
1

1

System Logging
and Log Analysis

(AKA: Everything we know and
hate about system logging)

Marcus J. Ranum

<mjr@tenablesecurity.com>

Welcome to my system logging and analysis tutorial!!!

What we’re covering is a huge topic that touches on security, system administration,
and data management. It’s a complex problem and it seems as if everyone has come
up with their own approach to dealing with it. In this tutorial, we’ll cover a lot of
concepts and tools for deploying them.

In order to make this tutorial as useful as possible, don’t hesitate to ask questions at
any time. Don’t hesitate to contact me in the future, if you have questions or need
advice; just let me know you were at my tutorial and I’ll help you if I can!

2

2

This is one of the better “months” from my 2004 Sourcefire Security Calendar. You
can see the entire calendar on:

http://www.ranum.com/security/computer_security/calendar/index.html

A lot of organizations are spending a ton of perfectly good money on intrusion
detection systems and whatnot, but they don’t ever look at their firewall logs. If you
think about it for a second, you’ll realize how absolutely backward that is!!System
logs represent a terrific source of security data straight “from the horse’s mouth” -
or from your devices, anyhow.

3

3

Philosophy

Logs are just data...

Processed and analyzed, they become
information

Put another way...

If a tree falls on your network and it
shows up in your syslog and nobody is
reading it - you’re still squished

In military circles, the phrase “actionable intelligence” is an important term used to
describe intelligence that has immediate practical importance. What we’re talking
about with system log data is the same thing: we want to boil down this mass of data
produced by our firewalls, routers, IDS, and applications, and turn that data into
actionable intelligence: useable recommendations for what we should do, and when.

The process of turning data into information is called analysis. That’s what
“analysts” do. It’s an expensive process, because it requires skills and creativity -
nobody can replace a good analyst with a perl script - so if you’re going to bear the
cost of analyzing log data, make sure that the results are actionable. If you’re
talking to a senior manager who wants to you to put in place all sorts of mechanisms
for data capture, reduction, and analysis - make sure you “encourage” them to also
put in place processes and personnel to act on any intelligence you gather.

Put differently, it’s pretty easy to tell you have a ‘botnet when you turn on CNN and
they’re talking about your site getting hacked to pieces. The trick is telling you have
a ‘botnet before anyone else (except the hacker) knows - and having the processes
and personnel in place to do something about it.

4

4

Observation:

From: Tina Bird <tbird@precision-guesswork.com>

To: "Marcus J. Ranum" <mjr@ranum.com>

Subject: Re: Fwd: Undelivered Mail Returned to Sender

On Fri, 28 May 2004, Marcus J. Ranum wrote:

> >As I am digging into the tools side of this: there appear to be an INFINITY

> >of tools!!!

Yep. everyone wants a parser. everyone tries swatch. for many folks
it's not sophisticated enough, so they try logsurfer. that's too
complicated for their little thing, so they grab "perl in a nutshell" and
write their own. then they put in on line, cos web is easy. and so there
are millions now and little way to differentiate them…

Tbird

In preparing my materials for this tutorial I had the exchange above with Tina Bird.

Basically, I was stunned to discover that hundreds of smart people have tried to
solve this same problem over and over and over and over again, and many of us
follow the same path. There are full-blown systems for processing logs, and they
can cost (literally) between a million dollars and $500. Smart people ask
themselves, “how hard can it be?” and grab a few tools, get disappointed, and then
customize their own. As a result there are hundreds of logging tools out there - so
many it’s hard to keep track of even a fraction of them.

The problem - as we’ll see - is that system logging is a hard problem. There’s no
quick solution, short of throwing money at the problem, and the lack of a quick
solution drives smart people to build their own tools and solve the problem in their
own particular way.

5

5

Mistakes

Knowing what NOT

to do is sometimes
as important as
knowing what to
do!

A lot of instructors like to end a tutorial with a list of “do”s and “don’t”s - but that’s
backwards because as you work your way through the materials, you won’t be on
the lookout for things that might bite. If you’re in this tutorial it’s because you
probably have some kind of system log-related problem to solve. Knowing what
doesn’t work might actually be more important for you than knowing what does, if
you’re on a tight schedule or don’t have a lot of time to run up blind alleyways. So
we’re going to take a look at some of the bad things that you can do, so you’ll be
able to bear them in mind and avoid them.

(No, the chainsaw was not running; that’s photoshop motion blur. But thanks for caring)

6

6

Common Mistakes (cont)

#1: Collecting it and not looking at it

#2: Watching logs from perimeter systems
while ignoring internal systems

#3: Designing your log architecture before
you decide what you’re going to collect

#4: Only looking for what you know you
want to find instead of just looking to
see what you find

#1: If you’re here because you’ve been told to aggregate logs and you don’t think
you’ll ever do anything with them, you’re going to be frustrated because you’re
doing something that’s basically pointless. Think in terms of doing as much simple
automated stuff along with your aggregation so you can get something out of your
efforts.

#2: Your firewalls and whatnot are incredibly important places to do logging. But so
are your crucial servers and even your ordinary workstations. When you’re building
logging systems think in terms of assessing the likely significance of the data
depending on its source.

#3: Don’t rush to decide what tools you are going to use until you have a good idea
what you’re going to try to accomplish. My grandfather the carpenter sometimes
would tackle a problem that appeared to be huge with just a single screwdriver.
Other times he’d bring a whole toolbox. Somehow, he always appeared to have just
the right stuff. It wasn’t until I was older that I realized he had scoped the problem
thoroughly before he even moved a muscle. Don’t predispose yourself to a
particular tool because it means you’ll ignore the others - and they might be better.

#4: Looking for well-known stuff is a really straightforward problem - finding the
weird stuff in the nooks and crannies is not. Unfortunately, with logs, the stuff you
want to find is in the nooks and crannies; your firewall and IDS detected the well-
known stuff. Approach log analysis with “the mind of a child” (as the martial artists
say) - plan to spend a few days just looking at stuff and asking yourself, “hmmm,
what can I do with this?”

7

7

Common Mistakes (cont)

#5: Proceeding without doing back-of-
envelope scaling estimates (results may
be over / under-configuration)

#6: Thinking your logs are evidence if you
didn’t collect them right

#7: Forgetting that this is just a data
management problem

#8: Drinking the XML Kool-ade

#5: Use multiplication technology™ to get a rough idea how many events/second
your system will have to handle. If you think in terms of “millions per day” it
sounds big but that’s only a trickle: 11 events/second. Assume log messages are
100 bytes/line or thereabouts. Measure a few of your machines and do your own
estimates. One of my friends’ machines generates 16 million logs/day; one of mine
generates fewer than a dozen.

#6: Lawyers make $400/hr to argue about stuff. Arguing about evidence is fun, if
you’re making that kind of money! Make sure you understand what your logs are
going to be used for, before you pay some lawyers’ kid’s college tuition with your
syslogs.

#7: Fundamentally, logging is just data management of free-form data. Don’t make
the mistake of thinking it’s rocket surgery. But don’t forget that data management is
hard. For example: if you think there’s a particular datum you’ll need quickly, pre-
compute it inline.

#8: The hard part about system logging is parsing the data into meaningful
information. XML, as a mark-up language, is a good* way of preserving the
structure of information once it has been parsed. XML “parsers” parse XML; they
don’t parse arbitrary free-form text; which is what system logs store. If I had a
dollar for everyone who has expected XML to “solve the logging problem” we’d be
doing this tutorial on my yacht in Bermuda and the note-book you’re holding would
be bound in Coach™ leather.

* Actually, it sucks; I’m just being nice

8

8

Why Look at Logs?

� Simple answer:

– Because they are there

� Complex answer:

– Policy

– Legality (HIPAA, Sarbanes-Oxley, et al)
“information system activity review” is
required by law

– Cost Savings: it is “intrusion detection” and
you already have it in place!

Ok, now that I’ve disappointed you and crushed your aspirations, why would you
still want to look at your logs?

Because they are there - most of the best sites, security-wise, are good because they
have smart people who care about keeping their networks secure. Looking at your
logs is an important part of caring. Most of the “great catches” I have seen in 16
years doing computer security are the result of a system or network manager seeing
something weird in a log, or have involved figuring out what happened from logs.

But if that’s not a good enough reason for you, lawmakers (motto: “We’re from the
government, and we’re here to help - consultants get rich”) are beginning to
mandate security - and virtually every mandate contains the word “audit” (I.e.: look
at logs). The best reason, however, is that if you analyze your systems you’ll have a
much greater chance of being The Person With a Clue when everyone is running
around flapping their hands trying to figure out what went wrong. Being known as
The Person With a Clue is sometimes good, sometimes bad, but never boring.

9

9

Topics for Today:

� Cutting Down Trees

� Hauling Wood

� Building Sawmills

� Storing Wood

� Fine Finishing

� Maintenance

� References

This is what we’re going to talk about today.

When you’re a teacher, they tell you to tie things together, somehow. Well, with a
topic like “system logging” using a “logging” metaphor was a pretty easy stretch.

10

10

Cutting Down Trees

� Topics:

– The Logging Problem

– Data Sources

– Systems to Start With

– Common Mistakes

11

11

The Logging Problem

� Syslog (in particular) was designed as a
mechanism for recording arbitrary log
data to a central store

– There were no provisions for standardizing
any of the layout of the data

� I.e.: “what is an IP address?” or even “all
hostnames will be recorded as host=name”

– Therefore parsing it becomes a linguistic
analysis problem (which is a big drag)

I had a chance to talk to Eric Allman, the author of syslog, at a USENIX
conference. I asked him, “what the !(&!!&!&! Were you thinking?!” and he
explained that syslog evolved because when he was working with the BSD releases,
every program kept its own log files in a place of its choice. So there were literally
hundreds of log files all over that needed to be cleaned up. Eric designed syslog as a
way of internally aggregating a UNIX host’s log messages, and, because most of the
programs used:

fprintf(logfile,”message\n”,parameters);

to do their logging, he designed the syslog interface to match so it would be easy to
just search and replace in the source code.

What’s ironic is that Eric did all this work to bring logs together in one place. Now
we log analysts are scratching our heads trying to figure out how to separate them
again. A little bit more forethought would have been really helpful to us all. Once a
large body of code is released, fixing it is hard. Once syslog became widely fielded,
it was too late to fix it.

12

12

The Logging Problem (cont)

� On a typical O/S, security event logs
comprise < 1% of logged data

– Most of the data logged is transaction or
diagnostic information

– Finding the important stuff is not easy!

– What’s not important today could be vital
tomorrow!

� “Subject to changing conditions” as they say in
the investment community

System logs (particularly in the UNIX environment) were originally intended as a
tool for diagnosing and debugging code. They evolved into a way of recording
transactional information (e.g.: “sendmail stat=sent” messages) to allow statistics
collection and summarizing. From a security standpoint, this was another bad
decision because it means that, before we can do anything, we have to separate
security-specific log data from operational log data.

If you assume that security-critical data is less than 1% of the data collected, here’s
an interesting question: is it better that we’re forced to actively search through tons
of “noise” as we search for security events? One thing we have learned over time is
that some log messages which nobody would consider security event messages may
actually be the precursor-indicators of an attack.

Is this a security log message?
/scripts/..À¯../winnt/system32/cmd.exe?/c copy c:\winnt\system32\cmd.exe c:\inetpub\scripts\shell.exe

It’s from an 404-log from a web server. Obviously, 404’s aren’t a “security event” -
except for when they are.

Figuring out what log events are security events or operational events is a moving
target, unfortunately. It may be better for us to just accept that we’re searching
haystacks for needles and plan accordingly!

13

13

Data Sources

I actually live right across the street from Greenwood’s sawmill, in Morrisdale!

So: I used this tutorial as an excuse to go over and visit and take some pictures. This
sign is right across from our yard; the sawmill starts operation at around 5:30AM on
weekdays, and we can hear the skid-loaders going “beep beep beep” as they back up
and load the logs.

14

14

Data Sources

� Data Sources should not be confused
with Data Transports

– syslog (the transport) is not the logs

– Red Hat 6 sendmail log messages are
different from Solaris 8 sendmail log
messages!

� Even if they come over syslog and are from

sendmail

A lot of people think that because syslog is a “standard” that “syslog” is also a
message format. Syslog is just an API and a way of getting free-form text messages
back and forth; it’s as much of a logging standard as SMTP would be, if you used
Email to carry them around.

It’s important to understand the distinction between the source of the data and how
it gets back and forth; some devices use syslog to carry UNIX-style messages, but
others simply use syslog to carry proprietary-coded messages (e.g.: “e 344 22”) that
make no sense unless you have the correct code-book to decipher them. Even
UNIX-style messages are problematic - some versions of UNIX-y operating systems
omit date/time stamps for local logs (ow!) or from kernel logs (ugh!) and different
releases of the same software package may log using different formats, even on the
same system.

When talking about syslog sources, you practically have to specify things down to
the version: “I am using foo 4.3a on OpenBSD 3.2” I did some research on
structural analysis of log messages (research that didn’t go very well!) and
discovered that most major releases of sendmail has different and new log message
formats. Not just new messages, but whole new ways of structuring them.

15

15

Data Sources

� Solaris:
Jan 17 14:39:01 sol8isr sendmail[478]: [ID 702911 mail.info]

/etc/mail/aliases: 3 aliases, longest 10 bytes, 52 bytes total

� Red Hat:
Aug 14 14:37:46 devel sendmail[514]: /etc/aliases: 14 aliases,
longest 10 bytes, 152 bytes total

� BSD:
localhost sendmail[494]: alias database /etc/aliases rebuilt by root

This is an example of a couple of different data sources, all carried over syslog
transport. As you can see, they’re all from sendmail and they’re all quite different.
Amazingly, they’re all from the same operation - refreshing the aliases database.

What does this mean for the log analyst? It means that if you want to do something
useful with “newaliases” output and you support these 3 platforms, you’re going to
need 3 different parsing rules and you’re still going to lose information. See the
BSD log message? It says that the database was rebuilt by root. Do you care? Well,
if you do care, you haven’t got that information in the Solaris or Red Hat logs. If
you tried to make a normalization rule that did something useful with all the fields
presented in this one message, you’d have a lot of work finding a reasonable
superset/subset of fields to parse out and use.

16

16

Data Sources

� Some kernels just log spew without
even including a date/timestamp (mostly fixed?)

Linux version 2.2.14-5.0 (root@porky.devel.redhat.com) (gcc version
egcs-2.91.66

 19990314/Linux (egcs-1.1.2 release)) #1 Tue Mar 7 20:53:41 EST 2000

Detected 400921790 Hz processor.

Console: colour VGA+ 80x25

Calibrating delay loop... 799.54 BogoMIPS

Memory: 127828k/131008k available (1084k kernel code, 416k reserved,
1616k data,

 64k init, 0k bigmem)

...

Would you like to try to use your kernel log as evidence in a court case if it didn’t
have date/time stamps in it? What if you had to explain to a jury that the date and
timestamp gets added on by an external process if it’s missing? Would that be a
comfortable position to be in? Welcome to syslog!

This has been fixed in most UNIXes thanks to innumerable computer security
practitioners chasing Linux kernel developers around conferences with pitchforks
and burning torches. But you’ve got to wonder what they were thinking in the first
place.

17

17

Systems to Start With

� In approximate order:

– Firewalls

– Web servers

– DHCP servers

– VPN gateways

– Web cache proxies

– Mail servers

– Routers and switches

– Custom stuff (snort, tcpdump, etc)

There are no hard and fast rules about which systems you should start with, but if
you don’t already have a good idea of what systems you care about, this list might
serve. First and most important are your firewalls. If you’ve got logging turned off
in your firewall for performance reasons turn it on because it is one of the most
valuable sources of incident response data for post-attack cleanup. You should be
logging outgoing connections as well as incoming connections; if you need to
reduce the logging load slightly, turn off logging on denied traffic. Always log
permits if you can.

Web servers are worth logging data off of simply because they are such a popular
target of attack. Once again, many web servers have logging turned off for
performance reasons. If you can’t get logging enabled on the web servers, use a
sniffer next to the web server and run dniff’s “urlsnarf” module.

DHCP servers are crucial places for identifying new systems that appear and
disappear and are also important for being able to correlate what piece of hardware
had what address at what time. If you have one machine on your network with a
good clock, it should be your DHCP server!

VPN servers and Web caches are important places to monitor if you can. Watch for
weird accesses from your VPN cluster and spikes of traffic from your web caches.

Mail servers are the place to look for Email virus tracks (combined with your
firewall’s deny port 25 logs) - look for new systems originating SMTP.

If you can afford to trace netflows at your routers, that’s the last step in achieving
logging nirvana!!

18

18

Hauling the
Wood

At the back of the sawmill is a large ramp made of steel I-beams with a series of
toothed, geared wheels that move the logs into the building. The logs come in on
trucks (big packets!) with about 50-60 logs apiece and are unloaded onto the ramp
with the skid-loader.

Skid-loaders like the one pictured are truly awesome machines - they can lift a tree-
trunk like it’s a toothpick!

19

19

Hauling the Wood

� Topics:

– Syslog

– Windows System Logs

– Syslog-NG

– Syslog/SSH

– Homebrew Logging Architectures

– Getting data from Dumb Devices

Now let’s get a bit more technical. In this section we are going to work a few
examples of various techniques for hauling log data around. We’ll start with the
classic syslogd and move up to Syslog-Ng and some useful tricks you can play with
that package. Then we’ll finish with some notes on how to build your own logging
box.

20

20

Which are You?

� Inliner

– Do all the processing as the data is coming
in

� Performance sensitive

� Real-time response/notification

� Tend to be signature-oriented (because inlining
doesn’t work really well across lots of machines
at once)

� Need to think in terms of processes that run in
pipelines

There are 2 different approaches to processing log data. I call them “inliners” and
“batchists” - whether you’re an inliner or a batchist is just a matter of personal
preference. It depends on how you want to handle your data.

Inliners want to process their data as it flows through the system. This approach has
the advantage that you can find what’s going on in “realtime.” Inlining tends to be
attractive to people who want to run managed security services or operational
centers. Inlining involves building processes that work on the data in a pipeline,
though usually the data hits the hard disk after being collected, and it’s then
streamed into the processing software.

21

21

Which are You? (cont.)

� Batchist

– Collect it all and process when you feel like
it

� Bandwidth sensitive

� Favors statistics and trending

� Need to think in terms of processes that get
input then complete

Batch processing log data is the most popular approach. The reason is probably
because the tools (at least in a UNIX environment) collect their input and act upon
it, then output some kind of additional data or analysis. If you’re thinking of a
typical UNIX pipeline, the input is usually a file consisting of a chunk of data
gathered during a specific time interval. The easiest way to do this is for the system
logging agent to collect data into a separate file for each hour (or day or whatever)
at the completion of which time it’s passed to a pipeline for processing.

The

file -> pipeline -> output file -> alert Email

approach is very popular, since it makes it fairly easy to manage data. To get
various views of processes within time, you either need to split a bigger file apart
(using a tool such as retail) or combine smaller files (e.g.: cat Jun-25-2004-12:* |
pipeline)

22

22

Syslog

� The worst logging architecture known to
man

– Also, the most widely used

Just because lots of people use it, doesn’t mean it’s good.

On the other hand, it’s better than nothing.

The interesting question is: how much?

23

23

Syslog (RFC 3164)

� What were these *!^@#^! smoking?
1. Introduction

 Since the beginning, life has relied upon the transmission of

 messages. For the self-aware organic unit, these messages can relay

 many different things. The messages may signal danger, the presence

 of food or the other necessities of life, and many other things. In

 many cases, these messages are informative to other units and require

 no acknowledgement. As people interacted and created processes, this

 same principle was applied to societal communications. As an

 example, severe weather warnings may be delivered through any number

 of channels - a siren blowing, warnings delivered over television and

 radio stations, and even through the use of flags on ships. The

 expectation is that people hearing or seeing these warnings would

 realize their significance and take appropriate action. In most

 cases, no responding acknowledgement of receipt of the warning is

 required or even desired. Along these same lines, operating systems,

 processes and applications were written to send messages of their own ….

