece of information that is found on a host, and objectively

describes an intrusion. Some common host-based indicators include:

• Registry Key

• File Name

151Indicators of Compromise and Signatures

• Text String

• Process Name

• Mutex

• File Hash

• User Account

• Directory Path

A network-based IOC is a piece of information that can be captured on the net-

work between hosts, and objectively describes an intrusion. Some common network-

based indicators include:

• IPv4 Address

• IPv6 Address

• X509 Certificate Hash

• Domain Name

• Text String

• Communication Protocol

• File Name

• URL

You could certainly argue that most of these indicators could be found on both

the network and host levels at some point, but they are classified here based upon

where they are primarily found. Some indicators are listed in both areas because they

can be found equally as often in both locations, such as simple text strings and file

names.

Dividing indicators into either host or network IOC’s is a great way to initially

classify them, but you can go a lot further in your classification efforts with the use of

static and variable indicators, which are discussed next.

Static Indicators

Static indicators are indicators for which values are explicitly defined. There are

three variations of static indicators: Atomic, Computed, and Behavioral (Figure 7.1).

Atomic indicators are typically smaller and more specific indicators that cannot

be broken down into smaller components, but still retain meaning in the context of an

intrusion. This includes items such as IP addresses, text strings, hostnames, e-mail

addresses, and file names.

Computed indicators are those that are derived from incident data. This includes

items such as hash values, regular expressions, and statistics.

Behavioral Indicators are collections of atomic and computed indicators that are

paired together with some form of logic, often to provide some useful context. This

might include a set of data containing file names and matching hash values, or a com-

bination of a text string and a regular expression.

152 CHAPTER 7 Detection Mechanisms, IOCs, and Signatures

Consider a scenario in which we have determined that a device on our network

has been compromised. An analysis of NSM data and host-based forensic data helps

us determine that the following sequence of events occurred:

1. A user received an e-mail message from chris@appliednsm.com with the

subject line “Payroll Information” and a PDF attachment called “Payroll.pdf.”

The PDF has an MD5 hash value of e0b359e171288512501f4c18ee64a6bd.

2. The user opened the PDF, triggering the download of a file called kerndel32.

dll with the MD5 hash value da7140584983eccde51ab82404ba40db. The file

is downloaded from http://www.appliednsm.com/kernel32.dll.

3. The file was used to overwrite C:/Windows/System32/kernel32.dll.

4. Code within the DLL was executed, and an SSH connection is established

to a host with the IP address 192.0.2.75 on port 9966.

5. Once this connection is established, the malware searches for every DOC,

DOCX, or PDF file from the friendly host and transmits it over the SSH

connection to the hostile host.

The overall description of this incident could be described as a single large behav-

ioral indicator.While this initial indicator does paint a broad picture of the incident, it

does us little good in the context of NSM detection because it is far too complex.

To effectively tune signature, anomaly, and statistical based detection mecha-

nisms, we must first break down the indicator into more useful pieces, ensuring that

appropriate context remains. This could result in the creation of the following behav-

ioral (B) indicators:

• B-1: A user receives an e-mail from chris@appliednsm.com with the subject

line “Payroll Information” and a PDF attachment called “Payroll.pdf.” The PDF

file has an MD5 hash value of e0b359e171288512501f4c18ee64a6bd.

FIGURE 7.1

Atomic and Computed Indicators Comprise Behavioral Indicators

153Indicators of Compromise and Signatures

mailto:chris@appliednsm.com
http://www.appliednsm.com/kernel32.dll
mailto:chris@appliednsm.com
Figure 7.1

• B-2: The file kernel32.dll with the MD5 hash

da7140584983eccde51ab82404ba40db is downloaded from the http://www.

appliednsm.com/kernel32.dll.

• B-3: The file C:/Windows/System32/Kernel32.dll is overwritten by a malicious

file of the same name with MD5 hash value

da7140584983eccde51ab82404ba40db.

• B-4: Victim host attempts SSH connection to hostile host 192.0.2.75 on port 9966.

• B-5: DOC, DOCX, and PDF files are transmitted to 192.0.2.75 on port 9966 via

an encrypted connection.

Next, we can attempt to break these behavioral indicators down into individual

atomic (A) and computed (C) indicators. The following could result:

• C-1: MD5 Hash e0b359e171288512501f4c18ee64a6bd

• C-2: MD5 Hash da7140584983eccde51ab82404ba40db

• A-1: Hostile Domain: appliednsm.com

• A-2: E-Mail Address: chris@appliednsm.com

• A-3: Subject Line: “Payroll Information”

• A-4: File Name: Payroll.pdf

• A-5: File Name: Kernel32.dll

• A-6: Hostile IP 192.0.2.75

• A-7: Port 9966

• A-8: Protocol SSH

• A-9: File Types DOC, DOCX, and PDF

• A-10: File Name Kernel32.dll

This gives us a total of five behavioral indicators, one computed indicator, and ten

atomic indicators that can be incorporated into our detection mechanisms. This could

result in indicators being converted into signatures for use with a variety of detection

mechanisms, such as in these examples:

• C-1/2: Antivirus signature to detect existence of hash value

• A-1: Snort/Suricata Signature to detect any communication with hostile domain

• A-2: Snort/Suricata Signature to detect mail received from hostile e-mail address

• A-3: Snort/Suricata Signature to detect subject line

• A-3: Bro script to detect subject line

• A-4/C-1: Bro script to detect file name or MD5 hash value being transmitted

across the network

• A-5/C-2: Bro Script to Detect File Named Kernel32.dll or file with MD5

hash value transmitted over the network

• A-6: Snort/Suricata Signature to detect communication with IP address

• A-7/A-8: Snort/Suricata Signature to detect SSH communication to port 9966

• A-10: HIDS rule to detect modifications to Kernel32.dll

As you can see, there are different methods to approach detection of the various

indicators we’ve generated from this single incident. With more detail, this scenario

could present even more potential detection scenarios, such as the ability to detect

certain malicious object calls within the PDF file itself, or characteristics of custom

154 CHAPTER 7 Detection Mechanisms, IOCs, and Signatures

http://www.appliednsm.com/kernel32.dll
http://www.appliednsm.com/kernel32.dll
http://appliednsm.com
mailto:chris@appliednsm.com

protocols that might be in use. Depending on the architecture of the network you’re

protecting, you might have multiple detection mechanisms that can be used to imple-

ment signatures for a single indicator, or alternatively, you might not have any capa-

bility to detect certain indicators. Deciding which method might be best for the

detection of a certain IOC depends upon the infrastructure of the network, the nuances

of the detection methods, and the nature of the intelligence related to the IOC.

FROM THE TRENCHES

Some organizations havemultiple versions of the same detectionmechanism in place to handle

IOCs of varying importance. For instance, I’ve seen organizations that run multiple instances of

the Snort IDS for signature-based detection. Snort can detect intrusions by analyzing packets

live on the wire, or by periodically parsing existing PCAP data files. Here, priority is placed on

the Snort instance analyzing live traffic on the wire. The real-time instance of Snort is then

reserved for only highly efficient signatures that are related to IOCs supported by intelligence of

the highest priority, where as lower confidence signatures or those signatures related to generic

malware are handled by the periodic instance of Snort examining PCAP files. The result is that

alert data related to critical indicators is generated faster so that analysts may react quicker.

Variable Indicators

If the detection mechanisms used in your network were only configured to detect

attacks where known indicators were used, then you would likely eventually miss

detecting something bad. At some point, we have to account for variable indicators,

which are indicators for which values are not known. These are usually derived by

creating a sequence of events for which an attack might occur (forming a behavioral

indicator), and identifying where variables exist. Essentially, it examines a theoret-

ical attack, rather than one that has already occurred. This root-cause type of analysis

is something performed on specific attack techniques, rather than instances of attacks

executed by an individual adversary.

I like to think of variable indicators as resembling amovie script, where you know

what will happen, but not who will play each particular role. Also, just like a movie

script, there is always the potential for improvisation with a skilled actor. Variable

indicators are not entirely useful for deployment to signature-based detection mech-

anisms, but find a great deal of use with solutions like Bro.

We can see an example of developing variable indicators by revisiting the sce-

nario we looked at in the last section. Instead of basing the attack scenario on an

attack that has actually occurred, we will base it on a theoretical attack. Restated,

the attack scenario would broadly play out as follows:

1. A user received an e-mail message with a malicious attachment.

2. The user opens the attachment, triggering the download of a file from a

malicious domain.

3. The file was used to overwrite a system file with the malicious version of that file.

4. Code within the malicious file was executed, triggering an encrypted

connection to a malicious server.

5. Once the connection was established, a large amount of data was exfiltrated

from the system.

155Indicators of Compromise and Signatures

These steps represent behavioral indicators that contain multiple variable atomic

and computed indicators. We can enumerate some of these indicators here:

• VB-1: A user received an e-mail message with a malicious attachment.

• VA-1: E-Mail Address

• VA-2: E-Mail Subject

• VA-3: Malicious E-Mail Source Domain

• VA-4: Malicious E-Mail Source IP Address

• VA-5: Malicious Attachment File Name

• VC-1: Malicious Attachment MD5 Hash

• VB-2: The user opens the attachment, triggering the download of a file from a

malicious domain.

• VA-6: Malicious Redirection Domain/IP

• VA-7: Malicious Downloaded File Name

• VC-2: Malicious Downloaded File MD5 Hash

• VB-3: The file was used to overwrite a system file with the malicious version of

that file.

• VB-4: Code within the malicious file was executed, triggering an encrypted

connection to a malicious server on a non-standard port.

• VA-8: External C2 IP Address

• VA-9: External C2 Port

• VA-10: External C2 Protocol

• VB-5: Once the connection was established, a large amount of data was

exfiltrated from the system.

In this example, the V in the indicator names describes a variable component of

the indicator. As we’ve laid it out, there are potentially ten variable atomic indicators,

two variable computed indicators, and five variable behavioral indicators. Now, we

can hypothesize methods in which these indicators can be built into signatures to be

paired with detection mechanisms. Variable indicators will commonly be reused and

combined in order to derive detection for broad attack scenarios.

• VB-1 (VA-3/VA-4) VB-2 (VA-6) VB-4 (VA-8) VB-5 (VA-8): Snort/Suricata rule

to detect communication with known bad reputation IP addresses and domains

• VB-1 (VA-5/VC-1) VB-2 (VA-7/VC-2): Bro script to pull files off the wire and

compare their names and MD5 hashes with a list of known bad reputation file

names and MD5 hashes.

• VB-1 (VA-5/VC-1) VB-2 (VA-7/VC-2): Bro script to pull files off the wire and

place them into a sandbox that performs rudimentary malware analysis.

• VB-2 (VA-6/VA-7/VC-2): HIDS signature to detect the browser being launched

from a document

• VB-3: HIDS signature to detect a system file being overwritten

• VB-4 (VA-9/VA-10) VB-5: A Bro script to detect encrypted traffic occurring on

a non-standard port

• VB-4 (VA-9/VA-10) VB-5: A Snort/Suricata rule to detect encrypted traffic

occurring on a non-standard port

156 CHAPTER 7 Detection Mechanisms, IOCs, and Signatures

• VB-5: Custom written script that uses session data statistics to detect large

volumes of outbound traffic from workstations

SOC analysts commonly monitor information security news sources like confer-

ence proceedings and the blogs and Twitter feeds from industry experts. This allows

the SOC to stay abreast of new and emerging attack techniques so that the organi-

zation’s defensive posture can be modeled around these techniques. When this hap-

pens, it becomes incredibly useful to break down the attack into variable indicators.

When platform-specific signatures are provided, those can be reverse engineered

into individual indicators so that they can be used in conjunction with the detection

mechanisms in place on your network. These are incredibly useful exercise for NSM

analysts. It helps the analyst to better understand how attacks work, and how detec-

tion mechanisms can be used to effectively detect the different phases of an attack.

The components of the variable indicator can be used for all varieties of detection,

and they are most useful in determining how to detect things with unknown entities.

Indicator and Signature Evolution

Software development usually goes through an evolution, in which the software is

considered immature until it is fully tested. It then reaches a mature state while it

is in production use before being retired once it is no longer useful. Indicators

and signatures, just like software, have a shelf life. Indicator and signature evolution

has the same steps: Immature, Mature, and Retired (Figure 7.2).

An immature indicator or signature is one that has been newly discovered as the

result of some form of intelligence, including intelligence gained from the internal

investigation of an incident, or from a third-party source. This also includes newly

created variable indicators that have not yet been evaluated fully within a detection

mechanism signature. The confidence associated with immature indicators and

signatures may vary initially, depending upon its source. An immature indicator or

FIGURE 7.2

Indicator and Signature Evolution

157Indicators of Compromise and Signatures

Figure 7.2

signature may change frequently, and might be deployed to a test environment before

being deployed into production, which might include deployment to multiple detec-

tionmechanisms in order to determine which is the most appropriate. Because of this,

analysts should closely monitor the deployed signature for false positives and false

negatives. In some scenarios, it may be appropriate to only allow level two or three

analysts to access the alerts generated from immature indicators and signatures, so

that they can be taken with a grain of salt until being evaluated thoroughly.

Once an indicator or signature has proven that it is useful in the NSM environ-

ment, that it doesn’t result in an excess of false positives, and that it doesn’t result in

missed activity through false negatives, it is considered to be mature. A mature indi-

cator or signature doesn’t usually undergo as many revisions as an immature one, and

is considered reliable and stable. Mature indicators can also be more confidently

combined with other indicators in order to make more granular behavioral indicators,

resulting in more advanced signatures. Any change or revision to a mature indicator

or signature should be documented.

Eventually, an indicator or signature may prove to no longer be effective, or the

intelligence supporting it may call for its dismissal. This is especially common with

items related to phishing campaigns, websites hosting drive-by downloads, and botnet

C2. Proper record keeping and historical analysis dictates that you should never delete

these items, so instead an indicator or signature that is no longer being actively used is

considered retired. A retired indicator is no longer deployed within a signature to any

detection mechanism. A retired signature isn’t currently being utilized by a detection

mechanism. If it is necessary that a retired indicator or signature be modified and

reused, then it should be reverted into either an immature or a mature state.

Tuning Signatures

A task that will be continuous for any security team is the tuning of signatures. This

ensures that the indicators the signatures are based on are being used reliably and

effectively, and that they are passed through the steps of indicator evolution appro-

priately. In some cases it can be easy to determine how effective a signature is. For

instance, if you deploy a signature containing new indicators and it immediately starts

filling up every analyst’s screen with thousands of alerts, then there is a good chance

that the signature is too broad and might need some work to eliminate false positives.

However, not all signatures’ performance is that easy to track. For example, if you had

two signatures that detected the same thing, how would you compare them to deter-

mine which was more effective? This is where some statistics come in to play.

When determining the maturity and confidence level of a deployed signature,

there are four data points that should be considered: true positives, false positives,

true negatives, and false negatives.

True Positive (TP). An alert that has correctly identified a specific activity. If a

signature was designed to detect a certain type of malware, and an alert is generated

when that malware is launched on a system, this would be a true positive, which is

what we strive for with every deployed signature.

158 CHAPTER 7 Detection Mechanisms, IOCs, and Signatures

False Positive (FP). An alert has incorrectly identified a specific activity. If a

signature was designed to detect a specific type of malware, and an alert is generated

for an instance in which that malware was not present, this would be a false positive.

True Negative (TN). An alert has correctly not been generated when a specific

activity has not occurred. If a signature was designed to detect a certain type of mal-

ware, and no alert is generated without that malware being launched, then this is a

true negative, which is also desirable. This is difficult, if not impossible, to quantify

in terms of NSM detection.

False Negative (FN). An alert has incorrectly not been generated when a spe-

cific activity has occurred. If a signature was designed to detect a certain type of

malware, and no alert is generated when that malware is launched on a system, this

would be a false negative. A false negative means that we aren’t detecting some-

thing we should be detecting, which is the worst case scenario. False negatives can

be incredibly difficult to calculate. After all, how do you detect false negatives if

your signatures are missing the activities they were designed to detect? This is one

of the many reasons why it is so important to do post-mortem analysis after an

incident has occurred. It is here that you can step through an incident to syste-

matically determine when a signature should have detected an activity, and record

those results.

These data points are useful by themselves to determine how successful the

signature is for detection. However, we can derive more value from these numbers

by using them to calculate a signature’s precision.

Precision
The precision of a signature, also sometimes called the positive predictive value,

refers to its ability to identify positive results. This is shown by determining the pro-

portion of true positives against all positive results (both true positives and false pos-

itives) with the formula:

Precision¼TP / (TPþFP)

This information can be used to determine the probability that, given an alert being

generated, the activity that has been detected has truly occurred. Therefore, if a signature

has a high precision and an alert is generated, then the activity has very likely occurred.

In a comparison scenario, consider that the same network traffic has generated

two separate alerts, classifying the attack as two different pieces of malware. SID

1 in one of the alerts identifies Malware A, and SID 2 in the other alert identifies

Malware B. If SID 1 has a precision of 90, and SID 2 has a precision of 40, then

it is likely that SID 1 has actually correctly identified the malware.

ANALYST NOTE

A Signature Identifier (SID) Number is used to uniquely identify a signature.

High precision is desired for signatures, and should increase your confidence in

a signature. If you find that a signature has low precision, then you can attempt to

159Indicators of Compromise and Signatures

rectify this by refining the signature, adding additional indicators to the signature, or

deploying it in conjunction with other signatures.

In lieu of a custom application, you can track these statistics fairly easily in a

spreadsheet or CSV file. An example of how this could be done is shown in Table 7.1.

The statistics presented here should help determine how much confidence you

place in a signature, how you react when an alert from a signature is generated,

and how much effort you place into tweaking a signature for better reliability. There

are several other techniques and statistics that can be used for assessing the effective-

ness of a signature, but precision has always worked consistently well for me in mul-

tiple SOC environments.

Critical Indicator and Signature Criteria

An indicator or signature without context is not entirely useful. One of the first things

an analyst should do when receiving a new alert is to examine the supporting context

of the signature, along with the supporting context of any indicators contained in the

signature. The context you can provide with a signature or indicator will vary, but it is

critical in the investigation of a potential incident. It is important that you establish a

standard that maintains a few critical criteria for each indicator and signature that you

use. This is to ensure the indicators and signatures are unique, attributable, and able

to be properly referenced in the event of an intrusion, an audit, or an instance where

accuracy is called into question. These critical criteria are:

• Unique Identifier:A value that can be used to uniquely identify every indicator or

signature. These should never be repeated. Most organizations will simply

Table 7.1 Tracking Signature Statistics

Indicator

GUID

Indicator

Rev Deployment Modified TP FP TN FN

60003023 1 Snort Signature:
1000492

6/19/2013 1 432 0 0

60003023 2 Snort Signature:
1000492

6/23/2013 5 3 0 0

60003024 1 Snort Signature:
1000493

6/23/2013 2 17 0 0

60003025 1 Snort Signature:
1000494

6/25/2013 1 2 0 0

60003026 1 Snort Signature:
1000495

6/25/2013 3 0 0 1

60003026 2 Snort Signature:
1000495

6/28/2013 1 0 0 0

160 CHAPTER 7 Detection Mechanisms, IOCs, and Signatures

use an auto incrementing or randomly generated globally unique identifier

(GUID) for indicators. The identifier that is used for signatures is usually dictated

by the detection mechanism associated with the signature. This is most

commonly a Signature ID (SID) number. This level of identification also has the

benefit of allowing you to reference the indicator or signature in various forms of

communication without actually listing the item itself. This will prevent false

positives that might occur when indicators or signatures are mentioned in e-mail

messages and similar forms of communication.

• Author: The analyst who created or added the indicator or signature. In the event

that an alert is triggered and there is confusion regarding the indicator or

signature itself or how it was implemented, this provides the opportunity to reach

back to the individual who created, added, and deployed it.

• Creation Date: The original date the indicator or signature was created. In the

event that it was drawn from another source, this would be the date that it was

added to your internal management system.

• Modified Date: The most recent modification date of the indicator or signature.

Ideally, you will track any time an indicator or signature is modified. This

will be discussed later.

• Source: The original source of the indicator or signature. This can reference

another organization, a URL, an internal case number, or even another indicator.

• Type: The type of indicator: Host or Network, Static or Variable, and

Atomic, Computed, or Behavioral. Alternatively, the type of signature: Snort,

Suricata, Bro, Antivirus, etc.

• Classification: The general classification type of the indicator or signature. This

could be an IP Address, Hash Value, File Name, E-Mail Subject, DNS Name,

or any other appropriate classification for an indicator. This could be the general

category the signature is most closely associated with: malware activity,

botnet C2, exploit activity, phishing, etc.

• Evolution Stage: The stage of the indicator or signature in relation to its

evolution: Immature, Mature, or Retired.

• Confidence: A rating representing the amount of trust that can be placed in the

indicator or signature. This is used to establish how reliable it is, and how

much surety can be placed in its accuracy when it results in the generation

of an alert. This can take several factors into account, including its

precision, its source, or its evolutionary stage. It’s not uncommon for an

indicator or signature’s confidence rating to change frequently over time. This

is typically either a numerical value (1-100) or a relative value (low, medium,

high, very high).

• Indicator/Signature: The indicator or signature itself, in its native format.

Along with the particulars of how you store and classify indicators and signatures,

it is also tremendously important that you remain consistent in your efforts. The key

to this consistency is ensuring the process is well-documented and frequently prac-

ticed within the organization.

161Indicators of Compromise and Signatures

MANAGING INDICATORS AND SIGNATURES
The number of indicators and signatures being managed by an organization can grow

large in a short time. It is critical that an organization adopts a strategy for storing,

accessing, and sharing them.

Most organizations tend to store indicators and signatures solely within the detec-

tion mechanisms that they are being used with. For instance, if the organization is

using Snort to detect and log access to known malicious domains (an atomic indica-

tor), then those indicators will be stored as Snort signatures where they are directly

accessed by Snort. While this is the easiest manner in which to store these items, this

limits your ability to interact with and reference them. It can also prohibit easily shar-

ing individual indicators or converting them to signatures designed for another detec-

tion mechanism. In order to get the most out of your indicators and signatures, it

helps to manage them with these best practices in mind:

Raw Data Format. Indicators are the easiest to work with when they are in their

native form. You should always be able to access an indicator without any additional

content or extraneous processing. This ensures that indicators are portable and can be

parsed easily by automated and custom tools, allowing them to be deployed within

unique signatures to a variety of detection mechanisms. For example, this means that

IP addresses and file hashes should be plain text, while binary data should exist in

binary format.

Ease of Access. Analysts should be able to access and edit indicators and signa-

tures with relative ease. If they have to go through many inconvenient steps in order

to add new ones or find out the source of an existing one, this will eat up valuable

time. This can discourage the analyst from interacting with the indicators and signa-

tures, which is something you absolutely don’t want to happen.

Easily Searchable. It won’t take long before a directory or database full of indica-

tors and signaturesbecomes too large tobrowse throughmanually. Inorder to facilitate

the analysts’ ability to quickly examine them, they should exist in a format that is

searchable. This includes the ability to search the indicators or signatures themselves,

along with any contextual data that is stored with them such as the date they were

added, their source, or their type. If they are stored in a database, this can be donewith

database client access or a simple web front-end. If they are stored in flat files, then

solutions can be created using a variety of Linux command line tools like grep.

Revision Tracking. It is common to revise signatures. This can occur when a sig-

nature results in the generation of too many false positives, or when it fails to detect

the desired activity, resulting in false negatives. Signatures are also revised to reflect

changes to adversarial strategy or attack techniques. Whenever this occurs, the revi-

sion, the person who made the change, and the date of the change should be recorded

so that any issues arising from the modification can be addressed. Ideally, the reason

for the change would also be noted.

Deployment Tracking. The purpose of any indicator is to eventually be able to

utilize it within a signature in conjunction with a detection mechanism. When this

happens, the pairing of the indicator and the detection mechanism should be noted.

162 CHAPTER 7 Detection Mechanisms, IOCs, and Signatures

This will help an analyst understand how the NSM infrastructure is being used with

an indicator. This will also prevent duplication of effort so that indicators aren’t

deployed multiple times across redundant detection mechanisms. This is often done

with a simple mapping of an indicator GUID to a SID.

Data Backup. At this point, you should realize just how important indicators and

signatures are for NSM detection. This data should be considered critical for the suc-

cess of the NSMmission, and should be backed up accordingly. This should include an

off-site backup in the event of a catastrophic event affecting the main SOC facility.

Simple Indicator and Signature Management with CSV Files

Organizations of differing sizes use a variety of techniques for the storage and man-

agement of indicators and signatures. Some organizations utilize commercial solu-

tions, while others use custom-written web-front ends attached to some type of

database. There is no question that these methods can be effective, but it generally

takes a certain level of organizational maturity before their implementation can be

feasible. That said, even smaller and more immature security teams still need to

manage indicators and signatures.

While it may sound a bit rudimentary, these items can be managed very effec-

tively with comma separated value (CSV) files. These are files containing data in

rows and columns, with columns being separated by commas, and rows being

separated by new lines. These files are a great format for a lot of types of data because

they can be easily read and parsed via the command-line with built-in Linux

tools like grep, cut, sed, awk, and sort. You can also interact with CSV files by using

Microsoft Excel, Libre Office/Open Office Calc, or most other graphical spreadsheet

editors.

In order to manage indicators and signatures effectively given the best practices

discussed here, you should maintain at least three CSV files. This includes the sta-

tistics tracking file we discussed earlier (Table 7.1), a master list, and a tracking table.

Master Indicator/Signature List
The primary CSV file used to store indicators and signatures is the Master IOC List.

This contains fields for all of the critical criteria mentioned previously, as well as

fields for tracking deployment. A sample of this is shown in Table 7.2

There are two simple ways to search this list. The first is to use a graphical spread-

sheet editor like Microsoft Excel, where you can do simple sorting or CtrlþF

searches to find specific values. This might be appropriate for some users, but this

becomes more difficult as the size of the CSV grows. Most commonly, analysts use

Linux command line tools to query this list.

As an example, let’s say that an alert that references SID 710031 has just been

generated, and you’d like to gain additional context on that signature and any asso-

ciated indicators. In order to do this, you could use grep to search the file for all

instances of the SID using the following command:

grep 7100031 master_ioc_list.csv

163Managing Indicators and Signatures

Table 7.2 Master Indicator/Signature List

GUID Author

Creation

Date

Modified

Date Revision Source Classification Type

Life Cycle

Stage Confidence Indicator Deployment

10001 Sanders 3/17/2013 3/20/2013 2 Case # 1492 MD5 Computed/
Static

Mature Very High e0b359e1712
88512501f4c
18ee64a6bd

Antivirus
Signature
42039

10002 Smith 3/18/2013 3/18/2013 1 Malware
Domain List

Domain Atomic/
Static

Mature Moderate appliednsm.com Snort
Signature
7100031

10003 Sanders 3/18/2013 3/18/2013 1 Case # 1498 E-Mail Address Atomic/
Static

Mature Very High chris@appliednsm.
com

Snort
Signature
7100032

10004 Sanders 3/19/2013 3/19/2013 1 Zeus
Tracker

IP Atomic/
Static

Mature High 192.0.2.99 Custom SiLK
Script

10005 Randall 3/20/2013 3/24/2013 4 Analyst Protocol/Port Behavioral/
Variable

Immature Moderate Encrypted Traffic
over Non-Standard
Port

Bro Script

10006 Sanders 3/20/2013 3/20/2013 1 RSS Feed Protocol/Port Behavioral/
Static

Mature Moderate SSH/9966 Suricata
Signature
7100038

10007 Sanders 3/21/2013 3/24/2013 3 Internal
Discussion

Statistical Behavioral/
Variable

Immature Low Outbound Traffic
Volume Ratio
Greater than 4:1

Custom SiLK
Script

http://appliednsm.com
mailto:chris@appliednsm.com
mailto:chris@appliednsm.com

The results of this command are shown in Figure 7.3. You will see that our search

returns both a signature, and the indicator that is used in the signature.

At some point it might come in handy to print column headers as well. Grep just

sees data and isn’t aware of columns, so it doesn’t have this capability inherently.

One option would be to use Sed or Awk for pattern matching, or you can just use

the head command to print the first row of the file before performing your grep com-

mands, like so:

head -1 master_ioc_list.csv && grep 7100031 master_ioc_list.csv

The commands are executed consecutively by combining them with two amper-

sands (&&). The output of this command is shown in Figure 7.4.

Now, if we want to simply pull out the signature itself, we can redirect the results

of the previous command (without the column headers) to another grep command

that searches for lines that have the text “sid” in them, to only match signatures rather

than indicators. Then, we can pipe that output to the cut command with the pipe ‘|’

symbol. Cut is used by specifying the comma delimiter with the –d flag, and selecting

the eleventh column with the –f flag. This command would look like this:

grep 7100031 master_ioc_list.csv | grep sid | cut –d , –f11

Another method that will achieve the same goal is using the awk command. Awk,

with the –F switch, can be directed to print a specified column, which we have done

here:

grep 7100031 master_ioc_list.csv | grep sid | awk –F ‘{print $11}’

These techniques can be expanded for more granular searches. For instance, you

might want to retrieve every IP address within the list that is still active (not retired)

so that you can deploy this to a detection mechanism. You can do this with the fol-

lowing command:

grep –v retired master_ioc_list.csv | grep IP | cut –d , -f11

FIGURE 7.3

Search the CSV File for a SID

FIGURE 7.4

Output Results with Column Headers

165Managing Indicators and Signatures

Figure 7.3
Figure 7.4

In the first grep statement, you will notice the addition of the –v flag. This tells

grep to match everything NOT matching the specified pattern. In this case, we are

telling grep to list all of the indicators that are not retired, which will include both

immature and mature indicators.

CAUTION

It is important to understand that even properly formatted CSV files can generate unexpected

output when proper care isn’t given to the data. For instance, what if a signature contains a

comma? This will cause tools such as cut to identify columns incorrectly. You should be aware

of misplaced delimiters in your CSV files, and perhaps do some type of substitution of certain

characters if necessary to prevent parsing errors.

Next, we might want to search for all of the indicators that are domain names, and

are actively deployed to the Snort IDS. This is done with this command:

head -1 master_ioc_list.csv && grep–v retiredmaster_ioc_list.csv| grep

Domain | grep Snort

You will notice the capitalization of the “Domain” and “Snort” searches that are

used with grep. By default, grep is case sensitive, so we want to use this capitalization

so that it matches our line entries appropriately, rather than matching any other

instances of those words with other capitalizations. If you would like to make your

searches not case-sensitive, you can use the –i command line argument. It is impor-

tant to be aware of the case of items you are searching for so that grep can be used

properly, with the –i switch if necessary.

Whenever the CSV file requires an addition or modification, this can be done

with your favorite command line text editor, such as Vim, Emacs, or Nano. When

doing this, be wary of accidentally creating new lines, which could negatively impact

parsing of the file.

Indicator/Signature Revision Table
Earlier, I mentioned that indicators and signatures often undergo revisions, and it

was important to track those revisions. When you are using a master CSV file to

manage these items, you can manage the modification of them with an additional

file. This file is meant to be very simple, and it only contains the unique identifier

for the indicator or signature, the date of the change, the author of the change, the

new revision number, the column value that changed, the old and new versions of

the changed data, and a note explaining why the change occurred. This will serve as

an audit trail so that the evolution of an indicator or signature can be followed, and

so that it can be referenced in the event that an error was made. You should note that

a change isn’t only recorded when the indicator or signature itself changes, but also

when any of the contextual information associated with it changes, such as the detec-

tion method to which it is deployed. An example of this spreadsheet is shown in

Table 7.3.

166 CHAPTER 7 Detection Mechanisms, IOCs, and Signatures

Table 7.3 Indicator/Signature Revision Table

GUID Author Date Revision

Change

Field Old Value New Value Note

10001 Sanders 3/20/2013 2 Confidence Moderate High Working very
well. No false
positives.

10005 Sanders 3/21/2013 2 Type |
Indicator

Port | 9966 Port/Protocol |
SSH/9966

Added New Intel

10005 Randall 3/21/2013 3 Deployment NULL Bro Script Developed
Script

10005 Smith 3/24/2013 4 Life Cycle
Stage |
Confidence

Immature | Low Mature | Moderate Few false
positives.
Continue to
monitor.

10007 Sanders 3/22/2013 2 Indicator Outbound Traffic
Volume Ratio
Greater than 2:1

Outbound Traffic
Volume Ratio
Greater than 3:1

Too many false
positives.

10007 Sanders 3/24/2013 3 Indicator Outbound Traffic
Volume Ratio
Greater than 3:1

Outbound Traffic
Volume Ratio
Greater than 4:1

Still too many
false positives.

1
6
7

M
a
n
a
g
in
g
In
d
ic
a
to
rs

a
n
d
S
ig
n
a
tu
re
s

This CSV file isn’t meant to be all-encompassing, but rather, it should be used in

conjunction with theMaster Indicator/Signature List CSV file. You can then use sim-

ilar commands to view the audit trail associated with an item:

head -1 master_ioc_list.csv && grep 10005 master_ios_list.csv

The results of this command illustrate the audit trail for indicator 10005, shown in

Figure 7.5.

If you’ve never interactedwith data usingLinux command-line tools, itmay be a bit

cumbersome at first, and even a little intimidating.However, as you do thismore, it will

become second nature. The best way to learn is to immerse yourself in the tools, and

keep trying something until you figure it out. Eventually, you will encounter some of

the limits of tools like grep, and begin using other tools such as sed and awk for different

tasks. A strong knowledge of these tools is very important for any analyst. Eventually,

you might even combine these tools into scripts to automate common tasks.

While CSV files are nice because of their simplicity, this same simplicity requires

that extra attention be paid to the sanity of the data. Since most inputs or modifica-

tions to these files will be made with a text editor, there are no controls in place to

ensure data remains in a proper format. This might result in an analyst accidentally

messing up the formatting of the CSV file or placing data in the wrong column. This

is why it is critical to maintain backups of these files. It is also highly recommended

that the sanity of the data is checked frequently. If you depend upon these CSV files

for the operation of your SOC, it is worth investing the time to write a custom script

that can ensure no errors exist within the data. This can be done in relatively short

order using something like the CSV library for the Python scripting language.

If you’d like to download templates for these CSV files you can do that at http://

www.appliednsm.com/resources.

INDICATOR AND SIGNATURE FRAMEWORKS
One of the biggest problems facing the information security and intelligence com-

munities at large is the lack of a common framework for the creation, management,

and distribution of indicators and signatures. While everybody uses them, most

everyone tends to use their individual methods for organizing and storing the data.

Because of this, the indicators and signatures are not portable, and can’t easily be

shared with other organizations. While sharing of the data itself can often be

FIGURE 7.5

Audit Trail for Indicator 10005

168 CHAPTER 7 Detection Mechanisms, IOCs, and Signatures

http://www.appliednsm.com/resources
http://www.appliednsm.com/resources
Figure 7.5

accomplished rather easily, such as with lists of IP addresses, sharing contextual

information is where the real challenge arises.

In recent years, groups have made attempts to create frameworks for the sharing

of indicator and signature data.

OpenIOC

One of the biggest advancements towards a common framework for threat intelli-

gence is Mandiant’s OpenIOC project. This project, originally designed to enable

Mandiant’s products to codify intelligence to rapidly search for potential security

breaches, was released in 2010 as a standardized and open source schema for com-

munication of threat information.

At its core, OpenIOC is just an XML schema used to describe technical charac-

teristics that identify adversarial activities. The OpenIOC scheme allows you to man-

age IOC’s with a lot of the contextual information that is required in order to use the

indicator efficiently. An example of an OpenIOC is shown in Figure 7.6.

In this IOC, you can see several pieces of contextual information are stored,

including:

• 9ad0ddec-dc4e-4432-9687-b7002806dcf8 – A unique identifier

• PHISH-UPS-218934 – A short description or additional identifier

• Part of the UPS Phishing scheme reported on 12/4. – A detailed description

• Chris Sanders – The author

• 2013-02-20 T01:02:00 – The date/time the indicator was created

FIGURE 7.6

A Simple IOC in OpenIOC XML Format

169Indicator and Signature Frameworks

Figure 7.6

• http://www.appliednsm.com - The source of the indicator

• Mature – The stage of the indicator in the IOC life cycle

• Atomic – The type of indicator

• E-Mail/Subject – The classification of the indicator

• UPS Alert: Shipment Delayed – The indicator itself. In this case, an e-mail

subject line.

If you have a Windows computer available, one of the easiest ways to get up and

running with creating and modifying IOCs using the OpenIOC format is to use

Mandiant’s free OpenIOC Editor tool. The tool is fairly simple, and allows you to

create IOCs from scratch or modify existing IOCs.

When you launch OpenIOC Editor for the first time you will be asked to select

your IOC directory. Once you do this, you will be presented with a screen similar to

what is shown in Figure 7.7. The OpenIOC Editor is broken into three separate areas.

The left pane contains a list of IOCs in the IOC directory. If you click on one of these

IOCs, it will populate the other two areas. In the upper right pane you will find all of

the basic information about the IOC, including its name, the author, its GUID, its

created/modified dates, a description, and any custom criteria that has been defined

such as source, stage, or type. In the lower right pane, you will find the indicator

itself, which may include multiple indicators linked with AND/OR logic statements.

OpenIOC Editor treats each IOC as a separate file, which is what you will find in

the IOC directory you specified after you create new IOCs.

FIGURE 7.7

Mandiant’s OpenIOC Editor for Windows

170 CHAPTER 7 Detection Mechanisms, IOCs, and Signatures

http://www.appliednsm.com
Figure 7.7

Unfortunately, OpenIOC Editor only exists for the Windows platform as of the

writing of this chapter. Therefore, if you are using a *nix-based platform as most

NSM analysts are, creating and editing IOC’s in this format will have to be a manual

endeavor. Alternatively, you can use a virtual machine or WINE to launch the Open-

IOC Editor.

If you utilize any of Mandiant’s commercial products then you can use the major-

ity of those products to interact with indicators in this format. The OpenIOC standard

is gaining a lot of popularity, and it is only a matter of time before more free publicly

available tools for the management of OpenIOC indicators become available.

You can read more about the OpenIOC format, download the XML schema, and

even download some sample IOCs at http://www.openioc.org.

STIX

The Structured Threat Information eXpression (STIX) is an open source community-

driven project developed by MITRE for the US Department of Homeland Security.

STIX is designed to standardize threat intelligence information, and is gaining pop-

ularity within the government and defense arenas.

The STIX architecture is based upon independent constructs and how they are

related (Figure 7.8).

At the core of this architecture are observables, which STIX defines as stateful

properties or measurable events pertinent to the operation of computers and net-

works. This could be a service being stopped, a file name, a system rebooting, or

FIGURE 7.8

The STIX Architecture

171Indicator and Signature Frameworks

http://www.openioc.org
Figure 7.8

a connection establishment. These observables are stored in an XML format that uses

the CybOX language, another MITRE project, for representing observables. An

example observable is shown in Figure 7.9. This observable represents an IPv4

address, with a few related objects. The objects are linked together through the

use of globally unique identifiers.

Within the STIX framework, observables can be linked to indicators, incidents,

TTPs, specific threat actors, adversary campaigns, specific targets, data markings, and

courses of action.These entities come together to formmore than a simple indicatorman-

agement system, rather, they form a complete threat intelligence management system.

Indicators are representations of potentially anomalous activity that are formed

by combining observables. Figure 7.10 shows an indicator containing domains that

are part of a watch list.

FIGURE 7.10

A STIX Indicator with Domains in a Watch list

FIGURE 7.9

A STIX Observable Representing an IP Address with Related Objects

172 CHAPTER 7 Detection Mechanisms, IOCs, and Signatures

Figure 7.10
Figure 7.9

You should notice that this indicator is actually comprised of a single observable:

a list of domain names. This would be an example of an atomic indicator within the

STIX framework. An indicator can include as many observables as necessary, which

means they are well suited for behavioral indicators as well. When these indicators

are tied to the other constructs within STIX, there are a lot of possibilities.

As of the writing of this book, the only methods that exist for creating, editing,

and managing STIX objects are the newly released set of Python bindings for writing

custom Python applications, or using simple text or XML editors.

The STIX framework represents a lot of potential. Along with DHS, STIX is cur-

rently being evaluated by several organizations, including multiple government and

defense agencies, defense contractors, and private organizations. While there aren’t

currently a lot of tools available to help with the management of STIX, this will likely

change over time as the framework matures and expands.

You can learn more about STIX at http://stix.mitre.org.

CONCLUSION

In this chapter we’ve looked at the fundamentals of detection mechanisms, indicators

of compromise, and signatures along with the role they play in NSM detection. This

includes indicator types, indicator and signature critical criteria, and some best prac-

tices for creating and managing them. We also looked at methods that smaller and

younger security programs can use for the management of indicators and signatures,

as well as the OpenIOC and STIX frameworks for IOC management. The remainder

of the Detection portion of the book will be devoted to the applied use of several

detection mechanisms that ingest indicators and signatures.

173Conclusion

http://stix.mitre.org

CHAPTER

Reputation-Based Detection 8
CHAPTER CONTENTS

Public Reputation Lists ... 176

Common Public Reputation Lists ..177

Malware Domain List ... 177

Abuse.ch ZeuS and SpyEye Trackers ... 178

PhishTank .. 179

Tor Exit Node List .. 179

Spamhaus Block Lists ... 180

Other Lists .. 181

Common Issues when Using Public Reputation Lists182

Automatic Blocking ... 182

Pruning of Lists ... 182

Shared Servers ... 183

Advertising Networks ... 183

Further Reducing of False Positives with Whitelists 183

Automating Reputation-Based Detection .. 184

Manual Retrieval and Detection with BASH Scripts184

Download and Parsing a List ... 184

Detection of Malicious IP Addresses in Session Data 186

Detection of Malicious Domains in Full Packet Capture Data 188

The Collective Intelligence Framework (CIF) ..189

Updating and Adding Indicator Lists .. 190

Querying Indicators ... 191

Deploying Indicators .. 192

Snort IP Reputation Detection ..193

Suricata IP Reputation Detection ..195

Reputation Detection with Bro ..197

Conclusion .. 201

The most basic form of intrusion detection is reputation-based detection. This type of

detection is performed by attempting to identify communication between friendly

hosts on the network you are protecting, and hosts on the Internet that are believed

to be malicious based upon a reputation for malicious actions.

By definition, reputation is a widespread belief that someone or something has a

particular habit or characteristic. In the context of network defense, a host can have

175

either a positive or negative reputation, or no reputation at all. Generally, hosts within

your internal network have a positive reputation because they are trusted under the

purview of your network security team. A host with a negative reputation is believed

to be a potential threat to your trusted systems.

There can be several reasons that an organization will deem a host to have a

negative reputation. The most common is that a publicly accessible system will

be compromised and used to host malicious files, resulting in a negative reputation,

as people who visit the site are often infected with some type of malware. In indus-

tries where corporate espionage is rampant, IP ranges associated with competitors

may have a negative reputation because of the threat of intellectual property theft.

In the realm of government and defense networks, hosts with negative reputations

will often include those that are known to belong to unfriendly foreign governments,

or devices that are known to have been compromised by the intelligence services of

those governments.

In this chapter, we will examine public reputation lists and several ways that

reputation-based detection can be performed. This will include an overview of

performing reputation-based detection with BASH Scripts, CIF, Snort, Suricata,

and Bro.

PUBLIC REPUTATION LISTS
In reality, most organizations perform reputation-based detection by utilizing public

lists of atomic indicators (most commonly IP addresses and domain names) with neg-

ative reputations. These blacklists are then fed into some type of detection mecha-

nism so that analysts are alerted when a friendly hosts appears to communicate with

an external device on one of these lists.

There are several benefits to using public reputation lists. First, most organiza-

tions simply don’t have the visibility to create sizable reputation lists on their own.

Even with sensors spread throughout offices globally, there are limitations to

the number of attacks you will see, as well as your ability to investigate them

all fully. Leveraging a public list takes advantage of larger networks of sensors that

report up to the groups that maintain the lists. Additionally, most lists are reason-

able well maintained. A significant number of the hosts that wind up on these

lists are legitimate servers that were only temporarily compromised, such as sys-

tems used in “Watering Hole” attacks where a legitimate site is compromised

in order to target its users. Because of this, it is just as important that negative rep-

utation hosts are removed from these lists once they have proven to be more

reputable.

There are also some negative aspects to using public reputation lists. In a lot of

cases, the maintainers of these lists don’t always provide context with the individual

IP addresses or domains on the list. When an alert is generated based upon commu-

nication with a host on one of these lists, you don’t really know why the host has a

negative reputation. It could be because the host was at one time referring visitors to

176 CHAPTER 8 Reputation-Based Detection

another malicious website thanks to a temporary persistent XSS flaw, or it could be

because the host is a primary node in a major botnet. Some type of context is helpful

in pointing the investigation in the right direction.

Ultimately, I believe that the positives of public lists outweigh the negatives, and

that the problems with them can be dealt with provided due diligence is taken in vet-

ting the lists and controlling how the list items are utilized. You should ensure that

the lists you choose to incorporate into your detection architecture are consistent with

organizational goals, and that analysts are properly trained in how to assess and

investigate alerts generated from this intelligence. If leveraged properly,

reputation-based detection can be one of the few “easy wins” an NSM practitioner

can have when it comes to finding malicious activity on the network.

Common Public Reputation Lists

There are many public reputation lists available. Here are a few of my favorites,

along with some pros and cons of each, and how they can best be utilized.

Malware Domain List
Regardless of the global concerns related to targeted attacks by sophisticated adver-

saries, the majority of an analyst’s day will be spent investigating incidents related to

malware infections on their systems. Because of this, it becomes pertinent to be able

to detect malware at both the host and network level. One of the easiest ways to detect

malware at the network level is to use public reputation lists that contain IP addresses

and domain names that are known to be associated with malware-related

communication.

Malware Domain List (MDL) is a non-commercial community project that

maintains lists of malicious domains and IP addresses. The project is supported

by an open community of volunteers, and relies upon those volunteers to both pop-

ulate the list, and vet it to ensure that items are added and removed from the list as

necessary.

MDL allows you to query its list on an individual basis, or download the list in a

variety of formats. This includes CSV format, an RSS feed, and a hosts.txt formatted

list. They also provide lists that include only new daily list entries, and lists of sites

that were once on the list but have now been cleaned or taken offline. MDL is one of

the largest and most used reputation lists available.

I’ve seen many organizations that have had a great deal of success detecting mal-

ware infections and botnet command and control (C2) by using MDL as an input for

reputation-based detection. The vastness of MDL can sometimes result in false pos-

itives, so an alert generated from a friendly host visiting an entry found onMDL isn’t

enough by itself to automatically declare an incident. When one of these alerts is

generated, you should investigate other data sources and a wider range of commu-

nication from the friendly host to attempt to determine if there are other signs of an

infection or compromise.

You can learn more about MDL at http://www.malwaredomainlist.com.

177Public Reputation Lists

http://www.malwaredomainlist.com

Abuse.ch ZeuS and SpyEye Trackers
ZeuS and SpyEye are incredibly popular crimeware kits that are used by attackers to

infect systems and perform a variety of malicious tasks (Figure 8.1). The kits them-

selves provide the ability to create malware that infects machines via drive-by down-

load, eventually joining them to a botnet that the kit can be used to control. At one

time, ZeuS was the largest botnet in the world, with SpyEye being one of its biggest

competitors. Even though the creator of ZeuS announced in 2010 that he was retiring

the source code, its public release has ensured that ZeuS infections remain prevalent

today. SpyEye infections are also still very common, even though the creator of the

software was allegedly caught and jailed in 2013.

ZeuS Tracker and SpyEye Tracker are projects that track command and control

servers on the Internet that are used to control Zeus and SpyEye infected machines. In

addition to this, these services also track hosts that are infected with Zeus and SpyEye

files, including those hosting drive-by download exploits. These lists allow for user

submission, and list contents can be queried individually, or downloaded as a single

list. These lists can be downloaded in a variety of formats, including by domain or IP

only, or in the form of Squid, iptables, or host file block lists. They also maintain a list

of recently removed entries.

FIGURE 8.1

Zeus Tracker

178 CHAPTER 8 Reputation-Based Detection

Figure 8.1

I’ve found that both of these lists tend to be high quality with a minimal number of

false positives when utilized for reputation-based detection. The way you handle the

investigation of an alert generated by communication with a host on one of these lists

depends upon the nature of the communication, and whether the friendly host

appears to actually be infected with one of these types of malware.

You can learn more about the ZeuS Tracker at https://zeustracker.abuse.ch/, and

SpyEye tracker at https://spyeyetracker.abuse.ch/.

PhishTank
A great number of targeted attacks begin with some type of phishing as the initial

attack vector. Most organizations have more success detecting these types of com-

promises after this initial stage, however, the ability to know when users are being

redirected to known phishing websites can be useful for early detection of an incident

that is currently happening, or for a retrospective investigation of an incident that has

already occurred.

PhishTank, operated by OpenDNS, is a free community-driven website that

allows for the sharing of phishing related data. Once registered, users can submit

links they’ve found that appear to be associated with phishing attempts. PhishTank

is unique because it relies on community verification in addition to community sub-

mission. In order for any URL to appear on its list, it must be verified by a certain

number of registered PhishTank users. Users who have successfully verified more

URLs have more weight to their verifications, so it takes a smaller number of ver-

ifications from these more trusted users.

One especially useful feature is their web-based search that allows you to search

based upon the “Targeted Brand”, or company name, that is being used for the phish-

ing attack. If you happen to work for an organization that is frequently targeted for

use in phishing schemes (such as a bank), then you can utilize the PhishTank list to

derive adversaries who may be looking to prey on your customers.

PhishTank provides their list in a variety of formats, along with an API for inte-

gration with custom applications. While PhishTank doesn’t have a web-based forum,

it does have open mailing lists for users and developers.

If you deploy PhishTank listings into a detection mechanism on your network,

then you should pay special attention to everything that occurs immediately follow-

ing a device’s initial visit to a known phishing site. Particularly, you will want to look

for any additional redirections, the download of any executable content, or a user

inputting their credentials into the site.

You can learn more about PhishTank at http://www.phishtank.com/.

Tor Exit Node List
Normally, when you communicate with a device on the Internet, such as a web server,

your client browses directly to that device. For the web server owner, this results in the

web server generating a log of the communication containing the client’s IP address.

Additionally, if the web server is monitored by an NSM sensor, the client’s IP address

will appear in other data sources such as packet capture data or session data.

179Public Reputation Lists

https://zeustracker.abuse.ch/
https://spyeyetracker.abuse.ch/
http://www.phishtank.com/

One method commonly used to prevent a client’s true source IP address from

showing up in these logs is a service like Tor. Tor is an open network that allows

a user to mask their IP address so they can remain anonymous while accessing

devices on the Internet.

When you browse to a web server utilizing a Tor client, your outbound traffic is

routed to the Tor network instead of the destination web server. When this traffic is

routed into the Tor network, it is eventually redirected to an exit node. It is the exit

node that will actually initiate communication with the web server. This means that

the logs generated by the web server and any NSM infrastructure will show the IP

address associated with the Tor exit node rather than the actual client that initiated

the communication. This process is illustrated in Figure 8.2.

If someone attempts to anonymize his or her activities while communicating with

a device on your network, then this would constitute a suspicious action and might be

worth investigating. With that said, plenty of individuals utilize Tor for legitimate

anonymization. Traffic originating from a Tor exit node might warrant some suspi-

cion, but this factor alone is not enough on its own to draw any sort of conclusion

during an investigation.

The detection of traffic sourced from the Tor network can be accomplished by

implementing a listing of Tor exit nodes into a detectionmechanism. One such list exists

at blutmagie.de, and can be queried from the browser or downloaded in a CSV file.

You can learn more about the Tor Exit Node list at http://torstatus.blutmagie.de/.

Spamhaus Block Lists
Spamhaus is an international nonprofit organization that is devoted to tracking spam

operations and sources on the Internet. They host multiple lists, including:

• Spamhaus Block List (SBL) – A database of IP addresses from which Spamhaus

does not recommend accepting e-mail.

• Exploits Block List (XBL) – A database of IP addresses of hijacked systems

infected by third party exploits, including open proxies, worms/viruses with

built-in spam engines, and other types of exploits.

FIGURE 8.2

Tor Communication Process

180 CHAPTER 8 Reputation-Based Detection

http://torstatus.blutmagie.de/
Figure 8.2

• Policy Block List (PBL) – A database of end-user IP address ranges that

should not be delivering unauthenticated SMTP e-mail to any Internet

mail server except those provided for specifically by an ISP for that customer’s

use. This essentially prevents hosts that shouldn’t be sending mail from

doing so. This is primarily used to help networks enforce their acceptable use

policies.

• Domain Block List (DBL) – A database of domains found in spam messages.

• Don’t Route or Peer (DROP) – A listing of hijacked network blocks of IP space

that are directly allocated to spam hosting operations. These are blocks of IP

addresses that are typically forgotten about by network owners that get reclaimed

by spammers through a variety of techniques including the registration of

abandoned domain names to accept point-of-contact e-mails, or by document

forgery or social engineering tactics. Spamhaus also provides an Extended

DROP (EDROP) list, which contains everything in the DROP list, as well as IP

addresses that it believes to be more generally associated with cyber crime,

but not directly allocated to spam distributors.

The SBL, XBL, PBL, and DBL lists are available for free for non-commercial

use. If you don’t meet these criteria, then you are required to purchase a subscription

to these services. The DROP and EDROP lists, however, are free for use, which

makes them good candidates for inclusion in reputation-based detection systems.

The DROP/EDROP lists are well maintained as well, so they can be useful for detec-

tion of internal hosts who are communicating with known spam hosting systems.

Of particular interest is the DROP list’s integration with the Emerging Threats

(ET) signature repository. ET maintains a set of Spamhaus DROP list detection sig-

natures for use with either the Snort or Suricata intrusion detection systems. This

really simplifies the implementation of this list.

While it isn’t entirely fruitful to utilize these lists to detect incoming spam, it

might be worth knowing if a friendly host (other than a mail server) is communicat-

ing with systems that fall into the ranges typically used by spammers.

You can learn more about the Spamhaus lists at http://www.spamhaus.org/drop/.

Other Lists
A plethora of other IP and Domain reputation lists are available. In fact, there are far

too many to cover in this book. Others public lists you might want to look into include:

• AlientVault Labs IP Reputation Database:

http://labs.alienvault.com/labs/index.php/projects/open-source-ip-reputation-

portal/

• MalC0de Database

http://malc0de.com/database/

• SRI Malware Threat Center

http://www.mtc.sri.com/live_data/attackers/

181Public Reputation Lists

http://www.spamhaus.org/drop/
http://labs.alienvault.com/labs/index.php/projects/open-source-ip-reputation-portal/
http://labs.alienvault.com/labs/index.php/projects/open-source-ip-reputation-portal/
http://malc0de.com/database/
http://www.mtc.sri.com/live_data/attackers/

• Project Honeypot

https://www.projecthoneypot.org/list_of_ips.php

• Emerging Threats Rules

http://www.emergingthreats.net/open-source/etopen-ruleset/

Common Issues when Using Public Reputation Lists

While reputation-based detection can often be considered an “easy win,” a few com-

mon pitfalls are associated with detecting malicious activity based upon communi-

cation with systems that have negative reputations.

Automatic Blocking
It is generally never a good idea to utilize public blacklists in conjunction with auto-

mated blocking or intrusion prevention software without some form of manual vet-

ting. This can lead to unintentional blocking of legitimate sites, or even potentially

causing a denial of service condition on your network.

In one famous case, the USNavy enabled automatic blocking of hosts based upon

a third-party reputation list that wasn’t fully vetted. When this was turned on, the

entire Navy found itself blocked from accessing a number of legitimate websites,

including Google.

In another example, an organization was ingesting a public reputation list directly

into its internal DNS servers in order to attempt to block access to malicious domains

by redirecting name queries for them. This worked fine, until one day the list they

were ingesting was populated with the company’s own mail server. The result was

that no users were able to send and receive mail, and it took the network adminis-

trators quite a while to figure out what was causing the problem.

There is nothing more embarrassing than causing a scenario like one of these in

your own organization. Because of this, you should stick to using public reputation

lists with detection-only mechanisms.

Pruning of Lists
It is very common for Internet-facing servers to become compromised and tempo-

rarily used for the distribution of malware or other malicious content, ultimately

resulting in the server’s IP address or domain name being added to a blacklist. When

this happens, usually the owners of these systems will eventually find out they have

been compromised, and they will clean up the system. When this happens, the server

isn’t always removed from the blacklist in a timely manner. As a result, false positive

alerts are generated for communication to this server.

These types of false positives are common, and are something you can never truly

get away fromwhen performing reputation-based detection. However, you should do

your best to minimize these types of false positives so that you don’t waste analysis

time. The best way to do this is to ensure that the lists you are ingesting are as judi-

cious about removing hosts from their lists as they are about adding them. Addition-

ally, you should ensure that you pull updated lists from their sources on a frequent

basis. I’d recommend doing this at least daily. There are a number of ways to auto-

mate this process, which we will look at later in this chapter.

182 CHAPTER 8 Reputation-Based Detection

https://www.projecthoneypot.org/list_of_ips.php
http://www.emergingthreats.net/open-source/etopen-ruleset/

Shared Servers
It is incredibly common for IP addresses of shared servers to end up on public black-

lists. In this scenario, a domain associated with a single user of a shared server, often

one provided by an ISP or hosting provider, has become compromised and is hosting

some type of malicious logic. The problem is that rather than the individual domain

ending up on a blacklist, the IP address of the server is added. This means that when-

ever users visit another website hosted on this shared IP address, they will generate

an alert when no malicious activity is actually occurring. This can be responsible for

a large number of false positives.

With that said, if one website on a shared web server is compromised, it greatly

increases the probability that other websites on that server are also compromised.

With no additional context, you should still investigate every alert. If you start to

find shared servers that appear on these lists because of issues that wouldn’t affect

all of the hosts on the server, such as cross-site scripting (XSS), then you might con-

sider removing the IP address entry from the blacklist, and replacing it with an entry

specific to the domain that is actually exhibiting malicious logic.

Advertising Networks
Advertising networks allow their customers to submit ad code that is automatically

placed onto the websites of the network subscribers. This is a huge industry, and it is

how a lot of websites generate revenue. This appeals to attackers because it allows

them to attempt to place malicious code into advertisements and have the ads distrib-

uted to popular websites automatically by the ad network. While most ad networks

perform a review process that eliminates this practice, not all of them do, and some-

times attackers are able to subvert or slip through these processes.

This practice can result in domains associated with advertising networks being

placed onto public blacklists. When this occurs and you are performing detection

based upon a public blacklist, it will result in an alert being generated every time

a user is presented with an advertisement from the ad network, whether it is malicious

or not. This can be responsible for a massive number of false positives. If you don’t

believe me, try checking your organization’s web logs for requests to the akamai.com

or scorecardresearch.com domains, which both belong to major advertising net-

works. You will find that they are utilized by a large number of popular websites.

The most practical way to eliminate the excessive number of false positives gen-

erated by advertising networks is to remove any reference to these networks from the

blacklists you are ingesting. These ads generally don’t contain any malicious code,

but rather, contain code that redirects the user somewhere else that contains the real

malicious logic. It’s better to rely on other detection mechanisms at this point, rather

than having to deal with all of the false positives that could be generated otherwise.

Further Reducing of False Positives with Whitelists
We’ve only talked about lists containing indicators with negative reputations (black-

lists) to this point. However, there is merit to incorporating lists of indicators with

positive reputations (whitelists) into your network as well. While blacklists can yield

very positive results when paired with a detection mechanism, they are prone to false

positives, especially when the lists aren’t vetted well.

183Public Reputation Lists

http://akamai.com
http://scorecardresearch.com

One tactic thatcaneffectivelyminimize theamountof falsepositivesassociatedwith

reputation-based detection is use of the Alexa Top Sites list as a whitelist. Their Top

Sites list contains the top 1,000,000 visited sites on the Internet. This list can be pruned

down to the top 100-500 sites, and then those results can be used in conjunction with

blacklists to ensure that none of these whitelisted websites will trigger an alert if they

are found on the blacklists. It is possible that one of these sites could become infected

with some type ofmalware, but the chanceof that occurring is small, and if it doesoccur,

it is likely that the companies supporting the sites will quickly mitigate the infection.

AUTOMATING REPUTATION-BASED DETECTION
To perform reputation-based detection, you need two components. First, you need at

least one list of IPs or domains with negative reputations. We’ve already covered

several of the publicly available blacklists, but this can also be supplemented with

private, industry-specific, and internal lists. Once you have at least one list, you must

feed the contents of that list into some type of mechanism for performing detection

based upon the entries in the list. There are several options for automating and

accomplishing these tasks.

Manual Retrieval and Detection with BASH Scripts

The rest of this chapter will be devoted to using various free and open source tools for

reputation-based detection. All of these tools can be effectively used in most orga-

nizations, but with that said, this provides the perfect opportunity to demonstrate just

how simple reputation-based detection can be. It is so simple, in fact, that you can

utilize basic Linux BASH scripting to interact with collected data to accomplish the

entire process. In these next few examples, we will use BASH scripts to download

and parse a public reputation list, and then use that list to detect malicious domains

and IP addresses in network traffic.

Download and Parsing a List
As I stated above, the first thing you need to begin performing reputation-based

detection is a list of things that are reputed to be bad. In this case, we will take

one of the more popular public lists, Malware Domain List. MDL maintains both

a domain and IP list, and we want to get both of them. Ultimately, we want each list

to reside as a text file with entries delimited by new lines.

The IP address list can be downloaded using curl with the following command:

curl http://www.malwaredomainlist.com/hostslist/ip.txt > mdl.iplist

The greater than symbol (>) is used to redirect the output of the command to the

file named mdl.iplist. If you examine this file, everything will look as you might

expect. However, in order for us to parse the list properly later, we have to address

one discrepancy.

If you run the command “file mdl.iplist,” the tool will tell you that the file

we’ve just created is of the type “ASCII text, with CRLF line terminators.”

Windows-based operating systems represent a new line with both the line feed

184 CHAPTER 8 Reputation-Based Detection

http://www.malwaredomainlist.com/hostslist/ip.txt

(\n in ASCII or 0x10 in hex) and carriage return (\r in ASCII or 0x0D in hex)

characters. Unix-based operating systems represent a new line with only the line feed

character. If we attempt to parse this file using Unix-based tools, the addition of the

CR character at the end of every line will result in unexpected output.

There are several ways that the CR character can be stripped from each line in the

file, but the easiest is to use the dos2unix utility. If dos2unix is not natively installed

on the distribution you are using, it can be installed easily from most standard repos-

itories (apt-get install dos2unix, yum install dos2unix, etc). We can pipe the

output of the curl command directly to this utility before writing the output to a file.

Our modified command looks like this:

curl http://www.malwaredomainlist.com/hostslist/ip.txt |

dos2unix>mdl.iplist

Nowwe need to accomplish the same task with the list of malicious domains from

MDL. This command will initially look very similar (Figure 8.3):

curl http://www.malwaredomainlist.com/hostslist/hosts.txt |

dos2unix>mdl.domainlist

If you run this command and then open the mdl.domainlist file, you will notice a

few problems. At the top of the file, there are some extra lines of text, along with

some blank lines that need to be removed. If we attempt to parse the file in its current

state, those lines will generate errors. We can get rid of them by using sed, and

instructing it to remove the first six lines of the file:

curl http://www.malwaredomainlist.com/hostslist/hosts.txt | sed

‘1,6d’ | dos2unix>mdl.domainlist

FIGURE 8.3

The Malware Domain List

185Automating Reputation-Based Detection

http://www.malwaredomainlist.com/hostslist/ip.txt
http://www.malwaredomainlist.com/hostslist/hosts.txt
http://www.malwaredomainlist.com/hostslist/hosts.txt
Figure 8.3

Next, notice that each line has two values, with the first column containing the

loopback IP address 127.0.0.1, and the second column containing the actual domain.

This list is presented in this format so that the list can be easily copied and pasted into

a host’s file for redirection of requests to these hosts. This isn’t something we are

using the list for right now. This can be done by using awk to select only the data

in the second column.

curl http://www.malwaredomainlist.com/hostslist/hosts.txt | sed

‘1,6d’ | awk ‘{print $2}’ | dos2unix>mdl.domainlist

The resulting output of this file is shown in Figure 8.4.

We should now have two properly formatted files containing IP addresses and

domains that we can use for detection. These lines can be placed into a single script,

which can be run at a regular interval in order to ensure the lists are kept up to date.

I’d recommend using a CRON job to schedule a new download of this data at least

once per day. The following entry into /etc/crontab will run the update script once per

day at 6:30 AM.

30 6 * * * /home/sanders/GatherMDL.sh

Detection of Malicious IP Addresses in Session Data
With lists in hand, now we want to attempt to detect any communication between

hosts on our network and hosts in the list of IP addresses fromMDL. One of the most

efficient ways to do this is to leverage session data. We will write a short script to

perform detection leveraging SiLK.

First, we need to establish the time frame to examine. In this case, we will exam-

ine all traffic occurring within the past hour. We can use the date command to get the

FIGURE 8.4

Our Modified Malware Domain List

186 CHAPTER 8 Reputation-Based Detection

http://www.malwaredomainlist.com/hostslist/hosts.txt
Figure 8.4

current date and time, as well as the date and time an hour ago. These will be set to

variables.

start¼$(date -ud ’-60 minutes’+%Y/%m/%d:%T)

endd¼$(date -ud+%Y/%m/%d:%T)

Next, we must take the line delimited list of IP addresses we generated earlier,

and convert that into an IP set that can be iterated by SiLK’s rwfilter tool. This is

done with the rwsetbuild command. Here, we provide rwsetbuild with the name

of the input file, and the name of the output file, which is mdl.domainlist.set:

rwsetbuild mdl.iplist mdl.iplist.set

Finally, we can use rwfilter to perform a query for any records matching the IP

addresses in the list within the past hour. The command is:

rwfilter –start-date¼$start –end-date¼$end --anyset¼mdl.iplist.set

--proto¼0-255 --type¼all --pass¼stdout | rwcut

This command utilizes several of the same rwfilter options we examined in

Chapter 4, along with the variable names created earlier as the value for that the --

start-date and --end-date options. The --anyset option iswhere the input file is specified.

These elements combined will result in the following completed script:

#!/bin/bash

start¼$(date -ud ’-60 minutes’+%Y/%m/%d:%T)

end¼$(date -ud+%Y/%m/%d:%T)

rwsetbuild mdl.iplist mdl.iplist.set

rwfilter --active-time¼$start-$end --anyset¼mdl.iplist.set

--proto¼0-255 --type¼all --pass¼stdout | rwcut

This output of this script is shown in Figure 8.5.

FIGURE 8.5

SiLK Output Matching Bad Reputation IP Addresses

187Automating Reputation-Based Detection

Figure 8.5

Detection of Malicious Domains in Full Packet Capture Data
Our next task is to attempt to detect any communication that is occurring between

friendly hosts and potentially malicious domains found in the list that was pulled

down from MDL. This data won’t be found in session data, so instead, we will look

to packet capture data.

This process will be a bit more involved than examining IP address with rwfilter,

so we will be relying on BASH functions to organize each process. Before writing the

first function, we need to tell the script that we will provide the PCAP file to parse as

an argument within the command line when the script is executed. This is done with

the statement:

pcapfile¼$(echo $1)

The first function we will build utilizes Justniffer (discussed in Chapter 6) to parse

the supplied PCAP file and extract all of the domain names found within HTTP com-

munication occurring over TCP port 80 to a separate file called temp.domains:

ParsePCAP() {

justniffer -p “tcp port 80” -f $pcapfile -u -l “%request.timestamp -

%source.ip ->%dest.ip - %request.header.host - %request.line”>temp.

domains

}

Next, we can write the function that will actually examine the contents of the temp.

domains file for matches from the MDL domain list using grep in a while loop. The

output will display the portion of the HTTP request containing the match. The sed

statement is used to add text to the end of the request that states what domain generated

the match. In addition to outputtingmatches to the console, the tee command is used to

output matches to a file called alert.txt.

DetectMDL() {

while read blacklistterm; do

grep -i $blacklistterm temp.domains | sed “s,$, -

Match\:$blacklistterm,g"| tee -a alert.txt

done<“mdl.domainlist”

}

We can combine these functions into a single script, along with an additional

function that cleans up the temporary file generated while parsing the PCAP:

#!/bin/bash

pcapfile¼$(echo $1)

ParsePCAP() {

justniffer -p “tcp port 80” -f $pcapfile -u -l “%request.timestamp -

%source.ip ->%dest.ip - %request.header.host - %request.line”>temp.

domains

}

188 CHAPTER 8 Reputation-Based Detection

DetectMDL() {

while read blacklistterm; do

grep -i $blacklistterm temp.domains | sed “s,$, -

Match\:$blacklistterm,g"| tee -a alert.txt

done<“mdl.domainlist”

}

CleanUp() {

rm -rf temp.domains

}

ParsePCAP

DetectMDL

CleanUp

Exit

The final output of this script is shown in Figure 8.6.

The scripts shown here are very basic, and could be improved in a lot of ways.

This includes:

• The ability to parse an entire directory instead of just a single PCAP file

• The ability to perform both strict and loose match checking

• Error checking

• Output to syslog, database, e-mail, etc.

We’ve provided a more full featured version of these scripts in a tool called

Scruff, which can be found at http://www.appliednsm.com/scruff.

The Collective Intelligence Framework (CIF)

The Collective Intelligence Framework (CIF) is a cyber threat intelligence manage-

ment system developed by Wes Young at REN-ISAC. CIF allows analysts to define

lists to ingest, and then automatically pulls in those lists on a regular basis. This data

is then normalized and stored in the CIF database. Once this data is stored, it can be

queried with CIF, or used in conjunction with a post process script to be deployed to a

detection mechanism.

CIF comes with the ability to ingest several lists out of the box, including the Zeus/

SpyEye tracker, the Spamhaus DROP list, and many more. Beyond that, it also pro-

vides the ability to write extensions so that you can parse lists that aren’t preconfigured

with the software. Once you’ve ingested these lists, you can utilize output plugins to

send these indicators to whatever detection mechanisms you have in place.

FIGURE 8.6

Matching Bad Reputation Domain Names from a PCAP File

189Automating Reputation-Based Detection

http://www.appliednsm.com/scruff
Figure 8.6

CIF is not included by default in Security Onion. If you’d like to follow along with

the examples in this chapter then you can install it by following the instructions at

https://code.google.com/p/collective-intelligence-framework/wiki/ServerInstall_v1.

Updating and Adding Indicator Lists
When you’ve installed CIF, the first thing you should do is issue commands that will

force CIF to populate its database with entries from the lists it is already configured to

parse. These are broken into two groups, hourly and daily. The lists in the hourly

grouping are updated once every hour, and the lists in the daily grouping are updated

once every day. First, you should update the hourly list with the command:

cif_crontool -d -p hourly

Next, you should update the daily lists, which are much larger. This could take

quite some time depending upon your available bandwidth and the performance of

the system you have CIF installed on. The command for the daily update is:

cif_crontool -d -p daily

Once completed, the CIF database should be populated with results from all of its

preconfigured reputation lists.

