

201 West 103rd St., Indianapolis, Indiana 46290 USA

Aron Hsiao

Linux
®

Security Basics

in24 Hours

Teach Yourself

Sams Teach Yourself Linux® Security
Basics in 24 Hours

Copyright © 2001 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a

retrieval system, or transmitted by any means, electronic, mechanical, photo-

copying, recording, or otherwise, without written permission from the pub-

lisher. No patent liability is assumed with respect to the use of the information

contained herein. Although every precaution has been taken in the preparation

of this book, the publisher and author assume no responsibility for errors or

omissions. Nor is any liability assumed for damages resulting from the use of

the information contained herein.

International Standard Book Number: 0-672-32091-6

Library of Congress Catalog Card Number: 00-111802

Printed in the United States of America

First Printing: April 2001

04 03 02 01 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service

marks have been appropriately capitalized. Sams cannot attest to the accuracy

of this information. Use of a term in this book should not be regarded as affect-

ing the validity of any trademark or service mark.

The term Linux is a registered trademark of Linus Torvalds, the original author

of the Linux kernel. Linux is freely distributed under the GNU General Public

License (GPL).

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as

possible, but no warranty or fitness is implied. The information provided is on

an “as is” basis. The author and the publisher shall have neither liability nor

responsibility to any person or entity with respect to any loss or damages aris-

ing from the information contained in this book.

ASSOCIATE PUBLISHER

Jeff Koch

ACQUISITIONS EDITORS

Maureen McDaniel

Katie Purdum

DEVELOPMENT EDITOR

Mark Renfrow

MANAGING EDITOR

Matt Purcell

PROJECT EDITOR

Natalie F. Harris

COPY EDITORS

Gene Redding

Mary Ellen Stephenson

INDEXERS

Sandra Henselmeier

Eric Schroeder

PROOFREADERS

Benjamin Berg

Matt Wynalda

TECHNICAL EDITOR

David Bandel

TEAM COORDINATOR

Vicki Harding

INTERIOR DESIGNER

Gary Adair

COVER DESIGNER

Aren Howell

PAGE LAYOUT

Darin Crone

Lizbeth Patterson

Gloria Schurick

Contents at a Glance
Introduction 1

PART I Basic Security for All Roles 7

Hour 1 Selecting and Installing a Linux Distribution 9

2 BIOS and Motherboards 31

3 Physical Security 45

4 The Boot Process 55

5 System and User Fundamentals 69

6 TCP/IP Network Security 83

7 File System Security 99

8 Extra File System Security Tools 121

9 Making the Most of Pluggable Authentication Modules (PAM) 135

PART II Network Security 147

Hour 10 Using ipchains for Firewalling and Routing 149

11 Using iptables for Firewalling and Routing 163

12 Securing Apache, FTP, and SMTP Services 179

13 Network Security: DNS with BIND 199

14 Network Security: NFS and Samba 209

15 Securing X11R6 Access 223

PART III Data Encryption 235

Hour 16 Encrypting Data Streams 237

17 Introduction to Kerberos 259

18 Encrypting Web Data 277

19 Encrypting File System Data 287

20 Encrypting E-Mail Data 299

PART IV Intrusion Detection, Auditing, and Recovery 311

Hour 21 Auditing and Monitoring 313

22 Detecting Attacks in Progress 327

23 Preserving Data 337

24 Recovering from Attacks 351

PART V Appendixes 363

Appendix A Configuration Files Important to Security 365

B System Account File Formats 369

C Security Web Sites of Note 371

D Quick Security Checklist 375

E Web Links to Documented Software 383

Index 385

Contents
Introduction 1

PART I Basic Security for All Roles 7

HOUR 1 Selecting and Installing a Linux Distribution 9

Establishing the Role of the Machine in Question ..9

Choosing a Linux Distribution ..11

The Features/Security Tradeoff ..11

Choosing from the Major Linux Distributions ..13

Security-Minded Linux Installation ..17

Step 1: Get Linux Straight from the Source ..18

Step 2: Define Multiple Partitions ..19

Step 3: Install and Enable only the Essentials ..20

Step 4: Finish Separating File Systems, Fix /etc/fstab22

Step 5: Install All Current Updates ..26

Summary ..27

Q&A ..28

New Terms ..29

HOUR 2 BIOS and Motherboards 31

Linux Security Before Linux Is Loaded ..32

The System BIOS ..32

Entering Setup ..33

Navigating Setup ..33

BIOS Password Protection ..34

Boot Password Protection ..35

Boot Order Configuration ..36

Secondary BIOSs ..38

External/Attachable Devices ..40

Controlling Flash BIOS Updates ..41

Summary ..41

Q&A ..42

New Terms ..43

HOUR 3 Physical Security 45

Why Is Physical Security Important? ..45

Location, Location, Location! ..46

Strategies for Difficult Locations ..47

The Power Cycle ..47

Boot Devices ..49

Locking Down “the Box” ..50

Access Auditing ..51

Summary ..52

Q&A ..53

New Terms ..54

HOUR 4 The Boot Process 55

The Linux Loader ..55

The /etc/lilo.conf File ..57

The password Keyword ..58

The restricted Keyword ..59

Putting password and restricted Together ..60

The prompt and timeout Keywords ..61

Saving Changes ..62

Permissions for /etc/lilo.conf ..63

The Init Program and the /etc/inittab File ..63

Default Runlevel ..63

The Three-Key Smash (Ctrl+Alt+Del) ..65

Summary ..65

Q&A ..66

New Terms ..66

HOUR 5 System and User Fundamentals 69

/etc/securetty, /etc/shells, and .bash_logout ..70

The SysV-Style Init Process ..71

Finding and Disabling Unnecessary Services ..73

Reenabling Disabled Services ..76

Creating User Accounts Securely ..77

Shadow and MD5 ..77

Adding a User, Step 1: /usr/sbin/groupadd ..78

Adding a User, Step 2: /usr/sbin/useradd ..79

Adding a User, Step 3: passwd and chage ..79

Summary ..80

Q&A ..81

New Terms ..81

Exercises ..82

HOUR 6 TCP/IP Network Security 83

Securing inetd, the Internet Daemon ..84

Why inetd Is Risky ..84

The /etc/inetd.conf File ..84

The /etc/services File ..87

vi Sams Teach Yourself Linux Security Basics in 24 Hours

Using TCP Wrappers Properly ..89

TCP Wrappers Explained ..90

Healthy Paranoia (The /etc/hosts.deny File) ..90

Sparing Exceptions (The /etc/hosts.allow File)91

More TCP Wrappers Tricks ..93

Using tcpdchk and tcpdmatch ..94

Logs, syslogd, and Security ..95

Log Everything ..95

Log Elsewhere ..96

Summary ..96

Q&A ..96

New Terms ..97

Exercises ..98

HOUR 7 File System Security 99

Understanding Permissions ..99

File Ownership ..100

Access Rights ..100

Permission Examples ..104

Modifying Permissions ..105

Using chmod in Symbolic Mode ..105

Using chmod in Numeric Mode ..106

Using umask to Set Default Permissions ..107

Special Cases, Risks, and Solutions ..109

Extra Directory Permissions ..109

Device Nodes ..109

SUID/SGID Executables ..111

Setting SUID/SGID with chmod ..112

Eliminating Unnecessary SUID/SGID Permissions112

Checking for Anomalous SUID/SGID Instances ..113

Keep SUID/SGID Binaries Current ..113

Append-Only and Immutable Files ..113

Read-Only root File System ..114

Options for mount and fstab ..116

Summary ..117

Q&A ..118

New Terms ..119

HOUR 8 Extra File System Security Tools 121

POSIX Access Control Lists for Linux ..122

A Sample Scenario Needing ACL Capability ..122

POSIX ACLs for Linux ..123

Syntax for the setfacl Command ..126

Syntax for the getfacl Command ..127

Contents vii

Default Permissions (getfacl, setfacl, and Directories)128

ACL Mask Permissions ..129

Copying ACLs Between Files ..130

Caveats and Considerations ..130

Secure File Deletion Tools ..131

Summary ..132

Q&A ..132

New Terms ..133

HOUR 9 Making the Most of Pluggable Authentication Modules (PAM) 135

How PAM Is Configured: The Basics ..136

How PAM Works: The Basics ..138

Putting PAM to Work: Expiring Passwords ..140

Putting PAM to Work: Enforcing wheel ..141

Putting PAM to Work: Other Authentication ..143

Summary ..144

Q&A ..144

New Terms ..144

Exercises ..145

PART II Network Security 147

HOUR 10 Using ipchains for Firewalling and Routing 149

Network Security and the Kernel ..150

Using ipchains ..152

Understanding ipchains Rules ..152

Calling Syntax for the ipchains Utility ..153

A Simple Ruleset That Works ..155

Masquerading ..157

Port Forwarding ..158

Putting It All Together ..158

Summary ..160

Q&A ..161

New Terms ..162

Exercises ..162

HOUR 11 Using iptables for Firewalling and Routing 163

What Is iptables? What Happened to ipchains? ..164

Network Security and the Kernel ..164

Using iptables ..166

Understanding iptables Rules ..167

Calling Syntax for the iptables Utility ..169

State-Based Matches ..171

viii Sams Teach Yourself Linux Security Basics in 24 Hours

A Simple Ruleset That Works ..172

Masquerading and NAT ..173

Port Forwarding ..174

Putting It All Together ..174

Summary ..176

Q&A ..177

New Terms ..177

Exercises ..178

HOUR 12 Securing Apache, FTP, and SMTP Services 179

Security and the Apache HTTPD Server ..180

Global Basic Security-Related Directives ..180

Global Logging Directives ..182

Directory and DirectoryMatch Scopes ..184

Additional Scopes ..186

Authentication ..186

The Options and AllowOverride Directives ..189

The Access File ..190

Security and File Transfer Protocol ..191

Anonymous Versus Private FTP ..191

The /etc/ftpaccess File ..192

The /etc/ftpusers File ..193

Anonymous Upload Permissions ..193

Security and sendmail ..194

Securing Sendmail Through Packet Filtering ..194

Securing Sendmail Using TCP Wrappers ..195

m4 and sendmail.cf Configuration Notes ..196

Summary ..196

Q&A ..197

New Terms ..198

Exercises ..198

HOUR 13 Network Security: DNS with BIND 199

Pre-Chroot BIND Security ..200

Packet Filtering for the Domain Port ..200

Notes on named.conf ..201

Running named in a Chroot Environment ..203

Adding User and Group ..203

Creating the Jail ..204

Setting Up syslogd for Chroot named ..205

Starting named in the Chroot Jail ..206

Summary ..206

Q&A ..207

New Terms ..207

Contents ix

x Sams Teach Yourself Linux Security Basics in 24 Hours

HOUR 14 Network Security: NFS and Samba 209

Network File System (NFS) Security ..210

Selecting an NFS Server ..210

Including Kernel-Based NFS Support ..210

Configuring the /etc/exports File ..211

NFS Packet Filtering ..214

Samba Security ..215

Starting SWAT ..216

Global Security Options in SWAT ..217

Share Security Options in SWAT ..218

Packet Filtering and Samba ..220

Summary ..221

Q&A ..221

New Terms ..222

HOUR 15 Securing X11R6 Access 223

Why Is X Security an Issue? ..223

Host-Based Authentication ..224

The /etc/Xn.hosts File ..225

The xhost Command ..225

Host-Based Authentication Problems ..227

Token-Based Authentication ..228

Using the xauth Command ..228

Starting the X Server ..229

Distributing the Cookie ..229

Host-Based and Token-Based Authentication Interaction230

The X Display Manager (XDM) ..230

X and Packet Filtering ..231

Summary ..232

Q&A ..233

New Terms ..233

PART III Data Encryption 235

HOUR 16 Encrypting Data Streams 237

What Do SSH and OpenSSH Do? ..237

Installing, Configuring, and Using SSH ..238

Downloading and Installing SSH ..238

Additional Configuration ..241

Using SSH for Remote Logins ..243

Host-Based Authentication ..244

Public Key Authentication ..245

Using SSH for FTP ..246

Contents xi

Tunneling TCP Streams Through SSH ..247

Improving X Security with SSH ..248

Installing, Configuring, and Using OpenSSH ..249

Downloading and Installing OpenSSL ..249

Downloading and Installing OpenSSH ..250

Additional Configuration ..251

Using OpenSSH for Remote Logins ..253

RhostsRSA Authentication ..254

User-Based Public Key Authentication ..255

Tunneling TCP Streams Through OpenSSH ..255

Improving X Security with OpenSSH ..256

Summary ..256

Q&A ..257

New Terms ..258

HOUR 17 Introduction to Kerberos 259

What Is Kerberos? ..259

Building a Key Distribution Center ..260

Downloading and Installing Kerberos 5 ..261

Configuring Kerberos 5 ..262

Administrating Kerberos 5 ..266

Adding Administrator Principals ..266

Adding and Configuring Host Principals ..268

Adding User Principals ..269

More on Kadmin ..270

Using Kerberos 5 ..270

Getting a Ticket ..271

Destroying a Ticket ..272

Changing Your Password ..273

Encrypting Data Streams ..273

Summary ..273

Q&A ..273

New Terms ..274

HOUR 18 Encrypting Web Data 277

Compiling and Installing Apache+mod_ssl ..278

Downloading Apache, OpenSSL, and mod_ssl ..278

Extracting and Compiling OpenSSL ..279

Extracting, Configuring, and Compiling mod_ssl and Apache279

Making a Self-Signed Certificate ..280

Installing and Configuring the Apache Tree ..282

Starting the SSL-Enabled Apache Server ..283

Summary ..284

Q&A ..285

New Terms ..286

xii Sams Teach Yourself Linux Security Basics in 24 Hours

HOUR 19 Encrypting File System Data 287

A Brief Overview of TCFS ..288

Preparing to Install TCFS ..288

An Empty EXT2 Partition ..288

A Working NFS Installation ..289

A Kernel 2.2.16– or 2.2.17–Ready System ..289

Downloading and Installing TCFS ..289

Extract Sources and Apply Patches ..289

Compile and Install the TCFS Distribution ..290

Compile the Patched Kernel ..293

Building the Encryption Module and Enabling TCFS293

Using TCFS ..294

Enabling TCFS Access (Administrative Tasks) ..294

Taking Advantage of Encryption (User Tasks) ..295

Encrypting Files ..295

Summary ..296

Q&A ..296

New Terms ..297

HOUR 20 Encrypting E-Mail Data 299

A Quick PGP Overview ..299

Getting and Installing GNU Privacy Guard (GPG) ..300

Generating Your Keys ..301

Working with Keys ..303

Listing Keys ..303

Importing and Exporting Keys ..303

Signatures and Trust ..304

Using GPG: Nuts and Bolts ..306

Signatures for Data ..306

Encrypting and Decrypting Data ..307

Summary ..309

Q&A ..309

New Terms ..310

PART IV Intrusion Detection, Auditing, and Recovery 311

HOUR 21 Auditing and Monitoring 313

Putting SAINT to Work ..313

Downloading and Installing SAINT ..314

Using SAINT ..315

Staying Alert with SWATCH ..320

Downloading and Installing SWATCH ..320

Using SWATCH to Watch Logs ..321

The Match File Format ..321

Summary ..324

Q&A ..324

New Terms ..325

HOUR 22 Detecting Attacks in Progress 327

What Is Snort? ..327

Special Snort Requirements ..328

Downloading and Installing Snort ..328

Installing libpcap ..329

Installing libnet ..329

Installing Snort ..330

Using Snort ..331

Pretty Snort Reports ..332

Practical SnortSnarf Use ..333

Summary ..333

Q&A ..334

New Terms ..334

HOUR 23 Preserving Data 337

Data Backups and Security ..337

Preserving Your Valuable Data ..338

Modified System Binaries ..338

The Root Kit ..338

Using tar and afio for Backups ..339

Simple Backup and Restore with tar ..339

Simple Backup and Restore with afio ..341

Using mt to Operate Tape Devices ..342

Using mtx to Operate Changer Devices ..343

Scheduling, Rotating, and Preserving Backups ..344

Scheduling Backups ..344

Rotating Backups ..345

Backups at Multiple Locations ..346

Proprietary Backup Software ..346

Backup and Restore Utility (BRU) ..347

Arkeia ..347

Summary ..347

Q&A ..348

New Terms ..349

Contents xiii

HOUR 24 Recovering from Attacks 351

The Telltale Signs ..351

Worst-Case Scenario ..352

Pull Offline Immediately ..352

Stop Linux ..353

Boot Cautiously ..354

Archive What’s Left ..354

Understanding What Happened ..355

Notify the Authorities ..356

Getting Back Online ..357

Reformat and Reinstall ..357

Restore Important Data ..357

Take Care of the Vulnerability ..358

Pay Special Attention to Repeat Visitors ..359

Go Back Online ..359

Summary ..359

Q&A ..360

New Terms ..361

PART V Appendixes 363

APPENDIX A Configuration Files Important to Security 365

APPENDIX B System Account File Formats 369

APPENDIX C Security Web Sites of Note 371

General Security ..371

Computer Emergency Response Team—http://www.cert.org371

Computer Incident Advisory Capability—http://www.ciac.org372

The Cypherpunks Home Page—ftp://ftp.csua.berkeley.edu/

pub/cypherpunks/Home.html ..372

SecurityFocus.com—http://www.securityfocus.com372

Linux-Specific Security ..372

The Debian GNU/Linux Security Site—http://security.debian.org ..372

Red Hat Linux Errata Page—http://www.redhat.com/support/

errata/ ..372

Caldera Systems—http://www.calderasystems.com/support/

security/ ..372

Linux-Mandrake—http://www.linux-mandrake.com/en/security/373

SuSE Linux—http://www.suse.com/us/support/security/373

TurboLinux—http://www.turbolinux.com/security/373

LinuxPPC—http://linuxppc.org/security/advisories/373

xiv Sams Teach Yourself Linux Security Basics in 24 Hours

APPENDIX D Quick Security Checklist 375

Hour 1: Selecting and Installing a Linux Distribution375

Hour 2: BIOS and Motherboards ..376

Hour 3: Physical Security ..376

Hour 4: The Boot Process ..376

Hour 5: System and User Fundamentals ..376

Hour 6: TCP/IP Network Security ..377

Hour 7: File System Security ..377

Hour 8: Extra File System Security Tools ..377

Hour 9: Making the Most of Pluggable Authentication Modules (PAM)377

Hour 10: Using ipchains for Firewalling and Routing378

Hour 11: Using iptables for Firewalling and Routing378

Hour 12: Securing Apache, FTP, and SMTP Services378

Hour 13: Network Security: DNS with BIND ..379

Hour 14: Network Security: NFS and Samba ..379

Hour 15: Securing X11R6 Access ..379

Hour 16: Encrypting Data Streams ..379

Hour 17: Introduction to Kerberos ..380

Hour 18: Encrypting Web Data ..380

Hour 19: Encrypting File System Data ..380

Hour 20: Encrypting E-Mail Data ..380

Hour 21: Auditing and Monitoring ..380

Hour 22: Detecting Attacks in Progress ..381

Hour 23: Preserving Data ..381

Hour 24: Recovering from Attacks—A Mini-Checklist381

APPENDIX E Web Links to Documented Software 383

Index 385

Contents xv

About the Author
ARON HSIAO is a computing entrepreneur and freelance consultant with a 15-year back-

ground in UNIX and UNIX-like operating systems. He has worked almost exclusively

with Linux since 1994. As an independent contractor throughout the 1990s, Aron helped

various dot-com firms with systems installation, network deployment, content production,

and Internet marketing. He has also worked as a volunteer in a number of computing-

related and educational capacities in his community. Aron has collaborated in the past

with Sams Publishing and Que on Linux- and Unix-oriented texts as a technical editor

and as an author. Aron served as the About.com guide to Linux from 1997 to 2000.

About the Technical Editor
DAVID BANDEL has over 10 years’ worth of Unix system administration experience on

a wide variety of systems, including DEC-5000 systems running Ultrix, SUN

SparcStations running SunOS 4 and later Solaris 2.x, HP-9000’s running HP-UX,

RS-6000’s running AIX, and Intel systems running SCO OpenServer and Linux. In

February 1996, David retired after 20 years of active duty in the U.S. Army, where he

was initially introduced to Unix System Administration. While still in the military, he

became an avid fan of Linux, which provided the look, feel, and power of Unix on an

Intel platform. Currently, David enjoys working as a Unix/Linux consultant, installing

firewalls and providing network connectivity, and writing books and articles about Linux.

Dedication
To Ching-Chuan Hsiao, Chu-Ying Hsiao, Wilson Gutzman, and LaBerle Gutzman.

—Aron Hsiao

Acknowledgments
This project was undertaken during an interesting phase of my life, and I couldn’t have

finished it without the support of others. Thanks for this support go first and foremost to

the members of my family, each of whom is always ready to listen and advise. (This

includes you, Quincy and Baby—both of you have been very helpful in paradoxically

keeping me calm and focused.)

Thanks also go to Carlos, Kelli, and Onyx, my second family, who have invested a great

deal in me and my undertakings, especially when phone bills are considered. Finally, this

book is quite simply the product of a great deal of patience and hard work on the part of

everyone at Sams. Maureen, Kathryn, Natalie, Mark, and everyone else involved—my

thanks go to the entire team for sticking with this project until it was done and done right.

Aron Hsaio

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value

your opinion and want to know what we’re doing right, what we could do better, what

areas you’d like to see us publish in, and any other words of wisdom you’re willing to

pass our way.

As an Associate Publisher for Sams, I welcome your comments. You can fax, e-mail, or

write me directly to let me know what you did or didn’t like about this book—as well as

what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this

book, and that due to the high volume of mail I receive, I might not be able to reply to

every message.

When you write, please be sure to include this book’s title and author as well as your

name and phone or fax number. I will carefully review your comments and share them

with the author and editors who worked on the book.

Fax: 317-581-4770

E-mail: feedback@samspublishing.com

Mail: Jeff Koch

Sams

201 West 103rd Street

Indianapolis, IN 46290 USA

Introduction
In the computing world, security is a strange topic. This is because the computing world

as we know it has largely become a collection of technologies for the enabling of net-

works, and our conception of what a network should be is fundamentally opposed to our

conception of what good security should be. A network is designed specifically to allow

needed data to be retrieved and to allow connections to be made between otherwise unre-

lated computers and systems. The role of security, on the other hand, is largely to forbid

data from being retrieved or to forbid one computer from making a connection with

another. Clearly, then, the process of securing a system or a network is one in which con-

text and balance are important. Security must function well enough within your own

computing context to provide you and your users with an acceptable balance between

allowing and forbidding.

Because of the context-specific nature of this opposition, which is inherent in phrases

like computer security and network security, and because security is a nearly infinitely

deep topic for those who care to study it in depth, no one book can ever be the final word

on security—no one book can ever be used by every user or system administrator to

secure every system.

But Why Is Security Important at All?

When it comes to large Internet servers full of users’ credit card numbers or large gov-

ernment servers full of nuclear secrets, it is easy to see why information ought to be

protected—why some system-to-system connections and some attempts at data retrieval

ought to be forbidden. These types of risks, on the one hand financial and involving

hundreds of thousands of individuals and on the other hand national or even global in

scale, are easy to see. But what about the typical dial-up modem user, who connects to

the Internet to browse the Web or to help the kids with their homework? And what

about the small business user who runs a small Web site but hardly feels important or

large enough to be a target for international terrorists or organized crime?

Unfortunately, the Internet, like the real world, is not always a friendly place. There are

any number of small-time ne’er-do-wells who like to get their hands on just the 10 or 15

credit card numbers your server contains. Even more frighteningly, there are thousands

of “script kiddies” roaming the Internet without any motive at all—they enjoy breaking

into computer systems and erasing data simply for fun. Often, they’re not even knowl-

edgeable hackers, but instead download their exploits (tools used for breaking into other

peoples’ computers) from security-oriented Web sites.

In fact, these two classes of security threats—the small-time criminals and the clueless

script kiddies—actually prefer to break into tiny computer systems located in living

rooms and small business offices. Why? Because most of the time, these types of sys-

tems are the least protected of all. Think about it: Have you taken any measures to pro-

tect the computer in your living room from outside attacks? The data on your home

computer may not be especially valuable in terms of money, but how would you react if

you left your computer connected to the Internet to make a cup of coffee and came back

five minutes later to find your hard drive completely blank and unrecoverable, all of your

letters, checkbook balancing records, even your Netscape bookmarks gone?

In the case of a small business, the threat is even easier to see. You certainly don’t want

your Web site taken down if it is your main source of income. More importantly, there

are all of those records—the books from your business, built with your blood, sweat, and

tears, going back seven years—gone.

In today’s world, network security is important for every Internet user and every Internet-

enabled small business. Period.

But I’m Using Linux! How Much More Secure Could It Be?

Here are a few facts about the average home or small-business Linux user that are impor-

tant in this context. The average Linux user

• Is connected to the Internet often or always and may even run a small Web site,

FTP server, or e-mail server.

• Runs Linux on standard PC-compatible hardware.

• Has installed a commercial Linux distribution, probably Red Hat Linux.

• Has not taken any security measures beyond those (if any) taken by the makers of

the distribution.

• Rarely or never checks the system logs.

If this sounds a lot like you, you’re asking for trouble—or you may even be in trouble

already. The truth is that most Linux distributions ship in a fundamentally insecure

state—with access from anyone nearly always allowed for nearly all services that Linux

is capable of handling. Why? Because Linux originates in the world of Unix operating

systems, and most distribution vendors still operate as if a competent system administra-

tor is performing all Linux installations and can thus take the necessary steps to secure a

system before it goes online.

Unfortunately, this is not always the case. If you feel that most of the items above

describe your situation, one more fact is probably clear to you right now: You need to

make your system more secure.

2 Sams Teach Yourself Linux Security Basics in 24 Hours

That’s where this book comes in.

By following a few relatively simple steps and making a few changes in the way your

system handles requests for various types of data and connections, you can make your

Linux system or Linux network much more secure than it is now.

But Can I Make It Secure Enough?

How Much Security Is Enough Security?

Some veteran Linux users, especially system administrators, are fond of saying that a sys-

tem can never be “secure enough” to let up on the security focus even a little bit. These

individuals are speaking from positions of experience in large organizations with large

security needs. For users who aren’t computer professionals and can’t afford to hire one, a

continual focus on security 24 hours a day, 7 days a week simply isn’t realistic. In other

words, some amount of attention to security must at some point be called “enough.”

Luckily, there is some good news for home and small business Linux users in need of

security help. Though your system may be an ideal candidate for break-in by a small-

time crook or a script kiddie, it is probably not large enough to be the target of a system-

atic attack from an expert hacker or a group of expert hackers. Therefore, enough

security in your case is possible to define, or at least to imagine.

By taking the time to follow a few simple steps, regarded by security experts as the fun-

damentals of good security policy, and then staying vigilant and aware of your own sys-

tem and your own Linux installation, you can prevent most attacks and close most

vulnerabilities. In short, you can probably preserve your data, your privacy, and your

peace of mind. The steps you may need to take, and which are covered in this book, can

be summarized as follows:

• Make sure your physical environment does not pose a security risk.

• Install Linux and any updates you can find carefully and with a security-oriented

mentality.

• Password-protect everything you can and choose good passwords that are difficult

to guess.

• Instruct your file system not to give up any secrets to those who shouldn’t have

them.

• Turn off any network services you don’t use.

• Make the network services you do use more picky about who they’ll connect with

and what sort of data they’ll release.

• Protect your network, if you have one, with firewalling or packet filtering.

• Encrypt any sensitive data you send out across the network and, if necessary,

encrypt sensitive data stored locally.

Introduction 3

• Log everything and know how to monitor your logs. Audit regularly for vulnerability.

• Maintain good backups and know how to recover if you do get attacked or compro-

mised.

These are the fundamentals of computer and network security. With them, the vast

majority of attacks from script kiddies and small-time hackers can be stopped dead in

their tracks. For the vast majority of home and small business Linux users, this series of

tasks represents enough security.

How This Book Is Organized
The 24 lessons in this book are divided into several parts and can be followed from

beginning to end coherently. However, certain users may find that they can skip some of

the individual lessons—for example, home users with a single PC and nothing more can

skip the lesson on Kerberos authentication—but each of the four major parts of the book

contains something of importance to you as a Linux and Internet user, regardless of how

you use your system.

The lessons in Part I, “Basic Security for All Roles,” discuss some security fundamentals

not related to specific network services or role-specific types of security needs. This sec-

tion contains information that is both the simplest and also the most often overlooked

when installing and configuring a Linux system. Physical security (hardware and loca-

tion), operating system–independent security issues, Linux installation, booting, accounts,

passwords, file permissions, and TCP wrappers (the most basic form of network security)

are all covered in this part of the book.

The lessons in Part II, “Network Security,” discuss issues related specifically to using

Linux in networked environments and especially to using Linux as a small server for var-

ious types of data services. Firewalling and packet filtering, Kerberos authentication,

security related to each individual network service including Web service, and security

for X11R6 displays and data streams are covered in this part of the book.

The lessons in Part III, “Data Encryption,” go a step further and walk you through the

process of encrypting your sensitive data. First you’ll learn to encrypt nearly any data

stream traveling into or out of your computer system or network, using the SSH secure

shell and its tunneling capabilities. Part III also includes lessons on providing encrypted

(secure) Web sessions, encrypting your local file system using two different tools, and

encrypting your e-mail using PGP (Pretty Good Privacy) and GNU Privacy Guard.

The lessons in Part IV, “Intrusion Detection, Auditing, and Recovery,” will help you for-

tify the changes you’ve made to your system in the previous lessons. You’ll learn to audit

4 Sams Teach Yourself Linux Security Basics in 24 Hours

your system for remaining security defects, monitor an active system for ongoing attacks

or suspicious activity, understand the exploited vulnerability should an attack occur, and

recover from an attack should misfortune strike you.

The appendixes in Part V contain data designed to work as a kind of quick reference

when working with security issues on your Linux system or Linux network. Of special

interest is Appendix D, “Quick Security Checklist,” which contains a categorized and

simplified checklist of individual security-related items important for home or small-

business users. You may want to follow the checklist as you complete each lesson in

order to clearly see the ways in which your Linux environment is becoming more secure.

Enough talk. Let’s learn how to protect your data.

Introduction 5

Hour

1 Selecting and Installing a Linux
Distribution

2 BIOS and Motherboards

3 Physical Security

4 The Boot Process

5 System and User Fundamentals

6 TCP/IP Network Security

7 File System Security

8 Extra File System Security Tools

9 Making the Most of Pluggable
Authentication Modules (PAM)

PART I
Basic Security for All Roles

HOUR 1
Selecting and Installing a
Linux Distribution

In our first hour, we’re going to perform a security-minded Linux installa-

tion. Before we hit the power switch, however, there are two steps that must

be performed first: A distribution must be selected, and the role of the

machine in question must be clearly defined. We’ll discuss the latter first.

Establishing the Role of the Machine in
Question

Before you can install Linux or even select the distribution that matches

your needs, you must understand, on a fundamental level, what the machine

in question will be doing for you. There are four primary roles for machines

in small businesses:

• Workstation A workstation is a machine that primarily will be used by a single

local user for running applications, often under the X Window System. This

includes tasks such as Web development (not serving or deployment), word pro-

cessing and spreadsheets, graphic design, and other processes that require human

interaction on a regular basis.

• Server There are a number of different types of servers. Network or Internet

servers typically handle services like HTTP requests (Web), SMTP requests

(e-mail), NNTP requests (net news), and other Internet-oriented protocols. File

servers support NFS (Unix), SMB (Windows), or other systems for providing pri-

mary storage services across a local area network. Database servers are more rare

in small business settings and provide extensive data storage, retrieval, and manip-

ulation capabilities, using a relational database like Oracle or IBM’s DB2. Larger

servers or servers in very small environments can even handle all of these functions

simultaneously. Regardless of the type of server in question, however, the basic

concept behind a server is the same: Servers are primarily for providing

services across a network, whether the network in question is a local area network

or the Internet at large.

• Infrastructure A network infrastructure machine’s primary role is to facilitate

the functionality of the local network. Among such machines are firewalls and

routers, which allow machines in local area networks to share a connection (such

as a modem, cable, DSL, or T1 connection) to the larger Internet. These types of

machines provide security and either network address translation or IP masquerad-

ing for machines on the inside. Also in this category are DNS (domain name ser-

vice) servers and machines that provide directory services or authentication

services (as is the case with Kerberos).

• Multipurpose Clearly, the average small business doesn’t have the resources to

shell out for a separate Web server, file server, firewall/router, and workstation.

This is even more true for the average household. Thus, multipurpose machines are

also very common. The multipurpose machine may act as its own firewall with

packet filtering, provide routing services for one or two other workstations, and

serve Web pages to the outside world (the Internet) and files to a local area net-

work.

Before installing Linux, it is necessary that you understand which of these descriptions

best applies to the machine or machines in question, because the expected role (or com-

bination of roles) of the machine will directly influence both the choice of distribution

you’ll make and the combination of options and preferences that will apply while

installing it.

10 Hour 1

Choosing a Linux Distribution
The process of choosing a Linux distribution for secure installation is different from the

traditional choice process. First, the role of the machine in question is suddenly more

important that it otherwise would be. More importantly, however, different distributions

treat security very differently, even given support for the same roles.

The Features/Security Tradeoff
Once you understand the role the machine in question is going to play, it is useful to

understand the features/security tradeoff inherent in all operating systems. This tradeoff

is simple: An operating system can have the latest-and-greatest features or it can be

secure and stable, but generally not both. This dichotomy is especially pronounced in the

Linux community.

Before we look at specific Linux distributions, let’s look at this tradeoff a little more

closely and discuss some examples.

Workstations Need Features

When choosing a Linux distribution for use on the desktop as a workstation, it is gener-

ally features and speed that govern the choice. The average workstation will be con-

nected to a number of input/output devices that are necessary for the work at hand. Input

devices like sketchpads or tablets, printers, scanners, and digital cameras or camcorders

are all examples of such devices. Entire subsystems like parallel-port or USB support

become important above and beyond all else.

Unfortunately, because many of these devices are relatively new to the world of comput-

ing, support for the particular device or devices you need to use with a workstation may

not exist in Linux kernel releases just a few months old. Even devices supported in user

space, such as graphics adapters, may not be supported in older distributions. The X

Window System in Linux (provided by XFree86) is constantly evolving to support the

latest in graphics hardware. Thus, for exclusive desktop workstation use, the most

cutting-edge distribution is often the Linux operating system of choice. Such a distribu-

tion usually ships with the latest kernel, the latest version of the X Window System, the

latest drivers, and the latest software. Workstation users are often eager to get these

“point-oh” releases—the “point-oh” referring to the zero after version numbers like 1.0,

2.0, or 4.0. At times, even pre-release (or, as some vendors call them, “technology pre-

view”) versions are useful for desktop workstations.

Servers Need Security and Stability

The situation is markedly different when the machine in question will be a network

server or infrastructure machine. Such machines are intimately involved with connections

Selecting and Installing a Linux Distribution 11

1

to and from strangers in the outside world via the Internet. These types of machines can

thus come into contact with some of the most dangerous or willfully destructive forces in

the computing world. In these cases, security becomes very important, with speed com-

ing in (a distant) second and features (a very distant) third. This is especially true for

network infrastructure machines like firewalls, whose sole purpose is to provide security

and network functionality. USB support and the capability to use GIMP with a sketchpad

are absolutely unimportant for a dedicated Web server or a domain name server. On the

other hand, a few minor vulnerabilities or stability bugs are completely intolerable.

Thus, for any role other than workstation, a point-oh release isn’t a good idea. This kind

of early release isn’t yet widely tested; numerous outstanding bugs and vulnerabilities are

likely to remain, and these won’t be fixed until the point-one, point-two, or later releases.

In fact, many administrators have the general policy of using the final release of a previ-

ous generation product for production machines. For example, if the current version of

operating system Foo-Bar is 3.1 and the last pre-3.0 release was version 2.9, the server

will be deployed with 2.9 because this is the “most fixed” version of 2.0 before new fea-

tures were added for 3.0. While this logic doesn’t always hold true in the industry, it

illustrates the point nicely.

Similarly, entire distributions that have a reputation for staying on the bleeding edge can

be a bad idea (though not necessarily) simply because they tend to include newer (and

thus less well-tested) features in the operating system.

Multipurpose Machines and the Tradeoff

For the multipurpose machine, which might act as a server, a workstation, a firewall, or

some combination of the three, the tension is obvious. It is up to you to decide whether

cutting-edge features or security and stability are more important for the tasks at hand.

Here are some things to keep in mind:

• Some features are convenient but not necessary. Though it is nice to have support

for features such as universal serial bus or USB, it isn’t always necessary. If your

machine is more a server than a workstation, you may want to consider carefully

whether some features are really necessary. For example, USB printers and USB

removable storage devices are common now, but parallel versions of these types of

devices are also often available at similar cost and are supported by well-tested

kernels. On the other hand, USB support in Linux is still relatively new.

• Some features aren’t needed at all. If the current kernel doesn’t support your sound

hardware or the 3D capability of your graphics hardware, but your machine is serv-

ing Web pages and handling e-mail and you only use it interactively for word pro-

cessing and Web browsing, these features aren’t needed. If you’re worried about

security, never go cutting edge to get features you won’t use.

12 Hour 1

• Earlier isn’t always better. In some cases, the cutting edge will actually have bene-

fits. For example, if cutting-edge kernel versions support your SCSI controller

well, but earlier kernel versions are a little unstable with it, you may need to con-

sider whether the added stability is worth a security tradeoff.

• Be willing to invest in security. If the only thing preventing you from using a dis-

tribution with a 2.2.18 kernel instead of a pre-2.4.0 beta-test kernel is your previ-

ously unsupported sound card, which you desperately need for sound editing,

consider simply buying a sound card that will be compatible with the older and

better-tested distribution. If you can save yourself a security-related headache by

spending the cost equivalent of two pizzas, the money will be well spent.

Choosing from the Major Linux Distributions
It is unfair to categorically classify each vendor and Linux distribution with respect to

security and features, because each release from each vendor is its own animal entirely.

A vendor that is conservative during one release may take a few risks with the next one.

However, there are some reasonably justified stereotypes and a few incontrovertible facts

that can be applied when discussing Linux distributions.

Of course, there are far too many Linux distributions to count, much less discuss in a sin-

gle hour, so we’ll stick to the majors in this text: Red Hat Linux (Mandrake Linux),

Caldera OpenLinux, SuSE Linux, Slackware Linux, and Debian GNU/Linux (Corel

Linux).

Note that in terms of the features/security tradeoff we were discussing earlier, this list is

ordered from generally most feature-oriented to generally most security-oriented. After

reading about each of these systems, it will be up to you to decide which distribution

meets your needs, based on the role your machine is to play and the features you require.

Again, keep in mind that these are only guidelines based on typical experience. Any par-

ticular release by any of these vendors can vary to some degree from past or future per-

formance.

Red Hat Linux and Mandrake Linux

Red Hat is the leading Linux vendor, enjoying a true majority in terms of installation

numbers across the Linux community. Over the years, Red Hat has established itself as

an excellent workstation distribution (though this dominance isn’t as exaggerated as it

once was) by including more features earlier on than any other vendor. For example, Red

Hat was the first to ship a distribution based on the second major release of the GNU C

library with the Red Hat Linux 5.0 release. More recently with the Red Hat Linux 7.0

release, Red Hat was first to market with XFree86 4.x support and system tools that are

Selecting and Installing a Linux Distribution 13

1

ready for kernel 2.4. Unfortunately, both Red Hat Linux 5.0 and Red Hat Linux 7.0

received mixed reviews from users, some of whom experienced few or no problems and

some of whom experienced pronounced problems.

Mandrake Linux is based on Red Hat Linux and thus shares many of the same benefits

and liabilities. Generally, Mandrake Linux tends to fix many bugs and security vulnera-

bilities present in the most recent Red Hat releases, but of course they also add a few of

their own thanks to the modifications made.

Red Hat Linux generally has not been secure when shipped; many services are enabled

by default, and no default connection or packet filtering policies have been constructed

out-of-the-box. On the other hand, users of these systems can make use of the Bastille

Linux scripts to aid in closing security holes not related to bugs in the software.

Bastille Linux can be found at http://www.bastille-linux.org. For those running

Red Hat Linux, Red Hat keeps a current list of security advisories and updates at

http://www.redhat.com/support/errata/.

To summarize, Red Hat Linux and Mandrake Linux are excellent cutting-edge distribu-

tions, but each will require attention of the kind this book presents before a system is

secure. Furthermore, it is vitally important with either of these systems that the user stay

on top of the updates available from the vendor Web sites, which repair security and

stability-related programming errors in such cutting-edge software as they are discov-

ered. Avoid the early point-oh releases of Red Hat Linux unless you absolutely require a

feature provided by such a release. You can read more about Red Hat Linux at

http://www.redhat.com.

Caldera OpenLinux (eDesktop and eServer)

Caldera has made its name selling what it calls “Linux for business” through corporate

deals and on retail shelves. Either version of OpenLinux can be used as either a worksta-

tion or as a network server platform; the difference between the two lies primarily in

third-party applications included with the eServer product and with the support options

available.

Caldera also has a history of innovation in the Linux community. Caldera is responsible

for developing the original version of the RPM package manager, later to be made

famous by Red Hat. Caldera introduced one of the first graphics-based installers (Lizard)

and was the first major distribution to ship with KDE as the default desktop (in

OpenLinux 1.3).

Caldera’s platform is among the most readily networked in the Linux community, ship-

ping with all traditional services but also making available to customers some additional

services such as OpenLDAP (a directory services protocol), SQUID (a proxy server), and

NetWare for Linux.

14 Hour 1

In contrast to Red Hat, Caldera’s point-oh releases generally don’t make it into wider cir-

culation to the degree that Red Hat’s early releases do. Caldera is also more conservative

when it comes to including cutting-edge versions of some critical system components.

Thus, Caldera has a slightly better record in terms of security and stability than does Red

Hat. On the other hand, Caldera’s products also do not install with any real default secu-

rity policy, and there is no Bastille Linux–comparable product for OpenLinux. For those

using OpenLinux-based products, Caldera keeps an active list of security advisories and

updates at http://www.calderasystems.com/support/security/.

Security-conscious users should avoid Caldera’s Technology Preview product series;

these products are Caldera’s equivalent of beta-test software and are designed for testing

purposes only. The features found in Technology Preview products will generally find

their way into official system releases once the bugs and vulnerabilities have been

worked out.

To summarize, OpenLinux eDesktop and eServer are network-oriented products with a

reasonable track record for security and stability. No default security policy exists, how-

ever, so the user will need to pay attention to details in securing either system after

install. You can read more about Caldera OpenLinux eDesktop and eServer at

http://www.calderasystems.com.

SuSE Linux

SuSE Linux was popular in Europe before becoming very popular in the U.S. It has since

become one of the more popular Linux distributions, partially because of its ease-of-use

and strength and partially because of the wide array of software packages included in the

retail box.

Like Caldera, SuSE shies back a little bit from the bleeding edge generally walked by

point-oh and sometimes even later releases of Red Hat Linux operating systems, though

SuSE doesn’t spend as much time before major releases testing things as does the Debian

project.

SuSE seems to have paid more attention to Linux security than has Red Hat or Caldera;

SuSE Linux includes some tools (for example, port scanners) that have definite security

uses and that are not included on distribution CDs from other vendors. The YaST admin-

istration tool used by SuSE also has some explicitly security-oriented options related to

firewalling and packet filtering. On the other hand, some users have complained that

SuSE places configuration files in unusual places, in anticipation of automated manage-

ment by proprietary tools. SuSE keeps a fairly active list of security advisories and

updates at http://www.suse.com/us/support/security/.

Selecting and Installing a Linux Distribution 15

1

To summarize, SuSE strikes a good balance between delivering features early and giving

software a chance to mature. SuSE also pays some attention to security with its shipped

product. On the other hand, SuSE still doesn’t ship in what could be called a well-

secured state, and manual configuration of the sort this book is concerned with may be

difficult. You can read more about SuSE Linux at http://www.suse.com.

Slackware Linux

Slackware Linux is one of the oldest Linux distributions and remains popular for pre-

cisely the same reason it did early on: Slackware attempts to be simple, straightforward,

and text file oriented. This makes it very much like traditional BSD systems and the ideal

system for competent system administrators who prefer to use vi and emacs for adminis-

trative tasks rather than proprietary tools like Caldera’s LISA or SuSE’s YaST.

Slackware is slower to release distributions based on the latest technologies, waiting

instead for individual software components to mature after major releases before includ-

ing them in release distributions. Slackware ships without a real security policy, but also

exercises some restraint when it comes to making services available in the default install.

However, Slackware is a smaller operation than many of the other distributions and thus

is slower and less vigilant in watching for security problems and reporting them to users.

Thus, it is up to the Slackware user to understand which services are in use and to moni-

tor each of their development cycles independently for security advisories on a package-

by-package basis.

To summarize, Slackware Linux is a distribution for competent Linux users. This elimi-

nates much of the unnecessary noise created by proprietary distributions. Slackware can

be made very secure and is very conservative with software versions, but it requires vigi-

lance and competence on the part of the user or administrator to make it so. You can read

more about Slackware Linux at http://www.slackware.com.

Debian GNU/Linux and Corel LinuxOS

Debian GNU/Linux is also sometimes known as the reference Linux distribution because

it is the de facto GNU Linux operating system. GNU stands for “GNU’s Not Unix” and

is a reference to the Free Software Foundation, responsible for much of the code from

which Linux operating systems are built, as well as for providing Linus Torvalds with the

software license that has made Linux both free and famous. In keeping with this tradi-

tion, Debian has a long history of including only free software without proprietary or

unusual extensions or modifications in its releases. Because of this, Debian GNU/Linux

is traditionally very difficult to use, even more so than Slackware Linux.

It is therefore fitting that Debian is also by far the most conservative of the Linux distrib-

utions, having only recently released a distribution based on the new GNU C library and

16 Hour 1

the 2.2 kernel years after the other major distributions did so. Because of this, Debian is

comparatively the most feature-poor of the distributions in terms of device support or

support for current commercial Linux software. On the other hand, because of its very

extended beta-test cycle and conservative approach, Debian therefore is also by far the

most stable and secure (in terms of bug count) Linux operating system available. Debian

GNU/Linux users can find a list of recent security advisories at http://www.debian.

org/security/.

Debian is distinctive in that it is currently the only Linux operating system to offer an

automatic upgrade path that can preserve for the most part the security status of the sys-

tem being upgraded, avoiding the need for a complete re-install and re-editing of the

myriad text files involved. Debian is also the only current distribution to fully support the

Apple Macintosh in an official release. Both 68K Macintosh machines and PowerPC

Macintosh machines are supported.

Corel Linux is based on Debian GNU/Linux, but uses a different installer developed by

Corel for ease-of-use and presents a different desktop system to the user. Though Corel

LinuxOS is gaining market share among desktop Linux users, the original Debian distri-

bution is more likely beneficial to security-conscious users because Debian’s security and

bug tracking lists are much more extensive.

To summarize, Debian is feature poor for the desktop but easily the best choice among

major Linux distributions for machines that will act as network servers or part of a net-

work infrastructure. Support for Macintosh means that small businesses with old

Macintosh hardware can put it to work on the network rather than having to retire it. The

learning curve for Debian GNU/Linux is high, but the extremely large collection of sup-

ported packages and the easy upgrade system in some ways make up for other deficien-

cies. You can learn more about Debian GNU/Linux at http://www.debian.org.

Security-Minded Linux Installation
Security begins with installation. Though problems with the typical user’s installation

choices can usually be repaired later to make a system more secure, it is much easier for

most users to simply install Linux correctly to begin with than to try to correct problems

later.

This section will assume that you understand the basics of Linux installation. If you’ve

installed Linux in the past and have been able to boot into your new system, this means

you. Rather than walk through installation in depth, we’ll just touch on those aspects of

installation that are important for security reasons. The steps that follow may or may not

be presented in the correct order, depending on the distribution you’ve chosen. You there-

fore will need to adapt the rest of this hour to suit your circumstances.

Selecting and Installing a Linux Distribution 17

1

Step 1: Get Linux Straight from the Source
The first and most important step in performing a secure Linux installation is to ensure

the integrity of your source or your source media. Never install Linux from an unlabeled,

home-burned CD that you got from somewhere or other or someone with whom you’re

not closely acquainted. Many Linux users’ groups are full of these types of CDs, passed

around free to whoever wants a copy. Unfortunately, there is no way for you to ensure

absolutely that the material has not been tampered with. You’ll never have a secure Linux

installation if you begin with a compromised install source.

In general, it is best either to purchase your install media in sealed retail packaging or to

download Linux yourself and install it. When downloading or installing via FTP or NFS,

be sure to download the install source either from the official server for the distribution

in question or from an approved mirror site. Never download and install Linux from an

unapproved or unlisted mirror just to save download time. You might well regret it later.

Links to lists of official mirror sites for the distributions discussed in the previous section

of this hour are shown in Table 1.1.

TABLE 1.1 Primary Site and Links to Mirror Site Lists

Vendor Primary URL and URL to List of Mirror Sites

Red Hat ftp://ftp.redhat.com

http://www.redhat.com/mirrors.html

Mandrake ftp://ftp.sunsite.uio.no/pub/unix/Linux/Mandrake

http://www.linux?mandrake.com/en/ftp.php3

Caldera ftp://ftp.calderasystems.com

ftp://ftp.calderasystems.com/pub/OpenLinux/MIRRORS

SuSE ftp://ftp.suse.com

http://www.suse.com/us/support/download/ftp/

int_mirrors.html

Slackware ftp://ftp.slackware.com/pub/slackware

http://www.slackware.com/getslack/

Debian ftp://ftp.debian.org

http://www.debian.org/misc/README.mirrors

Corel ftp://ftp.corel.com/pub/linux/CorelLinux/

(no official mirrors available)

18 Hour 1

In general, it is best to own a local copy of your chosen distribution. Thus, if you down-

load it or do a Net install, be sure to burn a CD-R or save the distribution to tape. This

will enable you to restore needed binaries from media later if necessary without having

to rely on a working network connection.

Step 2: Define Multiple Partitions
It is infinitely more convenient to create a single large partition for your Linux file sys-

tem than to follow traditional Unix-world practices and separate your file systems across

partitions. However, there are a number of security benefits that can be achieved by sepa-

rating file systems across multiple partitions. Among them are the following:

• Avoiding some attacks directly There are some exploits that directly use world-

writable directories like /tmp to gain root access for an intruder when such direc-

tories are on the same physical device as other parts of your file system. Thus, it is

best to isolate world-writable file systems from the rest of the file systems on your

machine.

• The capability to mount some areas with execution restricted On all but the

most open systems, there is rarely any legitimate reason for allowing executable

files to be launched from locations outside of a binaries (bin) directory. Areas like

user accounts (/home) and temporary storage (/tmp) can be isolated and mounted

with the noexec flag to prevent any user from launching binaries from them.

• The capability to mount some areas with SUID/SGID disabled SetUID

(SUID) and SetGID (SGID) binaries are programs marked with permissions that

cause them to run under the identity of their owner or group, rather than of the

caller. This functionality is necessary for certain binaries that must access hardware

directly, but such binaries should never be world-executable and should never be

found outside the /sbin, /bin, or /usr/X11R6 directory. By separating these file

systems and using the nosuid flag, we can prevent unauthorized SUID/SGID

access. More information on the SUID/SGID file attributes can be found in Hour 7,

“File System Security.”

• The capability to mount some areas as read-only It is easy to understand why

some areas of the file system should never be easily writable. Among them are

directories like /sbin, /bin, and /etc, which don’t change often and are never

changed without the administrator’s attention. With separate partitions, these areas

can be remounted as read-only once the boot process has finished.

Of course, if a cracker is somehow able to obtain root-level access to your system, each

of these measures can be defeated, one by one. However, they do help to prevent an

intruder from gaining root-level access in the first place, and they will stop many of the

more clueless script kiddies dead in their tracks.

Selecting and Installing a Linux Distribution 19

1

The partition scheme shown in Table 1.2 is one possible example, and we’ll work with it

a little later, once the install is more or less complete. Note that using this many parti-

tions will require that you create an extended partition. These values are flexible and will

depend on your disk size (a large modern disk is assumed here) and the plans you have

for your installation. Change them as necessary to suit your needs.

TABLE 1.2 One Possible Partition Scheme for Secure Linux

File System Size Special Treatment

/boot 5MB None; necessary for booting on some systems.

Be sure to keep this partition below cylinder

1024 with most versions of LILO.

/ (root) 150MB None yet. Hour 4, “The Boot Process,”

explains how to mount this as read-only if

desired.

/tmp 500MB No SUID/SGID, no execute.

/usr 2000MB No SUID/SGID. Any remaining trees nor-

mally found in root (/) that require write

capability will be moved here, and a symlink

will be created in root so that root can later

be mounted read-only if desired.

/home varies No SUID/SGID, no execute. This is the most

secure route; workstation users may choose to

change the noexec for convenience.

The methods for implementing special treatments for each file system will be discussed

later in this hour.

The size values given may need to be adjusted to better fit your own needs. If you will be

installing a lot of third-party application software or large commercial libraries of multi-

media (such as clip art), you may want to increase the size of the /usr partition. Note

that personal user files (documents) are generally stored on the /home partition in

/home/user.

Step 3: Install and Enable only the Essentials
In the olden days of Linux, installing the operating system was a definite pain. This was

largely because there weren’t many distribution choices, so many users were forced to

assemble their own Linux, and the distributions that did exist, such as Slackware Linux

or Debian GNU/Linux forced a user to choose which packages to install, one by one.

20 Hour 1

This process required hours of work, but there was one beneficial side effect: The admin-

istrator of the system knew every piece of software present, and thus only those compo-

nents that were absolutely necessary were installed.

Fortunately or unfortunately, these days the most popular distributions have streamlined

the process considerably: Users generally choose from a short list of roles such as

Standard Installation, Development Workstation, or Server when selecting packages. If

you’re knowledgeable enough to know what packages you will and won’t need in your

system, the best idea is to instruct the installer (when possible) to allow you to select by

hand the packages or groups of packages you need. There are a few things to keep in

mind when making the selection:

• Development tools are a bad idea. Unless you plan to do software development on

the system, install few or no development tools. Installing C and C++ compilers

and related tools on non-workstation systems is certainly unwarranted in nearly all

cases. If you need to compile some software before placing the system into service,

compile the software on a separate workstation machine and copy the files to the

server machine over the network.

• Don’t install XFree86 on a server. Since the X Window System uses a network

protocol to communicate, it is fundamentally network aware and thus also funda-

mentally as vulnerable as any other network service to malicious attacks. If you

won’t be doing desktop application work on a given machine, don’t unnecessarily

increase the risk level associated with the machine by running X on it.

• Limit the number of services you install. In general, if you’re sure you won’t ever

use a given service on the machine, don’t install it. For example, for a machine that

will act only as a firewall/router to connect your LAN to the Internet, there is no

reason to install Apache, WuFTPd, NFSd, or other network services.

• Do the same for applications at large. If you’re installing for a machine that will

have no desktop or workstation functionality, avoid installing applications, games,

or unnecessary software packages. There’s a great deal of software on the average

Linux CD, but the vast majority of it is designed for desktop workstation users.

Don’t install software you won’t use on your server or network infrastructure

machine; there’s no functional need, and you may unknowingly install a program

that presents a risk of compromise.

• Avoid excessive user-space hardware support. Take care also to avoid installing

user-space support for hardware devices you don’t plan to use. Generally, such

binaries will either be SUID/SGID or will employ some trick in order to interoper-

ate directly with hardware. Any binary that has permission in any way to access

hardware can conceivably pose a threat to system security.

Selecting and Installing a Linux Distribution 21

1

• Read package descriptions carefully. Understand what each package you’re

installing does. If you have the time, read each package description, or visit the

package’s home page to understand what it’s for. Certainly avoid installing system-

level packages you can’t identify or don’t understand, and be wary of any package

whose description says that it must be run with the SUID or SGID bits set. If

you’re truly unable to determine whether a system-level or service-oriented pack-

age is necessary in your case, make note of it and what it’s for. You can always

install it later if you need it and have the install source media available to you.

Don’t panic too much about making a mistake during package install, especially when it

comes to selecting packages on an individual basis. This is only a preventative measure;

most of what comes in the next 23 hours is more important in terms of system defense.

In hours 4 and 5 especially, we’ll take some time to disable services that have been

installed but aren’t needed.

Step 4: Finish Separating File Systems, Fix /etc/fstab
Once you’ve completed the software installation, booted into your new installation, and

logged in (as root), you can implement the security measures related to multiple file sys-

tems on separate partitions that we discussed earlier. This process sounds more compli-

cated than it actually is; following these steps, it won’t take more than five or ten minutes

to complete.

If you’re running at runlevel 3 (multiuser) or 5 (X support), you’ll need to drop down to

maintenance mode before making these changes. It’s easy enough to do, and you should

become familiar with the command, because we’ll discuss it several times in this book.

As root, from a command prompt, enter

shutdown now

After a few moments, you’ll find yourself at a console login prompt; you are now ready

to proceed.

Rearrange Files and Trees as Necessary

Remember that we may want to preserve the capability to mount our root (/) partition as

read-only. However, some directory trees that we haven’t created separate partitions for,

such as /var and /opt, may need write capability for Linux to function properly at run-

time. Thus, we’ll make a directory for these trees in /usr and copy these trees there,

making symbolic links afterward, thereby enabling us to mount root as read-only if we

want to.

22 Hour 1

mkdir /usr/root-write
cp -dpR /var /opt /usr/root-write
rm -rf /var /opt
ln -s /usr/root-write/var /var
ln -s /usr/root-write/opt /opt

The root partition can now safely be mounted as read-only once the boot process has com-

pleted, enabling us to give the file system some measure of protection later. It is also a

good idea to protect the network-oriented binaries in /usr/sbin. This is easy enough to do:

mkdir /usbin
cp -dpR /usr/sbin/* /usbin
rm -rf /usr/sbin
ln -s /usbin /usr/sbin

The binaries in all three major system binary directories, /sbin, /bin, and /usr/sbin,

can now be mounted read-only after boot and thus can be protected to some degree

against modification. Remember that, if you’ve installed the X Window System on the

machine, then you have an SUID binary (the X server) on your /usr file system. Since

we’re going to mount this with the nosuid option, this file at least will have to be moved

to the root file system, where such binaries are allowed.

cp /usr/X11R6/bin/XF86_SVGA /bin
rm /usr/X11R6/bin/XF86_SVGA
ln -s /bin/XF86_SVGA /usr/X11R6/bin

Note that you’ll need to change the name of the binary to match the name of the X server

used by your graphics hardware. For XFree86 3.x users, the name of the server will

always begin with XF86_. For XFree86 4.x users, the name of the server is somewhat dif-

ferent, so the command is slightly different as well.

cp /usr/X11R6/bin/XFree86 /bin
rm /usr/X11R6/bin/XFree86
ln -s /bin/XFree86 /usr/X11R6/bin

Now that the X server has been moved to the root partition, it can be started with the

SUID bit set while at the same time the /usr partition is protected.

Edit /etc/fstab to Reflect the Changes

Now that the files and directory trees are all sorted out, we can perform our first real bit

of securing by editing the mount list in /etc/fstab. This file controls which file systems

are mounted during the boot process and what options are used to mount them. Installed

as described in this hour, the /etc/fstab file as created by the distribution installer (bar-

ring comments and spacing) might look something like the file in Listing 1.1.

Selecting and Installing a Linux Distribution 23

1

LISTING 1.1 The /etc/fstab File Created by the Installer

Special file systems or mounts

devpts /dev/pts devpts gid=5,mode=620 0 0
/proc /proc proc defaults 0 0
/dev/hda7 swap swap defaults 0 0

Devices that can be mounted and unmounted

/dev/cdrom /mnt/cdrom iso9660 user,noauto 0 0
/dev/fd0 /mnt/floppy auto user,noauto,umask=0 0 0

Linux file systems

/dev/hda1 / ext2 defaults 1 1
/dev/hda2 /tmp ext2 defaults 1 2
/dev/hda3 /boot ext2 defaults 1 2
/dev/hda5 /usr ext2 defaults 1 2
/dev/hda6 /home ext2 defaults 1 2

Note that each of the Linux file systems is mounted with the defaults for ext2 file sys-

tem options. The default behavior is to allow executables to be forked, even with SUID

or SGID permissions. Our changes to this file are shown in Table 1.3.

TABLE 1.3 New Options for Partitions

Partition File System Options to Replace defaults

/dev/hda2 /tmp noexec

/dev/hda3 /boot nosuid, ro

/dev/hda5 /usr nosuid

/dev/hda6 /home noexec

After the changes are made, only the root ext2 file system will show defaults in the

options column. The updated file is shown in Listing 1.2.

LISTING 1.2 The /etc/fstab File with New ext2 Options

Special file systems or mounts

devpts /dev/pts devpts gid=5,mode=620 0 0
/proc /proc proc defaults 0 0
/dev/hda7 swap swap defaults 0 0

Devices that can be mounted and unmounted

24 Hour 1

/dev/cdrom /mnt/cdrom iso9660 user,noauto 0 0
/dev/fd0 /mnt/floppy auto user,noauto,umask=0 0 0

Linux file systems

/dev/hda1 / ext2 defaults 1 1
/dev/hda2 /tmp ext2 noexec 1 2
/dev/hda3 /boot ext2 nosuid,ro 1 2
/dev/hda5 /usr ext2 nosuid 1 2

/dev/hda6 /home ext2 noexec 1 2

Note that the distribution installer has also created entries for the CD-ROM drive and

floppy drive. These entries may or may not be desirable to you. Although in most homes

and small businesses a CD-ROM or floppy drive won’t represent a large security prob-

lem, a conservative security attitude suggests that disallow should be the default answer

for any question. There are two changes that can be made here; the simplest is to remove

the user flag from both device entries and the umask=0 flag from the floppy device entry.

The resulting file is shown in Listing 1.3.

LISTING 1.3 A Slightly More Secure /etc/fstab

Special file systems or mounts

devpts /dev/pts devpts gid=5,mode=620 0 0
/proc /proc proc defaults 0 0
/dev/hda7 swap swap defaults 0 0

Devices that can be mounted and unmounted

/dev/cdrom /mnt/cdrom iso9660 noauto 0 0
/dev/fd0 /mnt/floppy auto noauto 0 0

Linux file systems

/dev/hda1 / ext2 defaults 1 1
/dev/hda2 /tmp ext2 noexec 1 2
/dev/hda3 /boot ext2 nosuid,ro 1 2
/dev/hda5 /usr ext2 nosuid 1 2
/dev/hda6 /home ext2 noexec 1 2

The changes shown in Listing 1.3 have the effect of preventing non-root users from

issuing mount commands for the floppy and CD-ROM drive. The umask=0 option causes

any mounted floppy to be world-writable; this has been removed as well.

Selecting and Installing a Linux Distribution 25

1

LISTING 1.2 continued

In order to truly establish peace of mind with respect to the /etc/fstab file, you may

want to remove any unnecessary lines altogether. Removing the /dev/cdrom and /dev/

fd0 lines (or lines that refer to other removable devices) isn’t too big a liability for most

administrators; mount commands must then simply be issued at the command prompt.

Test the Changes

You should now be able to reboot into your new system and verify that non-SUID seg-

ments of the file system do not allow SUID binaries to be executed and programs cannot

be forked from non-executable segments of the file system.

In order to perform such tests (and for the rest of this text), it will be helpful to be able to

change the properties of any mounted partition on-the-fly. As root, you can do this with

the mount command and the remount option; supply the properties you wish to enable or

disable as extra options after remount. For example, you might want to make the root

file system read-only for a moment:

mount -o remount,ro /

To make it read-write again but at the same time prevent SUID execution, you would

issue this:

mount -o remount,rw,nosuid /

The other file systems can be remounted with new options in much the same way.

Simply replace the / with the mount point of the file system in question. In Hour 4, we’ll

use this technique as part of the boot process to allow for a read-only root file system.

For now, use it if you need to do so to verify that your options are correctly set.

Step 5: Install All Current Updates
Once you’ve finished installing from the source media and fixing up the file system

options in /etc/fstab, proceed immediately to the distribution vendor’s Web or FTP site,

download all current updates and fixes, and install them. This is perhaps the single most

important step in a secure Linux installation, but it is also the most often overlooked.

Stated another way, the need is easy to understand: The security updates at your vendor’s

site exist because someone’s system or network has already been exploited using each of

the vulnerabilities they fix.

You certainly don’t want to join those who have already been violated. Don’t let your

system be compromised by a problem that’s already been corrected. In case you’ve for-

gotten, the security advisories URL for each vendor is shown in Table 1.4. Note also that

many vendors have additional updates on their Web or FTP sites related to stability

rather than security; these should be installed as well.

26 Hour 1

TABLE 1.4 URLs for Security Advisories

Vendor URL

Red Hat http://www.redhat.com/support/errata/

Mandrake http://www.linux-mandrake.com/en/security/

Caldera http://www.calderasystems.com/support/security/

SuSE http://www.suse.com/us/support/security/index.html

Slackware None; security-oriented mailing list details at

http://www.slackware.com/lists/

Debian http://www.debian.org/security/

Corel http://linux.corel.com/support/updates.htm#linuxos

Note that you should save any downloaded security updates you install to permanent

media so that you can re-install them later if necessary without having to go online first.

Summary
This hour, we’ve covered three main topics: understanding the role of your machine,

selecting a distribution, and performing the installation in a security-conscious manner.

Most home or small business machines fit into one of four basic roles. The role you plan

for your machine will affect the basic approach you take toward the security versus fea-

tures tradeoff. The roles are

Workstation A typical desktop machine.

Server A machine dedicated to providing network services.

Infrastructure A machine used for firewalling, routing, or DNS.

Multipurpose A machine used for more than one of these tasks.

When selecting a distribution, consider the role of your machine and the security versus

features tradeoff. The major distributions are

Red Hat Features first, point-oh releases, risky.

Caldera Features first, more conservative than Red Hat.

SuSE Some features emphasis, some security options.

Slackware Difficult but cleaner and more conservative.

Debian Difficult, multiplatform, very conservative.

Selecting and Installing a Linux Distribution 27

1

Most users do not install Linux with any particular attention to security. A security-

oriented installation is slightly different; the major tasks to complete when installing

Linux with a security-oriented focus are

Verify Is your source media legitimate? Make sure that it is.

Partition Separate file systems for control and defense.

Eliminate Don’t install X or GCC when not needed.

Choose Don’t install packages you won’t use or don’t know.

Options Set /etc/fstab options for mounted file systems.

After coming to an understanding of your machine’s role, selecting a distribution to

match it, and installing with the attitude of a discriminating administrator, you’re ready

to tackle more explicitly security-related tasks.

After powering on and before your system ever sees Linux, a multitude of tasks are per-

formed. Pay attention to the settings in your motherboard, SCSI, and other BIOS pro-

grams, set jumpers carefully, and choose the correct boot order and your system will be

less vulnerable to a locally caused compromise.

Q&A
Q Which distribution is the most secure?

A Generally speaking, the Debian GNU/Linux distribution is the most conservative of

Linux distributions. This doesn’t mean that Debian GNU/Linux is necessarily more

secure than any other distribution, but rather that Debian GNU/Linux is tested

more before it goes into full release.

Q What sizes should I use for my partitions?

A There is no right or wrong answer here; the sizes you use are based entirely on

your own preferences and needs. Typically, the root (/) partition will function eas-

ily with less than 100 megabytes. You should be willing to dedicate more space to

the partition(s) hosting the /usr and /tmp trees. The size of the /home file system

will vary, depending on the number of users (and user files) you plan to accommo-

date.

Q I have already installed my preferred version of Linux, and it isn’t one of

those you’ve listed. Can I still use this book?

A Absolutely, though you may have to hunt a little in some cases to track down the

locations of files we’ll discuss, especially if you don’t have access to some of the

higher-level tools we’ll discuss, such as Linuxconf.

28 Hour 1

Q I have already installed Linux on a single partition as a unified file system and

don’t want to re-install. Can I still use this book?

A Absolutely, though you won’t gain any of the security benefits of separating your

file system across multiple partitions.

New Terms
read-only file system A file system that has been mounted with the read-only (ro)

flag and therefore cannot be altered by anyone, not even root.

SGID A program attribute that causes a program binary to run as though it were

launched by a member of the group that owns it.

SUID A program attribute that causes a program binary to run as though it were

launched by the user who owns it.

Selecting and Installing a Linux Distribution 29

1

HOUR 2
BIOS and Motherboards

During this hour, we’re going to step outside Linux for a moment and work

on what a PC-class computer does before it gets around to starting an oper-

ating system. There are important security issues that must be addressed

before we concern ourselves with Linux. This hour covers the following

issues:

• Password protection of the system BIOS

• Pre-boot password protection by the BIOS

• BIOS boot device order

• Secondary BIOS programs

• External or attachable device issues

• Controlling access to flash BIOS update capabilities

Once you’ve finished the hour, you’ll be aware of and will have taken care

of various software security issues that exist outside any specific operating

system.

Linux Security Before Linux Is Loaded
Most users associate the word “security” with operating system issues only—commands,

configuration files, network access, remote crackers halfway around the world, and so

on. Indeed, most serious attacks, including large-scale attacks that make news headlines,

occur this way. So why concern ourselves with what happens before the operating sys-

tem is loaded?

The truth is that a large number of compromises also occur in the local context, meaning

that the system is compromised by somebody who is sitting right in front of it. Any suffi-

ciently determined attacker can eventually compromise any system with which he is in

physical contact. After all, throwing the Web server out the tenth-story window is one of

the easiest ways to maliciously take it offline. Still, any steps you can take to increase the

effort needed to access your data are helpful to your cause as the system administrator.

Though these issues aren’t necessarily Linux-specific per se, they’re certainly part of a

holistic approach to Linux system security. After all, what good is security inside Linux

if your computer never gets that far?

The System BIOS
It’s true that the operating system is what really runs the computer, but have you ever

wondered just how the computer knows to load an operating system in the first place?

After all, it’s a complicated process. The display must be switched on, and the hard drive

must be queried for the operating system software—in our case, Linux. After that, the

operating system software must be started.

All of the tasks that occur between power-on and the operating system’s final takeover

are handled by software contained on a read-only memory chip on your computer’s main

circuit board (also called the motherboard). The software in question is called the Basic

Input/Output System, or BIOS for short. Even though the list of BIOS tasks is short

when compared to the number of tasks Linux will perform once it has been loaded, most

system BIOS programs are highly configurable. Nearly every PC made within the last

decade has a configurable BIOS, and it is with this BIOS configuration that we need to

concern ourselves.

Three major options are available in most modern BIOS programs that need to be

audited and perhaps fixed with security in mind. They are BIOS password protection,

boot password protection, and main BIOS boot order configuration. Before you can

change them, however, you’ll need to enter your BIOS software’s setup mode.

32 Hour 2

Entering Setup
Unfortunately, there’s no standard way to enter the BIOS setup program. Many original

equipment manufacturer (OEM) motherboards commonly used by home computer

builders and smaller computer shops contain the standard American Megatrends

Incorporated (AMI) or Award BIOS system. These BIOSs generally display a message

when the machine is first started that gives instructions for entering the BIOS setup pro-

gram. Such a message may be similar to any of these:

• DEL to enter SETUP

• INS to enter SETUP

• F1 for SETUP

• ALT+F1 for SETUP, ALT+F2 for FLASH

The key word in this case is SETUP, which refers to the BIOS configuration program

we’re trying to access. If you can see a power-on message relating a specific keystroke to

SETUP, enter the keystroke while the message is being displayed, and you should find

yourself in the BIOS configuration program. Other keystrokes, which lead to functions

like the FLASH utility, are not directly related to configuring BIOS setup options.

If your system displays no such message and is manufactured by one of the larger retail

computer makers, you may find that your system BIOS does not allow access to the con-

figuration program without the use of a special BIOS setup disk that must be inserted

before the computer is powered on. Other computers may require that you boot into

Windows and use a Windows-based configuration utility to configure your BIOS. If this

is the case with your system, perform these steps now.

Finally, some systems display no such message and include no obvious setup disk or

software, but instead have hidden keystrokes. Some IBM machines, for example, require

that the user hold the F1 key down while the computer is switched on. The key must be

held until the BIOS configuration program actually appears on the display or it will not

be run. If you find that your system offers no clear method for BIOS configuration

access, try pressing each of the Delete, Insert, and F1 keys during the memory check. If

none of these work, try each of them again, this time holding each one down as the sys-

tem is switched on.

If in doubt, consult your computer or motherboard’s manual for instructions on entering

the BIOS configuration program.

Navigating Setup
There is no generally accepted standard or uniformity between the user interfaces of vari-

ous BIOS configuration programs. Some of them, like the AMI WinBIOS, are mouse

BIOS and Motherboards 33

2

based and present the user with a Windows-like interface. Others, like the more popular

Award BIOS, require the user to navigate with the directional arrows and the Enter key.

Because each BIOS is different, you’ll have to spend a few minutes on your own becom-

ing accustomed to the way in which your own BIOS configuration program works. Most

newer BIOS configuration programs contain at least the following sections, though the

names of each section may vary a little:

• BIOS Setup or General Setup (sometimes separate)

• Chipset Setup

• Integrated Devices Setup

• PCI Devices Setup

• Power Management Setup

Each of these sections contains a number of options related to the type of device or the

subsystem in question. If you’re unable to get an understanding of what’s in your BIOS

configuration program, consult the manual for your motherboard or computer system for

in-depth details.

BIOS Password Protection
Any BIOS program worth its salt will include an option to password protect the BIOS

configuration program itself, and this is the first option we’re going to tackle. Once a

BIOS password has been set, no one will be able to enter your system’s BIOS configura-

tion program without first entering the password that protects it. This is important for

several reasons:

• If the BIOS isn’t password protected, the other settings we’re going to change in

the interest of security can be easily changed back to their original settings by any-

one who can figure out how to enter your BIOS configuration program.

• A password-protected BIOS prevents often ham-handed service technicians or even

meddling family members from making detrimental changes to your system hard-

ware without your knowledge.

• Some older BIOS programs can actually be used maliciously themselves. For

example, some older versions of the AMI BIOS popular on 386, 486, and early

Pentium systems contain software that can be used to erase your hard drive com-

pletely. BIOS setup programs containing similar features should always be pass-

word protected.

• Many current BIOS programs include tools to update the flash memory on your

motherboard. The term update flash is really code for “erase the current BIOS pro-

gram and install a new one from the manufacturer.” This is a risky process even

34 Hour 2

when performed by a technician. In the hands of a malicious user, flash update

capability can render your motherboard completely unusable. Most manufacturers

will exchange a mis-flashed motherboard under warranty, but it is likely that others

will not.

Generally, the option related to the BIOS password can be found in the BIOS Setup,

Security Setup, or General Setup section. You’ll have to enable the option and supply a

password that will be used for the purpose at hand.

Be sure to select a password you’ll remember. Once you’ve set your BIOS password, you

won’t be able to enter BIOS setup again without it, even to turn off password protection.

On some systems, you can clear the BIOS configuration settings (and thus the password)

by opening up your computer’s case, finding a small set of jumper posts among the many

that appear on most motherboards and shunting them together. This process is a delicate

and time-consuming one, however, and may not always work.

On a few systems, there is no way at all to get back into the BIOS configuration program

if you’ve forgotten your password. On systems like this, a forgotten password means a

new motherboard or, worse (as is the case with some laptops), a new machine altogether.

BIOS and Motherboards 35

2

If your computer system or motherboard includes no BIOS password-

protection option, it may be time to get a new system or a new mother-

board altogether, unless you’re sure that your physical environment is very

secure. This is especially true if your BIOS includes flash update or hard drive

low-level format capability. BIOS password protection is fundamental.

Boot Password Protection
In addition to password protecting the BIOS configuration program, it’s a good idea to

password protect the boot process if the system doesn’t need to be able to boot automati-

cally after power failures. When the boot process has been password protected, any user

who powers the system on will be prompted for a password before any operating system

is ever loaded from any device. Such a password is your first line of defense against

unwanted access.

For example, imagine that you leave your office for lunch and, while you’re gone, some-

one else who has physical access to your computer attempts to break in to it. Linux user

accounts are password protected, but suppose this person simply power-cycles the

machine by switching it off and then back on again? Suddenly, your system is unpro-

tected. On an average computer system, any knowledgeable person can at that point sim-

ply insert a floppy, bypass the Linux user accounts altogether, and have at all of your data.

If you password protect the boot process itself, however, this can’t occur. A malicious

user wouldn’t be able to make the machine start again without the password.

On a large percentage of current computer systems, the boot password is automatically

enabled when the BIOS password is enabled, and the passwords are the same. If this is

the case on your system, you’re all set. If not, look for a boot password option, usually

near the area where you found the BIOS password option.

If you forget your boot password, it’s not as big a deal as forgetting your BIOS pass-

word, because you can always go back into the BIOS configuration program and choose

a new boot password. Of course, this applies only if your BIOS and boot passwords are

separate options.

If your motherboard or computer system doesn’t provide boot password capability at all,

you may want to consider replacing it, but it’s not nearly as serious an issue as is a miss-

ing BIOS password option. The next BIOS configuration option we’re going to discuss

will also help to mitigate the negative effects of a missing boot password option.

36 Hour 2

Be sure to save any changes you make to your BIOS when you exit; other-

wise, none of the new settings will take effect.

Boot Order Configuration
In the BIOS Settings, Boot Settings, or General Settings section of the BIOS configura-

tion program, most systems include a series of options that look something like this:

• Boot order: A, CDROM, SCSI, C

On some other systems, the question might be presented as a series of options rather that

a single option list. In these cases, boot order configuration might look more like this:

• First boot device: Floppy Drive A

• Second boot device: CD-ROM Drive

• Third boot device: External Adapter

• Fourth boot device: Hard Drive C

In either case, the default settings for most systems will look something like what you

see above. The settings shown here mean that each time your computer is started, the

BIOS will perform the following steps following the Power-On Self Test (POST):

• Check to see if a floppy drive exists. If so, see if a disk has been inserted. If a disk

has been inserted, try to start an operating system from it.

• If no operating system could be started from the floppy drive, check to see if a CD-

ROM drive exists. If so, see if a disk has been inserted. If a disk has been inserted,

try to start an operating system from it.

• If no operating system could be started from the CD-ROM drive, check to see if

there are PCI cards in the system to which data storage devices are connected. If

so, pass control of the boot process to the first card found.

• If no such devices are found or no operating system could be started from them, try

to load an operating system from the hard drive.

Notice that in this sequence, the hard drive is the last device checked for an operating

system, meaning that anyone who wants to bypass the Linux user accounts password

protection and get right at your data can simply insert a bootable floppy or CD-ROM

disk and go to town. The external adapter query sounds hard to understand, but all it

really means is that if you have a SCSI card or secondary IDE expansion card in your

system, the BIOS will try to boot devices on these cards as well.

In the interest of security, we don’t want to allow anyone to boot from any device other

than the hard drive. This way, if the system is allowed to boot at all, it must boot into

your Linux installation where logins to user accounts (and therefore all data) are pass-

word protected. The boot order setting you’re looking for will look more like this when

you’re done:

Boot order: C Only

Or, if your system separates the options, they might look more like this once you’ve

secured the boot order:

• First boot device: Hard Drive C

• Second boot device: Disabled

• Third boot device: Disabled

• Fourth boot device: Disabled

Under the settings above, only the hard drive will ever be used to boot the system. A

malicious user can insert a floppy disk in hopes of bypassing your Linux passwords and

getting at your data, but your system will ignore the floppy disk altogether. Similarly, if

the system is a net-boot system and the BIOS includes a Network Boot option, use

Network Boot as the only boot device.

BIOS and Motherboards 37

2

If your system BIOS does not include the capability to manipulate boot order but always

tries the floppy first, you may want to consider a new motherboard or system, though

you may find that some strategies in Hour 3, “Physical Security,” will help you overcome

this limitation to some degree. If you have no need for a floppy device at all, a simpler

(and cheaper) idea is to remove the floppy drive altogether.

Secondary BIOSs
So far, we’ve concerned ourselves with securing the BIOS program that is built into your

system’s motherboard and which controls things like the initial power-on process and the

system’s IDE devices. If you have any PCI IDE controllers, or any SCSI controller, how-

ever, there is a good chance that your system has one or more external BIOSs, which

control the additional device(s).

This is a problem because external BIOSs of this type are not generally password pro-

tectable. Some of the nicest SCSI controllers, such as those made by Adaptec, BusLogic,

and Mylex, suffer from this problem. Using one of these BIOSs, a malicious individual

can alter the boot order without having to enter the main system BIOS at all.

For example, a user might have a system that looks like this:

• IDE devices: none

• SCSI ID 0: Hard Drive

38 Hour 2

Here, too, different BIOS setup programs vary. Some BIOS configuration pro-

grams are very flexible with regard to boot order, while others are much less

flexible. If you don’t have the option of disabling all other devices’ boot

capability altogether, try to disable as many of them as you can and ensure

that the first hard drive, usually referred to as the C drive, is listed first in

the boot order.

Users who use SCSI hard drives as their primary means of storage may need

to leave the SCSI or external adapter option in the boot order, depending

on the BIOS software present. Beware, however, that in cases like this, your

SCSI controller may become a risk if you have SCSI CD-ROM drives, floppy

drives, or other removable storage in the chain. Try to ensure that your pri-

mary SCSI hard drive is the first SCSI ID on the first SCSI controller in the sys-

tem to avoid allowing a malicious user to boot using other devices.

• SCSI ID 1: CD-ROM Drive

• SCSI ID 2: Jaz Drive

This user intends for the system to load Linux from the SCSI hard drive each time the

system is powered on. However, a malicious user can enter the SCSI BIOS and instruct

the controller to ignore the device at ID 0 during the boot process. Suddenly, the CD-

ROM drive becomes the first boot device, and the malicious user has again gained con-

trol of the boot order. Any removable storage device connected to a card with its own

BIOS can be a culprit: CD-ROM drives, magneto-optical drives, Zip and Jaz drives, and

even a few tape drives are all equally dangerous in this regard.

Is there a solution for this situation? Yes and no. If you can enable a boot password for

your system, the problem is mitigated to some degree, since the BIOS configuration pro-

grams for these external cards can generally be reached only after the primary BIOS has

initialized itself. However, this means that you must trust a user either completely or not

at all. There is no way to accommodate any user who is “trusted enough” to know the

boot password and start the system but is not trusted enough to play with the boot order.

One possible solution is to use two separate add-on cards: one with a BIOS and the other

without. All removable devices are moved to the card without the BIOS so that they can

never be made bootable. Many manufacturers offer versions of their cards without BIOS

chips on them. Additionally, some cards include a jumper or switch setting to electroni-

cally disable the BIOS altogether. Of course, this route incurs extra expense, but it may

be the only way to solve the problem.

BIOS and Motherboards 39

2

If you decide to use the two-card solution described here, be sure that the

BIOS on the first card won’t act as the BIOS on the second card as well, leav-

ing the problem completely unsolved. Some add-on card models will do this.

Some older SCSI controllers with onboard BIOSs can be converted to con-

trollers without BIOSs simply by removing the BIOS ROM. The BIOS ROM in

such cases will usually be labeled as such and will be socketed. If after you

remove the chip Linux fails to communicate with the SCSI card, this trick

won’t work with your particular SCSI card; in this case, carefully re-insert the

BIOS chip to restore functionality.