A couple of years ago, when I was implementing some code that had to interface
with syslog, I decided to read RFC 3164. This was the moment when I stopped
believing in the “standards process” and concluded that the IETF were just a bunch
of clowns who used the standards process as an excuse to travel to strange places
and drink too much diet coke.

24

24

Syslog: in a nutshell

� Arbitrary text messages consisting of:

– Source (program name - can be anything)

– Priority (LOG_ALERT, LOG_WARNING ...)

– Facility (LOG_MAIL, LOG_LOCAL0 …)

– Options (LOG_PID, LOG_NDELAY …)

– [Text]

Syslog messages are enclosed within a syslog record that consists of a binary 32-bit
value followed by an arbitrary string of ASCII newline-terminated text. The
“bottom” 3 bits of the 32-bit number are the priority and the remainder encode
facilities. Facilities were originally intended to be useful for de-multiplexing the
message upon reciept but there was no guidance provided as to how to do so, and
users of the syslog(3) API pretty much did whatever they wanted.

The Options are not encoded in the message; they are used to control the client-side
function of the API. LOG_PID, for example, includes the process-ID in the log
message. LOG_NDELAY sends the message immediately, etc.

The beginning of the string (often) consists of a date and time stamp. If the client
side API is the “standard” one the date stamp is added by the client side before the
record is transmitted. This means, among other things, that it’s really easy to forge
dates in syslog records.

25

25

Syslog: in a nutshell (cont)

� Programmers are free to select

– Source

– Priority

– Facility

– Options

– [Text]

� There is minimal / no attempt to
regularize the message structure

When you’re writing client-side code that wants to syslog a message, virtually
everything is left to the programmer’s discretion. If you want your message to be
logged as coming from the “su(1)” program, that’s fine. If you want your message
to be ultra-high priority, that’s fine, too.

I once saw an accidental denial-of-service attack in which a young programmer,
who was debugging some code, decided to use syslog to issue debugging messages
(instead of, say, using a debugger). He chose to use a low priority so as not to
interfere with the system logs. Unfortunately, the syslog server was configured to
not do anything with low priority messages. So the programmer decided to use
printf() to debug (instead of, say, using a debugger). The software actually shipped,
with dozens of syslog calls in it, which slowed down all the systems on which it was
installed because syslogd was thrashing as it tried to deal with all the low priority
events that it was throwing away. The problem was discovered by one of the
product’s early users who had a syslog configuration that saved even low priority
messages: his hard disk filled up.

Giving programmers the ability to just pick whatever they want, with no guidance,
is a bad design.

26

26

Syslog: in a nutshell (cont)

� Rule #1 of security design:

– Don’t trust user input

#include <syslog.h>

/* error checking omitted because we are cool */

main()

{

 openlog("/bsd",LOG_CONS,LOG_DAEMON);

 syslog(LOG_EMERG,"my brain hurts! Shutdown now!");

}

One of the fundamental tenets of security design is that user input is not trustworthy.

This code fragment (actually a working program with all the error checking
removed to make it 3l33t) illustrates some of the problem with trusting user input
from syslog.

Here we open a connection to syslogd and pass the client API a request that the
message be logged to the console. We then issue a syslog message with a priority of
emergency - which, on default syslog configurations, gets widely recorded.

This message could easily be made to look like an IDS alert or a crucial error. Or
10,000 of them, by just adding a for loop.

27

27

Syslog: in a nutshell (cont)

mjr@lyra-> ls

bin foo.c hacks logs sco src tmp

mjr@lyra-> make foo

cc foo.c -o foo

mjr@lyra-> ./foo

mjr@lyra->

Message from syslogd@lyra at Sat May 29 05:26:53 2004 ...

lyra /bsd: my brain hurts! shutdown now!

mjr@lyra-> tail -1 /var/log/messages

May 29 05:26:53 lyra /bsd: my brain hurts! shutdown now!

mjr@lyra->

This shows building our silly little application, and what happens when you run it.
Most syslog config files have a default rule that looks like:

*.err root

*.notice;auth.debug root

*.alert root

*.emerg *

This tells syslogd to send the message to any terminals on which root is logged in,
or “*” meaning “everyone on the system”

Back in the days of hard-wired terminals with escape codes (like VT100s) syslogd
didn’t know enough to strip non-printing characters. My first experience with syslog
was on an old 4.2BSDsystem, where one of the undergrads wrote a program much
like the one above and sent “^[2;9y” to all logged in users. Trivia question: does
anyone know what that does to an old DEC VT100 terminal?

Very few UNIX systems are multiuser anymore, comparatively, so this is not as big
a deal as it used to be; but you could probably get some sucker to fall for a message
saying, “this is the system administrator; due to impending power outage, please
issue the command rm -rf * and log out IMMEDIATELY”

28

28

Syslog: in a nutshell (cont)

� So, one question we need to ask
ourselves:

– If syslog data is easy to forge, how can we
make it useful?

1) Screen incoming syslog from the Internet at
the firewall

2) Always approach logs with healthy skepticism

3) Make sure it’s hard to delete logs

Since we’ve shown that syslog data is not very hard to forge, have we also shown
that it’s useless?

Not really. For most of the things a bad guy is going to want to do, they’d rather
have nothing in the log than something. Accept the fact that things might be injected
into your syslog and think of ways to reduce that likelihood. For example, if you
have a syslog server that is not an aggregator, it should be running with syslogd
configured to not accept UDP traffic. A bad guy on the host can still inject syslogs
into the UNIX domain socket /dev/log but they’ll have to log onto the host and that
will leave some traces.

A bit of healthy skepticism is important to have if you’re working with log data. If
you see a message in syslog that one of your co-workers is trying to “su” your
account, don’t just run down the hall and start beating them. Make sure that’s
what’s going on, then start the beatings. In general, you should treat syslog data as
an initial discovery tool and an important pile of clues - never an open and shut
case.

Most importantly, make sure it’s hard to delete your logs. The most popular way of
interfering with logs is to just zap them. If that happens, you can grep(1) your hard
disk for them with some difficulty

strings /dev/rwd0a | \

grep ‘^[JFMASOND][aeupco][nbrynlgptyc] [0-9]+ [0-9]+:’

… and so forth… your mileage may vary...

29

29

Syslog: why it sucks

1) Arbitrary format

2) Un-authenticated input

3) Unreliable transport

4) No standard token delimeters (e.g.:
host= always means “host name or IP
follows”)

5) Year left out of date/time stamp (what was Eric thinking?)

By now you may be getting the idea that syslog is not a very good logging system.
That’s a pretty accurate view of the situation.

You have my permission to be a little depressed about what you’re getting yourself
into.

30

30

Syslog: why it is good

� Lots of systems use it

– 150 billion flies can’t all be wrong!

The good news about syslog is that it’s widely supported!

In fact, the situation could be much worse! Eric did us all a big favor with syslog (in
spite of all the stuff he left out) because if it weren’t for syslog, UNIX machines
would have 400 different files in /var/log as well as /usr/spool/uucp/log,
/var/www/log (oh, wait, they have that…) and so forth.

“syslog may be garbage but it’s neatly stacked garbage!” - anonymous

31

31

Syslog Reliability

� By default syslog uses UDP

– For performance/simplicity

� UDP messages have lots of problems:

1) Easy to forge

2) Unreliable receipt

� No way of telling it got there

� Receive queue overruns / network congestion

3) Unreliable transmission

� Transmit queue overruns

Another major problem with syslog is that it uses an unreliable mechanism for
delivery.

Normally, when someone sees “UDP” and “unreliable” they think, “well, that’s
bad” - but that only begins to scratch the surface of how bad UDP syslog truly is.
UDP traffic can be discarded at will by any device or layer anyplace in the stack or
between the two programs that are communicating. Worse still, there’s no way to
tell if the traffic did, in fact, get there.

So, usually, when we think of UDP we think of it as a protocol to use for ‘quick and
dirty’ transmission of transient data. In other words, it’s the exact wrong thing to
use for logging data.

When syslog was written, it was before the days of massive web servers that could
handle huge numbers of live TCP connections. If old syslogds had used connected
TCP streams, the syslog server would have been much much more complicated,
since it would have had to select() across, basically, one TCP stream per app
running on the machine. Making it an in-kernel service (with the potential to then
use a protected file) would have been too much work, apparently.

32

32

Syslog Reliability (cont)

� Syslogging one million records in a
while loop on an 800Mhz OpenBSD
server using the default UNIX domain
socket results in a log file containing

– 468677 records

– 46% or close to 1/2 the number sent

– UDP can be discarded silently at various
places in the kernel or IP stack!

A bunch of us were on a mailing list and were discussing the reliability of syslog. It
turned out that nobody had ever actually measured it - we were all just guessing. So
I did some tests and the results were worse than many of us expected.

Syslogging in a tight loop resulted in 50% losses even using the local UNIX domain
socket. This test took approximately 15 seconds to run, which comes to about
67,000 messages/second - about 6,000 times a “normal” syslog load.

Still, this is not very good.

33

33

Syslog Reliability (cont)

� Syslogging one million records over
UDP to a host on the local network (and
counting the packets sent)

– 4604 records

– 0.4% or close to 1/200th the number sent

– UDP can be discarded silently at various
places in the kernel or IP stack!

Using the same test over a UDP datagram to a different machine across a network
the results were dramatically worse. Of 1,000,000 records, only 4604 arrived, which
is 0.4%

4606 messages in 10 seconds is 46 messages/second, which is about 4 times a
“normal” syslog load. This raises the interesting question: if you have a syslog
server that is being sent traffic by 200 clients, what makes you think that more than
a fraction of the traffic is showing up in the log?

This is a really good argument against having a massive central log server, but
rather having a lot of smaller aggregators that collect locally and then forward to the
central log server over a reliable, encrypted pipe.

34

34

Windows System Logs

� Windows System logs are
(demographically) the most widely
deployed type of logs

– BUT they are also nearly always ignored

� Unlike UNIX syslog Windows system
logs are structured - somewhat

Windows’ system logging architecture is arguably better than UNIX’, but it’s much
less widely used. The words “enterprise computing” don’t appear to mean much in
Redmond, because Windows logging system completely omits any mechanisms for
built-in aggregation.

The good news about Windows logging is that the data is at least somewhat
structured. But, the good news is tempered with bad news - the data is still arbitrary
and cryptic.

35

35

Windows Event Log

� No integrated capability for remote
logging (a clever way to dodge syslog’s reliability problems!)

� Binary file – no grepping allowed!

� System default: auditing is disabled

This section of the course is based on Cory Scott’s fabulous document, “Dealing
with Windows NT Event Logs,” at
http://www.securityfocus.com/focus/microsoft/nt/log1.html

and the course he presented at SANS 2000.

To access Event Log information on WinNT, under the “Start” button, select
“Administrative Tools (Common),” then select “Event Viewer.”

For further information on configuring NT Event Log, see “Selecting WinNT/4.0
event log settings” at
http://www.cert.org/security-
improvement/implementations/i041.03.html

The only way to prevent a Windows system from overwriting its log files is to
configure it to stop logging when it runs out of disk space, or to shut the machine
down entirely. Neither of these is likely to be ideal, since you either start losing
audit information or lose the machine’s availability altogether. This is one great
reason for configuring your Windows systems to send Event Log data to a loghost,
even though it takes a bit of work. You’ll no longer need to worry about losing data
if your Event Log fills up.

36

36

Windows Event Log (cont)

� System Log: Startup and shutdown
messages, system component data,
critical services

� Security Log: Windows auditing
system data only

– Includes user & host authentication,
share access, printing, etc.

� Application Log: Everything else

My favorite tidbit from Cory’s essay on NT Event Logs: “Unfortunately, due to an
inexplicable decision by Microsoft, a failed logon to a domain from an NT
workstation will only log a security event to the workstation (if auditing for logon
events is enabled) attempting to connect, rather than to a domain controller. For
that reason alone, it is necessary to audit failed logons on every workstation that is
on your domain.” Our theory is that since the domain logon failed, the local
workstation doesn’t have the privilege required to log to the domain controller’s
Security Log. Ugh. Luckily, this deficiency is fixed in Windows 2000.

The three binary log files are stored in %SystemRoot%\system32\config folder on
WinNT, as SysEvent.Evt, SecEvent.Evt, and AppEvent.Evt.

Any application that registers itself to the Event Log service can write audit data to
the Application Log. To see which applications are registered, check this Registry
location:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Eventlog\Applica
tion

37

37

Windows Event Log (cont)

� Any process can write to Application
and System Event Logs

– Apps “should” register message library

� Only LSA and Event Log Service
itself can write to Security Event Log

– Access is controlled by Windows kernel

– Consequently Security log is more
reliable forensic information than syslog

The Event Log API uses an error message library to translate from an event ID to a
human-readable message. Well behaved Windows developers create meaningful
message libraries, and their applications register themselves with the Event Log
service to provide that translation capability. Care to imagine what badly behaved
Windows developers do?

38

38

Windows Application Log

� Application Log messages decoded
using message dictionary (in a .DLL) for
internationalization purposes

– Should be provided by application
developer

– Frequently isn’t

� This makes logs useful only on the
machine of origin

If you intend to do anything with Windows application logs, you will need to
decode them into text (or some other format) on the machine where they originated.
This was intended as a mechanism for internationalization - programmers write a
“message dictionary” that maps coded error numbers from the log file into matching
messages in a DLL. If you want the error messages to come out in French, you
install the French DLL, etc. Do you think there might be a market for error DLLs in
Klingon or Latin?

39

39

Windows Application Log (cont)

Wow! Look an
event log

consisting of a
useless cryptic

number!

Anyone who has used software for more than a few years will have at some point or
another encountered the dreaded “stupid error message” in which some programmer
forgot to remove a debug message from a production application.

This classic example of cryptic uselessness is the result of the logging system trying
to decode an error code for which there is no string mapping.

40

40

Windows Application Log (cont)

Even when you
have the details

is it helpful?

“Oh, no!! The 80010105 again!”

Do you want to make a bet that the helpdesk can tell us what an 80010105 is?”

41

41

Windows Event Log (cont)

Colored
buttons are

good!!!

Are these
messages

very
useful?

The severity of an event is indicated by the icon on the far left hand side of the
window:

�Blue indicates diagnostic information that requires no action

�Yellow indicates a warning that may require attention, but does not severely impact
the ability to use the system.

�Red indicates an error that will probably make the system or service unavailable.

42

42

Windows Event Log (cont)

UNIX geeks
apparently aren’t

the only
ones that

can log stupid
messages!!

This is tbird’s favorite error message. According to former student Craig Woods
(AT&T Professional Services), this message is created due to improper inter-
process communication. The Information Store service spawns a shell (the Service
Control Manager), whose only goal in life is to start the Microsoft Exchange
Directory Service. The Directory Service process has failed for some reason – the
ultimate cause of the problems with the Information Store. And the Information
Store knows enough to verify that the process upon which it’s dependent is up and
running. But unfortunately, instead of querying the Directory Service and
discovering that all was lost, it queries the Service Control Manager, which has
successfully accomplished its mission. So the Information Store continues on its
merry way with its own start-up process, only to fall over when it can’t get to the
Directory Service.

43

43

Windows Event Log (cont)

� Throwing an event:
– Logger equivalent for Windows: Win2000

Resource Kit tool logevent

– Writes an Event ID set by an administrator
to the Application Log

– Message severity is always Informational

� Adiscon’s MonitorWare agent will
forward data added to a Windows text
based log to a syslog server

There’s information on using logevent at
http://support.microsoft.com/support/kb/articles/Q131/0/08.asp.

For no adequately explained reason, this utility creates Event Log messages with the
severity level informational only. According to Microsoft, “…because these Events
are generated by the user, it was felt that it is sufficient to put these in the log as
Information Type messages only.” Those silly users would never want to write their
own Warnings or Errors.

Adiscon has released a tool that will monitor Windows text files – such as Web logs
produced by IIS – and forward them to a central syslog collector:
http://www.mwagent.com

44

44

Windows Event Log (cont)

� Another logger equivalent for Windows:
Kiwi’s Syslog Message Generator
– Sends manually-generated syslog

messages from a Windows command line
or GUI to a syslog server

– Does not read data from Event Log, but is
useful for testing

For more info: http://www.kiwi-enterprises.com/info_sysloggen.htm

45

45

WinNT Audit Configuration

To edit your audit policy on Windows NT, go to the Start menu and select
“Administrative Tools (Common).” Then select “User Manager,” and under the
“Policies” menu on the Task Bar, select “Audit.” Clear as mud.

On XP Click Start, click Control Panel, click Performance and Maintenance, and
then click Administrative Tools. Double-click Local Security Policy. In the left
pane, double-click Local Policies to expand it. In the left pane, click Audit Policy
to display the individual policy settings in the right pane. Double-click Audit object
access. To audit successful access of specified files, folders and printers, select the
Success check box. To audit unsuccessful access to these objects, select the Failure
check box. To enable auditing of both, select both check boxes. Click OK Requires

XP Professional!

No wonder a lot of people never configure windows logging...

46

46

NT vs. Win 2k Audit
Categories

WinNT
� User/Group Mgmt.

� Logon and Logoff

� File and Object Access

� Security Policy Changes

� Use of User Rights

� Audit process tracking

� Restart System

� Shutdown System

Win 2k
� Audit Account Management

� Audit logon events

� Audit object access

� Audit policy changes

� Audit privilege use

� Audit process tracking

� Audit system events

+ Audit account logon events

+ Audit directory service

access

There are considerable differences between the audit configuration options in NT
and Win2K. Similarly, there are big differences between 2K and XP as well as XP
Pro.

Maybe syslog isn’t so bad after all!

47

47

Win2k Event Log Details

� Local policy settings applied first, then
domain policy settings, then active
directory settings

– May make local audit setting different from
effective audit setting

Best practices guidelines for Windows 2003 server:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/
prodtechnol/windowsserver2003/proddocs/entserver/sag_SEconceptsImpA
udBP.asp

48

48

Win2k Audit Configuration

To edit audit policies on Windows 2000, bring up the Control Panel, and select
“Administrative Tools (Common).” Then click on Security Settings, Local Security
Policy, Local Policies, Audit Policy.

49

49

WinXP Audit Configuration

To edit audit policies on Windows XP, bring up the Control Panel, and select
“Administrative Tools” Then choose Security Settings, Local Security Policy,
Local Policies, Audit Policy - just like Win2K.

50

50

Windows to loghost

� Third-party tools required to send Event
Log data to remote loghost. Pure syslog
clients:

� Event Reporter
– www.eventreporter.com

� Ntsyslog

– ntsyslog.sourceforge.net

� Snare
– http://www.intersectalliance.com/projects/SnareWind

ows/

EventReporter and Snare both provide a graphical interface as well as command
line or registry edit capability. NTsyslog is command line only and is not
(apparently) being maintained any more. Eventreporter is a commercial product and
Snare is available under the Gnu Public License.

51

51

Windows to loghost (cont)

� Other options: Perl module
Win32::EventLog – allows external
access to EventLog API on a loghost or
on a Perl-equipped Windows machine

If you’re a perl hacker, there is a perl module that handles interpreting Windows
Event Log. To use it, you’ll need perl on the windows machine as well as the DLLs
necessary to decode the Event Log.

52

52

Windows to loghost (cont)

� This worked example is based on
EventReporter

– Because I wanted to show something

– EventReporter has a GUI (unlike ntsyslog)

EventReporter and some related tools (such as an NT syslog server) are available at
http://www.eventreporter.com. It’s priced starting at $29 per server, with
volume discounts. EventReporter includes two components, a configuration client
and the engine that translates and forwards Event Log data to the syslog server.

