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Introduction

Organizations find information security and computer security require a lot 
of attention. As more and more of our lives and livelihoods become digital 
and interconnected, protecting that information naturally becomes more 
important. With increasing importance, these fields relate to a wider audi-
ence than the technical folks who manufacture, install, and manage computer 
resources.

Technologists often, naturally, take a technology-centric approach to explain-
ing security. There is so much technology that the reader or listener requires 
dedicated study to keep track of it all. This attention to detail in turn often 
leads students to miss the forest for the trees. Retaining the individual tech-
nologies’ details is difficult enough; the strategic importance of each tech-
nology, and how they interrelate, is often omitted or lost. This deficit is a 
problem for decision makers and leaders, since they need to know what capa-
bilities can be deployed, but do not generally have the time to learn all the 
technology in detail. It is also a problem for students and young profession-
als who are technologists and operators, because they inefficiently use the 
tools they know.

Introduction to Information Security: A Strategy-based Approach was written to 
partially address this deficit. This book provides a framework for thinking 
about information security strategically, rather than as a list of technology 
details. The book introduces each technology as it is relevant to the strate-
gic goals, and in no more detail than is necessary to understand the strate-
gic importance. Additional material for more in-depth exploration, whether 
as part of a course or as self-study, is provided via the references provided in 
each chapter (largely linked to online material), and via the companion web-
site for this book.

Professionals and students alike should benefit from this book. The focus 
on strategy has emphasized certain topics and connections that can be easily 
overlooked, and even seasoned professionals may be pleasantly surprised at 
some of the results. Security-related studies are often taught at universities to 
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upper-class undergraduates or at the master’s level, however, there are no par-
ticular prerequisites to this text besides critical thinking skills. The underlying 
technologies (e.g., Internet routing) are covered within the text, also with ref-
erences and companion material for more complete exploration.

Information and computer security, however, are about more than just tech-
nology. People have been responsible for the advances in this field, acting 
as technologists, adversaries, and advocates, shaping the legal environment 
faced in this field today. The book profiles selected individuals, presenting 
their contributions and their background. In addition, sidebars throughout 
describe real-world attacks that motivate the technologies described therein. 
These profiles and attacks provide an opportunity for students to see the 
material as relevant to themselves, their careers, and the challenges facing 
their organizations.

APPROACH OF THIS BOOK
The purpose of this book is primarily to develop a strategic method of 
thinking about information security. Chapters  1 and 2 motivate the strate-
gic approach and define security-related terms. Chapters 3–15 are organized 
around a certain type of contribution to a strategic area. The four strategic 
stages developed are deception, frustration, resistance, and recognition/recov-
ery. The chapter topics are summarized in Table I.1. As each strategy builds on 
the prior strategies, the most natural way for a reader interested in strategy to 
proceed is sequentially, perhaps skimming over some of the technical details.

This book can also be used as an introduction to security-related information 
technology. The reader interested in particular technologies may find it help-
ful to move through the text by related technologies, rather than sequentially 
by strategies. Instructors and students should be able to select the chapters 
that suit instructional needs with the help of Table I.1.

CLASSROOM USE
This book grew out of a series of courses the authors have taught at the Naval 
Postgraduate School, Carnegie Mellon University, and the University of 
Pittsburgh over the last 20 years, as well as from experience in working with 
a group of organizations to improve their security. In a typical course, a selec-
tion of technologies is presented, with strengths and weaknesses associated 
with those technologies. Over time, the analogies to military strategy and the 
combination of methods associated with those strategies emerged.

The target audience for this book is senior undergraduates and graduate stu-
dents who need an understanding of information security but are focused 
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Table I. 1 A Guide to the Technologies Introduced for Each Strategy

Chapter Strategy Technologies Introduced

3 Deception Modern Internet history and operations (TCP/IP; BGP)
Dynamic addressing: DHCP / NAT

4 Proxies
Honeypots
Tarpits
Virtual Hosting

5 Frustration Host-based intrusion detection
Service Wrappers
Access Control Lists (ACLs)
Firewalls
Proxies
Dynamic addressing: NAT
Network design

6 Discretionary Access Control
Mandatory Access Control
Security Policy

7 Resistance Passwords
Security tokens
CAPTCHAs
Kerberos
RBAC
Phishing
Password cracking

8 Historic encryption algorithms
Block ciphers; AES
Stream ciphers; RC4
Disk encryption
Diffie-Hellman key exchange and RSA algorithms
Key management and PKI
Hashing algorithms
PGP
Asymmetric encryption and digital certificates
TLS; X.509 certificates
Steganography

9 Security partitions need to know policy management
10 Configuration management automation systems

Change management automation systems
Configuration management databases (CMDB)
CFEngine and Chef

(Continued )
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more on the use of security technology than on the development or instal-
lation of this technology. Chapter review questions are included with each 
chapter, to allow the reader to validate their understanding of the important 
points and terms in each chapter. Chapter exercises are more open-ended, 
and may require the reader to explore beyond the text content of the book 

Table I. 1 A Guide to the Technologies Introduced for Each Strategy

Chapter Strategy Technologies Introduced

11 Recognition OSI networking model
Network flow
Full-packet capture technologies
IDS
Human-driven network analysis using various methods
Suggested blogs for security professionals

12 Intrusion detection systems
Network-based IDS
Network behavior analyzers
Signature-based detection
Anomaly-based detection
Wireless IDS
Intrusion prevention systems

13 MD5 / SHA hash algorithm examples
Magnetic storage
Flash storage
Solid state drive operation
Common file systems (FAT, NTFS, HFS + )
Random Access Memory
Cloning hard drives

14 Hamming codes
Digital signatures
Asymmetric encryption
Hashing algorithms
Database integrity
UNIX diff
GPS and integrity detection

15 Recovery Contingency planning
Emergency management
Recovery and response policies
Incident handling
After action review and learning lessons

16 Professional certifications and continued learning
Command-line interfaces

(Continued)
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(including reviewing the references provided) to form an appropriate answer. 
The exercises in this book do not require programming, software configura-
tion, or device configuration. Instead, they are focused on understanding how 
technologies protect information, and on understanding the trade-offs and 
supportive relationships among technologies.

SUPPORT MATERIALS
Support materials are available from this books website at http://textbooks.
elsevier.com/9781597499699. Any errata will be located there. Instructors 
will be able to download prepared course materials, including lecture notes, 
figures from the text, an exam question pool, project ideas, and solutions to 
the problems at the end of each chapter.

Despite our best efforts, errors also leak into a text. Please let us know about 
any errors you find while reading the text by emailing InfoSecurityFeedback@
elsevier.com.
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Motivation and Security Definitions

CHAPTER 1

INTRODUCTION
The role of computer networks as an integral part of daily life makes infor-
mation security critical for individuals and organizations. The amount of 
personal and corporate information stored on networks, and the variety of 
threats to that information, combine to form a pressing need for increased 
protection of that information. This chapter describes this need and the broad 
methodology for addressing it, as a foundation for the chapters that follow.

INFORMATION SECURITY AND ITS MOTIVATION
For almost all organizations, information is a critical commodity. The vari-
ous pieces of information used by these organizations, together with the com-
puters that process those pieces of information, are referred to as information 
assets. Figure 1.1 diagrams some of the information assets and where they fit 
in an organizational hierarchy. Some of these assets are internal, proprietary 
information that may not be easily recoverable (without backups) if removed, 
corrupted, or blocked from the organizations’ use. Other assets are informa-
tion on external entities (including identifying information for customers or 
business partners, payment-processing information, or records of transac-
tions) maintained as custodial property by the organization—without which, 
no effective transaction could be undertaken, but limited by the agreements 
under which the information was provided. Forrester Research, in a 2010 sur-
vey of over 300 corporations, found that this custodial data had a mean value 

■ Information security and its motivation
■ Vulnerability, exploits, malware, intrusions, and controls
■ Security risk management
■ Security strategies and overlapping controls

INFORMATION IN THIS CHAPTER

Introduction to Information Security. DOI: 
© 2013 Elsevier Inc. All rights reserved.2014
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of $750,000 per organization (self-evaluated by the senior IT decision mak-
ers participating in the study). In contrast, these executives placed more than 
double this value on the internal information used in the operation of these 
corporations, including logistics and production information, business plans 
and new product forecasts, earnings and financial info, and employee infor-
mation, along with proprietary research and clinical trials [1].

The value placed on this information often does not derive from the cost of 
gathering or generating the information. In some cases, organizations spend 
significant investments gathering or generating information, and then ulti-
mately give the information away for free (for marketing, customer support, 
reputation building, or participation in professional societies, among other 
reasons). Instead of the initial investment, the value comes from the use the 
organization makes of the information. Other types of organizations do not 
measure value in terms of money or effort, but in terms of reputation (par-
ticularly in government) or operational advantages (particularly in the mili-
tary, or in nonprofit organizations, although the advantages sought by these 
organizations differ greatly). Organizational use is partially determined by the 
properties of the information, and the protections associated with those prop-
erties. Figure 1.2 shows these properties contributing to information security.

In particular:

■ The information must have a reliable meaning. This meaning may be 
protected by assuring the information’s data integrity—preventing 

Business plans
Forecasts
Policies President

Financial and
Administrative

Sales Development Technology

Payables
Receivables
Employee records
Travel plans Customer records

Sales material
Pending sales 

New products
Construction
methods 

Access control
Security
methods
Encryption 

FIGURE 1.1 
Organization chart with sample information assets. 
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undesirable and unauthorized changes to the information [2]. 
By attacking data integrity (i.e., modifying information without 
authorization), an adversary may block necessary processing, impede 
other defenses, or disrupt computer-based capabilities. By protecting 
integrity, the organization assures that the content, format, and semantics 
of the information remain controlled by the organization, facilitating 
ongoing reliable use. For businesses, assuring data integrity protects 
their ability to receive orders, produce quality products, deliver orders to 
appropriate addresses, invoice the correct parties for payment, and other 
aspects of business life. For military organizations, assuring data integrity 
protects their logistics chain, deployment, targeting, damage assessment, 
and military operations in general. For any organization, assuring data 
integrity protects general accounting, payroll, internal planning, and other 
aspects common to virtually all organizations.

■ The information must provide an advantage to its use, providing a benefit 
not available to all. This advantage may derive from the information’s 
confidentiality—restricting the knowledge of the information to authorized 
parties [2]. By attacking confidentiality (i.e., intercepting information 
without authorization), an adversary may compromise authenticating 
information, publicize internal planning and forecast information, and 
disclose personal identifying information (allowing impersonation to 
other organizations) and other closely held information. By protecting 
confidentiality, the organization retains control over which parties have 
access or use of the information, restricting competitors from exploiting 
this information, and enabling necessary internal planning.

■ The information must have suitable authority for its use. This authority 
is assured by the authenticity of the information—protected by 
nonrepudiation, which is the ability to definitively identify the source of 

Integrity

Confidentiality
Information

security

Availability

Authenticity

FIGURE 1.2 
Information properties and information security. 
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the information [2]. By attacking authenticity (i.e., imitating authorized 
sources), an adversary may cause false information to be accepted as 
valid, or fraudulently obtain increased access to computers or data. 
By protecting authenticity, the organization assures a trace from the 
responsible individuals to any actions done on the data. This trace 
enables organizations to audit actions by individuals, reducing the 
chance that malice or error will corrupt key elements of the organization’s 
information. For businesses, such authority establishes managerial 
direction over company processes. For the military, such authority enables 
the chain of command and reduces uncertainty in decision making.