Of course, if you don’t need any of the devices on your add-on card to be bootable, as is

the case when you’re using an internal IDE hard drive, then the problem goes away, since

you can configure the boot order in your main (password-protected) BIOS to always try

the IDE hard drive first. This creates a second possible solution to the add-on card prob-

lem described. Even if your primary hard drive storage will be connected to your add-on

card, simply ensure that there is at least one IDE hard drive in the system and that it can

be used to boot Linux. Even a small drive will do—just enough to hold the /boot file

system tree or the kernel. The root device itself can still be the drive connected to your

add-on card. Unfortunately, this requires that yet one more disk device be installed in a

system, often using a precious drive bay.

External/Attachable Devices
An additional possibilitywith SCSI cards complicates the issue considerably. Most SCSI

cards have both internal and external connectors, and many modern SCSI cards are auto-

matically terminated, meaning that no changes must be made to the card itself in order

for devices to be attached to the external connector. This creates a rather large security

problem during the pre-boot BIOS stage. If you plan to use an automatically terminating

SCSI card with a bootable BIOS and want your system to be secure locally between

main BIOS password entry and operating system start, then you must boot from an IDE

drive, as was discussed in the last section, unless your SCSI chain is completely full.

Why? Because of the external connector.

With an automatically terminating external connector, any malicious individual can bring

his own bootable device and simply plug it into the back of your system. Even if you

have all of your removable SCSI devices connected to a non-bootable controller, you’re

out of luck if the malicious individual brings his own boot device to the party and

changes the boot order in the SCSI BIOS to include it.

Generally, if your SCSI chain is full or your controller requires modification before the

external connector will work, you’re reasonably protected against this kind of activity,

since adding an external device in such a case will likely result in an unbootable system

until the device is disconnected again. Still, given the limitations of the PC architecture,

the most secure policy at this point is always to maintain at least one small IDE drive

with enough space to hold the kernel. Once the kernel boots, it can be instructed to look

for the root file system and any additional file systems on any other device present in

the system.

40 Hour 2

Controlling Flash BIOS Updates
One of the most convenient features of modern PCs can also be one of the most danger-

ous. A flash BIOS is a BIOS chip that can be overwritten using special software. This

capability is useful because it allows significant motherboard upgrades and bug-fixes to

be supplied by the manufacturer without requiring that you ship the hardware back to the

factory for changes. Not only motherboards have this feature; the BIOS chips on many

SCSI and IDE controllers have such a feature. In fact, some hard drives have their own

small BIOS system with flash capability.

Unfortunately, all of this flashing is not necessarily a good thing. While the flash process

is supposed to require special programming software, the hardware tricks used by such

software can also be employed by a malicious user. If a flash BIOS is overwritten not by

a new BIOS program but rather by garbage or zeroes, your system’s motherboard, SCSI

controller, or hard drive is dead for all intents and purposes and must be sent back to the

manufacturer. One or two motherboards now include an automatic recovery feature, but

using the feature is a complex process, often requiring that you open your computer and

set several hard-to-reach jumpers, as well as have Internet access on a second machine in

order to obtain a replacement BIOS program.

Rather than go through such headaches, it is better to simply disable flash BIOS writes

altogether wherever possible. Most motherboards allow the user to completely disable

flash BIOS writes with a single jumper or switch setting; consult your computer system

or motherboard’s manual for details. If it is not listed in the manual, take the cover off

the case, get a flashlight, and look for a chip on your motherboard with a sticker on top

of it, usually labeled with a name such as Award, AMI, or Phoenix. This is the BIOS

chip. Once you’ve located it, you’ll often see a small jumper or switch nearby on the

board that is labeled in white lettering with “flash disable” or “write disable” or some-

thing similar. Changing the position of the jumper will disable flash BIOS updates.

For SCSI controllers, PCI IDE controllers, hard drives, and other devices with their own

upgradable onboard software, check your manual for jumper settings to disable flash

BIOS writes.

It isn’t always possible to disable flash BIOS writes for every device, but where possible

it should be done in the interest of security and convenience.

Summary
This hour you learned that before your computer ever loads an operating system, a pro-

gram called the BIOS must decide where the operating system must be loaded from. If a

BIOS and Motherboards 41

2

malicious user can gain control over the boot process and boot his own operating system

disk rather than yours, your data is compromised. To avoid this, you’ve taken the follow-

ing steps:

• Password protected the BIOS configuration program itself

• Password protected the boot process

• Changed the boot order to prevent floppy and CD-ROM boots

• Disabled or secured secondary BIOSs where possible

• Disabled flash BIOS update capability where possible

Though these steps are not directly related to Linux per se, they are an important part of

a holistic approach to security that addresses both remote and local vulnerability as well

as the operating system and the hardware to run it.

Q&A
Q I still haven’t figured out how to enter my system’s main BIOS configuration

program. What can I do?

A If you can’t get any of the keys we discussed to work and you’re unable to find any

reference to BIOS setup in your documentation, it’s time to contact the manufac-

turer for instructions. Your computer almost certainly has a BIOS setup routine

somewhere. All computers since the 80386 machines have had them.

Q My computer system doesn’t have the capability to password protect the

BIOS configuration. Is it really that important?

A If there is any chance at all of a user coming into physical contact with your sys-

tem, yes. Though it is true that any user who comes into contact with your com-

puter can theoretically walk off with it, take it home, remove the hard drive, and

extract the data from it using his own hardware, such a long process is certainly

more difficult than simply enabling the floppy drive and booting into your data.

The prospect of physical theft followed by two hours’ hard work in order to get at

your data may deter a criminal. On the other hand, the prospect of ten seconds of

floppy noise is unlikely to deter even a very lazy criminal. Anyway, why make life

any easier for the crooks?

Q I’m not using a PC at all. I’m using hardware platform X. How does the mate-

rial in this hour apply to me?

A In the most direct sense, it doesn’t. The details about BIOS configuration discussed

here really apply only to the PC architecture. However, the underlying concept

applies to everyone: understand what your system does between power-on and

42 Hour 2

operating system boot and be sure that your data isn’t compromised before Linux

ever gets a chance to load. Unfortunately, some systems are even worse than PCs

in this regard. For example, if you’re a Macintosh 68K Linux user, there’s little that

you can do, since Penguin, the Mac booter for Linux, requires that you boot into

MacOS before starting Linux.

New Terms
BIOS Also known as the Basic Input/Output System, this is the program that controls

the way your system will boot.

boot order The list of devices, in order, that your BIOS will search for an operating

system at power-on.

flash memory A type of memory commonly used to hold BIOS programs for various

types of hardware. Leaving flash memory enabled can be risky because it means that a

malicious user can do permanent damage to expensive components of your system.

IDE An abbreviation for Integrated Drive Electronics. IDE-type hard drives are inex-

pensive and are the most common type of storage device on PCs. IDE also is commonly

referred to as ATA.

ISA An acronym for Industry Standard Architecture, an old expansion bus system used

by nearly all 386 and many 486 computer systems. VESA, a 32-bit local extension to

ISA, is also found on many 486 computer systems, but is rarely found on Pentium or

later systems.

jumper A small piece of plastic containing a copper clip, used to connect two jumper

posts on a circuit board in order to change some aspect of the board’s behavior.

motherboard Also commonly referred to as a mainboard, a motherboard is the main

circuit board in a PC computer. The motherboard contains the CPU (for example, a 486

or Pentium chip), expansion bus (such as PCI or ISA), the BIOS, and all hardware

related to basic input and output.

PCI An abbreviation for Peripheral Component Interconnect, a modern expansion bus

system used by many 486 and all later PC systems.

POST Power-On Self Test, the series of memory and device tests performed by the

BIOS when a PC system is switched on.

SCSI An acronym for Small Computer Systems Interface, a high-performance parallel

communications interface for storage devices, scanners, printers, and other computing

devices. SCSI devices are most common on server systems.

BIOS and Motherboards 43

2

HOUR 3
Physical Security

This hour we will finish securing aspects of your computer that lie outside

the direct influence of Linux, focusing on what is called physical security.

Physical security refers to aspects of computer security that have to do with

the physical placement of the machine itself, the machine’s operating envi-

ronment, and the degree to which the machine is protected from hardware-

level compromise.

Why Is Physical Security Important?
Physical security is important because a physical attack is perhaps the most

fundamental kind of attack. The types of actions we’re referring to when we

speak of physical attacks can include things such as the following:

• Simply hitting the reset switch or power button

• Using a floppy drive or CD-ROM drive on a machine that does not

support good BIOS security

• Damage to or theft of important machine components, especially those

that store data

• Theft of an entire machine

In the home environment, physical attacks are both less likely and more difficult to

defend against should you be unlucky enough to be the target of burglary or theft. Still,

some steps can be taken to prevent such problems.

In the small office, on the other hand, physical security is one of the most important con-

cerns. While large corporate installations are typically closed to public entrance and are

well guarded both by humans and by various forms of electronic security, the typical

small business can afford no such luxuries. Thus, it is especially important for the small

business user to focus on physical security as an important step in preventing data loss or

service interruption.

Location, Location, Location!
The simplest way to provide good, solid physical security is to choose a secure location

for your system’s installation. What this means in simple terms is that if a system doesn’t

need to be physically available to the public, don’t let it be. There are a few simple

axioms that, when followed closely, can prevent nearly all physical attacks involving sys-

tems that do not need to be publicly accessible.

• Keep your server and other machines in the back room

If you run a small business with enough floor space, it may seem impressive to dis-

play your Web server to your customers. However, if possible, keep all of your

computer systems in a back room. When spatially possible, run monitors, key-

boards, and mice on extended cabling to public areas. Keeping the processing units

themselves in a back room and away from public hands solves nearly every prob-

lem discussed in this hour.

• Secure the environment

Of course, no midnight thief is going to consider the back room to be off limits.

Ensure that the environment in which your system runs is well secured day and

night. Invest in high-quality locks as well as in an alarm system when possible, and

be sure to lock up and enable the alarm whenever you leave the area, even if it’s

just for a 10-minute trip to the sandwich shop.

• Secure the power controls

If your environment is locked tightly but your Web server is down due to loss of

power, your customers are still cut off from your services. Know where your build-

ing’s power sources are. Old buildings especially may have circuit breakers or

fuses in odd or publicly accessible locations. A padlock for the breaker box is an

inexpensive investment that can prevent all kinds of juvenile pranks, innocent acci-

dents, or malicious attacks.

46 Hour 3

• Invest in a continuous power system

When possible, invest in a continuous power system (or battery backup, as they are

sometimes called) to mitigate the problem in the case of unexpected power failure.

Even if you’ve locked your box tightly, you’re helpless if the power company

decides to work on your block’s main line for an hour, cutting the power in the

process. Having a solid, regularly tested continuous power system online can keep

service up through any minor brownouts and can give you time to notify users,

shut down, and prevent data loss in the event of a sudden brownout.

All of these steps should be combined with a holistic attitude toward your computing

environment. Be mindful of the physical circumstances surrounding your equipment and

of the public at large as a potential danger. It is time to think of security in terms of your

computer’s physical components, in addition to its cyber-existence.

Strategies for Difficult Locations
Unfortunately, not every computer can be sequestered in a locked room. Some machines

must even be made available for unattended public use. Though this is certainly risky,

there are some steps that can be taken to improve security and reduce the odds that ser-

vice interruptions or data loss will occur.

The Power Cycle
The simplest form of physical attack against a publicly accessible system is a power

cycle—the unexpected loss of power to the system, resulting either in a reboot or unat-

tended “off” time. Incidents of this kind usually aren’t even malicious, but are caused

instead by clumsy or unaware users or visitors to your place of business or by unaware

children in your home.

This type of incident generally is caused by easy access to reset and power buttons,

which lie on the front of most computer cases and can be triggered easily by a stray

elbow, finger, purse, or other solid object. There are several possible solutions to the

power cycle issue, each slightly more severe than the one before:

• Politeness

The most common method for small businesses to handle this problem seems to be

to place a note over the switch in question that says “Do NOT hit this switch!”

• Prevention

In spite of the fact that it is the most popular solution, simple politeness is a bit

silly in this context. A more proactive step that is also sometimes seen is the plac-

ing of strong tape over the switches in question alongside the note.

Physical Security 47

3

• Force

The ideal solution for these types of switches is to forcibly disconnect them. Then,

they can be hit, whether by accident or purposefully, without causing any interrup-

tion or data loss whatsoever.

Simply put, the last option, force, is preferable when security is really a concern. Though

it’s not as easy as simply placing a note or tape over a switch, it’s certainly more effec-

tive. In truth, it is not as hard to disable these switches as one might think. The following

are a few methods:

• Use BIOS features

Many BIOS configuration programs on newer energy-saving ATX motherboards

have an option to control power features, including in some cases system power

and reset. Often, both functions can be completely disabled in the BIOS setup

without having to make physical system modifications at all.

• Disconnect the reset switch

In most cases, disabling the reset switch is simply a matter of opening the case and

unplugging one small cable lead from the system motherboard. Simply follow the

lead from the switch itself to its other end and give the cable a gentle tug. In some

cases, the arrangement is physically different, and no cable is present. In such

cases, the switch must be removed altogether.

• Disconnect the power switch (ATX)

If your system is a newer ATX system, the power switch on your system operates

simply by making a momentary connection across two jumper posts. To disable

the power switch and place your system into a permanent-on state, simply follow

the lead from the switch to the motherboard and pull the cable off as you did

with the reset switch. Then place a standard jumper shunt over the two posts to

which the cable was connected; this will create a permanent-on setting.

• Remove the power switch (AT)

On an older AT-style case, you must be more inventive because of the wide range

of possible power switch configurations that have appeared over the years. In some

cases, the solution is as simple as unbolting the switch from the front of the case

and taping it elsewhere on the inside of the case, left in the on position. In more

extreme cases or on older power supplies, it may be impossible to disable the

power switch without modification to the power supply itself, which is best not

attempted unless you’re very familiar with electrical circuitry.

There is one other potential interruption to the power supply for a machine that is rou-

tinely used by the public, and that is the wall plug itself. Your computer must have

48 Hour 3

power, after all, and that power comes through a cord that plugs into 120 volts on one

end and the back of the machine on the other.

Here it is best to use your own discretion. If you are relatively sure that most of your

power cycle vulnerability lies in unintentional accidents by otherwise trusted individuals,

simply disabling the reset and power switches should prevent most service interruptions.

Beware the janitor’s power-waxer or the clumsy customer’s shoe, however: Either could

unplug your machine and create the very power cycle problem we’re trying to prevent.

To that end, you may choose to take additional steps:

• Secure the power cable to the back of the machine

This can be done in a variety of ways, but one of the most effective is to use glue

to attach the cable to its socket permanently. Take care not to get glue on the metal

contacts, or your newly glued power cord may not work at all!

• Plug the other end of the cable in somewhere else

Use a long cable and plug the 120-volt side of the cable into a socket in another

room or somewhere out of view and easy reach so that the temptation to unplug the

cable from the wall socket is minimized. Any home hardware store will also sell a

wall-type cable clamp that can firmly affix a cable to a wall or floor; use something

like this right next to the wall plate to ensure that the cable can’t be pulled out by

jerking it.

• Protect the length of the cable

Don’t run the cable across the floor. Run it to the outlet in conduit against the wall,

under the carpet, in a rubber cable guide, or in some other apparatus that will pre-

vent both accidental tripping and a jerk from the janitor.

Unfortunately, these measures protect against only incidental or unintended loss of power

from cable interruption. All cables, however, are clippable—there is no way to prevent

malicious interruption of power when someone has physical access to the machine.

Therefore, the ideal policy is still to separate the machine physically and securely from

any individuals whom you don’t know or fully trust.

Boot Devices
We covered this once in the previous hour when discussing BIOS issues, but the problem

of bootable devices can be explored even further here. If you are unable to password-

protect your BIOS or fix your boot order completely, your system is vulnerable to being

hijacked by someone with his own boot disk. To prevent these types of attacks from

occurring, concentrate on securing these devices specifically.

Physical Security 49

3

• Lock floppy drives

Many computer accessory dealers sell a small device called a floppy drive lock.

This device is a small piece of plastic shaped more or less like a floppy disk with a

keyhole on one end. When inserted into a floppy drive and locked, the plastic unit

prevents a floppy disk from being inserted until the device is unlocked and

removed again.

• Disable CD-ROM drive eject buttons

Some newer CD-ROM drives, especially those from big-name manufacturers, ship

with a jumper- or switch-operated feature to allow the user to completely disable

the frontal eject button while leaving software eject intact. Even in the absence of

such an option, you may be able to disable the button manually with a little tinker-

ing, though doing so will likely void your warranty. Once the button has been dis-

connected or disabled, a CD can be inserted only after the user has logged into

Linux and issued the eject command.

• Consider removing such drives altogether

If there’s no reason to have removable storage on a publicly accessible system, by

all means remove the device. Any computer system will operate perfectly well with

no floppy drive or CD-ROM drive, though a few BIOS configuration changes may

be necessary. Remove the drive and put a blank faceplate in its place; this is the

ultimate form of floppy or CD-ROM drive security.

If finances allow it, you may even consider using diskless clients for public access

machines and mounting needed file systems using NFS or some other network file sys-

tem hosted in another, more secure room or environment. That way, even if the system is

stolen or damaged physically, the data on your boot drive and file systems remains intact.

Locking Down “the Box”
Every measure we’ve discussed so far is moot if a thief or malicious individual simply

picks up your “box” and walks away with it when you’re not looking. It makes little

sense to spend money on cable clamps, uninterruptible power supplies, floppy drive

locks, and other security paraphernalia if your box itself is vulnerable to simple theft.

There are several possible ways to solve this problem, which are listed here and which

involve progressively more expensive equipment.

• Lock the back room

This method of securing your box costs little or nothing. If you’re keeping your

machine in a secure room, simply ensure that the room has a lock and that it stays

locked at all times. Even when you’re on the premises, the circumstances can eas-

ily get out of control, and a five-minute absence can translate into a several-

thousand-dollar loss from your secure but unlocked room.

50 Hour 3

• Use an adhesive cable lock

Cable locks come in various shapes, sizes, and installation methods. The most

common of these is a thin but strong steel cable with an incredibly powerful adhe-

sive block on each end. One end is glued to the table, the other to the machine.

Such cables are generally thick and strong enough to act as a serious deterrent to

theft.

• Use a thicker, invasive cable lock

Some site administrators have gone a bit further with the cable lock, drilling a hole

in the computer case’s sheet metal and another large hole in the edge of the table

or desk. A bicycle combination lock with a thick steel cable or even a chain is then

threaded through the holes and locked.

• Use an alarm cable lock

Several computer accessory manufacturers sell alarm lock systems that are similar

to cable locks described above but that are electrified and connected to an alarm

system. If the cable is ever cut, an audible alarm sounds.

Physical Security 51

3

In addition to locking down the box, it is also a good idea to lock the box so

that a malicious individual with a few minutes and a screwdriver can’t sim-

ply open the case and make off with your hard drive and, thus, your data.

Some cases include built-in locking mechanisms of high quality, while others

do not. The easiest way to lock an unsecured box is to drill a set of strategi-

cally placed holes and then use a standard padlock to secure the major parts

of the case.

Access Auditing
Even assuming that you’ve taken many of the measures mentioned so far in this hour, it

is still important at all times to be aware when trying to ensure the security of a com-

puter installation. The most important type of awareness in the case of physical security

is access auditing. Access auditing is the process of knowing who has physical access to

your machine and when. This list is important for two reasons:

• If you understand who will have physical access to the machine, you can make

some guesses with regard to the degree of suspicion and caution you should have.

• If your system is ever compromised physically or stolen, having a ready list of

individuals who had physical access to the computing environment can help to

expedite the discovery of the responsible party.

Many users at this point think to themselves, “nobody but me has access to this

machine!” Unfortunately, this is not always the case, especially in the small business set-

ting. The list of individuals who have access to your equipment may include any of the

following:

• Landlords, property management personnel, or anyone else involved in the owner-

ship or management of your business location.

• Cleaning, maintenance, or janitorial personnel either hired by you or hired by

building management or ownership.

• Service workers, repairmen, and other individuals who are brought in on a limited

or one-time basis to make repairs or to solve problems.

• Delivery personnel, vending machine operators, or supply runners to whom you

have given a door key for early-hour or after-hours work.

• Any other employees or family members who have a key to the area either for

after-hours work or because they live there.

52 Hour 3

Unfortunately, there is one last group of individuals you must also consider:

any friends, acquaintances, or family members of those individuals already

listed—especially those who regularly accompany those individuals on their

rounds or to work.

As you can see, this list can quickly grow to involve individuals you may not have con-

sidered in relation to your computing equipment. If you find that your list is very large or

that some of the individuals in question can’t be fully trusted with your data or your

equipment, stronger security measures are called for.

Keep this list up-to-date at all times. Be vigilant, or you may come to the office one day

to find that your equipment is no longer working.

Summary
This hour, you’ve learned to consider the physical environment as an integral part of a

holistic approach to Linux security. The basic steps to be taken are

• Lock away all systems in isolation when possible.

• Prevent power cycle issues by disabling reset and power buttons, securing the

power cable, and installing battery backups.

• Lock floppy and CD-ROM drives or remove them altogether if they aren’t needed.

• Install a cable lock of some kind to prevent your entire box from being stolen.

• Lock your case as well.

• Keep an active list of those individuals who have physical access to the machine in

question.

Be aware and be vigilant!

Q&A
Q Is there any way to impose absolute, guaranteed physical security?

A Unfortunately, no. Any door can be kicked down, given a sufficient amount of

force, and any cable can be cut with sufficiently large cable cutters. The idea, how-

ever, is to make the criminal’s job as difficult as possible and to prevent non-

criminals from accidentally interrupting your service.

Q My CD-ROM drive doesn’t have the capability to disable only the eject but-

ton, but it can disable the eject function altogether. Can this work?

A Yes and no. If you never need to use more than one CD, power up the drive, insert

the CD, disable eject, reinstall the drive, and you’re good to go. However, if you

simply disable eject completely on an empty drive, why not remove the drive

entirely, thereby both removing temptation and saving electricity?

Q Are there any more secure ways to allow for publicly accessible machines?

A Yes! If the application you need to provide is text based, consider purchasing a

dumb serial terminal to run the application. These are often very inexpensive and

can be configured easily with Linux using a serial port. If you need to provide

access to graphics (X11), consider either building your own inexpensive X-

terminal using an old PC, Linux, and XFree86 or even purchasing an X-terminal

from a Unix hardware vendor. In either case, your important data can stay

sequestered physically in another secure room.

Q I use Linux at home and am primarily concerned about Internet security.

Does this hour apply to me in any way?

A It may, though some of it is already true in the home context. Obviously, you want

to know who comes in to your home at all times. Still, some modifications, such as

disconnecting the reset switch and investing in a continuous power system, can

prevent unwanted accidents that might otherwise result in data loss. If you plan to

run a server of any kind in your home, these issues are important as well, espe-

cially if you have young children around who might be tempted to play with the

server system.

Physical Security 53

3

New Terms
cable lock In the security context, a device designed to keep a computer system firmly

attached to the physical environment in which it is installed. Cable locks come in various

sizes and some are equipped with audible alarm systems.

continuous power system Also known as a battery backup in some cases, a continu-

ous power system allows your system to continue to operate through brownouts and

short blackouts.

floppy drive lock A disk-shaped device with a key lock protruding from one end.

When inserted into a floppy drive and locked, a floppy drive lock prevents unauthorized

disk insertions.

physical security The security of the physical environment surrounding a computer

system—rooms, locks, and users.

power cycle The process of disconnecting power from the computer and then adding

power again. A power cycle generally has the effect of restarting the system.

54 Hour 3

HOUR 4
The Boot Process

This hour we’re going to focus for the first time on securing a system on

which Linux has already been installed and is running. We will concentrate

on the remainder of the system boot process as it plays out once LILO and

later the Linux kernel have been loaded and are in control of the system.

Security issues during the boot process include the following:

• Forbidding the passing of kernel arguments via LILO

• Implementing password protection via LILO

• Choosing the correct runlevel for the machine’s primary role and edit-

ing runlevels where necessary

The Linux Loader
The Linux Loader, or LILO as it is more commonly known, is the program

responsible for loading the Linux kernel once the BIOS has passed control

of the computer to the operating system. Most Linux users have seen one or

both of the following lines of output during boot:

LILO boot:
Loading linux...

These lines are displayed by the LILO program before the Linux kernel is started. The

first line of output above is the boot prompt, which allows the user to choose a kernel

image to boot or to pass arguments to the kernel. The second line of output is what might

be displayed if a kernel labeled linux is loaded.

The capability to pass arguments to the kernel is a useful one. For example, when an

incorrect change to system libraries or a loss of data due to power issues occurs and ren-

ders the system unbootable through normal means, the user can pass arguments to the

kernel to boot into maintenance mode:

LILO boot: linux single

The single argument starts Linux in a special, stripped-down, root-only mode designed

to allow system administrators to make repairs to parts of the operating system otherwise

needed for the boot process or normal system function. The single-user mode is analo-

gous in many ways to the Safe Mode of the Windows operating system. However, it can

pose a security risk by altering normal operating system functionality as you’ve config-

ured it and presenting users instead with a root-only password prompt.

Even more dangerous, however, is the init= argument, which allows the user at the

LILO prompt to specify an alternate init program for the operating system. The init pro-

gram is a special program designed to be run first on Unix-like systems. Init is reponsi-

ble for starting all services, including things as basic as the login prompt and password

verification. A user at an unsecured LILO prompt might just as easily enter something

like this:

LILO boot: linux init=/bin/bash

This line is particularly risky because it is a full system compromise in a single, simple

line. When the init argument is set to /bin/bash, the Linux kernel will start bash (the

shell) as the first process rather than init, meaning that no services will be started, no

password prompts will be presented, and the offending user will be dumped immediately

into a root shell!

56 Hour 4

Don’t assume that this section doesn’t apply to you simply because you

never see a LILO boot: prompt when you start your computer. There is a

good chance that LILO is still managing your boots. To see if this is the case,

try holding down the left Shift key just before your computer begins to load

the operating system from the hard drive. If you see the LILO boot: prompt

now, you’re vulnerable to these types of attack.

Clearly, steps need to be taken to secure the LILO booter. Luckily, the LILO booter uses

a flexible configuration file normally found at /etc/lilo.conf that can accept two

important security-oriented arguments. Most distributions do not secure LILO for you in

advance, so be sure to follow this section closely.

The /etc/lilo.conf File
The /etc/lilo.conf file is separated into two main sections. The first section, global

settings, occurs at the top of the file and includes keywords that apply to every kernel

image or operating system that LILO is managing. Changes made to this global section

of the configuration file will apply to every kernel image in your list of bootable images.

The second section of the file begins with the first image= or other= keyword and con-

tinues through the end of the file. A new imagebegins each time the image= or other=

keyword reappears; the keywords below each image refer to the particular kernel image

in question. A sample /etc/lilo.conf file is shown in Listing 4.1.

LISTING 4.1 Sample /etc/lilo.conf File

#
Global section of /etc/lilo.conf
#
boot = /dev/hda
install = /boot/boot.b
prompt
timeout = 100
default = linux
#
List of images in /etc/lilo.conf
#
other = /dev/hda1

label = win
image = /boot/vmlinuz-2.2.16

label = linux
root = /dev/hda4
vga = 775
append = “hdc=ide-scsi”
read-only

image = /boot/vmlinuz-2.4.0-t9
label = linux-new
root = /dev/hda4
vga = 775
append = “hdc=ide-scsi”
read-only

#
end /etc/lilo.conf
#

The Boot Process 57

4

Most Linux systems will have at least one kernel image listed, often called linux by

default. Dual boot systems generally will also have one or more other= images as well,

which allow LILO to manage booting for Windows. The file shown in Listing 4.1 is an

insecure LILO configuration; any user who sees a LILO boot: prompt is free to boot the

system or to send arguments to the kernel, which could fully compromise the system.

The password Keyword
The first order of business in securing this LILO configuration file is the addition, when

needed, of the password keyword. This keyword allows the system to require that the

user enter an administrator-supplied password before booting some or all of the images

managed by LILO. There are two ways to use the password keyword:

• If placed at the top of the file, in the global configuration section, all boot attempts,

regardless of kernel image, will require that the user supply a password.

• If placed in an image= section of the file, for example, just above the read-only

keyword, a password will be required to boot the image. No other images are

affected.

For example, we’ll change our file to require that the password A4ni77a* be entered

before any image in the system can be booted. The new /etc/lilo.conf file is shown in

Listing 4.2.

LISTING 4.2 Updated /etc/lilo.conf File

#
Global section of /etc/lilo.conf
#
boot = /dev/hda
install = /boot/boot.b
prompt
timeout = 100
default = linux
password= “A4ni77a*”
#
List of images in /etc/lilo.conf
#
other = /dev/hda1

label = win
image = /boot/vmlinuz-2.2.16

label = linux
root = /dev/hda4
vga = 775
append = “hdc=ide-scsi”
read-only

58 Hour 4

image = /boot/vmlinuz-2.4.0-t9
label = linux-new
root = /dev/hda4
vga = 775
append = “hdc=ide-scsi”
read-only

#
end /etc/lilo.conf

#

Because the password= keyword has been placed before the first other= keyword in the

global configuration section of the file, the listed password will be required to boot any

image.

The restricted Keyword
The next order of business in securing this LILO configuration is to add the

restricted keyword to the configuration file. The restricted keyword allows a

password-protected image to be booted without a password unless command-line argu-

ments are being sent to the kernel. Like the password keyword, the restricted keyword

can be placed into the /etc/lilo.conf file in one of two ways:

• If placed at the top of the file, in the global configuration section, all kernel images

will be restricted and no kernel arguments will be passable without first supplying

the password related to the image in question.

• If placed in an image= section of the file, for example just above the read-only

keyword, no arguments will be passable to that particular kernel without first sup-

plying the password. Other kernel images remain unaffected.

As an example, let’s change our file so that all images are completely restricted. The new

/etc/lilo.conf file is shown in Listing 4.3.

LISTING 4.3 Updated /etc/lilo.conf File

#
Global section of /etc/lilo.conf
#
boot = /dev/hda
install = /boot/boot.b
prompt
timeout = 100
default = linux
password= “A4ni77a*”

The Boot Process 59

4

LISTING 4.2 continued

restricted
#
List of images in /etc/lilo.conf
#
other = /dev/hda1

label = win
image = /boot/vmlinuz-2.2.16

label = linux
root = /dev/hda4
vga = 775
append = “hdc=ide-scsi”
read-only

image = /boot/vmlinuz-2.4.0-t9
label = linux-new
root = /dev/hda4
vga = 775
append = “hdc=ide-scsi”
read-only

#
end /etc/lilo.conf
#

This new /etc/lilo.conf file will allow any image to be booted without a password

unless kernel arguments are supplied. If the user attempts to enter kernel arguments,

LILO will require that the user enter the related password before proceeding.

Putting password and restricted Together
Of course, not all situations are as simple as the one just described. Sometimes it is use-

ful to allow some images to boot without a password (unless arguments are supplied)

while protecting other images. Listing 4.4 provides an example of this type of configura-

tion.

LISTING 4.4 Both restricted and password Arguments

#
Global section of /etc/lilo.conf
#
boot = /dev/hda
install = /boot/boot.b
prompt
timeout = 100
default = linux
password= “A4ni77a*”

60 Hour 4

LISTING 4.3 continued

#
List of images in /etc/lilo.conf
#
other = /dev/hda1

label = win
image = /boot/vmlinuz-2.2.16

label = linux
root = /dev/hda4
vga = 775
append = “hdc=ide-scsi”
restricted
read-only

image = /boot/vmlinuz-2.4.0-t9
label = linux-new
root = /dev/hda4
vga = 775
append = “hdc=ide-scsi”
read-only

#
end /etc/lilo.conf
#

The important thing to understand in this example is that all images remain password

protected. However, the linux-new image will always require a password, while the

default linux image will require a password only if additional arguments are supplied to

the kernel. Because the first image is marked as restricted, it will boot automatically after

10 seconds (100 tenths of a second) if no additional input is given at the LILO boot:

prompt. The default image and prompt delay are given by the default= and timeout=

keywords, respectively.

This scenario allows for automatic rebooting while maintaining security by preventing

unauthorized passing of kernel arguments.

The prompt and timeout Keywords
One more minor security issue needs to be addressed in a discussion of the LILO boot

loader. The prompt and timeout keywords give the system administrator the ability to

decide what will happen to the system in case of an unexpected power cycle. This is

important because in some cases it is undesirable for an unexpectedly rebooted system to

be placed immediately online once again. The system administrator may want to have the

opportunity to inspect things personally before an unexpectedly rebooted system goes

back online, in case the reboot was due to a break-in and parts of the system have been

compromised.

The Boot Process 61

4

LISTING 4.4 continued

On the other hand, if you run a Web server that needs to be available to users as much as

possible, you may be willing to take that risk and instead want all unexpected power

cycles to be followed by an automatic boot back into Linux. There are three basic meth-

ods for using or not using the prompt and timeout keywords.

• If neither prompt nor timeout is present, the system will automatically load the

default image during boot, without presenting the LILO boot: prompt or waiting

for input from the user.

• If prompt is present but timeout is not, then a booting system will stop at the LILO

boot: prompt and will not continue until human intervention occurs.

• If both prompt and timeout are present, then a booting system will stop at the

LILO boot: prompt for as many tenths of a second as are set in the timeout argu-

ment. For example, a timeout value of 3600 is 360 seconds, or six minutes. Once

time has run out, if no human intervention has occurred, LILO will load the default

image and boot as it normally would.

Your policy for using prompt and timeout will vary with your intended use of the

machine and the degree to which you plan to be suspicious of reboots. You must use your

own judgement about the situation to come to some decision.

62 Hour 4

If an unexpected reboot would be almost impossible in your case, such as if

you have a solid system and a high-quality battery backup, you may want to

stick to a very cautious policy regarding unexpected reboots. In situations

where unexpected reboots are so unlikely, there is a much greater chance

that such an event represents some kind of foul play.

Of course, any cracker who is able to compromise a system so fully that he is

able to reboot it can likely also edit the /etc/lilo.conf file again and

remove such protective measures. Still, it often pays to be conservative

regarding security.

Saving Changes
Before changes to your /etc/lilo.conf file take effect, you must rewrite your system’s

boot sector. To do this, simply issue the lilo command:

/sbin/lilo

You’ll see a list of labels that refer to the images configured in the lilo.conf file.

Each of them will be a bootable label at the LILO boot: prompt next time you boot the

system.

Permissions for /etc/lilo.conf
One final step you’ll want to take with the /etc/lilo.conf file is to prevent non-root

users from being able to read it, especially if you’ve configured a boot password for one

or more images. To do this, issue the following command:

chmod 600 /etc/lilo.conf

This command sets the file’s permissions so that only root is able to read from or write

to the /etc/lilo.conf file. For details on file system permissions, see Hour 7, “File

System Security.”

The Init Program and the /etc/inittab File
The final aspect of the boot process proper that we’re going to address this hour is the

configuration file for the init process. You may remember that init is the process respon-

sible for taking control of the system once the kernel has been started; init launches ser-

vices, provides login prompts, and performs other very basic Unix-type services.

The format of the /etc/inittab file itself is beyond the scope of this hour, but there are

two simple changes that security-minded users might want to consider to make init

defaults a little less vulnerable.

Default Runlevel
The init process uses a series of abstractions known as runlevels to help it determine

which services ought to be run on a given system at a given time. Most Linux distribu-

tions use similar runlevels for similar roles; the most common runlevel definitions are

shown in Table 4.1. Note that Debian GNU/Linux uses a different set of runlevels, docu-

mented briefly in the /etc/inittab file.

TABLE 4.1 Common Runlevel Definitions

Runlevel Description

0 (Procedural) System halt: When the system enters runlevel 0, all processes will be

stopped.

1 Single user or maintenance: Network interfaces are started, but no services are

started; only root is allowed to log in and only on the console. This is the runlevel

entered when the word single is passed to the kernel as an argument at the LILO

boot: prompt.

2 Multi-user, minimal: Network interfaces are started, and some local services are

started to allow for user logins on the console, but most network services (for

example, NFS and Web) are not started.

The Boot Process 63

4

3 Multiuser, full: Network interfaces and desired network services are started. User

logins and user requests are allowed both locally and remotely.

4 Unused or user-specified.

5 X11: Network interfaces and desired network services are started. User logins and

user requests are allowed both locally and remotely. The X Display Manager or a

substitute is started and the system boots into X11R6.

6 (Procedural) Reboot: When the system enters runlevel 6, all processes will be

stopped, and a cold reset will occur.

In Hour 1, “Selecting and Installing a Linux Distribution,” you learned that many sys-

tems that provide only network services do not need X capability, and thus X need not be

installed. However, there are some situations in which X will be installed but will rarely

be needed to actually run.

In such cases, many current distributions will still set the default runlevel to 5, X11

mode, even though for the most part the X Window System will not be used on the

machine. This is a bad thing; in Hour 15, “Securing X11R6 Access,” you’ll learn that X

is actually a network stream like any other and is therefore subject to attack. Because of

this, you don’t want X running by default but doing nothing most of the time on a net-

work server machine.

Thus, on machines that fit this description, you’ll want to edit the /etc/inittab file

using your favorite editor and change the first non-comment line in the file. Generally, it

will look like this:

id:5:initdefault:

This line is telling the init program to boot the system using runlevel 5 and to start all

services (including X11R6) normally associated with runlevel 5. To change this, simply

delete the number 5 and replace it with number 3, referring to full multi-user support:

id:3:initdefault:

After this change has been made, your system will boot to a console login prompt rather

than an X login prompt, thereby securing via closure what might otherwise be an unnec-

essary potential security problem. Of course, you will still be able to start X from a con-

sole using the startx command after you’ve logged in.

64 Hour 4

TABLE 4.1 continued

Runlevel Description

The Three-Key Smash (Ctrl+Alt+Del)
The “three-key smash” has been around in computing since the DOS days. Originally,

the combination of Ctrl+Alt+Del was used as a way to perform a soft-reset of an MS-

DOS machine. Linux users have preserved this tradition; most Linux distributions now

configure this keystroke to reboot the machine at any console.

For a machine that must be in physical contact with the public, however, the ability to

perform a soft reboot simply by hitting Ctrl+Alt+Del is an unwanted one. Since most

distributions currently handle this keystroke in the /etc/inittab file, simply look for a

line like this and comment it out with a hash character (#):

ca:12345:ctrlaltdel:/sbin/shutdown -r now

The specific line on your system may be slightly different, but the key is to look for a

line that contains the keyword ctrlaltdel after the second colon. Once this keystroke

has been commented out, users will no longer be able to perform soft reboots using a

simple keystroke. Instead, root will have to log in and shut down the system or reboot it

by hand.

Summary
This hour, you’ve learned to secure your boot process by making LILO suspicious of

kernel arguments and by changing a couple of typical problem spots in the /etc/

inittab file. The steps covered include

• Using the password keyword in /etc/lilo.conf to password-protect kernel

images and the boot process in general.

• Using the restricted keyword in /etc/lilo.conf to allow password-protected

images to boot without intervention when no additional kernel arguments are sup-

plied.

• Editing the prompt and timeout values in /etc/lilo.conf to reflect your policy

and needs with regard to unexpected reboots.

• Editing the /etc/inittab file to avoid starting X at boot on systems that do not

need X running all the time.

• Editing the /etc/inittab file on systems that will be available for physical public

use to remove the Ctrl+Alt+Del soft reboot keystroke.

Now that these steps have been taken, you’re done with “pre-Linux” security and ready

to move on to the real meat and potatoes of securing a Linux system in the hours that

follow.

The Boot Process 65

4

Q&A
Q I can’t seem to edit either /etc/lilo.conf or /etc/inittab. Every time I try

to do so, I get a message saying that I don’t have permission.

A Now that Linux is installed and running in multi-user, you must be working as the

root user to make changes to these files and to perform most of the other tasks

we’re going to cover in this book. Log out and log back in again as the root user,

or use the su command to become root.

Q The /sbin/lilo command failed. What do I do now?

A Carefully check your /etc/lilo.conf file for syntax and spelling errors. Consult

the lilo.conf(5) manual page if necessary. To get more diagnostic output when

running the command, use the -v argument. If all else fails, undo the changes

you’ve made and start over again.

Q My runlevels don’t seem to match the runlevels you describe. X still starts by

itself. What do I do?

A First, go back over the /etc/inittab file and look for comments that refer to the

X Display Manager or to launching X11R6. If you can find them, use them as a

guide, along with the inittab(5) manual page to help you make the necessary

changes. Some distributions start X instead as a service in the /etc/rc.d or

/etc/init.d hierarchy. We’ll cover these directories in the next hour. You may

also find that administration tools native to your Linux distribution give you the

option of disabling the X Display Manager.

New Terms
default runlevel The runlevel under which the system will start if no specific runlevel

has been passed as an argument to the init process.

global A kind of keyword that is supplied only once at the top of the /etc/lilo.conf

file but that affects all images listed later in the file.

image An entry in the /etc/lilo.conf file that refers to a bootable operating system.

An image specification begins with either the image= or other= keyword and will con-

tain any number of other keywords, depending on how the operating system is to be han-

dled by LILO.

init The program responsible for starting services once the kernel is running, from

basic services such as login prompts on consoles to high-level services like X, file, and

Web servers.

66 Hour 4

kernel arguments Arguments passed to the kernel on the command line through the

LILO boot: prompt. These can be used to alter the default behavior of the kernel or of

init, posing a grave security risk.

LILO The Linux Loader, a program designed to accept control of the computer system

from your system BIOS, load the Linux kernel, and pass control of the system to it.

runlevel An abstraction that init uses to decide which services should be started each

time the machine boots.

three-key smash Three keys (Ctrl, Alt, and Del) that, when pressed together, tradition-

ally cause a system reboot to occur. Most Linux distributions continue to follow this tra-

dition by default.

The Boot Process 67

4

HOUR 5
System and User
Fundamentals

This hour, we’re going to tackle three major tasks that can best be thought of as

security-oriented system administration fundamentals. They aren’t necessarily

the most exciting things you’ll learn, but they are important nonetheless and

should be covered before the more service-specific information contained in

later hours.

First, we’re going to create or edit three important configuration files related

to user security in the general sense. Then we’ll streamline the daemon and

server init process, learning to edit the directories responsible for starting the

services in question. Finally, we’ll take a look at user accounts and learn

how to create accounts with an emphasis on security.

/etc/securetty, /etc/shells, and
.bash_logout

There are three basic configuration files that don’t really fit anywhere specific in a dis-

cussion of Linux security, so we’re going to cover them now. All three of these files are

really important only if you are allowing remote user shell logins via a service like

Telnet, but it’s a good idea to secure them just for the sake of correctness.

The /etc/securetty file lists the tty devices on which root logins can occur. These

devices are listed one per line and in order to be secure should include only local con-

soles. A sample /etc/securetty file is shown in Listing 5.1.

LISTING 5.1 Sample /etc/securetty File

tty1
tty2
tty3

Obviously /etc/securetty is not a terribly complicated file. This particular listing will

allow root logins on the first three virtual consoles on the local machine and nowhere

else. It is a good idea to remove everything but one or two tty devices from this file. If

you are using a 2.4 kernel with devfs support enabled, it is a good idea to remove every-

thing but one or two vc devices from the file.

If no devices are listed (the file is empty), root access in multi-user runlevels will be

available only through the su command.

The /etc/shells file and /etc/skel/.bash_logout file really work together. The prob-

lem is simple: When a user logs out of a text-mode shell, we want Linux to clear the dis-

play so that no data that may have been left on the screen by the user will be visible to

other users. These two files provide the means to accomplish this.

First, /etc/skel/.bash_logout is edited. The file $HOME/.bash_logout is sourced by the

bash shell each time a user logs out. Thus, any commands it contains will be executed each

time a user logs out. The template from which the $HOME/.bash_logout file is created when

new accounts are added is /etc/skel/.bash_logout. To this file, we add a single line:

/usr/bin/clear

This will cause the display to be cleared as the user logs out. Note that changes to /etc/

skel/.bash_logout will be reflected only in the accounts of users created after the file

is edited.

70 Hour 5

The /etc/shells file determines which default shells will be available to users through

the chsh command. Many distributions provide a long list of available shells, but this is

undesirable in a secure system; shells have been known to generate just as many security

problems as other components in a system, and it’s much easier to monitor and update

one shell than six or seven. More to the point, only the first default, bash on Linux sys-

tems, is ever likely to be used by most users. Thus, the /etc/shells file should be

changed to contain a single line:

/bin/bash

This will ensure that all users log into a similar baseline shell environment and that the

default .bash_logout file will be sourced and the screen cleared at logout time.

The SysV-Style Init Process
We discussed the init process a little bit in Hour 4, “The Boot Process,” but now it’s time

to really dig in and ensure that we understand and control what’s going on during system

initialization. It’s going to get a bit dense for a moment, but bear with me; by the time

we’re done with init, you’ll find it a simple service to edit.

In the /etc/inittab file, which controls the startup process for your Linux system,

you’ll likely find a block of entries somewhere that looks similar to the one shown in

Listing 5.2.

LISTING 5.2 Calls to SysV-Style Scripts

l0:0:wait:/etc/rc.d/rc 0
l1:1:wait:/etc/rc.d/rc 1
l2:2:wait:/etc/rc.d/rc 2
l3:3:wait:/etc/rc.d/rc 3
l4:4:wait:/etc/rc.d/rc 4
l5:5:wait:/etc/rc.d/rc 5
l6:6:wait:/etc/rc.d/rc 6

Notice that each of these lines is run only if the system is starting at the specific runlevel,

the runlevel shown between the first two colons (:) on the line. Based on the runlevel,

init then calls a central script, in this case /etc/rc.d/rc, and passes to this script the

current runlevel of the system as an argument.

This central script uses the information about the current runlevel to call an entire series

of scripts located in a specific directory dedicated to the current runlevel. On this particu-

lar system, the script directories in question are probably numbered /etc/rc.d/rc0.d

System and User Fundamentals 71

5

through /etc/rc.d/rc6.d. Other Linux distributions place these directories at /etc/

rc0.d through /etc/rc6.d or even /sbin/rc0.d through /sbin/rc6.d, but in all cases,

the functionality is the same.

Simply put, when your system is started in runlevel 3, init will run every script located in

/etc/rc.d/rc3.d (or equivalent) as a part of the startup process. These scripts are run in

alphabetical order, and each script performs a specific task. One might start the network

interfaces, while another brings up the Web server, and another might start sendmail. To

edit the system initialization process, you only need to add or remove shell scripts in a

specific runlevel directory that perform the functions you want.

72 Hour 5

A few older Linux distributions and even one or two less popular current

Linux distributions use a more BSD-like configuration in which one or two

larger scripts perform all system initialization. These include, for example,

/etc/rc.d/rc.S for single-user modes, /etc/rc.d/rc.M for multi-user modes,

and /etc/rc.d/rc.inet for network services.

Editing the init process on these types of distributions is much more difficult

and requires that you understand shell scripting and can navigate and edit

each script by hand. These types of init configurations aren’t covered here.

If you aren’t fluent enough in Linux to be able to edit shell scripts by hand,

you should probably switch to a more popular distribution that follows the

SystemV-style script structure we’re discussing in this hour—for example, Red

Hat Linux, Debian GNU/Linux, Caldera OpenLinux/eDesktop/eServer, or SuSE

Linux.

Because much of the functionality across runlevels is duplicated and most Linux users

want similar functionality as a part of system initialization, most or all of the scripts in a

fresh install’s runlevel directories are actually symbolic links to a standard set of scripts

in a central location, usually /etc/rc.d/init.d, /etc/init.d, or /sbin/init.d. So that

the order in which these scripts are executed can be controlled, their symbolic link names

are altered slightly. For example, Listing 5.3 shows the partial output from an ls -l

command executed in /etc/rc.d/rc3.d.

LISTING 5.3 Some Script Links from /etc/rc.d/rc3.d

lrwxrwxrwx 1 root root 17 May 3 22:58 S01network -> ../init.d/network
lrwxrwxrwx 1 root root 16 May 3 22:58 S05syslog -> ../init.d/syslog
lrwxrwxrwx 1 root root 17 May 3 22:58 S05urandom -> ../init.d/urandom
lrwxrwxrwx 1 root root 17 May 3 22:58 S15portmap -> ../init.d/portmap
lrwxrwxrwx 1 root root 14 May 3 22:58 S16inet -> ../init.d/inet
lrwxrwxrwx 1 root root 18 May 3 22:58 S20netmount -> ../init.d/netmount

lrwxrwxrwx 1 root root 20 May 3 22:58 S21nis-client -> ../init.d/nis-clien
lrwxrwxrwx 1 root root 13 May 3 22:58 S26ipx -> ../init.d/ipx
lrwxrwxrwx 1 root root 13 May 3 22:58 S30amd -> ../init.d/amd
lrwxrwxrwx 1 root root 13 May 3 22:58 S30ntp -> ../init.d/ntp
lrwxrwxrwx 1 root root 13 May 3 22:58 S35lpd -> ../init.d/lpd

Notice that the symbolic links have been named in a way that forces them to be executed

in a specific order. Notice also that each of these links is simply a symbolic link to a

universal script located in ../init.d. The names of the scripts should be familiar:

S15portmap brings up the portmapper, S16inet starts the Internet daemon, S35lpd starts

the print daemon, and so on. Each directory, rc0.d through rc6.d, contains a series of

these symbolic links. The links appearing in any one directory depend on which services

should or shouldn’t be started (or killed) for the runlevel in question.

This arrangement is called a SystemV-style init configuration after the format used by

the popular System V release of Unix. In Linux, it’s often called simply a SysV-init con-

figuration for short.

Finding and Disabling Unnecessary Services
If you’ve checked your own rcN.d directories, you’ve probably noticed that quite a few

services seem to be started for each runlevel, especially for multi-user runlevels con-

trolled by the rc3.d and rc5.d directories. It is very likely that you won’t be needing all

of them, and it is in the interest of better security that you turn off those services you

won’t be needing.

To turn off a service in a given runlevel, simply remove the symbolic link. For example, to

disable the xfs font server in runlevel 5, remove the script associated with it from rc5.d:

cd /etc/rc.d/rc5.d
mkdir disabled
mv S90xfs disabled

Of course, the path to rcN.d should be adjusted to match the path on your system, and

the name S70xfs should be adjusted to match the name of the xfs symbolic link in your

own case. Be sure not to remove the original script in the init.d directory, or you’ll

affect the service in all runlevels, rather than just in the runlevel you intend to edit.

System and User Fundamentals 73

5

LISTING 5.3 continued

Some of the services we’re about to see may seem fairly harmless, tempting

you to leave them enabled even if you don’t use them often or don’t really

need them. Avoid this temptation.

To determine which scripts are necessary and which are not, you need to be able to iden-

tify the service and the role of the service related to each script. Some of the most com-

mon scripts are shown in Table 5.1.

TABLE 5.1 Common Scripts in init.d

Script Disable? Description

alsasound yes(1) Starts the Advanced Linux Sound Architecture, necessary for sup-

porting some sound cards.

amd yes Starts the auto-mount daemon responsible for automatically mount-

ing floppy and CD-ROM discs, rather than forcing the user to use

the mount command.

atalk maybe Starts services for AppleTalk networks.

atd yes(1) Starts the one-time user command scheduler.

cron no Starts the cron daemon.

fonttastic yes(1) Starts the fonttastic font server used by many commercial Linux

applications.

gpm yes(1) Starts General Purpose Mouse support for console pointing device

access.

httpd maybe Starts the httpd daemon, also known as the Web server, usually

Apache on Linux systems.

inet no Starts the Internet daemon, responsible for handling, directing,

accepting, or denying incoming network requests.

ipx maybe Starts IPX network services for systems operating on Novell net-

works.

keytable no Enables standard keyboard mappings.

ldap maybe Starts the Lightweight Directory Access Protocol for systems using

directory services.

lpd maybe Starts the print daemon, useful for accepting print jobs from

remote sources for local printers.

74 Hour 5

Even services like the auto-mount daemon, amd, which is responsible for

allowing Linux to automatically access CD-ROM drives and floppy drives

without manual mounting, have been the cause of complete system com-

promises. Though updates to problem services are generally made available

quickly through distribution vendors once problems are discovered, you

should view each service as a potential violation.

In short, if you don’t absolutely need it, turn it off.

mta maybe Starts the mail transfer agent, or SMTP daemon, usually sendmail

on a Linux system. May also be called sendmail or qmail on some

systems.

netmount maybe Mounts network file systems listed in /etc/fstab.

network no Starts system network interfaces.

nfs maybe Starts NFS services for systems acting as file servers to other

Linux machines.

nis-client maybe Starts client services for systems using Yellow Pages (yp) or

Network Information Services (nis) directory access.

nis-server maybe Starts directory services for systems providing Yellow Pages (yp)

or Network Information Services (nis) directories.

ntp no Synchronizes system clock with the outside world.

portmap maybe Starts the portmapper; necessary for services that use rpc, such

as NFS.

samba maybe Starts the SMB/NMB services for sharing files and print services

with Windows network users.

syslog no Starts the system logger.

xdm yes(1) Starts the X Display Manager for X11R6 authentication.

xfs maybe Starts the XFree86 X Font Server for supplying fonts to other sys-

tems across the network.

Key:

yes This service can generally be removed with few effects beyond loss of convenience.

yes(1) This service can often be removed with little or no loss to network functionality, but

at the expense of some user-level functionality. Use your own discretion. For exam-

ple, you may want to disable xdm on a server system where X is rarely used.

maybe This network-oriented service should be removed if you do not need the functionality

it provides. Normally, only one or two “maybe” scripts will remain active on a single

system, depending on which services the system provides.

no This service is essential either to system functionality or to network functionality and

should not be removed.

If you’re unsure whether or not a given service can be removed, simply try the system

without the service. If you don’t miss it after a few days, chances are you didn’t really

need it in the first place. Exceptions to this rule are the logging daemons started by

syslog—logs are important for security!

System and User Fundamentals 75

5

TABLE 5.1 continued

Script Disable? Description

Be sure to restart your system after any changes to cause the rcN.d directory to activate

your new init services configuration.

Reenabling Disabled Services
If you need to reenable a previously disabled service, simply restore the symbolic link to

the central script in question, taking care to place it within the order of services started.

For example, to reinstate the xfs daemon for runlevel 5, you might use

cd /etc/rc.d/rc5.d
mv disabled/S90xfs

If you have to re-create a symbolic link rather than simply move it, and you’re unsure

about which order to start the service in, use your common sense. For example, network

daemons should be started after the network itself is started but before services that

depend on a daemon are started. If you don’t get it right the first time, you can always

slide it around until you get it right:

cd /etc/rc.d/rc5.d
mv S90xfs S50xfs

Eventually, you’ll find a working configuration again.

76 Hour 5

There are so many different Linux distributions and so many different script

possibilities that it’s impossible to give a good account of all of them in

Table 5.1.

Because of this, you’re likely going to have to use your common sense when

trying to identify at least one or two of the scripts on your system. One

thing that may help you is to look at the script itself using a pager:

more /etc/rc.d/rc3.d/S20network

Generally, you’ll find that distribution vendors have included helpful com-

ments and descriptions in each of the scripts that are accessible this way.

These can help you to decide whether or not a given script and its related

service are right for you.

If you would like to disable and reenable services for test purposes while the

system is running, you can generally call each of the scripts in the init.d

directory by hand with one of three arguments:

start Starts the service if it isn’t already running.

stop Stops a running service.

restart Stops a running service and then starts it again, usually to

adopt new changes made to configuration files.

Creating User Accounts Securely
Now that services are all up and running (or not running) as you’d like them to be, it’s

time to take a look at user accounts. Though many small-system administrators never

give this process a second thought and simply proceed with the adduser command once

Linux installation is complete, the creation of accounts must be as secure as the rest of

the system if compromise is to be avoided.

In fact, before adding users, it is important to ensure that shadow passwords are active on

the system. Then, because each vendor’s implementation of adduser varies, and some

adduser commands don’t even function, security-minded administrators will add each

user by hand to ensure that all information for the user account is entered correctly.

Shadow and MD5
Before taking the time to create user accounts, you should ensure that both shadow pass-

words and MD5 encryption are installed and running on your system. If no related pack-

age is available with your distribution, MD5 passwords may be foregone, but if your

distribution doesn’t support shadow passwords, you should upgrade to a newer distribu-

tion immediately. Shadow provides a way to protect your user passwords against public

access; without shadow, your /etc/passwd file contains all of your user passwords, visi-

ble to the entire world—a huge security risk!

To see if shadow passwords are active on your system, check for the existence of an

/etc/shadow file, which should be readable by root alone:

$ cat /etc/shadow
cat: /etc/shadow: Permission denied

If instead you find that there is no shadow file present or that the shadow file is readable

by a normal (non-root) user, then shadow either is not installed or is incorrectly installed

on your system.

System and User Fundamentals 77

5

For example, to shut down the samba service temporarily to see if your net-

work can do without it, you’d use this:

/etc/rc.d/init.d/samba stop

If you find that you really need it, you can start it again with a command

like this one:

/etc/rc.d/init.d/samba start

This trick will work with most Linux distributions that use a SystemV-style

configuration. Note that any changes made this way are not permanent and

will disappear when the system is rebooted. These types of changes are

therefore for testing only.

Nearly all current distributions install shadow passwords by default, and many of them

install MD5 encryption by default as well. If you can’t find the /etc/shadow file, check

your distribution CD or FTP site. In most cases, if your distribution medium contains a

package called shadow or something similar, just installing it with rpm or dselect will be

enough to install and activate shadow passwords on your system. To be sure, take a look at

your /etc/passwd file. If you see anything other than an x in the second field of any user’s

entry, use the pwconv program to update the /etc/passwd and /etc/shadow files correctly.

Adding a User, Step 1: /usr/sbin/groupadd
The default group behavior in most Linux distributions is to place all user accounts in a

single group, usually group 100, called users. Clearly, forcing all users’ files to be owned

by the same shared group is a risk to the integrity of each user’s data. Thus, it is wiser to

give each user a private group—a group to which only the user in question will belong.

To do this, choose a number for the user’s group and call /usr/sbin/groupadd to create

the group. In the interest of clarity, it is best to give all user accounts numbers within a

certain range (for example, from 6000 to 6999) that is higher than all existing group ID

numbers and is set aside exclusively for users. To find the highest group number used so

far, issue this command:

cat /etc/group | cut -d: -f3 | sort -n

Once you’ve chosen a group number for the new user, call the groupadd binary to create

the new group, supplying the user’s chosen login name as the final argument:

/usr/sbin/groupadd -g 6001 johnB

Depending on how the users group is used on your system, you may also want to add

the user to the list of members for the users group. To do this, simply edit the /etc/

group file with vi or a similar editor and append the user’s login name to the comma-

separated list of users members.

78 Hour 5

Many older versions of shadow that shipped with Linux systems are exposed

to a serious compromise risk by a buggy /bin/login binary, which can be

exploited by a cracker to gain root access on your system.

If your distribution is over a year old, be sure to check your distribution ven-

dor’s Web site for security updates to the shadow package or, better yet,

acquire a more recent Linux distribution.

Adding a User, Step 2: /usr/sbin/useradd
Now that a group has been created for the new user, we can create a login account for

him. The default account creation behavior in most Linux distributions is also not very

secure, so it is not a good idea to use high-level tools or even the adduser script to create

accounts. Instead, we’re going to use the comparatively low-level useradd. The useradd

command is fairly easy to use; simply supply the -u (user ID number), -g (group name),

-d (home directory) and -m (make home directory) arguments, followed by the name of

the user to create.

Continuing with our example, since we created group number 6001 called johnB, our

useradd command will look like this:

/usr/sbin/useradd -u 6101 -g johnB -d /home/johnB -m johnB

This will create a user called johnB, place him in the group called johnB that has a

matching number, place his home directory at /home/johnB, create the home directory,

and copy all of the template files from /etc/skel to it.

Adding a User, Step 3: passwd and chage

Now that you’ve created the user’s group, account, and home directory, the user can log

in. However, no password has yet been assigned to this account—an unacceptable secu-

rity risk unless the user will be logging in and choosing a password immediately.

On larger systems, it may be necessary to install a random password generator, but on

smaller systems it’s generally enough for the system administrator to assign an interim

password, which will last until the first time the user logs in:

passwd johnB

Choosing this interim password isn’t enough, however. We want to be sure that johnB

changes the password immediately to something of his own choosing. More to the point,

we also want to make sure than johnB will change his password every so often so that

the password doesn’t become stale and more easily guessable. This is done with the

chage command, which controls account “aging” on Linux systems. Possible arguments

to the chage command are shown in Table 5.2.

TABLE 5.2 Possible Arguments to the chage Command

Argument Description

-m N N = The number of days the user must wait between password changes, or 0 to dis-

able the counter.

-M N N = The number of days after which the user must again change his password, or 0

to allow passwords to exist indefinitely.

System and User Fundamentals 79

5

-d N Indicates that the password was last changed N days after epoch (January 1, 1970).

This number is normally maintained automatically.

-I N N = The number of days of inactivity (no logins) after a password has expired

before the account is locked due to neglect, or 0 to allow an account to be

accessed any number of days after the password has expired.

-E MM/DD/YY The month, day, and year on which this account will expire, or -E 0 if the account

should never expire.

-W N N = The number of days in advance to warn the user of pending password expiration.

Here’s a sample command for dealing with password management:

chage -m 0 -M 90 -d 0 -I 0 -E 0 -W 10 johnB

This command forces johnB to change his password immediately upon first login. It also

forces him to change his password every 90 days thereafter, giving him 10 days advance

warning before a change will be required.

80 Hour 5

TABLE 5.2 continued

Argument Description

It is a good idea to set all of these options explicitly when calling chage,

because some older versions of Pluggable Authentication Modules (PAM),

which is responsible for password management in most recent Linux distrib-

utions, don’t acknowledge any of these settings unless they’re all explicitly

set to some value.

Once this change has been made, johnB’s account is both complete and securely created,

and he can log in at any time.

Summary
In this hour, we covered some security-oriented fundamentals related to normal system

administration and account management, including

• Correct use of the /etc/securetty, /etc/shells, and /etc/skel/.bash_logout

files for increased security.

• Editing of the SysV-style init script directories to enable or disable launching of

various services during system startup.

• Correct methods for securely adding user accounts, including the creation of user-

private groups and password and account expiration dates.

• The importance of shadow, md5, and PAM to modern Linux distributions as a

method for maintaining the integrity of the system passwords database.

With each of these topics covered, we’re now ready to tackle in-depth security configura-

tion in the hours that follow.

Q&A
Q My system doesn’t use a SysV-style init script configuration. How do I start

and stop services?

A In general, the only way to enable and disable startup services on non-SysV init

systems is to follow the init process logically and edit the necessary shell scripts by

hand.

Q Aren’t there any graphical tools to manage SysV-style init scripts?

A Yes, there are many of them for X users, plus several text-mode tools. Unfortunately,

each distribution chooses to use a different tool to manage these init scripts, so in the

interest of creating a distribution-independent text, we didn’t discuss any of them.

Q Isn’t it really a bad thing to force users to change passwords regularly?

A There is some debate on this issue. One school of thought says that a user who isn’t

ever forced to change his password will begin to use the same password from system

to system and for years on end, clearly leaving every account he holds vulnerable.

The other school of thought says that users who change their passwords often are

less likely to choose securely, since they need more help in remembering so many

recent passwords.

As a system administrator for your own systems, it’s up to you to decide.

New Terms
adduser A vendor-supplied script that makes use of several user management com-

mands such as useradd, groupadd, and chage to automate the process of adding new

users. Some adduser scripts historically have been less than optimal.

shadow An extension to the normal password handling capabilities of a Unix-like

system that stores user passwords in the non–public-readable /etc/shadow file rather

than the public-readable /etc/passwd file.

System and User Fundamentals 81

5

SysV-Init A style of init script configuration that places a series of symbolic links

pointing to centralized service scripts across a number of directories, one for each run-

level, usually named rc0.d through rc6.d on Linux systems.

user-private group A group created solely to hold a single user with a matching user-

name and UID. This is done to prevent a situation in which all users share the same GID.

Exercises
1. Write a small bash script to automate the process of adding users as we’ve dis-

cussed it in this hour. The script should create user-private groups and expiration

properties that you as an administrator can live with.

2. Using the name of each script and the comments at the top of each script as clues,

try to identify each script in the /etc/rc.d/init.d or /etc/init.d directory—

what service it starts and the role of that service in your system.

82 Hour 5

HOUR 6
TCP/IP Network Security

Security is the focus of every hour in this book, but if there’s one chapter

here that’s more important than all of the others, it’s this one, which con-

cerns itself with securing the core of the Linux TCP/IP service request–

handling mechanism.

TCP/IP stands for Transmission Control Protocol/Internet Protocol and is the

basic network technology used by Unix-like systems and the Internet as we

know it today. You may have heard the term “wide open” or “port scan” in

discussions about Internet or TCP/IP security. These terms have a lot to do

with the configuration of two aspects of a network-enabled Linux system:

the inetd daemon responsible for handling nearly all incoming network

requests and the TCP wrappers package, which enables you to accept or

deny requests on a system-by-system or network-by-network basis.

Toward the end of this hour, we’re also going to look at configuring the sys-

tem logger to report the right kinds of events in the right ways. This will

allow you as an administrator to maintain a more secure system and under-

stand what happened if something goes wrong.

Securing inetd, the Internet Daemon
You probably understand already that most network services on Unix-like systems are

associated with a specific daemon. For example, File Transfer Protocol sessions are man-

aged by in.ftpd, Telnet or remote login requests are handled by in.telnetd, network

file system requests are handled by nfsd, and so on.

But you probably also have noticed that most of these daemons don’t run all the time. In

fact, of all major network service daemons, only two, httpd and sendmail, routinely are

run on a continuous basis. When an incoming FTP or Telnet request is received, who’s

responsible for starting in.ftpd or in.telnetd to handle the connection?

The answer to this question is inetd, a daemon whose major responsibility is to listen to

a broad range of network ports and start service daemons dynamically in response to

incoming requests. For smaller systems, this is a boon representing a significant amount

of saved memory that would otherwise have been dedicated to keeping a large number of

service daemons running all the time.

Why inetd Is Risky
The design of inetd allows many services to be multiplexed in a way through a single

request broker, saving memory and resources. But on most smaller systems, the vast

majority of the network services inetd is capable of managing are never used. Most

homes and small businesses don’t run a network time server, a network news (Usenet)

spooler, a Unix-to-Unix copy program (UUCP) node, or even a diskless boot server.

What most Linux users don’t realize is that Linux distributions traditionally have left all

of these services on in the inetd configuration, meaning that all of these types of

requests, when received across the network, will be serviced by your system. Even

though many of them are password protected or employ some other minimal means of

protection, any accepted network connection at all should be viewed as a potential sys-

tem compromise.

Of course, we already know that this is the nature of networks. Since they are designed

to accept incoming connections from at best uncertain sources, they are always risky

from an absolute security standpoint. In the case of inetd, however, the risk should be

minimized.

The /etc/inetd.conf File
Luckily, the configuration file for such an essential and central network daemon as

inetd is surprisingly clear and simple. All configuration for the daemon resides in the

84 Hour 6

/etc/inetd.conf file, which is read each time the inetd daemon is launched or

restarted.

In all but the most special of circumstances, all that needs to be done to secure the inetd

daemon is to comment out judiciously with a hash mark (#) all incoming request types

that shouldn’t be managed by inetd any longer. Each line in the file is a complete rule

composed of a series of whitespace-separated keywords or lists. The format is

service socket-type protocol flags user server args

The meaning of each of these fields is shown in Table 6.1.

TABLE 6.1 Fields in a Line from /etc/inetd.conf

Field Description

service The name of the service the line relates to. Many of these (such as ftp

or telnet) will seem familiar to you, while some more esoteric services

may not.

socket-type Refers to the type of network socket involved; stream and datagram sockets

are the most common. Other types are documented in inetd(8).

protocol Specifies which type of low-level TCP/IP protocol is used in a particular con-

nection. Most services use either tcp or udp packets, and a complete list of

protocols can be found in /etc/protocols.

flags Any subset of several available arguments, which vary depending on the

socket type and protocol in use.

user The user who will own the connection’s process. This is helpful in some cases

because a few services don’t require full root permissions, meaning that they

can be run more securely.

server The path to the actual program to which inetd will pass control of the incom-

ing connection request, such as in.telnetd or in.ftpd.

args Any arguments that should be passed to the server program.

While all this may look very daunting and is certainly covered in greater detail in any

book on the TCP/IP protocol suite, our interest this hour is only in the first field of each

line—the name of the service in question.

Simply put, your job is to move through the /etc/inetd.conf file one line at a time,

commenting out any services that you don’t recognize as being services you intend for

your system to provide. For example, take a look at the /etc/inetd.conf snippet in

Listing 6.1.

TCP/IP Network Security 85

6

LISTING 6.1 Snippet from Pristine /etc/inetd.conf

ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd -l -a
telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd
shell stream tcp nowait root /usr/sbin/tcpd in.rshd
talk dgram udp wait nobody.tty /usr/sbin/tcpd in.talkd

This section of the /etc/inetd.conf file is concerned with four common services. Let’s

assume, for the moment, that you intend to provide only one of them on your system:

File Transfer Protocol. Are any of the others needed? The telnet service is for incoming

login requests via Telnet, which you don’t want to allow. The shell service allows

remote systems to execute shell commands on your system—certainly not something you

intend to make available to the outside world. The talk service handles incoming

requests for user-to-user chat via the ancient instant messenger–like BSD talk pro-

gram—also not needed.

Clearly, you can comment out the three services you don’t want from this section of the

file without suffering any loss in terms of functionality. The updated snippet is shown in

Listing 6.2.

LISTING 6.2 Updated /etc/inetd.conf Snippet

ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd -l -a
#telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd
#shell stream tcp nowait root /usr/sbin/tcpd in.rshd
#talk dgram udp wait nobody.tty /usr/sbin/tcpd in.talkd

Of course, the entire /etc/inetd.conf file on an average Linux system is much longer

than this. In fact, many software packages for Linux will add their own services to

/etc/inetd.conf. For example, if you choose to run an electronic bulletin board system

or discussion room, you may find that these types of software packages have added sev-

eral lines to the file.

86 Hour 6

Some services may have more than one line in the /etc/inetd.conf file,

each with a different socket or protocol configuration. In such cases, to dis-

able a service, simply comment out every line that bears its name.

Even though the length of the /etc/inetd.conf file and the variety of services it man-

ages may make it seem daunting and important, there is a little secret among system

administrators: Commenting out a service should be the rule rather than the exception. In

nearly all cases, you can comment out every service in the file other than those that you

explicitly plan to provide—including those marked as “internal”—without any noticeable

loss of functionality. Doing so is more than just helpful. In today’s Internet-centric world

full of script kiddies, it’s essential.

TCP/IP Network Security 87

6

Instead of rebooting Linux each time you change /etc/inetd.conf, try issu-

ing the following command to cause just the inetd server to restart itself:

killall -HUP inetd

Issuing this command as root normally will cause any changes you’ve made

to /etc/inetd.conf to take effect immediately.

Just remember that, when it comes to /etc/inetd.conf, the rule is this: If in doubt,

comment it out. After all, if you want to re-enable a service later, it’s a simple matter of

removing a hash mark.

The /etc/services File
You may have been wondering just where the service names in the /etc/inetd.conf file

come from. They’re contained in the /etc/services file, which associates a human-

readable name with a port. It is the port that is really important to Linux when it comes

to handling service requests but, of course, humans don’t like to remember long lists of

numbers.

In most cases, feel free to leave the /etc/services file alone. It isn’t important for

TCP/IP security in the same way that the /etc/inetd.conf file is, but there is one way

in which it can be helpful.

Any TCP/IP-enabled Unix-like system can respond to incoming connections on a large

array of network ports. These ports can be thought of as a sort of switchboard for con-

nection requests. The request will be routed to a specific daemon such as in.ftpd or

httpd according to which daemon is listening to the port in question or which daemon

has been assigned that port by the inetd server. Each common TCP/IP service has been

assigned a default port by the Internet Corporation for Assigned Names and Numbers

(ICANN). For example, Web service (HTTP) normally resides on port 80, and File

Transfer Protocol normally answers on port 21.

Though it won’t challenge a knowledgeable cracker at all, some reduction in the number

of unwanted connection attempts to a specific service can at times be achieved by alter-

ing the port on which the service in question is listening for requests. Once you’ve

changed the port on which a service is listening, any user attempting to connect must

supply both a port number and a hostname in order to connect. For example, if you alter

Telnet services on my-system.net to listen on port 2401 instead of port 23, anyone con-

necting via Telnet will have to use a command such as this:

telnet my-system.net 2401

If the remote user fails to specify the new port on the command line, he will see some-

thing like this:

$ telnet my-system.net
Trying my-system.net...
telnet: Unable to connect to remote host: Connection refused

It would thus appear to the casual observer that your system doesn’t accept Telnet con-

nections at all. To change the port on which a service will listen, simply edit the port

number(s) in the second field of the service(s) you want to move and restart the inetd

daemon, using the technique described earlier. For example, compare the file snippets in

Listings 6.3 and 6.4 and note the change in the port numbers for the FTP service.

LISTING 6.3 /etc/services, Original Ports

chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp-data 20/tcp
ftp 21/tcp
ssh 22/tcp
ssh 22/udp
telnet 23/tcp

LISTING 6.4 /etc/services, Modified Ports

chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp-data 20/tcp
ftp 9124/tcp
ssh 22/tcp
ssh 22/udp
telnet 23/tcp

Now, though the FTP data connection is still on its original port, the incoming FTP

request connection is on port 9124 rather than the default port, meaning that users will

need to know which port to connect to in order to FTP to your system. This kind of weak

security-oriented measure is commonly known as security by obscurity.

88 Hour 6

Though modifying /etc/services may seem like a good idea, there are a couple of

caveats.

First, the list of ports contained in /etc/services is guaranteed only to affect those ser-

vices managed by the inetd daemon. Services that usually are started on a standalone

basis by the rcN.d scripts discussed in Hour 5, “System and User Fundamentals,” may

not obey the port hints specified in /etc/services.

Next and more importantly, remember that altering the ports in the /etc/services file

leads only the casual observer to think that a given service isn’t available. Crackers will

use a piece of software called a port scanner to get a list of every active port in your sys-

tem before trying to break in, so changing default ports won’t help under those circum-

stances. In the end, the inconvenience of having to remember at which alternate ports

your services lie may outweigh any security-oriented benefit.

You’ll have to use your own discretion and judgement with regard to your specific cir-

cumstances for modification of the /etc/services file.

Using TCP Wrappers Properly
You may have noticed in Listing 6.1 that server programs listed in the last field of each

line in /etc/inetd.conf aren’t actually what you might have expected. For example, in

the case of the FTP service, rather than just listing the path to a binary such as

/usr/sbin/in.ftpd, the file actually contains the path to another binary,

/usr/sbin/tcpd, which is then followed by the correct server program. If you examine

your own /etc/inetd.conf file, you should find that this is the case with the majority of

external services.

TCP/IP Network Security 89

6

Most of the lower ports below 500 are either reserved by ICANN or are in

common use, so when deciding on your own ports, it’s best to pick a large

number—usually somewhere in the thousands. You may want to avoid ports

6699, 7777, 8888, and other repeating-number ports, which are now com-

monly in use by Napster, as well as port 6346, the default for Gnutella.

If you don’t find any references to /usr/sbin/tcpd in your /etc/inetd.conf

file, and the /usr/sbin/tcpd binary isn’t present on your system, your sys-

tem is not protected by TCP wrappers.

Check your distribution media’s package list immediately and install TCP wrap-

pers now. If no such package is available for your distribution, upgrade now!

TCP Wrappers Explained
The /usr/sbin/tcpd binary is the core of a security measure called TCP wrappers,

included and installed by default with every Linux distribution for a number of years.

TCP wrappers provide an absolutely essential extra layer of security for the services

managed by inetd.

When TCP wrappers are installed, instead of simply calling the in.telnet daemon for

an incoming Telnet connection, inetd instead will call /usr/sbin/tcpd, supplying the

correct server, in.telnet, as an argument. The /usr/sbin/tcpd program checks the

identity of the requesting system against a list of rules that specify who is allowed to

connect and who isn’t. If the requesting system is in /usr/sbin/tcpd’s list of denied

systems for this type of service, the connection will be refused.

In short, TCP wrappers provide a way for you to disallow incoming connections from

specific systems before the requester even gets the chance to enter a login or password.

In the most basic sense, this prevents a ham-handed cracker on an unknown system

somewhere from connecting over and over and over again until he is able to guess a

working login/password combination.

TCP wrappers also help to mitigate a more serious threat, however: security bugs or

flaws. As the Internet and Internet services evolve, new bugs always are being found in

the daemons that provide these services. Some of these bugs are harmless, but many of

them are security flaws. For example, many older daemons were subject to various kinds

of buffer overruns. In the simplest sense, a buffer overrun is a way of breaking into a sys-

tem that is willing to present a login prompt regardless of whether a valid login/password

combination can be discovered or not.

Clearly, any security measure that will allow you as the administrator to accept or deny a

connection according to the remote system’s identity before any real interaction or

authentication can take place is a helpful and important measure.

Healthy Paranoia (The /etc/hosts.deny File)
The first of the two configuration files that govern the behavior of /usr/sbin/tcpd is the

/etc/hosts.deny file. This file gives a list of rules that specify which remote systems

should be denied requests to various services. It is best to think of this file as the general

rule for incoming connections.

The TCP wrappers software is actually quite complex and flexible; the full specification

of the format for /etc/hosts.deny can be found in hosts.deny(5) but, for our pur-

poses, the basic format of a line in the file can be described this way:

service : host(s) [: action]

90 Hour 6

The service is any one of the program names that might be passed from inetd in

response to an incoming connection request. The host(s) are those hostnames or IP

numbers to which this rule applies. An optional action can be supplied and will be exe-

cuted by the shell when this rule is triggered.

A number of special words and wildcards are available to make formatting of the config-

uration file more convenient. These wildcards are shown, along with their meanings, in

Table 6.2.

TABLE 6.2 Some TCP Wrappers Special Words

Word Description

ALL Wildcard; matches any hostname or service name.

KNOWN Wildcard; matches any user with a known name or any host for which both name

and address are known.

LOCAL Wildcard; matches any hostname that does not contain a dot character.

PARANOID Wildcard; matches any host whose name does not appear to match its address.

UNKNOWN Wildcard; matches any connecting host whose identity can’t be determined.

EXCEPT Operator; allows administrator to use a phrase like ALL EXCEPT N.N.N.N when con-

figuring hosts or ALL EXCEPT in.ftpd when configuring services.

With these keywords, we’re now ready to assemble a general “deny” policy for incoming

connections. On a local area network that wants to provide services only to other

machines on the local network (and never to machines from the Internet), the following

single line is all that is needed in the /etc/hosts.deny file:

ALL : ALL

This is indeed a paranoid setting. This means that all connection requests from all hosts

anywhere will be denied. This is a very safe /etc/hosts.deny file. Of course, we did

want to allow machines from the local network to access services, and we may also want

to allow for things like anonymous FTP from the outside world, so we need to create a

few exceptions. Though we could mangle the /etc/hosts.deny file with multiple rules

and the EXCEPT operator, another file has been created just for the purpose of making

exceptions to the rules defined in /etc/hosts.deny.

Sparing Exceptions (The /etc/hosts.allow File)
The /etc/hosts.allow file follows the same format used in the /etc/hosts.deny file,

but its purpose is the inverse. Any incoming connection requests that match a rule in

TCP/IP Network Security 91

6

/etc/hosts.allow will be allowed, superceding any matching rules in

/etc/hosts.deny.

One important exception we want to create is for machines on the local network.

Assuming that your local network is built using the 192.168.1 subnet (so that all

machines in your network have an address like 192.168.1.N), you would add the follow-

ing rule to your /etc/hosts.allow file to allow any host on the local network to connect

to any service currently managed by inetd:

ALL : 192.168.1.

This line will match any system whose reported IP number is in the 192.168.1 subnet.

Now, suppose you also wanted to grant this kind of general-purpose access to a single

trusted system on the Internet known as berts-bar.outdoorbars.net. You could amend

the line to read:

ALL : 192.168.1. berts-bar.outdoorbars.net

Now, suppose you also need to grant connection requests for FTP because you’re run-

ning an anonymous FTP server, and you also want to accept all incoming talk requests

because you enjoy chatting with whoever happens to dial you up. In that case, you would

add the following:

in.talkd in.ftpd : ALL

Now your system is willing to accept incoming connections for in.talkd and in.ftpd

from anyone. However, you’re still a little wary. Specifically, you’re not sure you want to

grant access to anyone whose host identity can’t be determined. You would amend the

line to read:

in.talkd in.ftpd : ALL EXCEPT UNKNOWN

Finally, suppose you remember that you sometimes find yourself using a system on a

separate network whose hostname is wks9.xyz.com, and that you do at times need to

Telnet from that machine to this one. You add one final line to /etc/hosts.allow to

allow for this connection as well:

in.telnetd : wks9.xyz.com

Now you’ve constructed your set of exceptions to the blanket deny rule. The complete

file with your comments is shown in Listing 6.5.

LISTING 6.5 The Sample /etc/hosts.allow File

Allow all local connections and connections from Bert
ALL : 192.168.1. berts-bar.outdoorbars.net

92 Hour 6

Allow talk and ftp from any identifiable source
in.talkd in.ftpd : ALL EXCEPT UNKNOWN

Allow telnet from one specific host
in.telnetd : wks9.xyz.com

With your paranoid /etc/hosts.deny in place and your small list of exceptions, your

inetd daemon and all services it manages are much better protected than they were

before.

More TCP Wrappers Tricks
There is one more important trick that can be performed with TCP wrappers: the optional

execution of a shell command when a rule is triggered. Though the possibilities are limit-

less, we’re going to make only one simple change to the /etc/hosts.deny file to aid in

maintaining a secure system.

Recall that the /etc/hosts.deny file we constructed was very simple and contained only

the following line:

ALL : ALL

Wouldn’t it be nice to add a shell command to this rule that caused a log entry to be

made each time the rule was triggered? That way, we could see in the log when unautho-

rized connection attempts were made. The amended line is a little more complex and

looks like this:

ALL : ALL : (/bin/echo \
“$(/bin/date +’%%b %%d %%H:%%M:%%S’) %H TCPW: %d \
>> /var/log/secure)

The shell command has been spread across multiple lines using the backslash (\) escape

and then enclosed in parentheses to ensure a clean subshell. The net effect of the line is

to cause an entry like this one to echo to the /var/log/secure file when the rule is trig-

gered:

Oct 25 00:14:23 myhost TCPW: in.telnetd

This log entry would indicate that on October 25 at nearly a quarter past midnight, some-

one attempted to connect via Telnet and the connection was denied.

You may have noticed that the format given to the date command in this example is

slightly off. Specifically, each format string in date is marked by two percent symbols

(%%) rather than just a single percent symbol (%). This is done intentionally; /usr/sbin/

tcpd contains a number of format strings of its own (such as %H for server hostname and

TCP/IP Network Security 93

6

LISTING 6.5 continued

For complete details on executing shell commands from /etc/hosts.deny and /etc/

hosts.allow and for a list of format strings supported in these shell commands, please

see hosts.deny(5) or hosts.allow(5).