Information on Win32::EventLog is available at

http://search.cpan.org/doc/GSAR/libwin32-0.16/EventLog/EventLog.pm.
The module itself is available at

http://www.cpan.org/authors/id/GSAR/libwin32-0.16.zip.

53

53

Windows Audit Policy

This is an exam,ple default logging policy for a stand-alone Windows XP
Professional system. It’s not part of a domain (so there’s no reason to audit the
account login category), and it doesn’t provide any public services (that I know of).

54

54

Windows to loghost (cont)

After you’ve installed EventReporter, start the Client application (as Administrator)
to configure things to send data to your central loghost. In this example, the loghost
IP address is 172.16.16.46. The sleep interval configures the time period over
which EventReporter processes the Event Log. It’s given in milliseconds, and
defaults (as shown) to 1 minute. Shorter periods are supported, but they increase
the processing requirements for the application (which are otherwise minimal even
on a busy NT server).

55

55

Windows to loghost (cont)

I’ve configured EventReporter to send my System Log events to the remote loghost
as facility LOCAL_0 – we’ll see that show up in the syslog data.

The Report Truncated Log option enables EventReporter to send a message when
WinNT automatically truncates its Event Log – alerting the administrator that
there’s a problem. Leaving this enabled is a really good idea.

The Filter Rules enable the administrator to decide specific events to send (or not
send) to syslog. This enables you to eliminate messages you know you don’t care
about from your loghost, or conversely to be extremely granular about which
messages you forward. It’s generally safer to eliminate messages you know are
unimportant than to specify messages to send.

56

56

Windows to loghost (cont)

The Filter Rules enable the administrator to decide specific events to send (or not
send) to syslog. This enables you to eliminate messages you know you don’t care
about from your loghost, or conversely to be extremely granular about which
messages you forward. It’s generally safer to eliminate messages you know are
unimportant than to specify messages to send.

Event ID 6009 states “Microsoft (R) Windows NT (R) 4.0 1381 Service Pack 6
Uniprocessor Free.” I’m not particularly interested in this as a security event, so
I’ve set up this run to filter it out of my syslog stream. This will save my loghost
processing time when it comes to processing data in the search for critical security
issues.

57

57

Windows to loghost (cont)

And lo and behold, you get Event Log data cluttering up, whoops, I mean, mingled
in with your UNIX syslog output!!

EventReporter maps Windows log severities to syslog priorities as follows:

NT Severity Code syslog Priority

Audit Success [AUS] LOG_NOTICE

Audit Failure [AUF] LOG_WARNING

Information [INF] LOG_NOTICE

Warning [WRN] LOG_WARNING

Error [ERR] LOG_ERR

none [non] LOG_NOTICE

58

58

Windows to loghost (cont)

� This worked example is based on Snare

– Available free under GPL

– Good stuff!

The Snare agent for windows syslog is very powerful and is priced affordably.

http://www.intersectalliance.com/projects/SnareWindows/

From the Snare page:
“Snare for Windows is a Windows NT, Windows 2000, Windows XP, and
Windows 2003 compatible service that interacts with the underlying Windows
Eventlog subsystem to facilitate remote, real-time transfer of event log information.

Event logs from the Security, Application and System logs, as well as the new DNS,
File Replication Service, and Active Directory logs are supported. Log data is
converted to text format, and delivered to a remote Snare Server, or to a remote
Syslog server with configurable and dynamic facility and priority settings.”

59

59

Windows to loghost (cont)

This is the snare real-time event viewer; what is seen on the client system. This
shows the expanded system log information that is being analyzed to pass to the
remote server.

60

60

Windows to loghost (cont)

Here we show configuring Snare. The remote server’s address has been specified,
and the syslog header fields are set. You’ll notice that you can define Snare to
transmit with a default priority and facility. You can overrule some of the defaults
on the per-objective rules we’ll see in the next slide.

The bottom panel consists of “objectives” which are the matching rules used to
decide what events should be syslogged. This is nice because it lets you “tune” the
client so that you’re not going to overload the server with extra messages you don’t
need.

61

61

Windows to loghost (cont)

This is the editor screen that lets you create a new objective/matching rule.

The top of the screen lets you specify static types of events (like logon/logoff)
followed by search terms. Search terms can include wildcards, which is incredibly
useful.

The bottom of the screen lets you assign a syslog priority that overrides the default
setting.

62

62

Windows to loghost (cont)

This shows an expanded event log record in the event viewer.

63

63

Windows to loghost (cont)

One of the interesting things about Snare is that you can configure the client to
allow remote management by a specified IP address using a password and a
browser.

There are lots of cool potential tricks you can play with this - set up all your systems
with a baseline configuration that allows them to be remote-managed by your log
server, and then you could conceivably script a lot of your management using perl
or http-get, etc.

Extra credit: check and see if Snare logs attempts to talk to the access port using an
invalid password. Suppose it does - how might you use this to turn Snare into an
agent to detect worms or SMTP probes?

64

64

3 Replacement Syslogds

� Syslog-NG

� MiniRsyslog

� Kiwi Syslogd

If all you want is basic syslog services, the standard syslog program that comes with
most UNIXes will probably do an adequate job. If, however, you want to do fancier
processing, processing of large loads, or are building an internet-facing log server,
you should plan to replace the stock syslogd.

There are a large number of syslog replacements out there! I can’t even come close
to covering them all, or even covering 3 of them in detail. So what we’re going to
do today is look at 3 of the most popular syslogd replacements.

65

65

Replacement Syslogds
Compared
� Syslog-NG

– 6323 lines of C
in its support library

– 16460 lines of C,
Yacc, Lex

– Needs libraries and
configure and root
install

– Feature-fat

� MiniRsyslog

– 1882 lines of C

– Type “make”

– Feature-thin

� Kiwi Syslogd

– Windows server

– GUI/product

It’s instructive to compare our two candidate syslogd replacements. Syslog-ng is
“feature-fat” and has a very impressive set of capabilities. Minirsyslog is “feature-
thin” and only does one thing well.

When you’re deciding on a tool to use, you need to take into account a lot of things
- most importantly, how you plan to use it. I like to think of these two tools as the
representatives of a design philosophy debate that has been going on for a very long
time. Some people would rather have a complex multi-tool like a LeatherMan™
that is simultaneously pliers, screwdrivers, knife, etc - others prefer to carry a knife,
a screwdriver, and a pair of pliers. These is a design philosophy that argues that it is
impossible to make a combined hammer/screwdriver that would be as good as the
separate standalone tools - because the separate tools are optimized to accomplish a
single purpose better.

A fundamental of security design is that minimalism is good. Indeed, if you assume
(I don’t believe we can prove this) that bugs-per-lines-of-code is a useable metric,
then the larger a piece of code grows, the buggier it will be. This has serious
implications when talking about security software.

Choose your tools carefully.

66

66

Syslog-Ng

� Syslog-NG is intended as a
replacement for current syslog
implementations (basically it’s a
message-routing system)

http://www.balabit.com/downloads/

– Filter on message contents as well as
other fields

– Modular sources and destinations

� Pipes, UDP, TCP, fifos, kernel, etc...

Syslog-ng has basically all the features you’d want in a system log daemon. It
allows you to set up as many listening service ports as you might want, and supports
large numbers (and types) of output channels. It has a powerful regular-expression-
based filtering language that lets you sort by message contents, or program, or type.

In the next few slides we’ll do a quick walk-through of some features of syslog-ng.
These are the features that you’ll typically need to get the job done for most
purposes.

The design of syslog-ng is based on a data flow in which traffic comes into the
system through a source, is matched by a filter, and directed to an output channel.
Building a syslog-ng configuration entails defining sources, outputs, and filters, then
binding them all together using the log() operation.

67

67

Syslog-Ng Sources

� Sources can be attached from multiple
avenues

– This is extremely valuable if you’re
building a system that needs a chrooted
/dev/log as well as a “normal” /dev/log

source s_pipe { pipe("/dev/log"); };

– Each source can have loads of options
 source s_tcp { tcp(ip(127.0.0.1) port(1999) max-connections(10));

};

 source s_udp { udp(); };

Syslog-ng servers can collect data from multiple sources simultaneously.

Honestly, this is not that big a deal unless you need to handle multiple sources, in
which case it’s incredibly useful. For example, with “traditional” syslogd, many
admins were unable to correctly collect logs in chrooted areas - they needed
multiple /dev/log entries (e.g.: /var/www/chroot/dev/log and /dev/log)

Syslog-ng sources are:

�TCP connection

�UDP datagram (“traditional syslog”)

�UDP UNIX dom,ain socket

�kernel log

Each different log source has a multitude of options, such as port, max connections,
permitted addresses, etc. In the example above, a TCP listener is created on
127.0.0.1, port 1999 - we might want to create multiple TCP listeners on a variety
of ports, or addresses for whatever reason.

68

68

Syslog-Ng Filters

� Filters evaluate to a boolean expression
and can have different routings applied
to them
filter local_delv{ host(”localhost") and match(”stat=sent"); };

– Operations on:

– program name, host, message text, facility,
level, priority

A filter is a named entity that can combine multiple clauses in an expression to
evaluate as a truth-value. All of the fields of a syslog message can be matched in a
filter statement.

In this example, the filter will match all messages containing the string “stat=sent”
that come from localhost.

There are a couple of different paradigms syslog analysts use for matching and
sorting messages with syslog-ng. Either divide the messages up by program, or
source, or priority. Each approach has its advantages and disadvantages. Some
syslog analysts sort the messages in duplicate (I.e.: sort by host into one set of files
and sort by priority into another)

69

69

Syslog-Ng Destinations

� Filters route messages to destinations

– Destinations are the logical opposite of
sources

destination d_tcp { tcp("10.10.10.223" port(99); localport(99)); };

– This can be used to implement basic
syslog forwarding and multiplexing

destination d_prg { program(”/usr/bin/gzip -qf9 > /logs/x.gz"); };

– Or sending encrypted via ssl tunnel (this example

assumes separately spawned tunnel listening on 514)

destination loghost {tcp("127.0.0.1" port(514));};

A destination is a syslog-ng output channel; a syslog-ng server can manage a large
number of destinations. The most popular destinations used are:

�File

�Udp

�Tcp

�Program

The file destination file(“/var/log/whatever”) is the typical means of appending a
message to a log file. Each of the destination types has its own configuration
options that are specific to how it functions.

The program(“whatever”) option calls a subshell to receive the messages on its
standard input. In the first example above, our logs are being automatically
compressed using gzip. One thing to be aware of, if you do this, is that the gzip
process may buffer or delay data in transit; if the system crashes while gzip is
holding messages in its memory that have not been written to disk, they will be lost.
In general, this is not a big deal but it’s worth being aware of.

The final example on this slide is a typical example of how many sites tunnel syslog
data over an application-level relay like ssh or ssltunnel. The tunnel is brought up
using other configuration practices (starting ssltunnel in rc.local, to listen on a local
port and connect to a remote system) then syslog-ng is configured to output via TCP
to the tunnel. An alternate form of this is to just set up a destination such as sshing a
command like “dd -a of=/remote/file”

70

70

Syslog-Ng Destinations (cont)

� You can get very creative with
destinations!!
destination d_prg { program(”/usr/local/bin/gpg -eat mjr@ranum.com

| /usr/lib/sendmail logbucket@ranum.com"); };

– Could send to a recipient
key that is jointly held by
audit committee for
forensics (but that would be overkill)

Compresses
it, and tamper
proofs it, and

ascii-armors
it!!!

The possibilities with program destinations are tremendous.

In this example, we are outputting all messages to PGP’s email encryption, which
is then being sent to a remote address via Email. This is a great way to get messages
to a remote location securely and reliably. After all, the Email system will take care
of queuing up and retrying transmission, etc. The PGP message format is portable
and includes compression as a “freebie” so not only are these messages tamper-
proof, and secure - they’re small.

The only problem with this approach is that syslog-ng will only “flush” the data on
the program() channel when it exits or gets a SIGHUP. If you use this approach you
should have a cron job SIGHUP the daemon at your preferred time interval.

This is a great simple way to keep certain syslogs on a remote location where they
are tamper-proof.

71

71

Syslog-Ng/Sample Config

options { long_hostnames(off); sync(0); mark(3600); };

source s_remote { udp(ip(10.10.10.3) port (514)); internal();

unix-dgram("/dev/log"); file("/dev/klog"); };

filter f_emerg { level(emerg); };

filter f_mail { program(postfix) or program(sendmail) or program(exim)
or program(sm-mta); };

filter f_vpn { program(vpnd) or program(vtun) or program(stunnel) or

host(cis-vpn.*); };

filter f_kern { program(kernel); };

filter f_lp { program(lpd) or program(lpr); };

filter f_ssh { program(sshd) or program(sshd2); };

...

Receiving logs
from a remote

aggregator

Local logs
from kernel and

/dev/log

Define all
mailers...

Define ssh
versions...

Let’s walk through an example syslog-n configuration file, to give you an idea of
some of the capabilities of this software.

The first line sets up a few global options: we turn long hostnames off (use short
forms instead of fully-qualified domain names) sync() is set to zero, which means
that logfiles should be forced to disk whenever a new message is added. Mark() is
set to 3600 seconds, which means that the log server will output a status heartbeat
every hour. The internal() clause is the “magic” syslog-ng-originated source; you
can attach it to one of the input sources and have a feed of syslog-ng specific data.
In this case we are treating internal() just like everything else.

We then set up a remote source from which we will accept UDP syslog listening on
local address 10.10.10.3 on port 514. This is useful for dual-homed machines, in
which you may want to have a syslog listener on one interface but not another.

The next set of lines, we initialize listening on the kernel’s logfile, and the UNIX
domain datagram socket /dev/log.

The f_hosts filter matches based on “emergency” level syslog priority. So in this
example we are doing some matching by priority and some matching by program.

The remainder of lines break each service down into categories based on the
program name. So we’ve established a filter for “mail” programs that includes a
number of the usual suspects. Here we are setting ourselves up so that we can divide
our logs into files by program/service.

72

72

Syslog-Ng/Sample Config (cont)

destination d_mail { file("/var/log-ng/mail.log"); };

destination d_vpn { file("/var/log-ng/vpn.log"); };

destination d_kern { file("/var/log-ng/kernel.log"); };

destination d_lp { file("/var/log-ng/lpr.log"); };

destination d_ssh { file("/var/log-ng/ssh.log"); };

destination d_sugood { file("/var/log-ng/su-good.log"); };

destination d_emerg { file("/var/log-ng/emergencies.log"); };

...

mail to
its own log

ssh to
its own log

Emergency
priority

log

The destinations section of the config file is fairly straighforward. For each of the
services that we defined a filter for, we create a destination file that is appropriately
named.

Our emergency priority level message log is separately defined at the bottom.

73

73

Syslog-Ng/Sample Config (cont)

log { source(s_remote); filter(f_mail); destination(d_mail); };

log { source(s_remote); filter(f_vpn); destination(d_vpn); };

log { source(s_remote); filter(f_kern); destination(d_kern); };

log { source(s_remote); filter(f_lp); destination(d_lp); };

log { source(s_remote); filter(f_ssh); destination(d_ssh); };

log { source(s_remote); filter(f_sugood); destination(d_sugood); };

log { source(s_remote); filter(f_emerg); destination(d_emerg); };

Now direct
remote mail
logs to mail

output

S_remote are
the messages

we got over the
network

Emergency
priority

messages

Here we glue all the pieces together with the log() operation. Messages from
specific sources that match specific filters are routed to specific destinations. Here
you can apply the same filter multiple times if you want to centralize the definition
of a particular matching rule.

At the bottom, you can see we use our priority-based filter to match and send
messages to our emergency log destination.

74

74

Syslog-Ng/SSL

� The preferred method is to use
ssltunnel

http://sourceforge.net/projects/ssltunnel

� SSH is another option if you’re an SSH
maven

– There’s relatively little difference for this
application since it’s a “trusted” connection
on both sides (what’s the point of using public key for this?)

There are lots of ways to tunnel syslog-ng traffic over a network using a secure
tunnel. The preferred method is probably to use ssltunnel. If you’ve got SSH set up
on your machine, then use SSH instead. There’s really no difference between the
two approaches; it’s a matter of personal preference.

I’m a paranoid, personally. Since SSH and SSL are widely used, there has been a
fair amount of effort devoted to hacking the protocols and code for those services.
Since public key doesn’t really add a lot of security value when you’re using
preconfigured services between hosts. I use an old tool I wrote a long time ago
called “get/put” which does a simple batch-mode encrypted file transfer. It uses
fixed DES keys and challenge/response authentication. The bottom line here is that
you can use anything you like and as long as it’s basically reliable and moderately
functional, you’ll be fine.

Make sure you protect your log server using firewalling!! Ipchains, iptables,
ip_filter - whatever you use; make it as simple and restrictive as possible.

75

75

Syslog-Ng/VPN

� Another option is to use IPSEC VPNs
between log servers and hosts

– Generally this is a pain because you have
to deal with transitive trust (someone
breaks into the host they can launch
crypted attacks over the VPN against the
log server)

– (I don’t prefer this one!)

Some log server-builders use IPSEC between their log hosts, so that the security
layer is all implemented “below the radar screen” instead of at application level like
with a tunnel.

I find this approach to be cumbersome, because of the details involved in setting up
IPSEC. Also, I worry that transitive trust attacks may be possible. If someone gets
onto one log server then they can attack over the IPSEC VPN!

76

76

Syslog-Ng/SQL

� Syslog-Ng can output into SQL
databases using “pipe” destination

– Outputs can be modified using a “template”
capability

template("\('$HOST','$ISODATE','$FACILITY','$PRIORITY',

'$MESSAGE' \)\n")

– This can be dumped right into SQL…
(example is for mysql but you can use whatever you like)

Syslog-ng supports re-formatting of output; you can change or omit fields, add line-
breaks, etc. This is useful for a wide range of purposes, but is frequently applied to
pump data directly from syslog-ng into a SQL database.

This example uses mySQL but you can pretty easily generalize it to any SQL engine
you’d like.

Basically, what we do is configure syslog-ng to output SQL insert statements
directly out a FIFO, which we then use as input to an interactive SQL session.

Before you approach using a database for your logs, make sure you will actually
benefit from doing so. Most of the things you’d want to do with a syslog database
will involve linear searching, which eliminates a lot of the value of having the
records where they can be queried using SQL. For example, you might wish to
search for user-id related information. Unfortunately, since the logs aren’t parsed
before they go into the database, that information is not accessible except for via a
brute-force search. So if you think you’re going to be doing the SQL equivalent of
“grep root database” consider that “grep root file” is often just as fast and is a whole
lot easier!

77

77

Syslog-Ng/SQL

� Template used to write SQL directly out
a pipe

Log syslog-ng to mysql database

destination d_mysql {

pipe("/tmp/mysql.pipe"

template("INSERT INTO logs (host, facility, priority, level, tag,
date,

time, program, msg) VALUES ('$HOST', '$FACILITY', '$PRIORITY',
'$LEVEL','$TAG','$YEAR-$MONTH-$DAY', '$HOUR:$MIN:$SEC',
'$PROGRAM', '$MSG');\n") template-escape(yes));

};

log { source(net); destination(d_mysql); };

Here we define a destination called “mysql” and attach a template to output for that
destination. The first part of the template is a stock “insert” SQL command with the
name of the fields that we are about to insert into. The next part of the template
outputs the values from the syslog record that we have defined in our database.

The pipe(“/tmp/msql.pipe”) is the important part of this trick; we’re cauing syslog-
ng to write to a FIFO file which we’re going to use as a vehicle for carrying the
SQL insert commands directly into MySQL.