■ The information must be available when needed by the organization. The 
availability protections ensure that the information and its processing 
capabilities are providing service as designed whenever users make 
authorized requests [2]. Protecting availability involves ensuring the 
presence of the information, its access rights, usable formatting, and 
suitable computing resources for handling the information. By attacking 
availability (i.e., denying service or access), an adversary may block 
the retrieval, processing, or use of key information supporting an 
organization’s mission. By defending availability, an organization assures 
that its necessary activities may continue.

There are other properties that may be significant to an organization’s 
information security. Parker, for example, adds utility and possession [3]. 
However, the four listed here give a sense of the variety of ways that infor-
mation may be attacked and defended. In later chapters, the defenses will be 
expanded on further.

While all of these characteristics of information are required for use in organi-
zations, the importance of each characteristic varies from organization to 
organization. In financial institutions, data integrity is paramount—if an insti-
tution loses the reliability of its information, regulators will shut it down. In 
e-businesses, availability is key—loss of service may lead to large loss of rev-
enue. For many military applications, confidentiality is the most important 
property—disclosure to the enemy of military plans or operations could be 
fatal to the personnel involved. In each of these cases, the value of the informa-
tion (and thus, the corporate value) is increased via the protection of the infor-
mation and decreased by lack of such protection, as illustrated in Figure 1.3.

Organizations or individuals may choose not to protect some information. 
Logically, this implies that the organization places no importance on the 
content, dissemination, originality, and presence of the information. This, in 
turn, implies that the information is not useful to the organization.

Information security, then, is used in this book as measures that implement 
services that assure adequate protection for information systems used by or 
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hosted within organizations [6]. In this definition, services are technical or 
managerial methods used with respect to the information being protected, 
information systems are computer systems or communication systems that han-
dle the information being protected, and protection implies the conjunction 

Information Value
Gaining: 
Integrity
Confidentiality
Authenticity
Availability Reducing:

Corruption
Compromise
Forgery
Denial

$

FIGURE 1.3 
Gaining and losing value. 

In early October 2002 [4], Glenn DaSilva placed a “pick four” 
bet on a local horserace via a phone call to an off-track bet-
ting facility operated by Autotote Systems, Inc. His bet was 
of a form where he picked two specific horses in the first 
two races, then the field (any horse at all) in the last two 
races. While this is ordinarily a very poor strategy, Glenn 
knew his bet would win, whether or not the horses he had 
marked won. His fraternity brother, Christopher Harn, a sen-
ior programmer at Autotote, would make sure of that.

Christopher had learned that, to avoid overloading the track 
computers, Autotote did not send the off-track bets to the 
track until 20 minutes after the second race in a four-race 
exacta, or after the fourth race in a six-race exacta. With 
Christopher’s level of access, that gave him plenty of time. 
On the day of the race, Christopher arranged to be working. 
He monitored the races Glenn had bet on, and right after 
the second race, he ran a program that changed the bet so 
that the first two actual winners replaced the horses Glenn 
had bet on. That gave Glenn a guaranteed win, yielding over 
$100,000 in winnings, which Glenn split with Christopher.

Since no one noticed, the guys grew bolder. Christopher 
contacted Derrick Davis, another fraternity brother, and in 
October 2002, Derrick opened an account with Autotote 
and placed six bets on the Breeder’s Cup, a very large 
national race. Since this was a six-race exacta, Derrick bet 
on four specific horses in the first four races, then the field 
on the last two. On the day of the race, Christopher ran his 
program again after the fourth race, changing the first four 
bets to reflect the actual winners.

Shortly after that is where things fell apart. The next race 
was won by a long shot—a horse almost nobody bet on. 
This was the third long-shot win in the exacta, which 
gave Derrick the only winning tickets. When the race offi-
cials examined the bets, they realized (due to the odd form 
of the bets, and that the same horses were bet on repeat-
edly) there was some form of irregularity and started an 
investigation, which quickly led to the arrest of Christopher, 
Derrick, and Glenn. Instead of the more than three million–
dollar payoff from the bet, they each ended up serving time 
in prison [5].

SECURITY CASE STUDY: AUTOTOTE INSIDER CASE—COMPROMISE 
OF DATA INTEGRITY
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of integrity, confidentiality, authenticity, and availability (although not neces-
sarily in that order). The definition of adequate in information security differs 
between organizations, based on the degree of threat against the organiza-
tion, management’s acceptance of risk, the regulatory climate applicable to 
the organization, and the mission of the organization, among other factors. 
Often, what an organization initially elects as adequate protection fails under 
attack, and more stringent protections are applied. Conversely, where protec-
tions interfere with organizational operations, the organization may choose 
to relax protections to a certain extent and adopt a lower level of protection 
as adequate. Iteration may occur between increasing and decreasing protec-
tions, and this iteration is quite disruptive to many organizations’ operations. 
The selection of services is discussed throughout the remainder of this book, 
but the level of protection considered adequate must inherently be deter-
mined by the personnel in the organization and expressed in the security pol-
icy for the organization and its systems.

Organizations are not, however, free to make arbitrary choices about what 
constitutes an adequate level of protection. In recent years, both legislation 
and case law have specified some necessary level of information security. 
While the legal system generally lags the technical innovation of both security 
compromises and security defenses, the mandated protections do support a 
“lower bound” for security. Table 1.1 summarizes some major laws that shape 
this lower bound in the United States.

TERMINOLOGY: VULNERABILITIES OF SOFTWARE, 
EXPLOITS, MALWARE, INTRUSIONS, AND 
CONTROLS
The range of protections mandated by legislation and case law are some-
what daunting. Virtually no organization is left without responsibilities in 
this area. There are several factors that make satisfaction of these responsi-
bilities difficult, including the vulnerability of software and protocols, the 

Table 1.1 Selected Legislation with Security Requirements

Short Name Required Protection Reference

ECPA Electronic communications [7]
Privacy Act of 1974 Government records [8]
Sarbanes–Oxley Corporate records [9]
Fair Credit Reporting Act Credit records [10]
HIPPA Health records [11]
Gramm–Leach–Bliley Personal information [12]
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development practices and priorities, the exploitation of those vulnerabilities 
via malware and manual methods, and the existence of intelligent adversar-
ies that actively violate information security and attack various organizations. 
This section explores these factors, and describes, at a high level, how organi-
zations deal with them.

Information security violations arise when an actor takes advantage of vulner-
abilities in a computer that handles information. An actor, in this sense, is 
some entity or process that serves as a proximate cause for the violation; an 
adversary is a human actor working against a specific organization. A threat is 
a potential for violation of security, which exists when there is an entity, cir-
cumstance, capability, action, or event that could cause harm. A vulnerability is 
a flaw in the system (including its operation) that can be exploited to violate 
the system’s security policy [2]. Vulnerabilities can be introduced throughout 
the system life cycle, such as:

■ A specified lack of authentication in an embedded control system (due to 
space issues on the device) can be a vulnerability if that system is not fully 
protected by physical means (e.g., if it is on an open network).

■ A design choice for a simple (and weak) form of encryption can be a 
vulnerability if the encrypted data is available to unauthorized actors.

■ A programmer’s use of unguarded input (where the length of the input 
is not restricted to the available storage) can be a vulnerability if an 
agent can submit arbitrary input, leading to overflow of the storage and 
corruption of the program’s memory.

Elouise Cobell (1945–2011) was, for 13 years, treasurer of 
the Blackfoot nation. She was the lead plaintiff in Cobell 
v. Salazar, a lawsuit originally filed (as Cobell v. Babbit) in 
1996 accusing mismanagement of a $60 billion per year 
mineral rights trust fund by the Bureau of Indian Affairs 
(BIA). In late 2010, the government settled the suit for 
$3.4 billion, about half to go to the more than 500,000 
tribe members affected, about half to go to acquisition of 
tribal lands, and about $50 million to a scholarship fund 
for Native Americans. As part of this case, the information 
security of the fund’s data processing systems was evalu-
ated by a team of experts hired by the court [13]. The 115-
page Special Masters report (issued in November 2001) is 
a detailed description of data insecurity at BIA. The report 
found poor or no passwords, no firewalls, no use of data 

encryption, unauthenticated changes to the payee list, 
very poor physical security, anonymous funds transfers, 
poor handling of backups, and insecure document han-
dling, among many other security problems. The BIA data 
security was so poor that the judge was forced to order 
BIA and any connected network off of the Internet in late 
2001, which resulted in the full Department of the Interior 
being cut off. At the same time, the judge found that the 
data insecurity was criminal in nature (the first such find-
ing on record) and initiated criminal contempt proceed-
ings against the Secretary of the Interior and the Assistant 
Secretary for Indian Affairs [14]. The criminal contempt was 
overturned on appeal, on the grounds that these individuals 
were not responsible since they inherited the system from 
their predecessors.

PROFILE: ELOUISE COBELL
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■ A lack of secured storage for backup media can be a vulnerability if 
unauthorized actors can copy, delete, or steal backups of confidential 
information.

The breadth of ways that vulnerabilities can be introduced makes them hard 
to completely eliminate, and has led to them being ubiquitous in current 
information systems.

One factor that increases the difficulty of eliminating vulnerabilities is that 
insecure behavior is different from incorrect behavior; often insecure is a sub-
set of incorrect, but occasionally the vulnerability is part of the concept for 
the system, so the system may be correct but insecure. Indeed, there is a dif-
ference in the basic assumptions of developing secure systems and develop-
ing correct systems. In conventional software engineering, events breaking the 
system are normally considered to be unintended or random. The view is that 
users are annoyed or upset by the cases that break the system. This allows the 
developers to focus on parts of the system that are frequently executed, and to 
put the less executed parts of the system at lower priority.

In secure development, breaking the system is considered to be the deliberate 
intent of an intelligent (and, sometimes, quite persistent and well-resourced) 
adversary. There are several implications of these adversaries, but one is that 
any executable portion of the system could be used to break it, whether or 
not it is frequently executed. Another is that the adversaries may deliberately 
choose to use inputs to the system that contradict the specified inputs (by 
length or by content) to break its security. Most system developers are focused 
on making the system correct (minimizing errors); comparatively, very few 
know how to make a system secure. Others know how, but fail to include 
security in their concept or design for their systems. The result is that there are 
many vulnerabilities in deployed information systems, particularly networked 
information systems.

Vulnerabilities are discovered in several different ways. Users may accidentally 
identify a vulnerability in the course of their authorized use of the informa-
tion system (e.g., in the Harn case [5]). Competitors sometimes find vulnera-
bilities in competing products [15]. Security firms may identify vulnerabilities 
using detailed analysis of source code or using system-level testing techniques 
[16]. Organizations using the vulnerable information systems are notified of 
vulnerabilities via vendor announcements or popular media, and then fix, or 
“patch,” the vulnerabilities via corrective actions as the organizations choose.