CIF also provides a framework for ingesting and parsing additional lists, which

comes in handy if you would like to utilize a reputation list that isn’t already included

with CIF. This is especially useful if you utilize a private reputation list that isn’t

publicly available, or isn’t hosted on the Internet. CIF allows for parsing data in

delimited or non-delimited text files, XML files, JSON files, and more.

The existing feed configuration files can be examined for examples of how to pull

custom feeds into CIF. Figure 8.7 shows the configuration file used to ingest the list

from malwaredomains.com, which are in a delimited text file.

FIGURE 8.7

A CIF Feed Configuration File for a Delimited Text List

190 CHAPTER 8 Reputation-Based Detection

https://code.google.com/p/collective-intelligence-framework/wiki/ServerInstall_v1
http://malwaredomains.com
Figure 8.7

The configuration for this type of feed is fairly minimal. The first section of the

configuration file identifies the location of the feed and sets several default values

such as a confidence rating for the list (65) and an assessment value for classifying

the indicators (malware). The second section of the configuration identifies how the

values in the delimited text map to columns in the CIF database, how the text file is

delimited, and how often the list should be updated. In this case, the text file is delim-

ited by a tab and a form feed character (\t|\f), and the list is update daily.

You can read more about creating custom feed configuration files for varying

data types on the CIF website.

Querying Indicators
With CIF intelligence at our fingertips, we need the ability to query this data. There

are two ways that data can be queried; the CIF Perl client and the web interface. The

Perl client is the default mechanism for interacting with CIF data and the most stable.

Using the CIF command, we can query for any indicator type that might be found

within the CIF database. For example, if we wanted to perform a query for an IP

address that we suspect to be associated with malicious activity, the following com-

mand will accomplish this:

cif –q 112.125.124.165

The –q command specifies a basic query of all CIF data available. CIF also allows

you to search for IP address ranges using CIDR notation, such as 112.125.124.0/24.

The results of this command are shown in Figure 8.8.

In this output, we can see that the IP address in question appears in both the Zeus

Tracker and Alientvault Reputation lists, classified as being part of a botnet.

The output provides a URL for both of these reputation lists so that you can

get more context from the indicator. The output also provides information on

restrictions and confidence associated with the indicator. These values are all con-

figurable within the CIF configuration, as some lists are given a default restriction

and confidence value.

If you run this command a second time, you will notice that an additional entry

appears in the list with “search” listed under the assessment heading. Whenever

someone searches for a particular indicator with CIF, it logs the search and will

FIGURE 8.8

An IP Address Query in CIF

191Automating Reputation-Based Detection

Figure 8.8

output this data in the search results. This is useful for knowing if other analysts are

searching for the same indicator. In some cases, you may find that a particular indi-

cator you are concerned about doesn’t show up in any public reputation lists, but that

multiple analysts within your group are searching repetitively for the same indicator.

This probably means that activity associated with this indicator warrants further

investigation if so many people suspect mischief. In the case of Figure 8.9, the output

of the CIF query shows an indicator that has been searched for multiple times.

If you’d like to suppress the output of entries that are generated from user queries,

you can use the –e flag. This flag will allow you to specify any assessment type you

do not want included in the query results. In this case, you could suppress search

entries by appending “-e search” to the query.

Deploying Indicators
One of my favorite features of CIF is the ability to create and utilize custom output

plugins. These plugins allow you to output indicators contained within the CIF data-

base to a format that is useful for deployment with various detection mechanisms.

Currently, CIF supports the ability to output data to a variety of formats, including

CSV files, ASCII tables, HTML tables, Iptables firewall rules, PCAP filters, Snort

rules, and Bro input.

Be default, CIF will output results to a table format so that they can be read easily

from a terminal window. If you’d like to use one of these other formats, you can the –

p flag. If we wanted to output the results of our previous query to a Snort rule for

detection, we would use the command:

cif –q 112.125.124.165 –p Snort

This command will output a Snort rule for each entry in the search output, which

is shown in Figure 8.10.

FIGURE 8.9

A CIF Query Identifying Multiple Historical Searches

192 CHAPTER 8 Reputation-Based Detection

Figure 8.9

When utilizing CIF output to generate items like Snort rules, you should always

double check the rules before deploying them to make sure they are optimized for

performance and configured in a manner consistent with the standard you are using

for deploying other IDS signatures within your organization. For instance, by default,

CIF-generated Snort rules are only configured to detect traffic going to the listed IP

addresses. In a lot of cases, youmay want to reconfigure these rules to detect traffic to

or from these addresses. Making this adjustment is pretty easy, and is addressed in the

discussion of Snort Rules in the next chapter.

CIF is still in its infancy and isn’t without a few quirks, but it represents a great

deal of potential. The community support for the project has grown tremendously,

with a great deal of users contributing configurations for a variety of list feeds

and output plugins. I’ve also seen several use cases where organizations are using

CIF to successfully manage their reputation-based detection capabilities. If you’d

like to learn more about CIF, you can do so at the project website here: https://

code.google.com/p/collective-intelligence-framework/.

Snort IP Reputation Detection

Snort is one of the world’s most popular signature-based IDS. We will talk about

Snort in great detail in the next chapter, but for now we are going to look at its

reputation-based detection capabilities by using its reputation preprocessor for detec-

tion of communication with potentially malicious IP addresses.

In the past, reputation-based detection for IP addresses with Snort was done with

standard rules. In order to address performance concerns with that method, the rep-

utation preprocessor was developed. This preprocessor runs before all of the other

preprocessors, and does so in an efficient manner so that large lists of IP addresses

can be managed.

The reputation preprocessor is enabled in Snort on Security Onion, but alerting

for it is not. Before adding entries to the reputation preprocessor blacklist, we should

enable alerting. In order to do this, you should first create a file called preprocessor_

rules in the /etc/nsm/rules directory of your SO sensor. This rule should contain the

following rule to allow for alerting of reputation preprocessor events:

alert (msg: “REPUTATION_EVENT_BLACKLIST"; sid: 1; gid: 136; rev: 1;

metadata: rule-type preproc ; classtype:bad-unknown;)

FIGURE 8.10

Snort Rule Output for the CIF Query

193Automating Reputation-Based Detection

https://code.google.com/p/collective-intelligence-framework/
https://code.google.com/p/collective-intelligence-framework/
Figure 8.10

Next, the Snort configuration must be modified to enable parsing of the prepro-

cessor rule file that we just created. This is done by editing /etc/nsm/sensor_name/

snort.conf, and uncommenting this line:

include $PREPROC_RULE_PATH/preprocessor.rules

Now, the only thing remaining is adding IP addresses to the reputation prepro-

cessor blacklist. This file can be found at /etc/nsm/rules/black_list.rules. The file

accepts both individual IP addresses, and IP address ranges in CIDR notation.

You can also specify inline comments by appending the comment after the pound

sign (#) following the IP entry. In order to test the preprocessor, you can add the fol-

lowing entry:

192.0.2.75 # Test Address

In order for these changes to take effect, you should restart Snort on the sensor, as

shown in Figure 8.11.

In order to test the newly created rule, you can simply ping the address 192.0.2.75

from Security Onion itself, or from another device being monitored by it. Figure 8.12

shows an example of this rule generating an alert.

You can add a large number of IP addresses to the black_list.rules file without

negatively affecting sensor performance. Since the alerts generated from this prepro-

cessor aren’t too verbose, you should make it a habit to add contextual comments

regarding the indicators in the black list file so that analysts can reference this when

an alert is generated.

Snort’s reputation preprocessor doesn’t have a lot of bells and whistles, but if

you are already using Snort in your environment it makes it incredibly easy to

implement reputation-based detection of IP addresses with only a few small

changes. Unfortunately, this processor only handles IP addresses. If you would

like to perform detection of communication with malicious domains using Snort,

then you can use standard Snort rules, which are discussed in Chapter 9. Unfor-

tunately, using standard rules for detection of a large number of malicious

domains doesn’t scale entirely well. You can read more about Snort’s reputation

preprocessor and its various configuration options at http://manual.snort.org/

node175.html.

FIGURE 8.11

Restarting the Snort Process

194 CHAPTER 8 Reputation-Based Detection

http://manual.snort.org/node175.html
http://manual.snort.org/node175.html
Figure 8.11

Suricata IP Reputation Detection

Suricata is rapidly gaining popularity as an alternative to Snort for signature-based

detection. This is primarily because of its ability to inspect traffic in a multithreaded

manner, which makes it preferable for monitoring high throughput connections. It

also utilizes the same rule syntax as Snort, so rules are portable between the two.

We will examine Suricata in depth in Chapter 9, but for now we will look at

Suricata’s version of an IP reputation detection engine. It may help you to read that

chapter first in order to gain a better understanding of how Suricata functions, and

then come back to read this section.

Suricata’s IP reputation capability functions in a manner that is designed to opti-

mize the processing of a large number of entries. This works by utilizing the same

API that is used for tagging and thresholding. To enable this functionality, you must

first modify the Suricata.yaml configuration file. The following section is used to

enable IP Reputation capabilities:

IP Reputation

reputation-categories-file: /etc/nsm/sensor-name/iprep/categories.

txt

default-reputation-path: /etc/nsm/rules

reputation-files:

- zeustracker.list

- spyeyetracker.list

- mdl.list

- watch.list

FIGURE 8.12

An Alert Generated by the Reputation Preprocessor

195Automating Reputation-Based Detection

Figure 8.12

The first item defined in this configuration is the reputation categories file. Cat-

egories allow you to organize lists and their alerts into manageable units. The cate-

gories file requires that you specify a unique id number for the category, a category

name, and a description. Typically, categories will be organized by list source. These

must take the format:

<id>,<short name>,<description>

An example category file might look like this:

1,ZeusTracker,Zeustracker IP Addresses

2,SpyEyeTracker,SpyEye Tracker IP Addresses

3,MDL,Malware Domain List IP Addresses

4,Watchlist,Internal Watch List IP Addresses

Next, you must define the default-reputation-path, which is the directory that con-

tains reputation list files. In the case of the example above, we’ve chosen to place these

files in the same directory that Security Onion stores Suricata/Snort IDS rules.

The last configuration item that is required is to define the actual list files to be

parsed by Suricata. These files must exist within the default reputation path. The

entries within these files must match the format:

<IP>,<category>,<confidence>

This format requires the IP address be in standard dotted-quad notation. In addi-

tion to this, the category number specified must exist in the category file mentioned

earlier. Finally, you must include a numerical confidence value. An example repu-

tation list file could look like this:

192.0.2.1,1,65

192.0.2.2,1,50

192.0.2.3,2,95

With IP reputation configured, all that remains is to create alerts so that analysts

can be notified whenever communication with one of these IP addresses is detected.

This is accomplished by adding a rule that utilizes the iprep directive. The iprep

directive itself takes four options:

• Traffic Direction (any/src/dst/both): Used to specify the direction of the

traffic to/from the IP.

• Category (Short Name): The short name of the category that you are attempting to

match. The short name must match exactly what is listed in the categories file.

• Operator (>,<,¼): The operator used in conjunction with the reputation

value specified.

• Confidence Value (1-127): Will restrict matches to only those with confidence

matching the operator and value specified.

This directive can be combined with any other features that might normally be

used in a Suricata rule, allowing for a great deal of flexibility. However, the addition

of any additional features such as content matching will decrease the speed in which

IP reputation rules operate. A rule that only uses the iprep directive is an IP-only rule,

and is the fastest way to implement a large number of IP reputation rules.

196 CHAPTER 8 Reputation-Based Detection

An example of a very basic IP-only rule is:

alert ip any any ->any any (msg:"IPREP Malware Domain List – High Confi-

dence"; iprep:dst,MDL,>,75; sid:1; rev:1;)

This rule will generate an alert whenever outbound communication is detected to

an IP address listed on the MDL list, whose confidence value is greater than 75. An

example alert generated by this rule is shown in Figure 8.13.

Suricata has the ability to parse a large number of IP addresses using this method.

I’ve heard of organizations testing this capability with up to a million addresses in

lists being used with IP-only rules. Suricata is a very solid and efficient choice for

reputation-based detection of IP addresses.

Reputation Detection with Bro

The Bro IDS is easily one of the most powerful and flexible NSM detection tools

available. We will talk about harnessing this power in depth in Chapter 10, but

for now let’s have a quick tour of Bro’s reputation-based detection capabilities.

Bro is extremely well suited for the detection of several types of indicators, such

as IP addresses, domains, email addresses and SSL certificates, using its built-in

intelligence processing features collectively known as the intel framework.

Table 8.1 lists the data types supported by the intel framework and what Bro calls

them in its scripting language. We will confine ourselves the IP addresses, domains

and email addresses for the purposes of this example.

FIGURE 8.13

An Alert Generated by the Suricata Iprep Directive

197Automating Reputation-Based Detection

Figure 8.13

The intel framework integrates closely with Bro’s extensive library of protocol

parsers. Loading an indicator into the intel framework is “fire-and-forget.” If Bro ever

sees that indicator while processing any of the protocols it knows how to decode, it will

log it, nomatter howmany layers of tunnels or encodings it has to roll back. This makes

the intel framework one of the most powerful and flexible indicator detection solutions

available. It is also incredibly extensible, so with a little Brogramming (yes, that’s a

word now!) you can add your own indicator types and have Bro look for them as well.

In order to configure the intel framework, first you must create an input file that

lists all your indicators, which is a simple tab-delimited text file. The first line is man-

datory (even though it looks like a comment) and describes the fields in the lines that

follow. Figure 8.14 shows the format of a sample input file. Bro is very picky about

the format of this file, so be sure you separate the fields with one and exactly one tab,

and that there are no blank lines.

Table 8.1 Data Types Supported by the Bro Intel Framework

Data Type Bro Name Description

IP Address Intel::ADDR An IPv4 or IPv6 address or CIDR block

URL Intel::URL The complete URL, with the “http://” or

“https://” prefix removed

Software Name Intel::Software The name of a specific piece of software

Email Address Intel::EMAIL An email address

Domain Name Intel::DOMAIN A full domain name, including any subdomains

User Name Intel::USER A user name

MD5, SHA-1 or

SHA-256 File Hash

Intel::HASH The hash of a file object (depends on the Bro

File Analysis Framework)

SSL Certificate

Hash

Intel::

CERT_HASH

The SHA-1 hash of a specific SSL certificate

FIGURE 8.14

Example Entries in a Bro Reputation List

198 CHAPTER 8 Reputation-Based Detection

Figure 8.14

Each line of data starts with the actual indicator value and its data type (according

to Table 8.1 above). Although all of the remaining fields must be present in each line

of data, their values are optional. If you don’t wish to specify a value, just use a dash

(“-”) for that field.

The “meta.source” field is a place for you to name the intel feed that this indicator

came from. The name can include spaces and punctuation, but no tabs. Depending on

your intel management infrastructure, this could also be a database key or a URL into

a web-based intel application. If the indicator shows up in traffic, Bro will log that

data, and include the value of the source field in the log for a bit of context.

The “meta.do_notice” field is a Boolean, which can be either “T” (True) or “F”

(False). It controls whether you want to also output any matches for that indicator to

the Bro notice.log file. Notices are Bro’s way of drawing extra attention to an event,

even though it may already be logged somewhere else.We’ll discuss notices and why

you may want to do this in more detail in Chapter 10.

The “meta.if_in” field allows you to restrict notice logging to only certain con-

texts (e.g., “only if it appears in the HTTP Host: header”). No matter what you put

here, the intel framework still logs all matches, it just doesn’t create notices unless

this condition matches. This may be useful, for example, when your intel says that the

indicator is specifically related to HTTP traffic. If you see the indicator in DNS and

Email traffic, Bro will still create entries for that activity in intel.log, but no notices

will be created, since you’re less concerned with activity in those contexts.

There are several ways to populate this list. If you are using CIF, then there is an

option to output data in a format that is digestible by the Bro intel framework, so this

is typically the easiest route. Alternatively, you could write your own script that will

output list entries in this format. In order to test this functionality, we can just create

entries by hand.

Now that we have a data file with our reputation data in it, wemust deploy this file

and a Bro script to load it up into the intelligence framework. The default installation

of Bro keeps its configuration and script files in /usr/local/bro/share/bro, but the ver-

sion of Bro included with Security Onion keeps its data files in /opt/bro/share/bro/

site, so we’ll use that. You can begin by creating a subdirectory there called Repu-

tation, so that you can copy your data file there as /opt/bro/share/bro/site/Reputation/

reputation.dat.

Next, you will need to add a few lines of code to Bro’s default startup file, /opt/

bro/share/bro/site/local.bro. Edit that file to include the following:

@load frameworks/intel/seen

@load frameworks/intel/do_notice

redef Intel::read_files+¼ {

“/opt/bro/share/bro/site/Reputation/reputation.dat”

};

Chapter 10 will provide a lot more background that will be helpful for under-

standing Bro scripting in detail, but the code above should be reasonably decipher-

able as it is written. This code loads two Bro script modules from the intel framework

199Automating Reputation-Based Detection

(seen and do_notice), then adds your new intel data file to the (initially empty) list of

data files it will read in when Bro starts. The framework handles everything else auto-

matically. In fact, should you ever need to add or remove entries from your reputation

list, you can just edit the reputation.dat file appropriately. Bro is smart enough to

automatically notice the changes and update its internal state.

Finally, we need to let the running Bro know that we’ve changed its configuration

by doing the following:

1. Execute broctl check – This will check the code for any errors.

2. Execute broctl install – This will install the new script

3. Execute broctl restart – This will restart Bro

With these changes made, you should be up and running.Whenever Bro observes

any of the indicators listed in your data file, it will log this output to /usr/local/bro/

logs/current/intel.log (default Bro installation) or /etc/nsm/bro/logs/current/intel.log

(Security Onion). In addition, if you set the meta.do_notice on any of those indica-

tors, those hits will also generate entries in the notice.log file in the same directory.

An example intel.log file is shown in Figure 8.15.

We’ll explain Bro’s logging in more detail in Chapter 10, but for now, it’s easy to

see in the Intel log that someone did a DNS look up for appliednsm.com and visited

the Security Onion web site on Google Code. Since the reputation data file specifies

that indicator hits for appliednsm.com should also result in notices, the DNS activity

for that domain also shows up in notice.log, as shown in Figure 8.16.

FIGURE 8.15

Sample Output of intel.log

FIGURE 8.16

Sample Output of notice.log

200 CHAPTER 8 Reputation-Based Detection

http://appliednsm.com
http://appliednsm.com
Figure 8.15
Figure 8.16

For demonstration purposes, we’re reading all this log output in raw format

directly from the files, but in a production environment, they would probably be

exported to some log management utility for alerting, like ELSA or Log Stash.

Regardless of how you choose to view this data, Bro is an incredibly effective

way to perform reputation-based detection.

CONCLUSION

Reputation-based detection is one of the “easy wins” in NSM because it is so simple

to accomplish effectively, and it always yields positive results. If you are just starting

to build your NSM capability, then reputation-based detection is the easiest way to

get the most bang for your buck right out of the gate.

In this chapter we discussed the importance of reputation-based detection, along

with multiple sources for public reputation lists. We also looked at several methods

for automating reputation-based detection, including the use of basic BASH scripting

and the use of the Collective Intelligence Framework. We also looked at how Snort,

Suricata, and Bro could be used for effective detection of potentially malicious com-

munication with suspect IP addresses and domains. In the next few chapters we will

take a much harder look at Snort, Suricata, and Bro, which will help extend your

knowledge of these platforms.

201Conclusion

CHAPTER

Signature-Based Detection
with Snort and Suricata 9
CHAPTER CONTENTS

Snort ... 205

Snort Architecture ...206

Suricata .. 208

Suricata Architecture ...209

Changing IDS Engines in Security Onion .. 211

Initializing Snort and Suricata for Intrusion Detection .. 211

Configuring Snort and Suricata ... 214

Variables ..214

IP Variables ..215

Port Variables ... 217

Standard Variables .. 218

Defining Rule Sets ..218

Defining Snort Rule Files .. 218

Defining Suricata Rule Files .. 220

Public Rule Sources .. 221

Managing Rule Updates with PulledPork .. 221

Managing Rules in Security Onion ... 222

Alert Output ..223

Fast ... 224

Full ... 224

Syslog .. 225

Packet Logging ... 225

Unified2 ... 226

Snort Preprocessors ...226

Additional NIDS Mode Command Line Arguments ..227

IDS Rules .. 229

Rule Anatomy ...229

Rule Header ... 230

Rule Options .. 231

Rule Tuning ..245

Event Filtering ... 245

Alert Suppression .. 247

Alert Detection Filters .. 248

Eliminate Unwanted Traffic ... 249

203

Target the Vulnerability .. 249

Pair PCRE and Content Matches ... 250

Fast Pattern Matching ... 251

Manually Test Rules .. 251

Viewing Snort and Suricata Alerts ... 252

Snorby ..253

Sguil ..254

Conclusion .. 254

The most common form of IDS is signature-based. These systems work by examin-

ing packet data for indicators of compromise. Indicators are combined with IDS

platform-specific directives to form signatures (also called rules) that instruct the

IDS how to efficiently locate the indicators within network data. Whenever a

signature-based IDS locates data that matches content found in a signature, it gen-

erates alert data to notify analysts.

Signature-based detection has been the bread and butter of network-based defen-

sive security for over a decade, partially because it is very similar to how malicious

activity is detected at the host level with antivirus utilities. The formula is fairly sim-

ple: an analyst observes a malicious activity, derives indicators from the activity and

develops them into signatures, and then those signatures will alert whenever the

activity occurs again. This was incredibly effective in previous years when there

were only a small number of malware strains to keep up with, but in the modern

era using signature-based mechanisms as a means of “network-based antivirus” isn’t

entirely efficient. The popular malware sharing repository http://www.virusshare.

com currently has over 11 million unique malware samples as of the writing of this

book. This is only a sampling of all of the malware that can be found in the far reaches

of the Internet, and attempting to create and maintain signatures for this number of

malware samples isn’t close to possible.

In the modern era, signature-based IDS can find itself efficiently positioned to

detect malicious activity beyond just typical malware. This might include common

post-exploitation activities such as the launch of a shell, the unexpected addition of a

user account over the network, or policy violations such as the deployment of

unauthorized servers or systems attempting to download updates from an unap-

proved server. Signature-based IDS can be used effectively for the detection of mal-

ware, but rather than attempting to use it to detect every instance of malicious code

on your network, it is often best suited to detecting malware related to specific and

current concerns. This might include detection of currently popular web-based

exploit kits (Blackhole, Redkit, etc), or malware related to current world events.

The ideal use of signature-based IDS will ultimately depend upon your network

and the threats you are most concerned with, but it is a crucial component of an

NSM deployment.

In this chapter we will introduce the two most popular signature-based detection

IDS’s, Snort and Suricata. Common configuration items relevant to both tools will be

discussed. We will also take an in-depth look at how signatures are created, and look

204 CHAPTER 9 Signature-Based Detection with Snort and Suricata

http://www.virusshare.com
http://www.virusshare.com

at a couple of popular methods for viewing alerts generated by Snort and Suricata.

This chapter won’t serve as an exhaustive resource on Snort and Suricata. Rather, it is

meant to provide fundamental knowledge about how these technologies work, and

how analysts can apply that knowledge to building effective signature-based

detection.

SNORT
The Snort IDS was originally developed byMartin Roesch in 1998 as a free and open

source lightweight intrusion detection system, eventually leading to the creation of

Sourcefire, Inc. In the years since Snort’s inception, it has grown to be the most pop-

ular IDS in the world. With over four million downloads, this “lightweight” system

has grown into a very powerful and flexible IDS that has set the standard for the IDS

industry. You can find Snort deployed in universities, private companies, and gov-

ernments throughout the world. In 2013, Cisco announced its intent to acquire Sour-

cefire (although the deal was not yet completed when this chapter was finalized).

Snort is installed on Security Onion by default, and is also easy to install man-

ually. Sourcefire provides installation guides for several operating systems at

http://snort.org/docs.

If you’ve gone through the Security Onion setup process and have chosen Snort

as your IDS, then it is likely already running. You can verify this by running the com-

mand sudo nsm_sensor_ps-status. In the output shown in Figure 9.1, you will see

that snort-1 (alert data) is listed as [OK].

Snort itself is invoked from the command line. You can verify the version of

Snort by running the command snort –V. The output of this command is shown

in Figure 9.2.

FIGURE 9.1

Checking Sensor Status

205Snort

http://snort.org/docs
Figure 9.1

Snort Architecture

The way Snort functions will depend on which operating mode is specified at run-

time. Snort has three primary operating modes: sniffer mode, packet logger mode,

and NIDS mode.

Sniffer mode allows Snort to capture packets off the wire and outputs them to the

screen in a human readable format, just as tcpdump might do (we will talk about

tcpdump in Chapter 13). However, the its output is quite a bit nicer than tcpdump

at baseline because of how it labels certain aspects of the traffic it sees. It will also

provide some useful traffic statistics when the capture process is stopped. A sample

of packet data as shown by Snort can bee seen in Figure 9.3.

Packet sniffermode ishowSnort runsbydefault, soyoucanexecuteSnort in thismode

by simply specifying a capture interface with the command snort –i<interface> .

Packet logger mode is much the same as sniffer mode, only it logs packets to a file

rather than the screen. This data is most commonly logged in binary PCAP format.

You can enable this operation mode by specifying the logging directory with the

addition of the –l switch, like this: snort –l<log directory>. At some point,

you will probably want to read these PCAP files, which can be done by invoking

Snort with the –r command: snort –r<pcap file> .

The mode we are primarily concerned about is NIDS mode, which is designed to

read data captured from the network, with the ultimate goal of outputting alerts. To do

this, packet data traverses different phases ofSnort’s architecture, shown inFigure 9.4.

Snort can receive data by parsing a manually specified PCAP file or by pulling it

directly from a sensors monitoring interface. When Snort receives this data, its first

step is to analyze it with the packet decoder, which is actually a series of multiple

decoders that analyze packet data and normalize it into a state suitable for parsing

by the preprocessors and detection engines.

When data has finished being processed by the packet decoder, it is sent to Snort’s

preprocessors. There are two types of preprocessors. The first type is used for detec-

tion purposes. The second type of preprocessor includes those that are used to modify

packet data so that it can be better parsed by the detection engine.

FIGURE 9.2

Verifying the Snort Version

206 CHAPTER 9 Signature-Based Detection with Snort and Suricata

Figure 9.2

FIGURE 9.3

Snort Packet Sniffer Output

Output Plugins

Detection Engine

Preprocessors

Packet Decoder

Raw Packet Data from Monitor Port

FIGURE 9.4

The Snort NIDS Mode Architecture

Figure 9.3
Figure 9.4

After preprocessing is finished, data is shipped to the workhorse of the Snort

architecture, the detection engine. The detection engine is the portion of the archi-

tecture that is responsible for parsing rules and determining if the conditions iden-

tified in those rules match the traffic being analyzed.

When the detection engine determines that network traffic matches a rule, it

hands that data over to the output plugins that are enabled in the Snort configuration

file, so that an analyst can be notified of the alert. Snort can log to a variety of for-

mats, including single line alerts in a text file, a CSV file, a PCAP format containing

the traffic matching the rule, XML format, Syslog, and more. In many production

environments, Snort is configured to log to Unified2 format, an open format that

can be read by tools such as Barnyard2 or Pigsty, which can be used for more flexible

output formats such as direct output to a database.

SURICATA
While Snort is the most popular signature-based IDS in use today, another alternative

that is gaining popularity is Suricata, an open source IDS developed by the Open

Information Security Foundation (OISF) and initially funded by the Department

of Homeland Security. Since its release in 2010, it has gained a large following. This

is primarily due to its performance ability, made possible by its multi-threaded

design. In truth, Suricata functions very similarly to Snort, so if you are familiar with

its operation then you should have no trouble using Suricata.

If you’ve gone through the Security Onion setup process and you chose Suricata

as your IDS, then it is likely already running. You can verify this by running the com-

mand sudo nsm_sensor_ps-status. In the output shown in Figure 9.5, you will see

that Suricata (alert data) is listed as [OK].

If you are using a sensor platform other than Security Onion, then Suricata will

have to be installed manually. The OISF provides installation guides for several

FIGURE 9.5

Checking Sensor Status

208 CHAPTER 9 Signature-Based Detection with Snort and Suricata

Figure 9.5

operating systems at https://redmine.openinfosecfoundation.org/projects/suricata/

wiki/Suricata_Installation

Suricata is invoked from the command line. You can verify the version of Sur-

icata by running the command suricata –V. The output of this command is shown in

Figure 9.6.

Suricata Architecture

Suricata is made up of several modules that can interact differently depending on

how Suricata is initialized. The manner in which these modules and the threads

and queues associated with them are arranged is referred to as Suricata’s runmode.

This runmode is chosen based upon where Suricata’s processing priority should be

placed.

The default runmode is one that is optimized for detection, which is typically the

most resource intensive module. This runmode is depicted in Figure 9.7.

FIGURE 9.6

Verifying the Snort Version

Outputs

Detection Engine

Detection

Thread

Detection

Thread

Detection

Thread

Decoder and Stream Application Layer

Packet Acquisition

Raw Packet Data from Monitor Port

FIGURE 9.7

The Default Suricata Runmode

209Suricata

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Installation
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Installation
Figure 9.6
Figure 9.7

In another runmode, pfring is used to optimize packet acquisition and decoding

for high throughput links. This runmode is shown in Figure 9.8.

Regardless of which runmode is used, Suricata’s first step is to collect packets

with its Packet Acquisition module. This module gathers packets from the network

interface and feeds them to the packet decoder, which is responsible for determin-

ing the link type then normalizing the data for further processing by other modules.

Once completed, the data is passed to the stream module. The stream module is

primarily responsible for tracking session-aware protocols (such as TCP) and reas-

sembling packet data in the appropriate order. In addition to this, the streammodule

also does some handling and resequencing of data from application layer protocols

such as HTTP. All of this data pampering leads up to the data being fed into the

detection module, which is what analyzes packet data for matches based upon user-

created signatures/rules. When an alert is generated, that alert and the associated

data that caused it are sent to the output module, which can output data in a variety

of formats.

Outputs

Output

Thread

Output

Thread
Output

Thread

Detection Engine

Detection

Thread

Detection

Thread

Detection

Thread

Stream Application

Stream

Thread

Stream

Thread

Stream

Thread

Flow Queue

Decoder

Decoder

Thread

Decoder

Thread

Decoder

Thread

Packet Acquisition

Acquisition

Thread

Acquisition

Thread

Acquisition

Thread

Raw Packet Data from Monitor Port

FIGURE 9.8

The Pfring Suricata Runmode

210 CHAPTER 9 Signature-Based Detection with Snort and Suricata

Figure 9.8

CHANGING IDS ENGINES IN SECURITY ONION
If you’ve already completed the Security Onion setup process and initially

chose either Snort or Suricata as your IDS engine, but would like to try the other

engine without reinstalling Security Onion, this can be done with a few quick

changes.

1. Stop the NSM sensor processes:

sudo nsm_sensor_ps-stop

2. Modify the primary SO configuration file:

Switch from Snort to Suricata:

sudo sed -i ’s|ENGINE¼snort|ENGINE¼suricata|g’ /etc/nsm/

securityonion.conf

Switch from Suricata to Snort:

sudo sed -i ’s|ENGINE¼suricata|ENGINE¼snort|g’ /etc/nsm/

securityonion.conf

3. Update the sensor rule set for the appropriate IDS engine:

sudo rule-update

4. Start the NSM sensor processes:

sudo nsm_sensor_ps-start

If you’ve developed custom rules for your sensor, be sure that they are compatible

with the IDS engine you are switching to in order to anticipate any issues that might

prevent the IDS from initializing.

INITIALIZING SNORT AND SURICATA FOR INTRUSION
DETECTION
To invoke Snort or Suricata for the purpose of intrusion detection, all you have to do

is specify the location of a valid configuration file with the –c command line option

and a monitoring interface with the –i option.

Snort:

sudo snort –c snort.conf –i eth1

Suricata:

sudo suricata –c suricata.yaml –i eth1

Before doing this however, it is important to verify that the configuration file is

valid. This can be done by adding the –T argument, which will execute each IDS

211Initializing Snort and Suricata for Intrusion Detection

engine with the supplied configuration file to ensure that they can launch success-

fully with the provided configuration.

Snort:

sudo snort –Tc snort.conf –i eth1

Suricata:

sudo suricata –Tc suricata.yaml –i eth1

If everything checks out with Snort, you should see a message saying that it has

successfully validated the configuration, as shown in Figure 9.9. Snort will exit when

this test is completed.

If Suricata initializes successfully, you should see a message saying that the con-

figuration provided was successfully loaded, as shown in Figure 9.10. Suricata will

exit when this test is completed.

If any errors are reported with Snort or Suricata during these tests, they should be

fixed before attempting to run the tools in production. One common error is forget-

ting to invoke the tools with the proper permissions to sniff network traffic, most

commonly done by using the sudo command.

FIGURE 9.9

Snort Successfully Testing a Configuration File in NIDS Mode

212 CHAPTER 9 Signature-Based Detection with Snort and Suricata

Figure 9.9

If Snort launches in NIDS mode successfully, you should be notified that Snort is

commencing packet processing, and be provided with the process ID (PID) number,

as shown in Figure 9.11.

FIGURE 9.10

Suricata Successfully Testing a Configuration File in its Default Runmode

FIGURE 9.11

Successfully Launching Snort in NIDS Mode

213Initializing Snort and Suricata for Intrusion Detection

Figure 9.10
Figure 9.11

If Suricata launches successfully, you should be notified that threads have been

initialized, and that the engine has been started, as shown in Figure 9.12.

In Security Onion, Snort and Suricata can be started by using the nsm_sensor_

ps-start script, which is described in Appendix 1.

CONFIGURING SNORT AND SURICATA
Snort and Suricata both rely upon configuration files and/or command line argu-

ments to control how they function. Snort uses a file called snort.conf, and Suricata

uses one called suricata.yaml. These files can be used to control and tweak virtually

every behavior in both applications, including the particulars of their detection

engines, the location of rule files, and the declaration of variables used within those

rules. If you are using Security Onion, these files are located in /etc/nsm/<sensor-

interface>/. If you are responsible for managing a Snort or Suricata installation, or

simply want to know more about how these tools function, you should take some

time and step through the configuration files. They are commented incredibly well.

Next, we will start stepping through some common configuration items that are

applicable to both tools.

Variables

In computing, variables are symbolic names that reference a stored value. Snort and

Suricata both use variables within their respective configurations to add flexibility to

FIGURE 9.12

Successfully Launching Suricata in Default Runmode

214 CHAPTER 9 Signature-Based Detection with Snort and Suricata

Figure 9.12

IDS rules and to ease their creation and maintenance. Snort also uses variables within

its configuration file to reference common paths. A variable only has to be specified

once so that it is loaded when Snort is executed, and then it can be referenced at any

time within the configuration file or within Snort rules. There are three different

types of variables used in this context: IP variables, port variables, and standard

variables.

IP Variables

IP variables are used to define network addresses or a range of addresses for use

in IDS rules when referring to the source or destination of traffic being exam-

ined. By using variables to specify frequently referenced IP ranges, you only

have to update the variable once to apply the change to any rule referencing

that range.

With Snort, an IP variable is identified in snort.conf by the ipvar keyword, fol-

lowed by the variable name and the IP address(es) that comprise the variable. For

instance, you could specify the following variable to identify a DNS server on your

network:

ipvar DNS_SERVERS 192.168.1.10

You can specify multiple IP addresses by enclosing the addresses in square

brackets and separating them with commas. Here, we do this to identify several

SMTP mail servers:

ipvar SMTP_SERVERS [192.168.1.75,192.168.1.76,192.168.1.77]

You can specify ranges of addresses using CIDR notation. These ranges can be

combined in comma-separated lists, which must be enclosed in square brackets.

Below, we identify two subnets that contain only web servers:

ipvar HTTP_SERVERS [192.168.2.0/24,192.168.12.0/24]

Suricata doesn’t use a particular keyword to identify variables; instead, it

requires that variables of particular types be defined in specific sections of suri-

cata.yaml. Specifically, you must define all variables under the vars heading,

and IP variables under the address-groups subheading. Apart from this, the same

rules mentioned above regarding the formatting of addresses and the use of CIDR

notation apply:

vars:

address-groups:

DNS_SERVERS 192.168.1.10

SMTP_SERVERS [192.168.1.75,192.168.1.76,192.168.1.77]

HTTP_SERVERS [192.168.2.0/24,192.168.12.0/24]

In order to use an IP variable in a rule you must refer to it with the dollar sign ($)

followed by the variable name. In the case of the below rule, both the

215Configuring Snort and Suricata

$SMTP_SERVERS and $EXTERNAL_NET variables are used to attempt to detect

SMTP AUTH LOGON brute forcing.

alerttcp$SMTP_SERVERS25->$EXTERNAL_NETany(msg:“GPLSMTPAUTHLOGON

brute force attempt”; flow:from_server,established; content:“Authen-

tication unsuccessful”; offset:54; nocase; threshold:type threshold,

track by_dst, count 5, seconds 60; classtype:suspicious-login;

sid:2102275; rev:3;)

The two most important network variables are $HOME_NET and

$EXTERNAL_NET.

The $HOME_NET variable is used to identify IP address ranges that Snort/

Suricata is responsible for protecting. This will often be configured for internally

used RFC1918 (non-routable) IP addresses, such as 10.0.0.0/8, 172.16.0.0/12,

or 192.168.0.0/16m and will vary based upon the placement and visibility of the

sensor.

A common $HOME_NET declaration may look like this:

Snort:

ipvar HOME_NET [192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]

Suricata:

vars:

address-groups:

HOME_NET [192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]

The $EXTERNAL_NET variable is used to identify IP address ranges that are not

being protected by Snort/Suricata. This often includes any address range that doesn’t

belong to the organization and is considered exterior to the network perimeter. As

you might imagine, this will generally include anything that is NOT a part of

$HOME_NET. As such, it is common to set this variable to !$HOME_NET. The

exclamation point can be used within a variable to negate the value specified. It

is also quite common for this variable to be set to “any”, which encompasses all

IP addresses.

Snort:

ipvar EXTERNAL_NET !$HOME_NET

Suricata:

vars:

address-groups:

EXTERNAL_NET !$HOME_NET

The $HOME_NET and $EXTERNAL_NET network variables are required

for Snort and Suricata, and most publicly available rules are written to use these

values. The remainder of the network variables you will find already listed in

snort.conf and suricata.yaml are optional, but are highly recommended as they

allow for increased flexibility and granularity when writing rules. In addition,

216 CHAPTER 9 Signature-Based Detection with Snort and Suricata

the public rule sets we will talk about later all make use of these variables. Some of

them include:

• $HTTP_SERVERS – Useful for creating and deploying rules related to

server-side or client-side web exploitation.

• $DNS_SERVERS – Useful for creating and deploying rules related to domain

reputation or malware command and control.

• $SMTP_SERVERS – Useful for creating and deploying rules related to mail

spam or malicious attachments.

• $SSH_SERVERS – Useful for logging activity related to the management of

switches, routers, and other network devices over the SSH protocol.

You can also create your own variables using this syntax. This can be a useful

tactic for grouping all sorts of devices, including:

• Mission Critical Systems

• VoIP Phones

• Printers

• Network-aware Televisions and Projectors

• Administrative Workstations

• Sensors

The possibilities are endless, and the more precise your groups are, the more

flexibility you have when creating rules.

CAUTION

Be careful to fully evaluate each variable when using them to explicitly define things. For

instance, it is easy to miss devices like printers and scanners that might contain built-in web

servers when configuring the HTTP_SERVERS variable.

Port Variables
Port variables define a layer four port or port range for use in IDS rules when refer-

ring to the source or destination ports of traffic being examined.

With Snort, these variables are created using the portvar keyword in snort.conf.

This example is used to specify a single port that would be used by the SMTP service:

portvar SMTP_PORTS 25

You can specify a range of ports byusing a semicolon in between the start and end of

the range.This example identifies twoports that are commonlyusedby the FTP service:

portvar FTP_PORTS 20:21

When necessary, a list of ports can be declared using the same format as with IP

variables, a comma-separated list surrounded by square brackets. Here we declare

several ports that might be used for HTTP communication:

portvar HTTP_PORTS [80,81,82,83,84,85,86,87,88,89,311,383,591,593,

631,901,1220,1414,1741,1830,2301,2381,2809,3037,3057,3128,3702,4343,

217Configuring Snort and Suricata

4848,5250,6080,6988,7000,7001,7144,7145,7510,7777,7779,8000,8008,

8014,8028,

8080,8085,8088,8090,8118,8123,8180,8181,8222,8243,8280,8300,8500,

8800,8888,8899,9000,9060,9080,9090,9091,9443,9999,10000,11371,

34443,34444,41080,50002,55555]

Port variables are useful whenwriting rules for communication with a service that

doesn’t always use an expected port. For instance, while HTTP communication typ-

ically occurs over port 80, several web servers (especially those used for the man-

agement of specialized applications or devices) will use non-standard ports. Port

variables can also come in handy if these services within your network are config-

ured to use non-standard ports. This is a common practice for administrative proto-

cols like SSH, where administrators will use something other than default port 22 to

prevent automated scans from finding these services.

Standard Variables
Standard variables are the last variable type that you will encounter, and they are only

used by Snort. These variables are created by using the var keyword, and are typi-

cally used to specify directories. The default snort.conf file uses these frequently; for

example, to specify the directories containing different types of Snort rules:

var RULE_PATH /etc/nsm/rules

var SO_RULE_PATH /etc/nsm/rules

var PREPROC_RULE_PATH /etc/nsm/rules

The majority of these variable declarations can be found in the first section of

snort.conf. If you are going to create custom variables and you want to place them

into snort.conf instead of including a separate file, it is a good practice to place those

variables in this section so that you don’t lose track of them.

Defining Rule Sets

For Snort or Suricata to inspect network traffic for indicators of compromise, you

must have rules in place. Snort and Suricata rules are platform-specific methods

of implementing indicators of compromise. The rules essentially tell their detection

engines how to locate the indicator within network traffic.

Rules exist in rule files, which are simply text files that contain rules in a line-

delimited format. In order for Snort or Suricata to parse these rules, they must be

included in their respective configuration files.

Defining Snort Rule Files
In snort.conf, the last section of the configuration file is where rule declarations are

usually made. You must specify a rule directory, typically done by using the include

keyword, followed by the path and file name of the rule file. Typically, the rule path

is specified using the $RULE_PATH variable, which is defined in the first section of

snort.conf.

include $RULE_PATH/emerging-exploit.rules

218 CHAPTER 9 Signature-Based Detection with Snort and Suricata

FROM THE TRENCHES

Instead of constantly adding and removing rule file references in snort.conf, you can comment

out a rule file you aren’t using by appending the pound symbol (#) to the beginning of the line.

Snort will not parse any line that begins with the pound symbol. This is useful for both

temporarily disregarding individual’s configuration lines, or for adding comment. The same

principal applies to suricata.yaml.

Snort also allows for the use of non-standard rule types. These are:

• Preprocessor Rules: These rules are dependent upon functionality provided by

preprocessors, and are parsed prior to rules parsed by the detection engine.

• Shared Object Rules: These rules are compiled rather than being interpreted from

a line of text. They are useful for the creation of very advanced rules, or deploying

rules without divulging the details of the indicators in the rule itself.

These rules may be located in different locations, so they have their own rule path

variables. Rule files can be included using these variables:

include $PREPROC_RULE_PATH/preproc.rules

include $SO_RULE_PATH/sharedobj.rules

Snort loads its rules at initialization, but you can force a configuration update

without completely restarting Snort. This is advantageous, because it means that

you don’t have to disable your detection for a few seconds every time you make

a rule change. This assumes that Snort is compiled with the -enable-reload option.

To perform a live reload, complete the following steps:

1. Find the process ID of the running Snort process. To list this process, use the ps

command to list running processes and use grep to search for the Snort process:

ps aux | grep snort.conf

In this case, the process ID is 22859, shown in Figure 9.13:

2. Finally, send a SIGHUP kill signal to the process to initiate a live rule reload. In

this example, the command would be:

sudo kill -SIGHUP 22859

3. Snort should restart and parse the updated snort.conf file and the associated rules.

Keep in mind that some configuration options are not supported by live reload.

Those are listed here: http://manual.snort.org/node24.html.

FIGURE 9.13

Finding the Process ID of the Running Suricata Process

219Configuring Snort and Suricata

http://manual.snort.org/node24.html
Figure 9.13

Defining Suricata Rule Files
With Suricata, rule files are identified by placing them into the appropriate section of sur-

icata.yaml. To do this, the default rule path must be specified, then the rule files can be

listed under the rule-files heading, with each file identified on a new line with a hyphen.

default-rule-path: /etc/nsm/rules/

rule-files:

- local.rules

- downloaded.rules

Like Snort, Suricata does not have to be reloaded in order for new rules to take

effect. The following steps will allow you to force rule additions, deletions, or mod-

ifications without restarting Suricata:

1. First, ensure that live rule reloads are enabled in Suricata.yaml:

When rule-reload is enabled, sending a USR2 signal to the Suricata

process will trigger a live rule reload. Experimental feature, use with

care.

- rule-reload: true

2. Next, find the process ID of the running Suricata process. In order to list this

process, use the ps command to list running processes and use grep to search for

the Suricata process:

ps aux | grep suricata.yaml

In this case, let’s assume the process ID is 30577.

3. Finally, send a USR2 kill signal to the process to initiate a live rule reload. In this

example, the command would be:

sudo kill –USR2 30577

This log output of this action is shown in Figure 9.14:

FIGURE 9.14

Forcing Suricata to Reload Rules with a USR2 Kill Signal

220 CHAPTER 9 Signature-Based Detection with Snort and Suricata

Figure 9.14

Public Rule Sources
Rules can be created manually, shared between organizations, or retrieved from pub-

lic sources. Building custom rules will be examined later in this chapter, but before

that, there are two primary sources for Snort and Suricata rules that must be exam-

ined: Emerging Threats and the Sourcefire VRT.

Emerging Threats (ET), originally called Bleeding Snort, was originally

launched in 2003 by Matt Jonkman, and was designed to serve as an open-source

community for sharing IDS signatures. ET fostered the development of a large

and active signature development community, and eventually received several grants

that helped further their cause.

Now, the ET community is as strong as ever and provides rule sets for both Snort

and Suricata. These come in the form of a free open rule set that is community-driven

and maintained, and a paid subscription based “ETPro” rule set that is maintained by

the Emerging Threats research team. You can read more about the ET rule set at http://

www.emergingthreats.net/open-source/etopen-ruleset/. The ET team also has a blog

that provides rule update notifications at http://www.emergingthreats.net/blog/.

The Sourcefire Vulnerability Research Team (VRT), from the same company that

created Snort, is an elite team of security researchers who work proactively to develop

detection capabilities for trending attack techniques, malware, and vulnerabilities.

The VRT employs some very talented individuals, and they are responsible for the

development and maintenance of rules in the official Snort.org rule set.

There are three official Snort rule sets. The VRT rule set is their premium

offering. It requires a paid subscription, but provides immediate access to all

VRT developed rules when they are released. Next is the Registered User release,

which requires free registration on the snort.org website and provides access to

VRT developed rules thirty days after they have been released. The third and final

offering is the community rule set, which is a freely distributed subset of the sub-

scriber rule set. The community rule set doesn’t require registration, and is updated

daily. All rules released in this rule set are licensed via GPLv2.

While the Sourcefire VRT doesn’t provide a Suricata specific rule set, some of

their rules will work with Suricata. However, Suricata doesn’t support many of the

rule options that are provided by Snort preprocessors. Therefore, if you are a Suricata

user and would like to use VRT rules, it is recommended that you choose individual

rules and test them with Suricata rather than attempting to implement the entire VRT

rule set. By using this method, you can modify rules to work on a case-by-case basis.

You can download Snort VRT rules at http://www.snort.org/snort-rules/. You can

also find the very informative VRT blog at http://vrt-blog.snort.org/, as well as find

out about rule updates and the latest news for the ruleset at http://blog.snort.org.

Managing Rule Updates with PulledPork
Both Emerging Threats and the Sourcefire VRT release new rules nearly every day.

The task of checking for new rule updates, downloading those updates, placing them

in the appropriate directory, and ensuring that they are put into production can be

very tedious if done manually.

221Configuring Snort and Suricata

http://www.emergingthreats.net/open-source/etopen-ruleset/
http://www.emergingthreats.net/open-source/etopen-ruleset/
http://www.emergingthreats.net/blog/
http://www.snort.org/snort-rules/
http://vrt-blog.snort.org/
http://blog.snort.org

PulledPork was created to automate this process, and it can be used to ensure that

your rules stay up to date. It provides a variety of features that make it useful for a

number of scenarios. Among these, it provides mechanisms for downloading rule

updates, the ability to manage and distribute custom rule files, and the ability to track

rule changes. The configuration of PulledPork is beyond the scope of this book, but

you can read more about it at https://code.google.com/p/pulledpork/.

Managing Rules in Security Onion
By default, rules in Security Onion are placed in /etc/nsm/rules/. Rules that are down-

loaded from publicly available sources such as the Sourcefire VRT or Emerging

Threats are placed into the downloaded.rules file, and custom created rules should

be placed into the local.rules file. Additional rule files can be used, but they must

first be specified in snort.conf or suricata.yaml.

If you are using Security Onion as your NSM platform, you should avoid updat-

ing your rules using the methods mentioned in the previous sections, and instead use

the rule-update script. This script performs additional tasks required by other tools

such as Barnyard2 and PulledPork. The script is run like this:

sudo rule-update

An excerpt of the output from the rule-update script is shown in Figure 9.15.

FIGURE 9.15

Running the Security Onion rule-update Script

222 CHAPTER 9 Signature-Based Detection with Snort and Suricata

https://code.google.com/p/pulledpork/
Figure 9.15

There are two files that are especially important for the maintenance of rules in

Security Onion: disablesid.conf and modifysid.conf. These files are part of Pulled-

Pork and are used in the same way described in this chapter, even if you aren’t run-

ning Security Onion.

The disablesid.conf file is used to persistently disable rules that you do not wish to

use.This is especially importantwhen interactingwithpubliclyobtained rules because

of their constant updates. As an example, let’s say that youwant to disable a rule that is

identified by SID 12345. Your first inclination might be to either delete the rule from

the rule file, or to disable it by commenting it out with a pound sign. This might work

initially, but when PulledPork runs later that night and downloads a new rule update

from Emerging Threats or Sourcefire, the rule that was deleted or disabled will be

restored and put back into production. Because of this, the more appropriate way to

disable rules is to use disablesid.conf. Whenever PulledPork downloads a new rule

update, it parses this file so that it can go back and re-disable any rule that shouldn’t

be turnedon.Entries are stored in this filewith the formatGID:SID. In this case,wecan

add the following entry to disablesid.conf to persistently disable this rule:

1:12345

Themodifysid.conf file is used to persistently modify rules that are obtained from

public sources. Just as with deleted rules, if we were to modify a rule obtained from a

public source, the nightly PulledPork update would serve to replace that rule file and

eliminate any changes that were made. Because of this, PulledPork parses modifysid.

conf after every rule update so that it can go back and apply modifications to rules

that have been customized.

As an example, let’s modify the following rule:

alert ip any any ->any any (msg:“GPL ATTACK_RESPONSE id check returned

root”; content:“uid¼0|28|root|29|”; fast_pattern:only; classtype:

bad-unknown; sid:2100498; rev:8;)

To modify this rule, we need to add an entry to modifysid.conf that specifies the

SID of the rule we are modifying, the content we would like to change, and what we

want the content changed to. In this case, we will replace “alert ip any any” with

“alert ip $HOME_NET any”. This will modify the signature so that it only alerts

when the specified pattern occurs within traffic that is coming from an IP address

that is external to the network the sensor is protecting. In order to make this change,

we would add the following entry to modifysid.conf:

2100498 “alert ip any any” “alert ip $HOME_NET any”

Both disablesid.conf andmodifysid.conf comewith several examples listed in the

respective files. You can read some more SO-specific examples here: https://code.

google.com/p/security-onion/wiki/ManagingAlerts.

Alert Output

Snort and Suricata both provide a lot of flexibility in how alert data can be output for

analysis, which is useful for adapting them to a variety of scenarios.

223Configuring Snort and Suricata

https://code.google.com/p/security-onion/wiki/ManagingAlerts
https://code.google.com/p/security-onion/wiki/ManagingAlerts

In Snort, alert output is controlled in the output plugin section of snort.conf. To

specify a particular output plugin you can use the output keyword, followed by the

name of the plugin. This can be followed by any options required by the output plugin.

output<plugin name>: <options>

If it is not specified at runtime with the –l argument, Snort’s default log directory

is set to /var/log/snort.

In Suricata, alert output is controlled in the outputs section of Suricata.yaml.

Underneath the outputs heading, each output option is listed, along with each one’s

relevant options.

outputs:

- <output type>:

<options>

If it is not specified at runtime with the –l argument, Suricata’s default log direc-

tory is set to /var/log/suricata.

ANALYST NOTE

Snort andSuricata allow formultiple output plugins to beused at once.Whenmultiple plugins are

used, they are called in order based upon how they are organized in snort.conf and suricata.yaml.

Nowwewill look at some of themore commonly used outputs. Remember, there are

a lot more output options than thosementioned here, so if you are looking for something

particular, refer to the Snort or Suricata documentation because itmight alreadybe avail-

able to you. For the alerting examples shown below, I visited http://www.testmyids.com

in order to generate an alert based upon the rule identified by SID 2100498:

alert ip any any ->any any (msg:“GPL ATTACK_RESPONSE id check returned

root”; content:“uid¼0|28|root|29|”; fast_pattern:only; classtype:

bad-unknown; sid:2100498; rev:8;)

Fast
The fast alerting format will display alerts in a very simple one-line format. This

is the most compact alerting format, and is easy for an analyst to digest visually from

the command line. It provides the minimum amount of information needed to start

reviewing data associated with the alert.

08/05-15:58:54.524545 [**] [1:2100498:8] GPL ATTACK_RESPONSE id check

returned root [**] [Classification: Potentially Bad Traffic] [Priority:

2] {TCP} 217.160.51.31:80 ->172.16.16.20:52316

Full
The full alerting formatting will display everything that is shown in a fast alert, along

with additional details from the packet header of the packet that generated the alert.

This alerting format generates multi-line alerts, so it may not be as easy to parse with

command line tools.

[**] [1:2100498:8] GPL ATTACK_RESPONSE id check returned root [**]

[Classification: Potentially Bad Traffic] [Priority: 2]

224 CHAPTER 9 Signature-Based Detection with Snort and Suricata

http://www.testmyids.com

08/05-15:58:54.524545 217.160.51.31:80 ->172.16.16.20:52316

TCP TTL:40 TOS:0x20 ID:44920 IpLen:20 DgmLen:299 DF

AP Seq: 0x6BD4465B Ack: 0xE811E4E6 Win: 0x36 TcpLen: 20

Syslog
The syslog alerting format is designed to be sent to a syslog server that can either be

running locally on the sensor, or on another device. Syslog is a very common logging

format, thus it is supported by a wide variety of devices and can be digested by most

log management and analysis tools. Syslog output is stored on a single line, and is

easily searchable from a command line interface. The amount of information pro-

vided in this output is identical to the fast alerting format.

Aug 5 15:58:54 lakota snort: [1:2100498:8] GPL ATTACK_RESPONSE id check

returned root [Classification: Potentially Bad Traffic] [Priority: 2]:

{TCP} 217.160.51.31:80 ->172.16.16.20:52316

Packet Logging
While text-based alerts are a great place to start, you will likely want to manually

inspect the packet(s) that cause an alert to be generated. If you are utilizing a full

packet capture solution like we discussed in Chapter 5, then that is probably where

you will look. If not, you can also configure Snort and Suricata to log the packet(s)

that generated the alert in PCAP format. The packet that generated the sample alert

we have been working with is shown in Figure 9.16.

FIGURE 9.16

Packets Matching Rule SID 2100498

225Configuring Snort and Suricata

Figure 9.16

Unified2
In an enterprise environment, the most commonly used log format is Unified2. This

is a binary format capable of storing both the alert data and the packet data associated

with it. If you attempt to examine one of these files manually you will find it isn’t

readable as it is stored. Unified2 output isn’t designed to be read manually or via

command line tools, but rather, it is meant to be used in conjunction with tools like

Barnyard2 or Pigsty. These tools are used for interpreting Unified2 output and plac-

ing that alert data into a database, such a MySQL or Postgres SQL database. Snort

also includes a tool called u2spewfoo that is able to read the unified2 format and

dump it out on the command line.

Barnyard2 is the de facto standard tool for storing Unified2 alerts in database for-

mat for years, and works well. It also supports several other output modes. You can

read more about Barnyard2 at https://github.com/firnsy/barnyard2.

Pigsty is a newer tool developed by the folks at Threat Stack, who brought us

Snorby, which is discussed later in this chapter. Pigsty was written to achieve the

same goals as Barnyard2, but in a more extensible way. It provides the ability to

create custom output plugins to add even more flexibility to the wide array of out-

put options for Snort and Suricata alert data. Along with database output plugins,

Pigsty also supports other methods of output such as Websockets, Sguild, IRC, and

REST output. You can read more about Pigsty at https://github.com/threatstack/

pigsty.

If you’d like more information regarding the configuration of alert output, check

out the appropriate sections of the Snort and Suricata online documentation.

Snort Preprocessors

While the majority of Suricata’s features are built into its core architecture, many of

the features provided by Snort are made available by using individual preprocessors.

As we discussed earlier when overviewing the Snort architecture, preprocessors

come in two types and can be used for further normalizing data before it is parsed

by the detection engine, or they can be used to provide additional flexibility for Snort

rules used by the detection engine. Both types of preprocessors can be configured in

snort.conf. A preprocessor is identified by the preprocessor keyword, followed by the

preprocessor name and then its associated options. Some preprocessors, like the

portscan detection preprocessor, only have a few configurable options.

Portscan detection. For more information, see README.sfportscan

preprocessor sfportscan: proto { all } memcap { 10000000 } sense_level

{ low }

Others, such as the SSH anomaly detection preprocessor, have several options:

SSH anomaly detection. For more information, see README.ssh

preprocessor ssh: server_ports { 22 } \

autodetect \

max_client_bytes 19600 \

226 CHAPTER 9 Signature-Based Detection with Snort and Suricata

https://github.com/firnsy/barnyard2
https://github.com/threatstack/pigsty
https://github.com/threatstack/pigsty

max_encrypted_packets 20 \

max_server_version_len 100 \

enable_respoverflow enable_ssh1crc32 \

enable_srvoverflow enable_protomismatch

It is important to realize that the preprocessors listed in the configuration file are

executed in order. Because of this, they are ordered in accordance with the network

layer they are associated with. Network layer preprocessors such as frag3, which

deals with IP fragment assembly, come first. This is followed by transport layer pro-

tocols such as Stream 5, which handles TCP stream reassembly. This is followed by

application layer preprocessors such as the SSH, HTTP, and SMTP anomaly detec-

tors. This order is critical because application layer preprocessors might be unable to

process data if it is fragmented, out of sequence, or received in an otherwise unex-

pected state.

When you begin using Snort, you likely won’t take advantage of too many pre-

processors, and you might not be aware of the ones you are using. However, you

should definitely make the time to review all of the preprocessors listed in snort.conf

and read the associated README files. There are several that will come in handy,

and some that are completely necessary. You might even find yourself attempting to

write complex rules that a preprocessor will make much simpler. A few of these

include:

• Reputation: Used to do reputation-based detection and blocking of

communication with certain IP addresses (we looked at this in Chapter 8).

• ARPSpoof: Designed to be able to detect the occurrence of ARP spoofing.

• SFportscan: Detects potential reconnaissance scans.

• Frag3: Performs defragmentation of IP packets and helps prevent IDS evasion.

• Stream5: Allows for state tracking of TCP connections and the creation of stateful

rules.

• HTTP_Inspect: Normalizes HTTP traffic so that it can be properly parsed by

the detection engine. Provides several directives that can be used within

Snort rules.

You can learn more about each of Snort’s preprocessors in the “Preprocessors”

section of the Snort Users Guide, or by reviewing the README files for each pre-

processor in the documentation included with Snort.

Additional NIDS Mode Command Line Arguments

While most options can be configured in snort.conf and suricata.yaml, any options

that are specified as command line arguments will be given preference over what is

specified in the configuration files. It is common to execute Snort and Suricata with

several of these arguments.

If you are using Security Onion, you can see an example of command line argu-

ments being used by listing the running IDS engine process. In the case of

Figure 9.17, we can see that Snort is running.

227Configuring Snort and Suricata

Here we see several commonly used command line arguments for Snort. These,

along with some other commonly used arguments are:

• -A<mode>: Specifies the level of alerting for plain text alerts. This can be

set to fast, full, unsock, console, cmg, or none.

• -c< file>: Used to specify the path to the snort.conf configuration file

used for NIDS mode.

• -D: Executes Snort as a daemon (in the background)

• -F< file>: Read Berkeley Packet Filters from a file. BPF’s are discussed in

depth in Chapter 13.

• -g<group>: Specifies the group Snort runs under after it has initialized. This

can be used to allow Snort to drop root privileges after initializing.

• -i< interface>: Specifies a specific interface to use for monitoring traffic

• -l<directory>: Used to specify an output directory for text reporting of alerts.

• -L<directory>: Used to specify an output directory for binary reporting of alerts.

• -m<umask>: Forces the creation of new files to the specified umask

permissions

• -u<user>: Specifies the user Snort runs under after it has initialized. This

can be used to allow Snort to drop root privileges after initializing.

• -U: Changes the timestamps associated with all logs and alerts to UTC

• -T: Used to test a configuration file

• --perfmon-file< file>: Specifies the file used by the perfmon preprocessor for

tracking Snort statistics.

In Figure 9.18, you can see an example of Suricata runningwith several command

line arguments in Security Onion.

The command line arguments shown above, along with some other commonly

used arguments are:

• -c< file>: Used to specify the path to the suricata.yaml configuration file

• -D: Executes Suricata as a daemon (in the background)

FIGURE 9.17

Snort Running with Command Line Options

FIGURE 9.18

Suricata Running with Command Line Arguments

228 CHAPTER 9 Signature-Based Detection with Snort and Suricata

Figure 9.17
Figure 9.18

• --group<group>: Specifies the group Suricata runs under after it has initialized.

This can be used to allow Suricata to drop root privileges after initializing.

• -F< file>: Read Berkeley Packet Filters from a file. BPF’s are discussed in depth

in Chapter 13.

• -i< interface>: Specifies a specific interface to use for monitoring traffic

• -l<directory>: Used to specify the default logging directory.

• -r<pcap file>: Parse a PCAP file in offline mode

• --runmode<mode id>: The ID of the runmode that Suricata will be

initialized in.

• -s: Used to manually specify a file containing IDS signatures along with those

specified in suricata.yaml.

• -T: Used to test a configuration file

• --user<user>: Specifies the user Suricata runs under after it has initialized. This

can be used to allow Suricata to drop root privileges after initializing.

There are several other command line arguments that are available when initial-

izing Snort and Suricata. You can view a full list of these options in each tool’s

respective manual pages, accessible by typing either man snort or man suricata

at the command line of a system where the tools are installed.

IDS RULES
We have already looked at how rules can be provided to Snort and Suricata, as well as

some public rule sources and mechanisms for keeping those rules up to date. While

these things are important, the primary interaction that an analyst will have with

Snort or Suricata on a daily basis is the creation of new rules, and the modification

of existing rules to make those rules more efficient, also referred to as “tuning”. In

this section we will look at how rules are built, some common rule options, and step

through some practical rule creation scenarios.

The majority of the content in this section will apply to both Snort and Suricata

rules, as they use the same basic syntax. Whenever a rule option is used that doesn’t

work with one of these technologies, I will explicitly say so.

Rule Anatomy

The syntax used by Snort and Suricata rules is incredibly flexible, but it does require

that certain conventions be followed. This is an example of a very simple rule:

alert tcp $EXTERNAL_NET 80 ->$HOME_NET any (msg:”Users Downloading

Evil); content:”evil”; sid:55555555; rev:1;)

This rule is very rudimentary, and would generate an alert if a user on your inter-

nal network downloaded data from a web server that contains the word “evil.” Of

course, detecting when users download evil things from the Internet isn’t entirely

that easy!

229IDS Rules

Before examining each specific component of this rule, you should recognize that

rules have two distinct parts: the rule header and the rule options. The rule header is

everything occurring before the parenthesis, and the rule options are everything

occurring within the parenthesis. This breakdown is shown in figure 9.19.

Rule Header
The rule header is always the first portion of the rule and it is a required component of

the rule. The header is responsible for defining “who” is involved in the traffic pat-

tern than is attempting to be matched. Everything defined in the rule header can be

found within the header of a packet, which is crucial in the parsing of these rules. The

breakdown of the rule header is shown in Figure 9.20.

The rule header always consists of the same parts: rule action, protocol, source/

dest hosts, source/dest ports, and the direction of the traffic.

Rule Action
The first part of any rule is the action declaration which tells the IDS engine what to

do when the alert fires. There are three possible actions:

• Alert: Tells the IDS engine to log the rule match, and the packet data associated

with the match. This is the most common rule action.

• Log: Tells the IDS engine to log the rule match, but not the packet data associated

with the match.

• Pass: Tells the IDS engine to do no further processing of the packet.

Protocol
This field tells the IDS engine what protocol the rule will apply to. Valid options

include tcp, idp, icmp, ip, and any. Note that only one of these can be selected, so

if you wish to write a rule that applies to both TCP and UDP traffic, use the IP

alert tcp $EXTERNAL_NET 80 -> $HOME_NET any (content:”evil”; sid:55555555; rev:1;)

Rule OptionsRule Header

FIGURE 9.19

Basic Rule Anatomy

alert tcp $EXTERNAL_NET 80 -> $HOME_NET any

Action

Protocol

Source/

Dest

Host(s)

Source/

Dest

Host(s)

Source/

Dest

Port(s)

Source/

Dest

Port(s)

Traffic

Direction

FIGURE 9.20

The IDS Rule Header

230 CHAPTER 9 Signature-Based Detection with Snort and Suricata

Figure 9.19
Figure 9.20

protocol option in the rule header. For the sake of performance, try to be specific to

the traffic pattern you are attempting to match. In the sample rule, we are concerned

about HTTP traffic, which sits on top of the TCP protocol, so that is what is specified.

Source and Destination Hosts
In order to create a rule, you can specify the source and destination host for the traffic

pattern you are trying to match. These hosts must be specified as IP addresses, which

can be done in a variety of formats such as in lists or CIDR ranges, as was discussed

earlier when discussing Snort and Suricata configuration. In the example rule we are

working with, you will see that we opted to use the $HOME_NET and $EXTER-

NAL_NET variables to define IP addresses in this rule. If the rule cannot be limited

to any particular grouping of hosts, the keyword “any” can be used to match any

hosts.

Source and Destination Ports
Along with specifying the hosts that we are concerned with matching our rule, we can

also specify specific layer four ports. Remember, these can be specified as individual

ports, lists, or ranges as we looked at earlier in this chapter. In cases when no specific

ports are applicable, the keyword “any” can be used to match any ports. In the exam-

ple rule, we have specified port 80 in association with the $EXTERNAL_NET IP

variable and the any keyword with the $HOME_NEY IP variable.

Traffic Direction
The final piece of the puzzle when creating a rule header is to specify the destination

of the traffic. There are only two possible options here:

• ->: Defines unidirectional source to destination traffic

• <>: Defines bidirectional traffic

Because there are only two options here, when writing rules you must decide if

the direction of the communication matters. If the direction of the communication

doesn’t matter, then the ordering of the source and destination hosts and port num-

bers in the header doesn’t matter. However, if the direction does matter, then the

source host and port number should be listed first.

In the case of the rule header shown in our sample rule, we are concerned about

users downloading evil from an external web server. This means that the potential

sources of the evil packets are external web servers, and the destination is one of

our internal hosts. Therefore, the external hosts and ports are listed first ($EXTER-

NAL_NET 80), followed by the source to destination direction indicator (->), fol-

lowed by the internal host and port ($HOME_NET any).

Rule Options
While the rule header section is responsible for the “who”, the rule options section is

responsible for the “what.” This section tells the IDS engine exactly what it is looking

for in the packets it is examining, and how to find it. The contents of the rule options

section are variable and can include several things, but no matter what you choose to

231IDS Rules

include, the options section must always be enclosed in parenthesis. Within these

parentheses, individual options take the form of:

<option>: <option values>;

The option name and its values are separated by a colon (:) and the option values

are terminated with a semicolon (;). If the option values contain spaces, those values

must be enclosed in quotes.

In some cases, options won’t have values, and are simply invoked like this:

<option>;

Notice that the option name is terminated with a semicolon. If you fail to include

colons or semicolons as required, the IDS engine you are using will fail to initialize

when parsing that rule.

CAUTION

Don’t forget the semicolon on the last option that is used in the rule options section. This is a

common mistake, and it is easy to miss.

Now, we will look at several common rule options.

Event Information Options
The event information options are used to provide contextual information about

a rule. The more verbose you can be with event information, the more effective

an analyst will be when investigating data associated with that alert. This includes:

Message (msg). Descriptive text associated with the rule. This is commonly thought

of as the “name” of the rule, and it is what will be initially displayed to the analyst

when they are reviewing alerts generated by an IDS engine. It is a good idea to make

these as descriptive as possible. Some examples include:

• ET POLICYOutgoing Basic Auth Base64 HTTP Password detected unencrypted

• OS-WINDOWS SMB NTLM NULL session attempt

• EXPLOIT-KIT Blackholev2 exploit kit jar file downloaded

Signature Identifier (sid). Used to uniquely identify rules. Each rule must have a

unique SID, which is simply a numeric value. It is important to note that some ranges

are considered to be reserved. These are:

• 0-1000000: Reserved for the Sourcefire VRT

• 2000001-2999999: Used by Emerging Threats

• 3000000þ: For public use

In order to avoid a conflict, you should use SIDs above 3000000. You should also

track and maintain a listing of the local SIDs used on your sensors.

Revision (rev). The revision option is used to denote when a rule has been changed.

When a new rule is created, it should be assigned rev:1; to indicate that it is the first

232 CHAPTER 9 Signature-Based Detection with Snort and Suricata

revision of the rule. Instead of generating a new SID every time a rule is changed, you

should retain the same SID and increment the revision number. In the event that Snort

or Suricata encounter a duplicate SID, they will utilize the rule with the higher revi-

sion number.