78

78

Syslog-Ng/SQL

� Commands to create table (first time)

CREATE DATABASE syslog;

USE syslog;

CREATE TABLE logs (

host varchar(32) default NULL, facility varchar(10) default NULL,

priority varchar(10) default NULL, level varchar(10) default NULL,

tag varchar(10) default NULL, date date default NULL,

time time default NULL, program varchar(15) default NULL,

msg text, seq int(10) unsigned NOT NULL auto_increment,

PRIMARY KEY (seq),

KEY host (host), KEY seq (seq),

KEY program (program), KEY time (time), KEY date (date),

KEY priority (priority), KEY facility (facility)

) TYPE=MyISAM;

These are the MySQL commands used to create the table that we’re populating in
this example. We define the fields in the schema and give their types. We also
define which fields are primary index keys, so the database will maintain a btree
index to speed searching across those attributes. With this particular data schema
one could quickly query for things like “all sendmail logs occurring between date1
and date2”

79

79

Syslog-Ng/SQL

� Set up communication via FIFO

mkfifo /tmp/msql.pipe

mysql -u root --password=passwd syslog < /dev/mysql.pipe

Syslog-ng
writes to one

side of the FIFO
mysql reads

from the other!
How cool is that?

Here’s the sneaky part!

We create a FIFO filesystem object using the mkfifo command and give it the same
name as the pipe(“/tmo/mysql.pipe”) in our syslog-ng config file. Since the pipe is
in /tmp it may get cleaned up whenever the system reboots - depending on your
system. You may wish to keep it someplace else (in a protected directory) where it
won’t be tampered with.

Now, we launch an interactive SQL session, as a privileged user, and we tell it to
read its input from our FIFO. The SQL engine now sees a stream of insert
commands and executes them as long as they keep coming in the pipe!

This setup can be surprisingly efficient and may work fine for large loads, if your
hardware platform is powerful enough.

80

80

MiniRsyslogd

� Intended to just do simple remote log
collection
http://www.clueby4.org/minirsyslogd/

– Does not deal with local logs

– Does not have config files

– Splits logs by: ip address, date, hour

– Good candidate for use on a “syslog box”
or aggregator

Minirsyslogd is the antithesis of syslog-ng. Where syslog-ng’s options have options,
minirsyslogd has no options at all. Where syslog-ng reads its config file with a yacc-
generated parser, minirsyslog doesn’t even need a configuration file.

By default, minirsyslog splits its logs by source address, date, and hour. It’s fast,
simple, and easy to chroot to someplace safe in your filesystem.

Minirsyslog only accepts remote data; the local logs are ignored. If you need local
logs, you’ll need to come up with a way of getting them into minirsyslogd on your
own.

81

81

This, I like!

(Extra credit if you can tell me the song that was the lead-in for, and the singer)

Building minirsyslogd is trivial. I really like seeing code that is small, portable, and
uncomplicated!

82

82

Kiwi Syslogd

� Best-known Windows syslog server

www.kiwisyslog.com

– Free/Commercial product ($99/server)

– Has many nice features; good for
Windows-oriented sites

Kiwi syslogd is probably the best known of the Windows syslog servers. If you need
to do syslogging and you’re in a Windows environment, this is the tool for you!

Kiwi offers the product for free/commercial registration use for $99, which is a low
price for an excellent product.

In the next few slides, I’ve assembled a few screenshots from kiwi software’s
website - they’ll give a flavor of what the product can do.

83

83

Kiwi Syslogd (cont)

Nice
options for

archival

Auto-zip
is a cool

idea!

Here we see the archive configuration screen for kiwisyslogd. You are able to
control the archival interval, format of file names, and even compression program to
use for long-term storage.

There’s even an option for another program to run whenever an archive is moved,
and the option to notify an administrator by Email. If you wanted to, you could have
the “other program” copy a backup of the archive to a queue for a CDROM burner
or tape store.

84

84

Kiwi Syslogd (cont)

Various
formats;
this is
nice

ODBC
is an

option, so
is ICQ/AIM!

Here we see kiwi syslogd’s option screen for how to log data to a file. We’re
specifying the logfile name and are adding macros to the name such as

%IPAdd4

which expands to the sender’s IPV4 address.

Notice the “Action” bar at the top? This is where we set it up to record to a file; we
could just as easily have it generate an SNMP trap or send data directly to an ODBC
database.

85

85

Kiwi Syslogd (cont)

Disk
space hard

limits

This shows the disk usage monitor panel. In this frame, we are allowed to set alarm
levels and actions based on usage rates in the log area.

The audible alarms are particularly cute. “Help Help! I am out of disk space! Help!”

86

86

Kiwi Syslogd (cont)

Kiwi syslogd also has some nice “eye candy” modules that you can keep running on
your screen in the backgroun. Here we are looking at the log message entry rate
(what does it mean? Spikes might be an indicator of trouble…) and some statistics
about the running state of the server.

87

87

Kiwi Syslogd (cont)

� Well thought-out product

– Reliable and fast

– Take advantage of Windows
tools/knowledge (e.g.: crystal reports, etc)

– No need to build code

– Securing the underlying O/S is your
problem! (this applies to UNIX, too)

If you’re in a Windows environment, it’s really worth taking a look at kiwi syslogd.
The Windows-oriented capabilities of the product may come in handy; especially if
most of your work-flow and tools are one a Windows machine.

88

88

Replacement Syslogds
Summarized
� Syslog-NG

– Use it for syslog
clients that you want
to plug additional
processing into

� MiniRsyslog

– Use it on your main
syslog aggregator

� Kiwi Syslogd

– Windows server

There is no “right answer” on which syslog server to use! These three are all terrific,
depending on your objectives, environment, patience level, and skills.

Plan and consider carefully, before you decide which tool you want to use!

89

89

Dumb Devices

� Tina Bird maintains a master list of
getting logs from devices:
http://www.precision-guesswork.com/sage-

guide/device-config.html

Getting data from “dumb” (non syslog aware) devices can be a real pain in the
ASCII! Virtually every dumb device has its own quirks and there are too many of
them to cover in this tutorial. Tina Bird maintains a list of tricks for getting logs
from dumb devices on her website and on loganalysis.org.

90

90

Getting Logs from Firewalls

� Virtually all firewalls do logging
differently

– It’s very very vendor specific

Firewall logs are one of the most important logs you can get! And, unfortunately,
the configurations for them are very system-specific. Some firewalls log to
proprietary formats (which can often be taken apart with a perl script) while others
need to be polled using SNMP (ugh!) - regardless of how you need to get the logs
off them, you can probably find a how-to by searching the web for
“product syslog enable”

Some products don’t even do it the same way from one version to the next, so just
plan on doing a little searching.

91

91

Getting Logs from Raw Data

� Use Logger(1) - Included with most
BSDs and Linux

NAME

 logger - make entries in the system log

SYNOPSIS

 logger [-is] [-f file] [-p pri] [-t tag] [message ...]

DESCRIPTION

 The logger utility provides a shell command interface to the syslog(3)

 system log module.

 The options are as follows:

 -i Log the process ID of the logger process with each line.

 -s Log the message to standard error, as well as the system log.

 -f file

 Log the specified file.

If you’re dealing with a dumb device or app that creates its own log or sends its
errors someplace else, the popular way of injecting those log messages into a syslog
stream is to use the “logger” utility. Logger lets you send a message into syslog
manually, and can also submit an entire file of messages.

Typical use of logger is to grep values out of other data sources and to inject them
into the logging stream, or to create a log message when a specific event happens.
Logger is also very useful within shell scripts if they are performing interesting
transactions or need to record errors.

92

92

Getting Logs / Raw Data (cont)

� Dumb, but effective:

– In /etc/rc:

/usr/bin/logger rebooted

– In cron:
kill -0 `cat /var/run/httpd.pid`

if [$? -ne 0]

logger apache server process is gone

fi

– In your chroot directory:
cp /usr/bin/logger $CHROOT/bin/sh

(this trick requires syslog to have $CHROOT/dev/log UNIX socket)

What might
you expect to
find with this?

(hint :
-c echo "ingreslock stream…

)

Consider putting calls to logger in interesting places within your system. These are
just a few simple examples.

In the first example, logger is called in a system start-up script to record the fact that
the system had been restarted. There are lots of cases where this might come in
handy.

The second example uses logger and kill as a way of testing to see if a process is
still running. Kill -0 on a process (assuming you have permission) will exit with a
non-zero value if the process is not running; we can then log the error.

Finally, logger can be used as a handy burglar alarm in chrooted areas. To make this
work, you’ll need to have an active UNIX domain /dev/log listener (easy to do with
syslog-ng) You can also “wrap” logger to collect command lines for programs that
you wish to track:

#!/bin/sh

echo “called $0 $*” | logger

exec $*

93

93

Getting Logs from Routers

� Virtually all routers have some kind of
syslog support

– Very few document all the strings that they
produce

– Cisco (attaboy!) does for most of their
products

http://www.cisco.com/univercd/cc/td/doc/product/i
aabu/pix/pix_v53/syslog/pixemsgs.htm

Many devices have syslog support, but not all of them document all their possible
syslog messages. In fact, relatively few do. If you want to get logging data from
your devices, make sure you actually buy devices that provide it!

Cisco, I must say, does a terrific job of making logging message dictionaries
available. If you search Cisco’s site for “productname log message catalog” or
“productname log message dictionary”

For other products, I’ve found that searching the web for those same search terms
usually yields results.

94

94

Cisco IOS Routers

service timestamps log datetime localtime

no logging console

no logging monitor

logging 10.10.10.100

This is an example of how to turn logging on in an IOS router.

We tell the router not to bother logging to the console, and define our log host on
the last line.

95

95

Cisco CAT Switches

set logging server enable

set logging server 10.10.10.100

set logging level all 5

set logging server severity 6

This is how to enable logging in a Cisco Catalyst switch. We turn logging on and
then direct it to the log server using “set logging server iopaddress”

96

96

Cisco Local Director

syslog output 20.7

no syslog console

syslog host 10.10.10.100

Cisco local director logging is enabled with this incantation. What does the “syslog
output 20.7” mean?

97

97

Cisco PIX Firewalls

logging on

logging standby

logging timestamp

logging trap notifications

logging facility 19

logging host inside 10.10.10.100

Cisco’s PIX firewalls use these commands to turn on logging.

98

98

Cisco: What’s the point?

� The point is: even the largest
router/switch maker on earth can’t
standardize how they send syslogs

� Internet search engines are your friend!
Search:
enable syslog vendor product

OK, what’s the real reason I just walked you through all those examples? Mostly to
show you that even a huge vendor can’t standardize on something as simple as an
administrative command-set that is consistent. Most of the technologies I just gave
examples for were acquired by Cisco from other companies, and they still work
pretty much the way they always did. Some of Cisco’s newer acquisitions don’t
even support syslog at all (e.g.: Linksys routers) - we have no idea when or if
support will be added.

The lesson you should learn from the last few slides is that for each product you
want logging from, you’re going to probably need to do some research. The good
news is that it’s pretty easy to find the magic incantation for any given product with
a couple of quick internet searches.

99

99

HomeBrew Logging
Architectures

� Building your own has the big
advantage that it will scale as you need
it to

– And you understand it

– And it’s cheap

– And it’s going to work (shh… some of the
commercial products don’t work well!)

– But - there is no support and nobody you
can blame if things go wrong

Let’s start looking at what it takes to build a logging architecture for your
organization. On the surface of things, it’s just a bit of processing power, some
bandwidth, and disk space. Below the surface are a few rocks to avoid (but we’ve
already talked about those!) - so there are big advantages for the “do it yourself-er”
if you want to go that route.

First and foremost, if you do it yourself, you’ll actually understand how it works,
and you’ll be able to understand how it’ll scale. By the time you’ve started building
your own logging system, you’ll have a good idea of message-rates you need to
cope with, as well as the kind of reports you want to produce.

Building your own system means you’ll have to build your own knowledge-base for
tokenizing and parsing your log data. If you have a lot of unusual devices, you will
have to regardless, since the commercial log aggregators don’t support every
possible client system. Before you embark on a log analysis architecture, make a
realistic assessment of how diverse your systems are, and factor in the work-load
that customization will represent.

As far as I am concerned, the only downside of building your own logging
architecture is that you’ve got no support and nobody to blame if it doesn’ twork.
But the truth is, that’s generally how it is, anyhow!

100

100

Commercial Logging
Architectures

� Most of the commercial products offer a
complete “log processing” approach

– Hauling, normalization, “correlation” and
visualization

– Prices range in the low $10,000+ range to
nearly $250,000+consulting

– Cost is no indicator of quality

� And quality and features change too fast to go
into them here (or list them all!)

The commercial log aggregation solutions are fairly expensive stuff, though low-
cost entrants are beginning to show up in the market.

The primary value of the commercial systems is that they generally include the
knowledge-base of parsing and normalization rules that you’d have to build if you
were setting up your own system. Before you proceed with the commercial
products, make an inventory of the systems (platform, O/S, release level) that you
will want to process log data from, and see how the vendor supports them.

Be aware of the fact that if your vendor is customizing their knowledge-base for
your systems, you’re effectively paying them big bucks to make their product more
marketable. Some of the commercial vendors started out only supporting a small
number of platforms/versions and have let their customers dictate platform support.
Know what you are paying for!

101

101

Centralizing the Logs

� To Blow or Suck, that is the question….

– Or, perhaps, both?

Let’s look at some methods of centralizing your log data. There are two basic
approaches, and a hybrid approach, and we’ll examine them in sequence. Mainly,
the question of pushing or pulling revolves around how the log server
communicates relative to firewalls.

102

102

Log Server

Centralizing: Blow

Screening
router

Them
External

syslog

denied

Syslog

permitted

Web Server



Firewall

Internal
systems

Internal
systems

This diagram represents the typical “blow” architecture for centralizing logs. We
have a device (a web server) outside of our firewall, that needs to log data to the
inside. A “tiny hole” is poked through the firewall’s rules to allow the logging data
to reach the central server using some kind of logging protocol (this could be syslog
or it could be tunnelled over SSH or whatever). Internal systems are able to forward
their data directly to the log server. If you’re paranoid you can put a filtering router
in front of the log server(good) or configure the log server with iptables or in-kernel
firewalling to reduce the chance of “accidents.”

Note that in order to protect the exterior server, we call for filtering incoming syslog
data at the screening boundary router. This prevents outsiders from injecting
spurious log messages into the logging stream.

103

103

Centralizing: Blow

� Individual hosts send logdata to server
either as fast as they generate it, or on
selected intervals

– This is the preferred approach for UNIX
systems, largely because of familiarity with
syslog

In the blow architecture, logging sources generally send data as soon as they
generate it. If you are dealing with low-speed links or bursty traffic, some sites may
choose to batch traffic up and send it at intervals, but this approach is rare.

Basically, the blow architecture is UNIX’ syslog writ large. You can build this using
stock syslogd clients simply by defining a loghost.

104

104

Blow

� Pro:

– Logs are transmitted quickly off machines
to protect them from compromise

– Server doesn’t have to worry about
“knowing” what systems it should get logs
from

� Easy to add new logging clients w/o
administrative interaction

The advantages of the blow approach are twofold: management and security.

In practice, if a hacker compromises a system, they will immediately zap its logs.
Having the syslogd forwarfing log records off the system in “realtime” greatly
reduces the chance that events leading up to the intrusion will be erased.

From an administrative standpoint, the blow architecture tends to favor promiscuous
transmission of data. Traditional UNIX syslogd would take messages from
anyplace, and it was therefore very easy to add new logging clients: you simply turn
them on and let them start transmitting. For administrators who are running the log
server as a shared resource, this is attractive since you can just tell people, “send
your logs here” and the server can begin to cope with them when they arrive.
There’s no need to add additional configuration rules in the server whenever a new
client starts sending logs. For sites working with Windows logs or DHCP clients
this is a very attractive approach.

105

105

Blow

� Con:

– Requires a hole in the firewall

– Requires a server that can handle N-way
simultaneous connections

– If using syslog, the data is lost if the server
is down

– The server doesn’t generally track which

machines are up/down and when

The blow approach has a few disadvantages, to balance its advantages!

First off, since the clients are just spewing log data to the server, uptime at the
server becomes an important consideration. In the event that the server is down or is
overloaded, log messages will potentially get lost and are irrecoverable.
Additionally, since the server doesn’t really “know” what its clients are, it might not
be able to “know’ if they are supposed to be transmitting or receiving anymore. So
it’s hard to track reliability of the clients.

Lastly, there’s the matter of that hole in the firewall. If you’re letting the traffic in
through the firewall, there is a potential that a vulnerability in the syslog server
could be exploited from the outside, through the firewall. This could be disastrous.
If you are building a blow architecture system logging architecture, I would strongly
recommend using additional host security measures on the system logging server
itself (chroot, trojan trapping, etc).

106

106

Blow: Implementation

� Typical:

– On UNIX machines

� Use syslog/syslog-NG to push logs to
aggregation point

– On Windows machines

� Use Snare to push logs

– On Routers/etc

� Use builtin syslog to push logs

� Accept that data may be lost

Building a blow architecture is the easiest form of log aggregation. If you’re in a
UNIX environment and do not expect large loads, you can just turn syslogd to
forward messages to the central loghost. If you want to tunnel the data or send it
over TCP, then use syslog-ng.

For windows machines you can use EventReporter or Snare to forward logs to the
server. Routers and other devices can use their own internal logging routines.

As we said earlier, the blow architecture is syslog writ large. If you use this
approach you need to accept that some data may be lost. It’s probably not a big deal,
really.

107

107

Log Server

Centralizing: Suck

Them

Fetch

process

collects logs

at intervals

Web Server

Firewall

Internal
systems

Internal
systems

The suck aggregation approach is diagrammed above. Basically, the log server
periodically reaches out through the firewall and collects logs from the clients. The
fetch process is implementation dependent, though many facilities use SSH/SCP or
S-FTP/FTP or even SNMP to collect the data.

This approach is popular with Windows log aggregators; domain privileges are used
to perform the copies and log pruning on the devices.

108

108

Centralizing: Suck

� Some kind of fetch process is run that
collects logs from a list of systems and
then truncates them at the end-point

– This is the preferred approach of Windows
sysadmins (because Windows systems
didn’t grow up in a client-server model)

The suck architecture is primarily popular in the Windows world. I’m not sure why
this is; I suspect it’s because Windows system administrators are very
uncomfortable about adding “one more agent” to desktops, or the administrative
overhead of installing new software on many machines. Generally, agents are badly
perceived by users and system administrators and it’s not uncommon for users to
turn them off and/or to blame them for performance and reliability problems.

109

109

Suck

� Pro:

– Server can make its own decisions about
when to collect logs (scales well)

� Server controls processing load

� Server controls network load

– Server can tell if collectors are up/down

– Logs are not lost if server is down

– Does not require a hole through the firewall

The main advantages of the suck model revolve around load-control of the system.
The log server can choose its time and place to collect from, and can manage its
processing load, the network load, and even the client load accordingly. In most
cases, with this architecture, the client is pre-compressing the data before it is
collected. This can result in considerable (on the order of 80%) bandwidth savings.

Additionally, the server can queue and retry if one of the clients is down, and can
provide useful information to the administratrator regarding uptime or network
problems between the central and the client.

Another advantage of the suck approach is that the delivery of data is more reliable;
the server can keep asking the client for it until it gets it, and none of the data will
be lost if the server is down.

Lastly, the suck architecture works nicely if you have an originate-only firewall. No
exposure between the server and the outside world is necessary, and some
administrators go the extra step and add in-kernel firewalling to the system log
server to make it originate-only.

110

110

Suck

� Con:

– Some devices are hard to fetch from!