A vulnerability is a potential security violation—a doorway that might be 
entered to violate an organization’s security policy. An exploit is a process for 
using a vulnerability to violate such policy (still a potential, not actual, security 
violation, but directly applicable to real systems). Most exploits are developed 
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after the associated vulnerabilities are known and described—sometimes even 
after a fix for the vulnerability has been published [17]. Some system develop-
ers will only fix vulnerabilities when they have identified exploits for those vul-
nerabilities. Other developers assess and fix vulnerabilities as they are reported, 
whether or not an exploit has been identified. Some exploits, however, are for 
vulnerabilities that have not been previously reported. These exploits, termed 
zero-day exploits, are considered to be especially dangerous to organizations, as 
there is less time to prepare for adversaries’ use of the exploit.

For computer networks, most exploits are implemented as computer software 
or program fragments to be used within computer software. This malicious 
software, frequently abbreviated as malware, may not necessarily be devel-
oped by adversaries intending to violate the security of organizations, but 
rather may be developed for profit (e.g., by selling it to the affected vendors 
or to those intending to violate security) or to provide a clear demonstration 
of vulnerabilities so that they may be fixed. Much malware, however, is devel-
oped by those intending to use it to violate security.

There are several types of malware that have been developed, and the termi-
nology will be familiar to many readers:

■ A worm is a standalone program that copies itself from system to system. 
Some worms will carry a payload, a set of instructions to execute when a 
set of conditions have been met. Some payloads execute immediately, 
other payloads execute when the condition that they are on satisfies 
specific conditions, including when a specific date happens [2].

■ A virus is much like a worm, except that it is not a standalone program, 
but rather propagates by modifying some other piece of software. Like a 
worm, it carries a payload.

■ A Trojan horse is a program that has a benign public purpose, but hides a 
malicious payload.

■ A logic bomb is a program or program fragment set to violate security when 
accessed using external commands.

■ Spyware is designed to hide information, gather information, and export 
that information from the systems on which it executes.

■ Bots are programs that execute commands in a distributed fashion. 
Beneficial bots are used in a variety of applications. Malicious bots are 
designed to hide commands, to receive commands from an adversary, and 
to execute those commands, exploiting the resources of the systems.

There are other forms of malware, but this list indicates the range of actions 
and behaviors that have been implemented.

When an exploit is executed, whether manually or via malware, the system’s 
security policy is violated and a security incident (hereafter, just referred to as 
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incident) occurs. Incidents are occasions that typically involve losses to the 
organizations involved. These losses (of authenticity, integrity, confidential-
ity, or availability) have already been described in the initial discussion of 
the importance of information security. Figure 1.4 describes three common 
cases of incident activity. Case A, also labeled with events affecting its shape, 
shows the probability of loss raising and falling as the enabling vulnerabili-
ties have exploits developed and applied against the organizations involved. 
Case B, the strictly increasing case, is a form of incident in which the asso-
ciated vulnerabilities either cannot be fixed or organizations choose not to 
fix them (e.g., if the cost of the fix is larger than the expected loss from the 
associated incidents). Case C is a common shape for incidents using zero-day 
exploits, but in this case the incidents are rapidly mitigated. Note that in all 
of the cases the possibility of loss never vanishes—a new exploit leaves a cer-
tain amount of residual risk.

Against vulnerabilities, exploits, and incidents, organizations apply security 
controls to mitigate their losses. A security control is anything done with or to 
the system that acts in support of the system’s information security, passive or 
active, technical, operational, or managerial. Most of the remaining chapters 
of this book will detail various security controls and how to use them in an 
effective fashion. For example, Chapter 8 discusses encryption, which is gen-
erally a control for resisting incidents involving confidentiality, integrity, or 
authenticity, but may actually be a vulnerability with respect to availability. 
Chapter 15 talks about backups, which are a control for availability, but may 
be a vulnerability with respect to confidentiality. Using these two controls 
together properly (i.e., using the strengths of each to mitigate the gaps in the 
other) may help resist a broad range of incidents, but using them improperly 
(where the gaps reinforce each other) may make the overall security weaker.
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FIGURE 1.4 
Incidents and likelihood of loss over time. 
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SECURITY RISK MANAGEMENT
There are two complementary approaches that have helped organizations 
apply multiple controls effectively: security risk management and secu-
rity strategies. This section describes the first; the second is described in 
Chapter 2. Security risk management is any process of identifying, measuring, 
and mitigating potential loss of information security to reduce the expecta-
tion of such loss to a level acceptable to the organization [2]. This section 
describes a process for risk management, drawn from the OCTAVE Allegro 
model of the Software Engineering Institute [18], which uses an eight-phase 
approach to manage risk (as overviewed in Table 1.2). OCTAVE generally is 
an asset-based risk analysis—it assumes that protecting information assets is 
a necessary component of protecting enterprise security, although asset pro-
tection is not sufficient for enterprise security. Enterprise security must also 
include site security, personnel security, disaster recovery, and other protec-
tions. While the OCTAVE Allegro model has proven useful to several organi-
zations, other methods approach risk analysis differently. As one example, the 
STAR model [19] uses a five-phase approach and has been applied success-
fully at a major university. The international standard on risk analysis [20] 
uses a six-phase approach in a cyclical fashion.

An OCTAVE Allegro risk analysis starts with the definition of measurement 
criteria to be applied during the analysis. These criteria express the range of 
impacts that are significant to the organization performing the analysis. 
Generally, these impacts are those that cause losses related to the essential 
activities of the organization, such as those that hamper use of information 
systems or those that interfere with the organization’s relationship to its cus-
tomer base. By defining the measurement criteria, these impacts can be dealt 
with quantitatively, rather than qualitatively. One example criterion might 
be using expected hours of system downtime as a measurement of impacts 
that hamper use of information systems. This model has the organization 

Table 1.2 Overview of OCTAVE Allegro Phases

Phase Description

1 Define risk measurement criteria
2 Identify information assets
3 Identify storage locations of assets
4 Identify specific threats
5 Construct threat scenarios
6 Apply threat scenarios
7 Score identified risks using measurement criteria
8 Select approach to deal with threats
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define its own criteria, reflecting its own concerns over impact, rather than a 
 preexisting set of concerns applied externally.

The second phase is identifying the information assets (people, information, 
processing systems, or other retainers and processors of information) that are 
of value to the organization. While most organizations have a general aware-
ness of their information, a detailed inventory is surprisingly difficult to gain, 
even for modest-sized organizations. This inventory will include where these 
assets are used by the organization, how the assets are accessed, and who is 
responsible for the assets. For example, a personnel database is used by the 
human resources (HR) department to track employees of the organization, 
and is used only by HR personnel, as validated by their passwords, who have 
been designated by the organization’s director of HR.

The third phase identifies the storage location of each information asset, 
together with the existing security controls on that storage location. These 
locations can be internal or external, permanent (archival) or transient (only 
for the duration of a task). Continuing the database example, the personnel 
database is maintained on the HR server for the organization, but extracts of 
the database are often sent via email to executives to support decision mak-
ing. Both the server and the email system would be evaluated as storage loca-
tions, and the security controls for each would be listed.

For each information asset, the fourth phase identifies the specific threats that 
could negatively affect the asset’s security. This phase involves describing the 
potential impact if the threat occurred, and some conditions that cause that 
occurrence. In producing this description based on the storage locations pre-
viously identified, the organization starts to gain a detailed understanding 
of where the assets are at risk. Continuing the database example, potential 
threats include disclosure of proprietary information to unauthorized indi-
viduals. While authorized HR personnel maintain the database, IT adminis-
trators, who might not be authorized for all content of the database, or even 
the extracts, maintain the email system.

The fifth phase is to construct threat scenarios with respect to the informa-
tion assets. A threat scenario includes one or more assets, an actor, a means, 
a motive, and a list of undesired outcomes. An actor can be either natural (a 
storm, flood, fire, or other disaster), automated (malware), or intelligent (a 
criminal, activist, or other potentially harmful human). A means is a vulner-
ability and exploit used by the actor against the information asset. A motive is 
the desire or inducement for the actor to apply the means (for natural disas-
ters, this is omitted). An undesired outcome is weakening or damage to the 
information asset, as identified during the fourth phase. Threat scenarios may 
be described in a text narrative, but many organizations use a graphical repre-
sentation, known as a threat tree, to show the relationship between the steps 
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in the scenario. In the database example, the threat scenario may be that an 
organized crime group blackmails one of the email administrators, forcing 
him or her to transparently copy and pass to them the database excerpts being 
sent to executives. The threat tree for this scenario is depicted in Figure 1.5.

In the sixth phase, the organization applies the threat scenarios to its assets, 
identifying specific outcomes for the essential activities of the organization. 
This is the phase where some information related to the potential loss is iden-
tified. Continuing the database example, once the data is passed to them, the 
crime group then uses this information for insider trading, harvesting personal 
information, or unfair competition with the organization. The impact is loss to 
the organization’s finances and to the reputation and finances of its personnel.

In the seventh phase, the identified risks are scored using the measurement cri-
teria established in the first phase. These scores act to prioritize the risks for mit-
igation. It isn’t always the threats with the highest potential impact that receive 
the highest scores. Factors that may increase the score for other threats include 
ease of access by actors, susceptibility to mitigation, and tendency of the mitiga-
tion to suit the existing workflows of the organization. In the database example, 
both the loss and the ease of access by the actors in the threat scenario lead this 
threat to score high on the organization’s measurement criteria.

The eighth and final phase of the OCTAVE Allegro model is to select the 
approach for dealing with each of the prioritized threats. There are several 
potential approaches: accept, mitigate threat or impact, transfer threat, or 
defer. The accept approach indicates a decision to take no action on a par-
ticular threat and to tolerate the resulting losses. This is generally allowable 
only for low-impact threats. The defer approach indicates a need for more 
information before a decision can be made to either accept the risk or miti-
gate it. Sometimes the technology for remediation is relatively immature, 
or the risk is segmented enough that no solid understanding of its impact 
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is available, in which case the organization may reasonably choose to defer 
decisions. Transfer of threat occurs when the organization chooses to place 
an asset outside its network and negotiate either a minimum level of secu-
rity from the hosting provider or insurance against damage from an insurance 
provider. The mitigation of threat or impact is the primary focus of this book, 
and the methods and strategies discussed in the remainder of the book pro-
vide a basis for organizations to determine how to mitigate their threats and 
the negative consequences resulting from them [18]. To provide some feel for 
common (but effective) recommended mitigations, the Australian Defence 
Signals Directorate maintains a list of “top 35” mitigations [21].

In the database example being discussed, one obvious mitigation for the 
organized crime threat would be to encrypt the database excerpts using a 
strong encryption technique (see Chapter 8) before sending them through the 
organization’s email. For casual adversaries this might be sufficient, but it is 
unlikely to be fully successful in this threat scenario. Recall that in this threat 
scenario, we are dealing with adversaries who have the resources and malice 
to subvert trusted people in the organization—this is not like dealing with 
bored teenage hackers (see Kreb’s blog [22] for insight on threats like this).

There are several drawbacks to the sole use of encryption as a countermeas-
ure. First, it provides little or no capability to determine whether actors are 
attempting to compromise this information, so any successful attack will 
come as a total surprise to the organization. Second, the organized crime 
group may rapidly recognize the use of encryption, and apply efforts to 
compromise the encryption system itself or its key infrastructure. Third, the 
encryption itself might be used against the organization, as the encrypted 
traffic would naturally be viewed as authentic, and thus false information 
inserted as encrypted email might be used to manipulate the organization. As 
such, proper mitigation of the threat may require a comprehensive approach. 
While this might increase the cost, in this case, the additional investment may 
be warranted as the negative impacts are severe.

