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Abstract

System logs, such as the Windows Event log or the

Linux system log, are an important resource for computer

system management. We present a method for ranking

system log messages by their estimated value to users,

and generating a log view that displays the most important

messages. The ranking process uses a dataset of system

logs from many computer systems to score messages. For

better scoring, unsupervised clustering is used to identify

sets of systems that behave similarly. We propose a new

feature construction scheme that measures the difference

in the ranking of messages by frequency, and show that it

leads to better clustering results. The expected distribu-

tion of messages in a given system is estimated using the

resulting clusters, and log messages are scored using this

estimation. We show experimental results from tests on

xSeries servers. A tool based on the described methods

is being used to aid support personnel in the IBM xSeries

support center.

1 Introduction

System logs, such as Windows Event Logs or Linux sys-

tem logs, are an important resource for computer system

management. These logs hold textual messages emitted

from various sources in the computer system during its

day-to-day operation. Emitted messages may be infor-

mational, or they can indicate a problem in the system,

whether trivial or more serious.

Periodic monitoring of system logs by system admin-

istrators allows the identification of anomalies and secu-

rity breaches in the system. In addition, the information in

system logs is vital for problem diagnosis. In reality, how-

ever, system logs hold a large number messages, most of

which are not interesting to the user. It is time-consuming

and sometimes impossible to manually find the valuable

messages in this abundance of information.

Previous works on the subject of log analysis present a

variety of approaches. One approach is to have a human

expert define a set of message patterns to find, along with

desired actions to be taken when encountering them ([5],

[6], [13]). The effort invested in writing and maintaining

these rules is proportional to the number of message types

and the rate at which they change. Another approach for

log analysis focuses on visualizing the log data in a useful

way ([2], [11]). This is achieved, for instance, by show-

ing a succinct representation of the log data, by graphi-

cally showing patterns in the data or by presenting time

statistics of messages.

Works differ in the type and extent of pattern detection

applied to log data. Some of the techniques are analy-

sis of the frequency at which message occur [11], group-

ing of time correlated messages ([10], [7]), and the use

of text analysis algorithms to categorize messages ([10],

[7]). Unlike the approach we present here, all these works

base their analysis only on the log data of the inspected

computer system.

In this paper we present a method for ranking log mes-

sages by their estimated value to users, based on infor-

mation from a large population of computer systems. We

generate a new ranked log view, in which the messages are

shown in order of rank and in a condensed form. We ap-

plied our method on a dataset of the combined Windows

Event Log (Security, Application and System messages)

taken from 3,000 IBM xSeries servers that are used for

diverse purposes. A characteristic Event Log holds be-

tween 3,000 and 30,000 messages. We show that using a

new feature construction scheme, we can find a structure

in the logs of computer systems to improve ranking.

The rest of the paper is organized as follows: In Sec-

tion 2 we describe our method for scoring log messages

and its use of clustering as a building block. In Section 3

a new feature construction scheme for sample data is in-

troduced. This scheme achieves better clustering results

in the message ranking scenario. In Section 4 we describe

the experiments and analyzes the results. We summarize

in Section 5.
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2 Ranking Messages by Exception-

ality

Given a system log of a computer system, we generate a

summarized ranked view of this log. This view can help

administrators and support personnel to identify and diag-

nose problems in the computer system more effectively,

by displaying a much shorter log view of messages or-

dered by their importance to the user. A tool based on the

described methods is being used to aid support personnel

in the IBM xSeries support center.

To generate the ranked log view from the original log

of a computer system, we first group the messages in the

original log into mutually exclusive sets that correspond

to message types. A message type is characterized by a

base string that generates all the messages of this type,

though possibly with different parameters. Grouping into

types is trivial if the original log specifies the source and

unique identification of each message, as in the Windows

Event Log. Identifying message types without this infor-

mation is a challenge that we do not address in this paper.

(See [10], [7] for some approaches to this problem.) We

henceforth refer to messages of the same type as instances

of the same message, though the string parameters may

differ between instances.