– If the client machine is compromised
before the logs are copied down, they may
be lost

– The log server must know which machines
to poll and requires per-machine
configuration

The biggest problem with the suck architecture is that some devices are very
difficult to batch-collect data from. Routers, for example, do not retain logs in
memory; if you don’t have them handed to you immediately, the are gone. In
general suck aggregation architectures work best when you’re dealing with
relatively “smart” clients that have local hard disks.

From a security standpoint, the suck achitecture is more resistant to attack at the
server end, but is more susceptible to hackers truncating logs at the client end.
About the only way to address this problem is to ensure files are somehow safe on
the clients (a hard problem!) or to generate warnings if the logs are unexpectedly
short. Neither of those is particularly attractive!

Lastly, the suck architecture controls the relationship between the client and server
more closely. In order to add a new client to a suck architecture, the server needs to
have the client added to “the list” and the client needs to be configured to allow the
server to collect its data. This may represent a large administrative load in some
environments.

111

111

Suck: Implementation

� Typical:

– On UNIX machines

� scp the logs from the central server, or FTP
them down - move or delete from queue
directory when complete

– On Windows machines

� Use file share copies in a batch process to
copy the files down

– On routers/dumb devices

� Need to use screen-scraping / expect

The typical implementation of a suck architecture on UNIX systems is to use SSH
or rsync over SSH to copy the files down and truncate them or rotate them centrally
once they are collected. Probably the most sophisticated way to do this is to
periodically rsync the log directory from the client. When the server wants to begin
processing a chunk of data, it can move it out of the rsync’d area into a long-term
holding area, which will cause it to get deleted from the client.

On Windows machines, suck architectures are usually implemented using windows
sharing and copying using windows domain services. There are good write-ups on
how to do this on the SANS reading room.

Suck architectures really fall down when dealing with dumb devices. Most sites
trying to handle dumb devices will resort to SNMP querying to a local aggregator or
screen-scraping.

112

112

Suck: Implementation

� There is an excellent write-up on how to
do a suck-style Windows event log
collector in the SANS reading room:

http://www.sans.org/rr/

� Basically it’s a bunch of .cmd scripts that call
copy logs to a central place and dumps them
into an MS-SQL database for further analysis

� Nice cookbook example!

The SANS reading room has a great cookbook (actually 2) on how to build suck-
style log architectures for Windows sysadmins.

It’s a bit too convoluted to go into here, for space reasons, but it’s worth a read and
includes all the command scripts that the author uses.

113

113

Log Server

Centralizing: Hybrid

Them

Server

syncs with

local log

aggregators

periodically

Web Server

Firewall

Internal
systems

Internal
systems

Local Log
Aggregator

Web Server

Local Log
Aggregator

The diagram above shows a typical hybrid log centralization architecture. There are
local log aggregators that use whatever techniques make sense to collect
information. This approach is particularly favored by sites that are also doing “do it
yourself” IDS with something like Snort; the local aggregator might be a Snort
sensor or other kind of monitoring probe.

Once the data is on the local aggregator a suck process pulls it in through the
firewall to the central server.

114

114

Centralizing: Hybrid

� Devices blow to local aggregators

– Local aggregators may “prune” or compact
data

� Local aggregators sync to a log server
either by blowing or being sucked

– Central log server summarizes, archives,
and manages alerts

In the hybrid architecture, basically you are mixing blow and suck. Blow is
performed locally, while suck is performed to get the data back to the central
repository.

One feature of the hybrid approach is that frequently you may inject processing in
the loop at the local aggregators. For example, the local aggregator might use
syslog-ng to split off data into different buckets and only send up a count instead of
the full data (I.e: 50Mb of SMTP messages sent in 3,928 messages) This works
nicely since the local aggregators can retain the detailed information for as long as
their hard disks can hold it, without needing to send it back to the central server.

Basically, the hybrid approach has the best of both worlds - at the cost of twice the
work to build it!

115

115

Hybrid

� Pro:

– Scales well

– Reliable delivery (if your syncing process is
reliable!)

– Easy to traffic shape

� Add compression

� Add encryption

– Control timing of processing or syncing

– Local copies kept for audit/backup

The advantages of the hybrid approach are all the advantages of the blow and suck
architectures on their own. Scaleability can be terrific, it’s reliable, easy to secure,
fault-tolerant, etc, etc.

Probably the best aspect of the hybrid log architecture, in my mind, is that you can
also turn the local aggregator into a mini-sensor. It doesn’t need to run a full-blown
IDS sensor like snort, but can run a DHCP tracker, TCP flow tracker, and web URL
collector without slowing it down too much. That can be incredibly valuable.

Another powerful option to consider with the hybrid approach is running a
whitelist/blacklist filter at the local aggregator and only passing up what isn’t
knocked out of the stream by the blacklist. The whitelists/blacklists can be pushed
out to the local aggregators using the same mechanism (e.g.: SSH or rsync) that is
used to pull back the log files that are gathered.

The preceeding paragraphs are basically the design of 99% of the managed security
services in existence.

116

116

Hybrid

� Con:

– More “moving parts”

– Takes longer to set up

– May require different processing steps at
each point in the chain

– May be viewed as “overkill”

The only downsides of the hybrid architecture is that you have a lot more work to
do to get it working. You also will have a marginally higher hardware cost, though
in practice the hybrid approach lets you get away with using cheaper hardware - you
make up for using more of it in more places.

I’ve heard that it’s a harder sell to get senior management to “buy off” on a “full
scale deployment” of something home-built rather than doing it as a full-blown
commercial product. I never could understand pointy-hair boss think: let’s spend
$400,000 to save $50,000 in staff time and $6,000 in barebone PCs bought on
Ebay… Duh?

117

117

Hybrid: Implementation

� Local aggregators typically run
something like syslog-ng or minirsyslog

� Compress data

� scp/ftp to sync logs

– rsync is a good candidate but be careful
not to truncate logs on the server if the
local aggregator gets hacked and the logs
are truncated!

Typical tools for building a hybrid system are all the tools used to build blow and
suck architectures. Basically, we’re talking about a superset of the two architectures.

One thing I cannot emphasize enough: make sure that your processing does not
propagate file truncation. That is to say, if the hackers zap the log file on the
aggregator, make certain that your process does not propagate the zapped file over
top of the unzapped file back at the central aggregator!

118

118

Stealth loghost

� To collect data in places where you
need to minimize chance of network-
based DoS, or compromise of log
server

– Configure hosts and applications to log to a
non-existent but valid IP address on DMZ
(or Internet)

One more cool idea from Lance Spitzner and the honeynet gang!

An introduction to the idea is on line at
http://www.linuxjournal.com/modules.php?op=modload&name=
NS-lj-issues/issue92&file=5476s2

There are several ways to skin this particular cat. The honeynet gang simply
vacuum up syslog packets using ethereal or snort and then view them that way.

119

119

Stealth loghost (cont)

Log Server
Screening

router

Them
External

syslog

denied

Web Server



Firewall

Internal
systems

Internal
systems

Stealthy
Log Server

10.10.10.1

10.10.10.115

Syslogs to

a machine

that does

not exist!

Tcpdump
on ifconfig’d
up interface

The diagram above shows how a stealthy loghost works; the web server logs its data
to 10.10.10.115 - a machine that conveniently does not exist. The stealthy log server
is listening with ethereal/tcpdump/whatever to its external interface. The traffic is
captured, interpreted as syslog data, and passed to the log server.

Note that some organizations’ security policies prohibit this, since the stealth
loghost is a “dual homed” system with an interface on each network. However you
set this up make sure you have secured that exterior interface!!

The honeynet gang use this trick but actually have a “target” log server on the
external network. The hope is that the hackers will see that there is a log server and
attempt to go after it with a better class of tools. It’s an interesting idea, anyway!

120

120

Stealth loghost (cont)

� Configure Web servers with bogus arp

entry for phantom logserver:
arp –s 10.1.1.20 00:0a:0a:00:bb:77

� Loghost DMZ interface – no IP address,
in promiscuous mode, connected to hub
or span port on switch

Don’t forget to add your static arp entry to the system’s local start-up scripts, so it
will continue to log successfully to the nonexistent machine after reboots.

121

121

Stealth loghost (cont)

� tcpdump puts interface into
promiscuous mode unless told
otherwise.

� Assume loghost’s stealth interface is
exp0
tcpdump –i exp0 –s 1024 –w dmz.logs.date dst
port 514

For loads of information on tcpdump, see:

http://www.tcpdump.org

In this example, we are capturing port 514 (syslog) traffic to a capture file (-w
dmz.logs) for later analysis. To analyze the traffic, we’ll need a tool that can strip
syslog payloads out of the packets once they have been collected to the hard disk.

122

122

Stealth loghost (cont)

� PLOG: Promiscuous syslog injector
http://www.ranum.com/security/computer_security/code/

– Listens to UDP syslog using BPF/Libpcap

– Rips the syslog message out of the UDP
payload

– Stuffs the message up /dev/log

� Very fast and near-magical in its effectiveness!

If you want a stealth loghost that has all the properties of a normal syslog
aggregator, you can try using PLOG. PLOG is a promiscuous syslog listener that
decodes the UDP payload straight out of the syslog packets and injects them into
/dev/log as if they had originated locally.

PLOG is extremely fast and a little counter-intuitive in how it works. The log
messages simply appear in syslogd’s data as they crossed the wire. If you’re using
syslog-ng you can apply all the usual filtering, etc. This is an extremely powerful
tool!

One thing to be careful of - if you are using PLOG you cannot be forwarding syslog
data back off your machine using UDP or PLOG will collect it again, and you’ll
have an input loop that fills your log server’s hard disk before you even realize what
is going on! You’ll notice it pretty quickly, believe me.

123

123

Building the
Sawmill

This is the saw at Greenwood’s. That blade moves a few thousand RPMs, but if you
think about the angular velocity at the edge, it’s kind of frightening. While the saw
is running the teeth make a hissing sound that definitely helps keep you focussed on
staying away from it.

The tracks support an auto-feeder that collects a log off the input chute (to the back
on the right) - the feeder grabs the log and then slides forward on the rails to make
the cut. It can rotate the logs, so you can very easily get a plank or square-cut piece
of wood without having to do anything other than pull the newly cut boards out of
the way.

The little plexiglass shield reminds the worker not to get too close to the blade. His
job is to take the pieces off the conveyor and throw the scrap onto a scrap belt and
the good boards onto a conveyor for stacking.

When you watch the transition area where the blade hits the wood, it’s as if the
wood is being instantly teleported to an alternate dimension.

124

124

Building the Sawmill

� Topics:

– Matching

– Parsing

– Signatures: What to Look For

– Whitelists and Blacklists

– Artificial Ignorance

– Commercial SIM/SEM Systems

These are the topics we will cover next!! Once we have the data in one place - what
do we DO WITH IT?

125

125

Matching

� Using some kind of pattern-matching
against the log message to see if the
message contains the pattern

– Message may completely or partially
contain the pattern

– Typical application: regular expressions
“sendmail.*stat=[Ss]ent”

– May be more static matchers like choplog
tokenize using '%s %s %s [%d/%s/%d:%d:%d:%d %d] %U %d %d %*'

Everything to do with processing logs involves the problem of parsing data.

Most people, when they start with syslogs, begin with matching. The basic matching
approach is to use a Perl regular expression (or something like it) to decide if a
syslog message contains a substring. Once the desired message has been identified,
then the message is broken apart into useful chunks based on what the user wants.

This approach is inherently slow, because to match, you need to apply all (or many)
of the rules, before you decide on the sub-parse fields you want to pick out.

Match!

Field 1

Field 2

Field N

This is slow if there are thousands of patterns

126

126

Parsing

� The process of making sense of a
sentence

– Break it down into tokens

– Apply a grammar

– Infer meaning

Parsing implies building a full-blown parse tree. Parse trees are inherently very
efficient because you always limit the number of branches that you need to go
down. Building a parse tree for logging is a terribly difficult thing because the
structure and contents of log messages are so mutable. But it’s important to
understand how parsing works, because if you’re ever processing truly huge
amounts of data, it’ll come into play eventually.

One huge advantage of parsing is that when you parse, you can accurately
detect syntactic errors or new forms of messages.

Program:
SU

BADsu

SU

Other

Very complex data structures! You need to encompass every possible derivation of
every possible message! OW!

Begin

$username

$tty

on

127

127

Parsing V. Matching in Logs

� Nobody parses logs, because syslogs
have no defined structure

– Many systems employ a mix of
approaches:

� Match for a parseable message using a pattern

� Once the message has been identified as being
of the correct type then it can be parsed into
subcomponents

– Matching fails across line-breaks!

At present, nobody that I know of builds a complete log-parser. Most systems today
match for a parseable message and then drop it into a message-specific tokenization
and parsing process.

This works fine in most cases except it becomes problematic if you’re dealing with
messages that go across multiple lines. Multiple-line log parsing, at this time, is
something of a “we don’t go there” kind of process.

128

128

Normalization

� Term used by many commercial log
analysis tools

– Take log messages and match them
against templates

– Parse out selected fields and map them
against a common dictionary

– Output the results in a common form

Normalization is the fancy term for matching tokens collected in one log format into
another.

The example we had early on:

Jan 17 14:39:01 sol8isr sendmail[478]: [ID 702911
mail.info] /etc/mail/aliases: 3 aliases, longest 10
bytes, 52 bytes total

Aug 14 14:37:46 devel sendmail[514]: /etc/aliases: 14
aliases, longest 10 bytes, 152 bytes total

localhost sendmail[494]: alias database /etc/aliases
rebuilt by root

We have 3 completely different formats. We’d normalize them as:

Program=mail

Operation=new aliases

User=root

Note that unless we get very complex data structures, we’ll either throw information
away or make our new message contain a load of NULL fields. Thus, one important
thing to realize about normalization is that you’re losing information or gaining
NULLs.

129

129

Normalization: not rocket
science

Iss Says

Tomato

Potato

Rocket Science

Cisco Says

Tuhmato

Potato

Crisps

Syslog Says

V8!

Potatoe

Way Cool

We say: Code 5214

Output translation

This is all one
big “knowledge

base” (aka
translation table)

To normalize, you are basically building a big knowledge-base of matching rules
that tie to parsing/extraction rules, which map to a common “knowledge
representation” that can be output into another form.

This is where XML might come in handy. It’s a good (ok, mediocre) intermediate
representation for structured data. The value proposition of all this stuff is in the
structure of the knowledge-base, though, and once you have your data parsed and
normalized you’re not going to want to apply another layer of normalization or
translation. Put another way: if XML is the solution, I’m not sure what the problem
is.

130

130

Correlation

� Term used by many commercial log
analysis tools’ marketing departments

– The idea is to take related events and glue
them together into larger clusters of events

– This was the same concept behind network
management fault detection and it never
really worked

� Instead we got tables of rules-based expert
systems (which is OK as long as it works)

Correlation is a “magic word” in security and network management. Kind of like
“drill down” - it’s something you really want, but nobody actually knows what it is!

To be able to do automated correlation (what most people seem to think of when
they say “correlation”) you’d need to be able to parse all the messages into
normalized tokens, and then begin to match fields looking for common linkages.
Before you get excited about the idea, remember that this is what network
management tools were supposedly going to do. So far they really don’t work very
well. Finding relationships between things (the root of the word “co-relation”) may
be a creative process and may not be something that can be automated well.

One vendor who shall go in the “hall of shame” used to claim they did “screen
correlation” What’s that? It meant that the events were on the display at the same

time. Wow! That’s pretty fancy, huh? And if you can read 5,000 events/second
maybe you can pick out the relationships between them on the fly with your Mark
IV Human Eyeball.

131

131

Signatures

� Signatures are an IDS/Antivirus term

– A signature is a matching rule coupled to
an alert rule

� “If you see this then tell me it’s a that and it’s
priority whatever”

– The term signature has been taken over by
IDS marketers to mean “bad thing” - but
signatures are actually quite useful!

“Signature” has gotten a bad rap thanks to marketing people deciding to push their
(largely signature-based) IDS as “signatureless.” In truth, signatures aren’t bad at
all. Basically, a signature is a:

A matching rule coupled to an alert rule

This is valuable because it provides a diagnosis of what was discovered.
Fundamentally, diagnosing something is a creative process and thus requires an
intelligence. Without a signature matching rule that leads to a diagnosis/alert rule
then all you can do is identify “this looks weird - go figure it out” That’s also
incredibly valuable - we want both!

132

132

Whitelists & Blacklists

� Fundamentally all signatures boil down
to whitelists and blacklists

– Whitelists (something you know is
important)

– Blacklists (something you know is not
important)

– There’s room for a feedback loop
incorporating a greylist (something you
aren’t sure about)

Whitelists and blacklists (and, by extension greylists) are a very powerful technique
for sorting logs.

A “whitelist” is something you know is important (e.g.: you care about) and a
“blacklist” is a list of stuff you know you don’t care about. A “greylist” is a list of
stuff you’re not sure about. So basically what you do is mass-match messages
against the whitelist and the blacklist and put everything else in the greylist.

Implementing whitelist/greylist processing is pretty simple!

133

133

Whitelists & Blacklists

� Get blacklists from SquidGuard

http://www.squidguard.org/blacklist/

– Blacklists for adware, porn, violence, etc

� Extremely useful for matching against
log entries

– Map web logs to adware addresses and
generate scary statistics!

One terrifically scary thing you can do with whitelist and blacklists is to match
existing lists against your logs. Best of all, there are people who already provide
these lists as a free service!!

My favorite source for black/white lists is the SquidGuard distribution. They
include 300,000 or so IP addresses and names for sites that provide porn, or that are
used for adware.

Adware is one of those topics you can use to utterly terrorize your CTO/CIO if you
are in a fun-loving mood and work for the DOD, or a hospital. Map your firewall
“permit” logs against the list of adware sites and generate a rough statistic of how
many machines on your network are infected with Adware!

Whitelists are also useful for creating lists of (approximate) %ages of web surfing
that is to porn sites, etc, etc. You can make yourself amazingly unpopular with this
stuff!!

Approximate UNIX commands to try:

sort whitelist > list.sorted

system log strip just the destination address

sort destinations > dest.sorted

join dest.sorted list.sorted | uniq -c | sort -r -n

134

134

Where to get signatures?

� 2 Philosophies:

– Look for all the known bad guys (the IDS
approach)

– Throw away all the known boring guys (the
artificial ignorance approach)

� Use someone else’s signatures or write
your own that are specific to your site

– Which do you think will work better?

As you’ve probably figured out by now, I am a big fan of the artificial ignorance
approach - know what’s not important - over the “look for bad guys” approach.
Mostly because it’s an expensive process to identify all the bad guys.

You need to decide which approach is more likely to work on your network. Or do
some experimentation. But don’t just attack this problem without giving it some
thought!

135

135

Creating attack signatures

� Lance Spitzner and others: run the
attacks you care about off-line, and use
the log data you generate to write
logwatch or logsurfer filters

– Or run a honeypot (ugh!)

� Do likewise with administrative events
and system changes

Lance’s essay Know Your Enemy: II Tracking the Blackhat’s Moves (now
maintained by the Honeynet Project) describes the actions taken by an intruder, and
the sort of log data they’d generate. It’s a good starting point for understanding how
to configure your log monitoring tools.

http://project.honeynet.org/papers/enemy2/

So, one option might be to generate your own signatures by leaving a system
exposed to the Internet. After a while, (assuming it survives for a while) you might
find useful patterns in logs. As you might expect, different systems react to the
worm-of-the-month differently. You might find a good signature, or you might find
that your system is completely oblivious to the attack.

136

136

Signatures for UNIX systems

� Logwatch comes with a lot of good
patterns embedded in its config files

– http://www.logwatch.org

what to look for as an attack USE LOWER CASE!!!!!!

my @exploits = (

 '\\x90\\x02\\xb1\\x02\\xb1',

 '\\x02\\xb1\\x02\\xb1',

 '\\x90\\x90\\x90\\x90',

 '\\x04\\x01', '\\x05\\x01',

 '\/c\+dir', 'cmd.exe', 'default.ida',

 'nsiislog.dll', 'phpmyadmin', 'root.exe',

 'win.ini'

);

If you want a terrific set of starter signatures, take a look at Logwatch!