It is in the comprehensive solutions that the security strategies come to the 
forefront. These strategies will be fully discussed in Chapter  2, but a brief 
treatment in this example will give some sense of how they may be used. The 
security strategies work through the various stages of a security compromise, 
seeking at each stage to progressively deal with the malicious action. The first 
strategy is deception, either fooling the malicious actors as to where to direct 
their activity or fooling them with respect to the degree of success of their 
activity. The second strategy is frustration, where the initial penetration into 
the organization is made as difficult as reasonable. The third strategy is resist-
ance, where activity following the initial penetration is hampered as much as 
is reasonable. The final strategy is an integrated recognition and recovery from 
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the activity of the malicious actors. These strategies work together to allow 
improved mitigation of threats and their impacts.

In the database example, the organization may choose to employ all of these 
strategies to protect their critical personnel information. A deception approach 
may involve use of false traffic, sending fake excerpts (with all the safeguards of 
real excerpts) that would cause individuals who attempt to exploit it to act in a 
very revealing manner. The desired recipients of the real excerpts would know 
the schedule on which these are generated, and as such would know to ignore 
off-schedule excerpts, or there could be specific entries in the fake excerpts (e.g., 
fake excerpts contain names of individuals who are not part of the organization, 
or a nonexistent branch of the organization) that would flag them to be ignored. 
A frustration approach may include careful preparation of trusted administrators 
(and other employees) as to the tactics that resourced criminals use to compro-
mise that trust, and how to report these attempts in a way that will not lead to 
negative consequences for the employee, so that the blackmail attempts will be 
forestalled and reported. Encryption can be used as a resistance approach, and 
in the context of the other approaches its disadvantages may be reduced. Finally, 
a recognition and recovery approach may involve monitoring for unauthorized 
data transfers at times associated with the transmission of the excerpts, blocking 
such transfers, and contingencies for dealing with the compromised data.

HOW TO USE THIS BOOK
This book discusses how to manage security risk using the security strategies 
to apply security technologies. Several technologies are covered for each strat-
egy. This arrangement gives the reader several options as to how to pursue an 
introduction to information security.

By Security Strategy
Chapter 2 introduces the security strategies in depth. With this as a basis, the 
balance of the book goes through each strategy and some associated technol-
ogies in depth. Chapters 3 and 4 discuss the deception strategy. Chapters 5 
and 6 discuss the frustration strategy. Chapters  7–10 discuss the resistance 
strategy. Chapters 11–14 discuss the recognition part of the recognition and 
recovery strategy, with Chapter 15 focusing on the recovery part and how to 
integrate it with recognition. Chapter 16 provides a concluding summary.

By progressively discussing the security strategies and their associated tech-
nologies, the book provides the reader with an understanding of how the 
technologies can work in a complementary fashion to improve the security 
of an organization’s information systems. The reader is encouraged to view 
the technologies as progressive hurdles that a malicious agent must overcome 
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to damage the organization. The intent is to discourage adversaries, to ren-
der their activity more easily detected, and to reduce the undesired impacts of 
their activity. All of these reduce risk for the organization’s information assets.

By Security Technology
The arrangement of technologies in the book also allows the reader to exam-
ine specific technologies of interest. Virtually all of the major information 
security technologies are discussed, each in an identifiable chapter:

■ Chapter 3 explores network configuration and routing from a security 
viewpoint.

■ Chapter 4 discusses honeypots and honeynets.
■ Chapter 5 examines host hardening and firewalls.
■ Chapter 6 describes formal security models.
■ Chapter 7 discusses authentication technologies.
■ Chapter 8 discusses encryption.
■ Chapter 9 covers policy management.
■ Chapter 10 describes patch management.
■ Chapter 11 deals with network traffic analysis.
■ Chapter 12 examines intrusion detection and prevention systems.
■ Chapter 13 discusses host forensics.
■ Chapter 14 covers integrity verification technologies.
■ Chapter 15 describes backup and restore systems.

The range of technologies in this book allows the reader to explore security 
controls based on their interest. The reader can pick and choose technologies 
to learn about. Where useful, the strategy discussion may act as support mate-
rial for this exploration.

SUMMARY
Information security has become essential to organizations in preserving infor-
mation of value to them and in providing for continued operations. The princi-
ples and techniques of information security have become commonly discussed 
in popular culture. This chapter provides an explicit listing of these principles 
and a definition for some of the common terms in this field. These principles 
aid in the management of information security risks, as described in the risk 
management model. As the malicious actors in this field have become better 
resourced and more persistent, simple defensive controls have become less 
effective. This has given rise to the security strategies briefly introduced here.

Chapter  2 will describe these strategies for implementing or improving the 
information security in an organization. The following chapters will focus on 
techniques to implement these security improvements.
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Chapter Review Questions
1. Define the following terms and describe their importance to organizations:

 a. Information security
 b. Confidentiality
 c. Authenticity
 d. Integrity
 e. Availability
 f. Vulnerability
 g. Exploit
 h. Malware
 i. Intrusion
 j. Security control
 k. Risk analysis
 l. Security strategy

2. For each of the following, name one type of organization that might find this 
property (e.g., government, medical, financial, or military) the most critical in 
information security:
 a. Confidentiality
 b. Integrity
 c. Authenticity
 d. Availability

3. If information security is so important to organizations, why are there so many 
large-scale violations of security?

4. For each of the following strategies, describe one way in which they could 
contribute to the protection of information in an organization:
 a. Deception
 b. Frustration
 c. Resistance
 d. Recognition and recovery
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5. What are two examples of how natural disasters might become security threats?

6. A local paper reports on a clerk stealing from an organization by issuing false 
checks. Is this a vulnerability, an exploit, or a security incident?

7. An Internet site starts distributing a program that gets a popular word processor to 
send a copy of whatever files it produces to be emailed to a specific email address. 
Is this a vulnerability, an exploit, or a security incident?

8. A programmer discovers a place in a program where it can be made to execute 
machine-code commands embedded in its input. Is this a vulnerability, an exploit, 
or a security incident?

9. Which laws specify the protection of your information as a student? Which laws 
protect you as a private individual? What implications does this have for the 
university you attend?

Chapter Exercises
1. Assume that you are the chief security officer for Temporary, a company that 

sets up networks for stockholder meetings and other large-scale meetings 
where private information may be shared. You contract network service from 
Infrastructure, a network operations firm. It offers contracted network support 
as desired by other organizations, including security monitoring and firewall 
configuration. Security is pretty important to the image of Infrastructure as a 
reliable network operations firm. Also contracting with Infrastructure is Careless, 
a network business. Careless has only one firewall (on its T3 connection to 
the Internet) with contracted support (from Infrastructure). Its access policies 
include web hosting, unfiltered email in/out, unfiltered file transfer protocol  
(FTP) in/out, secure shell (SSH) for terminal connection, and corporate  
dial-in to a networked server. Careless is primarily concerned with taking orders 
from networked customers via a web-supported catalog (with shopping cart 
software) and via phone. The acceptable-use policy deals with protecting these 
services only.
 a. As head of security for Temporary, what vulnerabilities would you be 

specifically concerned about?
 b. Assuming that there was a security intrusion at Careless, how would this 

possibly affect the security of Temporary?
 c. What security strategies should you explore to protect against security 

concerns due to intrusions at Careless?

2. Why isn’t it illegal to develop malicious software in the United States?

3. Why might the distinction between various types of malware be important?
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4. Based on the description of OCTAVE Allegro and the cited reference of STAR:
 a. How do the phases of OCTAVE Allegro and STAR compare?
 b. Which model would be simpler to apply?
 c. Which model would provide more justifiable results?
 d. Which model would be easier to customize to a specific organization?

5. What are two reasons that using multiple security strategies might be specifically 
important in dealing with well-resourced, intelligent, and persistent malicious 
actors?

6. Does the argument for the security strategies suggest that it is never appropriate 
for organizations to deploy individual security controls?

7. What factors might enter into the decision of how an organization might select 
controls to mitigate a risk?

8. How does the variation between organizations in the importance of the security 
properties of information make the task of securing information more difficult?

9. What state or local laws in your area affect the information security plans of local 
organizations?
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Strategies and Security

CHAPTER 2

INTRODUCTION
The motivation of adversaries attacking networks changed during the first 
decade of the twenty-first century. While there are still hobbyist-level adver-
saries, more and more became self-sustaining financially. During this time, 
large botnets were accumulated by a number of adversaries, and the selling 
of use of these botnets lead to one stream of income; another income stream 
was the emergence of fraud schemes, including phishing and credit card 
fraud. These self-sustaining adversaries are much more persistent than hobby-
ists, and protecting networks against these adversaries, or even making a net-
work relatively difficult to compromise, requires understanding the strategies 
both that they may use to compromise, and that defenders may use to protect 
information.

This chapter presents concepts of attack and defense strategies. Some basic 
strategic options are laid out in the next section. Following that, the appli-
cation of these strategies to security threats is discussed. Example security 
controls associated with each defense strategy are then covered briefly, and 
expanded on in the rest of this book. An example security incident and how 
the defense strategies could have applied are discussed immediately prior to 
the chapter summary.

■ Security strategies
■ Attack strategies
■ Defense strategies
■ Security controls
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SECURITY STRATEGIES
A strategy is defined as a “method or plan chosen to bring about a desired 
future” [1]. A security strategy is, therefore, a strategy that affects security, 
either in defense (often, increasing the security of an organization’s informa-
tion) or in attack (often, decreasing the security of an organization’s inform-
ation). Security strategies form the general approaches to security adopted  
by an organization, and many organizations employ overlapping security 
strategies to help prevent gaps.

This chapter will discuss both attack and defense security strategies. While the 
focus of most of this book lies with defense strategies, there is some value 
in a high-level understanding of security attack strategies as a context for 
deploying defense strategies. As adversaries have become better resourced 
and increasingly systematic, the attack strategies they employ have become 
increasingly diverse.

ATTACK STRATEGIES
One motivation to systematically address information security risk (in addi-
tion to the legal requirements described in Chapter  1) is that the threats 
against information security are growing systematic. The RSA case [2] 
described in the “Case Study: RSA Attack” sidebar shows how adversaries 
may target trusted security controls as a means of facilitating later attacks. 
This shows a degree of attack planning beyond what has been typical of past 
adversaries. Robert Morris Jr., for example, released his malicious software 
without plans for follow-on activity (see the following sidebar). The revela-
tions about government-sponsored cyber attacks in the 2007–2011 timeframe 
[3] have opened discussions about such attacks and their extensive plan-
ning and serious consequences for organizations. Pervasive fraud attempts 
have become a routine warning to business users of the Internet, including 
the dangers of trusting emailed web references or opening seemingly relevant 
attachments. As targeted frauds have proliferated, users find it difficult to dif-
ferentiate legitimate and fraudulent financial web pages, to the detriment of 
organizational security.

Adversaries may threaten information security on multiple levels simultane-
ously. They attack individual hosts, exploiting weaknesses in the operating 
system (e.g., the Windows 95 LAND attack [4]), or in the application software 
(e.g., the Internet Worm, as described in the following sidebar). They attack 
via networks, using remote contact methods, or by exploiting the trust within 
networks to propagate from an initial point of compromise. They attack 
users, either as malicious insiders (e.g., the Chris Harn case [5], described 
in Chapter 1), or as malicious outsiders (e.g., using fraudulent email). They 
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attack data that organizations use in essential business processes, including 
compromise, imitation, or redirection of data sources (e.g., phishing), using 
websites that closely imitate institutions to obtain authentication informa-
tion used in later frauds [6].