Reference. The reference keyword provides the ability to link to external informa-

tion sources to provide additional context to the rule. The most common way to do

this is to simply include a reference to a URL, as shown in this rule:

alert tcp $HOME_NET any ->$EXTERNAL_NET $HTTP_PORTS (msg:“ET CURRENT

_EVENTS FakeAlert/FraudPack/FakeAV/Guzz/Dload/Vobfus/ZPack HTTP Post

2”; flow:established,to_server; content:“POST”; http_method; con-

tent:“/perce/”; nocase; http_uri; content:“/qwerce.gif”; nocase;

http_uri; content:"data¼“; nocase; reference:url,threatinfo.trendmi-

cro.com/vinfo/virusencyclo/default5.asp?VName¼TROJ_AGENT.

GUZZ&VSect¼T; reference:url,www.threatexpert.com/threats/trojan-

fraudpack-sd6.html; reference:url,vil.nai.com/vil/content/v_157489.

htm; reference:url,doc.emergingthreats.net/2010235; classtype:tro-

jan-activity; sid:2010235; rev:6;)

The rule above is used to detect the presence of several pieces of malware that all

make a similar type of HTTP POST to a remote server. In this case, the rule refer-

ences that there are four individual references in the rule:

• reference:url,threatinfo.trendmicro.com/vinfo/virusencyclo/default5.asp?

VName¼TROJ_AGENT.GUZZ&VSect¼T;

• reference:url,www.threatexpert.com/threats/trojan-fraudpack-sd6.html;

• reference:url,vil.nai.com/vil/content/v_157489.htm;

• reference:url,doc.emergingthreats.net/2010235;

Note that references take the following format:

reference: <reference name>,<reference>;

Reference types are defined in the reference.config file that is used by Snort and

Suricata. The name and location of this file is configurable in snort.conf and suricata.

yaml. In Security Onion, it is located in /etc/nsm/<sensor name>/reference.config.

An example of this file is shown in Figure 9.21.

In reference.config, a reference type is defined with the following syntax:

config reference: <reference name><reference prefix>

The reference name can be any single word that you would like to use. The ref-

erence prefix is used to assign a URL value that will precede whatever is specified as

the reference in the rule itself. This is done to keep rules concise, and to provide

added flexibility to graphical front ends so that an analyst can click on the reference

and be directed to the proper link.

Therefore, when specifying the URL reference:

reference:url,vil.nai.com/vil/content/v_157489.htm;

233IDS Rules

http://www.threatexpert.com/threats/trojan-fraudpack-sd6.html
http://www.threatexpert.com/threats/trojan-fraudpack-sd6.html
http://www.threatexpert.com/threats/trojan-fraudpack-sd6.html

The full reference will actually be:

http://url,vil.nai.com/vil/content/v_157489.htm

Other reference types utilize this feature more effectively. For example, consider

the following rule that is used to detect an NTPDX overflow attempt:

alert udp $EXTERNAL_NET any ->$HOME_NET 123 (msg:“GPL EXPLOIT ntpdx

overflow attempt”; dsize:>128; reference:bugtraq,2540; reference:

cve,2001-0414; classtype:attempted-admin; sid:2100312; rev:7;)

In this rule, two references are specified; bugtraq and cve. If you examine the

reference.config file shown in Figure 9.21, you will see that both of those reference

types use special URL prefixes that allow that data to be referenced quickly:

config reference: bugtraq http://www.securityfocus.com/bid/

config reference: cve http://cve.mitre.org/cgi-bin/cvename.cgi?name¼

Using this configuration, the actual reference associated with SID 2100312

would be:

• http://www.securityfocus.com/bid/2540

• http://cve.mitre.org/cgi-bin/cvename.cgi?name¼2001-0414

As you can see, the ability to only include the reference name and value can

greatly decrease the size of a rule, which makes them easier to edit and manage.

The ability to create custom reference types adds quite a bit of flexibility to how

you include contextual data with your rules.

FIGURE 9.21

An Example reference.config File

234 CHAPTER 9 Signature-Based Detection with Snort and Suricata

http://url,vil.nai.com/vil/content/v_157489.htm
http://www.securityfocus.com/bid/
http://cve.mitre.org/cgi-bin/cvename.cgi?name
http://www.securityfocus.com/bid/2540
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2001-0414
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2001-0414
Figure 9.21

Priority. The priority field can be used to manually specify the priority for a rule,

which can be used by analysts to help them best use their time when reviewing alerts.

This option can be set to any integer value, but most public rule sets will only use a

value of 1 through 10, with 1 being the highest priority and 10 being the lowest. The

following syntax is used for this option:

priority:<value>;

If you have assigned a classification to a rule, then that rule will assume whatever

default classification is specified for the rule in classification.config, but if you

explicitly specify the priority, Snort uses that value instead.

Classification. The classification option is used to assign rules to categories based

upon the type of activity they are attempting to detect. The following rule shows the

usage of the classification option:

alert tcp $HOME_NET any ->$EXTERNAL_NET $HTTP_PORTS (msg:“ET CURRENT_

EVENTS Potential Fast Flux Rogue Antivirus (Setup_245.exe)”; flow:

established,to_server; content:“GET”; nocase; http_method; con-

tent:“/Setup_”; nocase; http_uri; content:“.exe”; nocase; http_uri;

pcre:“/\/Setup_\d+\.exe$/Ui”; reference:url,www.malwareurl.com/list

ing.php?domain¼antivirus-live21.com; classtype:trojan-activity;

sid:2012392; rev:3;)

Classification must be specified using the following syntax:

classtype:<classification name>;

BothSnort andSuricatadrawclassificationnames fromtheclassification.config file.

The name and path to this file is configurable in snort.conf and suricata.yaml. On Secu-

rity Onion, the file can be found at /etc/nsm/<sensor name>/classification.config.

Entries within this file must use the following format:

config classification: <classification name>,<classification

description>,<default priority>

The classification name is what is referenced within the rules, and it should be

short and contain no spaces. The classification description can be longer and provide

more detail related to the classification. The default priority specifies the baseline

priority for any rules using this classification name.

Snort and Suricata both ship with some classification types built-in, and when

you download rules from a public source such as Sourcefire VRT or Emerging

Threats, those downloads will include a classification.config file containing all of

the classifications used in the provided rules. Figure 9.22 shows an example classi-

fication.config file from Security Onion.

Generally, it is a good idea to strive to classify every rule in some formor another. If

you are properly tracking the creation and modification of rules, then you have likely

already established some form of classification that you can apply to your IDS rules.

If you are just beginning to establish a signature-based detection capability, then the

classification types provided by Snort and Suricata are a good starting point.

235IDS Rules

http://www.malwareurl.com/listing.php?domain=antivirus-live21.com
http://www.malwareurl.com/listing.php?domain=antivirus-live21.com
http://www.malwareurl.com/listing.php?domain=antivirus-live21.com

Content Inspection
The most basic action that can be taken within the options section of an IDS rule is to

perform a basic content match. Using the content keyword, you can instruct the IDS

engine to examine the application layer content (the payload) of a packet for the data

you specify. Chapter 13 will go into detail on how to tell exactly where the payload

area of a packet begins. This data can be expressed as text, binary data in hexadec-

imal format, or a combination of both.

For example, if we wanted to examine the content of a packet for the string

“evilliveshere”, then we could specify:

content:“evilliveshere”;

You can also specify multiple content matches in a single rule, which will

come in handy later when we talk about content modifiers and looking for content

in specific places.

FIGURE 9.22

An Example classification.config File

236 CHAPTER 9 Signature-Based Detection with Snort and Suricata

Figure 9.22

content:“evillives”; content:“here”;

Negation can also be used in content matches with the exclamation character (!).

For example, the following content matches could be combined to capture all login

attempts, except for those associated with the anonymous user account:

content:“USER”; content:!“anonymous”;

Binary data can also be matched by expressing that binary data as hexadecimal

characters surrounded by pipe symbols (|). If we wanted to examine packet data for

the existence of JPEG files by matching occurrences of the JPEG “magic numbers”,

we would express, as shown here:

content:“|FF D8|”;

String data and binary data can be combined in content searches. In the following

example, we are looking for three colons, followed by the text “evilliveshere”, fol-

lowed by three null bytes:

content:“ |3A 3A 3A|evilliveshere|00 00 00|”;

It is important to note that all content matches are case sensitive, and they will

match content found anywhere in the packet.

CAUTION

When creating content rules, be aware that certain characters such as the semicolon,

backslash, and quotation mark are reserved characters, and must be escaped or represented in

hexadecimal format in order to be used for a content match.

Content Inspection Modifiers
There are several modifiers that can be applied to content matches by placing them

after the content being matched. These will allow you to specify exactly how the IDS

engine will look for the content matches within network data. These modifiers help

increase the accuracy of content matches in your rules, and they also help increase

the performance of the detection process within the IDS engine, as they allow the

engine to look in a specific location for specified content rather than having to exam-

ine the complete payload of every packet.

To apply a content modifier to a content match, it should be placed directly after

the content match in the rule. We will look at several of these modifiers now.

Nocase. Content matches are case sensitive by default. Therefore, if you specify a

content match for the text “root” and a packet contains the string “ROOT”, an alert

will not be generated. To signify a content match as case insensitive, you can use the

nocase modifier, like so:

content:“root”; nocase;

This content match will match any capitalization of the word “root.”

Offset and Depth. The offset modifier is used to match content occurring at a specific

position with a packets payload, starting at the first byte of the payload. Note that the

237IDS Rules

payload begins at byte 0, rather than byte 1. Therefore, if you specify offset 0, the

detection engine will look for the content to start at the beginning of the payload.

If you specify an offset of 1, the detection engine will look for the content to start

at the second byte of the payload.

As an example, let’s examine the following FTP packet:

14:51:44.824713 IP 172.16.16.139.57517>67.205.2.30.21: Flags [P.],

seq 1:15, ack 27, win 16421, length 14

0x0000: 4510 0036 efe4 4000 4006 4847 ac10 108b E..6..@.@.HG....

0x0010: 43cd 021e e0ad 0015 0bcb 6f30 fcb2 e53c C.........o0. . .<

0x0020: 5018 4025 2efb 0000 5553 4552 2073 616e P.@%....USER.san

0x0030: 6465 7273 0d0a ders..

If we wanted to write a content matching rule that detected any time a user

attempted to login to this external FTP server with this username, we could start with

a rule like this:

alert tcp $HOME_NET any ->67.205.2.30 21 (msg:“Suspicious FTP Login”;

content:“sanders”; sid:5000000; rev:1;)

This rule would definitely generate an alert for the given packet, but it is also prone

to false positives. For instance, if someonewere to login to another account on that FTP

server and browse to a folder named “sanders”, that would also generate an alert.

We can narrow the scope of this rule by specifying the offset where the username

appears in the payload of the packet. In this case, the first byte of the packet payload

is 0x55. The first character of the actual username appears at offset 5 (0x73). Don’t

forget, we are counting starting from zero. With this in mind, we can rewrite the rule

to begin matching that content string at that offset:

alert tcp $HOME_NET any ->67.205.2.30 21 (msg:“Suspicious FTP Login”

content:“sanders”; offset:5; sid:5000000; rev:1;)

Not only will this rule yield less false positives, but it will also perform faster as it

limits the number of bytes that the IDS engine must examine.

While the offset modifier can be used to specify where an IDS engine begins

looking for a content match, the depth modifier can be used to specify where it will

cease looking for a content match. This is done by specifying the byte offset relative

to the first payload content byte being examined. If you aren’t using the offset mod-

ifier, the depth will be relative to the first byte of the packet payload. If you are using

the offset modifier, the depth will be relative to the byte specified in the offset value.

If we examine the Snort rule we created in the previous FTP login example, we

can make our rule even more efficient by limiting its depth. Here, we’ve limited the

depth to 6 bytes, which is the length of the string we are attempting to match (again,

counting from 0). In this case, we have combined the offset and depth modifiers to

specify the absolute location of the content we are attempting to match.

alert tcp $HOME_NET any ->67.205.2.30 21 (msg:“Suspicious FTP Login”

content:“sanders”; offset:5; depth:7; sid:5000000; rev:1;)

238 CHAPTER 9 Signature-Based Detection with Snort and Suricata

Distance and Within. As we saw earlier, rules can be written so that they contain

multiple content matches. When working with a rule like this, it can be incredibly

useful to be able to specify how the content matches are positioned relative to each

other. One way to do this is the distance rule modifier, which is used to specify the

distance from the end of the previous content match to start the next content check.

The following rule makes use of the distance modifier:

alerttcp$HOME_NET 1024:->$EXTERNAL_NET1024:(msg:“ET P2PAresServer

Connection”; flow:established,to_

server; dsize:<70; content:“r|be|bloop|00|dV”; content:“Ares|00 0a|”;

distance:16; reference:url,aresgalaxy

.sourceforge.net; reference:url,doc.emergingthreats.net/bin/view/

Main/2008591; classtype:policy-violation;

sid:2008591; rev:3;)

The rule shown above is used to detect activity related to the Ares peer-to-peer

file sharing network.

1. content:”r|be|bloop|00|dV”;

Match content occurring within any point of a packet payload

2. content:”Ares|00 0a|”; distance:16;

Match content starting at least 16 bytes after the previous content match.,

counting from 1.

The following packet payload will generate an alert from this rule:

0x0000: 72be 626c 6f6f 7000 6456 0000 0000 0000 r.bloop.dV.......

0x0010: 0000 0000 0000 0000 0000 0000 0000 0000

0x0020: 4172 6573 000a Ares..

However, this payload will not match the rule, because the second content match

does not occur at least 16 bytes after the first match:

0x0000: 72be 626c 6f6f 7000 6456 0000 0000 0000 r.bloop.dV.......

0x0010: 4172 6573 000a 0000 0000 0000 0000 0000 Ares.............

FROM THE TRENCHES

A commonmisconception is that Snort or Suricata will look for content matches in the order they

are listed within the rule. For example, if the rule states “content:one; content:two;”, that the IDS

engine would look for those content matches in that order. However, this isn’t the case, and this

rule wouldmatch on a packet whose payload contains “onetwo” or “twoone”. To ensure that there

is an order to these matches, you can pair them with a distance modifier of 0. This tells the IDS

engine that the second content match should come after the first, but the distance between the

matches doesn’t matter. Therefore, we could amend the following content matches to be

“content:one; content:two; distance:0;”. This would match on “onetwo” but not on “twoone”.

Another rule modifier that can be used to dictate how multiple content matches

relate to each other is the within modifier. This modifier specifies the number of

bytes from the end of the first content match that the second content match must

239IDS Rules

occur within. The following rule combines both the distance and within modifiers

with multiple content matches:

alert tcp $HOME_NET any ->$EXTERNAL_NET 3724 (msg:“ET GAMES World of

Warcraft connection”; flow:established,to_server; content:“|00|”;

depth:1; content:“|25 00|WoW|00|”; distance:1; within:7; reference:

url,doc.emergingthreats.net/bin/view/Main/2002138; classtype:pol-

icy-violation; sid:2002138; rev:9;)

This rule is designed to detect connections to the online World of Warcraft game

by detecting two content matches occurring in the correct order:

1. content:”|00|”; depth:1;

Match content occurring on the first or second byte of the packet payload.

2. content:”|25 00|WoW|00|”; distance:1; within:7;

Start matching content 1 byte after the end of the previous content match,

ending by the seventh byte.

Considering these criteria, the following packet payload would generate an alert

from this rule:

0x0000: 0000 2500 576f 5700 0000 0000 0000 0000 . . .WoW...........

0x0010: 0000 0000 0000 0000 0000 0000 0000 0000

The following would not generate an alert, because the second content match falls

outside of the values specified by the distance and within modifiers:

0x0000: 0000 0000 0000 0000 2500 576f 5700 0000WoW....

0x0010: 0000 0000 0000 0000 0000 0000 0000 0000

HTTP Content Modifiers. One of the most common types of rules you will be writ-

ing are ones that inspect HTTP traffic. This is because HTTP is a heavily used

protocol for legitimate traffic, and malicious activity often tries to hide here.

The content modifiers we’ve already discussed can be used to effectively detect

actions occurring within HTTP traffic, but using this method can be a bit

cumbersome.

As an example, consider the following HTTP packet:

11:23:39.483578 IP 172.16.16.139.64581>67.205.2.30.80: Flags [P.],

seq 1:806, ack 1, win 16384, length 805

0x0000: 4500 034d 532b 4000 4006 e1f9 ac10 108b E..MS+@.@.......

0x0010: 43cd 021e fc45 0050 2b1e 34a5 9140 5480 C....E.P+.4..@T.

0x0020: 5018 4000 5334 0000 4745 5420 2f20 4854 P.@.S4..GET./.HT

0x0030: 5450 2f31 2e31 0d0a 486f 7374 3a20 7777 TP/1.1..Host:.ww

0x0040: 772e 6170 706c 6965 646e 736d 2e63 6f6d w.appliednsm.com

0x0050: 0d0a 436f 6e6e 6563 7469 6f6e 3a20 6b65 ..Connection:.ke

0x0060: 6570 2d61 6c69 7665 0d0a 4163 6365 7074 ep-alive..Accept

0x0070: 3a20 7465 7874 2f68 746d 6c2c 6170 706c :.text/html,appl

240 CHAPTER 9 Signature-Based Detection with Snort and Suricata

0x0080: 6963 6174 696f 6e2f 7868 746d 6c2b 786d ication/xhtml+xm

0x0090: 6c2c 6170 706c 6963 6174 696f 6e2f 786d l,application/xm

0x00a0: 6c3b713d302e392c2a2f2a3b713d302el;q¼0.9,*/*;q¼0.

0x00b0: 380d 0a55 7365 722d 4167 656e 743a 204d 8..User-Agent:.M

0x00c0: 6f7a 696c 6c61 2f35 2e30 2028 4d61 6369 ozilla/5.0.(Maci

0x00d0: 6e74 6f73 683b 2049 6e74 656c 204d 6163 ntosh;.Intel.Mac

0x00e0: 204f 5320 5820 3130 5f38 5f34 2920 4170 .OS.X.10_8_4).Ap

0x00f0: 706c 6557 6562 4b69 742f 3533 372e 3336 pleWebKit/537.36

0x0100: 2028 4b48 544d 4c2c 206c 696b 6520 4765 .(KHTML,.like.Ge

0x0110: 636b 6f29 2043 6872 6f6d 652f 3238 2e30 cko).Chrome/28.0

0x0120: 2e31 3530 302e 3935 2053 6166 6172 692f .1500.95.Safari/

0x0130: 3533 372e 3336 0d0a 4163 6365 7074 2d45 537.36..Accept-E

0x0140: 6e63 6f64 696e 673a 2067 7a69 702c 6465 ncoding:.gzip,de

0x0150: 666c 6174 652c 7364 6368 0d0a 4163 6365 flate,sdch..Acce

0x0160: 7074 2d4c 616e 6775 6167 653a 2065 6e2d pt-Language:.en-

0x0170: 5553 2c65 6e3b 713d 302e 380d 0a43 6f6f US,en;q¼0.8..

If we considered the domain appliednsm.com to be malicious, then it would be

reasonable that we might write an IDS rule that will attempt to detect users browsing

to this domain with their browser. Using only the rule options that we’ve learned

about so far, that rule might look like this:

alert tcp $HOME_NET any ->$EXTERNAL_NET any (msg:“Evil Domain www.appli

ednsm.com”;content:“GET”;offset:0;depth:4;content:“Host|3a20|www.

appliednsm.com”; distance:0; sid:5000000; rev:1;)

This rule would do the following:

1. content:”GET ”; offset:0; depth:4;

Match content starting at the beginning of the packet payload and ending by

the fourth byte of the payload.

2. content:”Host|3a 20|www.appliednsm.com”;

Match content occurring after the first content match.

While this would work perfectly fine, there is a better way. Both Snort and

Suricata provide HTTP stream reassembly as well as a few rule modifiers

that can be used to write more efficient rules related to this type of traffic. As an

example, we could utilize the http_method and http_uri modifiers to rewrite the rule

above:

alert tcp $HOME_NET any ->$EXTERNAL_NET any (msg:“Evil Domain www.appli

ednsm.com”; content:“GET”; http_method; content:“www.appliednsm.

com”; http_uri; sid:5000000; rev:1;)

As you can see, this rule is a lot easier towrite, and it accomplishes the same objec-

tive in a more efficient manner. There are several of these HTTP modifiers available

for use. Some of the more common HTTP modifiers are shown in Table 9.1.

241IDS Rules

http://www.appliednsm.com
http://www.appliednsm.com
http://www.appliednsm.com
http://www.appliednsm.com
http://www.appliednsm.com
http://www.appliednsm.com
http://www.appliednsm.com
http://www.appliednsm.com
http://www.appliednsm.com

Perl Compatible Regular Expressions (PCRE). At some point you might encounter a

situation where it isn’t possible to write a rule based upon the constructs provided by

the IDS engine. In this case, rules can be extended with the use of a PCRE. Regular

expressions are incredibly powerful and provide syntax that allows for matching any

type of content you can think of.

PCRE’s can be fairly simple, as seen in this rule that will detect credit card

numbers:

alert ip any any ->any any (msg:“ET POLICY SSN Detected in Clear Text

(dashed)”; pcre:”/ ([0-6]\d\d|7[0-2

56]\d|73[0-3]|77[0-2])-\d{2}-\d{4} /”; reference:url,doc.emerging-

threats.net/2001328; classtype:policy-viol

ation; sid:2001328; rev:13;)

Or they can be very complex, as we see here in this rule that detects malicious

java requests to dynamic DNS domains:

alert tcp $HOME_NET any ->$EXTERNAL_NET $HTTP_PORTS (msg:“ET CURRENT

_EVENTS SUSPICIOUS Java Request to Cha

ngeIP Dynamic DNS Domain”; flow:to_server,established; content:” Java/

1.”; http_header; pcre:”/ Ĥost\x3a\x2

0[○\r\n]+\.(?:m(?:y(?:p(?:op3\.(?:net|org)|icture\.info)|n(?:etav

\.(?:net|org)|umber\.org)|(?:secondarydns|

lftv|03)\.com|d(?:ad\.info|dns\.com)|ftp\.(?:info|name)|www\.biz|z

\.info)|(?:r(?:b(?:asic|onus)|(?:slov|fac

)e)|efound)\.com|oneyhome\.biz)|d(?:yn(?:amic(?:dns\.(?:(?:org|co|

me)\.uk|biz)|-dns\.net)|dns\.pro|ssl\.com

)|ns(?:(?:-(?:stuff|dns)|0[45]|et|rd)\.com|[12]\.us)|dns\.(?:m(?:e

\.uk|obi|s)|info|name|us)|(?:smtp|umb1)\.

com|hcp\.biz)|(?:j(?:u(?:ngleheart|stdied)|etos|kub)|y(?:ou(?:

dontcare|rtrap)|gto)|4(?:mydomain|dq|pu)|q(?:

Table 9.1 HTTP Rule Modifiers

HTTP Modifier Description

http_client_body Content in the body of an HTTP client request

http_cookie Content in the “Cookie” HTTP header field

http_header Content anywhere in the header of an HTTP request or response

http_method The HTTP method being used by the client (GET, POST, etc)

http_uri Content in the HTTP client request URI

http_stat_code Content in the HTTP status field of a server response

http_stat_message Content in the HTTP status message of a server response

http_encode The type of encoding being used in the HTTP transation

242 CHAPTER 9 Signature-Based Detection with Snort and Suricata

high|poe)|2(?:waky|5u)|z(?:yns|zux)|vizvaz|1dumb)\.com|s(?:e(?:(?:

llclassics|rveusers?|ndsmtp)\.com|x(?:idu

de\.com|xxy\.biz))|quirly\.info|sl443\.org|ixth\.biz)|o(?:n(?:mypc

\.(?:info|biz|net|org|us)|edumb\.com)|(?:

(?:urhobb|cr)y|rganiccrap|tzo)\.com)|f(?:ree(?:(?:ddns|tcp)\.com|

www\.(?:info|biz))|a(?:qserv|rtit)\.com|tp

(?:server|1)\.biz)|a(?:(?:(?:lmostm|cmeto)y|mericanunfinished)\.

com|uthorizeddns\.(?:net|org|us))|n(?:s(?:0

(?:1\.(?:info|biz|us)|2\.(?:info|biz|us))|[123]\.name)|inth\.biz)|

c(?:hangeip\.(?:n(?:ame|et)|org)|leansite

\.(?:info|biz|us)|ompress\.to)|i(?:(?:t(?:emdb|saol)|nstanthq|

sasecret|kwb)\.com|ownyour\.(?:biz|org))|p(?:

ort(?:relay\.com|25\.biz)|canywhere\.net|roxydns\.com)|g(?:r8(?:

domain|name)\.biz|ettrials\.com|ot-game\.or

g)|l(?:flink(?:up\.(?:com|net|org)|\.com)|ongmusic\.com)|t(?:o(?:

ythieves\.com|h\.info)|rickip\.(?:net|org)

)|x(?:x(?:xy\.(?:info|biz)|uz\.com)|24hr\.com)|w(?:ww(?:host|1)\.

biz|ikaba\.com|ha\.la)|e(?:(?:smtp|dns)\.b

iz|zua\.com|pac\.to)|(?:rebatesrule|3-a)\.net|https443\.(?:net|

org)|bigmoney\.biz)(\x3a\d{1,5})?\r$/Hmi"; c

lasstype:bad-unknown; sid:2016581; rev:1;)

As you can see in the rule examples shown above, a PCRE content match can be

inserted into a rule using the following syntax:

pcre:<regular expression>;

Writing regular expressions is beyond the scope of this book, however, there are

several online tutorials that provide a jump-start on the topic. If you are looking for a

more thorough reference text, two books I like for varying skill levels are “Introduc-

ing Regular Expressions” by Michael Fitzgerald and “Mastering Regular Expres-

sions” by Jeffrey E.F. Friedl.

Communication Flow
Snort and Suricata both provide the ability to write rules based upon the state of

communication flow for network traffic using the TCP protocol. While this may

seem redundant when combined with the source or destination IP addresses and

ports in the rule header, that is not actually the case. While that rule header infor-

mation will help determine which direction the traffic is going (inbound or out-

bound), it does not always necessarily tell you who is responsible for which part

of the communication.

To understand how flow options work and why they are important, you should

understand what constitutes a TCP session. In a normal TCP session, there are a client

and server that communicate. The client is the device that starts the connection to the

server by sending a SYN packet to the server on a listening port. The server should, at

243IDS Rules

that point, respond to the client with a SYN/ACK packet. Upon receipt, the client will

respond back to the server with an ACK packet. At this point, a three-way handshake

has been completed and the client and server can communicate until one of them ter-

minates the connection, either abruptly with a RST packet, or more gracefully with a

series of FIN packets known as a TCP teardown.Wewill examine this more in depth in

Chapter 13, but this is the basic premise of what makes up a TCP session.

With this in mind, the flow rule option has several options of its own. These are

broken down into three categories: state options, directional options, and traffic

modeling state. These options are configured using the following format, where at

least one option is required and additional ones are discretionary:

flow: <option>,<option>,<option>;

The two available state options are established and stateless. The established

option will only match traffic where an established TCP session exists. The stateless

option will match regardless of whether an established connection exists.

There are four directional options:

• to_server: Traffic from the client to the server

• from_server: Traffic from the server to the client

• to_client: Traffic from the server to the client

• from_client: Traffic from the client to the server

ANALYST NOTE

If you noticed that the to_server/from_client and to_client/from_server options are the same,

then you can rest assured that your eyes aren’t deceiving you and that it isn’t a typo. These

options are indeed the same, but are provided to make rules more readable.

The final two options are the no_stream and only_stream options that are used to

define whether the data beingmatched is a reassembled stream or just a single packet.

As an example of flow option usage, let’s examine the following rule:

alerttcp$HOME_NETany->$EXTERNAL_NET5222(msg:“GPL CHATMISCJabber/

Google Talk Outgoing Traffic”; flo

w:to_server,established; content:”<stream”; nocase; reference:url,

www.google.com/talk/; classtype:policy-vi

olation; sid:100000230; rev:2;)

This rule is used to detect authentication to a Jabber/Google Talk chat server. In

this case, we see that a simple content match is being used, but before that, the flow:

to_server,established option is used. This increases the performance of Snort/Suri-

cata by ensuring that only established TCP sessions are examined for this rule,

and it increases the accuracy of the rule by ensuring that only traffic to the actual

server as defined by the TCP session is detected.

244 CHAPTER 9 Signature-Based Detection with Snort and Suricata

http://www.google.com/talk/

While your rules might not always directly benefit from flow rules from an accu-

racy perspective, they can serve to increase performance when using flow state

options, so I try to include this option whenever possible.

Protocol Header Detection Options
Snort and Suricata provide the ability to detect values in the headers of the

packets being examined. This includes most of the values in the ICMP, IP,

TCP, and UDP headers. I won’t rehash all of these values here as they can be

found in the Snort and Suricata documentation, but some of the items I use most

often include:

• TTL: Matches a specified TTL value. This can be specified as an exact value

(¼) or using a relational operator (>,>¼, <, <¼). This is useful for detecting

certain types of operating system based upon their initial TTL value.

• dsize: Matches a packet with a specific payload size. This can be specified as

an exact value (¼) or using a relational operator (>, <). This is useful for

increasing rule performance by combining it with content matching rules.

• itype: Matches a specific ICMP type value.

• icode: Matches a specific ICMP code value.

• ip_proto: Matches a specific IP protocol. This can be specified as either the

protocol name (IGMP, GRE, etc) or number.

Rule Tuning

In Chapter 7 we discussed techniques for determining the effectiveness of a signa-

ture through metrics like false positive rate and precision. There are several

methods that can be used to enhance signatures when these become a concern.

Some of these methods, and others, can also be used to increase the performance

of certain rules. Now we will look at a few of these best practices for IDS rule

tuning.

Event Filtering
Sometimes rules may need to exist that generate an extremely high number of alerts

by nature. An example of this would be a rule that detects a particular type of denial

of service (DoS) attack. While it is important to be able to detect this type of attack,

if the rule you’ve written matches every DoS packet sent, and you are receiving

thousands of these packets per second, then you will receive thousands of alerts

per second. This many alerts will eventually overwhelm your IDS engine or your

analysts. The event filtering options provided by Snort and Suricata allow you to

apply thresholds to rules to prevent this kind of alert explosion.

Instead of being placed inline with the rule as a rule option, event filters are

designed to be placed in the threshold.conf file. The name and location of this file

245IDS Rules

is configurable in snort.conf and suricata.yaml as needed. On Security Onion, this

file is stored at /etc/nsm/<sensor name>/threshold.conf.

ANALYST NOTE

Previously, event filters were known as threshold rule options and were placed inline with

the rule. As of the writing of this book, this method is still supported by Snort and Suricata, so

you will find that a lot of publicly available rules still use this format. The syntax of the two

formats is the same. Since this book uses rules from publicly available sources, you may find

rules listed that utilize the older inline threshold options. However, it is recommended that

the new method of placing event filter entries into the threshold.conf file be used.

There are three types of event filters:

• Limit: Generate an alert on the first number of specified matches (count) during

the time interval (seconds), and then ignore the remaining alerts for the rest of the

time interval.

• Threshold: Generate an alert every time there is a match (count) during this

interval (seconds).

• Both: Generate an alert once per time interval (seconds) after the specified

number of matches (count) has occurred, then ignore any further matches during

the time interval.

Event filter entries use the following syntax:

event_filter gen_id<value>, sig_id<value>, type<limit|threshold|

both>, track<by_src|by_dst>, count<value>, seconds<value>

The options shown are broken down as:

• gen_id: Specifies the generator ID of the rule.

• sig_id: Specifies the SID of the rule

• type< limit|threshold|both>: Specifies the type of event filter being applied.

These are described above.

• track<by_src/by_dst>: Specifies whether rule matches are tracked by unique

source or unique destination address

• count: The number of rule matches occurring within the specified time that will

cause the event filter limit to be exceeded

• seconds: The number of seconds that are used to track the count of rule matches

As an example of a usage scenario for event filtering, consider this rule:

alert tcp $HOME_NET any ->!$WSUS_SERVERS $HTTP_PORTS (msg:“ET POLICY

Windows Update in Progress”; flow:established,t

o_server; content:“Windows-Update-Agent”; http_header; con-

tent:“Host|3a|”; http_header; nocase; within:20;

pcre:“/User-Agent\x3a[\̂n]+Windows-Update-Agent/i”;

reference:url,windowsupdate.microsoft.com; reference:url,doc.emer-

gingthreats.net/2002949; classtype:pol

icy-violation; sid:2002949; rev:8;)

246 CHAPTER 9 Signature-Based Detection with Snort and Suricata

The rule shown above is used to detect a device downloading Windows updates

from a non-approved update server by matching a specific user agent string. When a

Windows computer updates, this string can be seen in multiple packets and will result

in a single host generating a significant number of alerts. If you have more than a

few hosts exhibiting this behavior, the number of alerts can quickly overwhelm

an analyst. This makes this rule a perfect candidate for an event filter. The following

will do the trick:

event filter gen_id 1,sig_id 2002949,type limit,track by_s

rc,count 1, seconds 300

The event filter shown here will track the source address of the alert and count

every event occurring over a 300 second interval. Since this is a limit filter and the

count value is set to 1, only one alert per host will be generated for rule matches every

300 seconds.

Another great use of event filters is with rules associated with scanning. When

scanning activity occurs, it will generate a lot of packets. Therefore, generating

an alert for every packet matching the criteria specified in the rule could quickly

overwhelm an analyst. In order to combat this, an event filter can be applied to notify

an analyst of the scan without dominating their analysis console.

Alert Suppression
I’ve seen many instances where an analyst has written a new rule that they’ve put a

lot of work into, only to find that one or two hosts within the network generate some

type of traffic that results in a plethora of false positives. This leads to frustration that

eventually causes the analyst to scrap the rule all together. What those analysts

typically don’t know about is the alert suppression feature of Snort and Suricata. This

feature allows you to specify a rule and an IP address (or group of IP addresses from

a variable), and suppress alerts that would be generated from those hosts in relation

to a rule.

Suppression entries are also included in the threshold.conf file, and take the

following syntax:

suppress gen_id<value>,sig_id<value>,track<by_s

rc|by_dst>,ip<value>

The options shown are broken down as:

• gen_id: Specifies the generator ID of the rule.

• sig_id: Specify the SID of the rule

• track<by_src|by_dst>: Specifies whether suppression occurs for source or

destination addresses generating traffic that matches a rule. This is optional.

• ip<value>: The IP address whose alerts from the specified rule are suppressed

The following entry would be used to suppress any alerts generated by SID

5000000 with the source IP address 192.168.1.100:

suppress gen_id 1, sig_id 5000000, track by_src, ip 192.168.1.100

247IDS Rules

Suppression is a useful tactic for eliminating individual hosts that are causing

false positive issues with certain rules. This should be your first stop before removing

a rule.

Alert Detection Filters
Snort and Suricata provide the ability to use detection filters to set a threshold on the

number of rule matches that must occur before an alert is generated. A detection filter

can be applied to a rule based upon source or destination address of the traffic, and

can apply its threshold based upon the number of rule matches that have been

detected in a specified time interval.

The detection filter option is applied in line with a rule and takes the following

format:

detection_filter: track<by_src|by_dst>, count<value>,

seconds<value>;

These options include:

• track<by_src|by_dst>: Specifies whether rule matches are tracked by unique

source or unique destination address

• count: The number of rule matches in the specified time that will cause an alert to

be generated

• seconds: The number of seconds that the specified number of rule matches must

occur in order for an alert to be generated

As an example of detection filters in practice, let’s look at this rule:

alert tcp $EXTERNAL_NET any ->$HTTP_SERVERS $HTTP_PORTS (msg:“ET SCAN

Sqlmap SQL Injection Scan”; flow:to_

server,established; content:“User-Agent|3a| sqlmap”; fast_pattern:

only; http_header; detection_filter:track

by_dst,count4,seconds20;reference:url,sqlmap.sourceforge.net;ref-

erence:url,doc.emergingthreats.net/2

008538; classtype:attempted-recon; sid:2008538; rev:8;)

This rule is used to detect scanning activity by the Sqlmap tool, which is used to

detect and orchestrate SQL injection attacks. In this case, the rule matches content

associated with the user agent that is used by Sqlmap. Generally, seeing this user

agent only once or twice might not indicate any type of scanning activity since

Sqlmap’s scans are usually more verbose than that. As such, generating an alert every

time this user agent is seen might generate a significant number of false positives.

Because of this, the rule was configured with the following detection filter:

detection_filter:track by_dst, count 4, seconds 20;

This detection filter requires that a certain threshold be met before the detection

engine will generate an alert from this rule. Specifically, the detection engine will

track the number of rule matches to the destination address, and when this number

exceeds four matches in a period of twenty seconds, it will generate an alert.

248 CHAPTER 9 Signature-Based Detection with Snort and Suricata

Detection filters are good for a variety of situations. They are especially useful

when a little of something isn’t a bad thing, but several could be. For instance, when a

user is attempting to log into a web service and has one or two failed authentication

attempts due to a forgotten password, we would consider this normal. However,

when a user attempts to log into a web service a few hundred times within a couple

of minutes, that might attempt a password guessing or brute force attempt that war-

rants further investigation.

Eliminate Unwanted Traffic
A commonmisconception is that every option you add to a rule serves to decrease the

performance of this rule, when in reality, the opposite is normally true. Whenever

you add options to an IDS rule that limit the amount of traffic the IDS engine has

to examine, you are increasing the performance of the rule. As such, you should

do everything possible to add these options and limit the amount of traffic the

IDS engine has to examine to evaluate traffic against a rule. A few ideas include:

• Always use protocol header detection options when possible. The detection

engine will examine these first before examining the payload of a packet, so if

you can exclude packets before content inspection this will save valuable

processing cycles.

• Be selective with the use of the “any” keyword in the rule header. If you can limit

the rule to a specific host or group of hosts, this will limit the amount of traffic that

the IDS engine has to parse.

• Always specify exact locations of content being detected. For instance, if you know

that a content string you are attempting to match always occurs at the same

positionwithin a packet payload, you shoulduse the offset and depth options to keep

the detection engine from having to inspect the entire content of the packet.

• Limit the size of the packets being examined based upon their payload size.

Even if you don’t knowwhere the exact location of the content you are attempting

to match will appear, if you know that it always occurs in packets of a

certain size then you can limit the size of the packet that the detection engine will

examine with the dsize option, which will increase performance.

• Always use flow options when possible. If the traffic you are attempting to match

only exists inside of an established “to server” connection, then the detection

engine can easily throw out all other traffic when attempting to match data to the

rule. This can yield a significant performance increase.

• Select the appropriate protocol in the rule header. When you can specify TCP or

UDP instead of simply IP, this will drastically reduce the number of packets that

the detection engine will have to parse for the rule you are working with.

Target the Vulnerability
When writing rules designed to catch exploitation of a service, it is often easier to

write rules so that they catch specific exploits. While this is easier, it leaves a lot

of room for false negatives. While a rule developed with an exploit in mind will catch

249IDS Rules

that particular exploit, it will not catch other exploits targeting the same vulnerabil-

ity. Because of this, it is always better to write a rule with the vulnerability in mind.

For example, consider a vulnerability that is exploited by way of a buffer over-

flow in the input field of a network application. It would be trivial to write a rule that

detects the publicly available version of this exploit, but it would be equally as trivial

for an attacker to modifier the exploit string to use different padding or a different

shellcode or payload. Instead of content matching a string from the exploit, try writ-

ing a rule that content matches based upon the submission of that input field where

there are an extraordinarily large number of characters. This rule will be harder to

write andmight yield some false positives, but it will more accurately detect attempts

to exploit the vulnerable service.

While this strategy is more labor intensive, it will yield better results and will

decrease your chances of missing malicious activity.

Pair PCRE and Content Matches
While PCRE rules infinitely increase the flexibility of IDS rules, they also increase

the performance load on the system. One strategy that can be used to decrease this

load is to pair rules that utilize PCREmatching with content matching. The detection

engine will parse the content match first, ensuring that only traffic that matches the

content will be subjected to testing for the PCRE match.

As an example, consider the following rule:

alert tcp $EXTERNAL_NET any ->$HOME_NET any (msg:“ET TROJAN IRC poten-

tial reptile commands”; flow:establis

hed,from_server; content:“PRIVMSG|20|”; depth:8; content:“|3a|”;

within:30; pcre:“/\.((testdlls|threads|nsp

|speed|uptime|installed|secure|sec|unsecure|unsec|process|ps|rand|

exploitftpd|eftpd|flusharp|farp|flushdns|

fdns|resolve|dns|pstore|pst|sysinfo|si|netinfo|ni|driveinfo|di|

currentip)\s*[\r\n]|(iestart|ies|login|l|mir

ccmd|system|file\s+(cat|exists|e|del|rm|rmdir|move|copy|attrib)|

down|dl\dx|update|reg\s+(query|delete|write

))\s+\w+|(banner|ban|advscan|asc|scanall|sa|ntscan|nts)\s*[\n\r])/

i“; reference:url,doc.emergingthreats.net

/2002363; classtype:trojan-activity; sid:2002363; rev:15;)

This rule is used to detect the presence of the “Reptile” malware strain when it

attempts to execute commands via IRC. While this command does include a very

CPU intensive regular expression, it also includes two individual content matches:

1. content:"PRIVMSG|20|"; depth:8;

2. content:"|3a|"; within:30;

These content matches will ensure that the IDS engine is only examining packets

that already appear to be associated with IRC traffic before attempting to perform the

PCRE match.

250 CHAPTER 9 Signature-Based Detection with Snort and Suricata

Fast Pattern Matching
When multiple content matches are present within a rule, Snort and Suricata

will attempt to match the most unique string first so that they can stop processing

the data quickly if no match is found. Because of this, their default behavior is to

attempt tomatch the longest content string first, as they assume that it will be themost

unique string.While this strategy is typically effective, it doesn’t always stand the test.

Because of this, the Snort and Suricata detection engines provide the fast pattern

matching content option modifier. This modifier can be specified with a shorter

content option to instruct the detection engine to attempt to match this content first.

The following rule provides a good example of the fast pattern matching modifier

in action:

alert tcp $EXTERNAL_NET any ->$HOME_NET $HTTP_PORTS (msg:“ET SCAN

Nessus User Agent”; flow: established,to

_server; content:“User-Agent|3a|”; http_header; nocase; content:“Nes-

sus”; http_header; fast_pattern; nocase

; pcre:“/○User-Agent\:[○\n]+Nessus/Hmi”; threshold: type limit, track

by_src,count 1, seconds 60; reference

:url,www.nessus.org; reference:url,doc.emergingthreats.net/2002664;

classtype:attempted-recon; sid:2002664;

rev:12;)

As you can see, there are two content options here.

1. content:"User-Agent|3a|"; http_header; nocase;

2. content:"Nessus"; http_header; fast_pattern; nocase

In this case, the “User-Agent|3a|” content is the longest, but it is certainly not the

most exclusive since this string is present in the standard HTTP client request header.

Because of this, it makes more sense to match “Nessus” first, which is the shorter

content option. This is why this option has the fast_pattern; modifier enabled.

ANALYST NOTE

The fast pattern modifier can only be used once in a rule, and it cannot be used in conjunction

with the following HTTP content modifiers: http_cookie, http_raw_uri,http_raw_header,

http_raw_cookie, http_method, http_stat_code, http_stat_msg.

Manually Test Rules
When you’ve written a rule, it is important to test it thoroughly. We’ve already cov-

ered the process of testing rule syntax, but this is only one step of the process. You

should also make sure that the rule detects the traffic it is supposed to match, and that

it does not match on other similar traffic. Since recreating the attack or malicious

activity itself can be incredibly time consuming, there are a couple of other options.

In the case of a SOC environment, for example, any analyst could be writing a

rule based upon something that has already happened. If that is the case, and you have

the packet capture of the activity, you can replay that activity to the monitoring

251IDS Rules

http://www.nessus.org

interface of a sensor (preferably a test machine running an IDS engine with the newly

deployed rule) to attempt to trigger an alert. Tcpreplay is a good option for replaying

packet captures over a live interface. An example of Tcpreplay replaying a capture

file is shown in Figure 9.23. You can learn more about Tcpreplay at http://tcpreplay.

synfin.net/wiki/tcpreplay.

Ifyoudon’thaveacapture fileavailable for theactivityassociatedwithyour rule, it is

possible tomanuallygenerate the traffic usingScapy.Scapy is apowerfulpython library

that can be used to generate and receive packets on the wire. While we don’t cover

Scapy in depth in this book, it is an incredibly valuable tool for an analyst to be familiar

with. The sample shown below is a very basic Python script that uses Scapy to send a

TCP packet with the payload “AppliedNSM” to the host at 192.168.1.200 on port 80.

ip¼IP()

ip.dst¼“192.168.1.200”

ip.src¼“192.168.1.100”

tcp¼TCP()

tcp.dport¼80

tcp.sport¼1234

payload¼“AppliedNSM”

send(ip/tcp/payload)

You can learn more about Scapy at http://www.secdev.org/projects/scapy/.

VIEWING SNORT AND SURICATA ALERTS
Once your IDS engine of choice is configured on a sensor and you have downloaded or

created IDS rules, all that is left is to sit back and wait for alerts to roll in. While these

alerts can be read directly from the sensor and the files that Snort and Suricata generate,

FIGURE 9.23

Using Tcpreplay to Replay a PCAP File Over a Live Interface

252 CHAPTER 9 Signature-Based Detection with Snort and Suricata

http://tcpreplay.synfin.net/wiki/tcpreplay
http://tcpreplay.synfin.net/wiki/tcpreplay
http://www.secdev.org/projects/scapy/
Figure 9.23

youwill probablywant touse a third-party graphical tool to helpwith this process.There

are a variety of mechanisms available for viewing alerts that are generated by Snort or

Suricata. Let’s look at two of the most popular free and open source alert management

interfaces: Snorby and Sguil. You will see these tools referenced through this book.

Snorby

Snorby is a newer alert management console that is written in ruby on rails and oper-

ates in the web browser. Snorby was created by Dustin Weber, who has since

founded a company called Threat Stack, which maintains Snorby as a free open

source application. The overall goal of Snorby is to provide analysts a means of

reviewing and analyzing alerts in a manner that is “all about simplicity,” while pro-

viding all of the power needed to perform effective analysis.

You can access an online demo of Snorby at http://demo.snorby.org, using the

username demo@snorby.org and the password snorby. In addition to this, if you

are using Security Onion you can access Snorby by clicking the Snorby icon on your

desktop, or by visiting https://<Security_Onion_IP>:444/. Figure 9.24 shows the

main Snorby dashboard.

You can read more about Snorby at http://www.snorby.org.

FIGURE 9.24

The Snorby Dashboard

253Viewing Snort and Suricata Alerts

http://demo.snorby.org
mailto:demo@snorby.org
https://<Security_Onion_IP>:444/
https://<Security_Onion_IP>:444/
https://<Security_Onion_IP>:444/
http://www.snorby.org
Figure 9.24

Sguil

Sguil has been the de facto alert management console for NSM analysts for many

years. Unlike Snorby, Sguil operates as a desktop application that connects back

to a central data source. Sguil was written by Bamm Visscher, and is maintained

as a free and open source application. It is installed on Security Onion by default,

and can be accessed by clicking the Sguil icon on the desktop. Figure 9.25 shows

the main Sguil interface.

You can read more about Sguil at http://sguil.sourceforge.net/.

CONCLUSION

In this chapter, we’ve discussed signature-based detection with Snort and Suricata at

length. We looked at how both IDS engines operate, what makes each one unique,

and how to write detection rules for them. Signature-based detection has been the

backbone of intrusion detection and network security monitoring for quite some

time, and while it isn’t always enough on its own, it is a critical capability of any

NSM environment. Later in the analysis section, we will look at methods for viewing

and analyzing alerts generated from Snort and Suricata.

FIGURE 9.25

The main Sguil interface

254 CHAPTER 9 Signature-Based Detection with Snort and Suricata

http://sguil.sourceforge.net/
Figure 9.25

CHAPTER

The Bro Platform 10
CHAPTER CONTENTS

Basic Bro Concepts .. 256

Running Bro ... 257

Bro Logs .. 258

Creating Custom Detection Tools with Bro ... 262

File Carving ..263

Selective File Extraction ...265

Extracting Files in Live Network Traffic ...267

Packaging Bro Code ...269

Adding Configuration Options ...269

Using Bro to Monitor the “Dark” Side ..272

Notice Suppression ... 275

Using and Testing the Script ... 276

Extending the Darknet Script ..278

Overriding Default Notice Processing ..279

Generating E-mail Notices from Darknet Events .. 282

Suppressing, E-mailing, and Alarming - the Easy Way283

Adding New Fields to Bro’s Logs ...284

Conclusion .. 287

NSM is all about bringing network data together to provide context for detection and

analysis. Most NSM systems already integrate the “big three” sources (IDS alerts,

session data, full packet capture data), but as we’ve already seen in this book, these

are not the only data sources you can use. One particularly rich source of this data

is Bro.

Bro is often described as an IDS, though as we’ll see in this chapter, that descrip-

tion hardly does it justice. Think of it, rather, as a development platform for network

monitoring applications. It provides substantial “out-of-the-box” functionality for

decoding and logging network traffic and provides an event-driven development

model to allow you to watch for certain types of transactions and provide your

own custom scripts to run when they happen.

In this chapter, we will see how to work with Bro’s built-in logs to identify activ-

ity of interest on our network. We’ll also see several examples of Bro programming

that showcases some of its more important and useful features.

255

CAUTION

The examples in this chapter were written to use Bro 2.2, which is in beta release as of the

writing of this book. As such, Bro 2.2 is not installed on Security Onion by default. If you’d like

to follow along, you can install Bro 2.2 Beta on to Security Onion by following the instructions

found at http://www.appliednsm.com/bro-22-on-seconion/.

BASIC BRO CONCEPTS
Contrary to popular belief, Bro itself is not an IDS, even though you’ll sometimes see

it called “the Bro IDS”. Bro is really a scripting platform that is designed for working

with network traffic. As you will see in the examples in this chapter, Bro’s scripting

language (which, somewhat confusingly, is also called “Bro”) offers features that are

extremely useful for protocol analysis (IP addresses and ports are native data types,

for example). It also offers a lot of out-of-the-box functionality for basic analysis

tasks, such as robust protocol decoding, transaction logging and notifications for

some common security events.

That said, Bro does actually make an excellent IDS platform, which is why it is

included in this book. Bro is different than, and complimentary to, a signature-based

IDS such as Snort or Suricata. The Snort rule language is well adapted to finding

bytes in a network flow (and there are a lot of tasks that really just come down to

that!), but Bro is often the best option for more complex tasks, such as those that

require higher-level protocol knowledge, working across multiple network flows,

or using a custom algorithm to compute something about the traffic in question.

One of Bro’s strengths is that it inherently knows about all of the common Inter-

net protocols, and even a number of the not-so-common ones. It can identify these

protocols in network traffic even if they are running on non-standard ports, using a

feature called Dynamic Protocol Detection (DPD). Just a few of the application and

tunneling protocols that Bro supports include:

• DHCP

• DNS

• FTP

• HTTP

• IRC

• POP3

• SMTP

• SOCKS

• SSH

• SSL

• SYSLOG

• Teredo

• GTPv1

256 CHAPTER 10 The Bro Platform

http://www.appliednsm.com/bro-22-on-seconion/

By default, when Bro sees network traffic using an application protocol it knows

about, it will log the details of those transactions to a file. Of course, the logging is

fully customizable, but Bro doesn’t stop there. While it’s parsing and decoding the

protocol, Bro actually gives you a mechanism to create custom logic for processing

the transactions in the traffic it is examining. It treats the actions taken by a protocol

as a series of events, for which you can register event handlers written in Bro code.

When you write and register a new event handler for a certain event, and when that

event occurs in the network traffic, Bro will automatically call your code based upon

the event handler you’ve written. You can do pretty much whatever you like in your

handlers, and you can have as many as you like. You can even have multiple handlers

for the same event. This might occur when you are inspecting the same protocol to

find different types of behavior.

As an example, the Bro code below represents a very simple event handler for the

http_request event. Bro generates this event whenever an HTTP client makes a

request from a server. This code prints the original URL path requested by the client

to the console (standard output). Of course, this isn’t very useful in a production sit-

uation, but we’ll see more real-world examples later in this chapter. For now, just

know that simply adding this code to any script that is loaded into your running

Bro (a process that will be explained later) is enough to register the event handler

and have Bro call it when it sees an HTTP request.

#

This is a sample event handler for HTTP requests.

#

event http_request(c: connection, method: string, orig_uri: string,

unescaped_uri: string, version: string) {

print fmt(“HTTP request found for %s”, orig_uri);

}

RUNNING BRO
The easiest way to run Bro is to execute it from the command line and have it process

a PCAP file according to Bro’s default configuration. This can be done with a com-

mand like:

bro -C -r file.pcap

The –r file.pcap argument tells Bro to read packets from the file specified,

which in this case is file.pcap. The -C option is used to disable Bro’s internal check-

sum verification. Every IP packet has a built-in checksum that allows the destination

to determine if it was received correctly. This is absolutely critical to proper network

transmission, and every host checks this by default. Increasingly, however, many

network cards implement a feature called TCP checksum offloading, which imple-

ments this check in the NIC hardware, freeing the system’s CPU from expending

needless cycles. This can make a big difference at gigabit speeds or above, but often

257Running Bro

means that the checksum values are missing or incorrect when the packets make it to

the operating system where libpcap (or another packet capture driver) can read them.

By default, Bro simply ignores packets with invalid checksums, but the -C option

forces Bro to skip the checksum validation and process all packets. You almost

always want to use this, especially when processing PCAP files from systems where

you don’t know if checksum offloading is enabled or not. If you used Security

Onion’s setup script to automatically configure the network interfaces on your lab

system, then it will disable offloading by default on your monitor interface, but most

other systems have it on by default.

BRO LOGS
A default Bro installation is configured to be very verbose in respect to logging. At this

stage, Bro is not so much looking for bad things (a la IDS), but it does creates very

detailed logs about the things it sees. Figure 10.1 shows a simple example of using

Bro to process a single PCAP file. Notice that we started out with an empty directory,

but Bro created several log files and a new directory as a result of parsing this file.

You can see by the names of the log files that Bro detected DNS, FTP, HTTP and

SSL traffic in this capture file. We also have a few other files, whose contents may be

a little less obvious. The conn.log file is a record of network connections (flows), and

the files.log file is a record of all the files that were transferred (in this case, via HTTP

or FTP, including all the HTML, images, and other embedded media that comprise

the web traffic). Packet_filter.log simply contains the BPF filter Bro is using (the

default is “ip or not ip”, which is a roundabout way of saying “all packets”).

Weird.log is where Bro logs unusual events from any of the protocols, though Bro’s

idea of what qualifies as “unusual” may or may not match your own. Finally, the

extract_files directory is empty right now, but there will be more on this later.

If youopenuponeof these log files, you’ll see that it is a tab-delimited text file. The

first several lines are internal Brometadata that describe the fields and their data types,

when the log file was created, and other less useful information. Reading the lines

marked fields and types is a great way to orient yourself when you need to familiarize

yourself with the contents of a new type of Bro log file that you haven’t dealt with

before. The actual logs begin after the metadata. Each log is a single line of text.

Figure 10.2 shows a portion of the http.log file, and describes some of the HTTP

transactions Bro saw in the PCAP file.

FIGURE 10.1

Bro Processing a PCAP and Creating Log Files

258 CHAPTER 10 The Bro Platform

Figure 10.1

This is only a partial log file, for two reasons. First, there are too many records to

fit in one window, so we’re only seeing the top of the file. More importantly, though,

the records are very long, and extend past the right side of the window. They’re so

long that it is hard to show a sample log file in print format. Table 10.1 summarizes

FIGURE 10.2

Partial http.log file contents

Table 10.1 http.log fields

Field Name Description

ts The event timestamp

uid A unique ID for the flow containing this transaction

id.orig_h Source host

id.orig_p Source port

id.resp_h Destination host

id.resp_p Destination port

trans_depth Position of transaction inside HTTP pipeline

method HTTP verb for this transaction

host HTTP Host header value

uri The path of the request

referrer HTTP Referrer header value

user_agent HTTP User-Agent header value

request_body_len Length of the body of the request

response_body_len Length of the body of the response

status-code Numeric HTTP response status

status_msg Human-readable HTTP status message

filename Downloaded filename, as specified by the server

username HTTP Basic Authentication user name

password HTTP Basic Authentication password

orig_fuids List of unique file IDs in the request (cf. files.log)

orig_mime_types MIME types for request objects

resp_fuids List of unique file IDs in the response

resp_mime_types MIME types for response objects

259Bro Logs

Figure 10.2

some of the more important fields you will usually find in http.log. Note that it’s

possible, and even common, to extend standard Bro log files with extra fields,

depending on the scripts you are running in your Bro instance.

FROM THE TRENCHES

If you’re used to other packet or flow analysis tools like Tcpdump, Wireshark or Snort, you may

be wondering where to find the source and destination IP addresses or ports in Bro. They are

there, but Bro prefers to refer to them as originators and responders. In the log files, you’ll

see field names like orig_h and orig_p for the source IP addresses and port numbers, as well as

resp_h and resp_p for the destination IP addresses and port numbers. In this chapter, as in

the rest of the book, we will usually stick to calling them “source” and “destination” unless

there’s a reason to do otherwise.

If all this seems like an awful lot of info to stuff into a log file, you’re right. And to

be honest, most of the time you don’t actually need all 25þ fields when you’re just

trying to find the answer to a specific question. Sometimes, it’s far more convenient

to just extract the fields you are interested in. Fortunately, there’s a handy Bro com-

mand for this, bro-cut.

The simplest way to run bro-cut is to use the terminal to cat a log file into it with

the pipe symbol. When you do this to pass this data to bro-cut, you can specify which

fields you want to extract, as shown in Figure 10.3.

Here, we’ve specified that we only want to see the ts, uid, method, and host fields.

In most cases, you will get more user-friendly output by using the -C (include all the

FIGURE 10.3

Simple bro-cut output

260 CHAPTER 10 The Bro Platform

Figure 10.3

log file metadata) and -u (decode timestamps into human-readable UTC time)

options, as shown in Figure 10.4.

So far, we’ve been working with just one of the log files, but there are many others,

and they are all related. For example, each of the HTTP transactions in http.log are tied

to specific network flows in the conn.log file, and through that, many flows are also

tied to DNS lookups for the destination hosts in the dns.log file. If you examine the last

several screenshots closely, you’ll see that the uid field is included. Bro uses these

unique identifiers in several places to tie related log entries together, even though they

may be in different files. Because of this, it is usually a good idea to include the uid

field when reviewing Bro logs so that you can quickly pivot between log files.

As an example, let’s say that we want to know more about the specific HTTP

transaction listed on the first line in Figure 10.4. The second column lists the unique

ID for the network flow containing this HTTP transaction. If you search for this

string in all the log files, as shown in Figure 10.5, you will see that Bro found a num-

ber of different types of log entries. The http.log file shows that there were two

HTTP transactions tied to this single flow record. This is a normal behavior for

HTTP, which will often send multiple transactions through a single network connec-

tion to avoid having to take the time to set up and tear down quite so many TCP ses-

sions. According to the files.log file, these transactions fetched a text file and a

GIF image. The original network session itself is shown in conn.log as well, should

you need to refer to it.

Many Bro logs contain more than one ID field. For example, the HTTP logs contain

not only the first uid field, which ties them back to a specific connection, but also a

FIGURE 10.4

More useful bro-cut output

261Bro Logs

Figure 10.4

resp_fuids field, which references a list of the IDs of the files that were downloaded in

each transaction. Using these IDs allows you to associate transactions with each other,

and to pivot between different types of transactions as you drill down through the logs.

CREATING CUSTOM DETECTION TOOLS WITH BRO
We started this chapter by drawing comparisons between Bro and scripting lan-

guages like Python or Perl, but so far, all we’ve been doing is looking at log files.

Bro is more than just a logging platform, though. It’s really a general purpose pro-

gramming language that was consciously focused on reading and processing network

traffic. All of its logging so far has just been a by-product of the extensive parsing and

normalizing it performs in preparation for any programs you might write. So let’s

make things a bit more interesting, and write a tool with Bro that can aid in NSM

collection, detection, and analysis.

We’re going to spend the rest of the chapter talking about how wonderful Bro is,

but this is probably a good time to talk about something that isn’t so wonderful: Bro’s

documentation.

Although there has been somewhat of an improvement in the past year or so, the

Bro team has traditionally spent almost all of its time on the platform itself, and not so

much on documenting how to use it, except by example. This is especially true of the

Bro programming language itself. While some basic reference documentation exists

(an explanation of the built-in Bro data types, for example, or brief summaries of the

events and functions that Bro ships with), there’s really no comprehensive tutorial to

aid the beginning Brogrammer.

Most people learn Bro scripting by examining existing code, either the large col-

lection of scripts that ship with Bro’s distribution (found in /opt/bro/share/bro and

subdirectories in Security Onion) or by downloading them from mailing lists or code

sharing sites like GitHub.

To try to prepare you for doing this yourself, the examples in this chapter take

the same approach. Rather than an A-Z list of all the things you can do with Bro,

FIGURE 10.5

Pivoting through Bro log files based on a transaction uid

262 CHAPTER 10 The Bro Platform

Figure 10.5

we’ll examine and dissect the code for a few useful scripts, covering some impor-

tant Bro concepts as they show up in the code. You will find it helpful to refer to

the online Bro documentation at http://www.bro.org/documentation/index.html as

you go through the chapter. This closely mirrors the process you’ll go through

as you find new interesting pieces of Bro code and learn by figuring out what

they do.

File Carving

In an NSM environment, it is common to want to extract any files that were trans-

ferred from a session. If you have a PCAP file, there are tools that can do this

(e.g., tcpxtract), but they usually operate on a byte level, without a lot of protocol

knowledge. Once they recognize, say, the beginning of a PDF file, they can

usually carve the next few thousand bytes and save them to disk, but this is only

an approximation of the actual file that was transferred. This method may

also require some manual carving after the fact to end up with the file you are

looking for.

Bro,on theotherhand,knowsa lotabout theprotocols itdecodes,and thisknowledge

makes all the difference. For our first example,we’ll look at amethod to extract files out

of packet captures with Bro. We’ll start by developing it as a tool we can call from the

commandlinewithaPCAPfile, and thenshowhowto integrate this into theBro instance

that runs with Security Onion so that it just runs all the time on our live network traffic.

First, let’s create a quick prototype. Bro has a built-in mechanism for perform-

ing on-the-fly analysis of files it sees going over the wire, called the File Analysis

Framework. One of the possible “analysis” types it knows how to perform is to

write the file to disk. You just have to ask Bro to do this for each file you’re inter-

ested in.

Fortunately, this is far easier to do than it probably sounds. Create a file called

extract-files.bro that contains the following code:

When Bro finds a file being transferred (via any protocol it knows about),

write a basic message to stdout and then tell Bro to save the file to disk.

event file_new(f: fa_file)

{

local fuid¼f$id;

local fsource¼f$source;

local ftype¼f$mime_type;

local fname¼fmt(“extract-%s-%s”, fsource, fuid);

print fmt(“*** Found %s in %s. Saved as %s. File ID is %s”, ftype,

fsource, fname, fuid);

Files::add_analyzer(f, Files::ANALYZER_EXTRACT,

[$extract_filename¼fname]);

}

263Creating Custom Detection Tools with Bro

http://www.bro.org/documentation/index.html

This Bro script creates a new event handler for the file_new event that Bro

creates whenever it sees a new file transfer begin, regardless of the protocol.

The single parameter Bro passes to this is called f and is of type fa_file, a record

type defined by the framework. Notice Bro’s use of the dollar sign character as

the operator that refers to the fields in the record. The script references the id,

source, and mime_type fields and uses those to construct and then print a short mes-

sage about each file it finds. It then attaches the file extraction analyzer to that

stream, which is the piece that actually tells Bro to save the file to disk. That’s

it! Now that the ANALYZER_EXTRACT analyzer is attached to the file, Bro will take

care of the rest.

All that’s left now is to actually run this against a PCAP file. Running a specific

Bro script is very similar to the way we ran Bro before, but this time we just name the

script file at the end of the command line. In fact, you can run multiple Bro scripts by

just naming multiple scripts on the same command line, but we don’t really need to

do that here. The command we will run is:

bro –C –r ../pcaps/bro-sample-traffic.pcap ../scripts/extract-files.

bro

Figure 10.6 shows what our script looks like when it runs. Notice that each line

contains the File ID, so you can find the corresponding log entry in files.log for more

information if you need to.

After running the script, notice that you have all of the same log files that Bro

generated in the previous examples. In fact, everything looks pretty much the same

as before. But this time, there are files inside the extract_files subdirectory, as shown

in Figure 10.7.

FIGURE 10.6

Simple file extractor output

264 CHAPTER 10 The Bro Platform

Figure 10.6

Selective file extraction

Looking at the output above, you can see there are a lot of GIF files in the PCAP I

used for this example, and also some HTML text. These are all from web traffic, and

not what most people think of when they think about “file downloads”. What if

you’re not at all interested in those file types, and just want to extract only Windows

executables? No problem! Notice from our earlier code sample that Bro actually

knows the MIME type of each file. It figures that out by examining the file, rather

than just trusting whatever the file transfer protocol said it was.

FROM THE TRENCHES

MIME stands for Multipurpose Internet Mail Extensions. Technically, MIME is a format used by

email (and now HTTP and other protocols) to create a single message out of one or more

message parts. If you’ve ever received an email with an attachment, you’ve received a MIME

message, even if you never realized it.

Probably the most popular feature of the MIME specification is its use of types to describe

what kind of content eachmessage part consists of. MIME types are so popular, in fact, thatmany

non-MIME applications actually use MIME’s types to describe the data they work with.

HTTP uses MIME formatting for certain transactions that involve sendingmultiple pieces of

data at once (for example, form submissions with the POST method). Even if it doesn’t use

the full MIME format, almost everything in HTTP is tagged with a MIME type. Common

values here would be “text/html”, “text/plain” and “image/gif”. There are many others, and

probably too many to actually try to list them all here.

We can modify our script to check the MIME type for each file before we attach

the extraction analyzer.

FIGURE 10.7

Extracted Files

265Creating Custom Detection Tools with Bro

Figure 10.7

#!/usr/bin/env bro

When Bro finds an executable file being transferred (via any protocol it

knows about), write a basic message to stdout and then tell Bro to save

the file to disk.

event file_new(f: fa_file)

{

Check that we have a MIME type value in this record

if (f?$mime_type) {

See if the type is one we care about

if(f$mime_type ¼¼ “application/x-dosexec” ||

f$mime_type ¼¼ “application/x-executable”) {

local ftype¼f$mime_type;

local fuid¼f$id;

local fsource¼f$source;

localfname¼fmt(“extract-%s-%s”,fsource,fuid);

print fmt(“*** Found %s in %s. Saved as %s. File ID

is %s”, ftype, fsource, fname, fuid);

Files::add_analyzer(f,

Files::ANALYZER_EXTRACT, [$extract_filename¼fname]);

}

}

}

This version is very similar to the first, but it adds an if statement to checkwhether the

mime_type value exists in the file record (the f?$mime_type piece), and if so, checks the

MIME type value before adding the extraction analyzer. Figure 10.8 shows the new out-

put, skipping all the images and HTML content, and only processing executables.

In order to demonstrate another way in which Bro code can be run, let’s see a cool

trick. So far, we’ve been explicitly running the Bro command and then naming the

script we want to run. Notice the first line of the revised script starts with the typical

Unix “shebang” (#!). As you might guess, this means that a standalone tool written in

Bro can run from the command line just like any other scripting language. To do this,

you must first change the permissions of the script to make it executable:

chmod 755 extract-exe-files.bro

Now, you can call the script like any other command, as shown in Figure 10.9. It

still behaves the sameway as before; creating log files and writing the extracted files to

disk. It may be a more convenient way to run your code, though, especially if you’re

providing this tool to other team members who may not be familiar with Bro itself.

FIGURE 10.8

Extracting only Windows executables

266 CHAPTER 10 The Bro Platform

Figure 10.8

Extracting Files in Live Network Traffic

Now that we’ve enhanced our script as a standalone tool, let’s take a look at what we can

do to run it continually as part of Security Onion’s Bro instance. This would be useful if

youwanted to extract every occurrence of certain file types in near-real time as they came

across the network, rather than interacting with individual PCAP files retrospectively.

Typically, once you have a working Bro script, getting it to run all the time isn’t

very difficult. When Security Onion runs Bro in sensor mode, Bro reads its config-

uration from /opt/bro/share/bro/site/local.bro by default. Of course, the term “config-

uration” is used pretty loosely here. Like everything else, local.bro is really just a

script that Bro knows to load and run when it starts. The default version that ships

with Security Onion really just loads other Bro scripts that perform some useful func-

tions like detecting scans, logging applications in use on the network, adding GeoIP

lookups to certain protocol logs, etc. Of course, local.bro really is just a “local” Bro

configuration, and this is where you’ll add all your own customizations, too. The

easiest way to get our file extraction code into Bro is to just paste it verbatim into

the bottom of the local.bro file, as shown in Figure 10.10.

FIGURE 10.9

Calling the script as a command

FIGURE 10.10

File extraction code added to local.bro

267Creating Custom Detection Tools with Bro

Figure 10.9
Figure 10.10

Wheneveryoumakechanges to local.bro,youneed to run throughasimple three-step

process tomake the runningBro instance awareof them.Each of the steps involvesusing

the Bro control program broctl to perform a task. The commands for these steps are:

1. broctl check

Do quick syntax and sanity check of the entire configuration to make sure you

haven’t accidentally broken anything.

2. broctl install

Make the configuration changes active, also known as “installing” them.

3. broctl restart

Restart Bro to make it re-read the new changes.

These commands and their output are shown in Figure 10.11.

After your new code has been running for a while, have a look in the Bro log direc-

tory /nsm/bro/logs/current. You can examine files.log to see what files were extracted.

If any have been, you can look at the content of the “analyzers” field to see which files

had the EXTRACT analyzer applied to them, as shown in Figure 10.12.

FIGURE 10.12

We extracted a file!

FIGURE 10.11

Making the new changes effective using broctl

268 CHAPTER 10 The Bro Platform

Figure 10.12
Figure 10.11

As you can see from the string’s output on the extracted binary, this file appears to

be a copy of the Windows SSH client PuTTY.

This is probably a good time to mention that restarting Bro also forces it to

archive any logs currently in /nsm/bro/logs/current and create a fresh new set. This

also happens automatically each night (at 00:00 GMT for Security Onion’s config-

uration). If you’re working through these examples, don’t be surprised if some of

your old logs disappear after you restart Bro, reboot the SO system, or even if

you just leave things one day and come back the next. The logs are still there.

Bro just moved them to a new date-coded subdirectory of /nsm/bro/logs.

Packaging Bro Code

Right now, Bro is configured to extract executable files from the live network stream,

which is incredibly useful. These files can be further analyzed for signs of malicious

logic, compiled for statistical analysis, or even have information about them fed back

into Bro for further analysis. With that said, everything is working, but we could do a

little more to package up our code into its own separate file.