In the ranked log view, a single log line is displayed

for each message type that appeared in the original log.

This line lists the number of message instances, the largest

common string pattern of the message instances, and

the time-range in which the message instances appeared.

Ranks are assigned to each message type and the lines are

sorted in order of rank.

Our ranking method is based on the premise that a

message in a system log is more important to the user

if it has more instances in the log than is expected for

this computer system. This is based on the idea that al-

though it is possible that many computer systems have

some problems reported in the system log, it would usu-

ally not be the same problem in all systems. To formal-

ize this notion, let us represent system log i by a vector

~ci = (ci[1] , . . . ci[n]), where n is the number of possible

message types, and ci[m] is the number of instances of

message m in system log i.1 Also, let P = {p1, . . . , pn}
be a set of probability cumulative distribution functions

pm :N → [0, 1], where pm(c) is the probability that mes-

sage m would appear c or less times in a system log. If

the probability of getting more than ci[m] instances of

1For the sake of simplicity, we ignore here the timing of messages.

Because system logs sometimes span a long time period, it would gener-

ally be necessary to address this issue, for example, by processing only

message instances that occurred within a certain time frame.

message type m is low, then the number of appearances

of message m is more than expected, and therefore mes-

sage m should be ranked higher. Therefore, the ranking

of messages should approximate an ascending ordering of

(p1(ci[1]), . . . pn(ci[n])).

Given a large enough dataset of system logs from actual

computer systems, we can estimate P from the empirical

distribution P̂ = {p̂1, . . . , p̂n} of the number of instances

of each message type in each system. We define the Score

of message type m in a log i to be p̂m(ci[m]), and use

this score to rank the messages within the log.2 The mes-

sages that are top-ranked by this method usually indicate

important problems in the system. This is illustrated in

the ranked log view in Table 1, which was generated from

one of the samples in our dataset.

The estimation of P using the empirical distribution of

the entire population is based on the implicit assumption

that the population of computer systems in our dataset is

homogeneous enough to treat all of them as generated

from the same distribution. In actuality, different com-

puter systems are used for very different purposes. Each

purpose dictates a use-model that results in a different

message distribution. For example, a computer system

that serves as a file-server would probably be more likely

to issue ‘File Not Found’ messages than a personal work-

station. On the other hand, a personal workstation might

issue more system-restart messages.

To improve the accuracy of our estimation of P , we

group the computer systems in our dataset into sets of

systems with a similar use-model, and estimate P sepa-

rately for each set. We group the systems using k-means

clustering [1] on the system log dataset. To generate the

ranked log view for a given system, we first find the clus-

ter it belongs to, and then rank its log messages based on

the estimation of P for that cluster. In the following sec-

tion, we present a new feature construction scheme for the

system log dataset. This scheme achieves a significantly

better clustering than the original feature-set.

3 Using Rank Correlation for Fea-

ture Construction

In the original feature-set of our dataset, system log i is

represented as the message count vector ~ci defined above.

There are 15,000 message types in our dataset, hence this

results in a 3,000 × 15,000 matrix. This matrix is very

sparse; only about 0.6% of the entries are non-zero. The

2The method of using tf-idf weights [8] to rank words in documents

in information retrieval engines, is comparable to our scoring method

though it uses a different formula.
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Rank Times Source Message

1 10 ViperW2K The device, \Device\Tape1, has a bad block.

2 4 Oracle.cq1 Audit trail: ACTION : ’CONNECT’ DATABASE USER: ’/’ PRIVILEGE : SYSOPER . . .

3 1 SAPCQ1 20 SAP Basis System: Run-time error ”TIME OUT” occurred

4 1014 SAPCQ120 SAP Basis System: Transaction Canceled 00 158 ( )

5 1 MRxSmb Delayed Write Failed . . . may be caused by a failure of your computer hardware . . .

6 8 ql2300 The device, \Device\Scsi\ql23002, did not respond within the timeout period.