Robert Morris grew up in a technical family. His father 
worked on many of the basic security technologies and is 
most famous for publishing an analysis of password secu-
rity. After graduating from Harvard in 1987, the younger 
Morris entered Cornell as a Ph.D. student and continued 
research that included network security. In late 1988, he 
developed a self-replicating computer program, a worm, 
designed to both measure the size of the Internet and to 
evaluate the frequency of vulnerabilities in several com-
mon network services (remote command execution via 
email, weak authentication in remote access, and a buffer 
overflow in finger, a user identity service) [7]. He released 
the program in early November 1988, and it rapidly over-
whelmed many of the hosts then on the Internet [8]. His 
attempts to both shut off the worm and to instruct others 
on how to block it were both unsuccessful due to a lack of 
trusted information channels and to blockages caused by 
the worm itself. Eventually, about two-thirds of the hosts 
on the Internet were affected to some extent. An ad-hoc 
group of network administrators and security investigators 
formed to analyze the worm and successfully blocked it by 

correcting the vulnerabilities it used. Subsequent investiga-
tion pointed back to MIT as the starting point for the worm. 
Morris was identified as the author and arrested. He was 
convicted under the Computer Fraud and Abuse Act, and 
served a suspended sentence involving a fine and commu-
nity service [7].

Following his sentence, Morris focused on positive devel-
opments to computer science including network security. 
Morris continued his education via Harvard’s Ph.D. pro-
gram. His graduate work included development of network 
switch technology, and his dissertation work involved mod-
eling and controlling complex networks. Following his grad-
uate work, he was appointed as a professor of computer 
science at MIT, and was awarded tenure in 1998 for his 
work on wireless networks, distributed operating systems, 
and peer-to-peer applications. He is currently continuing 
this highly respected work as a member of the PDOS group 
at MIT. Outside of his academic studies, Morris has been 
active in technology companies, developing e-business 
software, and partnering in an investment corporation [18].

PROFILE: ROBERT T. MORRIS, JR.

To illustrate the usefulness of understanding attack (and defense) strategies, 
this chapter employs a brief continuing example. Consider a small nonprofit 
organization that has a website, a connection gateway providing external 
access to internal computers for the use of staff and organizational officers, 
a file server with shared information, several workstations internally for the 
staff and authorized volunteers, and an internal office server with human 
resources and financial information on it. A contract with a service provider 
supports hosting of the website, external-facing domain name system (DNS) 
service, and email service for the nonprofit. Figure 2.1 illustrates the organi-
zation’s logical network structure. After performing a risk analysis, the non-
profit’s staff determines the major security concerns are disgruntled staff or 
volunteers leading to information theft, external adversaries compromising 
computers as part of their botnet-building activities, and corruption or unau-
thorized dissemination of financial information.
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An adversary may have diverse malicious goals, including theft of data, misuse 
of computing time on hosts, consumption of network bandwidth, impersona-
tion of users, and redirection of organization network addresses. Adversaries 
employ a wide variety of attack strategies to attain these goals. The generic 
strategies they use include direct attacks, progressive attacks, mass attacks, and 
misdirection. Most attacks are not launched directly from the host the adver-
sary uses to access the Internet. Rather, adversaries use hosts previously com-
promised (or acquired legitimately) as launch points for their attacks.

The simplest attack strategy is the direct one. In this case, the adversary strikes 
against the target from the launch point, without intermediate or third-party 
hosts involved except in normal traffic routing. Figure 2.2 shows an abstrac-
tion of this strategy, where the solid node is the launch point and the pat-
terned node is the target asset (the empty nodes are third-party assets, either 
hardware, software, or data). This strategy is applied in attacks where the 
launch point is of little value to the adversary or the probability of being 
tracked back is low. Some examples of attacks that often use the direct strat-
egy are spam email, cache poisoning, and routing black-hole attacks. In the 
case of the nonprofit, one attack of concern might be a volunteer making 
unauthorized changes to the financial information. This is a direct attack, 
since the attack is entirely local to the office computer. The organization 
may choose a number of ways to deal with this, including maintenance of 
an audit chain, use of multiple-entry accounting, and requiring approval by 
an authorized staff member before changes to the financial information are 
finalized.

Workstations

Office server

Gateway

Border router

Service provider

Internet

Web hosting

Domain service

Email

File server

FIGURE 2.1 
Logical network structure for strategy example. 
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Another strategy is the progressive strategy. In this case, the adversary uses a 
series of intermediate hosts between the launch point and the target, each of 
which is compromised using the same set of exploits. In some sense, this is 
just a generalization of the direct strategy, applying it to successive targets in 
series, but an organization facing such an attack may find it more difficult to 
block than a direct attack, since the progressive strategy suggests the adversary 
has several options for proceeding against the target. From the adversary’s 
point of view, the progressive strategy offers a lot more protection and deni-
ability than the direct attack strategy. Figure 2.3 shows an abstraction of this 
strategy. There are several variants of this strategy: contracting (possibly black-
market) for the intermediate hosts, manual compromise of the intermediate 
hosts, automated (possibly self-propagating) compromise of the intermediate 
hosts, and beachhead-lateral attacks.

Adversaries find contracted intermediate attacks attractive since the intermedi-
ate nodes may be stable, offering options for later and ongoing use. Adversaries 
choose manual compromise of intermediate nodes where they wish to care-
fully diversify those nodes, for example, to spread them between nations 

FIGURE 2.2 
Abstraction of the direct attack strategy. 

FIGURE 2.3 
Abstraction of the progressive attack strategy. 
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without agreements for extradition or mutual cooperation in legal investiga-
tions. Adversaries use automated compromise of the intermediate nodes for 
increased efficiency where they don’t care about the identity or placement of 
these nodes. Beachhead-lateral attacks use an initial compromised host within 
an organization as a proximate launch point for the compromise of further 
intermediate hosts within the organization until the attack target is reached. 
Adversaries find the beachhead-lateral strategy convenient as a means of attack 
in depth, where many of the hosts a defender might use to detect, diagnose, or 
recover from the attack are silently under the adversary’s control.

A thoroughly discussed example of an attack using the progressive strategy is 
the “Hanover Hacker” case [9]. In the nonprofit example, one attack of con-
cern might be compromise of a workstation to gain illicit access to the office 
server. To compromise this workstation, the adversaries might place targeted 
malicious content on a variety of websites that could be of interest to organi-
zation staff. To protect against discovery, this malicious content would be 
placed from and refer back to computers arranged via a black-market content. 
The organization would find this scenario difficult to deal with completely, 
but a combination of browser protections (only allowing downloads to affect 
browser-specific file space) and content filtering (blocking content from third-
party sites of unknown character) may provide some aid.

The massed attack strategy is where the adversary compromises a group 
of third-party hosts, and uses all of them at once against the targeted host. 
Figure 2.4 shows an abstraction of the massed attack strategy. In some cases, 
the group of attacking hosts is compromised solely for one attack, but com-
monly the group is retained and reused for later attacks. Adversaries find this 
attractive since it leads to both an ongoing attack capability and to (via black-
market rental arrangements) monetary income. Massed attacks have been 
used for denial of service (particularly, distributed floods of traffic), and for 
distributed capture of a target’s network traffic.

FIGURE 2.4 
Abstraction of the massed attack strategy. 
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In the nonprofit example, political activists wishing to impose a specific view-
point may act as adversaries. As a protest, the activists may choose to flood 
the organization website, using a black-market rental of a botnet to gener-
ate the flood. With such a massed attack, it isn’t likely that the sources of the 
attack could all be blocked, so the response needs to focus on the targets of 
the attack. Since the website is located along with the nonprofit’s email ser-
vice, this flood attack may block critical communications. The organization 
may discuss this scenario with their Internet service provider (ISP), possibly 
shifting the hosting plans to reduce the impact of such attacks.

Adversaries using a misdirection attack strategy generate traffic to confuse or 
distract the network defenders in dealing with their direct attack. As implied 
by this statement, there are two main variants to the misdirection attack strat-
egy: masked attack, where the adversaries use cover traffic to confuse the net-
work defenders, and diversion attack, where the adversaries use feints against 
resources they know the defenders must protect to distract the network 
defenders. Figure 2.5 shows an abstraction of the misdirection attack strategy, 
where the adversary first compromises some sources for the feint attacks (dot-
ted lines), then uses those sources to launch the feints (dashed lines), and 
finally launches the attack against the target (solid line). Adversaries find mis-
direction strategies useful to ensure that the defenders will likely ignore their 
attacks against the target, increasing their chance of success.

One example of this occurred in incidents involving the “gameover” variant 
of the “Zeus” malware, where the adversaries targeted online banking creden-
tials, and used a distributed denial of service to deflect attention from wire 
transfers involving the compromised credentials [10]. In the nonprofit case, 
an insider wanting to obtain confidential information from the file server 
might choose to mount a denial of service attack against the office server 
as a distraction, since the office server availability would be viewed as more 

FIGURE 2.5 
Abstraction of the misdirection attack strategy. 
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important by the response team, and it would also be more visible than 
the insider’s download and subsequent release of information from the file 
server.

In early March 2011, an email was sent to four employees 
working at RSA, a security products subdivision of EMC 
Corporation [2]. This email, which was sent with falsified 
information to appear to come from a recruiting website 
and to conceal its actual source, induced the recipients to 
open an attached Excel spreadsheet. On the spreadsheet 
was a flash object crafted as a zero-day exploit for a vulner-
ability in flash rendering. The exploit permitted the attack-
ers to download a tool supporting malicious execution of 
commands, named Poison Ivy. Once this was installed, 
the attackers propagated through the RSA infrastructure 
and extracted information about RSA’s widely used secu-
rity products. The attack was discovered, shut down, and 
announced in early April 2011. RSA and other security ven-
dors have since published detailed analysis of the attack 
methods used against it, and strategies for dealing with this 
form of attack.

This attack used a combination of direct and progressive 
strategies. The initial false email was crafted to directly 
appeal to its recipients, in one case fooling a recipient into 
retrieving the email from the Junk folder to open its attach-
ment. The follow-on activity was quite progressive in nature, 
propagating through the company’s infrastructure until the 
targeted information was identified and extracted. While the 
total period of the attack was in the range from a couple of 
hours to a few days, that was sufficient for the attackers to 
succeed, despite diligent defenses at the company [2].

Once this attack occurred, the extracted information was 
reportedly used as a part of security compromises at sev-
eral customers of RSA. RSA responded by providing revised 
products to its customers. Additional security protections 
related to this attack, including signatures for the exploits 
used, have been deployed by security vendors.

CASE STUDY: RSA ATTACK

Adversaries may follow multiple strategies as portions of their attacks against 
organizations. One form of combined strategy is to employ different strate-
gies for various tactical steps: one during reconnaissance, another to exploit 
vulnerabilities, another for affect, and so forth for the remaining steps. Other 
adversaries may employ multiple strategies as a means of increasing the effec-
tiveness of their attacks. In either case, the defenders must carefully choose 
the defense strategies used to counter the attack strategies.