It’s nicely modularized perl code, and each module includes lists of regular
expressions to look for in each different program/protocol. You don’t need to be a
perl guru to make sense of these; they’re very useful.

In the example above, we see logwatch defining a group of strings that might be
good indicators of a successful (or near-successful) exploit.

137

137

LogWatch

� Excellent and very powerful log
summarizer and analyzer

– Really more of an expert-system

� Monster big Perl program (but very clean)

� Lots of rules that are constantly being tweaked
and tuned

� Good source of information regarding
messages that are interesting/uninteresting for
each service

http://www.logwatch.org

For the entry level basic log watching system, it’s hard to beat logwatch, and it’s
hard to beat logwatch’ price.

You can download logwatch from the web, and it takes relatively little time to
install it. Tuning it yourself can be a bit tricky, but the good news is that its authors
are constantly improving it - so you may not have to.

138

138

LogSurfer

� Multi-line log event processor

– Maintains context messages & situations

� Spans rules across multiple lines of input

– Includes timeouts and resource limits

– Can change monitoring behavior if
situation requires

� If first rule of a series wants to get more
information following, additional rules can be
added on the fly

http://www.cert.dfn.de/eng/logsurf

If you find logwatch is not powerful enough, you may wish to look at logsurfer.
Logsurfer has a lot more options and has some interesting capabilities for
combining multiple events in time as well as adjusting the behavior of its
monitoring based on what it’s seeing. So, for example, you could begin to collect
everything from a particular host if you see a certain message go by. That can be
quite valuable.

But.

The configuration language logsurfer uses would give an APL programmer
nightmares.

139

139

LogSurfer (cont)

Configuration issues:

� Regular expressions must be “good
enough”
– Too general matches irrelevant messages

– Too specific misses messages that should
be matched

� Rocket science required
– Warning: brain-busting config file ahead!

logsurfer is available at http://www.cert.dfn.de/eng/logsurf. For details on how to
deploy it in a Solaris environment, check out

http://www.cert.org/security-improvement/implementations/i042.02.html

Since logsurfer uses regular expressions, you need to be a regular expression guru or
you will have a lot of trouble with it.

140

140

LogSurfer (cont)

rpcbind #--------------------------------------

' rpcbind: refused connect from ([^]*)' '
connect from [^]*.local.net|localhost)' - - 0
CONTINUE open "^.{19,}$2" - 4000 86400 0 ignore

' ([^ .]*)(.local.net|) rpcbind: refused connect
from ([^]*) ' - - - 0 CONTINUE rule before "
rpcbind: refused connect from $4" - - - 300
ignore

' ([^ .]*)(.local.net|) rpcbind: refused connect
from ([^]*) ' - - - 0 exec
"/usr/local/sbin/safe_finger @4 |
/usr/local/sbin/start-mail logsurfer \"$2:
rpcbind: (backtrack)\""

logsurfer is less popular than swatch or logcheck because of its complexity.
Complex? Naaaaaah.

141

141

Other single line tools

� autobuse

� colorlogs

� roottail

� log_analysis

� logmuncher

� logscanner

� LogWatch

and the list goes on....

There are nearly as many programs for parsing log files as there are networks with
log files that need to be parsed. This is mostly because everyone wants slightly
different information out of their data, and of course every network is different, so a
lot of system administrators decide to roll their own rather than to modify someone
else’s. The applications listed in these slides are provided for information only; I
haven’t used them, I don’t know much about their performance or flexibility.
colorlogs color codes log files based on a keyword file and a user’s configuration
file. If you’re a visually oriented person, this might be really useful – and great for
Web monitoring systems. It’s available at
http://www.resentment.org/projects/colorlogs/.

The OpenSystems Network Intelligence Engine is a commercial appliance that
supports a variety of Cisco devices, FireWall-1, and other systems.. It’s available at
http://www.opensystems.com/

For experienced programmers, the tools available at ftp.sdsc.edu/pub/security/PICS
are improved versions of swatch, syslog and a couple of other audit applications.

142

142

“Artificial Ignorance”

� Log processing technique of
determining step-wise what to ignore -
conceptually “first seen” IDS for logs

– Everything not uninteresting must be
interesting

– Set up log scanning filters to delete
uninteresting records

– Bring everything else to the system
admin’s attention

Artificial Ignorance is an incredibly valuable approach to dealing with system logs.
I first set it up on a firewall product that I was building in the early 1990’s. After a
few firewalls had shipped, I noticed that the log messages were extremely regular
and I wrote a log-processing script to collect and summarize data from them. Then I
thought about making it detect attacks, and decided to invert the process. Artficial
Ignorance was born!

The idea is simple: know what you are not interested and throw it away: bring
everything else to someone’s attention.

The first system I shipped that was running my artificial ignorance one day kicked
back a log message that read something like:

wd0: sense retry failed

I’ve been a convert ever since. As a security guy I would have only thought to look
in the logs for security-related stuff and didn’t even think of hard disk errors.

143

143

“Artificial Ignorance” (cont)

� Use grep -v -f file to filter log

messages against a pattern list of
uninteresting stuff

� Iteratively build the list using several
weeks/months’ logs

� Tune as necessary

The other thing that’s great about Artificial Ignorance is how laughably easy it is to
set one up. Sure, you can get fancy but -why? Just use plain old UNIX grep (-v -f) to
drive the program.

Grep -v says “print only lines that don’t match our pattern” and -f gives the
filename containing the patterns. Building a pattern file is just an iterative process
of adding regular expressions to the file and re-running it through the process. You
can manually baseline your Artificial Ignorance by preparing a pattern file, or you
can just start adding them as time goes by and eventually your logs will tail off.

144

144

“Artificial Ignorance” (cont)

� Artificial ignorances can be built using
logwatch patterns/files or by rolling your
own with a shell script around
“gnuegrep”

See:
http://www.ranum.com/security/computer_security/papers/ai/

for a complete write-up on how to iteratively build an artificial ignorance pattern
file.

145

145

First Seen Anomaly Detection

� Identify the first time something new is
seen in the log

– This is a special, simple, case of anomaly
detection - by definition, something we
have never seen before is anomalous!

– May be valuable for backtracking,
identifying new types of traffic within a
network, or locating hacker
reconnaissance

First seen anomaly detection is another of those really simple, dumb, effective ideas
like artificial ignorance. In fact, they are almost but not quite the same thing.

The term “anomaly detection” has been abused by marketing people for IDS
companies until it has lost most of its meaning. The idea, though, is to detect that
which is unusual or anomalous.

What’s more unusual than something that has never happened before?

Like Artificial Ignorance, this technique works wonderfully and is extremely low-
tech.

146

146

First Seen Anomaly (cont)

� Track IP / MAC combinations, alert on
new MACs

� Track which systems serve TCP port
80, alert on new servers

� Track combinations of machines that
connect to eachother; alert if a single
machine connects to more than N new

machines in subnet in an hour

Virtually anything on your network and systems that achieves a steady-state is a
good candidate for NBS. Mail sender addresses? Mail recipient addresses?
Machines returning ACK packets to SYN packets on port 80? New IP to IP
mappings? New ARP mappings? New users executing programs, by program? Etc.
You can imagine all kinds of insanely fun applications for this concept!

147

147

Tools: NBS

� NBS = Never Before Seen anomaly
detector

– Childishly simple

– Devilishly useful (or not, depending on the
battle you choose to fight with it)

� Basic premise:

– If we’ve never seen it before by definition
it’s an anomaly

Typically, the reason people don’t do NBS is because it might (potentially) have to
manage a lot of data entries and the processing could get intense. Imagine mapping
connectivity between all your 3,000 hosts! There are 9,000,000 possible
combinations. The database would get huge!

Fortunately, I’ve solved that. The next few slides provide a walkthrough of the NBS
anomaly detection driver.

148

148

Building NBS

� Requires the BSD db library

– http://www.sleepycat.com

– Read the installation directions at
http://www.sleepycat.com/docs/

– Simple “configure” to build

� Requires the NBS utility

– http://www.ranum.com (follow links to
computer security and then to “code”)

– Unpack and type “make”

To build the NBS driver you’ll need to BSD database library; NBS is basically
nothing more than a couple of B-tree indexes, and the BSD database library has a
very high-performance and reliable implementation of B-trees.

Once you’ve build BSD-DB (read the directions! It’s not just “configure” “make”)
and installed it, then get the NBS sources off of Marcus Ranum’s web page and
unpack and compile them. You may need to change the LIBS= parameter in the
Makefile and may need to add -I/usr/local/BerkelyDBblahblah to the CFLAGS=
parameter so that the #include file for <db.h> is found. It shouldn’t be hard to build!

149

149

NBS in Action: New DHCPs

This is a walkthrough example of how easy it is to use NBS and the kind of results
you can get with it. Setup time for something like this is a few minutes and it’ll give
you results that might make you a local hero someday.

Here what we are doing is set-up stuff. We’re going to monitor our network for
Never Before Seen MAC/IP combinations being leased by DHCP servers. If any of
those 3 values changes, we’re going to know about it!

So, with one simple operation we’ll:

�Learn about new MACs

�Learn about new DHCP servers (that should be rare!)

�Learn about new IP addresses being leased that we don’t normally lease

First subtlety: DHCP is kludged onto bootp. So we need to look at bootp traffic.
Bootp has a server and a client side. Let’s watch the server, because it’s less likely
to lie. If we were looking for NBSsing malformed records and weird client queries
we could look at the client side, but that’s a project for another day.

150

150

Tcpdump as log data source

C: client IP

S: server IP MAC

NBS works on text strings. Any strings. So, we want to turn our bootp service traffic
into strings. What better tool to do that than good old Tcpdump?

Here we run tcpdump on bootp traffic and observe some of how it works. The main
thing we observe is the layout of the traffic that we’re looking for. Aha! There’s the
client, server, and MAC address. We have everything we need - now let’s just strip
those fields out with a little script!

151

151

Marcus is a Perl Newbie

Picking a
few fields

I suck at perl. In fact, you’re looking at my very first (and so far: only) perl
program. Normally, for something like this I’d use awk but perl seems to be
everyone’s choice these days… *sigh* Dan Klein has since explained to me how
to write this same script much better. But you get the idea.

Anyhow, what this script does is matches on the two different forms in which the

version of tcpdump on my machine outputs the DHCP lease-giving packet. One
downside with using a program as input to another program is that different versions
may vary their outputs and break everything.

Just make this work for your machine and don’t mess with it.

152

152

Initialize NBS Database

nbsmk
creates an
empty set
of indexes

Btree of
counts

Chunk file
of records

Btree of
update times

The program nbsmk is used to create a new NBS database. The way NBS works, it
reads its configuration from the database itself. So once you’ve created the database
you can just call nbs on it and it’ll figure everything out.

The default nbsmk parameters create a Btree of counts, a Btree of update times, a
Btree of nbs strings, and a record file of update/count information.

There are a bunch of options to nbsmk that can cause it to omit some of the indexes
for additional performance. In fact, if you want no information other than just that a
record was seen, you can omit updating the data records and save a lot of space and
time. Generally, nbs is fast enough that you don’t need to worry about performance
even for very large datasets.

If you call nbsmk with the -? Flag or a bad flag it’ll print out its current set of
options. The most popular alternative option is the:

-d database

option. This allows you to set the database name to something other than the default
(neverseen). Full pathnames also work, e.g.:

nbsmk -d /var/nbs/dhcp

153

153

Tcpdump | stripdhcp | nbs

Spit out
summary info

Since the db
is empty we
have never
seen any of
this before!

Here we run the initial “training” round of nbs. Since it’s never seen anything

before, everything it sees now is an anomaly. So nbs prints it out on the standard
output. The:

-s

flag tells nbs to output a summary when it is completed its run. The “100% NBS”
score indicates that every line of input we sent through had never been seen before.
That’s not unexpected.

In this particular example, our use of NBS is a bit contrived. Tcpdump is exiting
after collecting 5 packets, in order to cause it to actually terminate. In a production
setup, you might run this in a loop, in which tcpdump exits after every 100,000
packets, so nbs flushes and the script is able to process the output. An alternative
approach is to have a script that starts and restarts tcpdump:

OLDPID=`cat /var/log/tcpdump.pid`

mv newdump.out olddump.out

nohup tcpdump -n -w newdump.out &

echo $! > /var/log/tcpdump.pid

kill -HUP $OLDPID

tcpdump -n -r olddump.out | nbs -s > /tmp/nbs.out

if [-s /tmp/nbs.out]; then

cat /tmp/nbs.out | mail -s “NBS report” mjr

fi

rm olddump.out

154

154

More input...

Spit out
a MAC and
IP combo
we have
not seen
before

When we run a second pass with new data (I turned on a new wireless machine in
the home network) - surprise! We see a never before seen value! From now on,
we’ll never get notified about that particular value, unless we age it from the
database.

That’s enough of a simple example! Let’s look at a more complex and possibly
more powerful one!

155

155

NBSdump

Dumps db
in alpha

order and
gives count

-U flag asks
for update
times (first

and
most recent)

Here we are using nbsdump to output the contents of an NBS database. There are a
variety of different flags you can pass to the dumper to control the format of the
output as well as the order and count of what is dumped.

One of the neat things about Btrees is that they inherently sort the data that is stored
in them. That’s why nbs uses Btrees - when you dump the records, you get them
sorted based on whatever value you asked for. If you ask for counts, you get the
results sorted from least frequently seen to most frequently, etc. This can be
incredibly useful and - most importantly - incredibly fast. A lot of the time log
analysis is not done because of the processing constraints inherent in searching and
sorting through lots of records. Nbs keeps the databases the way it does so that
things like counts are pre-computed for you.

In the first example, we dump the values, and it displays the number of times they
are seen.

In the second example, we asked for the last update time (-U) and full output (-V)
which prints the time that the record was first installed in the database as well as the
last update time. When we requested the last update times, the output is sorted in
terms of most recent to least recent.

156

156

NBSsing ARP maps

Make a db
and fill it

New entry!!

Logs of
ARP tables

anyone?

In this example, we’re tracking ARP/IP mappings on a network. Remember, we
won’t get notified whenever there’s a change we’ll only get notified when
something happens that we’ve never seen before.

This would be a fairly simple cron job. Operationally, I’d expect to have a cron job
run every 20 minutes that collected various bits of never-before seen stuff into a
directory of output files. I’d then put a master script together that wrapped them all
up into an Email message to the administrator.

157

157

NBS Apache Logs

Create an
empty db

Output to
“baseline” we
will find a lot

on the first run

NBS
databases
are fairly
small!!

Here we’re dumping web server access logs into an NBS database.

You’ll notice that most of the URLs going into the database are ones that it has seen
before, even during the training run. This works well on my website because there
are not a lot of files or dynamic content.

NBS does not work very well on sites with a lot of dynamic content; since
everything is “never before seen” if it changes all the time.

158

158

Did I mention I am a Perl
newbie?

We just
want the URL

field from
the log

Keeping

dates and

times will

result in a

lot of NBS!

This is my second-ever perl program, so please be forgiving.

All that this script does is pulls the URL out of “get” methods in the log file. So
we’re just going to build a database of URLs that have been requested from our
system. Very simple.

159

159

Batch Log Processing w/Retail

Retail keeps
track of your
offset in the
log file and

outputs only
new additions

Run from a
cron job

An NBS URL!

The retail program is extremely useful for passing data into an nbs database.
Basically, it is a stateful “tail” that dumps whatever has been added to a log file
since the last time it was called. This is useful since it gets you out of having to keep
the log monitoring process constantly running. In this example you might put the
command line as used right into a cron job to run every 15 minutes.

In the example above, I “trained” the nbs database by running it once with my log
records. I sent the output to “baseline” with the “-o baseline” option, and then threw
the baseline file away once the database was constructed. After the baseline is built,
any new requests that come in will appear as NBS!

For the sake of making this an interesting viewgraph, I went in another window and
opened a browser to my web site and entered a URL for a document that does not
exist. You can see that it came out the back of NBS on the next run, just like it was
supposed to!

160

160

Statistics from NBS

-R reverse sort
-C show counts
-c 10 = print first 10!

Ties are broken by
the date/time each

entry was first seen

This gives a very quick look at
your top 10 URLs! Any time!

What would the bottom 10 show?

Nbsdump is also very useful for collecting statistics about arbitrary things. Because
the data is all stored sorted in a Btree it’s extremely quick if you want to retrieve
“top 20” or “bottom whatever” values. In this example, we use nbsdump to retrieve
counts (-C) in reverse order (-R) highest-to-lowest and to print the first 10 (-c 10)
values.

161

161

Statistics from NBS

Most recently
seen URLs

Most frequently
seen URLs

Depending on the options you give nbsdump, you can get a variety of forms of
output. Generally, the output is sorted by whichever key you asked it to be retrieved
with. In the first example, we asked it to dump counts (-C) in reverse order (-R), so
we got a sorted frequency chart. In the second example we asked it to dump in order
of date and time, so we got the data back as most recently seen URLs.

Whenever nbs is sorting data if there are duplicate entries, it sorts based on which
ones entered the database first.

162

162

Structural Analysis Mode
Create bd
in -S mode

Many entries
compress into

a few “templates”
Very compact form

but would this detect
a log message with

corrupted data
or a new structure?

Nbs also includes an experimental capability called structural analysis mode. In this
mode, what nbs does is creates a database of “templates” that represent the structure
of a message with all the potentially variable fields knocked out into %s-style
parameter strings. The variable fields are then thrown away ad al that is stored is the
structural templates.

The call to nbsmk -S tells it to create the database in structural analysis mode. Then
we send my web server access logs into it. Here you see that my entire web server
logs reduce to 2 templates!

In this case, this particular rule would not be super interesting because the templates
compress down to mostly a quoted string (see the “%q” in there?) If we wanted to
do more effective watching of just templates, we’d look only at the URLs as non-
quoted strings. The potential transforms are limited only by your imagination!

163

163

Show Examples of Templates

NBS in
structure analysis

mode stores a
copy of the first
message it saw

that created
that template

If you dump a structural analysis mode database in verbose mode, it will print out
the first example it saw of an entry that had that structure. It’s potentially deceptive,
though, since simple structures (e.g.: “%s.%s”) may match a lot of things!

164

164

LogBayes

� Bayesian classification is widely used
for spam blocking

– Basically, it’s a statstical prediction of the
likelihood that given a set of preconditions
a new event will match them

– What about using Bayesian classification
for logging?

Word-weighting statistics and Bayesian classifiers are yielding spectacular results in
the spam-blocking arena. The spammers are finding clever ways around them, but -
system log messages don’t even try.

Logbayes is a poorly-implemented proof-of-concept hack that harnesses a bayesian
classifier into a logging stream. It also experiments with an idea that is near and
dear to my heart: managing the workflow of assessing messages. Logbayes has a
rapid training mode and can be run permanently in training mode if you want it to
be. Basically it learns what tokens you don’t care about in your logs. The results can
be surprising.

165

165

LogBayes in action

In this slide we see logbayes going into a training run. The program is given an
input file, which it processes line-by-line. When it encounters a message that falls
below 90% likelihood of being garbage it asks the user, then continues.

Processing interactively like this is kind of strange. At first the messages come
frequently but then the rate at which questions are asked begins to tail off rapidly.

166

166

LogBayes in action

In this slide we see logbayes going into a training run. The program is given an
input file, which it processes line-by-line. When it encounters a message that falls
below 90% likelihood of being garbage it asks the user, then continues.

Processing interactively like this is kind of strange. At first the messages come
frequently but then the rate at which questions are asked begins to tail off rapidly.