7 54 DnsApi The system failed to register pointer (PTR) resource records (RRs) for network adapter . . .

8 1 Kerberos The kerberos subsystem encountered a PAC verification failure. . . .

9 1 Windows Up-

date Agent

Installation Failure: Windows failed to install the following update with error . . .

10 1 NETLOGON The Netlogon service could not read a mailslot message from The system . . .

Table 1: A Ranked log view of an actual system (with shortened messages). Bold font indicates hardware problems.

high dimensionality of the data and its sparseness make

k-means clustering impractical for this representation.

Since our objective is message ranking, we propose a

new feature construction scheme of the system-log dataset

that measures the difference in the ranking of messages

between system logs. Two known rank correlation mea-

sures can be used to achieve this: The Spearman rank cor-

relation [12] and Kendall’s tau rank correlation [12]. Let

~x and ~y be vectors of dimension N . Let ~rx and ~ry be

vectors of ranks for ~x and ~y, i.e. rx[i] = k if x[i] is the

k’th largest number in ~x, and similarly for ~ry .3 The two

correlation measures are defined as follows:

Definition 1 (Spearman Rank Correlation). Let ~d
def
=

~rx − ~ry . The Spearman rank Correlation between ~x and

~y is defined by:

ρ(~x, ~y)
def
= 1 −

6‖ ~d ‖2

N(N2 − 1)
(1)

Definition 2 (Kendall’s Tau Rank Correlation). Let

P (~x, ~y) be the number of pairs i, j such that both rx[i] >

rx[j] and ry[i] > ry[j]. Kendall’s tau rank correlation

between ~x and ~y is defined by:

τ(~x, ~y)
def
=

4P (~x, ~y)

N(N − 1)
− 1 (2)

We first define a new Spearman-based feature-set. In

this feature-set, system log i is represented by the vector

(ρ(~ci, ~c1), . . . , ρ(~ci, ~ck)), where k is the number of sam-

ples in our dataset. A Kendall’s-tau-based feature-set can

be generated in an analogous way. The resulting matrix is

a sample correlation matrix, and the new feature-set has

k dimensions instead of the much larger n (the number

of different message types in the dataset). It is generally

3In case of ties, the coordinate with the larger index is ranked higher.

expected that in a typical dataset, n would be much larger

than k as it is in our own dataset, because of the diversity

of possible messages in a computer system.

It is interesting to note that using either the Spearman-

based feature-set or the Kendall’s-tau-based feature set

generates a kernel similarity matrix for the original

dataset. This opens the possibility of using these corre-

lation measures in kernel-based algorithms [9]. We prove

that both sample correlation matrices are kernel matrices,

using the fact that a kernel matrix is a Positive Semi-

Definite (PSD) matrix. A matrix A is PSD if for any non-

zero vector x, x′Ax ≥ 0 [9].

We first prove that the Pearson Sample Correlation ma-

trix [12] is PSD, and then conclude that so are the Spear-

man rank correlation matrix and the Kendall’s-tau sample

correlation matrix.

Definition 3 (Pearson Sample Correlation). Let ~x and ~y

be vectors of the same dimension. The Pearson correla-

tion coefficient is defined by:

r(~x, ~y) =
cov(~x, ~y)

√

var(~x) · var(~y)
(3)

where cov is the sample covariance function and var is

the sample variance function.

Theorem 1. A Pearson sample correlation matrix is PSD.

Proof. Let X be a matrix in which each row is a sam-

ple. Let S be a diagonal matrix such that entry (i, i) is the

variance of row i in X . Assume, without loss of general-

ity, that the mean of each sample in X is zero. Then the

Pearson correlation matrix can be written in vector form

as:

R = S−
1

2 XX ′S−
1

2
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For any non-zero vector ~x, the expression ~x′R~x can be

written as:

~x′R~x = ~x′

(

S−
1

2 XX ′S′−
1

2

)

~x =
(

~x′S−
1

2 X
)2

(4)

The rightmost element is a square term, hence it is

greater than or equal to zero. Therefore R is PSD.

