
Interested in learning
more about security?

SANS Institute
Security Consensus Operational Readiness Evaluation
This checklist is from the SCORE Checklist Project. Reposting is not permited without express, written permission.

SCORE Security Checklist

Copyright SANS Institute
Author Retains Full Rights

http://www.sans.org/score/
http://www.sans.org/security-training/
http://www.sans.org/score/
http://www.sans.org/score/
http://www.sans.org/score/checklists
http://www.sans.org/

Linux Hardening
General Checklist

Created June 2012

Updated July 2012
Authors:

Paul Loftness
Simeon Blatchley

Overview

This document is a general checklist for hardening a linux system. It is comprised of two other
types of documents which will be reffered to at various times throughtout this general

checklist. They are, Advanced Checklists and Configuration Checklists (see description

below). Both are for the advanced hardening of your system, and require more knowledge,

skill and also have more of the potential to break something. The important thing to remember
is that there is no 100% right checklist. There are bound to be variables that must be

changed, and all this document is intending on doing, is to allow the Linux user to follow the
steps and successfully secure any type of system without needing much knowledge. However,

they will still have the ability to further their security with the more advanced checklists. Of
course with the more advanced checklists, there is more of a chance of “breaking” something,

and thus all “steps” must be researched for your specific distro/system. A single user's

security settings will be vastly different from a multi-user system.

Note: All commands listed will need to be run as root. You can switch to root by running

either ‘sudo –I’ or ‘su.’

Note: Where we use “vi” as the command line editor, you can replace it for “gedit” or a gui

editor.

Note: Where use “apt-get” you can insert your distro version of package management. Or if

necessary you can download the binaries and compile them (a somewhat easy process of
./configure, make, make install, etc).

Note: Shaded areas are terminal commands, you can cut and paste these, although one

should be careful and know what the command actually does.

Advanced Checklists: These are checklsits that go into more detail of various security

aspects, and are not to be necessarily strictly followed. As the testing environment may differ

from your system. However, when deployed properly they can greatly improve the system
security.

Configuration Checklists: These are pretty self explanatory. They are just what we are

suggesting as the configuration of certain security packages, scripts, etc. (like AppArmor and
Bastille). Essentially, when there are variables that need to be inputted and what you put may

greatly effect the security, these checklists will help you better decide what options to
choose/use. Remember: Although we may say “choose options 'X'”, that is strictly a guideline,

and it is your job to know what options will work for your system. We will try to note, where are
options will not work on certain systems

Maintenance:

1. Update the Operating System:

Debian/Ubuntu/etc

 apt-get update
 apt-get upgrade

Redhat, YellowDog, CentOS, Scientific Linux, Fedora, etc.

yum list updates

yum update

Suse

zypper ref (Refresh the repos)
zypper dup (Normal update and install)

Harden the System

1. Install Bastille.

There are a few options around to harden a linux system, but we have

tested Bastille in real life scenarios and found it to be the most resilient. It is
rather customizable for various types of configurations.

 apt-get install bastille

Choose yes when it asks if you want to continue. Once it is done
installing, run:

 bastille -c
This will start the command line interface, to allow you to configure Bastille.

From there, you'll accept their terms of agreement, and be on your way. It is safe
to say that you can just accept the default values, however you should also read

about them. Please see our Bastille Configuration file for a more detailed look at
Bastille. It's safe to ignore most errors it throws at the end and beginning of the

configuration.

2. Install Apparmor.

Some packages will install their own enforced profiles. Active profiles for

LAM Server:
usr.sbin.mysqld

usr.sbin.apache2
All activity will be logged by auditd and saved to

/var/log/audit/audit.log

 apt-get install apparmor-profiles
 apparmor_status (to see current profiles and associated modes)

man apparmor (for more details of what to do with that information)

3. Configure and Use SELinux

As this is more complicated and advanced alternative to Apparmor, there is a
detailed checklist specifically for completing the below actions:

a) Installation varies greatly. Please look-up the process for your distribution.

b) activate

Temporarily: setenforce 0|1
0 activates permissive (monitoring) mode.

1 actives permission enforcement.

c) Service Profiles

Using SELinux on a service:
List available SELinux service profiles:

man -k _selinux

To explore a specific profile: man httpd_selinux.

This will provide the commands to engage SELinux for the service for
your distribution.

d) Service Settings

SELinux provides a number of boolean (on or off) settings for each
service.

semanage boolean -l

Lists the current status, permanent status, and an explanation of each
boolean

To turn a boolean on:

setsebool example_boolean on

-P makes the change permanent

4. Configure and use PAM authentication daemon

The instructions below are assuming that you do not have SELinux installed.
These configurations may change with the installation of SELinux. They will be

covered in the SELinux detailed checklist. Also for further PAM info, refer to the
PAM Configurations checklist.

 vi /etc/pam.d/common-password

change:
password requisite pam_unix.so nullok obscure sha512

to:
password requisite pam_unix.so nullok obscure sha512 min=8

Change min=8 with whatever password policy length.