If you think about it, continually adding new code directly to local.bro will prob-

ably become unmanageable after a while. Not only that, but if you ever want to share

your scripts with other Bro users, you’ll have to comb through lots of unrelated mod-

ifications and make sure you get only the lines you need to share. This is likely to

become a management pain after a while.

If you read the rest of local.bro (the parts we didn’t edit), you’ll see it really does

nothing but load up other scripts, which are each stored in their own separate files.

Let’s do this with our code!

As it turns out, this is extremely simple. First, cut all of our custom code from local.

bro and paste it into a new file called extract-interesting-files.bro, and copy that file into

the /opt/bro/share/bro/site directory. This is in Bro’s default load path, so we can just

insert a statement like the following into local.bro tomake our script run just like before:

@load extract-interesting-files

If you use broctl to check, install and restart the Bro instance, you’ll see

everything is working just like before, but now our code is easier to find, manage,

and share.

Adding Configuration Options

While our code is stored in a much cleaner way, the only problem now is that if we

ever want to extract different types of files for some reason, we would have to edit the

script, possibly introducing new bugs and certainly making it more difficult to track

changes to functionality.

For the final revision of our script, we’re going to add a configuration parameter

called interesting_types, which will be a set of MIME type strings we care about.

Whenever Bro sees a file with one of those MIME types, it will extract it to disk. We

will set up this parameter so that other scripts can modify its contents without actu-

ally editing the script file itself.

269Creating Custom Detection Tools with Bro

Here’s the updated version of our extract-interesting-files.bro file:

#

A module to find files of interest (according to their MIME types) and

log them to disk.

#

module ExtractFiles;

export {

const interesting_types: set[string]¼[

“application/x-dosexec”,

“application/x-executable”

] &redef;

}

event file_new(f: fa_file)

{

Check that we have a MIME type value in this record

if (f?$mime_type) {

See if the type is one we care about

if(f$mime_type in interesting_types) {

local ftype¼f$mime_type;

local fuid¼f$id;

local fsource¼f$source;

local fname¼fmt(“extract-%s-%s”, fsource, fuid);

printfmt(“***Found%sin%s.Savedas%s.FileIDis%

s”, ftype, fsource, fname, fuid);

Files::add_analyzer(f,

Files::ANALYZER_EXTRACT, [$extract_filename¼fname]);

}

}

}

Right away, notice that we’ve declared this as a Bro “module” called Extra-

ctFiles. Bro’s modules are much like modules in other languages; they provide

a new namespace for functions and variables, separate from the main namespace

to avoid collisions. By default, these names are private to the module, so you see that

we have to use the export directive around those variables and constants we want to

make available to other namespaces.

We’re only exporting one name here, the constant interesting_types, which

is defined as a set of strings. A Bro set is an unordered collection of items of

whatever type you specify. You can add and remove items, as well as check to see

whether an item is a member of the set. There’s only one real tricky part here. Even

though this is a “constant”, it has the &redef tag at the end of the declaration. That

means you can actually explicitly change the contents of the constant, though you will

have to use the special redef statement to do it. This is Bro’s way of keeping you from

270 CHAPTER 10 The Bro Platform

accidentallymodifying an important configuration parameter due to a bug in your code

or any other type of mistake. We’ll see how to do this intentionally in a short while.

The last change we made to our code was to replace the conditional that

checks whether this is a MIME type we care about. Before, we had the types hard

coded, like this:

if(f$mime_type ¼¼ “application/x-dosexec” ||

f$mime_type ¼¼ “application/x-executable”) {

Nowwe’ve simplified it to just check to see if theMIME type is part of our “inter-

esting” set:

if(f$mime_type in interesting_types) {

Now, since we’ve already added the appropriate @load statement to local.bro, we

should be nearly ready to go. Before we do that, though, let’s see how you can add

new file types to extract. In Security Onion, Bro’s database of known MIME types

can be found in the text files in the /opt/bro/share/bro/magic directory. Figure 10.13

shows how to modify local.bro to add new MIME types (GIF and HTML) to our

“interesting types”. Notice that we’ve used the redef keyword to add two new values

to the “constant” set (which, from the main name space, we refer to as Extra-

ctFiles::interesting_types).

If you use broctl to check, install and restart the Bro instance, you should start to

see a lot of files being extracted very quickly if you are monitoring HTTP traffic at

all, as is shown in Figure 10.14.

FIGURE 10.13

The Final File Extraction Config, with Additional Interesting MIME Types

271Creating Custom Detection Tools with Bro

Figure 10.13

Using Bro to Monitor the “Dark” Side

Extracting files is a very useful task for a variety of purposes, but the question you

will probably be asking yourself at this point is, “But how can I get Bro to let me

know when something interesting happens?” Let’s look at an example that asks

Bro to look for a certain type of event and let us know when it finds one.

For this example, we’ll use Bro to implement a darknet detector. A darknet is any

subnet (or individual IP, technically) that is unused in your organization and that no

other hosts should have any legitimate reason to interact with. For example, if your

organization is allocated a /16 network, you may have several /24 networks that are

unused. If you grab a few of those and guarantee they won’t be allocated in the future,

you just created a darknet.

Darknets are useful things to have, and are helpful for identifying internal scan-

ning and reconnaissance operations, as might occur when you have a worm or an

unauthorized individual running around inside your network. They are not entirely

reliable, as it’s easy for legitimate users to typo an IP address or for legitimate ser-

vices to be misconfigured to point to your darknets, but they provide valuable early

warning and are worth the time to set up and monitor.

To begin, create the file /opt/bro/share/bro/site/darknets.bro and place the follow-

ing code into it:

#

This module allows you to specify a set of unused netblocks or addresses

that are part of your internal network but are not used. When Bro sees

traffic to/from these netblocks, it will generate a notice.

#

@load base/frameworks/notice

module Darknets;

export {

Create a notice type for logging

redef enum Notice::Type+¼ { Darknet_Traffic };

Your darknets. This is empty by default, so add some network

blocks

in local.bro. NOTE: You can add specific hosts here by

specifying

them as /32 subnets.

FIGURE 10.14

Extracted GIF and HTML files

272 CHAPTER 10 The Bro Platform

Figure 10.14

const darknets: set[subnet]¼{} &redef;

}

Check each new potential connection (successful or not, TCP/UDP/IP)

against our darknet set

event new_connection(c:connection) {

localdarknet_conn¼cat(cidorig_h,cidresp_h,cidresp_p);

if(cidorig_h in darknets) {

NOTICE([$note¼Darknet_Traffic,

$msg¼“Traffic detected FROM darknet",

$conn¼c,

$identifier¼darknet_conn]);

}

if(cidresp_h in darknets) {

NOTICE([$note¼Darknet_Traffic,

$msg¼“Traffic detected TO darknet",

$conn¼c,

$identifier¼darknet_conn]);

}

}

There are a few new things in here, so before we go on, let’s examine this code

more closely.

First, notice that the code starts by loading the base/frameworks/notice module.

This module is the implementation of Bro’s Notice Framework, a set of hooks that

make it easy to create your own types of notices and to manage the notices of other

modules. Before you can reference anything having to do with the Notice Frame-

work, you have to make sure you’ve loaded it into your running Bro.

FROM THE TRENCHES

In reality, we probably don’t absolutely have to load the Notice framework here because it is

almost always loaded, since it is part of the default framework. However, if you reuse this code

in special tools or non-default Bro instances, or if you distribute it to other Bro users, you may

not be able to rely on the framework being preloaded. It’s best practice to explicitly load

anything you depend on. If it’s already loaded, then there’s no harm, and if it wasn’t already

loaded, your code will take care of doing that.

Next, you’ll see that we created a new set, called darknets. This set contains

members of type subnet, which is a built-in Bro data type to store CIDR blocks,

specified as literal values in the code, with the format x.x.x.x/y. By default, this

set is empty, so just enabling this script won’t really do anything. We don’t know

the allocated darknet subnet(s) in advance, of course, so this makes sense. We’ll con-

figure this later, in local.bro.

Next, you’ll see that we provided an event handler for the new_connection event.

Bro generates this event whenever it starts to track a new connection. The fact that

273Creating Custom Detection Tools with Bro

this event was called doesn’t imply that the connection attempt was successful, as

this event is called too early in the process to know that; only that a new connection

was attempted.

FROM THE TRENCHES

Bro tracks connections for all of the transport protocols it knows about. TCP has its own built-in

concept of session establishment using the three-way handshake, and Bro will use that. For

connectionless protocols like UDP and ICMP, however, Bro treats all communication between

two unique endpoints as a “connection” until a period of time lapses with no communication, at

which time the connection “ends”. Additional communication between the same endpoints at a

later time would generate a new connection.

The single parameter to the new_connection event is c, a record of type connection.

Connection recordsare thekitchensinkofdata thatBro tracks for connections. In addition

to storing basic info like the source and destination addresses and ports, the connection

state andBro’s connection IDs, it’s common to find that other non-default or user-written

scripts have stored additional data there, such as geotagging information, file hashes, etc.

Some of the most common pieces of data you will read from these records are the

source and destination IPs and ports for the connection. Bro stores these as part of the

id record, which is of type conn_id and a component of the connection type.

Conn_id records have the following structure (Table 10.2):

Althoughwe don’t need it for this example, it’s worthwhile to note that ports in Bro

are native data types, and include both a numeric and a protocol piece. For example, you

could use the following piece of code to assign the normal SMTP port to a variable:

smtp_port¼25/tcp;

For our example, though, we only care about the source and destination IP and the

destination port, which we access through their nested data structures as c$id

$orig_h, c$id$resp_h and c$id$resp_p respectively.

Our event handler starts by calling the cat() function, which simply takes the

individual string representations of all of its arguments and returns them as a single

string. Here, we’re building a string that consists of the source and destination IPs and

the destination port. This is an easy way of creating an identifier for this connection.

We’ll discuss why we need this shortly, but for now just know that we’re assigning

this value to the variable darknet_conn.

Table 10.2 The Structure of the conn_id Record Type

Field Name Description

orig_h The IP address of the originator of the connection (the client)

orig_p The originator’s port number and protocol

resp_h The IP address of the responder for the connection (the server)

resp_p The responder’s port number and protocol

274 CHAPTER 10 The Bro Platform

Next, we examine the source IP (and later, in a nearly identical piece of code, the

destination IP) to see if it’s in one of our darknets, like this:

if(cidorig_h in darknets) {

NOTICE([$note¼Darknet_Traffic,

$msg¼“Traffic detected FROM darknet”,

$conn¼c,

$identifier¼darknet_conn]);

}

This code says “if the source IP is in the set called darknets, generate a notice.” A

notice is simply an entry in the notices.log file and is the most common way Bro

draws extra attention to something. Bro also has the concept of alarms, which are

like notices, except they go to the alarms.log file and are emailed out on a regular

schedule. Notices can also be immediately emailed or paged for quick attention,

but we won’t do that in this example.

In our code, we’re calling the NOTICE function, which takes exactly one argu-

ment: a record containing all the information about the notice. Although you can

create a separate variable to hold the notice record, you will usually see code con-

struct an implicit record using the [$field1¼value1,$field2¼value2,. . .,

$fieldN¼valueN] construct, which is the method we use here.

Each notice has a type, which is one of a set of enumerated values defined by the

various modules loaded into Bro. The values themselves are not really important;

they’re just used to differentiate one type of notice from another. You just need

to know their names so you can pass them as the value of the $note field in the notice

record. Each module that creates its own notices defines its own new types. Our code

defines one type called Darknet_Traffic, like this:

Create a notice type for logging

redef enum Notice::Type+¼ { Darknet_Traffic };

Each notice also includes a human-readable message in the $msg field. We’ve

defined one notice type with two different possible messages, according to whether

the traffic is detected going into or coming out of the darknet.

Next, we add the information about the current network connection to the notice

record as the $conn field. Because Bro now knows which connection this notice is

associated with, it can properly log the connection ID into the notice.log file, which

builds the pivot linkages into the conn.log file that we saw earlier in the chapter.

Finally, our code adds the identifier we created earlier as $identifier. The iden-

tifier is important for generating notices with this script.

Notice Suppression
Consider what would happen if a system on your network were misconfigured,

such that it tried to access the printer service on a host it thought was a print

server, but was really an unused address in one of your darknets. Print jobs sub-

mitted by the faulty host would never print, but the system would keep submitting

275Creating Custom Detection Tools with Bro

them, checking printer status, submitting them again, etc. It could do this for quite

a long time until someone noticed and manually removed the jobs. You’d prob-

ably like to know about this activity, but you don’t necessarily want to see a sep-

arate notice for every single network connection involved in this faulty printer

communication.

Bro solves this problem by using notice suppression. In other words, it’s smart

enough to know that it’s already sent a notice about a particular event, and if so,

to hold off sending another one for a while. To do this, it examines each notice’s type

(Darknet_Traffic) and the unique identifier your code should supply. That’s why

we had to create that darknet_conn value.

Darknet_conn uses the source and destination IPs, plus the destination port, to

create a “unique” identifier for that connection. In fact, this is not at all unique,

because it leaves out the source port, but this is by design. Repeated connections

to the same service would normally come from different source port numbers, so

including this would make the identifier too specific and generate more notices.

Instead, we’re making the implicit assumption that once we know 10.0.2.15

talked to 192.168.1.1 on port 80 once, we can ignore the fact that it may have

communicated several more times in the next few minutes. Once we have the

original notice, we can always find the full list of connections in the conn.log file

if we need to.

The default suppression interval is one hour, so for most things you should only

get a max of 24 notices per day for the same event. You can adjust this up or down as

you see fit, however. If you just want to change the default interval for all notices,

you can add the following to local.bro:

Change the default notice suppression interval for all notice types

redef Notice::default_suppression_interval¼30 min;

Bro has a built-in data type called interval that can be set to any number of usec,

msec, sec, min, hr, or day values. This makes setting time intervals easier for this

type of work.

You can also set the value differently for each type of notice. For example, if you

want the keep the shorter value above for most notice types, but you want to set a

longer value for our Darknet_Traffic types, you could add something like the fol-

lowing to local.bro:

Notice::type_suppression_intervals[Darknet_Traffic]¼2 hour;

As you become more familiar with Bro and how it works in your environment,

you will almost certainly want to try your hand at tuning one or both of these types of

suppression values.

Using and Testing the Script
Now that we have our code installed as darknets.bro in the correct directory, all

we need to do is to load it from local.bro and give it a real list of dark subnets.

Figure 10.15 demonstrates how to do this.

276 CHAPTER 10 The Bro Platform

For this example, I’ve specified the entire 10.0.4.0 – 10.0.4.255 range as a dar-

knet, and also the individual IP address 192.168.1.100. Neither of those ranges are in

use on my lab network, but in a real world scenario you should modify this list to fit

your own environment.

After a quick round of broctl check/install/restart, the darknet code should

be loaded into our running Bro instance. Ideally, since these are supposed to be

“dark” nets, we shouldn’t see any network traffic involving them. Since Bro doesn’t

create log files until it has something to write to them, this also means you may not

see a notice.log file immediately. That’s normal.

The next step is to create some test traffic to one of the configured darknets.

For the first test, we’ll try some simple ICMP traffic to a “dark” host. Here, I chose

an arbitrary IP address in the 10.0.4.0/24 range I configured as a darknet above,

then just used the ping command to send a few packets, as shown in Figure 10.16.

This host doesn’t exist on my network, so I didn’t get any replies, but Bro doesn’t

care.

If you examine Figure 10.16, you’ll see that Bro logged our notice as type Dar-

knets::Darknet_Traffic, which makes it easy to find with grep or whatever other

FIGURE 10.15

Darknet config in local.bro

277Creating Custom Detection Tools with Bro

Figure 10.15

reporting tool you like. It also reported that it found “Traffic detected TO darknet” so

we know that the connection was inbound to the dark subnet.

For another test, let’s try a couple of TCP connections to the 192.168.1.100

address, which I previously configured as an individual dark host. I chose to try

to connect on ports 80/tcp (HTTP) and 515/tcp (the Unix print spooler). The notices

generated from this activity are shown in Figure 10.17.

Reading Figure 10.17 closely, you can see that Bro logged a number of Darknet_

Traffic notices for connection attempts to 192.168.1.100 on port 80, and one notice

each for traffic to and from port 515. From this, we can deduce that the host did not

respond at all to HTTP requests, but it is listening on the print spooler port. This might

lead us to believe that someone may have misconfigured his or her printer.

Extending the Darknet Script

With a little effort, the darknet module could be adapted to other uses as well. For

example, if your security policy states that Active Directory servers should be on

their own special subnet, and that the hosts on the network should not have access

to the Internet, you could modify this code such that the list of “darknets” is replaced

with a list of server subnets. In this case you would still expect to see a lot of traffic

between your AD subnet and the rest of your internal network, so you can’t simply

FIGURE 10.16

Darknet_Traffic notices generated by ICMP traffic

FIGURE 10.17

Darknet_Traffic notices for a dark host

278 CHAPTER 10 The Bro Platform

Figure 10.16
Figure 10.17

just alert on everything you see. With this in mind, you could either run this on a Bro

instance that sees only traffic as it passes to and from the Internet (and thus should

never see AD traffic anyway) or modify the logic of the new_connection handler a

bit to make sure that the other side of the connection is not a valid local subnet (per-

haps using a set of subnet types).

You could also use a similar approach to detect unauthorized connections

between your DMZ and sensitive parts of your internal network (e.g. “why is the

DMZ talking to the CEO’s computer?!”) or even replace the list of subnets with a

list of allowed ports and audit connections using unusual or out-of-policy services.

The possibilities for customizing and adapting this simple example to your own net-

work are nearly endless, and really demonstrate some of the power and flexibility of

Bro as a framework for detecting bad things on the network.

Overriding default notice processing

We’ve configured Bro to alert us whenever something tries to communicate with one

of our darknets, but as written, our script isn’t very particular about exactly what is

communicating with the darknets. I said before that there should be no legitimate

reason for any other host on our network to try to talk to a darknet, but there are

a few exceptions to this rule., such as, internal network mapping.

An organization sometimes wants to know what’s on its network, whether the

purpose is to discover new devices that need to be managed or just to audit against

unauthorized hosts being connected. Network engineers may do this on a regular

basis, and it’s also a normal feature of many vulnerability management packages.

So clearly there are some hosts that try to talk to our darknets, even if just to verify

that they still really are dark. We don’t want to be alerted to all this legitimate activ-

ity, but as written, our script is likely to generate notices for an awful lot of this activ-

ity. Let’s see if we can fix that.

There are a couple of ways we could address this problem. Using only techniques

we’ve already seen, we could modify the darknets module to define another set of the

addresses of our authorized network scanners, then include some logic in the new_

connection handler to check for set membership before generating a notice. That

would work just fine, and would probably be a useful addition to the script. In fact,

it’s probably the best way since we wrote the original darknets code ourselves. How-

ever, we’ve already seen all those techniques, so let’s try something new.

Let’s pretend that we originally got the darknet code from another Bro user. In

that case, it might not make sense to directly modify the code, since we’d have to

maintain a local patch, and apply and test it again with every new version of the mod-

ule. That’s a pain, and fortunately, there’s another way. We can intercept Bro’s

notices before they are written to the disk, inspect them, and decide whether we want

to log the notice, discard it, or potentially take some other action.

We could put our new code into its own file, as we have been doing for the other

examples However, by loading our code directly into local.bro, we keep the code that

loads the darknets module and the code that modifies its logging together, which

279Creating Custom Detection Tools with Bro

probably makes it clearer and easier to maintain for the purposes of this example.

Here’s what the end of local.bro should look like, with both the previous darknets

code and our new additions loaded in:

Log notices for traffic to/from our unused subnets

@load darknets.bro

redef Darknets::darknets¼[

10.0.4.0/24,

192.168.1.100/32

];

These are our legitimate network scanners, which are allowed to talk to

our darknets without logging notices.

const allowed_darknet_talkers: set[addr]¼{

10.0.2.15

};

Process all notices at high priority, looking for Darknets::

Darknet_Traffic

types. When we find them and either the src or dst IP is an

allowed_darknet_talker, remove all actions from the notice, which

causes

Bro not to log, alarm, email or page it.

hook Notice::policy(n: Notice::Info) &priority¼5 {

if(n$note ¼¼ Darknets::Darknet_Traffic &&

(n$conn$id$orig_h in allowed_darknet_talkers ||

n$conn$id$resp_h in allowed_darknet_talkers)) {

Remove all actions and assign it the empty set

n$actions¼set();

}

}

The code starts by declaring a new constant, allowed_darknet_talkers, as a set

of IP addresses (you could easily make this into a set of subnets if you have a par-

ticularly large number of network scanners or otherwise whitelisted IP addresses).

I’ve added my scanning system’s IP (10.0.2.15) as the only member of the set.

Next, I’ve declared a new type of function, called a hook. Hooks are similar

to event handlers, in that Bro calls these hooks as it’s processing traffic and

doing work. The main difference is that events correspond to things Bro finds hap-

pening in network traffic, where hooks are called when Bro is performing its own

internal processes.

In this case, when Bro generates a new notice, it calls the Notice::policy hook

to allow you to perform local processing and modify how Bro will handle the notice

(in other words, how it implements its notice policy for this notice). The single argu-

ment to this hook is n, a record of type Notice::Info that contains all the information

Bro has about this notice.

280 CHAPTER 10 The Bro Platform

One interesting thing about the hook declaration is that it uses the &priority

keyword to assign a priority value of 5 to this hook function’s execution. Because

you can have multiple event handlers for each event and multiple hook functions for

each hook, Bro allows you to set the order in which they are called. Valid priorities

are any integer between 0 (default) and 5. Hooks and event handlers are called in

priority order, with larger numbers being called before smaller numbers. In this

case, &priority¼5 helps ensure that Bro calls our hook function before it does

any other notice policy processing, to give us a chance to bail out on processing

this notice early.

The first thing our hook has to do is to decide if it should process this notice or not.

There are many types of notices that Bro can generate, but we only want to concern

ourselves with Darknets::Darknet_Traffic here, and only if one of the two IPs is in

our allowed_darknet_talkers set. In our original Darknets module code, we

already saw how we could use the Conn_id record type to access the source and des-

tination IP addresses of the connection in question. The Notice::Info type also

stores a Conn_id record that refers to the original connection which generated the

notice, which we can access as n$conn. Therefore, n$connidorig_h would be

the client’s IP, and n$conn$id$resp_h would be the server’s IP. All this processing

goes into a simple if statement at the beginning of the hook to make sure we meet all

the requirements. If not, we simply don’t do anything, and Bro continues to log the

notice as it normally would.

If, however, our conditional evaluates to true, Bro processes the body of the hook,

a single line that assigns an empty set to the n$actions variable:

Remove all actions and assign it the empty set

n$actions¼set();

This requires some explanation. Bro decides what to do with a notice by exam-

ining the list of “actions” which have been assigned to it. Actions are just enumerated

type values, and there are four to choose from. Table 10.3 lists these and explains

what they do.

Table 10.3 Bro Notice Actions

Action Description

Notice::
ACTION_LOG

Writes the notice to the notice.log file.

Notice::
ACTION_ALARM

Writes the notice to the alarm.log file. This file is emailed hourly

to the address specified in the Notice::mail_dest variable.

Notice::
ACTION_EMAIL

Immediately emails the notice to the address specified in the

Notice::mail_dest variable.

Notice::
ACTION_PAGE

Immediately sends the notice to the address specified in the

Notice::mail_page_dest variable. This is normally an email-

to-SMS gateway of some sort, but could be any email address.

281Creating Custom Detection Tools with Bro

The underlying purpose of the Notice::policy hook is to allow you to change

the set of default actions to be applied to the notice before Bro starts to implement

those actions. In our code, since we removed all of the actions by assigning the empty

set, we’re effectively telling Bro “do nothing with this notice.”

Now it’s time to try our new code. Recall that after restarting Bro, our log direc-

tory starts fresh and clean, so there are no notices. From our scanning host, we then

ping one of the darknets (unsuccessfully) and connect to the printer port of the dark

host we defined (successfully). But if we look at the log files, there are still no more

notices (Figure 10.18). This indicates that our hook is working successfully, and will

help us to avoid generating notices from traffic sources from approved internal scan-

ning devices.

Generating E-Mail Notices from Darknet Events
As with the other examples in this chapter, you could easily repurpose the code that

disables logging of Darknets::Darknet_Traffic notices for other useful purposes.

For example, if there are no authorized network scanners in your organization,

maybe you really want to know about darknet notices immediately. It would be quite

simple to modify this code to elevate the processing such that the notice is logged and

also emailed. Just take the checks for n$conn$id$orig_h and n$conniddest_h out

of the if statement, and replace these lines:

Remove all actions and assign it the empty set

n$actions¼set();

With these:

In addition to the default Notice::ACTION_LOG which is already assigned

to this event,add the Notice::ACTION_EMAIL action, so the noticewill be

emailed immediately.

add n$actions[Notice::ACTION_EMAIL];

FIGURE 10.18

Communication from an Approved Device Does Not Generate Notices

282 CHAPTER 10 The Bro Platform

Figure 10.18

You’ll need to also supply the email address as the value of Notice::mail_dest

in your local.bro file like so:

redef Notice::mail_dest¼“admin@appliednsm.com”;

After restarting Bro, you should start receiving email alerts any time a system

tries to communicate with one of your defined darknets.

Suppressing, E-Mailing, and Alarming - The Easy Way

In the last section, we saw how to hook into Bro’s notice processing to provide

detailed, granular customizations that allowed you to make decisions about how

to process each individual notice. This surgical precision is nice, but sometimes

all you need is a big hammer.

Bro provides a number of convenient shortcuts for changing the notice processing

policy. These shortcuts take the form of constants you can modify to change the pol-

icy for all events of a certain type.

For example, suppose you have only a single SSH server on your network, and

it’s exposed to the Internet. It has a legitimate business use (secure remote file trans-

fers for your business partners), but the fact that it’s directly accessible from the

Internet and needs to use the default SSH port means it’s going to be the constant

target of password guessing attacks. Bro’s support for the SSH protocol logs the

SSH::Password_Guessing notice each time it sees this type of activity, but you could

get hundreds of these notices each day. This can be annoying since there’s nothing

you can do to prevent these attacks. You won’t want to turn off Bro’s SSH protocol

support entirely, but there is another option.

The answer is to add the SSH::Password_Guessing notice type to the list of

notices which should just never be logged. Bro still tracks them (other notice types

still depend on knowing when password guessing attacks are going on) but you’ll

never see them. You can do this by adding the following to local.bro:

Don’t generate any notices for SSH password guessing attempts.

redef Notice::ignored_types+¼ { SSH::Password_Guessing };

After you restart Bro, the password guessing notices will no longer show up in the

logs. This affects all such notices from any host, so if you want to see notices from

some hosts and not others, this mechanism is not for you. In our example, though, we

have only a single SSH server anyway, so this is perfect.

The opposite example would be to escalate the processing of certain types of

notices to alarms (alert data), or to email alerts. Assume you have at least

one Internet-facing web server and are especially concerned with SQL injection

attacks. Bro can detect SQL injection if you load the detect-sqli script (which

is likely on by default), and will generate HTTP::SQL_Injection_Attacker notices

whenever it sees a host performing such an attack against one of your servers (it also

generates an HTTP::SQL_Injection_Victim notice for the target server, but we can

ignore that for now).

283Creating Custom Detection Tools with Bro

The problem is, by default, these just go into the notice.log file with everything

else, but you’d like them to go into alerts.log so you’ll get an automatic email sum-

mary every hour. You can accomplish this with the following code in local.bro:

Alarm on any SQLi attempts

redef Notice::alarmed_types+¼ { HTTP::SQL_Injection_Attacker };

Alternatively, you can escalate even further, and turn these into immediate email

alerts, like this:

Send email immediately for any SQLi attempts

redef Notice::emailed_types+¼ { HTTP::SQL_Injection_Attacker };

Of course, for either of these last two to work, you’ll have to make sure you have

defined the Notice::mail_dest variable discussed earlier. Otherwise Bro won’t

know where to send the messages.

Adding New Fields to Bro’s Logs

For our final example, let’s circle back to the beginning of the chapter and talk a little

more about logs. We’ve already seen that Bro does an excellent job of logging dif-

ferent types of transactions, but sometimes even Bro’s logging falls short. Perhaps

you need to track an additional piece of information for certain transactions, or

you maybe you just want to provide extra context around some events. Adding

new fields to existing Bro logs is quite easy, and is a common thing to do.

Suppose you work for an organization that is concerned about where its Internet

traffic is coming from or going to. One simple thing you can do to track this is have

Bro look up the country codes for all network connections it sees (both sources and

destinations) and add them to the conn.log file as new fields.

To start, paste the following code into a file called conn-geoip.bro:

redef record Conn::Info+¼ {

orig_cc: string &optional &log;

resp_cc: string &optional &log;

};

event connection_state_remove (c: connection)

{

local client_geo_data¼lookup_location(cidorig_h);

local server_geo_data¼lookup_location(cidresp_h);

if(client_geo_data?$country_code) {

c$conn$orig_cc¼client_geo_data$country_code;

}

if(server_geo_data?$country_code) {

c$conn$resp_cc¼server_geo_data$country_code;

}

}

284 CHAPTER 10 The Bro Platform

The script begins by adding two fields to the Conn::Info record type. This is the

data type Bro uses to store information about each connection it sees. It typically

records things like the connection timestamp, uid, endpoints, application-layer pro-

tocol, and so on. In our case, we’re adding two new fields to store country codes for

the endpoints, orig_cc and resp_cc.

Notice that each of the new fields is tagged with a couple of options. These tags

are not part of the record itself, but rather, they tell Bro how to treat these fields in

various circumstances. The &log option tells Bro to make sure to write the value of

this field to the log file when it creates the conn.log entry. If you leave this out, Bro

will track the data but you’ll never see it in the log file. The &optional tag specifies

that it’s OK for this field to have no value (for example, if one of the endpoints is

an RFC 1918 address and thus has no specific geographic ties). In this case, Bro will

just log a “-“ in that field, which is the default behavior for any field in any log if

there is no value to record. Technically, you could replace &optional with

&default¼“None” (or some other string) if you wanted to log a different value in

that case, but “-“ is the standard everywhere else, so we’ll stick with that for

consistency.

Next, we set up a simple event handler for the connection_state_remove event,

which Bro generates just before it’s ready to remove an active connection from its

state table and write the log to disk. We’re using the lookup_location() function,

which is built in to Bro. It takes an IP address as its argument, and returns a geo_

location record, which Bro defines like so:

type geo_location: record {

country_code: string;

region: string;

city: string;

latitude: double;

longitude: double;

}

Our script generates two lookup requests, one for each side of the connection,

with the IPs stored in the connection record:

local client_geo_data¼lookup_location(cidorig_h);

local server_geo_data¼lookup_location(cidresp_h);

Next, it checks each return value to see if the resulting record includes country

code information. If so, it assigns the country code to the appropriate field in the

newly redefined connection info record. Otherwise it does nothing.

if(client_geo_data?$country_code) {

c$conn$orig_cc¼client_geo_data$country_code;

}

That’s it! Once we added the two new fields to the Conn::Info record and set the

&log parameter, we guaranteed that those values would be logged to the conn.log

285Creating Custom Detection Tools with Bro

file. All the connection_state_remove handler had to do was to look them up and

insert them into the connection info record. Bro handled all the rest.

Now it’s time to run our script. For demonstration purposes, we’re going to

go back to testing it from the command line with a PCAP file, though you now

know enough to permanently add this to your running Bro instance, if you wish.

Figure 10.19 shows the tail end of our connection log now, extracting IP address

and geographic data for each endpoint.

CAUTION

There’s one very important prerequisite for this example that we haven’t covered yet: the GeoIP

database! Bro doesn’t actually know about all possible IP addresses and country codes. It relies

on the third party GeoIPLite database by MaxMind (http://www.maxmind.com) to provide this

mapping. This database is installed by default on Security Onion, but if you are running the

example on a different system, you may need to install it yourself. Fortunately, GeoIPLite is

widely available as an installable package on most Linux or *BSD platforms.

MaxMind also provides other databases with more detailed information. The default

GeoIPLite database only provides country codes, and only for IPv4 addresses, so Bro is not able

to fill in any of the other fields in the geo_location structure except the country code.

However, other MaxMind databases include city and latitude/longitude information as well, for

both IPv4 and IPv6. If you need more granular location information or if you deal with a lot of

IPv6-capable hosts, visit the GeoIPLite web page at http://dev.maxmind.com/geoip/legacy/

geolite/ for instructions on how to download and install these additional databases.

If you choose not to install these additional databases, geographic lookups will still work,

but most of the values in the geo_location structure will be undefined. You might also see

non-fatal warnings similar to the ones shown in Figure 10.19 as Bro tries and fails to use these

additional databases, but you can ignore these.

FIGURE 10.19

Connection logs with GeoIP info included

286 CHAPTER 10 The Bro Platform

http://www.maxmind.com
http://dev.maxmind.com/geoip/legacy/geolite/
http://dev.maxmind.com/geoip/legacy/geolite/
Figure 10.19

CONCLUSION

We started this chapter with a quick overview of some essential Bro concepts and a

tour through the log files, but quickly got down to a very hands-on, incremental

primer on coding for Bro. So far, we’ve done some simple but very useful things,

like extracting files and monitoring darknets. We’ve also seen several techniques

you can use over and over again in your Bro journey, such as notice handling, alarm-

ing, tweaking configuration and logging settings, and creating your own modules.

Despite all we’ve just covered, we’ve barely scratched the surface. Even though

we tried our best, it’s impossible to do justice to Bro in a single chapter. Bro really

deserves its own book, but until we get that, keep a close eye on the web site at http://

bro.org, especially their email lists. There is a lively and rapidly growing community

of other Bro users out there answering questions, publishing scripts, and pushing the

envelope of what you can do with it as a platform. For more real-time help, you can

also tune into Freenode IRC’s #bro channel, where there is often someone around to

help answer your questions or just to chat about cool things they are doing with Bro.

It is the opinion of the authors of this book, and a lot of individuals in the NSM com-

munity, that Bro is the future of efficient NSM detection.

287Conclusion

http://bro.org
http://bro.org

CHAPTER

Anomaly-Based Detection
with Statistical Data 11
CHAPTER CONTENTS

Top Talkers with SiLK .. 289

Service Discovery with SiLK ... 294

Furthering Detection with Statistics ... 299

Visualizing Statistics with Gnuplot .. 302

Visualizing Statistics with Google Charts ... 306

Visualizing Statistics with Afterglow ... 310

Conclusion .. 316

Network Security Monitoring is based upon the collection of data to perform detec-

tion and analysis. With the collection of a large amount of data, it makes sense that a

SOC should have the ability to generate statistical data from existing data, and that

these statistics can be used for detection and analysis. In this chapter we will discuss

methods for generating statistical data that can be used to support detection, includ-

ing near real-time detection and retrospective detection.

Statistical data is data derived from the collection, organization, analysis, inter-

pretation and presentation of existing data1. With the immense amount of data that an

NSM team is tasked with parsing, statistical data can play a large role in detection

and analysis, from the analysis of the traffic generated by a particularly hostile host,

to revealing the total visibility for a new sensor. In the current NSM landscape, the

big name vendors most prominently push statistical data in the form of dashboards

within dashboards. While this is used partly for justifying wall mounting 70 inch

plasma TV’s in your SOC and to wow your superior’s superior, it turns out that this

data can actually be immensely useful if it is applied in the right way.

TOP TALKERS WITH SiLK
A simple example of statistical data is a list of top talkers on your network. This list

identifies the friendly devices that are responsible for the largest amount of commu-

nication on a monitored network segment. The NSM team within a SOC can use top

talker statistics to identify things like devices that have a suspiciously large amount

1Dodge, Y. (2006) The Oxford Dictionary of Statistical Terms, OUP. ISBN 0-19-920613-9

289

of outbound traffic to external hosts, or perhaps to find friendly hosts that are infected

with malware connecting to a large number of suspicious external IP addresses. This

is providing detection that signatures cannot, because this is a true network anomaly.

The ability to generate a top talkers list can be challenging without the right tools

and access to network data. However, session data analysis tools like SiLK and

Argus make this task trivial.

In Chapter 4, we discussed various methods for collection of session data and basic

methods of parsing it. There we discussed SiLK, a tool used for the efficient collection,

storage and analysis of flow data.Within SiLK there are a number of tools that are use-

ful for generating statistics and metrics for many scenarios. SiLK operates by requiring

the user to identify the data theywant to use as the source of a data set, then allowing the

user to choose from a variety of tools that can be used for displaying, sorting, counting,

grouping, and mating data from that set. From these tools, we can use rwstats and

rwcount to generate a top talkers list. Let’s look at how we can do this.

While many people will use SiLK for directly viewing flow data, rwstats is one of

the most powerful ways to really utilize session data for gaining a better understand-

ing of your environment, conducting incident response, and finding evil. In every

environment that I’ve seen SiLK deployed, rwstats is always the most frequently

used statistical data source. We will start by using rwstats to output a list of top

talkers.

As with all uses of SiLK, I recommend that you begin by generating an rwfilter

command that you can use to verify the data set you intend to use to generate statis-

tics. Generally, this can be as easy as making the filter and piping the resultant data to

rwcut. This will output the results of the rwfilter command so that you can be sure the

data set you are working with is correct. If you aren’t familiar with rwfilter usage and

piping output between rwtools, then now might be a good time to review Chapter 4

before reading further. For the majority of these examples, we’ll be using basic

examples of rwfilter queries so that anyone can follow along using their current

“out of the box” SiLK deployment.

Rwstats only requires that you specify three things: an input parameter, a set of

fields that you wish to generate statistics for, and the stopping condition by which

you wish to limit the results. The input parameter can either be a filename listed

on the command line, or in the more common case, data being read from standard

input from the result of an rwfilter command. This input should be fed straight from

rwfilter without being parsed by the rwcut command. The set of fields that you spec-

ify represents a user-defined key by which SiLK flow records are to be grouped. Data

that matches that key is stored in bins for each unique match. The volume of these

bins (be it total bytes, records, packets, or number of distinct communication records)

is then used to generate a list ordered by that volume size from top to bottom

(default), or from bottom to top, depending on the user’s choosing. The stopping con-

dition is used to limit the results that you’re generating and can be limited by defining

a total count (print 20 bins), a value threshold (print bins whose byte count is less than

400), or a percentage of total specified volume (print bins that contain at least 10% of

all the packets).

290 CHAPTER 11 Anomaly-Based Detection with Statistical Data

Now that we have an understanding of how rwstats works, the first step toward

generating a list of top talkers is to make a functional rwfilter command that will

generate the data that we want to examine. Following that, we use the pipe symbol

to send that data to rwstats. That command looks like this:

rwfilter --start-date¼2013/08/26:14 --any-address¼102.123.0.0/16 --

type¼all--pass¼stdout|rwstats--top--count¼20--fields¼sip,dip--

value¼bytes

In this example, the rwfilter command gathers all of the flow records collected

during the 1400 hour of August 8th, and only examines traffic in the 102.123.0.0/

16 IP range. That data is piped to rwstats, which will generate a list of the top 20

(--count¼20) source and destination IP address combinations (--fields¼ sip,dip)

for the data in that filter, sorted by bytes (--value¼bytes).

Another way to achieve the same results is to pass the results of the rwfilter com-

mand to a file, and then use rwstats to parse that file. These two commands will do

this, using a file named test.rwf:

rwfilter --start-date¼2013/08/26:14 --any-address¼102.123.0.0/16 --

type¼all --pass¼stdout>test.rwf

rwstats test.rwf --top --count¼20 --fields¼sip,dip --value¼bytes

The results from these commands are shown in Figure 11.1.

FIGURE 11.1

Top Talkers Generated by Rwstats

291Top Talkers with SiLK

In the data shown in Figure 11.1, there are several extremely busy devices on the

local network. In cases where this is unexpected, this should lead to further exam-

ination. Here, we see that the host 102.123.222.245 appears to be responsible for

a large amount of traffic being generated. We can generate more statistics to help

narrow down its communication.

By running the same command, this time substituting the CIDR range for our top

talkers IP address in the rwfilter statement, we can see the hosts that it is communi-

cating with that are responsible for generating all of this traffic.

rwfilter --start-date¼2013/08/26:14 --any-address¼102.123.222.245

--type¼all --pass¼stdout | rwstats --top --count¼5 --fields¼sip,dip

--value¼bytes

The statistics generated by this query are shown in Figure 11.2.

This helps identify the “who” in relation to this anomalous high amount of traffic.

We can identify the “what” by changing our search criteria to attempt to identify

common services observed from the communication between these devices.

rwfilter --start-date¼2013/08/26:14 --any-address¼102.123.222.245

--type¼all --pass¼stdout | rwstats --top --count¼5 --fields¼sip,

sport,dip --value¼bytes

In this command, we use the same set of data, but tell rwstats to use the source

port field as another criterion for statistics generation. Figure 11.3 shows us the

results of this query.

FIGURE 11.2

Focusing in on Top Communication Partners for a Single Host

FIGURE 11.3

Using Statistics to Identify Service Usage

292 CHAPTER 11 Anomaly-Based Detection with Statistical Data

It appears that our culprit is associated with some type of SSH connection, but

before consulting with the user or another data source to verify, let’s generate

some more statistics that can help us identify the “when” regarding the timing

of this communication. In order to do this, we’re going to step away from rwstats

briefly and use rwcount to identify the time period when this communication was

taking place. Rwcount is a tool in the SiLK analysis package that summarizes

SiLK flow records across time. It does this by counting the records in the input

stream and grouping their bytes and packet totals into time bins. By default, pip-

ing an rwfilter command directly to rwcount will provide a table that represents

the volume of records, bytes, and packets seen in every 30 second interval within

your rwfilter results. Using the --bin-size option will allow you to change that by

specifying a different second value. With that in mind, we will use the following

command:

rwfilter --start-date¼2013/08/26:14 --any-address¼102.123.222.245

--sport¼22 --type¼all --pass¼stdout | rwcount --bin-size¼600

Since we’re trying to identify when this port 22 traffic occurred, we have edited

the rwfilter to use the --sport¼22 option, and we have replaced rwstats with rwcount

to evaluate the time unit where the data exists. We’ll talk more about rwcount later in

this chapter, but for now we have used the --bin-size option to examine the traffic

with 10 minute (600 second) bins. The results of this command are shown in

Figure 11.4.

We can see here that the data transfer appears to be relatively consistent over

time. This would indicate that the SSH tunnel was probably being used to transfer

a large chunk data. This could be something malicious such as data exfiltration,

or something as simple as a user using the SCP tool to transfer something to another

system for backup purposes. Determining the true answer to this question would

FIGURE 11.4

Rwcount Results Detailing When Communication Occurred

293Top Talkers with SiLK

require the analysis of additional data sources, but the statistics we’ve generated here

should give the analyst an idea of where to look next.

SERVICE DISCOVERY WITH SiLK
Rwstats can also be used for performing discovery activities for friendly assets on

your own local network. In an ideal situation, the SOC is notified any time a new

server is placed on a production network that the SOC is responsible for protecting.

In reality, analysts are rarely presented with this documentation in a timely manner.

However, as long as these servers fall into the same range as what you are responsible

for protecting, you should have mechanisms in place to detect their presence. This

will not only help you keep tabs on friendly devices that have been deployed, but also

on unauthorized and rogue servers that might be deployed by internal users, or the

adversary.

We can use rwstats can identify these servers with relative ease. In this example,

I’ll identify a number of key servers that regularly communicate to devices outside of

the local network. This process begins with creating an rwfilter to gather the data set

you would like to generate statistics from. In an ideal scenario, this type of query is

run on a periodic basis and examined continually. This can help to catch rogue

servers that might be put in place only temporarily, but then are shut down.

In this example, we will be working with a file generated by rwfilter so that we

can simply pass it to rwstats rather than continually generating the data set and pip-

ing it over. To do this, we can use a filter like this that will generate a data set based

upon all of the traffic for a particular time interval and pass that data to a file called

sample.rw.

rwfilter --start-date¼2013/08/28:00 --end-date¼2013/08/28:23 --

type¼all --protocol¼0- --pass¼sample.rw

With a data set ready for parsing, now we have to determine what statistic we

want to generate. When generating statistics, it is a good idea to begin with a ques-

tion. Then, you can write out the question and “convert” it to rwstats syntax to

achieve the data you are looking for. As a sample of this methodology, let’s ask our-

selves, “What local devices communicate the most from the common server ports, 1-

1024?” This question has multiple potential answers. The delineation of what defines

“top” in “top talker” can be a determining factor in getting the real results you want.

In this example we’ll rephrase the question to say, “What are the top 20 local devices

that talk from source ports 1-1024 to the most distinctly different destination IP

addresses outside of my local network?” Converted to an rwstats command, this

question looks like this:

rwfilter sample.rw --type¼out,outweb --sport¼1-1024 --pass¼stdout |

rwstats --fields¼sip,sport --count¼20 --value¼dip-distinct

The results of this query are shown in Figure 11.5.

294 CHAPTER 11 Anomaly-Based Detection with Statistical Data

This query provides results showing the top 20 local servers (--count¼20) by

Source IP address and port (--fields¼sip,sport) as determined by recognizing

the amount of external devices that these servers communicated with (--

value¼dip-distinct). The data set this query is pulled from is limited by running

rwfilter on the sample.rw data set we’ve already generated, and only passing the out-

bound traffic from ports 1-1024 to rwstats (--type¼out,outweb --sport¼1-1024).

This gives us some of the data we want, but what about server traffic that doesn’t

involve communication from external hosts? If your flow collector (a sensor or a

router) is position to collect internal to internal traffic, we can include this as well

by adding int2int to the –type option.

Another thing we can do to enhance the quality of this data and to set us up better

for statistical data we will generate later, is to limit it to only source IP addresses that

exist within the network ranges we are responsible for protecting. This will usually

be the values that are defined in the SiLK sensor.conf file as the internal IP blocks.

FIGURE 11.5

Top Communicating Server Ports

295Service Discovery with SiLK

The best way to handle this is to create a set consisting of those internal IP blocks.

SiLK rwtools use set files to reference groups of IP addresses. To create a set file,

simply place all of the IP addresses (including CIDR ranges) in a text file, and then

convert it to a set file using this rwsetbuild command:

rwsetbuild local.txt local.set

Here, rwsetbuild takes in the list of IP blocks specified in the local.txt file, and

outputs the set file named local.set. With the set file created, we can use the following

command to get the data we want:

rwfilter sample.rw --sipset¼local.set --type¼int2int,out,outweb --

sport¼1-1024 --pass¼stdout | rwstats --fields¼sip,sport --count¼20

--value¼dip-distinct

Notice here that the --sipset option is used with the rwfilter command to limit

the data appropriately to only source IP addresses that fall within the scope of the

network we are responsible for protecting.

With minimal modifications to the methods we’ve already used, you can narrow

these commands to fit into your own environment with incredible precision. For

instance, while we’re only examining the top 20 matches for each query, you might

determine that any device resembling a server should be considered in your query if it

communications with at least 10 unique devices. In order to get a list of devices

matching that criteria, simply change --count¼20 to --threshold¼10. You can

manipulate the results more by focusing the port range or making new set files to

focus on. It is important to note here that we’re searching with a focus on the service,

and in specifying --fields¼sip,sport, it means that you are displaying the top

source address and source port combinations. If the idea is to identify top talking

servers in general by total number of distinctly different destination IP addresses,

it is important to remove the sport field delimiter in the previous rwstats command

in order to sum up the total amount of connections that each particular device talks to

entirely, like this:

rwfilter sample.rw --sipset¼local.set --type¼all --sport¼1-1024 --

pass¼stdout| rwstats --fields¼sip --count¼20 --value¼dip-distinct

Taking the results of this query and performing additional rwstats commands

to drill down on specific addresses (as seen in previous examples) will yield more

information regarding what services are running on devices appearing in the lists

we’ve generated. For instance, if you wanted to drill down on the services running

on 192.168.1.21, you could identify a “service” by individual source ports with at

least 10 unique outbound communications. You can narrow the rwfilter to include

this address and change the rwstats command to consider this threshold

parameter:

rwfilter sample.rw --saddress¼192.168.1.21 --type¼all --pass¼std-

out| rwstats --fields¼sport --threshold¼10 --value¼dip-distinct

The output from this command is shown in Figure 11.6.

296 CHAPTER 11 Anomaly-Based Detection with Statistical Data

There is an excellent article about performing this type of asset identification

using session data written by Austin Whisnant and Sid Faber2. In their article, “Net-

work Profiling Using Flow”, they walk the SiLK user through a very detailed meth-

odology for obtaining a network profile of critical assets and servers via a number of

SiLK tools, primarily leveraging rwstats for discovery. They even provide a series of

scripts that will allow you to automate this discovery by creating a sample of data via

rwfilter (as seen above in creating sample.rw). Following their whitepaper will result

in the development of an accurate asset model as well as specific sets to aid in further

SiLK queries. This is useful for building friendly intelligence (which is discussed in

Chapter 14) and for detection. Their paper serves as a great compliment to this

chapter.

The examples Whisnant and Faber provide also do a good job of making sure that

what you’re seeing is relevant data with high accuracy. As an example of this accuracy,

I’ve converted some of the query statements from“Network ProfilingUsing Flow” into

quick one-liners. Give these a try to obtain detail on services hosted by your network:

Web Servers

rwfilter sample.rw --type¼outweb --sport¼80,443,8080 --protocol¼6 --

packets¼4- --ack-flag¼1 --pass¼stdout|rwstats --fields¼sip --

percentage¼1 --bytes --no-titles|cut -f 1 -d “|”|rwsetbuild>web_ser-

vers.set;echoPotential WebServers:;rwfiltersample.rw --type¼outweb

--sport¼80,443,8080 --protocol¼6 --packets¼4- --ack-flag¼1 --sip-

set¼web_servers.set --pass¼stdout|rwuniq --fields¼sip,sport --

bytes --sort-output

Email Servers

echo Potential SMTP servers ;rwfilter sample.rw --type¼out --

sport¼25,465,110,995,143,993 --protocol¼6 --packets¼4- --ack-

flag¼1 --pass¼stdout|rwset --sip-file¼smtpservers.set ;rwfilter

FIGURE 11.6

Drilling Down on Services Running on a Specific Device

2http://www.sei.cmu.edu/reports/12tr006.pdf

297Service Discovery with SiLK

http://www.sei.cmu.edu/reports/12tr006.pdf

sample.rw --type¼out --sport¼25,465,110,995,143,993 --sipset¼smtp-

servers.set --protocol¼6 --packets¼4- --ack-flag¼1 --pass¼stdout|

rwuniq --fields¼sip --bytes --sort-output

DNS Servers

echo DNS Servers: ;rwfilter sample.rw --type¼out --sport¼53 --proto-

col¼17 --pass¼stdout|rwstats --fields¼sip --percentage¼1 --packets

--no-titles|cut -f 1 -d “|”| rwsetbuild>dns_servers.set ;rwsetcat

dns_servers.set

VPN Servers

echo Potential VPNs: ;rwfilter sample.rw --type¼out --proto-

col¼47,50,51 --pass¼stdout|rwuniq --fields¼sip --no-titles|cut -f 1

-d “|” |rwsetbuild>vpn.set ;rwfilter sample.rw --type¼out --sip-

set¼vpn.set --pass¼stdout|rwuniq --fields¼sip,protocol --bytes --

sort-output

FTP Servers

echo -e “\nPotential FTP Servers”; rwfilter sample.rw --type¼out --pro-

tocol¼6 --packets¼4- --ack-flag¼1 --sport¼21 --pass¼stdout|rwstats

--fields¼sip --percentage¼1 --bytes --no-titles|cut -f 1 -d “|”|rwset-

build>ftpservers.set ;rwsetcat ftpservers.set ; echo FTP Servers mak-

ing active connections: ;rwfilter sample.rw --type¼out --

sipset¼ftpservers.set --sport¼20 --flags-initial¼S/SAFR --

pass¼stdout|rwuniq --fields¼sip

SSH Servers

echo -e “\nPotential SSH Servers"; rwfilter sample.rw --type¼out --pro-

tocol¼6 --packets¼4- --ack-flag¼1 --sport¼22 --pass¼stdout|rwstats

--fields¼sip --percentage¼1 --bytes --no-titles|cut -f 1 -d “|"|rwset-

build>ssh_servers.set ;rwsetcat ssh_servers.set

TELNET Servers

echo -e “\nPotential Telnet Servers”; rwfilter sample.rw --type¼out --

protocol¼6 --packets¼4- --ack-flag¼1 --sport¼23 --pass¼stdout|

rwstats --fields¼sip --percentage¼1 --bytes --no-titles|cut -f 1 -d

“|”|rwsetbuild>telnet_servers.set ;rwsetcat telnet_servers.set

Leftover Servers

echo Leftover Servers: ;rwfilter sample.rw --type¼out --sport¼1-

19,24,26-52,54-499,501-1023 --pass¼stdout|rwstats --fields¼sport

--percentage¼1

In a detection scenario, these commands would be run on a routine basis. The

results of each run should be compared with previous runs, and when a new device

running as a server pops up, it should be investigated.

298 CHAPTER 11 Anomaly-Based Detection with Statistical Data

FURTHERING DETECTION WITH STATISTICS
For most organizations, alert data and near real-time analysis provides the majority

of reportable incidents on a network.When a new alert is generated, it is can be useful

to generate statistical queries using session data that might help to detect the exis-

tence of similar indicators on other hosts.

As an example, let’s consider the alert shown in Figure 11.7.

This alert was generated due to evidence of communications with a device known

to be associated with Zeus botnet command and control. At first glance, this traffic

looks like it might only be NTP traffic since the communication occurs as UDP traf-

fic over port 123.

If you don’t have access to the packet payload (which might be the case in a ret-

rospective analysis), then this event might be glossed over by some analysts because

there are no other immediate indicators of a positive infection. There is a potential

that this traffic is merely masking its communication by using the commonNTP port.

However, without additional detail this can’t be confirmed. For more detail, we need

to dig down into the other communication of the host. To do this we’ll simply take the

unique details of the alert and determine if the host is talking to additional “NTP

servers” that might appear suspicious. We also add the destination country code field

into this query, since we only expect our devices to be communicating with US-based

NTP servers. The yields the following command:

FIGURE 11.7

A Zeus Alert Generated by Snort

299Furthering Detection with Statistics

rwfilter --start-date¼2013/09/02 --end-date¼2013/09/02 --any-

address¼192.168.1.17 --aport¼123 --proto¼17 --type¼all --pass¼std-

out | rwstats --top --fields¼dip,dcc,dport --count¼20

This command utilizes rwstats to display the devices that 192.168.1.17 is com-

municating with over port 123. The results are shown in Figure 11.8. In this figure,

some IP addresses have been anonymized.

As you can see, the internal host in question appears to be communicating with

multiple external hosts over port 123. The number of records associated with each

host and the sheer amount of communication likely indicate that something mali-

cious is occurring here, or at the very least, that this isn’t actually NTP traffic. In

a typical scenario, a host will only synchronize NTP settings with one or a few easily

identifiable hosts. The malicious nature of this traffic can be confirmed by the exis-

tence of foreign (Non-US) results, which wouldn’t be typical of NTP synchroniza-

tion from a US-based host/network.

At this point, we have an incident that can be escalated. With that said, we also

have an interesting indicator that can give us insight into detecting more than our IDS

rules can provide. As before, we need to evaluate what we want before we jump into

the data head first. In this event, we searched for all session data where 192.168.1.17

FIGURE 11.8

The Friendly Host Communicating with Multiple Hosts on Port 123

300 CHAPTER 11 Anomaly-Based Detection with Statistical Data

was a source address and where communication was occurring over UDP port 123.

The overwhelming amount of UDP/123 traffic to so many external hosts led us to

conclude that there was evil afoot. We can create a filter that matches these charac-

teristics for any local address. That filter looks like this:

rwfilter --start-date¼2013/09/02 --end-date¼2013/09/02 --not-dip-

set¼local.set --dport¼123 --proto¼17 --type¼all --pass¼stdout |

rwstats --top --fields¼sip --count¼20 --value¼dip-distinct

The command above says to only examine data from 2013/09/02, what is not des-

tined for the local network, and what is destined for port 123 using the UDP protocol.

This data is sent to rwstats, which generates statistics for the top 20 distinct local IP

addresses meeting these criteria (Figure 11.9).

We can narrow this filter down a bit more by giving it the ability to match only

records where UDP/123 communication is observed going to non-US hosts, which

was one of the criteria that indicated the original communication was suspicious.

This query builds upon the previous one, but also passes the output of the first rwfilter

instance to a second rwfilter instance that says to “fail” any records that contain a

destination code of “us”, ensuring that we will only see data that is going to foreign

countries.

FIGURE 11.9

Showing Multiple Devices Exhibiting Similar Communication Patterns

301Furthering Detection with Statistics

rwfilter --start-date¼2013/09/02 --end-date¼2013/09/02 --not-dip-

set¼local.set --dport¼123 --proto¼17 --type¼all --pass¼stdout |

rwfilter --input-pipe¼stdin --dcc¼us --fail¼stdout | rwstats --top

--fields¼sip --count¼20 --value¼dip-distinct

Further examination of these results can lead to the successful discovery of mali-

cious logic on other systems that are exhibiting a similar behavior as the original IDS

alert. While an IDS alert might catch some instances of something malicious, it will

catch all of them, which is where statistical analysis can come in handy. The example

shown here was taken from a real world investigation where the analysis here yielded

9 additional infected hosts that the original IDS alert didn’t catch.

VISUALIZING STATISTICS WITH GNUPLOT
The ability to visualize statistics provides useful insight that can’t always be as easily

ascertained from raw numbers. One globally useful statistic that lends itself well to

detection and the visualization of statistics is graphing throughput statistics. Being

able to generate statistics and graph the total amount of throughput across a sensor

interface or between two hosts is useful for detection on a number of fronts. Primar-

ily, it can serve as a means of anomaly-based detection that will alert an analyst when

a device generates or receives a significantly larger amount of traffic than normal.

This can be useful for detecting outbound data exfiltration, an internal host being

used to serve malware over the Internet, or an inbound Denial of Service attack.

Throughput graphs can also help analysts narrow down their data queries to a more

manageable time period, ultimately speeding up the analysis process.

One of the more useful tools for summarizing data across specific time intervals

and generating relevant statistics is rwcount. Earlier, we used rwcount briefly to nar-

row down a specific time period where certain activity was occurring. Beyond this,

rwcount can be used to provide an idea of how much data exists in any communi-

cation sequence(s). The simplest example of this would be to see how much data

traverses a monitored network segment in a given day. As with almost all SiLK

queries, this will start with an rwfilter command to focus on only the time interval

you’re interested in. In this case, we’ll pipe that data to rwcount which will send the

data into bins of a user-specified time interval in seconds. For example, to examine

the total amount of Records, Bytes, and Packets per minute (--bin-size¼60) travers-

ing your interface over a given hour, you can use the following command:

rwfilter --start-date¼2013/09/02:14 --proto¼0- --pass¼stdout --

type¼all | rwcount --bin-size¼60

Variations of the original rwfilter will allow you to get creative in determining

more specific metrics to base these throughput numbers on. These tables are pretty

useful alone, but it can be easier to make sense of this data if you can visualize it.

As an example, let’s look back to the example in the previous section with the

suspicious NTP traffic. If we dig further into the results shown in Figure 11.9 by

using rwcount like the command above, we can see that multiple external IP

302 CHAPTER 11 Anomaly-Based Detection with Statistical Data

addresses in the 204.2.134.0/24 IP range are also soliciting NTP client communica-

tions, which might indicate rogue devices configured to use non-local NTP servers. If

we dig down further and examine the traffic over the course of the day, we just see

equivalent amounts of data per minute (Figure 11.10); a table that doesn’t give much

support in explaining the traffic:

In order to really visualize this data on a broad scale, we can literally draw the big

picture. Since SiLK doesn’t possess the capability of doing this, we’ll massage the

results of the SiLK query and pipe it to gnuplot for graphing. Gnuplot (http://www.

gnuplot.info/) is a portable command-line driven graphing application. It isn’t the

most intuitive plotting interface, but once you have a configuration to read from

existing data, it is easily scripted into other tools.

To make the data shown above more useful, our goal is to build a graph that rep-

resents the volume of bytes per hour for session data containing any address from the

204.2.134.0/24 IP range. We begin by using the same rwcount command as above, but

with a bin size of 3600 to yield “per hour” results. The output of the rwcount command

is sent through some command line massaging to generate a CSV file containing only

the timestamp and the byte value for each timestamp. The command looks like this:

rwfilter --start-date¼2013/09/02 --any-address¼204.2.134.0/24 --

proto¼0- --pass¼stdout --type¼all | rwcount --bin-size¼3600 –

delimited¼, --no-titles| cut -d “,” -f1,3>hourly.csv

The resulting data look like this:

2013/09/02T13:00:00,146847.07

2013/09/02T14:00:00,38546884.51

2013/09/02T15:00:00,1420679.53

2013/09/02T16:00:00,19317394.19

2013/09/02T17:00:00,16165505.44

2013/09/02T18:00:00,14211784.42

2013/09/02T19:00:00,14724860.35

2013/09/02T20:00:00,26819890.91

2013/09/02T21:00:00,29361327.78

FIGURE 11.10

Rwcount Shows Data Spread Evenly Across Time Intervals

303Visualizing Statistics with Gnuplot

http://www.gnuplot.info/
http://www.gnuplot.info/

2013/09/02T22:00:00,15644357.97

2013/09/02T23:00:00,10523834.82

Next, we need to tell Gnuplot how to graph these statistics. This is done by creating

a Gnuplot script. This script is read line-by-line, similar to a BASH script, but instead

relies onGnuplot parameters. Youwill also notice that it calls Gnuplot as its interpreter

on the first line of the script. The script we will use for this example looks like this:

#! /usr/bin/gnuplot

set terminal postscript enhanced color solid

set output “hourly.ps”

set title “Traffic for 204.2.134.0/24 (09/02/2013)”

set xlabel “Time (UTC)”

set ylabel “Bytes”

set datafile separator “,”

set timefmt ‘%Y/%m/%dT%H:%M:%S’

set xdata time

plot ‘hourly.csv’ using 1:2 with lines title “Bytes”

If the postscript image format won’t work for you, then you can convert the image

to a JPG in Linux via the convert command:

convert hourly.ps hourly.jpg

Finally, you are left with a completed Gnuplot throughput graph, shown in

Figure 11.11.

13:00
0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

Traffic for 204.2.134.0/24 (09/02/2013)

Bytes

14:00 15:00 16:00 17:00 18:00

Time (UTC)

B
y
te

s

19:00 20:00 21:00 22:00 23:00

FIGURE 11.11

A Gnuplot Throughput Graph

304 CHAPTER 11 Anomaly-Based Detection with Statistical Data

You could easily use this example to create a BASH script to automatically pull

data based on a date and host and generate a Gnuplot graph. An example of this might

look like this:

#!/bin/bash

#traffic.plotter

echo “Enter Date: (Example:2013/09/02)”

read theday

echo “Enter Host: (Example:192.168.5.0/24)”

read thehost

if [-z “theday”]; then

echo “You forgot to enter the date.”

exit

fi

if [-z “thehost”]; then

echo “You forgot to enter a host to examine.”

exit

fi

rm hourly.csv

rm hourly.ps

rm hourly.jpg

rwfilter --start-date¼$theday --any-address¼$thehost --proto¼0- --

pass¼stdout --type¼all -- | rwcount --bin-size¼3600 --delimited¼,

--no-titles| cut -d “,” -f1,3>hourly.csv

gnuplot<< EOF

set terminal postscript enhanced color solid

set output “hourly.ps”

set title “Traffic for $thehost ($theday)”

set xlabel “Time (UTC)”

set ylabel “Bytes”

set datafile separator “,”

set timefmt ‘%Y/%m/%dT%H:%M:%S’

set xdata time

plot ‘hourly.csv’ using 1:2 with lines title “Bytes”

EOF

convert hourly.ps hourly.jpg

exit

This script will allow you to pick a particular date to generate a “bytes per hour”

throughput graph for any given IP address or IP range. This script should be fairly

easy to edit for your environment.

305Visualizing Statistics with Gnuplot

VISUALIZING STATISTICS WITH GOOGLE CHARTS
Another way to display throughput data and more is to leverage the Google Charts

API (https://developers.google.com/chart/). Google offers a wide array of charts for

conveying just about any data you can think of in an understandable and interactive

fashion. Most of the charts generated with the API are cross-browser compatible and

the Google Charts API is 100% free to use.

The biggest difference between Google Charts and Gnuplot for plotting SiLK

records across time is the abundance of relevant examples. Gnuplot has been sup-

ported and under active development since 1986, and as such will do just about any-

thing you could ever want as long as you’re able to gain an understanding of the

Gnuplot language. Because Gnuplot has been the go-to plotting and charting utility

for so long, there are endless examples of how to get what you want out of it. How-

ever, Google Charts is fairly new, so fewer examples exist for showing how to use it.

Luckily, it is rapidly growing in popularity, and it is designed to easily fit what people

want out of the box. In order to aid in adoption, Google created the Google Charts

Workshop, which allows a user to browse and edit existing examples to try data in-

line before going through the effort of coding it manually. The term “coding” is used

loosely with Google Charts in that its syntax is relatively simple. For our purposes,

we’re going to use simple examples where we take data from rwcount and port it to

an HTML file that leverages the Google Charts API file. Most modern browsers

should be able to display the results of these examples without the use of any

add-ons or extensions.

As an example, let’s look at the same data that we just used in the previous

Gnuplot example. We will use this data to generate a line chart. The first thing that

you’ll notice when you examine the Google Charts API for creating a line chart is

that the data it ingests isn’t as simple as a standard CSV file. The API will accept both

JavaScript and Object Literal (OL) notation data tables. These data formats can be

generated with various tools and libraries, but to keep this simple, we’ll go back to

using some command line Kung Fu to convert our CSV output into OL data table

format.

In the previous example we had a small CSV file with only 11 data points. In addi-

tion to that data, we need to add in column headings to define the independent and

dependent variable names for each data point. In other words, we need to add

“Data,Bytes” to the top of our csv file to denote the two columns, like this:

Date,Bytes

2013/09/02T13:00:00,146847.07

2013/09/02T14:00:00,38546884.51

2013/09/02T15:00:00,1420679.53

2013/09/02T16:00:00,19317394.19

2013/09/02T17:00:00,16165505.44

2013/09/02T18:00:00,14211784.42

2013/09/02T19:00:00,14724860.35

2013/09/02T20:00:00,26819890.91

2013/09/02T21:00:00,29361327.78

306 CHAPTER 11 Anomaly-Based Detection with Statistical Data

https://developers.google.com/chart/

2013/09/02T22:00:00,15644357.97

2013/09/02T23:00:00,10523834.82

Now, we can reformat this CSV file into the correct OL data table format using a

bit of sed replacement magic:

cat hourly.csv | sed “s/\(.*\),\(.*\)/[‘\1’, \2],/g”|sed ‘$s/,$//’| sed

“s/, \([A-Za-z].*\)],/, ‘\1’],/g”

At this point, our data look like this, and is ready to be ingested by the API:

[‘Date’, ‘Bytes’],

[‘2013/09/02T13:00:00’, 146847.07],

[‘2013/09/02T14:00:00’, 38546884.51],

[‘2013/09/02T15:00:00’, 1420679.53],

[‘2013/09/02T16:00:00’, 19317394.19],

[‘2013/09/02T17:00:00’, 16165505.44],

[‘2013/09/02T18:00:00’, 14211784.42],

[‘2013/09/02T19:00:00’, 14724860.35],

[‘2013/09/02T20:00:00’, 26819890.91],

[‘2013/09/02T21:00:00’, 29361327.78],

[‘2013/09/02T22:00:00’, 15644357.97],

[‘2013/09/02T23:00:00’, 10523834.82]

Now we can place this data into an HTML file that calls the API. The easiest way

to do this is to refer back to Google’s documentation on the line chart and grab the

sample code provided there. We’ve done this in the code below:

<html>

<head>

<script type¼“text/javascript” src¼“https://www.google.com/

jsapi”></script>

<script type¼“text/javascript”>

google.load(“visualization”, “1”, {packages:[“corechart”]});

google.setOnLoadCallback(drawChart);

function drawChart() {

var data¼google.visualization.arrayToDataTable([

[‘Date’, ‘Bytes’],

[‘2013/09/02 T13:00:00’, 146847.07],

[‘2013/09/02 T14:00:00’, 38546884.51],

[‘2013/09/02 T15:00:00’, 1420679.53],

[‘2013/09/02 T16:00:00’, 19317394.19],

[‘2013/09/02 T17:00:00’, 16165505.44],

[‘2013/09/02 T18:00:00’, 14211784.42],

[‘2013/09/02 T19:00:00’, 14724860.35],

[‘2013/09/02 T20:00:00’, 26819890.91],

[‘2013/09/02 T21:00:00’, 29361327.78],

[‘2013/09/02 T22:00:00’, 15644357.97],

[‘2013/09/02 T23:00:00’, 10523834.82]

307Visualizing Statistics with Google Charts

]);

var options¼{

title: ‘Traffic for 204.2.134.0-255’

};

var chart¼new google.visualization.LineChart(document.

getElementById(‘chart_div’));

chart.draw(data, options);

}

</script>

</head>

<body>

<div id¼“chart_div” style¼“width: 900px; height: 500px;”> </div>

</body>

</html>

Figure 11.12 shows the resulting graph in a browser, complete with mouse overs.

Just as we were able to script the previous Gnuplot example, we can also auto-

mate this Google Chart visualization. The methods shown below for automating

this are crude for the sake of brevity, however, they work with little extra

interaction.

From a working directory, we’ve created a directory called “googlecharts”.

Within this directory we plan to build a number of templates that we can insert data

into. The first template will be called linechart.html.

0

2013/09/02T 13:00:00

2013/09/02T 14:00:00

2013/09/02T 15:00:00

2013/09/02T 16:00:00

2013/09/02T 17:00:00

2013/09/02T 18:00:00

2013/09/02T 19:00:00

2013/09/02T 20:00:00

2013/09/02T 21:00:00

2013/09/02T 22:00:00

2013/09/02T 23:00:00

10,000,000

20,000,000

30,000,000

40,000,000 Bytes

Traffic for 204.2.134.0-24

FIGURE 11.12

A Google Charts API Throughput Graph

308 CHAPTER 11 Anomaly-Based Detection with Statistical Data

<html>

<head>

<script type¼“text/javascript” src¼“https://www.google.com/

jsapi”></script>

<script type¼“text/javascript”>

google.load(“visualization”, “1”, {packages:[“corechart”]});

google.setOnLoadCallback(drawChart);

function drawChart() {

var data¼google.visualization.arrayToDataTable([

dataplaceholder

]);

var options¼{

title: ‘titleplaceholder’

};

var chart¼new google.visualization.LineChart(document.get

ElementById(‘chart_div’));

chart.draw(data, options);

}

</script>

</head>

<body>

<div id¼“chart_div” style¼“width: 900px; height: 500px;”></div>

</body>

</html>

You’ll notice that our linechart.html has two unique placeholders; one for the data

table we’ll create (dataplaceholder) and one for the title that we want

(titleplaceholder).