DEFENSE STRATEGIES
To deal with the risks of fire, multiple overlapping measures are taken. 
Building codes specify fire-containing walls in public buildings, use of fire-
resistant materials, elimination of likely fire sources via grounding electrical 
circuits or venting heating systems, presence of fire alarms, and installation 
of fire-response systems such as sprinklers, hoses, or fire extinguishers. These 
measures have been developed over time and provide for redundant and sup-
portive reduction in the risks due to fire. Analogously, to deal with the risks 
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to information security, most authorities recommend multiple overlapping 
measures. The National Institute of Standards and Technology (NIST), as one 
example, recommends systems, subsystem, and application security controls 
(structuring the controls by scope of information processing resources to 
which they are applied) be employed [11]. This is termed defense in depth.

Defense in depth is constructing an information security architecture 
with layered and complementary security controls, so that if one control is 
defeated, one or more other controls (that are behind or beneath the first 
control) still provide protection [12]. Defense in depth implies both assets 
being protected and multiple controls applied in the protection. A risk analy-
sis, such as the OCTAVE Allegro process described in Chapter 1, identifies the 
assets to be protected and the form of protection required. Defenders often 
find the choice difficult to determine which controls to combine to apply this 
protection. Controls are often developed and described in isolation, or as 
competing alternatives, when the defender needs to combine them.

In the nonprofit example, protection of the office server, with its content of 
personally identifying information and proprietary financial information, 
warrants multiple controls. A simplistic approach would be to find multiple 
controls already in possession of the organization and just use all of them. 
The simplistic approach tends to produce uneconomic overprotection with 
respect to some risks (those already allowed for by the organization, and for 
which the organization has already acquired controls) and unconsidered gaps 
with respect to other risks (those that may be specific to the office server). 
More methodical approaches would be to consider risks to the office server 
on a case-by-case basis, and identify a limited group of controls that will 
work together in a supplementary and economically justified fashion.

This section presents a more detailed structure of security strategies than 
the NIST approach. This structure is loosely based on the military strategies 
espoused in Sun Tzu’s classic text The Art of War [13], which describes decep-
tion of the enemy, frustrating his or her strategies, resisting his or her advance, 
along with recognizing and responding to his or her actions. The ordering in 
this section derives from a functional flow of information defense: hamper 
identification of targets, then block establishment of an initial compromise, 
then exacerbate the difficulty of attack progress, and finally facilitate response 
to identified attacks. This flow is shown in Figure 2.6. The goal in considering 
the structure of strategies is to support application of multiple security con-
trols that will reinforce each other to protect the organization’s information.

Deception
The deception defense strategy is to either make a network attack “no one’s 
problem” or “somebody else’s problem.” The easiest form of dealing with 
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an attack is to have it apply to something that does not need defense, and 
therefore involves minimal effort on the part of the defenders. Sun Tzu states 
this goal as “Hence that general is skillful in attack whose opponent does not 
know what to defend; and he is skillful in defense whose opponent does not 
know what to attack” [13]. In network security, many of the deceptive meth-
ods are relatively passive, not requiring continuing action on the part of the 
defenders. This makes them somewhat attractive as a first line of defense.

To make an attack “no one’s problem,” the adversary must be acting against 
an asset that is designed either to be unproductive for attack (i.e., holding 
content that is not needed by the organization, or structured to be resistant 
to attack), or that will not provide any advantage to the attacker in compro-
mising the mission of the organization. This implies that the assets attacked 
by the adversary hold no mission-essential or confidential information, which 
is most directly provided if the content of the asset is fictitious—that is, pro-
vided by the organization only to distract its adversaries. This would be true of 
a honeypot (a computer that provides virtual machines as false servers to dis-
tract adversaries) or tarpit (a computer that responds to network queries with 
a skeletal and uninformative response as a distraction to adversaries) system, 
as described in Chapter 4. Another method for making the attack unproduc-
tive is to structure the network with redundant servers (computers configured 
as the real servers, but not used in production or populated with production 
information) used as indicators of attack, as described in Chapter 3.

To make an attack “someone else’s problem,” the adversary must be acting 
against an asset belonging to an organization other than the target organiza-
tion, and the attack does not impact a service required by the target organ-
ization. This could be true of a foreign-hosted service or server (services or 
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computers supported externally via contract, with placement arranged to 
deceive adversaries) as described in Chapter 3.

In the nonprofit example, the organization has already decided to externally 
host its web and DNS services through its service provider. However, a flood-
ing attack against these services might interrupt the connectivity of the organi-
zation to the Internet by overwhelming the provider. As such, the organization 
may choose either to provide for backup Internet connectivity, or move the 
hosting of the web server to another provider, since web servers are a promi-
nent target for adversaries. Either of these controls would provide protection 
by deceiving an adversary as to the impact (in terms of responsiveness by the 
organization’s network infrastructure) of attacks against these exposed services.

Frustration
The frustration strategy is to deny the initial access necessary for attack. Other 
than a misdirected attack, the next simplest attack to deal with is one that 
is stopped before it affects the state of the organization’s network. Sun Tzu 
expresses this as “Thus the highest form of generalship is to balk the enemy’s 
plans” [13]. To frustrate initial access indicates asserting control of either the 
target of an attack or the medium used for the access. Many of the controls 
associated with this strategy are passive in terms of security effort, although 
ongoing maintenance is often required.

To frustrate an attack by asserting control of the target of the attack, the defend-
ers have configured the asset to be unreachable or unassailable to the attack (at 
least at the time in which the adversary is acting). Many of the classic provably 
secure systems (combined hardware and operating systems that are developed 
to provide service only in a secure manner, with protections that adversar-
ies or users cannot evade) work to make assets unassailable, as described in 
Chapter 6, and also by minimizing the available services on servers (reducing 
the configuration implemented on servers to those essential for support of the 
specific services supported by the server), as described in Chapter  5. Making 
assets unreachable is an approach taken by router access control lists, firewalls, 
and wrappers (all of which limit response by servers to service requests, either 
by blocking the receipt of the request to the server or blocking the servers 
response to received requests), also described in Chapter 5.

In the nonprofit example, one risk of concern might be an external adver-
sary sending a false routing update for the service provider to the border 
router, corrupting the link between the organization and its service provider. 
To execute this attack, the adversary would send a crafted packet directly to 
the border router. The packet (and any basis for subsequent tracing) would 
be discarded by the router after it incorporates the false information, so the 
adversary may feel safe in using the direct attack strategy. Considering this 
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attack, the nonprofit may elect to modify its border router configuration to 
restrict the service provider entries to known addresses.

To frustrate an attack by asserting control of the medium of attack, the 
defenders have structured the medium such that the adversaries find it diffi-
cult or impossible to insert their traffic. One form of such structure is restrict-
ing internal connectivity and other traffic-shaping approaches (controls that 
provide for connection between subsets of the network only via established 
connection points), as described in Chapter 5. Another form is partitioning 
the internal and external address space used by the organization (using exter-
nally routed addresses only for computers that provide service outside the 
organization, and private addresses, only routed internally, for the remain-
ing computers on the network), so that external actors cannot directly access 
assets that are purely internal resources, also described in Chapter 5.

Resistance
The resistance strategy is to make it as difficult as possible for attacks to progress 
after the initial access, without the necessity of knowledge of the attacks. While 
this often requires substantial effort, it reduces the damage that would other-
wise incur from the attacks. Sun Tzu supports this strategy via the principle that 
“The art of war teaches us to rely not on the likelihood of the enemy’s not com-
ing, but on our own readiness to receive him” [13]. Many of the methods that 
support the frustration controls will also support the resistance strategy.

Beyond the frustration controls already referenced, resistance strategy meth-
ods inhibit progress of the attack by limiting propagation of unauthor-
ized activity on a computer or across the network. To limit propagation on 
the network, defenders strongly protect the identity of all authorized users, 
using authentication methods (controls that tie the account on the com-
puter to secrets, identifying tokens, individual physical characteristics, or 
organizational role of the user), as discussed in Chapter  7, and then lever-
age that identity by setting up access control identifying allowable and for-
bidden activity and limiting responses appropriately. To reduce propagation 
of attacks via exploits that circumvent controls, defenders apply active patch 
and change management to the configuration of the hosts (controls that limit 
what changes may be applied to computers in the organization, by whom, 
and via which processes), as described in Chapter 10, which includes mini-
mization of the services available through the computers. Adversaries might 
evade these protections, but the protections make computers more difficult 
for adversaries to exploit in their attacks.

To limit propagation across the network, some resistance strategy methods 
limit unauthorized activity via encryption (apply codes as a means of lim-
iting the comprehensibility of traffic to authorized computers and users), as 
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described in Chapter 8, blocking unauthorized devices or unauthorized inter-
faces from communicating on the network. Protections of wireless networks 
often use encryption in this way. Another approach is to segment the net-
work into security zones (continuing the network structure controls described 
before as frustration-related controls), as identified by security policy, and 
then identify what traffic is allowable and what is forbidden between zones. 
This approach is discussed in Chapter  9. Many corporate networks apply 
some form of this segmentation.

In general terms, many methods associated with the resistance strategy 
require active application or maintenance. Authentication information must 
be protected, which includes refreshing or changing it as required. Host con-
figurations must be updated as patches, new requirements, and new attacks 
appear. Encryption keys must be updated or replaced on an ongoing basis. 
Security policy needs to be reviewed and the resultant partitioning mod-
ified as necessary. All of this demands substantial effort on the part of the 
network defenders, a level of effort that will be unsustainable unless applied 
selectively. One means of selection comes from the risk analysis described in 
Chapter 1—applying resistance most thoroughly to assets that are most valu-
able, most exposed, or both. Another means is to scope the application of 
resistance within the application of deception and frustration strategies, using 
those strategies to limit exposure to attack before looking at resisting attacks.

In the nonprofit example, the organization might choose to distinguish the 
workstations permitted to access the office server from those only permitted 
to access the file server. This distinction would allow different sets of controls 
to be applied to each group of workstations, and would also reduce the users 
who can access (or attack) the office server to those who are already permit-
ted to use it. This reduction would allow for increased resistance to attack 
both by malicious staff or volunteers and by external adversaries.

Recognition and Recovery
The recognition and recovery strategy is to, as rapidly as possible, both iden-
tify the attack and reconstruct the attack targets. Experience has shown that 
reliance on this strategy as the primary defense is unsustainably expensive—
it makes information defense entirely reactive, which means accepting dam-
age to the information before acting in defense. As such, this strategy should 
be the defense of last resort. Sun Tzu describes this strategy as “Therefore the 
clever combatant imposes his will on the enemy, but does not allow the ene-
my’s will to be imposed on him” [13].

The methods associated with the recognition and recovery strategy are the 
first that actively focus on individual attacks. These methods work to iden-
tify that an attack is underway, diagnose the characteristics (means, purpose, 
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or impact) of the attack, and restore the attacked computers and networks to 
a secure state [11]. The identification and diagnosis portions of this strategy 
analyze network traffic and examine the configuration and activity of com-
puters suspected of being attacked. The recovery portions of this strategy work 
to correct the configuration and restore the activity of these computers.