Theorem 2. A Spearman rank correlation matrix is PSD.

Proof. Spearman correlation is Pearson correlation ap-

plied to ranks [4]. Therefore, the Spearman rank corre-

lation matrix is PSD.

Theorem 3. A Kendall’s-tau correlation matrix is PSD.

Proof. For a vector ~x of dimension N , let ~xK of dimen-

sion N2 be defined by:

xK [j + (i − 1) · N ] =

{

1 rx[i] > rx[j]
0 otherwise

(5)

Then P (~x, ~y) =
∑N2

k=1
xK [k] · yK [k], and it can be easily

verified that Kendall’s tau correlation of ~x and ~y is the

Pearson correlation of c· ~xK and c· ~yK , for c a constant that

depends on n. Hence, Kendall’s tau correlation matrix is

also a Pearson correlation matrix, and so it is PSD.

4 Testing Different Feature Con-

struction Schemes

The outline of the log-ranking process is as follows:

1. Generating a representation of the original dataset of

system logs, using a feature construction scheme;

2. Using k-means clustering to divide the computer sys-

tems in the dataset into distinct sets;

3. Estimating P , the vector of cumulative distribution

functions, for each cluster, using the empirical distri-

bution in this cluster;

4. Given a system log to rank, identifying the cluster

it belongs to and ranking its messages by the score

calculated from P̂ of that cluster.

We implemented this process with the new Spearman-

based feature-set, and compared it to two simpler feature-

sets with the same number of dimensions. We did not ex-

periment with Kendall’s tau because of the computational

load associated with it. For each feature-set, we used k-

means clustering to generate each of two to five clusters.

In total we tested the following three feature-sets:

(a) (b)

(c)

Figure 1: Histograms of the pairwise distances between sam-

ples: (a) Spearman correlation, (b) Pearson, (c) FM.

1. The Spearman-based feature-set;

2. A Pearson-based feature-set: The dataset is repre-

sented using the Pearson Sample Correlation matrix.

3. A Frequent-Message (FM) feature-set: Let

m1, . . . ,mk be the k message types that ap-

pear in the largest number of logs in the dataset.

System log i is represented by (ci[m1] , . . . , ci[mk]).

Since we do not have an external indication for the

‘right’ ranking of messages, we use several statistical

analysis techniques to analyze the clustering results.

One way of determining whether a given dataset con-

tains clusters is by looking at the pairwise distances be-

tween the data samples[3]. If the dataset contains clus-

ters, we expect a bi-modal distribution of the pairwise dis-

tances, where one mode represents the inter-cluster dis-

tances and the other the intra-cluster distances. Figure 1

shows the histogram of pairwise distances in each of the

three representations we tested. It is easy to see that the

Spearman-based representation arranges the data in a bi-

modal way, much more so than the other two representa-

tions do.

Another way to visualize the spatial structure of the

samples in the two first feature-sets is to plot the two

largest eigenvectors of the resulting correlation matrices

on the plane, giving the first two Principal Components of

the sample points. In Figure 2, this plot is shown for the

Spearman-based and for the Pearson-based feature-sets.4

4Since the Frequent Message matrix is not a correlation matrix, its

eigenvectors include imaginary parts and therefore cannot be plotted.
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(a) (b)

Figure 2: The two most significant eigen-values of the corre-

lation matrices, plotted against each other on the plane. (a) The

Spearman-based representation (b) The Pearson-based represen-

tation. In each plot, the division into two clusters is indicated in

color and shape of dots.

Much more structure is revealed in the Spearman-based

feature-set. The division into two clusters by the k-means

algorithm is also depicted in the plot. Note that since this

plot is only a two dimensional projection of the high di-

mensional space, the partition of the data into clusters may

appear as if it were sub-optimal in this plot.

To investigate how well the clusters found for each

test represent real use-model properties of the computer

systems in the sample, we used external information on

each computer system in our sample, that included spec-

ifications of installed hardware and software components

and their configuration parameters. The information was

represented as binary features of the computer systems.