Now, in the root working directory, we’ll create our plotting utility, aptly named

plotter.sh. The plotter utility is a BASH script that will generate graphs based on a

user supplied rwfilter and rwcount command. It will take the output of these com-

mands and parse it into the proper OL data table format and insert the data into a

temporary file. The contents of that temporary file will be used to replace the data

place holder in the googlecharts/linechart.html template. Since we also have a title

place holder in the template, there is a variable in the plotter script where that can be

defined.

##EDIT THIS##################################

title¼‘Traffic for 204.2.134.0-255’

rwfilter --start-date¼2013/09/02 T1 --any-address¼204.2.134.0/24 --

type¼all --proto¼0- --pass¼stdout | rwcount --bin-size¼300 --

delimited¼, |\

cut -d “,” -f1,3 |\

###

309Visualizing Statistics with Google Charts

sed“s/\(.*\),\(.*\)/[‘\1’,\2],/g”|sed‘$s/,$//’|sed“s/,\([A-Za-z].

*\)],/, ‘\1’],/g”>temp.test

sed ’/dataplaceholder/{

s/dataplaceholder//g

r temp.test

}’ googlechart/linechart.html | sed “s/titleplaceholder/${title}/g”

rm temp.test

}

linechart

When you run plotter.sh, it will use the template and insert the appropriate data

into linechart.html.

The script we’ve shown here is simple and crude, but can be expanded to allow

for rapid generation of Google Charts for detection and analysis use.

VISUALIZING STATISTICS WITH AFTERGLOW
It is easy to get deep enough into data that it becomes a challenge to effectively com-

municate to others what that data represents. In fact, sometimes it is only in stepping

back from the data that you can see really what is going on yourself. Afterglow is a

Perl tool that facilitates the generation of link graphs that allow you to see a pictorial

representation of how “things in lists” relate to each other. Afterglow takes two or

three column CSV files as input and generates either a dot attributed graph language

file (required by the graphviz library) or a GDF file that can be parsed by Gephi. The

key thing to note is that Afterglow takes input data and generates output data that can

be used for the generation of link graphs. The actual creation of those link graphs is

left to third party tools, such as Graphviz which we will use here. There are

numerous examples of how to use Afterglow to find relationships in a number of

datasets on the Internet; PCAP and Sendmail are examples shown on Afterglow’s

main webpage.

Before getting started with Afterglow, it is a good idea to first visit http://

afterglow.sourceforge.net/ to read the user manual and get an idea of how it

functions. Essentially, all you need to get going is a CSV file with data that

you want to use, and if you pipe it to Afterglow correctly, you’ll have a link

graph in no time.

First, download Afterglow and place it in a working directory. For this example,

you’ll want to make sure you have access to SiLK tools in order to make these exam-

ples seamless. After downloading and unzipping Afterglow, you might need to

install a Perl module (depending on your current installation). If you do need it,

run the following:

sudo /usr/bin/perl -MCPAN -e‘install Text::CSV’

310 CHAPTER 11 Anomaly-Based Detection with Statistical Data

http://afterglow.sourceforge.net/
http://afterglow.sourceforge.net/

We’ll be using visualization tools provided by Graphviz, which can be installed

with the package management utility used by your Linux distribution. Graphviz is an

open source visualization software from AT&T Research that contains numerous

graphing utilities that can each be used to provide their own interpretation of link

graphs. For documentation on each graphing tool included with Graphviz, visit

http://www.graphviz.org/Documentation.php. To install Graphviz in Security

Onion, we can use APT:

sudo apt-get install graphviz

At this point you should be in the Afterglow working directory. Afterglow will

require that you use a configuration file, but a sample.properties file has been

included. I recommend adding the line xlabels¼0 to this file to ensure that labels

show up properly. While generating data, be mindful of the two “modes” mentioned

before, two-column and three-column. In two-column mode, you only have a

“source” (source IP address) and a “target” (destination IP address). If a third column

is present, the arrangement now becomes “source, event, target”.

To begin generating a link graph, let’s start by generating a CSV file of data tra-

versing your local network over the course of an hour using SiLK. For this example,

we’ll use 184.201.190.0/24 as the network that we are examining. To generate this

data with SiLK, we’ll use some additional rwcut options to limit the amount of data

massaging that we have to do:

rwfilter --start-date¼2013/09/06:15 --saddress¼184.201.190.0/24 --

type¼all --pass¼stdout | rwcut --fields¼sip,dip --no-titles --

delimited¼, | sort -u>test.data

After running the command shown above, examine the file “test.data” to confirm

that you have data containing “source IP, destination IP” combinations in each line.

If data is present, you’ve completed the hard part. To generate the link graph you can

do one of two things. The first option is to run your data through Afterglow and gen-

erate a DOT file with the -w argument, which Graphviz utilities such as Neato will

parse for graph creation. Another option is to pipe the output of Afterglow straight to

Neato. Since you’re likely going to be utilizing Afterglow exclusively for feeding

data to a graphing utility of your choice, our example will focus on piping the output

of Afterglow straight to Graphviz utilities.

To generate our graph, run the following command:

cat test.data | perl afterglow.pl -e 5 -c sample.properties -t | neato -

Tgif -o test.gif

The -e argument defines how “large” the graph will be. The -c argument specifies

a configuration file to use, which in this case is the sample file that is included with

Afterglow. The -t argument allows you to specify that you’re using “two-column”

mode. Finally, that data is piped to neato, which uses the –T argument to specify that

a GIF file should be created, and the –o argument that allows the file name to be

specific. The result is test.gif, which is shown in Figure 11.13.

311Visualizing Statistics with Afterglow

http://www.graphviz.org/Documentation.php

If you are following along at home, you should now have something similar to the

figure above, although possibly with different colors. The colors used by Afterglow

are defined in the sample.properties file. This sample file is preconfigured to use spe-

cific colors for RFC 1918 addresses. In the event that you’re not using one of these

ranges (as in with our example), the “source” nodes will show up in red. Examine the

sample configuration carefully as you’ll no doubt be making changes to color codes

FIGURE 11.13

A Link Graph Created from NetFlow Data

312 CHAPTER 11 Anomaly-Based Detection with Statistical Data

for your local ranges. Keep in mind that the configuration file works on a “first match

wins” basis regarding the color-coding. For instance, all source nodes will be blue if

your source color configuration lines read as below, due to the fact that the top state-

ment is read as “true”, and thus matches first;

color.source¼“blue”

color.source¼“greenyellow” if ($fields[0]¼�/∧192\.168\.1\..*/);

color.source¼“lightyellow4” if ($fields[0]¼�/∧172\.16\..*/);

Now that you’ve been able to create some pretty data, let’s generate some useful

data. In this next example we’ll generate our own configuration file and utilize

three-column mode. In this scenario, we’ll take a look at the outbound connections

from your local address range during non-business hours. We’ll generate a config-

uration file that will allow us to visually identify several anomalies. In this sce-

nario, we don’t expect end users to be doing any browsing after hours, and we

don’t expect a lot of outbound server chatter outside of a few responses from exter-

nal hosts connecting in. As before, we need to have an idea of what we’re using as

our data set moving forward. We’re going to be identifying several things with this

graph, so I’ll explain the columns as I walk through the configuration. In this exam-

ple, I’ll also show you how this can be streamlined into a one-line command to gen-

erate the graph.

We will begin by creating a configuration file. To make sure that our labels don’t

get mangled, we’ll start with the line xlabels¼0. In this scenario, we’re going to

generate a link graph that gives us a good picture of how local devices are commu-

nicating out of the network, whether it is through initiating communication or by

responding to communication. In doing so we’ll assume that all local addresses

are “good” and define color.source to be “green”.

To pick out the anomalies, our goal is to have the target node color be based on

certain conditions. For one, we want to identify if the communication is occurring

from a source port that is above 1024 in order to try and narrow down the difference

between typical server responses and unexpected high port responses. If we see that,

we’ll color those target nodes orange with color.target¼“orange” if ($fields

[1]>1024). This statement tells Afterglow to color the node from the third column

(target node) orange if it determines that the value from the second column (event

node) is a number over 1024. Referencing the columns in the CSV file is best done

by referencing fields, with field 0 being the first column, field 1 being the second

column, and so on.

Next, we’d like to see what foreign entities are receiving communications from

our hosts after hours. In this case, we’ll try to identify the devices communicating out

to China specifically. Since these could very well be legitimate connections, we’ll

color these Chinese nodes yellow with color.target¼“yellow” if ($fields

[3]¼�/cn/). Remember that based on the way Afterglow numbers columns, field

3 implies that we’re sourcing some information from the fourth column in the CSV

313Visualizing Statistics with Afterglow

file. While the fourth column isn’t used as a node, it is used to make references to

other nodes in the same line, and in this case we’re saying that we’re going to color

the node generated from the third column yellow if we see that the fourth column of

that same row contains “cn” in the text.

We’d also like to escalate certain nodes to our attention if they meet BOTH of the

previous scenarios. If we identify that local devices are communicating outbound to

Chinese addresses from ephemeral ports, we will highlight these nodes as red. In

order to do that, we identify if the source port is above 1024 AND if the fourth col-

umn of the same row contains “cn” in the text. In order to make this AND operator,

we’ll use color.target¼“red” if (grep($fields[1]>1024,$fields[3]¼�/cn/

)). As mentioned before, it is the order of these configuration lines that will make

or break your link graph. My recommendation is that you order these from the most

strict to the most lenient. In this case our entire configuration file (which we’ll call

config.properties) will look like this:

##Place all labels within the nodes themselves.

xlabels¼0

##Color all source nodes (first column addresses) green

color.source¼“green”

##Color target nodes red if the source port is above 1024 and ##4th column

reads “cn”

color.target¼“red” if (grep($fields[1]>1024,$fields[3]¼�/cn/))

##Color target nodes yellow if the 4th column reads “cn”

color.target¼“yellow” if ($fields[3]¼�/cn/)

##Color target nodes orange if the source port is above 1024

color.target¼“orange” if ($fields[1]>1024)

##Color target nodes blue if they don’t match the above statements

color.target¼“blue”

##Color event nodes from the second column white

color.event¼“white”

##Color connecting lines black with a thickness of “1”

color.edge¼“black”

size.edge¼1;

To generate the data we need for this graph, we will use the following command:

rwfilter --start-date¼2013/09/06:15 --saddress¼184.201.190.0/24 --

type¼out,outweb --pass¼stdout |\

rwcut --fields¼sip,sport,dip,dcc --no-titles --delimited¼,|\ sort -u

|perl afterglow.pl -e 5 -c config.properties -v |\

neato -Tgif -o test.gif

Notice that the type argument in the rwfilter command specifies only outbound

traffic with the out and outweb options. We also generate the four columns we need

with the --fields¼sip,sport,dip,dcc argument. The output of this data is piped

directly to Afterglow and Neato to create test.gif, shown in Figure 11.14.

314 CHAPTER 11 Anomaly-Based Detection with Statistical Data

The power and flexibility that Afterglow provides allow for the creation of a

number of link style graphs that are useful in a variety of situations where you

need to examine the relationships between entities. Hopefully this exercise has

shown you some of that power, and will give you a jump start on creating link graphs

of your own.

FIGURE 11.14

A Customized Link Graph Showing Outbound Communication

315Visualizing Statistics with Afterglow

CONCLUSION

Understanding the gradual flow of data in your environment as it relates to the user

and the network as a whole is challenging. However, there are a number of statistical

data measures that can be taken to ensure that as your organization matures, so does

your knowledge of its data network and the communication occurring on it. The

overarching theme of this chapter is that you can make better data out of the data

you already have. This new data revolves around stepping back a few feet in order

to refocus and see the big picture. Sometimes the big picture is making lists that gen-

eralize large quantities of data. Other times, the big picture is really just a big picture.

While the direction provided here doesn’t tell you how to create statistics or visual-

izations for all of the scenarios you might face when performing NSM detection or

analysis, our hope is that it will help you get over the initial hump of learning some of

these tools, and that it will plant a seed that will allow you to generate useful statistics

for your environment.

316 CHAPTER 11 Anomaly-Based Detection with Statistical Data

CHAPTER

Using Canary Honeypots
for Detection 12
CHAPTER CONTENTS

Canary Honeypots .. 318

Types of Honeypots .. 319

Canary Honeypot Architecture ... 320

Phase One: Identify Devices and Services to be Mimicked320

Phase Two: Determine Canary Honeypot Placement321

Phase Three: Develop Alerting and Logging ..322

Honeypot Platforms .. 323

Honeyd ...323

Kippo SSH Honeypot ...328

Tom’s Honeypot ..332

Honeydocs ..335

Conclusion .. 338

By definition, a honeypot is a security resource whose value lies in being probed,

attacked, or compromised. In practice, a honeypot often takes the form of either a

system or a piece of software that mimics a system or service that is intentionally

vulnerable. This system is placed so that an attacker will find the system and exploit

it. What the attacker is usually unaware of however, is that the honeypot contains no

real data of value and is isolated from other network devices. Network defenders can

then use the detailed logging information collected by the honeypot to derive tools,

tactics, and procedures used by the attacker.

It is rare to find honeypots on production networks, as it can seem counterintu-

itive to place a device on a production network that is designed to be breached by an

attacker. As a matter of fact, most honeypots are only found in research or academic

environments. However, some organizations with mature NSM capabilities have

looked to honeypots as an advanced form of detection in their environments. In this

chapter we will define the canary honeypot and take a look at different types of hon-

eypots that can be used for NSM purposes. In addition, we will discuss the issue of

canary honeypot placement, logging, and best practices for implementation. We will

also look at some popular honeypot software solutions.

Before going any further, I should make it absolutely clear that this chapter will

discuss some controversial defense tactics. Some organizations steer away from the

use of honeypots for legal reasons, which we won’t address here (that’s between

you and your lawyer). Other organizations simply don’t understand how to properly

317

secure their environments to ensure that an attacker can’t leverage a compromised hon-

eypot in an unexpectedmanner, or they just don’t understand how a honeypot can have

operational value. Regardless of your disposition towards honeypots, I must stress that

the implementation of honeypots for NSM can be a labor-intensive process and is gen-

erally only suited for mature SOC environments with 24 � 7 monitoring.

CANARY HONEYPOTS
Canaries were originally used as an early warning system by the mining industry.

Before technology could be used to gauge the severity of lethal gases in mineshafts,

miners would place canaries in cages in these shafts. The canary was more suscep-

tible to lethal gases such as methane, so if the canary became ill or died, the miners

knew they were in danger and they should evacuate the mine shaft or take some other

type of corrective action, such as opening more ventilation shafts. This same concept

helps define the canary honeypot.

A canary honeypot is a system that mimics a production system and is deployed

so that it can serve as an early detection mechanism in the event of a network breach.

These honeypots can operate in two different formats; either as an exploitable or non-

exploitable honeypot.

An exploitable canary honeypot is one that actually uses software to mimic real

services, but in a manner that presents some form of vulnerability to an attacker.

When the attacker exploits this vulnerability, they are usually provided some limited

access to a simulated environment designed to make them believe that they are

interacting with a real system. While this is occurring, the honeypot software

also generates extensive logs detailing the method the attacker used to breach

the faux-service, and their actions within the simulated operating environment. This

alerting can also be combined with other forms of detection, including IDS signa-

tures, to aid analysts in utilizing the canary honeypots as a detection resource.

A non-exploitable canary honeypot provides the same legitimate services as the

production box it is mirroring, but isn’t designed to be exploited by an attacker in the

traditional sense. The only difference between these honeypots and a legitimate pro-

duction system is that no other legitimate systems are actually communicating with

the honeypot. This means that any connection initiated with this system is suspicious.

While an attacker won’t actually be able to access this system, if they attempt to log

on to it, scan it, or otherwise interact with it, then any signature, anomaly, or statis-

tical detection mechanisms that are deployed in the environment should be config-

ured to generate alerts based upon the attacker actions. This is a similar concept to the

Darknet example we looked at with Bro in chapter 10.

Because neither of these honeypot types represents a real business-related service,

there is no legitimate reason for anyone to connect to them. While it wouldn’t be pos-

sible to utilize this level of extensive logging and alerting with a real production system

due to the number of false positives that would be generated, this is a great solution for

a system that nobody should ever be communicating with in the first place.

318 CHAPTER 12 Using Canary Honeypots for Detection

It is important to realize that a canary honeypot isn’t designed to detect

an attacker who is gaining initial access into your network. Instead, they are designed

to detect the actions of an attacker who has already gained an initial foothold in the

network and is attempting to further their level of access. Regardless of how sophis-

ticated attackers might be, they will still take the path of least resistance towards their

goals, maintaining only as much stealth as necessary. The prevalence of social engi-

neering and targeted phishing attacks has made defending the perimeter and perform-

ing detection across this boundary difficult.

TYPES OF HONEYPOTS
Honeypots are categorized by the level of interaction they provide and are most

commonly designated as either low interaction or high interaction. Organizational

goals, the assets you are protecting, and the services you wish to emulate will help

define the level of interaction needed for your honeypot deployment.

A low interaction honeypot is software-based, and is designed to emulate one or

more services. The level of interaction they provide is dependent upon the service

being emulated and the software itself. For instance, Kippo is a low interaction hon-

eypot that mimics the SSH service. It allows an attacker to log in to the service and

even to browse a fake file system. However, it never allows an attacker to access a

real component of the underlying operating system.

A high interaction honeypot is actually configured to mirror a production system,

and is designed to give an attacker full reign of an operating system in the event that

they are lured into compromising it. This systemwill be configured to utilize extensive

system and file system logging, and will also be subject to a very exhaustive set of IDS

rules and monitoring. High interaction honeypots will often exist as virtual machines

so that they can be reverted back to a known clean snapshot with relative ease.

When implementing a high interaction honeypot, special precautions must be

taken to limit the attacker’s ability to use the system as a staging point for attacks

against the production system. They must be allowed to compromise the machine

and perform some level of activity without being able to use their control of the

system to take advantage of legitimate systems on the network.

CAUTION

Some honeypots will claim to be medium interaction honeypots, existing as a middle ground

between low and high interaction solutions. For example, Kippo is a medium interaction

honeypot because it is software that simulates a service, but it also simulates a fake file system

that an attacker can actually interact with. This is in contrast to something like Tom’sHoneypot,

which is a true low interaction honeypot because it simulates services using software, but

doesn’t provide any type of simulated environment that an attacker can interact with post-

compromise. While medium-interaction honeypots are a valid classification in some instances,

this book groups medium interaction honeypots with low interaction honeypots because they

are typically still applications that run on a system rather than an actual operating system.

319Types of Honeypots

High interaction honeypots are useful for intelligence gathering in relation to

sophisticated adversaries. However, they require an incredible amount of labor

and diligence in their setup, and require constant and rigorous monitoring.

Overall, low interaction honeypots are easier to configure and maintain. They

also introduce the least amount of risk into an environment because of their simplic-

ity. If your goal is detection, as it would be in an NSM environment, low interaction

honeypots are usually the best fit. This book will focus on low interaction honeypots

for NSM detection.

CANARY HONEYPOT ARCHITECTURE
As with all aspects of NSM, the deployment of canary honeypots should be thor-

oughly planned in relation to the threats faced by your organization, as discussed

with the Applied Collection Framework in Chapter 2. With those results in hand,

planning the deployment of one or more canary honeypot systems should involve

three major steps:

1. Identify the devices and services to be mimicked

2. Determine Canary Honeypot Placement

3. Develop Alerting and Logging

Let’s examine each of these phases in depth.

Phase One: Identify Devices and Services to be Mimicked

Based upon the risk assessment you completed while planning for your NSM collec-

tion needs, you should have an idea of which network assets are considered high pri-

ority. These are prime targets for having their services replicated with a honeypot

system. The goal of this deployment is that a canary honeypot will generate an alert

when it has been compromised, serving as an early warning indicator that similar

high priority services might be targeted next, or in a worse scenario, that they have

already been compromised.

This strategy is best served by deploying honeypot software that will emulate ser-

vices offered by critical systems. Realistically, software doesn’t exist that will emu-

late EVERY service that might be critical to your organization, but there are

solutions that will emulate a lot of the more common services found in organizations.

As an example, let’s consider an environment in which the most critical network

assets were identified as a group of Windows servers that are not externally acces-

sible, and host a proprietary internal application used by the finance department.

TheseWindows servers are part of a domain, and are managed via the Remote Desk-

top Protocol (RDP). Mimicking the internal application as a honeypot might be dif-

ficult to do, but the RDP service is a perfect candidate for being emulated with a

honeypot. Tom’s Honeypot, which we will discuss later, provides the ability to

mimic an RDP server and will generate an alert when someone even attempts to

320 CHAPTER 12 Using Canary Honeypots for Detection

log in to this server. While it may not be feasible to actively log and examine every

RDP login for the other Windows servers, actively reviewing alerts generated from

the RDP honeypot is certainly feasible. This is because nobody should ever try to log

on to this system since it is not exposed to the Internet.

In another scenario, we have an organization that has several Linux servers that

host the back end databases associated with their public facing e-commerce site.

The Linux servers are not public facing, and the only services they have running inter-

nally are SSH for server management and MySQL for the databases. In this case, both

services can be mimicked as honeypots. The SSH service can be mimicked with an

SSH honeypot like Kippo, and the MySQL service can be mimicked with a tool like

Tom’s Honeypot. Again, nobody should ever log into these particular honeypot sys-

tems, so any access to these systems should generate an alert and serve as a warning of

a potential internal compromise or an impending attack against your critical systems.

Phase Two: Determine Canary Honeypot Placement

Once you’ve determined which services you intend to emulate, you must place hon-

eypot systems within your network. While placement may seem as simple as deploy-

ing the honeypot applications on a host and plugging it into the network, there are

other considerations that must be accounted for.

First, you should ensure that the honeypot is placed on the same network segment

as the assets it is mimicking. If the honeypot is placed in another segment, then its

compromise might not actually indicate that an attacker has made their way into the

segment you are trying to protect. As an example, consider Figure 12.1.

In this figure, multiple network segments are shown. The network segment con-

taining the most critical network assets from a threat perspective is the research seg-

ment. This is where the canary honeypot systems are placed. Legitimate servers have

complementary honeypot systems placed in the network segment alongside them.

The Linux File Servers are accompanied by an SSH honeypot, the Windows Appli-

cation Servers are accompanied by an RDP honeypot, and theWeb Servers are paired

with an HTTP honeypot.

The primary goal of the honeypot system is to generate alert and log data when

someone attempts to access the system or service. With that in mind, you should be

certain that your placement of the honeypot allows data to be transmitted to an NSM

sensor or log collection device. In Figure 12.1, Sensor B would be responsible for

performing detection for this network segment by analyzing data entering and leav-

ing the segment.

Beyond the mechanics of ensuring that the honeypot is functioning properly for

its role, you should also ensure that the amount of actual communication that the

honeypot can participate in is limited. While the honeypot should be able to respond

to the same types of requests as the legitimate assets it mimics it should be prevented

from actually initiating communication with other hosts. This can be done with thor-

ough firewall rules on the router that is upstream from the honeypot. In figure 12.1,

this upstream router would be the Research Network Router.

321Canary Honeypot Architecture

Phase Three: Develop Alerting and Logging

The final step in canary honeypot deployment is developing the logging and alerting

that will notify analysts that an attacker is interacting with the honeypot system.

First and foremost, you should always be aware of the capabilities of the honey-

pot software you are using. In some cases, youmay find the software has the ability to

generate data that can serve as an alert. This might include the ability to generate

something like a MySQL database entry or a Syslog event. If this isn’t an option,

then you might need to combine the honeypot software with another detection

mechanism to generate an alert.

When considering how to best generate alerts from a canary honeypot without

using the honeypot software itself, you must consider where the NSM sensor is

placed in relation to the honeypot systems. In Figure 12.1, a sensor is placed directly

upstream from the critical network segment where the honeypots exist. If an attacker

accesses those honeypots from another internal network segment, you can utilize the

network detection mechanisms used by that sensor, such as Snort/Suricata, Bro, or a

statistical detection tool to generate alerts for honeypot interaction.

FIGURE 12.1

Canary Honeypot Placement Near Protected Assets

322 CHAPTER 12 Using Canary Honeypots for Detection

Figure 12.1

Since any interaction with the honeypot should be considered abnormal, you can

generate alerts from normal communication sequences in the context of the service

being mimicked. For example, IDS signatures for the following events would be

appropriate for Figure 12.1:

1. SSH Honeypot – Detecting SSH server banner being transmitted

2. RDP Honeypot – Detecting an RDP login

3. HTTP Honeypot – Detecting an HTTP GET/POST/etc request

In a scenario where an attacker is interacting with a honeypot system from a

device that they control inside the critical network segment, this sensor would prob-

ably not be able to detect the attacker’s actions since that communication wouldn’t

traverse the sensor boundary. This can be remedied by configuring a host-based

detection mechanism on the honeypot host itself so that alert data can still be gen-

erated. This might be a capability inherent to the honeypot software, or might require

a third party tool such as OSSEC for host-based detection, or even a custom script. In

our example, the host based mechanism could report directly to Sensor B, or another

upstream system that is collecting log data.

Once an alert has been generated, an analyst should have the ability to access the

logs generated by the honeypot system to determine what the potential attacker did

with the system. The amount of detail available in these logs will usually be depen-

dent upon the honeypot software itself, but you should strive to make these logs as

verbose as possible. Since the potential for false positives while using canary honey-

pots is so low, this results in fewer logs, so there isn’t much danger of exceeding your

storage capacity or generating an overwhelming flood of log data. Remember that

any activity occurring on a honeypot is considered suspicious, because no legitimate

user should ever attempt to communicate with it.

With that said false positives can be generated. This is commonly the case with

network auto discovery type services, and legitimate internal scanning. This phase of

honeypot deployment should also include tuning out false positives, which can be

done by excluding honeypot IP addresses from scanning services, or tweaking the

detection mechanisms used in conjunction with the honeypot systems.

HONEYPOT PLATFORMS
There are several freely available low interaction honeypots. The remainder of this

chapter will be devoted to discussing how a few of these tools can be used as canary

honeypots for NSM.

Honeyd

When someone brings up the history of honeypot software, the discussion typically

begins with Honeyd. The Honeyd utility was developed by Niels Provos over ten

years ago, and provides the ability to emulate hosts as a low-interaction honeypot.

Honeyd has been the de facto low-interaction honeypot solution for years, and is

so popular that a lot of modern honeypot solutions borrow from its functionality.

323Honeypot Platforms

While it hasn’t been significantly updated in some time, it is still very functional and

serves a great purpose as a canary honeypot utility. While there has been more than

one version of Honeyd on Windows, the original Honeyd runs exclusively on Unix

based operating systems, and that is the version that we will cover here.

The flexibility of Honeyd lies in its ability to emulate a large number of systems

and services with a simple configuration file. A single Honeyd instance can spawn

dozens, hundreds, and even thousands of honeypot systems. Not only this, but Hon-

eyd will utilize operating system fingerprinting information to mimic the character-

istics of the OS down to the layer three and four characteristics that might be

expected. When an attacker attempts to determine the operating system of the device

they are interacting with, most automated tools will tell them that it is whatever OS

you have specified in the Honeyd configuration file, even if that isn’t the true OS that

the Honeyd honeypots are running on.

The best way to show the functionality of Honeyd is to demonstrate it in practice.

Installing Honeyd can be accomplished via building from source, or using a package

manager like APT, with the following command:

apt-get install honeyd

To run Honeyd, we will have to create a configuration file. A default configura-

tion file that contains a few different examples of how the file is structured is pro-

vided at /etc/honeypot/honeyd.conf. We will create our own configuration file that is

a bit simpler and build upon it. In this example, let’s try to configure a honeypot that

mimics a Windows Server 2003 device with only typical Windows ports (135, 139,

and 445) open.

First, we must configure a few default settings for Honeyd. These lines are:

create default

set default default tcp action block

set default default udp action block

set default default icmp action block

These first four lines tell Honeyd block all inbound communication to its honey-

pots unless otherwise specified. Think of this as a default deny rule on a firewall.

Next, we can create a honeypot by using the create command and specifying the

name of the honeypot. In this case we will call it ansm_winserver_1:

create ansm_winserver_1

We want to emulate a Windows Server 2003 device, so we will use the set com-

mand along with the personality option to accomplish this.

set ansm_winserver_1 personality “Microsoft Windows Server 2003 Stan-

dard Edition”

The personality reference is drawn from the fingerprints database used by the

popular Nmap port and vulnerability scanning application. The default installation

of Honeyd uses the file /etc/honeypot/nmap.prints for these fingerprints, but this file

isn’t even close to being up to date. If you’d like to reference the personality of a

modern operating system that isn’t including in the default nmap.prints file, you

324 CHAPTER 12 Using Canary Honeypots for Detection

can create your own entry from the updated Nmap fingerprint database at https://svn.

nmap.org/nmap/nmap-os-db. Keep in mind that fingerprints from modern versions

of Nmap might require some modification to work properly with Honeyd.

Now that we have created the honeypot itself, we have to configure the ports we

want to appear open. In this case we want the three ports that are typically indicative

of a Windows system, which are TCP ports 135, 139, and 445.

add ansm_winserver_1 tcp port 135 open

add ansm_winserver_1 tcp port 139 open

add ansm_winserver_1 tcp port 445 open

Our last step is to provide our honeypot with a MAC address and an IP address so

that it can communicate on the network. This is done with the set and bind com-

mands, respectively.

set ansm_winserver_1 ethernet “d3:ad:b3:3f:11:11”

bind 172.16.16.202 ansm_winserver_1

At this point, we’ve created everything we need to get this simple honeypot up

and running. Assuming you’ve saved these configuration lines into a file named

ansm.conf, you can execute Honeyd with the following command:

sudo honeyd –d –f /etc/honeypot/ansm.conf

The –d switch is used to tell Honeyd not to run in daemonmode. This is done so that

we can see its output on the screen. The –f switch is used to specify the location of the

configuration file we’ve created. Now,we can test Honeyd by port scanning the honey-

pot we created in the configuration file. The output of this scan is shown in Figure 12.2.

As you might expect, Honeyd has performed extensive logging of this scanning.

These logs are stored in Syslog format in /var/log/syslog by default, which makes it

incredibly easy to ship this log data to a third party tool like ELSA or Logstash. The

log output of our scanning activity is shown in Figure 12.3:

FIGURE 12.2

Port Scanning Shows Open Ports on the Honeypot

325Honeypot Platforms

https://svn.nmap.org/nmap/nmap-os-db
https://svn.nmap.org/nmap/nmap-os-db
Figure 12.2

At this point, our honeypot is extremely limited in functionality. While an

attacker can scan this host and find open ports (the result of a TCP three-way hand-

shake), they will not actually be able to interact with the host. In cases where you

would like to emulate a Windows host that doesn’t provide any services beyond that

of a domain controller or file sharing server, the functionality we have now would

suffice perfectly for a canary honeypot. Since nobody should ever be communicating

with this system, you could place it under the visibility of an IDS sensor that uses a

rule like this:

alert ip !$TRUSTED_MS_HOSTS any ->$MS_HONEYPOT_SERVERS [135,139,445]

(msg:“Attempted Communication with Windows Honeypot on MS Ports”;

sid:5000000; rev:1;)

This rule will detect any TCP or UDP communication to this honeypot (assuming

it is included in the $MS_HONEYPOT_SERVERS variable), except for systems in

an approved $TRUSTED_MS_HOSTS variable. This variable should be used to

exclude communication from devices like domain controllers, or update and man-

agement servers such as WSUS and SMS.

To be prepared for scenarios in which a system in the same network segment as

this honeypot might attempt to communicate with it, you should also use some type

of detection mechanism that can generate alert data from the honeypot server itself.

Since Honeyd generates log data in Syslog format, this can be done easily by pushing

Syslog data to another host that is capable of generating alerts based upon this data,

or by using a host-based IDS tool like OSSEC.

While the current configuration works great for mimicking simple services, the

functionality of Honeyd doesn’t stop there. It can also emulate more advanced ser-

vices by invoking scripts that are tied to specific open ports. As an example, let’s edit

our Windows 2003 honeypot so that it will emulate a web server. To do this, add the

following line after the other open port designations:

FIGURE 12.3

Honeyd Log Output to Syslog Showing our Scanning

326 CHAPTER 12 Using Canary Honeypots for Detection

Figure 12.3

add ansm_winserver_1 tcp port 80 “sh /usr/share/honeyd/scripts/win32/

web.sh”

If an attacker attempts to port scan this device now, they would see that port 80

is open, indicating that a web server is present on this system. If that same attacker

then actually connects to the system with a web browser, they would actually be

presented with a web page. This page is contained with the web.sh script that is

called, and can be customized to resemble another web server in your environment.

In addition to its standard logging to syslog, Honeyd will log the HTTP client

request header of the attacker attempting to connect to the fake web server. This

is shown in Figure 12.4.

This level of logging allows you to profile the tools that the attacker is using while

attempting to access your infrastructure. For instance, in Figure 12.4 you can see that

the attacker is using the Chrome browser (User-Agent: Mozilla/5.0 (Macintosh; Intel

Mac OS X 10_8_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/

29.0.1547.65 Safari/537.36) and the US English character set (Accept-Language:

en-US,en;q¼0.8).

In this case, the following IDS rule would detect communication with this canary

honeypot:

alert tcp any any ->$WEB_HONEYPOT_SERVERS 80 (msg:“HTTP GET Request to

Web Honeypot”; content:“GET”; http_method; sid:5000000; rev:1;)

This rule will generate an alert for any HTTP GET request to this host, assuming

it is included in the $WEB_HONEYPOT_SERVERS variable in the IDS engine you

are using. If you want to make a more content-specific rule, embed a particular con-

tent string in the HTML of the honeypot website, and create a rule that detects that

specific string. Honeyd has several scripts that emulate a variety of services in a sim-

ilar manner, including scripts to emulate SMTP, SNMP, TELNET, POP, and other

services. These scripts all provide varying levels of interaction, so you should test

them thoroughly to see if they might be a good fit in your environment.

In this chapter we only scratched the surface of Honeyd’s capabilities. In addition

to what we’ve shown here, Honeyd also has to ability to redirect an attacker to

another system, or even masquerade as a routing device. While it isn’t necessarily

FIGURE 12.4

The HTTP Client Header of an Attacker Connecting to the Honeypot Web Server

327Honeypot Platforms

http://web.sh
Figure 12.4

as robust as some other honeypot solutions that focus on emulating a single service,

its ability to spawn dozens of honeypot systems makes it immensely useful as a

canary honeypot for NSM detection. If you want to experiment more with Honeyd,

you should check out their documentation at http://honeyd.org/.

Kippo SSH Honeypot

The next platform we will look at is one that I’ve already mentioned a few times in

this chapter, the Kippo SSH honeypot. Kippo is a low interaction honeypot that sim-

ulates an SSH server, and it is designed to detect brute force attempts and log attacker

interaction with a simulated shell environment.

Kippo is useful as a canary honeypot because the SSH protocol is commonly used

to manage both Unix-based devices and network devices like switches and routers.

When an attacker gains a foothold onto the network, a couple of scenarios exist

where the attacker might try to access devices using the SSH service:

1. The attacker will attempt a brute force or dictionary attack against the SSH server

to gain access

2. The attacker will attempt to guess the password of a user to gain access

3. The attacker will attempt to log into the service with credentials already obtained

through some other means

The first scenario might be detectable if the attacker performs these attacks

across a sensor boundary where alerts might be triggered. However, if an attacker

attempts to perform the brute force attack against a device on the same network

segment, then network-based detection won’t be possible. The same applies for

the second scenario, but a lower volume of authentication attempts further compli-

cates that scenario. While a brute force or dictionary attack will generate a great

deal of traffic that could easily be detected by an IDS signature or some type of

statistical detection, an attacker simply guessing passwords for a user might not

meet the thresholds for alert generation. In the third scenario, network based detec-

tion is nearly impossible through traditional means, because an attacker using legit-

imate credentials would look almost identical to a user authenticating normally.

Our only chance of detecting this type of activity would be through some type

of anomaly based detection that notices a user logging into this service from a sys-

tem they don’t normally use.

As a defender, we can gain leverage against this type of attack by deploying an

SSH honeypot like Kippo into a network segment where high priority assets exist.

Since nobody should ever log into this system, any login attempt or exchange of net-

work traffic beyond standard broadcast or update traffic should trigger an alert. This

places us in a situation where all three scenarios above are detectable, and the canary

honeypot can effectively serve as an early warning that someone is in the network

performing an unauthorized activity. As an added advantage, if the attacker attempts

to use credentials they have obtained through other means, this will become clear to

us and incident response can occur, assuming that other services that user has access

328 CHAPTER 12 Using Canary Honeypots for Detection

http://honeyd.org/

to might be compromised. The only false positives here might occur when an admin

accidentally attempts to log into one of these systems.

You can download Kippo from https://code.google.com/p/kippo/. Since Kippo is

a Python script, no compiling or installation is required, and you can run Kippo by

executing the start.sh file that is contained in the Kippo directory. Kippo is highly

configurable via the kippo.cfg file, but for our purposes here, we will leave the

default configuration file intact.

FROM THE TRENCHES

If you are deploying Kippo into a production environment, you should take time to modify

settings that an attacker could use to identify the system as a honeypot. This includes items like

the hostname and the contents of the false file system. Ideally, these things will be configured

similarly to production devices.

If you are following along and have executed Kippo, then you should be able to

connect back in to its faux SSH environment. The default configuration has Kippo

launch its SSH service on port 2222. You should set up your honeypot to use what-

ever port is common within your environment, such as the default port 22.

At baseline, Kippo will log any attempt to log into the service, complete with the

username and password used in the attempt. These files are logged by default in the

log/kippo.log directory. A sample output from this log is shown in Figure 12.5.

Kippo can be configured to allow a potential attacker to log into its simulated file

system by specifying a user account and password that will allow for successful

authentication. This username and password is specified in the data/userdb.txt file,

and is username “root” and password “123456” by default. If an attacker utilizes this

username and password combination, they will be presented with a fake file system

that they can browse around in, and that even allows them to create and delete files,

shown in Figure 12.6.

FIGURE 12.5

Kippo Logging Authentication Attempts

329Honeypot Platforms

https://code.google.com/p/kippo/
http://start.sh
Figure 12.5

As you might expect, the attacker’s actions in this environment are logged thor-

oughly as well. An example of one of these logs is shown in Figure 12.7.

In the example above, we can see that the attacker attempts to send the /etc/

passwd file back to the host they logged in from the SCP and FTP commands.

The SCP and FTP clients aren’t available in this environment, so the system indicates

that the commands aren’t found. The default kippo.log file doesn’t show verbose out-

put of these commands, but this information can be found in the log/tty folder. This

folder contains a detailed binary log file of the actions taken in every terminal

spawned by the software. Each file name is based upon the timestamp of when

the terminal is initialized. These files aren’t easily viewable in plaintext, and are

designed to be played back with Kippo’s playlog.py utility in the util/ folder. This

utility will replay as if you were sitting over the attacker’s shoulder watching their

interaction with the terminal. This shows the command input in real time, and cap-

tures every keystroke, backspace, and pause. This output is very impressive when

used in presentations. Figure 12.8 shows the playlog.py output for the attack

sequence shown in Figure 12.7. You can see the more verbose output of the id com-

mand that isn’t shown in the base kippo.log file.

The additional level of interaction that Kippo provides with its fake file system is

useful for gaining intelligence related to an attacker’s motives or tactics. Often, the

first thing an attacker does when they gain access to a system is to download addi-

tional files from an external site. This might include malware, a keylogger, a

FIGURE 12.6

Browsing Kippo’s Fake File System

FIGURE 12.7

Kippo Logging an Attacker’s Actions at the Terminal

330 CHAPTER 12 Using Canary Honeypots for Detection

Figure 12.6
Figure 12.7

backdoor, or a rootkit that will further their attack goals. When they attempt to down-

load these tools in the Kippo environment, you can see the remote host they are

attempting to access and the tools they attempt to download. This incredibly useful

intelligence can be used to help shape collection, detection, and analysis strategy.

The native Kippo logging format is fairly easily parseable by other tools, and it

also provides the option to log to a MySQL database, which can be useful for incor-

porating Kippo data into another tool. To enhance detection, IDS signatures and

other detection mechanisms can be paired with the honeypot server itself. This is

generally the preferred method for alerting on honeypot interaction. For instance,

the following Snort/Suricata IDS rules can be used to indicate an attempt to authen-

ticate to a honeypot system.

alert tcp $HONEYPOT_SERVERS $SSH_PORTS ->any any (msg:“ET POLICY SSH

Server Banner Detected on Expected Port – Honeypot System”; flow: from_

server,established; content:“SSH-”; offset: 0; depth: 4; byte_test:

1,>,48,0,relative; byte_test:1,<,51,0,relative; byte_test:1,¼,46,1,

relative; reference:url,doc.emergingthreats.net/2001973; classtype:

misc-activity; sid:2001973; rev:8;)

alert tcp any any <> $HONEYPOT_SERVERS $SSH_PORTS (msg:“ET POLICY SSH

session in progress on Expected Port – Honeypot System”; threshold: type

both, track by_src, count 2, seconds 300; reference:url,doc.emerging-

threats.net/2001978; classtype:misc-activity; sid:2001978; rev:7;)

The first rule shown above (SID 2001973) detects the SSH server banner being

transmitted to a client. The second rule (SID 2001978) detects an SSH session in

progress. These rules are provided by Emerging Threats, and you should note that

I’ve modified them here to only detect traffic occurring to systems identified by

the $HONEYPOT_SERVERS variable, which would have to be configured on your

sensor for these rules to work.

Utilizing rules like these, you should be alerted whenever a sensor detects that

someone has interacted with the SSH service on the honeypot system. At this point,

FIGURE 12.8

Replayed Attacked Sequence in the Kippo TTY Log

331Honeypot Platforms

Figure 12.8

you can reference the log data generated by Kippo to assess the extent of the inter-

action. Remember, this activity can only be detected if an attacker accesses the hon-

eypot in a manner where the sensor can see it. To perform detection against events

occurring from within the same network segment, you would have to generate alerts

from the Honeypot system itself. There are a couple of ways to do this, such as send-

ing Kippo logs to syslog and alerting on certain events, or using a host-based detec-

tion program such as OSSEC.

Kippo has a few more features that aren’t covered here, and a number of addi-

tional utilities and third party enhancements that are worth looking into. You can

learn more about all of this at https://code.google.com/p/kippo/.

Tom’s Honeypot

The last honeypot we will look at is Tom’s Honeypot, which was developed by Tom

Liston, the developer of one of the earliest production honeypots, the LaBrea Tar Pit.

Tom’s Honeypot is a low interaction Python honeypot that is designed to mimic a

few specific services that are commonly targeted by attackers. These services

include:

• Remote Desktop Protocol (RDP) (TCP/3389)

• Microsoft SQL Server (MSSQL) (TCP/1433, UDP/1434)

• Virtual Network Computer (VNC) (TCP/5900)

• RAdmin (Remote Administration) (TCP/4899)

• Session Initiation Protocol (SIP) (UDP/5060)

Tom’s Honeypot listens on specified ports for communication related to these

services. When an attacker attempts to access one of these services, an alert is gen-

erated in the tomshoneypot.log file.

Since Tom’s Honeypot is just a Python script, all you need to do to run it is install

a prerequisite (the Python Twisted module) and then use Python to run it. The fol-

lowing command will install the prerequisite in Security Onion:

sudo apt-get install python-twisted

The script can be obtained from http://labs.inguardians.com/tomshoneypot. It can

be executed by running the following command:

python tomshoneypot.py

By default, Tom’s Honeypot runs with all of its available services turned on. If

you only want to run a subset of these services, you will have to manually edit the

script and comment the appropriate sections out. These sections are:

reactor.listenTCP(1433, fMSSQL, interface¼interface)

reactor.listenTCP(3389, fTS, interface¼interface)

reactor.listenTCP(5900, fVNC, interface¼interface)

reactor.listenTCP(22292, fDump, interface¼interface)

reactor.listenTCP(4899, fRAdmind, interface¼interface)

332 CHAPTER 12 Using Canary Honeypots for Detection

https://code.google.com/p/kippo/
http://labs.inguardians.com/tomshoneypot

reactor.listenUDP(1434, uFakeMSSQL(), interface¼interface)

reactor.listenUDP(5060, uFakeSIP(), interface¼interface)

If you don’t want to run a particular service, simple place a pound symbol at the

beginning of that services line. This will cause the Python interpreter to skip this line

and forgo starting a listener on the ports tied to these services.

As an example, let’s take a look at one of these services. The RDP protocol is used

for remote desktop administration of Windows hosts. In a common attack scenario

where an attacker has gained a foothold onto the network, they will typically do some

scanning to determining what other targets they can access. The RDP service typi-

cally utilizes port 3389, and when an attacker sees this port open they will usually try

to connect to it with an RDP client. If the attacker has gained users’ credentials

through some other means, the RDP service could allow them to take control of

the server and begin pillaging data. Even if the attacker doesn’t have a user’s creden-

tials, they could still use the RDP server to attempt to guess a user’s password, or

simply to enumerate the version of Windows running on the machine.

In this case of Tom’s Honeypot, a fake RDP server will run over port 3389 to

entice an attacker to interact with the service. When the attacker attempts this, the

device they are attacking from will complete a three-way TCP handshake with the

honeypot, and will then initiate an RDP connection request; however, the honeypot

will not generate a response back. A typical attacker will usually assume this is

because some type of host restriction is in place, or that the service is simply mal-

functioning. However, this is occurring because there is no legitimate RDP service

to log into, and instead of providing an RDP server to log into, Tom’s Honeypot

simply logs the access to the fake system. An example of such a log is shown in

Figure 12.9.

FIGURE 12.9

An Example Tom’s Honeypot RDP Access Attempt Log

333Honeypot Platforms

Figure 12.9

In the logs shown above, you’ll notice five individual entries. Four of these entries

include a “Login” field. While Tom’s Honeypot won’t generate an interactive screen

that an attacker can attempt to log into, it takes advantage of the fact that an RDP client

will attempt to transmit a cookie during its initial negotiation request. This RDP cookie

doesn’t have anything to do with authentication, but it does contain a username that is

used for terminal services identification. The first log in Figure 12.9 doesn’t show any

result for this field because no RDP cookie was present during that connection attempt,

but the following four log entries have values present. The second and third entries

show two different IP addresses attempting to make connections to the honeypot with

RDP cookie usernames values of “a” and “j”. The last two log entries show two

attempts from the IP address 192.0.2.234, using the RDP cookie username

“NCRACK_USER.” The Ncrack tool is an authentication-cracking tool that can be

used to attack RDP servers. This would indicate that 192.0.2.234 is attempting to

obtain unauthorized access to the honeypot system.

The other fake services provided by Tom’s Honeypot work in a similar manner.

Figure 12.10 shows an example of logs generated from the MSSQL and SIP honey-

pot services.

Two logs are shown in Figure 12.10. The first log shows data obtained from an

attacker attempting to communicate with Tom’s Honeypot via a MS SQL client

(TCP port 1433). Note that this output shows information about the client used to

connect to the fake MS SQL service.

FIGURE 12.10

Example Tom’s Honeypot Logs for MSSQL and SIP Protocols

334 CHAPTER 12 Using Canary Honeypots for Detection

Figure 12.10

The second log shows someone attempting to communicate with the honeypot via

the SIP protocol (UDP 5060), which is commonly used by Voice over IP (VoIP) ser-

vices. In this case, we see that this traffic is associated with the Sipvicious tool, which

is used for scanning, enumerating, and auditing SIP services.

Tom’s Honeypot is an actively developed project, and it is likely that by the time

this book is published, even more features will have been added. If you want to learn

more about Tom’s Honeypot, you can visit the project site at http://labs.inguardians.

com/tomshoneypot/.

Honeydocs

When conceptualizing information security, we often focus on protecting systems

and processes. While this is certainly a worthwhile venture, it usually isn’t the sys-

tems and processes that we are actually trying to protect; it is the data that resides

within them. That is where a honeydoc comes into play.

A honeydoc is a specialized form of “honey technology.” Instead of mimicking a

legitimate system and logging access to that system, a honeydoc mimics a legitimate

document, and logs access to that document.

In a typical deployment, a honeydoc containing a bunch of false data is created and

placed alongside legitimate data. Along with the false data, the honeydoc will contain

some type of hidden code that references a third party server. The goal here is that an

attackerwho succeeds in accessing secure data will eventually open this honeydoc, and

their system will connect to the third party system. The third party system will, of

course, log any details it can about the client that has opened to document.

There are a number of ways to create a honeydoc, but the most common method

involves including code in the document that will force the generation of an HTTP

requestwhen thedocument is opened.While these requests canbeblockedor subverted,

they are often fairly successful when dealing with an inexperienced or hasty attacker.

As an example, let’s create a honeydoc using a Microsoft Word document. The

quickest way to do this is to create a plain text document devoid of any special for-

matting. This can be done from the terminal or from a tool like Notepad or Textedit.

This document should contain a set of fake data that might be of interest to an

attacker, like a list of fake users or password hashes. With the data in place, you

should surround the data with the<html>and </html> tags to designate it as web

content. As a last step, we can place the content that will generate the request to

our web server. This can be done by using the HTML tag, but instead of pro-

viding the URL location of an image, we will provide a serialized URL to our web

server, like this:

In a real world scenario, this URL would point towards a public IP address or

domain name. It is important that each honeydoc is serialized, so that you can keep

track of requests generated from each document. The resulting honeydoc you’ve cre-

ated should look similar to Figure 12.11.

335Honeypot Platforms

http://labs.inguardians.com/tomshoneypot/
http://labs.inguardians.com/tomshoneypot/

The last step in this process is to save this document in the appropriate format.

This is usually going to be a .doc or .docx file for compatibility with an application

like Microsoft Word. Now, when you open this document Word will attempt to

download the image file referenced in the tag, but instead, will generate a

GET request to your web server. For the purposes of this example, I pointed a hon-

eydoc to a Honeyd server, which generated the output in Figure 12.12.

FIGURE 12.11

A Honeydoc in Raw HTML

FIGURE 12.12

Honeyd Log Output from the Honeydoc

336 CHAPTER 12 Using Canary Honeypots for Detection

Figure 12.11
Figure 12.12

With this log data, you could easily generate an alert that will notify analysts that

a honeydoc has been accessed. Since honeydocs will often reside next to real data, it

is always possible that a legitimate user could access a honeydoc mistakenly, but this

shouldn’t be a common occurrence.

Honeydocs aren’t restricted to text documents. This scenario could be applied to

other types of files including HTML pages, PDF files, or even XLS files. If you want

to experiment with the creation and tracking of a Honeydoc without setting up a web

server, the Honeydocs.com service was launched with the goal to automate the cre-

ation of Honeydocs, as well as the tracking of honeydoc campaigns (or stings, as they

call them). You can register at honeydocs.com for free, which allows for the creation

of a single sting that can contain multiple honeydocs. For a fee, you can create more

stings and utilize the Honeydoc service to generate e-mail or SMS alerts whenever

a honeydoc you’ve created is accessed. Figure 12.13 shows an example of the

Honeydocs.com web interface.

I’ve seen honeydocs of various types used in a variety of detection and response

scenarios with great success. However, I must provide the warning that honeydocs

aren’t entirely covert, and even a relatively unskilled attacker will be able to notice

a document attempting to communicate with an external host. This could expose

the third party server to probes by the attacker, so you should ensure that this host

is secure, and ideally, located away from your corporate network. It should also be

unattributable to your organization. In a best case scenario, the attacker doesn’t

notice the honeydoc “phoning home” at all. If they do notice, you will want to min-

imize risk as much as possible. With all of this said, great care should be taken

when implementing honeydocs, as with the other technologies discussed in this

chapter.

FIGURE 12.13

The Honeydocs.com Web Interface

337Honeypot Platforms

http://Honeydocs.com
http://honeydocs.com
http://Honeydocs.com
Figure 12.13
http://Honeydocs.com

CONCLUSION

In this chapter we’ve taken a look at the application of canary honeypots in an NSM

environment. This includes the placement of canary honeypots, alerting and logging

considerations, and a few different honeypot software solutions that can serve this

purpose. We also took a quick look at honeydocs and how they can be used for

NSM detection. While honeypots have traditionally been reserved for research pur-

poses, the strategies discussed here can make canary honeypots an incredibly useful

detection mechanism in the fight against the adversary.

338 CHAPTER 12 Using Canary Honeypots for Detection

CHAPTER

Packet Analysis 13
CHAPTER CONTENTS

Enter the Packet .. 342

Packet Math .. 344

Understanding Bytes in Hex ...344

Converting Hex to Binary and Decimal ...346

Counting Bytes ..347

Dissecting Packets .. 350

Tcpdump for NSM Analysis ... 355

TShark for Packet Analysis ... 359

Wireshark for NSM Analysis ... 363

Capturing Packets ...363

Changing Time Display Formats ..365

Capture Summary ..366

Protocol Hierarchy ...367

Endpoints and Conversations ..368

Following Streams ...369

IO Graph ...370

Exporting Objects ..372

Adding Custom Columns ..373

Configuring Protocol Dissector Options ..374

Capture and Display Filters ..375

Packet Filtering ... 376

Berkeley Packet Filters (BPFs) ..377

BPF Anatomy ... 377

Wireshark Display Filters ..380

Conclusion .. 384

The analysis phase of Network Security Monitoring is predicated on the analysis of

data to determine if an incident has occurred. Since most of the data that is collected

by NSM tools is related to network activity, it should come as no surprise that the

ability to analyze and interpret packet data is one of the most important skills an ana-

lyst can have. In this first chapter of the analysis section of this book, we will dive

into the world of packet analysis from the perspective of the NSM analyst. This chap-

ter will assume that the reader is somewhat familiar with how computers communi-

cate over the network, but will assume no prior packet analysis knowledge. We will

341

examine how to interpret packets using “packet math” and protocol header maps, and

look at ways packet filtering can be performed. While discussing these topics we will

use both tcpdump and Wireshark to interact with packets.

The main goal of this chapter is to equip you with the knowledge you need to

understand packets at a fundamental level, while providing a framework for under-

standing the protocols that aren’t covered here.

MORE INFORMATION

While this book is designed for analysts of all skill levels, it does assume at least some

knowledge of how network devices communicate with each other. Before proceeding you should

have a basic understanding of the OSI or TCP/IP model and how encapsulation and

decapsulation work. If you want to refresh yourself before reading this chapter, I recommend

reading my other book, “Practical Packet Analysis.” You don’t have to read the whole thing

before diving in here, but an understanding of the first chapter should suffice.

ENTER THE PACKET
The heterogeneous nature of computing is what allows a multitude of devices

developed and manufactured by a variety of companies to interoperate with each

other on a given network. Whether that network is a small network like the one

in your house, a large network like a corporation might have, or a global network

like the Internet, devices can communicate on it as long as they speak the right

protocol.

A networking protocol is similar to a spoken or written language. A language

has rules, such as how nouns must be positioned, how verbs should be conjugated,

and even how individuals should formally begin and end conversations. Protocols

work in a similar fashion, but instead of dictating how humans communicate,

they dictate how network devices can communicate. Regardless of whomanufactures

a networking device, if it speaks TCP/IP, then it can most likely communicate with

any other devices that speak TCP/IP. Of course, protocols come in a variety of forms,

with some being more simple and others being more complex. Also, the combined

efforts of multiple protocols are required for normal network communication to

take place.

The evidence of a protocol in action is the packet that is created to conform to its

standards. The term packet refers to a specially formatted unit of data that is trans-

mitted across a network from one device to another. These packets are the building

blocks of how computers communicate, and the purest essence of network security

monitoring.

For a packet to be formed, it requires the combination of data from multiple

protocols. For instance, a typical HTTP GET request actually requires the use of

at least four protocols to ensure that the request gets from your web browser to a

web server (HTTP, TCP, IP, and Ethernet). If you’ve looked at packets before,

342 CHAPTER 13 Packet Analysis

then you may have seen the packet displayed in a format similar to what is shown in

Figure 13.1, where Wireshark is used to display information about the packets

contents.

Wireshark is a great tool for interacting with and analyzing packets, but to really

understand packets at a fundamental level, we are going to start with a much more

fundamental tool, tcpdump (or its Windows alternative, Windump). While Wire-

shark is a great tool, it is GUI based and does a lot of the legwork for you in regards

to packet dissection. On the other hand, tcpdump relies on you to do a lot of the inter-

pretation for individual packets on your own. While this may seem a bit counterin-

tuitive, it really challenges the analyst to think more about the packets they are

seeing, and provides a fundamental understanding that can be better applied to

any packet analysis tool, or even the raw parsing of packet data.

Now that we’ve seen Wireshark break down an HTTP GET Request packet, let’s

look at the same packet in hexadecimal form. This output is achieved by using the

command:

tcpdump –nnxr ansm-13-httpget.pcapng

We will discuss tcpdump later in this chapter, but for now, the packet is shown in

Figure 13.2.

If you’ve never attempted to interpret a packet from raw hex before, then the out-

put in Figure 13.2 can be a bit intimidating. However, it isn’t very hard to read this

data if we break it down by protocol. We are going to do that, but first, let’s explore

some basic packet math that will be necessary to proceed.

FIGURE 13.1

A Simple HTTP GET Request Packet Shown in Wireshark

343Enter the Packet

Figure 13.1

PACKET MATH
If you are anything like me, then the title of this section might get your blood boiling

hotter than two dollar grits on the back burner of a twenty dollar stove. After all, there

was no warning that math would be required! Don’t worry though, packet math is

actually pretty easy, and if you can do basic addition and multiplication, then you

should be fine.

Understanding Bytes in Hex

When examining packets at a lower level, such as with tcpdump, you will usually be

looking at packet data represented in hexadecimal form. This hex format is derived

from the binary representation of a byte. A byte is made up of 8 bits, which can either

be a 1 or a 0. A single byte looks like this: 01000101.

To make this byte more readable, we can convert it to hex. This starts by splitting

the byte into two halves, called nibbles (Figure 13.3). The first four bits is referred to

as the higher order nibble, because it represents the larger valued portion of the byte.

The second four bits is referred to as the lower order nibble, because it represents the

lower valued portion of the byte.

Each nibble of this byte is converted into a hex character to form a two character

byte. For most beginners, the fastest way to calculate the hex value of a byte is to first

calculate the decimal value of each nibble, shown in Figure 13.4.

FIGURE 13.2

A Simple HTTP Get Request Packet Shown in tcpdump

01000101

Binary Byte

0100 0101 Lower Order NibbleHigher Order Nibble

FIGURE 13.3

A Byte Split into Nibbles

344 CHAPTER 13 Packet Analysis

Figure 13.2
Figure 13.3

While doing this calculation, notice that each position in the binary byte repre-

sents a value, and that this value increases from right to left, which is also how these

positions are identified with the first position being the rightmost. The positions rep-

resent powers of 2, so the right most position is 20, followed by 21, 22, and 23. I find it

easiest to use their decimal equivalents of 1, 2, 4, and 8 for performing calculations.

With that said, if the position has a value of 1, then the value is added to a total. In the

higher order nibble shown in Figure 13.4, there is only a value of 1 in the 3rd position,

resulting in a total of 4. In the lower order nibble, there is a 1 in the 1st and 3rd posi-

tions, resulting in a total of 5 (1þ4). The decimal values 4 and 5 represent this byte.

A hex character can range from 0-F, where 0-9 is equal to 0-9 in decimal, and A-F

is equal to 10-15 in decimal. This means that 4 and 5 in decimal are equivalent to 4

and 5 in hexadecimal, meaning that 45 is the accurate hex representation of the byte

01000101. This entire process is shown in Figure 13.5.

Let’s try this one more time, but with a different byte. Figure 13.6 shows this

example.

FIGURE 13.4

Calculating the Decimal Value of Each Nibble

FIGURE 13.5

Converting a Binary Byte to Hex

345Packet Math

Figure 13.4
Figure 13.5

In this example, the higher order nibble has a 1 in the 2nd and 3rd position, result-

ing in a total of 6 (2þ4). The lower order nibble has a 1 in the 2nd, 3rd, and 4th posi-

tions. This yields a decimal value of 14 (2þ4þ8). Converting these numbers to hex,

6 in decimal is equivalent to 6 in hex, and 14 in decimal is equivalent to E in hex. This

means that 6E is the hex representation of 01101110.

Converting Hex to Binary and Decimal

We’ve discussed how to convert a binary number to hex, but later we will also need

to know how to convert from hex values to decimal, so let’s approach that subject

quickly. First, we will convert a hex number back into binary, and then into decimal.

We will use the same example as earlier, and attempt to convert 0x6E to a decimal

number.

As we now know, a two digit hex value represents a single byte, which is 8 bits.

Each digit of the hex value represents a nibble of the byte. This means that 6 repre-

sents the higher order nibble of the byte and E represents the lower order nibble. First,

we need to convert each of these hex digits back into their binary equivalent. The

manner I like to use is to convert each digit into its decimal equivalent first. Remem-

bering that hex is base 16, this means that 6 in hex is equivalent to 6 in decimal, and E

is equivalent to 12 in decimal. Once we’ve determined those values, we can convert

them to binary by placing 1’s in the appropriate bit positions (based on powers of 2)

of each nibble. The result is a higher order nibble with the value 0100 and the lower

order nibble of 1110.

Next, we can combine these nibbles to form a single byte, and consider each posi-

tion as a power of 2 relative to the entire byte. Finally, we add up the values of the

positions where the bit value is set to 1, yielding a decimal value of 110. This process

is shown in Figure 13.7.

FIGURE 13.6

Converting Another Binary Byte to Hex

346 CHAPTER 13 Packet Analysis

Figure 13.6

MORE INFORMATION

There are charts in Appendix 4 that can be used for quickly converting hex to ASCII or decimal

representations. There are also several online converters that can help you perform these

conversions quickly.

Counting Bytes

Now that you understand how to interpret bytes in hex, let’s talk about counting

bytes.When examining packets at the hex level, you will spend a lot of time counting

bytes. Although counting is pretty easy (no shame in using your fingers and toes!),

there is an extra consideration when counting bytes in a packet.

As humans, we are used to counting starting from 1. When counting bytes, how-

ever, you must count starting from 0. This is because we are counting from an offset

relative position.

FROM THE TRENCHES

When we say that we are counting from an offset relative position, this usually means that

the position is relative to the 0 byte in the current protocol header, not the 0 byte at the

beginning of the packet.

To explain this, let’s consider the packet shown in in Figure 13.8.

This figure shows a basic IP packet, spaced so that it is easier to read the indi-

vidual bytes. In order to figure out what makes this packet tick, we might want to

evaluate values in certain fields of this packet. The best way to do this is to

“map” each field in the protocols contained within this packet. This book contains

several protocol field maps in Appendix 3 that can be used to dissect fields within

individual protocols. In this case, since we know this is an IP packet, let’s evaluate

some of the values in the IP header. For convenience, it is shown in Figure 13.9:

FIGURE 13.7

Converting Hexadecimal to Binary and Decimal

347Packet Math

Figure 13.7

One useful piece of information that could help us dissect this packet further

would be the embedded protocol that is riding on top of the IP header. The protocol

map for IP indicates that this value is at byte 9. If you were to count bytes in this

packet starting from 1, you would determine that the value of the embedded protocol

field is 40, but this would be incorrect. When referring to a byte in this manner, it is

actually referred to as byte offset 9, the ninth byte offset from 0, or more simply, 0x9.

This means that we should be counting from 0, which shows that the true value of this

field would be 06. This protocol value designates that TCP is the embedded protocol

here. This is shown in Figure 13.10

FIGURE 13.9

Packet Map for the IP Header

FIGURE 13.8

A Basic IP Packet in Hex

348 CHAPTER 13 Packet Analysis

Figure 13.9
Figure 13.8

Applying this knowledge to another field, the IP protocolmap tells us that theTime-

to-Live (TTL) field is in the eighth byte offset from0.Counting from0 at the beginning

of the packet, you should see that the value for this field is 40, or 64 in decimal.

Looking at the protocol map, you will notice that some fields are less than a byte

in size. For example, the 0x0 byte in this packet contains two fields: IP Version and

IP Header Length. In this example, the IP Version field is only the higher order nibble

of this byte, while the IP Header Length field is the lower order nibble of this byte.

Referencing Figure 13.9, this means that the IP Version is 4. The IP header length is

displayed as 5, but this field is actually a bit tricky. The IP header length field actually

has a calculated value, and must be multiplied by four. In this case, we multiply the

value 5 times 4, and end up at an IP header length of 20 bytes. With this knowledge,

you ascertain that the maximum length of an IP header is 60 bytes, because the high-

est possible value in the IP header length field is F (15 in decimal), and 15 � 4 is 60

bytes. These fields are shown in Figure 13.11.

In a final example, you will notice that some fields span more than one byte. One

such example of this is the source and destination IP address fields, which are each 4

bytes in length, and occur at positions 0�12 and 0�16 in the IP header, respectively.

In our example packet, the source IP address breaks down as ac 10 10 80

(172.16.16.128 in decimal), and the destination IP address is 43 cd 02 1e

(67.205.2.30 in decimal). This is shown in Figure 13.12

FIGURE 13.11

The IP Version and Header Length Fields at 0 � 0

FIGURE 13.10

Locating the Protocol Field in the IP Header at 0 � 9

349Packet Math

Figure 13.11
Figure 13.10

Take note of the special notation used in this figure to denote a field that is mul-

tiple bytes in length. When byte 0x16:4 is noted, this means to start at the sixteenth

byte offset from 0, and then select four bytes from this point. This notation will come

in handy later when we start writing packet filters.

At this point, we’ve looked at enough packet math to start dissecting packets at a

low level. Hopefully it wasn’t too painful.

DISSECTING PACKETS
With somemath out of theway, let’s return to the packet shown inFigure 13.2 and break

it down by each individual protocol. If you have an understanding of how packets are

built, you know that a packet is built startingwith the application layer data, and headers

from protocols operating on lower layers are added as the packet is being built, moving

from top to bottom. This means that the last protocol header that is added is at the Data

Link layer, which means that we should encounter this header first. The most common

data link layer protocol is Ethernet, but let’s verify that this is what’s being used here.

In order to verify that we are indeed seeing Ethernet traffic, we can compare what

we know an Ethernet header should look like to what we have at the beginning of this

packet. The Ethernet header format can be found in Appendix 3, but we’ve included

it here in Figure 13.13 for convenience.

Looking at the Ethernet header format, you will see that the first 6 bytes of the

packet are reserved for the destination MAC address, and the second six bytes, start-

ing at 0x6, are reserved for the source MAC address. Figure 13.14 shows that these

bytes do correspond to the MAC addresses of the two hosts in our example. The only

other field that is included in the Ethernet header is the two-byte Type field at 0x12,

which is used to tell us what protocol to expect after the Ethernet header. In this case,

the type field has a hex value of 08 00, which means that the next embedded protocol

that should be expected is IP. The length of the Ethernet header is static at 14 bytes,

so we know that 00 is the last byte of the header.

FROM THE TRENCHES

While I’ve included the Ethernet header in this example, the data link layer header is not printed

by tcpdumpbydefault.Becauseall of theexamples in thisbookuseEthernet, theexamplesmoving

forward won’t show this header, and will instead begin from the network layer protocol instead.

FIGURE 13.12

The Source and Destination IP Address Fields at 0x12 and 0x16

350 CHAPTER 13 Packet Analysis

Figure 13.12

FIGURE 13.14

The Ethernet Header Identified

FIGURE 13.13

Packet Map for the Ethernet Header

351Dissecting Packets

Figure 13.14
Figure 13.13

Since the Ethernet header was kind enough to tell us that we should expect an IP

header next, we can apply what we know about the structure of the IP header to the

next portion of the packet. We are attempting to break this packet down by individual

protocol, so we aren’t concerned about every single value in this header, but there are

a few values we will have to evaluate in order to determine the length of the IP header

and what protocol to expect next.

First, we need to determine what version of IP is being used here. As we learned

earlier, the IP version is identified by the higher order nibble of byte 0x0 in the IP

header. In this case, we are dealing with IPv4.

The IP header is variable in length depending on a set of options it can support, so

the next thing we need to ascertain is the length of the IP header. Earlier, we learned

that the IP header length field is contained in the lower order nibble of byte 0�0 in

the IP header, which has a value of 4. This is a computed field however, so we must

multiply this field by 5 to arrive at the IP header length, which is 20 bytes. This means

that the last two bytes of the IP header are 02 1e.

As our last stop in the IP header, we need to determine what protocol should be

expected next in the packet. The IP header gives us this information with the Protocol

field at 0x9. Here, this value is 06, which is the value assigned to the TCP protocol

(Figure 13.15).

FIGURE 13.15

The IP Header Identified

352 CHAPTER 13 Packet Analysis

Figure 13.15

Now that we’ve made our way to the TCP protocol, we must determine whether

or not any application layer data is present. To do this, we must determine the length

of the TCP header (Figure 13.16), which like the IP header, is variable depending on

the options that are used.

This is achieved by examining the TCP data offset field at the higher order nibble

of 0�12. The value for this field is 5, but again, this is a computed field and must be

multiplied by four to arrive at the real value. This means that the TCP header length is

really 20 bytes.

If you count off 20 bytes from the beginning of the TCP header, you will find that

there is still data after the end of the header. This is application layer data. Unfortu-

nately, TCP doesn’t have any sort of field that will tell us what application layer pro-

tocol to expect in the application, but something we can do is take a look at the

destination port field (assuming that this is client to server traffic, otherwise we

would look at the source port field) at 0�2:2 in the TCP header. This field has a value

of 00 50, which converts to 80 in decimal. Since port 80 is typically used by the

HTTP protocol, it might be the case that the data that follows is HTTP data. You

could verify this by comparing the hex data with a protocol map of the HTTP pro-

tocol, or by just taking that data, from the end of the TCP header to the end of the

packet, and converting it to ASCII text (Figure 13.17).

FIGURE 13.16

Packet Map for the TCP Header

353Dissecting Packets

Figure 13.16

CAUTION

Just because you find data on a port that is typically associated with a particular service,

such as port 80 and HTTP or port 22 and SSH, you shouldn’t always make the assumption

that these services are explicitly responsible for the traffic you’re seeing. The fact of the

matter is that any service can be configured to run on any port, and attackers will often use

this tactic. For instance, it is very common for attackers to run custom protocols used for

command and control over port 80. This provides many benefits to the attacker, including the

ability to get traffic out of the network since port 80 is almost always allowed out of egress

firewalls, and the ability to hide amongst traffic that is erratic and unpredictable because

of user-driven HTTP traffic.

The protocol level break down of the packet we’ve just dissected is now shown in

Figure 13.18.

Now, let’s talk about some tools that you can use to display and interact with

packets.