Using tcpdchk and tcpdmatch

If this all seems a little confusing and you’d like a quick and easy way to test your

/etc/hosts.allow and /etc/hosts.deny configurations, you’re in luck. Two utilities

are included to aid in the construction of working rule files.

The tcpdchk file simply reads both of your rule files and ensures that there are no prob-

lems with them. Possible problems include both incorrect syntax and inconsistencies

between /etc/hosts.allow, /etc/hosts.deny and other files like /etc/inetd.conf. To

run the checker, simply enter the following:

tcpdchk

If there is no output, your files are correctly formatted, and tcpdchk was unable to find

any obvious problems or warnings. If there were problems or warnings, you will get a

clear, concise, but brief list of them, which should help you to correctly format and con-

figure the two files.

The tcpdmatch utility is used once tcpdchk has verified your syntax to see if your rules

actually do what you intended for them to do. The syntax is simple:

tcpdmatch daemon host

For example, to see what would happen if the host at 192.168.1.59 were to make a

Telnet request to the system, you’d use

tcpdmatch in.telnetd 192.168.1.59

In each case, tcpdmatch will give you a list of each triggered rule, in the order in which

it was encountered. You’ll also be informed if any shell command was executed. Be sure

94 Hour 6

Some TCP wrappers installations are compiled with an optional flag that

alters shell command behavior slightly. If you find that the example above

doesn’t work for you, you may need to insert the word spawn after the semi-

colon and before the left parenthesis to indicate that a shell should be

spawned.

%d for daemon name), but we wanted these strings passed on to the shell, so we escaped

each percent symbol that should remain with an additional percent symbol.

to test a reasonable number of sample cases using tcpdmatch, especially if your

/etc/hosts.deny or /etc/hosts.allow file begins to get complex or lengthy.

Logs, syslogd, and Security
The syslogd daemon is your historian on a Linux system. Each time a program or ser-

vice wants to make a log entry, it connects to syslogd and supplies details about what

type of log entry is being made, as well as the log entry itself. When an attack has been

attempted or (even worse) successful, it is only by studying your logs that you will be

able to understand what has happened, who did it, and how you can fix the problem.

At this point, we’re not terribly concerned with all the inner workings of syslogd or the

ways in which it allows you to log things. We simply need to be sure that enough infor-

mation is being logged for us to have something to look at later on.

Log Everything
The behavior of the system logger is controlled by the /etc/syslog.conf file, which

contains a set of rules that will direct different types of log entries to different files in the

system. Our concern here is to ensure that everything is being logged somewhere and

that authorization- or emergency-related log entries are also being logged somewhere

special.

To ensure that everything is logged to the /var/log/messages file, find the line that

refers to the file and edit it to look like this:

. -/var/log/messages

If you’re uncomfortable modifying the set of messages that will be sent to

/var/log/messages, you can create a new entry at the end of the file:

. -/var/log/everything

The dash (-) in front of the pathname for each log file instructs syslogd not to call sync

after each entry to this specific log. Create a separate log for convenience that holds only

authorization and emergency information. This is convenient later when you only want to

see log entries that might be directly security related:

auth.*;authpriv.*;*.emerg /var/log/secure

You will now have at least one “everything” log and one authorization log. Most Linux

distributions now install and run (via cron) automatic log-rotating software to keep

system logs from eating too much space. If you find that this is not the case on your sys-

tem, visit a Linux software site such as freshmeat.net and download and install a log

rotater of your own.

TCP/IP Network Security 95

6

Log Elsewhere
If you’re on a local area network, it is ideal that you maintain logs across systems as

well. For example, if you have two hosts—pokey (a desktop machine) and webftp (the

server)—consider duplicating webftp’s log entries on pokey. To continue our example,

you might also choose to add the following two lines to your /etc/syslog.conf file:

. @pokey
auth.*;authpriv.*;*.emerg @pokey

This way, you’ll have duplicate logs, and if webftp gets compromised and its logs are

erased, you can still inspect them on pokey and try to find out what happened.

Of course, you’ll have to instruct pokey to accept log entries from webftp. To do this,

you’ll have to edit the init.d/syslog script on pokey so that it calls syslogd with the

-r option, thereby instructing it to accept messages from other systems.

Summary
In this chapter, you learned about the two pillars of TCP/IP security: the inetd daemon

and the TCP Wrappers package, at the core of which lies /usr/sbin/tcpd.

First, you learned to configure the inetd daemon with security in mind by editing

/etc/inetd.conf and /etc/services and changing them to suit your needs. In the case

of /etc/inetd.conf, a few hash marks (#) to comment out services out is enough to

make things secure. In the case of /etc/services, you learned how to move services

from port to port, should you choose to do so.

Then you learned that the TCP wrappers program /usr/sbin/tcpd allows you as a sys-

tem administrator to decide who gets to connect and who doesn’t, simply on the basis of

host identity. You then learned to construct a paranoid /etc/hosts.deny file with a few

exceptions listed in /etc/hosts.allow for systems that should have permission to use

various services.

Finally, after learning about inetd and TCP wrappers, you made some simple changes to

your /etc/syslog.conf file to ensure that you have good logs at all times, preferably on

several different systems.

Q&A
Q There are many services that I can’t identify in /etc/inetd.conf and /etc/

services. Couldn’t you have presented a table with a description of each one?

96 Hour 6

A Unfortunately, not really. Though a small set of services are common across all

TCP/IP-enabled systems, there are many, many services that can appear in

/etc/inetd.conf and /etc/services, having been added and being used by vari-

ous applications. It is folly to try to track down and document them all. Instead,

simply know in certain terms what you want to offer to the outside world and offer

only that.

Q I changed my File Transfer Protocol server’s port from 21 to something else,

and now I can’t connect to the system with ncftp, even when I specify the cor-

rect port.

A Some early or beta versions of ncftp version 3 that shipped with Linux distribu-

tions always tried to connect to the default port, whether or not another port was

specified explicitly. Either use the traditional ftp client or upgrade to a newer ver-

sion of ncftp.

Q The “paranoid” policy for /etc/hosts.deny seems just that—paranoid. Isn’t it

unnecessarily strict?

A In a word, no. You should always know exactly who should and who shouldn’t be

able to connect to your system for each service you offer. If a given service should

be offered to everybody, it’s easy enough to add one line for that service with an

ALL wildcard to /etc/hosts.allow. Note that there may be some compile-time dif-

ferences related to the PARANOID word in the hosts.allow and hosts.deny files on

various distributions. See the hosts_access(5) manual page for details.

New Terms
inetd The Internet daemon. This daemon is responsible for managing most of the

incoming network requests on a Linux system and for starting the specific individual

servers to handle such requests.

paranoia The cardinal virtue in the world of network security. A basic philosophy of

paranoia means that you deny first and make exceptional allowances on a case-by-case

basis rather than allowing first and making exceptional refusals on a case-by-case basis.

security by obscurity A weak type of security that tries to employ the ignorance and

incompetence of a would-be attacker in your defense. It is never very useful as a primary

means of security, but it can be helpful in a holistic, “every-little-bit-counts” approach.

syslogd The system logger. This daemon is responsible for accepting log entries from

various types of Linux software or services and routing these log entries to various files,

as specified in the /etc/syslog.conf file.

TCP/IP Network Security 97

6

TCP wrappers In essence, the /usr/bin/tcpd binary and related configuration files.

This small and efficient piece of software allows all incoming requests for all services

managed by inetd to be connected or denied connection based on connecting host iden-

tification and the requested service type.

TCP/IP Transmission Control Protocol/Internet Protocol, the basic network technology

used by Unix-like systems and by the Internet at large.

Exercises
1. Try temporarily editing /etc/inetd.conf and /etc/services to accept Telnet

requests both on the default port and on port 5001, just to get a feel for the way in

which the two files interact.

2. Construct a good, paranoid /etc/hosts.deny file and a functional set of excep-

tions to go in /etc/hosts.allow that suit your circumstances. Test your new con-

figuration thoroughly with tcpdcheck and tcpdmatch and then test it again by

trying to trigger the rules from a remote system.

98 Hour 6

HOUR 7
File System Security

This hour, we’re going to learn to use the security-oriented features of the

Linux file system. In terms of its user interface, the Linux file system can be

described as Unix-like. It is a permissions-based file system, meaning that

access to various system resources is determined by ownership and access

rights explicitly granted by the system administrator. This file system secu-

rity model can generally be made to work very well. However, it can’t work

for you if you don’t understand how it functions and take steps to employ it

properly.

Understanding Permissions
The Linux file system security model works by assigning two sets of proper-

ties to each file in the system. These properties are stored automatically on

the disk, along with the file to which they apply. Since most devices in the

system are also referenced by a file (known as a device node), this security

model applies to many raw devices as well. The two sets of properties given

to each file or each device are known as ownership and access rights.

File Ownership
Each file must be owned by exactly one user and exactly one group. To see evidence of

this, use the ls -l command to get a directory listing. A sample directory listing is

shown in Listing 7.1.

LISTING 7.1 Sample Output of the ls -l Command

total 1531
drwxr-xr-- 2 root root 1024 Nov 8 14:04 junk
-rw-r--r-- 1 lenny users 29065 Nov 1 15:52 fiona.jpg
-rw-rw-r-- 1 jeff jeff 1560558 Jul 25 23:09 lpg28539.pdf
-rwxr-xr-x 1 root uucp 32 Nov 8 13:31 temp-script

In this listing, there are three files: fiona.jpg, lpg28539.pdf, and temp-file. Their

ownership can be described as follows:

• The directory junk is owned by the superuser, root, and belongs to the superuser

group root as well.

• The file fiona.jpg is owned by the user called lenny and by the group called

users.

• The file lpg28539.pdf is owned by the user called jeff, who also has his own

user-private group, which owns the file, called jeff.

• The file temp-script is owned by the superuser, root, and belongs to the group

called uucp.

Any user listed in the /etc/passwd file can be the owner of a file, also known as the

file’s user. Similarly, any group listed in the /etc/group file can be the group owner of a

file, also known simply as the file’s group. What exactly does user and group ownership

mean for security?

Access Rights
Take another look at Listing 7.1. You may notice that each file’s directory entry begins

with a series of symbols that looks something like this:

-rw-r--r--

This block of symbols describes the access rights specification for the file in general,

more commonly known as the file’s permissions. These access rights or permissions give

Linux instructions for handling all user requests to access the file, given the context of its

user and group ownerships. There are 10 permission properties, and thus a permissions

list is always 10 characters long. It is formatted according to the following rules:

100 Hour 7

• The first character position in the list indicates a special file type.

• Positions 2–4 give permissions for the file’s user.

• Positions 5–7 give permissions for the file’s group.

• Positions 8–10 give permissions for everyone else—any user who neither is the

user of the file nor belongs to the group that owns the file.

A number of different characters can occur in the first position:

• A d indicates that the file is a directory.

• A b indicates that the file is a system device that uses block input/output to talk to

the outside world (usually a disk).

• A c indicates that the file is a system device that uses sequential character

input/output to talk to the outside world (examples include serial ports and sound

devices).

• A dash character (-) in the first position indicates that the file is a normal file with-

out special properties.

Positions 2–4, 5–7, and 8–10 each apply to the user, the group, and everyone, respec-

tively:

• Read access: The first character in each range (characters 2, 5, and 8) controls

read access to the file. The presence of an r indicates that the user, members of the

group, or everyone is allowed to read data from this file. The presence of a dash

instead of an r indicates that read attempts will be denied for the role in question.

File System Security 101

7

FIGURE 7.1

Characters 2, 5, and 8

control read access for

user, group, and every-

one, respectively.

Other users read

Group read

User read

• Write access: The second character in each range (characters 3, 6, and 9) controls

write access to the file. A w indicates that the user, members of the group, or

everyone is allowed to write data to this file. The presence of a dash instead of a w

indicates that write attempts will be denied for the role in question.

• Execute access: The third character in each range (characters 4, 7, and 10) con-

trols execute access to the file. An x indicates that the user, members of the group,

or everyone is allowed to execute this file if it is a program or a shell script. The

presence of a dash instead of an x indicates that execute attempts will fail for the

role in question.

102 Hour 7

Other users write

Group write

User write

FIGURE 7.2

Characters 3, 6, and 9

control write access

for user, group, and

everyone, respectively.

FIGURE 7.3

Characters 4, 7, and 10

control execute access

for user, group, and

everyone, respectively.

Other users execute

Group execute

User execute

When the file in question is a directory rather than a normal file, a few special details

apply to read, write, and execute permissions:

• Read access: The presence of an r in position 2, 5, or 8 indicates that the user,

members of the group, or everybody, respectively, will be allowed to list the

contents of this directory. The presence of a dash instead of an r indicates that

directory list attempts will fail.

In order for a script to be executed, a user or group member must have both

read and execute permission for it. The same does not hold true for binary

executables, for which no read access is required in order for execution to

take place.

• Write access: The presence of a w in position 3, 6, or 9 indicates that the user,

members of the group, or everybody, respectively, will be allowed to create or

delete files stored in this directory. The presence of a dash instead of a w indicates

that file create or delete attempts in this directory will fail.

File System Security 103

7

FIGURE 7.4

Characters 2, 5, and 8

control read access for

user, group, and every-

one, respectively.

File is a directory

Other users read

Group read

User read

FIGURE 7.5

Characters 3, 6, and 9

control write access

for user, group, and

everyone, respectively.

File is a directory

Other users write

Group write

User write

• Execute access: The presence of an x in position 4, 7, or 10 indicates that the user,

members of the group, or everybody will be allowed to execute files in this directory

and to make this directory their current working directory—for example, using the cd

command. The presence of a dash instead of an x indicates that attempts to execute

files in this directory or to make this directory the current working directory will fail.

File is a directory

Other users execute (visit)

Group execute (visit)

User execute (visit)

FIGURE 7.6

Characters 4, 7, and 10

control execute access

for user, group, and

everyone, respectively.

Only a file or directory’s user can change its access permissions, even if the file is

writable by everyone or the directory in which the file resides is writable by everyone.

Of course, the superuser, root, is the exception here: root can set permissions for any

file or directory in the system, regardless of ownership or existing permissions.

Permission Examples
While these rules are often confusing at first, in practice they are actually quite simple to

understand. The best way to learn about them is to study examples. Let’s step through

the entries in Listing 7.1 again, one by one.

drwxrwxr-- 2 root root 1024 Nov 8 14:04 junk

Because the character in the first position for junk is a d, we know that junk is a direc-

tory. The permissions in positions 2–4 are rwx, meaning that the user root will have per-

mission to list all of the files in junk, to create new files or delete existing files in junk,

or to make junk his current working directory.

The permissions in positions 5–7 are also rwx, meaning that members of the group root

will have identical access concerning the directory called junk—to list the directory, cre-

ate new files or delete old ones, and to make junk their current working directory.

The permissions in positions 8–10, however are only r--, meaning that users who are

not root and do not belong to the group root will have permission only to list the

directory. These users will not have the ability to create or delete files in junk, to run

executable programs in junk, or to make junk their current working directory.

Let’s look at another entry or two from Listing 7.1:

-rw-r--r-- 1 lenny users 29065 Nov 1 15:52 fiona.jpg

In this case, the first position is a dash (-), meaning that the file fiona.jpg is a normal

file without special properties. The file is readable by everyone: the user lenny, members

of the group users, and (because there is an r in position 8) by anyone in general. The

file is writable only by the user lenny. The file is owned by the group users, but because

there is no w in position 6, members of users will not be able to write to fiona.jpg.

Finally, fiona.jpg is not executable by anyone at all.

One last test case from Listing 7.1:

-rwxr-xr-x 1 root uucp 32 Nov 8 13:31 temp-script

The file temp-script is also a regular file. It is readable, writable, and executable by

the user, root. Members of the group that owns the file, uucp, can read the file and

execute it, but they cannot write to it. All other users can also read from and execute

temp-script but cannot write to it.

104 Hour 7

Modifying Permissions
The user of a given file or directory can change the permissions of the file using the

chmod command. There are two modes in which chmod can function: a symbolic mode,

which uses characters to modify a file’s permissions, and a numeric mode, which uses a

series of three numbers to modify a file’s permissions.

Using chmod in Symbolic Mode
Each invocation of chmod in symbolic mode can be used to either add (enable) or remove

(disable) permissions with respect to one or several files. When the plus (+) or minus (-)

mode is used in symbolic mode, permission modifications are made while leaving exist-

ing, unreferenced settings intact. When the equals (=) mode is used, permissions are set

explicitly to the set of permissions specified. The syntax is one of the following:

chmod [ugoa]+[rwx] file [file...] (add permissions)

chmod [ugoa]-[rwx] file [file...] (remove permissions)

chmod [ugoa]=[rwx] file [file...] (set permissions)

u represents a permissions change for the user, g for members of the file’s group, o for

other users (neither user nor group member), and a for everyone (user, members of the

group, and other users). To illustrate how chmod works, we’ll go over a few examples.

chmod ug+x file1.txt file2.txt

In this case, both file1.txt and file2.txt gain execute permission for the user and

members of the file’s group.

chmod o-rw privatefile.doc

Here, other users (neither user nor group owner) lose both read and write permissions for

privatefile.doc.

chmod ug=rwx,o=rw publicfile.wpd

File System Security 105

7

Permissions are checked from left to right when a user attempts to access a

file. For example, assume that the file fiona.jpg in the example above actu-

ally had the following permissions:

-r--rw-r--

Even if lenny is a member of the group users, he will not be able to write

to the file, since he is denied write permission in the leftmost match.

In this example, publicfile.wpd will now be readable, writable, and executable by the

user and members of the related group. Other users will be allowed to read from the file

and write to the file but not to execute the file as if it were a program.

Using chmod in Numeric Mode
In numeric mode, chmod uses a series of single-digit numerals to determine permissions

for a file explicitly. The syntax for using chmod in numeric mode is as follows:

chmod NNN file [file...]

The first N represents permissions for the user, the second for members of the file’s

group, and the third for all other users. The digit is either a zero (0) or a single-digit sum

of the values related to the permissions assigned. These values are shown in Table 7.1.

TABLE 7.1 Values for chmod Numeric Mode Permissions

4 Indicates that read permission should be present for the file or directory.

2 Indicates that write permission should be present for the file or directory.

1 Indicates that execute permission should be present for the file or directory.

When you are using chmod’s numeric mode, each of the three numeric digits must be a

digit, 0–7, constructed as a sum of the permissions the user wants to grant to this file.

Let’s look at some more examples.

chmod 710 script*.sh

In this case, any file matching the shell pattern script*.sh will be given the following

permissions: read, write, and execute for the user; execute only for members of the

related group; no permissions (no read, write, or execute) for other users who neither are

the user nor belong to the related group.

chmod 664 file.txt

Here, the file file.txt has been given read and write permissions for the user, read and

write permissions for members of the related group, and read permission for everyone

else in the system.

The most public permissions specification (read, write, and execute for everyone) when

given via chmod’s numeric mode looks like this:

chmod 777 myfile

By contrast, the most closed permissions specification (no read, no write, and no execute

for anyone at all) is given by

chmod 000 myfile

106 Hour 7

System administrators tend to be more fond of the numeric mode of chmod because it is

quicker and more obviously related to the format of umask (which we’re going to discuss

in the next section), while users tend to prefer chmod’s symbolic mode because it more

closely resembles the output of the ls -l command.

Using umask to Set Default Permissions
Clearly, the permissions given to various files throughout the system have a great effect

on the security of data owned by any given user. However, it would be annoying (and

nearly impossible) to set permissions explicitly on every file in a system, one by one, and

then to maintain such discipline for new files as each file is created. Distribution vendors

and package maintainers have already taken great pains in most cases to set correct per-

missions for various system files when they are installed to secure defaults. Therefore, it

generally isn’t necessary to step through all files on a Linux system one by one, setting

permissions by hand.

Luckily, it is also possible to create a default setting for new file creation within scripts

or user accounts. This is done via the umask shell command. To see your current umask

value, enter this command without arguments:

umask
137
#

This output indicates that the current default umask value for this user’s shell environ-

ment is 137. As was the case with chmod’s numeric mode, this value is a series of three

numbers that represent user permissions, group member permissions, and other user per-

missions.

Notice, however, that these values do not seem to make sense in that context. A chmod

value of 137 would cause new files to have only execute permissions for the user, write

and execute permissions for members of the group, and full permissions (no security) for

everyone else.

In reality, this is because umask values are inverted with respect to the chmod values listed

in Table 7.1. That is, while chmod specifies which permissions to add, umask specifies

which permissions to remove. Thus, a umask value of 137 specifies the following:

• The user should have only execute permissions removed by default from a newly

created file.

• Members of the file’s group should have execute and write permissions removed

by default from a newly created file.

• Other users should have all permissions removed by default from a newly created file.

File System Security 107

7

For example, a umask value of 137 means that any newly created file in the shell environ-

ment will have the following symbolic permissions in ls-style output:

-rw-r-----

For security purposes, it is desirable to remove all non-user permissions from newly cre-

ated shell files. Thus, the user will have to add permissions manually via chmod if extra

permissions should be granted. The umask value that accomplishes this is 177, which

results in symbolic permissions like this:

-rw-------

With permissions like this, only the file’s user will be able to read from or write to the

file. All other users will have no permission to operate on the file whatsoever. The user

can easily change this via chmod if desired, but the default creation permissions remain

more secure. To set the new umask value, simply pass 177 as an argument to the umask

shell command:

umask 177

Of course, entering the command like this will affect the umask value in the current shell

only for as long as the shell is running. When the shell is exited, the changes will be lost

and all new invocations of the shell will have the original umask value. To make the

changes permanent, you’ll need to append the umask command to the /etc/profile file,

which bash sources each time it is launched:

echo ‘umask 177’ >>/etc/profile

All login shells will now by default have a umask value of 177 when the user begins.

108 Hour 7

When making changes to files this way using the shell append (>>) operator,

be sure to include both greater-than symbols, without extra space between

them. The following two commands are very different:

echo ‘umask 177’ >>/etc/profile

echo ‘umask 177’ >/etc/profile

The first command adds a line to the end of the /etc/profile file, and the

second command deletes the original /etc/profile file and creates a new

one containing only one line.

Adding a umask call to the end of /etc/profile changes the default value for login

shells but doesn’t affect non-login shells, such as those often seen in xterm windows.

To affect these kinds of shells, the umask command must be added to the end of the

$HOME/.bashrc file, which is sourced for non-login shells. To change the default

$HOME/.bashrc file for new accounts to reflect the updated umask value, append a line to

the file in /etc/skel:

echo ‘umask 177’ >>/etc/skel/.bashrc

Note that these changes only affect the bash shell; if you’ve chosen to include other

shells as options on your system, you’ll have to make similar changes for them as well.

Special Cases, Risks, and Solutions
The permissions picture is actually a little more complicated than what we’ve painted so

far. Though the basics remain the same, there are some special cases that require special

treatment in the context of a security-conscious Linux system.

Extra Directory Permissions
In addition to the permissions covered so far, there are two interesting special cases for

directories.

The first special case is known as the sticky bit, named after a kind of functionality no

longer in use. When applied to the other permissions of a directory (non-user, non-

group), the sticky bit creates a special situation: Users with write permission will be able

to create files in the directory and modify and delete files that they have created. Files

created and owned by other users, however, will remain off limits. The sticky bit can be

enabled using the the symbolic mode of chmod as follows:

chmod o+t mydirectory

You will know that the sticky bit is set because a letter t will appear in the execute-other

permission in ls output.

The second special case is the SGID bit when applied to a directory. When this property

is applied to a directory, any file created within the directory (including a new directory)

will be created with the same group ownership as the parent directory. This is useful for

situations requiring more subtle group file management techniques.

Device Nodes
Recall that there are some types of files that actually refer to system devices, rather than

files on the disk that contain user or program data. These types of files are commonly

known as device nodes and reside in the /dev directory. If you visit /dev, you’ll notice

that there are a lot of them, especially if you’re using one of the common Linux distribu-

tions.

File System Security 109

7

Luckily, most distribution installers do a reasonably good job of configuring ownership

and permissions for system device nodes. However, there are one or two instances in

which we should reevaluate and possibly correct device node permissions:

• It is important to ensure that disk devices have their permissions correctly config-

ured. Accidentally granting a non-root user raw access to a disk device is a sure

way to get hacked, violated, or crashed quickly.

• It is also important in the case of any devices that seem to grant public permissions

(any permission for other users).

In the case of disk devices, the only safe policy is to ensure that only the superuser, root,

has read and write access to the device node. The chmod value that corresponds to these

permissions is 600. To make the change, simply visit /dev and use a shell wildcard:

cd /dev
chmod 600 sd* hd*

This will cause all IDE and SCSI disks to give read and write permissions only to root.

Note that this does not mean that normal users won’t be able to use the hard drive; it

means only that normal users won’t be able to format the hard drive or steal data that

they don’t otherwise have permission to access.

Now we need to make sure that no device nodes give unrestricted read or write access to

other (anonymous) users. This can be accomplished with a single chmod command in

symbolic mode:

chmod o-rwx *

In general, there is no real drawback to doing this. There are very few cases in which it

is a good idea to give all users access to devices. However, there are exceptions. A few

special devices, such as /dev/null, /dev/zero, and /dev/random, should have some per-

missions available to anonymous users:

chmod a+rw /dev/null /dev/zero /dev/random

If you are wary about changing permissions on so many files at once, you can get a list

of all files that have anonymous permissions by using ls and grep together with simple

patterns:

110 Hour 7

Linux kernel 2.4 implements a new method called devfs for managing

device nodes. When using devfs with kernel 2.4, device nodes exist only in

memory in a virtual file system rather than on disk and are automatically

assigned initially secure permissions by the kernel.

ls -l | grep ‘^.......r..’
ls -l | grep ‘^........w.’
ls -l | grep ‘^.........x’

The first command above will match all files that allow public read access. The second

matches all files that allow public write access. The third matches all files that allow pub-

lic execute access (this should be rare for device nodes). Once you have such a list, you

can change permissions on the nodes one by one.

File System Security 111

7

Some device nodes are actually symbolic links to other device nodes.

Symbolic links have a unique permissions format:

lrwxrwxrwx

All symbolic links are of type l and grant permission for full read, write, and

execute to all users. The actual behavior of the link being referenced then

depends on the permissions of the file to which the link points.

SUID/SGID Executables
Perhaps the single largest complicating factor in the Linux permissions system is the

SUID (set user ID) property. Normally, when a program is executed, the program’s

process will be owned by the user. Thus, the program is able to access only files that

normally grant the user access. However, when a special property called SUID is set for

a given program binary, the program will behave very differently.

When an SUID binary is run, its process is not owned by the user who launched it, but

rather by the user who owns the program binary file. Thus, a program file that is owned by

root but is publicly executable will in essence become the root user each time it is run.

A similar property called SGID causes a program’s process to take on an identity match-

ing its group ownership in a similar fashion. One common SUID/SGID (both properties

enabled) binary is /usr/sbin/pppd, which is responsible for dial-up Internet connec-

tions using analog modems:

ls -l /usr/sbin/pppd

-rwsr-sr-x 1 root root 161792 Nov 8 13:31 /usr/sbin/pppd

Note that instead of the usual x symbol in the permissions for user and group members,

an s, indicating SUID and SGID, is present instead.

Obviously, this type of thing is a security risk: Any program with the SUID or SGID

property is like a potential rogue root user and must be treated with extreme caution.

Bugs in programs that are usually run as SUID/SGID are very common starting places

for exploits that render a system defenseless against attack. Unfortunately, the

SUID/SGID properties are useful because they allow programs like /usr/sbin/pppd,

for example, to access system networking resources and the modem device—to which

normal users don’t generally have access. Without SUID/SGID properties, the

/usr/sbin/pppd program would be available only to the root user, meaning that normal

users could not initiate a dial-out connection.

Setting SUID/SGID with chmod
The chmod command can be used to set or clear the SUID/SGID properties for a file. In

symbolic mode, the related character is s and can be applied only to a program binary

that already shows the x property for the user. For example, to set the /usr/sbin/pppd

program to SUID/SGID status, use

chmod ug+s /usr/sbin/pppd

To clear the SGID status but leave the SUID status intact, use

chmod g-s /usr/sbin/pppd

The numeric mode can be used as well to specify SUID/SGID properties. Instead of

using a series of three digits, four digits must be used when specifying SUID/SGID

properties. If four digits are present, the first will automatically be used for special prop-

erties. A value of 4 represents the SUID property, and a value of 2 represents the SGID

property. To set a program to public read, write, and execute for user and group, read and

execute only for others, with SUID and SGID set, you’d use

chmod 6775 myfile

Eliminating Unnecessary SUID/SGID Permissions
Because of the implications for system security, it is imperative that any SUID/SGID

programs that are not absolutely needed be weeded out of a system immediately. To find

SUID/SGID binaries in your file system, simply use the find command with the -perm

argument to specify the permissions to look for:

find / -perm +6000 -follow

This command causes find to search the entire set of mounted file systems for files

whose permissions include either SUID or SGID binaries (zero matches all values; see

find(1) for details). The additional -follow argument causes symbolic links to be fol-

lowed as well, just in case.

Once you have the list from this command, use manual pages and common sense to

determine which SUID or SGID binaries should retain this special status. Most of the

binaries of this sort will be in /usr/sbin and will be network-related items such as

traceroute or /usr/sbin/pppd, which strictly speaking don’t need SUID/SGID

112 Hour 7

properties on many systems. If you won’t be using pppd as a normal user (or at all) or

are willing to use su to run traceroute, you can easily disable the SUID/SGID property

on these binaries. The same holds true for a large number of binaries you’ll locate.

Checking for Anomalous SUID/SGID Instances
As a matter of course, you should check often for “unexplained occurrences” of SUID

or SGID permissions. The easiest way to do this is to maintain a list of all known

SUID/SGID binaries on your system. Once you have settled on which binaries are to

have SUID/SGID and which aren’t and you’ve adjusted permissions accordingly, write

this list to a file that is readable only by root in /etc:

find / -perm +6000 -follow > /etc/splist
chmod go-rwx /etc/splist

Then, create a cron job or script that will be run routinely that checks the system for new

SUID/SGID binaries and immediately notifies root or some other active user when such

binaries turn up. One sample script fragment is shown in Listing 7.2.

LISTING 7.2 Sample SUID/SGID Script Check Fragment

for BINFILE in $(find / -perm +6000 -follow); do
if [“$(grep $BINFILE /etc/splist)” = “”]; then

echo $BINFILE | mail -s “New SUID/SGID!” root
fi

done

This script simply searches again for any SUID/SGID binaries and compares the newly

generated list to the old one kept in /etc/splist. If any new binaries have turned up,

it sends a warning message to the root account’s email box containing the path to the

offending file.

Keep SUID/SGID Binaries Current
It is very important to ensure that all SUID/SGID binaries that are allowed to remain be

updated whenever bug or security fixes occur. To fail to keep such programs up-to-date

is to take large security risks with your data and system.

Append-Only and Immutable Files
The Linux ext2 file system provides one extra set of properties that may be useful in the

context of security. These properties are called file attributes, and they are controlled by

the chattr command. The chattr command is used like this:

File System Security 113

7

chattr [+|-|=]modes file file...

modes is one or more characters that represents special file attributes understood by vari-

ous versions of the ext2 file system. Only two modes interest us here:

• The a (append) mode prevents all non-append access to the file. In short, nobody

will be able to read from the file, and nobody will be able to open it for random

access writes.

• The i (immutable) mode prevents any kind of file modification whatsoever from

occurring.

These two modes are logically mutually exclusive. They supersede all normal permis-

sions information, and they can only be set or cleared by root.

The lsattr command is a special version of the ls command, which displays ext2

attributes instead of traditional file permissions. More information on chattr and lsattr

can be found in chattr(1) and lsattr(1), respectively.

Read-Only root File System
There are some areas of the file system that shouldn’t need to be modified at all during

the normal course of system activity. For example, there is no good reason for most of

the binaries in /sbin, /bin, and /usr/sbin to be changed at runtime; any modification

attempts of this sort are almost certainly not benign. Though the permissions-based secu-

rity model generally works well, there is one additional radical step that can be taken to

prevent unauthorized changes to the most sensitive parts of the system. This step is the

remounting of the root file system as read-only; we prepared for it to some degree in

Hour 1, “Selecting and Installing a Linux Distribution.”

Beware that mounting a root file system as read-only can be inconvenient at times and

can interfere with compatibility in some cases. It is also unlikely to help security at all in

the event that a user is able to obtain root user access. On the other hand, a read-only

root file system can also help prevent attacks from clueless “script kiddies” who don’t

really understand what they are doing, but are instead following step-by-step attack

instructions that someone else has written.

Provided your partitioning and file system mounting have isolated your root file system

to some degree as was described in Hour 1, you should be able to move to a read-only

file system at runtime simply by logging in as root and entering

mount -n -o remount,ro /

This call to mount causes the root file system to be remounted with the new ro property,

which refers to a read-only file system. Once you have executed this command, you will

114 Hour 7

notice that you can’t create, delete, or edit files stored anywhere on the root device, even

when working as the superuser. To go back to a write-capable root file system, use

mount -n -o remount,rw /

Of course, if you plan to use a read-only file system as a matter of course, you’ll want to

automatically remount the file system as read-only at boot time. Some users of read-only

root file systems choose to edit existing init scripts to make this change, but each dis-

tribution is different, making such changes tricky and unportable. By far the easiest way

to go read-only is to add a script to your init.d folder like the one shown in Listing 7.3.

LISTING 7.3 /etc/rc.d/init.d/read-only

#!/bin/bash

The purpose of this script is to remount the root
file system as read-only toward the end of the boot
process.

case “$1” in
start)
echo “Preparing to go read-only on /; will sleep for”
echo “twenty seconds to allow everything to settle down.”

sleep 20

echo -n “here we go... “

mount -n -o remount,ro /

echo “done”
;;

stop)
echo “Remounting / as read-write.”
mount -n -o remount,rw /
echo “done.”
;;

*)
echo “use $1 start|stop”
exit 1

esac

exit 0

end read-only

File System Security 115

7

After marking this script as executable, link it into the runlevels that you want to be

affected by it, usually runlevels 3 (multi-user with network) and 5 (multi-user with X and

network):

ln -s /etc/rc.d/init.d/read-only /etc/rc.d/rc3.d/S99ro
ln -s /etc/rc.d/init.d/read-only /etc/rc.d/rc5.d/S99ro

Generally, there is no need to go read-only for runlevel 1 because it is for maintenance

only and thus should be accessible only to root anyway. However, when dropping from

a higher runlevel to runlevel 1 for maintenance, it is convenient to have the root file sys-

tem automatically remounted as read-write. This can be done with another symbolic link:

ln -s /etc/rc.d/init.d/read-only /etc/rc.d/rc1.d/K99ro

Since the symbolic link starts with the letter K, the init scheme on the system will call the

script with the stop argument when entering runlevel 1.

In some cases, you may find additional minor compatibility or scripting problems with

your distribution or other software you’ve installed. These will have to be handled on a

case-by-case basis, but there is always a way to configure a Linux system so that the

root file system, in the end, can be mounted as read-only if so desired.

116 Hour 7

Any file system that is sensitive and normally doesn’t need to be modified

very often can be mounted as read-only. The easiest way to do this for non-

root file systems is to edit the /etc/fstab file, placing the ro option in place

of the default flag or at the end of the list of existing options.

Options for mount and fstab
One more aspect of file system security must be covered before this hour draws to a

close: options for the mount and fstab commands, which are very closely related.

The /etc/fstab file, as discussed in Hour 1, tells Linux which devices contain file

systems and where these file systems should be mounted. The fourth field in the

/etc/fstab file is the options field. It contains a comma-separated list of options that

can further enhance the control of the system administrator over mounted file system

options. A number of these options are shown in Table 7.2.

TABLE 7.2 Most Common fstab Mount Options

Option Description

user Says that regular (non-root) users will be able to mount and unmount this file

system.

noauto Prevents Linux from automatically mounting this file system at boot time.

Instead, it must be mounted by hand.

errors=N Specifies what to do in case of ext2 file system errors. If N is continue, the file

system will continue to operate. If N is remount-ro, the file system will be

remounted as read-only. If N is panic, errors will cause a system panic (total halt).

umask=N Mounts a Windows (FAT) file system with the supplied umask value for the

entire file system. Remember that a umask value specifies permissions that are

not present, so a umask of 000 means that the file system will be readable and

writable by everyone!

uid=N Mounts a Windows (FAT) file system as though user with numeric user ID N

owns all files.

gid=N Mounts a Windows (FAT) file system as though group with numeric group ID N

owns all files.

Table 7.2 provides only a very small subset of all available fstab options; for a complete

list, see fstab(5), mount(8), and file system documentation in the /usr/src/linux

source tree.

These options (with the exception of user and noauto) can also be supplied to the mount

command with the -o option.

Summary
In this hour, you learned about basic security issues and techniques related to the Linux

file system, including

• File permissions and how they work.

• Proper use of the chmod command in both symbolic and numeric modes.

• Using the umask command to change the default properties given to new files cre-

ated from the shell or shell scripts.

• Device nodes, what they are, and what permissions they should have.

• The special SUID/SGID case and how to mitigate the risks involved in using

SUID/SGID binaries.

• How to mount file systems, especially the root file system, as read-only to prevent

unauthorized modification.

The information you learned in this hour forms the basis of non-network Linux security

and should become second nature to any Linux user.

File System Security 117

7

TABLE 7.2 continued

Option Description

Q&A
Q I’m still a little confused about how permissions work. What about scenario

foo? Scenario bar?

A The best way to learn about permissions and get a feel for the way they work is to

make a temporary directory, for example off of the /tmp tree, and to play with

them. Try creating some files and directories, using su and chmod to give them var-

ious permissions and to test these permissions against various identities. Through

experimentation, you’ll get a better feel.

Q I changed the permissions as suggested in the /dev directory and now I don’t

have sound, I can’t access my floppy, my mouse doesn’t work, and my 3D

games can only be run by root.

A This is an intended side-effect of the permissions change. If you need sound for

non-root users, feel free to go back and change permissions for the /dev/dsp and

/dev/audio devices to make them available to all users. The same thing applies to

the /dev/fd0 device or to other devices you want made public.

The idea is to implement an unspoken policy of “deny now, allow later” and to

allow this to guide your actions and thinking. If you need a device to be publicly

accessible and are willing to trade the risk for the benefit, by all means, use chmod

to give back the necessary permissions.

Q I know that the small letter s in permissions output means that SUID or SGID

permissions are set, but there are some files on my system with a large S in

permissions output. What does this mean?

A The large S is an essentially meaningless combination. It means that the SUID or

SGID bit is set for this file, but that the execute bit for the related role is not set.

This means, in essence, that the binary would run as SUID or SGID if it could, but

since no execute permission exists, it can’t.

Q Is there any way to give or remove permissions to a whole disk or file system

at a time?

A Yes. Use the execute permission flag (x) on file system mount points. For example,

if you have a hard drive file system mounted on /drives/bpdisk and you want

only root to have access to this file system, simply make sure that the mount

directory, /drives/bpdisk, is owned by root and then remove group and other

read, write, and execute permissions from the mount directory.

Q I want to use a read-only root file system, but when I try, I get unexpected

errors or some programs or system resources don’t work properly.

118 Hour 7

A This is because some program or daemon is still assuming that it has write capabil-

ity on a file somewhere in the root file system. Remount the root file system as

write-capable, allow the system to run, and use the find command to see which

files on the root file system are being modified. Then, move them off of the root

file system with symbolic links and try mounting as read-only again.

New Terms
chmod The program used to alter or set file permissions.

device node A special file in the /dev directory that usually refers either to a system

device or a low-level service.

group The group of accounts associated with a given file.

other users All user accounts that are not the user owner and do not belong to the

file’s group. Other common terms include “anonymous” users and “world” users, as in

“this file is world read/write” or similar phrases.

permissions Flags that grant or deny various types of access to a given file, depending

on who the file’s owner is and which group is associated with the file.

SGID An executable flag that indicates that the process of the program in question will

always be associated with the same group associated with the program’s binary file.

SUID An executable flag that indicates that the process of the program in question will

always be owned by the owner of the program’s binary file.

umask A numeric flag (in a format similar to the chmod flag) that determines the per-

missions given to new files created from within the shell.

user The user who owns a given file. Only users logged in to this account can alter

permissions for the file.

File System Security 119

7

HOUR 8
Extra File System
Security Tools

This hour, we’ll pick up where Hour 7, “File System Security,” left off,

exploring a few extra tools to improve the security of your Linux file sys-

tem. There are two basic types of tools we’ll consider:

• Access control list mechanisms, which enable permissions to be

specified on a much more user-specific and flexible basis than the tra-

ditional Unix-like file system allows.

• Tools for permanent deletion, which ensure that data in deleted files

is not only not easily available, but is actually erased from the disk

completely.

Though these measures are extreme compared to simple permissions mainte-

nance, as discussed in Hour 7, they can at times be necessary, especially in

circumstances under which maximum file system security and flexibility are

required.

POSIX Access Control Lists for Linux
Though the permissions system in the native Linux file system is adequate for many pur-

poses and users, you might have noticed a significant limitation in its capabilities:

Permissions can only be specified for three roles:

• The user (owner) of the file, a login account with which the file in question is

associated

• The group of the file, one of the groups from /Etc/Group with which the file in

question is associated

• Everybody else, as a catch-all group

Again, for most users on small systems, this traditional permissions structure is adequate

and provides all the security that is needed. However, there are times when more flexibil-

ity is needed. At times like this, a tool called an access control list, or ACL, is needed.

A Sample Scenario Needing ACL Capability
The problem with the traditional paradigm is that specific permissions cannot be

assigned for several different users. For example, consider a situation in which we have

five users—joe, marcy, fred, patrick, and dirck—and two groups—workers and

drivers. We want to give the following permissions shown in Table 8.1 to each of them.

TABLE 8.1 Sample Scenario Needing ACL Capability

Users Groups Permissions Description

Granted

joe rwx Read, write, and execute

marcy rw- Read and write

fred r-- Read only

patrick r-x Read and execute

dirck --x Execute only

workers rw- Read and write

drivers r-- Read only

(others) --- No permissions

(others) --- No permissions

Notice that for each user and group, the set of permissions we want to grant is different,

and each of these users needs permissions that we don’t want to give to the world at

large (everybody). Under the traditional permissions system, we could perhaps give file

ownership to joe, and then give him u=rwx permissions. We could perhaps create a group

called marcy, of which marcy is a member. We’d give group ownership to marcy and

122 Hour 8

grant g=rw permissions. For everyone else, we could give o-rwx. However, this leaves

out fred, patrick, and dirck, as well as both important groups. Because of the com-

plexity of the situation, the traditional permissions model is woefully inadequate.

Using access control list capability, this list of users and required permissions could eas-

ily be implemented. Therefore, in situations that require this much flexibility, an ACL is

generally the solution of choice.

POSIX ACLs for Linux
The POSIX ACLs for Linux package is one such package. It consists of a set of patches

to the Linux kernel and ext2 file system utilities along with a number of separate utilities.

All can be downloaded at http://acl.bestbits.at in source releases built around vari-

ous kernel versions.

The package amends the Linux kernel to store an extra quantity of metadata for each file;

this new metadata contains the extended permissions information provided by the ACL

utilities. To install the POSIX ACLs package for Linux, you’ll need the components

shown in Table 8.2.

TABLE 8.2 Required Downloads for ACL Installation

Item Description

Linux kernel source You must have a supported version of the Linux kernel source available.

As this text is being written, the supported kernels are 2.2.17 and 2.4.0

(test9, although the patches also work with test10).

Extended attrs patch The extended attributes patch extends the virtual file system layer in the

kernel source to allow for additional attributes.

ACL patch The access control lists patch for the kernel source uses the additional

attributes in the extended attributes patch to store access control list

information.

e2fsprogs source You must have a supported version of the ext2 utilities source available.

As this text is being written, the supported version of e2fsprogs is 1.19.

e2fsprogs patch This patch amends the e2fsprogs source to include additional command-

line arguments for e2fsck, which have to do with access control list

metadata.

fileutils source You must have a supported version of the GNU file utilities source

code available. As this text is being written, the supported version of

fileutils is 4.0z.

fileutils patch This patch amends the GNU file utilities so that extended permissions

information is preserved in file utility operations.

ACL utilities source This is the source code for the extra utilities used to configure ACL

information for files.

Extra File System Security Tools 123

8

In order to install the ACL patches, you must also be familiar with the process of compil-

ing and installing a new Linux kernel. Information on the process of compiling and

using a new Linux kernel can be found in the Linux Kernel HOWTO at http://www.

linuxdoc.org/HOWTO/Kernel-HOWTO.html. The necessary steps for successful installa-

tion are

1. Extract the kernel source:

cd /usr/src; tar -xzvf ~/linux-2.4.0-test9.tar.gz

2. Apply the ea (extended attributes) kernel source patch downloaded from the

POSIX ACLs site:

cd linux
patch -p1 <~/linux-2.4.0test9-ea-0.7.0.patch

124 Hour 8

Sources for the Linux kernel can be found at ftp://ftp.kernel.org. Sources

for e2fsprogs and fileutils can be found at http://e2fsprogs.

sourceforge.net and ftp://ftp.gnu.org/pub/gnu/fileutils, respectively.

If you download your patches via Netscape, be sure that you save them with

the .gz extension and use gunzip to extract them before trying to apply

them. Netscape routinely drops the .gz extension, even though the file in

question might not have been decompressed yet.

3. Apply the acl (access control lists) kernel source patch downloaded from the

POSIX ACLs site:

patch -p1 <~/linux-2.4.0test9-acl-0.7.1.patch

4. Compile and install the kernel and modules:

make clean; make xconfig; make dep; make bzImage
make modules; make modules_install

Be sure to enable the CONFIG_FS_EXT_ATTR, CONFIG_FS_EXT_ATTR_USER,

CONFIG_EXT2_FS_EXT_ATTR, and CONFIG_POSIX_ACL options, as shown in Figures

8.1 and 8.2.

5. Extract the e2fsprogs source:

cd ~; tar -xzvf e2fsprogs-1.19.tar.gz

6. Apply the e2fsprogs patch:

cd e2fsprogs-1.19
patch -p1 <~/e2fsprogs-1.19ea-0.7.1.patch

7. Compile and install the e2fsprogs package:

./configure; make && make install

8. Extract the fileutils source:

cd ~; tar -xzvf fileutils-4.0z.tar.gz

9. Apply the fileutils patch:

cd fileutils-4.0z
patch -p1 <~/fileutils-4.0z-acl-0.7.0.patch

10. Compile and install the fileutils package:

./configure --prefix=/; make && make install

11. Extract the ACL utilities source:

cd ~; tar -xzvf acl-0.7.1.tar.gz

Extra File System Security Tools 125

8

FIGURE 8.1

New extended attributes

options.

FIGURE 8.2

New ext2 file system

options.

12. Compile and install the ACL utilities package:

cd acl-0.7.1
./configure; make && make install

13. Edit your /etc/lilo.conf to include the new kernel if necessary and install the

new lilo.conf configuration by running /sbin/lilo:

vi /etc/lilo.conf
/sbin/lilo -v

126 Hour 8

The ACL utilities installer tries to install some localization data into the

$PREFIX/share subtree. If your install seems to fail on LC_MESSAGES directo-

ries, you can simply ignore the error and continue without any ill effects in

most cases.

After you’ve completed the listed steps and rebooted with the new kernel, POSIX-

compliant access control lists are available and enabled on your Linux system.

Syntax for the setfacl Command
The two important commands to remember when dealing with POSIX access control

lists are setfacl, used to set or clear permissions in files with access control list proper-

ties, and getfacl, used to display permissions in files with access control list properties.

The setfacl command is used to add or remove access control list restrictions to a given

file or directory. The three basic syntaxes for setfacl are as follows:

setfacl [-m|-x] u:[user]:[+|^]permissions file [file...]
setfacl [-m|-x] g:[group]:[+|^]permissions file [file...]
setfacl [-m|-x] o:[+|^]permissions file [file...]

These three forms of the setfacl command correspond to the modifications on a per-

user basis, modifications on a per-group basis, or modifications for everybody (other

users), respectively. In all cases, the -m argument is used to modify or add permissions,

whereas the -x argument is used to remove permissions. If a specific user or group is

supplied, and this user or group is not the existing user or group via traditional permis-

sions, action will take place in the set of special ACL permissions. Consider the list of

examples shown in Table 8.3.

TABLE 8.3 Sample setfacl Commands and Descriptions

Command Description

setfacl -m u::rwx file Gives read, write, and execute permissions to the user of the file

in question.

setfacl -m g::rwx file Gives read, write, and execute permissions to the group of the file

in question.

setfacl -m u:john:rwx file Gives read, write, and execute permissions to the additional user

john.

setfacl -m g:grunts:r file Gives only read permission to the additional group grunts.

setfacl -m o:r file Gives only read permission to other users.

setfacl -m u:john:^x file Removes execute permissions for user john.

setfacl -m g:grunts:+w file Adds write permissions for the group called grunts.

setfacl -x u:john file Removes special permissions granted to user john entirely.

setfacl -x g:grunts file Removes special permissions granted to the group called grunts

entirely.

Clearly, the ACL gives much more flexibility in terms of security. Read, write, and exe-

cute permission can be granted and denied to multiple users in addition to the user of the

file in question, and the same holds true for groups.

Syntax for the getfacl Command
The getfacl command simply displays the current list of access control list permissions

for a file or list of files. The basic syntax is simple:

getfacl file [file...]

For example, consider the following command and resulting output:

$ getfacl myfile
file: myfile
owner: jerry
group: users
user::rwx
user:tando:rw-
user:tami:r--
group::r--
group:maint:rwx
other:---
$

In the case of myfile, the owner of the file is jerry, and the group is users. The owner

has read, write, and execute permissions; members of the file’s group have only read per-

missions. Additional users tando and tami have been granted read and write and just

read permissions, respectively. An additional group, maint, has been given read, write,

and execute permissions. All other users and groups have no permission at all.

Extra File System Security Tools 127

8

TABLE 8.3 continued

Command Description

The algorithm used for calculating permissions when traditional permissions and ACL

permissions conflict is documented fully in acl(5), but it can generally be simplified to

the following two rules:

1. Permissions are checked from left to right. That is, user permissions supersede

group permissions, and group permissions supersede other permissions.

2. Traditional permissions supersede ACL permissions when granting access, but in

all other cases ACL permissions supersede traditional permissions.

Default Permissions (getfacl, setfacl, and Directories)
The ACL software can also allow for default permissions functionality similar to that

offered by umask (see Hour 7), but on a much more flexible directory-by-directory basis.

The setfacl syntax for creating default permissions is the same as the syntax used nor-

mally by setfacl, except that the letter d must precede each set of permissions:

setfacl [-m|-x] d:u:[user]:[+|^]permissions dir [dir...]
setfacl [-m|-x] d:g:[group]:[+|^]permissions dir [dir...]
setfacl [-m|-x] d:o:[+|^]permissions dir [dir...]

The default permissions assigned to a directory do not apply to the directory itself.

Rather, they are the permissions that will be applied to files created within that directory

by default. For example, consider the following series of setfacl operations on a direc-

tory called myfiles:

setfacl -m d:u::rw myfiles
setfacl -m d:g::r myfiles
setfacl -m d:o: myfiles
setfacl -m d:u:jerry:rw myfiles
setfacl -m d:g:workers:r myfiles
setfacl -m d:g:admins:rw myfiles

Each of these lines sets a default permission for the directory myfiles. Thanks to the

permissions specified here, all files created in my files will, by default, have the follow-

ing set of permissions:

• The user will have read and write permission.

• The group will have read permission.

• The additional user jerry will also be granted both read and write permission.

• Members of the additional group workers will be granted read permission.

• Members of the additional group admins will be granted both read and write per-

mission.

• All other users will have no permissions to act on the file in question.

128 Hour 8

Default permissions lists are inherited; if a subdirectory called yourfiles is created

within myfiles, yourfiles will have all the permissions specified by the myfiles

default list, and this default list will also apply to files created within yourfiles.

ACL Mask Permissions
When experimenting with ACLs, you might notice a new set of permissions, known as

mask permissions, in the output of the getfacl command. The mask permissions do not

apply to a specific user or group, but rather indicate the maximum set of permissions that

can be granted to any additional groups or users in the ACL list, regardless of the explicit

permissions granted. To set the mask permissions, use

setfacl -m m:[+|^]permissions file [file...]

The idea of mask permissions can seem a little confusing at first, but it’s really quite a sim-

ple idea. Suppose you have granted the following permissions to a file called texasmap:

setfacl -m u:jacob:rwx texasmap
setfacl -m u:marlowe:rwx texasmap
setfacl -m u:newton:rwx texasmap
setfacl -m u:parson:rwx texasmap
setfacl -m u:zendor:rwx texasmap

Five users other than the file’s user have been granted read, write, and execute permis-

sion. Suppose, however, that from time to time the file texasmap is used on a Web site,

and, during these moments, you as the system administrator want to remove all write

permissions for this file. The chmod command can be used to remove write access for the

file’s user and group ownership, but not for these additional users. The setfacl com-

mand can be used to remove write permissions for each of them one by one, but this is a

lot of work. Of course, the work is doubled when you need to re-enable write permission

afterward. The solution lies in mask permissions:

setfacl -m m:^w texasmap
getfacl texasmap | grep mask
mask:r-x
#

This call to the setfacl command removes write permission from everyone in the access

control list (other than the official user and group), even if some of the additional users

or groups have explicitly been granted write permission. This is because the mask per-

missions, currently at r-x, dictate the maximum permissions any ACL entry can grant.

To re-enable write permission for users with sufficient permission, use

setfacl -m m:+w texasmap
getfacl texasmap | grep mask
mask:rwx
#

Extra File System Security Tools 129

8

As the output of the getfacl command shows, write access is now available again to

those with permitting ACL entries.

Copying ACLs Between Files
Clearly, access control lists enable a system administrator to create long, flexible lists of

access parameters for any file or directory in the system. In fact, some lists for important

files can stretch to multiple entries. Because it would be inconvenient to have to con-

struct multiple complex setfacl commands over and over again for several files, the

ACL commands allow an easy mechanism for copying one file or directory’s access con-

trol list directly to another file or directory.

To copy an ACL from file1 to file2, use the -S argument for an absolute ACL specifi-

cation from standard input:

getfacl file1 | setfacl -S- file2

This copy and many more different types of copy operations are described in the exam-

ples section of the setfacl(1) manual page.

Caveats and Considerations
Unfortunately, ACLs are still not a part of the standard Linux kernel or of many Unix-

like operating systems. Consequently, there are a number of contexts in which the

functionality of ACL information might not be as expected:

• Standard kernels Most importantly, any kernel that does not support ACLs will

ignore all ACL data, even though file systems can still be mounted. This means

that, for example, booting from a floppy boot disk with a standard kernel will

effectively render all ACL permissions moot.

• NFS The NFS (network file system) protocol doesn’t allow for ACL functional-

ity, so ACL permissions won’t work as expected over NFS. Thus, exported file

systems should not rely on them. The kernel-based NFS daemon has at least been

patched to make educated guesses when ACL data is present, but the userspace

NFS daemon has not.

• Samba Samba will respect ACL permissions on shared file systems, so adminis-

trators need not worry about ACL and Samba.

• Backups Many backup utilities, including afio and tar, will not preserve

extended data of the type present in ACL-enhanced ext2 file systems.

• Non-ext2 file systems The getfacl and setfacl utilities do not function on non-

ext2 file systems, even under patched kernels. Other file systems, such as vfat or

minix, simply are not capable of this type of security functionality.

130 Hour 8

One final note should be repeated here. Although ACL data will not hurt or damage your

ext2 file system in any way, and an ACL-enhanced file system will function correctly

with non–ACL-enhanced kernels or ext2 utilities (except with regard to ACL permis-

sions), the ACL software adds an argument to the /sbin/e2fsck binary. The -X argument

will purge all ACL data from an ext2 file system. Thus, in order to completely remove all

trace of ACL metadata from a file system, use

/sbin/e2fsck -X /dev/hddevice

Other than to purge ACL-enhanced permissions from the file system in question, there

will be no visible effects on the files present. All Linux-style (that is, user, group, and

other) permissions will be preserved in such a purge.

Secure File Deletion Tools
You can probably imagine a situation in which it would be a disaster if a hacker or even

a normal user were to somehow obtain data from a previously deleted file. Most users

assume that when a file is deleted, it is gone forever. Unfortunately, this isn’t generally

the case. The data is no longer accessible via the same filename, but it might actually

remain otherwise intact on the raw disk device for days, weeks, or even months before

being overwritten by newer data. Even after data is overwritten, it might still be recover-

able using special tools and knowledge.

Clearly, it is important to destroy data that needs to be destroyed. In this sense, perma-

nent file deletion tools can be thought of as a paper shredder for your Linux files. The

command traditionally responsible for this type of functionality is the wipe command.

(wipe is not included with most versions of Linux.) There are several versions of wipe

for Linux that can be downloaded and compiled.

Perhaps the simplest and quickest, bcwipe, is available from http://www.jetico.com.

The bcwipe utility is not open source, but source code is available, and the utility is free

for non-commercial use. It works by overwriting data to be wiped with different bit pat-

terns and random data a number of times to ensure that the original data is indeed com-

pletely wiped out. The bcwipe utility can also operate on entire block devices, for

example, if you need to erase an entire hard disk securely.

The open source counterpart to bcwipe is wipe, available from http://wipe.

sourceforge.net. It functions similarly in principle to bcwipe but lacks the capability to

erase entire partitions or devices and isn’t as portable as bcwipe seems to be. If you have

problems compiling wipe, you might also want to look into bcwipe.

Another open source secure deletion utility called overwrite boasts similar features and

can be downloaded from http://www.kyuzz.org/antirez/overwrite.

Extra File System Security Tools 131

8

In theory, all these utilities will prevent a malicious user or organization from collecting

data from your storage devices that you had thought was deleted and unrecoverable.

They represent an important component in file system security, and you should always

take care to securely delete any files you want completely removed, rather than simply

deleted, from your Linux file system.

Summary
In this hour, we looked at a POSIX-compliant extension to the Linux permissions file

system security model, known as an access control list. Using access control lists, we

learned to do the following:

• Download and install the POSIX ACL implementation for Linux and ext2.

• Add multiple users and per-user permissions to the ACL properties list for a Linux

file or directory.

• Add multiple groups and per-group permissions to the ACL properties list for a

Linux file or directory.

• Remove users or groups from the ACL properties list for a Linux file or directory.

• Understand and set default ACL permissions for a Linux directory.

• Understand and use the ACL permissions mask to control maximum permissions

for all ACL properties applying to a given file or directory.

We also learned about so-called secure delete tools or permanent delete tools, which

actually erase data being deleted on a hard drive, rather than simply marking space as

available once again.

Q&A
Q Which set of permissions is effective in the event that normal permissions and

ACL permissions seem to be in conflict?

A Actually, they are never in conflict. Because the set of normal permissions is

always included in the ACL permissions list as user::, group::, and other::, the

traditional set of permissions becomes a completely integrated subset of ACL per-

missions.

Q Can the setfacl command be used to set ACL permissions recursively?

A Yes. Use the -R argument, just as you would when using the standard chmod com-

mand, to recurse into subdirectories and apply permissions to multiple files.

132 Hour 8

Q Is there any way at all to back up an ext2 file system and preserve ACL per-

missions when restoring?

A Yes, but the process is kludgy and will require scripting. The following command

can be used to output ACL data recursively for an entire directory tree:

getfacl -R /path/to/list

After this output has been saved to a file, this file can be used to restore ACL data

to the directory tree in question with

setfacl -B /path/to/data-file.acl

By combining these two commands, a backup process can extract ACL data to a

file before writing to streaming media, save the ACL data file to the streaming

media along with other files, and, finally, use the ACL data file after restore to

reconstruct ACL permissions.

Q Secure deletion is often used in conjunction with file encryption. Why isn’t

encryption mentioned here?

A For encryption information see Hour 19, “Encrypting File System Data,” and Hour

20, “Encrypting E-Mail Data.”

New Terms
access control list (ACL) A more flexible set of permissions properties than is avail-

able via the standard Linux permissions paradigm.

permissions defaults A set of permissions given the default label, which will be

assigned by default to any newly created file within the directory in question.

permissions mask A set of permissions which defines the maximum permissions

granted to any entry in the ACL list, regardless of explicitly specified permissions.

secure delete A method of removing files from the file system, which attempts to com-

pletely erase the magnetic patterns and traces left by the file, rather than simply making

the space it occupied available once again.

Extra File System Security Tools 133

8

HOUR 9
Making the Most of
Pluggable
Authentication Modules
(PAM)

This hour, we’re going to study basic configuration of PAM for Linux. PAM,

or the Pluggable Authentication Modules system, is a complex authentica-

tion system that stretches across most of the restricted services (services

requiring authentication) in any Linux system. Luckily, PAM is generally

shipped in a fairly secure configuration with most Linux distributions, so a

little touch-up here and there is all that is needed to ensure that general-

purpose authentication is secure on your Linux box.

How PAM Is Configured: The Basics
PAM configuration is located either in a single, central file at /etc/pam.conf or in a

series of smaller files named after the services they relate to in /etc/pam.d/.

136 Hour 9

If PAM is not a component of your Linux distribution by default, you should

consider upgrading to a newer distribution. Using PAM not only can make

your system more secure, but it can also help to resolve a myriad of inconve-

nient compatibility conflicts between security necessities such as shadow and

MD5 and services that need to access these files. You can check for PAM sup-

port on your system by checking for the existence of any of these files or

directories:

/etc/pam.conf

/etc/pam.d/

/lib/libpam.so.*

/usr/lib/libpam.so.*

If any of these exist, you’re probably in good shape with respect to PAM-

enabled authentication services. Make no mistake: There’s almost no point

in trying to use shadow passwords without PAM installed as well, and

shadow is more than essential for a secure system.

In order to fully follow this discussion of PAM configuration, you should try

to “follow along” by examining your own configuration files and the PAM

modules reference guide, a part of the official PAM documentation located

at www.us.kernel.org/pub/linux/libs/pam/Linux-PAM.html/pam.html.

PAM configuration is based on a “stack” model. There is a given list, or stack, of

required actions for any single service that must be completed before access to the ser-

vice in question is granted. Each action in the stack is supplied on a single PAM configu-

ration file line, which contains exactly one each of the following: a module type, a

control flag, a module, and—depending on whether /etc/pam.conf or /etc/pam.d/ is

used—a service name.

Each line contains a module type. A module type can be thought of as a specifier for one

of four basic contexts within which a PAM stack entry can operate. These module type

contexts are shown in Table 9.1.

TABLE 9.1 PAM Module Type Context Names

Type Description

auth This stack entry’s action is related to user authentication, for example, when ask-

ing the user to enter a password for login.

account This stack entry’s action is related to user account management, for example,

when checking to see whether a user’s account or password has expired.

session This stack entry’s action is related to connection or session management, for

example, logging information about the user’s login session to the system log.

password This stack entry’s action is related to password management, for example, when

updating a user’s password as stored in the system /etc/shadow file.

Each line also contains a control flag. A control flag can be thought of as a specifier for

one of four basic levels of necessity. It defines the importance of the stack entry in ques-

tion for the authentication process as a whole. This will determine how PAM will pro-

ceed after evaluating any action that has taken place. The control flag levels of necessity

are shown in Table 9.2.

TABLE 9.2 PAM Control Flag Necessity Levels

Level Description

requisite This stack entry’s action must be completed successfully to continue processing

actions. If not, the service request will fail, and no more actions in this context

will be processed.

required This stack entry’s action must be completed successfully. If not, the service

request will fail after the rest of the action stack has been processed.

sufficient This stack entry’s action alone is enough to cause a service request to be accepted

unless an earlier, required action has not been completed successfully. If the

request is accepted based on a successful action, no further actions in the stack

will be processed.

optional If no other action has proven successful or unsuccessful, the success of this stack

entry’s actions—or the lack thereof—will determine the stack’s response to the

authentication request.

In addition to the module type and control flag, each stack entry in an /etc/pam.conf

file contains a service name supplied by the program requesting authentication. Also pre-

sent in every stack entry are an authentication module used to control this type of authen-

tication and arguments, which are to be supplied to the authentication module. The

format of these elements together in a single stack entry in the /etc/pam.conf file is as

follows:

service module-type control-flag module [arguments]

Making the Most of Pluggable Authentication Modules (PAM) 137

9

A PAM configuration file, therefore, is simply a list of these stack entries, one per line,

which define the entire set of authentication procedures for a Linux system. When new

services are installed on a Linux system that require new authentication techniques, they

will normally include additional PAM modules, specific to the service in question, along

with documentation on how the module is to be used. The new service and modules can

then quickly and easily be incorporated into the existing authentication framework.

How PAM Works: The Basics
The functionality of the PAM system is actually fairly basic. Any service that requires

authentication is linked against the PAM libraries included with Linux. For example, try

the following:

ldd /bin/login
libcrypt.so.1 => /lib/libcrypt.so.1 (0x40020000)
libpam.so.0 => /lib/libpam.so.0 (0x4004d000)
libdl.so.2 => /lib/libdl.so.2 (0x40055000)
libpam_misc.so.0 => /lib/libpam_misc.so.0 (0x4005a000)
libc.so.6 => /lib/libc.so.6 (0x4005d000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
#

Notice that the login program, used by programs such as getty and in.telnetd to

authenticate users and log them in, is linked against the PAM libraries.

When a specific service such as login requires user authentication, it employs the PAM

routines to complete this authentication. These routines look at the PAM configuration

files for stack entries with a matching service name. It then processes these entries in the

order in which they are found, one by one.

To help you to understand the way in which PAM works, let’s take a closer look at one

service’s authentication procedure. For the login service, for example, a default configu-

ration might look something like Listing 9.1.

LISTING 9.1 Section of /etc/pam.conf for login

login auth required pam_securetty.so
login auth required pam_pwdb.so
login auth required pam_nologin.so
login auth optional pam_mail.so
login account required pam_pwdb.so
login session required pam_pwdb.so
login session optional pam_lastlog.so
login password required pam_pwdb.so

138 Hour 9

Because each of these rules belongs to the login service, the entire stack will be

processed each time a user attempts to log in. Let’s step through the stack rules one by

one. Refer to the PAM modules reference guide mentioned earlier for extensive descrip-

tions of each module and its properties. The actions will proceed in this order:

1. The pam_securetty.so module checks to see that the requested user is allowed to

log in at the console in question by comparing the user’s login location against the

/etc/securetty file. This action is required; if it fails, the authentication request

will be rejected after all other actions have been completed.

2. The pam_pwdb.so module is called to see whether the user has entered the correct

password. This action is also required.

3. The pam_nologin.so module is called to see whether the file /etc/nologin exists.

If so, the file is displayed, and the action will fail, eventually preventing the user

from logging in. This action is also required.

4. The pam_mail.so module is called to see whether the user has any new mail. This

action is optional, so the user will be allowed to log in based on the results of other

actions whether or not any new mail is present.

5. The pam_pwdb.so module is called again, this time in the account context, which

causes it to check for password or account expiration. If the account has expired, or

if the user’s password has expired and the user refuses to enter a new one, the

action will fail. This action is required for login.

Making the Most of Pluggable Authentication Modules (PAM) 139

9

On many newer systems, the PAM configuration is split among a number of

files stored in the /etc/pam.d/ directory. Each file is named after the service

it handles, and the service identifier is therefore omitted from each action

inside the file. For example, the file equivalent of Listing 5.4, the

/etc/pam.d/login file, might contain

auth required pam_securetty.so

auth required pam_pwdb.so

auth required pam_nologin.so

auth optional pam_mail.so

account required pam_pwdb.so

session required pam_pwdb.so

session optional pam_lastlog.so

password required pam_pwdb.so

In the end, the result is the same. If the /etc/pam.d/ directory exists, it will

be used exclusively, and the /etc/pam.conf file will be ignored.

6. The pam_pwdb.so module is called yet again, this time in the session context, caus-

ing it to enter the login attempt in the system log. This action is required, meaning

that if the system is unable to record the login, the user will not be allowed to enter.

7. The pam_lastlog.so module is called to update the user login history in the

/var/log/lastlog file.

8. The pam_pwdb.so module is called one last time to replace the user’s password in

the /etc/shadow file, in case the password has been updated (see step 5) during the

login process. This action is also required, meaning that if the system is unable to

complete it, the user will not be allowed to log in.

This stack of actions represents the entire authentication process for user logins, from

beginning to end. If it seems a bit cloudy at this point, try referring to the PAM System

Administrator’s Guide for exhaustive detail. However, the best way to learn is to begin

working with PAM directly.

Putting PAM to Work: Expiring Passwords
Now that you understand, at least to some degree, how PAM works, we’re going to mod-

ify a few PAM service stacks. The first one we’re going to modify is the password ser-

vice, which is responsible simply for updating a user’s login password. It is important

that all user passwords be well-chosen passwords. They should be longer than one or two

characters and avoid containing any dictionary words at the very least.

Most distributions now include reasonably good password selection enforcement by

default—managed by PAM—but we’re going to describe one possible /etc/pam.d/

passwd file just in case you find this not to be the case on your distribution.

First, we need to verify the presence of the pam_cracklib.so module somewhere on the

system. Assuming your file database is intact, you should be able to discover whether or

not pam_cracklib.so and the needed dictionaries are present simply by entering

locate pam_cracklib.so dict | grep crack

If with this command you are able to locate both pam_cracklib.so and a crack terms

dictionary file or set of dictionary files, you should, in theory, be able to enable good

password enforcement. Just comment out the existing lines in your /etc/pam.d/passwd

file with a hash mark (#) and replace them with the ones in Listing 9.2.

LISTING 9.2 Enforced /etc/pam.d/passwd File

password required pam_cracklib.so type=user retry=3
password required pam_pwdb.so use_authtok

140 Hour 9

If you have an /etc/pam.conf file instead of the /etc/pam.d/ directory, search through

the file for lines beginning with the text passwd. Comment them out and replace them

with the lines shown in Listing 9.3.

LISTING 9.3 Enforced passwd Lines for /etc/pam.conf

passwd password required pam_cracklib.so type=user retry=3
passwd password required pam_pwdb.so use_authtok

Note that if you have MD5 passwords, you might need to append a space and the word

md5 to the end of the second line in either case.

These changes will cause the PAM system to demand better passwords of users rather

than accept bad passwords without complaint. The theory behind this small passwd stack

is as follows:

• When a user enters his desired password, check the password against a dictionary

of common terms. This task is performed by the pam_cracklib.so module and is

required in order to proceed in the stack.

• Ask for a good password up to three times before giving up altogether (the

retry=3 argument).

• If the user enters a good password (the pam_cracklib.so module completes suc-

cessfully), update the authentication token (the password) using the pam_pwdb.so

module (responsible for managing the password database).

This simple change allows a system administrator to demand good password selection

from his or her users without having to know what the passwords are or to install third-

party software or aftermarket password utilities.

Putting PAM to Work: Enforcing wheel
It is traditional on Unix-like systems to allow certain actions to occur only if the user in

question is a member of the wheel group, reserved by convention for users with system

administration type access. Among the actions usually restricted to wheel is the su com-

mand, which allows one user to take on the user ID of another user, most often the root

user.

Many users are surprised to learn that the wheel group is not enforced by default on

Linux systems, meaning that any user at all can execute the su command and use it to

log in as root if the password is known. Clearly, the ability to execute su to completion is

a security risk in the hands of normal users. Let’s remedy the situation.

Making the Most of Pluggable Authentication Modules (PAM) 141

9

We’re going to amend the /etc/pam.d/su file, which controls the authentication behav-

ior of the su command, to the following behavior:

• Allow only members of the wheel group to use su at all.

• Require all users, even root, to enter a password when trying to use su to gain

root-level access.

• Log all su uses.

The updated /etc/pam.d/su file looks like the one shown in Listing 9.4.

LISTING 9.4 Updated /etc/pam.d/su File

auth required pam_warn.so
auth requisite pam_wheel.so group=wheel
auth required pam_pwdb.so
account required pam_pwdb.so
password required pam_pwdb.so use_authtok
session required pam_pwdb.so

This /etc/pam.d/su file is obvious in its use of the pam_pwdb.so module, well docu-

mented in the PAM users guide and used often throughout the other PAM configuration

files. New here, however, is the pam_wheel.so module, which simply checks to make

sure that the user is a member of the wheel group. Because it is marked as requisite, if

the stack entry fails (when the user is not a member of wheel), the stack exits immedi-

ately in failure without continuing. Thus, only members of wheel will even be asked to

enter a password. All others will be denied from the beginning.

142 Hour 9

If you’re not aware of the wheel group, don’t worry—it’s not hard to imple-

ment. The wheel group is simply a way of restricting access to some sensitive

services (such as su) to a small group of users who have been given adminis-

trative privileges. You probably have a wheel group in your /etc/group file

already. If not, simply add one with groupadd and then add users as neces-

sary to the wheel group to create your administrator class. For example, if

you want frank, mary, and joe to be administrators, the wheel entry in your

/etc/group file might look like this:

wheel::1:frank,mary,joe

This line makes frank, mary, and joe members of the wheel group. Then,

using simple techniques such as those documented in this section, you can

grant access to services such as su only to these users.

Putting PAM to Work: Other Authentication
Perhaps the most important of the PAM configuration files is the one that could other-

wise be known as the default file. The other file controls authentication to all services

not explicitly configured under other service names. Thus, it is important that the other

file be securely configured because it is, in some sense, the last line of defense when

handling an as-of-yet unknown or unconfigured service.

The /etc/pam.d/other file recommended by the PAM documentation is perhaps the

simplest, easiest, and most secure. It is shown in Listing 9.5.

LISTING 9.5 Secure /etc/pam.d/other File

auth required pam_warn.so
auth required pam_deny.so
account required pam_warn.so
account required pam_deny.so
password required pam_warn.so
password required pam_deny.so
session required pam_warn.so
session required pam_deny.so

This file is very simple. For all module types, the control flag is the same, required, and

two modules are called. First, pam_warn.so is called to log information about the attempt

in progress. Then, pam_deny.so is called to simply return a failure and prevent any kind

of connection or authentication from taking place. Therefore, any service that uses PAM

must be explicitly configured to allow authentication, or attempts will fail.

Making the Most of Pluggable Authentication Modules (PAM) 143

9

If you want to implement wheel and protect su against access from non-

wheel members, you should also take another step: Change ownership of

the su binary to the wheel group and remove public execute permissions, as

follows:

chown root.wheel /bin/su

chmod 4750 /bin/su

Refer to Hour 7, “File System Security,” for more information on the chown

and chmod commands.

Summary
In this hour, we covered the basics of PAM configuration. We learned that PAM configu-

ration is really just a series of stack entries. Each time a service requests PAM’s help,

the PAM routines simply call all the stack entries related to that service, in order. The

process of adding authentication procedures for new services to the system is therefore

as easy as adding a few new stack entries in the PAM configuration files.

Each stack entry in a PAM configuration file contains a module type to determine the

context in which the stack entry will be run and a control flag to determine its impor-

tance. A module is also supplied that contains the actual code to process the task at hand.

Though PAM configuration can seem complex at first, it is actually not too difficult to

master, and the online PAM documentation located at www.us.kernel.org/pub/linux/

libs/pam/Linux-PAM-html/pam.html can help quite a bit.

Q&A
Q Is there a comprehensive list of all PAM modules in existence?

A There might be, but I’ve never seen it. Many different services include PAM mod-

ules of their own as a part of their source distribution, so it’s doubtful whether a

truly comprehensive list could ever be assembled.

Q Should I create a wheel group on my system? How is wheel usually used,

beyond the su command?

A It’s probably not needed on a smaller system with only a few users and only one

administrator, but on a larger system with multiple administrators and even more

users, wheel can be an important step in overall security. As far as just how wheel

is used—there are different philosophies and conventions. Your best bet is to look

at several books on Unix system administration.

New Terms
control flag One of four levels of importance that determine how PAM will proceed

when the results of the current action have become clear.

module type One of four directives that refer to the contexts in which PAM stack

entries will be processed.

restricted service Any service that provides access to system or network resources in

such a way as to pose a potential security threat in the hands of an unknown user.

144 Hour 9

Resources of this type therefore require that a user authenticate himself before access is

granted.

wheel A group used by convention on many Unix-like systems to restrict permission

for performing sensitive tasks to a small number of users who are members of the group.

Exercises
1. Modify the /etc/pam.d/su file or su service further to simply log all attempts to

use it and then deny access, meaning that root commands can only be executed

from root logins. (Preserve a backup of the /etc/pam.d/su file so that you can

restore it afterward.)

2. Modify the /etc/pam.d/chsh file or chsh service further so that only members of

wheel are allowed to use the chsh utility, preventing unsecured access to alterna-

tive login shells.

3. Using the online PAM documentation, modify the rsh, rlogin, and rexec files to

cause PAM to ignore personal .rhosts files, using only the system-wide file at

/etc/hosts.equiv instead.

Making the Most of Pluggable Authentication Modules (PAM) 145

9

Hour

10 Using ipchains for Firewalling and
Routing

11 Using iptables for Firewalling and
Routing

12 Securing Apache, FTP, and SMTP Services

13 Network Security: DNS with BIND

14 Network Security: NFS and Samba

15 Securing X11R6 Access

PART II
Network Security

HOUR 10
Using ipchains for
Firewalling and Routing

This hour we’re going to learn to configure basic firewalling and routing

capabilities of Linux. These techniques are most useful when a dedicated

firewall system is used between an internal network and an external network,

but can also help to improve network security on any host. We’ll begin with

important kernel options and then continue with the ipchains utility, which

controls the behavior of the firewalling and routing capabilities in the kernel.

Packet filtering is an art, rather than a science, and skill in packet filtering is

heavily dependent upon a user’s basic knowledge of TCP/IP networking. It is

recommended that readers not familiar with TCP/IP consult a basic TCP/IP

reference manual before trying to tackle packet filtering.

This hour only applies to users of the 2.2 kernels, for whom

ipchains is the correct firewalling or filtering management

utility. Users of 2.4 kernels should instead pay attention to

Hour 11, ”Using iptables for Firewalling and Routing,” which

covers similar systems and utilities in the late 2.3 and the new

2.4 series of kernels.

Network Security and the Kernel
Before attempting to construct any firewalling or filtering rules using ipchains, we need

to compile support for this type of network functionality into the Linux kernel. Rather

than try to prescribe a set of “do” or “don’t” rules for the networking options in the 2.2

kernel, this text will defer to the canonical kernel’s defaults as a foundation. These

defaults are reasonably sane.

150 Hour 10

By default, most distributions ship with a kernel already capable of cooperat-

ing with ipchains configuration. However, these stock kernels are also very

bloated and “open”—nearly every option available has been enabled in order

to match any possible contingency or installation size. Generally speaking, this

is bad for security. Some options tend to place ethernet cards into promiscu-

ous mode, whereas others require special administration in order to be secure.

Therefore, although it is likely possible for you to use ipchains without com-

piling a new canonical kernel, it is not recommended, for reasons related to

network security. In the end, you be the judge. If your system is relatively

low-traffic with regard to the Internet at large, ipchains and a stock distribu-

tion kernel might be all that you need. On the other hand, moderate traffic

systems should definitely make an attempt to be more conservative.

Do not confuse the kernel source included in a Linux distribution with the

official kernel source from ftp.kernel.org. The kernel sources included in

most Linux distributions are preconfigured to match the binary kernel

included with the distribution. Following defaults in this distribution-

supplied kernel source therefore leads to a significantly different result from

following defaults in canonical kernel distributions.

In addition to those networking options that are enabled by default in canonical kernel-

sources, the items in Networking Options, shown in Table 10.1, should be enabled, in

order to work with ipchains configuration.

TABLE 10.1 Kernel Options Related to ipchains Firewalling

Option Description

CONFIG_FIREWALL Required; if not enabled, no other filtering or firewalling options

will be available.

CONFIG_IP_FIREWALL Required; enables IP packet filtering. This is the fundamental

option related to ipchains and must be enabled.

CONFIG_IP_MASQUERADE Optional (recommended); needed if you plan to forward packets

seamlessly between a private internal network and the public

external Internet at large. In short, enables Linux to act as a router.

CONFIG_IP_MASQUERADE_ICMP Optional (recommended); when used in conjunction with mas-

querading, enables ICMP packets to be masqueraded as well—

important for network performance and notification issues.

CONFIG_IP_ALWAYS_DEFRAG Optional (highly recommended); prevents certain kinds of

attacks when using masquerading. Invisibly enabled behind the

scenes in later 2.2 kernels.

CONFIG_IP_ADVANCED_ROUTER Recommended; if not enabled, none of the advanced router

options will be available.

CONFIG_IP_ROUTE_VERBOSE Recommended; causes extra logging about suspicious packets to

take place, thereby helping to notify administrators of possible

attack attempts.

CONFIG_IP_TRANSPARENT_PROXY Optional; enables ipchains to transparently redirect local net-

work traffic destined for a remote host to a local port for proxy.

For all other options, try to respect the canonical kernel defaults, which are reasonably

conservative. Don’t enable anything that is normally disabled unless you are certain that

you need the related functionality and have read documentation on how to correctly

administer it.

Using ipchains for Firewalling and Routing 151

10

Some readers might plan to use additional packet types, such as IPX or

AppleTalk, with the same ethernet hardware that will be passing TCP/IP

packets. Be very aware that ipchains rules apply only to TCP/IP; no matter

how protective and closed your ipchains rulesets are, they cannot prevent

attacks over IPX or AppleTalk running on the same interface.

Therefore, if you plan to run AppleTalk or IPX on a machine that will also be

connected to the outside (Internet) world via TCP/IP, it is suggested that you

install two ethernet cards. One will connect to the outside world and will be

filtered via ipchains. The other will be for the internal network only and

will handle these additional packet types.

TABLE 10.1 continued

Option Description

After a new kernel has been compiled, installed, and verified as functioning correctly,

you’re ready to proceed with ipchains’s rule configuration.

Using ipchains
With ipchains, as is the case with any complex system, the devil can be in the details.

Really, however, the basic logic behind ipchains is simple. The user defines a series of

rules that determine what should happen to a network packet. Each rule is one in a chain

of rules that process all incoming, outgoing, or forwarded packets on a system. More

explicitly, the contexts surrounding rules and chains are as follows:

• There are three chains, or collections of rules. They are the input chain, the for-

ward chain, and the output chain. When a packet is received by the filter, it will

always be matched against the rules in the input chain. If a packet is to be for-

warded by the filter to another host, it will be matched against the rules in the for-

ward chain. If a packet is to be sent onward by the filter, it will be matched against

the rules in the output chain before being sent.

• The rules in each chain are order-dependent. When a packet is processed, it is

matched against the rules in the related chain, from first to last. Order is therefore

important!

• The user can create new chains, name them, and place rules in them as desired.

These chains must then be “called” by the user, in order for them to have any

effect.

If you can grasp these three basic ideas, understanding the rest of ipchains isn’t nearly

as remote a prospect as many users assume it to be.

Understanding ipchains Rules
Of course, we’ve left something out here. Just what does a rule look like?

Fundamentally, a rule has three major components. The first is the name of the chain to

which the rule should belong. The second can be thought of as the rule’s matcher—a cri-

terion or series of criteria that dictates which packets are matched, and therefore, when

this rule should be used. The third and final component is the target, the actual task that

will be carried out when a rule matches a packet. There are seven possible targets, as

shown in Table 10.2.