167

167

LogBayes in action

Hey! That is
kinda cool!!!

Little
b-trees

Here we see the resulting keyword databases that are built by bogofilter. One thing
that kind of leaps out is that they are fairly small. I don’t know what difference that
makes except that it’s kind of cool.

Next we run the data through logbayes to separate it into 3 files

-o stuff we have selected as interesting

-j stuff we have selected as junk

-g stuff we are unsure of

There are cutoffs in the source code that allow you to tune the sensitivity of
logbayes to the results provided from bogofilter.

168

168

LogBayes: The Bad News

� Problems:

– Still can’t “understand” why the filter
“chose” one record and not another

� In some runs it junked nearly everything

� In other runs it selected way too much

– This implementation is slow

– Better tools tailored for the job would be
more likely to succeed

One problem with this approach is that - even if it works - how can you be sure it is
working? You need to go back and look at the logs or run extensive tests.

This implementation is extremely ugly and somewhat unreliable, since it depends
deeply on side-effects of normal operation for bogofilter. If bogofilter’s author
changes anything about how it outputs its messages, logbayes will break.

The way logbayes operates is slow because bogofilter is very Email-oriented. It
wants to operate on messages, not lines of text. To deal with that, logbayes writes
each line of the log to a file, calls bogofilter on it, then calls it again in training
mode. It’ll really light your hard disk up - this is experimental code!

I think the idea has merit, though! It might make a good research topic!

169

169

Baselining

What’s normal?

� How many applications / facilities /
systems report to loghost?

� How many distinct messages from each
facility?

� Top ten most frequent and “top” ten
least frequent are a good place to start

Baselining is the process of figuring out what’s normal - so that you can look for
what does not fit the baseline.

The problem with baselining is that it’s a creative process and is site-dependent. The
differences between the baselines for a hospital network and a university network
(should be) extreme.

So, how do you build a baseline? By hand. Some of the things to look at are simply
the reporting rates of various systems. Looking at “top ten” lists or “bottom ten”
lists are two good places to start. But don’t stop there - look at not only the rates at
which things happen; look for the rate at which those rates change. If you’re seeing
10 machines reporting 2,000 events/day, it’s interesting if that number jumps 20%
in the course of a week - regardless of which systems in particular are doing any
given thing.

To generate a baseline, start collecting “speeds and feeds” for anything you can
think of on your network. It’s all potentially valuable.

170

170

Baselining (cont)

� Amount of network traffic per protocol:
total HTTP, email, FTP etc.

� Logins / logoffs, access of admin
accounts

� DHCP address management, DNS
requests

� Total amount of log data per hour/day

� Number of processes running at any
time

These are a few possibly interesting values you might want to baseline. The
possibilities are endless.

171

171

Thresholding

� Once you’ve baselined, what’s weird?

� Conditions: given a line of data,
– notify based on the presence of a second

line

– the absence of a second line

– number of times that event happens in a
given time period

� Or notify when a message doesn’t
appear!

Once you have established baselines, you can start looking for variations around
that baseline. Generally, you will want to look for variations above the baseline but
sometimes variations below the baseline are also interesting.Almost always,
thresholds will be dealing with the number of times an event happens.

Consider thresholding and reporting to be aspects of the same problem. Most log
analysts combine the two functions into the same processing routines.

172

172

What’s Interesting? (cont)

� It depends!!

Whatever is pertinent and threatening
in your own environment: custom
applications, unusual hardware,
whatever hit Bugtraq last week…

Useful reference: Identify data that characterize systems and aid in detecting signs

of suspicious behavior

http://www.cert.org/security-improvements/practices/p091.html

173

173

What’s Interesting? (cont)

� Ugh: in order to identify suspicious

behavior, you have to know what
expected behavior is

– Can’t define “weird” unless you know
“normal”

– What’s normal in on a University network is
likely to be quite unusual for a corporate
network (I hope!)

Have you ever noticed how virtually every security problem comes (eventually)
down to policy? This is another of those cases!! 99% of your ability to identify
suspicious log entries will depend on you’re a priori knowledge of what is normal
for your systems. If you don’t know that, you’ll wind up having to learn - it’s as
simple as that.

174

174

Finding the Good Stuff

� gnuegrep, sort, uniq to eliminate nominal
status messages, filter things down to the
interesting and unknown

� Use Excel, if you don’t have too much
data to process

– Or MRTG or GnuPlot or...

� Google for obscure messages

Detecting outlying data is also a process of mapping what is seen against what is
known to be OK. Log analuysts use whatever tools they are most comfortable with.
The high-level view of the process is one of:

�Sort

�Evaluate

�Resarch

�Respond

175

175

Finding the Good Stuff (cont)

� What obscure messages and services?

SunMC-SLM eri
asclock_applet farmd
gnomepager_applet pcipsy
multiload_applet uxwdog
magicdev
netcon_server

We need all the magicdev’s we can get.

What are these various doo-dads? I don’t know all of them myself but you’re
running some of them.

176

176

Finding the Good Stuff (cont)

Oct 26 03:10:38 172.16.6.8 [-1]: 10.1.8.29 pyseekd[10906]:
Info: [master] deleting directory /cust/SEEKUltra-3.18/master
/master/db/118750

Deleting directories seems like a good item to investigate.

177

177

Finding the Good Stuff cont.

Naughty
hackers!
(oh, excuse me,

“security researchers”
please…)

A bit of hard-core investigation on the Internet reveals that pyseekd is the primary
binary use by the Inktomi suite of search engines and e-commerce support
applications. Although we haven’t tracked down the particular meaning of the
message, we have some context now. It’s probably reasonable for a search engine
to create and delete dynamic directories.

178

178

Finding the Good Stuff (cont)

Internet serendipity also reveals that pyseekd is vulnerable to a potential buffer
overflow. That’s an extremely useful bit of intelligence – and a guide for further
log reconnaissance.

179

179

What to look for

� Passwords changed by someone other
than the user – especially UID 0 users
with null logins

� Processes dying with error code 1

� Long messages full of random
characters

� Unexpected configuration changes

If you have a regularly scheduled maintenance window and someone changes your
router configuration at a different time, that probably merits some investigation!

When your log messages contain mixtures of weird characters that they normally
wouldn’t contain it’s a decent chance you’re looking at a new worm’s tracks, as it’s
trying to exploit a buffer overrun or some kind of data-stuffing attack. Your results
are going to vary - systems that were susceptible to the attack aren’t going to log
anything, because the attack succeeded - but a lot of Solaris/Apache log analysts
catch on fairly quickly whenever there’s a new worm mass-exploiting a
Windows/IIS hole.

180

180

What to look for (cont)

� The least-frequent messages generated
on your network

� Messages containing the words fatal,

panic or password/passwd

� Sudden increase or decrease in the
number of messages received from a
host or application

These are a few other things to look for - look for rates of change at the high end of
your traffic, and look for introduction of sparse events at the low end of your traffic.
Remember Ranum’s law: the number of times an uninteresting thing happens is an
interesting thing!

181

181

What to look for (cont)

� Failed logon from non-local or unknown
domain

� “Singleton” events – recording only a
single event when you ought to see two
(login/logout, session open/session
close)

Matching singleton events is a very powerful technique but is not used by many log
analysts because there aren’t good tools for doing it. Ben Laurie has a
MOD_AUDIT module for Apache which starts a log entry when a request comes in,
and completes it when the request has been processed and dispatched. This, way, if
you see a start event without a finish, you can be pretty sure something (like a buffer
overrun) prevented the process from completing the request. This technique is also
called “tomstoning”

182

182

Other Logs to Check

� Older rootkits do not backdoor tcp-

wrappers, so check for unexpected
logins

� FTPd records logins and is not typically
replaced

� Shell history files in the directory where
the compromised server died

The essay at http://mixter.warrior2k.com/logs.txt is about audit trails that hackers
typically forget to remove or modify. So if your preliminary syslog data suggests
that a system’s been compromised, these are good places to check.

If you’re running a crucial server, searching for core files is also a good idea.

183

183

Other Logs to Check (cont)

� Web server access logs

� Proxy server logs

� Information contained in core dumps
from compromised servers

A lot of sites turn off web server access logs “for performance reasons.” This is kind
of like poking your own eyes out “for performance reasons” Don’t do it!

Proxy server logs are also extremely interesting, and may reveal attempts to bounce
traffic or to transfer spam. Unusual errors in proxy logs, or unusual usage changes in
proxy logs are key indicators of problems. You could probably generate a pretty
useful security report simply by plotting the number of accesses/hour over a rolling
period (e.g.: wc -l proxylog) the rate at which your proxy server is used should
tend to remain approximately constant.

184

184

Storing the Wood

Sawmills dry their wood the good old-fashioned way: sunlight and time. This is a
typical board stack of fence boards, freshly cut. They smell great if you like the
smell of fresh-cut wood.

When you buy lumber like this at the home improvement store, it has been planed
and sometimes sanded, so the surfaces that are exposed to the air have all been
cleaned up.

185

185

Storing the Wood

� Topics:

– Rotation

– Retention

This space intentionally left bereft.

186

186

Log Rotation

� Many circumstances can create huge
quantities of logs
– Deliberate DoS attempts

– Nimda

– Forwarding Apache access logs to syslog
� Not recommended for busy websites!

� Protect loghost’s integrity by rotating
and archiving logs regularly
– Have it monitor its disk usage!

Log rotation is something that is usually performed on a daily basis.

The problem with the stock “newsyslog” routines that come with many O/S is that
they don’t handle the case when the logs get unusually large very fast. For high-
volume servers, consider rewriting newsyslog so that it runs hourly instead, and
include checks for (df -h /var/log) disk space problems or unusual file sizes.

One thing we don’t recommend is forwarding web server logs from busy sites over
syslog. The traffic bursts that web servers generate can easily swamp UDP
input/output queues and cause loss of data. If you want your apache logs, use SSH
or rsync or some other reliable way of collecting them in batch mode. Hint: apache
logs compress really well - compress them first and you’ll save a lot of bandwidth.
Compression also helps minimize the impact of log-overflows. A log file with
millions of duplicates of a particular message will compress the millions of
duplicates down to a single instance, automatically.

187

187

Log Rotation (cont)

� UNIX variants now include log rotation
as part of their default install
– Rotate based on absolute size, disk

utilization, age of data

– Delete old records, or compress the data
and store it elsewhere?

� Or summarize the old records then delete them
(and hope you didn’t find something interesting
in the summary!)

Virtually every UNIX-like system includes a different way of handling log rotation.
Don’t be afraid to replace them, if they don’t do the job for you!

188

188

Managing Windows Event Log

� Archive and storage options
– Default behavior: overwrite old logs

– Save and clear binary files on regular
schedule if appropriate

… or log remotely and avoid whole issue

� Batch processing to export, dump, view:
– dumpel from WinNT/2000 Resource Kit will

dump logs to comma-delimited files

http://packetstorm.securify.com/NT lists a variety of useful freeware for NT
administration and security. One of them, NTOtools2.zip, contains a command line
tool for backing up the three Event Log binary files and clearing the active logs.
This action can be scheduled through the NT “at” command or using the Task
Scheduler, and protects you from the danger of your log files being unexpectedly
overwritten.

The tools are also available at
http://www.securityfocus.com/data/tools/ntotoolsSD.zip.

From the NT command line,

ntolog \\SERVER /b /c /sec /f 05092001.evt

will back up your current Security Event log to a file called 05092001.evt and clear
the active log.

dumpel –f 05092001.txt –l Security –d 1

will dump the last day’s worth of entries from the Security Events log to a file
called 05092001.txt.

189

189

Retention

� Ensure that your retention policy is
clearly described

– Add special cases for retaining records
differently under certain circumstances
when directed by superiors (e.g.: “keep
logs longer pursuant to an investigation”
not “delete them now; we are being
subpoenaed by a grand jury”)

Make sure that you address a retention policy in case you ever want to do something
with your logs for legal purposes. The importance of logs is that they are a business
record. You should keep them exactly as described in your policy - no more, and no
less.

Consider adding special clauses in your policy that direct variations of log-
processing based on circumstances. E.g.:

System logs are to be retained on fast media for a week, and slow media (tape) for 1

year. After one year, they are to be purged. In the event that security staff, human

resources, or other authorized managers of bigfoo, Inc, request it pursuant to an

investigation, selected logs will be preserved on fast media for the duration of the

investigation.

Presto! Now you’re covered. If your boss tells you to investigate what’s going on
for a particular day’s logs, you’re covered if you keep them past the mandated
expiry date.

190

190

Burglar Alarms

� Logs should never get shorter except at
rotation time!

Consider putting hooks directly into your log processing loop that will notify you if
your logs ever get shorter all of a sudden! On one high value target, a friend of mine
used to have a process that lurked in the background and did not a whole lot more
than watch for /var/log/messages getting shorter except for around midnight.

Extra credit for the UNIX gurus in the room: if the process opens /var/log/messages
and does an fstat() on the fd to see if its inode has changed at an unusual time:

�What has happened?

�What would happen if the program fseek()s the fd to 0L and read/writes the file to
another location?

191

191

Fine Finishing

Ever wondered what comes out the back of a sawmill? Mulch, of course. Lots of
mulch. Any time my wife wants fresh oak mulch she can take our pickup truck
across the street and have fun with a shovel. Actually, the guys are usually so nice
they won’t let a lady do all the work, and they dump a scoop from the backhoe.

Periodically, the mulch is loaded into a semitrailer and hauled to a paper mill or
garden supply store.

192

192

Fine Finishing

� Topics:

– MRTG and logs

– GnuPlot and others

One of the most under-thought-of aspects of log analysis is reporting. Technical
experts really don’t care much about that stuff, but managers do. So if you want to
show the value of your log analysis, you’re going to have to just accept that there
are going to be 3-d pie charts in your future. We’re going to talk a little bit about 2
approaches for plotting and graphing your output.

193

193

Visualizing Logs

� “Visualization” is the technical term for
“keep the guys in the suits smiling”

� Good tools:

– MRTG (Multi Router Traffic Grapher)

– RRDBrowse (MRTG alternative)

– GnuPlot

– Any commercial network monitoring tool
that keeps usage summaries

Visualization is a good exploratory tool. It’s what you do when you’ve got a lot of
data and you’re not sure what you’re looking for. So you compress the data visually
onto a screen, somehow, so your eyeball can make sense of it. Sometimes the
visualizations may be complex and involve things that make your 3-d graphic card
ache in pain. Other times they are simple.

My preference is for histograms of time-related data, ideally with a moving average,
if you can compute it. Most network monitoring tools and usage tools support
histograms. You can build your own very easily with tools like GNUplot, too.

194

194

Security Visualization for
Executives

The red guy over there means you just made the cover of the Wall St Journal!

195

195

MRTG

� First off, let me be frank:

– I don’t use MRTG because I’m lazy (and I
have large investments of time already
spent on learning GnuPlot and shell
programming)

– So I stole sample charts from friends’ sites
on the web

� If you’re thinking of doing charting,
choose your tools wisely!

When you’re doing this stuff you’ll find that it’s best to get familiar with one tool
and stick with it. Spend a week or so researching the options and then pick one and
forget that the others ever existed.

I’ve been writing my own charts using plot and later GNUplot for about 10 years,
now - it’s too late to teach this particular old dog new tricks. So I don’t actually use
MRTG myself but I know a lot of people who love it and swear by it. It’s worth a
look, especially if you are in an environment where SNMP is used to manage
systems.

196

196

MRTG

Active users
within a network by host

(what do you think this graph might look
like during a worm outbreak?)

Spam statistics
from a small

ISP

This is some MRTG chart output from a couple of sites showing the kind of data
you can collect and what it looks like. MRTG graphs have a sameness to their look,
which is not a bad thing. Basically, you set it up to present a couple of different
items on a graph, throw data into it, and you get a graph. Easy. Then you link those
graphs to a web page that you wrap with HTML that makes it reload every minute.
Presto! You have a $300,000 network management console! (Except that yours
works and you can customize it)

Both of these charts represent things we’d want to know about if they were
changing dramatically all of a sudden. Showing it visually is a very good way to
keep tabs on it.

197

197

MRTG

� Pulls SNMP or can accept external data

– Many sysadmins use ssh to pull data and
generate counts from html logs, mail logs,
permit/deny rules, etc.

� Get it from:
http://people.ee.ethz.ch/~oetiker/webtools/mrtg

MRTG is designed to pull its data via SNMP so if you’re an SNMP site or an SNMP
guru this is a good tool for you. If you’re more of a batch-oriented guy you can pull
data down using other mechanisms and feed it into MRTG directly.

Would you like a nice constantly updated picture of firewall permits versus firewall
denies? Of course you would!

MRTG is free; there’s no excuse not to look at using it.

198

198

RRDBrowse

Lots of
statistics
on one

grouped
screen

RRDBrowse is an MRTG-like plotter for network traffic. It’s intended to be an
“MRTG light” clustering console and puts a lot of different things onto a single
central panel with grouped screens. Once again, you can customize it a great deal by
deciding what you want to stuff into it.

199

199

RRDBrowse
Plot of type
of E-mail

virus
collected

by
firewall

A/V

This is an example I found on the web of a network administrator who configured
his copy of RRDBrowse to color-code and plot different viruses and the rate at
which they impinged upon his network.

I think this is really kind of cool; if I were a suit I would be very excited by this
chart, even though it doesn’t provide actionable intelligence.

200

200

APC UPS Output Current

APC UPS Output Load

APC UPS Temperature

APC UPS Time left on Battery

Ascend Ports in Use

Cisco 7xxx Temperature

Cisco CAR rate-limit

Cisco Catalyst

Cisco Catalyst 64bit counter

Cisco CPU

Cisco Free Memory

Cisco PPP Channels in use

Line Errors

Linux Open Files

Linux Open Sockets

Linux CPU
Linux Load Average
Linux Disk Blocks
Linux Disk Sectors
Linux Memory Usage 2.4 kernel
Linux Memory Usage 2.2 kernel
Linux Number of Processes
Random OID Gauge
Default port
Default port 64 bits Counter
Telnet to port and plot first number
Apache (1.3/2.0) Connections
Apache (1.3/2.0) Accesses
Apache (1.3/2.0) CPU Usage
Apache (1.3/2.0) Server Processes
Apache (1.3/2.0) Average Request
Size
Bind 8 DNS Requests
Windows 2000 CPU
Windows 2000 Memory
Request Tracker (RT) Queue
statistics
TCP Response times

RRDBrowse

Plottable Points:

This is a partial list of the SNMP-pollable counters that RRDBrowse knows how to
collect and do something with right out of the box. As you can see, some of them
might be immediately useful to a security analyst. There are mystical incantations in
RRDBrowse that will let you inject your own information into the system, as well,
if you want to. So you could easily plot firewall permit/denies, for example.

201

201

RRDBrowse

� It’s a bit “lighter weight” than MRTG and
is supposed to be much faster

– Worth a look!

� Get it from:
– http://www.rrdbrowse.org/

What are the relative advantages/disadvantages between RRDBrowse and MRTG?
MRTG is supposedly more powerful and flexible, RRDBrowse is supposedly faster
and easier to set up. My guess is that either is a fine tool and they’re both better than
nothing!

202

202

Critical Applications

� Ethereal

– Wonderful free (Win/Unix) tool

� Capture traffic

� Decompose packets (over 500 protocols
dissected)

� Keep snapshots

� Reconstruct TCP streams (!)

For log analysts, Ethereal is a key tool, especially if you are collecting data from
tcpdump to inject into your log stream. I’m a big fan of using tcpdump to collect
specific types of packets to a file, then periodically killing off tcpdump and
restarting it, while passing the file to tcpdump -r to a batch process that does further
analysis on it. One thing that’s nice about this approach is that if you find something
you’ve never before seen, you have the raw packets sitting right there to look at.
And, if you ever have raw packets to look at, Ethereal is the tool for the job.