FIGURE 13.17

The TCP Header Identified

354 CHAPTER 13 Packet Analysis

Figure 13.17

TCPDUMP FOR NSM ANALYSIS
Tcpdump is a packet capture and analysis tool that is the de facto standard for com-

mand line packet analysis in Unix environments. It is incredibly useful as a packet

analysis tool because it gets you straight to the data quickly, without a bunch of fuss.

This makes it ideal for examining individual packets or communication sequences. It

also provides consistent output, so packet data can bemanipulated with scripts easily.

Tcpdump is also included with a large number of Unix-based distributions, and can

be installed easily via the operating systems packet manager software when it is not.

Security Onion includes tcpdump out of the box.

Thedownside to tcpdump is that its simplicitymeans that it lacks someof the fancier

analysis features that are included in a graphical tool likeWireshark. It has noconcept of

state, and it also doesn’t provide any ability to interpret application layer protocols.

In this section we won’t provide an extensive guide to every feature tcpdump has

to offer, but we will provide the necessary jumpstart that a new NSM analyst needs to

get moving in the right direction.

To start with, tcpdump has the ability to capture packets directly from the wire.

This can be done by running tcpdump with no command line arguments, which will

instruct tcpdump to capture packets from the lowest numbered network interface. In

this case, tcpdump will output each packet it captures as a single summary line in the

FIGURE 13.18

The Protocol Level Break Down of an HTTP Packet

355Tcpdump for NSM Analysis

Figure 13.18

current terminal. To gain a bit more control over this process, we will use the –i argu-

ment so that we can specify the interface to capture packet on, and the –nn switch to

turn off host and protocol name resolution.

FROM THE TRENCHES

When capturing packets, it is a best practice to be as stealthy as possible. This isn’t because

you are trying to hide the fact that you are capturing packets (unless you are a penetration

tester), but more so because you don’t want to generate any additional traffic that you might

have to filter out or weed through while you are trying to investigate an event. Because of this, I

always use at least one –n switch when running tcpdump in order to prevent name resolution

from happening, as this can cause the generation of additional packets on the network to

perform the DNS resolution process.

If you’d like to save the packets you are capturing for analysis later, you can use

the –w switch to specify the name of an output file where the data can be saved. Com-

bining all of these arguments, we are left with the following command:

sudo tcpdump –nni eth1 –w packets.pcap

Now, if you want to read this file you can specify the –r command with the file

name, shown in Figure 13.19.

The output tcpdump provides by default gives some basic information about each

packet. The formatting of this output will vary based upon what protocols are in use,

but the most common formats are:

TCP:

[Timestamp] [Layer 3 Protocol] [Source IP].[Source Port]>[Destination

IP].[Destination Port]: [TCP Flags], [TCP Sequence Number], [TCP

Acknowledgement Number], [TCP Windows Size], [Data Length]

UDP:

[Timestamp] [Layer 3 Protocol] [Source IP].[Source Port]>[Destination

IP].[Destination Port]: [Layer 4 Protocol], [Data Length]

You can force tcpdump to provide more information in this summary line by add-

ing the –v tag to increase its verbosity. You can further the verbosity by adding addi-

tional v’s, up to a total of three. Figure 13.20 shows the same packet from above, but

with –vvv verbosity.

FIGURE 13.19

Reading Packets from a File with tcpdump

356 CHAPTER 13 Packet Analysis

Figure 13.19

This is all very useful data, but it doesn’t give us the entire picture.

One way to display the entirety of each packet is to instruct tcpdump to output

packets in hex format, with the –x switch, shown in Figure 13.21.

CAUTION

In a lot of tcpdump documentation, you will see mention of the default snapshot length (snaplen)

denoted by the –s argument. The snaplen argument instructs tcpdump how much of a packet

should be captured. In older versions of tcpdump, it would only capture the first 68 bytes (of an

IPv4) packet. Because of this, you would have to specify a larger snaplen if you wanted to capture

the entire packet, or simply specify a snaplen of 0, which will capture an entire packet regardless

of its size. In tcpdump 4.0 and later, the default snaplen has been increased to 65535 bytes, so

the –s 0 command isn’t typically needed if you are running a newer version.

Another method is to display packets in ASCII, with the –A argument

(Figure 13.22).

FIGURE 13.20

Reading Packets with Increased Verbosity

FIGURE 13.21

Viewing Full Packets in Hex

357Tcpdump for NSM Analysis

Figure 13.20
Figure 13.21

My personal favorite is the –X argument, which displays packets in both hex and

ASCII, side by side (Figure 13.23).

In many cases, you will be dealing with larger PCAP files and it may become

necessary to use filters to select only the data you wish to examine, or to purge data

that isn’t valuable to the current investigation. Tcpdump utilizes the Berkeley Packet

Filter (BPF) format. A filter can be invoked by tcpdump by adding it to the end of the

tcpdump command. For easier readability, it is recommended that these filters be

enclosed in single quotes. With this in mind, if we wanted to view only packets with

the destination port TCP/8080, we could invoke this command:

tcpdump –nnr packets.pcap ‘tcp dst port 8080’

FIGURE 13.22

Viewing Full Packets in ASCII

FIGURE 13.23

Viewing Full Packets in ASCII and Hex

358 CHAPTER 13 Packet Analysis

Figure 13.22
Figure 13.23

We could also take advantage of the –w argument to create a new file containing

only the packets matching this filter:

tcpdump –nnr packets.pcap ‘tcp dst port 8080’ –w packets_tcp8080.pcap

In some cases, you might be using a large number of filtering options when pars-

ing a packet capture. This commonly happens when an analyst is reviewing traffic

and weeding out traffic from a large number of hosts and protocols that aren’t rel-

evant to the current investigation. When this happens, it isn’t easy to edit these filters

in the command line argument. Because of this, tcpdump allows for the use of the –F

argument, which allows the user to specify a filter file that contains BPF arguments.

CAUTION

A tcpdump filter file must only contain filtering statements, and cannot contain any comments.

Since comments are helpful in deciphering larger filters, I maintain two filter files: one for

production without comments, and one for reference with comments.

This command designates a filter file with the –F argument:

tcpdump –nnr packets.pcap –F known_good_hosts.bpf

We will talk about creating custom filters later in this chapter.

While this isn’t an exhaustive reference on tcpdump, it covers all of the primary uses

that an analyst will usually encounter in the day-to-day parsing of packet data. If you

want to learn more about tcpdump, you can visit http://www.tcpdump.org, or view the

tcpdump manual pages by typing man tcpdump on a system with tcpdump installed.

TSHARK FOR PACKET ANALYSIS
The tshark utility is packaged with the Wireshark graphical packet analysis

application as a command-line based alternative. It has a lot of the same abilities

as tcpdump, but it has the added advantage of leveraging Wireshark’s protocol

dissectors, which can be used to perform additional automated analysis of application

layer protocols. This also allows for the use of Wireshark’s display filtering syntax,

which adds some flexibility beyond that of Berkeley Packet Filters. This strength can

also be a weakness in some cases, as the additional processing required to support

these features means that tshark is generally slower than tcpdump when parsing data.

If you are using a system that has Wireshark installed, like Security Onion, then

tshark is already installed and can be invoked by running the tshark command. The

following command can be used to capture packets with tshark:

sudo tshark –i eth1

This command will display captured packets in the current terminal window, and

will display a single one-line summary for each packet. If you’d like to save the

packets you are capturing for analysis later, you can use the –w switch to specify

an output file where the data can be saved. Combining all of these arguments, we

are left with the following command:

sudo tshark –i eth1 –w packets.pcap

359TShark for Packet Analysis

http://www.tcpdump.org

Now, if you want to read this file you can specify the –r command with the file

name, shown in Figure 13.24.

The formatting of this output will vary based upon what protocols are in use. In this

case, notice that tshark is able to provide the additional functionality of showing appli-

cation layer data in packets 4 and 6. This is possible because of its extensive collection

of protocol dissectors. If you’d like a significantly more verbose output, including

information obtained from tshark’s application layer protocol dissectors, you can

add the –V argument. Figure 13.25 shows a portion of this output for a single packet.

Looking closely at the normal tshark output shown in Figure 13.20, you will

notice that the timestamps look a little funny. Tshark’s default behavior is to display

FIGURE 13.24

Displaying Captured Packets with tshark

FIGURE 13.25

Reading Packets with Increased Verbosity

360 CHAPTER 13 Packet Analysis

Figure 13.24
Figure 13.25

timestamps that are in relation to the beginning of the packet capture. To provide

more flexibility, tshark provides the –t option so that you can specify alternate ways

to display the timestamp. In order to print packets with timestamps that show the

actual date and time the packet was captured, similar to tcpdump, use the –t ad

option, as shown in Figure 13.26.

Using this feature, you can also choose to display packet timestamps as a delta,

which is the time since the previous captured packet, using the –t d argument.

If you’d like to examine the raw packet data in a capture file, you can instruct

tshark to output packets in hex and ASCII format using the –x argument, shown

in Figure 13.27.

FIGURE 13.26

Displaying Packets with an Absolute Data and Time

FIGURE 13.27

Displaying Packets in Hex and ASCII Format with Tshark

361TShark for Packet Analysis

Figure 13.26
Figure 13.27

Tshark provides the ability to use both capture filters that use the same BPF

syntax you are used to with tcpdump, and display filters that leverage tshark’s

packet dissectors. The key distinction here is that capture filters can only be used

while capturing packets, whereas display filters can also be used when reading

packets from a file. To use capture filters, invoke the –f argument, followed by

the filter you’d like to use. For example, the following command would limit a

tshark capture to only UDP packets with the destination port 53, which would iden-

tify DNS traffic:

sudo tshark –I eth1 –f ‘udp && dst port 53’

If you’d like to use a display filter to perform the same filtering action on a

capture file that’s being read, you can add this filter by specifying the –R argument,

like this:

tshark –r packets.pcap –R ‘udp && dst.port ¼¼ 53’

We will discuss tshark and Wireshark’s display filter syntax later in this chapter.

Another really useful feature provided by tshark is its ability to generate statistics

based on the packet data that it sees. You can instruct tshark to generate statistics

from a packet capture by invoking the –z option with the name of the statistic

you wish to generate. A complete list of the statistical options is available by viewing

the tshark manual page. This command uses the http,tree option, which displays a

breakdown of HTTP status codes and request methods identified in the packet

capture.

tshark –r packets.pcap –z http,tree

The output of this command is shown in Figure 13.28.

FIGURE 13.28

Generating HTTP Statistics with Tshark

362 CHAPTER 13 Packet Analysis

Figure 13.28

A few of my favorite statistical options available here are:

• io,phs: Displays a protocol hierarchy showing all protocols found within the

capture file.

• http,tree: Displays statistics related to the types of HTTP Request and Response

packets.

• http_req,tree: Displays statistics for every HTTP Request made.

• smb,srt: Displays statistics related to SMB commands. Useful for analyzing

Windows SMB traffic.

Tshark is incredibly powerful, and is a useful tool for an NSM analyst in addition

to tcpdump. In my analysis, I typically start with tcpdump so that I can filter through

packets quickly based upon their layer three and four attributes. When I need to

remain at the command line level and get more detail about a communication

sequence in relation to application layer information, or to generate some basic sta-

tistics, I will usually call upon tshark. You can learn more about tshark by visiting

http://www.wireshark.org or by viewing the tshark manual page by running man

tshark on a system with tshark installed.

WIRESHARK FOR NSM ANALYSIS
While command-line based packet analysis tools are ideal for interacting with

packets at a fundamental level, some analysis tasks are best accomplished with a

graphical packet analysis application like Wireshark. Wireshark was developed

by Gerald Combs in 1998 under the project name Ethereal. The project was renamed

Wireshark in 2006, and has grown tremendously thanks to the help of over 500 con-

tributors since its inception. Wireshark is the gold standard for graphical packet anal-

ysis applications, and comes preinstalled on Security Onion.

If you aren’t using Security Onion, you can find instructions for installing Wir-

eshark on to your platform at http://www.wireshark.org. Wireshark is a multi-

platform tool, and works on Windows, Mac, and Linux systems. If you are using

Security Onion, you can launch Wireshark from the command line by simply typing

wireshark, or by clicking the Wireshark icon under the Security Onion heading in

the desktop menu. If you need to be able to capture packets in addition to analyzing

them, you will have to run Wireshark with elevated privileges using the command

sudo wireshark. The Wireshark window is devoid of any useful information when it

first opens, so we need to collect some packet data to look at.

Capturing Packets

To capture packets from the wire, you can select Capture> Interfaces from the main

drop-down menu. This will show all of the interfaces on the system (Figure 13.29).

Here you can choose to capture packets from a sensor interface or another interface.

To begin capturing packets from a particular interface, click Start next to that interface.

363Wireshark for NSM Analysis

http://www.wireshark.org
http://www.wireshark.org

CAUTION

Be careful if you decide to start capturing packets with Wireshark on a very busy sensor

interface. While Wireshark is a great tool, it can get overwhelmed if you attempt to load too

much data into it at once, since it will attempt to load all of the packets intomemory. This is why

it is often best to start analyzing large data sets with a command-line based tool, and then filter

down the data you are examining before loading it into a tool like Wireshark.

When you’ve finished collecting packets, click the Stop button under the Capture

drop-down menu. At this point, you should be presented with data to be analyzed. In

Figure 13.30, we’ve opened up one of the many packet capture files that come with

Security Onion under the /opt/samples/ directory.

FIGURE 13.29

Capturing Packets in Wireshark

FIGURE 13.30

Viewing Packets in Wireshark

364 CHAPTER 13 Packet Analysis

Figure 13.29
Figure 13.30

Looking at the image above, you will notice that Wireshark is divided into three

panes. The uppermost is the packet list pane, which shows each packet summarized

into a single line, with individual fields separated as columns. The default columns

include a packet number, a timestamp (defaulting to the time since the beginning of

the capture), source and destination address, protocol, packet length, and an info col-

umn that contains protocol-specific information.

The middle pane is the packet details pane, and shows detailed information about

the data fields contained within the packet that is selected in the packet list pane. The

bottom pane is the packet bytes pane, and details the individual bytes that comprise a

packet, shown in hex and ASCII format, similar to tcpdump’s –X option.

The important thing to note when interacting with these three panes is that the

data that each one displays is linked to actions taken in the other panes. When

you click on a packet in the packet list pane, it shows data related to that packet

in the packet details and packet bytes panes. Furthermore, when you click on a field

in the packet details pane, it will highlight the bytes associated with that field in the

packet bytes pane. This is ideal for visually bouncing around to different packets and

determining their properties quickly.

Wireshark has a ton of features that are useful for analyzing packets. So many, as

a matter of fact, that there is no way that we can cover them all in this chapter. If you

want to read something that more exhaustively covers Wireshark and its features,

I recommend my other book, “Practical Packet Analysis”, or Laura Chappell’s book,

“Wireshark Network Analysis.” Both of these books cover packet analysis and TCP/

IP protocols from a very broad perspective. With that said, there are a few nice fea-

tures that are worth highlighting here. We will cover these briefly.

Changing Time Display Formats

Just like with Tshark, Wireshark will default to displaying packets with a timestamp

that shows each packet relative to the number of seconds since the beginning of the

packet capture. While this can be useful in certain situations, I typically prefer to see

packets in relation to absolute time. You can change this setting from the main drop-

down menu by selecting View>Time Display Format>Date and Time of Day. If

the capture file you are working with contains packets from a single day, you can

compact the size of your time column by selecting Time of Day instead.

Instead of having to change the time display format every time you open Wire-

shark, you can change the default setting by following these steps:

1. From the main drop-down menu, select Edit>Preferences.

2. Select the Columns heading, and select the Time field.

3. Change the Field Type to Absolute Date and Time.

Another time display format I find useful from time to time is the Seconds Since

Previous Displayed Packet option. This can be useful when analyzing a solitary com-

munication sequence and attempting to determine the time intervals between specific

actions. This can be handy for determining if the actions of a process are being

365Wireshark for NSM Analysis

caused by human input or a script. Human actions are unpredictable, where as a

script’s actions can be aligned with precise intervals.

Finally, in some cases it might be useful to know how long something has

occurred after a previous event occurs. In these instances, Wireshark allows you

to toggle an individual packet as time reference. This can be done by right clicking

on a packet and selecting Set Time Reference (toggle). With this set, change your

time display format back to Seconds Since Beginning of Capture, and packets fol-

lowing the packet you’ve toggled will reference the number of seconds since that

packet has occurred. Multiple packets can be selected as time reference packets.

Capture Summary

The first thing I typically do when I open any packet capture in Wireshark is to open

the Summary window by selecting Statistics>Summary from the main drop-down

menu. This screen, shown in Figure 13.31, provides a wealth of information and sta-

tistics about the packet capture and the data contained within it.

FIGURE 13.31

Wireshark’s Summary Window

366 CHAPTER 13 Packet Analysis

Figure 13.31

The important items on this screen for the analyst include:

• Format: The format of the file. If you are dealing with a PCAP-NG file, you know

that you can add comments to packets.

• Time: This section includes the time the first packet was captured, the time

the last packet was captured, and the duration between those times. This is critical

in confirming that the capture contains the time frame associated with the

current investigation.

• Bytes: The size of the data in the capture file. This gives you an idea of howmuch

data you are looking at.

• Avg. Packet Size: The average size of the packets in the capture file. In some

cases, this number can be used to ascertain the makeup of the traffic in the capture

file. For instance, a larger average would indicate more packets containing data,

and a smaller average would indicate more control/command packets generated

at the protocol level. Keep in mind that this isn’t always the most reliable

indicator, and is something that can vary wildly depending on a variety of factors.

• Avg. Bytes/sec and Avg. Mbit/sec: The average number of bytes/megabits per

second occurring in the capture. This is useful for determining the rate at which

communication is occurring.

Protocol Hierarchy

The protocol hierarchy screen is accessible by selecting Statistics>Protocol Hierar-

chy from the main drop-down menu. It will provide a snapshot of every protocol

FIGURE 13.32

Wireshark’s Protocol Hierarchy Window

367Wireshark for NSM Analysis

Figure 13.32

found within the capture file, along with a statistical breakdown that will help

you to determine the percentage of traffic associated with each protocol in the

capture file.

This statistical feature is often another first stop when performing analysis of a

packet capture. Because of its concise view of the data, you can quickly identify

abnormal or unexpected protocols that warrant further analysis, such as an instance

where you see SMB traffic, but you have no Windows or Samba hosts on a net-

work segment. You can also use this feature to find odd ratios of expected proto-

cols. For instance, seeing that the packet capture contains an unusually high

percentage of DNS or ICMP traffic might mean those packets warrant further

investigation.

You can create display filters directly from this window by right clicking on a

protocol, selecting Apply As Filter, and then selecting a filter option. The Selected

option will only show packets utilizing that protocol, where as the Not Selected

option will show packets not utilizing that protocol. Several other options are avail-

able that can be used to build compound display filters.

Endpoints and Conversations

In Wireshark terms, a device that communicates on the network is considered to be

an endpoint, and when two endpoints communicate they are said to be having a

conversation. Wireshark provides the ability to view communication statistics for

individual endpoints and for communication between endpoints.

You can view endpoint statistics by selecting Statistics>Endpoints from the

main drop-down menu. This screen is shown in Figure 13.33.

FIGURE 13.33

Wireshark’s Endpoints Window

368 CHAPTER 13 Packet Analysis

Figure 13.33

Conversations can be accessed in a similar manner by selecting Statis-

tics>Conversations from the main drop-down menu. This screen is shown in

Figure 13.34.

Both of these windows have a similar layout, and list each endpoint or conver-

sation on a new line, complete with statistics regarding the number of packets and

bytes transmitted in each direction. You should also notice that each window has

a number of tabs across the top that represent different protocols operating on mul-

tiple layers. Wireshark breaks down endpoints and conversations by these protocols

and the addresses used on these layers. Because of this, a single Ethernet endpoint

could actually be tied to multiple IPv4 endpoints. Likewise, a conversation between

several IP addresses could actually be limited to only two physical devices, each hav-

ing a single Ethernet MAC address.

The endpoints and conversations windows are useful for determining who the

key role players are in a capture file. Here you can see which hosts transmit and receive

the most or least amount of traffic, which can help you narrow down the scope of your

investigation. Just like with the protocol hierarchy window, you can create filters

directly from these screens by right clicking on an endpoint or conversation.

Following Streams

We’ve already seen how Wireshark can delineate traffic that occurs as a part of a

conversation between two endpoints, but often we are more concerned about the con-

tent of the data being exchanged between these devices rather than merely the list of

packets associated with the communication sequence. Once you’ve created a filter

that only shows the traffic in a conversation, you can use Wireshark’s stream follow-

ing options to get a different viewpoint on the application layer data contained in

those packets. In this case, this can be done by right clicking on a TCP packet,

and selecting Follow TCP Stream.

FIGURE 13.34

Wireshark’s Conversations Window

369Wireshark for NSM Analysis

Figure 13.34

The figure above shows the TCP Stream output of an HTTP connection. As you

can see, Wireshark has taken the application layer data contained in this conversa-

tion’s packets and has reassembled them in a manner that excludes all of the lower

layer information. This allows us to quickly see what is going on in this HTTP trans-

action. You can choose to output this information in a variety of formats, and you can

also only show communication from a single direction if you choose.

Wireshark also provides the functionality to perform this same action with UDP

and SSL streams. The amount of value you will obtain from following streams varies

depending upon the application layer protocol in use, and of course, following

encrypted streams like HTTPS or SSH connection often won’t yield a ton of value.

IO Graph

You are able to see the average throughput of the data contained in a packet capture

by using theWireshark Summary dialog that we looked at earlier. This is great for an

overall average throughput measurement, but if you want to ascertain the throughput

of packets in a capture at any given point in time, you will need to use Wireshark to

generate an IO graph. These graphs allow you to display the throughput of data in a

capture file over time (Figure 13.36).

FIGURE 13.35

Following a TCP Stream

370 CHAPTER 13 Packet Analysis

Figure 13.35

The figure above shows a basic throughput graph for a single packet capture. In

this case, there is a line showing throughput for all of the packets contained in the

capture file (Graph 1), and two more lines showing throughput for packets that match

display filters. One of these display filters shows all HTTP traffic contained in the

capture (Graph 3), and the other shows traffic generated from a specific host with the

IP address 74.125.103.164 (Graph 4).

CAUTION

In the print version of this book, it will be hard to distinguish the lines in Figure 13.32

because Wireshark identifies these by color, but the book is in black and white. Graph 3 was

also skipped in this image because the color of the line didn’t show up at all in print

The IO graph provides the ability to change the units and intervals used by the

graph. I tend to use Bytes/tick as my unit, and will scale the unit intervals with

the size of the data I’m looking at.

IO Graphs are useful for examining the amount of traffic generated by certain

devices or protocols, or for quickly identifying spikes in the amount of traffic asso-

ciated with a particular type of communication.

FIGURE 13.36

Viewing Capture Throughput with an IO Graph

371Wireshark for NSM Analysis

Figure 13.36

Exporting Objects

Wireshark has the ability to detect the transfer of individual files inside of certain

protocols. Because of this, it also has the ability to export these files from the packet

capture, assuming the capture includes the entire data stream that contains the file. As

of the writing of this book, Wireshark supports exporting objects from HTTP, SMB,

and DICOM streams.

If you’d like to experiment with this functionality, you can try the following steps:

1. Start a new packet capture inWireshark. Choose the network interface associated

with the device you running Wireshark on.

2. Open a browser and visit a few different websites.

3. Stop the packet capture.

4. From Wireshark’s main drop-down menu, select

File>Export>Objects>HTTP

5. A list will be displayed that shows the files Wireshark has detected in the

communication stream (Figure 13.37). Click on the object you would like to

export, and select Save As. You can then select the location where the file should

be stored and provide the name of the file to save it.

Remember that to be able to extract a file properly from a packet capture, you

must have every packet associated with that file’s transfer across the network.

This feature of Wireshark is incredibly valuable. While there are other options for

exporting files from packet data streams, such as Bro’s File Analysis Framework,

being able to do this directly fromWireshark is very convenient. I use this feature often

when I see a suspicious file going across the wire. Just be careful with any file you

export, as it could be malicious and you might end up infecting yourself with some

type of malware or something else that might cause other harm to your system.

FIGURE 13.37

Selecting an HTTP Object to Export

372 CHAPTER 13 Packet Analysis

Figure 13.37

Adding Custom Columns

In a default installation, Wireshark provides 7 columns in the packet list pane.

These are the packet number, time stamp, source address, destination address,

protocol, length, and info fields. These are certainly essentials, but it is often the

case that adding additional columns to this pane can enhance analysis. There are

a couple of ways to do this, and to demonstrate both methods we will add

three new columns to the packet list pane: source and destination port number

and HTTP method.

We will begin by adding the source and destination port number. While the

source and destination port number values are generally shown in the Info field, hav-

ing them as their own column so that you can identify and sort by them easily is con-

venient. This is also useful for identifying different streams.

We will add these columns using the Wireshark Preferences dialog, which

involves these steps:

1. From Wireshark’s main drop-down menu, select Edit>Preferences.

2. Select the Columns option on the left side of the screen.

3. Click the Add button, and select the Source Port (unresolved) option in the Field

Type dialog.

4. Double click “New Column” on the newly added field, and replace that title

with “SPort.”

5. Click the Add button, and select the Dest Port (unresolved) option.

6. Double click “New Column” on the newly added field, and replace that title

with “DPort”.

7. Drag the SPort field so that it is placed after the Source field.

8. Drag the DPort field so that it is placed after the Destination field

9. Select the OK button.

10. When you are finished, the Columns screen should look similar to Figure 13.38.

FIGURE 13.38

The Columns Screen with Newly Added Fields

373Wireshark for NSM Analysis

Figure 13.38

Next, we will add the HTTP Method column. This field isn’t something that you

will want taking up screen real estate all the time, but it is useful when analyzing

HTTP traffic so that you can quickly identify packets representing HTTP GET or

POST commands. Instead of adding this field using the same method as before,

we will add it from the main Wireshark window using the following steps:

1. Start a new packet capture inWireshark. Choose the network interface associated

with the device you running Wireshark on.

2. Open a browser and visit a few different websites.

3. Stop the packet capture.

4. Find an HTTP packet that contains an HTTP Request Method, such as a GET

or POST packet. This can be done manually, or with the help of the display

filter http.request.

5. Select the packet in the packet list pane, and then expand the HTTP protocol

header information portion of the packet in the packet details pane. Drill down

until you find the Request Method field.

6. Right click the Request Method field and select “Apply as Column”.

The Request Method column should now be inserted right before the Info col-

umn. If you’d like to change the position of the column, you can click and drag it

to the left or right of the other columns. You can edit the name and other attributes

of the column by right clicking it and selecting Edit Column Details. If you decide

that you want to get rid of a column you can remove it by right clicking the column

header and choosing Remove Column.

Columns added using either of these methods will be added to the profile cur-

rently in use, so when you close Wireshark and relaunch it, the columns you have

added will remain. Some columns, such as source and destination port, are something

I use in most every scenario. Other columns like the HTTP Request Method are sit-

uational, and I will usually add and remove those at will depending on the type of

traffic I am examining. You can turn virtually any field from a dissected packet into

a column in Wireshark by right-clicking that field and choosing Apply as Column.

This is a feature you shouldn’t be afraid to use liberally!

Configuring Protocol Dissector Options

Perhaps the most exciting feature offered byWireshark is the vast number of protocol

dissectors. Protocol dissectors are modules that Wireshark uses to parse individual

protocols so that they can be interpreted on a field-by-field basis. This allows the user

to create filters based upon specific protocol criteria. Some of these protocol dissec-

tors have options that can be useful in changing the way that analysis is performed.

You can access the protocol dissector options from the main drop-down menu by

selecting Edit>Preferences, and then expanding the Protocols header. The list that is

provided shows every protocol dissector loaded into Wireshark. If you click on one

of these protocols, you will be presented with its options on the right hand side of this

window. Figure 13.39 shows the protocol dissector options for the TCP protocol.

Examining the protocol dissector options for common protocols is a useful way to

gain insight into how Wireshark obtains some of the information it presents. For

374 CHAPTER 13 Packet Analysis

instance, in the figure above you will notice that, by default, Wireshark will display

relative sequence numbers for TCP connections rather than absolute sequence num-

bers. If you didn’t know this and were to look at the same set of packets in another

application expecting to locate a particular sequence number, you might be alarmed

to find that the number you were expecting doesn’t exist. In that case, you could dis-

able relative sequence numbers here to get the real TCP sequence numbers. If you

spend a lot of time at the packet level, then you will probably want to take some time

to examine the protocol dissector options for the major TCP/IP protocols and other

protocols you work with on a regular basis.

Capture and Display Filters

Wireshark allows for the use of BPF formatted capture filters, as well as display fil-

ters that use its own custom syntax designed to interact with fields generated by pro-

tocol dissectors.

Capture filters in BPF format can be applied to Wireshark only while capturing

data. To use a capture filter, select Capture>Options from the main drop-down menu.

Then, double-click the interface you plan to perform the capture on. Finally, place your

capture filter into the Capture Filter dialog area (Figure 13.40) and click OK. Now,

FIGURE 13.39

Protocol Dissector Options for the TCP Protocol

FIGURE 13.40

Specifying a Capture Filter

375Wireshark for NSM Analysis

Figure 13.39
Figure 13.40

when you click Start on the previous screen, the capture filter will be applied and the

packets not matching the filter will be discarded. In this example, we’ve applied a filter

that matches any packets from the source network 192.168.0.0/24 that are not using

port 80. Make sure to remember to clear out capture filters when you are done with

them, otherwise you might not be collecting all of the packets you expect.

Display filters can be applied by typing them directly into the filter dialog above

the packet list pane in the main Wireshark window. Once you’ve typed a filter into

this area, click Apply to show only the packets matching that filter. When you’d like

to remove the filter, you can click the Clear options. You can locate advanced filter-

ing options by using Wireshark’s expression filter. This is done by clicking the

Expression button next to the display filter dialog box (Figure 13.41).

In the figure above, we’ve selected a filter expression option that will match

SMB2 SessionSetup requests.

This section demonstrated how to apply capture and display filters in Wireshark.

In the next section we will discuss the process of creating these filters for use during

collection, detection, and analysis.

PACKET FILTERING
Capture and display filters allow you to specify which packets you want to see, or the

ones you don’t want to see, when interacting with a capture file. When analyzing

packets, themajority of your timewill be spent taking larger data sets and filtering them

down into manageable chunks that are valuable in the context of an investigation.

FIGURE 13.41

Building Display Filters with the Expression Builder

376 CHAPTER 13 Packet Analysis

Figure 13.41

Becauseof this, it is critical that youunderstandpacket filteringandhowitcanbeapplied

to a variety of situations. In this sectionwewill look at two types of packet filtering syn-

taxes: Berkeley Packet Filters (Capture Filters) and Wireshark/tshark Display Filters.

Berkeley Packet Filters (BPFs)

The BPF syntax is the most commonly used packet filtering syntax, and is used

by a number of packet processing applications. Tcpdump uses BPF syntax

exclusively, and Wireshark and tshark can use BPF syntax while capturing packets

from the network. BPFs can be used during collection in order to eliminate unwanted

traffic, or traffic that isn’t useful for detection and analysis (as discussed in Chapter 4),

or they can be used while analyzing traffic that has already been collected by a sensor.

BPF Anatomy
A filter created using the BPF syntax is called an expression. These expressions have

a particular anatomy and structure, consisting of one or more primitives that can be

combined with operators. A primitive can be thought of as a single filtering state-

ment, and they consist of one or more qualifiers, followed by a value in the form

of an ID name or number. An example of this expression format is shown in

Figure 13.42, with each component labeled accordingly.

In the example shown above, we have an expression that consists of two prim-

itives, udp port 53 and dst host 192.0.2.2. The first primitive uses the qualifiers

udp and port, and the value 53. This primitive will match any traffic to or from port

53 using the UDP transport layer protocol. The second primitive uses the qualifiers

dst and host, and the value 192.0.2.2. This primitive will match any traffic destined

to the host with the IP address 192.0.2.2. Both primitives are combined with the con-

catenation operator (&&) to form a single expression that evaluates to true when a

packet matches both primitives.

BPF qualifiers come in three different types. These types, along with an example

of qualifiers for each type are shown in Table 13.1.

As you can see in the example shown in Figure 13.1, qualifiers can be combined

in relation to a specific value. For example, you can specify a primitive with a single

qualifier like host192.0.2.2, which will match any traffic to or from that IP address.

Alternatively, you can use multiple qualifiers like src host 192.0.2.2, which will

match only traffic sourced from that IP address.

FIGURE 13.42

A Sample BPF Expression

377Packet Filtering

Figure 13.42

When combining primitives, there are three logical operators that can be used,

shown here (Table 13.2):

Now that we understand how to create basic BPF expressions, I’ve created a few

basic examples in Table 13.3.

Table 13.1 BPF Qualifiers

Qualifier Type Qualifier Description

Type Identifies what the value refers to.

“What are you looking for?”

host Specify a host by IP address

net Specify a network in CIDR notation

port Specify a port

Dir Identifies the transfer direction to or from the value.

“What direction is it going?”

src Identify a value as the communication source

dst Identify a value as the communication destination

Proto Identifies the protocol in use.

“What protocol is it using?”

ip Specify the IP protocol

tcp Specify the TCP protocol

udp Specify the UDP protocol

Table 13.3 Example BPF Expressions

Expression Description

host 192.0.2.100 Matches traffic to or from the IPv4 address specified

dst host 2001:
db8:85a3::8a2e:370:7334

Matches traffic to the IPv6 address specified

ether host 00:1a:a0:52:
e2:a0

Matches traffic to the MAC address specified

port 53 Matches traffic to or from port 53 (DNS)

tcp port 53 Matches traffic to or from TCP port 53 (Large DNS

responses and zone transfers)

!port 22 Matches any traffic not to or from port 22 (SSH)

icmp Matches all ICMP traffic

!ip6 Matches everything that is not IPv6

Table 13.2 BPF Logical Operators

Operator Symbol Description

Concatenation (AND) && Evaluates to true when both conditions are true

Alternation Operator (OR) || Evaluates to true when either condition is true

Negation Operator (NOT) ! Evaluates to true when a condition is NOT met

378 CHAPTER 13 Packet Analysis

Filtering Individual Protocol Fields
You can do some pretty useful filtering using the syntax we’ve learned up until this

point, but using this syntax alone limits you to only examining a few specific protocol

fields. One of the real benefits of the BPF syntax is that it can be used to look at ANY

field within the headers of the TCP/IP protocols.

As an example, let’s say that you would like to examine the Time to Live (TTL)

value in the IPv4 header to attempt to filter based upon the operating system archi-

tecture of a device that is generating packets. While it isn’t always an exact science

and it can certainly be fooled, Windows devices will generally use a default initial

TTL of 128, and Linux devices will generally use a TTL of 64. This means that we

can do some rudimentary passive operating system detection with packets. To do

this, we will create a BPF expression that looks for values in the TTL field that

are greater than 64.

To create this filter, we have to identify the offset where the TTL field begins in

the IP header. Using a packet map, we can determine that this field begins at 0x8

(remember to start counting from 0). With this information, we can create a filter

expression by telling tcpdump which protocol header to look in, and then specifying

the byte offset where the value exists inside of square brackets. This can be combined

with the greater than (>) logical operator and the value we’ve selected. The end result

is this BPF expression:

ip[8]>64

The expression above will instruct tcpdump (or whatever BPF-aware application

you are using) to read the value of the eighth byte offset from 0 in the TCP header. If

the value of this field is greater than 64, it will match. Now, let’s look at a similar

example where we want to examine a field that spans multiple bytes.

The Window Size field in the TCP header is used to control the flow of data

between two communicating hosts. If one host becomes too overloaded with data

and its buffer space fills up, it will send a packet to the other host with a window

size value of 0 to instruct that host to stop sending data so that it can catch up. This

process helps ensure reliable delivery of data. We can detect the TCP zero window

packets by creating a filter to examine this field.

Using the same strategy as before, we have to look at a packet map to determine

where this field is located in the TCP header. In this case, the field occurs at byte

0x14. In this case, note that this field is actually two bytes in length. We can tell

tcpdump that this is a two byte field by specifying the offset number and byte length

inside of the square brackets, separated by a colon. Doing this, we are left with this

expression:

tcp[14:2]¼0

This expression tells tcpdump to look at the TCP header and to examine the 2

bytes occurring starting at the fourteenth byte offset from 0. If the value of this field

is 0, the filter expression will match. Now that we know how to examine a field lon-

ger than a byte, let’s look at examining fields shorter than a byte.

The TCP protocol uses various flags to indicate the purpose of each packet. For

instance, the SYN flag is used by packets that initialize a connection, while the RST

379Packet Filtering

and FIN packets are used for terminating a connection in an abrupt or graceful man-

ner, respectively. These flags are individual 1-bit fields contained within byte 0x13

in the TCP header.

To demonstrate how to create filters matching fields smaller than a byte, let’s

create an expression that matches any TCP packet that has only the RST flag

enabled. This will require a few steps toward the creation of a bit masked

expression.

First, we should identify the value we want to examine within the packet header.

In this case, the RST flag is in byte 0x13 in the TCP header, in the third position in

this byte (counting from right to left). With that knowledge in mind, it becomes nec-

essary to create a binary mask that tells tcpdump which bits in this field we actually

care about.

The field we want to examine in this byte is in the third position, so we place a 1 in

the third position of our bit mask and place 0’s in the remaining fields. The result is

the binary value 00000100.

Next, we have to translate this value into its hexadecimal representation. In this

case, 00000100 breaks down as 0x04 in hex.

Now we can build our expression by specifying the protocol and byte offset

value for 0x13, followed by an ampersand (&) and the byte mask value we just

created.

tcp[13] & 0x04

Finally, we can provide the value we want to match in this field. In this case, we

want any packet that has a 1 set in this field. Since a 1 in the third position of a byte

equals 4, we can simply use 4 as the value to match.

tcp[13] & 0x04¼4

This expression will match any packet with only the TCP RST bit set.

There are a number of different applications for BPF expressions that examine

individual protocol fields. For example, the expression icmp[0] ¼¼ 8 || icmp[0]

¼¼ 0 can be used to match ICMP echo requests or replies. Given the examples in

this section, you should be able to create filter expressions for virtually any protocol

field that is of interest to you. Next, we will look at display filters.

Wireshark Display Filters

Wireshark and tshark both provide the ability to use display filters. These are differ-

ent than capture filters, because they leverage the protocol dissectors these tools use

to capture information about individual protocol fields. Because of this, they are a lot

more powerful. As of version 1.10, Wireshark supports around 1000 protocols and

nearly 141000 protocol fields, and you can create filter expressions using any of

them. Unlike capture filters, display filters are applied to a packet capture after data

has been collected.

380 CHAPTER 13 Packet Analysis

Earlier we discussed how to use display filters in Wireshark and tshark,

but let’s take a closer look at how these expressions are built, along with some

examples.

A typical display filter expression consists of a field name, a comparison oper-

ator, and a value.

A field name can be a protocol, a field within a protocol, or a field that a protocol

dissector provides in relation to a protocol. Some example field names might include

the protocol icmp, or the protocol fields icmp.type and icmp.code. A complete list

of field names can be found by accessing the display filter expression builder

(described in the Wireshark section of this chapter) or by accessing the Wireshark

help file. Simply put, any field that you see in Wireshark’s packet details pane

can be used in a filter expression.

Next is the comparison operator (sometimes called a relational operator), which

determines how Wireshark compares the specified value in relation to the data it

interprets in the field. The comparison operators Wireshark supports are shown in

Table 13.4. You can alternate use of the English and C-like operators based upon

what you are comfortable with.

The last element in the expression is the value, which is what you want to match

in relation to the comparison operator. Values also come in different types as well,

which are shown in Table 13.5.

Table 13.4 Display Filter Comparison Operators

Operator

(English)

Operator

(C-Like) Description Example

eq ¼¼ Matches values equal to the

specified value

ip.addr ¼¼

192.168.1.155

ne !¼ Matches values not equal to the

specified value

ip.addr !¼
192.168.1.155

gt > Matches values greater than the

specified value

tcp.port gt 1023

lt < Matches values less than the

specified value

tcp.port<1024

ge >¼ Matches values greater than or

equal to the specified value

udp.length>¼ 75

le <¼ Matches values less than or equal

to the specified value

udp.length le 75

contains Matches values where the

specified value is contained within

the field

smtp.req.
parameter
contains “FROM”

381Packet Filtering

Now that we understand how filters are constructed, let’s build a few of our own.

Starting simple, we can create a filter expression that only shows packets using the IP

protocol by simply stating the protocol name:

ip

Now, we can match based upon a specific source IP address by adding the src

keyword to the expression:

ip.src ¼¼ 192.168.1.155

Alternatively, we could match based upon packets with the destination IP address

instead:

ip.dst ¼¼ 192.168.1.155

Wireshark also includes custom fields that will incorporate values from multiple

other fields. For instance, if we want to match packets with a specific IP address in

either the source or destination fields, we could use this filter, which will examine

both the ip.src and ip.dst fields:

ip.addr ¼¼ 192.168.1.155

Multiple expressions can be combined using logical operators. These are shown

in Table 13.6.

Table 13.5 Value Types

Value Type Description Example

Integer

(Signed or

Unsigned)

Expressed in decimal,

octal, or hexadecimal

tcp.port ¼¼ 443
ip.proto ¼¼ 0x06

Boolean Expressed as true (1)

or False (0)

tcp.flags.syn ¼¼ 1
ip.frags.mf ¼¼ 0

String Expressed as ASCII

text

http.request.uri ¼¼ “http://www.
appliednsm.com”
smtp.req.parameter contains “FROM”

Address Expressed as any

number of addresses:

IPv4, IPv6, MAC, etc.

ip.src ¼¼ 192.168.1.155
ip.dst ¼¼ 192.168.1.0/24
ether.dst ¼¼ ff:ff:ff:ff:ff:ff

Table 13.6 Display Filter Logical Operators

Operator

(English)

Operator

(C-Like) Description

and && Evaluates to true when both conditions are true

or || Evaluates to true when either condition is true

xor ○○ Evaluates to true when one and only one

condition is true

not ! Evaluates to true when a condition is NOT met

382 CHAPTER 13 Packet Analysis

http://www.appliednsm.com
http://www.appliednsm.com

We can combine a previous expression with another expression to make a com-

pound expression. This will match any packets sourced from 192.168.1.155 that are

not destined for port 80:

ip.src ¼¼ 192.168.1.155 && !tcp.dstport ¼¼ 80

Once again, the key thing to keep in mind when creating display filters is that

anything you see in the packet details pane in Wireshark can be used in a filter

expression. Table 13.7 contains a few more example display filter expressions.

Table 13.7 Example Display Filter Expressions

Filter Expression Description

eth.addr !¼<MAC
address>

Match packets not to or from the specified MAC address.

Useful for excluding traffic from the host you are using.

ipv6 Match IPv6 packets

ip.geoip.country
¼¼<country>

Match packets to or from a specified country

ip.ttl<¼<value> Match packets with a TTL less than or equal to the specified

value. This can be useful for some loose OS fingerprinting.

ip.checksum_bad ¼¼

1
Match packets with an invalid IP checksum. Can be used for

TCP and UDP checksums as well by replacing ip in the

expression with udp or tcp. Useful for finding poorly forged

packets.

tcp.stream
¼¼<value>

Match packets associated with a specific TCP stream.

Useful for narrowing down specific communication

transactions.

tcp.flags.syn ¼¼ 1 Match packets with the SYN flag set. This filter can be used

with any TCP flag by replacing the “syn” portion of the

expression with the appropriate flag abbreviation.

tcp.analysis.
zero_window

Match packets that indicate a TCP window size of 0. Useful

for finding hosts whose resources have become exhausted.

http.request ¼¼ 1 Match packets that are HTTP requests.

http.request.uri ¼¼

“<value>”
Match HTTP request packets with a specified URI in the

request.

http.response.code
¼¼<value>

Match HTTP response packets with the specified code.

http.user_agent ¼¼

“value”
Match HTTP packets with a specified user agent string.

http.host ¼¼

“value”
Match HTTP packets with a specified host value.

smtp.req.command ¼¼

“<value>“
Match SMTP request packets with a specified command

smtp.rsp.code
¼¼<value>

Match SMTP response packets with a specified code

smtp.message ¼¼

“value”
Match packets with a specified SMTP message.

Continued

383Packet Filtering

You should spend some time experimenting with display filter expressions and

attempting to create useful ones. A quick perusal of the expression builder in Wir-

eshark can point you in the right direction.

CONCLUSION

In this chapter we discussed the basics of packet analysis from a fundamental level.

This journey began with an introduction to reading packets in hex with a primer in

packet math. This led into an overview of tcpdump and tshark for packet analysis

from the command line, and Wireshark as a graphical packet analysis platform.

Finally, we discussed the anatomy and syntax of capture and display filters. Packet

analysis is one of the most important skills an NSM analyst can have, so the knowl-

edge in this chapter is incredibly important. Once you’ve mastered these concepts,

you can look into some of the additional packet analysis resources mentioned at the

start of the chapter to gain a deeper understanding of how packets work and the TCP/

IP protocols.

Table 13.7 Example Display Filter Expressions—cont’d

Filter Expression Description

bootp.dchp Match DHCP packets.

!arp Match any packets that are not ARP.

ssh.
encrypted_packet

Match encrypted SSH packets.

ssh.protocol ¼¼

“<value>”
Match SSH packets of a specified protocol value.

dns.qry.type
¼¼<value>

Match DNS query packets of a specified type (A, MX, NS,

SOA, etc).

dns.resp.type
¼¼<value>

Match DNS response packets of a specified type (A, MX, NS,

SOA, etc).

dns.qry.name ¼¼

“<value>”
Match DNS query packets containing the specified name.

dns.resp.name ¼¼

“<value>”
Match DNS response packets containing the specified

name.

384 CHAPTER 13 Packet Analysis

CHAPTER

Friendly and Threat
Intelligence 14
CHAPTER CONTENTS

The Intelligence Cycle for NSM .. 386

Defining Requirements ..387

Planning ...388

Collection ...388

Processing ..388

Analysis ..389

Dissemination ...389

Generating Friendly Intelligence ... 390

The Network Asset History and Physical ..390

Defining a Network Asset Model ...391

Passive Real-time Asset Detection System (PRADS)395

Making PRADS Data Actionable .. 398

Generating Threat Intelligence .. 401

Researching Hostile Hosts ..403

Internal Data Sources .. 403

Open Source Intelligence ... 404

Researching Hostile Files ...413

Open Source Intelligence ... 413

Conclusion .. 420

Intelligence has many definitions depending on the application. The definition that

most closely aligns to NSM and information security is drawn from Department of

Defense Joint Publication 1-02, and says that “intelligence is a product resulting from

the collection, processing, integration, evaluation, analysis, and interpretation of

available information concerning foreign nations, hostile or potentially hostile forces

or elements, or areas of actual or potential operations.1 ”

While this definition might not fit perfectly for a traditional SOC performing

NSM services (particularly the part about information concerning foreign nations),

it does provide the all-important framing required to begin thinking about generating

intelligence. The key component of this definition is that intelligence is a product.

This doesn’t mean that it is bought or sold for profit, but more specifically, that it

1http://www.dtic.mil/doctrine/new_pubs/jp1_02.pdf

385

http://www.dtic.mil/doctrine/new_pubs/jp1_02.pdf

is produced from collected data, based upon a specific requirement. This means that

an IP address, or the registered owner of that address, or the common characteristics

of the network traffic generated by that IP address are not intelligence products.

When those things are combined with context through the analysis process and deliv-

ered to meet a specific requirement, they become an intelligence product.

Most SOC environments are generally concerned with the development of two

types of intelligence products: friendly intelligence and threat intelligence. In this

chapter, we will take a look at the traditional intelligence cycle and methods that

can be used to generate these intelligence products. This includes the creation of

friendly intelligence products, aswell as threat products associatedwith tactical threat

intelligence.While reading, you should keep inmind that there are many components

to intelligence as a whole, and we are only covering a small subset of that here.

THE INTELLIGENCE CYCLE FOR NSM
The generation of intelligence products in a SOC requires the coordinated effort of

multiple stakeholders within the organization. Because there are so many moving

parts to the process, it helps to be able to organize the intelligence generation process

into an organized, repeatable framework. The framework that the government and

military intelligence community (IC) have relied on for years is called the Intelli-

gence Cycle.

Depending on the source you reference, the intelligence cycle can be broken down

into any number of steps. For the purposes of this book, we will look at a model that

uses six steps: defining requirements, planning, collection, processing, analysis, and

dissemination. These steps form a cycle that can continually feed itself, ultimately

allowing its products to shape how newer products are developed (Figure 14.1).

Defining

Requirements

Planning

Collection

Processing

Analysis

Dissemination

FIGURE 14.1

The Traditional Intelligence Cycle

386 CHAPTER 14 Friendly and Threat Intelligence

Figure 14.1

Let’s go through each of these steps to illustrate how this cycle applies to the

development of friendly and hostile intelligence for NSM.

Defining Requirements

An intelligence product is generated based upon a defined requirement. This require-

ment is what all other phases of the intelligence cycle are derived from. Just like a

movie can’t be produced without a script, an intelligence product can’t be produced

without a clearly defined intelligence requirement.

In terms of information security and NSM, that requirement is generally focused

on a need for information related to assets you are responsible for protecting (friendly

intelligence), or focused on information related to hosts that pose a potential threat to

friendly assets (hostile intelligence).

These requirements are, essentially, requests for information and context that can

help NSM analysts make judgments relevant to their investigations. This phase is

ultimately all about asking the right questions, and those questions depend on

whether the intelligence requirement is continual or situational. For instance, the

development of a friendly intelligence product is a continual process, meaning that

questions should be phrased in a broad, repeatable manner.

Some examples of questions designed to create baselines for friendly communi-

cation patterns might be:

• What are the normal communication patterns occurring between friendly hosts?

• What are the normal communication patterns occurring between sensitive

friendly hosts and unknown external entities?

• What services are normally provided by friendly hosts?

• What is the normal ratio of inbound to outbound communication for friendly

hosts?

On the other end of the spectrum, the development of a threat intelligence product

is a situational process, meaning that questions are often specific, and designed to

generate a single intelligence product for a current investigation:

• Has the specific hostile host ever communicated with friendly hosts before, and if

so, to what extent?

• Is the specific hostile host registered to an ISP where previous hostile activity has

originated?

• How does the content of the traffic generated by the specific hostile host

compare to activity that is known to be associated with currently identified

hostile entities?

• Can the timing of this specific event be tied to the goals of any particular

organization?

Once you have asked the right question, the rest of the cards should begin to fall

into place. We will delve further into the nature of friendly and threat intelligence

requirements later in their respective sections.

387The Intelligence Cycle for NSM

Planning

With an intelligence requirement defined, appropriate planning can ensure that the

remaining steps of the intelligence cycle can be completed. This involves planning

each of these steps and assigning resources to them. In NSM terms, this means dif-

ferent things for different steps. For instance, during the collection phase this may

mean assigning level three analysts (thinking back to our Chapter 1 discussion of

classifying analysts) and systems administrators to work with sensors and collection

tools. In the processing and analysis phase this may mean assigning level one and

two analysts to these processes and sectioning off a portion of their time to work

on this task.

Of course, the types of resources, both human and technical, that you assign to

these tasks will vary depending upon your environment and the makeup of your tech-

nical teams. In larger organizations you may have a separate team specifically for

generating intelligence products. In smaller organizations, you might be a one-

man show responsible for the entirety of intelligence product creation. No matter

how large or small your organization, you can participate in the development of

friendly and threat intelligence.

Collection

The collection phase of the intelligence cycle deals with the mechanisms used for

collecting the data that supports the outlined requirements. This data will eventually

be processed, analyzed, and disseminated as the intelligence product.

In a SOC environment, you may find that your collection needs for intelligence

purposes will force you to modify your overall collection plan. For the purposes of

continual friendly intelligence collection, this can include the collection of useful

statistics, like those discussed in Chapter 11, or the collection of passive real-time

asset data, like the data generated with a tool we will discuss later, called PRADS.

When it comes to situational threat intelligence collection, data will typically be

collected from existing NSM data sources like FPC or session data. This data will

generally be focused on what interaction the potentially hostile entity had with

trusted network assets. In addition, open source intelligence gathering processes

are utilized to ascertain publicly available information related to the potentially

hostile entity. This might include items like information about the registrant of an

IP address, or known intelligence surrounding a mysterious suspicious file.

In order for intelligence collection to occur in an efficient manner, collection

processes for certain types of data (FPC, PSTR, Session, etc.) should be

well-documented and easily accessible.

Processing

Once data has been collected, some types of data must be further processed to

become useful for analysis. This can mean a lot of different things for a lot of

different types of data.

388 CHAPTER 14 Friendly and Threat Intelligence

At a higher level, processing can mean just paring down the collected data set into

something more immediately useful. This might mean applying filters to a PCAP file

to shrink the total working data set, or selecting log files of only a certain type from a

larger log file collection.

At a more granular level, this might mean taking the output from a third party or

custom tool and using some BASH commands to format the output of those tools into

something more easily readable. In cases where an organization is using a custom

tool or database for intelligence collection, it might mean writing queries to insert

data into this format, or pull it out of that format into something more easily readable.

Ultimately, processing can sometimes be seen as an extension of collection where

collected data is pared down, massaged, and tweaked into a form that is ideal for the

analyst.

Analysis

The analysis phase is where multiple collected and processed items are examined,

correlated, and given the necessary context the make them useful. This is where intel-

ligence goes from just being loosely related pieces of data to a finished product that is

useful for decision-making.

In the analysis and generation of both friendly and threat intelligence products,

the analyst will take the output of several tools and data sources and combine those

data points on a per host basis, painting a picture of an individual host. A great deal

more intelligence will be available for local hosts, and might allow this picture to

include details about the tendencies and normal communication partners of the host.

The analysis of potentially hostile hosts will be generated from a much smaller data

set, and require the incorporation of open source intelligence into the analysis

process.

What ultimately results from this process is the intelligence product, ready to be

parsed by the analyst.

Dissemination

In most practical cases, an organization won’t have a dedicated intelligence team,

meaning the NSM analysts will be generating intelligence products for their own

use. This is a unique advantage, because the consumer of the intelligence will usually

be the same person who generated it, or will at least be in the same room or under the

same command structure. In the final phase of the intelligence cycle, the intelligence

product is disseminated to the individual or group who initially identified the intel-

ligence requirement.

In most cases, the intelligence product is constantly being evaluated and

improved. The positive and negative aspects of the final product are critiqued,

and this critique goes back into defining intelligence requirements and planning

the product creation process. This is what makes this an intelligence cycle, rather

than just an intelligence chain.

389The Intelligence Cycle for NSM

The remainder of this chapter is devoted to the friendly and threat intelligence

products, and ways to generate and obtain that data. While the intelligence frame-

work might not be referenced exclusively, the actions described in these sections will

most certainly fit into this framework in a manner that can be adapted to nearly any

organization.

GENERATING FRIENDLY INTELLIGENCE
You cannot effectively defend your network if you do not know what is on it, and

how it communicates. This statement cannot be emphasized enough. No matter

how simple or sophisticated an attack may be, if you don’t know the roles of the

devices on your network, especially those where critical data exists, then you won’t

be able to effectively identify when an incident has occurred, contain that incident, or

eradicate the attacker from the network. That’s why the development of friendly

intelligence is so important.

In the context of this book, we present friendly intelligence as a continually

evolving product that can be referenced to obtain information about hosts an analyst

is responsible for protecting. This information should include everything the analyst

needs to aid in the event of an investigation, and should be able to be referenced at

any given time. Generally, an analyst might be expected to reference friendly intel-

ligence about a single host any time they are investigating alert data associated with

that host. This would typically be when the friendly host appears to be the target of an

attack. Because of that, it isn’t uncommon for an analyst to reference this data dozens

of times per shift for a variety of hosts. Beyond this, you should also consider that the

analysis of friendly intelligence could also result in the manual observance of anom-

alies that can spawn investigations. Let’s look at a few ways to create friendly intel-

ligence from network data.

The Network Asset History and Physical

When a physician assesses a new patient, the first thing they perform is an evaluation

of the medical history and physical condition of the patient. This is called a patient

history and physical, or an H&P. This concept provides a useful framework that can

be applied the friendly intelligence of network assets.

The patient history assessment includes current and previous medical conditions

that could impact the patient’s current or future health. This also usually includes a

history of the patient’s family’s health conditions, so that risk factors for those con-

ditions in the patient can be identified and mitigated.

Shifting this concept to a network asset, we can translate a network asset’s med-

ical history to its connection history. This involves assessing previous communica-

tion transactions between the friendly host and other hosts on the network, as well as

hosts outside of the network. This connection profiling extends beyond the hosts

involved in this communication, but also to the services used by the host, both as

390 CHAPTER 14 Friendly and Threat Intelligence

a client and a server. If we can assess this connection history, we can make educated

guesses about the validity of new connections a friendly host makes in the context of

an investigation.

The patient physical exam captures the current state of a patient’s physical health,

and measures items such as the patient’s demographic information, their height and

weight, their blood pressure, and so on. This product of the physical exam is an over-

all assessment of a patient’s health. Often physical exams will be conducted with a

targeted goal, such as assessments that are completed for the purposes of health

insurance, or for clearance to play a sport.

When we think about a friendly network asset in terms of the patient physical

exam, we can begin to identify criteria that help define the state the asset on the net-

work, opposed to a state of health in a patient. These criteria include items such as

the IP address and DNS name of the asset, the VLAN it is located in, the role of

the device (workstation, web server, etc.), the operating system architecture of the

device, or its physical network location. The product of this assessment on the

friendly network asset is a state of its operation on the network, which can be used

to make determinations about the activity the host is presenting in the context of an

investigation.

Now, we will talk about some methods that can be used to create a network asset

H&P. This will include using tools like Nmap to define the “physical exam” portion

of an H&P through the creation of an asset model, as well as the use of PRADS to

help with the “history” portion of the H&P by collecting passive real-time asset data.

Defining a Network Asset Model

A network asset model is, very simply, a list of every host on your network and the

critical information associated with it. This includes things like the host’s IP address,

DNS name, general role (server, workstation, router, etc), the services it provides

(web server, SSH server, proxy server, etc), and the operating system architecture.

This is the most basic form of friendly intelligence, and something all SOC environ-

ments should strive to generate.

As youmight imagine, there are a number of ways to build a network asset model.

Most organizations will employ some form of enterprise asset management software,

and this software often has the capacity to provide this data. If that is true for your

organization, then that is often the easiest way to get this data to your analysts.

If your organization doesn’t have anything like that in place, then you may be left

to generate this type of data yourself. In my experience, there is no discrete formula

for creating an asset model. If you walk into a dozen organizations, you will likely

find a dozen different methods used to generate the asset model and a dozen more

ways to access and view that data. The point of this section isn’t to tell you exactly

how to generate this data, because that is something that will really have to be

adapted from the technologies that exist in your organization. The goal here is simply

to provide an idea of what an asset model looks like, and to provide some idea of how

you might start generating this data in the short term.

391Generating Friendly Intelligence

CAUTION

Realistically, asset inventories are rarely 100% accurate. In larger organizations with millions

of devices, it just isn’t feasible to create asset models that are complete and always up to

date. That said, you shouldn’t strive to achieve a 100% solution if it just isn’t possible. In this

case, sometimes it’s acceptable to shoot for an 80% solution because it is still 80% better

than 0%. If anything, do your best to generate assetmodels of critical devices that are identified

while doing collection planning.

One way to actively generate asset data is through internal port scanning. This can

be done with commercial software, or with free software like Nmap. For instance,

you can run a basic SYN scan with this command:

nmap –sn 172.16.16.0/24

This command will perform a basic ICMP (ping) scan against all hosts in the

172.16.16.0/24 network range, and generate output similar to Figure 14.2.

As you can see in the data shown above, any host that is allowed to respond

to ICMP echo request packets will respond with an ICMP echo reply. Assuming

all of the hosts on your network are configured to respond to ICMP traffic (or

they have an exclusion in a host-based firewall), this should allow you to map

the active hosts on the network. The information provided to us is a basic list

of IP addresses.

FIGURE 14.2

Ping Scan Output from Nmap

392 CHAPTER 14 Friendly and Threat Intelligence

Figure 14.2

We can take this a step farther by utilizing more advanced scans. A SYN scan will

attempt to communicate with any host on the network that has an open TCP port.

This command can be used to initiate a SYN scan:

nmap –sS 172.16.16.0/24

This command will send a TCP SYN packet to the top 1000 most commonly used

ports of every host on the 172.16.16.0/24 network. The output is shown in

Figure 14.3.

This SYN scan gives us a bit more information. So now, in addition to IP

addresses of live hosts on the network, we also have a listing of open ports on these

devices, which can indicate the services they provide.

We can extend this even farther by using the version detection and operating sys-

tem fingerprinting features of nmap:

nmap –sV -O 172.16.16.0/24

The command will perform a standard SYN port scan, followed by tests that will

attempt to assess the services listening on open ports, and a variety of tests that will

attempt to guess the operating system architecture of the device. This output is shown

in Figure 14.4.

FIGURE 14.3

SYN Scan Output from Nmap

393Generating Friendly Intelligence

Figure 14.3

This type of scan will generate quite a bit of additional traffic on the network, but

it will help round out the asset model by providing the operating system architecture

and helping clarify the services running on open ports.

The data shown in the screenshots above is very easily readable when it is output

by Nmap in its default format, however, it isn’t the easiest the search through.We can

fix this by forcing Nmap to output its results in a single line format. This format is

easily searchable with the grep tool, and very practical for analysts to reference. To

force nmap to output its results in this format, simply add –oG<filename>at the end

of any of the commands shown above. In figure 14.5, we use the grep command to

search for data associated with a specific IP address (172.16.16.10) in a file that is

generated using this format (data.scan).

FIGURE 14.4

Version and Operating System Detection Scan Output

394 CHAPTER 14 Friendly and Threat Intelligence

Figure 14.4

You should keep in mind that using a scanner like nmap isn’t always the most

conclusive way to build friendly intelligence. Most organizations schedule noisy

scans like these in the evening, and this creates a scenario where devices might

be missed in the scan because they are turned off. This also doesn’t account for

mobile devices that are only periodically connected to the network, like laptops that

employees take home at night, or laptops belonging to traveling staff. Because of

this, intelligence built from network scan data should combine the results of multiple

scans taking at different time periods. You may also need to use multiple scan types

to ensure that all devices are detected. Generating an asset model with scan data is

much more difficult than firing off a single scan and storing the results. It requires a

concerted effort andmay take quite a bit of finessing in order to get the results you are

looking for on a consistent basis.

No matter how reliable your scan data may seem, it should be combined with

another data source that can be used to validate the results. This can be something

that is already generated on your network, like DNS transaction logs, or something

that is part of your NSM data set, like session data. Chapter 4 and 11 describe

some useful techniques for generating friendly host data with session data using

SiLK. Another option is to use a passive tool, like PRADS, which we will talk

about next.

Passive Real-time Asset Detection System (PRADS)

PRADS is a tool that is designed to listen to network traffic and gather data about

hosts and services that can be used to map your network. It is based upon two other

very successful tools, PADS, the Passive Asset Detection System, and P0f, the

passive OS fingerprinting tool. PRADS combines the functionality of these tools into

a single service that is effective for building friendly intelligence. It does this by gen-

erating data that can be loosely compared to session data that might be used by SiLK

or Argus.

PRADS is included in Security Onion by default, so we can examine this data by

creating a query in Sguil. We will talk more about Sguil in the next chapter, but if you

remember our brief mention of Sguil in Chapter 9, then you know that it is an analyst

console that can be used for viewing alerts from detection mechanisms and data from

other NSM collection and detection tools.

FIGURE 14.5

Greppable Nmap Output

395Generating Friendly Intelligence

Figure 14.5

You can access Sguil by launching the Sguil client from the Security Onion desk-

top, or by launching the client from another device and connecting remotely. Once

there, you can sort the visible alerts by the Event Message column to find PRADS

entries. You may notice that Sguil still references PADS for these events, but don’t

worry, this is certainly PRADS data. Figure 14.6 shows sample PRADS log entries.

There are a couple of different types of entries shown in this image. New

Asset alerts are generated when a host that hasn’t been seen communicating on

the network before is observed. Changed Asset alerts are generated when a host that

has been seen before exhibits a communication behavior that hasn’t been observed,

such as a new HTTP user agent, or a new service.

To better understand how these determinations are made, let’s look at an example

of PRADS log data. In a default Security Onion installation, PRADS runs with a

command similar to this one:

prads-i eth1-c/etc/nsm/<sensor-name>/prads.conf -u sguil-g sguil-L/

nsm/sensor_data/<sensor-name>/sancp/ -f /nsm/sensor_data/<sensor-

name>/pads.fifo -b ip or (vlan and ip)

This arguments shown here, along with a few other useful PRADS command-line

arguments are:

• -b< filter>: Listen to network traffic based upon BPFs.

• -c<config file>: The PRADS configuration file.

• -D: Run as a daemon.

• -f< file>: Logs assets to a FIFO (first in, first out) file.

• -g<group>: The group that PRADS will run as.

• -i< interface>: The interface to listen on. PRADS will default to the lowest

numbered interface if this is not specified.

• -L<directory>: Logs cxtracker type output to the specified directory.

• -l< file>: Logs assets to a flat file.

• -r< file>: Read from a PCAP file instead of listening on the wire.

FIGURE 14.6

PRADS Data in Sguil

396 CHAPTER 14 Friendly and Threat Intelligence

Figure 14.6

• -u<username>: The user that PRADS will run as.

• -v: Increase the verbosity of PRADS output.

In the case of SO, PRADS runs as the Sguil user and listens for data on the wire.

Collected data is stored in a FIFO file so that it can be sucked into a database that

Sguil can access.

Since most of the runtime options for PRADS in SO are configured with

command-line arguments, the only real purpose that prads.conf serves is to identify

the home_nets IP range variable (Figure 14.7). This variable tells PRADSwhich net-

works it should consider assets that it should monitor. In most situations you will

configure this similarly to the $HOME_NET variable used by Snort or Suricata,

since it is used in a similar manner.

PRADS data stored in a database format is really convenient for querying asset

data or writing tools that leverage this data, but it isn’t the greatest for viewing it in its

raw form. Fortunately, asset data is also stored as a flat text file at /var/log/prads-

assets.log. A sample of this file is shown in Figure 14.8.

FIGURE 14.7

Configuring the home_nets Variable in prads.conf

FIGURE 14.8

The PRADS Log File

397Generating Friendly Intelligence

Figure 14.7
Figure 14.8

The first line of this file defines the format for log entries. This is:

asset,vlan,port,proto,service,[service-info],distance,discovered

These fields break down as such:

• Asset: The IP address of asset in the home_nets variable that is detected

• VLAN: The VLAN tag of the asset

• Port: The port number of the detected service

• Proto: The protocol number of the detected service

• Service: The service PRADS has identified as being in use. This can involve

the asset interacting the service as a CLIENT or a SERVER.

• Service Info: The fingerprint that matches the identifying service, along

with its output.

• Distance: The distance to the asset based upon a guessed initial time-to-live value

• Discovered: The Unix timestamp when the data was collected

Based upon this log data, you can see that PRADS itself doesn’t actually make the

determination we saw earlier in Sguil of whether or not an asset is new or changed.

PRADS simply logs the data it observes and leaves any additional processing to the

user or other third party scripts or applications. This means that the New and Chan-

ged Asset alerts we were seeing in Sguil are actually generated by Sguil itself based

on PRADS data, and not by PRADS itself.

Making PRADS Data Actionable
There are a couple of ways that we can use PRADS for friendly intelligence. The first

method is to actually use Sguil and its notification of New and Changed assets. As an

example, consider Figure 14.9.

FIGURE 14.9

Sguil Query for a Single Host

398 CHAPTER 14 Friendly and Threat Intelligence

Figure 14.9

In the figure above, I’ve made a Sguil query for all of the events related to a single

alert. This can be done pretty easily in Sguil by right-clicking an event associated

with a host, hovering over Quick Query, then Query Event Table, and selecting

the SrcIP or DstIP option depending on which IP address you want events for. Here,

we see a number of events associated with the host at 172.16.16.145. This includes

some Snort alerts, visited URLs, and more PRADS alerts.

Of the PRADS alerts shown, there are 4 NewAsset Alerts that showsthe first time

this host has ever connected to each of the individual destination IP addresses listed

in the alert:

• Alert ID 4.66: HTTP Connection to 23.62.111.152

• Alert ID 4.67: HTTPS Connection to 17.149.32.33

• Alert ID 4.68: HTTPS Connection to 17.149.34.62

• Alert ID 4.69: NTP Connection to 17.151.16.38

When investigating this event, this provides useful context that can help you

immediately determine whether a friendly device has ever connected to a specific

remote device. In a case where you are seeing suspicious traffic going to an unknown

address, the fact that the friendly device has never communicated with this address

before might be an indicator that something suspicious is going on, and more inves-

tigation is required.

The figure also shows 1 Change Asset Alert showing the use of a new HTTP cli-

ent user agent string.

• Alert ID 4.71: Mozilla/4.0 (compatible; UPnP/1.0; Windows NT/5.1)

This type of context demonstrates that a friendly host is doing something that it

has never done before. While this can mean something as simple as a user download-

ing a new browser, this can also be an indicator of malicious activity. You should

take extra notice of devices that begin offering new services, especially when those

devices are user workstations that shouldn’t be acting as servers.

At this point, we have the ability to discern any new behavior or change in behav-

ior for a friendly host, which is an incredibly powerful form of friendly intelligence.

While it may take some time for PRADS to “learn” your network when you first con-

figure it, eventually, it can provide a wealth of information that would otherwise

require a fair bit of session data analysis to accomplish.

Another way to make PRADS data actionable is to use it to define a baseline asset

model. Since PRADS stores all of the asset information it collects for assets defined

in the home_nets variable, this data can be parsed to show all of the data it has gath-

ered on a per host basis. This is accomplished by using the prads-asset-report script,

which is a Perl script that is included with PRADS. This script will take the output

from a PRADS asset log file, and output a listing of all of the information it knows

about each IP address. If you are using PRADS to log data to /var/log/prads-asset.log,

then you can simply run the command prads-asset-report to generate this data. Oth-

erwise, you can specify the location of PRADS asset data by using the –

r< file>argument. A sample of this data is shown in Figure 14.10.

399Generating Friendly Intelligence

Notice in this output that PRADS also makes its best guess at the operating sys-

tem architecture of each device. In the figure above, it can only identify a single

device. PRADS is able to guess more accurately the more it can observe devices

communicating on the network.

In some cases it might make the most sense to generate this report regularly and

provide it in a format where analysts can access and search it easily. You can save the

file that this script generates by adding the –w< filename>argument. In other cases,

analysts might have direct access to the PRADS log data, which means they can use

the prads-asset-report script itself to generate near real-time data. This can be done on

the basis of an individual IP address, using the –i switch like this:

prads-asset-data –i 172.16.16.145

The output of this command is shown in Figure 14.11.