TABLE 10.2 Seven Targets Used by ipchains

Target Description

ACCEPT When a matched rule sends a packet to the ACCEPT target, the packet is allowed to

pass through the network filter to the system, just as it would have if no filter had

been in place.

DENY When a matched rule sends a packet to the DENY target, the packet is filtered out of

network traffic on the system and is never heard from again.

152 Hour 10

REJECT When a matched rule sends a packet to the REJECT target, the packet is filtered out,

and an ICMP message is sent notifying the sender that the packet was not

accepted and has therefore been dropped.

MASQ When a matched rule sends a packet to the MASQ target, the packet is masqueraded

for routing to or from the outside world. This functionality requires that the

CONFIG_IP_MASQUERADE kernel option be enabled.

REDIRECT When a matched rule sends a packet to the REDIRECT target, the outbound packet is

redirected transparently to the specified local network port. This functionality

requires that the CONFIG_IP_TRANSPARENT_PROXY kernel option be enabled.

(user chain) When a matched rule sends a packet to a named user chain instead of one of the

predefined targets listed here, processing of rules for this packet will jump from

the current chain of rules and begin traversing the named user chain of rules. In a

sense, this can be thought of as a kind of subroutine call involving chains.

RETURN Used only at the end of user rule chains; when the end of a chain is reached, the

rule sends the packet back to the original calling chain for further processing,

beginning where the calling chain previously left off. The traversal of that chain is

then completed. In a sense, this can be thought of as returning from a subroutine

chain of rules.

Each rule can match multiple packets depending on the criteria supplied to ipchains, but

each rule can send packets only to a single one of these targets.

Calling Syntax for the ipchains Utility
One single utility, ipchains, is used to add rules to chains, to remove rules from chains,

and to create new chains. Therefore, the syntax for ipchains is relatively complex. The

calling syntax looks like this:

ipchains CMD [chain] [rule-spec|num] [options]

The basic list of commands known to the ipchains utility is shown in Table 10.3.

TABLE 10.3 Common ipchains Commands

Command Description

-A (append) Appends one or more new rule(s) to the end of the specified chain.

-D (delete) Deletes the numbered or matching rule from the specified chain.

-R (replace) Replaces the numbered or matching rule in the specified chain.

-I (insert) Inserts one or more new rule(s) in the specified chain just before the num-

bered rule given.

Using ipchains for Firewalling and Routing 153

10

TABLE 10.2 continued

Target Description

-L (list) Lists all rules in the selected chain or, if no chain is supplied, list all rules in

all chains.

-F (flush) Flushes (deletes) all rules in the specified chain.

-N (new chain) Creates a new chain with the specified user-supplied name.

-X (delete chain) Deletes the specified user-created chain.

-P (policy) Sets the blanket policy for the specified chain to the given target.

-C (check) Checks the given packet to see whether it matches a rule in the specified chain.

In addition to a command, ipchains will often require options, for example, in order to

construct match criteria for an appended rule. The most commonly used ipchains

options are shown in Table 10.4.

TABLE 10.4 Common ipchains Options

Option Description

-p [!] protocol Specifies the protocol matched by this rule, one of icmp, tcp, udp, or

all. The exclamation mark (!) inverts the matching logic; when used,

it should be surrounded by a space on either side.

-s [!] addr [[!] port] Specifies the source address and port matched by this rule. Ports can

be specified either in numeric range (NNN:NNN) or symbolic (as per

/etc/services) form. If the packet type is ICMP, then port is one of

the ICMP service names given by ipchains -h icmp.

-d [!] addr [[!] port] Specifies the destination address and port matched by this rule. Ports

can be specified either in numeric range (NNN:NNN) or symbolic (as

per /etc/services) form. If the packet type is ICMP, then port is one

of the ICMP service names given by ipchains -h icmp.

-i [!] interface[+] Specifies the network interface matched by this rule. If present, the

plus (+) character indicates that the rule should match all interfaces of

the same type as the supplied interface.

-j target Dictates that, when matched, this rule should send the packet to this

target (refer to Table 10.1 for a list of possible targets).

-l Dictates that, when matched, this rule should cause information about

the packet to be logged.

[!] -y Dictates that this rule should only match TCP packets that are initiat-

ing a connection. When preceded with an exclamation mark (!), it

will match only TCP packets that are in response to already open

connections.

154 Hour 10

TABLE 10.3 continued

Command Description

For commands that expect an address to be supplied via -s or -d, a default of 0.0.0.0/0

(matches all addresses) will be used if no address is supplied by the user.

Using ipchains for Firewalling and Routing 155

10

Many users with basic TCP/IP knowledge do not recognize the slash and fol-

lowing number on IP specifications like 0.0.0.0/0 or 192.168.1.0/24. This

slash and following number are called the network mask.

The number following the slash indicates the number of bits (from “left” to

“right” in a sense) that are significant. For example, the IP 255.255.255.255,

the largest possible IP number in ipv4, is represented by four 8-bit words,

each containing 11111111 or the decimal number 255. These four 8-bit

words, taken together, represent 32 bits of data. In a configuration file or

when supplying IP addresses to ipchains that will need to match a range of

IP addresses, it is convenient to use a form such as

192.168.1.0

However, in such circumstances, we also want to indicate that we do not

mean a host specifically assigned the address 192.168.1.0, but rather that

only the first three numbers (192.168.1) are significant or fixed. The last

digit is a kind of wildcard. Therefore, we specify

192.168.1.0/24

This means that the first 24 bits (196.168.1) are significant and that the last

8 bits (the number “0” in this case) are not and can match any number.

A Simple Ruleset That Works
Now that we have at least documented the command syntax of ipchains and the logic

upon which it operates, we can begin to actually add rules that will govern packet filter-

ing in real life. This process is a tedious one, and it might take you some time to get it

correct, especially with very complex rulesets. The sample one presented here is reason-

ably secure for most systems or private networks with a limited number of internal users.

Try to follow the logic of each rule as it is presented, and you’ll be well on your way to

creating your own rules to match your particular circumstances.

Because the process of adding rules to the kernel’s table of rule chains

requires repeated calls to the ipchains command, it’s a good idea to make

your changes to a script file as you follow along with the remainder of this

chapter. You’ll likely want to make any rule or chain changes permanent

anyway, and keeping them in a script will enable you to do this.

The idea behind this simple ruleset is to create a few circumstances in which we accept

incoming packets and to deny everything else. We won’t bother with trying to filter out-

going packets, thus making the assumption that everyone on the “inside” is trusted and

not committing illegal acts.

DNS is perhaps the most fundamental service of all on today’s Internet, so let’s allow

nameserver lookups to occur. Assuming that our nameserver’s IP address is stored in the

environment variable DNS and that our system’s IP is stored in the variable MYIP, we

add the following rules:

ipchains -A input -p TCP -s $DNS domain -j ACCEPT
ipchains -A input -p UDP -s $DNS domain -j ACCEPT

These two lines create rules for the input chain (incoming traffic) making both TCP and

UDP packets acceptable as long as they come from the domain service (see /etc/

services) of our nameserver.

We also want to be able to browse the Web on this system, so let’s accept TCP packets

that aren’t connection initiation attempts:

ipchains -A input -p TCP ! -y -j ACCEPT

Now, finally, let’s also allow FTP to work. The file transfer protocol is odd because it gener-

ally tries to open a connection back to a port on the requesting system using the ftp-data

service. Ports below 1024 should be protected, as should ports between 6000 and 6255,

which can be used by X. When all is said and done, we’ll have to use two calls to ipchains

to specify two different port ranges. The addition for FTP looks like this:

ipchains -A input -p TCP -s 0/0 ftp-data \
-d $MYIP 1024:5999 -j ACCEPT
ipchains -A input -p TCP -s 0/0 ftp-data \
-d $MYIP 6255: -j ACCEPT

Now, finally, we want to make sure that we deny any packets that we haven’t explicitly

allowed:

ipchains -A input -i ! lo -p ! ICMP -j DENY -l

This line creates a rule that denies all packets other than ICMP packets (used for message-

sending like ping responses) from all sources that do not come in on the loopback inter-

face (lo). It then logs information about any dropped packets so that we know when there

is “funny business” happening on the network.

To check our new rules, the -C argument can be used. The syntax associated with -C is

similar to the syntax used for -A, so it is easy to use once you’ve created a few rules.

156 Hour 10

For example, to see if a connection to the local machine from 206.144.232.16 on port

80 can be established:

ipchains -C input -i eth0 -s 206.144.232.16 www -d $MYIP www -p tcp

denied

#

The output of the ipchains program, in this case the word denied, fortells the fate of the

hypothetical packet in question. It is a good idea to use the -C argument to check your

rules as you create them.

Masquerading
If your machine is more than just a single host, but is instead a link between your inter-

nal network and the outside world, then things get a little more interesting. In order to

masquerade, you must have at least two network interfaces. Usually, this will be eth0

and one of ppp0 or eth1. Though it is possible to configure a masquerading system with

only one hardware interface using aliasing, this technique can put ethernet hardware into

promiscuous mode and is therefore not recommended.

First, you’ll need to instruct the Linux kernel to enable IP forwarding, which is disabled by

default in 2.2 kernels. To do this, write a 1 into the /proc/sys/net/ipv4/ip_forward file:

echo 1 > /proc/sys/net/ipv4/ip_forward

This change will go away each time you reboot, so you might need to insert it into an

init script to make the change permanent. Next, we will amend the script full of calls to

ipchains we just made to accommodate the new role of the machine in question. If we

still operate under the assumption that all the users on the internal network are trusted to

behave, the changes are minimal. First, we need to add three new calls to ipchains for

forwarding requests:

ipchains -A input -i eth1 -s $INT -j ACCEPT
ipchains -A forward -s $INT -j MASQ
ipchains -A forward -j DENY -l

These three lines assume that your internal interface is eth1. The first line simply

enables all communication between this machine and other machines on the internal net-

work. The second two lines enable masquerading for all packets on the local network

while forbidding and logging all other forwarding attempts.

Notice that we’ve added a second variable—the IP range of the local network, complete

with mask value. For some common examples, see Table 10.4.

Using ipchains for Firewalling and Routing 157

10

TABLE 10.4 Common IP Range Values for Internal Nets

Host INT Value Host Masquerades For

192.168.1.1 192.168.1.0/24 192.168.1.1–192.168.1.254

192.168.1.1 192.168.0.0/16 192.168.1.1–192.168.255.254

10.1.1.1 10.1.1.0/24 10.1.1.1–10.1.1.254

10.1.1.1 10.1.0.0/16 10.1.1.1–10.1.255.254

10.1.1.1 10.0.0.0/8 10.1.1.1–10.255.255.254

After these changes are made, the system on which the rules are created will act as a rea-

sonably secure router for other systems on the internal network.

Port Forwarding
Chances are that there is at least one service you’d like to provide to the outside world

from behind your minimal firewall. In order to enable machines in the outside world to

connect to a port on your internal network, some translation must clearly take place

because IP addresses in your internal network are not valid in the larger Internet.

With Linux kernel 2.2 versions, this type of translation is accomplished with the kernel

masquerading code and a utility called ipmasqadm, or IP MASQerading ADMinistration

tool. The syntax of ipmasqadm is very simple, and looks like this:

ipmasqadm portfw -a -P tcp -L $MYIP port -R server_ip port

For example, assume that there is a Web server running on a machine on the internal net-

work. The machine’s IP address is 192.168.1.14, and the Web server is running on the

standard port. You want to make this Web server available to the outside world, also at

the standard port. The command you’d use is

ipmasqadm portfw -a -P tcp -L $MYIP 80 -R 192.168.1.14 80

Assuming masquerading for the internal network and incoming TCP connections on this

interface and port has already been enabled via ipchains, this command is all that is

needed to enable port forwarding for port 80 to 192.168.1.14’s port 80.

Putting It All Together
To make things a little more clear, let’s put everything we’ve done so far together. A sample

bash script that makes use of all the rules we’ve created so far is shown in Listing 10.1.

158 Hour 10

LISTING 10.1 Sample ipchains Script

#!/bin/bash

Clear out all existing rules
ipchains -F

Edit to reflect your networks
INTERNAL=eth1
EXTERNAL=eth0

Add your IP number here
MYIP=

And your internal network plus mask here if applicable
INT=192.168.1.0/24

And your Web server’s address here if applicable
WEB=192.168.1.14

Find the nameservers in /etc/resolv.conf; allow lookups
for DNS in $(grep ^n /etc/resolv.conf|awk ‘{print $2}’); do

ipchains -A input -p UDP -s $DNS domain \
-j ACCEPT

ipchains -A input -p TCP -s $DNS domain \
-j ACCEPT

done

Allow ping responses in as well
ipchains -A input -p ICMP -s 0/0 echo-reply \

-d $MYIP -j ACCEPT

Allow active ftp-data connections for file transfer
ipchains -A input -p TCP -s 0/0 ftp-data \

-d $MYIP 1024:5999 -j ACCEPT
ipchains -A input -p TCP -s 0/0 ftp-data \

-d $MYIP 6255: -j ACCEPT

Allow other TCP connections we initiated
ipchains -A input -p TCP ! -y -j ACCEPT

And deny everything else that isn’t on loopback
ipchains -A input -i ! lo -p ! ICMP -j DENY -l
Now, enable masquerading if necessary
if [“$INT” != “”]; then

echo 1 >/proc/sys/net/ipv4/ip_forward
ipchains -A input -i $INTERNAL -s $INT -j ACCEPT
ipchains -A forward -s $INT -j MASQ
ipchains -A forward -j DENY -l

fi

Using ipchains for Firewalling and Routing 159

10

And set up port forwarding to our Web server
if [“$WEB” != “”]; then

ipchains -A input -d $WEB www -s 0/0 www -p TCP -j ACCEPT
ipmasqadm portfw -a -P tcp -L $MYIP 80 \

-R $WEB 80
fi

end script

Although this script is simple and provides no defenses against “bad” users on an inter-

nal network, it is fairly secure with respect to the outside world and avoids unnecessary

complexity. More sophisticated or paranoid examples for using ipchains can be found in

the ipchains HOWTO document at www.linuxdoc.org/HOWTO/IPCHAINS-HOWTO.html.

You might have also noticed that this ipchains configuration doesn’t allow for incoming

connection requests for most services on the local machine. For example, it doesn’t allow

the local system to run an FTP server. It’s generally a bad idea to allow connection

requests for services that aren’t going to be made available. Rather than enable incoming

packets for every port in our script from the start, you should add lines as necessary to

allow incoming requests for services you plan to make available on the local host.

Remember to use /etc/services as your guide.

Summary
In this hour, we learned the basics of IP firewalling, packet filtering, and forwarding with

Linux 2.2 kernels using the ipchains utility. Specifically, we covered

• The list of kernel options necessary to make use of the ipchains utility and packet

forwarding

• The basic logical process behind the functionality of the ipchains command

• Construction of a simple yet reasonably secure ruleset, which also enables forward-

ing when the machine in question is acting as the gateway between an internal net-

work and an external one

• Simple-case port forwarding, such as when running a Web server from behind the

firewall

Although the script we created here is a simple one, you should now have enough knowl-

edge to construct very complex or very paranoid ipchains configurations given patience,

determination, and a willingness to refer to the ipchains(8) manual page often.

160 Hour 10

LISTING 10.1 continued

Q&A
Q With the use of TCP wrappers described in Hour 6, “TCP/IP Network

Security,” is the use of ipchains and packet filtering really necessary?

A In a sense, it’s up to you. Certainly if you’re running a system that is acting as a

router between an internal private network and the outside world, you’ll need

ipchains to administer forwarding and protect the internal network. If you’re

using a standalone machine, it isn’t strictly necessary, but it does provide one more

measure of security and logging.

Q What happened to ipfwadm?

A The ipfwadm utility was used only for 2.0 kernels. Even better, the iptables utility,

which also performs a similar function, is only for 2.4 kernels. When writing this

text, the decision was made to document packet filtering and forwarding techniques

for 2.2 and 2.4 kernels only. Three chapters on the same basic topic seemed like too

many, and the 2.0 series of kernels and accompanying distributions are beginning to

show their age anyway, both in terms of security and in terms of performance.

Q An Internet user has told me that the ipchains script in this chapter isn’t very

secure and that I should use the script from http://www.foo.bar instead. It’s a

lot longer, and I don’t really understand it. Should I use it?

A Probably not, for two reasons. First, the script in this hour, although not as para-

noid as possible, is really secure enough for smaller systems. This is especially

true if all hosts on the internal network are similarly configured and TCP wrappers

are installed and properly configured all around.

Second, you should never install a script of this sort that you don’t understand from

a user you don’t personally know. If you understand exactly what the script does,

then the decision about whether to use it is up to you, but if not, you might actually

be opening your system up to attack without realizing it.

Q I’m using a dial-up network. This script doesn’t work because it needs a spe-

cific IP address for the local host. What should I do?

A You’ll have to make the necessary modifications yourself. There are two options.

First, you could remove references to destination addresses using the -d argument

and the port in the MASQ rule, meaning that only the source would be important.

A second choice is to incorporate this script into a ppp-up or other script that

launches your dynamic connection. You can use the following command expansion

to extract the IP number from an active interface:

MYIP=$(/sbin/ifconfig $INTERFACE | grep inet | \
awk ‘{ print $2 }’ | cut -d: -f2)

After you have extracted the IP from the running interface, you should have no

problem incorporating it into a script.

Using ipchains for Firewalling and Routing 161

10

New Terms
chain A list of rules that are applied for a given context. Three chains are automatically

defined at all times: input, forward, and output.

packet filtering A kernel feature that allows incoming network packets to be discarded

based on a number of administrator-supplied criteria.

port forwarding A method for allowing packets reaching a network port on an exter-

nal interface to be forwarded to the same port on an internal interface, thereby allowing

network services to be provided from behind a firewall.

rule A list of criteria that, when applied, instruct the kernel to either discard or accept

one specific group, family, or source of network packets.

Exercises
1. Assume that a second local network is connected to eth2 and uses the IP addresses

10.1.1.1 through 10.1.1.50. Add lines to the script to enable the system to act as

a router for this second internal network as well.

2. Add a line to the script that prevents any packets from being sent out that seem to

have an address belonging to the local network. This offers minimal protection

against suspicious activity from local users.

162 Hour 10

HOUR 11
Using iptables for
Firewalling and Routing

This hour, we’re going to learn to configure basic firewalling and routing

capabilities of Linux. These techniques are most useful when a dedicated

firewall system is used between an internal network and an external network,

but can also help to improve network security on any host. We’ll begin with

important kernel options and then continue with the iptables utility, which

controls the behavior of the firewalling and routing capabilities in the kernel.

Packet filtering is an art rather than a science, and skill in packet filtering is

heavily dependent upon a user’s basic knowledge of TCP/IP networking. It

is recommended that readers not familiar with TCP/IP consult a basic

TCP/IP reference manual before trying to tackle packet filtering.

This hour applies only to users of the 2.4 kernels, for whom

iptables is the correct firewalling or filtering management util-

ity. Users of 2.2 kernels should instead pay attention to Hour

10, “Using ipchains for Firewalling and Routing,” which covers

similar systems and utilities in the 2.1 and 2.2 series of kernels.

What Is iptables? What Happened to
ipchains?

The iptables command is a successor to the ipchains command associated with 2.1

and 2.2 revisions of the Linux kernel. The ipchains command was rebuilt to make some

things (like forwarding between interfaces or routing) more clear when dealing with

packet filtering.

Users familiar with ipchains already might find that iptables is a cinch to learn. It is also

true that iptables is much more flexible than ipchains in many ways, allowing the admin-

istrator more control over little details such as logging levels. Some late 2.3 and early 2.4

kernels include ipchains backward-compatibility as a compile-time option, but a move to

iptables is desirable because of the added functionality and flexibility iptables can offer.

Network Security and the Kernel
Before attempting to construct any firewalling or filtering rules using iptables, we need

to compile support for this type of network functionality into the Linux kernel. Rather

than try to prescribe a set of “do” or “don’t” rules for the networking options in the 2.4

kernel, this text will defer to the canonical kernel source’s defaults as a foundation.

These defaults are reasonably sane.

164 Hour 11

There aren’t very many distributions shipping with 2.4 kernels as this text is

being written, but generally speaking, distribution maintainers have a tradi-

tion of shipping kernels with nearly every networking option available com-

piled into them. Although this means that such kernels are likely ready “out

of the box” for iptables and packet filtering, it also means that the security

quotient of your system might be lowered if you choose not to recompile

your kernel. For example, some possibly unnecessary networking options

tend to place ethernet hardware into promiscuous mode, whereas others

require special administration or knowledge in order to remain secure.

Therefore, although it might be possible for you to use iptables without com-

piling a new canonical kernel, it is not recommended for reasons related to

network security. In the end, you be the judge. For example, if your system is

relatively low-traffic with regard to the Internet at large, iptables and a stock

distribution kernel might be all that you need. On the other hand, moderate

traffic systems should definitely make an attempt to be more conservative.

In addition to those networking options that are enabled by default in canonical kernel

sources, the Networking Options items shown in Table 11.1 should be enabled as well, in

order to work with iptables configuration.

TABLE 11.1 Required Networking Options

Option Description

CONFIG_NETFILTER Required; activates the submenu under which all other

packet filtering options are enabled or disabled.

CONFIG_IP_NF_CONNTRACK Optional (recommended); needed if you plan to seamlessly

forward packets between a private internal network and the

public external Internet at large. In short, it enables Linux

to act as a router.

CONFIG_IP_NF_FTP Optional (recommended); when used in conjunction with

connection tracking, enables problematic FTP connections

to be masqueraded as well.

CONFIG_IP_NF_IPTABLES Required; enables the fundamental packet filtering mecha-

nism in the Linux 2.4 series kernels.

CONFIG_IP_NF_MATCH_STATE Optional (recommended); when enabled, allows for rules

based on connection-state matches.

CONFIG_IP_NF_MATCH_LIMIT Optional; allows for a limit on logging when excessive

numbers of log entries would otherwise be made. Can also

be used to prevent denial of service attacks by slowing

repeat connection rates.

CONFIG_IP_NF_MATCH_UNCLEAN Optional; enables the kernel to make guesses about which

packets might be bad or suspicious and filter based on this

decision.

CONFIG_IP_NF_FILTER Required; creates the default filter table used by iptables

for the INPUT, OUTPUT, and FORWARD tables. For most users,

iptables is pointless without this option.

CONFIG_IP_NF_TARGET_REJECT Optional; useful if, for example, you want to send ICMP

messages to hosts whose packets are being dropped.

CONFIG_IP_NF_NAT Optional (recommended); needed if you plan to seamlessly

forward packets between a private internal network and the

public external Internet at large. In short, enables Linux to

act as a router.

Using iptables for Firewalling and Routing 165

11

Do not confuse the kernel source included in a Linux distribution with the

official kernel source from ftp.kernel.org. The kernel sources included in

most Linux distributions are preconfigured to match the binary kernel sent

with the distribution. Following defaults in this distribution-supplied kernel

source therefore leads to a significantly different result from following

defaults in canonical kernel distributions.

CONFIG_IP_NF_TARGET_MASQUERADE Optional (recommended); a special case for network

address translation wherein all existing connections are

dropped if the interface goes down. Useful for dynamic

connections.

CONFIG_IP_NF_TARGET_REDIRECT Optional; a special case for network address translation

allowing a system to accept all packets locally. Useful for

setting up transparent proxies.

CONFIG_IP_NF_TARGET_LOG Optional (recommended); allows for packet logging func-

tionality similar to (but more flexible than) the functional-

ity offered by ipchains via the -l option.

For all other options, unless you know what you are doing, try to respect the canonical

kernel defaults, which are reasonably conservative. Don’t enable anything that is nor-

mally disabled unless you are certain that you need the related functionality and have

read documentation on how to correctly administer it.

166 Hour 11

TABLE 11.1 continued

Option Description

Some readers might plan to use additional packet types, such as IPX or

AppleTalk, with the same ethernet hardware that will be passing TCP/IP

packets. Be very aware that iptables rules apply only to TCP/IP; no matter

how protective and closed your iptables rulesets are, they cannot prevent

attacks over IPX or AppleTalk running on the same interface.

Therefore, if you plan to run AppleTalk or IPX on a machine that will also be

connected to the outside (Internet) world via TCP/IP, it is suggested that you

install two ethernet cards. One will connect to the outside world and will be

filtered via iptables. The other will be for the internal network only and

will handle these additional packet types.

After a new kernel has been compiled, installed, and verified to function correctly, you’re

ready to proceed with iptables rule configuration.

Using iptables
As was the case with ipchains, and as is the case with any other complex system, the

iptables devil can be in the details. The basic logic behind iptables is simple,

although an extra layer of functionality has been added since the days of ipchains.

When using iptables, the user defines a series of rules that determine what should hap-

pen to a network packet. A chain of rules processes various types of network packet

activity. Each chain is one of a group of chains belonging to a specific table. The rela-

tionship of rules, chains, and tables is as follows:

• There are three major tables in the new packet filtering code. They are the filter

table, the nat table, and the mangle table. Each table contains a series of rule chains

that will be used to process packets in a given context.

• The filter table is the default table example; no other is specified when calling

iptables. The filter table contains the INPUT, FORWARD, and OUTPUT chains, which

are processed for incoming, forwarded, and outgoing packets, respectively. These

chains are similar to the same chains in the ipchains tradition.

• The nat table handles network address translation (including functionality related

to masquerading) and contains the PREROUTING, OUTPUT, and POSTROUTING chains,

which are processed for incoming forwardable packets, locally generated packets,

and outbound forwardable packets, respectively.

• The mangle table is used for special packet mangling and contains two chains,

PREROUTING and OUTPUT, which are similar to the chains in the nat table with the

same names. We won’t concern ourselves with the mangle table in this text.

• The rules in each chain are order-dependent. When a packet is processed, it is

matched against the rules in the related chain, from first to last. Order is therefore

important!

• The user can create new chains, name them, and place rules in them as desired.

These chains must then be called by the user in order for them to have any effect.

Users of ipchains or the older ipfwadm might notice that the new iptables command

has incorporated functionality from several other separate commands, bringing all packet

filtering functionality in Linux under the umbrella of a single command.

When you have mastered IP iptables, you will have a firm grasp on the functionality of

Linux packet filtering as an entire topic.

Understanding iptables Rules
Of course, we’ve left something out here. Just what does an iptables rule look like?

Fundamentally, a rule has four major components. The first and second are the table and

chain to which the rule should belong. For example, if no table is specified, then it is

assumed that the specified chain is a member of the filters table. The third component

of a rule can be thought of as the rule’s matcher—a criterion or series of criteria that

dictates which packets are matched, and therefore, when this rule should be used.

Using iptables for Firewalling and Routing 167

11

The fourth and final component is the target, the actual task that will be carried out when

a rule matches a packet. The iptables command is extensible via kernel modules and

therefore includes support for many more targets than the ipchains command did. The

most common targets are shown in Table 11.2.

TABLE 11.2 Most Common iptables Targets

Target Description

ACCEPT When a matched rule sends a packet to the ACCEPT target, the packet is allowed

to pass through the network filter to the system, just as it would have if no filter

had been in place.

DROP When a matched rule sends a packet to the DROP target, the packet is filtered out

of network traffic on the system and is never heard from again. This target is

analogous to the DENY target when using ipchains.

REJECT When a matched rule sends a packet to the REJECT target, the packet is filtered

out by the filter and an ICMP message notifies the sender that the packet was not

accepted and has therefore been dropped. In order to use the REJECT target, you

must have enabled it in the kernel or have the related module loaded.

MASQUERADE When a matched rule sends a packet to the MASQUERADE target, the packet is mas-

queraded for routing to or from the outside world. This target can be used only in

the POSTROUTING chain of the nat table. In order to use the MASQUERADE target, you

must have enabled it in the kernel or have the related module loaded.

SNAT When a matched rule sends a packet to the SNAT target, the packet’s source address

is translated for routing to or from the outside world. This target can be used only in

the POSTROUTING chain of the nat table and is typically used in place of MASQUERADE

for routers with a static IP. When using SNAT, the --to option is also supplied, along

with the address or range of addresses representing the new packet source.

DNAT When a matched rule sends a packet to the DNAT target, the packet’s destination

address is translated for routing to or from the outside world. This target can be

used only in the PREROUTING chain of the nat table and is typically used for con-

figuring transparent proxies or performing port forwarding. When using DNAT, the

--to option is also supplied, along with the address or range of addresses repre-

senting the new packet destination.

LOG When a matched rule sends a packet to the LOG target, information about the

packet is logged. A number of extended options can be supplied with the LOG tar-

get, the most common of which is --log-prefix, to control the text string that

precedes every log entry. In order to use the LOG target, you must have enabled it

in the kernel or have the related module loaded.

(User chain) When a matched rule sends a packet to a named user chain instead of one of the

predefined targets listed here, processing of rules for this packet will jump from

the current chain of rules and begin traversing the name user chain of rules. In a

sense, this can be thought of as a kind of subroutine call involving chains.

168 Hour 11

RETURN Used only at the end of user rule chains; when the end of a chain is reached, this

rule sends the packet back to the original calling chain for further processing,

beginning where the calling chain previously left off. The traversal of that chain

is then completed. In a sense, this can be thought of as returning from a subrou-

tine chain of rules.

Each rule can match multiple packets depending on the criteria supplied to iptables, but

each rule can send packets only to a single one of these targets.

Calling Syntax for the iptables Utility
The iptables utility not only incorporates all the functionality formerly present in

ipchains, but incorporates functionality from other utilities such as ipmasqadm as well.

Therefore, the syntax for iptables can be extremely complex, and you should consult

iptables(8) for a complete enumeration. The syntax can usually be simplified, however,

to the following:

iptables [-t table] CMD [chain] [rule-spec|num] [options]

The basic list of commands known to the iptables utility is shown in Table 11.3.

TABLE 11.3 Common iptables Commands

Command Description

-A (--append) Appends one or more new rule(s) to the end of the specified chain.

-D (--delete) Deletes the numbered or matching rule from the specified chain.

-R (--delete) Replaces the numbered or matching rule in the specified chain.

-I (--insert) Inserts one or more new rule(s) in the specified chain just before the num-

bered rule given.

-L (--list) Lists all rules in the selected chain or, for example, if no chain is sup-

plied, list all rules in all chains.

-F (--flush) Flushes (deletes) all rules in the specified chain and table.

-N (--new-chain) Creates a new chain with the specified user-supplied name.

-X (--delete-chain) Deletes the specified user-created chain.

-E (--rename-chain) Renames the specified user-created chain.

-P (--policy) Sets the blanket policy for the specified chain to the given target.

-C (--check) Checks the given packet to see whether it matches a rule in the specified

chain.

Using iptables for Firewalling and Routing 169

11

TABLE 11.2 continued

Target Description

In addition to a command, iptables will often require options, for example, in order to

construct match criteria for an appended rule. There are a vast number of options for

iptables, many of which depend on kernel compilation choices. The most commonly

used iptables options are shown in Table 11.4.

TABLE 11.4 Common iptables Options

Option Description

-p [!] protocol Specifies the protocol matched by this rule, one of icmp, tcp, udp,

or all. The exclamation mark (!) inverts the matching logic;

when used, it should be surrounded by a space on either side.

-s [!] addr[/mask] Specifies the source address or range of addresses matched by

this rule.

--source-port [!] port Specifies the source port or range of ports matched by this rule.

Ports can be specified either as a numeric range (NNN:NNN) or

in symbolic (as per /etc/services) form.

-d [!] addr[/mask] Specifies the destination address or range of addresses matched

by this rule.

--destination-port [!] port Specifies the destination port or range of ports matched by this

rule.

--icmp-type [!] type Specifies the type of ICMP message matched by this rule. Only

applies when ICMP protocol has been specified.

-i [!] interface[+] Specifies the incoming network interface matched by this rule.

If present, the plus (+) character indicates that the rule should

match all interfaces of the same type as the supplied interface.

This option is only valid in the INPUT, FORWARD, and PREROUTING

chains.

-o [!] interface[+] Specifies the outgoing network interface matched by this rule. This

option is only valid for the OUTPUT, FORWARD, and POSTROUTING

chains.

-j target Dictates that when matched, this rule should send the packet to

this target (see Table 11.1 for a list of common targets).

[!] --syn Dictates that this rule should only match TCP packets that are

initiating a connection. When preceded with an exclamation

mark (!), matches only TCP packets that are in response to

already open connections.

For commands that expect an address to be supplied via -s or -d, a default of 0.0.0.0/0

(matches all addresses) will be used if the user supplies no address.

170 Hour 11

State-Based Matches
New with iptables is the capability to create rule matches based on packet states, using

the state module. The format for creating rules based on state matches is

iptables -m state --state [!] [state,state...]

The four matchable packet states are shown in Table 11.5.

TABLE 11.5 State Module Matches

Match Description

NEW Matches packets that initiate a new connection.

ESTABLISHED Matches packets that belong to an already open connection, and are thus sent in

reply to other packets.

RELATED Matches packets that are related to another connection, for example the data con-

nection for file trasfer protocol exchanges.

INVALID Matches packets that don’t make any sense within the context of the existing

connection or packets that couldn’t be successfully received for some reason.

The capability to match packets based on state information using iptables and kernel

2.4 greatly simplifies the packet filtering process.

Using iptables for Firewalling and Routing 171

11

Many users with basic TCP/IP knowledge do not recognize the slash and fol-

lowing number on IP specifications like 0.0.0.0/0 or 192.168.1.0/24. This

slash and following number are called the network mask.

The number following the slash indicates the number of bits (from “left” to

“right” in a sense) that are significant. For example, the IP 255.255.255.255

(the largest possible IP number in IPv4) is represented by four 8-bit words,

each containing 11111111 or the decimal number 255. These four 8-bit

words, taken together, represent 32 bits of data. In a configuration file or

when supplying IP addresses to ipchains that will need to match a range of

IP addresses, it is convenient to use a form such as

192.168.1.0

However, in such circumstances, we also want to indicate that we do not

mean a host specifically assigned the address 192.168.1.0, but rather that

only the first three numbers (192.168.1) are significant or fixed. The last

digit is a kind of wildcard. Therefore, we specify

192.168.1.0/24

This means that the first 24 bits (196.168.1) are significant and that the last

8 bits (the number 0 in this case) are not and can match any number.

A Simple Ruleset That Works
Now that we have at least documented the command syntax of iptables and the logic

upon which it operates, we can begin to actually add rules that will govern packet filter-

ing in real life. This process is a tedious one and it might take you some time to get it

correct, especially with very complex rulesets. The sample one presented here is reason-

ably secure for most systems or private networks with a limited number of internal users.

Try to follow the logic of each rule as it is presented, and you’ll be well on your way to

creating your own rules to match your particular circumstances.

172 Hour 11

Because the process of adding rules to the kernel’s table of rule chains

requires repeated calls to the iptables command, it’s a good idea to make

your changes to a script file as you follow along with the remainder of this

chapter. You’ll likely want to make any rule or chain changes permanent

anyway, and keeping them in a script will allow you to do this.

The idea behind this simple ruleset is to create a few circumstances in which we accept

incoming packets and to deny everything else. We won’t bother with trying to filter out-

going packets, thus making the assumption that everyone on the “inside” is trusted and

not committing illegal acts. We can use connection state matching to begin our simple

ruleset by explicitly enabling all non-inbound TCP traffic:

iptables -t filter -A INPUT -m state \
--state ESTABLISHED,RELATED -j ACCEPT

Because state matching works only with TCP packets, we’ll still need some additional

rules for UDP packets. DNS is perhaps the most fundamental service of all on today’s

Internet, so let’s allow nameserver lookups to occur. Assuming that our nameserver’s IP

address is stored in the environment variable DNS, we add the following rules:

iptables -t filter -A INPUT -p udp -s $DNS \
--source-port domain -j ACCEPT

These four lines create rules for the default filter table’s INPUT chain (incoming traffic)

making all TCP packets related to existing connections and UDP packets related to the

domain service (see /etc/services) acceptable. Since we’ve already allowed TCP pack-

ets for established and related connections, no additional work is required for outbound

Web or FTP traffic.

Now we want to make sure that we deny any packets that we haven’t explicitly allowed.

In the process, it would be nice to make some logs as well. To do both, we add

iptables -N logdeny
iptables -t filter -A logdeny -j LOG \
--log-prefix “iptables: “

iptables -t filter -A logdeny -j DROP
iptables -t filter -A INPUT -i ! lo -m state \
--state NEW,INVALID -j logdeny

First, we created a new user-defined chain called logdeny. This chain simply logs a

packet and then drops it. Then, we add a rule to the INPUT chain that checks any incom-

ing packets on real interfaces to see if they initiate new connections or are invalid. If so,

the packets are sent to the logdeny chain where they are then logged and dropped.

Masquerading and NAT
If your machine is more than just a single host, but is instead a link between your inter-

nal network and the outside world, then things get a little more interesting. In order to

masquerade or perform normal network address translation, you must have at least two

network interfaces. Usually, this will be eth0 and either ppp0 or eth1.

First, you’ll need to instruct the Linux kernel to enable forwarding, which is disabled by

default in 2.4 kernels. To do this, write a 1 into the /proc/sys/net/ipv4/ip_forward file:

echo 1 > /proc/sys/net/ipv4/ip_forward

We should also instruct the kernel to drop packets that come in on mismatched inter-

faces—for example, packets with internal IP numbers on the external interface:

echo 1 > /proc/sys/net/ipv4/conf/all/rp_filter

These changes will go away each time you reboot, so you might need to insert them into

an init script to make the change permanent. Next, we will amend the script full of calls

to iptables we just made to accommodate the new role of the machine in question. If

we still operate under the assumption that all the users on the internal network are trusted

to behave, the changes are fairly minimal.

We’re going to assume that the variable EXTERNAL holds the name of your external net-

work interface and that the variable MYIP holds your static IP number, if you have one.

Assuming you have made the /proc file system changes to IPv4 described earlier, it is

only necessary to add the rule that actually rewrites the packets in question so that com-

municating hosts will recognize them. There are two commands to do this; one of them

will likely apply to your situation, whereas the other will not:

iptables -t nat -A POSTROUTING -o $EXTERNAL \
-j MASQUERADE
iptables -t nat -A POSTROUTING -o $EXTERNAL \
-j SNAT --to $MYIP

The first of the two commands that uses the MASQUERADE target is for users who have a

dynamically allocated external IP that is subject to change. (This could be due, for exam-

ple, to connection difficulties.) When using MASQUERADE, if the interface goes down at all,

Using iptables for Firewalling and Routing 173

11

even if just for a moment, all connections are dropped. The other command that uses the

SNAT target will attempt to keep connections open if the interface goes down for a moment,

operating on the assumption that, when it comes back up, the IP number will be the same.

After these changes are made, the system on which the rules are created will act as a rea-

sonably secure router for other systems on the internal network.

Port Forwarding
Chances are that there is at least one service you’d like to provide to the outside world

from behind your minimal firewall. In order to enable machines in the outside world to

connect to a port on your internal network, some translation must clearly take place

because IP addresses in your internal network are not valid in the larger Internet.

With Linux kernel 2.4 and the advent of iptables, no additional software is required.

Instead, port forwarding of this type can be accomplished using the DNAT target for

destination network address translation. Using iptables, the basic syntax for port for-

warding is as follows:

iptables -t nat -A PREROUTING [-p protocol] \
-d $MYIP --dport original_port \
-j DNAT --to destaddr:port

The logic behind this type of rule is as follows: Inbound packets, being processed by the

PREROUTING chain in the nat table, which were destined for the local network’s outside IP

on the specified port, will be mangled and delivered to the new destination address and

port. In the case of a local Web server running on 192.168.1.14, using default http

ports, the result would be

iptables -t nat -A PREROUTING -p tcp \
-d $MYIP --dport http -j DNAT --to 192.168.1.14:80

This command would enable port forwarding to the Web server, enabling it to operate

from behind the firewall. Before incoming connections would be allowed, however, one

additional line must appear in our iptables script, just before we block all NEW and

INVALID packets:

iptables -t filter -A INPUT -p tcp -source-port www -j ACCEPT

This line allows connections from any source to be initiated on the www protocol port as

listed in the /etc/services file.

Putting It All Together
To make things a little more clear, let’s put everything we’ve done so far together. A sample

bash script that makes use of all the rules we’ve created so far is shown in Listing 11.1.

174 Hour 11

LISTING 11.1 Sample iptables Script

#! /bin/bash

Clear out all existing rules and user-created chains
for TABLE in filter nat mangle; do

iptables -t $TABLE -F
iptables -t $TABLE -X

done

Add your own IP here
MYIP=

And your internal network plus mask here if applicable
INT=192.168.1.0/24

And your Web server’s address here if applicable
WEB=192.168.1.14

Edit to reflect your network(s)
INTERNAL=eth1
EXTERNAL=eth0

Allow any traffic that we initiated
iptables -t filter -A INPUT -m state \
--state ESTABLISHED,RELATED -j ACCEPT

Find the nameservers in /etc/resolv.conf; allow lookups
for DNS in $(grep ^n /etc/resolv.conf|awk ‘{print $2}’); do

iptables -t filter -A INPUT -p udp -s $DNS \
--source-port domain -j ACCEPT

Allow incoming Web if necessary
if [“$WEB” != “”]; then

iptables -t filter -A INPUT -p tcp \
--source-port www -j ACCEPT

fi

Deny and log everything else that isn’t on loopback
iptables -N logdeny
iptables -t filter -A logdeny -j LOG \
--log-prefix “iptables: “
iptables -t filter -A logdeny -j DROP

iptables -t filter -A INPUT -i ! lo -m state \
--state NEW,INVALID -j logdeny

Now, enable network address translation if necessary
if [“$INT” != “”]; then

echo 1 >/proc/sys/net/ipv4/ip_forward
echo 1 >/proc/sys/net/ipv4/conf/all/rp_filter
if [$EXTERNAL = ppp0]; then

iptables -t nat -A POSTROUTING -o $EXTERNAL \

Using iptables for Firewalling and Routing 175

11

-j MASQUERADE
else

iptables -t nat -A POSTROUTING -o $EXTERNAL \
-j SNAT --to $MYIP

fi
fi

And set up port forwarding to our Web server
if [“$WEB” != “”]; then

iptables -t nat -A PREROUTING -p tcp \
-d $MYIP --dport http -j DNAT --to $WEB:80

fi

end script

Although this script is simple and provides no defenses against “bad” users on the inter-

nal network, it is reasonably secure with respect to the outside world while at the same

time avoiding unnecessary complexity.

You might have also noticed that this iptables configuration doesn’t allow for incoming

connection requests for most services on the local machine. For example, it doesn’t allow

the local system to run an FTP server. It’s generally a bad idea to allow connection

requests for services that aren’t going to be made available. Rather than enable incoming

packets for every possible service, you should add lines as necessary to allow incoming

requests for services you plan to use. Remember to use /etc/services as your guide.

Summary
In this hour, we learned the basics of IP firewalling, packet filtering, and forwarding with

Linux 2.4 kernels using the iptables utility. Specifically, we covered

• The list of kernel options necessary to make use of the iptables utility and vari-

ous types of network address translation.

• The basic logical process behind the functionality of the iptables command.

• Construction of a simple yet reasonably secure ruleset that also enables network

address translation when a machine is acting as the gateway between an internal

network and an external one.

• Simple-case port forwarding, such as when running a Web server from behind the

firewall.

176 Hour 11

LISTING 11.1 continued

Although the script we created here is a simple one, you should now have enough knowl-

edge to construct very complex or very paranoid iptables configurations, given patience,

determination, and a willingness to refer to the iptables(8) manual page often.

Q&A
Q With the use of TCP wrappers described in Hour 6, “TCP/IP Network

Security,” is the use of iptables and packet filtering really necessary?

A In a sense, it’s up to you. Certainly if you’re running a system that is acting as a

router between an internal network and the outside world, you’ll need iptables to

administer network address translation and protect the internal network. If you’re

using a standalone machine, it isn’t strictly necessary, but it does provide one more

measure of security and logging.

Q What happened to ipmasqadm?

A The ipmasqadm utility was used only for 2.2 kernels. With the advent of kernel 2.4 and

iptables, all functionality related to packet filtering, network address translation, and

port forwarding has been moved to a central location—the iptables command.

Q An Internet user has told me that the iptables script in this hour isn’t very

secure and that I should use the script from http://www.foo.bar instead. It’s a

lot longer, and I don’t really understand it. Should I use it?

A Probably not, for two reasons. First, the script in this hour, although not as para-

noid as possible, is really secure enough for smaller systems. This is especially true

if all hosts on the internal network are similarly configured and TCP wrappers are

installed and properly configured all around.

Second, you should never install a script of this sort that you don’t understand from

a user you don’t personally know. If you understand exactly what the script does,

then the decision about whether to use it is up to you, but if not, you might actually

be opening your system up to attack without realizing it.

New Terms
chain A list of rules that are applied for a given context. Three chains are automatically

defined at all times: input, forward, and output.

packet filtering A kernel feature that allows incoming network packets to be discarded

based on a number of administrator-supplied criteria.

port forwarding A method for allowing packets reaching a network port on an exter-

nal interface to be forwarded to the same port on an internal interface, thereby allowing

network services to be provided from behind a firewall.

Using iptables for Firewalling and Routing 177

11

rule A list of criteria that, when applied, instruct the kernel to either discard or accept

one specific group, family, or source of network packets.

state-based matching A new kind of rule matching introduced with kernel 2.4 that

allows packet filtering based on the context of the packet’s use, rather than just on source

or destination IP address or protocol or port type.

tables A way of incorporating the functionality of a number of programs into a single

program, iptables, by allowing for multiple lists of chains that are applied or not

applied based on the filtering or translation task at hand.

Exercises
1. Assume that a second local network is connected to eth2 and uses the IP addresses

10.1.1.1 through 10.1.1.50. Add lines to the script to enable the system to act as

a router for this second internal network as well.

2. Add a line to the script that prevents any packets from being sent out that seem to

have an address belonging to the local network. This offers minimal protection

against suspicious activity from local users.

178 Hour 11

HOUR 12
Securing Apache, FTP,
and SMTP Services

This hour, we’re going to learn about basic security issues involving three

common Internet services often provided to the outside world: HTTP, FTP,

and SMTP. The HTTP server we’re going to discuss is Apache, the most

commonly used Web server for Linux systems. The mail (SMTP) server

we’re going to discuss is Sendmail, still the most popular SMTP server

among Linux users.

Having already configured TCP wrappers correctly and set up basic packet

filtering, firewalling, and port forwarding when necessary, your network ser-

vices are already fairly secure. However, all these general security measures

are for naught if gaping holes are left in your daemon configurations.

This chapter doesn’t cover SSL-enhanced HTTP server modules, however.

Hour 18, “Encrypting Web Data,” is dedicated completely to this type of

functionality.

Security and the Apache HTTPD Server
The Apache Web server is one of the most famous pieces of open source software, and

with good reason: It is fast, stable, and extremely secure out of the box. Therefore, most

distributions’ Apache installations require few modifications. Rather than spend time

recompiling and reinstalling Apache and creating configuration files from scratch, it is

more efficient simply to cover a few basic security-oriented concepts to keep in mind

when configuring Apache.

180 Hour 12

As is the case with all software, different versions of Apache have different

capabilities. For the purposes of this text, we’re going to assume that you’ll

be using Apache 1.3.x, currently the most widely used version of Apache in

the Linux community.

As we browse through the configuration file, try to follow along. Many of the configura-

tion items we’ll discuss might already be present in your default configuration file. It is

important that you find existing items and modify them rather than simply adding new

ones without checking because, in some cases, the effects of multiple identical configu-

ration items might be cumulative.

Global Basic Security-Related Directives
The httpd.conf file is the central configuration file for most Apache installations.

Different distributions store the file in different locations, but if you have installed

Apache packages, you can find the httpd.conf file on your system with a simple

command:

locate httpd.conf

Within this file is a series of directives within scoping (context-oriented) boundaries that

are used to control the behavior of nearly every aspect of the HTTPD server. An in-depth

description of all possible directives in this file is beyond the scope of this text, but

details can be found in the official Apache documentation at http://httpd.apache.

org/docs/.

A few global directives in the file are very important for the basic security of

httpd.conf and Apache. The recommended settings shown here are a good starting

point for most users:

ResourceConfig /dev/null
AccessConfig /dev/null

The ResourceConfig and AccessConfig directives specify locations for configuration

files that are now considered obsolete. Just to be sure, it’s a good idea to point them to a

location that cannot be edited.

The MaxClients directive specifies the maximum number of connections that will be

enabled at any one time, such as

MaxClients 50

It is important to understand that, if this number is reached, additional connecting users

will receive an error message. Don’t set the number too low. On the other hand, a new

HTTPD process is started for each connection, so setting the number too high can make

your system vulnerable to a simple denial of service attack. A number between 50 and

150 is acceptable for the average Pentium system with 32–64 megabytes of memory.

The Port directive

Port 80

is self-explanatory. The normal HTTP port is port 80, but if you don’t want to make your

Web server obviously accessible to the average person, you can specify an alternative

port. Be sure not to conflict with any ports already used in /etc/services!

The User and Group directives are extremely important. They represent the user and

group ownership under which your HTTPD processes will run:

User nobody
Group nobody

The nobody user is a good choice if it exists on your system. If not, create a nobody user

or a www user and specify it with this directive. Never run HTTPD with the permissions

of any human user on the system or with the permissions of root. To do so is to make all

of that person’s files completely accessible to the entire world. In the case of root, the

potential results are disastrous!

The DocumentRoot directive specifies the base directory from which Apache will serve

pages:

DocumentRoot /public/www

It corresponds to a Web site’s root directory for users in the outside world. In the inter-

est of both simplicity and security, it is important to set this directive to a location cre-

ated specifically to house Web pages, owned by the user and group you specified in the

User and Group directives. All Web content will then be placed in this directory.

Securing Apache, FTP, and SMTP Services 181

12

The UserDir directive allows the HTTPD server to also serve files from a per-user loca-

tion supplied in the URL, such as

UserDir public_html
UserDir disabled root

Set to public_html, the following mappings would occur:

http://host.net/~bob -> ~bob/public_html
http://host.net/~bob/funnies/ -> ~bob/public_html/funnies/

This sort of thing is convenient for giving multiple users a home page, but can represent

a security risk if the server is pointed to the wrong areas. Thus, the disabled option

enables the UserDir directive to exclude certain users from this kind of translation. If

you also had, for example, /home/ftp and /home/citadel directories and their corre-

sponding users, you might want to exclude them at the same time, as follows:

UserDir disabled root ftp citadel

An alternative, more conservative policy is to disable the UserDir feature altogether as a

matter of policy and then enable it only for specific users:

UserDir disabled
UserDir enabled bob jamie karen laffer

182 Hour 12

Even when using the disabled option, the UserDir directive poses some fun-

damental security risks unless a conservative root (/) directory directive is

also in place in your httpd.conf file. Be sure to read and understand the

“Directory and DirectoryMatch Scopes” section later in this hour if you

plan to use UserDir.

The UserDir facility isn’t by any means mandatory. On small systems or networks where

no user home directories need be accessed, the feature should probably be disabled alto-

gether.

Global Logging Directives
Good logging is critical to good security, and no time is this truer than when dealing

with a typically high-traffic area like the HTTPD server. The first two logging directives

are straightforward:

The ErrorLog and LogLevel directives

ErrorLog /var/log/httpd/error_log
LogLevel warn

aren’t explicitly security-related, but can become so if Apache becomes unstable or

encounters runtime errors. It is therefore important to log errors and watch the log. The

level suggested here is warn, which generates a minimal amount of log traffic, but

doesn’t let anything critical pass.

The other logging directives are more involved. The LogFormat directive allows the for-

mat of log files to be dictated by the administrator. The directive accepts two arguments,

a format string enclosed in quotation marks that will be expanded each time an entry is

made and a name for the log format specified. The most common special values that can

be expanded are shown in Table 12.1.

TABLE 12.1 LogFormat Special Values

String Expands To

%a Remote user’s IP address

%A Local HTTPD server’s IP address

%b Non-header bytes sent (common log file format)

%c Connection status after response:

X = connection aborted

+ = response completed, keep alive

- = response completed, connection closed

%f Name of file sent

%h Remote host

%H The request protocol

%{str}i The contents of the HTTP header string str

%m Request method

%l Remote name as given by identd

%p Port to which HTTPD server is connected

%P Process ID of HTTPD serving request

%q The query string (when applicable)

%>s Server status

%t Time (common log file format)

%T Time elapsed in serving request

%u Remote name as given by auth

%U URL requested

Securing Apache, FTP, and SMTP Services 183

12

A number of other values can also be expanded; these are documented fully in the

canonical Apache documentation. The idea is to use them to construct a standard log

entry format to your tastes or needs. A good starting point might be

LogFormat “%h %l %u %t \”%r\” %>s %b” common
CustomLog /var/log/httpd/common_log common

This creates a log in common log file format with enough information to keep many

administrators satisfied. In the interest of additional security, you might also want to

specify

LogFormat “%h %t \”%{Referer}i\” \”%{User-Agent}i\”” extra
CustomLog /var/log/httpd/extra_log extra

If you feel that you need extra logging information, feel free to create as many logs as

you have disk space for.

Directory and DirectoryMatch Scopes
A scope in the httpd.conf file can contain any number of directives, each of which will

have effect only within the scope in question. The format for a scope demarcation is as

follows:

<Scope argument>
Directive arguments
Directive arguments
Directive arguments
...

</Scope>

The httpd.conf file can contain any number of scopes.

The Directory scope causes the set of directives it contains to apply to the directory

mentioned in the scope header. For example, consider the following scope definition that

should be present on every system:

<Directory />
Order Deny,Allow
Deny from all

</Directory>

The two directives Order and Deny will be effective for the directory / (root) and all

subdirectories, which inherit its properties. The Order directive instructs httpd to con-

sider Deny directives in this scope before Allow directives. The Deny directive blocks

access to all files in this scope.

184 Hour 12

The net effect of the previous scope is to prevent HTTPD from retrieving files anywhere

in the file system at all. Clearly, this isn’t desirable because a Web server is pointless if it

isn’t allowed to actually serve any pages. So, exceptions must be created:

<Directory /public/www>
Order Allow,Deny
Allow from all

</Directory>

<Directory /home/*/public_html>
Order Allow,Deny
Allow from all

</Directory>

These two scopes create exceptions in a sense to the first Directory scope we defined.

We now grant public access to all files in /public/www as well as to all files in users’

public_html directories, assuming that account homes are in /home. Notice that simple

wildcard characters can be used in scoping. The order of Order has been reversed in the

interest of convenience and logic. If we want to create any Deny exceptions to the new

Allow rules, they can again come after the first rule allowing access to all.

If more wildcard flexibility is desired, the DirectoryMatch scope can be used instead. It

functions identically to the Directory scope but allows the use of complete regular

expressions in the argument.

Securing Apache, FTP, and SMTP Services 185

12

The Deny and Allow directives provide a method to allow system administra-

tors to grant or deny access within a scope based on simple rules. Any Deny

or Allow directive can be followed by the word all (to allow or deny all

requests), a network, or nearly any fragment of an IP number or a host-

name. For example, the following are all valid:

Deny from all

Deny from 192.168.1.0/24

Deny from 192.168.1.

Deny from .conga.net

Allow from all

Allow from 10.0.0.0/8

Allow from 10.

Allow from .borneo.com

Typically, Deny or Allow directives are preceded in a scope by an Order direc-

tive, which determines whether all Deny rules will be considered first, fol-

lowed by Allow rules, or vice versa.

Additional Scopes
Four other scopes are used at times in addition to the Directory and DirectoryMatch

scopes, although they aren’t as broadly useful.

The Files and FilesMatch scopes perform similar functions, but with respect to a single

file, which can be supplied either relatively or with an absolute path. For example, to

prevent any file called private.txt from being accessed anywhere in the system, you

could use

<Files private.txt>
Order Deny,Allow
Deny from all

</Files>

To allow any file that ends in .public.html to be displayed, regardless of where it

occurs, you would use

<Files *.public.html>
Order Allow,Deny
Allow from all

</Files>

The FilesMatch scope is similar, but again enables complete regular expressions to be

used as arguments.

Two other scopes, Location and LocationMatch, perform similar functions, but on the

URL location, rather than the local directory paths. In many cases, they can be used in

place of Directory or DirectoryMatch when it is convenient to do so.

186 Hour 12

The Location and LocationMatch scopes can sometimes confuse security

matters. First, they are slightly more confusing to use than Directory,

DirectoryMatch, Files, and FileMatch, which allow the administrator to

think in terms of local directories and files that should or should not be

made public.

More importantly, however, they can also conflict with existing scopes. If a

Location scope explicitly allows for a URL that otherwise would have been

denied because of an existing Directory scope, for example, the file will go

out to the requester anyway.

Authentication
At times it is necessary to provide some kind of authentication method for accessing

a file or directory. For example, you might want to allow access to the directory

/private/projects via the Web, but only to certain employees. Step one is easy

enough:

ln -s /private/projects /public/www/employee-projects

Now there is a valid URL where the directory can be found. However, the Directory

scope restricting access to the root (/) file system still prevents access to the directory.

You could then add another scope:

<Directory /private/projects>
Order Allow,Deny
Allow from all

</Directory>

This will allow access to the directory in question, but it will give access to everybody in

the world. The proper way to handle a situation like this is via user authentication. By

assigning username and password pairs to the group of employees who need to have

access to /private/projects, you can put the data on the Web without making it com-

pletely public.

To do this, we can add the following scope to httpd.conf:

<Directory /private/projects>
AuthType Basic
AuthName “Employee Files”
AuthUserFile /etc/httpd/employee-users
Require valid-user

</Directory>

The AuthType directive instructs HTTPD to use basic authentication (ask for a username

and a password) before allowing files in the directory to be served. The AuthName direc-

tive determines what will be displayed to the remote user when a username and password

are requested.

The next two directives require more explanation. The AuthUserFile directive dictates

that a user and passwords file located at /etc/httpd/employee-users be consulted for

authentication information. The Require directive with the valid-user option dictates

that a valid username and password pair is required before logins will be allowed. But

where does this user and passwords file come from?

The file must be created and maintained using the htpasswd utility. The utility is very

easy to use. To begin a new file and add a user to it, use

htpasswd -b -c file user password

So, for example, to give a user named bob access to /private/projects over the Web,

you’d create an account for him in a brand new file like this:

htpasswd -b -c /etc/httpd/employee-users bob bobspass

Securing Apache, FTP, and SMTP Services 187

12

If you then wanted to add sara to the existing file, you’d drop the -c (create) argument:

htpasswd -b /etc/httpd/employee-users sara saraspass

Of course, there are some circumstances in which it is undesirable for the user passwords

to appear on the command line and in command history. In order to be prompted for a

password rather than supplying it on the command line, drop the -b (batch) argument:

htpasswd -b /etc/httpd/employee-users barney
New password:
Re-type new password:
Adding password for user barney
#

The file /etc/httpd/employee-users now contains accounts for three users, bob, sara,

and barney, all of whom will have access to the /private/projects directory via the

employee-projects directory in the URL.

188 Hour 12

Be careful not to place the password file in the same directory you’re pro-

tecting with the password. If you do this and don’t protect it in some other

way, any user will be able to download the directory after he is inside!

This form of authentication uses a plain-text password file. It’s reasonably

secure given permissions that do not allow public reading because the pass-

words contained inside it are encrypted with crypt. It is, however, slow for

large databases of users and passwords.

An alternative authentication system using the database libraries is also

available. Instead of the htpasswd command, it uses dbmmanage, also rela-

tively simple, to add and remove users, and replaces directives like

AuthUserFile and AuthGroupFile with AuthDBMUserFile and

AuthDBMGroupFile, respectively.

Complete details can be found in the official Apache documentation.

To remove users from /etc/httpd/employee-users, simply load it into your favorite

text editor and slice them out again; one user occupies each line in the file.

What we’ve provided here is a simple-case scenario for protecting various directories or

URLs with password authentication using Apache. For complete documentation on each

of these directives and the options available to them, please refer to the official Apache

documentation at http://httpd.apache.org/docs.

The Options and AllowOverride Directives
Now that we’re reasonably familiar with scoping, it’s important to include discussion of

two security-oriented directives. The Options directive specifies a set of Web-oriented

permissions for a file or directory. The syntax for Options is as follows:

Options [+|-]option [+|-]option ...

There are a number of options available to the Options directive, but the most common

are shown in Table 12.2.

TABLE 12.2 Options Available to the Options Directive

Option Description

ExecCGI Enable or disable execution of CGI scripts from this directory.

FollowSymLinks Enable or disable the following of symbolic links in this directory.

SymLinksIfOwnerMatch Follow symbolic links only if the owner of the symbolic link

matches the owner of the file pointed to by the link.

Indexes Enable or disable the generation of file indexes in the absence of

an index.html (or DirectoryIndex-specified) file.

Includes Enable or disable processing of server-side includes.

IncludesNOEXEC Allow server-side includes, but disallow the #exec and #include

directives.

At this point, it might be a good idea to insert an Options directive into your public Web

content Directory scope in the interest of security. The new scope would look like this:

<Directory /public/www>
Order Allow,Deny
Allow from all
Options -ExecCGI -Indexes

</Directory>

This way, only directories that you later specifically mark for CGI execution or index

generation will allow these tasks to be performed.

AllowOverride also changes the security-related behavior in a Directory scope, but in a

different way—it determines when a local access file (discussed in the next section) will

be able to override the settings in httpd.conf. There are several legal arguments to

AllowOverride, but we’re only going to concern ourselves with three of them,

AuthConfig, Limit, and None.

The AuthConfig option allows local access files to override httpd.conf restrictions by

asking for username and password authentication. The Limit argument allows local

Securing Apache, FTP, and SMTP Services 189

12

access files to use the Order, Deny, and Allow directives. The None argument never

allows any overrides. In order to follow the example in the next section “The Access

File,” you’ll need to amend your root Directory scope to look like this:

<Directory />
Order Deny,Allow
Deny from all
AllowOverride AuthConfig Limit

</Directory>

After making this change, the access file we’re about to create will be allowed to have

an effect.

The Access File
Now we can block access to certain directories while permitting access to others. We can

even do this based on criteria such as the host name of the requesting system or whether

or not the requester can supply a valid username and password. This is enough informa-

tion to establish a reasonable level of security. However, we’re still having to store all

this information in httpd.conf. It’s clumsy, and, what’s more, it can be dangerous if you

move public directories around but forget to update httpd.conf to reflect their new

names and locations.

To solve these problems, Apache includes another global directive that is very commonly

used:

AccessFileName .htaccess

The default name is .htaccess, but you can change it to whatever you like. It is a special

file that Apache will normally look for in a directory before serving files from it. The

access file can contain directives whose scope is limited to the directory tree in which it

resides. For example, instead of creating a new Directory context for /private/projects

in the previous section, we could have instead created an .htaccess file like the one

shown in Listing 12.1.

LISTING 12.1 The /private/projects/.htaccess File

AuthType Basic
AuthName “Employee Files”
AuthUserFile /etc/httpd/employee-users
Require valid-user

This has the same effect as the Directory scope from the previous section, but if the

/private/projects directory is moved elsewhere, its .htaccess file will travel with

it—no need to remember to update httpd.conf.

190 Hour 12

Other directives can also appear in the access file. For example, if you knew that all the

employees who needed access to /private/projects would also be connecting from spe-

cific places, you could make the access file even more secure, as shown in Listing 12.2.

LISTING 12.2 Updated Access File

Order Deny,Allow
Allow from blarney.castle.net
Allow from 206.13.40.0/24
AuthType Basic
AuthName “Employee Files”
AuthUserFile /etc/httpd/employee-users
Require valid-user

Now connecting users will just see a “forbidden” message if they are connecting from

any systems other than hosts in the 206.13.40 network or blarney.castle.net. If the

connection is from one of the allowed systems, a username and password will be

required.

Security and File Transfer Protocol
The file transfer protocol, FTP, is an incredibly useful service, and is one of the most

used services on the Internet, behind HTTP, SMTP, and DNS.

The wu-ftpd server is very flexible, and configuration files can become quite complex.

However, the vast majority of FTP servers on the Internet do one of two things (or per-

haps both of them) on a regular basis: provide anonymous FTP access to everyone or

provide private FTP access for a few users. Two short files and a few tips are all that is

needed to keep FTP secure under these circumstances, provided you update when secu-

rity patch releases are made available.

Securing Apache, FTP, and SMTP Services 191

12

We’re going to discuss the most common FTP server, wu-ftpd, in this section.

There are any number of alternative servers, including some like NcFTPd or

ProFTPd, which are quite popular. The wu-ftpd server is still king among the

Linux distributors, however, and remains one of the easiest and most secure

to configure and use.

Anonymous Versus Private FTP
Before editing any FTP-specific configuration files, you should decide whether or not

you want to enable anonymous FTP. If you only need a few users with accounts on

your system to be able to log in and manipulate their files, then by all means, disable

anonymous FTP. The easiest way to do this is to remove the ftp user from your /etc/

passwd and /etc/shadow files. So-called “real” users will still be able to log in; ftp or

anonymous logins will be rejected.

The /etc/ftpaccess File
Most distributions ship with a preconfigured /etc/ftpaccess file that is already set to

handle mundane things like filenames, local email addresses, and so on, so we’ll just

mention those options that are security-oriented here. If you don’t see the recommended

entry in your /etc/ftpaccess file, consider adding it. All these options are explained in

further detail in the ftpaccess(5) manual page.

loginfails 3

loginfails 3 gives a user three tries to get his username and password pair right before

he is booted off.

greeting brief

greeting brief reduces the amount of server-specific information given to connecting

users before they have been authenticated. Without this line, wu-ftpd will display its ver-

sion number, among other things, to connecting users.

log commands anonymous,guest,real

log commands anonymous,guest,real causes the FTP server to log all commands

entered by users of all types. If you run a high-traffic server, this is probably a bad idea,

but in most cases, it’s desirable.

log transfers anonymous,guest,real inbound,outbound

log transfers anonymous,guest,real inbound,outbound causes the FTP server to

log all transfers initiated by users of all types. Transfers in both directions will be logged.

Even for high traffic servers, this option is recommended.

log security anonymous,guest,real

log security anonymous,guest,real causes the FTP server to log all attempted secu-

rity violations caused by users of all types. Even for high traffic servers, this option is

recommended.

The lines

chmod no anonymous,guest
delete no anonymous,guest
overwrite no anonymous,guest
rewrite no anonymous,guest
umask no anonymous,guest

192 Hour 12

prevent anonymous and guest users from changing permissionson a file, deleting a file,

overwriting a file, rewriting a file, or changing the umask value.

passwd-check rfc822 enforce

passwd-check rfc822 enforce forces anonymous and guest users to supply a valid

email address as a password when logging in. Invalid passwords will be rejected.

deny !nameserved /home/ftp/nodns.txt

deny !nameserved /home/ftp/nodns.txt causes the FTP server to reject logins from

any machine that is not served by a working nameserver or whose name doesn’t resolve

with its own nameserver. This is a kind of identity check for connecting machines. The

file specified will be displayed to users in violation before they are dumped; it should

simply contain a message explaining why they are being denied access.

The /etc/ftpusers File
The /etc/ftpusers file tends to confuse new administrators because it behaves in the

opposite way from what they expect. The /etc/ftpusers file is simply a list of account

names that are not allowed to log in to FTP.

Thus, if you want to prevent an exiting user from logging in to FTP, you should add

her account to the end of the list. By default, the file should exclude everybody in

/etc/password except real users—who should have access—and the ftp account—if

you want to allow anonymous access.

On a brand-new Linux installation where only one non-root user has been created and

the ftp account exists, this file can be created with a little shell trickery:

cut -d: -f1 </etc/passwd | grep -v ftp | \
head -$[$(wc -l /etc/passwd | \
awk ‘{ print $1 }’)-2] >/etc/ftpusers

This miniscript extracts all users but the most recently created user and the user called

ftp. It dumps the users, one per line, to the /etc/ftpusers file. Note that this won’t

work after several users have been created or if the ftp user has been removed.

Anonymous Upload Permissions
Allowing for anonymous FTP uploads to an incoming directory is never a good idea,

either legally or with respect to security considerations. However, if you must allow for

anonymous uploads, you should at least ensure that you set permissions on this directory:

chmod 733 incoming

This will prevent users from seeing files that other users have uploaded, giving the sys-

tem administrator a chance to preview what has been uploaded before it is made public.

Securing Apache, FTP, and SMTP Services 193

12

Security and sendmail
The sendmail daemon is an ugly beast, but it is very standard and very flexible. In fact,

it is so flexible that its bizarre configuration file format is like a cross between a pro-

gramming language and an exploding bit bucket.

Because of this, it’s not recommended that you reconfigure Sendmail at all—certainly

not without the aid of a Sendmail book. Most distribution maintainers do a much better

job of constructing Sendmail configuration files than the average small network adminis-

trator has time to do. Thus, if you keep up to date with regard to Sendmail packages and

updates from your distribution vendor, there’s little more you can really do about the

configuration of Sendmail.

However, sendmail or any mail daemon for that matter can still be made more secure. In

organizations of all sizes, the security of SMTP agents is especially vulnerable to unau-

thorized use, either from spammers or, in a worst-case scenario, by crackers. Luckily, in

the case of an SMTP agent, there’s never a need to allow for full public access. There

will always be some small number of hosts or a specific network that should have access

to SMTP and the rest of the world, which should not.

There are thus two basic ways to secure Sendmail: with packet filtering or with TCP

wrappers.

Securing Sendmail Through Packet Filtering
Packet filtering, as discussed in Hour 10, “Using ipchains for Firewalling and Routing,”

and Hour 11, “Using iptables for Firewalling and Routing,” is a method of filtering out

unwanted network traffic from untrusted sources using a table of information inside the

kernel. Recall that the two basic packet-filtering utilities are ipchains for 2.2 kernels and

iptables for 2.4 kernels.

Using ipchains to filter out Sendmail requests from untrusted sources is a simple matter:

ipchains -A input -p tcp -s 192.168.1.0/24 \
-j ACCEPT

ipchains -A input -p tcp -s my.isp.mail.host \
-d ext.ip.number.here smtp -j ACCEPT

ipchains -A input -p tcp -i ! lo \
-d ext.ip.number.here smtp -j DENY -l

The first two ipchains lines allow packets from an internal network (change this to suit

your own needs) on the one hand and from a trusted external host on the other hand. The

third line drops and logs all SMTP packets not originating in the internal network or with

the trusted host. You might have realized that if you have already implemented the set of

ipchains rules from Hour 10, you won’t need the last line because a similar, more all-

encompassing rule already exists.

194 Hour 12

Using iptables, the series of commands is similar, albeit not exactly the same:

iptables -t filter -A INPUT -i ! lo -m state \
--state ESTABLISHED,RELATED -j ACCEPT

iptables -t filter -A INPUT -p tcp -s my.isp.mail.host \
-d ext.ip.number.here --destination-port smtp \
-j ACCEPT

iptables -t filter -A INPUT -i ! lo \
-d ext.ip.number.here -j LOG --log-prefix “iptables: “

iptables -t filter -A INPUT -i ! lo -m state \
--state NEW,INVALID -d ext.ip.number.here -j DROP

The first two iptables lines allow packets from an internal network (again, change this

to suit your own needs) and from a trusted external host. The third line logs all packets

not caught by the first two rules, and the last line drops the bad packets. Here again, if

you have already implemented the set of iptables rules from Hour 11, the last line isn’t

necessary because a more stringent rule finished that script.

Securing Sendmail Using TCP Wrappers
You might remember the section on configuring TCP wrappers from Hour 6, “TCP/IP

Network Security.” The same TCP wrappers used to start in.ftpd and in.telnetd can

also be used to start a mail transfer agent such as Sendmail. Although a few distributions

do things this way already, most of the major distributions do not.

To start Sendmail using inetd and /usr/sbin/tcpd, you will need to do two things.

First, remove the Sendmail script links from the runlevels in which you want to secure

sendmail. The process of managing init scripts was discussed in Hour 5, “System and

User Fundamentals.” After you’ve stopped Sendmail from automatically being started at

boot time, add the following line to your /etc/inetd.conf file, or uncomment it if it is

present but commented out:

smtp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/sendmail -bs

This line instructs inetd to start Sendmail only when it is required and to use

/usr/sbin/tcpd, the TCP wrapper, to do it. This way, information in the

/etc/hosts.allow and /etc/hosts.deny files can be used to govern who will be

Securing Apache, FTP, and SMTP Services 195

12

Remember that ipchains and iptables rules are order-dependent. This

means that if you already have a set of rules that are active, perhaps started

by a script when you booted, you can’t simply type these new rules in and

expect them to work at the end of the chain. Insert them into your script

before any final DENY or DROP rules and reboot in order to activate the filter-

ing effects given here.

granted permission to use the SMTP service on your host and who will not. Remember

to restart inetd so that the changes take effect:

killall -HUP inetd

This technique has one drawback. Because Sendmail isn’t running all the time, it can’t

automatically attempt to resend mail in the queue that failed on first attempt on a peri-

odic basis. To fix this, Sendmail must be explicitly called every now and then to process

the queue, if necessary. This is best done with a root cron job. A line like this one will

cause Sendmail to attempt to process the queue every half hour:

0,30 * * * * /usr/sbin/sendmail -q

For details on the format of a cron user file, see crontab(5). For details on editing a

cron user file, see crontab(1).

m4 and sendmail.cf Configuration Notes
Though m4 configuration of Sendmail is beyond the scope of this book, there is one

security-oriented directive that you should consider adding to your sendmail.m4 file if

you plan to rebuild sendmail.cf using m4. This directive is

define(‘confPRIVACY_FLAGS’,’authwarnings,goaway’)dnl

This directive adds two privacy flags, authwarnings and goaway, to your Sendmail con-

figuration. The authwarnings flag causes X-Authentication-Warning: headers to

appear in messages in which Sendmail configuration or communication oddities have

been detected. The goaway flag causes Sendmail to reject all requests for information

about your Sendmail server that could potentially be used to do harm.

If you don’t plan to reconfigure with m4, you can edit your /etc/sendmail.cf file

directly for the same effect. Search for the line beginning with

O PrivacyOptions

If it is commented out, uncomment it. Change the line to read

O PrivacyOptions=authwarnings,goaway

This change will have the same effect as would making the m4 change above and then

regenerating the sendmail.cf file.

Summary
This hour, we covered basic security techniques for the three most common network ser-

vices that must interact with the outside world: Web service (HTTP), File Transfer

Protocol (FTP), and Simple Mail Transfer Protocol (SMTP).

196 Hour 12

For the Apache Web server, we covered global security-oriented directives; the concepts

of directory-based, file-based, or location-based scoping; basic username/password

authentication techniques; and the local access file to make security administration easier.

For the wu-ftpd FTP server, we covered the difference between anonymous and “real”

user FTP access and how to disable the former when necessary. We also discussed a

number of recommended security-oriented options for the /etc/ftpaccess file, as well

as the format of the /etc/ftpusers file.

Finally, for the sendmail daemon, an SMTP mail transfer agent, we discussed the most

common external security risk: unauthorized connection. We covered two basic tech-

niques for stopping unauthorized connections: packet filtering via ipchains or iptables

and the conversion of sendmail from a permanently backgrounded daemon to a daemon

managed by inetd and started with TCP wrappers.

Q&A
Q I have questions about Apache that aren’t covered in this chapter!

A Unfortunately, there just isn’t space to cover every Apache directive in-depth. Web

servers have become complicated, flexible animals with configuration needs to

match. What we’ve discussed here are the basics. If you plan to run a high-traffic

Web server, I heartily recommend that you obtain a text entirely about Apache and

use it to guide you through the entire process.

Q What about anonymous FTP write access?

A Write access for anonymous FTP is strongly discouraged for a number of reasons,

most of them legal rather than technical. Unfortunately, publicly writable anony-

mous FTP has become a choice tool for software pirates. Because this isn’t a

common need anyway, it hasn’t been included. You’ll find the details you need in

ftpaccess(5), however, and should be able to go from there.

Q Isn’t Sendmail fundamentally insecure? Isn’t it also obsolete? Can I use mail

transfer agents foo or bar?

A No, no, and no. Sendmail isn’t any more or less secure than any other network dae-

mon out there. It’s as secure as the last update you downloaded and the configura-

tion file you’re using. As always, it’s important to stay on top of updates as they

occur and (especially in the case of Sendmail) to use configuration files from

canonical sources if you’re not ready to create your own.

More importantly, the instructions given will work with most any other SMTP mail

transfer agent as well; you’ll simply have to adjust the paths to suit your needs.

Securing Apache, FTP, and SMTP Services 197

12

New Terms
directive A single option element from an Apache configuration file. Some directives

are global, whereas others apply only within a given scope.

local access file A file, usually .htaccess, that contains directives that apply to the

current directory tree. Often, an AllowOverride directive must appear in the master con-

figuration file for an .htaccess file to have effect.

scope A segment of an Apache configuration file, generally referring to one file, direc-

tory, URL, or virtual host, which can contain a number of directives.

Exercises
1. After enabling user home directories in Apache, password-protect your own home

directory.

2. Try implementing both packet filtering and inetd management for sendmail or for

your SMTP daemon.

198 Hour 12

HOUR 13
Network Security:
DNS with BIND

This hour, we’re going to secure the BIND daemon, version 8.x. Actually,

this is a little misleading. The BIND daemon is incredibly complex and

nuanced; it would be more accurate to say that we’re going to improve the

security of your BIND installation with a few security tricks.

The BIND daemon used by many Linux distributions supplies domain name

service (DNS) and has been victim to more than its fair share of attacks in

the past, partly due to the complexity of the task it performs, and partly due

to the resultant possibility for complexity in its configuration. Because of

this, it has become a common practice to run named in a chroot environ-

ment—a kind of jail cell a cracker can’t easily penetrate.

If your network is too small to require that you run your own domain name

service, you can safely skip this hour. If you ever need to provide any kind

of DNS port access on an external network interface, however, you should

take the time to secure the BIND daemon before going online. Understand

that we’re not going to cover general-purpose BIND configuration here; this

hour assumes that you either have a working BIND configuration or have

resources to assemble one on your own.

Pre-Chroot BIND Security
Of course, there are some basic things that can be done before chrooting named to

improve the security quotient under which your DNS machine will be operating. There

are several aspects of configuration that fall under this umbrella.

First and most importantly, keep your BIND packages up-to-date. There are times when

bug fixes for BIND seem to come almost rapid-fire style, and BIND exploits tend to be

very popular among script kiddies, so it’s important to stay on top of things, especially if

your BIND socket will be open to hosts on an external network interface.

Next, implement packet filtering and take care of a few important options and issues in

the named.conf file. We’ll discuss those now.

Packet Filtering for the Domain Port
BIND uses both the TCP and UDP protocols, the former for larger queries and the latter

for smaller ones, so to filter out unwanted requests using packet filtering, we’ll have to

account for both protocol types. Using ipchains, a general form is shown in Listing 13.1.

LISTING 13.1 DNS Port Filtering with ipchains

ipchains -A input -p tcp -s 192.168.1.0/24 \
-d int.ip.number.here domain -j ACCEPT

ipchains -A input -p udp -s 192.168.1.0/24 \
-d int.ip.number.here domain -j ACCEPT

#ipchains -A input -p tcp -s trusted.ext.system.ip \
-d ext.ip.number.here domain -j ACCEPT
ipchains -A input -p udp -s trusted.ext.system.ip \

-d ext.ip.number.here domain -j ACCEPT
ipchains -A input -i ! lo \

-d ext.ip.number.here domain -j DENY -l

Notice that one ipchains command is commented out. This is the command that allows

larger (TCP) transfers on the external interface to a specific trusted host. Uncomment and

use this command if you need to for your circumstances (for example, for zone transfers

from inside to outside); otherwise you’re safer to leave it out. In most cases for small

networks, this set of filtering rules will match your needs. A similar set of rules for those

using iptables is shown in Listing 13.2.

LISTING 13.2 DNS Port Filtering with iptables

iptables -t filter -A INPUT -p tcp -s 192.168.1.0/24 \
-d int.ip.number.here --destination-port domain \
-j ACCEPT

200 Hour 13

iptables -t filter -A INPUT -p udp -s 192.168.1.0/24 \
-d int.ip.number.here --destination-port domain \
-j ACCEPT

#iptables -t filter -A INPUT -p tcp -s trusted.ext.sys.ip \
-d ext.ip.number.here --destination-port domain \
-j ACCEPT
iptables -t filter -A INPUT -p udp -s trusted.ext.sys.ip \

-d ext.ip.number.here --destination-port domain \
-j ACCEPT

iptables -t filter -A INPUT -i ! lo \
-d ext.ip.number.here -j DROP

Note that if you need to provide large transfers to a large number of external systems, you

may need to adjust these rules for the sake of practicality. Remember also that the last com-

mands in both Listing 13.1 and Listing 13.2 simply filter out all packets not excepted in

earlier commands; they should be the last ipchains or iptables command in your system-

wide filtering script and need only be present once. They’re listed here for correctness.

Notes on named.conf
Though the full format of the named.conf file is well beyond the scope of this text, there

are a few configuration items in this file to which you should pay particular attention.

The first is in the options section, and the recommended entry is as follows:

options {
version “Sorry, the version number is not available.”;

};

This prevents BIND from revealing its version information when asked to do so by a

remote party. Why bother? Because information about the specific version of BIND you

are running can at times be half the battle in exploiting it. This measure also discourages

potential hackers, who will know that you have taken steps to secure your BIND installa-

tion.

The other named.conf items we need to discuss are the access controls you impose. Even

the simplest DNS server configuration on a small network should impose access controls

if it will be connected in any way to the outside world. The best policy is to set up con-

servative defaults in the options section and then override these when necessary in your

individual zones.

Access control in named.conf is implemented with five basic keywords. Brief descrip-

tions of these keywords’ functions are shown in Table 13.1.

Network Security: DNS with BIND 201

13

LISTING 13.2 continued

TABLE 13.1 Access Control in named.conf Zones

Keyword Description

allow_query Determines which host(s) or network(s) will be allowed to make ordinary

queries of this server.

allow_transfer Determines which host(s) or network(s) will be allowed to receive zone

transfers from this server.

allow_recursion Determines which host(s) or network(s) will be allowed to make recursive

queries to this server.

allow_updates Determines which remote hosts will be allowed to submit dynamic DNS

updates to this server.

blackhole Determines which hosts(s) or network(s) will be blocked from having com-

munication of any kind with this server.

The default values for the first three items are the most relaxed defaults possible: Allow

queries from everyone, allow everyone to receive zone transfers, and allow recursive queries

from everyone. Only updates are restricted; the default is to allow updates from no one.

Taken as a whole, this is clearly not the right set of defaults for a small DNS server.

allow_transfer is especially troublesome because it could allow a potential cracker to map

your network. A recommended modified set of default options is shown in Listing 13.3.

LISTING 13.3 New Options with Access Control

options {
version “Sorry, the version number is not available.”;
allow_query {

localhost;
};
allow_transfer {

none;
};
allow_recursion {

none;
};

};

Each of the access control settings can be overridden within a specific zone, depending

on your needs, so that no important one need be left out in the end. After including the

options from Listing 13.3 in your named.conf, the default behavior is as follows: Allow

general queries only from the local host, allow no zone transfers, and allow no recursive

queries. To override these defaults in a zone, simply respecify the item with an access

control specifier or specifiers inside the braces. The most common specifiers are shown

in Table 13.2.