To recognize an attack from network traffic, defenders compare current net-
work traffic with both an established baseline of authorized activity and with 
rules or patterns describing attack traffic. Often, attack behavior will be vis-
ible on a network before any specific host is affected, so working to recognize 
attacks from network traffic may allow an opportunity to respond to an attack 
while damage is small. Network traffic analysis, as described in Chapter  11, 
focuses on the development and comparison of baseline activity, although 
some high-level attack patterns are often employed. Network intrusion detec-
tion, covered in Chapter 12, deals with rule-based recognition of attack traffic, 
although some significant departures from the baseline activity (termed anoma-
lies) may be used. Together, analysis and intrusion detection provide a balance 
between awareness of the network usage and focus on specific attack behavior.

Defenders may find that some attacks cannot be recognized from network 
traffic; for these attacks, the defenders must examine the individual hosts on 
the network. There are two groups of methods that support host-based rec-
ognition of attacks. Chapter  13 discusses digital forensic methods, looking 
at specific characteristic changes or additions to host configurations related 
to attacks. Chapter 14 looks at integrity protections and recognition of integ-
rity violations, which either prevent or detect any unauthorized changes to a 
host’s configuration. Together, forensics and integrity work to both find and 
diagnose attacks, as a basis for recovering from these attacks and resuming 
normal operations. Both forensics and integrity require software and also 
an informed analyst to explore the state of the host. As such, these methods 
require substantial time investment on the part of an organization.

Concurrent with recognition, the defenders move to recover from the attacks 
and resume normal operations. Commonly, recovery occurs immediately 
as the attack is diagnosed, although criminal investigation or liability may 
encourage the defenders to delay and gather further data on the attack to 
confirm attack diagnosis or identify the specific adversaries involved. The 
immediacy of the recovery leads to it being considered linked to recogni-
tion as a combined strategy, rather than being a separate strategy on its own. 
Chapter 15 discusses the process of recovery, including use of backup media 
and the addition of further frustration or resistance measures to inhibit rep-
etition of the attacks. By planning for recovery while performing recognition, 
the defenders may clarify which recovery actions are required and minimize 
resources lost due to the attack.
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SECURITY CONTROLS
Using security strategies can be costly, particularly if defenders apply their 
strategies without consideration of the risks associated with various assets. 
From the risk analysis, defenders should identify their high-priority risks tied 
to the critical assets. Once this is done, defenders need to decide which strat-
egies are most applicable to each risk. Some organizations have found the 
security attribute evaluation method [14] a useful method of balancing risks 
and protections. One graphical tool from this method is a “spider” diagram 
(shown in Figure 2.7), which provides a high-level view of strategies versus 
risks. Around the periphery are identified risks for specific assets, in groups 
of up to eight for each diagram. Along the radius are arranged the defense 
strategies. Within this space, defenders lay out planned or deployed security 
controls that act to mitigate each risk, placed to indicate the strategy that the 
control implements. The resulting chart provides an overview of network 
defenses, allowing consideration of how deeply layered the controls are for 
specific risks, where gaps exist, the balance between passive and active strate-
gies, and other security planning issues.

Asset-risk planning at a high level allows organizations to reduce cost in sev-
eral ways. Where assets are already adequately protected (or overprotected), 
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this planning inhibits unnecessary redundant controls (or facilitates deci-
sions on which controls to remove), saving the associated costs. For exam-
ple, if protection of the availability of the HR database is protected via an 
actively maintained honeypot (for deception), router access control (for frus-
tration, since only established authorized hosts may have their traffic reach 
the database), frequent configuration audits and patches (for resistance), 
and redundant storage (for recovery), then the cost of protection may exceed 
the risk to the organization that loss of availability would entail. As a result, 
management could plan which controls to remove or modify to decrease 
cost. Where expensive controls are used, the planning helps to identify sup-
plemental (and less expensive) controls that may reduce the frequency of use 
for the expensive controls (in the HR database example, decreasing the audit 
frequency due to the protections provided via the honeypot and the router 
access control), or may provide information that would allow the expensive 
controls to be used more efficiently, or even replace more expensive controls 
with less expensive ones (in the HR database example, rather than redundant 
storage, maintain a transaction log to replay any lost transactions, saving stor-
age). Where critical assets are not protected sufficiently, the planning helps to 
consider further cost-effective controls.

Strategy-based information security facilitates both reduction in security cost 
and increase of predictability in those costs. By employing multiple strategies 
in defense, each strategy provides a context for employing other strategies effi-
ciently, reducing cost. By reducing single points of failure in security, the over-
lapping controls make violations of security less frequent and more limited 
in scope, which increases the regularity of security costs (since there is less 
“drop everything and fix the security breach” going on).

Applying multiple security controls may increase the effort required of an 
adversary to successfully compromise the security of an organization. The 
defense strategies described here are not the only concept for selecting mul-
tiple controls—one can also apply controls based on anticipated attack strat-
egies. One attack-based method is constructing attack trees and applying 
controls to inhibit the modeled attacks [15]. The difficulty with this approach 
is to correctly and completely identify all of the attack strategies that would 
be applicable to the network; omitting any may leave the network available to 
adversaries. Another approach is to layer controls based on the assets on the 
network to which they apply. One asset-based method identifies controls at 
the network perimeter (connection to the ISP), enterprise, host, application, 
and data levels [16]. Difficulties with the asset-based method include under-
standing how to trade off protection of one group of assets against protec-
tion of other groups and assuring common protections across assets. Given 
these alternatives, this book elects to describe layering of security controls via 
defense strategies.
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SUMMARY
This chapter covers security strategies in concept, describing both attack and 
defense strategies. By learning attack strategies, network defenders can consider 
potential impacts and aggregate otherwise-unrelated activity into a basis for 
 systematic decision-making on responses to the attacks. The defense strategies 
provide a means for layering defenses to improve both their effectiveness and cost.

The remainder of this book discusses controls associated with each of the 
defense strategies. Each of the controls will be described to give an under-
standing how to apply the control, the advantages and disadvantages of 
applying it, and its limitations and strengths. The discussion of the controls is 
grouped by strategy, to facilitate layering of defenses.
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Chapter Review Questions
1. Briefly describe one difference between the frustration strategy and the resistance 

strategy.

2. Briefly describe one difference between the massed attack strategy and the 
misdirection attack strategy.

3. Define the following terms, and briefly explain their relevance to security:
 a. Adversary
 b. Strategy
 c. Deception
 d. Frustration
 e. Recognition
 f. Recovery

4. How would each of the attack strategies be used to compromise the confidentiality 
of information?

5. How would each of the defense strategies work to defeat an attempt to 
compromise the integrity of a private web server?

6. How does the spider diagram work to provide an overview of security controls?

7. Briefly describe how attack-based layering of controls differs from using defense 
strategy to layer controls.

8. Briefly describe how asset-based layering of controls might be less effective than 
using defense strategies to layer controls.
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Chapter Exercises
1. One strategic view of a number of activities is John Boyd’s Observe, Orient, Decide 

and Act (OODA) loop [17]. Briefly compare the attack and defense strategies 
described in this chapter to the OODA loop.

2. Sun Tzu [13] describes strategy as an interplay of direct and indirect methods. 
Briefly profile how the massed and misdirection attack strategies can be 
characterized in Sun Tzu’s terms.

3. Bob’s Bank is concerned about online attacks on its business-to-business site. 
The site is implemented with a front end that supports customer authentication 
connected to a back end that processes payments, provides account information, 
etc. Since Bob’s Bank is a small local bank, they only have two servers for the 
business-to-business site. Briefly describe how Bob’s Bank might apply each of the 
defense strategies to protect its business-to-business site.

4. The Tres Rios Electric Service is a small power-generation company located in the 
southwestern United States. They use a variety of device control systems (SCADA) 
to optimize performance of their generators and support flexible power distribution. 
Recently, reports have described vulnerabilities in several SCADA systems, and 
Tres Rios management has become concerned about malicious manipulation of 
generation and distribution. Briefly describe two attack strategies that attackers 
might use to perform such malicious manipulations.

5. The Tartan is a local ISP operating in the mid-Atlantic region of the United States. 
They support local customer’s access to the Internet as a bottom-tier ISP. They 
have become concerned about attempts to attack their authentication of their 
customers. Briefly describe two ways in which one defense strategy could aid the 
Tartan in addressing such attempts.
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Deception Strategies: Networks, 
Organization, and Structures

CHAPTER 3

INTRODUCTION
Deception is a term more commonly associated with network attack than net-
work defense, but, as this chapter presents, several network security controls 
depend on the adversaries being deceived. Deception is a useful strategy for 
the defenders of network security since it offers opportunities to distract the 
adversary away from protected information, misinform the adversary as to 
the success of the attack, and disrupt the utility of the attack by corrupting the 
information resulting from it. This chapter discusses techniques that exem-
plify these opportunities.

After some explanation of how network structures interact on the public net-
work, there are four techniques covered in this chapter. Deceptive network 
structures work to fool the adversary by standing up extra capacity not used 
in production, but used to identify incoming attacks. Service outsourcing 
deceives the adversary by placing servers off of an organization’s network so 
that attacks against those servers will not compromise other portions of the 
organization’s network. Application hosting misdirects the adversary by shift-
ing the flow of processing for isolated applications off of the internal network 
and into an environment where different defenses apply. Dynamic addressing 
may cause the adversary to hit the wrong host, since the previous target has 
shifted addresses and the new occupant of the address will not have received 
previous steps in the attack. Together these techniques provide network 

■ How the Internet works: service providers, subnets, routing, and packets
■ Deception and network organization
■ Outsourcing
■ Application hosting
■ Dynamic addressing
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structures that offer some protection against attacks by deceiving the adver-
sary as to targets and locations on the organization’s network.

HOW THE INTERNET WORKS
The modern Internet developed from multiple large networks. The earliest of 
these, and the most influential, was the Arpanet [1]. Arpanet started in 1969 [18] 
as a major government-funded effort, designed to support communication 
between computers with varying operating systems and varying information 
formats, facilitating more rapid research in computer systems.

The Arpanet laid the basic building blocks for getting computers to commu-
nicate together. The basic design was as a packet-switched network with a 
broad public address space. A packet-switched network is one in which the 
information being transmitted (the datagrams) across the network is organ-
ized into formatted units (packets, which can hold either the entire data-
gram, or if too large, a fragment of the datagram), each of which contains 
sufficient information for transmission using a designated protocol [18]. 
For the Arpanet, this transmission information is stored in the packet header, 
and the Internet Protocol specifies that it contain the source and destination 
addresses, an identification of the network service being used, the length of 
the packet, transmission checking, and other fields as required to transmit 
and receive the packet [2]. Each packet travels individually via multiple steps 
across the network from its source to its destination. The sequence of steps is 
referred to as the route of the packet, and the decision of which sequence of 
steps is referred to as routing.

At its destination, the packets are reassembled into the datagram, which is 
processed by the receiving computer to provide the desired network service. 
A broad public address space indicates that all public nodes on the network 
may communicate with all other public nodes on the network, without the 
need to pass through a central control or mediator. This design was later 
modified into a catenet, or interconnected system of packet-switched networks 
using the Internet Protocol [2], and the Internet was born out of the fusion of 
previously isolated networks intercommunicating via the Internet Protocol.