FIGURE 14.10

PRADS Asset Report Data

400 CHAPTER 14 Friendly and Threat Intelligence

Figure 14.10

When generating an asset model from PRADS, remember it is a passive tool that

can only report on devices it sees communicate across a sensor boundary. This means

that devices that only communicate within a particular network segment and never

talk upstream through a link that a sensor is monitoring will never be observed by

PRADS. Because of this, you should pair PRADS with another technique like active

scanning to ensure that you are accurately defining network assets.

PRADS is an incredibly powerful but eloquently simple tool that can be used

to build friendly intelligence. Because of its minimal requirements and flexibility,

it can find its way into most SOC environments. You can read more about PRADS

at http://gamelinux.github.io/prads/.

GENERATING THREAT INTELLIGENCE
Once you know your network, you are prepared to begin to know your adversary.

With this in mind, we begin to dive into threat intelligence. If you work in informa-

tion security then you are no stranger to this term. With the prevalence of targeted

attacks occurring daily, most every vendor claims to offer a solution that will allow

you to “generate threat intelligence to stop the APT.” While this is typically a bunch

of vendor sales garbage gone awry, the generation of threat intelligence is a critical

component of analysis in NSM, and pivotal for the success of a SOC.

Threat intelligence is a subset of intelligence as we defined it earlier in this chapter.

This subset focuses exclusively on the hostile component of that definition, and seeks to

gather data to support the creation of an intelligence product that can be used to make

FIGURE 14.11

Searching for Individual IP Addresses in PRADS Asset Data

401Generating Threat Intelligence

http://gamelinux.github.io/prads/
Figure 14.11

determinations about the nature of the threat. This type of intelligence can be broken

down into three sub categories: strategic, operational, and tactical threat intelligence

(Figure 14.12).

Strategic Intelligence is information related to the strategy, policy, and plans of

an attacker at a high level. Typically, intelligence collection and analysis at this level

only occurs by government or military organizations in response to threats from other

governments or militaries. With that said, larger organizations are now developing

these capabilities, and some of these organizations now sell strategic intelligence as a

service. This is focused on the long-term goals of the force supporting the individual

attacker or unit. Artifacts of this type of intelligence can include policy documents,

war doctrine, position statements, and government, military, or group objectives.

Operational Intelligence is information related to how an attacker or group of

attackers plans and supports the operations that support strategic objectives. This

is different from strategic intelligence because it focuses on narrower goals, often

more timed for short-term objectives that are only a part of the big picture. While

this is, once again, usually more within the purview of government or military orga-

nizations, it is common that individual organizations will fall victim to attackers who

are performing actions aimed at satisfying operational goals. Because of this, some

public organizations will have visibility into these attacks, with an ability to generate

operational intelligence. Artifacts of this type of intelligence are similar, but often

more focused versions of artifacts used for the creation of strategic intelligence.

Tactical Intelligence refers to the information regarding specific actions taken in

conducting operations at the mission or task level. This is where we dive into the

tools, tactics, and procedures used by an attacker, and where 99% of SOCs perform-

ing NSMwill focus their efforts. It is here that the individual actions of an attacker or

group of attackers are analyzed and collected. This often includes artifacts such as

indicators of compromise (IP addresses, file names, text strings) or listings of attacker

specific tools. This intelligence is the most transient, and becomes outdated quickly.

Tactical

Intelligence

Operational Intelligence

Strategic Intelligence

FIGURE 14.12

Types of Threat Intelligence

402 CHAPTER 14 Friendly and Threat Intelligence

Figure 14.12

FROM THE TRENCHES

The discussion of threat intelligence often leads to a discussion of attribution, where the

actions of an adversary are actually tied back to a physical person or group. It is important to

realize that detection and attribution aren’t the same thing, and because of this, detection

indicators and attribution indicators aren’t the same thing. Detection involves discovering

incidents, where as attribution involves tying those incidents back to an actual person or group.

While attribution is most certainly a positive thing, it cannot be done successfully without the

correlation of strategic, operational, and tactical intelligence data. Generally speaking, this

type of intelligence collection and analysis capability is not present within most private sector

organizations without an incredibly large amount of visibility or data sharing from other

organizations. The collection of indicators of compromise from multiple network attacks to

generate tactical intelligence is an achievable goal. However, collecting and analyzing data

from other traditional sources such as human intelligence (HUMINT), signals intelligence

(SIGINT), and geospatial intelligence (GEOINT) isn’t within the practical capability of most

businesses. Furthermore, even organizations that might have this practical capability are often

limited in their actions by law.

When analyzing tactical intelligence, the threat will typically begin as an IP

address that shows up in an IDS alert or some other detection mechanism. Other

times, it may manifest as a suspicious file downloaded by a client. Tactical threat

intelligence is generated by researching this data and tying it together in an investi-

gation. The remainder of this chapter is devoted to providing strategies for generating

tactical threat intelligence about adversarial items that typically manifest in an NSM

environment.

Researching Hostile Hosts

When an alert is generated for suspicious communication between a friendly host and

a potentially hostile host, one of the steps an analyst should take is to generate tactical

threat intelligence related to the potentially hostile host. After all, the most the IDS

alert will typically provide you with is the host’s IP address and a sample of the

communication that tripped the alert. In this section we will look at information that

can be gained from having only the host’s IP address or a domain name.

Internal Data Sources
The quickest way to obtain information about external and potentially hostile hosts is

to examine the internal data sources you already have available. If you are concerned

about a potentially hostile host, this is likely because it has already communicated

with one of your hosts. If that is the case, then you should have collected some of

this data. The questions you want to answer with this data are:

1. Has the hostile host ever communicated with this friendly host before?

2. What is the nature of this host’s communication with the friendly host?

3. Has the hostile host ever communicated with other friendly hosts on the network?

403Generating Threat Intelligence

The answers to these questions can lie within different data sources.

Question 1 can be answered easily if you have the appropriate friendly intelli-

gence available, such as the PRADS data we examined earlier. With this in place,

you should be able to determine if this is the first time these hosts began communi-

cating, or if it occurred at an earlier time. You might even be able to determine the

operating system architecture of the host. If this data isn’t available, then session data

is probably the quickest way to get this answer.

Question 2 is something that can only be answered by a data source with a higher

level of granularity. While session data can tell you some basics of when the

communication occurred and the ports that are in use, it doesn’t provide the depth

necessary to accurately describe exactly what is occurring. In some cases, the detec-

tion tool that generated the initial alert will provide this detail. Snort and Suricata will

typically provide the offending packet that tripped one of their signatures, and tools

like Bro will provide as much additional data as you’ve configured it to. In other

scenarios, you may need to look to FPC data or PSTR data to find answers. In these

cases, packet analysis skills will come in handy.

Answering Question 3 will typically begin with session data, as it is the quickest

way to get information pertaining to communication records between hosts. With

that said, if you find that communication has occurred between the hostile host

and other friendly devices then you will probably want to turn to another data source

like FPC or PSTR data to determine the exact nature of the communication. If this

data isn’t available, then PRADS data is another way to arrive at an answer.

The internal analysis performed at this level is all about connecting the dots and

looking for patterns. At a high level, these patterns might include a hostile host com-

municating with devices using a specific service, at specific time intervals, or in con-

junction with other real world or technical events. At a more granular level, you

might find patterns that indicate the hostile host is using a custom C2 protocol, or

that the communication is responsible for several clients downloading suspicious

files from other hosts.

The combined answers to these three questions will help you build threat

intelligence surrounding the behaviors of the hostile host on your network. Often,

analyzing the behavior of the hostile host in relation to a single event or communi-

cation sequence won’t provide the evidence necessary to further an investigation, but

that same analysis applied to communication across the network could be the key to

determining whether an incident has occurred.

Open Source Intelligence
Once you’ve looked inward, it is time to examine other available intelligence

sources. Open source intelligence (OSINT) is a classification given to intelligence

that is collected from publicly available resources. In NSM, this typically refers

to intelligence gathered from open websites. The key distinction with OSINT is that

it allows you to gather information about a hostile entity without ever directly send-

ing packets to them.

Now we will look at a few websites that can be used to perform OSINT research

related to IP addresses, domain names, and malicious files. This is a broad topic with

404 CHAPTER 14 Friendly and Threat Intelligence

a variety of different approaches, and the topic of OSINT research could easily have its

own book. If you’d like a much more detailed list of websites that can be used to

performOSINT research, then check out http://www.appliednsm.com/osint-resources.

IP and Domain Registration
The International Assigned Numbers Authority (IANA) is a department of the Inter-

net Corporation for Assigned Names and Numbers (ICANN) that is responsible for

overseeing the allocation of IP addresses, autonomous system number (ASN) allo-

cation, DNS root zone management, and more. IANA delegates the allocation of

addresses based upon region, to 5 individual Regional Internet Registries (RIRs).

These organizations are responsible for maintaining records that associate each IP

address with its registered owner. They are listed in Table 14.1.

Each of these registries allows you to query them for the registration records asso-

ciated with an IP address. Figure 14.13 shows the results from querying the ARIN

database for the registration records associated with an IP address in the 50.128.0.0/9

range. This was done from http://whois.arin.net/ui/advanced.jsp.

In this case, we can see that this block of IP addresses is allocated to Comcast. We

can also click on links that will provide contact information for representatives at this

organization, including abuse, technical, and administrative Points of Contact (POCs).

This is useful when you detect a hostile device in IP space that is owned by a reputable

company attempting to break into your network. In a lot of cases this will indicate that

the hostile device has been compromised by another adversary and is being used as a

hop point for launching an attack. When this occurs, it’s a common practice to notify

the abuse contact for the organization that the attack appears to be coming from.

Table 14.1 Regional Internet Registries

RIR Name Abbreviation Service Website

African Network

Information Centre

AfriNIC Continental Africa http://

www.afrinic.net/

American Registry for

Internet Numbers

ARIN United States,

Canada, parts of the

Caribbean region, and

Antarctica

https://

www.arin.net/

Asia-Pacific Netowrk

Information Centre

APNIC Asia, Australia, New

Zealand, and

neighboring countries

http://

www.apnic.net/

Latin America and

Caribbean Network

Information Centre

LACNIC Latin America and

parts of the Caribbean

region

http://

www.lacnic.net/

Reseaux IP

Europeens Network

Coordination Centre

RIPE NCC Europe, Russia, the

Middle East, and

Central Asia

http://www.ripe.

net/

405Generating Threat Intelligence

http://www.appliednsm.com/osint-resources
http://whois.arin.net/ui/advanced.jsp
http://www.afrinic.net/
http://www.afrinic.net/
https://www.arin.net/
https://www.arin.net/
http://www.apnic.net/
http://www.apnic.net/
http://www.lacnic.net/
http://www.lacnic.net/
http://www.ripe.net/
http://www.ripe.net/

FROM THE TRENCHES

Notifying other organizations that one of their hosts might be compromised can be a bit of a

struggle sometimes. In some cases, the organization won’t believe you, and in some more

extreme scenarios, the organization might even accuse you of taking some type of adversarial

action against them. Because this is a delicate process, there is proper etiquette involved in

notifying someone else that their network might be compromised. This article written by Tom

Liston for the SANS Internet Storm Center provides a good overview of some lessons learned

from this process: http://www.dshield.org/diary.html?storyid¼9325.

In a lot of cases, you will find that an IP address is registered to an ISP. In that

case, you may have luck contacting the ISP if someone on their IP address space

is attempting to attack your network, but in most cases I’ve experienced, this isn’t

usually very fruitful. This is especially true when dealing with ISP’s outside of

the jurisdiction of the US.

Because IP addresses are divided amongst the 5 RIR’s, you won’t necessarily

know which one is responsible for a specific IP until you search for it. Fortunately,

if you search for an IP address at an RIR’s website and the RIR isn’t responsible for

that IP address, it will point you towards the correct RIR so that you can complete

your search there. Another solution is to use a service that will make this determi-

nation for you, like Robtex, which we will look at in a moment.

FIGURE 14.13

Querying the ARIN RIR

406 CHAPTER 14 Friendly and Threat Intelligence

http://www.dshield.org/diary.html?storyid=9325
http://www.dshield.org/diary.html?storyid=9325
Figure 14.13

Another useful piece of information that the registry record gives us is the Auton-

omous System Number (ASN) associated with the IP address. An ASN is a number

used to identify a single network or group of networks controlled by a common

entity. These are commonly assigned to ISPs, large corporations, or universities.

While two IP address might be registered to two different entities, their sharing

the same ASN might allow you to conclude that there is some relationship between

the two addresses, though this is something to be evaluated on a case-by-case basis.

You can search for ASN information specifically from each registry.

Just like with IP addresses, researching domain names usually begins with find-

ing the registered owner of the domain. However, it is important to remember to dis-

tinguish between an actual physical host and a domain name. IP space is finite and

exists with certain limitations. In general, if you see an IP address in your logs then

you can usually assume that the data you have collected in relation to that host actu-

ally did come from that IP address (at least, for session-oriented communication).

You can also have a reasonable amount of faith that the IP address does exist under

the ownership of the entity that registered it, even though that machine might have

been compromised and be controlled by someone else.

A domain name serves as a pointer to a location. When you see a domain name

in your logs, usually because one of your friendly hosts is accessing that domain in

some way, the truth is that the domain can be configured to point to any address at

any given time. This means that the domain name you are researching from yes-

terday’s logs might point to a different IP address now. For that matter, the domain

you research now may not point to anything later. It is common for attackers to

compromise a host and then reassign domain names to the IP addresses of those

hosts to serve malware or act in another malicious capacity. When the owner of

that host discovers that it has been compromised and eradicates the attacker’s pres-

ence, the attacker will reassign the domain name to another compromised IP

address. Even further to this point, malware now has the ability to use domain name

generation algorithms to randomly register domains that can be used for command

and control. Because of all this, a domain isn’t compromised; the IP address the

domain points to is compromised. However, a domain name can be used for mali-

cious purposes. This should be considered when researching potentially malicious

domain names.

With that said, domain name registration is managed by ICANN, who delegates

this authority to domain name registries. Whenever someone registers a domain

name, they are required to provide contact information that is associated with this

domain. Unfortunately, this process usually involves very little verification, so there

is nothing to say that the domain registration information for any particular domain is

actually valid. Furthermore, a lot of registries provide anonymous registration ser-

vices, where they will mask the actual registered owner of the domain and provide

their own information. With that said, there are plenty of instances where useful

information can be obtained from domain name registration.

Domain information can be queried in a number of ways. One way is to simply

pick any domain name registry such as GoDaddy or Network Solutions and perform

407Generating Threat Intelligence

a whois query from their website. Another method is to use the whois command from

a Unix command line (Figure 14.14). This uses the simple syntax:

whois<domain name>

You can see that this tells us the registrant information, as well as a few other

useful pieces of information. The registration dates can be helpful in determining

the validity of a domain. If you suspect that a domain you’ve seen one of your hosts

communicating with is hosting malicious content and you find that the domain was

registered only a couple of days ago, this would indicate a higher potential for mali-

cious activity actually occurring.

This output also lists the DNS servers associated with the domain, which can be

used to find correlation between multiple suspicious domains. You can also use some

additional DNS Kung Fu to attempt various techniques (like zone transfers) to enu-

merate subdomains and DNS host names, but this isn’t recommended in most

instances since it will involve actually interacting with potential DNS servers. If

you want to know more about doing this, there are a fair number of guides on the

Internet, as well as videos at http://www.securitytube.net.

FIGURE 14.14

Whois Query Results for ESPN.com

408 CHAPTER 14 Friendly and Threat Intelligence

http://www.securitytube.net
Figure 14.14
http://ESPN.com

Rather than going around to all of these different websites in order to research IP

addresses and domain name registration information, I tend to use publicly available

websites that will provide all of this information at a single stop. One of my favorites

isRobtex (http://www.robtex.com).Robtexprovides a lot ofuseful information, includ-

ing everythingwe’ve discussedupuntil this point summarized in averyuseful interface.

In Figure 14.15 I’ve done a search for espn.com and browsed Robtex’s Records tab.

In this image, you can see that Robtex provides all of the DNS information that

was obtained, the associated IP addresses, and the ASN’s tied to those IP addresses.

The interface provided help to quickly build a picture that an analyst can use quickly.

CAUTION

In this chapter we discuss a lot of web-based services that collect or provideOSINT information.

While these sites can be useful, you should always be aware of exactly how they interact with the

information you give them in relation to the hostile IP or domain. Some of these services will

interact with the IP address or domain you are researching for one reason or another, and the

last thing you want is for them to disclose your IP address to the potentially hostile host. I’ve

seen plenty of scenarios where web services will forward the requesting client’s IP address in

those requests in an HTTP header. You can test for this type of functionality by using these tools

against your own network or a test network and then analyzing the data associated with the

connections from the web service.

IP and Domain Reputation
In Chapter 8, we discussed IP and domain reputation at length. While reputation can

be useful for detection, it is also immensely useful for analysis. If an IP address or

domain has been associated with malicious activity in the past, then there is a good

chance that it might be associated with malicious activity in the present.

FIGURE 14.15

Robtex’s Records Tab

409Generating Threat Intelligence

http://www.robtex.com
http://espn.com
Figure 14.15

I listed a few of my favorite sources of reputation information for detection pur-

poses in Chapter 8. Those sites were optimized for detection because they generate

lists that can be fed into detection mechanisms. Those sites can also be used for anal-

ysis of IP addresses and domain names, but I won’t rehash those here. Instead, I’ll

discuss a couple of my other favorite reputation websites that are more suited for

post-detection analysis: IPVoid and URLVoid.

IPVoid (http://www.ipvoid.com/) and URLVoid (http://www.urlvoid.com/) are

two sites that were developed as free services by a company called NoVirusThanks.

These services connect to multiple other reputation lists (including a few of those

discussed in this book) and provide results that indicate whether or not the IP or

domain you’ve entered is found on any of those lists. Figures 14.16 and 14.17 show

example output from both services.

FIGURE 14.16

URLVoid Output Excerpt

410 CHAPTER 14 Friendly and Threat Intelligence

http://www.ipvoid.com/
http://www.urlvoid.com/
Figure 14.16

In both outputs, the services will provide a header with basic information about

the IP or domain, along with a statistic of the number of blacklists that match your

search. In the case of Figure 14.16 you can see that the domain was found on 3/28

(11%) of the blacklists that were searched by URLVoid. Those 3 blacklists are listed

at the top of the report, and each blacklist has a link in the Info column that will take

you directly to the reference to this domain name at those sites. The output shown in

Figure 14.17 has had the IP address information from IPVoid trimmed off for size,

but shows several of the IP blacklist services that are used.

IPVoid and URLVoid are a great one-stop shop for determining whether an IP

address or domain has found its way onto a reputation blacklist somewhere. While

this isn’t always a clear-cut indicator of malicious activity, it frequently points in that

direction.

When performing analysis, keep in mind that sometimes multiple domains exist

on a single IP address. While you may find that a single domain appears on multiple

public blacklists, that doesn’t necessarily mean that every other domain whose

FIGURE 14.17

IPVoid Output Excerpt

411Generating Threat Intelligence

Figure 14.17

content is hosted on the same IP address is also malicious. This is especially true of

shared hosting servers. On these servers, it is typically a web application flaw that

results in one site being compromised. More often than not, this compromised is lim-

ited to just the affected domain. With that said, there are certainly exceptions to this

line of thought, but this is something you should keep in mind when analyzing IP and

domain reputation.

One way to quickly identify domains that are hosted on an IP address while ensur-

ing that you aren’t communicating with any remote DNS servers yourself is to use

the Domains by IP service (http://www.domainsbyip.com/). The output of this tool is

shown in Figure 14.18.

In the image above, the results tell us that four different domains are hosted on

this IP address. This looks like it is probably a shared hosting server based upon the

number of domains with no clear link between them. We can also see that the service

provides a listing of “nearby” IP addresses. These are addresses that are numerically

close to the IP address we searched for, and also host domains. This service is very

useful, but it isn’t all-inclusive, so your mileage may vary when using it.

FIGURE 14.18

Results of a Domain by IP Query

412 CHAPTER 14 Friendly and Threat Intelligence

http://www.domainsbyip.com/
Figure 14.18

Now that we’ve looked at a few ways to get OSINT information on hosts, let’s

look at OSINT sources for files.

Researching Hostile Files

After IP addresses and host names, the next most common artifacts you will encoun-

ter while performing NSM analysis are files. Sometimes this might just be a file

name, other times it could include an MD5 hash, and in the best of scenarios you

may have access to the entire file. Suspicious files are usually observed being down-

loaded from suspicious hosts, or in relation to an alert generated by a detection mech-

anism, such as an IDS. Regardless of how much of this information you have or

where it came from, intelligence related to files can be used to build tactical intel-

ligence about the threat you are investigating.

FROM THE TRENCHES

There are a number of ways to pull suspicious files off the wire. If you know of certain file types

you want to pull of the wire in real time, then you can use Bro for this task. We talk about

how to do this in Chapter 10. If you are performing an investigation and have access to full

packet capture data, then you can use a tool like Wireshark to pull files out of a communication

stream. This is discussed in Chapter 13.

Open Source Intelligence
Just like with host intelligence, there are a number of sources available on the Inter-

net that can be used for researching suspicious files. Let’s take a look at a few of these

resources.

If you have the actual file that you suspect to be malicious, the easiest thing to do is

perform a behavioral analysis of this file. This is something that can be done in house,

but if you don’t have that capability, you may be better off submitting the file to an

onlinemalware sandbox. These sandboxes allow users to submit files and automatically

perform a behavioral analysis based upon the changes themalware makes to the system

and the type of actions it tries to take. Let’s take a look at a few of these sandboxes.

CAUTION

A large number of public malware sandboxes index themalware you submit so that other people

can search for it. This saves processing cycles on the sandbox itself, so that it doesn’t have to

reanalyze the file if someone else submits the same thing. While this helps the site owners

save resources, it can be an operational security concern. If normal users can search for

malware on public sandboxes, then so can the individuals or groups who create the malware. In

a targeted situation, it may be possible that the adversary has created a strain of malware

specifically targeted at your organization. At that point, the adversary can do periodic queries

against public sandboxes for the file name or MD5 hash of that malware. If the malware

shows up in their search results, they will know that you have found the malware and that they

need to change their tactics or create new malware that is harder to detect. This should be

considered before submitting malware to a public site, especially if you work in a high security

environment that is often the target of attacks.

413Generating Threat Intelligence

Virustotal
Perhaps the easiest way to determine if a file is malicious is to run an antivirus tool

against it. Unfortunately, the detection rate for antivirus in the modern security

landscape is very low, and the chances that a single antivirus product will be able

to detect a strain of malware are 50/50 or less. Because of this, the chances of

detecting malware are increased by submitting a malware sample to multiple anti-

virus engines. It isn’t entirely feasible to configure a single system with multiple

AV engines, nor is it cheap to license it. However, there is an online solution called

VirusTotal.

VirusTotal (http://www.virustotal.com) is a free service that was bought by Goo-

gle in 2012, and analyzes suspicious files and URLs using multiple antivirus engines.

There are multiple ways to submit files to VirusTotal, including their website, by

e-mail, or by any tool that uses their API. My preferred mechanism is their Google

Chrome extension. Once you submit the file, VirusTotal will perform its analysis and

generate a report indicating which antivirus engines detected a match for the file or

its content, and the name of the string(s) that match.

An example of this output is shown in Figure 14.19. As of now, VirusTotal cur-

rently supports 49 different antivirus engines, including all of those from the larger

and more popular antivirus providers.

FIGURE 14.19

A Sample VirusTotal Report

414 CHAPTER 14 Friendly and Threat Intelligence

http://www.virustotal.com
Figure 14.19

In the example above, you can see that this report indicates the file that was sub-

mitted was detected as malware by 7 out of 48 different antivirus engines. Two of the

engines that detected this are shown; the antiy-AVL and Baidu-International

engines. They both detect this file as some sort of VNC-based application, which

can be used to remotely control a system. The meter at the top right of the screen

shows an indication of whether the file is actually malicious based upon the number

of matches and a few other factors. In this case, it thinks that the file we’ve submitted

is probably malicious.

While VirusTotal doesn’t share submitted samples publicly, it does share samples

that match at least one antivirus engine with antivirus companies. Keep this in mind

when submitting files that might be highly sensitive or involved in targeted attacks.

Cuckoo Sandbox and Malwr.com
One of the most popular sandbox environments for malware analysis is Cuckoo.

Cuckoo (http://www.cuckoosandbox.org) will launch an instance of a virtual

machine, execute malware, and perform a variety of analysis tasks. This includes

recording the changes and actions the malware makes, any changes to the system

that occur, Windows API calls, and files that are created or deleted. Beyond this,

Cuckoo can also create a full memory dump of the system or selected processes,

and takes screenshots of the virtual machine as the malware is executing. All of this

goes into a final report that Cuckoo can generate. Cuckoo is designed around a mod-

ular system that allows the user to customize exactly what occurs during the proces-

sing of malware and the reporting of findings.

Cuckoo sandbox is a tool that you can download and deploy internally, and one

that I’ve seen used successfully in a lot of environments. However, this section is

about online malware analysis sandboxes, and that is what exists at http://www.

malwr.com. Malwr is a website that utilizes Cuckoo to perform malware analysis

services for free. It is operated as a non-commercial site that is run by volunteer secu-

rity professionals with the exclusive intent to help the community. The files you sub-

mit are not shared publicly or privately unless you specify that this is allowed when

you submit.

Figures 14.20 and 14.21 shows an excerpt of a Cuckoo report from Malwr.

In these figures, the first image shows Cuckoo providing information about sig-

natures that the malware has matched, indicating that those sections of the report

should be examined in more detail. This also shows screenshots from the virtual

machine where the malware was executed. Figure 14.21 shows results form the

behavioral analysis performed by Cuckoo. In this case, we see some of the actions

taken by the file mypcbackup0529.exe.

Malwr publishes shared analysis reports on its home page, so you can go there

and view these reports to get a real idea of the power that Cuckoo provides. You

can also search these reports based on the MD5 hash of a malware sample to see

if a report already exists for the file. This will get you to the results you want to

see faster without waiting for analysis to be completed.

415Generating Threat Intelligence

http://www.cuckoosandbox.org
http://www.malwr.com
http://www.malwr.com

FIGURE 14.20

Cuckoo Report Showing Matching Signatures and Screenshots

FIGURE 14.21

Cuckoo Report Showing Behavioral Analysis Results

416 CHAPTER 14 Friendly and Threat Intelligence

Figure 14.20
Figure 14.21

If you have the capacity to do so, setting up a Cuckoo sandbox internally is a

useful venture for any SOC or NSM environment. The setup is a bit long and

complicated, but that provides much more flexibility than you will find from

the online service, including the ability to customize analysis routines and re-

porting. I think that you will find that Cuckoo is a very full-featured malware

analysis sandbox that can come in handy in a variety of situations during daily

analysis.

ThreatExpert
ThreatExpert is another online sandbox that provides similar functionality to Cuckoo

and Malwr. ThreatExpert (http://www.threatexpert.com) allows for the submission

of suspicious files via its website. It will execute submitted files in a sandbox envi-

ronment to perform a limited behavioral analysis of the file. The end result of this

analysis is a report that details the actions that the suspicious file took in relation

to the file system, system registry, and more. Figures 14.22 and 14.23 show excerpts

from a ThreatExpert Report.

FIGURE 14.22

ThreatExpert Report Submission Summary

417Generating Threat Intelligence

http://www.threatexpert.com
Figure 14.22

In the first image, we can see that the file that was submitted appears to be packed

with UPX, and that ThreatExpert thinks that this file contain characteristics that rep-

resent a security risk, including the creation of a startup registry entry, and commu-

nication with a remote IRC server. The second figure provides more technical details

associated with these findings, including memory modifications, registry modifica-

tions, and the creation of a mutex and opening of a port.

ThreatExpert also has a very robust search feature. It will allow you to search for

files that have already been analyzed by searching based upon the files’ MD5 or

SHA1 hash, so that you don’t have to wait for it to re-analyze a file that may have

already be submitted. Its most powerful feature, however, is the ability to search for

terms within reports. This means that you can search for arbitrary text, file names, IP

addresses, or domain names that you have found elsewhere on your network to see if

they show up in relation to any of ThreatExpert’s malware analysis reports. I’ve been

FIGURE 14.23

ThreatExpert Report Detailing Multiple Actions

418 CHAPTER 14 Friendly and Threat Intelligence

Figure 14.23

involved in many investigations where the only intelligence I was able to find regard-

ing a certain address was within a ThreatExpert malware report, and many of those

times that has been enough to lead me down the right path towards figuring out

whether an incident had occurred.

While ThreatExpert is an efficient sandbox, it doesn’t go into quite as much detail

as Cuckoo, and it doesn’t have the option of being downloaded and installed locally.

With that said, in a lot of instances it will get the job done just fine, and its search

feature makes it incredibly valuable for NSM analysis.

Team Cymru Malware Hash Registry
The quickest way to identify any file is by its cryptographic hash. Because of this,

most files are uniquely identified by their file hash; typically MD5, but sometimes

SHA1. This is advantageous because a single hash value can be used to identify a file

regardless of its name. We’ve already seen instances where both Malwr and Threa-

tExpert identify files using these hashes, so it makes sense that it would be relatively

easy for someone to compile a list of known malicious malware hashes. That is

exactly what Team Cymru did.

The Team Cymru Malware Hash Registry (http://www.team-cymru.org/Ser

vices/MHR/) is a database containing known malware hashes from multiple sources.

This database can be queried in a lot of ways, and provides a quick and efficient way

to determine if a file you’ve collected during detection or analysis is malicious.

The easiest way to query the registry is actually with the WHOIS command. This

may seem a bit odd, but it works surprisingly well. You can query the database by

issuing a WHOIS command in the following format:

whois –h hash.cymru.com<hash>

The results of two of these queries are shown in Figure 14.24.

In the figure above, we complete two queries that each return three columns. The

first column contains the hash value itself. The second column contains the time-

stamp (in epoch format, which you can convert to local time by using the date –d

command) of the last time that the hash was observed. The third column shows a

percentage number of antivirus detection engines that classified the file as malicious.

In the first submission we see that the file was detected as malicious by 79% of anti-

virus engines. The second submission lists NO_DATA for this field, which means

FIGURE 14.24

Querying the Team Cymru Malware Hash Registry

419Generating Threat Intelligence

http://www.team-cymru.org/Services/MHR/
http://www.team-cymru.org/Services/MHR/
Figure 14.24

that the hash registry has no record for that hash value. The malware hash registry

will not keep records on hash values that have below a 5% detection rate.

The Team Cymru Malware Hash Registry can be useful for the individual anal-

ysis of suspicious files, but because of the extensive number of ways you can query

the database, it also lends itself well to automated analysis. For instance, Bro pro-

vides functionality to use its file extraction framework (Chapter 10) in conjunction

with its intelligence framework (Chapter 8) to selectively extract files and automat-

ically compare their hashes against the hash registry. This is incredibly valuable from

a detection perspective, and can ease the analysis burden of an event.

You can read more about the malware hash registry and the numerous ways you

can query it by visiting its website, listed above.

Combining all of the IP and domain name intelligence we’ve discussed here with

the observations that you’ve made from your own network data should give you the

resources you need to begin building a tactical intelligence product.

CONCLUSION

Know your network, know your adversary, and you will be able to get to the bottom

of any investigation. The capability to collect and generate intelligence for friendly

assets combined with the ability to research and derive information about potentially

hostile entities is critical for the successful analysis of any network security event. In

this chapter we discussed methods for doing all of these things. While there are a

number of ways to approach intelligence, it is key that intelligence is approached

as a product that is designed to help analysts make decisions that lead to escalation.

In the next chapter we will discuss the analysis process, which will draw upon infor-

mation gained during the analysis collection and generation process.

420 CHAPTER 14 Friendly and Threat Intelligence

CHAPTER

The Analysis Process 15
CHAPTER CONTENTS

Analysis Methods ... 422

Relational Investigation ..423

Step One: Investigate Primary Subjects and Perform Preliminar

Investigation of the Complaint ... 424

Step Two: Investigate Primary Relationships and Current Interaction 424

Step Three: Investigate Secondary Subjects and Relationships 425

Step Four: Investigate Additional Degrees of Subjects Relation 425

Relational Investigation Scenario ... 425

Differential Diagnosis ..431

Step One: Identify and List the Symptoms .. 431

Step Two: Consider and Evaluate the Most Common Diagnosis First 431

Step Three: List All Possible Diagnosis for the Given Symptoms 432

Step Four: Prioritize the List of Candidate Conditions by Their Severity 432

Step Five: Eliminate the Candidate Conditions, Starting with the Most Severe ...432

Differential Diagnosis Scenarios .. 433

Implementing Analysis Methods ...438

Analysis Best Practices .. 438

Unless You Created the Packet Yourself, There Are No Absolutes438

Be Mindful of Your Abstraction from the Data ..439

Two Sets of Eyes are Always Better than One ...439

Never Invite an Attacker to Dance ...440

Packets are Inherently Good ...440

Analysis is No More About Wireshark than Astronomy is About a Telescope441

Classification is Your Friend ...441

The Rule of 10’s ...442

When you Hear Hoof Beats, Look for Horses – Not Zebras442

Incident Morbidity and Mortality ... 443

Medical M&M ...443

Information Security M&M ...444

When to Convene an M&M ... 445

M&M Presenter(s) ... 445

M&M Peers .. 445

The Presentation ... 445

Strategic Questioning ... 446

421

Devils Advocate .. 446

Alternative Analysis (AA) .. 446

M&M Outcome ... 447

Additional M&M Tips ... 448

Conclusion .. 449

The most important component of NSM is the analysis process. This is where the ana-

lyst takes the output from a detection mechanism and accesses various data sources to

collect information that can help them determine whether something detrimental to the

network or the information stored on it has actually happened. The process the analyst

goes through in order to accomplish this is called the analysis process.

In almost every SOC I’ve visited and with nearly every analyst I’ve spoken to, the

analysis process is an ad-hoc, subjective series of loosely defined steps that every

individual defines on their own. Of course, everyone has their own individual style

and everyone parses information differently, so this is expected to some degree.

However, a codified, systematic analysis process on which all analysts can base their

efforts is valuable. The adoption of such a process supports faster decision making,

more efficient teamwork, and clearer incident reporting. Most of all, it helps an

analyst solve an investigation quicker.

In this chapter, we will look at two different analysis methods that can serve as

a framework for performing NSM analysis. One of these methods is taken from a sys-

tem police investigators use to solve criminal investigations, while the other is taken

from a process that doctors use to solvemedical investigations. As of the writing of this

book, a written framework for the NSM analysis process is something I’ve yet to see in

existence. Because of that, if you take nothing else from this book, my hope is that this

chapter will provide you with the knowledge necessary to apply one of these two anal-

ysis methods to your daily analysis process, and that it serves to hone your analysis

skills so that you can achieve better, faster, more accurate results in your investigations.

Once we’ve discussed these analysis methods, I will provide a number of analysis

best practices that I’ve learned frommy own experience as an NSM analyst and from

my colleagues. Finally, we will discuss the incident “morbidity and mortality”

process, which can be used for refining collection, detection, and analysis after an

investigation has concluded.

ANALYSIS METHODS
In general, a method is simply a way of doing something. While there are hundreds of

ways to do the “something” that is NSM analysis, every analysis process requires

three things: an input, an investigation, and an output. The way these things are done

and organized is what defines an analysis method, which is simply a systematic

approach to determining if an incident has occurred. In this case, the input is usually

some type of IDS alert or another anomaly that catches an analyst’s eye, and the out-

put is the decision of whether an incident has occurred. The steps that occur between

those two things during the investigation stage are what we are going to talk about

here in defining analysis methods.

422 CHAPTER 15 The Analysis Process

Relational Investigation

The term “investigation” is most closely associated with a police investigation. This

isn’t just because some information security engineer decided to steal this term

twenty years ago; it’s because the processes of investigating an information security

breach and investigating a crime are quite similar. As a matter of fact, the approach

that police investigators often use to get to the bottom of a crime is something

we can use as a framework for an analysis method. This is called a relational

investigation.

The relational method is based upon defining linear relationships between enti-

ties. If you’ve ever seen an episode of “CSI” or “NYPD Blue” where detectives stick

pieces of paper to a corkboard and then connect those items with pieces of yarn, then

you’ve seen an example of a relational investigation. This type of investigation relies

on the relationships that exist between clues and individuals associated with the

crime. A network of computers is not unlike a network of people. Everything is con-

nected, and every action that is taken can result in another action occurring. This

means that if we as analysts can identify the relationships between entities well

enough, we should be able to create a web that allows us to see the full picture of

what is occurring during the investigation of a potential incident.

The relational investigation process flows through four steps (Figure 15.1).

Step1
Investigate Primary

Subjects

Perform Preliminary

Investigation of

Complaint

Step 2
Investigate Primary

Relationship

Investigate Current

Interaction

Step 3
Investigate Secondary

Subjects

Investigate

Relationships

Between Primary and

Secondary Subjects

Step 4

(Repeating)
Investigate Additional

Degrees of Subjects

Investigate Additional

Degrees of

Relationships

FIGURE 15.1

The Relational Investigation Analysis Method

423Analysis Methods

Figure 15.1

Step One: Investigate Primary Subjects and Perform Preliminary
Investigation of the Complaint
In a police investigation, law enforcement is typically notified of an event because of

a complaint, which is usually dispatched from the police station. When they receive

this complaint, they are given information about the subjects involved with the com-

plaint and the nature of the complaint itself.

When arriving on the scene, the first thing an officer does is identify the subjects

involved (the primary subject) and determine if the complaint is worth further

investigation. This determination is made based on the law, and the officer’s initial

judgement of whether there is the potential for a law to have been broken. If the offi-

cer thinks that this potential exists, he will begin collecting information from each of

the subjects involved. This might include verifying that they have legitimate iden-

tification, viewing the prior criminal history, and performing a pat down to determine

if they are in possession of any weapons or illegal items.

In an NSM investigation, the analyst is typically notified of an event by means of

alert data, including alerts generated by an IDS. This alert typically includes the hosts

involved with the event and the nature of the alert. In this case, the alert is similar to

an officer’s complaint, and the hosts are similar to an officer’s subjects. In a similar

chain of events, the NSM analyst must make an initial determination of whether the

alert is worth further investigation. Usually, this means examining the details of the

rule or detection mechanism that caused the generation of the alert, and determining

if the traffic associated with it actually matches that alert. Essentially, this is an

attempt to quickly determine if a false positive has occurred. If the alert can’t be

deemed a false positive, then the analyst’s next step should be to begin collecting

information about the primary subjects associated with the alert: the friendly and

hostile IP addresses. This includes gathering friendly and tactical threat intelligence

like we discussed in Chapter 14.

Step Two: Investigate Primary Relationships and Current Interaction
Once an officer has investigated both subjects, he will investigate the relationship

between them. This includes the previous relationship as well as the current interac-

tion. As an example, consider a domestic complaint. The officer will attempt to

determine if the two subjects have been in a relationship, the duration of that rela-

tionship, if the subjects live together, and so on. Then, the officer will determine what

actions occurred that led up to the complaint, when that escalated into the current

situation, and what happened afterwards.

The NSM analyst will do the same thing to investigate the primary relationship

between the friendly and hostile hosts. They begin by determining the nature of

previous communication between the hosts. The following questions might me

asked:

• Have these two hosts ever communicated before?

• If yes, what ports, protocols, and services were involved?

424 CHAPTER 15 The Analysis Process

Next, the analyst will thoroughly investigate the communication associated with

the initial alert. This is where data from multiple sources is retrieved and analyzed to

look for connections. This will include actions like:

• Gathering PCAP data

• Performing packet analysis

• Gathering PSTR data

• Extracting files and performing malware analysis

• Generating statistics from session data

In some cases the analyst will be able to determine if an incident has occurred at

this point. When this happens, the investigation may end here. If the incident is not

clearly defined at this point or no concrete determination has been made, then it is

time to proceed to the next step.

Step Three: Investigate Secondary Subjects and Relationships
When a police officer is investigating primary subjects and the relationship between

them, secondary subjects will often be identified. These are individuals that are related

to the complaint in some way, and may include associates of the subject making the

complaint, associates of the subject the complaint is made against, or other witnesses.

When these subjects are identified, the investigation is typically aided by performing

the same investigative steps outlined in the first two steps.This includesan investigation

of these subjects, as well as the relationships between them and the primary subjects.

In an NSM investigation, this happens often. For instance, while investigating the

relationship between two hosts an analyst may find that the friendly host is commu-

nicating with other hostile hosts in the same manner or that the hostile host is com-

municating with other friendly hosts. Furthermore, analysis of malicious files may

yield IP addresses revealing other sources of suspicious communication. These hosts

are all considered secondary subjects.

When secondary subjects are identified, they should be investigated in the same

manner as primary subjects. Following this, the relationships between secondary

subjects and primary subjects should be examined.

Step Four: Investigate Additional Degrees of Subjects Relation
At this point, the investigation of subjects and relationships should repeat asmany times

as necessary, andmay require the inclusion of tertiary and even quaternary subjects. As

you go, you should fully evaluate subjects and relationships on a per-level basis, fully

exhausting each layer of interaction before moving on to the next. Otherwise, it is easy

to get lost down the rabbit hole andmiss earlier connections that could impact how you

view other hosts. When you are finished, you should be able to describe the relation-

ships between the subjects and how malicious activities have occurred, if at all.

Relational Investigation Scenario
Now that we’ve explained the relational investigation process, let’s go through an

example to demonstrate how it might work in a real NSM environment.

425Analysis Methods

Step One: Investigate Primary Subjects and Perform Preliminary
Investigation of the Complaint
Analysts are notified that an anomaly was detected with the following Snort alert:

ET WEB_CLIENT PDF With Embedded File

In this alert, the source IP is 192.0.2.5 (Hostile Host A) and the destination IP

address is 172.16.16.20 (Friendly Host B). These are the primary subjects. The prelim-

inary examination of the traffic associated with this activity indicates that there does

appear to be a PDF file being downloaded. The PCAP data for the communication

sequence is obtained, and the PDF is extracted from the file using Wireshark. The

MD5 hash of the PDF file is submitted to the Team Cymru Malware Hash Registry,

and it determines that 23%of antivirus detection engines think that this file ismalicious.

Based on this, you should make the decision that further investigation is warranted.

The next step is to gather friendly and tactical threat intelligence related to both

hosts. This process determines the following:

Friendly Intelligence for 172.16.16.20:

• This system is a user workstation running Windows 7

• The system has no listening services or open ports

• The user of this system browses the web frequently, and multiple New Asset

Notifications exist in PRADS data

Hostile Intelligence for 192.0.2.5:

• IPVoid returns 0 matches on public blacklists for this IP address

• URLVoid returns 5 matches on public blacklists for the domain name the PDF

file was downloaded from

• NetFlow data indicates that this IP address has not communicated with any other

devices on the friendly network

Step Two: Investigate Primary Relationships and Current Interaction
In order to investigate the relationship between 172.16.16.20 and 192.0.2.5, the first

action that is performed is an analysis of packet data for the communication occur-

ring around the time of the alert. Packet data is downloaded for communication

FIGURE 15.2

Initial Primary Subjects

426 CHAPTER 15 The Analysis Process

Figure 15.2

between these two hosts with the time interval set to retrieve data from 10 minutes

before the alert happened to 10 minutes after the alert happened. After performing

packet analysis on this data, it is determined that the friendly host was redirected to

the malicious host from a third-party advertisement on a legitimate website. The

friendly host downloaded the file, and the communication with the hostile host

ceased.

The next step taken to investigate the relationship between 172.16.16.20

and 192.0.2.5 is to inspect the PDF file that was downloaded. This PDF file is sub-

mitted to a Cuckoo sandbox in order to perform automated malware analysis. The

behavioral analysis of this file indicates that this PDF contains an executable file.

The executable file contains the IP address 192.0.2.6 hard coded in its configura-

tion. No other information was able to be determined from the malware analysis of

these files.

At this point, you’ve exhausted your investigation of the primary subjects and the

relationship between them. While everything points to this being an incident, you

can’t quite make this determination for sure yet. However, we have identified a

secondary subject, so we will move on to the next step of our investigation with that

data in hand.

FIGURE 15.3

Relationship of Primary Subjects

427Analysis Methods

Figure 15.3

Step Three: Investigate Secondary Subjects and Relationships
We have identified the secondary subject 192.0.2.6 coded into the executable that

was dropped by the PDF file downloaded by the primary subject. Now, we must

investigate that subject by collecting hostile intelligence for this IP address:

Hostile Intelligence for 192.0.2.6:

• IPVoid returns 2 matches on public blacklists for this IP Address.

• NetFlow data indicates that the primary subject 172.16.16.20 has communicated

with this host. This communication occurred approximately thirty minutes

after the initial alert.

• NetFlow data indicates that two other friendly hosts on our network have been

communicating with this IP address on a periodic basis with low volumes of

traffic for the past several days. Their addresses are 172.16.16.30 and

172.16.16.40.

Based upon this information, it appears as though this issue might be larger than

we originally thought. Next, we need to determine the relationship between our

secondary subject 192.0.2.6 and our primary subject 172.16.16.20. Based upon

our hostile intelligence, we already know that communication occurred between

these two devices. The next step is to gather PCAP data for communication occurring

between these hosts. Once this data is collected, analysis reveals that although these

devices are communicating on Port 80, they are not using the HTTP protocol.

Instead, they are using a custom protocol, and you can see that commands are being

issued to this system. These commands result in the friendly system transmitting

system information to the hostile host. At this point that you also notice a periodic

call back that is transmitted to the hostile host.

At this point, we have enough information to determine that an incident can be

declared, and that 172.16.16.20 has become compromised (Figure 15.4). In some

cases, the investigation could end here. However, remember that we identified

two additional hosts (now identified as tertiary hosts) that were communicating

with the hostile IP 192.0.2.6. This means that there is a good chance those might

also be infected.

Step Four: Investigate Additional Degrees of Subjects’ Relation
An examination of the packet data transmitted between these tertiary hosts and

172.16.16.20 reveals that it is also participating in the same call back behavior as

was identified in the primary friendly host (Figure 15.5). Because of this, you can

determine that the tertiary friendly hosts are also compromised.

428 CHAPTER 15 The Analysis Process

FIGURE 15.4

Relationship of Primary and Secondary Subjects

4
2
9

A
n
a
lysis

M
e
th
o
d
s

Figure 15.4

FIGURE 15.5

Relationship of All Subjects

4
3
0

C
H
A
P
T
E
R
1
5

T
h
e
A
n
a
lysis

P
ro
c
e
ss

Figure 15.5

Summarizing the Incident
This scenario was based on a real incident that occurred in a SOC. Using a systematic

analysis process to identify hosts and build relationships between them not only

allowed us to determine if a compromise occurred, it also allowed us to find other

hosts that were also compromised but weren’t identified in the original alert that

tipped us off. This is a great example of how a structured process can help an analyst

get from A to Z without getting detoured or being overloaded with information. It is

very easy to get buried in the weeds in a scenario like this one. The key is approach-

ing each step as it is intended and not venturing too far off the path you are on. If you

trust the path, it will eventually get you where you want to go.

Differential Diagnosis

The goal of an NSM analyst is to digest the alerts generated by various detection mech-

anisms and investigatemultiple data sources to perform relevant tests and research to see

if a network security breach has happened. This is very similar to the goals of a physi-

cian, which is to digest the symptoms a patient presents with and investigate multiple

data sources and perform relevant tests and research to see if their findings represent

a breach in the person’s immune system. Both practitioners share a similar of goal of

connecting the dots to find out if something bad has happened and/or is still happening.

Although NSM has only been around a short while, medicine has been around for

centuries. This means that they’ve got a head start on us when it comes to developing

their diagnostic method. One of the most common diagnostic methods used in clin-

ical medicine is one called differential diagnosis. If you’ve ever seen an episode of

“House” then chances are you’ve seen this process in action. The group of doctors

will be presented with a set of symptoms and they will create a list of potential diag-

noses on a whiteboard. The remainder of the show is spent doing research and per-

forming various tests to eliminate each of these potential conclusions until only one

is left. Although the methods used in the show are often a bit unconventional, they

still fit the bill of the differential diagnosis process.

The differential method is based upon a process of elimination. It consists of five

distinct steps, although in some cases only two will be necessary. The differential

process exists as follows:

Step One: Identify and list the symptoms
In medicine, symptoms are typically conveyed verbally by the individual experienc-

ing them. In NSM, a symptom is most commonly an alert generated by some form of

intrusion detection system or other detection software. Although this step focuses

primarily on the initial symptoms, more symptoms may be added to this list as addi-

tional tests or investigations are conducted.

Step Two: Consider and evaluate the most common diagnosis first
A maxim every first year medical student learns is “If you hear hoof beats, look for

horses. . .not zebras.” That is, the most common diagnosis is likely the correct one.

As a result, this diagnosis should be evaluated first. The analyst should focus his

431Analysis Methods

investigation on doing what is necessary to quickly confirm this diagnosis. If this

common diagnosis cannot confirmed during this initial step, then the analyst should

proceed to the next step.

Step Three: List all possible diagnosis for the given symptoms
The next step in the differential process is to list every possible diagnosis based

upon the information currently available with the initially assessed symptoms. This

step requires some creative thinking and is often most successful when multiple

analysts participate in generating ideas. Although you may not have been able

to completely confirm the most common diagnosis in the previous step, if you

weren’t able to rule it out completely then it should be carried over into the list

generated in this step. Each potential diagnosis on this list is referred to as

a candidate condition.

Step Four: Prioritize the list of candidate conditions by their severity
Once a list of candidate conditions is created, a physician will prioritize these by list-

ing the condition that is the largest threat to human life at the top. In the case of an

NSM analyst you should also prioritize this list, but the prioritization should focus on

which condition is the biggest threat to your organization’s network security. This

will be highly dependent upon the nature of your organization. For instance, if

“MySQL Database Root Compromise” is a candidate condition then a company

whose databases contains social security numbers would prioritize this condition

much more highly than a company who uses a simple database to store a list of

its sales staff’s on-call schedule.

Step Five: Eliminate the candidate conditions, starting with the most severe
The final step is where the majority of the action occurs. Based upon the prioritized

list created in the previous step, the analyst should begin doing what is necessary to

eliminate candidate conditions, starting with the condition that poses the greatest

threat to network security. This process of elimination requires considering each can-

didate condition and performing tests, conducting research, and investigating other

data sources in an effort to rule them out as a possibility. In some cases, investigation

of one candidate condition may rule out multiple candidate conditions, speeding up

this process. Alternatively, investigation of other candidate conditions may prove

inconclusive, leaving one or two conditions that are unable to be definitively elim-

inated as possibilities. This is acceptable, since sometimes in network security mon-

itoring (as in medicine) there are anomalies that can’t be explained and require more

observation before determining a diagnosis. Ultimately, the goal of this final step is

to be left with one diagnosis so that an incident can be declared or the alert can be

dismissed as a false positive. It’s very important to remember that “Normal Commu-

nication” is a perfectly acceptable diagnosis, and will be the most common diagnosis

an NSM analyst arrives at.

432 CHAPTER 15 The Analysis Process

Differential Diagnosis Scenarios
Now that we’ve explained the differential diagnosis process, let’s go through a cou-

ple of practical examples to demonstrate how it might work in a real NSM environ-

ment. Since we paint with such broad strokes when performing differential

diagnosis, we will look at two unique scenarios.

Scenario 1

Step 1: Identify and List the Symptoms. The following symptoms were observed

through IDS alerts and investigation of immediately available data:

1. A friendly host appears to be sending outbound traffic to a Russian IP address

2. The traffic is occurring at regular intervals, every 10 minutes

3. The traffic is HTTPS over port 443, and as such is encrypted and unreadable

Step 2: Consider and Evaluate the Most Common Diagnosis First. Based on these

symptoms, it might appear that the most logical assumption is that this machine is

infected with some form of malware and is phoning home for further instructions.

After all, the traffic is going to a Russian IP address at regular 10 minute intervals.

Although those things are worth noting (I wouldn’t have listed them if they weren’t),

I don’t think we should buy into the malware theory so hastily. All too often, too

much emphasis is placed on the geographic location of IP addresses, so the fact that

the remote IP address is Russian means little right off the bat. Additionally, there are

a lot of normal communication mechanisms that communicate on regular periodic

intervals. This includes things like web-based chat, RSS feeds, web-based e-mail,

stock tickers, software update processes, and more. Operating on the principal that

Step 5

Eliminate the Candidate Conditions, Starting with the Most Severe

Step 4

Prioritize the List of Candidate Conditions by Their Severity

Step 3

List All Possible Diagnosis for the Given Symptoms

Step 2

Consider and Evaluate the Most Common Diagnosis First

Step 1

Identify and List the Symptoms

FIGURE 15.6

The Differential Diagnosis Analysis Process

433Analysis Methods

Figure 15.6

all packets are good unless you can prove they are bad, I think the most common

diagnosis here is that this is normal traffic.

That said, confirming that something is normal can be hard. In this particular

instance we could start with some hostile intelligence collection for the Russian

IP. Although it’s located in Russia, a legitimate company still may own it. If we were

to look up the host and find that it was registered to a popular AV vendor we might be

able to use that information to conclude that this was an AV application checking for

updates. I didn’t mention the URL that the HTTPS traffic is going to, but quickly

Googling it may yield some useful information that will help you determine if it

is a legitimate site or something that might be hosting malware or some type of botnet

command and control. Another technique would be to examine system logs or host-

based IDS logs to see if any suspicious activities are occurring on the machine at the

same intervals the traffic is occurring at. Another route is to examine friendly intel-

ligence for the friendly device. For instance, is the user from Russia? Are they using

an Antivirus product that (like Kaspersky) that might have update servers in Russia?

Those things might help to determine if the traffic is normal.

For the purposes of this exercise, let’s assume that we weren’t able to make a final

determination on whether this was normal communication.

Step 3: List all Possible Diagnoses for the Given Symptoms. There are several

potential candidate conditions within the realm of possibility for the current scenario.

For the sake of brevity, we’ve only listed a few of those here:

Normal Communication.We weren’t able to rule this out completely in the pre-

vious step so we carry it over to this step.

Malware Infection / Installed Malicious Logic. This is used as a broad category.
We typically don’t care about the specific strain of malware until we determine that

malware may actually exist. If you are concerned about a specific strain then it can be

listed separately. Think of this category as a doctor listing “bacterial infection” as a

candidate condition knowing that they can narrow it down further once more infor-

mation has been obtained.

Data Exfiltration from Compromised Host. This condition represents the poten-
tial that the host could be sending proprietary or confidential information out of the

network in small intervals. This type of event would often be part of a coordinated or

targeted attack.

Misconfiguration. It’s well within the realm of possibilities that a system admin-

istrator mistyped an IP address and a piece of software that should be trying to

communicate periodically with an internal system is now trying to do so with a Rus-

sian IP address. This is really quite common.

Step 4: Prioritize the List of Candidate Conditions by their Severity. With candidate

conditions identified, we can prioritize these based upon their severity. This priori-

tization will vary depending on the risk profile for an organization. As a generaliza-

tion, we’ve selected the following priorities, with priority 1 being the highest:

434 CHAPTER 15 The Analysis Process

Priority 1: Data Exfiltration from Compromised Host
Priority 2: Malware Infection / Installed Malicious Logic
Priority 3: Misconfiguration
Priority 4: Normal Communication

Step 5: Eliminate the Candidate Conditions, Starting with the Most Severe. Nowwe

can gather data and perform tests to eliminate each potential candidate condition.

Once you’ve identified the correct diagnosis you would stop this process, but for this

scenario we’ve gone through the motions with every condition.

Priority 1: Data Exfiltration from Compromised Host. This one can be a bit

tricky to eliminate as a possibility. Full packet capture won’t provide a lot of help

since the traffic is encrypted. If you have session data available, you should be able

to determine the amount of data going out. If only a few bytes are going out every 10

minutes then it’s likely that this is not data exfiltration, since this would probably

involve a larger amount of outbound data. It would also be valuable to determine

if any other hosts on your network are communicating with this IP address or any

other IPs in the same address space. Finally, baselining normal communication

for your internal host and comparing it with the potentially malicious traffic may

provide some useful insight. This can be done with friendly intelligence data, like

data collected by PRADS.

Priority 2: Malware Infection / Installed Malicious Logic. At this point the

research you’ve already done should give you a really good idea of whether or

not this condition is true. It is likely that by examining the potential for data exfil-

tration, you will rule this condition out as a result or will have already been able to

confirm that it is true. In addition to things listed in those steps, you could examine

network antivirus or HIDS logs in detail.

Priority 3: Misconfiguration. This condition can best be approached by com-

paring the traffic of the friendly host against the traffic of one or more hosts

with a similar role on the network. If every other workstation on that same subnet

has the same traffic pattern, but to a different IP address, then it’s likely that

the wrong IP address was entered into a piece of software somewhere. Having

access to host-based logs can also be useful in figuring out if a misconfiguration

exists since records of the misconfiguration might exist in Windows or Unix

system logs.

Priority 4: Normal Communication. If you’ve gotten this far, then the diagnosis
of normal communication should be all that remains on your list of candidate

conditions.

Making a Diagnosis. At this point you have to use your experience as an analyst and

your intuition to decide if you think something malicious is really occurring. If you

were able to complete the previous analysis thoroughly, then operating on the

assumption that all packets are good unless you can prove they are bad would mean

your final diagnosis here should be that this is normal communication. If you still

435Analysis Methods

have a hunch something quirky is happening though, there is no shame in monitoring

the host further and reassessing once more data has been collected.

Scenario 2

Step 1: Identify and List the Symptoms. The following symptoms were observed

through IDS alerts and investigation of immediately available data:

1. A web server in the DMZ is receiving massive amounts of inbound traffic

2. The inbound traffic is unreadable and potentially encrypted or obfuscated

3. The inbound traffic is coming to multiple destination ports on the internal host

4. The inbound traffic is UDP based

Step 2: Consider and Evaluate the Most Common Diagnosis First. With the amount

of traffic received by the internal host being abundant and the packets using the UDP

protocol with random destination ports, my inclination would be that this is some

form of denial of service attack.

The quickest way to determine whether something is a denial of service is to

assess the amount of traffic being received compared with the normal amount of traf-

fic received on that host. This is something that is really easy to do with session data

using the throughput calculation statistics we discussed in Chapter 11. If the host is

only receiving 20% more traffic than it normally would, then I would consider alter-

natives to a DoS. However, if the host is receiving 10 or 100 times its normal amount

of traffic then DoS is very likely. It’s important to remember that a DoS is still a DoS

even if it is unintentional.

Once again, for the sake of this scenario we will continue as though we weren’t

able to make a clear determination of whether a DoS condition exists.

Step 3: List all Possible Diagnoses for the Given Symptoms. There are several can-

didate conditions within the realm of possibility for the current scenario. For the sake

of brevity, we’ve only listed a few of those here:

Denial of Service. We weren’t able to rule this out completely in the previous

step so we carry it over to this step.

Normal Communication. It doesn’t seem incredibly likely, but there is potential

that is normal traffic being generated by a legitimate service.

Misdirected Attacks.When a third party chooses to attack another they will often

spoof their source address for the sake of anonymity and to prevent getting DoS’d

themselves. This will result in the owner of the spoofed IP they are using seeing that

traffic. This web server could be seeing the effects of this.

Misconfigured External Host. A misconfiguration could have happened on

someone else’s network just as easily as it could on yours. This misconfigu-

ration could result in an external host generating this traffic and sending it to the

web server.

SPAMMail Relay. The server could be misconfigured or compromised in a man-

ner that allows it to be used for relaying SPAM mail across the Internet.

436 CHAPTER 15 The Analysis Process

Step 4: Prioritize the List of Candidate Conditions by their Severity. With candidate

conditions identified, we can prioritize these based upon their severity. This prioritiza-

tion will vary depending on the risk profile for an organization. As a generalization,

we’ve selected the following priorities, with priority 1 being the highest:

Priority 1: Denial of Service
Priority 2: SPAM Mail Relay
Priority 3: Misconfigured External Host
Priority 4: Misdirected Attacks
Priority 5: Normal Communication

Step 5: Eliminate the Candidate Conditions, Starting with the Most Severe. Nowwe

can gather data and perform tests to eliminate each potential candidate condition.

Once you’ve identified the correct diagnosis you would stop this process, but for this

scenario we’ve gone through the motions with every condition.

Priority 1: Denial of Service.We’ve already gone through our paces on this one

without being able to identify that it is the definitive diagnosis. Even though this is

the most severe we would have to proceed to attempt to eliminate other candidate

conditions to help in figuring out if a DoS is occurring. Of course, depending on

the effect of the attack it may make the most sense to contain the issue by blocking

the traffic before spending more time investigating the root cause.

Priority 2: SPAM Mail Relay. This one is relatively easy to eliminate. If the

server were being used as a mail relay then you would have a proportionate amount

of traffic going out as you do going in. If that’s not the case and you don’t see any

abnormal traffic leaving the server then it is likely that it is not relaying SPAM. You

can determine this by generating throughput statistics from session data, like we dis-

cussed in Chapter 11. If the web server is also running mail services then you can

examine the appropriate logs here as well. If it is not supposed to be running mail

services, you can examine the host to see if it is doing so in an unauthorized manner.

Priority 3: Misconfigured External Host. This one is typically pretty tricky.

Unless you can identify the owner of the IP address and communicate with them

directly then the most you can hope to do is block the traffic locally or report abuse

at the ISP level.

Priority 4: Misdirected Attacks. This is another tricky one along the same lines as

the previous candidate condition. If it’s an attacker somewhere else whose antics are

causing traffic redirection to your server then the most you can do is report the issue

to the ISP responsible for the IP address and block the traffic locally.

Priority 5: Normal Communication. This doesn’t seem likely, but you can’t say

this for sure without baselining the normal traffic for the host. Using friendly intelli-

gence gathered from a tool like PRADS combined with session data review, you can

compare the host’s traffic at similar times on previous days to see if you can draw any

conclusions. Is the pattern normal and it’s just the amount of traffic that anomalous? Is

it both the pattern and the amount that’s anomalous? Does the server ever talk to the

offending IP prior to this? These questions should lead you in the right direction.

437Analysis Methods

Making a Diagnosis. In this scenario, it’s very possible that you are left with as many

as three candidate conditions that you cannot rule out. The good thing here is that

even though you can’t rule these out, the containment and remediation methods

would be the same for all of them. This means that you still have gotten to a state

of diagnosis that allows the network to recover from whatever is occurring. This

is just like when a doctor knows that an infection is occurring with a patient. Even

if the doctor doesn’t know the exact nature of the infection, they know that treating it

with antibiotics will help solve the problem.

If the amount of traffic isn’t so large that it is actually preventing services from

being delivered, then you may not need to block the activity. This will allow you to

continue monitoring it in order to attempt to collect more symptoms that may be use-

ful in making a more accurate diagnosis.

Implementing Analysis Methods

The two analysis methods we’ve described here are very different. There really is no

clear-cut formula for choosing the right method as they each have their strengths and

weaknesses depending on the current scenario and the strengths and weaknesses of

the analyst. From my experience, the relational investigation method tends to work

best in complex scenarios where more than a few hosts are involved. This is because

it better allows you to keep track of a large number of entities and relationships with-

out getting overwhelmed or going off on an odd tangent. The differential diagnosis

method tends to work best in scenarios where you have a smaller number of hosts

involved and you are fixated on a few distinct symptoms in route to a singular

diagnosis.

The important thing to take away from this section isn’t that you should use one of

these analysis methods to the letter. They are merely provided as frameworks that

you might be able to adapt to your environment. The thing to take away here is that

all analysis is improved through the use of some systematic method that allows the

analyst to work through an investigation efficiently.

ANALYSIS BEST PRACTICES
Throughout this book we’ve mentioned several “best practices” for analysis. While

everyone performs analysis in their own unique way, there are certain truths that I

have found to be beneficial to remember when performing analysis. These best prac-

tices are compiled through years of experience from the authors of this book, as well

as our colleagues.

Unless You Created the Packet Yourself, There Are No Absolutes

Analysis happens in a world of assumptions and best guesses. Most of the decisions

you will make are centered on a packet or a log entry, and then honed based upon the

review of additional data or intelligence. Because of this, the assumptions and

438 CHAPTER 15 The Analysis Process

guesses you make will be constantly shifting as new information comes to light.

Don’t worry though; there is nothing wrong with that. Ask your friendly neighbor-

hood chemist or physicist. Most of their work is based upon assumptions and they

have great success.

The takeaway here is that there are rarely absolutes in analysis, and it is healthy to

question assumptions and guesses constantly. Is that IP address REALLY a known

legitimate host? Does that domain REALLY belong to XYZ company? Is that DNS

server REALLY supposed to be communicating with that database server? Always

question yourself and stay on your toes.

Be Mindful of Your Abstraction from the Data

An analyst depends on data to perform their job. This data can come in the form of a

PCAP file, a PSTR record, or an IIS file. Since most of your time will be spent using

various tools to interact with data it’s crucial to be mindful of how that tool interacts

with the data. Humans are imperfect and because they make tools, sometimes “fea-

tures” can cloud data and prevent proper analysis.

In one scenario, I worked for a SOC that used a very popular commercial SIEM

solution. One day, we started seeing weird log entries in the SIEM console that indi-

cated a large amount of internal traffic was going to the IP address 255.255.255.255

on port 80. Investigating the data at a more intimate level uncovered that the

traffic generating these logs was actually internal HTTP requests that were being

blocked by a web proxy. An update to the parser the SIEM was using to ingest

records from that proxy resulting in it not knowing how to handle the destination

IP address field, yielding the improper value 255.255.255.255. This is a prime exam-

ple where knowing your data and being aware of how far abstracted from it you are is

crucial.

In a job where reliance upon data is critical, you can’t afford to not understand

exactly how your tools interact with that data.

Two Sets of Eyes are Always Better than One

There is a reason that authors have editors, policemen have partners, and there are

two guys sitting in every nuclear silo. No matter how much experience you have and

how good you are, you will always miss things. This is expected because different

people come from different backgrounds, and nobody is operates at 100% efficiency

all the time. After all, we are only human.

I come from a military network defense background, so the first thing I look at

when examining network traffic is the source and destination country. Now, I

know that in most cases geolocation data doesn’t matter much since those values

can easily be spoofed or represent another compromised host being used by some-

one in a differing country. However, it’s just how I’m programed. On the flip side,

several of my colleagues come from a systems administration backgrounds and as

a result, will look at the port number of the traffic first. As another example, I’ve

439Analysis Best Practices

worked with people who have a number crunching background, who will look at

the amount of data transferred in a communication sequence first. This subtle

technique helps demonstrate that our experiences help to shape our tactics a

bit differently. This means that the numbers guy might see something that the

sysadmin didn’t see, or that the military guy might have insight that the numbers

guy doesn’t.

Whenever possible it’s always a good idea to have a second set of eyes look at the

issue you are facing. In any SOC I manage, I usually implement a two-person rule

stating that at least two analyst are required to confirm an incident.

Never Invite an Attacker to Dance

My coworker, SANS Senior Instructor, and packet ninja master Mike Poor phrased it

best when I first heard him say, “Never invite an attacker to dance.” As an analyst,

it’s very tempting to want to investigate a hostile IP address a bit beyond conven-

tional means. Trust me, there have been many occasions where I’ve been tempted

to port scan a hostile entity that kept sending me poorly crafted UDP packets. Even

more so, any time someone attempts to DoS a network I’m responsible for defending,

I wish for nothing more than to be able to unleash the full fury of a /8 network on their

poor unsuspecting DSL connection.

The problem with this is that 99% of the time we don’t know who or what we are

dealing with. Although you may just be seeing scanning activity, the host that is orig-

inating the traffic could be operated by a large group of attackers or even a military

division of another country. Even something as simple as a ping could tip off an

attacker that you know they exist, prompting them to change their tactics, change

source hosts, or even amplify their efforts. You don’t knowwho you are dealing with,

what their motivation is, and what their capabilities are, so you should never invite

them to dance. The simple fact of the matter is that you don’t know if you are capable

of handling the repercussions.

Packets are Inherently Good

The ultimate argument in life is whether people are inherently good or inherently

evil. This same argument can be had for packets as well. You can either be the analyst

that believes all packets are inherently evil or the analyst that believes all packets are

inherently good.

In my experience, I’ve noticed that most analysts typically start their career

assuming that packets are inherently evil, but eventually progress to assuming that

packets are inherently good. That’s because it’s simply not feasible to approach

every single piece of network evidence as something that could be a potential

root-level compromise. If you do this, you’ll eventually get fired because you spent

your entire day running down a single alert or you’ll just get burnt out. There is some-

thing to be said for being thorough, but the fact of the matter is that most of the traffic

that occurs on a network isn’t going to be evil, and as such, packets should be treated

as innocent until proven guilty.

440 CHAPTER 15 The Analysis Process

Analysis is No More About Wireshark than Astronomy is
About a Telescope

Whenever I interview someone for any analyst position (above entry level), I always

ask that person to describe how he or she would investigate a typical IDS alert so that

I can understand their thought process. A common answer that I hear sometimes goes

like this: “I use Wireshark, Network Miner, Netwitness, and Arcsight.” That’s it.

Although there are processes and sciences in the practice of NSM, it is so much

more than that. If this weren’t the case then it wouldn’t even be necessary to have

humans in the loop. An effective analyst has to understand that while different tools

may be an important part of the job, those things are merely pieces of the puzzle. Just

like an astronomer’s telescope is just another tool that allows him to figure out what

makes the planets orbit the sun, Wireshark is just another tool in an analyst’s arsenal

that allows him to figure out what makes a packet get from point A to point B.

Start with the science, add in a few tools and processes, stay cognizant of the big

picture, keep an attention to detail, and eventually the combination of all of those

things and the experience you gain over time will help you develop your own anal-

ysis technique.

Classification is Your Friend

It won’t be long before you encounter a situation where you havemore than one signif-

icant event to analyze at a time.When this occurs, it helps to have a system in place that

can help you to determine which incident takes precedence for investigation and noti-

fication. In most SOC’s, this is an incident classification system. There are several of

these inexistence,but theone I’vegrownaccustomedtousing is theDoDCyber Incident

andCyber EventCategorization system,1 outlined byCJCSM6510.Table 15.1 outlines

these categories, ordered by the precedence each category should take.

1http://www.dtic.mil/cjcs_directives/cdata/unlimit/m651001.pdf

Table 15.1 DOD Cyber Incident and Cyber Event Categorization

Precedence Category Name Incident/Event

0 0 Training and Exercise N/A

1 1 Root-Level Intrusion Incident

2 2 User-Level Intrusion Incident

3 4 Denial of Service Incident

4 7 [Installed/Executed] Malicious Logic Incident

5 3 Unsuccessful Activity Attempt Event

6 5 Non-Compliance Activity Event

7 6 Reconnaissance Event

8 8 Investigating Event

9 9 Explained Anomaly Event

441Analysis Best Practices

http://www.dtic.mil/cjcs_directives/cdata/unlimit/m651001.pdf

FROM THE TRENCHES

Malicious Logic (Category 7) events trip up new analysts all of the time. Any time they see any

evidence of malicious code they will tend to classify the event as a CAT 7. However, the

key factor to note about CAT 7 incidents is that they only represent installed or executed

malicious logic. This means that is isn’t enough to observe a system downloading malicious

code. In order to truly classify something as a CAT 7, you have to find evidence that this

malicious code was installed or executed on the machine.