203

203

Ethereal: Uber-Analyzer

This is just a simple example of Ethereal displaying a packet. You can see the nice
way it explodes the header fields out for you in the middle panel.

204

204

Ethereal: Uber-Analyzer

Live!
Stream

decoding

This screenshot shows Ethereal stream-decoding a TCP stream. This is terrific for
figuring out what happened in a packet capture set. Back in the old days we used to
decode our TCP traffic by hand. Not anymore!

205

205

Ethereal: Uber-Analyzer

Incredibly
powerful
filtering
lets you
specify
fields to
collect

Save ‘em
and MRTG

‘em?

I used to write complicated tcpdump rules by hand but now I have completely
forgotten how to. Another wonderful feature of Ethereal is that it has menus that let
you build queries based on full knowledge of what fields can be decoded and how.
So you can write your tcpdump rule in Ethereal, and then use tcpdump to collect it
on a command line for later analysis in Ethereal.

206

206

Critical Applications

� Ethereal
http://www.ethereal.com

� Fun projects

– Record and monitor DHCP leases; keep
them

– Record and monitor sender/recipient email
addresses; count them and keep them by
IP address

etc...

Www.ethereal.com is the place to get this wonderful tool. Frankly, I think they’re
insane for giving away something so great - I’d gladly pay $100 for it (in fact, I did)
since I like it better than a lot of the older commercial tools I used to use for the
purpose.

207

207

GnuPlot and others

� GnuPlot is moderately painful to build

– Most of these are tough because they
need a lot of libraries - Zlib, libpng,
freetype, etc.

� Incredibly powerful and surprisingly fast

– GnuPlot’s good for 2d histograms and 3d
surface plots

– Best feature: including data from a file

Gnuplot is another wonderful tool, but it’s a bit hard to build. In order to get a
functioning Gnuplot build you’ll need several libraries built and installed on your
system. Install (in this order!)

�Zlib

�Libpng

�Libjpeg

�freetype

then you can proceed with the configure/build process. Make sure you read the
directions for Gnuplot before you just start with “configure” because “configure”
will adjust your build based on what is available on the system. I produce almost all
my plots as Jpegs because the Jpeg driver in Gnuplot lets you set an arbitrary pixel
output. Do you want that chart wall-sized? No problem!

Gnuplot has zillions and zillions (really) of plotting options, so you can control the
rendering of your data to a high degree. It’s also very good about selecting sensible
defaults. A lot of the time I just use default plot layouts; there’s not a lot of effort in
making a simple plot.

My favorite feature of Gnuplot is that it’s very good about plotting data from a file.
So you can build a gnuplot script that includes data from other files, and have
multiple scripts that attack the same data from different perspectives - or you can
point to a file where the data is constantly being updated.

208

208

GnuPlot inclusions

� Write the set-up for your plot in one file

– Then have that file call the “plot” on the
data you generate

set terminal gif

set size 2,2

set output "gnuplot.gif"

set xlabel "Log Records"

set ylabel "Templates Created"

plot "gnu2.out"

This is a simple example of a plot file for a fairly large and complex chart. “Set
terminal” controls the output format or device; in this case to a .GIF file. I set the
output size to a specific value that means something to the .GIF file output driver.
Some output drivers take parameters like “large” while others (like the Jpeg driver)
take parameters like “400x8909” - it’s device dependent. The “set output
gnuplot.gif” tells gnuplot to write its output to the specified gif file/device.

Then we do some simple labeling. The X axis is “Log records” and the Y axis is
“Templates Created”

The last line is the interesting one. It reads the file “gnu2.out” (which was created
by another program) and generates a plot. The data format of the input file is just
space-delimited lines of numbers - very easy to construct with a simple script.

209

209

GnuPlot

This is the output from a run with the preceeding script. You’ll notice that gnuplot
just picked its own default values for the tick marks on the X and Y axis, and set its
own scale, etc. There are lots of options that let you have an incredible degree of
control over tick marks and scales, etc. One nice thing you can do is map a value to
a particular tick mark, if you like, so you could make the left side named “Monday,
Tuesday, Wednesday…” etc if you wanted and only had 7 values. You can change
the colors of the points, put lines between them, make them bars, or literally dozens
of other options.

This chart is an interesting one, by the way. It’s a plot of the rate at which NBS
identified never-before-seen structures in 4 years of San Diego Supercomputer
Center’s log data. What we can see is that there is apparently a constant level of
introduction of new log templates in a large system. This indicates that parsing logs
is going to be an ongoing process.

210

210

GnuPlot inclusions

� Collect mail status(es)

count log lines stat=Sent

grep 'sendmail.*stat=[Ss]ent' ../logs/sam* |\

wc -l > sent.today

count log lines other than stat=Sent

grep 'sendmail.*stat=' ../logs/sam* |\

sed ‘/stat=[Ss]ent/d’ |\

wc -l > notsent.today

merge records

a=`cat sent.today`

b=`cat notsent.today`

echo `date +%d` $a $b >> gnu2.out

Here’s a simple example of a silly shell script I whipped up to produce a Gnuplot
output of a system value.

What we’re doing is grepping a pattern out of sendmail and generating a count of
the number of times it’s seen using “wc -l” (word count, print lines). We’re
generating a count of messages matching “stat=sent” as well as a count of messages
not matching stat=sent. (This is not an optimal processing approach, of course, if I
really wanted this value I would pre-sort the data with syslog-ng and have it ready
and waiting in a file…) Once we’ve generated the data we echo it to the end of our
“gnu2.out” file, which is our plot data.

A separate process is calling Gnuplot to plot “gnu2.out” periodically, so it just plots
the most recent version of the data-set. What’s nice is that I can use the same header
layout for all my gnuplot scripts and just vary the input file to plot whatever dataset
I am collecting. It’s very fast and easy to do this. Mess with it for a day and you’ll
be producing management reports that will make everyone smile.

Who needs MRTG, huh?

211

211

GnuPlot inclusions

� Call a plot (example: mailuse.gpl)

set terminal pbm large color

set size 2,2

set output "gnuplot.ppm"

set xlabel "Date"

set xrange [0:31]

set ylabel "# messages"

plot "gnu2.out" using 1:2 with lines,\

 "gnu2.out" using 1:3 with lines

This plot script should look pretty familiar; it’s basically the same as the other one,
though I decided to plot to a pbm file (because my version of Gnuplot didn’t get
built with the jpeg driver in it) and I am specifying a particular X range (days of the
month)

The last line contains two “plot” commands, which will cause Gnuplot to produce
two different wiggle-lines one using the first data item in the file and the other using
the second.

Our input file for this looks like:

1 473 203

2 842 832

3 227 278

(I just made those up) the first field is the day of the month and the second and 3rd
the values we want to plot against the day of the month.

212

212

GnuPlot results

And there’s the output from our previous example!

Looks professional, huh? That’s because it is! If you want to get fancy and add
moving averages, deviation bars, multiple colors, etc, etc, you can do it. But the
point here is that you can be up and Gnuplotting in a couple of hours without having
to do a lot of rocket science.

213

213

GnuPlot GuruHood

� Excellent and well-indexed “how to”
problem solver for GnuPlot:

http://t16web.lanl.gov/Kawano/gnuplot/index-e.html

� GnuPlot Homepage:
 http://www.gnuplot.info/

If you want to become a Gnuplot master, you need to sit at the feet of the mighty
Kawano. He maintains a well-indexed and incredibly detailed Gnuplot problem
solver page. It covers how to do pretty much anything you’d want to do and has
clear well-written examples, too!

The GnuPlot homepage has links to a few other sites that are doing ultra-cool
Gnuplot plots.

214

214

Popular Reports

� Loganalysis mailing list’s top picks:
– Top N machines sending/receiving traffic through the firewall

– Top N machines sending/receiving traffic on the network segment

� Same as above but inward-looking

– Top N machines being accessed behind the firewall

– Breakdown of traffic through firewall by service (%-age)

� This is popular as a pie chart

– Breakdown of traffic on the network segment by service (%-age)

� Same as above but inward-looking

– Top N email address(es) sending Email messages

– Top N email address(es) receiving Email messages

– Top N machines accessing web

– Top N targets identified in IDS alerts

– Top N IDS attacks identified

If you’re looking into plotting stuff, here’s an idea-list of good things to consider.

I polled the loganalysis mailing list and asked for “favorite things to report.” These
are all great suggestions. You’ll notice that there’s an intellectual separation
between inward-facing reports and “across a boundary” reports - that’s a good idea
to maintain. Comparing inward-facing traffic to outgoing traffic is sometimes really
interesting!

Most of the data to build these suggested reports can be collected from your firewall
logs, or from routers (via SNMP) or system logs.

215

215

Popular Reports (cont)

� Advanced reports:
– %age of Email that is identified as spam

– %age of Email that contains blocked attachments

– %age of web traffic aimed at sites on porn blacklist

– %age of traffic aimed at sites on spy/adware blacklist

– Top N porn-surfers

– Top N most-ad/spyware infected systems

– New machines that have served WWW/FTP/SMTP today

These are more advanced reports that are a bit harder to implement. To build some
of these you need to match knowledge-bases against your log data (e.g.: a porn
blacklist against your firewall/proxy log) or you will need to potentially engage in
multi-event matching (e.g: match a SYN packet on port 80 with an ACK packet
instead of an RST) - you might want to dust off a tool like argus or tcpwatch or
collect router netflows if you want to implement these.

216

216

Maintenance

This is the wood-chipper at Greenwood’s. It’s the source of the mulch pile in our
previous sawmill photo. At the far right are the rails of the saw, and the saw table -
the saw is at the far end of the shed. When a piece of scrap is discarded by the crew
they throw it on a conveyor at the lower right that carries it into the yellow-colored
chipper housing. Inside there are a bunch of gears with some teeth that will spit out
a piece of oak in the form of little shreds. You do NOT want your hand in this
device, believe me!

The shredder is powered by its own diesel engine (on the left) which came from an
old tractor; it just lunks away all day spinning the shredder. When wood has been
shredded, it goes up that pipe to a sorter housing that either sends it to the conveyor
to the mulch-pile, or back into the shredder (via the chute) for another pass through
the rotating knives.

If you saw the Coen Brothers’ movie “Fargo” - this is what they should have used.

217

217

Maintenance

� Topics:

– Logs as Evidence

Now let’s look at some boring legal stuff. Namely, the problem of dealing with logs
as evidence. There’s a lot of misunderstanding on this topic, and it’s important to
know what you’re likely to encounter.

218

218

Logs as Evidence

� Current “one size fits all” approach

� Division of computer data into broad
categories based on presence of
human-generated content

� Evidentiary requirements

These are the topics we’ll discuss regarding the use of logs as evidence!

219

219

“One size fits all”

� Current case law mostly agrees that
computer records maintained as part of
regular business procedures are
admissible as evidence

� Computer records are considered as
“hearsay” and then allowed according to
business record hearsay exemption

but this isn’t really accurate

Many people believe that logs are not “evidence” but are only “heresay” (which is
legal-ese for “something a witness said”) it turns out that logs can be used as
evidence.

One of the many things I learned from reading Kerr’s report is that hearsay rules do
not apply to computer records without human-generated content. According to the
Federal Rules of Evidence, hearsay is defined as information contributed by a
human, which must be substantiated before it is allowed to influence the outcome of
a court proceeding. To quote Kerr, “As several courts and commentators have
noted, this limitation on the hearsay rules necessarily means that computer-
generated records untouched by humans hands cannot contain hearsay.”

220

220

Computer Data Categories

� Data generated by humans that
happens to be stored on a computer
– E-mail messages, documents, static Web

page content

� Computer-generated records
– Network connection logs, ATM receipts

� Mixed data
– Spread sheets, dynamic Web content

Computer data comes in various formats - or at lawyers and judges think so.

Data generated by humans is different from data generated by computers as a matter
of their normal function. This is very important when dealing with evidence because
with human-generated data the question is: “did the human generate it?” and “is it
accurate?” while with computer-generated data the question is “did the process that
created this data function correctly?”

Mixed data is something in which human input is acted upon by a computer. So, for
example, a spreadsheet might compute a value based on what a corrupt accountant
typed into it. The questions, then, are “did the accountant enter the value that caused
the result?” and “did the result follow from the value predictably?” (I.e.: was the
spreadsheet working right?)

If you demystify this legal gobbledeygook it’s not rocket science.

221

221

Computer Data Categories (cont)

� Human generated, computer stored –
must prove that human statements are
trustworthy, and that the records can be
reliably associated with a particular
individual

� Computer generated & stored – must
assert that program that generated
records is behaving properly

There’s also the question of how the data was stored. If you’re dealing with a record
that stores something a person created, then the main issue is arguing that the
storage of the data is reliable and predictable. If you’re dealing with computer-
generated data (e.g.: a syslog) then the same question applies. You want to be able
to argue, “Well, the hacker entered this URL, and it was duly recorded by our web
server. Our web server records all URLs and it does so reliably and repeatably and
has been doing so for 2 years. Once we have the logs from the web server, we copy
it for further processing, and don’t delete or alter it. This process is also predictable
and has been very reliable.”

Basically, the defense is going to be trying to challenge the reliability and
predictability of your logs. That’s a lot easier if you only set them up yesterday.
You want your logging architecture to have been in place years ago. But if it were,
would you be in this tutorial? ;)

222

222

Computer Data Categories (cont)

� Both human and computer generated
data – must satisfy both sets of
requirements

Human and computer generated data - basically - you have the union of the previous
requirements. It must be predictable, and reliable.

223

223

Challenges to Computer
Records

� Ease of tampering often used as a
reason for discarding computer records

� Case law supports notion that the mere
possibility of tampering does not affect
record’s authenticity

� Opponent must offer substantial proof
that tampering occurred

There are a lot of urban legends about log data. Some hackers have told me that
they figure they could beat a logging rap because they would argue that syslogs are
unreliable and can be edited easily with “vi” - unfortunately for them (if they try it)
they have watched too much courtroom drama television.

United States v. Bonallo, 858 F.2d 1427, 1436 (9th Cir. 1988): “The fact that it is
possible to alter data contained in a computer is plainly insufficient to establish
untrustworthiness.”

Again, what you need to argue is “look, this stuff works and has always worked and
it’s working now and you’re busted.” Juries and judges are actually pretty
sympathetic to the line of argument! If your line of argument is something like,
“Our logs (which have always worked fine - see above) led us to believe we needed
to see what bob was doing, so we collected every packet out of his system using this
industry-standard tool ‘tcpdump’” - ‘lock and load’, hacker-boy is going down.

The converse is true. Don’t say, “We set this logging architecture up the day we
began to suspect that bob was up to something… We think it works OK.”

224

224

Challenges to Computer
Records (cont)

� Unreliability of computer programs used
as a reason for discarding computer
records

� If the users of an application rely on it
as part of their business processes,
courts will usually consider its records to
be reliable “enough”

Again, reliability challenges are made much more difficult if the tool the defense is
challenging is part of normal business processes. I.e:

Defense attorney: “Sir, did you ever consider the possibility that your
DHCP server logs were inaccurate?

Sysadmin: “Uh, no, because if it was screwing up the leases it said it
was giving, our whole network would have crashed ages ago. Duh!”

United States v. Moore, 923 F.2d 910, 915 (1st Cir. 1991): “The ordinary business
circumstances described suggest trustworthiness…at least where absolutely nothing
in the record in any way implies the lack thereof.”

225

225

Challenges to Computer
Records (cont)

� Inability to identify author of a computer
record used as a reason for discarding
data

� Circumstantial evidence generally used
to support claims of authorship

– “system logs show bob was the only user
logged in at that time”

Many people believe that inability to associate a user with a log record is cause to
dismiss the log as evidence. Not so! Circumstantial evidence has been sufficient to
gain convictions in a number of cases, based on a log entry and a date/time.

I was involved peripherally with a case where a student was accused of breaking
into another student’s account and dropping them from a class as a malicious stunt.
The evidence in the case consisted entirely of a web server log showing that the
drops occurred at a specific time and from a specific IP address, coupled with a
DHCP leases database dump taken 2 weeks later indicating that the accused’s MAC
address was usually granted that particular IP address. The student was convicted of
a felony based on this evidence. I was surprised that the jury found her guilty, and
felt that the defense didn’t do a good job - they could have asked why the DHCP
server logs weren’t being kept, whether the DHCP server had been restarted in that
time interval (the university’s sysadmins didn’t know if it had!!!) etc. But… Justice
might have been done. We’ll never know for sure.

226

226

Addressing the Challenges

Ease of tampering

� Compare local & remote versions of
logs before writing to immutable storage
media

� Encrypt & authenticate communications
if your network infrastructure allows

If you wish to address the question of log-tampering, the simple answer is to keep
duplicate copies, and checksum them or digitally sign them before committing them
to immutable storage media. For most intents and purposes, this is overkill. But it
might be fun, anyhow!

227

227

Addressing the Challenges (cont)

Unreliable applications:

� Document your archiving & review
procedures

� Build log-dependent internal processes
into day-to-day operations

– Call accounting - Policy compliance

– Capacity planning - Incident response

– Web usage

To address the challenge that your log processing may be unreliable, build it into
your day-to-day business processes. If you can argue that your NOC team has
received an accurate chart of message use every day for a year, it makes it very hard
for a defense attorney to generate uncertainty that it was wrong just at the
convenient moment.

If you’re a paper-trail oriented person, get a directive from your manager ordering
you something like this:

“In order to ensure the security, audit, and function of
our network, it is our policy that you aggregate all
system logs, store them for 6 months on fast media, and
indefinitely on slow media. Further, prepare reports for
me daily that report stuff automatically, as an
operational capability. In the event you are directed to
do so, have in place a procedure whereby you can retain
logs that would be scheduled for purging, if they are
required for an ongoing investigation. Due to the
possible sensitivity of log data, only { short list }
authorized security administrators are to have access to
the log aggregation system, and all their administrative
actions that affect that system should be logged and
retained within the system.”

228

228

Addressing the Challenges (cont)

Unverified identity:

� Strong user & machine authentication

� Information classification scheme (yeah, right)

� Simplify network topology for user
tracking if possible
– For instance, if using DHCP, configure to

lock IP address to MAC address on laptops

– Keep your DHCP server logs!

Unverified identity is the biggest challenge to log data. Make sure that you keep any
data you can about who is associated with what. DHCP logs are a very important
piece of data to keep.

229

229

Bookshelf

� Topics:

– Books

– Websites

Let’s wrap up with a couple of references and then we’re done!

230

230

Books

� Someone needs to write one!

There aren’t any good books on system log analysis at this time.

Someone needs to write one!!

231

231

Websites

� http://www.loganalysis.org

– The loganalysis resource site - maintained
by Dr. Tbird and Marcus Ranum

� http://honor.icsalabs.com/mailman/listinfo/firewall-wizards

– The firewall-wizards mailing list; a general
moderated security list

� http://www.sans.org/rr/papers/index.php?id=1227

– Sans Infosec Reading Room paper on
HIPAA and logging

There are a couple of websites around with good information on system logging.
Loganalysis.org (OK, I am biassed!) has a lot of links to log-related data. The
firewall-wizards mailing list is another deep resource for information about security
in general.

SANS’ reading room has some good articles on logging that are worth reading!

232

232

Laws

� Ranum’s First Law of Logging and IDS

– Never collect more data than you can
conceive of possibly using

233

233

Laws

� Ranum’s Second Law of Logging and
IDS

– The number of times an uninteresting thing
happens is an interesting thing

234

234

Laws

� Ranum’s Third Law of Logging and IDS

– Collect everything you can except for
where you come into conflict with the first
law

235

235

Laws

� Ranum’s Fourth Law of Logging and
IDS

– It doesn’t matter how real-time your IDS is
if you don’t have real-time system
administrators