202 Hour 13

TABLE 13.2 Access Control Specifiers

Specifier Description

any Allow from any host anywhere (no access control at all).

none Allow from no hosts anywhere (all access forbidden).

localhost Allow from the local host.

localnet Allow from hosts that reside on a network for which the local host has a hard-

ware interface.

N.N.N.N Allow from host with matching IP number.

N.N.N.N/N Allow from the network matching this network/netmask specifier. For example,

192.168.1.0/24 allows from all hosts on the local 192.168.1. network.

The allow_updates and blackhole items, which are to be specified within zones, use

the same access control specifier formats.

Running named in a Chroot Environment
Since BIND is a traditional favorite among crackers wanting to gain illegitimate entry into a

system, many administrators have taken to running named in a chroot environment. A chroot

environment is a way of tricking BIND into thinking that a subdirectory is actually the root

file system. For example, to all other processes on the system, named may be running inside

/usr/local/bind, but to the named process itself and to its children, the /usr/local/bind

directory will actually appear to be the root (/) directory. If someone cracks a chrooted

named process, he will be able only to damage or access files in /usr/local/bind.

It is also a good idea to run BIND under a user and group specifically created to hold the

named process, rather than running as root, which seems to be the default on many

Linux distributions.

Adding User and Group
Because BIND version 8 includes its own chroot functionality, we need only add a user

and group for named to the system-wide passwd and group files located in /etc. This is

easy to do from the command line:

echo “named::29” >>/etc/group
echo “named:x:29:29:named:/:” >>/etc/passwd

Network Security: DNS with BIND 203

13

Remember to use the append redirect (>>) rather than the create redirect (>)

when appending lines to a file or you could end up erasing your password

and group files!

We also need to add the new named user to the /etc/ftpusers file if the file transfer pro-

tocol is going to be running, because there’s no good reason to allow named login

attempts in FTP:

echo named >>/etc/ftpusers

Feel free to adjust the user and group ID numbers assigned to named if necessary to

accommodate the needs of your own system. Try to choose low numbers, though, to indi-

cate that these accounts are system accounts.

Creating the Jail
The first steps in running BIND from a chroot jail are creating the jail “cell” and adding

a specific user and group for the named process and file ownership. A good location for

the cell is /usr/local/named, but use your own discretion:

mkdir /usr/local/named
cd /usr/local/named
mkdir dev etc etc/named lib usr usr/sbin

The /etc/named directory (remember, this is chroot) will be used to hold DNS data.

Adjust it if necessary to suit your needs or preferences.

204 Hour 13

If you’re going to copy data and configuration information from an existing

named setup (we haven’t shown this here), remember to change ownership

with chown to the new named user and group. Also remember that named will

soon be running in a chroot environment, so your named.conf will have to be

edited to reflect the new paths—as though /usr/local/named were really /.

Some basic device nodes are also necessary in many instances for BIND to run, so we’ll

create those as well:

mknod dev/null c 1 3
mknod dev/zero c 1 5
mknod dev/random c 1 8
mknod dev/urandom c 1 9
mknod dev/tty c 5 0
chmod 666 dev/null dev/zero dev/tty

Now, we need to copy a few files from the system’s /etc directory to the jail cell. These

are basic files that named will need to operate properly:

cp /etc/nsswitch.conf /etc/resolv.conf etc
cp /etc/ld.so.cache /etc/localtime etc

Now it’s time to copy named and its components:

cp /usr/sbin/named /usr/sbin/named-xfer usr/sbin

Because the named and named-xfer binaries are likely statically linked, some libraries

will also be required. In order to find out which libraries ought to be copied, you can use

the ldd command:

ldd usr/sbin/named
libc.so.6 => /lib/libc.so.6 (0x40020000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

Remember to copy the libraries and not just the symbolic links that point to them. The

symbolic links are created afterward:

cd lib
cp /lib/libc-2.1.2.so .
cp /lib/ld-2.1.2.so .
ln -s libc-2.1.2.so libc.so.6
ln -s ld-2.1.2.so ld-linux.so.2

Experience demonstrates that in some instances in Linux, a few additional libraries are

needed. Adjust to match your own version numbers:

cp /lib/libnss_compat-2.1.2.so .
cp /lib/libnss_files-2.1.2.so .
cp /lib/libnsl-2.1.2.so .
ln -s libnss_compat-2.1.2.so libnss_compat.so.2
ln -s libnss_files-2.1.2.so libnss_files.so.2
ln -s libnsl-2.1.2.so libnsl.so.1

Be sure to check permissions on all of the configuration files, libraries, and binaries to

ensure that none of them are writable by user named or group named and that none of

them are running as SUID or SGID to root. Once this is all done, you should (in theory)

be almost ready to go.

Setting Up syslogd for Chroot named
Even though named will be running in its own root file system, we want to be able to

get logs from named sent to the normal system logger. Newer syslogd daemons have a

command-line option that allows us to do so. The option we’re interested in is -a, and it

is used like this:

syslogd -a /usr/local/named/dev/log

Starting syslogd this way will cause it to create a listening socket at /usr/local/

bind/dev/log, which the chrooted named will conveniently see as /dev/log. In order to

make this change permanent, you’ll need to edit your /etc/rc.d/init.d/syslog script

Network Security: DNS with BIND 205

13

(or whichever script your system uses to start syslogd) and add the necessary options.

Then, restart the daemon so that the changes are in effect now as well:

/etc/rc.d/init.d/syslog restart

If you need more help with the files in /etc/rc.d/init.d, refer to Hour 4, “The Boot

Process.”

Starting named in the Chroot Jail
We’re almost ready for a chrooted named dry run. If a named is already running and your

new named would be listening on the same port, stop the old named before continuing

with the correct init script. Some distributions use /etc/rc.d/init.d/dns, others use

/etc/rc.d/init.d/named, and there are other variations as well. Use the one that is cor-

rect for your distribution:

/etc/rc.d/init.d/named stop

All systems are now go. It’s time to test out the new named. The -t command-line argu-

ment allows us to specify the location of the chroot jail. The -u and -g options allow us

to specify the user and group under which this instance of named should run:

/usr/local/named/usr/sbin/named -t /usr/local/named -u named -g named

If all goes well, your named should now function as it did before, only now if it is com-

promised by a cracker, it’s a dead end for further intrusion. To make the change perma-

nent, though, you’ll also need to edit your /etc/rc.d/init.d/named (or synonymous)

script to reflect the new command-line arguments with which named must be started.

Summary
This hour, we learned how to make the domain name service provided by BIND a bit

more secure than it is in most default Linux installations. We did this with a three-

pronged approach:

• First, we make sure to configure packet filtering to prevent connections to the

domain port from systems we don’t have any legitimate business with.

• Next, we implement good access control defaults in the named.conf file, paying

special attention to disallowing zone transfers to strangers.

• Finally, we alter the standard named installation so that the daemon now runs in a

chroot jail, preventing crackers from further compromising the system if they man-

age to break in through named.

206 Hour 13

These basic security measures will make your domain name service daemon much less

risky than the standard runs-as-root installation found on most Linux systems.

Q&A
Q I’ve seen other suggestions for domain name service, including a dual-named

approach and using other servers instead of BIND. What do you think?

A There are advantages and disadvantages to using BIND. The largest advantage is

that it comes from the Internet Software Consortium and, following that, the degree

to which BIND is a de facto Internet standard. Using the techniques in this hour can

make most BIND installations secure enough for any small to mid-size network.

Q I tried to install named in a chroot environment, but something isn’t working!

Help!

A The first place to turn for aid is the log. Check the system logs and if necessary

increase the logging level as you start and run the new named installation. If log-

ging isn’t working, concentrate on getting that running first.

The most common problem when converting from an existing BIND installation

involves user oversight—the failure to set new permissions or file ownership on a

critical file, or the failure to correctly edit one or more paths in the named.conf file.

If you are familiar with strace, you can also use it to watch program execution

and locate the trouble spot.

New Terms
BIND The Berkeley Internet Name Domain, an open source implementation of the

domain name service (DNS) set of protocols. BIND is the most common DNS imple-

mentation among Linux users.

chroot jail A colloquial term meaning a chroot environment—a substituted root file

system that is actually a subdirectory in a larger file system. The exterior file system can-

not be accessed by processes in the chroot environment.

domain name service (DNS) A set of protocols and databases used to match a human-

readable name to a machine-ready IP address. For example, without DNS, yahoo.com

would instead be known as 64.58.76.179, a much less memorable name indeed.

Network Security: DNS with BIND 207

13

HOUR 14
Network Security: NFS
and Samba

This hour, we’re going to work toward more secure installations of the two

most widely used Linux network file system implementations: Samba and

the network file system (NFS).

NFS is widely used among Unix and Linux users for sharing traditional

Unix-like file systems over TCP/IP networks. It has been around since the

very early days of TCP/IP networking, but it has changed little when com-

pared to many other network services.

Samba, more popular than ever and commonly used as a replacement for

Windows NT server, is designed to allow Linux to supply file and print ser-

vices to Windows network users. Configuration of a basic Samba installation

tends to be much more complex than configuration of a basic NFS installa-

tion, but the resultant system is a cross-platform dream that can outperform

Windows. Unless secured properly, however, it can suffer some of the same

security problems as Windows.

Network File System (NFS) Security
Because NFS has been around so long, and because NFS, in configuration terms, is so

simple, it is a very good security compromise of the type we’re seeking in this text. On

the one hand, because of its design, NFS can never be perfectly secured. Because of this,

it shouldn’t be run on extremely sensitive systems or on a primary firewall. Whenever

possible, it should be run only for a local network residing behind a primary firewall

machine.

On the other hand, with judicious use of packet filtering to keep NFS inside your net-

work, careful construction of the /etc/exports file, and wise choice of your NFS server,

NFS can easily be secure enough for most small to mid-size businesses.

Selecting an NFS Server
There are two NFS servers for Linux: an older user space daemon and a newer kernel-

based NFS daemon. Both are still widely used and supported, but there are two important

reasons why the kernel-based NFS implementation should be the implementation of

choice for security-conscious users.

The first and most important reason is for the (admittedly kludgy) capability to operate

more or less correctly with file systems that are locally enhanced by the addition of

Access Control Lists (ACLs). While the interoperability is far from perfect, the kernel-

based version is automatically patched by the ACL patches to make conservative decisions

about granting access based on local ACL information and won’t choke on ACL data or

lose data because of ACLs. The user space NFS daemon, on the other hand, will require

additional patches, recompilation, and re-installation; is known not to work correctly in

many incarnations with ACLs; and may even lose data or grant access incorrectly to data

that ought to have been restricted. The kernel-based daemon also supports NFS version 3,

which fixes many of these problems without the need for additional patching.

The second reason for wanting to choose the kernel-based NFS implementation is the

speed improvement that many users will see when choosing the kernel-based NFS imple-

mentation over many older user space NFS daemons. The user space NFS daemon has

traditionally been much slower and CPU bound than kernel-based implementations.

Including Kernel-Based NFS Support
NFS support is included in both the 2.2 and 2.4 versions of the Linux kernel. The options

necessary to include kernel-based NFS server support in the Linux 2.2 kernels are found

in the Network File Systems submenu of the File Systems section. They are shown in

Table 14.1.

210 Hour 14

TABLE 14.1 Linux 2.2 Kernel-Based NFS Options

Option Description

CONFIG_NFS_FS Includes NFS file system support, a logical counterpart to NFS server support.

CONFIG_NFSD Includes the actual kernel-based NFS server.

In 2.4 kernels, the options related to the kernel-based NFS server are in the Network File

Systems submenu of the File Systems section. They are shown in Table 14.2.

TABLE 14.2 Linux 2.4 Kernel-Based NFS Options

Option Description

CONFIG_NFS_FS Includes NFS file system support, a logical counterpart to NFS server support.

CONFIG_NFS_V3 Includes support for Linux to act as an NFS version 3 client.

CONFIG_NFSD Includes the actual kernel-based NFS server.

CONFIG_NFSD_V3 Includes additional code to allow the kernel-based NFS server to work with

version 3 clients, the best possible server/client match for systems using ACLs

with the local file system.

Of course, you must compile and install the kernel in order to cause the changes to take

effect.

Network Security: NFS and Samba 211

14

Many Linux distributions already include support for kernel-based NFS service.

Use a command such as locate to search for the modules nfsd.o, lockd.o,

and sunrpc.o.

Configuring the /etc/exports File
The /etc/exports file is the primary configuration file for the NFS system. Each entry

in the file is one line, and the format is very simple:

/path/to/export [host](option,option) ...

Each line in the file begins with one directory or subdirectory in the local file system to

which the line applies. When an entry for a subdirectory of an already exported directory

exists, the more specific entry (the subdirectory) will override the less specific entry, cre-

ating a kind of exception.

Following the export path at the beginning of each line is any number of host option

specifiers. Each one of these specifiers contains a host (which may be an IP, a hostname,

a network with mask, or a wildcard) and a series of options enclosed in parentheses that

dictate the type of access, if any, that the host, series of hosts, or network in question is

to be granted. Common valid formats for host are shown in Table 14.3; a list of the most

common available options is shown in Table 14.4.

TABLE 14.3 Common Valid host Formats

Format Description

hostname Specifies that the options in question apply to the host with name hostname.

N.N.N.N Specifies that the options in question apply to the host with IP number N.N.N.N.

N.N.N.N/M Specifies that the options in question apply to the network given by N.N.N.N,

with subnet mask M.

*.domain.com Specifies that the options in question apply to all hosts in the domain.com

domain. Note that wildcard characters do not match the dots in a fully quali-

fied domain name. For example, *.domain.com would not match my.sys.

domain.com, while *.*.domain.com would.

TABLE 14.4 Common Options for Each host

Option Description

insecure This option allows client requests from connecting systems to come

from source ports above 1024. Because it can be insecure, it should be

used only when needed and only for completely public file systems.

rw Specifies that parties who have permission to mount this exported

directory will also be given permission to modify the files and directo-

ries it contains.

noaccess Specifies that no access is to be given to this directory. Useful when

creating per-directory exceptions to higher-level directory exports.

root_squash Modify all client requests that come from the root user (user ID 0,

group ID 0) to operate as if they had instead come from the user

nobody and group nobody, which should be present in the /etc/passwd

and /etc/group files.

no_root_squash Specifies that client requests from the root user should be accepted as

having come from the root user. For security reasons, this option is

risky and should not be used for general-purpose exports.

squash_uids=N,N,N,... Specifies that client requests from the user ID numbers listed should

operate as if they had instead come from the user nobody.

squash_gids=N,N,N,... Specifies that client requests from the group ID numbers listed should

operate as if they had instead come from the group nobody.

all_squash Specifies that all client requests should be mapped to user nobody,

group nobody.

212 Hour 14

map_static=mapfile Specifies the path to a file that should be used to map remote user and

group ID numbers to local user and group ID numbers. The format of

the file is very simple and is documented in exports(5).

anonuid=N Specifies that all client requests should operate as if they had come

from the user with user ID N.

anongid=N Specifies that all client requests should operate as if they had come

from the group with group ID N.

By using these options thoughtfully, it is possible to assemble a clear, concise, and rela-

tively secure system of exportable file systems. A sample /etc/exports file is shown in

Listing 14.1.

LISTING 14.1 Sample /etc/exports File

/fs/work 192.168.1.0/24(root_squash)
/fs/work/public 192.168.1.0/24(rw,root_squash)
/fs/work/private (noaccess)
/fs/pubrecords (all_squash)
/usr/local/db phoenix(rw,no_root_squash)
/usr/local/db-public *.redux.com(insecure,all_squash)
/scratch phoenix(rw) newton(rw) hotswap

This file says the following to the NFS daemon:

• Export a read-only file system at /fs/work to all systems on the local 192.168.1.0

network, squashing root access attempts.

• Export a writable file system at /fs/work/public to all systems on the local

192.168.1.0 network, squashing root access attempts.

• Do not allow anyone who has mounted the /fs/work file system to access the

/fs/work/private directory at all.

• Export a read-only file system at /fs/pubrecords to anyone in the world connect-

ing from a port below 1024. Squash all incoming user and group identification.

• Export a writable, root-capable file system at /usr/local/db to the host on the

local network called phoenix.

• Export a public, read-only file system to anyone in the redux.com domain connect-

ing from any port. Squash all incoming user and group identification.

• Export the /scratch directory to the local network hosts phoenix and newton as

writable. Export the /scratch directory to the local network host hotswap as read-

only.

Network Security: NFS and Samba 213

14

TABLE 14.4 continued

Option Description

No other configuration of any kind needs to be done for NFS. Once the /etc/exports

file has been constructed, you are ready to go.

NFS Packet Filtering
Though the /etc/exports file provides for some security, in and of itself it may not be

enough. Unless you want to provide completely public NFS exports to the entire world,

you should impose packet filtering rules to disallow NFS requests from strange hosts or

networks.

This is complicated somewhat by the fact that NFS actually requires three ports to oper-

ate. Port 111 traditionally is used by the portmapper, rpc.portmap, which then calls the

mounter, rpc.mountd, to mount the file system using the NFS port, 2049. Notice that I

didn’t mention a port number for rpc.mountd. This is the problem; rpc.mountd typically

uses a dynamic port number the way it is configured in most Linux installations.

However, this can be fixed with an addition to the /etc/services file:

mount 2050/udp mountd
nfs 2049/udp nfsd

When rpc.mountd starts, it will search the /etc/services file for the mount service (or,

in some cases, the mountd service, which is why we’ve created an alias) and if found,

will use the port specified there. Notice that we’ve also added a line for nfs in order to

simplify things. Now we’re ready to filter packets.

214 Hour 14

In order to use NFS services, the rpc.portmap daemon must be running. If

you’ve disabled it in your init system, you’ll have to re-enable it before NFS

will work properly. Be sure to start rpc.portmap much earlier than services

such as mountd or nfsd that depend on it, or they won’t start properly.

Using ipchains, an example set of rules for allowing one trusted external system to use

NFS while forbidding all other external systems from using these specific ports is shown

in Listing 14.2.

LISTING 14.2 NFS Packet Filtering with ipchains

ipchains -A input -p tcp -s trusted.ext.system.ip \
-d ext.ip.number.here sunrpc -j ACCEPT

ipchains -A input -p udp -s trusted.ext.system.ip \
-d ext.ip.number.here sunrpc -j ACCEPT

ipchains -A input -p udp -s trusted.ext.system.ip \
-d ext.ip.number.here 2049:2050 -j ACCEPT

ipchains -A input -i ! lo \
-d ext.ip.number.here sunrpc -j DENY -l

ipchains -A input -i ! lo \
-d ext.ip.number.here 2049:2050 -j DENY -l

Using iptables, a similar set of rules can be constructed. A sample set of rules using

iptables is shown in Listing 14.3.

LISTING 14.3 NFS Packet Filtering with iptables

iptables -t filter -A INPUT -p tdp -s trusted.ext.sys.ip \
-d ext.ip.number.here --destination-port sunrpc \
-j ACCEPT

iptables -t filter -A INPUT -p udp -s trusted.ext.sys.ip \
-d ext.ip.number.here --destination-port sunrpc \
-j ACCEPT

iptables -t filter -A INPUT -p udp -s trusted.ext.sys.ip \
-d ext.ip.number.here --destination-port 2049:2050 \
-j ACCEPT

iptables -t filter -A INPUT -i ! lo \
-d ext.ip.number.here --destination-port sunrpc \
-j DROP

iptables -t filter -A INPUT -i ! lo \
-d ext.ip.number.here --destination-port 2049:2050 \
-j DROP

Network Security: NFS and Samba 215

14

LISTING 14.2 continued

If you plan to use NFS over TCP, be sure to modify the filtering rules to open

ports 2049 and 2050 for TCP packets as well.

Assuming you already have packet filtering scripts in place by now, you’ll have to edit

these rules as necessary to make them fit within your own security framework.

Samba Security
Samba is actually a pair of daemons, smbd and nmbd, that allow a Linux system to appear

to be a Windows NT file or print server to Windows systems using NetBIOS over

TCP/IP. Because Samba involves a significant percentage of the Windows networking

paradigm in addition to using TCP/IP networking, a complete Samba security guide is

beyond the scope of this text. However, basic security options and user management can

be managed with the Samba Web Administration Tool (SWAT), which is part of the offi-

cial Samba distribution.

Starting SWAT
Since SWAT uses its own built-in Web server, you do not need to have Apache or another

HTTPD service running in order to use SWAT.

Once it has been installed, you can log in to SWAT on the local host simply by starting

your Web browser (usually Netscape) and typing the following into the URL box:

http://127.0.0.1:901

This URL opens a connection to the local host on port 901, the port used by SWAT.

You’ll be asked to provide a username and a password; you should log in as root and

provide the necessary password. If you find that this isn’t working for you, troubleshoot

based on the following steps:

1. Make sure that an entry for SWAT exists in the /etc/services file by using grep

swat /etc/services.

2. Make sure that an entry for SWAT exists in the /etc/inetd.conf file by using

grep swat /etc/inetd.

3. Check to see if you have ipchains or iptables rules that may be preventing con-

nections on the loopback interface on port 901.

4. Make sure that there are no entries in /etc/hosts.allow or /etc/hosts.deny that

would prevent SWAT access under your particular circumstances.

If you find that the problem is the first or second item in the preceding list (no SWAT

entries in either /etc/services or /etc/inetd), SWAT hasn’t been installed on your

system. Some distributions separate Samba and SWAT into two separate packages, so

look for a SWAT package and install it.

If you’re not able to find a SWAT package anywhere for your distribution, there are no

SWAT entries in /etc/services or /etc/inetd, and there is no SWAT binary anywhere

on your system, you may want to consider downloading Samba from www.samba.org and

re-installing it from scratch.

216 Hour 14

Because SWAT doesn’t use a secure (encrypted) connection, you may want to

avoid using it from any location outside your internal network. If your net-

work isn’t behind a firewall, it’s a good idea to prevent access from any

remote host altogether.

Regardless of how you decide to use it, it’s important to remember to prevent

all types of unauthorized access. To do this, edit your /etc/hosts.allow and

/etc/hosts.deny files as necessary.

Once you actually log in to SWAT, you’ll see the Samba title in the browser window, as

shown in Figure 14.1.

Network Security: NFS and Samba 217

14

FIGURE 14.1

The page you’ll see

after logging in to

SWAT.

Global Security Options in SWAT
Inside SWAT, notice the row of buttons across the top of the page. These lead to the dif-

ferent administration areas within SWAT. To visit the global options page, click on the

button labeled Globals in this row of buttons. Scrolling down a little on the global

options page, you’ll find a section labeled Security Options, as shown in Figure 14.2.

The important options in the Security Options section are documented in Table 14.5.

TABLE 14.5 Security Options

Option Description

security One of Share, User, Server, or Domain. Most small networks will choose

Share or User here. Share means that passwords will be assigned to

resources; for example, one password for everyone grants access to a spe-

cific file system. User means that the same username/password pairs will

be used both under Linux and on the remote Windows systems.

encrypt passwords For both security and compatibility reasons, it is a good idea to choose

Yes here.

update encrypted Samba maintains a separate username/password database from Linux. If

an existing unencrypted database exists, choosing Yes here will cause

Samba to encrypt passwords automatically as users log in. Unless you

have this specific need, set to No.

guest account This is the account used by users who access guest-allowed services.

Normally set to an innocuous account like nobody or ftp.

hosts allow This specifies which hosts will be allowed to use Samba services. Should

be a space-separated list including IP numbers of the form N.N.N.N, net-

works of the form N.N.N.N/M, or individual host or fully qualified domain

names.

hosts deny A list of hosts explicitly denied access to Samba, usually as exceptions to

allowed hosts.

218 Hour 14

TABLE 14.5 continued

Option Description

FIGURE 14.2

Security Options in the

Global section.

Once these options have been set to your needs, be sure to click the Commit Changes but-

ton at the top of the page to save the changes you’ve made to the Samba configuration files.

Share Security Options in SWAT
To configure security options related to individual Samba shares, click on the Shares but-

ton at the top of any SWAT page. Here you’ll be offered a choice among the different

existing shares you want to administrate. After choosing one, you’ll be presented with a

list of per-share options, including security options, as shown in Figure 14.3.

Network Security: NFS and Samba 219

14

FIGURE 14.3

Per-share security

options.

The functions of the security and browse options are documented in Table 14.6.

TABLE 14.6 Per-Share Security and Browse Options

Option Description

guest account Name of the guest account to access this share if guest use is allowed.

read only Specifies whether the share will be exported with read-only access or whether

writing will be allowed by validated users as well.

guest ok Specifies whether guests are allowed to use this share.

hosts allow Specifies which hosts will be allowed to use this share. Should be a space-

separated list including IP numbers of the form N.N.N.N, networks of the form

N.N.N.N/M, or individual host or fully qualified domain names.

hosts deny A list of hosts explicitly denied access to Samba, usually as exceptions to

allowed hosts.

browseable Specifies whether or not this share is hidden. If set to Yes, this share will

appear in browse lists obtained from the server.

Packet Filtering and Samba
Of course, if you’re going to allow any Samba access on an external interface at all,

you’ll want to impose packet filtering rules that allow only the specific machines that

should access Samba and that disallow everyone else. If you search for the netbios ser-

vice in /etc/services, you’ll find that Samba uses ports 137, 138, and 139:

grep netbios /etc/services
netbios-ns 137/tcp
netbios-ns 137/udp
netbios-dgm 138/tcp
netbios-dgm 138/udp
netbios-ssn 139/tcp
netbios-ssn 139/udp

A sample for a filtering ruleset that allows for one external trusted host and that disal-

lows everyone else using ipchains is shown in Listing 14.4. A similar sample using

iptables is shown in Listing 14.5.

LISTING 14.4 Samba Packet Filtering Using ipchains

ipchains -A input -p tcp -s trusted.ext.system.ip \
-d ext.ip.number.here 137:139 -j ACCEPT

ipchains -A input -p udp -s trusted.ext.system.ip \
-d ext.ip.number.here 137:139 -j ACCEPT

ipchains -A input -i ! lo \
-d ext.ip.number.here 137:139 -j DENY -l

LISTING 14.5 Samba Packet Filtering Using iptables

iptables -t filter -A INPUT -p tdp -s trusted.ext.sys.ip \
-d ext.ip.number.here --destination-port 137:139 \
-j ACCEPT

iptables -t filter -A INPUT -p udp -s trusted.ext.sys.ip \
-d ext.ip.number.here --destination-port 137:139 \
-j ACCEPT

iptables -t filter -A INPUT -i ! lo \
-d ext.ip.number.here --destination-port 137:139 \
-j DROP

As always, you’ll need to adjust these rulesets to fit within your existing packet filtering

framework.

220 Hour 14

Summary
This hour, we learned about security related to the two most popular networked file sys-

tems for Linux users and servers: the network file system (NFS) and Samba, which is

used for sharing files with Windows systems.

NFS is a classic Unix service and isn’t terribly risky or terribly secure but is somewhere

in between the two. If you can avoid having to share files via NFS with the outside

world, it’s best to run NFS only to serve local systems behind a dedicated firewall.

If you must serve files to the outside world via NFS, be sure to construct packet filtering

rules to protect it. It uses port 111 and port 2049, plus a third port for rpc.mountd that

you must add to /etc/services in order for filtering to work.

Always take the time to construct a good /etc/exports file. This is the primary means

for securing NFS exports. Samba is a service that allows Linux to “speak” NetBIOS over

TCP/IP in order to impersonate a Windows NT server and in so doing share files or

directories with Windows users.

The easiest way to configure Samba security options is with SWAT, the Samba Web

Administration Tool, which can be launched in a browser window by connecting to port

901 on the Samba server. Once inside SWAT, choose between share-based access con-

trol, which asks for a password based on the share being requested, and user-based

access control, which allows Samba to use username/password pairs just as the Linux

server itself does. Samba resides on ports 137–139, so packet filtering rules affecting

Samba should focus on these ports.

Q&A
Q If NFS isn’t terribly secure for public, untrusted system use, are there any

alternatives that offer similar functionality?

A The AFS file system is the reigning de facto alternative to the NFS file system.

Unfortunately, AFS is a commercial product, and no free Linux version is avail-

able. An experimental implementation is under development and is usable, but

you’ll have to use your own discretion with regard to the security implications of

running unstable code. The free, experimental AFS system can be found at

http://www.stacken.kth.se/projekt/arla.

Q I don’t like SWAT. Is there a text-based configuration file for Samba? Where

is it stored?

Network Security: NFS and Samba 221

14

A Yes, there is a text-based configuration file for Samba; it uses a format similar to

the format used by Windows INI files and is therefore not familiar to longtime

Linux or Unix users. It is called smb.conf and is often found at /etc/samba.d/

smb.conf, though a call to the locate command will help to find it if it doesn’t

appear in /etc/samba.d on your system. The format of the file is documented in

excruciating detail in smb.conf(5). Unless you need the extra flexibility or have a

book dedicated to Samba on hand, you’ll probably find yourself wanting to use

SWAT, which is sufficient for most small to mid-size environments, with Linux

acting as the single NetBIOS file server.

New Terms
export A file system made available to other systems on the network via NFS.

NFS (network file system) The traditional method for sharing Unix-like file systems

over local area networks.

Samba A set of two daemons that allows Linux to “speak” NetBIOS over TCP/IP and

serve shares to Windows clients.

share A resource (such as a file system or printer) made available to other systems on

the network through Samba.

SWAT The Samba Web Administration Tool, a program designed to automate the

administration of a Samba server in a Web browser window.

222 Hour 14

HOUR 15
Securing X11R6 Access

This hour we’re going to focus on securing the use of the X11R6 streaming

protocol, with an emphasis on authentication when initiating new remotely

connected streams. We’ll also take a moment to discuss packet filtering as it

relates to X and to the X Display Manager, xdm.

We’re going to cover two authentication methods: the simple and less secure

host-based authentication mechanism and the more secure magic cookie

authentication method.

Why Is X Security an Issue?
X11R6 can be used as a network protocol, though it isn’t often used this

way in small business or personal Linux installations. When used as a net-

work protocol, X allows applications to run using the CPU and memory of

one system while appearing on the display of and accepting input from

another system on the network using the system’s X server, as shown in

Figure 15.1.

Because of this network-aware functionality, and because X servers typically run with

root permissions, it is important to have some control over who is allowed to connect to

a running X server.

224 Hour 15

Running inside:

xclock

Netscape

xload

Network server

(No local display)

Clients running on network server

appear on desktop workstation's display.

Network

Desktop workstation

(With local display)

Running inside:

X server

FIGURE 15.1

X clients and server on

separate machines.

There is often no need to run an X server at all on an important system.

Though many combination desktop/small server machines will need an

instance of X running on the local console, most dedicated servers are used

to supply a limited set of network services and are rarely or never used for

desktop applications. If you use a machine in such a role, consider simply

omitting X from the machine’s Linux installation altogether.

Even if it is necessary to run an X application every now and then, you can

make a server system more secure by not running an X server, displaying the

applications instead on another X workstation using the network capabili-

ties of X. That way, no X server will be needed, and one more potential

security risk will be eliminated.

Host-Based Authentication
Host-based authentication enables the X server to allow or disallow incoming connec-

tions based on the network address, domain name, or hostname of the host making the

connection request. If the network address, domain name, or hostname appears in a list

of allowed hosts, then the connection will be accepted and opened. Otherwise, it will be

rejected.

The /etc/Xn.hosts File
There are two methods provided for editing the list of allowed hosts that the X server

will use for authentication. The first of these is with the /etc/Xn.hosts file, where

n represents the number of the local display to which a given file will apply. On most

Linux systems, there will be only one file called /etc/X0.hosts. The format of this file

is very simple: Each line contains one IP address, domain name, or hostname. A sample

/etc/X0.hosts file is shown in Listing 15.1.

LISTING 15.1 A Sample /etc/X0.hosts File

192.168.1.14
192.168.1.15
station20.bigwing.org
station21.bigwing.org
xclaim.multiply.net
workstation1
workstation2
workstation3
workstation4
station-kathy
station-john

Notice that no wildcards are used in Listing 15.1; this is because no wildcards are

allowed. Each system that should be allowed must be explicitly listed.

The xhost Command
Because the /etc/Xn.hosts file is read only once each time the X server is launched, the

/etc/Xn.hosts file cannot be used to make changes to the authentication list at runtime

(as the X server is operating). At times this can be inconvenient. To allow for on-the-fly

changes to the authentication list, X developers created the xhost command, which

manipulates the X server’s internal host-based authentication list at runtime.

Using the xhost command is also a very simple affair. To add a host to the list of hosts

to be authenticated, call xhost with the name of the host to add, prepended by a plus

symbol (+):

$ xhost +host.to.add
host.to.add being added to access control list
$

Securing X11R6 Access 225

15

To remove a host from the list of hosts to be authenticated, call xhost with the name of

the host to remove, prepended by a minus symbol (-):

$ xhost -host.to.remove
host.to.remove being removed from access control list
$

This command will remove the named host from the list, preventing future connection

attempts from being accepted.

226 Hour 15

Manipulation of the host access control list has no effect on connections

that are already open. Therefore, removing a host from the list will prevent

any future connection attempts from being successful, but all streams that

existed at the time of the change will remain active and open after the

change until they are shut down by one side or the other.

To see the current list of allowed or forbidden hosts, call the xhost command without

any arguments:

$ xhost
INET:localhost
INET:192.168.1.14
INET:192.168.1.15
INET:station20.bigwing.org
INET:station21.bigwing.org
INET:xclaim.multiply.net
INET:workstation1
INET:workstation2
INET:workstation3
INET:workstation4
INET:station-kathy
INET:station-john
LOCAL:
$

In addition to the capability to add or remove single hosts from the list or display the list

to the user, the xhost command also provides the capability to enable or disable host-

based authentication altogether. To enable or disable host-based authentication, supply

either the minus (-) or plus (+) symbol, respectively, as an argument. For example, to dis-

able host-based authentication, supply the plus symbol as an argument:

$ xhost +
access control disabled, clients can connect from any host
$

To re-enable host-based authentication after it has been disabled, supply the minus sym-

bol as an argument to the xhost command:

$ xhost -
access control enabled, only authorized clients can connect
$

There is rarely, if ever, a legitimate reason to disable access control, so use of the plus

and minus arguments for the xhost command is strongly discouraged.

Securing X11R6 Access 227

15

It is important to understand that disabling host-based access control using

the method shown here does not have the effect of disabling all incoming

connections. Instead, it has the exact opposite effect. When access control

has been disabled, the X server will accept all incoming connections from

any host anywhere. It is therefore never a good idea to disable host-based

authentication on any system that is connected to a live network.

Understand also that the plus (+) and minus (-) arguments are reversed with

respect to many users’ expectations. The plus argument actually disables

access control, while the minus argument enables it. Confusing the two can

have serious security consequences!

Host-Based Authentication Problems
There are some important problems with host-based authentication that must be consid-

ered for any user who will be running an X server on a live network.

First, host-based authentication is not very secure, for several reasons. Most importantly

and obviously, a host or IP address can easily be spoofed, rendering host-based authenti-

cation completely impotent in many cases. Even when spoofing doesn’t occur, undesired

access can be granted in error innocently.

For example, many networks now use Dynamic Host Configuration Protocol (DHCP) to

assign IP addresses. This means that one IP address can actually represent a number of

different systems over time, and that there may be no way to predict which systems are

associated with a given IP address at any time. An IP address added to the host list at

noon may refer to a completely different system on the network by half past noon.

Because the IP address is in the host list, however, access will be granted to the new sys-

tem just as if it were the old system, because it resides at the same address.

Host-based authentication also fails to relate directly to user(s); it applies only to entire sys-

tems. It is therefore not possible to grant access to one user on a system but deny connec-

tion attempts from another user on the same system. Using host-based authentication, all

users on a system must have access if one user is to have access. Similarly, to guarantee

access to a single important user, access must be given to all hosts on which the user might

appear. For an administrative user, a number of systems may be involved. Furthermore,

because adding a system to the access control list means that all users on that system can

connect, any guarantee of access for a single important user may mean as a side effect the

granting of unwanted access to any number of unrelated users.

Clearly, host-based X authentication is not the most desirable type of access control for

X11R6 servers.

Token-Based Authentication
To overcome the limitations of host-based authentication, the designers of X also imple-

mented a method of authenticating a remote user based on a system of token exchange.

When a remote system makes a connection request, the X server compares a magic cookie

(a kind of unique identification code) it supplies with a magic cookie stored on the local

system. If the two cookies match, access is granted. If they do not match, access is denied.

It is assumed that only users who should have access will have been given the cookie.

Normally, once a user has possession of a cookie, it is stored in a file located at $HOME/

.Xauthority, and little intervention is then required to interact with the remote X server.

Each time a client connection is attempted, the cookie for the remote server will be read

automatically and supplied as part of the authentication exchange.

The actual implementation is a little more complex, but with practice, it can seem as easy

to manage as the xhost method for controlling access.

Using the xauth Command
Before you can start an X server with token-based authentication enabled, a magic

cookie must first be generated and added to the magic cookie file maintained by the

xauth command. The command used for manipulating magic cookies and magic cookie

files for token-based authentication is xauth. To generate a cookie and add it to the file,

which is normally found at $HOME/.Xauthority, you’d use

xauth add host:display . keyvalue

The value for host:display will normally be the hostname of the system on which the

X server is run, followed by the number 0 (zero), unless you are planning to run X

servers on multiple displays. The keyvalue should be a large random or pseudorandom

value with an even number of digits from which the magic cookie will be generated. For

example, on a host named station-john, using a variation on the current date and time

as a key value, you might execute the following command to generate the magic cookie

and add it to the authentication file:

xauth add station-john:0 . $(date +%S%M%H%y%d%m)

228 Hour 15

If you want to add this cookie to a file other than the file located at $HOME/.Xauthority,

you need to supply the -f argument to the xauth command:

xauth -f /etc/xac add station-john:0 . $(date +%S%M%H%y%d%m)

To remove an existing cookie from an authentication file, use the remove argument along

with the string matching an existing entry. For example, to remove the cookie just added

for station-john, use

xauth -f /etc/xac remove station-john:0

It is a very good idea to remove magic cookies from the cookie file when you are done

with them. To extract the magic cookie for a given host, use the extract argument. For

example, to write the magic cookie for station-john to a file called cookie.auth, use

xauth extract cookie.auth station-john:0

If the name of the output file is a dash (-), the cookie will be sent to standard output,

where it can be redirected or piped as necessary. To merge a supplied cookie into an

existing authorization file, use the merge argument. For example, to merge a cookie from

the cookie.auth file into the authorization file at /etc/xac, you’d use

xauth -f /etc/xac merge cookie.auth

If the name of the input file is a dash (-), the cookie will be read from standard input and

then incorporated into the authorization file.

Starting the X Server
Once you have created the magic cookie for a system and display, starting the X server

with token-based authentication is a simple matter. Simply supply the -auth argument to

the server, followed by the name of the file containing the cookie authentication tokens.

For example, any of the following may be correct, depending on the particulars of your

installation and the circumstances surrounding the server’s launch:

X -auth /etc/X11/global-cookies
Xwrapper -auth $HOME/.Xauthority
startx -- -auth $HOME/.Xauthority

All of these commands have the same effect: They launch the X server and instruct it to

use the supplied cookie file for token-based authentication. Once the server has been

started this way, it will be able to challenge incoming connection requests for the magic

cookie before access is granted.

Distributing the Cookie
Once the server has been started with token-based authentication, it is important that the

cookie be supplied to those users or accounts that should have access to the running X

server. The easiest way to do this is to use the extract and merge arguments with the

Securing X11R6 Access 229

15

xauth command as already discussed. However, it can be a pain to transfer extracted

cookie files between hosts. Because of this, there is a shortcut often used for exchanging

cookies that may be helpful to you.

Using the xauth command in conjunction with rsh and a pipe, it is possible to transfer a

cookie from your account on one host to your account on another host from within an X

session. Assuming that the remote host is called foobar, the command would be

xauth extract - :0 | rsh foobar xauth merge -

This command instructs xauth to place the cookie for the current display on standard

output, which is then piped to an xauth command on the remote system ready to merge

the cookie from standard input.

230 Hour 15

This method for distributing the cookie has two caveats. First, you must have

access to use rsh on the remote system. Second, rsh is not a very secure pro-

tocol in and of itself, and passing a magic cookie over rsh may be doubly

insecure because rsh does not encrypt data as it is transferred.

The solution to this problem is to perform the same function using

ssh instead. The ssh service will be detailed in Hour 16, “Encrypting Data

Streams.” Please install and use ssh instead of rsh for magic cookie

exchange whenever possible.

Host-Based and Token-Based Authentication Interaction
There is obviously some tension between host-based and token-based authentication,

since it’s already been made clear that disabling host-based authentication is a bad idea.

If you plan to use token-based authentication, it is essential that you completely empty

your host authentication file and list so that there are no hosts that are authenticated

based merely on their identity.

This is because host-based authentication supersedes token-based authentication when

both are present. If a connecting system appears in the authenticated hosts list, the con-

nection will be opened without any challenge for a magic cookie, even if token-based

authentication has also been enabled. It is therefore almost pointless to place hosts

(which are easily spoofed) into the host-based access control list and enable token-based

authentication at the same time.

The X Display Manager (XDM)
Because the vast majority of X clients will be run on the same machine as the X server

to which they connect, it is possible to automate the management of token-based authen-

tication even further. This is done using the X Display Manager, or XDM, which is

included with nearly all X installations and is now installed and run by default on many

Linux installations.

When launched, XDM automatically generates a magic cookie and starts the X server

with token-based authentication enabled. The xdm process then provides a graphical login

screen instead of the traditional text-based login. When a user logs in to the X session,

his $HOME/.Xauthority file will be updated automatically to contain the magic cookie

for the local X server. When he logs out again, the cookie will be removed.

Even remote X sessions can be further automated, using an additional option to the X

server, the string -query followed by the name of the host on which xdm is running. For

example, nearly all of the clients on your local X server will be connected from the host

foobar, which is running xdm. You can start your local X server as follows:

X -query foobar

This will cause the local X server to initiate cookie exchange with your account at

foobar automatically, and you will then be able to log in to the X session securely as if it

were running on foobar, as shown in Figure 15.2.

Securing X11R6 Access 231

15

FIGURE 15.2

The X Display Manager

in a queried session.

For more information on using xdm, please see xdm(1).

X and Packet Filtering
Many X servers (including the XFree86 server) include no functionality to dictate the

ports on which the X server will operate. The XFree86 X server used most commonly on

Linux simply begins looking for an unowned port at 6000 and continues upward until it

finds one. It is therefore important that you ensure that at least one port in the 6000 range

is open for X to use and that your filtering rules take this range into account if you want

to allow networked X use on a filtered machine.

Also important for networked X use is port 177, which is used by the XDMCP protocol

to manage connection authentication. Packet filtering rules that allow for networked X

use via ipchains and iptables are shown in Listings 15.2 and 15.3.

LISTING 15.2 X Packet Filtering Rules with ipchains

ipchains -A input -p tcp -s trusted.ext.system.ip \
-d ext.ip.number.here 6000:6100 -j ACCEPT

ipchains -A input -p tcp -s trusted.ext.system.ip \
-d ext.ip.number.here xdmcp -j ACCEPT

ipchains -A input -p udp -s trusted.ext.system.ip \
-d ext.ip.number.here xdmcp -j ACCEPT

ipchains -A input -i ! lo \
-d ext.ip.number.here 6000:6100 -j DENY -l

ipchains -A input -i ! lo \
-d ext.ip.number.here xdmcp -j DENY -l

LISTING 15.3 X Packet Filtering Rules with iptables

iptables -t filter -A INPUT -p tcp -s trusted.ext.sys.ip \
-d ext.ip.number.here --destination-port 6000:6100 \
-j ACCEPT

iptables -t filter -A INPUT -p tcp -s trusted.ext.sys.ip \
-d ext.ip.number.here --destination-port xdmcp \
-j ACCEPT

iptables -t filter -A INPUT -p udp -s trusted.ext.sys.ip \
-d ext.ip.number.here --destination-port xdmcp \
-j ACCEPT

iptables -t filter -A INPUT -i ! lo \
-d ext.ip.number.here --destination-port 6000:6100 \
-j DROP

iptables -t filter -A INPUT -i ! lo \
-d ext.ip.number.here --destination-port xdmcp \
-j DROP

If you don’t plan to run an X server on the machine, there is no need to use rules like

these to allow such packets through.

Summary
This hour you have learned about X authentication security, which is needed when X

servers on a live network will be accepting connections from remote X applications

(clients). There are two major types of X authentication.

Host-based authentication grants or denies access based on the connecting system’s pres-

ence in or absence from a list of systems allowed to connect to the local X server. Host-

based authentication is simplistic and inflexible and provides only minimal security at

best. It should be used only on smaller systems behind a dedicated firewall.

232 Hour 15

Token-based authentication grants or denies access based on the connecting user’s ability

to supply a magic cookie, generated as a kind of connection password. Token-based

authentication can be applied on a per-user basis and is much more secure than host-

based authentication.

When the two types of authentication are both used, a connecting system is checked

against the host list first. If it appears in the list, access is granted, without the token ever

being checked. It is therefore advisable to leave the host list blank when token-based

authentication is enabled.

The X Display Manager (xdm) can be helpful in automating the token-based authentica-

tion process. xdm is capable of automatically generating magic cookies and facilitating

their exchange without needing to use the xauth command.

Q&A
Q My system doesn’t run xdm, but when I boot it starts kdm (from KDE) or gdm

(from GNOME) instead. Do these provide similar functionality?

A Yes, kdm and gdm both implement the XDMCP protocol and perform token man-

agement in similar if not identical ways. However, be sure to keep your kdm and

gdm versions current; both KDE and GNOME are under heavy development, and

both managers have at times been known to have serious bugs.

Q Isn’t X always insecure anyway because it is an unencrypted data stream?

Isn’t it always a bad idea to use X over a network?

A Yes, X is an unencrypted data stream. Thus, it is a good idea to use unencrypted X

streams only behind a dedicated firewall. X can be encrypted by tunneling it

through ssh, however, making it much more secure. For details on ssh, please see

Hour 16.

Q How long does a token-based authentication cookie last before it expires?

A Unfortunately, using the standard MIT-MAGIC-COOKIE mechanism, the cookie

does not expire; either side can continue to use it indefinitely, as long as it matches

the cookie on the other side. It is therefore a good idea to cycle X sessions periodi-

cally and remove old cookies from your authentication file.

New Terms
GNOME Display Manager (gdm) An xdm-compatible display manager included with

the GNU Network Object Model Environment (GNOME).

Securing X11R6 Access 233

15

host-based authentication A method of authenticating an incoming connection in

which the connecting system’s address, domain, or hostname is compared against a list

of permitted systems.

KDE Display Manager (kdm) An xdm-compatible display manager included with the K

Desktop Environment.

magic cookie A kind of randomly generated connection password that both sides must

know for a connection to be established. Magic cookies are stored in an authentication

file and managed by the xauth command.

token-based authentication A method of authenticating an incoming connection in

which the X server challenges the connecting system to provide a magic cookie for the

session. If the remote user is unable to supply the correct magic cookie, the connection

attempt is rejected.

X Display Manager (xdm) A daemon that makes management of X access to networks

much easier by automating tasks like magic cookie generation and exchange.

X Display Manager Control Protocol (XDMCP) A protocol used by xdm for admin-

istering multiple X client/server sessions.

234 Hour 15

Hour

16 Encrypting Data Streams

17 Introduction to Kerberos

18 Encrypting Web Data

19 Encrypting File System Data

20 Encrypting E-Mail Data

PART III
Data Encryption

HOUR 16
Encrypting Data Streams

This hour, you’ll learn to encrypt data streams of most kinds for increased

security during transport. You’ll also learn to increase the authentication

security of many types of protocols on your network.

Two major software packages are regularly used with Linux to encrypt data

streams and provide this increased authentication security. The first is SSH,

the Secure Shell. The second, OpenSSH, is an open source implementation

of the SSH protocol created by the OpenBSD project to address concerns

with the commercial nature of the original SSH, which is free only for non-

commercial use.

In this hour, we’ll discuss installation and use of both SSH version 2.4.0 and

OpenSSH 2.3.0p1. Both are available for download from their respective

Internet sites.

What Do SSH and OpenSSH Do?
In the simplest sense, the ssh2 utility, which forms the core of the SSH

package, is a replacement for the rsh utility. The rsh utility allows Linux

commands to be executed on remote systems, with the capability to pipe the

standard input, standard output, or standard error path between systems over the network.

The ssh2 command has one important advantage over rsh: with ssh2, all input, output,

and other data involved in remote execution can be encrypted.

The SSH package has two additional important capabilities, however. First, SSH can

authenticate the systems on both ends of a connection much more securely, using any one

of several methods, reducing the chance that data will be stolen from under your nose.

Second, SSH can “tunnel” other common network protocols through its encrypted con-

nection, providing them with the same benefit.

A traditional unencrypted data stream can be a security risk; anyone on the network theo-

retically can intercept and use information sent in unencrypted form. This applies to unen-

crypted data of all kinds, from e-mail to file transfer via FTP to remote X11R6 sessions. A

packet belonging to an encrypted data stream on the other hand is exceedingly difficult to

use even if intercepted, because the intercepting party must have enough information to

decrypt it first. Data encryption of network communications is thus a good idea, especially

if one of the machines involved in the communication is not behind a dedicated firewall.

The SSH package enables encryption to take place almost transparently for most proto-

cols. As a result, compatibility is excellent, even with protocols like the X11R6 data

stream, provided that SSH capability is present on both ends of the connection.

An additional SSH benefit is the capability to improve network speeds in some cases by

compressing a data stream using gzip-based compression after it has been encrypted.

This is especially helpful with slower modem, ISDN, or low-end DSL connections,

where every last bit of bandwidth is valuable.

Installing, Configuring, and Using SSH
The original SSH suite is owned and maintained by SSH Communications Security

Corporation, which can be found on the World Wide Web at http://www.ssh.com.

Though the source code is freely available for download, SSH cannot properly be called

open source software, and the free download applies only to noncommercial users or a

short trial period for commercial users, after which SSH must be purchased.

Downloading and Installing SSH
The download page for SSH is located at http://www.ssh.com/products/ssh/

download.html; U.S. users may download SSH from any of the following mirrors:

ftp://ftp.cis.fed.gov/pub/ssh/

ftp://ftp.iodynamics.com/pub/mirror/ssh/

238 Hour 16

ftp://metalab.unc.edu/pub/packages/security/ssh

ftp://ftp.gw.com:/pub/unix/ssh

ftp://herbie.ucs.indiana.edu/pub/security/ssh

ftp://ftp.in-span.net/pub/ftp.ssh.org/

ftp://mirror.chpc.utah.edu/pub/ssh

ftp://ftp.keystealth.org/pub/ssh

After you’ve downloaded the SSH tarball from one of these distribution sites, use the

GNU tar command to extract the tarball and then change to the newly created SSH dis-

tribution directory:

$ tar -xzf ssh-2.4.0.tar.gz
$ cd ssh-2.4.0
$

Inside the ssh-2.4.0 directory, use the configure command to tailor the source code

configuration for your own system’s circumstances. You’ll probably want to supply the

--with-libwrap option to allow SSH to work with TCP wrappers:

$./configure --with-libwrap
...[output of configure]...

$

If you want to change the location of the final SSH installation, use the --prefix option

to alter the installation path:

./configure --with-libwrap --prefix=/opt/ssh2

Remember that if you adjust your installation path when configuring the source, you’ll

need to account for this difference later on when configuring and using SSH. A number

of additional options can be used to change some of the properties or behaviors of the

final SSH installation; to see a list of these options, use the --help option:

./configure --help

The configure utility will likely take several minutes to finish on early Pentium or older

systems. Once it has returned without errors, SSH can be built and installed using make.

Don’t forget to install as superuser or the installation attempt will fail.

$ make
...[output of make]...

$ su
Password:
make install
...[output of make install]...

exit
$

Encrypting Data Streams 239

16

During installation, the 1024-bit host keys necessary for some aspects of SSH operation

will be generated automatically and stored in the /etc/ssh2 directory as hostkey and

hostkey.pub. Simply repeat this process on each machine needing an SSH installation

so that each of them has its own set of keys. You may see several Error 1 messages as

SSH attempts to discover an existing SSH version 2.x installation; as long as the install

process continues, these errors can be safely ignored.

After you install the SSH files, it is necessary to make a few changes to the /etc/

services and /etc/inetd.conf files. Making these changes will allow inetd and TCP

wrappers to manage incoming SSH requests transparently, simplifying some aspects of

SSH use and preserving system resources. Add the following lines to /etc/services:

ssh2 22/tcp ssh
ssh2 22/udp ssh

These lines define a new service called ssh2 that will listen on port 22 for incoming con-

nections. If you plan to run SSH on another port, be sure to adjust the port numbers as

necessary. To start SSH, add this line to /etc/inetd.conf:

ssh2 stream tcp nowait root /usr/sbin/tcpd /usr/local/sbin/sshd2 -i

This line allows inetd to start the SSH daemon when required and to use TCP wrappers.

This way, you can control access to SSH from the /etc/hosts.allow and /etc/

hosts.deny files using sshd2 as the name of the service. Once these changes have been

made to the system’s network configuration files, you’ll want to send the hang-up signal

(HUP) to the system’s running inetd process:

killall -HUP inetd

This will restart the inetd program and cause any changes you’ve made to the

/etc/inetd.conf file to become active. For most users, little or no additional SSH con-

figuration is required.

240 Hour 16

In the past, it was common for system administrators to recommend that

SSH be started from an init script like /etc/rc.d/rc.local rather than being

started on demand by the inetd process. Administrators avoided using

inetd with SSH because of the delays that could be introduced for connect-

ing SSH clients during daemon launch and key generation, both resource-

intensive operations.

On a reasonably modern Linux system, however, concern of this kind is no

longer warranted except in situations involving very heavily loaded

machines. On today’s average Linux box, with a 266MHz or faster CPU and a

multigigabyte hard drive, the delays introduced by starting sshd2 with

inetd are almost undetectable in most cases and will not result in any mea-

surable loss of productivity.

Additional Configuration
The sshd2 binary, located by default at /usr/local/sbin/sshd2, is responsible for han-

dling incoming ssh2-encrypted connections. Though the default behaviors are usually

adequate, there are a few additional security-oriented options that can be changed by

editing the /etc/ssh2/sshd2_config file.

The format of /etc/ssh2/sshd2_config is familiar to most Linux and Unix users; the

file is composed of a number of keyword/value pairs, one pair per line. Empty lines or

lines beginning with the hash mark (#) are assumed to be comments and are ignored.

Some additional sshd2 options that may be helpful to you from a security standpoint are

shown in Table 16.1. The complete list of sshd2 configuration options is documented

exhaustively in sshd2_config(5).

TABLE 16.1 Common Options for the sshd2_config File

Option Description

AllowGroups Followed by a comma-separated list of regular expressions, this keyword

gives a list of groups that are allowed to use connections controlled by

SSH. Users who don’t belong to a matching group will not be authenti-

cated. The default is to allow all groups.

DenyGroups Follows the same format as AllowGroups, but will instead deny authenti-

cation to users who belong to a matched group.

AllowHosts Followed by a comma-separated list of regular expressions, this keyword

gives a list of hosts that are allowed to use connections controlled by

SSH. Hosts can be given either in text form or by IP number. Users who

are connecting from a host not on this list will not be authenticated. The

default is to allow all hosts.

DenyHosts Follows the same format as AllowHosts, but will instead deny authenti-

cation to users who connect from a matched host.

AllowUsers Followed by a comma-separated list of regular expressions in the form

user@host, this keyword gives a list of individual users on specific hosts

who are allowed to use connections controlled by SSH. Users who do

not match an entry in the list will not be authenticated. The default is to

allow all users.

DenyUsers Follows the same format as AllowUsers, but will instead deny authenti-

cation to users matching an entry in the list.

MaxConnections Followed by a number indicating the maximum number of incoming

connections that sshd2 will allow at any one time, this option can pre-

vent denial-of-service attacks caused by opening large numbers of

simultaneous SSH connections. The default value is 0 (connections not

limited).

Encrypting Data Streams 241

16

PermitEmptyPasswords Specifies whether authentication will be provided for accounts with an

empty password string. Should be set to no for any secured system.

PermitRootLogin Specifies whether users claiming to be root will be authenticated.

Should be set to no for any secured system.

RequireReverseMapping Specifies whether a connecting system’s IP number must match its DNS

entry. Should normally be set to yes for any secured system.

The ssh2 client binary is located by default at /usr/local/bin/ssh2 and is responsible

for initiating outbound ssh2-encrypted connections. Though the default set of behaviors

is usually adequate, there are a few additional security-oriented options that can be

changed by editing the /etc/ssh2/ssh2_config file.

The format of /etc/ssh2/ssh2_config is virtually identical in many ways to the format

of the /etc/ssh2/sshd2_config file; the file is composed of a number of keyword/value

pairs, one pair per line. Empty lines or lines beginning with the hash mark (#) are

assumed to be comments and are ignored.

Some additional ssh2 options that may be helpful to you are shown in Table 16.2. The com-

plete list of ssh2 configuration options is documented exhaustively in ssh2_config(5).

TABLE 16.2 Common Options for the ssh2_config File

Option Description

Compression When set to yes, causes the encrypted data stream to be compressed on-the-fly.

This option is most useful for low-bandwidth connections, but can also slow

things down on machines with very slow CPUs.

EscapeChar Supplies the character that can be used to interrupt interactive SSH sessions.

The word none disables the escape character. Control key combinations can be

given by prefixing an alphanumeric character with the caret (^) character. The

default is the tilde (~) character.

User Specifies the default username to supply when connecting to remote SSH

servers. Optional; this can be useful if your username on the local machine is

different from your username on the remote machine.

Once you have installed SSH on at least two machines and are satisfied with any changes

you’ve made to your SSH configurations, it’s time to put SSH to work.

242 Hour 16

TABLE 16.1 continued

Option Description

Using SSH for Remote Logins
The first and simplest use for SSH is as a kind of secure replacement for remote login

programs like rlogin or Telnet. SSH can perform a similar function to these two proto-

cols, but because SSH encrypts the data stream (including the password as it is being

sent during authentication), communication between two systems is much more secure

and difficult, if not impossible, to intercept.

To connect to an SSH-enabled server from an SSH-enabled client machine for remote

login, simply call the ssh2 client binary and supply the remote hostname as an argument:

ssh2 newton

When SSH establishes a connection with the remote system, an exchange of host keys

takes place. The SSH client checks to see if a key entry for the remote system is already

present in the $HOME/.ssh2 directory. If so, the SSH client compares the key on record

for the remote system to the key just sent by the remote system. If they match, authenti-

cation proceeds.

Since this is your first time connecting to the remote system, there will be no identifica-

tion information on file for it. SSH will therefore ask you whether or not this system’s

key should be added to the list of known identifications. A transcript of the first-time

connect process is shown in Listing 16.1.

LISTING 16.1 Connecting for the First Time

$ ssh2 newton
Host key not found from database.
Key fingerprint:
xopil-nyboh-mynyr-zifeb-zygok-zytam-bokab-potut-femyz-boxox
You can get a public key’s fingerprint by running
% ssh-keygen -F publickey.pub
on the keyfile.
Are you sure you want to continue connecting (yes/no)? yes
Host key saved to $HOME/.ssh2/hostkeys/key_22_newton.pub
host key for newton, accepted by joe Sat Jan 06 2001 22:31:23 -0700
joe’s password:
Authentication successful.

Notice that the host key for the host known as newton was saved to a file in the

$HOME/.ssh2 directory. From now on, whenever joe connects to newton with SSH, the

key supplied by newton will be compared to the key on file for newton. If the two don’t

match, SSH will notify joe of this and ask if the new key should be accepted. This pro-

vides a basic kind of protection against identity theft on the network.

Encrypting Data Streams 243

16

After the key has been added, joe is prompted for his password. Because this is an SSH

connection, joe’s password will be encrypted as it is sent across the network, rather than

being sent in clear text, an important improvement over programs like rlogin or Telnet.

Once the password is successfully entered, a remote shell like any other will be started

on the remote host called newton.

244 Hour 16

Since the remote login capability of SSH clearly duplicates the functionality

of Telnet or rlogin but does so much more securely than either of these

other protocols, there is often no good reason to continue to allow incom-

ing Telnet or rlogin requests to an SSH-enabled server.

If you have no specific need for Telnet, for example, consider editing the

/etc/inetd.conf file and commenting out the Telnet service once SSH has

been installed. Afterward, use SSH for remote logins to the system. If neces-

sary, you can even add an alias to your shell preference files for convenience:

alias telnet=ssh2

Assuming you compiled SSH with TCP wrappers support, you can still

enforce any existing limits you had on Telnet in /etc/hosts.deny or

/etc/hosts.allow by using ssh2 as the service name instead of telnet.

Host-Based Authentication
There are times when it is convenient to be able to connect to a host without needing a

password; this was one of the functional strengths of the original rsh tool, though it was

also one of the largest security weaknesses. The host-based authentication involving the

.rhosts file is extraordinarily weak. SSH improves on this model with its capability to

identify systems based on their public keys. However, it is still important to use so-called

host-based authentication only for systems that are basically trusted.

In order to allow host-based authentication, you must have write access to the files in

/etc/sshd2 on the destination system. Assuming that the local machine’s hostname is

local and the remote machine’s hostname is remote, follow along with these steps:

1. Transfer the local (client) machine’s public key to the remote (server) machine.

The easiest way to do this is with SSH.

cat /etc/ssh2/hostkey.pub | ssh2 remote ‘cat > key.pub’

2. Log back in to the remote host and use su to gain administrative access.

user@local$ ssh2 remote.host
user’s password:
Authentication successful.
user@remote$ su
Password:
user@remote#

3. Make a directory called knownhosts if one doesn’t already exist in /etc/ssh2 and

copy the key to the directory using a special name format:

user@remote# mkdir /etc/ssh2/knownhosts
user@remote# cp key.pub /etc/ssh2/knownhosts/local.mynet.net.ssh-dss.pub

Notice the format of the key file’s name. It is the fully qualified domain name of

the client host, followed by .ssh-dss.pub.

4. Modify the /etc/sshd2_config file on the destination system using your favorite

editor. Search for the AllowedAuthentications keyword and add the option

hostbased to the list of allowed authentication types:

AllowedAuthentications hostbased,publickey,password

5. Drop out of root-level access, add the necessary client to your .shosts file, and

set the file’s permissions to 0400.

user@remote# exit
user@remote$ echo “local.mynet.net user” >>.shosts
user@remote$ chmod 0400 .shosts
user@remote$ exit
Connection to remote closed.
user@local$

Notice that the fully qualified domain name was used in the .shosts file and was

followed by the name of the user account.

After these changes are made, user@local.mynet.net will be able to use ssh2 to con-

nect to remote.mynet.net without having to enter a password each time, provided the

key files aren’t changed.

Public Key Authentication
On the opposite end of the spectrum from host-based authentication is the public key

authentication scheme, perhaps the most flexible and certainly a more secure authentica-

tion method supported by SSH.

In order to use this authentication scheme, you must generate a personal set of keys and

transfer the public key to the remote system. To generate your own key, simply run the

ssh-keygen2 utility:

ssh-keygen2

This program will ask you for an optional passphrase of your choosing and will generate

two keys: a public key and a private key for your own personal use, which will be stored

in $HOME/.ssh2. After the keys have been generated, write the keyword idkey and the

name of the private key (the file without the .pub extension) to the file $HOME/.ssh2/

identification. The command to do this will usually be

echo “idkey id_dsa_1024_a” >> $HOME/.ssh2/identification

Encrypting Data Streams 245

16

Next, copy the public key to the remote system and write the keyword key and the name

of the public key file to the file $HOME/.ssh2/authentication on that system:

$ cd .ssh2
$ cat id_dsa_1024_a.pub | ssh2 remote cat ‘>’ .ssh2/mykey.pub
user’s password:
Authentication successful.
$ echo “key mykey.pub” | ssh2 remote cat ‘>’ .ssh2/authentication
user’s password:
Authentication successful.
$

Now when you connect to the remote system, authentication will take place using your

public key instead of using your password on the remote system.

Using SSH for FTP
The SSH protocol can be used for more than rsh- or Telnet-style functionality. Another

important feature included with SSH is the capability to encrypt file transfers to prevent

data being exchanged from being intercepted or stolen. Though the protocol used is not

compatible with the real FTP protocol, the interface most users are accustomed to in the

standard ftp client has been more or less preserved, so the learning curve is low.

The sftp2 client is the SSH version 2.x file transfer client. To use it, the sftp2 client

must be present on the local system and the sftp-server2 binary must be installed on

the remote system. Both of these programs are installed in a standard SSH installation as

described earlier. The remote system must also be configured to allow incoming

sshd2 connections, just as was necessary for ssh2 client connections.

Once the requirements have been met, using sftp2 is easy; simply call sftp2 using the

destination host as an argument:

sftp2 newton

The remote system will prompt for the user’s password, and if this is the first SSH con-

nection between this client and server, the key exchange as already described will also

occur. Once logged in, any user familiar with the standard ftp client will be able to navi-

gate easily, though there is one important difference: He will not have access to files out-

side his own home directory.

246 Hour 16

As was the case with Telnet or rlogin, the SSH version of the FTP protocol is

much more secure than is the standard FTP protocol, and there is no real

performance or features penalty in most circumstances.

Unless you need to provide anonymous FTP access or for some reason you

require FTP service that preserves the original FTP protocol, it is probably a

Tunneling TCP Streams Through SSH
One of the most important features of SSH is the capability to tunnel TCP data through

an encrypted data stream. Using this feature, it is possible to encrypt data streams of all

kinds, from the Simple Mail Transfer Protocol (SMTP) used by daemons like Sendmail

to the protocol used by the print spooler.

Tunnels of this kind are created by asking SSH to listen for connections of the desired

kind on a port on the local machine. When a connection to this port is opened, SSH will

then forward this connection to a port on the remote machine through an encrypted chan-

nel, thereby securing an otherwise unsecured network protocol.

The syntax for asking SSH to wait in the background and forward TCP streams through

an encrypted tunnel is

ssh2 host -f -L localport:host:port

In general, host refers to the destination system to which you want clients to be able to

connect, port represents the normal port for the TCP stream you want to tunnel, and

localport represents the new port you want SSH to listen to on the local machine. The

best way to illustrate is with a simple example.

Suppose our fictitious user joe regularly brings his e-mail from the host known as

newton to the local machine using the Post Office Protocol version 3 (POP3). This proto-

col is perhaps one of the most commonly used on the Internet today and manages lots of

mail for lots of people, including joe. There are some problems with POP3, however.

The two most important are that the identity and password information is sent across the

network in plain text and that messages are sent this way as well, making any e-mail

connection fair game for mischief. To remedy this situation, joe wants to encrypt his

POP3 connection to newton.

To do this, joe runs the following command:

ssh2 newton -f -L 7501:newton:110

Then, he configures his mail client to connect to the host localhost on port 7501 instead

of to newton on port 110 as is normally the case with POP3 connections. Now, each time

his mail client polls the remote system for new e-mail using the POP3 protocol, all of the

communication, including passwords and any mail text, is encrypted by SSH.

Encrypting Data Streams 247

16

good idea to disable the standard FTP service in /etc/inetd.conf and rely

on SSH for file transfer instead, since SSH doesn’t send clear text passwords,

encrypts transferred files, and provides some means for authenticating a

host’s identity.

The majority of protocols you’ll find in the /etc/services file can be tunneled through

SSH this way. It is a good idea to take advantage of this feature whenever possible.

Improving X Security with SSH
The final security problem we’ll tackle while using SSH is the X11R6 data stream.

Recall that in the last hour we used a little trick to move an X session’s magic cookie

from one host to another:

xauth extract - :0 | rsh foobar xauth merge -

This command copied the X session’s magic cookie, designed to improve connection

security, from one system to another one. Unfortunately, this introduced a new security

vulnerability, since the magic cookie itself was transmitted in clear code and was there-

fore susceptible to being intercepted and used by unknown parties.

With SSH, we can instantly fix this problem. The command is virtually identical:

xauth extract - :0 | ssh2 foobar xauth merge -

The difference is that the magic cookie is now encrypted before being sent out across the

network, making it much less susceptible to unwanted use by untrusted parties.

Using SSH, X11R6 security can be improved even more. This is done by encoding the

X11R6 data stream itself. Tunneling of other network protocols was a little difficult to

grasp, but X is such an important protocol that SSH includes special functionality for

working with X. The clearest, simplest example requires only a running X server on the

local machine.

Assuming that you want to launch clients on a machine called remote that will display

on the already running local X server, simply issue a command like this:

ssh2 remote /usr/X11R6/bin/xterm

An xterm window running on remote appears on your local display, without additional

intervention or explicit tunneling or forwarding instructions. From inside this xterm, try

launching any number of X applications; they will all start on your local display as

expected.

In this case, SSH has taken care of all of the details for you; when SSH determines that

an X application is to be run, it automatically exchanges the magic cookie from your

XDMCP session and sets the DISPLAY environment variable in the remote environment

correctly. More involved configurations might even call SSH in the .xinitrc file to start

a window manager on the remote machine:

ssh2 remote /usr/local/bin/wmaker

248 Hour 16

In this case, by starting Window Maker as the first client, virtually the entire session

would be tunneled through SSH without any need for further intervention.

Installing, Configuring, and Using OpenSSH
Because of the commercial nature of the original SSH protocol implementation, a group

of coders began work on an open implementation of the SSH protocol, in cooperation

with the OpenBSD project. OpenSSH is fully compatible with the SSH version 2.x proto-

col, and the version for operating systems other than OpenBSD, Portable OpenSSH, runs

well on Linux. The OpenSSH home page can be found at http://www.openssh.com.

Encrypting Data Streams 249

16

OpenSSH has two modes of operation, one compatible with the original SSH

protocol and one compatible with the new SSH version 2.x protocol used by

ssh2. Because the OpenSSH implementation of the SSH version 2.x protocol

isn’t yet complete, this text will only discuss OpenSSH and the version 1.x

SSH protocol.

Downloading and Installing OpenSSL
Before downloading, compiling, and installing OpenSSH, you’ll need to download, com-

pile, and install OpenSSL, an open source encryption library that OpenSSH depends on

for operation. The OpenSSL home page can be found at http://www.openssl.org.

The source code download page for OpenSSL can be found at http://www.openssl.org/

source/. After downloading the latest source tarball, extract the source code and visit the

newly created source directory:

$ tar -xzf openssl-0.9.6.tar.gz
$ cd openssl-0.9.6
$

Now configure, compile, and install OpenSSH:

$./config
...[output of config]...

$ make
...[output of make]...

$ su
Password:
make install
...[output of make install]...

exit
$

The default configuration of OpenSSL installs most of its files in the /usr/local tree,

with libraries going in /usr/local/ssl/lib.

Downloading and Installing OpenSSH
To download OpenSSH, visit the Portable OpenSSH download page at http://www.

openssh.com/portable.html. Choose a mirror site near you and download the latest

.tar.gz source archive. Extract the source code and visit the newly created directory with

the cd command.

$ tar -xzf openssh-2.3.0p1.tar.gz
$ cd openssh-2.3.0p1
$

Inside the openssh-2.3.0p1 directory, use the configure command to tailor the source

code configuration for your own system’s circumstances. You’ll probably want to supply

the --with-tcp-wrappers option to allow OpenSSH to work with TCP wrappers:

$./configure --with-tcp-wrappers
...[output of configure]...

$

If you want to change the location of the final OpenSSH installation, use the --prefix

option to alter the installation path:

./configure --with-tcp-wrappers --prefix=/opt/openssh2

Remember that if you adjust your installation path when configuring the source, you’ll

need to account for this difference later when configuring and using OpenSSH. As was

the case with SSH, a number of additional options can be used to change some of the

properties or behaviors of the final OpenSSH installation; to see a list of these options,

use the --help option:

./configure --help

The configure utility will likely take several minutes to finish on early Pentium or older

systems. Once it has returned without errors, OpenSSH can be built and installed using

make. Don’t forget to install as superuser, or the installation attempt will fail.

$ make
...[output of make]...

$ su
Password:
make install
...[output of make install]...

exit
$

During installation, the 1024-bit host keys necessary for some aspects of OpenSSH oper-

ation will be automatically generated and stored in the /usr/local/etc directory as

ssh_host_key and ssh_host_key.pub. Simply repeat this process on each machine

needing an OpenSSH installation so that each of them has its own set of keys.

250 Hour 16

After installing the OpenSSH files, it is necessary to make a few changes to the /etc/

services and /etc/inetd.conf files. Making these changes will allow inetd and TCP

wrappers to manage incoming SSH requests transparently, simplifying some aspects of

SSH use and preserving system resources. Add the following lines to /etc/services:

ssh 22/tcp openssh
ssh 22/udp openssh

These lines define a new service called ssh2 that will listen on port 22 for incoming con-

nections. If you plan to run OpenSSH on another port, be sure to adjust the port numbers

as necessary. Now add the line to start OpenSSH to /etc/inetd.conf:

ssh stream tcp nowait root /usr/sbin/tcpd /usr/local/sbin/sshd -i

This line allows inetd to start the OpenSSH daemon when required and to use TCP wrap-

pers. This way, you can control access to SSH from the /etc/hosts.allow and /etc/

hosts.deny files using sshd as the name of the service. Once these changes have been

made to the system’s network configuration files, you’ll want to send the hang-up signal

(HUP) to the system’s running inetd process:

killall -HUP inetd

This will restart the inetd program and cause any changes you’ve made to the

/etc/inetd.conf file to become active.

A PAM configuration for the sshd daemon must also be created before OpenSSH will be

able to use password authentication. The easiest way to do this is to use the generic PAM

configuration file located in the contrib directory in the OpenSSH source tree. Simply

copy the file to the /etc/pam.d directory:

cd openssh-2.3.0p1/contrib
cp sshd.pam.generic /etc/pam.d/sshd
#

On systems with a single central PAM configuration file, simply edit the file and copy

and paste the configuration from the generic sample, taking care to insert the word

sshd at the beginning of each line.

Once these changes have been made, for most users little or no additional OpenSSH con-

figuration is required.

Additional Configuration
The sshd binary, located by default at /usr/local/sbin/sshd, is responsible for han-

dling incoming ssh2-encrypted connections. Though the default set of behaviors is usu-

ally adequate, there are a few additional security-oriented options that can be changed by

editing the /usr/local/etc/sshd_config file.

Encrypting Data Streams 251

16

The format of /usr/local/etc/sshd_config is familiar to most Linux and Unix users;

the file is composed of a number of keyword/value pairs, one pair per line. Empty lines

or lines beginning with the hash mark (#) are assumed to be comments and are ignored.

Some additional sshd options that may be helpful to you from a security standpoint are

shown in Table 16.3. The complete list of sshd configuration options is documented

exhaustively in sshd(8).

TABLE 16.3 Common Options for the sshd_config File

Option Description

AllowGroups Followed by a comma-separated list of patterns, this keyword gives

a list of groups that are allowed to use connections controlled by

OpenSSH. Patterns can contain * and ? as wildcard characters.

Users who don’t belong to a matching group will not be authenti-

cated. The default is to allow all groups.

DenyGroups Follows the same format as AllowGroups, but will instead deny

authentication to users who belong to a matched group.

AllowUsers Followed by a comma-separated list of patterns, this keyword gives

a list of individual users who are allowed to use connections con-

trolled by OpenSSH. Patterns can contain * and ? as wildcard char-

acters. Users who do not match an entry in the list will not be

authenticated. The default is to allow all users.

DenyUsers Follows the same format as AllowUsers, but will instead deny

authentication to users matching an entry in the list.

MaxStartups Followed by a number indicating the maximum number of as-of-yet

unauthenticated incoming connections that sshd will allow at any

one time. Setting this option can prevent denial-of-service attacks on

a backgrounded sshd daemon caused by opening large numbers of

simultaneous OpenSSH connections. The default value is 10; set to

zero for no limit.

PermitEmptyPasswords Specifies whether authentication will be provided for accounts with

an empty password string. Should be set to no for any secured system.

PermitRootLogin Specifies whether users claiming to be root will be authenticated.

Should be set to no for any secured system.

RequireReverseMapping Specifies whether a connecting system’s IP number must match its

DNS entry. Should normally be set to yes for any secured system.

X11Forwarding Should be set to yes to allow OpenSSH to tunnel the X11R6 data

stream.

The ssh client binary is located by default at /usr/local/bin/ssh and is responsible for

initiating outbound ssh2-encrypted connections. Though the default set of behaviors is

252 Hour 16

usually adequate, there are a few additional security-oriented options that can be changed

by editing the /usr/local/etc/ssh_config file.

The format of /usr/local/etc/ssh_config is virtually identical in many ways to the

format of the /usr/local/etc/sshd_config file; the file is composed of a number of

keyword/value pairs, one pair per line. Empty lines or lines beginning with the hash mark

(#) are assumed to be comments and are ignored.

Some additional ssh options that may be helpful to you are shown in Table 16.4. The

complete list of ssh configuration options is documented exhaustively in ssh(1).

TABLE 16.4 Common Options for the ssh_config File

Option Description

Compression When set to yes, causes the encrypted data stream to be compressed on-the-

fly. This option is most useful for low-bandwidth connections, but can also

slow down machines with very slow CPUs.

CompressionLevel Allows the user to control the compression ratio used by ssh when com-

pression is enabled. Set to a digit from 1 (fastest) to 9 (slowest, but with

highest compression).

EscapeChar Supplies the character that can be used to interrupt the interactive OpenSSH

sessions. The word none disables the escape character. Control key combi-

nations can be given by prefixing an alphanumeric character with the caret

(^) character. The default is the tilde (~) character.

ForwardX11 Should be set to yes to allow OpenSSH to handle X11R6 forwarding,

magic cookies, and the DISPLAY environment variable automatically.

User Specifies the default username to supply when connecting to remote SSH

servers. Optional; this can be useful if your username on the local machine

is different from your username on the remote machine.

Once you have installed OpenSSH on at least two machines and are satisfied with any

changes that you’ve made to your SSH configurations, it’s time to put OpenSSH to work.

Using OpenSSH for Remote Logins
The process of logging on to a remote system using OpenSSH is almost identical to the

process of logging on to a remote system using SSH, covered earlier.

To connect to an OpenSSH-enabled server from an OpenSSH-enabled client machine for

remote login, simply call the ssh client binary and supply the remote machine’s host-

name as an argument:

ssh newton

Encrypting Data Streams 253

16

As was the case with SSH, when OpenSSH establishes a connection with the remote sys-

tem, an exchange of host keys takes place. The OpenSSH client checks to see if a key

entry for the remote system is already present in the $HOME/.ssh directory. If so, the

OpenSSH client compares the key on record for the remote system to the key just sent by

the remote system. If they match, authentication proceeds.

The first time you connect to a specific remote system using OpenSSH, there will be no

identification information on file for it. OpenSSH will therefore ask you whether or not

this system’s key should be added to the list of known identifications. A transcript of the

first-time connect process is shown in Listing 16.2.

LISTING 16.2 Connecting for the First Time

$ ssh newton
The authenticity of host ‘newton’ can’t be established.
DSA key fingerprint is cf:af:f4:81:be:32:d0:78:a2:7b:9e:18:34:03:43:88.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ‘newton,192.168.1.137’ (DSA)
to the list of known hosts.
joe@newton’s password:
$

From now on, whenever joe connects to newton with OpenSSH, the key supplied by

newton will be compared to the key on file for newton. If the two don’t match, OpenSSH

will notify joe of the discrepancy, and joe will be able to take whatever steps he deems

necessary.

After the key has been added, joe is prompted for his password. Once again, because

this is an OpenSSH connection, joe’s password will be encrypted as it is sent across the

network, rather than being sent in clear text.

RhostsRSA Authentication
Like SSH, OpenSSH also provides the capability to authenticate connecting systems

based on their public host keys. The mechanism for allowing this type of authentication

is slightly different in OpenSSH, however, and is known as RhostsRSA authentication.

As was the case with host-based authentication, RhostsRSA authentication should be

used only for generally trusted machines.

In order to enable RhostsRSA authentication, you must have write access to the

/usr/local/etc/ssh_known_hosts file on the destination system. To enable a specific

client to log in to the server using host-based authentication, you’ll need to add a line of

the following format to the ssh_known_hosts file:

hostname bits exponent modulus comment

254 Hour 16

As luck would have it, this format matches very closely the format of the /usr/local/

etc/ssh_host_key.pub file. To add the local client’s public host key to the remote

machine’s ssh_known_hosts file is therefore a simple matter. Simply enter the name of the

client host and then paste the entire contents of the client host’s ssh_host_key.pub file into

ssh_known_hosts on the same line.

Afterward, be sure to add the client host to either the $HOME/.shots or /etc/shosts.equiv

file on the server machine so that this type of authentication will be permitted for the client

host in question.

User-Based Public Key Authentication
As was the case with SSH, in order to use public key authentication with OpenSSH, you

must generate a personal set of keys and transfer the public key to the remote system. To

generate your own key, simply run the ssh-keygen utility:

ssh-keygen

This program will ask you for an optional passphrase of your choosing and will generate

two keys: a public key and a private key for your own personal use, which will be stored

in $HOME/.ssh/identity.pub and $HOME/.ssh/identity, respectively.

The exchange of keys when using OpenSSH is much simpler than the exchange of keys

when using public key authentication with SSH. All that is required is that the key in

identity.pub be appended to the $HOME/.ssh/authorized_keys file on the remote sys-

tem. This can be accomplished easily, given a server host known as remote:

$ cd .ssh
$ cat identity.pub | ssh remote cat ‘>’ .ssh/authorized_keys
user@remote’s password:
$

Once you enter your password and the data is exchanged, your next call to ssh should

proceed either without a password request or after asking for your public key passcode,

if you chose to supply one when generating your set of keys.

Tunneling TCP Streams Through OpenSSH
Like SSH, OpenSSH also includes a facility for tunneling many common network proto-

cols through an encrypted channel by forwarding a port on the local machine. The syntax

for forwarding a port in order to encrypt various kinds of network data using OpenSSH is

ssh -L localport:host:port host

In general, host refers to the destination system to which you want clients to be able to

connect, port represents the normal port for the TCP stream you want to tunnel, and

localport represents the new port you want SSH to listen to on the local machine. For

Encrypting Data Streams 255

16

example, to tunnel the POP3 mail service through an encrypted channel at port 8100 to a

remote machine known as pokey, you might use

ssh -L 8100:pokey:110 pokey

There is no explicit way to force OpenSSH simply to forward a port in the background

as there was with SSH, but a similar effect can be achieved, since OpenSSH won’t close

a connection until all users of the port have exited. Assuming that the user had already

configured fetchmail to contact port 8100 on localhost for his mail, the following com-

mand would be suitable for a script that checks mail regularly:

ssh -L 8100:pokey:110 pokey sleep 1; fetchmail

The call to ssh forwards the port for one second, during which fetchmail starts and con-

nects to the port. OpenSSH will then leave the port open until fetchmail terminates.

Improving X Security with OpenSSH
Like SSH, OpenSSH includes extra functionality to streamline encrypted tunneling of the

X11R6 protocol. To use this functionality, you must first enable it in the /usr/local/

etc/sshd_config file on the X client (ssh server) machine, since OpenSSH disables this

functionality by default.