For each cluster in each test, we searched for the binary

feature that had the highest mutual information with the

property of belonging to the cluster. In Figure 3 we list

the highest mutual information found in each test. The

clusters in the Spearman feature-set are consistently more

correlated with actual properties of the computer systems.

Since there are usually several such features and their in-

terpretation is highly technical, we do not list here the ac-

tual features for each cluster.

The cluster with the highest mutual information coef-

ficient in all our tests is one found in the Spearman test

conducted with three clusters. It has mutual information

of 0.9 with the best-correlated features of the systems;

it was therefore easiest to find its ‘meaning’. The fea-

tures that were most highly correlated with this cluster in-

dicated that several services related to IBM Director are

installed on the computer systems in this cluster, but not

on computer systems that are not in this cluster. IBM Di-

rector is a suite of tools for managing computer systems

that affects the behavior of many components in the sys-

tem. It is therefore reasonable that it would significantly

affect the log behavior of systems. An interesting addition

Figure 3: The maximal mutual information between a cluster

and a binary feature found in each of the clustering tests.

to our log ranking tool would be the ability to automati-

cally generate and display a meaningful description of the

cluster to which the inspected system belongs.

If the clusters truly represent sets of systems that are

more homogeneous in terms of their log behavior as com-

pared to the entire set of computer systems, then we ex-

pect the average score of messages in a ranked log to be

lower when the score is computed using the P̂ of the clus-

ter, compared to the average score computed using the P̂

of the entire population. Figure 4 compares, for each of

the clustering tests, the average difference in the average

score of all the system logs in our dataset, between the

cluster-based scoring and the non-cluster-based scoring.

The Spearman-based clustering achieved the largest low-

ering of the score. We calculated the statistical signifi-

cance of the results using a paired T-test, with resulting

p-values of 0 in all cases.

Figure 4: The change in the mean score (in a scale of 0-100)

of messages in all machines, when calculated by the cluster the

machine belongs to instead of the entire set of machines.

No single message was found to have a high level of

mutual information with the clusters that were found in

any of the tests. This is expected, as most messages ap-

pear in only a small fraction of the logs. Nonetheless,

to visualize the way different messages are manifested in

different clusters, we plot for each cluster the probability
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Figure 5: The probability of each message in the cluster versus

its probability in the entire sample, with 3 clusters. Each row

depicts the three clusters of one feature-set.

of each message appearing in the cluster versus its proba-

bility of appearing in the entire dataset. For a cluster that

is highly distinctive among messages, a relatively large

number of messages would appear far from the diagonal.

Plot 5 shows the case of three clusters. The Spearman-

based approach yields the most distinctive clusters. To

numerically estimate this difference, Table 2 shows the

mean ratio between the probability of a message appear-

ing in a cluster and its probability within the entire sample

set, averaged over all the clusters in each test.

5 Summary

We presented a novel approach to ranking log messages

based on sampling a population of computer systems and

using a new feature construction scheme that proves to

be highly appropriate for the ranking objective. The re-

sults show that an interesting structure is revealed in pop-

ulations of systems based on the behavior of their log

messages. This structure can also be used for purposes

other than ranking log messages, such as identifying sim-

ilar systems for the sake of assisting in problem diagnosis.

Clusters Spearman Pearson FM

2 0.65 0.77 0.82

3 0.62 0.77 0.77

4 0.57 0.74 0.78

5 0.57 0.75 0.76

Table 2: The mean of the ratio between the probability of each

message in each cluster and its probability in the general popu-

lation. For ratios higher than 1 their inverse is taken. A smaller

mean ratio implies a more distinctive clustering.

Using the Spearman correlation matrix opens the door for

using kernel methods on machine learning tasks that use

system logs as input.

Further research is required to answer questions such

as how to choose the best number of clusters for the log

ranking application, and how to incorporate the ranked

log view with other approaches for log analysis that take

time-dependency into consideration.
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