Shadow File Password Policy

Change minimum and maximum password ages (most likely set to 0:99999 in
the file) I suggest changing those to 1:60 for all entries. . Here is a good example of

changing password aging from the the shadow file.
http://www.cyberciti.biz/faq/understanding-etcshadow-file/

5. Shutdown unnecessary services

 netstat -anp | grep LISTEN | grep -v STREAM

Analyze the services and the process id/process name. Determine which

services to terminate.

cd /etc
 find . -print | grep XXX (where XXX is part of the name of the program)

For those entries in the "/etc/rc#.d" directory, delete them (rm)

Some suggestions to disable:

a. Remove or disable the "r" commands

This includes rlogind, rshd, rcmd, rexecd, rbootd, rquotad, rstatd, rusersd,
rwalld and rexd. These services are inadequately authenticated. It is

better to remove these and use SSH and scp instead.

b. Remove or disable fingerd

Remove or disable fingerd if present. Apart from the possibility of a
software vulnerability, fingerd allows an attacker to enumerate usernames

on the system and to determine the timing and frequency of system
administrator logins.

c. Remove or disable tftpd

Tftpd is unauthenticated and not protected against brute-force attacks

seeking to enumerate and download files. Do not use tftpd (trivial file
transfer protocol) unless unavoidable.

d. Remove or disable telnet

Telnet sends commands unencrypted over the wire. This enables the
sniffing of passwords and other information as well as man-in-the-middle

attacks. Replace with SSH.

e. Disable SNMP daemon

If present by default, disable any SNMP daemon unless this is really
required for the role of the computer.

6. Disable unnecessary boot services.

Some services are needed but not all the time. In the interests of speed and
security they should be disabled when not in use. We've created a simple script

for this. It can be easily edited and must be run as root. Please see folder titled
“Scripts” and look for the “DisableBootServices” script.

cd /etc/init or /etc/xinit (should match /etc/init.d)

cd /etc/init.d (examine the two to make sure they match)
cd /etc

find rc*.d | xargs ls -l

All entries should be links to the ../init.d directory. Investigate those that
aren't.

cd /etc/init or /etc/xinit (should match /etc/init.d)

cd /etc/init.d (examine the two to make sure they match)
cd /etc

find rc*.d | xargs ls -l
All entries should be links to the ../init.d directory. Investigate those that

aren't.

Startup scripts (00755 is the norm, but 00700 is ok here as well)
rc.* (as rc.1-6 or rc1-6.d) and /init.d/* files

 chmod 0700 /etc/rc*

 chmod 0700 /etc/init.d*

Here's a good article about services, and runlevels:
https://www.linux.com/news/enterprise/systems-management/8116-an-introduction-to

 services-runlevels-and-rcd-scripts /

Lock-down user User Sessions:

1. Secure terminals:

The relevant configuration file may be called /etc/ttys, /etc/default/login,
/etc/security or /etc/securetty depending on the system. See the manual pages

for file format and usage information. Check that the secure option is removed
from any local entries that don't need root login capabilities. The secure option

should be removed from console if you do not want users to be able to reboot in
single user mode. [Note: This does not affect usability of the su command.]

If it is not already the default, consider using a special group (such as the
wheelgroup on BSD systems) to restrict which users can use su to become root.

2. PATH advice

Check that the current directory "." is not in the PATH. Note that an empty string
is interpreted to mean the same as "." so also make sure the PATH does not

contain any empty strings. For example, the following PATH is insecure:
/sbin:/bin:/usr/sbin::/usr/bin

This PATH advice is especially important for the root account. Including “.” in the
PATH variable can be used by an attacker to fool a root user into running a

malicious binary by substituting ./ls instead of /bin/ls for example.

3. Configure user login sessions to time out automatically.

After a certain period of inactivity, in particular for the root user. To do this, set

the appropriate variable in your shell's startup files.

typeset -r TMOUT=900 (15 minutes = 900 seconds)

4. Securing History

chattr +a .bash_history (append)
chattr +I .bash_history

Users history is being locked and they will have to agree before they
use your services.

Lock-down Config files Contents:

1. Analyze DNS – looking for rogue entries

 vi /etc/resolv.conf
Essentially here you should just see the DNS server that the

router/modem passed on to your computer, and whatever you have
added. Other entries can be considered to be rouge (remember to scroll

down). However, before you go and delete your whole file, be sure and
lookup the listed server and do your research.