While this exact model might not be the best fit for your organization, I think that

any group can benefit from implementing a categorization system. Any time an ana-

lyst performs a preliminary review of an event and determines that it warrants more

investigation, that event should be assigned a category, even if that category is

“Investigating “ (CAT 8 Above). The category an investigation is assigned to can

change multiple times throughout the investigation, and it is equally as common

for the severity of an event to be downgraded as it is for it to be escalated. These

things can be tracked in whatever internal ticketing/tracking system the SOC is

using, and any change to the category of an event should be accompanied by an

explanation by the analyst making that determination.

The Rule of 10’s

New analysts usually have a habit of grabbing too much data or too little data when

investigating an event occurring at a specific point in time. On one extreme, the analyst

will see an event occurring on 7 October 08:35 and will attempt to retrieve NSM data

associated with that host for all of 7 October. This creates a scenario where the analyst

has far too much data to analyze efficiently. On the other extreme, the analyst retrieves

only data occurring on 7 October 08:35 to theminute. This creates a scenario where the

analyst doesn’t have enough information to determine exactly what happened.

To prevent either of these scenarios from occurring with my analysts, I created

the rule of 10’s. This rule states that any time you need to perform analysis on an

event occurring at a single point in time, you should begin by retrieving data occur-

ring 10 minutes before the event occurred to 10minutes after the event occurred. I’ve

found that this time frame sits in the “sweet spot” where the analyst has enough data

to determine what led up to the event and what occurred after the event happened.

Once the analyst has analyzed this data, they can make the decision to retrieve more

data as necessary. Of course, this rule doesn’t fit every situation, but I’ve found it

effective for new analysts in 99% of the investigations they perform.

When you Hear Hoof Beats, Look for Horses – Not Zebras

This is another concept borrowed from the medical community that is drilled into the

heads of medical students for the duration of their education. If you see a patient who

has a stomachache, it doesn’t make a lot of sense to start performing tests for a lot of

442 CHAPTER 15 The Analysis Process

obscure diseases and conditions. Instead, ask the patient what they ate last night. If it

happens to be two-dozen tacos and half a pizza, then you’ve probably found the

problem.

Similarly, we should always consider the most obvious solution first when inves-

tigating events. If a system appears to be sending periodic communication to an

unknown web server, then you shouldn’t immediately assume that this is a callback

to some adversary-run command and control infrastructure. Instead, it might just be a

webpage they have open to check sports scores or stock ticker information.

This concept relies upon accepting the principle I spoke of earlier that all packets

are inherently good. It also lends itself well to the differential diagnosis analysis

method we looked at earlier.

INCIDENT MORBIDITY AND MORTALITY
It may be a bit cliché, but encouraging the team dynamic within a group of analysts

ensures mutual success over individual success. There are a lot of ways to do this,

including items we discussed before in Chapter 1, such as fostering the development

of infosec superstars or encouraging servant leadership. Beyond these things, there is

no better way to ensure team success within your group than to create a culture of

learning. Creating this type of culture goes well beyond sending analysts to formal-

ized courses or paying for certifications. It relies upon adopting the mindset that in

every action an analyst takes, they should either be teaching or learning, with no

exceptions. Once every analyst begins seeing every part of their daily job as an

opportunity to learn something new or teach something new to their peers, then a

culture of learning is flourishing.

A part of this type of organizational culture is learning from both successes and

failures. NSM is centered on technical investigations and cases, and when something

bad eventually happens, an incident. This is not unlike medicine, which is also

focused on medical investigations and patient cases, and when something bad even-

tually happens, death.

Medical M&M

When death occurs in medicine, it can usually be classified as something that was

either avoidable or inevitable from both a patient standpoint and also as it related

to the medical care that was provided. Whenever a death is seen as something that

may have been prevented or delayed with modifications to the medical care that was

provided, the treating physician will often be asked to participate in something called

a Morbidity and Mortality Conference, or “M&M” as they are often referred to casu-

ally. In an M&M, the treating physician will present the case from the initial visit,

including the presenting symptoms and the patient’s initial history and physical

assessment. This presentation will continue through the diagnostic and treatment

steps that were taken all the way through the patient’s eventual death.

443Incident Morbidity and Mortality

TheM&M presentation is given to an audience of peers, including any other phy-

sicians who may have participated in the care of the patient. The audience will also

include physicians who had nothing to do with the patient. The general premise is

that these peers will question the treatment process in order to uncover any mistakes

that may have been made, processes that could be improved upon, or situations that

could have been handled differently.

The ultimate goal of the medical M&M is for the team to learn from any com-

plications or errors, to modify behavior and judgment based upon experiences

gained, and to prevent repetition of errors leading to complications. This is some-

thing that has occurred within medicine for over one hundred years and has proven

to be wildly successful.2

Information Security M&M

Earlier, we discussed how the concept of differential diagnosis can be translated from

the medical field to information security. The concept of M&M is also something

that I think transitions well to information security.

As information security professionals, it is easy to miss things. Since we know

that prevention eventually fails, we can’t be expected to live in a world free from

compromise. Rather, we must be positioned so that when an incident does occur,

it can be detected and responded to quickly. Once that is done, we can learn from

whatever mistakes occurred that allowed the intrusion, and be better prepared to pre-

vent, detect, and respond next time.

When an incident occurs we want it to be because of something out of our hands,

such as a very sophisticated adversary or an attacker who is using an unknown zero

day exploit. The truth of the matter is that not all incidents are that complex and often

times there are ways in which detection, analysis, and response could occur faster.

The information security M&M is a way to collect that information and put it to

work. In order to understand how we can improve from mistakes, we have to under-

stand why they are made. Uzi Arad summarizes this very well in the book, “Man-

aging Strategic Surprise”, a must read for information security professionals.3 In

this book, he cites three problems that lead to failures in intelligence management,

which also apply to information security:

• The problem of misperception of the material, which stems from the difficulty of

understanding the objective reality, or the reality as it is perceived by the

opponent.

• The problems stemming form the prevalence of pre-existing mindsets among the

analysts that do not allow an objective professional interpretation of the reality

that emerges from the intelligence material.

2Campbell, W. (1988). “Surgical morbidity and mortality meetings”. Annals of the Royal College of

Surgeons of England 70 (6): 363–365. PMC 2498614.PMID 3207327.
3Arad, Uzi (2008). Intelligence Management as Risk Management. Paul Bracken, Ian Bremmer, David

Gordon (Eds.), Managing Strategic Surprise (43-77). Cambridge: Cambridge University Press.

444 CHAPTER 15 The Analysis Process

• Group pressures, groupthink, or social-political considerations that bias

professional assessment and analysis.

The information security M&M aims to provide a forum for overcoming these

problems through strategic questioning of incidents that have occurred.

When to Convene an M&M
In an Information SecurityM&M, the conference should be initiated after an incident

has occurred and been remediated. Selecting which incidents are appropriate for

M&M is a task that is usually handled by a team lead or member of management

who has the ability to recognize when an investigation could have been handled bet-

ter. This should occur reasonably soon after the incident so important details are fresh

on the minds of those involved, but far enough out from the incident that those

involved have time to analyze the incident as a whole, post-mortem. An acceptable

time frame can usually be about a week after the incident has occurred.

M&M Presenter(s)
The presentation of the investigation will often involve multiple individuals. In med-

icine, this may include an initial treating emergency room physician, an operating

surgeon, and a primary care physician. In information security, this could include

an NSM analyst who detected the incident, the incident responder who contained

and remediated the incident, the forensic investigator who performed an analysis

of a compromised machine, or the malware analyst who reverse engineered the mal-

ware associated with the incident.

M&M Peers
The peers involved with the M&M should include at least one counterpart from each

particular specialty, at minimum. This means that for every NSM analyst directly

involved with the case, there should be at least one other NSM analyst who had noth-

ing to do with it. This aims to get fresh outside views that aren’t tainted by feeling the

need to support any actions that were taken in relation to the specific investigation. In

larger organizations and more ideal situations, it is nice to have at least two counter-

parts from each specialty, with one having less experience than the presenter and one

having more experience.

The Presentation
The presenting individual or group should be given at least a few days notice before

their presentation. Although the M&M isn’t considered a formal affair, a reasonable

presentation is expected to include a timeline overview of the incident, along with

any supporting data. The presenter should go through the detection, investigation,

and remediation of the incident chronologically and present new findings only as

they were discovered during this progression. Once this chronological presentation

is given, the incident can then be examined holistically.

During the presentation, peers are expected to ask questions as they arise. Of

course, this should be done respectfully by raising your hand as the presenter is

speaking, but questions should NOT be saved for after the presentation. This is in

445Incident Morbidity and Mortality

order to frame the questions to the presenter as a peer would arrive at them during the

investigation process.

Strategic Questioning
Questions should be asked to presenters in such a way as to determine why something

was handled in a particular manner, or why it wasn’t handled in an alternative man-

ner. As youmay expect, it is very easy to offend someone when providing these types

of questions, therefore, it is critical that participants enter the M&M with an open

mind and both presenters and peers ask and respond to questions in a professional

manner and with due respect.

Initially, it may be difficult for peers to develop questions that are entirely con-

structive and helpful in overcoming the three problems identified earlier. There are

several methods that can be used to stimulate the appropriate type of questioning.

Devils Advocate
One method that Uzi Arad mentions in his contribution to “Managing Strategic Sur-

prise” is the Devils Advocate method. In this method, peers attempt to oppose most

every analytical conclusion made by the presenter. This is done by first determining

which conclusions can be challenged, then collecting information from the incident

that supports the alternative assertion. It is then up to the presenter to support their

own conclusions and debunk competing thoughts.

Alternative Analysis (AA)
R.J. Heuer presents several methods for strategic questioning in his paper, “The

Limits of Intelligence Analysis”. These methods are part of a set of analytic tools

called Alternative Analysis (AA).4 Some of these more commonly used methods are:

Group A / Group B
This analysis involves two groups of experts analyzing the incident separately based

upon the same information. This requires that the presenters (Group A) provide sup-

porting data related to the incident prior to the M&M so that the peers (Group B) can

work collaboratively to come up with their own analysis to be compared and con-

trasted during the M&M. The goal is to establish to individual centers of thought.

Whenever points arise where the two groups reach a different conclusion, additional

discussion is required to find out why the conclusions differ.

Red Cell Analysis
This method focuses on the adversarial viewpoint, where peers assume the role of the

adversary involved with the particular incident. They will question the presenter

regarding how their investigative steps were completed in reaction to the attacker’s

actions. For instance, a typical defender may solely be focused on finding out how to

4Heuer, Richards J., Jr. “Limits of Intelligence Analysis.” Orbis 49, no. 1 (2005)

446 CHAPTER 15 The Analysis Process

stop malware from communicating back to the attacker, but the attacker may be more

concerned with whether the defender was able to decipher the communication that

was occurring. This could lead to a very positive line of questioning that results in

new analytic methods that help to better assess the impact of the attacker, ultimately

benefiting the incident containment process.

What If Analysis
This method is focused on the potential causes and effects of events that may not

have actually occurred. During detection, a peer may ask a question related to

how the attack might have been detected if the mechanism that did detect it hadn’t

been functioning correctly. In the response to the event, a peer might question what

the presenter would have done had the attacker been caught during the data exfiltra-

tion process rather than after it had already occurred. These questions don’t always

relate directly to the incident at hand, but provide incredibly valuable thought-

provoking discussion that will better prepare your team for future incidents.

Analysis of Competing Hypotheses
This method is similar to what occurs during a differential diagnosis, where peers

create an exhaustive list of alternative assessments of symptoms that may have

been presented. This is most effectively done by utilizing a whiteboard to list every

potential diagnosis and then ruling those out based on testing and review of addi-

tional data.

Key Assumptions Check
Most all sciences tend to make assumptions based on generally accepted facts.

This method of questioning is designed to challenge key assumptions and how they

affect the investigation of a scenario. This most often pairs with the What If anal-

ysis method. As an example, in the spread of malware, it’s been the assumption

that when operating within a virtual machine, the malware doesn’t have the ability

to escape to the host or other virtual machines residing on it. Given an incident

being presented where a virtual machine has been infected with malware, a peer

might pose the question of what action might be taken if this malware did indeed

escape the virtual environment and infect other virtual machines on the host, or the

host itself.

M&M Outcome
During theM&M, all participants should actively take notes. Once theM&M is com-

pleted, the presenting individuals should take their notes and combine them into a

final report that accompanies their presentation materials and supporting data. This

reporting should include a listing of any points which could have been handled dif-

ferently, and any improvements that could be made to the organization as a whole,

either technically or procedurally. This report should be attached to the case file asso-

ciated with the investigation of the incident. This information ultimately serves as the

“lessons learned” for the incident.

447Incident Morbidity and Mortality

Additional M&M Tips
Having organized and participated in several of these conferences and reviews of

similar scope, I have a few other pointers that help ensure that they provide value.

• M&M conferences should be held only sporadically, with no more than one per

week and no more than three per month.

• It should be stressed that the purpose of the M&M isn’t to grade or judge an

individual, but rather, to encourage the culture of learning.

• M&M conferences should be moderated by someone at a team lead or lower

management level to ensure that the conversation doesn’t get too heated and to

steer questions in the right direction. It is important that this person is technical,

and not at an upper management level so that they can fully understand the

implications of what is being discussed.

• If you make the decision to institute M&M conferences, it should be a

requirement that everybody participates at some point, either as a presenter or a

peer.

• The final report that is generated from the M&M should be shared with all

technical staff, as well as management.

• Information security professionals, not unlike doctors, tend to have big egos. The

first several conferences might introduce some contention and heated debates.

This is to be expected initially, but will work itself out over time with proper

direction and moderation.

• The M&M should be seen as a casual event. It is a great opportunity to provide

food and coordinate other activities before and after the conference to take the

edge off.

• Be wary of inviting upper management into these conferences. Their presence

will often inhibit open questioning and response and they often don’t have the

appropriate technical mindset to gain or provide value to the presentation.

• If you don’t have a lot of real incidents to base your M&M’s on, make some

up! This is a great framework for performing tabletop exercises where

hypothetical scenarios are discussed. You can also employ red teams to assist in

these efforts by generating real attack scenarios.

It is absolutely critical that initiating these conferences is done with care. The

medical M&Mwas actually started in the early 1900s by a surgeon named Dr. Ernest

Codman at Massachusetts General Hospital in Boston. MGH was so appalled that

Dr. Codman suggested that the competence of surgeons should be evaluated that

he eventually lost his staff privileges. Now, M&M is a mainstay in modern medicine

and something that is done in all of the best hospitals in the world, including

MGH. I’ve seen instances where similar types of shunning can occur in information

security when these types of peer review opportunities are suggested. As NSM prac-

titioners it is crucial that we are accepting of this type of peer review and that we

encourage group learning and the refinement of our skills.

448 CHAPTER 15 The Analysis Process

CONCLUSION

In this chapter we discussed the analysis process, and two different methods that can

be used for performing analysis in a structured, systematic manner.We also looked at

a few analysis scenarios using these methods, as well as some analysis best practices.

Finally, we covered methods for performing post-mortem lessons learned events.

No matter how hard you try, there will come a point where the network you are

defending gets successfully attacked and compromised. In the modern security land-

scape, it’s inevitable and there isn’t a lot you can do about it because prevention

eventually fails. Because of this, you need to be prepared when it happens.

An incident won’t be remembered for how an intrusion occurred, but rather how it

was responded to, the amount of downtime that occurred, the amount of information

that was lost, and ultimately the amount of money it costs the organization. What rec-

ommendations can youmake tomanagement to ensure a similar incident doesn’t occur

again? What can you show your superiors to explain why the attack wasn’t detected?

What shortcomings do your tools have? These are questions that can’t fully be

answered until an intrusion has occurred and you have the context of an attack. How-

ever, these are questions you should constantly be asking yourself as you seek to

improve your collection, detection, and analysis processes. Every event and incident

flows through the NSM cycle and the lessons learned from each one will help to

improve the process for the next time.

You will get caught off guard, you will be blind sided, and sometimes you will

lose the fight. This chapter, and this book, is about equipping you with the right tools

and techniques to be prepared when it happens.

449Conclusion

APPENDIX

Security Onion Control
Scripts 1
This appendix contains a listing of scripts used to control and interact with Security

Onion services and data. All of these scripts (with the exception of rule-update) are

located in the /usr/sbin/ directory and are required to be executed with elevated

privileges using the sudo command. While we won’t cover every available option

for every single script, you can learn more about each script by running it with

the --help argument.

HIGH LEVEL COMMANDS

nsm

This script is used to pass options to underlying scripts, such as nsm_server and

nsm_sensor. This script can be used to check the status of an SO system by using

this command:

sudo nsm --all --status

nsm_all_del

This script will delete all SO server and sensor data, including configuration data.

This script will prompt for confirmation before performing this action. The script

is executed with no arguments, like this:

sudo nsm_all_del

nsm_all_del_quick

This script will delete all SO server and sensor data, including configuration data. This

script will NOT prompt for confirmation before performing this action. This script

should be executed with care. This script is executed with no arguments, like this:

sudo nsm_all_del_quick

SERVER CONTROL COMMANDS

nsm_server

This script is used to pass options to underlying scripts. The script can be used to

check the status of an SO system’s server components with this command:

sudo nsm_server --status

451

nsm_server_add

This script is used to create a new Sguil server. This script is executed during the SO

setup process and shouldn’t need to be run manually.

nsm_server_backup-config

This script is used to back up the Sguil configuration files. This example will back up

the configuration to an archive file in my home directory:

sudo nsm_server_backup-config --backup-file¼/home/sanders/config-

backup.tar.gz

nsm_server_backup-data

This script is used to back up Sguil data. This example will back up data to an archive

file in my home directory:

sudo nsm_server_backup-data --backup-file¼/home/sanders/data-

backup.tar.gz

nsm_server_clear

This script will delete all Sguil data. This example will clear data for the current Sguil

server:

sudo nsm_server_clear

nsm_server_del

This script will permanently delete the Sguil server. This example will delete the cur-

rent Sguil server:

sudo nsm_server_del

nsm_server_edit

This script is used to modify specific Sguil configuration settings. All of these set-

tings can be listed by running this command:

sudo nsm_server_edit --help

This example command would change the server sensor port:

sudo nsm_server_edit --server-name¼<server>--new-server-sensor-

port¼<port>

nsm_server_ps-status

This script is used to check the status of the Sguild service. This script is usually exe-

cuted with no options, like this:

sudo nsm_server_ps-status

452 APPENDIX 1 The Practice of Applied Network Security Monitoring

nsm_server_ps-start

This script starts the Sguild service. This script is usually executed with no options,

like this:

sudo nsm_server_ps-start

nsm_server_ps-stop

This script stops the Sguild service. This script is usually executed with no options,

like this:

sudo nsm_server_ps-stop

nsm_server_ps-restart

This script restarts the Sguild service. This script is usually executed with no options,

like this:

sudo nsm_server_ps-restart

nsm_server_sensor-add

This script is used to add a sensor to the Sguil configuration. If this script is launched

without arguments, it will provide a dialog for completing this action. Otherwise, this

command will add a sensor to a Sguil server:

sudo nsm_server_sensor-add --server-name¼<server>--sensor-

name¼<sensor>

nsm_server_sensor-del

This script is used to remove a sensor from the Sguil configuration. If this script is

launched without arguments, it will provide a dialog for completing this action. Oth-

erwise, this command will delete a sensor from a Sguil server:

sudo nsm_server_sensor-del --server-name¼<server>--sensor-

name¼<sensor>

nsm_server_user-add

This script is used to add a new user to the Sguil configuration. If this script is

launched without arguments, it will provide a dialog for completing this action. Oth-

erwise, this command will add a user to a Sguil server:

sudo nsm_server_user-add --server-name¼<server>--user-name

¼<username>--user-pass¼<password>

SENSOR CONTROL COMMANDS

nsm_sensor

This script is used to pass options to underlying scripts. The script can be used to

check the status of an SO system’s sensor components with this command:

sudo nsm_sensor --status

453Sensor Control Commands

nsm_sensor_add

This script is used to create a new sensor. This script is executed during the SO setup

process and shouldn’t need to be run manually.

nsm_sensor_backup-config

This script is used to back up the sensor configuration files. This example will back

up the configuration to an archive file in my home directory:

sudo nsm_sensor_backup-config --backup-file¼/home/sanders/config-

backup.tar.gz

nsm_sensor_backup-data

This script is used to back up collected sensor data. This example will back up data to

an archive file in my home directory:

sudo nsm_sensor_backup-data --backup-file¼/home/sanders/data-

backup.tar.gz

nsm_sensor_clean

This script is used to remove collected sensor data when the total disk utilization is

above 90%. When executed, the oldest sensor data is removed until disk utilization

falls below this threshold. The script is run hourly as a cron job. It can be executed

manually by running it without any arguments:

sudo nsm_sensor_clean

nsm_sensor_clear

This script is used to remove all collected sensor data. If this script is launched with-

out arguments, it will provide a dialog for completing this action. This command will

remove all collected data for a specified sensor:

sudo nsm_sensor_clear --sensor-name¼<sensor>

nsm_sensor_del

This script removes all collected sensor data and configuration information. If this

script is launched without arguments, it will provide a dialog for completing this

action. This command will remove all collected sensor data and configuration infor-

mation for a specified sensor:

sudo nsm_sensor_clear --sensor-name¼<sensor>

nsm_sensor_edit

This script is used to modify specific sensor configuration settings. All of these set-

tings can be listed by running this command:

sudo nsm_sensor_edit --help

454 APPENDIX 1 The Practice of Applied Network Security Monitoring

This example command would change the IP address of the server that the sensor

reports to:

sudo nsm_sensor_edit --sensor-name¼<sensor>--new-sensor-server-

host¼<server>

nsm_sensor_ps-daily-restart

This script is used with a cron job to perform a daily restart of certain sensor services

at midnight. It should not need to be run manually.

nsm_sensor_ps-status

This script is used to check the status of sensor services. If it is executed with no

options, it will display the status of all sensor services. However, you can also

use it to display the status of individual services. You can list these services by run-

ning the following command:

sudo nsm_sensor_ps-status --help

This example command will only display the status for Bro:

sudo nsm_sensor_ps-status --only-bro

nsm_sensor_ps-start

This script is used to start sensor services. If it is executedwith no options, it will start all

sensor services, unless they are already running. However, you can also use it to start

individual services. You can list these services by running the following command:

sudo nsm_sensor_ps-start --help

This example command will only start Snort:

sudo nsm_sensor_ps-start --only-snort-alert

nsm_sensor_ps-stop

This script is used to stop sensor services. If it is executed with no options, it will stop all

sensor services, unless they are already running. However, you can also use it to stop

individual services. You can list these services by running the following command:

sudo nsm_sensor_ps-stop --help

This example command will only stop Netsniff-NG:

sudo nsm_sensor_ps-stop --only-pcap

nsm_sensor_ps-restart

This script is used to restart sensor services. If it is executedwith no options, it will restart

all sensor services, unless they are already running.However, you can also use it to restart

individual services. You can list these services by running the following command:

455Sensor Control Commands

sudo nsm_sensor_ps-restart --help

This example command will only restart PRADS:

sudo nsm_sensor_ps-stop --only-prads

rule-update

This script is used to update sensor IDS rules. In a standalone or server installation, it

will download these rules from the Internet. Once a sensor installs, it will download

these rules from the configured server. It runs automatically at 7:01 AM UTC every

day. It can be executed manually by running it without any arguments:

sudo rule-update

For more information on these scripts, visit the Security Onion wiki at https://

code.google.com/p/security-onion/w/list.

456 APPENDIX 1 The Practice of Applied Network Security Monitoring

https://code.google.com/p/security-onion/w/list
https://code.google.com/p/security-onion/w/list

APPENDIX

Important Security Onion
Files and Directories 2
This appendix contains a listing of important Security Onion files and directories.

Some of these refer to areas where data is stored, while others point to configuration

files that can be modified to change how Security Onion interacts with various tools.

We’ve also included the location of many configuration files used by Security Onion

tools, since they might be in a different location on an SO system than where they

would be if you installed the tool manually on another operating system.

APPLICATION DIRECTORIES AND CONFIGURATION FILES
This listing describes the location of configuration files for multiple tools included

with Security Onion, as well as configuration files for SO itself. This listing is short

and only includes files that are commonly accessed or modified.

Security Onion

• General SO settings can be modified at /etc/nsm/securityonion.conf

• Template configurations for tools used on SO are stored at /etc/nsm/templates/

• Packet filtering can be applied by editing the /etc/nsm/rules/bpf.conf file

• Status checking and maintenance scripts are stored in /etc/cron.d/

Snort/Suricata

• If you are using Snort, its configuration file is located at /etc/nsm/<sensor>/

snort.conf.

• If you are using Suricata, its configuration file is located at /etc/nsm/<sensor>/

suricata.yaml.

• IDS rules are stored at /etc/nsm/rules/

• Downloaded rules are stored in the downloaded.rules file

• Custom rules can be added to the local.rules file

• Rule threshold entries can be added to the threshold.conf file

PulledPork

• The PulledPork configuration file is located at /etc/nsm/pulledpork/pulledpork.

conf

457

• Rule modifications using PulledPork are accomplished with these files:

• /etc/nsm/pulledpork/disablesid.conf

• /etc/nsm/pulledpork/dropsid.conf

• /etc/nsm/pulledpork/enablesid.conf

• /etc/nsm/pulledpork/modifysid.conf

PRADS

• ThePRADSconfiguration file is located at /etc/nsm/<sensor-interface>/prads.conf

Bro

• The Bro configuration files are located at /opt/bro/

ELSA

• In standalone and server installations, the ELSA web interface configuration file

is located at /etc/elsa_web.conf

• In standalone and sensor installations, the ELSA node configuration file is

located at /etc/elsa_node.conf

Snorby

Snorby configuration files are located at /opt/snorby/config/.

Syslog-NG

Syslog-NG configuration files are located at /etc/syslog-ng/.

Sguil

• Sguil configuration files are located at /etc/nsm/securityonion/

• Access to Sguil can be controlled with sguild.access

• Automatic categorization of events is handled by autocat.conf

• E-Mail alerts can be configured with sguild.email

• Queries for Sguil can be created with sguild.queries

SENSOR DATA DIRECTORIES
This listing contains locations where sensor tools store raw data:

Data Type Application Location

FPC Data Netsniff-NG /nsm/sensor_data/<sensor>/dailylogs/

Session Data Argus /nsm/sensor_data/<sensor>/argus/

Alert Data Snort/Suricata /nsm/sensor_data/<sensor>/snort-1/

Network Log Data / Alert Data Bro /nsm/bro/

Host Data PRADS /var/log/prads-asset.log

458 APPENDIX 2 The Practice of Applied Network Security Monitoring

APPENDIX

Packet Headers

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Type IPv4 0x0800

ARP 0x0806

IPv6 0x86DD

Applied NSM Packet Map 1

Frame Check Sequence (32-bit)

Byte Offset 13 Byte Offset 14 Byte Offset 15

Byte Offset 16 Byte Offset 17 Byte Offset 18 Byte Offset 19

Data (Variable Length)

Ethernet Version 2

Byte Offset 0 Byte Offset 1 Byte Offset 2 Byte Offset 3

Data (Continued) (Variable Length)

Destination Address (48-bit)

Byte Offset 4 Byte Offset 5 Byte Offset 6

Type (16-bit)

Byte Offset 7

Destination Address (cont...) Source Address (48-bit)

Byte Offset 8 Byte Offset 9 Byte Offset 10 Byte Offset 11

Source Address (cont…)

Byte Offset 12

459

Figure 1.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DF MF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IP Version Number Valid values are: 4 for IPv4 6 for IPv6

IP Header Length 4 Byte Multiplier Min Value 5 (20 bytes) Max Value 15 (60 bytes)

Total Length No Multiplier Max Length 65535

Flags R - Reserved D - Don't Fragment MF - More Fragments (1=Yes 0=No)

Fragment Offset 8 Byte Multiplier Max Size 65528

IP Protocol Hex Proto

ICMP UDP

IGMP GRE

TCP ESP

IGRP AH

0x01

0x02

0x06

0x09

Dec

1

2

6

9

Hex

0x11

0x2F

0x32

0x33

Proto Dec

17

47

50

51

Applied NSM Packet Map 2

Data (Variable Length)

Destination IP Address (32-bit)

Byte Offset 20 Byte Offset 21 Byte Offset 22 Byte Offset 23

IP Options (Variable - If Any)

Byte Offset 12 Byte Offset 13 Byte Offset 14 Byte Offset 15

Source IP Address (32-bit)

Byte Offset 16 Byte Offset 17

Byte Offset 11

V
a

ria
b

le

IPv4 Header (RFC 791)

Byte Offset 0 Byte Offset 1 Byte Offset 2 Byte Offset 3

2
0

 B
y

te
s

Version (4-

bit)

IP Hdr Length

(4-bit)
Type of Service (8-bit) Total Length (16-bit) (in Byte Offsets)

Byte Offset 4 Byte Offset 5 Byte Offset 6 Byte Offset 7

IP Identification Number (16-bit) Fragment Offset (13-bit)

Byte Offset 18 Byte Offset 19

Byte Offset 8 Byte Offset 9 Byte Offset 10

Time to Live (8-bit) Protocol (8-bit) Header Checksum (16-bit)

460 APPENDIX 3 Packet Headers

Figure 1-2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IP Version Number Valid values are: 4 for IPv4 6 for IPv6

Payload Length No Multiplier

Next Header Hex Proto

ICMP UDP

IGMP GRE

TCP ESP

IGRP AH

Dec Hex Proto

1 0x01

Applied NSM Packet Map 3

6 0x06 50 0x32

Byte Offset 32 Byte Offset 33 Byte Offset 34 Byte Offset 35

Destination IP Address (cont.)

Byte Offset 36 Byte Offset 37 Byte Offset 38 Byte Offset 39

Destination IP Address (128-bit)

Byte Offset 28

9 0x09 51 0x33

Destination IP Address (cont.)

Byte Offset 40 Byte Offset 41 Byte Offset 42 Byte Offset 43

2

Dec

17 0x11

0x02 47 0x2F

V
a
ria

b
le

Next Header (8-bit) Extension Header Information (Variable Length)

Extension Header Information (Variable Length)

Data (Variable Length)

Byte Offset 29 Byte Offset 30 Byte Offset 31

Destination IP Address (cont.)

Byte Offset 20 Byte Offset 21 Byte Offset 22 Byte Offset 23

Source IP Address (cont.)

Byte Offset 24 Byte Offset 25 Byte Offset 26 Byte Offset 27

Source IP Address (cont.)

Byte Offset 16 Byte Offset 17 Byte Offset 18 Byte Offset 19

Source IP Address (128-bit)

Byte Offset 12 Byte Offset 13 Byte Offset 14 Byte Offset 15

IPv6 Header (RFC 2460)

Byte Offset 0 Byte Offset 1 Byte Offset 2 Byte Offset 3
4
0
 B

y
te

s

Version (4-bit) Traffic Class (8-bit) Flow Label (20-bit)

Byte Offset 4 Byte Offset 5 Byte Offset 6 Byte Offset 7

Payload Length (16-bit) Next Header (8-bit) Hop Limit (8-bit)

Source IP Address (cont.)

Byte Offset 8 Byte Offset 9 Byte Offset 10 Byte Offset 11

461Packet Headers

Figure 1-3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Common Types & Codes

T C

0 0 Echo reply

3 0 Destination Unreachable

0 Net Unreachable

1 Host Unreacheable

2 Protocol Unreachable

3 Port Unreachable

5 0 Redirect

8 0 Echo Request

11 0 Time Exceeded

0 Time to Live Exceeded in Transit

1 Fragment Reassembly Time Exceeded

13 0 Timestamp Request

14 0 Timestamp Reply

15 0 Information Request

16 0 Information Reply

17 0 Address Mask Request

18 0 Address Mask Reply

Applied NSM Packet Map 4
4
 B

y
te

s
V

a
ria

b
le

ICMP Header (RFC 792)

Byte Offset 0 Byte Offset 1 Byte Offset 2 Byte Offset 3

Message Type (8-bit) Message Code (8-bit) Checksum (16-bit)

Byte Offset 4 Byte Offset 5 Byte Offset 6 Byte Offset 7

(Variable Contents Depending on Type and Code)

462 APPENDIX 3 Packet Headers

Figure 1-4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C
W

R

E
C

E

U
R

G

A
C

K

P
S

H

R
S

T

S
Y

N

F
IN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Header Length 4 Byte Multiplier Min Value 5 (20 bytes) Max Value 15 (60 bytes)

TCP Flags

CWR - Congestion Window Reduced PSH - Push

ECE - Explicit Congestion Notification Echo RST - Reset

URG - Urgent SYN - Synchronize

ACK - Acknowledgement FIN - Finish

** Note: Per RFC 793, the CWR and ECE bits were originally part of the Reserved section starting in 0x12

Common TCP Options

0 End of Options List 2 Maximum Segment Size 4 Selective ACK OK

1 No Operation (Padding) 3 Window Scale 8 Timestamp

Byte Offset 20 Byte Offset 21 Byte Offset 22 Byte Offset 23

TCP Options (Variable - If Any)

Data (Variable Length)

V
a
ria

b
le

Byte Offset 16 Byte Offset 17 Byte Offset 18 Byte Offset 19

Checksum (16-bit) Urgent Pointer (16-bit)

Byte Offset 14

Hdr Length (4-

bit)

Reserved (4-

bit)
Window Size (16-bit)

Applied NSM Packet Map 5

Acknowledgement Number (32-bit)

TCP Header (RFC 793)

Byte Offset 0 Byte Offset 1 Byte Offset 2

Byte Offset 15

Byte Offset 3
2
0
 B

y
te

s

Source Port Number (16-bit) Destination Port Number (16-bit)

Byte Offset 4 Byte Offset 5 Byte Offset 6 Byte Offset 7

Sequence Number (32-bit)

Byte Offset 8 Byte Offset 9 Byte Offset 10 Byte Offset 11

Byte Offset 12 Byte Offset 13

463Packet Headers

Figure 1-5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Length No Multiplier Max Length 65515

Applied NSM Packet Map 6
8
 B

y
te

s
V

a
r

Data (Variable Length)

Byte Offset 6 Byte Offset 7

Length (16-bit) Checksum (16-bit)

Byte Offset 8 Byte Offset 9 Byte Offset 10 Byte Offset 11

UDP Header (RFC 768)

Byte Offset 0 Byte Offset 1 Byte Offset 2 Byte Offset 3

Source Port Number (16-bit) Destination Port Number (16-bit)

Byte Offset 4 Byte Offset 5

464 APPENDIX 3 Packet Headers

APPENDIX

Decimal / Hex / ASCII

Conversion Chart 4

465

Index

Note: Page numbers followed by b indicate boxes, f indicate figures and t indicate tables.

A
Advanced Intrusion Detection

Environment (AIDE), 72

Analysis process

diagnosis

candidate conditions, 432

diagnosis, 432

evaluation, 431–432

scenarios, 433–438

symptoms list, 431

morbidity and mortality

(M&M)

audience, 444

information security

(see Information security

M&M)

practices

Arcsight, 441

assumptions, 438–439

background, 439–440

cyber event categorization

system, 441–442

Netwitness, 441

Network Miner, 441

rule of 10’s, 442

SIEM solution, 439

systems administration

backgrounds, 439–440

Wireshark, 441

relational investigation

additional degrees of subjects

relation, 423f, 425

perform preliminary

investigation, 423f, 424

primary relationships and

current interaction, 423f,

424–425

primary subjects, 423f, 424

scenario (see Relational

investigation scenario)

secondary subjects and

relationships, 423f, 425

Anomaly-based detection, 150

Application directories and

configuration files

Bro, 458

ELSA, 458

PRADS, 458

PulledPork, 457–458

security onion, 457

sensor tools store, 458

Sguil, 458

Snorby, 458

Snort/Suricata, 457

Syslog-NG, 458

Applied Collection Framework

(ACF)

cost/benefit analysis, 32

data identification, 32

host-based data, 33

network-based data, 33

NSM collection, 34

quantify risk, 30–31

threats, 29–30

Argus

data retrieval, 94–95

definition, 92–93

features, 93

resources, 95

solution architecture, 93

Autonomous system number (ASN),

405, 407

B
BASH tools

awk, 143–144

ETags, 144

grep, 143–144, 145

sed, 145

sed command output, 145f

user agent, 145, 146f

Berkeley Packet Filters (BPFs)

expression, 377, 378t

primitive, 377

qualifiers, 377, 378t

TCP header, 379

TCP/IP protocols, 379

TTL field, 379

Bro platform

custom detection tool (see Custom

detection tool)

DPD, 256–257

execution, 257–258

HTTP request, 257

log files

bro-cut output, 260

creation, 258

HTTP transaction, 261

ID field, 261–262

print format, 259–260

out-of-the-box functionality,

256

C
Canary honeypot

architecture

alerting and logging, 322–323

devices and services, 320–321

placement, 321

definition, 317

exploitable and non-exploitable,

318

Honeyd

ansm_winserver_1, 324

configuration file, 324

default settings, 324

HTTP client header, 327

IDS rule, 327

IDS sensor, 326

log output, 325, 326f

port scanning, 325

WSUS and SMS, 326

Honeydocs

creation, 335

HTML img tag, 335

output, 336

web interface, 337

Kippo

attacker’s actions, 330

fake file system, 329, 330f

$HONEYPOT_SERVERS

variable, 331

logging authentication, 329

network based detection, 328

OSSEC, 331–332

SSH service, 328

TTY log, 330, 331f

Tom’s Honeypot

MSSQL and SIP protocols, 334

Ncrack tool, 334

Python script, 332

RDP protocol, 333

Security Onion, 332

SIP protocol, 335

specification services, 332

VoIP services, 335

types of, 319–320

Center for Internet Security (CIS),

70–71

Collective intelligence framework

(CIF)

deploying indicators, 192–193

querying indicators, 191–192

updating and adding indicator

lists, 190–191

Custom detection tool

Bro logs

connection log, 286f

conn-geoip.bro file, 284

Conn::Info record type, 285

lookup_location() function, 285

&optional tag, 285

configuration options

ExtractFiles, 270

GIF and HTML files, 271, 272f

467

Custom detection tool (Continued)

interesting_types, 269

MIME types, 271, 271f

darknet

allowed_darknet_talkers,

279–280

cat() function, 274

Conn_id record type, 274t

creation, 272

dark host, 278, 282

Darknet_Traffic, 275

e-mailing, 282–283

hook function, 281

ICMP traffic, 277–278

IP address, 272, 276

n$actions variable, 281

new_connection event, 274

NOTICE function, 275

notice suppression, 275–276

script, 278–279

file carving

extract-files.bro, 263, 265f

file extractor output,

264, 264f

file_new event, 264

PCAP file, 263

live network traffic

broctl check, 268

broctl install, 268

broctl restart, 268

configuration, 267

EXTRACT analyzer, 268

file extraction code, 267, 267f

packaging, 269

selective file extraction

Bro command, 266

MIME type, 265

D
Daemonlogger, 102–104

Data link layer, 350

Detection mechanisms

reputation-based (see Reputation-

based detection)

Snort, 193–194

statistical anomaly-based

(see Statistical anomaly-

based detection)

Suricata (see Suricata)

Domain block list (DBL), 181

Don’t Route or Peer (DROP), 181

Dumpcap, 101–102

Dynamic Protocol Detection (DPD),

256–257

E
E-commerce server

external asset compromise, 38–40

host-based server, 41–42

internal asset compromise, 39–40

network-based server, 41

Exploits block list (XBL), 180

F
Fprobe, 82

Friendly intelligence

network asset model, 390–391

grep command, 394, 395f

Nmap, 392

ping scan, 392, 392f

SYN port scan, 393, 394f

SYN scan, 393, 393f

PRADS

asset report, 399, 400f

baseline asset model, 399

home_nets IP range variable,

397, 397f

individual IP address, 400, 401f

log entries, 396f

log file, 397, 397f

new asset alerts, 399

PADS, 395

Sguil, 395

Sguil query, 398, 398f

Friendly threat intelligence

friendly intelligence (see Friendly

intelligence)

intelligence cycle

analysis, 389

collection, 388

defined requirement, 387

dissemination, 389–390

planning, 388

processing, 388–389

threat intelligence (see Threat

intelligence)

Full packet capture (FPC)

collection

Netsniff-NGand IFPPS, 107–109

session data, 109–111

storage considerations, 106–107

tool, 105–106

Daemonlogger, 102–104

data storage

destination ports, 112

encrypted VPN tunnels, 113

host to host communication,

113–115

HTTP traffic, 112

source ports, 111

TCP/443 traffic, 112, 113

Dumpcap, 101–102

Netsniff-NG, 104–105

PCAP data, 99–100

PCAP-NG format, 100–101, 101f

size-based retention strategy

BASH script, 116, 118

dir variable, 118

Security Onion, 120

time-based retention strategy,

115–116

H
Hard disk storage

calculations, 52

data retention goals, 53

sensor role modifiers, 53–54

Honeypot. See Canary honeypot

Host-based forensics, 14

Host-based intrusion detection

(HIDS), 72

Httpry, 128–130

I
Indicators and signatures

critical criteria, 160–161

evolution, 157–158

features, 151

frameworks

OpenIOC, 169–171

STIX, 171–173

host and network, 151–152

management

CSV files, 163

data backup, 163

deployment tracking, 162–163

master list, 163–166

raw data format, 162

revision table, 166–168

revision tracking, 162

static

atomic, 152, 153f

behavioral, 152, 153f

computed, 152, 153f

host-based forensic data, 153

NSM data, 153

tuning

false negative, 159

false positive, 159

precision, 159–160

true negative, 159

true positive, 158

variable, 155–157

Information security M&M

alternative analysis (AA),

446–447

Devils Advocate method, 446

peers, 445

presentation, 445–446

presenter(s), 445

strategic questioning, 446

tips, 448

Intelligence cycle

analysis, 389

collection, 388

defined requirement, 387

dissemination, 389–390

planning, 388

processing, 388–389

International Assigned Numbers

Authority (IANA), 405

Intrusion detection system (IDS)

header rules

protocol, 230–231

rule action, 230

source and destination

hosts, 231

468 Index

source and destination ports,

231

traffic direction, 231

rule anatomy, 229–245

rule options

classification, 235

communication flow, 243–245

distance modifier, 239–240

HTTP content modifiers,

240–241

message (msg), 232

nocase modifier, 237

offset modifier, 237–238

PCRE, 242–243

priority, 235

protocol header detection

options, 245

reference, 233–234

revision (rev), 232–233

signature identifier (sid), 232

rule tuning

alert detection filters, 248–249

alert suppression, 247–248

eliminate unwanted traffic, 249

event filtering, 245–247

fast pattern matching, 251

manually test rules, 237–238

pair PCRE/content matches,

250

vulnerability, 249–250

J
Justniffer

BASH script, 130–131

installion steps, 131

multi-line log, 132

Python script, 130–131

request.header, 131

response.header, 131

single line log, 133

L
Logstash

advantages, 135

Dsniff, 137

execution, 136

field metrics examination, 141,

141f

GROK, 138, 139, 142, 142f

individual logs examination, 140,

140f

Java Runtime Environment, 135

log data viewing, 136

match filter, 138

open ports, 136f

sensor name, 138

URLsnarf logs, 141

urlsnarf-parse.conf, 135

M
Malware analysis, 14

Malware domain list (MDL), 177

Multipurpose Internet Mail

Extensions (MIME), 265b

N
Netsniff-NG, 104–105

Network Address Translation

(NAT), 62

Network asset model

grep command, 394, 395f

Nmap, 392

ping scan, 392, 392f

SYN port scan, 393, 394f

SYN scan, 393, 393f

Network-based intrusion detection

(HIDS), 72

Network Interface Card (NIC),

54–56

Network Security Monitoring (NSM)

anomaly, 5

asset, 3

attack sense and warning, 7

cyclical process

analysis, 11

collection, 10

detection, 10–11

definition, 6

exploit, 4

human analyst

baseline skills, 13

classifying analysts, 14–15

culture requirements, 16–17

defensive tactics, 13–14

host-based forensics, 14

learning opportunity, 18

malware analysis, 14

offensive tactics, 13

professional growth, 17

programming, 14

reinforcement, 18

servant leadership, 18–19

superstar, 17–18

systems administration, 14

teamwork, 17

vulnerability-centric model,

15–16

incident, 5

information operations, 6–7

intrusion detection, 5–6

issues, 11–12

protect domain, 2–3

risk management, 4

security onion (SO)

installation, 19–20

setup process, 22–24

testing, 22–24

updation, 21

threat, 3–4

vulnerability, 4

vulnerability-centric vs. threat-

centric defense, 8, 9

Nibbles, 344, 346–347

NOTICE function, 275

O
Offensive tactics, 13

Online retailer

customer PII, 37–38

e-commerce server

external asset compromise,

38–40

host-based, 41–42

internal asset compromise,

39–40

network-based, 41

organizational threats

customer PII, 35–36

e-commerce service, 36

PDI network, 34–35, 35f

quantify risk, 36–37

OpenIOC, 169–171

P
Packet analysis

definition, 342

dissecting packets

Ethernet header, 350, 351f

IP header, 352, 352f

MAC addresses, 350–352, 351f

TCP protocol, 353–354, 353f,

354f

hexadecimal form, 344

HTTP GET request, 342–343,

344f

networking protocol, 342

nibbles, 344

packet filtering (see Packet

filtering)

packet math (see Packet math)

tcpdump

ASCII, 357, 358, 358f

-F argument, 359

hex format, 357, 357f

-r command, 356

unix environments, 355

verbosity, 356, 357f

-w argument, 359

tshark

ASCII format, 361, 361f

–f argument, 362

HTTP statistics, 362f

–R argument, 362

–r command, 360, 360f

–t ad option, 360–361, 361f

–V argument, 360, 360f

Wireshark, 342–343, 343f

adding custom columns,

373–374

capture/display filters, 375–376

capture summary, 366–367

capturing packets, 363–365

changing time display formats,

365–366

endpoints/conversations,

368–369

exporting objects, 372

469Index

Packet analysis (Continued)

IO graph, 370–371

multiplatform tool, 363

protocol dissectors, 374–375

protocol hierarchy, 367–368

streams, 369–370

Packet filtering

BPFs

expression, 377, 378t

primitive, 377

qualifiers, 377, 378t

TCP header, 379

TCP/IP protocols, 379

TTL field, 379

wireshark display filters

field name, 381

filter expression, 383, 383t

individual protocol fields, 380

logical operators, 382, 382t

relational operator, 381, 381t

value types, 381, 382t

Packet math

converting binary byte to hex, 345,

345f, 346f

converting hex to binary and

decimal, 346–347

counting bytes

basic IP packet, 347, 348f

IP address fields, 349, 350f

IP header, 347, 348f

IP header length field, 349, 349f

IP protocol field, 348, 349f

Packet string (PSTR) data, 45

data collection, 124–134

Httpry, 128–130

Justniffer (see Justniffer)

manual generation, 126–127

URLSnarf, 127–128

definition, 122

log style, 122f, 123, 123f

payload style, 123, 124f

viewing mechanisms

BASH tools (see BASH tools)

Logstash (see Logstash)

Passive asset detection system

(PADS), 395

Passive Real-time Asset Detection

System (PRADS)

asset report, 399, 400f

baseline asset model, 399

home_nets IP range variable, 397,

397f

individual IP address, 400, 401f

log entries, 396f

log file, 397, 397f

new asset alerts, 399

PADS, 395

Sguil, 395

Sguil query, 398, 398f

Perl compatible regular expressions

(PCRE), 242–243

Personally Identifiable Information

(PII), 35–36

PF_Ring þDNA, 56

PhishTank, 179

Planning data collection

ACF (see Applied Collection

Framework (ACF))

online retailer (see Online retailer)

Policy Block List (PBL), 181

PulledPork, 22, 221–222, 223,

457–458

Purple Dog Inc. (PDI), 34–35, 35f

Q
Quantify risk

ACF, 30–31

online retailer, 36–37

R
Relational investigation scenario

primary and secondary subjects,

428f

primary relationships and current

interaction, 426–428, 427f

primary subjects, 426, 426f

secondary subjects and

relationships, 429

subjects relationship, 429, 430f

Reputation-based detection

BASH scripts

download and parsing, 184–186

malicious domains, 188–189

malicious IP addresses,

186–187

Bro

data types, 197, 198t

intel framework, 198

intel.log, 200

meta.do_notice, 199

meta.if_in, 199

meta.source, 199

reputation list, 198f

CIF

deploying indicators,

192–193

querying indicators,

191–192

updating and adding indicator

lists, 190–191

definition, 175–176

drawbacks

advertising networks, 183

automatic blocking, 182

false positives, 183–184

pruning, 182

shared servers, 183

public reputation lists

benefits, 176

DBL, 181

DROP, 181

MDL, 177

negative aspects, 176–177

PBL, 181

PhishTank, 179

SBL, 180

Tor exit node, 179

XBL, 180

Snort IP, 193–194

Suricata IP

categories file, 196

default-reputation-path, 196

iprep directive, 196, 197f

IP reputation capability, 195

S
Security Onion (SO)

Canary honeypot, 332

FPC, 120

installation, 19–20

setup process, 22–24

SiLK, 87

testing, 22–24

updation, 21

Security onion control scripts

high level commands

nsm, 451

nsm_all_del, 451

nsm_all_del_quick, 451

sensor control commands

nsm_sensor, 453

nsm_sensor_add, 454

nsm_sensor_backup-config,

454

nsm_sensor_backup-data, 454

nsm_sensor_clean, 454

nsm_sensor_clear, 454

nsm_sensor_del, 454

nsm_sensor_edit, 454–455

nsm_sensor_ps-daily-restart,

455

nsm_sensor_ps-restart,

455–456

nsm_sensor_ps-start, 455

nsm_sensor_ps-status, 455

nsm_sensor_ps-stop, 455

rule-update, 456

server control commands

nsm_server, 451

nsm_server_add, 452

nsm_server_backup-config, 452

nsm_server_backup-data, 452

nsm_server_clear, 452

nsm_server_del, 452

nsm_server_edit, 452

nsm_server_ps-restart, 453

nsm_server_ps-start, 453

nsm_server_ps-status, 452

nsm_server_ps-stop, 453

nsm_server_sensor-add, 453

nsm_server_sensor-del, 453

nsm_server_user-add, 453

Sensor hardware

aggregated and non-aggregated

taps, 58

bidirectonal traffic, 60, 61f

calculations, 52

CPU, 49–50

data retention goals, 53

470 Index

memory, 51

network tap, 57–58, 58f

NIC, 54–56

sensor role modifiers, 53–54

socket buffer requirements, 56

SPAN port, 56–57, 57f

unidirectional traffic, 59–60, 60f

Sensor placement

critical assets, 66–68

goal of, 61

ingress/egress points, 62–63

internal IP addresses

drive-by download attack, 64

malicious activity, 65

NetFlow data, 65, 66

router, 63

resources, 62

visibility diagrams, 68–69

Sensor platform

hardware

aggregated and non-aggregated

taps, 58

bidirectonal traffic, 60, 61f

calculations, 52

CPU, 49–50

data retention goals, 53

memory, 51

network tap, 57–58, 58f

NIC, 54–56

sensor role modifiers, 53–54

socket buffer requirements, 56

SPAN port, 56–57, 57f

unidirectional traffic, 59–60,

60f

NSM data types

alert data, 46–47

FPC data, 45

log data, 45

PSTR, 45

session data, 45

statistical data, 45

operating system, 61

placement (see Sensor placement)

security

HIDS, 72

installation, 71

limit internet access, 71

NIDS, 72

operating system, 70–71

software, 70

two-factor authentication, 72

VLAN segmentation, 71–72

types, 47–48

Session data

Argus

data retrieval, 94–95

definition, 92–93

features, 93

resources, 95

solution architecture, 93

benefit, 76

collection

Fprobe, 82

hardware generation, 81–82

YAF, 82–83

data storage considerations, 95–97

flow record, 76

aggregation, 76–77

communication sequence, 78

IPFIX, 80

NetFlow V5, 79–80

NetFlow V9, 80

sFlow, 81

5-tuple attribute, 77

unidirectional flows, 78

web browsing, 79

FPC data, 76

SiLK (see System for Internet-

Level Knowledge (SiLK))

Signature-based detection, 150

Snort, 193–194

Snort and Suricata

architecture

NIDS Mode, 206, 207f

open source IDS, 208

packet sniffermode, 206

runmode, 209–210

sensor status, 208f

sniffer mode, 206

configuration

command line arguments,

227–229

fast alerting format, 224

full alerting format, 224–225

IP variables, 215–218

packet logging, 225

port variables, 217–218

preprocessors, 226–227

public rule sources, 221

PulledPork, 221–222

rules in Security Onion,

222–223

snort.conf, 214

Snort rule files, 218–219

standard variables, 218

Suricata rule files, 220

suricata.yaml, 214

syslog alerting format, 225

Unified2, 226

IDS engine, 211

IDS rules (see Intrusion detection

system (IDS))

initialization, 211–214, 213f, 214f

installation guides, 205

“lightweight” system, 205

sensor status, 205f

Sguil, 254

Snorby, 253

Spamhaus block list (SBL), 180

Statistical anomaly-based detection

Afterglow

Gephi, 310

Graphviz, 310, 311

Neato, 311

NetFlow link graph, 311,

312f

outbound communication link

graph, 314, 315f

three-column mode, 313

definition, 289

friendly host and multiple hosts,

300, 300f

Gnuplot

BASH script, 305

data spread, 303f

rwcount, 302

rwfilter, 302

throughput graph, 304, 304f

Google Charts

CSV file, 306

directory, 308

linechart.html, 308, 309

throughput graph, 308, 308f

SILK (see System for Internet-

Level Knowledge (SiLK))

Snort Zeus alert, 299f

UDP port 123, 300–301

Zeus botnet, 299

STIX, 171–173

Suricata

categories file, 196

default-reputation-path, 196

iprep directive, 196, 197f

IP reputation capability, 195

System for Internet-Level

Knowledge (SiLK)

analysis toolset, 86

definition, 83

documentation, 83, 85

flow types, 85–86

packing process, 85

piping data and rwtools

flow data, 90

PCAP data, 91

rwcount, 88, 89

rwsetbuild, 89

rwstats query, 91

Top-N/Bottom-N calculations,

90

resources, 92

rwfilter command, 87–88

rwflowpack, 85

Security Onion, 87

service discovery

DNS servers, 298

drill down, 296

Email servers, 297

FTP servers, 298

Leftover servers, 298

server identification, 294

server ports, 294, 295f

SSH servers, 298

TELNET servers, 298

VPN servers, 298

web servers, 297

toolset, 83–84

top talkers

rwcount, 293, 293f

rwfilter, 290, 291

471Index

System for Internet-Level

Knowledge (SiLK)

(Continued)

rwstats, 290, 291

rwstats outout, 291f

service usage, 292f

single host, 292f

workflow, 84

T
Tcpdump

ASCII, 357, 358, 358f

-F argument, 359

hex format, 357, 357f

-r command, 356

unix environments, 355

verbosity, 356, 357f

-w argument, 359

Threat-centric defense, 8, 9

Threat intelligence

hostile host

internal data sources,

403–404

OSINT, 404–413

IP and domain registration

ASN, 407

domain information,

407–408

IANA, 405

Robtex, 409, 409f

IP and domain reputation

Cuckoo Sandbox and Malwr.

com, 415–417

IPVoid, 410, 411f

OSINT, 413–420

Team Cymru Malware

Hash Registry,

419–420

ThreatExpert, 417–419

URLVoid, 410, 410f

Virustotal, 414–415

operational, 402

strategy, 402

tactical, 402–403

Tor exit node list, 179

Tshark

ASCII format, 361, 361f

–f argument, 362

HTTP statistics, 362f

–R argument, 362

–r command, 360, 360f

–t ad option, 360–361, 361f

–V argument, 360, 360f

U
Unified2, 208, 226

URLSnarf, 127–128

V
Virtual Local Area Networks

(VLANs), 71–72

Voice over IP (VoIP), 335

Vulnerability-centric approach, 8, 9

W
Wireshark

adding custom columns, 373–374

capture/display filters, 375–376

capture summary, 366–367

capturing packets, 363–365

changing time display formats,

365–366

endpoints/conversations, 368–369

exporting objects, 372

IO graph, 370–371

multiplatform tool, 363

protocol dissectors, 374–375

protocol hierarchy, 367–368

streams, 369–370

Y
Yet Another Flowmeter (YAF),

82–83

Z
ZeuS and SpyEye trackers, 178–179

472 Index

	Title Page
	Copyright
	Dedication
	Acknowledgements
	About the Authors
	Foreword
	Preface
	Audience
	Prerequisites
	Concepts and Approach
	IP Address Disclaimer
	Companion Website
	Charitable Support
	Rural Technology Fund
	Hackers for Charity
	Kiva
	Hope for the Warriors®
	Autism Speaks

	Contacting Us

	The Practice of Applied Network Security Monitoring
	Key NSM Terms
	Asset
	Threat
	Vulnerability
	Exploit
	Risk
	Anomaly
	Incident

	Intrusion Detection
	Network Security Monitoring
	Vulnerability-Centric vs. Threat-Centric Defense
	The NSM Cycle: Collection, Detection, and Analysis
	Collection
	Detection
	Analysis

	Challenges to NSM
	Defining the Analyst
	Critical Skills
	Baseline Skills
	Specializations

	Classifying Analysts
	Level One L1 Analyst
	Level Two L2 Analyst
	Level Three L3 Analyst

	Measuring Success
	Create a Culture of Learning
	Emphasize Teamwork
	Provide Formalized Opportunities for Professional Growth
	Encourage Superstars
	Reward Success
	Learn from Failure
	Exercise Servant Leadership

	Security Onion
	Initial Installation
	Updating Security Onion
	Running NSM Services Setup
	Testing Security Onion

	Conclusion

	Planning Data Collection
	The Applied Collection Framework ACF
	Define Threats
	Quantify Risk
	Identify Data Feeds
	Narrow Focus

	Case Scenario: Online Retailer
	Identify Organizational Threats
	Theft of Customer PII Confidentiality
	Disruption of E-Commerce Service Availability
	Unintended Use of E-Commerce Service Integrity

	Quantify Risk
	Identify Data Feeds
	Theft of Customer PII - Web Application Compromise
	Disruption of E-Commerce Server - External Asset Compromise
	Disruption of E-Commerce Server - Internal Asset Compromise

	Narrow Focus

	Conclusion

	The Sensor Platform
	NSM Data Types
	Full Packet Capture FPC Data
	Session Data
	Statistical Data
	Packet String PSTR Data
	Log Data
	Alert Data

	Sensor Type
	Collection-Only
	Half-Cycle
	Full Cycle Detection

	Sensor Hardware
	CPU
	Memory
	Hard Disk Storage
	Step One: Calculate the Traffic Collected
	Step Two: Determine a Feasible Retention Period for Each Data Type
	Step Three: Add Sensor Role Modifiers

	Network Interfaces
	Load Balancing: Socket Buffer Requirements
	SPAN Ports vs. Network Taps
	Bonding Interfaces

	Sensor Operating System
	Sensor Placement
	Utilize the Proper Resources
	Network Ingress/Egress Points
	Visibility of Internal IP Addresses
	Proximity to Critical Assets
	Creating Sensor Visibility Diagrams

	Securing the Sensor
	Operating System and Software Updates
	Operating System Hardening
	Limit Internet Access
	Minimal Software Installation
	VLAN Segmentation
	Host-Based IDS
	Two-Factor Authentication
	Network-Based IDS

	Conclusion

	Session Data
	Flow Records
	NetFlow
	NetFlow v5 and v9

	IPFIX
	Other Flow Types

	Collecting Session Data
	Hardware Generation
	Software Generation
	Fprobe
	YAF

	Collecting and Analyzing Flow Data with SiLK
	SiLK Packing Toolset
	SiLK Flow Types
	SiLK Analysis Toolset
	Installing SiLK in Security Onion
	Filtering Flow Data with Rwfilter
	Piping Data Between Rwtools
	Other SiLK Resources

	Collecting and Analyzing Flow Data with Argus
	Solution Architecture
	Features
	Basic Data Retrieval
	Other Argus Resources

	Session Data Storage Considerations
	Conclusion

	Full Packet Capture Data
	Dumpcap
	Daemonlogger
	Netsniff-NG
	Choosing the Right FPC Collection Tool
	Planning for FPC Collection
	Storage Considerations
	Calculating Sensor Interface Throughput with Netsniff-NG and IFPPS
	Calculating Sensor Interface Throughput with Session Data

	Decreasing the FPC Data Storage Burden
	Eliminating Services
	Eliminating Host to Host Communication

	Managing FPC Data Retention
	Time-Based Retention Management
	Size-based Retention Management

	Conclusion

	Packet String Data
	Defining Packet String Data
	PSTR Data Collection
	Manual Generation of PSTR Data
	URLSnarf
	Httpry
	Justniffer

	Viewing PSTR Data
	Logstash
	Raw Text Parsing with BASH Tools

	Conclusion

	Detection Mechanisms, Indicators of Compromise, and Signatures
	Detection Mechanisms
	Indicators of Compromise and Signatures
	Host and Network Indicators
	Static Indicators
	Variable Indicators
	Indicator and Signature Evolution
	Tuning Signatures
	Precision

	Critical Indicator and Signature Criteria

	Managing Indicators and Signatures
	Simple Indicator and Signature Management with CSV Files
	Master Indicator/Signature List
	Indicator/Signature Revision Table

	Indicator and Signature Frameworks
	OpenIOC
	STIX

	Conclusion

	Reputation-Based Detection
	Public Reputation Lists
	Common Public Reputation Lists
	Malware Domain List
	Abuse.ch ZeuS and SpyEye Trackers
	PhishTank
	Tor Exit Node List
	Spamhaus Block Lists
	Other Lists

	Common Issues when Using Public Reputation Lists
	Automatic Blocking
	Pruning of Lists
	Shared Servers
	Advertising Networks
	Further Reducing of False Positives with Whitelists

	Automating Reputation-Based Detection
	Manual Retrieval and Detection with BASH Scripts
	Download and Parsing a List
	Detection of Malicious IP Addresses in Session Data
	Detection of Malicious Domains in Full Packet Capture Data

	The Collective Intelligence Framework CIF
	Updating and Adding Indicator Lists
	Querying Indicators
	Deploying Indicators

	Snort IP Reputation Detection
	Suricata IP Reputation Detection
	Reputation Detection with Bro

	Conclusion

	Signature-Based Detection with Snort and Suricata
	Snort
	Snort Architecture

	Suricata
	Suricata Architecture

	Changing IDS Engines in Security Onion
	Initializing Snort and Suricata for Intrusion Detection
	Configuring Snort and Suricata
	Variables
	IP Variables
	Port Variables
	Standard Variables

	Defining Rule Sets
	Defining Snort Rule Files
	Defining Suricata Rule Files
	Public Rule Sources
	Managing Rule Updates with PulledPork
	Managing Rules in Security Onion

	Alert Output
	Fast
	Full
	Syslog
	Packet Logging
	Unified2

	Snort Preprocessors
	Additional NIDS Mode Command Line Arguments

	IDS Rules
	Rule Anatomy
	Rule Header
	Rule Action
	Protocol
	Source and Destination Hosts
	Source and Destination Ports
	Traffic Direction

	Rule Options
	Event Information Options
	Message msg
	Signature Identifier sid
	Revision rev
	Reference
	Priority
	Classification

	Content Inspection
	Content Inspection Modifiers
	Nocase
	Offset and Depth
	Distance and Within
	HTTP Content Modifiers
	Perl Compatible Regular Expressions PCRE

	Communication Flow
	Protocol Header Detection Options

	Rule Tuning
	Event Filtering
	Alert Suppression
	Alert Detection Filters
	Eliminate Unwanted Traffic
	Target the Vulnerability
	Pair PCRE and Content Matches
	Fast Pattern Matching
	Manually Test Rules

	Viewing Snort and Suricata Alerts
	Snorby
	Sguil

	Conclusion

	The Bro Platform
	Basic Bro Concepts
	Running Bro
	Bro Logs
	Creating Custom Detection Tools with Bro
	File Carving
	Selective file extraction
	Extracting Files in Live Network Traffic
	Packaging Bro Code
	Adding Configuration Options
	Using Bro to Monitor the ``Dark´´ Side
	Notice Suppression
	Using and Testing the Script

	Extending the Darknet Script
	Overriding default notice processing
	Generating E-Mail Notices from Darknet Events

	Suppressing, E-Mailing, and Alarming - The Easy Way
	Adding New Fields to Bros Logs

	Conclusion

	Anomaly-Based Detection with Statistical Data
	Top Talkers with SiLK
	Service Discovery with SiLK
	Furthering Detection with Statistics
	Visualizing Statistics with Gnuplot
	Visualizing Statistics with Google Charts
	Visualizing Statistics with Afterglow
	Conclusion

	Using Canary Honeypots for Detection
	Canary Honeypots
	Types of Honeypots
	Canary Honeypot Architecture
	Phase One: Identify Devices and Services to be Mimicked
	Phase Two: Determine Canary Honeypot Placement
	Phase Three: Develop Alerting and Logging

	Honeypot Platforms
	Honeyd
	Kippo SSH Honeypot
	Toms Honeypot
	Honeydocs

	Conclusion

	Packet Analysis
	Enter the Packet
	Packet Math
	Understanding Bytes in Hex
	Converting Hex to Binary and Decimal
	Counting Bytes

	Dissecting Packets
	Tcpdump for NSM Analysis
	TShark for Packet Analysis
	Wireshark for NSM Analysis
	Capturing Packets
	Changing Time Display Formats
	Capture Summary
	Protocol Hierarchy
	Endpoints and Conversations
	Following Streams
	IO Graph
	Exporting Objects
	Adding Custom Columns
	Configuring Protocol Dissector Options
	Capture and Display Filters

	Packet Filtering
	Berkeley Packet Filters BPFs
	BPF Anatomy
	Filtering Individual Protocol Fields

	Wireshark Display Filters

	Conclusion

	Friendly and Threat Intelligence
	The Intelligence Cycle for NSM
	Defining Requirements
	Planning
	Collection
	Processing
	Analysis
	Dissemination

	Generating Friendly Intelligence
	The Network Asset History and Physical
	Defining a Network Asset Model
	Passive Real-time Asset Detection System PRADS
	Making PRADS Data Actionable

	Generating Threat Intelligence
	Researching Hostile Hosts
	Internal Data Sources
	Open Source Intelligence
	IP and Domain Registration
	IP and Domain Reputation

	Researching Hostile Files
	Open Source Intelligence
	Virustotal
	Cuckoo Sandbox and Malwr.com
	ThreatExpert
	Team Cymru Malware Hash Registry

	Conclusion

	The Analysis Process
	Analysis Methods
	Relational Investigation
	Step One: Investigate Primary Subjects and Perform Preliminary Investigation of the Complaint
	Step Two: Investigate Primary Relationships and Current Interaction
	Step Three: Investigate Secondary Subjects and Relationships
	Step Four: Investigate Additional Degrees of Subjects Relation
	Relational Investigation Scenario
	Step One: Investigate Primary Subjects and Perform Preliminary Investigation of the Complaint
	Step Two: Investigate Primary Relationships and Current Interaction
	Step Three: Investigate Secondary Subjects and Relationships
	Step Four: Investigate Additional Degrees of Subjects Relation
	Summarizing the Incident

	Differential Diagnosis
	Step One: Identify and list the symptoms
	Step Two: Consider and evaluate the most common diagnosis first
	Step Three: List all possible diagnosis for the given symptoms
	Step Four: Prioritize the list of candidate conditions by their severity
	Step Five: Eliminate the candidate conditions, starting with the most severe
	Differential Diagnosis Scenarios
	Scenario 1
	Step 1: Identify and List the Symptoms
	Step 2: Consider and Evaluate the Most Common Diagnosis First
	Step 3: List all Possible Diagnoses for the Given Symptoms
	Step 4: Prioritize the List of Candidate Conditions by their Severity
	Step 5: Eliminate the Candidate Conditions, Starting with the Most Severe
	Making a Diagnosis

	Scenario 2
	Step 1: Identify and List the Symptoms
	Step 2: Consider and Evaluate the Most Common Diagnosis First
	Step 3: List all Possible Diagnoses for the Given Symptoms
	Step 4: Prioritize the List of Candidate Conditions by their Severity
	Step 5: Eliminate the Candidate Conditions, Starting with the Most Severe
	Making a Diagnosis

	Implementing Analysis Methods

	Analysis Best Practices
	Unless You Created the Packet Yourself, There Are No Absolutes
	Be Mindful of Your Abstraction from the Data
	Two Sets of Eyes are Always Better than One
	Never Invite an Attacker to Dance
	Packets are Inherently Good
	Analysis is No More About Wireshark than Astronomy is About a Telescope
	Classification is Your Friend
	The Rule of 10s
	When you Hear Hoof Beats, Look for Horses - Not Zebras

	Incident Morbidity and Mortality
	Medical M&M
	Information Security M&M
	When to Convene an M&M
	M&M Presenters
	M&M Peers
	The Presentation
	Strategic Questioning
	Devils Advocate
	Alternative Analysis AA
	Group A / Group B
	Red Cell Analysis
	What If Analysis
	Analysis of Competing Hypotheses
	Key Assumptions Check

	M&M Outcome
	Additional M&M Tips

	Conclusion

	Security Onion Control Scripts
	High Level Commands
	nsm
	nsm_all_del
	nsm_all_del_quick

	Server Control Commands
	nsm_server
	nsm_server_add
	nsm_server_backup-config
	nsm_server_backup-data
	nsm_server_clear
	nsm_server_del
	nsm_server_edit
	nsm_server_ps-status
	nsm_server_ps-start
	nsm_server_ps-stop
	nsm_server_ps-restart
	nsm_server_sensor-add
	nsm_server_sensor-del
	nsm_server_user-add

	Sensor Control Commands
	nsm_sensor
	nsm_sensor_add
	nsm_sensor_backup-config
	nsm_sensor_backup-data
	nsm_sensor_clean
	nsm_sensor_clear
	nsm_sensor_del
	nsm_sensor_edit
	nsm_sensor_ps-daily-restart
	nsm_sensor_ps-status
	nsm_sensor_ps-start
	nsm_sensor_ps-stop
	nsm_sensor_ps-restart
	rule-update

	Important Security OnionFiles and Directories
	Application Directories and Configuration Files
	Security Onion
	Snort/Suricata
	PulledPork
	PRADS
	Bro
	ELSA
	Snorby
	Syslog-NG
	Sguil

	Sensor Data Directories

	Packet Headers
	Decimal / Hex / ASCII Conversion Chart
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