To enable the X-related features, be sure that the following line appears in the sshd_

config file:

X11Forwarding Yes

Once you’ve added this line, launching X applications with OpenSSH is just as easy as it

was with SSH:

ssh remote-host /usr/X11R6/bin/xterm &
ssh remote-host /usr/X11R6/bin/xclock &
ssh remote-host /usr/local/bin/netscape &

As was the case with SSH, OpenSSH has taken care of all of the details for you; when

OpenSSH determines that an X application is to be run, it automatically exchanges the

magic cookie from your XDMCP session and sets the DISPLAY environment variable in

the remote environment correctly.

Summary
In this hour, you learned to install, configure, and use your network encryption tool of

choice: Secure Shell (SSH), for those who can afford or who prefer a commercial

license, and the SSH version 2 protocol or OpenSSH, an open source implementation of

the SSH protocol.

256 Hour 16

You learned how to use either one of these tools for a number of purposes:

• As a general-purpose replacement for rsh, rlogin, Telnet, and other aging protocols

that don’t protect any of the data they send across the network, including things

like passwords and other account-oriented information.

• As a multipurpose network stream encryption tool, using port forwarding from the

local machine to a remote destination.

• As a more secure and more convenient method for handling the X11R6 magic

cookie authentication exchange.

• As a more secure and more convenient method for handling X11R6 data streams

representing multiple X clients.

Though SSH may seem daunting at first, once mastered it quickly becomes as convenient

and easy to use as familiar commands like rsh. The convenience of some functions (such

as those used by network-oriented X) is greatly enhanced through the use of SSH.

Q&A
Q Why didn’t you discuss the SSH version 2 protocol support in OpenSSH?

A Because it isn’t really done yet as this text is being written. Specifically, host-based

authentication isn’t yet supported at all (RhostsRSA is not a part of SSH-2) and

there have been some compatibility problems between the official SSH 2.x compo-

nents and the OpenSSH components when running in SSH-2 mode.

At this point, there is no substantial loss to most small business or small network

users forced to use SSH-1 instead of SSH-2; the original SSH protocol remains a

mainstay of the networked world and provides most of the functionality of the

SSH-2 protocol.

Q Aren’t there import or export restrictions on OpenSSH or SSH? Won’t I get

into trouble if I use them?

A No. The commercial SSH has never been subject to U.S. export restrictions

because it is not developed in the U.S. but in Europe. There has never been an

import restriction on cryptographic tools. The main issue for a number of years

with SSH was the fact that the RSA encryption algorithm was patented by a U.S.

company, and thus, free distribution of SSH was in violation of that patent.

However, the patent expired in 2000, and there are no known legal entanglements

for using either SSH or OpenSSH in the U.S. at this time.

Q I have installed SSH on an older computer system, and each time a connection

attempt is made, it seems to take forever for sshd (or sshd2) to respond.

What’s going on?

Encrypting Data Streams 257

16

A This is because the daemon launch and key generation are using most of your lim-

ited resources each time a connection is opened. The solution in cases of old or

very slow hardware is to start sshd or sshd2 once from an init script of your choice

or construction as the machine boots, rather than to have it started by inetd each

time a new connection is requested.

New Terms
keys (public and private) A special kind of code used for encryption. Each authenti-

catable entity in the SSH world has two keys: a public key and a private key. Both keys

yield the same encryption result, but the keys are different and one key cannot be derived

from another. The public key is known by everyone and shared upon request. The private

key is secret and is never shared. Authentication takes place when data encoded by a sec-

ond party using the public key is correctly decoded by the original party with the secret

private key, thereby proving the identity of a user or host on the network.

OpenSSH An open source implementation of the secure shell protocol based on early

releases of the “official” SSH software, which were also open source.

Secure Shell (SSH) A kind of Swiss Army Knife replacement for the original

rsh command. The chief benefits of SSH (indeed, the reasons for its name) are its capa-

bility to perform much more secure types of authentication than rsh ever could and its

capability to encrypt network data streams, making them harder to intercept and use

maliciously.

tunneling A way of describing what occurs when SSH forwards a local port to a

remote destination or vice versa and encrypts the packets while they are in transit for

increased security.

258 Hour 16

HOUR 17
Introduction to Kerberos

This hour, you’re going to learn how to use an open source implementation

of the Kerberos authentication system to secure authentication and encrypt

connections made on your local network. More specifically, you’re going to

install and configure a key distribution center (KDC) and add principal hosts

and users to its database.

The home page for the Kerberos 5 implementation we’re going to cover here

can be found at http://web.mit.edu/kerberos/www.

Because Kerberos is still export restricted, this hour applies to

users inside the U.S. and Canada only. An exportable alterna-

tive to Kerberos version 4 known as eBones is available to

users outside of the U.S. and Canada. One set of eBones

sources can be found at http://www.pdc.kth.se/kth-krb/.

What Is Kerberos?
First and foremost, Kerberos is a more secure authentication system than the

one normally employed by most network-aware operating systems. It is

needed because of a fundamental shortcoming in the way standard authentication takes

place.

Put simply, standard protocols like Telnet are very trusting. When Telnet accepts an

incoming connection, it asks only for a password before granting access. It assumes that

the remote user really is who he claims to be, rather than a stranger using a stolen pass-

word. It furthermore assumes that the remote system is who it claims to be, rather than a

rogue system hiding behind a stolen address. Similarly, the telneting user has no way of

knowing if he is telneting into the actual system he intended to reach, or if the address has

been hijacked by a rogue system, ready to steal his password or do something even worse.

Kerberos tries to solve this identity problem in a simple way: One system on the local

area network becomes the key distribution center (KDC), a kind of master database of cre-

dentials. When a user employs a Kerberos-enabled protocol to connect from one system to

another, all parties involved—the user and both hosts—request that the KDC check out

everyone’s credentials. The KDC then gathers identification information in the form of

encryption keys from the user and from both hosts. If these keys are correct according to

the database of users and hosts on file at the KDC, the KDC then informs each party that

the others are really who they claim to be, and the connection is established.

Though this method is relatively complex and is by no means foolproof, it is among the

most secure methods for authentication currently in widespread use.

Building a Key Distribution Center
The key distribution center, or KDC, is the machine on which the central database of

credentials is stored. Once Kerberos authentication is made active on your network, any

Kerberos-enabled connection will have to go through your KDC in order to be opened. It

is therefore important that this machine be as secure and as stable as possible, because if

the KDC goes down, the entire network can grind to a screeching halt.

It is a good idea to dedicate an entire system to the KDC role. All other services and

ports on the KDC machine will be disabled, and no logins or other types of activity will

be performed on the KDC machine, either locally or remotely. Because a KDC on

smaller networks won’t handle huge amounts of traffic or streaming data, even an older,

smaller computer system can suffice as long as it has a network interface and a reason-

able amount of free disk storage.

Perform a minimal Linux installation on the KDC machine. Neither XFree86 nor any

user application is required for operation as a KDC.

260 Hour 17

Downloading and Installing Kerberos 5
The Kerberos 5 download page can be found at http://web.mit.edu/network/

kerberos-form.html. You’ll need to read each question and answer truthfully to satisfy

the export restriction conditions. Once you have filled out and submitted the form, you’ll

be able to download Kerberos 5 in various forms. For Linux, download the source code

to the latest version (1.2.1 as this is being written) and save it to your hard drive.

The source is packaged as a tarball containing several tarballs. To extract the distribution

tarball, which is uncompressed, use tar -xvf:

$ tar -xvf krb5-1.2.1.tar
krb5-1.2.1.crypto.tar.gz
krb5-1.2.1.crypto.tar.gz.asc
krb5-1.2.1.doc.tar.gz
krb5-1.2.1.doc.tar.gz.asc
krb5-1.2.1.src.tar.gz
krb5-1.2.1.src.tar.gz.asc
$

Now, extract the additional tarballs created when the distribution tarball was extracted.

They all overlay into the krb5-1.2.1 source directory. Afterward, visit the directory con-

taining the source.

$ tar -xzf krb5-1.2.1.src.tar.gz
$ tar -xzf krb5-1.2.1.crypto.tar.gz
$ tar -xzf krb5-1.2.1.doc.tar.gz
$ cd krb5-1.2.1/src
$

Building the source is a straightforward process on most Linux systems. The Kerberos 5

sources use the GNU autoconf utilities, so configuration is generally as easy as running

the configure script. However, most Linux users will want to include the --enable-

shared option to build shared libraries instead of static ones, and in this hour, we’re also

going to assume that you’ve used the --prefix=/usr/local/kerberos option in order to

isolate the Kerberos installation and make things more clear.

$./configure --enable-shared --prefix=/usr/local/kerberos
...[output of configure script]...

$

Once configure has run successfully, building is simple. Just run a make followed by a

make install as root. The actual build time will vary, but you should expect it to be

similar to that required to build a Linux kernel.

$ make
...[output of make]...

$ su
Password:
make install

Introduction to Kerberos 261

17

...[output of make install]...

exit
$

Once you have followed these steps, you have a complete installation of the Kerberos

binaries in the /usr/local/kerberos tree. It’s time to proceed to configuration.

Configuring Kerberos 5
Kerberos uses a few ports for key distribution and administration, among other things, so

the first order of business is to add a few lines to the end of the /etc/services file.

Rather than entering them by hand, it is easiest to use the services.append file, located

in the src/config-files directory of the Kerberos source tree:

cat config-files/services.append >>/etc/services

Some Linux distributions include existing entries in /etc/services for Kerberos, but

these are often incorrect or are for Kerberos 4, so be sure to remove any existing entries

that match either port or protocol name before adding these new entries.

Next, you need to create a few extra directories in the /usr/local/kerberos hierarchy

that are necessary for Kerberos configuration:

cd /usr/local/kerberos
mkdir etc var var/krb5kdc
#

In the newly created /usr/local/kerberos/etc directory, you’re going to create two con-

figuration files: krb5.conf and kdc.conf. You’ll need to know the name of your domain and

the realm name you plan to use. For example, if your current host is kdc.mynet.net, then

your domain is mynet.net, and your realm, by convention, is MYNET.NET (case-sensitive).

Two sample configuration files are shown in Listings 17.1 and 17.2.

LISTING 17.1 Sample /usr/local/kerberos/etc/krb5.conf

These are some defaults. Change the default_realm to
match your own realm (your domain in uppercase). See
krb5.conf(5) in /usr/local/kerberos/man for more
details on this file’s format.

[libdefaults]
ticket_lifetime = 600
default_realm = MYNET.NET
default_tkt_enctypes = des3-hmac-sha1 des-cbc-crc
default_tgs_enctypes = des3-hmac-sha1 des-cbc-crc

Use the IP address of your KDC machine here. Do not change
the ports (88,749) because they are standard for Keberos.
default_domain should be set to your domain.

262 Hour 17

[realms]
MYNET.NET = {

kdc = kdc.mynet.net:88
admin_server = kdc.mynet.net:749
default_domain = mynet.net

}

These equivalencies just help Kerberos to figure out which
hosts belong to which domain. Adjust for your situation.

[domain_realm]
.mynet.net = MYNET.NET
mynet.net = MYNET.NET

These are the paths to log data. They are placed in
/var/log in this case so that all system logs are in the
same place.

[logging]
kdc = FILE:/var/log/kdc.log
admin_server = FILE:/var/log/kadmin.log
default = FILE:/var/log/kerberos.log

LISTING 17.2 Sample /usr/local/kerberos/etc/kdc.conf

Only two changes should really be necessary in this file: change
both instances of MYNET.NET to match your realm. This file is
documented at kdc.conf(5) in /usr/local/kerberos/man.

[kdcdefaults]
kdc_ports = 88, 750

It is important not to change any of the paths below if you installed
in /usr/local/kerberos; the Kerberos code has some interesting bugs
with these options. Specifically, some parts of the paths are hard-
coded, so these paths must match the hard-coded segments.

[realms]
MYNET.NET = {

database_name = /usr/local/kerberos/var/krb5kdc/principal
admin_keytab = /usr/local/kerberos/var/krb5kdc/kadm5.keytab
acl_file = /usr/local/kerberos/var/krb5kdc/kadm5.acl
dict_file = /usr/local/kerberos/var/krb5kdc/kadm5.dict
key_stash_file = /usr/local/kerberos/var/krb5kdc/.k5.MYNET.NET
kadmind_port = 749
max_life = 12h 0m 0s
max_renewable_life = 7d 0h 0m 0s
master_key_type = des3-hmac-sha1
supported_enctypes = des3-hmac-sha1:normal des-cbc-crc:normal

}

Introduction to Kerberos 263

17

LISTING 17.1 continued

Before we proceed, you may want to add the /usr/local/kerberos/bin and

/usr/local/kerberos/sbin directories to your PATH environment variable. You should

probably also do this on a permanent basis by editing /etc/profile or a similar shell

configuration script.

PATH=/usr/local/kerberos/bin:$PATH
PATH=/usr/local/kerberos/sbin:$PATH
echo “PATH=/usr/local/kerberos/bin:$PATH” >>/etc/profile
echo “PATH=/usr/local/kerberos/sbin:$PATH” >>/etc/profile
#

Now it’s time to initialize the database. This is done with the kdb5_util program located

in /usr/local/kerberos/sbin. Using the create command with kdb5_util initializes

the database so that we can run the KDC server later. The -r option should be followed

by your realm name as an argument. You’ll be asked for a password; this is the master

password for your KDC database and will rarely be used in the course of normal opera-

tion. Choose a very difficult password for maximum security.

kdb5_util create -r MYNET.NET -s
Initializing database
‘/usr/local/kerberos/var/krb5kdc/principal’
for realm ‘MYNET.NET’, master key name ‘K/M@MYNET.NET’
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.
Enter KDC database master key:
Re-enter KDC database master key to verify:
#

You are now ready to launch the KDC server, krb5kdc, located in /usr/local/

kerberos/sbin. This program will automatically background itself once it has success-

fully started.

krb5kdc
#

Now the server needs to be tested to see if it is distributing keys properly. Before this can

occur, a test principal must be added. A principal can be a user, a host, an administrator,

or anything the KDC may someday be asked to identify. Normally, principals are added

with the kadmin utility, which will be discussed later in this hour, but since no adminis-

trator principals have been created yet, something else must be done instead to allow

principals to be added. The kadmin.local program is a modified version of kadmin that

will run only on the KDC itself and thus doesn’t need any existing principals to run.

Inside kadmin.local, use the add_principal command to create a user called testuser

and give testuser a password. Then, exit from kadmin.local.

kadmin.local
kadmin.local: add_principal testuser
Enter password for principal “testuser@MYNET.NET”:
Re-enter password for principal “testuser@MYNET.NET”:

264 Hour 17

Principal “testuser@MYNET.NET” created.
kadmin.local: exit
#

Now a user principal called testuser has been created. To test the KDC server, use the

kinit utility, which we’ll discuss in more detail later in this hour, to get a ticket for

testuser. Then, use klist to display the ticket information.

kinit testuser
Password for testuser@MYNET.NET:
klist testuser
Ticket cache: FILE:/tmp/krb5cc_0
Default principal: testuser@MYNET.NET

Valid starting Expires Service principal
01/08/01 12:25:01 01/08/01 22:24:56 krbtgt/MYNET.NET@MYNET.NET

Kerberos 4 ticket cache: /tmp/tkt0
klist: You have no tickets cached
kdestroy
#

The output of klist shows that one Kerberos 5 ticket has now been cached, for the user

known to Kerberos as testuser@MYNET.NET. This demonstrates that the KDC server is

running and that the krb5.conf and kdc.conf files are correct. Notice that kdestroy was

run afterward. This erases the ticket just granted to testuser with kinit.

The second part of a standard KDC host is the administrative server, which must be run-

ning for Kerberos administration to be possible from hosts other than the KDC itself. To

get the administrative server kadmind running, you’ll need to add a couple of entries to a

special file called kadm5.acl, located in /usr/local/kerberos/var/krb5kdc by our

configuration files. To do this, start kadmin.local once again and use the ktadd com-

mand to add keys for kadmin/admin and kadmin/changepw.

kadmin.local
kadmin.local: ktadd -k /usr/local/kerberos/var/krb5kdc/kadm5.keytab
➥kadmin/admin kadmin/changepw
...[Output from ktadd command]...

kadmin.local: exit
#

You should now be able to start the kadmind server, which will also background itself

immediately, just as krb5kdc did.

kadmind
#

If both krb5kdc and kadmind were launched successfully, your KDC machine is virtually

ready to use. The only task remaining is to start krb5kdc and kadmind from your init

scripts somewhere. The easiest place to do this may be the /etc/rc.d/rc.local file. A

few lines like these should suffice:

Introduction to Kerberos 265

17

Start the Kerberos services

PATH=$PATH:/usr/local/kerberos/bin:/usr/local/kerberos/sbin
krb5kdc
kadmind

With these changes made, your KDC host will automatically start Kerberos services each

time it starts.

266 Hour 17

If possible, you should make every attempt to create a kerberos script for your

/etc/rc.d/init.d directory instead of starting Kerberos from rc.local. Use

your existing scripts as a template. This will give you more control over the run-

levels at which Kerberos will be started and how it will be started and stopped.

Administrating Kerberos 5
Now that your KDC is running, most of the battle is won. Most of the information you

still need is related to various tasks you’ll encounter while administrating Kerberos ser-

vices on your network.

Adding Administrator Principals
Though you have a working KDC, you have no administrators at the moment, making

your KDC almost useless, since administrator access is required to add hosts. To add an

administrator, first start kadmin.local (or kadmin once you have at least one administra-

tor account to work from) and use the add_principal command to add the user principal

who will be given administrator access:

kadmin.local
kadmin.local: add_principal jake
Enter password for principal “jake@MYNET.NET”:
Re-enter password for principal “jake@MYNET.NET”:
Principal “jake@MYNET.NET” created.
kadmin.local:

Now there is a principal for the user jake. However, we also want to give jake adminis-

trator access, so we create a second principal with the /admin suffix. Generally, it is easi-

est for jake if the same password is used for both accounts, though this isn’t required.

kadmin.local: add_principal jake/admin
Enter password for principal “jake/admin@MYNET.NET”:
Re-enter password for principal “jake/admin@MYNET.NET”:
Principal “jake/admin@MYNET.NET” created.
kadmin.local: exit
#

Now jake is classified as an administrator and will be able to start the kadmin program.

However, the administrator called jake still has no privileges once inside kadmin. The

set of privileges given to each administrator is controlled with an access control list file

called kadm5.acl located in /usr/local/kerberos/var/krb5kdc. Each line in the file

contains the fully qualified Kerberos name of an administrator and the permissions he is

to have. These permissions are shown in Table 17.1.

TABLE 17.1 Kerberos Administrator ACL Permissions

Permission Description

a Allowed to add principals or policies.

d Allowed to delete principals or policies.

m Allowed to modify principals or policies.

c Allowed to change passwords for principals.

i Allowed to run database inquiries.

l Allowed to list principals in the database.

* or x Short for admcil (all permissions).

To give full permissions to jake, add the following line to /usr/local/kerberos/var/

krb5kdc/kadm5.acl:

jake/admin@MYNET.NET admcil

The same effect could also have been achieved by adding this:

jake/admin@MYNET.NET *

Introduction to Kerberos 267

17

The default set of ACL permissions for an administrator is no permissions at

all. Therefore, if you don’t add an entry to the ACL file for a newly created

administrator, that administrator will be able to start kadmin but won’t be

able to do anything once inside.

After editing the ACL file, you’ll have to restart kadmind for changes to take effect.

Unfortunately, the -HUP signal doesn’t have the expected effect on kadmind, so the only

option is to kill it and restart it:

killall kadmind; kadmind
#

The user jake should now be able to use kadmind from any host in the realm, provided

he has a valid Kerberos ticket.

Adding and Configuring Host Principals
Before any host on your network can fully participate in services that have been

Kerberos enabled, the host must be added to the KDC database and properly configured

to use the new set of services.

First, download and install Kerberos, following the same instructions that you used for the

KDC but stopping after the make install step. Once the Kerberos tree has been installed

in /usr/local/kerberos with make install, create the /usr/local/kerberos/etc direc-

tory and copy the krb5.conf and kdc.conf files from your KDC host’s /usr/local/

kerberos/etc directory. Add the /usr/local/kerberos/bin and /usr/local/kerberos/

sbin directories to your PATH variable.

Now, become the superuser on the new host and use the kinit command to get a ticket

for an administrator account. For example, remembering that we already created an

administrator account for jake, enter the command kinit jake on the new host and

enter the password for jake.

newhost$ su
Password:
newhost# kinit jake
Password for jake@MYNET.NET:
newhost#

After a ticket has been acquired, launch the kadmin utility and use the

add_principal command to add a principal for the current host, in the form

host/f.q.d.n, where f.q.d.n is replaced with the fully qualified domain name of the

host you’re adding. Be sure to choose an unguessable password for each host you add.

newhost# kadmin
Authenticating as principal jake/admin@MYNET.NET with password:
Enter password:
kadmin: add_principal host/gfxstation.mynet.net
Enter password for principal “host/gfxstation.mynet.net@MYNET.NET”:
Re-enter password for principal “host/gfxstation.mynet.net@MYNET.NET”:
Principal “host/gfxstation.mynet.net@MYNET.NET” created.
kadmin:

The final step inside kadmin is to add a keytab file entry for the current host. This is

done with the ktadd command:

kadmin: ktadd host/gfxstation.mynet.net
...[Output of ktadd operation]...

kadmin: exit
newhost#

The current host has now been added to the KDC host’s database of known hosts in the

realm, and a keytab file on the new host has been created at /etc/krb5.keytab.

268 Hour 17

Though the KDC database information is all in place, all of the original (non-Kerberized)

services are still active on the new host. In order to make the host secure, the host must

stop honoring requests from the old (insecure) protocols. They must instead be replaced

with new, Kerberos-only versions.

Again add the extra protocol information to /etc/services, taking care to eliminate

entries with duplicate port numbers or duplicate service names:

newhost# cd $HOME/krb5-1.2.1/src/config-files
newhost# cat services.append >>/etc/services
newhost#

The /etc/inetd.conf file must now be edited. Add the lines in Listing 17.3 to the file,

and comment out any lines already in the file with matching service names.

LISTING 17.3 Additions/Changes for /etc/inetd.conf

klogin stream tcp nowait root /usr/sbin/tcpd /usr/local/kerberos/sbin/klogind
➥ -ki
eklogin stream tcp nowait root /usr/sbin/tcpd /usr/local/kerberos/sbin/klogind
➥ -eki
kshell stream tcp nowait root /usr/sbin/tcpd /usr/local/kerberos/sbin/kshd -ki
telnet stream tcp nowait root /usr/sbin/tcpd /usr/local/kerberos/sbin/telnetd
➥ -a user
ftp stream tcp nowait root /usr/sbin/tcpd /usr/local/kerberos/sbin/ftpd -a

Be sure to at least comment out the standard login, shell, telnet, and ftp services in

your /etc/inetd.conf file, since they are being replaced with these new, Kerberos-only

services.

Once you’ve made all of the desired changes to /etc/inetd.conf, restart your Internet

daemon so that the new changes take effect:

newhost# killall -HUP inetd
newhost# exit
newhost$

The new host is now Kerberized and active to the KDC, and it is known to other

Kerberos-enabled hosts in your realm. Users who cannot be authenticated with Kerberos

will no longer be allowed to use protocols like rlogin, ftp, or telnet; other Kerberos-

compatible software you install on this host will be able to take advantage of its realm

membership for Kerberos authentication.

Adding User Principals
The user principal, which roughly corresponds to the concept of an “account” on a tradi-

tional Unix-like system, is the easiest type of principal to add. Any ticketed administrator

Introduction to Kerberos 269

17

with the capability to add can do so simply by starting kadmin and using the add_principal

command.

$ kinit jake
Password for jake@MYNET.NET:
$ kadmin
Authenticating as principal jake/admin@MYNET.NET with password.
Enter password:
kadmin: add_principal lucy
Enter password for principal “lucy@MYNET.NET”:
Re-enter password for principal “lucy@MYNET.NET”:
Principal “lucy@MYNET.NET” created.
kadmin: exit
$

The administrator jake has now created a user called lucy. This can be done from any

host in the realm on which jake has access to execute the kadmin utility.

More on Kadmin
So far, we haven’t discussed the kadmin utility in great detail. This is because it’s really

a very simple utility. There are three operations you should concern yourself with in a

small Kerberos realm when starting out.

The first is the add_principal command with which you are already familiar. The

add_principal command is used to add new principals (administrators, hosts, or users)

to the KDC’s authentication database.

The next is the delete_principal command, which works largely the same way, but has

the opposite effect. It deletes whichever principal you supply from the KDC’s database,

meaning that the principal in question will no longer be authenticatable.

The third is the list_principals command, which does just that. It displays all princi-

pals in the KDC database, one per line. Wildcards can also be used; for example, to list

all of the hosts in the realm that are known to the KDC, supply a pattern like

host/*@MYNET.NET as an argument.

A few other operations are also supported, such as password changes and more complex

per-user control using a technique called a policy. These are actually quite simple to use

and are documented fully in kadmin(8), located in /usr/local/kerberos/man/man8.

Using Kerberos 5
After you have a KDC up and running in your local area network and at least two hosts

are “registered” with the KDC and prepared for Kerberos-enabled operation, it’s time to

learn how to use Kerberos for authentication. Using Kerberos in a non-administrative

capacity is quite simple, and most users adjust to it almost immediately.

270 Hour 17

Getting a Ticket
A “ticket” in Kerberos is just what it sounds like—a small piece of identification, sup-

plied by the KDC, that will essentially “admit” you to a Kerberos-enabled service or

host. To obtain a ticket, you must have a principal account in the KDC’s database; you

then use the kinit command to request a ticket from the KDC.

For example, recall that a few moments ago, jake (an administrator) was kind enough to

add a principal user account for lucy to the KDC’s database. lucy can now get her ticket

like this:

lucy@somehost.mynet.net$ kinit lucy
Password for lucy@MYNET.NET:
lucy@somehost.mynet.net$

After her password has been entered, lucy’s ticket has been obtained. To list the tickets

lucy has in her ticket cache, she uses the klist command:

lucy@somehost.mynet.net$ klist
Ticket cache: FILE:/tmp/krb5cc_100
Default principal: lucy@MYNET.NET

Valid starting Expires Service principal
01/11/01 14:22:25 01/11/01 00:22:20 krbtgt/MYNET.NET@MYNET.NET

Kerberos 4 ticket cache: /tmp/tkt100
klist: You have no tickets cached
lucy@somehost.mynet.net$

lucy is now ready to connect to another Kerberos-enabled host using any “Kerberized”

protocol. For example, ftp:

lucy@somehost.mynet.net$ ftp anotherhost
Connected to anotherhost.mynet.net.
220 anotherhost.mynet.net FTP server (Version 5.60) ready.
334 Using authentication type GSSAPI; ADAT must follow
GSSAPI accepted as authentication type
GSSAPI authentication succeeded
Name (anotherhost:lucy):
232 GSSAPI user lucy@MYNET.NET is authorized as lucy
Remote system type is UNIX
Using binary mode to transfer files.
ftp>

Introduction to Kerberos 271

17

Because Kerberos is a time-sensitive system, it is important that clocks on the

KDC and various client and server machines on your network all be perfectly

synchronized. The easiest way to do this is via the network time protocol

(NTP) used by many Linux distributions.

The same ticket is valid for all Kerberos-enabled services. A new ticket is not needed for

each connection (the same one will do), though a ticket will need to be “refreshed” every

few hours because it will expire for security reasons.

272 Hour 17

The new Kerberos-enabled protocols require new Kerberos-enabled clients.

New ftp, telnet, rlogin, rsh, and other clients are found in the /usr/

local/kerberos/bin directory, and these should be used instead of the origi-

nals (which will no longer work with the Kerberos-enabled hosts).

You may want to disable the original binaries for ftp, telnet, and so forth

by doing a chmod a-x to them. Failure to do this can result in extreme user

confusion!

Note also that the new binaries in the Kerberos installation are backward-

compatible with non-Kerberized systems, so the telnet in /usr/local/

kerberos/bin will work with systems both inside and outside your network,

while the original one in /usr/bin will now work only with hosts outside

your network.

There is a minor bug in the telnet client included with Kerberos 5 that causes

it to fail on some Linux systems unless either the -l or -x option is supplied.

The -l argument simply specifies the user’s account on the remote system:

telnet anotherhost -l lucy

The -x option enables data stream encryption and is described in the

“Encrypting Data Streams” section, later in this hour.

Destroying a Ticket
Every Kerberos ticket will eventually expire, but if a ticket will no longer be used, it is a

good idea from a security perspective to destroy it so that there is no chance at all that

any malicious use can occur. Ticket destruction is performed with the kdestroy com-

mand, which will destroy all currently active tickets:

lucy@somehost.mynet.net$ kdestroy
lucy@somehost.mynet.net$ klist
klist: No credentials cache file found
lucy@somehost.mynet.net$

Tickets will also expire automatically when a user logs out completely, meaning that a

ticket will never be left over long after its user has gone.

Changing Your Password
Any principal can change his password using the kpasswd utility.

lucy@somehost.mynet.net$ kpasswd lucy
Password for lucy@MYNET.NET:
Enter new password:
Enter it again:
Password changed.
lucy@somehost.mynet.net$

Since Kerberos passwords are stored centrally on the KDC, any new password will be

effective on any host in the realm, not just on the host in which it was entered. It is also

important to understand that the Kerberos password has no relationship to the login pass-

word on any host.

Encrypting Data Streams
Most of the client replacements included with Keberos 5, including telnet, rlogin,

rsh, and ftp, include built-in encryption options that will make them even more secure.

To encrypt such a session completely, use the -x argument:

lucy@somehost.mynet.net$ rlogin -x anotherhost
This rlogin session is using DES encryption for all
data transmissions.
Last login: Fri Jan 12 14:46:53 from somehost
lucy@anotherhost.mynet.net$

Though the Kerberos documentation warns about slowdowns due to encryption, this

warning doesn’t really apply to modern PC hardware running Linux, on which the

encryption algorithm requires only a fraction of the CPU’s time.

Summary
In this hour, you learned to compile and install Kerberos 5 in order to configure a KDC

for your local realm. You also learned basic Kerberos administration tasks, such as

adding administrator, additional host, and user principals to your realm’s KDC database.

Finally, you learned the basics of working with Kerberos once it is installed, including

how to obtain and subsequently destroy a ticket, how to change a Kerberos password, and

how to encrypt the data streams of standard protocol clients included with Kerberos 5.

Q&A
Q I can’t get krb5kdc to start.

I can’t get kadmind to start.

Introduction to Kerberos 273

17

A Go back through the instructions and double-check everything to make sure you’ve

followed all the steps. Did you use kdb5_util create to create a database for your

realm? Did you remember to use the -s option to stash the key? Did you remember

to use ktadd to add kadmin/admin and kadmin/changepw to the kadm5.keytab file

before trying to start kadmind? As a last resort, start krb5kdc or kadmind with

strace; this should give you some indication of the reason for the failure.

Q I installed Kerberos on one or more hosts, and now telnet, ftp, rlogin, or

some other protocol is not working. What happened?

A You must be running the special Kerberos-enabled client binaries in order to con-

nect to systems requiring Kerberos authentication. Be sure that you’re calling the

protocol from the /usr/local/kerberos/bin directory and not the binaries from

/usr/bin instead.

Q Is there a way to make other protocols and services use Kerberos?

A Absolutely. Many Linux software packages support Kerberos, usually either with

configuration file changes or (at worst) a recompile supplying a Kerberos-oriented

option. For example, SSH version 2 (discussed in Hour 16, “Encrypting Data

Streams”) can be compiled for Kerberos authentication support with an option to

the configure command before compiling.

Unfortunately, there’s no standard way to turn on Kerberos support for every pro-

gram out there. Your best bet is to RTFM (Read The Friendly Manual) in each case

for information on Kerberos support.

Q Isn’t the single, central KDC a vulnerability?

A Yes. This is why it’s important that you secure your KDC as much as possible, run

no additional services on it at all, ensure that its hardware is in good condition, and

make frequent backups of the KDC’s hard drive.

There is also a provision for secondary KDC systems to act as backups when needed.

This functionality is discussed in more detail in the Kerberos documentation.

New Terms
eBones An alternative implementation of the Kerberos protocol for use outside the

U.S. to circumvent export restrictions placed on the MIT Kerberos code by the U.S. gov-

ernment.

Kerberized Enjoying the state of being Kerberos-enabled. A Kerberized system or ser-

vice is capable of handling Kerberos authentication.

key distribution center (KDC) The system responsible for maintaining information

about all primaries in a Kerberos realm and for handling authentication exchanges.

274 Hour 17

primary In a sense, another word for “account.” A primary is an entry in the KDC’s

database that refers to a user, an administrator, or a host in the realm. Each primary has a

password and, if so configured, additional policy information describing the primary’s

properties and privileges.

realm The area of influence of a Kerberos network or, more specifically, usually a sin-

gle KDC. Inside a Kerberos realm, one typically finds a number of users, administrators,

and hosts. By convention, a realm is the network’s domain, converted to ALL CAPS.

ticket A small unit of identification given to a primary that is then used, in conjunction

with the KDC, to authenticate that primary to other primaries in the realm.

Introduction to Kerberos 275

17

HOUR 18
Encrypting Web Data

This hour, you’ll learn how to compile and configure minimally an Apache

Web server that has been enhanced with the mod_ssl package, making it

capable of handling SSL (Secure Sockets Layer) communications for

increased security. You’ll also learn how to create a self-signed certificate for

use in such communications, so that you can immediately begin accepting

https:// connections with your Web browser.

Understand, however, that Web security is a large and complex field of

study, well beyond the scope of a book like this one in many respects. This

hour will not discuss the underlying mechanism of SSL or the process

involved in certifying your Web server with a well-known Certificate

Authority (CA) such as VeriSign or Xcert.

For a preliminary understanding of SSL and some of the many issues

involved, the mod_ssl user manual is an excellent place to begin. It can be

found at http://www.modssl.org/docs/2.7/.

Compiling and Installing Apache+mod_ssl
Unfortunately, the process of upgrading your Apache installation to support SSL means

recompiling and reinstalling the Apache binaries. Because of this, it’s simplest to start

over with Apache rather than trying to drop new components into old locations.

It is therefore recommended that before you begin, you back up your existing Apache

configuration and data files, if necessary, and then use your distribution’s package man-

ager to remove the apache or httpd series of packages. It is not necessary to remove

your actual Web documents tree; this can remain in place, and your new configuration

file can be updated to reflect its location.

278 Hour 18

With the lifting of export restrictions on SSL in recent months, some Linux

distributors have started shipping Apache+mod_ssl as a standard distribution

component.

Before following the steps in this chapter, you may want to check to see if

Apache+mod_ssl is a standard component of your Linux distribution already.

Downloading Apache, OpenSSL, and mod_ssl
To compile and install mod_ssl, you’ll actually need to download and compile three soft-

ware tarballs: one for Apache, one for OpenSSL, and one for mod_ssl.

The home page for OpenSSL can be found at http://www.openssl.org. The latest ver-

sion of the OpenSSL source code can be downloaded from http://www.openssl.org/

source/.

The home page for mod_ssl can be found at http://www.modssl.org; the latest version

of the mod_ssl source code can be downloaded from http://www.modssl.org/source/.

You’ll notice that each of the mod_ssl source tarballs has two version numbers, separated

by a dash. For example, consider the following names from the mod_ssl Web site:

mod_ssl-2.7.1-1.3.14.tar.gz
mod_ssl-2.6.6-1.3.12.tar.gz

mod_ssl-2.5.1-1.3.11.tar.gz
mod_ssl-2.4.10-1.3.9.tar.gz

In each of these names, the version number before the second dash (2.7.1, 2.6.6,

2.5.1, 2.4.10) represents the mod_ssl version number, while the version number after

the second dash (1.3.14, 1.3.12, 1.3.11, 1.3.9) represents the Apache version with

which this mod_ssl tarball is meant to work. Be sure to get the mod_ssl tarball matching

the version of Apache you plan to use, or vice versa.

The home page for the Apache Web server can be found at http://httpd.apache.org;

the latest version of the Apache Web server source code can be downloaded from

http://httpd.apache.org/dist/. For this project, download the 1.3 release of the

Apache Web server that matches your mod_ssl tarball, rather than a newer Apache 2.0

release. This is necessary because mod_ssl doesn’t yet support Apache 2.0 or later.

Extracting and Compiling OpenSSL
For this installation, it is necessary to begin by extracting and compiling OpenSSL. If

you already completed this installation during Hour 16, “Encrypting Data Streams,” and

you still have the source code directory available, you can skip this step.

Extract the source code and visit the newly created source directory:

$ tar -xzf openssl-0.9.6.tar.gz
$ cd openssl-0.9.6
$

Now configure, compile, and install OpenSSL:

$./config
...[output of config]...

$ make
...[output of make]...

$ su
Password:
make install
...[output of make install]...

exit
$

The default configuration of OpenSSL installs most of its files in the /usr/local tree,

with libraries going in /usr/local/ssl/lib.

Extracting, Configuring, and Compiling mod_ssl and
Apache
The next step in the process is the extraction and configuration of both the Apache and

the mod_ssl source code. After both have been extracted, visit the newly created mod_ssl

source directory tree.

$ tar -xzf mod_ssl-2.7.1-1.3.14.tar.gz
$ tar -xzf apache_1.3.14.tar.gz
$ cd mod_ssl-2.7.1-1.3.14
$

Use the configure script in the mod_ssl directory along with the --with-apache option

to tell mod_ssl where the Apache sources are located, relative to the mod_ssl source

directory tree.

Encrypting Web Data 279

18

$./configure --with-apache=../apache_1.3.14
Configuring mod_ssl/2.7.1 for Apache/1.3.14
+ Apache location: ../apache_1.3.14 (Version 1.3.14)
+ Auxiliary patch tool: ./etc/patch/patch (local)
+ Applying packages to Apache source tree:
o Extended API (EAPI)
o Distribution Documents
o SSL Module Source
o SSL Support
o SSL Configuration Additions
o SSL Module Documentation
o Addons

Done: source extension and patches successfully applied.
$

Now, visit the Apache directory and run the configure script there, setting the SSL_BASE

environment variable to point to the location of the OpenSSL sources and supplying the

--enable-module=ssl and --enabled-shared=ssl arguments. In this hour, we’re also

going to supply the --prefix=/usr/local/apache argument so that Apache is correctly

installed into its own directory tree.

$ cd ..
$ cd apache_1.3.14
$ SSL_BASE=../openssl-0.9.6 ./configure \
> --enable-module=ssl --enable-shared=ssl \
> --prefix=/usr/local/apache
...[Output of configure]...

$

If the configure script exits normally, indicating that all is well, build the modified

Apache sources.

$ make
...[Output of make]...

$

A complete build of Apache is fairly fast; you can expect a 486 machine to be done in

just a few minutes. A Pentium-class system or an even more modern system will be done

in less than a minute, even on a loaded system.

Making a Self-Signed Certificate
Before installing the Apache tree, you’ll want to configure Apache for your server’s cer-

tificate. In this hour, we’re simply going to build a self-signed certificate for general-

purpose use without having to work with a commercial Certificate Authority.

To do this, use the make certificate command, setting the variable TYPE to the value

custom. You’ll be asked a number of questions; answer to the best of your ability, using

the default answers whenever you’re unsure. Some of the output in Listing 18.1 has been

280 Hour 18

condensed, but you should still be able to follow along. Items in bold indicate your input

and should be changed to match your needs or information.

LISTING 18.1 Generating a Self-Signed Certificate

$ make certificate TYPE=custom
make[1]: Entering directory ‘$HOME/apache_1.3.14/src’

STEP 0: Decide the signature algorithm used for certificates
The generated X.509 certificates can contain either
RSA or DSA based ingredients.
Select the one you want to use.
Signature Algorithm ((R)SA or (D)SA) [R]:r

STEP 1: Generating RSA private key for CA (1024 bit)

STEP 2: Generating X.509 certificate signing request for CA
You are about to be asked to enter information that will be
incorporated into your certificate request.
1. Country Name [XY]:us
2. State or Province Name [Snake Desert]:Utah
3. Locality Name [Snake Town]:Salt Lake City
4. Organization Name [Snake Oil, Ltd]:Brine Inc.
5. Organizational Unit Name [Certificate Authority]:[enter]
6. Common Name [Snake Oil CA]:Brine Inc.
7. Email Address [ca@snakeoil.dom]:joe@brine.com
8. Certificate Validity [365]:[enter]

STEP 3: Generating X.509 certificate for CA signed by itself
Certificate Version (1 or 3) [3]:3

STEP 4: Generating RSA private key for SERVER (1024 bit)

STEP 5: Generating X.509 certificate signing request for server
You are about to be asked to enter information that will be
incorporated into your certificate request.
1. Country Name [XY]:us
2. State or Province Name [Snake Desert]:Utah
3. Locality Name [Snake Town]:Salt Lake City
4. Organization Name [Snake Oil, Ltd]:Brine Inc.
5. Organizational Unit Name [Web Server Team]:[enter]
6. Common Name [Snake Oil CA]:www.brine.com
7. Email Address [ca@snakeoil.dom]:joe@brine.com
8. Certificate Validity [365]:[enter]
STEP 6: Generating X.509 certificate signed by own CA
Certificate Version (1 or 3) [3]:3

STEP 7: Encrypting RSA private key of CA with a pass phrase
Encrypt the private key now? [Y/n]:y
Enter PEM pass phrase:[enter desired password]
Verifying password - Enter PEM pass phrase:[re-enter desired password]

Encrypting Web Data 281

18

STEP 8: Encrypting RSA private key of SERVER with a pass phrase
Encrypt the private key now? [Y/n]:y
Enter PEM pass phrase:[enter desired password]
Verifying password - Enter PEM pass phrase:[re-enter desired password]

Congratulations that you establish your server with real certificates.
make[1]: Leaving directory ‘$HOME/apache_1.3.14/src’
$

You have now created your own small Certificate Authority and a self-signed server certifi-

cate. This will allow you to accept https:// connections from visitors to your Web site.

However, it will not provide you with the protection against impersonation that you would

enjoy were you established with a well-known Certificate Authority like VeriSign or Xcert.

Installing and Configuring the Apache Tree
Now that you’ve compiled the source code and created a set of self-signed certificates,

it’s time to install the Apache tree.

$ su
Password:
make install
...[Output of make install]...

#

Assuming you supplied the --prefix=/usr/local/apache argument to the configure

script during source configuration, the Apache files, including your site certificates, will

be installed into the /usr/local/apache tree.

For the most part, we’re going to ignore Apache configuration in this hour, since general-

purpose Apache security has already been covered in Hour 12, “Securing Apache, FTP,

and SMTP Services.” However, there are a few changes that need to be made for the

average system before launching this new, improved Apache and trying it out. Search

through the /usr/local/apache/conf/httpd.conf file, locate each indicated keyword,

and make the change(s) suggested.

DocumentRoot “/usr/local/apache/htdocs”
<Directory “/usr/local/apache/htdocs”>

If this is a new Apache installation from the ground up, feel free to leave these directives

as they appear and install your Web document trees in the /usr/local/apache/htdocs

directory. If you have an existing Web document tree elsewhere, however, you should

update these directives to reflect the path to your existing Web documents.

Port 8080
Listen 8080

282 Hour 18

LISTING 18.1 continued

These ports are not standard for http service. In most instances, you’ll want to configure

them to port 80 instead of port 8080 so that this instance of Apache will respond to stan-

dard http:// requests without connecting users needing to supply a port number in addi-

tion to your Web address.

Listen 8443
<VirtualHost _default_:8443>

Both of these ports refer to the SSL-enhanced port needed for operation of the secure

channel. Here again, the default configuration is not standard and should be changed to

port 443 instead of port 8443 for standard operation.

Starting the SSL-Enabled Apache Server
Once you’ve made the necessary preliminary changes to the default Apache configura-

tion, it’s time for a test run to ensure that everything is working before you proceed to

the real task of configuring your Apache as a production Web server.

To start the new Apache server, use the apachectl program located in the binaries direc-

tory of the Apache installation, in this case /usr/local/apache/bin/apachectl. Pass to

it the startssl argument to instruct it to start the Apache server with SSL enabled. You

will be required to enter the password you supplied when creating your keys.

/usr/local/apache/bin/apachectl startssl
Apache/1.3.14 mod_ssl/2.7.1 (Pass Phrase Dialog)
Some of your private key files are encrypted for
security reasons. In order to read them you have to
provide us with the pass phrases.

Server www.brine.net:443 (RSA)
Enter pass phrase:

Ok: Pass Phrase Dialog successful.
/usr/local/apache/bin/apachectl startssl: httpd started
#

Once you have entered the password, the Apache server will be started. Notice that it has

been started with the -DSSL argument:

ps ax | grep httpd
23439 ? S 0:00 /usr/local/apache/bin/httpd -DSSL
23440 ? S 0:00 /usr/local/apache/bin/httpd -DSSL
23441 ? S 0:00 /usr/local/apache/bin/httpd -DSSL
23442 ? S 0:00 /usr/local/apache/bin/httpd -DSSL
23443 ? S 0:00 /usr/local/apache/bin/httpd -DSSL
23444 ? S 0:00 /usr/local/apache/bin/httpd -DSSL
23445 ? S 0:00 /usr/local/apache/bin/httpd -DSSL
23446 ? S 0:00 /usr/local/apache/bin/httpd -DSSL
#

Encrypting Web Data 283

18

You should be able to launch a Web browser and visit your Web server from another sys-

tem on your network, both with http:// and with https://, though at this point both

types of connection share the same document root tree. Check to see that you can con-

nect both ways and that, when connected securely, the Web browser can verify that the

connection is secure.

When connecting with SSL enabled, you may notice that Netscape (or another browser if

you’re not using Netscape to connect) asks you about the certificate being supplied by

your server, as is shown in Figure 18.1.

284 Hour 18

FIGURE 18.1

Netscape may ask

about your certificate.

The browser asks how you want to proceed because the certificate your site is using is

self-signed, meaning that there is no trusted third party to verify the authenticity of your

server. This shortcoming does limit security to some degree, because there is no way for

a connecting user to be sure that he is really talking to your server.

However, once the browser has been instructed to accept the certificate in spite of the

fact that it is self-signed, the connection will be encrypted with full 128-bit RSA encryp-

tion (if your browser supports it). Assuming that both the connecting client and the

server are who they claim to be (and in this particular case, you know for a fact that they

are), the data flowing back and forth through the connection is very secure.

Summary
In this hour, you learned about using the mod_ssl addition to Apache to enable your

Linux Web server to operate with encrypted SSL Web connections for increased security.

You learned how to download and compile an enhanced Apache server with mod_ssl

included and to install and configure the enhanced server enough that it can be launched

and tested successfully. Your server is now ready for full configuration before going

online as a secure server.

Q&A
Q Aren’t there times when I can use a self-signed certificate without potential

bad effects?

A Yes, and you’ve already seen it. When you know for a fact that both client and

server are who they claim to be—for example, when both machines are located in

the same internal network—a self-signed certificate is perfectly adequate.

Even when not used in the local network or the intranet context, many sites on the

Internet use Apache with self-signed certificates to avoid the costs involved in being

certified by a commercial Certificate Authority. However, if you will be doing a

large volume of e-commerce or handling very sensitive data across the Internet, you

should definitely look into using a commercial Certificate Authority.

Q I followed the instructions in this hour and Apache is now running enough for

me to visit it from my other machine. Isn’t that enough configuration?

A No! Please at least see Hour 12 for a little more information on configuring

Apache securely. If you seriously plan to use SSL for e-commerce or other sensi-

tive purposes, however, you should definitely invest your dollars in comprehensive

Apache documentation and a significant amount of time in ensuring that your

Apache configuration is both correct and functional.

To put it another way, SSL isn’t really so wonderful if there are gaping security

holes and configuration-related stability problems throughout the rest of your

Apache configuration.

Q I can’t get the new Apache server to start.

I can’t get the new Apache server to connect with SSL.

Check your log files to see what sort of error is occurring. These are located at

/usr/local/apache/logs in this case.

If your logs are showing garbage when SSL connections are requested, double-check

your httpd.conf file, taking care to ensure that you replace all instances of port

8080 with port 80 and all instances of port 8443 with 443. Also, be sure that you are

starting Apache with /usr/local/apache/bin/apachectl startssl. Using start

instead of startssl will start the server, but with SSL functionality disabled.

If your logs all appear to be empty, check the default log locations in

/usr/local/apache/logs, regardless of where your log directives are set in

httpd.conf. Unfortunately, Apache+mod_ssl seems to have some bugs in the form

of hard-coded paths.

Encrypting Web Data 285

18

New Terms
Certificate Authority (CA) A trusted third party with a well-known public key who

can vouch for the validity of a Web server’s identity certificate. In general, listing a Web

server with a Certificate Authority is a costly step, so many smaller sites choose instead

to use a self-signed certificate, which is less secure.

mod_ssl An addition to the Apache source code that relies on the OpenSSL library and

implements SSL capability in the Apache Web server.

Secure Sockets Layer (SSL) A group of protocols and specific interactions imple-

mented by Web browsers and Web servers to allow for the authentication of the hosts

involved and the negotiation of an encrypted data stream.

site certificate A block of data used for encryption and identification purposes by an

SSL-enabled Web site and any party connecting to it. For best security, a site certificate

should be signed by a Certificate Authority so that the authority’s public key can be used

to verify the validity of the certificate.

286 Hour 18

HOUR 19
Encrypting File System
Data

This hour, you’ll learn to encrypt file system data using the Transparent

Cryptographic File System (TCFS) for Linux. TCFS can be found at

http://www.tcfs.it. Because TCFS is based on NFS, it is suitable for

encrypting network file system data for transport. Since it stores file system

data on the server in encrypted form as well, it is also well suited to local

file system encryption.

Because TCFS requires a patched kernel and a number of patched file sys-

tem utilities, it would normally be considered a fairly intrusive tool to

install. This chapter, however, takes a few extra steps to isolate the TCFS

installation in its own branch of the file system tree.

TCFS currently is not available for the 2.4 kernel series. Two TCFS versions

exist now: a stable version (TCFS 2.2.x) for the 2.0 series of kernels and a

beta-test version (TCFS 3.x) for the 2.2 series of kernels. Though the TCFS

3 releases are currently not officially stable, they’re the versions covered in

this chapter, largely because of the age of the 2.0 kernel series.

A Brief Overview of TCFS
TCFS is an unusual tool in the Linux world because of the way it is constructed. Rather

than running on the server or implementing some form of client/server key exchange,

TCFS functions exclusively on the client host.

It is the kernel on the client that is patched for TCFS operation. An NFS share from any

NFS-capable server is then mounted on the client machine as file system type TCFS. To

the NFS server, this operation is transparent.

The user on the client system has a private encryption key that is used to encrypt the data

to be stored. After being encrypted, the data is transmitted via NFS to the server and

stored in encrypted form on the server’s drive. When the data is read back, it is transmit-

ted in encrypted form to the client once more, where it is decrypted by the user’s key. No

encryption keys of any kind are ever transmitted across the network, and there is no way

to decrypt the data stored on the server in isolation. Data stored this way can be decrypted

only on a client machine by the user who generated the data in the first place.

For local file system encryption, the server and client simply become one. A directory or

volume is exported via NFS; it is then mounted on the same machine via TCFS, and

encrypted data is written to the new mount point, where it is encrypted before being writ-

ten to the hard drive.

Because of this client-based mode of operation, all of the configuration and installation

done in this chapter will occur on a TCFS client machine rather than an NFS server.

Preparing to Install TCFS
Before installing TCFS, you should ensure that you have a number of things prepared.

Because of the intrusive nature of a TCFS installation, it will be easy to make mistakes if

you haven’t taken care of the following things in advance.

An Empty EXT2 Partition
Because TCFS is beta-level code and because it uses raw data storage, it is a good idea

to isolate your encrypted files on a separate file system on the NFS server in question for

export and mount, just in case. Normally, this means having created an empty partition

and using mke2fs to create an EXT2 file system on it.

If you don’t have a spare partition or don’t want the hassle of creating one, you can use the

Linux loopback driver if you don’t mind the extra overhead. For example, to create a 50-

megabyte virtual disk and mount it at /mnt/virtual, you would do something like this:

288 Hour 19

dd if=/dev/zero of=/virtual.image bs=1k count=50000
50000+0 records in
50000+0 records out
losetup /dev/loop0 /virtual.image
mke2fs /dev/loop0
...[Output of mke2fs]...

mount -t ext2 /dev/loop0 /mnt/virtual
#

Whether you use a real partition or a virtual image, remember to take the extra steps neces-

sary to preserve the new volume through reboots. For example, remember to add the new

partition to /etc/fstab or to initialize the loopback device in an init script if necessary.

A Working NFS Installation
You should be able to verify that NFS is working on the server you plan to use to hold

the encrypted file system, and you should modify /etc/exports to export the partition

or virtual disk in question and grant read/write access (instead of read-only access) to the

user(s) and host(s) who will be using the encrypted volume.

A Kernel 2.2.16– or 2.2.17–Ready System
You should have either a Linux system that is already running kernel 2.2.17 or one that is

capable of installing and running kernel 2.2.17 successfully without too many additional

patches. Information on requirements for using kernel 2.2.17 can be found in the

Documentation/Changes file in the kernel 2.2.17 source tree.

Additional patches should be kept to a minimum, though TCFS has been known to work

with patches to some extent (for example, Ingo Molnar’s backported RAID code).

Downloading and Installing TCFS
When you’re ready to take the plunge, it’s time to download the 2.2.17 kernel source and

TCFS and install them on the client host in question. Source code for the 2.2.16 and

2.2.17 kernels can be found at http://www.kernel.org/pub/linux/kernel/v2.2. In this

chapter, we focus on 2.2.17, but if you have some need for 2.2.16, it will work as well.

Source code for TCFS version 3.0b (the latest version as this book went to press) can be

found at http://www.tcfs.it/tcfs30b.html. A small, almost hidden link will enable

you to download the entire distribution of TCFS in a single file called

tcfs-3.0b-distrib.tar.gz rather than requiring you to download it in pieces.

Extract Sources and Apply Patches
The process of extracting and compiling TCFS and the 2.2.17 kernel can be a compli-

cated one and is made more so by our desire to install TCFS nondestructively in

Encrypting File System Data 289

19

/usr/local/tcfs rather than destructively by overwriting existing utilities. Follow along

closely.

First, visit the /usr/src directory and become root. Extract the source for both the

kernel distribution and the TCFS distribution there. The details below assume that the

source distributions were saved in the /tmp directory; adjust as necessary. Remember to

preserve your existing kernel source tree if necessary.

client:~$ su
Password:
client:/home/joe# cd /usr/src
client:/usr/src# mv linux linux.old
client:/usr/src# tar -xzf /tmp/tcfs-3.0b-distrib.tar.gz
client:/usr/src# tar -xzf /tmp/linux-2.2.17.tar.gz
client:/usr/src#

Now gunzip the kernel patch in the TCFS source tree and apply it to the kernel source.

Afterward, extract the main TCFS source tarball in the TCFS distribution tree.

client:/usr/src# gunzip tcfs-3.0b/patch-linux-2.2.16.gz
client:/usr/src# patch -p0 <tcfs-3.0b/patch-linux-2.2.16
client:/usr/src# tar -xzf tcfs-3.0b/tcfs-3.0b.tar.gz
client:/usr/src#

The newly extracted Linux kernel source has now been modified for TCFS operation.

Before compiling the new kernel, however, we’re going to compile and install much of

the rest of TCFS.

Compile and Install the TCFS Distribution
Visit the utils/ directory in the TCFS source tree and extract the TCFS library code.

client:/usr/src# cd tcfs-3.0b/utils
client:tcfs-3.0b/utils# tar -xzf tcfslib-1.0.0.tar.gz
client:tcfs-3.0b/utils# cd tcfslib-1.0.0
client:utils/tcfslib-1.0.0#

Now, using your favorite editor, edit the Makefile in the tcfslib-1.0.0 directory.

Toward the top of the file, change the installation paths from /usr/local/lib,

/usr/local/man, and so on to /usr/local/tcfs/lib, /usr/local/tcfs/man, and so on.

This will keep the TCFS files and libraries separate from the rest of the /usr/local tree

to some degree.

After changing the Makefile, make the directories for the /usr/local/tcfs hierarchy,

then run make all and make install to install the newly built libraries and manuals.

Once the libraries are built and installed, add the /usr/local/tcfs/lib directory to your

system library cache.

290 Hour 19

client:utils/tcfslib-1.0.0# mkdir /usr/local/tcfs
client:utils/tcfslib-1.0.0# cd /usr/local/tcfs
client:local/tcfs# mkdir bin lib man
client:local/tcfs# cd man
client:tcfs/man# for nm in 1 2 3 4 5 6 7 8; do
> mkdir man$nm
> done
client:tcfs/man# cd /usr/src/tcfs-3.0b/utils/tcfslib-1.0.0
client:utils/tcfslib-1.0.0# make all
...[Output of make all]...

client:utils/tcfslib-1.0.0# make install
...[Output of make install]...

client:utils/tcfslib-1.0.0# echo “/usr/local/tcfs/lib” >> \
> /etc/ld.so.conf
client:utils/tcfslib-1.0.0# ldconfig
client:utils/tcfslib-1.0.0#

Encrypting File System Data 291

19

If this is the first time you have installed kernel 2.2.17, you may experience

some problems with missing include files. If this happens to you while com-

piling the TCFS libraries, try issuing the following commands and then

rebuilding the libraries:

cd /usr/src/linux/include
ln -s asm-i386 asm

This will create a symbolic link for /usr/include/asm that normally exists

only after a kernel has been built once.

Once the TCFS libraries have been successfully installed, revisit the utils/ directory

and extract the TCFS utilities source code.

client:utils/tcfslib-1.0.0# cd ..
client:tcfs-3.0b/utils# tar -xzf tcfsutils-2.0.0.tar.gz
client:utils/tcfsutils-2.0.0#

Here again, you will need to edit the Makefile to change all occurrences of /usr/

local/* to /usr/local/tcfs/* so that our TCFS installation doesn’t mingle with the

existing /usr/local tree. This time, the Makefile in tcfsutils-2.0.0/src/ also has a

bug. Edit this file and search for the two lines near the top beginning with BINDIR= and

SBINDIR= and simply delete them altogether. Once both Makefile files have been fixed,

build the utilities with make all and install them with make install.

client:utils/tcfsutils-2.0.0# make all
...[Output of make all]...

client:utils/tcfsutils-2.0.0# make install
...[Output of make install]...

client:utils/tcfsutils-2.0.0#

Once the utilities have been installed, modified mount and umount binaries as well as

modified EXT2 tools are required for the TCFS file system. Visit the tcfs-3.0b/conrib

directory and extract the replacement util-linux-2.10m source code. Since only the

mount and umount programs are required, we can partially compile the util-linux pack-

age and install the new binaries in /usr/local/tcfs/sbin. Follow along closely.

client:utils/tcfsutils-2.0.0# cd ../../contrib
client:tcfs-3.0b/contrib# tar -xzf util-linux-2.10m-tcfs.tar.gz
client:tcfs-3.0b/contrib# cd util-linux-2.10m-tcfs
client:contrib/util-linux-2.10m-tcfs# cd lib
client:util-linux-2.10m-tcfs/lib# make
...[Output of make]...

client:util-linux-2.10m-tcfs/lib# cd ../mount
client:util-linux-2.10m-tcfs/mount# make
...[Output of make]...

client:util-linux-2.10m-tcfs/mount# chmod 4755 mount umount
client:util-linux-2.10m-tcfs/mount# mv mount umount /usr/local/tcfs/sbin
client:util-linux-2.10m-tcfs/mount#

The final order of business in the TCFS source code tree is to compile the new set of

EXT2 file system tools. These are also in the contrib/ directory.

client:util-linux-2.10m-tcfs/mount# cd ../..
client:tcfs-3.0b/contrib# tar -xzf e2fsprogs-1.19-tcfs.tar.gz
client:tcfs-3.0b/contrib# cd e2fsprogs-1.19-tcfs
client:contrib/e2fsprogs-1.19-tcfs# ./configure --prefix=/usr/local/tcfs
...[Output of configure]...

client:contrib/e2fsprogs-1.19-tcfs# make
...[Output of make]...

client:contrib/e2fsprogs-1.19-tcfs# make install
...[Output of make install]...

client:contrib/e2fsprogs-1.19-tcfs#

292 Hour 19

Because of different library versions in use among the various Linux distribu-

tions, some users may get a number of errors about “undefined references”

while attempting to complete the make all. If this happens to you, it is

likely because your system requires that the gdbm and dl libraries be linked

in explicitly.

Reopen the src/Makefile file and search for the following line in the file:

LOADLIBES=-ltcfs

Change this line to read

LOADLIBES=-ltcfs -lgdbm -ldl

Now, in the tcfsutils-2.0.0 directory, run a make clean and then try again

with make all followed by make install.

The entire TCFS distribution has now been compiled and installed and resides in

/usr/local/tcfs. Special versions of mount, umount, e2fsck, chattr, and lsattr,

which are required to operate TCFS file systems, are also located in the /usr/local/

tcfs tree, in /usr/local/tcfs/bin and /usr/local/tcfs/sbin.

Compile the Patched Kernel
Now visit the patched kernel source tree and configure and compile your kernel, taking

care to enable the configuration options listed in Table 19.1.

TABLE 19.1 Kernel Options for TCFS Operation

Option Location

CONFIG_EXPERIMENTAL=y Code maturity level options

CONFIG_MODULES=y Loadable module support

CONFIG_TCFS_FS=m File Systems, Network File Systems menu

After compiling the kernel, you may want to copy the kernel image to a new file and add

a new label to your /etc/lilo.conf file so that you can boot into TCFS explicitly while

preserving your existing kernel as well.

Don’t forget to compile and install the modules after the kernel image has been built:

cd /usr/src/linux
make modules; make modules_install
#

After installing the modules and a new LILO boot sector with the capability to boot from

your new kernel, reboot your system and start using the new kernel.

Building the Encryption Module and Enabling TCFS
Once you have successfully booted into your new kernel, one last task remains; you must

revisit the TCFS source tree and build the 3DES encryption module that will be used to

encrypt the file system data. Don’t forget to rebuild your module dependencies once the

module has been built.

client:~$ su
Password:
client:/home/joe# cd /usr/src/tcfs-3.0b/modules/3desmodule
client:modules/3desmodule# make
...[Output of make]...

client:mdoules/3desmodule# cp tcfs_default_cipher.o \
> /lib/modules/2.2.17/fs
client:modules/3desmodule# /sbin/depmod -a
client:modules/3desmodule# cd
client:~#

Encrypting File System Data 293

19

You are now ready to load the TCFS modules so that the client’s kernel will be ready to

operate with TCFS.

client:~# modprobe tcfs
client:~# modprobe tcfs_default_cipher
client:~#

If you plan to use TCFS on this client regularly, you will want to edit your init scripts to

load these modules automatically at boot time.

Using TCFS
Before any regular use can take place, the volume in question must be mounted some-

where on the client machine. Remember also that any user who is going to use the vol-

ume to store encrypted data must have write access to some directory on the mounted

volume. This must all be done on the NFS server.

For example, let’s assume that a user named joe wants to be able to store encrypted data

on the server in question, and that the server is exporting a directory at /exp/crypt for

this type of storage. Assuming that joe has the same UID and GID on both server and

client, an administrator on the server would need to give joe a “home directory” on the

encrypted volume:

cd /exp/crypt
mkdir joe
chown joe.users joe
#

Once this is done, joe will be able to write somewhere.

Enabling TCFS Access (Administrative Tasks)
Let’s assume now that on the client machine joe is using, an administrator has mounted

the encrypted volume at /mnt/priv. Remember, this must be done with the new mount

command with knowledge of TCFS

/usr/local/tcfs/bin/mount -t tcfs server:/exp/crypt /mnt/priv
#

Once the volume has been successfully mounted, users, including joe, will find the

encrypted volume at /mnt/priv. This means that joe’s directory on the encrypted vol-

ume is at /mnt/priv/joe.

Before joe can manipulate any encrypted files, an account must also be configured for

him in the TCFS user database. This is done with the tcfsadduser command:

/usr/local/tcfs/sbin/tcfsadduser

TCFS Utilities: version 2.0.0
Insert the user name to add in the tcfs key’s file: joe

294 Hour 19

Entry for user <joe> was inserted.

#

The administrative tasks associated with getting joe’s files encrypted are now complete.

Taking Advantage of Encryption (User Tasks)
Before joe will have permission to access files on the TCFS volume (even files to which

he has access permissions), he must generate a key for himself. This is done with the

tcfsgenkey utility, which will ask joe to enter his password and will then ask for 10 ran-

dom keystrokes to seed the key.

client:~$ /usr/local/tcfs/bin/tcfsgenkey

TCFS Utilities: version 2.0.0
Insert your password, please:
Press 10 random keys, please: **********
Updating completed: key successfully generated.

client:~$

Now that joe has created his key, he’s nearly ready to use the TCFS volume. One last

task must be attended to, however: The key must be made active with tcfsputkey.

client:~$ /usr/local/tcfs/bin/tcfsputkey

TCFS Utilities: version 2.0.0
Insert your password, please:
Passing completed.

client:~$

Each time joe logs in, he must use tcfsputkey to activate his key. When he logs out, he

should use tcfsrmkey to disable it.

Encrypting Files
The actual process of encrypting files is fairly simple. The new chattr command in

/usr/local/tcfs/bin supports an additional attribute, +X (capital letter) for encrypted or

-X for not encrypted. If joe had a file that he wanted to encryptcalled myfile.txt in

/mnt/priv/joe, he would use chattr as follows:

client:~$ cd /mnt/priv/joe
client:priv/joe$ /usr/local/tcfs/bin/chattr +X myfile.txt
client:priv/joe$

The lsattr command can demonstrate that the change has indeed been made:

client:priv/joe$ /usr/local/tcfs/bin/lsattr
----------RX-- ./myfile.txt
client:priv/joe$

Encrypting File System Data 295

19

The encoding of entire directory trees is also a simple matter. For example, joe could do

the following:

client:priv/joe$ /usr/local/tcfs/bin/chattr +X /mnt/priv/joe
client:priv/joe$

Now any new files created in /mnt/priv/joe will inherit the +X attribute and will be

encrypted themselves.

Summary
This hour, you learned to install and use the Transparent Cryptographic File System

(TCFS) to encrypt file system data using 3DES encryption on an NFS host from a TCFS-

enabled client.

You compiled a 2.2.17 kernel with the TCFS modifications and performed a custom

installation of TCFS, placing it in the /usr/local/tcfs tree to give you as an adminis-

trator a little more control over the way in which TCFS is used.

Q&A
Q This chapter describes how to use TCFS over a network to an NFS host. How

do I do it locally on a single machine?

A The concept is the same. Just export the file system to yourself and mount it using

NFS. Of course, you must have a running NFS server to do this.

For example, if you wanted an encrypted file system under /usr/private on the

/dev/hda4 partition, you would make an EXT2 file system on /dev/hda4, mount it

somewhere else (for example, at /mnt/private), and then mount

/mnt/private via TCFS to /usr/private:

mount -t tcfs localhost:/mnt/private /usr/private

The /usr/private directory will hold the accessible data, /mnt/private will hold

raw (encrypted) data, and the entire exchange will take place over the local NFS

server.

Q How do I know the data is really encrypted?

A Take a look at the directory containing the raw data. For example, considering our

earlier example, an ls of the /exp/crypt directory on the NFS server might look

like this:

$ ls -1 /exp/crypt
g2jb40th5cJ9Uxw7lnKzUgAA=
g2jb40th5cJQaO#i+PkXkAAA=
g2jb40th5cJgCzDcaiRL3wAA=
g2jb40th5cJxotD56hc7vAAA=
g2jb40th5cLpbHFH7RveIAAA=
$

296 Hour 19

At the same time, the mounted volume on the client appears in unencrypted form:

$ ls -1 /mnt/priv
textfile-1.txt
textfile-2.txt
textfile-3.txt
textfile-4.txt
textfile-5.txt

Try viewing any of these encrypted files on the server. You’ll get a lot of garbage

printed on your terminal.

Note that on the client, encrypted files are visible only to their owner. For example,

any user other than joe looking at /mnt/priv/joe might see zero files listed,

though joe has several hundred encrypted files stored there.

Q The TCFS file system is very slow! What can I do to improve speed?

A Unfortunately, not much. It’s not just the overhead of NFS you’re experiencing. It’s

the overhead of the encryption itself, which doesn’t seem like a slowdown when

using an SSH session interactively, but becomes very obvious when compared to

the speed of raw disk access.

Q I can’t seem to mount the TCFS volume. Why?

I can’t get the extended attributes to work. Why?

I ran e2fsck, and it corrupted my encrypted file system. Why?

A Please remember to use the modified utilities in /usr/local/tcfs/bin and /usr/

local/tcfs/sbin when dealing with a TCFS file system. The normal utilities will

not work.

Q My modified chattr doesn’t seem to know about +X. How can I fix this?

A Actually, it does. It’s not documented, and it doesn’t show up with usage informa-

tion on the command line, but try it—it works.

New Terms
3DES An older, reasonably fast encryption algorithm that is less complex than some

newer algorithms but remains in widespread use, especially on mature networks like

those serving automated teller machines (ATMs).

network file system (NFS) The standard method for networked file exchange between

Unix-like machines, similar in purpose to the type of file system sharing managed by

Samba for communicating with Windows machines.

Transparent Cryptographic File System (TCFS) A method of encrypting file system

data for transport over an NFS connection and for secure storage.

Encrypting File System Data 297

19

HOUR 20
Encrypting E-Mail Data

This hour, you’ll learn to use the Free Software Foundation’s implementation

of the Pretty Good Privacy (PGP) method for general-purpose data security.

The name of this implementation is the GNU Privacy Guard (GPG).

Though PGP and more specifically GPG can be used for encrypting many

kinds of data, PGP really became an international success because of its

capability to do quick-and-dirty encryption with many popular e-mail

clients. The encryption of e-mail remains PGP’s most common function.

A Quick PGP Overview
Like many of the other encryption methods we’ve covered so far, PGP

works with a two-key encryption system. Every person using PGP creates a

key pair for himself. One key in the pair is a public key; the other is a pri-

vate key. The public key is circulated as widely as possible and may even be

listed in any one of several public key databases, where other Internet users

around the world can find it. The private key is a closely guarded personal

secret and is never transmitted or copied anywhere or to anyone.

These two keys work together to encrypt and decrypt data. Data encrypted with the pub-

lic key can be decrypted only with the private key, and conversely, data encrypted with

the private key can be decrypted only with the public key. This enables two kinds of veri-

fication to take place.

First, the members of the public at large who want to send a message to a specific person

can encrypt the message or data in question with the person’s public key before sending

it. Since only the person’s private key can decrypt the message or data, the sender is

guaranteed that no one other than the intended recipient, who has the private key, will see

it in unencrypted form.

In the other direction, a sender can also validate (sign) a message or data using his pri-

vate key and send it to his friends or various members of the public at large. When the

recipients are able to decode the signature using the supposed sender’s public key, they

can be assured that the message or the data did indeed come from the sender the message

or data claims to be from.

Though there are really many more twists, turns, and features than this, this is the basic

idea behind public key cryptography. PGP represents a kind of brute force, simple imple-

mentation of this concept.

Getting and Installing GNU Privacy Guard
(GPG)

The GNU Privacy Guard implementation of PGP is largely compatible with the various

encryption algorithms implemented by commercial versions of PGP, with the exception

of the IDEA algorithm, which remains under patent until the year 2007. RSA encryption,

whose patent has recently expired, is now included in the standard GPG distribution. The

GPG home page can be found at http://www.gpg.org.

GPG can be downloaded from http://www.gpg.org/download.html. As this text goes

to press, the most recent version of GPG is 1.0.4, and one important security patch has

been released. To install GPG, download both the gnupg-1.0.4.tar.gz file and the

patch file, gnupg-1.0.4.security-patch1.diff.

Extract the GPG sources and apply the patch, then run the configure script in the GPG

source tree. The default installation options are adequate for most users. After running

configure on the patched sources, run make and then make install to install the GPG

binaries and other components.

$ tar -xzf gnupg-1.0.4.tar.gz
$ cd gnupg-1.0.4
$ patch -p1 <../gnupg-1.0.4.security-patch1.diff
patching file g10/mainproc.c

300 Hour 20

patching file g10/plaintext.c
patching file g10/openfile.c
$./configure
...[Output of configure]...

$ make
...[Output of make]...

$ su
Password:
make install
...[Output of make install]...

exit
$

Assuming everything installed cleanly, you can proceed to the next step, setting yourself

up with a pair of keys and learning how to use the software. If you are unable to compile

and install GPG, a number of prebuilt packages are available for many distributions,

including Debian and many RPM-based distributions.

Generating Your Keys
Before you can send or receive any data encrypted by or for you specifically, you need to

generate a pair of keys, one private and one public. This is done by calling the GnuPG

tool with the --gen-key command. If this is your first time using GPG (let’s assume that

it is), GPG will simply create the $HOME/.gnupg directory on its first run. You must then

call it a second time with the --gen-key argument to continue. The second time, your

keys will be generated after GPG asks you a series of questions. Simply answer all of

them with the default answers for now, providing personal information where required,

as shown in Listing 20.1.

LISTING 20.1 Key Generation

$ gpg --gen-key
Please select what kind of key you want:

(1) DSA and ElGamal (default)
(2) DSA (sign only)
(4) ElGamal (sign and encrypt)

Your selection? 1
DSA keypair will have 1024 bits.
About to generate a new ELG-E keypair.

minimum keysize is 768 bits
default keysize is 1024 bits

highest suggested keysize is 2048 bits
What keysize do you want? (1024) 1024
Requested keysize is 1024 bits
Please specify how long the key should be valid.

0 = key does not expire
<n> = key expires in n days
<n>w = key expires in n weeks

Encrypting E-Mail Data 301

20

<n>m = key expires in n months
<n>y = key expires in n years

Key is valid for? (0) 0
Key does not expire at all
Is this correct (y/n)? y

You need a User-ID to identify your key; the software
constructs the user id from Real Name, Comment and
Email Address in this form:

“Heinrich Heine (Der Dichter) <heinrichh@dusseldorf.de>”

Real name: Joe User
Email address: joe@mynet.net
Comment: PGP Rules!
You selected this USER-ID:

“Joe User (PGP Rules!) <joe@mynet.net>”

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
You need a Passphrase to protect your secret key.

Enter passphrase:
Repeat passphrase:

302 Hour 20

LISTING 20.1 continued

Be sure to choose a good passphrase for your private key. The same rules

that apply to good password selection also apply here: Use at least one

numeric digit, avoid using words or combinations of whole words, and defi-

nitely avoid using any personal information about yourself that might be

obvious. Birthdays, last names, children’s names, weight, favorite actor or

actress, and so on are bad ideas because they are easy to guess.

At this point, GPG will set about trying to generate your keys. However, it needs a small

but steady stream of random numbers in order to do this. It normally gets these from the

/dev/random device in Linux, but this device requires entropy, a kind of measure of dis-

order in a system, to work reliably. If your system doesn’t have enough entropy, you may

see a message like this one:

Not enough random bytes available. Please do some other
work to give the OS a chance to collect more entropy!

If this occurs, moving the mouse around or hitting the Shift or Ctrl key a few times will

usually generate the disorder needed to finish the task. Eventually, you’ll be told that

GPG has successfully created your keys:

public and secret key created and signed.

You’re now ready to begin learning to use GPG.

Working with Keys
Before you can encrypt or decrypt any messages, files, or other data, you’ll need to learn

to collect, use, and validate GPG keys to ensure the integrity of the data you’ll be ex-

changing. The primary tools for working with keys that we’ll discuss here are key listing,

key importing, key exporting, key signing, and user trust.

Listing Keys
Throughout the rest of this hour, it will be very helpful to you to be able to list the keys

in your own public key database. To obtain a list of keys in your “keyring” and the

matching names and e-mail addresses of their owners, use the following:

$ gpg --list-keys
/home/joe/.gnupg/pubring.gpg
pub 1024D/D9BAC463 2001-01-03 Joe User (PGP Rules!) <joe@mynet.net>
sub 1024g/5EE5D252 2001-01-03

pub 1024D/4F03BD39 2001-01-15 Pipi Socks (I’m WIRED) <pipi@hairnet.org>
sub 1024g/FDBB477D 2001-01-15

$

Each entry in the list represents a public key that you have on file and that can be used to

encrypt data sent to the matching e-mail address.

Importing and Exporting Keys
The process of importing and exporting public keys is the meat-and-potatoes of the PGP

world, because it is only when a potential recipient has your public key that you are able

to make use of PGP in messages or data sent to him. Likewise, any number of potential

senders may want you to have their keys so that they can send you secure information.

The first step is to learn to export your own key, so that you can provide it to others. This

is done with the --export argument. For example, if you’re joe, you can export your

own public key to the file mykey.gpg like this:

$ gpg --export joe@mynet.net >mykey.gpg
$

The public key for joe@mynet.net is now stored in mykey.gpg and can be supplied to

friends, family, or co-workers that joe may want to communicate with in a secure way.

Unfortunately, the key is not in an easily readable format; it looks like a lot of garbage

and isn’t pleasant at all. It is therefore common practice to communicate keys and other

types of PGP information in ASCII format, suitable for inclusion in an e-mail message.

This is done with the -a argument:

$ gpg -a --export joe@mynet.net >mykey.gpg
$

Encrypting E-Mail Data 303

20

The new mykey.gpg is very nicely formatted and contains the same information—joe’s

public key and general identification strings. Keys can be imported in similar fashion:

$ gpg --import pipiskey.gpg
$

Once pipi’s key has been imported, joe can send encrypted messages to pipi or receive

signed messages from pipi using her public key. The same holds true for pipi, assuming

that she imports the copy of joe’s key that joe exported.

Signatures and Trust
If you’re following along and experimenting, you may have noticed that GPG isn’t so

quick to trust an imported key—there’s actually quite a bit more output than is shown in

the examples in the previous section. This is because the PGP scheme depends on the

validity of public keys. That is, if lots of fake public keys start being passed around so

that, for instance, a public key that claims to be from pipi is really from joan, the whole

security model breaks.

Therefore, GPG includes a complex trust system designed to help you decide which keys

are real and which aren’t, based on evidence included with the key. This trust system

involves the signing of keys by other individuals who believe the key to be authentic.

When you receive a new public key from someone you know and GPG informs you that

there isn’t any solid trust information available for the key you’ve received, the first thing

you should do is fingerprint the key. To illustrate, let’s suppose that you have just imported

pipi’s key, and GPG has informed you that no trust information for this new key exists.

The first thing you need to do is run a fingerprint on the new key:

$ gpg --fingerprint pipi@hairnet.org
pub 1024D/4F03BD39 2001-01-15 Pipi Socks (I’m WIRED) <pipi@hairnet.org>

Key fingerprint = B121 5431 8DE4 E3A8 4AA7 737D 20BE 0DB8 4F03 BD39
sub 1024g/FDBB477D 2001-01-15

$

This fingerprint is generated from the data in the key and is reasonably unique. You then

phone pipi to ask her two questions. First, has she just sent you a key, and next, what is

the fingerprint of her public key.

If pipi answers that she has indeed just sent you a key and the fingerprint matches the

one you’ve generated, you know that the key is valid. You can then sign the key, in effect

stating that this key is pipi’s and you trust her.

$ gpg --sign-key pipi@hairnet.org

pub 1024D/4F03BD39 created: 2001-01-15 expires: never
sub 1024g/FDBB477D created: 2001-01-15 expires: never

304 Hour 20

(1) Pipi Socks (I’m WIRED) <pipi@hairnet.org>

pub 1024D/4F03BD39 created: 2001-01-15 expires: never
Fingerprint = B121 5431 8DE4 E3A8 4AA7 737D 20BE 0DB8 4F03 BD39

Pipi Socks (I’m WIRED) <pipi@hairnet.org>

Are you really sure that you want to sign this key
with your key: “Ima User (I’m just ME) <me@mynet.org>”

Really sign? y
You need a passphrase to unlock the secret key for
user: “Ima User (I’m just ME) <me@mynet.org>”
1024-bit DSA key, ID D9BAC463, created 2001-01-03

Enter passphrase:
$

This key has now been signed with your private key; anyone holding your public key can

verify that the signature is yours. The signature you have added to pipi’s public key will

travel with it anywhere it goes, your personal guarantee that this is pipi’s key.

To get a list of the signatures associated with a public key in your personal keyring, use

the --check-sigs argument:

gpg --check-sigs pipi@hairnet.org

The longer the list of signatures, the more valid a key can be assumed to be. It is this

system of signatures that provides key verification. Suppose you receive a key that has

been signed by pipi. You know that it is really her signature because it can be verified

with her public key, which you have just signed as authentic. Assuming you trust pipi,

you can then trust as real any key pipi has signed. This web of trust, as it is called, can

continue much further than any one e-mail user can reach, ensuring that people are who

they claim to be.

What happens, however, when a key has only a small number of signatures, or even just

one signature, from a signer who is either questionable in his own identity or is too lax

with his signatures, simply signing any key that passes through?

To combat trust dilution, GPG includes one additional resource, the trust level. With it,

you can indicate the degree to which you trust the owner of any key you have. For exam-

ple, suppose that even though you know pipi’s public key is authentic, you don’t actu-

ally trust her judgment when it comes to signing other keys. You think that pipi may just

sign a few keys without checking them out. You can set the trust level with the

--edit-key command.

$ gpg --edit-key pipi@hairnet.org

pub 1024D/4F03BD39 created: 2001-01-15 expires: never trust: -/f

Encrypting E-Mail Data 305

20

sub 1024g/FDBB477D created: 2001-01-15 expires: never
(1) Pipi Socks (I’m WIRED) <pipi@hairnet.org>

Command> trust

1 = Don’t know
2 = I do NOT trust
3 = I trust marginally
4 = I trust fully
s = please show me more information
m = back to the main menu

Your decision? 2
Command> quit
$

By using the trust command in the key editor and selecting trust level 2 (I do NOT

trust), you have invalidated any trust chain that must pass through pipi’s signatures.

Of course, when GPG asks you about a questionable key, you will always be able to

force GPG to use it, regardless of the degree to which it can be trusted. However, the

trust system provides a way for you as a GPG user to know which keys are certainly

valid, which keys may be valid, and which keys are almost certainly not valid.

Using GPG: Nuts and Bolts
So far, there’s been a lot of discussion about keys and key exchanges. Now we finally

begin to get into the actual day-to-day use of GPG for sending and receiving data.

There are two kinds of exchanges that are routinely made with GPG: signed data and

encrypted data. In the first case, the sender uses a private key and the receiver a public

key. In the second case, the opposite is true.

Signatures for Data
Data signatures are created for data you’re sending out. A signature is generated using

your private key; any user receiving this data who has your public key and trusts it can

use it to validate the integrity of the data you’ve sent. He can then be sure that the infor-

mation being received comes straight from you and hasn’t been tampered with.

The simplest way to sign a piece of data is to use the ASCII-ready --clearsign com-

mand. This causes GPG to produce a nice, human-readable signature suitable for sending

via e-mail.

$ gpg --clearsign mymessage.txt

You need a passphrase to unlock the secret key for
user: “Ima User (I’m just ME) <me@mynet.net>”

306 Hour 20

1024-bit DSA key, ID D9BAC463, created 2001-01-15

Enter passphrase:
$

After entering the passphrase, you’ll notice that a new file with the .asc extension has

been created, in this case mymessage.txt.asc. This file contains the original contents of

mymessage.txt plus a signature similar to the one shown in Listing 20.2.