Here is a good link for some basic DNS finding info:
http://www.cyberciti.biz/faq/how-to-find-out-dns-for-router/

2. Analyze host files

 vi /etc/hosts

3. Analyze contents of permission files

 If you are running , root should have * as the password. If you are running
su, it will have a password. Nobody else aside from you and known users should

have a password (the big long hash). If they do, make sure they shouldn't be
there, and delete that line. Make sure system users have /bin/null set as their

shell. Check for rogue users.
 vi /etc/passwd

 vi /etc/shadow

Set permissions on sensitive files:

1. Configuration Files

a. Firewall

 chmod 0700 /etc/profile

 chmod 0700 /etc/hosts.allow
 chmod 0700 /etc/mtab,

 chmod 0700 /etc/utmp
 chmod 0700 /var/adm/wtmp (or /var/log/wtmp),

 chmod 0700 /etc/syslog.pid (or /var/run/syslog.pid)

b. Kernel

/etc/sysctl.conf

/etc/inittab

c. Users

Make sure the owner & group are set to root.root and the

permissions are set to 0644 (except on the /etc/shadow file which
should be 400). Here is a good link for permission changing in

Linux:
http://articles.slicehost.com/2010/7/17/checking-linux- file-permissions-with-ls

 ls -la /etc/fstab

Verify: root.root and -rw-r--r-- (644)

 ls -la /etc/passwd
Verify: root.root and -rw-r--r-- (644)

 ls -la /etc/shadow

Verify: root.root and -rw-r----- (400)

 ls -la /etc/group
Verify: root.root and -rw-r—r-- (644)

ls -la /etc/sudoers
Verify: root.root and -rw-r—r-- (644)

2. Log Files

 (usually located in /var/log/, /var/adm, or var/tmp) are only writable by root.

3. Any World-Writable Files

Ensure that there are no unexpected world writable files or directories on your

system. Use the find command to locate these:

 find / -type d -perm +2 –ls
chmod 750

rm

5. Set permissions on sensitive binaries

Another good security practice is to set the permissions on certain commands.

However, it is very important to remember that what you change here depends

on what system your using. Also, the location of binaries will differ based upon the
system (for instance /bin, /usr/bin, and /usr/sbin). For instance a server used for

development would need the “make” command to be able to be run by any user.
Whereas, on a production server it would not be needed. Some examples (you'll need

to run these as root):

Set uid:

 –i / su

find / \(-perm -2000 \)

chown root:admin /bin/example
chmod 02750 /bin/example

find / \(-perm -4000 \)
chown root:admin /bin/example

chmod 04750 /bin/su

Some Suggestions:

Privelege Escalation
chmod 02750 /bin/su

chmod 02750 /bin/sudo
Network settings:

chmod 02750 /bin/ping
chmod 02750 /sbin/ifconfig

Users On:
chmod 02750 /usr/bin/w

chmod 02750 /usr/bin/who
System Configuration

chmod 02750 /usr/bin/locate
chmod 02750 /usr/bin/whereis

2. Kernel Modules

Ensure that the files holding the kernel and any kernel modules are owned by

root, have group ownership set to group id 0 and permissions that prevent them
being written to by any non-root users.

To list current module directory:
echo "Modules dir: /lib/modules/$(uname -r) for kernel version $(uname -r)"

To list contents/permissions of that directory:
ls -l /lib/modules/$(uname -r)

Last Updated: December 2nd, 2014

Upcoming SANS Training
Click Here for a full list of all Upcoming SANS Events by Location

SANS Cyber Defense Initiative 2014 Washington, DCUS Dec 10, 2014 - Dec 19, 2014 Live Event

SANS Security East 2015 New Orleans, LAUS Jan 16, 2015 - Jan 21, 2015 Live Event

SANS Brussels 2015 Brussels, BE Jan 26, 2015 - Jan 31, 2015 Live Event

SANS Dubai 2015 Dubai, AE Jan 31, 2015 - Feb 05, 2015 Live Event

Cyber Threat Intelligence Summit & Training Washington, DCUS Feb 02, 2015 - Feb 09, 2015 Live Event

SANS Scottsdale 2015 Scottsdale, AZUS Feb 16, 2015 - Feb 21, 2015 Live Event

10th Annual ICS Security Summit - Orlando Orlando, FLUS Feb 23, 2015 - Mar 02, 2015 Live Event

SANS Munich 2015 Munich, DE Feb 23, 2015 - Mar 07, 2015 Live Event

SANS DFIR Monterey 2015 Monterey, CAUS Feb 23, 2015 - Feb 28, 2015 Live Event

SANS Secure India 2015 Bangalore, IN Feb 23, 2015 - Mar 07, 2015 Live Event

Healthcare Cyber Security Summit OnlineCAUS Dec 03, 2014 - Dec 10, 2014 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=27534
http://www.sans.org/cyber-defense-initiative-2014
http://www.sans.org/link.php?id=37647
http://www.sans.org/security-east-2015
http://www.sans.org/link.php?id=36600
http://www.sans.org/belgium-2015
http://www.sans.org/link.php?id=36610
http://www.sans.org/dubai-2015
http://www.sans.org/link.php?id=38087
http://www.sans.org/cyber-threat-intelligence-summit-2015
http://www.sans.org/link.php?id=37797
http://www.sans.org/scottsdale-2015
http://www.sans.org/link.php?id=36715
http://www.sans.org/ics-security-summit-2015
http://www.sans.org/link.php?id=36605
http://www.sans.org/munich-2015
http://www.sans.org/link.php?id=37662
http://www.sans.org/dfir2015
http://www.sans.org/link.php?id=38687
http://www.sans.org/secure-india-2015
http://www.sans.org/link.php?id=36735
http://www.sans.org/healthcare-summit-2014
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