LISTING 20.2 A GPG-Generated PGP Signature

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.0.1 (GNU/Linux)
Comment: For info see http://www.gnupg.org

iD8DBQE6YouhU87DFNm6xGMRAiwqAJ4mnviKz5wA9HFhCW9PG6zl7A2LPACgk0SB
n+yWiCt4SCTVkSSgezGKIUk=
=WnX/
-----END PGP SIGNATURE-----

When the file or message containing this signature is received, the recipient who has

your public key on file can verify the message’s integrity by issuing the --verify com-

mand to GPG:

$ gpg --verify message.txt.asc
gpg: Signature made Sat Jan 13 22:33:21 2001 MST using DSA key D9BAC463
gpg: Good signature from “Ima User (I’m just ME) <me@mynet.net>”
$

A verified signature indicates that the message or file really does come from the source it

claims to be from and that it hasn’t been modified in any way.

Encrypting and Decrypting Data
GPG is also useful when a message, file, or other unit of data is for one person’s eyes

only. At such times, GPG can use the person’s public key to encrypt the file, making it

unreadable until it is decrypted by the person holding the matching private key (presum-

ably the intended recipient).

To encrypt a data file using the recipient’s public key, use the -r argument to specify a

recipient and the --encrypt command to instruct GPG to encrypt the file in question:

$ gpg -r pipi@hairnet.org -a --encrypt message.txt
$

It’s as simple as that; GPG uses the public key on file for pipi@hairnet.org to encrypt

message.txt and writes the output to message.txt.asc. The resulting file is shown in

Listing 20.3.

Encrypting E-Mail Data 307

20

LISTING 20.3 An Encrypted File for pipi

-----BEGIN PGP MESSAGE-----
Version: GnuPG v1.0.1 (GNU/Linux)
Comment: For info see http://www.gnupg.org

hQEOA/Yj7lT9u0d9EAQAhE+KaGfMzvRfCdrfW2EYzuu+YeaKdoJksHB16CO7RsZC
DkllV/uma/rMj5PiDzFoV8PGjqdq9M+n9YXOVnuG3XITWhuvfFqm1KWxK9e0UDoS
7Tb2cm+k8UK18HBI/EaNrV+a3A5YQr6nVY0OCXheohg3+9ursFc8uOBQma64/VUD
/io0EQiIxEmERy2UsN7e+OB1/w4FUcRt7FFWCTVMGdUuQPY8UkeStH7u43NlPsf5
6uPPjaTxCOjjQoCf17XnfxqJPm9c0uyPDjljXYmp74XroT+lHvGcaKK56t0agGVo
i5nMflXoCIA2n/KDALzTjy7cIzLnUeYVU4NrBt7pV4TTyelxYB70mW94Wlr5BlLj
S+FYueR31i790QO+265iS4QPA+zxXIT5KCF8TT1gVPaZOJxmo0wRKuoOYrCd7LQD
Oz3exhCgeKKjfZRwJtqvl/QVamFJWSyhAiuTlA60IHyxIqAZlwLoYoXs9oOIs49g
HLYG6hSemJEW+fTX8xipOOfDXzHrJjUE897igeW62Mf6HLr4aNb1kwrlH7d7Xdr8
29+sckZlSRtBvL3/dSw5FcRCFYbS51AHstdywYvNu4rqSOljv5C6dXEw9Gre+wPS
5S7k0KoTLK4VOZJI2byBTZxgjQNr7ytpu1QMN2+10tpHx6MLkUFV/BJZbAtJ3C0v
auS4xskoSlZgbuX/8Veqhx4GC0lSRLqn14M9CP/tzZN0dIZSTbM2aq58zk0wZZVB
Tmb06HdYvkLrcLkmyNBt3/PUlDIIdeXNCkqN5bjGD/elTtkaMmHN9OIIDHWA9olR
tcXoLJPF4kgg1q6y6pgy2sklYQhI8A4q8VoQNJDzF/SbKvlnGji5HyF6rvKDCF0m
/l0heQEMn4AyFbJ7LZt2zh4i3jSwyV4Ff+tWJD09xaNziKi791FaSBVMxsPhT4SD
w+R75JR/FV0IRpMsy8kdJw/+kejQwCmRqDbm3EHOESCOouxsL8JB39vX+1h32p1b
EdVyQIHZA+TomHsp/y3i+EX52MC8+8XmCukHfT0dCVcnfk2H0hKvFueBkW8Y2JGd
FJZb+CDX33Aapr6FW9CIXvI+1NFOz+cIWVZIYYECnUZe4l3Jikjw3rY2To4E/WUy
MN+ZKsMb6xlhMSoRa9qHWY+S/pp9D8qiqweOLg4cnCjZBZWVOMf4dMcDWNjsW3mX
GgYVmPf52WxvVFtp1yjNbHBu+is8/ZR1P04efD+kOg1WtwpfRdHKQ1o1fn/OxYX1
oP7PVR5BK05HaQYmI0Vlwkcv59RyeYqqOQOiEfL0hEWdGy1gdj0R0eHYuZLnBLfb
SHJ2OtRpcqHuXB27EU3C4OR/N++7ExhG/MNB8WPFb82cbIP8xDF9q+3b73b7myTn
JpAYj4p2ocv9Zf1DH9HHaT7bYD37hvjLlNXe07kYOlMWB9+48meO/o+Yjn5oEj60
wipRdCiP4TUoAwC9EDFED64qLXST9MBycLrc5DwiMYzfdyauiHU3MNhUfErXVaRJ
/5ljtJUGHA/P/ouqbSCleHQ=
=2Sgq
-----END PGP MESSAGE-----

An encrypted message can be signed as well. To do this, include the -s argument in

addition to the others when encrypting using GPG.

To decrypt an encrypted file like this one, pipi will need to use the --decrypt command

and redirect standard output to where she’d like the message to go.

$ gpg --decrypt message.txt.asc > message.txt

You need a passphrase to unlock the secret key for
user: “Pipi Socks (I’m WIRED) <pipi@hairnet.org>”
1024-bit ELG-E key, ID FDBB477D, created 2001-01-15

Enter passphrase:
$

308 Hour 20

Once pipi has entered the passphrase for her secret key, the message you sent will be

decrypted and sent to the file message.txt. You have now securely transmitted a mes-

sage to pipi using GPG.

Summary
In this hour, you downloaded and installed the GNU Privacy Guard, GnuPG or GPG for

short, a free implementation of Pretty Good Privacy (PGP).

You learned to create your own public/private key pair, import and export public keys,

fingerprint new public keys for verification, and sign keys you can positively verify. You

learned to indicate to GPG whether or not signatures from other users whose keys you

have on file ought to be trusted as though you had signed the keys yourself.

Finally, you learned to use GPG to sign messages or data using your private key, to ver-

ify signed messages that others have sent you, to encrypt outbound messages that are for

the receiver’s eyes only, and to decrypt inbound messages that are for your eyes only.

Q&A
Q What about subkeys, revocation certificates, alternative algorithms, e-mail

client integration…

A This hour is intended only as a primer for a very large and flexible protocol and

application system. If you plan to use GPG/PGP on a regular basis (and you

should), it is strongly advised that you visit the GnuPG home page and read the

online documentation. Afterward, scour the gpg manual page and learn about the

various options and commands.

Q I want to encrypt only data I send to others. Can’t I just use the keys they

send me in e-mail and ignore all of this “trust” stuff?

A Not really. You see, if you want to encrypt the data you send to others, there’s

probably a reason—the data is too sensitive to be seen by just anyone.

Because a key contains nothing more than encryption data, name, and e-mail

address, it is possible for you to receive a completely forged key from someone

other than the person it appears to be from. Whoever made the bogus key also has

the matching private key that can decrypt its output. If you encrypt and send with-

out verifying a key’s authenticity, you may be revealing sensitive information to a

malicious third party.

You should therefore always verify a public key before you use it to send sensitive

encrypted data to anyone.

Encrypting E-Mail Data 309

20

New Terms
entropy A quantity of work-related disorder or activity present in a running system

that is used to generate random numbers.

GNU Privacy Guard (GnuPG, GPG) An implementation of PGP from the Free

Software Foundation that is mostly compatible with commercial PGP implementations.

The IDEA algorithm, which remains under patent until 2007, is not officially supported

by GPG.

Pretty Good Privacy (PGP) A general-purpose method of exchanging encrypted or

signed data of nearly any type based on public key cryptography.

private key The second half of an encryption key pair, the private key must be kept

under strict secrecy and encrypted with a passcode and should be known only to its

owner.

public key One half of an encryption key pair, the public key can be circulated widely,

signed by other users, and used to encode messages to the key’s owner.

signature Validation information created using the source’s private key that can be ver-

ified as having come from the source in question using the source’s matching public key.

Data and other public keys can be signed as valid.

web of trust A measure of the degree to which the validity of a key is certain. Trust is

determined by the number of trusted individuals who have signed a public key and

whose signatures on the key can be verified using their own trusted public keys.

310 Hour 20

Hour

21 Auditing and Monitoring

22 Detecting Attacks in Progress

23 Preserving Data

24 Recovering from Attacks

PART IV
Intrusion Detection,
Auditing, and Recovery

HOUR 21
Auditing and Monitoring

This hour you’ll learn to download, install, and use two tools, one for auditing

and one for monitoring, that together are enough to keep most small networks

reasonably safe from attack.

For auditing hosts on your network, you’ll learn the basics of using SAINT,

the Security Administrator’s Integrated Network Tool. SAINT’s easy-to-use

interface and powerful vulnerability-finding capability combine to make

SAINT the tool of champions for small network security.

For monitoring your host and server logs, you’ll install and use SWATCH,

the Simple WATCHer, which will lurk in the background watching logs.

When something questionable happens in one of the monitored logs, you’ll

be the first to know.

Putting SAINT to Work
Security Administrator’s Integrated Network Tool (SAINT) is an incredibly

useful tool for administrators of small networks. It single-handedly scans any

hosts on your network and checks them against a database of vulnerabilities

known for your operating system type (in this case, Linux). It then compiles a report with

enough information to help you hunt down and close nearly every vulnerability or poten-

tial vulnerability it finds.

SAINT is based on SATAN, the Security Administrator’s Tool for Analyzing Networks,

but it has been updated to include a much friendlier user interface and wider operating

system support.

The SAINT home page can be found at http://www.wwdsi.com/saint/.

Downloading and Installing SAINT
Before downloading and installing SAINT, you need to make sure that you have a fairly

recent (5.0 or later) version of Perl installed. Most current Linux distributions include a

new enough version, but you may need to visit http://www.cpan.org to download and

install a new one. Be sure that your distribution has installed flex and bison as well.

You can check for the presence of their manual pages to see if they have been installed.

If you have Windows clients or servers on your network, you’ll also want to be sure to

install Samba, since this will make a number of Windows-style networking tools avail-

able to SAINT. That way, even Windows-based clients can be scanned for vulnerabilities.

You’ll also need to install nmap, a tool commonly referred to as a port scanner. SAINT

will use nmap to check many of the network ports on your system to see how open to

attack they are. To download nmap, visit http://www.insecure.org/nmap/ and grab the

latest source tarball. Then extract, configure, compile, and install it in the usual manner.

$ tar -xzf nmap-2.53.tgz
$ cd nmap-2.53
$./configure
...[Output of configure]...

$ make
...[Output of make]...

$ su
Password:
make install
...[Output of make install]...

exit
$

Once nmap has been installed, you’re ready to get on with the installation and use of

SAINT itself. The latest version of SAINT can be downloaded anonymously and at no

charge from http://www.wwdsi.com/saint/downloads/. After you have downloaded the

source tarball to your hard drive, installation is very easy, because Linux is one of the

primary platforms for which SAINT is developed.

314 Hour 21

Extract the source code, configure, and compile. You can run a make install if you

want, but this will only install a manual page for SAINT; the program itself will remain

in the source directory.

$ tar -xzf saint-3.1.2.tar.gz
$ cd saint-3.1.2
$./configure
...[Output of configure]...

$ make
...[Output of make]...

$ su
Password:
make install
mkdir -p /usr/local/man/man1
install -c -o root -g 0 -m 444 saint.1 /usr/man/man1/saint.1
#

Auditing and Monitoring 315

21

SAINT isn’t meant to be released in a “stable version” and then installed and

used that way for years on end. This is because network vulnerabilities and

attacks are constantly evolving. You can and should regard any installation

of SAINT as temporary, ready to be replaced with a new version or updated

with new information the next time you run an audit.

Audits should be run regularly, at least once a month with the latest version

of SAINT available if you are on a small network. On larger networks, this

should be done even more often.

Assuming that SAINT has compiled without errors, you’re ready to put it to work.

Using SAINT
You must be the superuser and have access to an X display in order to run SAINT,

because it runs in a Netscape window. To start SAINT, run the saint executable in the

source directory.

./saint

Within a few moments, you’ll be greeted by a Netscape window displaying the SAINT

title page, along with some basic information and a list of options. This page is shown in

Figure 21.1.

To begin scanning for vulnerabilities, choose the Target Selection option along the left

side of the browser window. This will bring up a page in which you can input the host-

name(s) or IP number(s) of the target or targets to be scanned by SAINT, as shown in

Figure 21.2.

316 Hour 21

FIGURE 21.1

The SAINT title page.

FIGURE 21.2

Tell SAINT which hosts

to scan.

Normally a scan is conducted on the local host, but you may also specify more than one

host by separating the names of hosts, or even entire subnets to be scanned, with spaces.

When you have input the host or hosts that will be scanned, scroll down to the bottom of

the page to select the scanning intensity. In general, especially for a first scan, you want

to select the most intense type of check possible. You should therefore select the Heavy+

scan to have SAINT check everything it knows how to check, as is shown in Figure 21.3.

When you are ready to proceed, click the Start the Scan button at the bottom of the form.

SAINT will display the warning shown in Figure 21.4, instructing you not to use the

open Web browser to visit any sites outside your network from this instance of Netscape,

which has been started by SAINT. Heed this warning—SAINT is running with

root-level access and storing runtime information using Netscape.

Auditing and Monitoring 317

21

FIGURE 21.3

SAINT should scan

very heavily.

FIGURE 21.4

Don’t use this browser

for anything else!

To proceed, click the Reload button in the Netscape window, and choose Yes when

Netscape asks if you want to repost the most recent form data. SAINT will then begin

the scan of the hosts you specified. The output of one such scan is shown in Figure 21.5.

When the check is complete, you can scroll through the output to study the things

SAINT has checked and verified. Near the bottom of the page, SAINT will also tell you

how many hosts were checked in this scan. When you are ready to see the problems or

potential problems that SAINT found on your host or network, scroll to the bottom of the

page and click the Continue with Report and Analysis link.

You’ll now see a page labeled Data Analysis, which gives you a series of options, each of

which will display information about vulnerabilities or potential vulnerabilities that

SAINT found on the hosts that it scanned. This page is shown in Figure 21.6.

318 Hour 21

FIGURE 21.5

A SAINT vulnerability

check in progress.

FIGURE 21.6

The SAINT Data

Analysis page.

The first link to check is the By Approximate Danger Level link under the Vulnerabilities

heading. This link will take you to a list of the vulnerabilities or potential vulnerabilities

SAINT found that are most likely to be a problem to you or your network.

Clicking the link will bring up a page that may be filled with links. Each link refers to

one vulnerability or potential vulnerability that SAINT found. Those that have been most

commonly exploited in the real world are marked with a Top 10 graphic, as shown in

Figure 21.7.

Each vulnerability is listed by host and title. You should visit each of these links in suc-

cession, paying special attention to those marked with the Top 10 graphic. These are the

ones most likely to cause you trouble. Each time you click a link, SAINT will display an

information page giving you some or all of the following details:

• The common name of the vulnerability and links to other detailed information

about the vulnerability at security organizations around the world.

• Information on how to determine whether or not the vulnerability affects you.

• The danger level it represents.

• The types and versions of operating systems or other software known to be

affected by the vulnerability.

• Possible solutions or correct steps that should be taken to eliminate the vulnerabil-

ity or recover from an attack.

Once such page is shown in Figure 21.8. Note the large traffic signal in the upper-right

corner of the page; this is a very easily identifiable indicator of the level of vulnerability.

A yellow light means that you may be affected, and a red light means that you are or

have already been affected by a vulnerability.

Each yellow-light vulnerability should be studied carefully to see if it affects your host.

If you can determine that it doesn’t, you can safely ignore the warning. All red-light

notices must be taken care of immediately, or you will certainly suffer the consequences

sooner or later, assuming that you haven’t already.

For the small network administrator, that’s all there is to using SAINT. There are a num-

ber of other capabilities to the Web front end; feel free to explore the Web interface and

study all that it has to offer. More details about command-line SAINT operation can be

found in the SAINT manual page (assuming you have installed it) at saint(1).

Auditing and Monitoring 319

21

FIGURE 21.7

Vulnerabilities plus

some Top 10s.

Staying Alert with SWATCH
SWATCH is a very simple tool written in Perl that performs a very simple task: It

watches whichever logs you tell it to watch, searching for log activity you’ve described.

When such log activity appears, SWATCH takes whatever action you have ordered.

Because SWATCH can execute any command in response to a specific kind of log activ-

ity, it’s incredibly flexible. You can even have it page you on your beeper or send you a

fax if you have those tools installed on your system.

Our SWATCH treatment will be fairly short and sweet. It’ll be up to you to configure

SWATCH to suit your own needs and circumstances and to perform the types of actions

you need it to perform in response to log activity.

Downloading and Installing SWATCH
The SWATCH utility can be downloaded from its fairly Spartan home page, located at

http://www.stanford.edu/~atkins/swatch/. It’s available only as a .tar file repre-

senting the current release.

Once you have downloaded SWATCH, extract it, visit the directory created during

extraction to hold the source, and run the Makefile.PL script using the Perl interpreter.

Note that you will need to have Perl 5.0 or later installed; earlier versions will not work.

$ tar -xf swatch.tar
$ cd swatch-3.0.1
$ perl Makefile.PL
...[Output of perl]...

$

320 Hour 21

FIGURE 21.8

An information page

with a yellow light.

After SWATCH has been built, you can install it with a simple make followed by a make

install; this will install both the main Perl script and the manual page.

$ make
...[Output of make]...

$ su
Password:
make install
...[Output of make install]...

#

Assuming that you have a working Perl installation and that all of the required Perl mod-

ules were also installed correctly, you now have a working SWATCH installation.

Using SWATCH to Watch Logs
Use of the swatch command isvery simple. Though there are a number of arguments

documented in swatch(1), the basic form of operation is

swatch -c matchfile --tail logfile

The logfile is the path to one of your system logs. This can be a log maintained by

syslogd or it can be some other kind of log altogether; SWATCH doesn’t care. The

SWATCH program is willing to watch any text file and treat it as an active log.

The matchfile is a short, simple file describing a series of text strings SWATCH is to

look for in the file and the actions SWATCH should take each time any of these strings is

matched.

The Match File Format
The SWATCH match file is a text file that begins with a watchfor keyword followed by

a regular expression indicating a pattern or series of patterns with which SWATCH is to

be concerned. The following is an example:

watchfor /ROOT LOGIN|uid=0/

Auditing and Monitoring 321

21

SWATCH also needs a number of additional Perl modules to run. Many Linux

operating systems install these modules or at least make them available as

part of a Perl module kit package.

If SWATCH is unable to find these modules, it will ask if you would like to

contact www.cpan.org or one of its mirrors automatically and install the

modules. This will work, but you will first need to interrupt the process,

enter su to become the superuser, and then restart the process again so that

the modules can be correctly installed.

This line will cause SWATCH to watch the log in question for the strings ROOT LOGIN or

uid=0 in order to stay abreast of root-level activity occurring on the system responsible

for the log being watched. After each watchfor line is a series of lines describing the

actions that are to occur when the pattern is matched. For example, after the

watchfor pattern, you might see the following:

echo red
mail addresses=admin@mynet.net:jz@w1x.org,subject=”.SW.ROOT”
bell 3

These lines cause SWATCH to display the relevant log entry in red on the terminal con-

trolling SWATCH. Then, SWATCH will mail the log entry to two addresses—

admin@mynet.net and jz@w1x.org—with the easily identifiable subject .SW.ROOT.

Finally, SWATCH will ring the terminal bell three times.

The list of actions continues on until the next watchfor line, which begins anew with a

different pattern to watch for. The actions SWATCH can be instructed to take are listed in

Table 21.1.

TABLE 21.1 Actions for the SWATCH Match File

Action Description

echo [mode] Displays the matching log entry to the controlling terminal. Optional

mode can be one of bold, underscore, blink, inverse, black, red,

green, yellow, blue, cyan, white, black_h (highlighted), red_h,

green_h, yellow_h, blue_h, cyan_h, or white_h.

bell [count] Rings the terminal bell. Optional count describes the number of times

the bell should sound.

exec command [args] Executes the specified command, with any supplied arguments. $N in

arguments will be expanded to whitespace-separated field N in the log

entry. $0 will be expanded to the entire log entry.

mail [addr],[subj] Sends the related log entry to the invoking user’s e-mail address. If

addresses=addr:addr:... is supplied, sends mail to the listed

address(es). If subject=”subject text...” is supplied, uses the sup-

plied subject as the subject for the message(s) being sent.

pipe command Sends the log entry to the standard input of command.

write [user] Writes the related log entry to the terminal of user. More than one

user can be listed by separating with a colon (:) character.

throttle h:m:s Specifies that if the log entry is repeated more than once in the supplied

time period (in hours:minutes:seconds), the action(s) for the match

should be carried out only once during that period of time.

continue Instructs SWATCH to attempt to match this log entry to other watchfor pat-

terns in the match file after actions for this pattern are complete.

322 Hour 21

Using these actions and well-constructed watchfor lines, you can have SWATCH moni-

tor your logs for almost any type of activity. A very simple file is shown in Listing 21.1.

LISTING 21.1 A Simple General-Purpose Match File

watchfor /ROOT LOGIN|uid=0/
echo red
mail addresses=admin@mynet.net,subject=”.SW.Root Activity”
bell 2

watchfor /REPEATED|repeated/
echo red
mail addresses=admin@mynet.net,subject=”.SW.Repeat Activity”
bell 2

watchfor /FAILED|INVALID|authentication failure|Unauthorized/
echo
mail addresses=admin@mynet.net
bell 1

watchfor /changed by/
echo blue
mail addresses=admin@mynet.net,subject=”.SW.Password Change”
bell 2

watchfor /caught signal|exiting|abnormal|aborted|restart|registered/
echo blink
mail addresses=admin@mynet.net,subject=”.SW.Unknown”
bell 2

watchfor /kernel:|init:/
echo blink
mail addresses=admin@mynet.net,subject=”.SW.System”
bell 2

watchfor /LOGIN FROM/
echo

The match file in Listing 21.1 attempts to track a general group of common but question-

able log entry types on many Linux systems and display them locally, notify an adminis-

trator, or both.

When you have SWATCH configured to suit your needs, you might consider starting it

somewhere in the background during the boot process for important log monitoring. You

also might dedicate a central log machine to logging all machines on your network and

monitoring those logs with SWATCH.

Auditing and Monitoring 323

21

Summary
In this hour, you learned to use SAINT and its Netscape-based graphical interface to per-

form a basic security audit on your system. You then learned how to search the informa-

tion provided by SAINT and use it to eliminate vulnerabilities found on your host or

around your network.

You also learned to install and use SWATCH, a simple but very useful tool for watching

system logs as they are written. Using SWATCH, you can continuously monitor logs for

certain important patterns and either notify an administrator(s) or take action based on

the matching entries occurring.

Q&A
Q I have a file or configuration issue that SAINT says may represent a vulnera-

bility, but I think it’s supposed to be there. Should I remove it anyway?

A It depends on a number of factors. First, if SAINT says that a given file may indi-

cate the presence of a backdoor or root kit but you are sure the file is original,

there is an easy way to be sure. Compare the file’s checksum, size, and date against

the original from your distribution package. If they match, the file is original. This

does not necessarily mean that it is safe. Be sure to check for updates from your

distribution maintainer in case the original file contains a vulnerability.

If SAINT is warning you about a configuration issue, you will need to apply some

critical thinking to the issues SAINT is raising. Is there another way to accomplish

the same thing in a less vulnerable way? If the issue is an enabled service or open

port, is it needed at all or can it be removed?

Remember, software programs like SAINT are only tools. You are the administra-

tor, and in the end the call—and consequences—are yours.

Q How do I know which strings to match in SWATCH?

Some of the strings in the sample SWATCH match file have never appeared in

my logs.

Shouldn’t you also include string “N” in your match file?

A There are almost as many different daemon and syslogd versions as there are

Linux distributions, so strings will vary from one system to the next, depending on

vendor and date of assembly. Even such basic things as the init binary can be

based on completely different code bases from system to system.

Your SWATCH match file will have to be based on experience. That is not to say

that you have to be hacked in advance in order to build a good file. There is a sim-

ple way to learn about the types of log entries you ought to watch for: behave

badly yourself!

324 Hour 21

By mounting your own series of “attacks” or at least “interesting” behavior on your

own network, you can see how each action will appear in your log, and you can

monitor for those strings. Running software like SAINT can generate a number of

log entries that may indicate to you that bad things are going on. Furthermore, you

actually have control over the logging of some system components—TCP

Wrappers and Apache, for example. Since you decide on the strings that will be

logged in the first place, it should be easy for you to match them with SWATCH.

Q My logs are very inactive, or empty.

A There are a few possible reasons for this.

First, empty or nearly empty logs that were once very active are an almost certain

indication that some sort of attack has taken place. Run SAINT to check for prob-

lems and look carefully at your old logs, paying special attention to the point at

which they stop. You may find that your system is already compromised.

Second, you may simply need to reconfigure your daemons to be more verbose in

their logging. This will have to be fixed in your init scripts, in /etc/inetd.conf,

and in your /etc configuration files on a case-by-case basis. You may want to con-

sider reinstalling or switching to a different distribution that does more logging.

There is one more slightly obvious reason that your logs may be empty. Have you

checked to ensure that your disk isn’t full and hasn’t recently been full? Syslog

will stop when it encounters a full disk and will not restart again on its own, even

if space once again becomes available.

New Terms
Security Administrator’s Integrated Network Tool (SAINT) An incredibly useful

scanner and vulnerability analyzer that is popular with system administrators. SAINT

tests a system for vulnerability to a large number of standard or common attacks and

generates a report that the administrator can then use to make his system or network

more secure.

Security Administrator’s Tool for Analyzing Networks (SATAN) An older piece of

software for analyzing security, upon which the newer SAINT application is based.

Simple WATCHer (SWATCH) A simple but powerful Perl script used to watch any

text or log file as it progresses and take action or make reports based on the information

that appears there.

vulnerability A term used to describe any way in which a malicious user or program

might violate your system. Default Linux installations usually have a number of vulnera-

bilities at first. It is your job as the system administrator to systematically try to eliminate

as many of them as you can.

Auditing and Monitoring 325

21

HOUR 22
Detecting Attacks in
Progress

This hour, you’ll learn to use a program called Snort to monitor all traffic on

your network actively and in real time to discover and report malicious

packets as they are in transit. Though probably too resource-intensive for

very small installations (one or two machines), medium-size networks can

certainly benefit from such monitoring.

You’ll also learn about a quick-and-dirty tool for formatting and tabulating

Snort’s alert output to make it more readable for administrators with a lim-

ited amount of free time.

What Is Snort?
In the simplest sense, Snort is simply a packet sniffing tool, designed to grab

packets as they travel across a network, so that they can be used for one pur-

pose or another. The strength of Snort, however, and what makes it so popu-

lar among system administrators, is its capability to search through this

network traffic and make decisions based on rule-matching with respect to

the sniffed packets.

Since the Snort user community is continually compiling rulesets about various classes

of attacks that have occurred on some network somewhere, every Snort user has the ben-

efit of thousands of man-hours of experience when he downloads one of the public rule-

sets from the Snort community.

Using Snort, all of these attacks can be logged and, if the system administrator is vigi-

lant, stopped. More details can be found on the Snort home page at http://

www.snort.org.

Special Snort Requirements
Because Snort is a very intrusive tool with respect to the network on which it is running,

there are some very specific guidelines that most users will want to adhere to when

deciding whether or not to run Snort.

It is generally a good idea to run Snort only when you can dedicate an entire machine on

your network to it. There are two reasons for this. First of all, Snort’s rule-matching capa-

bility is not without overhead; it takes resources to compare high-speed network traffic to

a large set of attack signatures continuously. A dedicated machine is therefore the best

candidate for Snort operation. Second, Snort’s packet-sniffing core capability places any

network interface it listens on into promiscuous mode, so in the interest of isolating such

an interface to the greatest degree possible, it should be run on a separate host.

Snort is best suited to operation on an internal network protected by a firewall. There’s a

lot of network traffic out there as a general rule, and the number of false positives (inno-

cent matches that appear to be attacks) that you’ll receive with an external Snort machine

makes for a large time investment. It simply isn’t practical for anyone on a small network

to dedicate as much time or energy to Snort as would be required when watching packets

outside a firewall.

If your network is very small—for example, if you can afford a firewall or a Snort sniffer

but not both—buy the firewall and pass on the Snort box. A firewall is a much more

essential defensive measure.

Also notable is the fact that Snort is most helpful on mixed networks, those that contain both

Linux and Windows machines. This is because Snort can catch many types of attacks or

compromises that many desktop versions of Windows can’t defend against or even detect.

Downloading and Installing Snort
The process of downloading, compiling, and installing Snort involves several compo-

nents, and not all of it is straightforward. You’ll need to be comfortable installing a few

files by hand on the machine where Snort will be installed.

328 Hour 22

Installing libpcap

The pcap library is required for Snort to operate. This library is standard on BSD Unix sys-

tems, but must be separately downloaded and installed on Linux systems. The pcap library

can be found on the ftp://ftp.ee.lbl.gov FTP site. The latest version of pcap will gen-

erally be symlinked to the name libpcap.tar.Z (filename is case sensitive).

After downloading the source code, extract it, run the configure script, and run a

make followed by a make install.

$ tar -xzf libpcap.tar.Z
$ cd libpcap-0.4
$./configure --prefix=/usr
...[Output of configure]...

$ make
...[Output of make]...

$ su
Password:
make install
/usr/bin/install -c -m 444 -o bin -g bin libpcap.a /usr/lib/libpcap.a
ranlib /usr/lib/libpcap.a
#

The pcap library is now installed. Notice, however, that no include files were installed.

There is an install-incl target in the Makefile, but in order to give the pcap includes

their own directory, they can be copied by hand to /usr/include/pcap and /usr/

include/pcap/net. A manual page can be installed with the install-man target.

mkdir /usr/include/pcap
cp *.h /usr/include/pcap
mkdir /usr/include/pcap/net
cp bpf/net/*.h /usr/include/pcap/net
make install-man
/usr/bin/install -c -m 444 -o bin -g bin ./pcap.3 \

/usr/man/man3/pcap.3
exit
$

The pcap library and the related include files have now been installed. It is possible to

compile Snort without installing the pcap library completely by adjusting some of the Snort

configuration options, described in the “Installing Snort” section later in this hour. Several

other popular network tools also use pcap, so it may be to your benefit to install it anyway.

Installing libnet

The latest version of the net library is found at http://www.packetfactory.net/

Projects/Libnet/dist/. As this book goes to press, the latest version present is

libnet-1.0.1b.tar.gz.

Detecting Attacks in Progress 329

22

Installation of libnet is fairly straightforward. Extract the sources with tar, run the

configure script, make, and then make install.

$ tar -xzf libnet-1.0.1b.tar.gz
$ cd Libnet-1.0.1b
$./configure --prefix=/usr/local
...[Output of configure]...

$ make
...[Output of make]...

$ su
Password:
make install
...[Output of make install]...

exit
$

No special file copies are required to install the net library.

Installing Snort
The latest version of Snort can be downloaded from the Snort download page, which can

be found at http://www.snort.org/snort-files.html. After downloading the source

code, you can extract, compile, and install it in more or less the usual way. Note, how-

ever, the additional options used in the following code. They adjust the paths for the pcap

library installation, which otherwise won’t be found correctly, and add Samba and flexi-

ble response support to Snort.

$ tar -xzf snort-1.7.tar.gz
$ cd snort-1.7
$./configure --prefix=/usr/local \
> --with-libpcap-includes=/usr/include/pcap \
> --with-libpcap-libraries=/usr/lib \
> --enable-smbalerts \
> --enable-flexresp
...[Output of configure]...

$ make
...[Output of make]...

$ su
Password:
make install
...[Output of make install]...

exit
$

Support for other features, including the capability to log information to databases like

Oracle, MySQL, or PostgreSQL, can be compiled in if you need such functionality. For a

complete list of options, call configure with the --help argument.

330 Hour 22

Using Snort
Before you can tell Snort to watch network traffic for certain patterns, you must have

rulesets containing patterns that match common attacks. Luckily, you don’t have to build

all of these rulesets yourself. A number of large, comprehensive rulesets have been com-

piled by the Snort community for machines operating in various roles.

To download one or several of these rulesets, visit http://www.snort.org/snort-files.

htm#Rules. Here you will find a list of text files that are ready for drop-in ruleset opera-

tion with Snort. Table 22.1 gives details on some of these rulesets and when they might

be appropriate for Linux users.

TABLE 22.1 Using Snort Rulesets

Ruleset Appropriateness

Backdoor Activity Most useful for Windows hosts; generates a lot of false alarms. Not

recommended.

Backdoor Attempts Most useful for Windows hosts; generates a lot of false alarms. Not

recommended.

Backdoor (Sig.) Most useful for Windows hosts. Recommended for mixed environments.

DDoS Recommended for all installations.

Exploits Essential for all installations.

Finger Recommended for all installations.

FTP Essential when FTP service will be available on the network.

ICMP Recommended for all installations.

MISC Recommended for all installations.

NetBios Essential when running Samba on a Linux host or when Windows hosts

are present on the network.

RPC Recommended for all installations.

Rservices Recommended for all installations.

Scans Recommended for all installations.

SMTP Essential when SMTP service will be available on the network.

Telnet Essential when standard Telnet service will be available on the network.

Virus Most useful for Windows hosts; recommended when local Windows hosts

will be using e-mail clients.

Web-cgi Essential when Web service will be available on the network.

Web-ColdFusion Essential when ColdFusion-based Web service will be available on the

network.

Detecting Attacks in Progress 331

22

Web-FrontPage Most useful for Windows hosts; essential when a Windows host will be

providing FrontPage-based Web service on the network.

Web-IIS Most useful for Windows hosts; essential when a Windows host will be

providing Web service on the network from an IIS server.

High False Alerts Miscellaneous rules that generate a lot of false alarms. Not recommended.

To compile your final ruleset, download all of the rulesets you want to use and simply

cat them together into a single file.

cd downloaded_rules
cat ddos finger rpc telnet exploits ftp misc scans \
> web-cgi web-misc icmp netbios > /etc/snort.rules
#

This file becomes your master ruleset. Be sure to check the Snort community often for

updated rulesets so that you’ll be prepared for the latest attacks and exploits.

To start Snort with your ruleset as a daemon that will watch in the background and log

alerts to a single log-style file suitable for watching with a program like SWATCH, start

Snort with this:

snort -D -A alert -c /etc/snort.rules

The default log file is located at /var/log/snort.alert. To make sure that Snort is run-

ning and listening correctly, run ifconfig and supply your network device as an argu-

ment; ensure that ifconfig reports that the device is in promiscuous mode.

As long as you keep Snort running, keep the rulesets you use current, monitor the Snort

log, and check out all reports of suspicious or malicious activity, you’re up and running.

For more information on using Snort, consult the manual page for snort(8) and the

Snort Web page.

Pretty Snort Reports
For some, the default Snort format may be a bit difficult to work with. More information

and statistics in a central location can certainly be helpful under certain circumstances.

Silicon Defense has created a program for such concerns known as SnortSnarf, which

can be found at http://www.silicondefense.com/snortsnarf/.

SnortSnarf is designed to be run from a CRON job or some other periodic execution tool. It

chews up the output from Snort, digests it, and creates very readable Web documents con-

taining alert tabulations and links to more details about many of the alerts Snort produces.

332 Hour 22

TABLE 22.1 continued

Ruleset Appropriateness

Since SnortSnarf is a preconfigured Perl script, no building or installation is required per se.

Simply place the SnortSnarf distribution where you want it and run snortsnarf.pl from

there.

Practical SnortSnarf Use
SnortSnarf is best called with a script from a CRON job or some other type of periodic

execution daemon. A number of options are described at the top of the snortsnarf.pl

file itself, but the simplest and most common syntax is

snortsnarf.pl -d outputdirectory snortfile

outputdirectory is the directory that should contain all of the generated HTML files. In

this directory, the file index.html will be the root document for SnortSnarf’s statistics

and analysis. The snortfile argument refers to the Snort alerts file.

Though the number of potential deployment methods is nearly infinite, a simple script that

could be called from a CRON job to rotate and update Snort alert data and SnortSnarf out-

put is shown in Listing 22.1.

LISTING 22.1 A Sample SnortSnarf Script

#!/bin/bash

DATE=$(date +%m%d%y)
mkdir /var/log/snortsnarf/$DATE

/usr/local/snortsnarf/snortsnarf.pl \
-d /var/log/snortsnarf/$DATE \
/var/log/snort.alert

mv /var/log/snort.alert /var/log/snort/alert.$DATE
gzip -9 /var/log/snort/alert.$DATE

The script in Listing 22.1 is a simple one. It can be run daily or even weekly. It simply

creates a new directory for the current day in /var/log/snortsnarf that will contain the

HTML output. Then it saves the current batch of Snort alerts in the /var/log/snort

directory to make way for the new day’s or new week’s alerts.

Summary
This hour you learned how to install and use a network sniffing system called Snort,

which has the capability to detect and log attacks as they occur and vulnerabilities as

they appear. When combined with a tool like SWATCH, Snort provides a potent one-two

punch in network defense.

Detecting Attacks in Progress 333

22

You learned which rulesets maintained by the Snort community are appropriate under

various circumstances. Remember to keep these rulesets updated with the latest informa-

tion from the Snort community if Snort is to remain an effective tool for you.

Finally, you learned how to use the Web-based tool called SnortSnarf to tabulate and ana-

lyze the Snort alert logs on a regular basis.

Q&A
Q I have a very fast machine that is behind a firewall. Can’t I use it to run Snort

and a number of other services as well?

A If you have reasonably trusted users on your internal network, this might be an

option. Trial and error will quickly let you know whether or not the resource

requirements of Snort will hurt the performance of other daemons.

While certainly not the ideal solution, on smaller networks with limited financial

resources, it can be necessary at times to run many services, including Snort, on a

small number of machines or even on a single machine.

Q I want to watch for Snort activity with SWATCH. What alerts do I pay atten-

tion to and what alerts do I ignore?

A This is where your job as system administrator comes in. Every Snort installation

will generate false alarms. If you choose to have SWATCH notify you in a very

paranoid fashion of every little bit of Snort activity, you’ll quickly learn to ignore

the warnings. Later on, when it’s not just “crying wolf,” you’ll regret that you

made SWATCH so noisy with respect to Snort alerts.

Since the false alarms generated by Snort will vary from installation to installation,

it will be up to you to work with your Snort rulesets and your SWATCH monitor-

ing until you get the balance right. This can be done only through experience.

New Terms
packet sniffer A program that can see all data traveling across a network and record or

analyze it. Packet sniffing can be used either for good (as is the case with Snort) or mali-

cious purposes (such as data or password theft).

promiscuous mode A mode of operation for an ethernet device in which it will accept

and process all packets it receives, rather than silently dropping packets that are not

specifically addressed to it.

334 Hour 22

ruleset A complex group of patterns consisting of packet types, network ports, sources

and destinations, and even text data strings. These patterns can be used to uniquely iden-

tify various types of attacks and suspicious or malicious behavior on a network.

Snort A packet sniffer and rule matching program designed to monitor network traffic

and log attacks or various suspicious events as they occur.

SnortSnarf A Web-based tabulation and analysis tool for making more effective use of

Snort’s alert output.

Detecting Attacks in Progress 335

22

HOUR 23
Preserving Data

This hour, you’ll learn some of the basics of making timely backups under

Linux. You’ll learn about tar and afio and be given a brief overview of

some of the more popular commercial backup solutions for Linux systems.

When you’re done, you should have enough information to make timely and

complete backups and to protect them well.

Data Backups and Security
What do system backups have to do with Linux security? Everything. Back-

ups and security are intimately related because of the potential effect that an

intruder or malicious user can have on the data stored in your system(s).

The information presented thus far in this book has been designed to help you

to ward off potential threats—to protect your system from crackers, sniffers,

script kiddies, and thieves. However, it is almost inevitable that at some point,

no matter how vigilant you are, at least some part of your system will be com-

promised. This is simply the nature of a networked world. Just as crime in the

real world will eventually touch every citizen in some way, crime in the data

world will eventually touch every citizen in some way.

Preserving Your Valuable Data
When your system is compromised, a malicious intruder or Trojan horse program may

gain write access to some or all of the data on your system. A primary worry, of course,

is that such an intruder may gain access to data that is intended to be private. Another

worry that is no less valid, however, should be that the intruder or malicious program

may simply delete in an unrecoverable way vast amounts of irreplaceable data. This can

happen only if you don’t have well-maintained backups stored somewhere away from the

system or network that was compromised.

Modified System Binaries
It’s not only your data that is vulnerable, however. Believe it or not, your program bina-

ries and configuration files are just as vulnerable and represent an even bigger problem—

the threat of future vulnerability. This is because any intruder who gains write permission

to the program binaries in your system will have the capability to replace any of them in

a clandestine fashion with modified binaries. These modified binaries will often bear all

the hallmarks of the originals, including things like size and date. They may even appear

to function identically. However, the modified binary inserted by a cracker or malicious

user will usually contain a back door of some kind.

A back door is a hidden way—such as a secret password, listening on a secret port, or

recognizing a secret series of network packets—for the malicious user to re-enter your

system without your knowledge, even after you have analyzed his attack and tried to

secure your system.

The Root Kit
In the Linux world, one of the most common discoveries about a compromised system is

that a root kit has been installed. A root kit is a group of modified binaries that can

replace things like login, ls, syslogd, and other system-level tools.

A root kit is particularly dangerous because it is designed in such a way as to prevent its

own discovery. For example, the modified login program in a root kit might accept the

intruder’s secret password for root access—a back door. A modified ls might then be pro-

grammed not to display extra files or system modifications introduced by the intruder.

Other modified programs and configuration files participate in the deception while possi-

bly even introducing other back doors.

Because of this danger, it is almost never safe to continue to use a compromised system

on a network. There are only two ways to ensure that every system binary and every con-

figuration file is restored to an uncompromised state. One way is to wipe the hard drive

338 Hour 23

clean and reinstall Linux from your installation CD. The other is to wipe the hard drive

clean and restore from a series of backups made before the system was compromised.

Most users prefer the latter.

Using tar and afio for Backups
Despite the proliferation of user-friendly backup solutions, tar and afio remain the two

most commonly used standbys for Linux data storage and retrieval. This is probably

because tar and afio are both small enough to fit on a rescue floppy, and neither

requires any support infrastructure in the form of additional libraries, configuration files,

or graphics support.

Simple Backup and Restore with tar
The tar command can write archive data to a file or to a tape or raw disk device. The

syntax for a typical tar command is as follows:

tar -[c|x|t] [-pv] -f device path1 path2 ...

Each invocation of tar requires a command, usually c for create, x for extract, or t for

test. The p option instructs tar to preserve original file ownership and permissions when

extracting. The v option instructs tar to operate verbosely. The f option and the argument

that follows specify that tar should write to the given device. All arguments to tar given

by path1, path2, and so on are directory trees or files that are to be added to the archive.

For example, to write the /usr tree to the tape in the drive located at /dev/st0, the

command is

tar -cf /dev/st0 /usr

Preserving Data 339

23

At first glance, it appears that a simple command to back up an entire Linux

file system to tape is

tar -cf /dev/st0 /

However, be aware that this command is generally not what you mean to

do. First of all, this command will attempt to back up the /proc directory as

well. Depending on your kernel version, this may add hundreds of

megabytes of unwanted kernel runtime data to your backup or even cause

tar to freeze or segmentation fault.

Backing up the root directory (/) also backs up the /mnt directory, where

things like mounted CD-ROM data are often found, and any mounted net-

work file systems (which can be a good thing or a bad thing, depending on

what you intended to do).

When a tar archive is created, the leading slash (/) will normally be removed from each

filename. This means that when the files are restored, they will be restored relative to the

working directory in which tar is being run. For example, to restore files from the tape

in /dev/st0 to their original location, the command is

cd /; tar -xpf /dev/st0

During extract (restore) operations, additional paths can be specified. These paths then

represent the limited list of files that are to be extracted. Wildcards are permitted. To

restore only the /usr/X11R6 and /usr/local trees to their original location from the tape

in /dev/st0, use

cd /; tar -xpf /dev/st0 ‘usr/X11R6/*’ ‘usr/local/*’

To restore the data stored on the SCSI magneto-optical drive at /dev/sdc relative to the

/usr/local tree on the local machine, preserving all permissions and ownership and dis-

playing the names of files as they are restored, use

cd /usr/local; tar -xpvf /dev/sdc

You can use the tee command to display the list of processed files to the terminal while

at the same time writing the list to a file:

cd /; tar -xpvf /dev/sdc | tee /var/log/restored.files

Additional information on using tar for more complex operations, including multivol-

ume or incremental backup and restore, can be found in tar(1).

340 Hour 23

To back up your root directory but except the /proc and /mnt directories, try

constructing a command like this one:

tar -cf /dev/st0 $(ls -1 / | grep -v -e proc -e mnt)

This will back up all directories in the root directory but leave out the /proc

and /mnt trees.

There’s a reason the z option for tar hasn’t been mentioned here. While it’s

true that, for example, tar -cz will create a compressed tar archive, the

compression of the tar command is stream based.

This means that if you are storing to magnetic tape, which is often affected

by high error rates, and an unrecoverable bit error isencountered, you will

not lose only that file. You’ll lose the entire tape.

Because of this, use of the z option with tar is recommended only for low-

error media such as magneto-optical. Note that this problem is not related

to tape drives that employ hardware-based compression, thereby making

software compression unnecessary.

Simple Backup and Restore with afio
The afio command is a similarly simple alternative to tar that is favored by some users

for one of two main reasons. First, afio archives can be made interoperable with systems

that support the cpio command. Second, afio supports per-file compression, making it

much more suitable for making compressed backups to magnetic tapes that don’t employ

their own hardware-based compression.

Preserving Data 341

23

Your distribution may not ship with an afio package. If so, you can get the

afio source code in the classic Metalab Linux archive at ftp://metalab.

unc.edu/pub/Linux/system/backup.

Because afio accepts the list of files to archive as a standard input stream, the basic syn-

tax for using afio as an archive tool involves two commands:

find path1 path2 ... [-opts] | afio -[i|o|t] [-vZ] device

The -i command restores (inputs from) a tape or archive, the -o command writes (out-

puts to) a tape or archive, and the -t command tests a tape or archive. The -v option

causes files to be listed as they are processed, and the -Z option causes each file to be

compressed with gzip before being written to tape.

Since the find command is generally used to provide afio with its list of files on which

to operate, it is possible to construct a much more specific and flexible file-archiving

scheme with afio by using the special capabilities of find.

In the simplest case, however, things remain short and sweet. To write the /usr tree to

the tape inserted in the drive at /dev/st0, use

find /usr | afio -o /dev/st0

To write the same archive, but compress it before writing each file to tape, use the following:

find /usr | afio -o -Z /dev/st0

To restore the archive relative to the root (/) directory, use the -i command instead of

the -o command:

cd /; afio -i /dev/st0

To restore an archive that was compressed, remember to include the -Z option:

cd /; afio -i -Z /dev/st0

Verbose operation has the same effect as it did using the tar command. To restore the

archive while displaying the list of processed files to the terminal and to a file in

/var/log, use

afio -i -Z -v /dev/st0 | tee /var/log/restored.files

342 Hour 23

The method for restricting the list of files to be processed is a little more

complicated in afio than it is in tar, so we won’t go into it much here.

The -y option and an argument in the form of a shell pattern cause files

matching the supplied pattern to be processed and files not matching the

pattern to be excluded.

The -Y option and an argument in the form of a shell pattern cause files not

matching the supplied pattern to be processed and files that do match to be

excluded.

Additional information on using afio for more complex operations, including multivol-

ume (multi-tape) support and double-buffering for speed, can be found in the afio man-

ual page at afio(1).

Using mt to Operate Tape Devices
While tar and afio are used for writing to and reading from data storage devices, mag-

netic tape drives generally require more intervention than simple read or write com-

mands. Functions such as tape loading and unloading, rewind, retensioning, density

configuration, and fast file searching are not supported by tar or afio.

The mt command is used to control tape devices. The basic syntax used in common situ-

ations with mt is

mt -f device operation_command [arguments]

A list of the most common operation commands and their arguments is shown in Table 23.1.

TABLE 23.1 Common mt Operation Commands

Command Description

rewind Rewinds the tape.

offline Rewinds and ejects the tape.

status Shows the current status of the tape drive, including whether or not a tape

is present and, if so, the density being used to write to the tape.

retension On streamer devices (whose tapes require periodic retensioning), causes

the tape to be wound completely onto the second reel, then back to the

first reel.

erase Blanks the tape. Note that this is not the same thing as formatting; floppy-

interface tapes must be formatted before a successful erasure can take

place.

datcompression n If n is 0, turns compression off for the specified device. If n is 1, turns on

compression for the specified device.

fsf n, bsf n Searches forward or backward n archive files on the tape device.

fsr n, bsr n Searches forward or backward n records in the current archive file on the

tape device.

eod Positions the tape immediately after the end of the last archive file stored

on the tape, so that a new file may be appended to the tape.

Using mt and tar or mt and afio together creates a reasonably complete backup and

restore solution for working with magnetic tape devices that can fit on a single floppy or

run on memory-limited systems.

More information on using the mt command, including advanced features like density

selection, can be found in mt(1).

Using mtx to Operate Changer Devices
Low-end magnetic tape changer devices have dropped radically in price over the last few

years and have thus become much more popular on smaller networks. Tape changers

have the advantage of flexibility: The multiple tapes in the changer can either be used

to hold a great deal more data at one backup cycle or they can be used to implement

intervention-free rotating backups.

The command needed for control of tape changer devices in Linux is the mtx command.

Note that mtx controls only the robot in the changer device; the read/write mechanism

itself is controlled by the mt command. The mtx command can be downloaded from

http://mtx.sourceforge.net.

The syntax for mtx is as follows:

mtx -f generic-device command [args]

generic-device is one of the Linux SCSI generic device nodes: /dev/sg0-sgn on some

systems and /dev/sga-sgz on others. Check your own /dev directory and the informa-

tion in /proc/scsi to determine the /dev/sg device that refers to your changer. Though

Preserving Data 343

23

TABLE 23.1 continued

Command Description

there are a number of different commands understood by mtx, the most important clearly

are load and unload, which are self-explanatory.

To load the tape in slot 2 from the changer pointed to by /dev/changer into the drive, use

mtx -f /dev/changer load 2

The command exits normally if the tape is successfully loaded or with a nonzero exit sta-

tus on error. To unload the tape back to slot 2, use

mtx -f /dev/changer unload 2

The next and unload (no arguments) commands simply load the next tape found in the

changer or unload the current tape into the slot from which it came, respectively:

mtx -f /dev/changer next
mtx -f /dev/changer unload

Other commands understood by the mtx command can be found by consulting the

mtx manual page at mtx(1).

Scheduling, Rotating, and Preserving Backups
It is not enough to write all of the data on your hard drive or on the NFS file systems on

your network to tape once and assume your backup problem to be solved.

If you do any kind of real work at all, data on your systems is constantly changing.

Furthermore, tape media gradually deteriorate, so it’s helpful to have more than one

backup around. One set of tapes might be inadequate—if you overwrite your only

backup tape each night, what happens if you want to recover a file that was accidentally

deleted last Thursday? Finally, what happens if the entire place burns down? Will your

tapes be safe, or will they go up in smoke with your systems and hard drives?

Thinking ahead can be more than half the battle when it comes to maintaining useful

backups.

Scheduling Backups
Because your data is constantly changing, you should back up often. If your system is

hacked and you are forced to restore from tape, you probably won’t find a backup tape

you made four months ago to be of much help. Even a one-month-old backup can be

next to useless, depending on the freshness of the data you work with.

It is therefore important to schedule your backups. This isn’t always as difficult as it sounds.

There’s no need to write a “backup date” in your Palm scheduler so that you can remember

to insert a tape and run tar once every Thursday. A simple CRON job involving a call to mt

and a call to tar can be more than enough to make your DAT drive work for you.

344 Hour 23

Consider the following:

mt -f /dev/st0 eod; tar -cf /dev/st0 /home

This simple command spaces to the end of existing data and writes a new tar archive to

the tape using the contents of the /home directory. Assuming your DAT drive holds 12

gigabytes uncompressed and your /home tree is about 2 gigabytes, you could use this

command as a weekly CRON job and have to switch tapes only every month or so.

If you need nightly backups and can enable DAT compression, you may find that you

can replace the tape once every Monday morning, automatically keeping a week’s worth

of backups going all the time.

Rotating Backups
Under ideal circumstances, when your month (or your week) of scheduled backups is up,

you will simply eject the tape, label it with the week (or month) it contains, and file it

away safely, never to be written to again. It will then always be on file should you need

data it contains.

If you absolutely must reuse tape media, don’t use the same tape over and over again.

Keep at least three or four media units on hand; that way, on Monday morning you won’t

eliminate your only existing backups when you begin writing to the start of the tape again.

When you’re finished with the first tape at the end of the week, insert tape two. At the

end of that week, insert tape three. Only after the third week do you reinsert the first tape

again. That way, you’ll always have yesterday’s backup and last Friday’s backup avail-

able as well.

Tape changers can be especially useful in this regard. For example, assume for a moment

that you are using a six-tape changer and that you can afford to fill all six slots with

media. Consider the extremely simple script shown in Listing 23.1, which takes advan-

tage of the date command and the built-in math capabilities of bash.

LISTING 23.1 Simple Rotating Changer Script

#!/bin/bash

This line sets the SLOT variable to contain the remainder
of the current week number (0-52) of the year divided by
the number of slots in the changer (6).
SLOT=$[$(date +%U)%6]

This line makes sure that no tape is already loaded
mtx -f /dev/changer unload

This line loads the correct tape for this week

Preserving Data 345

23

mtx -f /dev/changer load $SLOT

This line searches to the end of data
mt -f /dev/st0 eod

And this line writes the /home tree to tape

tar -cf /dev/st0 /home

A script like the one in Listing 23.1 can automatically rotate the tapes in your changer on

a weekly basis, meaning that you can have rotating scheduled backups indefinitely with-

out any intervention at all.

Of course, in your own scripts, you’ll want to include some error condition checking,

archive verification, and so forth—but the possibilities are clear.

Backups at Multiple Locations
What about that fire we mentioned, or a malicious intruder who gains access to your

server’s tape changer, in which all of your rotated backups are sitting? Now we’re getting

into escalating costs, but it’s still possible for many small businesses.

At the very least, buy a fire- and waterproof safe and put your rotated tapes into it for

safekeeping. Though they still won’t necessarily make it through a calamity, their

chances will be greatly improved, and they will be under lock and key as well.

Even better, however, is to make multiple simultaneous or near-simultaneous backups in

multiple locations. If you can afford to do so and have the equipment to do so, buy two

streamers or two changers. Keep one in the office and one in the other office or, if you

can afford a reasonably fast pipe, at home. In your scripts or CRON jobs, run the backup

twice—once to the local drive and once to an identical or similar drive on a remote

machine. Your data is now reasonably well protected against catastrophic loss.

For those who can afford not to be do-it-yourself backup artists, commercial network

backup services exist that allow you to store your data safely under lock and key in fire-

proof, guarded installations with lots of insurance protection.

Proprietary Backup Software
Though the combination of tar/mt/mtx or afio/mt/mtx will work well for many users,

some users simply aren’t comfortable with command-line tools, and still others require

more sophistication and network-readiness than tar or afio can provide. Because of these

needs, two very popular commercial Linux backup solutions should be mentioned here.

346 Hour 23

LISTING 23.1 continued

Backup and Restore Utility (BRU)
The BRU application is perhaps the most popular GUI-based backup and recovery utility

available for Linux. It is shipping or has shipped as a standard part of several retail Linux

distributions.

BRU supports backup of live file systems and a number of different types of network file

systems, as well as per-user backups and restores even in NIS-enabled environments.

BRU also supports crash recovery features designed to help bring a system back online

from catastrophic data loss as quickly as is possible. BRU archives are portable across a

wide range of BRU-supported platforms, including Windows NT.

More information about BRU can be found at http://www.estinc.com.

Arkeia
Arkeia is perhaps the most celebrated of Linux backup solutions, and with good reason—

it’s designed to handle the backup needs of the largest of networks.

With extensive multiplatform, multiprotocol, and robustness features, Arkeia is the first

choice for many Linux users. Arkeia sports a flexible, smart implementation, including

sophisticated network monitoring and choice of client-side or server-side compression to

preserve resources of all kinds optimally.

Perhaps more interestingly, a full license to use Arkeia on a small network (one Linux

server and two clients) is free. More information on Arkeia can be found at

http://www.knox-software.com.

Summary
This hour you learned about the importance of maintaining multiple current backups in

as secure an environment as is possible, in order to be able to recover more fully from

malicious attacks of all kinds.

To help you to achieve this goal, you have learned the basics of using your choice of tar

or afio in conjunction with mt and mtx (for magnetic tape devices) to maintain backups,

including scheduled, rotating backups using CRON jobs.

Finally, you learned briefly about two popular Linux backup solutions for those who are

uncomfortable using command-line tools like afio, tar, mtx, and mt or for those who

find the standard tools lacking in some fashion.

Preserving Data 347

23

Q&A
Q Is there a way to support the advanced random access and fast search features

of my DAT drive?

A A variety of tools for KDE, GNOME, and the command line exist for DAT devices—

too many to list here. Unfortunately, there is no de facto standard or even common

favorite among these software packages; they all have their strengths and weaknesses.

To find some of them, visit a Linux application site such as http://linuxapps.com

or http://freshmeat.net and search for the strings dds and dat.

Q Can I back up to a raw Zip disk?

What device do I use to back up to a raw MO disk?

Can I back up to a file?

A Writing using tar or afio to raw devices like unpartitioned Zip disks or MO disks is

simple; use the device name for the drive in question. For example, if your IDE Zip

drive is /dev/hdc, insert a disk and tell tar or afio to write to /dev/hdc instead of a

tape device like /dev/st0.

To write to a file, just provide a file instead of a device. For example, consider the

following:

tar -cf /mnt/net/home.tar /home

This command would back up the /home tree on the local system to the file /mnt/

net/home.tar. The restore operation would be identical—just supply the name of

the tar or afio file instead of a device node.

Q What is the best media for long-term archiving?

A The best media for long-term data storage is optical media like CD-R, CD-RW,

DVD-R, or magneto-optical. CD and DVD formats have an especially long life—

some types of CD and DVD media boast a 300-year data life expectancy. However,

since the CD and DVD formats generally do not support random writes or variable-

speed streaming, they are unsuitable for use as general-purpose backup devices.

Magneto-optical (MO), on the other hand, can be used with afio, tar, and other

backup software just as you would use any other removable storage device. Though

data life expectancy on MO disks is somewhat shorter (on the order of 50 years), it

is significantly longer than the data life expectancy of magnetic media.

Magnetic media such as DAT tapes or Zip and Jaz disks, while very popular, are

among the worst for long-term storage. Magnetic media have an expected data life

of 2–5 years. In a sense, many traditional paper documents have a better life

expectancy. Be sure to account for this when designing your backup and data

preservation procedures.

348 Hour 23

New Terms
back door A secret vulnerability put in place by an intruder who has compromised your

system. This vulnerability can then be used in the future to gain access to your system

again.

root kit In a sense, a root kit is like a complicated back door. It is a series of files put

in place by an intruder for devious ends, often in such a way as to disguise the changes

that have occurred.

rotating backup Scheduled backups occurring not only on a single tape but on a series

of tapes in rotation.

scheduled backup A periodic backup run by CRON or some other periodic execution

daemon.

Preserving Data 349

23

HOUR 24
Recovering from Attacks

In the final hour of this book, you’ll learn what to do if in spite of your best

efforts you find that your system has been violated. You’ll learn the steps to

take to protect yourself and your network against further harm, and how to

get back online quickly, safely, and without risk of further mischief from the

same intruder.

The Telltale Signs
Three tools have been covered in this book that provide your best notifica-

tion mechanism for illicit activity on your system or network:

• SAINT, when run as a weekly audit, is able to detect the telltale signs

left over from many kinds of attacks and point you to the files that

have likely been compromised under such circumstances.

• SWATCH monitors your logs and can report suspicious activity to

you. By paying attention to your logs using SWATCH and checking

out each notification or warning it gives you, you’ll know when some-

thing is about to happen or already has.

• Snort monitors for a large variety of attacks, back doors, and distributed denial-of-

service evidence and records an alert for all such activity. When a Snort alarm goes

off that you are unable to discount, you’ll often find that you have been the victim

of an attack.

In addition, there are a few telltale signs that you may have been compromised in some

way. You should watch for these carefully:

• The sudden presence of a new account that you didn’t create in the /etc/

passwd file. If you find one of these, your system has been compromised.

• The failure or odd behavior of system binaries that are normally nearly invisible.

For example, if you are suddenly unable to log in to your system from a console,

or your system logs suddenly go silent, there is a good chance that a root kit has

been installed on your machine. Check the integrity of the related binaries (such as

login or syslogd) against known good binaries on another system, and run SAINT

to see if it discovers anything.

• Lots of unexplained network traffic is also good evidence that all is not well.

Sometimes it is even more obvious than simply “lots of traffic.” If a call to

netstat reports lots of open connections to a system you’re not familiar with on

rarely used and high-numbered ports, you’ve likely been compromised. This is

especially true if these connections are “magically” opened again without your

help every time you reboot.

In general, anything unusual and unexplainable should cause you to take a closer look.

Examples include heavy CPU load that can’t be accounted for, files or directories that

can’t be read even by root, or the failure of your system to ask for a password when you

log in at a console.

Be vigilant!

Worst-Case Scenario
This is it. You saw some weird behavior in your system and checked it out, or you got an

alert from Snort or SWATCH. Your system has been compromised.

What now?

Pull Offline Immediately
The first order of business is to get the system disconnected from the network. Any user

malicious enough to break into your system is not likely to stop and follow the law imme-

diately afterward. Chances are that he is proceeding with additional illegal behavior, most

352 Hour 24

likely against other systems, and your system may be one hop in his path, potentially

implicating you in his crimes. There is no time to waste.

Unplug the network cable. If you are unable to do this safely for some reason for a single

host in your network, disconnect your network from the firewall/router unit so that the

outside world is no longer a threat.

Disentangle the machines as quickly as possible and isolate the compromised machines

from the others. There isn’t a long history of viruses or worm-like attacks with Linux,

but it isn’t out of the question by any means, so you’ll need to try to quickly break the

link between the compromised system and other systems on your internal network.

When administering large networks with large amounts of resources, there may be time

for romantic ideas like stealthily watching a criminal in your logs and gathering informa-

tion until you suddenly spring on him with law enforcement at your back. However, this

is the real world, and most mom-and-pop operations with one to five machines or even a

few more just can’t afford to waste time. Better to get things moving along toward recov-

ery; you won’t catch this guy single-handedly.

Stop Linux
Because malicious software installed by crackers can do some very nasty things, you

don’t want to leave this system running while you try to analyze what went wrong. You

could lose data or hardware (yes, even hardware) in the process as destructive programs

dance through your drive space or your system’s various flash ROM units.

Become root using the su command, if possible, and issue the reboot command:

shutdown -r now

If you are unable to use the root account for some reason (for example, the su binary

and login binary have both been compromised to lock out legitimate root use) and you

have Magic SysRq key functionality installed in your kernel, do an emergency sync.

Whether you can emergency sync or not, if you are unable to shut down legitimately, use

the reset button immediately.

Recovering from Attacks 353

24

The Magic SysRq key is really a series of special keystrokes that instruct the

Linux kernel to perform specific tasks if a system has become unstable.

The SysRq key can be enabled with a compile-time kernel option (the last

option in the kernel configuration process) or by writing 1 to the

/proc/sys/kernel/sysrq file as the superuser:

echo 1 >/proc/sys/kernel/sysrq

Boot Cautiously
Enter the BIOS setup utility for both your motherboard and any additional controllers you

have in your system in the process of restarting. Ensure that all of the settings still look

correct and that nothing is out of place before you attempt to continue booting. If some-

thing seems to have been changed, change it back. If you notice anything really suspi-

cious, it may be to your benefit to power down the system entirely and move the hard

drive to a secondary role on another machine so that you can get to the data there instead.

If you can get a LILO: prompt, boot into single-user mode by supplying the word

single as an argument to the Linux kernel on the command line:

linux single

If you are unable to get to a LILO: prompt (meaning that either your boot sector or your

BIOS has been modified past the point of recovery), get a rescue floppy of some kind.

One set of convenient and relatively complete floppies can be found with the Slackware

Linux distribution at http://www.slackware.com.

The goal is to get the data on your hard drive(s) mounted in the safest way possible,

either in the single-user read-only context or read-only on a file system tree other than

root on a separate system.

Archive What’s Left
Before attempting to discover what went wrong, who hacked in and how, or any other

details, it’s important that you preserve what exists at the moment you took the system

down. This has several functions:

• It ensures that no matter what happens during discovery and restoration, you will

be able to get to data files (databases, word processing files, e-mail, spreadsheets,

and so on) that aren’t damaged by restoring them from a backup medium.

• In cases in which the system must be brought online again as soon as possible, it

provides some way for you to inspect the files that were on the system and try to

determine where and how the attack happened.

354 Hour 24

If you suspect your system has been violated and your SysRq key is enabled,

use the Alt+SysRq+U keystroke combination to remount all file systems as

read-only and then use the Alt+SysRq+S keystroke combination to sync all

file systems. It may be a good idea to repeat these keystrokes several times,

waiting a second each time, to ensure that they take effect.

Once you have remounted your file systems as read-only and performed an

emergency sync, you can safely hit the reset button on the front of your case.

• It covers you legally, at least to some extent. Law enforcement hasn’t quite caught

up to the digital age yet in all respects; you might be able to get your local police

department or the FBI to file a report on the crime, but you’d better not hold your

breath. Having a backup of a compromised system is proof that your system was

attacked and is some measure of defense if the cracker used your system in some

kind of illegal activity when he was in.

If possible, make two copies of the system, one as a backup or in case it is subpoenaed at

some future date as evidence. Label them clearly and lock them away in a safe.

Understanding What Happened
In spite of the cracker’s success in compromising the system, you’ll often find that it’s

relatively easy to determine what went wrong. The vast majority of the crackers loose on

the Internet today are script kiddies, relatively unsophisticated crackers who use scripts

or vulnerabilities developed by others to break into networked computer systems match-

ing certain predefined criteria.

Script kiddies are successful far too often but, more often than not, they also leave

behind a number of telltale footprints. If you know what you are looking for, it can often

be a simple task to find them.

By far the most common types of attack against Linux systems are buffer overflow

attacks against various daemons or network services. These are usually easy to spot

because one of the most recent log entries or SWATCH alerts will read as an error mes-

sage from the daemon in question, often filling the log with garbage as well.

Physically connect the root drive as a second drive to another system, if possible, and do

a search using find for files or directories (especially binaries) that have been recently

modified. Often, these will be hidden or disguised with correct dates and modification

times, but a good percentage of the time they will not.

If your system has package management, restore the package management databases

from a backup made before the compromise took place, along with the package manager

itself. For example, many systems store the rpm database in /var/lib/rpm. Restore these

from your backup, along with the rpm program. Then, verify all packages:

rpm -Va

Note the differences. There shouldn’t be many, and any differences to critical system

binaries like login, ls, and so on will at least let you know which files were compro-

mised by the attack.

Recovering from Attacks 355

24

The primary reason to want to understand what happened is so that you can fix it next

time. If the log shows that the user got in through named, check your DNS configuration

next time. Make it more paranoid, and check for a package update with a later version of

BIND from your distribution maintainer. Once you understand that a particular aspect of

the system is vulnerable, you’ll be less vulnerable to the same attack again.

Notify the Authorities
In this case, the authorities means other Internet users, rather than law enforcement.

Specifically, it means trying to determine the source of the attack using your logs and

login information. A host number or network number is what you’re looking for, some-

thing to identify which machine was connected to your machine at the time the attack

took place.

Remember that the system on the other end may not necessarily be some dark criminal

organization. It may simply be that the system from which the cracker entered yours was

a system that he had previously cracked. The administrators of the other system may not

even be aware that it has been compromised.

If you can get an IP address from your logs or SWATCH alerts, the first step is to notify

the host directly. For example, if the attack came from 24.13.131.162, send mail to

root@24.13.131.162 and carbon copy abuse@24.13.131.162, describing what happened

and informing the administrator that the attack came from his host.

This alone doesn’t guarantee that your message will reach human eyes, however. The

host may be a dynamic address in an ISP dialup pool or a Windows host. Try to get

information about who the host is from the IP address you collected. The simplest way to

do this is with nslookup, which should be installed by default on most Linux systems or

sometimes can be installed as part of the DNS package.

$ nslookup 24.13.131.162
Server: newton.mynet.net
Address: 192.168.1.100

Name: c1333337-a.saltlk1.ut.home.com
Address: 24.13.131.162
$

Judging by the hostname associated with this IP address, it is indeed a line at an ISP

whose domain is home.com. Now that you have the provider of the IP address from

which the attack came, notify them at the abuse address (in this case, abuse@home.com)

that your system was compromised and that the attack came from a host within their

domain. Be sure to include the IP number of the attack source and the exact date and

time of the attack.

356 Hour 24

If you are unable to get a response, it is time to call /usr/sbin/traceroute, supplying

the guilty IP number as an argument (in this case, 24.13.131.162). A list of hops will be

printed out, many of them with domain names. At the bottom of your list is the IP

address in question. Move up the list one line at a time, mailing to abuse@ for each

domain until someone says that he will look into the abuse or until you reach your own

domain. Include a copy of the traceroute output and the exact date and time of the

attack with each message.

In all likelihood, the cracker involved will get booted from his current ISP and simply

move to another one, free to crack another day. However, at least you’ve caused the

cracker some inconvenience. On the other hand, you may actually help to catch a major

criminal instead of a mere script kiddie. At the very least, you will be helping to protect

others upstream of the cracker’s IP from legal trouble.

Getting Back Online
Once you’ve determined where your system’s weakness was (if possible), made a full

backup copy of the compromised system for archival purposes, and contacted the author-

ities about the abuse (if possible), you’re ready to begin working toward bringing the sys-

tem back online again.

Reformat and Reinstall
It’s inconvenient to reformat and reinstall, but it’s necessary to ensure that no compro-

mised binaries remain on your system. If possible, it may even be best to do a low-level

or controller-run format of the drive, to eliminate any shenanigans that may have gone on

with the drive’s boot sector or partition table. Don’t think of it as a lost system, think of

it as a chance to upgrade your operating system or clean out all of those old scattered

files that have been laying around for two or three years.

Once the drive has been blanked and repartitioned for use, install Linux from a canonical

source, such as your original CD. If you have an archive of additions and modifications,

such as a /usr/local/src archive on MO disk, reinstall those cleanly as well.

Restore Important Data
Now you can go about restoring your important data. If possible, restore from a tape or

backup media that was written before the compromise took place. If you must, retrieve

only user data files from the most recent tape made of the compromised system.

If you need to reinstall binaries and configuration files as well, do so from the early

backup, not the archival backup of the compromised system, and avoid overwriting any

Recovering from Attacks 357

24

existing binaries from your fresh installation. Both tar and afio support modes of oper-

ation that will refuse to overwrite existing files; most other backup software programs

have similar modes of functionality.

After you have restored the files you intend to restore, thoroughly inspect your /etc/

passwd, /etc/shadow, /etc/group, and security-oriented configuration files to ensure

that they were not tampered with earlier than you realized.

Require all users, including root, to change their passwords. Consider issuing new

account names as well, if you are able.

Take Care of the Vulnerability
Before bringing the system back online for full operation, be sure to repair the vulnera-

bility that caused your headaches in the first place!

The first place to check is with your distribution vendor. See if updated libraries, kernels,

daemons, or other packages are available that have fixed the weakness exploited by the mali-

cious individual who attacked your system. For an even better solution, simply download the

entire updates tree if possible and install it. Each of the updates is there for a reason.

If no package can be found that seems to repair the vulnerability you encountered, report

it to your distribution vendor through official channels and go in search of an unpack-

aged version of the compromised piece of code. For example, if the attacker entered your

system through BIND, and there are no BIND updates from your vendor, go to the home

page of the BIND daemon and see if there is a new release version that fixes the weak-

ness the attacker exploited but that your vendor hasn’t yet packaged.

If you can find no way to fix the problem, it may be time to consider disabling the ser-

vice altogether. Ask yourself: Is the service really important? Is it absolutely essential to

the functioning of my network? If the answer is no, switch it off and do without.

If you can’t find a fix and you can’t afford to switch it off, there is only one other way to

deal with the problem: Isolate the service on its own machine. Do almost nothing else on

that machine and store as little account and network data as is possible on the machine

until the problem can be fixed and the weakness eliminated.

358 Hour 24

If nobody appears to be aware that there is a vulnerability in a software

package that as far as you can tell has been exploited in your case, be sure

to submit a report of exactly what happened, along with the related log

information, to the programmers responsible for the piece of code involved.

Pay Special Attention to Repeat Visitors
Before taking the system back online again, there is one last step you may want to take:

snoop a little more on the port of entry involved in the attack. Though many script kid-

dies will never return, some will, and you may be able to get additional information on

them a second time. For example, you might get an IP number you weren’t able to get

the first time, which will help you put an end to their activities.

Configure TCP wrappers or Snort with some very strict logging rules. In the case of TCP

wrappers, you may even want to consider booby trapping the port or service involved so

that attempts from certain hosts or networks result in identification attempts on your part.

More information on these types of tactics and techniques can be found in the snort(1)

and hosts.deny(5) manual pages.

Go Back Online
Once everything is in place again, it’s time to take the system back online. Be sure that

all of the security tools are in place, if applicable, and consider making a backup of this

clean system as a final step, in case there are any unforeseen problems (damaged disk

flash BIOS memory, for instance) that force you to start yet again.

Try to play the optimist. You may have been compromised, but you have also gained valu-

able experience. In addition, by contacting the violator’s provider and the software devel-

opers involved, you’ve helped out others who may have been subject to the same attack.

Summary
This hour, you studied a basic roadmap that you need to follow if you find that a system

under your administration has been violated:

• Pull the system offline immediately so that no further damage can occur and any

criminal activity your system may be involved with is stopped.

• Reboot Linux into single-user mode. Even with the network down, bad things can

still be running and happening. Put and end to them and get the machine restarted.

Recovering from Attacks 359

24

Nearly all Linux components are free software maintained by open source

developers who depend on problem reports from real-world users to keep the

software functioning and safe. They’ll be happy to hear from you, and you

may get the problem fixed more quickly than it otherwise would have been.

• Make an archival copy (two if possible) of the compromised system so that you

will have information and evidence in the future if the need should arise for such

things.

• Study the logs and anything else in the system that may be relevant so that you can

find out what went wrong and who carried out the attack.

• If you can get an IP address, or even better a hostname, use it to contact the perpe-

trator’s ISP or even his ISP’s upstream providers to report the abuse. It’s not just

about you, it’s about helping others who may have been violated as well.

• Reformat to make the hard drive pristine if possible and reinstall Linux from a

canonical source. Reinstall any pristine source archives you’ve maintained on sepa-

rate media as well.

• Cautiously restore recent data and configuration files from tapes. Avoid restoring

binaries of any kind. Inspect restored account data and configuration files closely.

• Require all users, including root, to change passwords. Consider changing account

names as well.

• Take care of the vulnerability by obtaining and installing the necessary updates. If

they don’t seem to exist, report the exploit to your distribution vendor and to the

developers of the software in which the hole was found.

• Consider extra security measures or extra logging on the related ports or services.

• Take the system back online, making a full backup first if you are able so that you

will have a pristine starting point on media once again, just in case.

Of course, these steps are just a guideline; each case and each small network is different.

Most of all, don’t get discouraged or let things slide.

Hopefully, the previous 23 hours of this book will help you to avoid this situation alto-

gether. Unfortunately, security is an ongoing battle between the good guys and the bad

guys that isn’t likely to end soon. Always secure your system to the best of your ability,

follow the steps in this hour if your preparation should prove to be inadequate, but most

of all remember to stay vigilant!

Q&A
Q My system was root-kitted and now the drive’s file system isn’t working prop-

erly; I can’t get access to data or back up the drive.

A Hook the drive up to a separate host and mount it somewhere other than as the

root file system. In most cases, this will allow you to access the file system cor-

rectly with tools like ls, cp, and so on.

360 Hour 24

There may be cases, however (such as when malicious programs have been run or

Trojans introduced), in which data is simply not recoverable through means avail-

able to the average home user or small business owner.

Q I got the IP address of the intruder, found his domain, and reported him to his

ISP. They didn’t care. So I reported to the upstream provider. They didn’t

seem to care either. What can I do if nobody cares?

A Unfortunately, there are some large providers out there who are notoriously non-

chalant about what their users may or may not be doing, whether it is illegal, harm-

ful, or just ethically troubling. Some of them receive thousands of complaints a

year, but commerce is commerce and there isn’t much that can be done if the pow-

ers that be aren’t interested in hearing about abuse cases.

One drastic move that you can make is to use packet filtering like iptables or

ipchains to simply block all network traffic of all kinds from the IP ranges or

domains responsible.

Understand, however, that if you are running a public service on your machine,

such as a Web server or an anonymous FTP server, such drastic measures could

prevent hundreds or even thousands of legitimate users from taking advantage of

your services.

There’s often no point in blocking the single IP where the attack came from, since a

large percentage of attacks come from rotating dynamic IP addresses in ISP pools.

Q I got compromised, but my network isn’t behind a firewall or anything of that

sort. Would a dedicated firewall help to prevent such occurrences in the future?

A Yes!

There is no better security investment that you can make, especially if you are a

small network. Consider purchasing a dedicated firewall immediately. If you can’t

afford one but have a PC laying around, you can construct one with Linux and

packet filtering, or you can download a system like Freesco, which can be found

at http://www.freesco.org, that will transform the PC into a reasonably robust

firewall/router for you.

New Terms
abuse An e-mail box that exists on most domains that provide Net access or service of

any kind to others. The abuse box is where reports of spamming, hacking, cracking, and

general nastiness should go.

Recovering from Attacks 361

24

traceroute A utility that shows the network path between your host and another host in

a series of machine-to-machine “hops,” including all of the upstream providers met along

the way.

upstream provider The service provider one step up from any given machine. Even

most ISPs have service providers. Often, even if nobody is interested in hearing abuse

reports on a given host or at a given network, the upstream provider will be.

362 Hour 24

A Configuration Files Important to Security

B System Account File Formats

C Security Web Sites of Note

D Quick Security Checklist

E Web Links to Documented Software

PART V
Appendixes

APPENDIX A
Configuration Files
Important to Security

Tables A.1 through A.7 list the standard security-oriented configuration files

that have been covered over the course of this text.

TABLE A.1 Files Related to Booting

File Location Description, Contents, Uses

/etc/lilo.conf LILO boot sector configuration; controls access to boot

images, including password protection. Documented in

lilo.conf(5).

/etc/inittab Master control for the init daemon and therefore the

boot process. Default runlevel and open consoles are con-

figured here. Documented in inittab(5).

/etc/rc.d/init.d/* Start/stop/restart scripts for most of the services available

on Linux systems.

/etc/rc.d/rcN.d/* Symbolic links to cause a subgroup of start/stop/restart

scripts to be called for runlevel N.

/etc/rc.d/rc.local Init script where local additions to the boot process normally are made.

/etc/fstab Controls mounting of file systems at boot time and afterward. Flags set

in /etc/fstab can prevent write access, SUID execution, execution of

any kind, and mount/umounting of entire file systems. Documented in

fstab(5).

TABLE A.2 Files Related to Accounts and Login

Filename Description, Contents, Uses

/etc/securetty List of terminal devices that allow root logins. Documented in securetty(5).

/etc/shells Lists login shells available to normal users. Documented in shells(5).

/etc/passwd User accounts (sans passwords) are stored here. Not normally edited by hand.

Documented in passwd(5).

/etc/shadow Passwords matching the account entries in /etc/passwd are stored here.

Documented in shadow(5).

/etc/group Group accounts and membership are stored here. Documented in group(5).

TABLE A.3 Files Related to TCP/IP

Filename Description, Contents, Uses

/etc/services Contains bindings between human-readable protocol names and the ports

on which the protocols are used. Documented in services(5).

/etc/inetd.conf Configuration for the Internet daemon, inetd, containing bindings between

a protocol name from /etc/services and a matching service daemon.

Documented in inetd(8).

/etc/hosts.allow List of hosts and protocols that are to be allowed by the TCP wrappers sup-

port. Documented in hosts_access(5).

/etc/hosts.deny List of hosts and protocols that are not to be allowed by the TCP wrappers

support. Documented in hosts_access(5).

TABLE A.4 Files Related to Services and Daemons

Filename Description, Contents, Uses

/etc/syslog.conf File that determines the behavior of the system logger, which handles logs

for a variety of services and daemons. Documented in syslog.conf(5).

httpd.conf The main Apache configuration file, containing nearly all aspects of opera-

tion related to Apache.

366 Appendix A

TABLE A.1 continued

File Location Description, Contents, Uses

.htaccess Special file containing additional Apache access control information for the

files in the directory in which it appears.

/etc/ftpaccess Configuration file for the FTP daemon, including aspects such as logging

and traffic control. Documented in ftpaccess(5).

/etc/ftpusers The list of users who are not allowed to log in to FTP. Documented in ftpd(8).

/etc/sendmail.cf Complex control file for the Sendmail SMTP daemon, usually generated

not by humans but by the M4 macroprocessor, using one of a few predevel-

oped input files.

/etc/named.conf The primary configuration file for the BIND DNS server, version 8. Defines

all zones and operation options and gives the paths to supporting files.

Documented in named.conf(5).

/etc/exports List of the file systems that are to be made available via NFS, the hosts to

which they will be made available, and the permissions that will be granted

upon mounting. Documented in exports(5).

TABLE A.5 Files Related to X11R6

Filename Description, Contents, Uses

/etc/Xn.hosts List of hosts that will be granted permission to place X11R6 clients on the

local display, where n is the number of the display related to a given file.

Documented in Xserver(1).

$HOME/.Xauthority Storage file for an X11R6 display’s magic cookie, used for token-based

(per user) rather than host-based authentication.

TABLE A.6 Files Related to SSH

Filename Description, Contents, Uses

/etc/ssh2/sshd2_config Configuration file for the SSH2 daemon used for incoming

Secure Shell connections. Documented in sshd2_config(5).

/etc/ssh2/ssh2_config Configuration file for the SSH2 client used for outbound Secure

Shell connections. Documented in ssh2_config(5).

/usr/local/etc/sshd_config Configuration file for the OpenSSH daemon used for incoming

Secure Shell connections. Documented in sshd(8).

/usr/local/etc/ssh_config Configuration file for the OpenSSH client used for incoming

Secure Shell connections. Documented in ssh(1).

Configuration Files Important to Security 367

A

TABLE A.4 continued

Filename Description, Contents, Uses

TABLE A.7 Files Related to Authentication Services

Filename Description, Contents, Uses

/etc/pam.d/* PAM authentication configuration for supported services, one file per service.

/etc/pam.conf PAM authentication configuration, old format (made obsolete by

/etc/pam.d/*). Documented in pam(8).

krb5.conf Configuration file for all hosts on which Kerberos will run. Defines default

realm, included domains, and ticket properties. By convention located either

in the /etc directory or in the etc/ subtree of the Kerberos install tree.

Documented in krb5.conf(5).

kdc.conf Configuration file for the Kerberos key distribution center (KDC). Defines

additional properties of the key distribution center, including location of KDC

support files. By convention located either in the /etc directory or in the

etc/ subtree of the Kerberos install tree. Documented in kdc.conf(5).

kadm5.acl Access control list for Kerberos key distribution center database administrators.

By convention located in the var/krb5kdc/ subtree of the Kerberos install tree.

Documented in kadmind(8).

368 Appendix A

APPENDIX B
System Account File
Formats

Tables B.1 through B.3 describe the formats of the /etc/passwd, /etc/

shadow, and /etc/group files.

TABLE B.1 Fields in /etc/passwd

Field Number Description

1 Name of the account that the user will use to log in to the sys-

tem, all lowercase. Also known as the user’s login.

2 Lowercase letter x on systems with shadow passwords installed;

encrypted password on systems without shadow passwords

installed.

3 The numeric user ID of this account, typically in either the 500

or 1000 range for normal users, though convention varies.

4 The numeric group ID referring to the user’s primary group

membership. On systems without user-private groups, usually a

number referring to the group users. On systems with user-

private groups, this number generally matches the numeric user

ID and refers to a private group.

5 Comment or information about the user. By convention, contains the user’s

full human-readable name.

6 Path to the user’s home directory and files, usually a subdirectory of /home on

Linux systems.

7 The user’s login shell. By default on Linux systems, /bin/bash is used, but it

can be changed by the user to any shell listed in /etc/shells.

TABLE B.2 Fields in /etc/shadow

Field Number Description

1 Name of the account that the user will use to log in to the system, all lower-

case. Also known as the user’s login.

2 User’s encrypted password.

3 The number of days since epoch (January 1, 1970) that had passed when the

user last changed his password.

4 The number of days that must pass before the password can be changed again.

5 The number of days before the user’s current password expires and a new

password must be selected.

6 The number of days in advance to warn a user about an expiring password.

7 The number of days to wait after a password has expired before disabling a

user account if no new password is provided.

8 The number of days since epoch that have passed on the day the user’s

account becomes disabled.

9 Reserved (if present).

TABLE B.3 Fields in /etc/group

Field Number Description

1 The name of the group to which this line refers. If the system supports user-

private groups, many of these names will match names in the /etc/passwd file.

2 The encrypted group password. If no data is present in this field, no users

will be allowed to use newgrp to join the group. No password will be required

of explicitly named group members.

3 The numeric ID of this group. If the system supports user-private groups,

many of these ID numbers will match ID numbers in the /etc/passwd file.

4 A list of all the users who can be considered members of this group. Account

names in the list are separated by commas.

370 Appendix B

TABLE B.1 continued

Field Number Description

APPENDIX C
Security Web Sites of
Note

There are a number of security-oriented Web sites that should be of note to

Linux users interested in pursuing system security diligently. A list of those

sites follows.

General Security

Computer Emergency Response Team—
http://www.cert.org

Originally hosted by DARPA, CERT is now at Carnegie Mellon University’s

software engineering department and tracks the latest vulnerabilities and

exploits on multiple operating systems.

CERT also hosts a wealth of security-related information, links to security

tools, and research and white papers related to security topics.

Computer Incident Advisory Capability—
http://www.ciac.org

This site, hosted at the U.S Department of Energy, posts monthly reports on the most

recently discovered exploits for multiple operating systems, including Linux. Also at the

site are links to various tools and other security-oriented U.S. government sites.

The Cypherpunks Home Page—ftp://ftp.csua.

berkeley.edu/pub/cypherpunks/Home.html

This site at the University of California, Berkeley, is the quintessential export-restricted

home page, containing large doses of papers, research, and tutorial information about cryp-

tography. To cap it all off, there is a rather extensive FTP archive full of cryptography-

related Linux/UNIX software and a list of other FTP sites containing cryptographic tools.

SecurityFocus.com—http://www.securityfocus.com

SecurityFocus.com tracks vulnerabilities across a number of operating systems, almost

in real time, it sometimes seems. In addition to the latest vulnerability reports,

SecurityFocus.com contains articles, tutorials, and links to security-related software,

organized by operating system.

Linux-Specific Security

The Debian GNU/Linux Security Site—http://

security.debian.org

This site is extensive and up to date, promising to rectify any discovered vulnerability

with 48 hours of it being reported.

Red Hat Linux Errata Page—
http://www.redhat.com/support/errata/

Security advisories for the latest version of Red Hat Linux are always available from the

Red Hat Linux errata page, which falls under the Red Hat support department.

Caldera Systems—
http://www.calderasystems.com/support/security/

Caldera Systems’ security page contains advisories by year and product, including the

latest eDesktop and eServer platforms and related products.

372 Appendix C

Linux-Mandrake—http://www.linux-mandrake.com/

en/security/

This URL leads to the security advisories archive for various versions of Linux-

Mandrake (more commonly known as Mandrake Linux).

SuSE Linux—http://www.suse.com/us/support/

security/

This page contains the latest security announcements and advisories for the users of

SuSE Linux. Links to SuSE security mailing lists can also be found here.

TurboLinux—http://www.turbolinux.com/security/

All of the most recent security updates for users of the TurboLinux distribution can be

found on this page, which is formatted for quick package downloads.

LinuxPPC—http://linuxppc.org/security/advisories/

Users of LinuxPPC for PowerPC-based machines such as the Power Macintosh G3 and

G4 systems will find security advisories for the latest LinuxPPC distribution here.

Security Web Sites of Note 373

C

APPENDIX D
Quick Security Checklist

This security checklist quickly goes over the major points covered in each of

the hour lessons in this book. Not every hour will apply to every need, depend-

ing on the role of the machine in question. However, a concise checklist like

this makes it much easier to see many of the security concerns in one place.

Hour 1: Selecting and Installing a Linux
Distribution

1.__ The role of the machine in question has been clearly defined and an

appropriate Linux distribution has been chosen.

2.__ The distribution has been obtained from a canonical source.

3.__ The file system tree has been split across multiple partitions to isolate

security risks, and the root file system has been made read-only–capable.

4.__ All current security updates from the distribution vendor have been

downloaded and installed.

Hour 2: BIOS and Motherboards
5.__ A BIOS password has been installed.

6.__ Boot order has been changed to first hard drive only.

Hour 3: Physical Security
7.__ The system has been installed in a location that limits physical access to the

greatest degree possible.

8.__ The power switch has been set to permanently on and the reset switch has been

disabled.

9.__ The system has been physically secured (locked or cabled down).

10.__ An access auditing system for the physical environment has been put into play.

Hour 4: The Boot Process
11.__ LILO passwords and restrictions for boot images have been enabled.

(/etc/lilo.conf)

12.__ The default runlevel has been set correctly, and the Ctrl+Alt+Del sequence has

been disabled.

(/etc/inittab)

Hour 5: System and User Fundamentals
13.__ Consoles available for root logins have been minimized or restricted.

(/etc/securetty)

14.__ Shells available to users have been minimized or restricted.

(/etc/shells)

15.__ Service startups have been audited; unnecessary services have been switched off.

(/etc/rc.d/rcn.d)

16.__ Shadow passwords have been installed if necessary.

17.__ All users have been added with user-private groups, and the importance of

strong passwords has been explained.

376 Appendix D

Hour 6: TCP/IP Network Security
18.__ All unneeded services normally controlled by the Internet daemon have been

disabled.

(/etc/inetd.conf)

19.__ TCP wrappers are enabled, and the hosts access files have been configured for

security.

(/etc/inetd.conf,/etc/hosts.deny,/etc/hosts.allow)

20.__ The system logging daemon has been configured for the desired level and loca-

tion of logging activity.

(/etc/syslog.conf)

Hour 7: File System Security
21.__ All disk device nodes have been set to permissions 0600 with chmod.

22.__ An audit has been performed of all SUID/SGID binaries on the system, and the

unneeded ones have had the SUID and/or SGID bit(s) cleared.

23.__ Changes have been made to the boot process in order to mount the root file sys-

tem read-only automatically.

Hour 8: Extra File System Security Tools
24.__ Posix Access Control Lists for Linux have been installed for greater permissions

control.

25.__ A secure file deletion tool has been installed.

Hour 9: Making the Most of Pluggable
Authentication Modules (PAM)

26.__ A wheel group has been created and will be enforced with respect to su avail-

ability.

(/etc/pam.d/*)

27.__ The other authentication in PAM has been audited for security.

(/etc/pam.d/*)

28.__ Strong password enforcement and periodic password expiration have been

enabled.

(/etc/pam.d/*)

Quick Security Checklist 377

D

Hour 10: Using ipchains for Firewalling and
Routing

29.__ A default set of packet-filtering policies has been implemented based on the role

of this machine and the needs of the local network.

Hour 11: Using iptables for Firewalling and
Routing

30.__ A default set of packet-filtering policies has been implemented based on the role

of this machine and the needs of the local network.

Hour 12: Securing Apache, FTP, and SMTP
Services

31.__ Apache: User home pages have been disabled as a general policy and enabled

only for those users who need them.

(httpd.conf)

32.__ Apache: Logging rules have been audited and updated as necessary.

(httpd.conf)

33.__ Apache: Password authentication has been enabled to protect sensitive areas that

must still be available to some users.

(httpd.conf)

34.__ FTP: Strong e-mail address checking has been implemented for anonymous

FTP access.

(/etc/ftpaccess)

35.__ FTP: Reverse DNS lookups are now required for any user connecting via

anonymous FTP.

(/etc/ftpaccess)

36.__ FTP: All users who don’t absolutely need login FTP access have been forbidden

from authenticating.

(/etc/ftpusers)

37.__ Sendmail: Strong packet-filtering rules have been put in place to protect the

SMTP mailer against outside abuse.

378 Appendix D

Hour 13: Network Security: DNS with BIND
38.__ Strong packet filtering rules have been put in place to drop packets from hosts

this nameserver doesn’t serve.

39.__ BIND version information has been made unavailable.

(/etc/named.conf)

40.__ Zone transfers and recursive queries have been disabled.

(/etc/named.conf)

41.__ BIND has been placed in a chroot jail.

Hour 14: Network Security: NFS and Samba
42.__ The userspace NFS daemon, if present, has been replaced with the kernel-based

NFS service to enhance ACL compatibility.

43.__ The list of exported file systems has been audited, and unnecessary exports or

unnecessary hosts have been removed or disallowed, respectively.

(/etc/exports)

44.__ SWAT has been installed, and an audit of the security paradigm and other set-

tings has been completed.

Hour 15: Securing X11R6 Access
45.__ The host-level access controls have been completely disabled so that no host is

allowed to connect solely on the basis of its claimed identity.

(/etc/Xn.hosts)

46.__ Magic cookie access control has been put in place, most likely using XDM.

Hour 16: Encrypting Data Streams
47.__ SSH has been installed for stream encryption capability.

48.__ Traditional services that can be replaced by SSH (telnet, rlogin, rsh, and so

on) have been disabled.

(/etc/inetd.conf)

Quick Security Checklist 379

D

Hour 17: Introduction to Kerberos
49.__ Kerberos 5 has been installed on all clients and a key distribution center has

been constructed.

50.__ Traditional services such as telnet, rlogin, and rsh have been enhanced with

Kerberos and the original binaries for these services have been disabled.

(/etc/inetd.conf)

51.__ As many systems and services as possible have been reconfigured or recompiled

to be Kerberos-aware.

Hour 18: Encrypting Web Data
52.__ Apache has been recompiled to be SSL-capable, and a self-signed certificate has

been created.

Hour 19: Encrypting File System Data
53.__ The Transparent Cryptographic File System has been installed, and volumes that

are to be encrypted have been created or converted.

Hour 20: Encrypting E-Mail Data
54.__ The GNU Privacy Guard system for PGP encryption and signatures has been

made available to users on this host.

Hour 21: Auditing and Monitoring
55.__ SAINT has been installed and run, and a regular regime of SAINT audits has

been implemented.

56.__ Any possible vulnerabilities reported by SAINT on its first pass have been thor-

oughly checked out and will be for all future SAINT passes as well.

57.__ SWATCH has been installed, and an initial match file has been constructed. It

will be monitored vigilantly and expanded based on experience and observation

of the system logs.

380 Appendix D

Hour 22: Detecting Attacks in Progress
58.__ Snort has been installed using a collection of rulesets from the Snort community

that will be updated regularly.

Hour 23: Preserving Data
59.__ A system of periodic backups has been implemented using CRON or another

scheduling daemon.

60.__ A scheme for media rotation in periodic backups has been implemented.

Hour 24: Recovering from Attacks—
A Mini-Checklist

__ Take system offline.

__ Reboot Linux into single-user mode.

__ Make an archival full backup.

__ Study logs, SWATCH alerts, Snort alerts.

__ Report attacker to ISP or upstream providers.

__ Reformat and reinstall Linux.

__ Cautiously restore important data from tape.

__ Require all groups and users to change passwords.

__ Watch closer on compromised ports.

__ Take system back online.

Quick Security Checklist 381

D

APPENDIX E
Web Links to
Documented Software

Table E.1 gives a summary of the Web locations of software documented in

this book that must normally be downloaded.

TABLE E.1 Web Links to Documented Software

Name URL

OpenSSL http://www.openssl.org

OpenSSH http://www.openssh.com

Posix ACLs http://acl.bestbits.at

BCWipe http://www.jetico.com

Wipe http://wipe.sourceforge.net

Overwrite http://www.kyuzz.org/antirez/overwrite/

Kerberos 5 http://web.mit.edu/kerberos/www/

eBones http://www.pdc.kth.se/kth-krb/

mod_ssl http://www.modssl.org

Apache http://httpd.apache.org

TCFS http://www.tcfs.it

GnuPG http://www.gnupg.org

SAINT http://www.wwdsi.com/saint/

Nmap http://www.insecure.org/nmap/

SWATCH http://www.stanford.edu/~atkins/swatch/

Snort http://www.snort.org

libpcap http://ftp.ee.lbl.gov

libnet http://www.packetfactory.net/Projects/Libnet/

384 Appendix E

TABLE E.1 continued

Name URL

-a option (syslogd daemon),

205

ACCEPT target, 152, 168

access auditing, 51-52

access control, 201

host-based authentication,

225

cautions, 227

disabling, 226

interaction with token-

based authentication,

230

xhost command, 225

named.conf file, 202

new options (listing), 202

overriding settings, 202

power buttons, 47-48

reset buttons, 47-48

specifiers, 203

SSH. See SSH

token-based authentica-

tion, 228

automating (XDM),

230

cookie distribution, 229

cookies, 229

interaction with host-

based authentication,

230

starting X server, 229

xauth command, 228

access control lists. See ACLs

access file (Apache Web

server), 190-191

access rights, 99

changing, 104-106

directories

device nodes, 109-110

execute, 103

read, 102

sticky bits, 109

SUID/SGID executa-

bles, 112

write, 103

examples, 104

files, 100

character position, 101

execute, 102

Symbols

(hash mark), 85

% (percent symbol), 93

%% (double percent

symbol), 93

/ (backslash symbol), 93

- (dash), 95

>> (shell append) operator,

108

2.2.16 kernel, 289

2.2.17 kernel

installing, 291

source code, 289

3DES encryption module,

293

A
a (append) mode, 114

-A (--append) command

ipchains utility, 153

iptables utility, 169

INDEX

read, 101

write, 101

setting default (umask

command), 107-108

SUID/SGID executables,

111

anomalies, 113

setting with chmod

command, 112

unnecessary permis-

sions, 112

AccessConfig directive, 181

Accessing files

preventing, 186

on TCFS volumes, 295

account stack (PAM), 137

accounts

files, 366

signs of attacks, 352

user, creating securely, 77

ACL patch, 123

ACL permission, 267

ACL utilities source, 123

ACLs (access control lists),

122, 210. See also permis-

sions

ACL utilities installer, 126

backups, 130

concerns, 130

copying between files, 130

default permissions, 128

functionality, 122

getfacl command, 127-128

installing patches, 124, 126

mask permissions, 129

non-ext2 file systems, 130

POSIX, 123

setfacl command, 126-127

add-on cards, 39

add_principal command,

266, 270

adding

hosts to X authentication

lists, 225

users

shadow passwords, 77

to users group, 78

adduser command, 77

adduser script, 79

adhesive cable locks, 51

administrative servers, 265

administrative tasks

(TCFS), 294

advisories for security, 26

afio command, 341

complex operations, 342

find command, 341

options, 341

alarm cable locks, 51

ALL wildcard (TCP wrap-

pers), 91

all_squash option (host), 212

Allow directive, 185

allow_query keyword, 202

allow_recursion keyword,

202

allow_transfer keyword, 202

allow_updates keyword, 202

AllowGroups option

sshd2_config file, 241

sshd_config file, 252

AllowHosts option

(sshd2_config file), 241

AllowOverride directive, 189

AllowUsers option

sshd2_config file, 241

sshd_config file, 252

alsasound script, 74

ALT+SysRq+U keystroke,

354

amd script, 74

AMI (American

Megatrends

Incorporated), 33

AMI WinBIOS, 33

anonqid=N option (host), 213

anonuid=N option (host), 213

anonymous FTP, 191

Apache Web server, 179,

277-278

access file, 190

Apache tree, 282

configuration options, 180,

279-280

AllowOverride direc-

tive, 189

authentication, 186-188

Directory and

DirectoryMatch

scopes, 184-185

Files and FilesMatch

scopes, 186

global logging direc-

tives, 182, 184

global security-related

directives, 180-181

Location and

LocationMatch

scopes, 186

Options directive, 189

self-signed certificates, 280

SSL support, 278

starting, 283-284

versions, 180

Web site, 383

Apache+mod_ssl, 278

append (a) mode, 114

AppleTalk, 151

applications, installing, 21

Approximate Danger Level

link (SAINT), 318

archiving system after an

attack, 354

args (/etc/inetd.conf), 85

arguments

booting, 56

chage command, 79

snortfile, 333

386 access rights

Arkeia, 347

assembling policies, 91

AT cases, 48

atalk script, 74

atd script, 74

attachable PC devices, 40

attacks

on equipment, 45. See also

physical security

fixing the vulnerability, 358

notifying the authorities,

356

reformatting and rein-

stalling, 357

responding to, 352

archiving system at

shutdown, 354

rebooting cautiously,

354

stopping Linux, 353

restoring data, 357

signs of, 352

understanding what hap-

pened, 355

attributes (file), 113

attrs patch, extended, 123

ATX system, 48

auditing

equipment access for

physical security, 51-52

hosts (SAINT), 315

data analysis, 318

downloading, 314

installing, 315

scan cautions, 317

auth stack (PAM), 137

AuthDBMGroupFile direc-

tive, 188

AuthDBMUserFile direc-

tive, 188

authentication

Apache Web server,

186-188

database libraries, 188

files, 368

host-based, SSH, 244

Kerberos, 259

administrating, 266-267

changing passwords,

273

configuring, 262-264

data stream encryption,

273

downloading, 261

enabled clients, 272

host principals,

268-269

improving on Telnet

functionality, 260

installing, 261

kadmin utility, 270

KDCs, 260, 264

overview, 259

synchronization, 270

telnet client bug, 272

tickets, 271-272

user principals, 269

OpenSSH

RhostsRSA authentica-

tion, 254

user-based public key

authentication, 255

PAM. See PAM

plain-text password files,

188

SSH, 238, 245

X

host-based, 224-227

interactions between

methods, 230

token-based, 228-229

X security, 223

XDM (X Display

Manager), 230

AuthUserFile, 187

Award BIOS system, 33-34

B
back doors, 338

back rooms (small busi-

nesses), locking, 50

Backdoor (Sig.) ruleset

(Snort), 331

Backdoor Activity ruleset

(Snort), 331

Backdoor Attempts ruleset

(Snort), 331

backslash (/), 93

Backup and Restore Utility

(BRU), 347

backups, 337

ACL functionality, 130

afio command, 341

complex operations, 342

find command, 341

options, 341

archiving system after an

attack, 354

continuous power systems

(battery backups), 47

magnetic tape drives, 342

multiple locations, 346

root directory, 340

rotating, 345

scheduling, 344

software, 347

tape changers, 343-344

tar command, 339

cautions, 339

extract operations, 340

tee command, 340

z option, 340

bash shell, 70

Basic Input/Output System

(BIOS), 43

Bastille Linux Web site, 14

bcwipe utility, 131, 383

bell [count] action

(SWATCH), 322

bell [count] action 387

binaries

Kerberos installation, 272

root kits, 338

SGID, 19, 29

signs of attack, 352

SUID (SetUID), 19, 29

BIND

adding user and group to

named process, 203

configuration, 200

creating, jail cell, 204-205

device nodes, 204

packet filtering, 200

preventing version infor-

mation from being

exploited, 201

version 8, 203

BIND daemon, 199

BIOS (Basic Input/Output

System), 32, 43

add-on cards, 39

AMI (American

Megatrends

Incorporated), 33

AMI WinBIOS, 33

Award BIOS system, 33-34

boot order configuration,

36-38

boot password protection,

35-36

changes, 36

flash, 41

password protection, 34-35

PCI IDE controllers, 38

SCSI

cards, 40

controller, 38

secondary BIOS, 38-40

SETUP, 33

setup programs, 38

entering, 33

navigating, 33-34

blackhole keyword, 202

boot devices, equipment

physical security, 49-50

/boot file system, 20

boot order, 36-38, 43

booting

automatic, 61

/etc/inittab file, 63-64

images, 60

LILO, 55-56

maintenance mode, 56

rebooting

after an attack, 354

automatically, 62

unexpected, 62

related files, 365-366

root-only mode, 56

security concerns, 61

three-key smash, 65

boxes, locking down, 50-51

browseable option (SWAT),

219

browsers, certificates, 284

BRU (Backup and Restore

Utility), 347

bsf n command (mt com-

mand), 343

bsr n command (mt com-

mand), 343

buffer overruns, 90

bugs, 90

businesses, 9-10. See also

small businesses

buttons

access restrictions, 47-48

CD-ROM drive eject, 50

C
-C (check) command

ipchains utility, 154

iptables utility, 169

CA (Certificate Authority),

277

cables

length of, protecting, 49

locks, 51, 54

plugging in, 49

power, securing, 49

Caldera Systems

FTP site, 18

OpenLinux, 14-15

Web site, 18, 27, 372

canonical kernels

default networking

options, 150-151

recompiling (iptables

utility), 164

cards

add-on, 39

SCSI, 40

CD-ROMs, drive eject

buttons, 50

central scripts, 71

CERT (Computer

Emergency Response

Team) Web site, 371

Certificate Authority (CA),

277

certificates, browser

requests, 284

chage command, 79

chains

adding rules, 155

forward, 152

input, 152

output, 152

user, 153

chattr command, 113, 295

--check-sigs argument, 305

chmod command

modifying permissions

numeric mode, 106

symbolic mode, 105

setting SUID/SGID prop-

erties, 112

sticky bits, 109

388 binaries

chroot environments, named

processes, 203

starting in jail, 206

syslogd daemons, 205

--clearsign command, 306

clients

Kerberos-enabled, 272

X, automating authentica-

tion (XDM), 230

commands

date, 93

ipchains utility, 153-154

iptables utility, 169

shell, executing, 93

xauth, 228

xhost, 225

commenting out Telnet ser-

vices, 244

compatibility, upgrading to

PAM, 136

compiling

Apache, 278

mod_ssl, 278

OpenSSL, 279

compression (SSH), 238

Compression option

ssh2_config file, 242

ssh_config file, 253

CompressionLevel option

(ssh_config file), 253

Computer Emergency

Response Team (CERT),

371

Computer Incident

Advisory Capability, 372

computers. See PCs

CONFIG_EXPERIMENTAL

=Y option (TCFS), 293

CONFIG_FIREWALL

option, 150

CONFIG_IP_ADVANCED_

ROUTER option, 151

CONFIG_IP_ALWAYS_

DEFRAG option, 151

CONFIG_IP_FIREWALL

option, 150

CONFIG_IP_MASQUER-

ADE option, 151

CONFIG_IP_MASQUER-

ADE_ICMP option, 151

CONFIG_IP_NF_

CONNTRACK option, 165

CONFIG_IP_NF_FILTER

option, 165

CONFIG_IP_NF_FTP

option, 165

CONFIG_IP_NF_

IPTABLES option, 165

CONFIG_IP_NF_MATCH_

LIMIT option, 165

CONFIG_IP_NF_MATCH_

UNCLEAN option, 165

CONFIG_IP_NF_NAT

option, 165

CONFIG_IP_NF_TARGET_

LOG option, 166

CONFIG_IP_NF_TARGET_

MASQUERADE option,

166

CONFIG_IP_NF_TARGET_

REDIRECT option, 166

CONFIG_IP_NF_TARGET_

REJECT option, 165

CONFIG_IP_ROUTE_

VERBOSE option, 151

CONFIG_IP_TRANSPAR-

ENT_PROXY option, 151

CONFIG_MODULES=Y

option (TCFS), 293

CONFIG_NETFILTER

option, 165

CONFIG_NFS_FS option,

211

CONFIG_NFS_V3 option,

211

CONFIG_NFSD option, 211

CONFIG_NFSD_V3 option,

211

CONFIG_TCFS_FS=M

option (TCFS), 293

configuration files

Apache, 278

/etc/security, 70

/etc/shells, 70-71

/etc/skel/.bash_logout, 70

formatting, 91

inetd daemon, 84-87

configure script

configuring Apache, 280

--prefix=/usr/local/apache

argument, 282

configuring

Apache, 279-280

Apache tree, 282

self-signed certificates,

280

BIND, 200

boot order, 36-38

/etc/exports file, 211-213

Kerberos, 262-264

OpenSSH

defining ssh2 service,

251

ssh options, 253

sshd options, 252

PAM, 136-139

Samba security options,

218

SSH, 240-241

installation options,

239-240

ssh2 options, 242

sshd2 options, 241-242

SWATCH, 322

connections

certificate authorities, 282

host-based authentication

(SSH), 244

connections 389

incoming, disallowing, 90

Kerberos-enabled, 260

logging in to SWAT, 216

OpenSSH servers

(remote), 253-254

public key authentication

(SSH), 245

requests, granting, 92

SSH servers (remote),

243-244

ssh2-encrypted, 251

continue action (SWATCH),

322

continuous power systems

(battery backups), 47, 54

control flag necessity levels

(PAM), 137

controllers

PCI IDE, 38

SCSI, 38-39

controls

flash BIOS updates, 41

power, security, 46

converting SCSI controllers,

39

cookies

deleting from authentica-

tion files, 229

distributing to users, 229

token-based authentication

(X), 228

copying ACLs between files,

130

Corel

FTP site, 18

Web site, 27

Corel LinuxOS, 16-17

crackers

repeat visitors, 359

reporting to ISPs, 356

script kiddies, 355

creating

/etc/fstab file, 23-24

user accounts, 77-79

cron script, 74

cycles (power), 47-49, 54

Cypherpunks Home Page,

372

D
-D (--delete) command

ipchains utility, 153

iptables utility, 169

-d [!] addr [[!] port] option

(ipchains utility), 154

-d [!] addr[/mask] option

(iptables utility), 170

-d argument (chage com-

mand), 80

daemons

files, 366

httpd, 84

inetd, 84

configuration file,

84-87

disabling services,

86-87

securing, 85

security risks, 84

TCP wrappers, 90

OpenSSH, 251

requests, routing to, 87-88

sendmail, 84

SSH, 240

sysloqd, 95

dash (-), 95

data

archiving system after an

attack, 354

backups, 337

afio command, 341-342

Arkeia, 347

Backup and restore

Utility (BRU), 347

multiple locations, 346

rotating, 345

scheduling, 344

tar command, 339-340

e-mail. See e-mail

encryption

encryption, 238, 287

overwriting, 131

security concerns, 131

signatures, 306

databases (KDC), 264

datcompression n command

(mt command), 343

date command, 93

dbmmanage command, 188

DDoS ruleset (Snort), 331

Debian

FTP site, 18

Web site, 18, 27

Debian GNU/Linux, 16-17

DebianGNU/Linux Security

Site, 372

--decrypt command, 308

decrypting data, 307-308

dedicated firewall systems,

163

default permissions (ACLs),

128

defining file partitions,

19-20

delete_prinicpal command

(KDCs), 270

deleting

cookies from authentica-

tion files, 229

hosts from X authentica-

tion lists, 226

services, 75

deny !nameserved

/home/ftp/nodns.txt

option, 193

Deny directive, 184

deny policy, assembling, 91

DENY target, 152

390 connections

DenyGroups option

sshd2_config file, 241

sshd_config file, 252

DenyHosts option

(sshd2_config file), 241

DenyUsers option

sshd2_config file, 241

sshd_config file, 252

descriptions of packages, 22

--destination-port [!] port

option (iptables utility), 170

destroying data, 131

/dev/random device, 302

development tools,

installing, 21

devfs method, 110

devfs support (2.4 kernels),

70

device nodes, 99, 109-110

ownership, 110

symbolic links, 111

devices

boot, equipment physical

security, 49-50

external/attachable, 40

tape changers, 343

directives

access file, 191

AllowOverride, 189

Options, 189

directories

access rights

changing, 105-106

device nodes, 109-110

execute, 103

read, 102

setting default (umask

command), 107-108

sticky bits, 109

write, 103

authentication, 186-188

default permissions

(ACLs), 128

execute access, 103

knownhosts, 245

krb5-1.2.1 source, 261

ls -1 command, 100

mod_ssl, 279

permissions, 189

read access, 102

ssh-2.4.0, 239

trees, rearranging, 22-23

write access, 103

Directory scope, 184-187

AllowOverride directive,

189

Deny directive, 184

Options directive, 189

Order directive, 184

DirectoryMatch scope,

184-185

disabling

CD-ROM drive eject but-

tons, 50

host-based authentication,

226

services, 76, 86-87

systems after attacks, 353

unnecessary services, 73

xfs font server, 73

disallowing incoming

connections, 90

disconnecting switches, 48

displays, clearing upon

logging out, 70

distributions (Linux), 13

Caldera OpenLinux, 14-15

choosing, 11

Corel LinuxOS, 16-17

Debian GNU/Linux, 16-17

differences, 72

features/security tradeoff,

11-13

Mandrake, 13-14

multipurpose machines,

12-13

Red Hat, 13-14

servers, 11-12

Slackware, 16

SuSE, 15-16

workstations, 11

DNAT target (iptables utili-

ty), 168

DNS (domain name service),

156, 199

ports, filtering (listing), 200

servers, 201-202

DocumentRoot directive, 181

domain name service.

See DNS, 199

double percent symbol

(%%), 93

downloading

afio package, 341

bcwipe utility, 131

eBones, 259

GPG, 300

Kerberos, 261

mod_ssl, 278

mtx command, 343

nmap, 314

OpenSSH, 250

OpenSSL, 249, 278

overwrite utility, 131

rulesets (Snort), 331

SAINT, 314

Snort, 328-330

software

via FTP or NFS, 18

list of sites, 383

SSH, 238-239

SWATCH, 320

TCFS, 289

wipe command, 131

drive eject buttons

(CD-ROMs), disabling, 50

drives, 38, 50

DROP target (iptables utili-

ty), 168

duplicating logs, 96

duplicating logs 391

E
-E (--rename-chain) com-

mand (iptables utility),

169

-E argument (chage com-

mand), 80

e2fsproqs patch, 123

e2fsproqs source, 123

eBones, 259, 383

echo [model] action

(SWATCH), 322

eDesktop (Caldera

OpenLinux), 14-15

editing

/etc/fstab file, 23-26

/etc/group file, 78

/etc/inittab file, 64

host lists (X server authen-

tication), 225

init processes, 72

permissions, 104

chmod command

(numeric mode), 106

chmod command (sym-

bolic mode), 105

setting default (umask

command), 107-108

shell scripts, 72

e-mail encryption, 299

GPG, 300-302

encrypting/decrypting

data, 307-308

importing/exporting

GPG keys, 303

listing GPG keys,

303-304

signed data, 306

PGP, 299

signatures and trust, 305

enabling

disabled services, 76

host-based authentication

(SSH), 244

IP forwarding, 157

public key authentication

(SSH), 245

SysRq key, 353

TCFS, 293

TCFS administrative tasks,

294

encrypt passwords option

(SWAT), 217

encrypting data. See also

Kerberos

e-mail, 299

GPG, 300-302,

307-308

GPG signed data, 306

importing/exporting

GPG keys, 303

listing GPG keys,

303-304

PGP, 299

signatures and trust,

304-305

encrypted file systems, 289

encryption key, 288

file system data, 287

Kerberos, 273

MD5, 77

need for, 238

RSA encryption, 300

SSH, 247-248

TCFS, 295

3DES encryption

module, 293

administrative tasks

(TCFS), 294

compiling, 290

compiling the patched

kernel, 293

EXT2 partitions, 289

file access, 295

installing, 288-292

kernel options, 293

mounting volume on

client machine, 294

system requirements,

289

encryption keys, 288

enforcing wheel group

(PAM), 141-143

entering BIOS setup pro-

gram, 33

entries (log), 95-96

environments (security), 46

eod command (mt com-

mand), 343

equipment (physical securi-

ty), 45-46

access auditing, 51-52

boot devices, 49-50

boxes, locking down,

50-51

location strategies, 47-51

locations, 46-47

power cycles, 47-49

erase command (mt com-

mand), 343

ErrorLog directive, 182

errors, library version

issues, 292

errors=N option (fstab

command), 117

EscapeChar option

(ssh2_config file), 242

EscapeChar option

(ssh_config file), 253

eServer (Caldera

OpenLinux), 14-15

ESTABLISHED packet

state, 171

/etc/exports file, 367

configuring, 211-212

listing, 213

/etc/fstab file, 366

creating, 23-24

editing, 23-26

392 -E

ext2 options, 24-25

security, 25

/etc/ftpaccess file, 192, 367

/etc/ftpusers file, 193, 367

/etc/group file, 366, 370

/etc/hosts.allow file, 91-95,

366

/etc/hosts.deny file, 90-91,

366

format, 90

testing, 94-95

/etc/inetd.conf file, 84, 366

adding host principals, 269

fields, 85

/etc/init.d file, 72

/etc/inittab file, 63, 365

calls to SysV-style scripts,

71

editing, 64

runlevels, 63-64

/etc/lilo.conf file, 57-58

listing, 57-59

permissions, 63

restricted keyword, 59

saving changes, 62

/etc/named.conf file, 367

/etc/pam.conf file, 368

/etc/pam.d/* file, 368

/etc/pam.d/passwd file, 140

/etc/passwd file, 366

fields, 369-370

shadow, 77

/etc/rc.d/init.d file, 72

/etc/rc.d/init.d/* file, 365

/etc/rc.d/init.d/read-only

script, 115

/etc/rc.d/rc.local file, 366

/etc/rc.d/rcN.d/* file, 365

/etc/securetty file, 70, 366

/etc/sendmail.cf file, 367

/etc/services file, 87-89, 366

/etc/shadow file, 77, 366, 370

/etc/shells file, 70-71, 366

/etc/skel/.bash_logout file, 70

/etc/ssh2/ssh2_config file, 367

/etc/ssh2/sshd2_config file,

241, 367

/etc/syslog.conf file, 95, 366

/etc/Xn.hosts file, 225, 367

EXCEPT operator (TCP

wrappers), 91

exec command [args] action

(SWATCH), 322

ExecCGI option (Option

directive), 189

executables (SUID/SGID),

111

eliminating unnecessary

permissions, 112

permissions, 113

setting with chmod com-

mand, 112

execute access, 102-103

executing commands, 93

Exploits ruleset (Snort), 331

exporting GPG keys, 303

ext2 options (/etc/fstab file),

24-25

EXT2 partitions, 288

extended attrs patch, 123

external PC devices, 40

external services, 89

extract operations (tar

command), 340

extracting OpenSSL, 279

F
-F (flush) command

ipchains utility, 154

iptables utility, 169

features/security tradeoff

(Linux distributions),

11-13

fields

/etc/group file, 370

/etc/passwd file, 369-370

/etc/shadow file, 370

file systems

ACLs, 210

encrypted, 289

fstab commands, 116

mount command, 116

mounting as read-only,

354

read-only, 116

security, 99

File Transfer Protocol.

See FTP

files

access rights, 100

changing, 105-106

character position, 101

execute, 102

read, 101

setting default (umask

command), 107-108

write, 101

accounts, 366

appending lines, 203

attributes, 113-114

authentication, 186-188,

368

booting, 365-366

configuration

formatting, 91

inetd daemon, 84-87

copying ACLs between,

130

daemons, 366

deletion tools, 131

/etc/fstab

code to create, 23-24

editing, 23-26

ext2 options, code,

24-25

security, code, 25

/etc/hosts.allow, 91-95

/etc/hosts.deny, 90-91

format, 90

testing, 94-95

files 393

/etc/inetd.conf, 84

/etc/services, 87-89

/etc/syslog.conf, 95

logins, 366

ownership, 100

partitions

defining, 19-20

options, 24

testing, 26

permissions, 99

AllowOverride direc-

tive (Apache Web

server), 189-190

Options directive

(Apache Web server),

189

preventing access, 186

read-only file system, 29

rearranging, 22-23

root file system, 26

services, 366

SSH, 367

systems

/boot, 20

/home, 20

/root, 20

/tmp, 20

/usr, 20

separating, 22-26

TCP/IP, 366

tcpdchk, 94

tcpdmatch, 94-95

/var/log/messages, 95

X window system, 367

Files scope, 186

FilesMatch scope, 186

fileutils patch, 123

fileutils source, 123

filter tables (iptables utility),

167

filtering packets, 149, 155,

163

domain ports, 200

NFS, 214-215

Samba, 220

state matching, 171

X, 231

find command (afio utility),

341

Finger ruleset (Snort), 331

fingerprints (data encryp-

tion), 304

firewalls, 12, 149

dedicated systems, 163

ipchains utility

calling syntax, 153

commands, 153-154

IP forwarding, 157

options, 150-151,

154-157

overview, 152

rules, 152

support, 150

targets, 152

iptables utility, 163-164

calling syntax, 169

commands, 169

functionality, 166

networking options,

166

options, 170

port forwarding, 174

rules, 167

rules, based on state

matches, 171

rulesets, 172

targets, 168

Snort, 328

flags

/etc/inetd.conf, 85

noexec, 19

nosuid, 19

ro (read-only), 29

flash BIOS, 41

flash memory, 43

flaws (security), 90

floppy drive locks, 50, 54

FollowSymLinks option

(Option directive), 189

fonttastic script, 74

foobar, 231

formatting files

configuration, 91

/etc/hosts.deny, 90

forward chain, 152

ForwardX11 option

(ssh_config file), 253

fsf n command (mt com-

mand), 343

fsr n command (mt com-

mand), 343

fstab command, 116

FTP (File Transfer

Protocol)

anonymous versus private,

191

clients, 246

servers, 191

software

downloading, 18

installing, 18

SSH functionality, 246

wu-ftpd server

anonymous uploads,

193

/etc/ftpusers file, 193

options, 192-193

FTP ruleset (Snort), 331

FTP sites, 18

G
generating keys (GPG), 302

--gen-key command, 301

getfacl command (POSIX

ACLs), 127-128

global logging directives,

182-184

global security-related

directives, 180-181

394 files

GNU (GNU’s Not Unix), 16

GNU autoconf utilities

(Kerberos), 261

GNU Privacy Guard. See

GPG

Gnutella, 89

GPG (GNU Privacy Guard),

299

--clearsign command, 306

downloading, 300

encrypting/decrypting

data, 307-308

extracting sources, 300

generating keys, 301-302

importing/exporting keys,

303

installing, 300

listing keys, 303

signatures and trust,

304-305

signed data, 306

trust dilution, 305

Web site, 384

granting requests, 92

greeting brief option, 192

Group directive, 181

groups, mask permissions,

129

gunzip, 290

H
hackers

back doors, 338

modifying program bina-

ries, 338

notifying the authorities

after attacks, 356

repeat visitors, 359

reporting to ISPs, 356

root kits, 338

script kiddies, 355

signs of attack, 351-352

archiving system at

shutdown, 354

reaction, 352

rebooting cautiously,

354

stopping Linux, 353

understanding what hap-

pened, 355

hard drives (SCSI), 38

hardware, 21

hash mark (#), 85

High False Alerts ruleset

(Snort), 332

/home file system, 20

$HOME/.bash_logout file,

70

host keys

SSH installation, 240

SSH remote logins, 243

host principals (Kerberos),

268-269

host-based authentication

(X), 224

changing authentication

list, 225

concerns, 227

disabling, 226

interaction with token-

based authentication, 230

SSH, 244

viewing allowed or forbid-

den hosts, 226

hosts

auditing (SAINT), 313-315

data analysis, 318

downloading, 314

installing, 315

scan cautions, 317

common options, 212

contacting about attacks,

356

option specifiers, 211

valid formats, 212

hosts allow option (SWAT),

218-219

hosts deny option (SWAT),

218-219

.htaccess file, 190, 367

HTTP servers, 179

http service (Apache), 283

httpd daemon, 84

httpd script, 74

httpd.conf file, 180, 366

I
i (immutable) mode, 114

-I (insert) command

ipchains utility, 153

iptables utility, 169

-i [!] interface[+] option

ipchains utility, 154

iptables utility, 170

-I argument (chage com-

mand), 80

ICANN (Internet

Corporation for Assigned

Names and Numbers), 87

ICMP ruleset (Snort), 331

--icmp-type [!] type option

(iptables utility), 170

IDE (Integrated Device

Electronics), 43

image= keyword, 57

images

booting, 60

password protected, 61

immutable (i) mode, 114

importing GPG keys, 303

Includes option (Option

directive), 189

IncludesNOEXEC option

(Option directive), 189

incoming connections, disal-

lowing, 90

incoming connections 395

incremental backups, 340

Indexes option (Option

directive), 189

Industry Standard

Architecture (ISA), 43

inet script, 74

inetd daemon, 84

configuration file, 84-87

securing, 85

security

risks, 84

TCP wrappers, 90

services, disabling, 86-87

inetd utility

OpenSSH, 251

SSH requests, 240

init programs, 56

booting runlevels, 64

editing, 72

/etc/inittab file, 63-64

initializing configuration

changes, 76

runlevel 3, 72

init.d directory, calling

scripts by hand, 76

init.d file, common scripts,

74

init= argument, 56

input chain, 152

insecure option (host), 212

installation paths (TCFS),

290

installing

ACLs, patches, 124-126

Apache, 278

Apache tree, 282

self-signed certificates,

280

applications, limiting

number of, 21

development tools, 21

GPG, 300

Kerberos, 261

kernel 2.2.17, 291

mod_ssl, 278

nmap, 314

OpenSSH, 250

OpenSSL, 279

POSIX ACLs, 123

reinstalling after attacks,

357

SAINT, 315

services, limiting number

of, 21

shadow passwords, 78

Snort, 328

libnet library, 330

pcap library, 329

software via FTP or NFS,

18

SSH, 238

host keys, 240

inetd utility, 240

options, 239

tar command, 239

SWATCH, 321

TCFS, 288-289, 292

3DES encryption mod-

ule, 293

compiling, 290

compiling EXT2 file

system tools, 292

compiling the patched

kernel, 293

EXT partitions, 289

libraries, 291

nondestructively, 290

requirements, 289

updates, 26-27

user-space hardware sup-

port, 21

Xfree86, 21

Integrated Device

Electronics (IDE), 43

interfacing, masquerading,

157

Internet Corporation for

Assigned Names and

Numbers (ICANN), 87

INVALID packet state, 171

IP addresses, host-based

authentication concerns,

227

IP forwarding, 157

IP specifications, 155

ipchains command

dns port filtering, 200

NFS packet filtering

(listing), 214

packet filtering (Samba),

220

ipchains utility, 149

additional packet types,

151

calling syntax, 153

commands, 153-154

compiling support, 150

concerns, 150

firewalling options,

150-151

IP forwarding, 157

options, 154

overview, 152

packet filtering, 194-195

rules, 152, 155-157

sample script (listing), 159

targets, 152

X packet filtering rules,

232

ipmasqadm utility, 158

iptables command

dns port filtering, 201

NFS packet filtering, 215

packet filtering (Samba),

220

iptables utility, 163-164

calling syntax, 169

commands, 169

functionality, 166

396 incremental backups

networking options,

required, 166

options, 170

packet filtering, 195

port forwarding, 174

recompiling new canonical

kernels, 164

rules, 167, 171

rulesets, 172

sample script (listing), 175

tables, 167

targets, 168

X packet filtering rules, 232

IPX, 151

ipx script, 74

ISA (industry Standard

Architecture), 43

ISP (Internet Service

Providers), contacting

with attack/abuse notifica-

tion, 356

J - K
-j target option

ipchains utility, 154

iptables utility, 170

jails

creating, 204

starting named process,

206

jumpers, 43

kadm5.acl file, 265, 368

kadmin utility

adding principals for

hosts, 268

overview, 270

kadmin.local program, 264

kadmind server, 265

kdc.conf file, 262, 368

KDCs (key distribution cen-

ters), 259

administrators, 266-267

creating, 260

databases, passwords, 264

encryption keys, 260

host principals, 268

kadmin utility, 270

kadmin.local program, 264

kadmind server, 265

klist utility, 265

krb5kdc server, 264

Kerberos, 259

administrating, 266

administrator ACL permis-

sions, 267

administrator principals,

266

changing passwords, 273

configuring, 262, 264

data stream encryption,

273

downloading, 261, 383

eBones, 259

enabled clients, 272

GNU autoconf utilities,

261

host principals, 268-269

improving on Telnet func-

tionality, 260

installing, 261

kadmin utility, 270

KDCs

administrators, 266

creating, 260

database passwords,

264

kadmind server, 265

klist utility, 265

krb5kdc server, 264

kpasswd utility, 273

overview, 259

synchronization, 270

telnet client bug, 272

tickets, 272

destroying, 272

obtaining, 271

user principals, 269

Web site, 259

kernels

2.2.16, 289

2.2.17

installing, 291

source code, 289

2.4, 163

adding rules to rule

chains, 155

ipchains utility support,

150

LILO, 55

NFS support, 210

official sources, 150

source code, 289

key distribution centers.

See KDCs

key editor, 306

keys

encryption, 288

GPG

generating, 301-302

importing/exporting,

303

listing, 303

Magic SysRq, 353

two-key encryption, 300

keytable script, 74

kinit command

administrator account

tickets, 268

kinit utility, testing KDC

server, 265

klist utility, 265

KNOWN wildcard (TCP

wrappers), 91

KNOWN wildcard 397

knownhosts directory, 245

kpasswd utility, 273

krb5-1.2.1 source directory,

261

krb5.conf file, 262, 368

krb5kdc server, 264

L
-L (list) command

ipchains utility, 154

iptables utility, 169

-l option

ipchains utility, 154

Kerberos telnet client bug,

272

ldap script, 74

libnet, 330

installing, 330

Web site, 384

libpcap, 329, 384

libraries

database authentication,

188

libnet, 330

pcap, 329

TCFS, 291

version issues causing

problems, 292

LILO (Linux Loader), 55

booter

/etc/lilo.conf file, 57-58

security, 57

password keyword, 58

prompt keyword, 61-62

restricted keyword, 59

/sbin/lilo command, 62

timeout keyword, 61-62

LILO: prompt, 354

Linux

ACL utilities installer, 126

backups, 130

concerns, 130

copying between files,

130

default permissions,

128

functionality, 122

getfacl command,

127-128

installing, patches,

124-126

mask permissions, 129

non-ext2 file systems,

130

POSIX. See POSIX

ACLs, 123

setfacl command,

126-127

ACLs (access control

lists), 122

Apache_mod_ssl

component, 278

backups, 337, 341

BIND, 203

booting, 56

distributions

BSD-like configura-

tions, 72

Caldera OpenLinux,

14-15

choosing, 11

Corel LinuxOS, 16-17

Debian GNU/Linux,

16-17

features/security trade-

off, 11-13

Mandrake, 13-14

multipurpose

machines, 12-13

Red Hat, 13-14

scripts, 76

servers, 11-12

shadow passwords, 77

Slackware, 16

SuSE, 15-16

System V-style script

structure, 72

workstations, 11

file systems

data encryption, 287

ext2, 113

NFS, 210

firewalls, 149

additional packet types,

151

ipchains utility,

152-154

rules, 155-157

installations (security), 17

directory tree

rearrangements,

22-23

essential packages,

20-22

/etc/fstab file edits,

23-26

file partitions, 19-20,

26

file rearrangements,

22-23

file system separations,

22-26

source integrity, 18-19

update installations,

26-27

ipmasqadm utility, 158

iptables utility, 164

calling syntax, 169

commands, 169

functionality, 166

networking options,

required, 166

options, 170

port forwarding, 174

rules, 167, 171

rulesets, 172

targets, 168

398 knownhosts directory

Kerberos, 262

kernel sources, 124, 150

kernel-based NFS support,

210

library versions, 292

LILO, 56

loopback driver, 288

OpenSSH, 249

PAM, 135

authentication, 143

configuring, 136, 139

control flag necessity

levels, 137

functionality, 138-139

module type context

names, 137

modules, 139

password service,

140-141

wheel group, enforc-

ing, 141-143

permissions, 111

responding to attacks, 353

routing, 149

Samba, 215-219

security, 2

appropriate levels, 3

checklist, 375

policy checklist, 3

root kits, 338

Sendmail, 194

m4 configuration, 196

packet filtering, 194-195

TCP wrappers, 195-196

SSH. See SSH

tape changers, 343

TCFS, 288

user accounts

creating, 77-79

group behavior, 78

private groups, 78

Web sites, 372

wu-ftpd server, 191

X functionality, 224

Linux Kernel 2.2

ipchains utility, 149

port forwarding, 158

Linux Kernel 2.4, 110, 163

Linux Kernel HOWTO Web

sites, 124

Linux Kernel source, 123

Linux Loader. See LILO

linux-mandrake.com, 373

LinuxPPC, 373

list_principals command

(KDCs), 270

listings

access control, 202

access file (Apache Web

server), 191

authentication

login service, 138

su command (wheel

group enforcement),

142

DNS port filtering with

ipchains, 200

encrypted files, 308

/etc/exports file, 213

/etc/hosts.allow file, 92

/etc/inetd.conf, 86

/etc/lilo.conf file, 57-59

/etc/pam.d/passwd file, 140

/etc/re.d/init.d/read-only,

115

/etc/securetty file, 70

/etc/services file, 88

/etc/X0.hosts file (sample),

225

GPG-generated PGP sig-

nature, 307

ipchains command

NFS packet filtering,

214

Samba packet filtering,

220

ipchains utility

sample script, 159

X packet filtering rules,

232

iptables command

NFS packet filtering,

215

Samba packet filtering,

220

iptables utility

sample script, 175

X packet filtering rules,

232

key generation (GPG), 301

ls -1 command (sample

output), 100

match file (SWATCH),

323

passwd lines for

/etc/pam.conf file, 141

port filtering with iptables,

200

/private/projects/.htaccess

file, 190

restricted and password

arguments, 60

rotating changer script, 345

script links from

/etc/rc.d/rc3.d file, 72

secure /etc/pam.d/other

file, 143

self-signed certificates, 281

SnortSnarf script, 333

SSH, remote logins, 243

SUID/SGID script check

fragment, 113

SysV-style scripts, calls to,

71

/usr/local/kerberos/etc/kdc.

conf file, 263

/usr/local/kerberos/etc/

krb5.conf file, 262

listings 399

load command (mtx com-

mand), 344

local hosts, 316

LOCAL wildcard (TCP

wrappers), 91

Location scope, 186

LocationMatch scope, 186

locations, physical security,

46-51

locks, 50-51

adhesive cables, 51

alarm cables, 51

cables, 54

floppy drives, 54

metal cables, 51

log entries, 95-96

LOG target (iptables utili-

ty), 168

LogFormat directive, 183

logging in/out

authentication, 138

bash shell, 70

clearing displays, 70

directives, 182-184

SWAT, 216

loginfails 3 option, 192

logins (files), 366

LogLevel directive, 182

logs

duplicating, 96

monitoring, 313, 320

security, 192

transfers, 192

lpd script, 74

ls -1 command, 100

lsattr command, 114, 295

M
-m argument, 79

machines

firewalls, 12

Linux distributions

choosing, 11

features/security trade-

off, 11-13

multipurpose

machines, 12-13

servers, 11-12

workstations, 11

multipurpose, 10-13

network infrastructure, 10

servers, 10

small businesses, 9-10

workstations, 10

magic cookies. See token-

based authentication

Magic SysRq key, 353

magnetic tape drives

mt command, 342

rotating backups, 345

tape changers, 343-344

mail [addr],[subj] action

(SWATCH), 322

main circuit boards.

See motherboards, 32

mainboards, 32, 43

maintenance mode, 56

make certificate command,

280

make command, installing

SSH, 239

make install function

(SAINT), 315

Mandrake Linux, 13-14

FTP site, 18

Web site, 18, 27

mangle table (iptables utili-

ty), 167

map_static-mapfile option

(host), 213

mask permissions (ACLs),

129

MASQ target, 153

MASQUERADE target

(iptables utility), 168

masquerading, 157, 173-174

match files (SWATCH),

321-322

matching packets, 171

MaxClients directive, 181

MaxConnections option

(sshd2_config file), 241

MaxStartups option

(sshd_config file), 252

maybe service, 75

MD5 encryption, 77-78

MD5 passwords, 141

memory, 43

messages

encryption, 300, 303

signatures, 307

metal cable locks, 51

Metalab Linux archive Web

site, 341

mirror sites, 18

MISC ruleset (Snort), 331

mod_ssl

compiling, 278

configuring, 279

installing, 278

user manual Web site, 277

Web site, 278, 383

--with-apache option, 279

modes, file attributes, 114

modifying

files

/etc/services, 89

/etc/sshd2_config file,

245

ports, 89

program binaries, security

concern, 338

X authentication lists, 225

modules

pam_cracklib.so, 140

pam_lastlog.so, 140

400 load command

pam_mail.so, 139

pam_nologin.so, 139

pam_pwdb.so, 139

pam_securetty.so, 139

Perl (SWATCH require-

ments), 321

TCFS, 294

monitoring

logs (SWATCH), 313

configuring, 322

downloading, 320

installing, 321

match file, 321

match file actions, 322

match file example, 323

for signs of security

breach, 352

motherboards, 32, 43

mount command, 116

mount method, 114

mount service, 214

mounting

root file system as read-

only, 114

TCFS volumes on client

machines, 294

mt command, 342

mta script, 75

mtx command, 343-344

multi-location backups, 346

multiplexing network ser-

vices, 84

multipurpose machines,

10-13

multivolume backups, 340

N
-N (new-chain) command

ipchains utility, 154

iptables utility, 169

named processes

adding user and group,

203

copying data and configu-

ration information, 204

permissions, 205

running in chroot environ-

ments, 203

starting in chroot jail, 206

syslogd daemons, 205

named.conf file

access controls, 201-202

version information pro-

tection, 201

naming ports, 87

Napster, 89

NAT, 173

nat table, 167-168

NetBios ruleset (Snort), 331

netmount script, 75

Netscape, SAINT function-

ality, 317

network file system.

See NFS

network infrastructure

machines, 10

network masks, 155

network script, 75

network services, 84

network time protocol

(NTP), 271

networking options required

for iptables utility, 166

networks, 1

access controls, 201-202

backups

afio command, 341-342

Arkeia, 347

Backup and Restore

Utility (BRU), 347

magnetic tape drives,

342

multiple locations, 346

rotating, 345

scheduling, 344

tape changers, 343-344

tar command, 339-340

DNS, 199

firewalls, 149

ipchain utility options,

150-151

port forwarding, 174

hosts, auditing, 313-314

machine infrastructure, 10

masquerading, 157,

173-174

packet sniffing, 327

routing, 149

security

attack aftermath,

355-356

checklist, 375

fixing the vulnerability

after attacks, 358

getting back online

after attacks, 357

importance of, 1

Linux, 2

responding to attacks,

352-354

root kits, 338

signs of attack,

351-352

Snort, 327

downloading, 330

libnet library, 330

pcap library, 329

requirements, 328

rulesets, 331-332

SnortSnarf, 332-333

speed, 238

NEW packet state, 171

NFS (network file system),

209

ACL functionality, 130

kernel-based NFS support,

210

NFS 401

packet filtering, 214-215

port requirements, 214

rpc.portmap daemon, 214

security, 209-210

servers, 210

encrypted file systems,

289

TCFS, 288

services, 214

software, 18

NFS daemon, 210, 213

nfs script, 75

nis-client script, 75

nis-server script, 75

nmap

installing, 314

Web site, 384

nmbd daemon, 215

no service, 75

no_root_squash option

(host), 212

noaccess option (host), 212

noauto option (fstab com-

mand), 117

noexec flag, 19

nosuid flag, 19

NTP (network time proto-

col), 271

ntp script, 75

O
-o [!] interface[+] option

(iptables utility), 170

obscurity, security by, 88

offline command (mt com-

mand), 342

OpenBSD, 249

OpenSSH (open source

Secure Shell), 237. See also

SSH

authentication

RhostsRSA, 254

user-based public key,

255

configuring

defining ssh2 service,

251

ssh options, 253

sshd options, 252

downloading, 250

improving X security, 256

installing, 250

PAM configuration file,

251

remote logins, 253-254

tunneling TCP streams,

255

Web site, 383

OpenSSL

downloading, 249, 278

extracting and compiling,

279

installing, 279

Web site, 383

operators (TCP wrappers),

91

optional stack (PAM), 137

Options directive, 189

Order directive, 184

other= keyword, 57

output chain, 152

outputdirectory

(SnortSnarf), 333

overruns, 90

overwrite utility, 131

Overwrite Web site, 383

overwriting data, 131

ownership, 99

device nodes, 110

files, 100

P
-P (policy) command

ipchains utility, 154

iptables utility, 169

-p [!] protocol option

ipchains utility, 154

iptables utility, 170

packages

BIND, 200

descriptions, 22

essentials, 20-22

SWAT, 216

packets

denying, 156, 172

filtering, 149, 155, 163

NFS, 214-215

Samba, 220

Sendmail, 194-195

X, 231

ipchains utility, 152

sniffing

Snort. See Snort

states, 171

PAM (Pluggable

Authentication Modules),

80, 135

authentication, 143

compatibility trouble-

shooting, 136

configuring, 136-139

functionality, 138-139

login service (listing), 138

modules, 139

online documentation, 136

password service, 140-141

sshd daemon, 251

wheel group, enforcing,

141-143

pam_cracklib.so module, 140

pam_lastlog.so module, 140

pam_mail.so module, 139

pam_nologin.so module, 139

pam_pwdb.so module, 139

pam_securetty.so module,

139

paranoid settings, 91

PARANOID wildcard (TCP

wrappers), 91

402 NFS

partitions of files

defining, 19-20

options, 24

testing, 26

passwd-check rfc822

enforce option, 193

password keyword

combining with restricted

keyword, 60

LILO, 58

listing, 60

password service, 140-141

password stack (PAM), 137

passwords

AuthUserFile directive, 187

BIOS protection, 34-35

boot protection, 35-36

encrypted, 188

expiration, 140-141

images, 61

KDC databases, 264

Kerberos, 273

MD5, 141

PAM (Pluggable

Authentication

Modules), 80

prompting for, 188

random password genera-

tors, 79

shadow, 77

patches

ACL, 123-126

TCFS, 289

PATH environment vari-

able, 264

paths (external services), 89

pcap library, 329

PCI (Peripheral Component

Interconnect), 43

PCI IDE controllers, 38

PCs

BIOS (Basic Input/Output

System), 32

boot order configura-

tion, 36-38

boot password protec-

tion, 35-36

changing, 36

flash BIOS updates, 41

password protection,

34-35

secondary, 38-40

SETUP, 33

setup program, 33-34

cards, add-on, 39

devices (external/

attachable), 40

PCI IDE controllers, 38

SCSI

cards, 40

controller, 38

percent symbol (%), 93

performance, SSH effects on

speed, 238

Peripheral Component

Interconnect (PCI), 43

Perl, 320

permissions, 99-100, 122.

See also ACLs

ACLs, 267

AllowOverride directive,

104-106, 189

character position, 101

default (ACLs), 128

directories

device nodes, 109-110

execute access, 103

read access, 102

sticky bits, 109

write access, 103

/etc/lilo.conf file, 63

examples, 104

execute access, 102

mask (ACLs), 129

named process, 205

read access, 101

setfacl command, 127

setting default (umask

command), 107-108

SUID/SGID executables,

111

anomalies, 113

eliminating unneces-

sary permissions, 112

setting with chmod

command, 112

symbolic links, 111

TCFS, 295

troubleshooting, 109

write access, 101

PermitEmptyPasswords

option

sshd2_config file, 242

sshd_config file, 252

PermitRootLogin option

sshd2_config file, 242

sshd_config file, 252

PGP (Pretty Good Privacy),

299

e-mail encryption, 299

GPG-generated signature

(listing), 307

physical security (equip-

ment), 45-46

access auditing, 51-52

boot devices, 49-50

boxes, locking down, 50-51

location strategies, 47-51

locations, 46-47

power cycles, 47-49

pipe command action

(SWATCH), 322

Pluggable Authentication

Modules. See PAM

plugging in cables, 49

policies (deny), 91

Port directive, 181

port scanners, 89, 314

port scanners 403

Portable OpenSSH down-

load Web site, 250

portmap script, 75

portmapper, 214

ports

Apache, 283

filtering, 200

forwarding, 158, 174

Gnutella, 89

modifying, 89

naming, 87

Napster, 89

Samba usage, 220

POSIX ACLs, 123

downloading utilities, 123

Web site, 383

POST (Power-On Self Test),

43

power buttons, access

restrictions, 47-48

power cables, 49

power controls, 46

power cycles, 47-49, 54

Power-On Self Test (POST),

43

power switch, 48

--prefix=/usr/local/apache

argument, 280-282

Pretty Good Privacy.

See PGP

private FTP, 191

prompt keyword, 61-62

prompts (LILO), 56

protecting

cable lengths, 49

passwords

BIOS, 34-35

boot, 35-36

protocols

Kerberized, 271

NTP, 271

SSH, 237

tunneling (SSH), 238

public keys

authentication, 245, 255

trust issues, 304

Q - R
qid=N option (fstab com-

mand), 117

qpm script, 74

quest account option

(SWAT), 218-219

quest ok option (SWAT), 219

-R (replace) command

ipchains utility, 153

iptables utility, 169

random password genera-

tors, 79

rcN.d directories, unneces-

sary services, 73

read access, 101-102

read-only

root file system, 26, 29,

114-116

SWAT, 219

read-only (ro) flag, 29

read-write root file system,

26

reading package descrip-

tions carefully, 22

reboot command, 353

rebooting

automatically, 62

security concerns, 61

three-key smash, 65

unexpected, 62

Red Hat Linux, 13-14

Errata Page, 372

FTP site, 18

Web site, 14, 18, 27

REDIRECT target, 153

REJECT target, 153, 168

RELATED packet state, 171

remote access

OpenSSH-enabled servers,

253-254

SSH-enabled servers,

243-244

remounting all file systems

as read-only, 354

removing drives, 50

removing power switch, 48

reports (Snort), 332

requests

connection, granting, 92

to daemons, 87-88

Require directive, 187

required stack (PAM), 137

requirements

Snort, 328

SWATCH, 320

TCFS, 287

TCFS installation, 289

RequireReverseMapping

option

sshd2_config file, 242

sshd_config file, 252

requisite stack (PAM), 137

reset buttons, access restric-

tions, 47-48

reset switch, disconnecting,

48

ResourceConfig directive,

181

restoring

archives, 341

data after attacks, 357

systems

afio command,

341-342

tar command, 339

to an uncompromised

state, 338

restricted keyword, 59-60

retention command (mt

command), 343

404 Portable OpenSSH download Web site

RETURN target, 153, 169

rewind command (mt com-

mand), 342

RhostsRSA authentication

(OpenSSH), 254

rights (access)

changing, 105-106

device nodes, 109-110

examples, 104

setting default (umask

command), 107-108

sticky bits, 109

SUID/SGID executables,

111-113

risks (security), 84

ro (read-only) flag, 29

ro property, 114

root directory, backing up,

340

root file system

read-only, 26, 114, 116

read-write, 26

remounting with ro prop-

erty, 114

root kits, 338

root-only mode, 56

root permissions (X

servers), 224

root_squash option (host),

212

rotating backups, 345

routing, 149

RPC ruleset (Snort), 331

rpc.portmap daemon, 214

RSA encryption, 300

Rservices ruleset (Snort),

331

rsh utility, 237, 244. See also

SSH

rules

adding, 155-157

based on state matches,

171

ipchains utility, 152

iptables utility, 164, 167

targets, 152

rulesets, 156, 172

runlevels

3, 72

/etc/inittab file, 63-64

functionality duplication,

72

read-only, 116

scripts, 71

services, disabling unnec-

essary, 73

X11 mode, 64

rw option (host), 212

S
-s [!] addr [[!] port] option

(ipchains utility), 154

-s [!] addr[/mask] option

(iptables utility), 170

-s argument, 308

SAINT (Security

Administrator’s

Integrated Network Tool),

313-314

downloading, 314

functionality, 315

installing, 315

make install function, 315

nmap, 314

scans

cautions, 317

data analysis, 318

signs of attack, 351

Target Selection option,

316

Top 10 vulnerability nota-

tion, 319

Web site, 314, 384

Samba, 215

ACL functionality, 130

disabling service tem-

porarily, 77

packet filtering, 220

script, 75

security, 209

SWAT, 216

cautions, 216

global security options,

217

per-share security and

browse options, 219

share security options,

218

Samba Web Administration

Tool. See SWAT

SATAN (Security

Administrator’s Tool for

Analyzing Networks), 314

saving BIOS changes, 36

/sbin/init.d file, 72

/sbin/lilo command, 62

scanners (port), 89

scans (SAINT), 316-318

Scans ruleset (Snort), 331

scheduling backups, 344

scopes

Directory, 184-187

DirectoryMatch, 184-185

Files, 186

FilesMatch, 186

Location, 186

LocationMatch, 186

script kiddies, 1, 355

footprints, 355

repeat visitors, 359

scripts

calling by hand (init.d

directory), 76

central, 71

determining necessity, 74

/etc/re.d/init.d/read-only,

115

examining with a pager,

76

init.d file, 74

scripts 405

rotating changer (listing),

345

shell, editing, 72

SnortSnarf, 333

SCSI (Small Computer

Systems Interface), 43

cards, 40

controllers, 38-39

hard drives, 38

secondary BIOS (Basic

Input/Output System),

38-40

Secure Shell. See SSH

Secure Sockets Layer (SSL),

277

securing daemons, 85

security, 1, 32

adhesive cable locks, 51

advisories, 26

alarm cable locks, 51

appropriate levels, 3

attack aftermath

fixing the vulnerability,

358

getting back online,

357

notifying the authori-

ties, 356

understanding what

happened, 355

authentication.

See Kerberos

back doors, 338

backups. See backups

BIOS password protection,

34-35

boot password protection,

35-36

bugs, 90

cable locks, 54

cables, 49

CD-ROMs, 50

certificate authorities, 282

checklist, 375

configuration files, 365

continuous power systems

(battery backups), 47, 54

drives, removing, 50

environments, 46

/etc/fstab file, 25

file system, 99

firewalls, 12

flaws, 90

floppy drive locks, 50, 54

importance of, 1

Linux installations, 2, 17

directory tree rearrange-

ments, 22-23

/etc/fstab, editing,

23-26

file partitions, defining,

19-20

file partitions, testing,

26

file rearrangements,

22-23

file system separations,

22-26

packages (essential),

20-22

source integrity, 18-19

update installations,

26-27

metal cable locks, 51

modified program bina-

ries, 338

by obscurity, 88

OpenSSH

RhostsRSA authentica-

tion, 254

tunneling TCP streams,

255

user-based public key

authentication, 255

PGP (Pretty Good

Privacy), 299

physical (equipment),

45-46

access auditing, 51-52

boot devices, 49-50

location strategies,

47-51

locations, 46-47

locking down boxes,

50-51

power cycles, 47-49

policy checklist, 3

power buttons, access

restrictions, 47-48

power cables, 49

power controls, 46

power cycles, 54

power switch, 48

remote logins, 244

reset buttons, access

restrictions, 47-48

reset switch, disconnecting,

48

risks (inetd daemon), 84

root kits, 338

Samba, 215

script kiddies, 2, 355

signs of attack, 351-352

archiving system at

shutdown, 354

reaction, 352

rebooting cautiously,

354

stopping Linux, 353

Snort, 328

SSH

FTP functionality, 246

host-based authentica-

tion, 244

public key authentica-

tion, 245

tunneling TCP streams,

247

406 scripts

Web sites, 371

X, 223-224, 228. See also

access control

host-based authentica-

tion, 224-227

improving with

OpenSSH, 256

improving with SSH,

248

interaction between

authentication meth-

ods, 230

token-based authentica-

tion, 228-229

XDM (X Display

Manager), 230

Security Administrator’s

Integrated Network Tool.

See SAINT

Security Administrator’s

Tool for Analyzing

Networks (SATAN), 314

security option (SWAT), 217

security-oriented system

administration fundamen-

tals, 69

security-related log entries,

95

SecurityFocus.com, 372

self-signed certificates

Apache installation, 280

creating (listing), 281

Sendmail, 179, 194

m4 configuration, 196

packet filtering, 194-195

starting, 195

TCP wrappers, 195-196

sendmail daemon, 84

separating file systems,

22-23, 25-26

servers, 10

administrative (kadmind),

265

Apache Web server, 179

access file, 190

configuration options,

180-189

DNS, access controls,

201-202

encrypted file systems,

289

/etc/inetd.conf, 85

firewalls, 12

FTP, 191

krb5kdc, 264

Linux distributions, 11-12

NFS, 210

OpenSSH, 253-254

secure locations, 46

SSH-enabled, 243-244

Web. See Apache Web

server

wu-ftpd, 191

anonymous uploads,

193

/etc/ftpusers file, 193

options, 192-193

X, 224

packet filtering, 231

starting, 231

starting with token-

based authentication,

229

XFree86, installing, 21

services

cautions about leaving

enabled, 73

disabling

inetd daemon, 86-87

for testing purposes, 76

/etc/inetd.conf, 85

external, paths, 89

files, 366

installing limiting number

of, 21

maybe, 75

network, 84

no, 75

reenabling, 76

removing, 75

SMB/NMB, 75

start order, 76

unnecessary, 73

yes, 75

yes(1), 75

session stack (PAM), 137

set user ID property (SUID

property), 111

setfacl command

POSIX ACLs, 126-127

removing write permis-

sions, 129

setGID (SGID), 19, 29

settings

default file permissions

(umask command),

107-108

paranoid, 91

SetUID (SUID), 19

SETUP, 33

setup programs (BIOS), 38

entering, 33

navigating, 33-34

SGID (SetGID), 19, 29

SGID property, 111-112

shadow passwords, 77

shell append (>>) operator,

108

shell commands, 93

shell scripts, editing, 72

shells, spawning, 94

SHOME/.Xauthority file,

367

signatures

GPG, 304

signed data, 306

verifying, 305

Silicon Defense

(SnortSnarf), 332

Silicon Defense 407

Simple WATCHer. See

SWATCH

single argument, 56

Slackware Linux, 16

FTP site, 18

Web site, 16-18, 27

small businesses

back rooms, locking, 50

machines

multipurpose, 10

roles of, 9-10

Small Computer Systems

Interface. See SCSI

SMB/NMB services, 75

smbd daemon, 215

SMTP ruleset (Snort), 331

SMTP servers (Sendmail),

179

SNAT target, 168, 174

sniffing packets (Snort), 327

downloading, 330

libnet library, 330

pcap library, 329

requirements, 328

rulesets, 331-332

SnortSnarf, 332-333

Snort, 327

downloading, 330

libnet library, 330

pcap library, 329

requirements, 328

rulesets, downloading,

331-332

signs of attack, 352

SnortSnarf, 332-333

Web site, 328, 384

snortfile argument, 333

SnortSnarf, 332-333

socket-type (/etc/inetd.conf),

85

software

downloading

via FTP or NFS, 18

list of sites, 383

installing via FTP or NFS,

18

system backups, 346

vulnerabilities, 358

--source-port [!] port option

(iptables utility), 170

sources, integrity for Linux

installations, 18-19

spawning shells, 94

specifiers (access controls),

203, 211

speed, SSH benefits, 238

squash_gid=N,N,N,... option

(host), 212

squash_uid=N,N,N,... option

(host), 212

SSH (Secure Shell), 237,

249. See also OpenSSH

configuring, 240-241

ssh2 options, 242

sshd2 options, 241-242

cookie distribution, 230

downloading, 238-239

encryption, 238

files, 367

FTP functionality, 246

host-based authentication,

244

improving X security, 248

installing, 238

host keys, 240

options, 239

tar command, 239

performance benefits, 238

public key authentication,

enabling, 245

remote logins, 243-244

ssh2 utility, 237

starting, 240

tunneling TCP streams,

247

--with-libwrap option, 239

ssh-2.4.0 directory, 239

ssh_config file, 253

ssh-keygen2 utility, 245

ssh2 utility, 237

ssh2_config file options, 242

ssh2-encrypted connections,

251

sshd binary, 251

sshd_config file, 252

sshd2 binary, 241

SSL (Secure Sockets Layer),

277

SSL_BASE environment

variable, 280

stacks (PAM configuration),

136

starting

local X servers, 231

SSH, 240

SSL-enabled Apache serv-

er, 283-284

X server with token-based

authentication, 229

startssl argument, 283

state machines, 171

status command (mt com-

mand), 342

sticky bits, 109

storing public keys, 303

strategies for physical secu-

rity, 47-51

su command, 70, 141

sufficient stack (PAM), 137

SUID (SetUID), 19, 29

SUID property (set user

ID), 111-112

SUID/SGID executables,

111

eliminating unnecessary

permissions, 112

permission anomalies, 113

setting with chmod com-

mand, 112

408 Simple WATCHer

SuSE Linux, 15-16

FTP site, 18

Web site, 15, 18, 27, 373

SWAT (Samba Web

Administration Tool),

215-216

cautions, 216

global security options,

217

logging in to, 216

per-share security and

browse options, 219

share security options, 218

starting, 216

SWATCH (Simple

WATCHer), 313, 320-321

configuring, 322

downloading, 320

installing, 321

match files, 321

actions, 322

example, 323

module requirements, 321

requirements, 320

signs of attack, 351

Web site, 384

swatch command, 321

switches, 48

symbolic links

permissions, 111

re-creating, 76

universal scripts, 73

SymLinksIfOwnerMatch

option (Option directive),

189

syntax

ipchains utility, 153

iptables utility, 169

syslog script, 75

syslogd daemons, 95, 205

system administration,

attack response, 353

system binaries, signs of

attack, 352

system requirements

Snort, 328

TCFS, 287

systems

file, 22-26. See also BIOS

read-only files, 29

X Window System, 11

SystemV-style init configu-

ration, 73

SysV-Style scripts

calls to (listing), 71

structure, 72

T
tape changers, 343

mtx command, 344

rotating backups, 345

tar command, 339

backups, 339

extract operations, 340

installing SSH, 239

tee command, 340

z option, 340

tarballs

installing mod_ssl, 278

Kerberos, 261

Target Selection option

(SAINT), 316

targets

ipchains utility, 152

iptables utility, 168

user chains, 153, 168

TCFS (Transparent

Cryptographic File

System), 287

3DES encryption module,

293

downloading, 289

encrypting files, 295

EXT2 partitions, 289

file access, 295

installing, 288-289, 292

compiling, 290

compiling EXT2 file

system tools, 292

compiling the patched

kernel, 293

libraries, 291

nondestructively, 290

requirements, 289

kernel options, 293

mounting volume on the

client machine, 294

overview, 288

requirements, 287

source code, 289

Web site, 384

TCP (Transmission Control

Protocol), tunneling data

OpenSSH, 255

SSH, 247

TCP wrappers, 89-90, 93-94

inetd daemon security, 90

operators, 91

Sendmail, 195-196

SSH requests, 240

wildcards, 91

tcpdchk file, 94

tcpdmatch file, 94-95

TCP/IP (Transmission

Control Protocol/Internet

Protocol), 83

files, 366

network masks, 155

packet filtering, 163

tee command, 340

Telnet

Kerberos telnet client bug,

272

security concerns, 260

SSH capability, 244

Telnet ruleset (Snort), 331

testing

disabling/reenabling ser-

vices, 76

testing 409

file partitions, 26

files

/etc/hosts.allow, 94-95

/etc/hosts.deny, 94-95

krb5kdc server, 264

testuser user principal, 265

three-key smash, 65

throttle h:m:s action

(SWATCH), 322

tickets (Kerberos)

destroying, 272

obtaining, 271

timeout keyword, 61-62

/tmp file system, 20

token-based authentication

(X), 228

automating (XDM), 230

cookie distribution, 229

cookies, 229

interaction with host-based

authentication, 230

starting X server, 229

xauth command, 228

traffic, signs of attack, 352

Transmission Control

Protocol/Internet Protocol.

See TCP/IP

Transparent Cryptographic

File System. See TCFS

trees of directories, rear-

ranging, 22-23

troubleshooting

ACLs

functionality concerns,

130

installation, 126

attacks

disconnecting the sys-

tem, 353

fixing the vulnerability,

358

notifying the authori-

ties, 356

reformatting and

reinstalling, 357

restoring data, 357

understanding what

happened, 355

compatibility issues, 136

host-based authentication

(X), 227

ipchains utility concerns,

150

Kerberos, telnet client bug,

272

library version issues, 292

open kernels, 150

permissions, 109

security checklist, 375

SWAT usage, 216

token-based authentica-

tion, cookie distribution,

230

X security, 224

trust (GPG), 304

trust command (key editor),

306

trust dilution, 305

tty devices, 70

tunneling (TCP data)

OpenSSH, 255

SSH, 247

TurboLinux Web site, 373

two-key encryption (PGP),

299

U
uid=N option (fstab com-

mand), 117

umask command, setting

default permissions,

107-108

umask=N option (fstab com-

mand), 117

Unix, 209

UNKNOWN wildcard (TCP

wrappers), 91

unload command (mtx com-

mand), 344

update encrypted option

(SWAT), 218

updates

flash BIOS, controlling, 41

installing, 26-27

user accounts

creating, 77-79

group behavior, 78

private groups, 78

user chains as targets, 153,

168

User directive, 181

user option (fstab com-

mand), 116

User option

ssh2_config file, 242

ssh_config file, 253

user principals (Kerberos),

269

user-based public key

authentication

(OpenSSH), 255

user-space hardware sup-

port, 21

useradd command, 79

UserDir directive, 182

users

editing account informa-

tion, 78

mask permissions, 129

wheel group, 142

users group, 78

/usr file system, 20

/usr/local/etc/ssh_conf file,

367

/usr/local/etc/sshd_config

file, 367

/usr/local/kerberos/bin

directory, 264

410 testing

/usr/local/kerberos/sbin

directory, 264

/usr/sbin/groupadd, 78

V
valid-user option (Require

directive), 187

validating messages, 300

values

LogFormat directive, 183

umask command, 107

/var/log/messages file, 95

verifying

message signatures, 307

signatures, 305

viewing allowed or forbid-

den hosts (X authentica-

tion), 226

Virus ruleset (Snort), 331

vulnerability scans

(SAINT), 317

Approximate Danger

Level link, 318

Top 10 notation, 319

W
-W argument (chage com-

mand), 80

watchfor keyword

(SWATCH match file), 321

watching. See monitoring

Web servers. See Apache

Web server

Web sites

Bastille Linux, 14

Caldera, 18, 27

Caldera OpenLinux, 15

Caldera Systems, 372

Computer Emergency

Response Team (CERT),

371

Computer Incident

Advisory Capability, 372

Corel, 27

Cypherpunks Home Page,

372

Debian, 18, 27

Debian GNU/Linux, 17

DebianGNU/Linux

Security Site, 372

downloading

eBones, 259

mtx command, 343

software (list of sites),

383

SWATCH, 320

GPG, 300

Kerberos, 259

Linux Kernel HOWTO,

124

Linux kernel sources, 124,

289

linux-mandrake.com, 373

LinuxPPC, 373

Mandrake, 18, 27

Metalab Linux archive,

341

mod_ssl, 278

mod_ssl user manual, 277

OpenSSH, 249

OpenSSL, 249

PAM documentation, 136

POSIX ACL utilities,

downloading, 123

Red Hat, 18, 27

Red Hat Linux, 14

Red Hat Linux Errata

Page, 372

SAINT, 314

security, 371

security advisories, 26

SecurityFocus.com, 372

Silicon Defense,

SnortSnarf, 332

Slackware Linux, 16-18,

27

Snort, 328

software, 18

SSH, 238

SuSE Linux, 15, 18, 27,

373

TCFS, 287

TurboLinux, 373

wipe utilities, 131

Web-cgi ruleset (Snort), 331

Web-ColdFusion ruleset

(Snort), 331

Web-FrontPage ruleset

(Snort), 332

Web-IIS ruleset (Snort), 332

wheel group, enforcing

(PAM), 141-143

wildcards

list_principals command,

270

TCP wrappers, 91

windows (X Window

System), 11

Windows NT, 209

wipe command, 131

Wipe Web site, 383

--with-apache option, 279

--with-libwrap option, 239

wo-ftpd server, 191

workstations, 10

Linux distributions, 11

X, 224

wrappers (TCP), 89-90,

93-94

write access, 101

directories, 103

removing with setfacl

command, 129

write [user] action

(SWATCH), 322

write [user] action 411

wu-ftpd server

anonymous uploads, 193

/etc/ftpusers file, 193

options, 192

X
-X attribute, 295

+X attribute, 295

-X (delete chain) command

ipchains utility, 154

iptables utility, 169

-x option, Kerberos telnet

client bug, 272

X Window System, 11

files, 367

overview, 223

packet filtering, 231

remote user authentica-

tion, 228

security, 224, 228. See

also access control

improving with

OpenSSH, 256

improving with SSH,

248

servers, 224

host-based authentica-

tion, 224-227

interaction between

authentication meth-

ods, 230

starting, 231

token-based authentica-

tion, 228-229

XDM (X Display

Manager), 230

X11 mode, 64

X11Forwarding option

(sshd_config file), 252

xauth command, 228

deleting cookies, 229

distributing cookies, 230

XDM (X Display Manager),

230

xdm script, 75

XFree86, 21

xfs font server, 73

xfs script, 75

xhost command

adding/deleting hosts, 225

disabling host-based

authentication, 226

viewing allowed or forbid-

den hosts, 226

Y - Z
yes service, 75

yes(1) service, 75

z option (tar command), 340

412 wu-ftpd server