Without a central control or mediator, security was planned as a function of 
the behavior of the individual sites on the network. Figure 3.1 shows a map 
of the early sites on the Arpanet. With the generalization from the Arpanet to 
the Internet, the specification of security could, and did, vary from network to 
network. The communication protocols were designed to accommodate this 
variation, in a form referred to as security compatible. In the early days (prior 
to 1995), security conflicts or violations were dealt with via communication 
between known administrators at the various sites, with a last resort of appeal 
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to the U.S. government authorities running the Arpanet. After 1995, neither 
option was available: the Internet grew too fast for there to be known admin-
istrators, and the U.S. government stopped running the network.

By 2013, the range of threats on the Internet encompassed the groups 
described in Chapter 1. Symantec’s “2013 Internet Security Threat Report” [3] 
describes analysis of data both from their large sensor network and reports 
that they monitor. The threat report notes that the primary activity of the 
threats is violation of information confidentiality. The methods adversar-
ies use include worms, viruses, Trojan horses, phishing, and social engineer-
ing (misleading users to fraudulently obtain information). Large-scale data 
breeches (those involving more than 1,000,000 records illicitly intercepted) 
were documented in 4 of the 12 months in 2012. Five large malicious net-
works of bots were identified. Adversaries compromised information in 
government, large news organizations, large credit card companies, online 
retailers, and social networks. The information compromise occurred despite 
the presence of security controls on the computers targeted [3]. Reliance on 
individual controls is clearly a losing approach, given the variation in threats 
and attack methods faced by organizations.

The Usenet project [4] started in 1979 as a group of graduate students at two 
universities deciding to get their computers to phone each other and support 
discussions between users. The administrative structure of the current Internet 
has its roots in the Usenet project. This project provided for voluntary passage 
of communication between sites on the network, with negotiation between sites 
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as to which network services would be allowed (normally remote login, email, 
or file transfer) and what rate of service would be allowed. Initially, the services 
were provided over phone lines, with one site literally calling another and com-
municating in bulk during the call. Between calls, sites would store pending 
communication locally, waiting for the transfer (termed store and forward com-
munication). In some cases, communication between one site and another 
would require passage through several intervening sites, with communica-
tion delays at each site. The Usenet “address” was actually a chain of computer 
names starting with a well-connected site and ending at the local computer. 
Some of the more distant Usenet sites could take a couple of days to reach!

In the later period of Usenet, communication was more rapid, replacing 
phone calls with forwarding information across the Internet. Security on 
Usenet was largely a social phenomenon, with complaints about specific sites 
or users handled via social pressures on the administrators involved. There 
was no central authority to appeal to for enforcement of policy, but the well-
connected sites did occasionally act to block traffic moving through them 
from documented misbehaving sites.

Over time, some sites began to be dedicated exclusively to providing ser-
vice to other sites, with only limited local users. As Usenet merged into the 
Internet, these service providers began to keep connections open between 
each other, allowing for much faster connections (seconds or minutes, 
instead of days). These connections are via a mix of land-based optical fiber, 
transoceanic cables, and satellites. Large service providers may use all of these 
resources to pass traffic to their peers. See, for example, Verizon’s map of its 
communication infrastructure [5]. The providers support these resources by 
subscription fees based on service levels.

Eventually, a tier structure emerged placing each Internet service provider 
(ISP) based on its contracting arrangements. Figure 3.2 diagrams this hierar-
chy. A bottom-tier ISP would have local customers that paid fees to it, and in 
turn would pay fees to a higher-tier provider for its network service. A mid-
level ISP would have lower ISPs that pay for service (termed transit relation-
ships), and would pay a higher-tier provider for its service, but in addition it 
would have voluntary agreements with other mid-tier providers to exchange 
traffic so that both sides would have improved connectivity. These voluntary 
agreements are termed peer relationships, and can be dropped at any point 
that either side feels necessary. Top-tier ISPs have only peer relationships and 
lower-tier contracts, and pay no one for their network access. They own or 
lease transoceanic cable to support peer relationships with other ISPs. Each 
ISP sets the terms of the services it provides, including protection of secu-
rity and responses to security violations. Bottom-tier and mid-tier ISP terms 
of service are constrained by the contracts under which they receive network 
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service. Top-tier ISP terms of service are constrained only by the voluntary 
consensus of their peers and by the governing law of the locale where they do 
business [6].

This tier arrangement of service provision has several benefits. Many loca-
tions have multiple service providers available, competing for customers. 
This competition encourages providers to provide fast and reliable access and 
motivates them to offer a variety of network services. As security becomes 
important to their customers, ISPs improve their security practices to remain 
competitive. However, compliance with the suite of Internet protocols and 
security standards is only constrained by market forces and local regulation. 
For top-tier providers, this compliance becomes largely voluntary.

To keep track of where computers are on the Internet (i.e., which computers 
have what IP address), the Internet Engineering Task Force (IETF) developed a 
service called the domain name system (DNS) [7]. The names of Internet com-
puters are arranged in domains, and in a given name, the domains it is part of 
are arranged from most detailed to most general in a left-to-right fashion, sep-
arated by periods. For example, in “myhost.mynet.example.com,” “myhost” is 
the specific hostname, “mynet” is a subdomain for the company, “example” 
is the company, and “.com” specifies that “example” is registered with the 
organization handling commercial concerns. To map this to an IP address, a 
host would make a query on its DNS service. If the host’s network commu-
nicates with this host frequently, the IP address would be maintained in the 
DNS server’s local cache, and the server would respond immediately. If not, 
the DNS server would generate a query to one of the 13 top-level DNS servers 
worldwide, which would respond with the address of the top level server that 
leads to a chain of references, ending in a server that can identify “myhost.
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mynet.example.com” (probably the DNS server for “example.com” or its ISP). 
The DNS server would then query the referred server, and obtain the address 
it needs. To map IP addresses to names, the same process is used, except that 
address blocks are used instead of names. DNS has grown to do more than 
provide this mapping, including documentation of common network services 
and contact information for network administration.

To manage the routing of packets across this ISP structure, networks on the 
Internet use several routing protocols, with the broadest reach being the 
Border Gateway Protocol (BGP) [8]. BGP’s purpose is to exchange informa-
tion between routers as to the available paths for transmission of packets 
between groups of routers managed by a single organization, or autonomous 
system (AS). Each router builds up a set of routing tables that it uses to plan 
communication to various ASs. Routers send information on the paths that 
they use via BGP update messages, or “advertisements.” These messages 
include where the router got the information, what AS the information 
applies to, how long the path to the AS is, and where the path to the AS starts 
(the “next hop”). Update messages may add, change, or withdraw paths. In 
classic BGP, these messages carried no authentication, but a Secure BGP pro-
tocol has been published that includes provisions for authentication.

To transmit a packet, a router looks at the destination address for the packet, 
establishes which AS that address belongs to, then consults its tables to find 
its preferred route to that AS. The packet is then sent to the next hop on that 
route. If no entry for the AS is found, then the router sends the packet to its 
gateway, a default next hop. At each step along the path, a field in the header 
of the packet called “time to live” (abbreviated TTL) is reduced by one. When 
a router receives a packet with a TTL of zero, it sends an error message back to 
the source address in the packet’s header. The TTL field prevents packets from 
being endlessly shuttled across the Internet, which could increase the load on 
the routers to the point of failure.

DECEPTION AND NETWORK ORGANIZATION
The structure of the Internet and its routing methods permit a great deal of 
deception. Classically, this has been associated with actors that use a vari-
ety of attacks against networks (e.g., by sending traffic that purports to come 
from the internal network, but actually comes from outside, to obtain fraudu-
lent access to information), but more recently defensive deception methods 
have been identified to blunt network attacks. A report by Erdie and Michael 
lays out a brief taxonomy of defensive deception for networks [12]. The moti-
vation behind this defensive deception has been to induce the adversaries to 
strike at the wrong computer or network—those that do not interfere with 
the organization and provide little advantage to the adversaries. This section 
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discusses defensive deception via the structure of the host network. This 
allows the defenders to minimize the network footprint of key computers or 
magnify the footprint of less valuable computers.

One difficulty with using deceptive structures for a network is that productive 
use of the network must continue unimpeded. Defenders need to carefully 
plan the deception, and distinguish how the network will appear to outside 
users and inside users. This variation of view often requires multiple routers 
(exterior and interior, at least) to present the separate network views, reflected 
in the entries in their routing tables and in rules that may cause traffic to be 
blocked to specific portions of the network.

There are several methods for achieving this deception. One is to structure a 
network such that the valuable servers appear indistinguishable from those 

In the early days following the relinquishment of govern-
ment control of the Internet, the methods by which vendors 
would disseminate fixes for security vulnerabilities were a 
matter of much debate. Some argued for rapid release of such 
fixes, even if not fully tested or integrated. Others argued for 
a product release cycle, with associated charges for the fixes. 
Still others suggested open repositories of such fixes held by 
third parties, so that administrators could pull what fixes they 
require. In the end, a quiet voice of consensus moved forward 
the structure that exists today, where such fixes are main-
tained by vendors, go through a product development cycle, 
and are released without charge to the user community. That 
quiet voice of consensus largely belonged to James Ellis.

James Ellis [9] was a computer scientist who contributed 
a pioneering vision to the use of computer networks. Shy 
and quiet as a child, he grew to be an influential voice in 
discussions that established how organizations would 
work together to share information and to address informa-
tion security issues. In 1979, Ellis and his colleague Tom 
Truscott, both graduate students at Duke University, came 
up with a way to have computers telephone each other and 
pass discussions (both technical and general social discus-
sions) between users on various systems—a method that 
grew into Usenet, one of the key precursors of the Internet.

Ellis and Truscott then published a public “Invitation to a 
General-Access Unix Network” [10] in which they gave the 
software implementing their method to anyone interested 

in using it, and started taking subscriptions (for phone costs, 
only) for communication. Their software, rewritten twice, is 
widely noted as the first social application on computer net-
works, anticipating and motivating modern social networking. 
Even in its original announcement, handling of information 
security problems via consensus action was described.

In 1988, the Usenet discussions were a key method of coor-
dinating information for halting and cleaning up the Internet 
worm, which was the first widespread information security 
threat on the Internet. In early 1989, Ellis went on to work 
for Carnegie Mellon’s CERT program, coordinating response 
to security incidents. While there, he was a key participant 
in discussions on assessing the severity of reported com-
puter vulnerabilities, creating a metric for which vulner-
abilities required emergency announcements and that could 
receive more routine correction. He was an important voice 
in the discussions that lead to vendor fixes for security vul-
nerabilities being given away (as opposed to being sold). 
Colleagues from this period describe how he envisioned 
and helped to establish a culture by which security would 
be improved by collaborative response to reported incidents 
rather than by intrusive probing and coercion [11]. He was 
also a deeply technical individual, writing software that was 
important in the coordination of security response.

In 2001, Ellis passed away from cancer, leaving behind his 
family and a rich legacy of bringing people together over 
the network to improve its security.

PROFILE: JAMES ELLIS
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less valuable. This is done by configuring several identical servers, and pro-
viding them with very similar names and addresses. Figure 3.3 diagrams a 
possible configuration. Only a small subset of these servers are used in pro-
duction, and any activity on the other servers causes an alert. Any attempt by 
those servers to establish outbound network connections (either internally or 
externally) is refused by local routers or computers. For some services, such 
as file transfer, web hosting, or remote login, this is fairly straightforward. 
These services are relatively local to the server involved, so standing up redun-
dant servers is not difficult. For authorized users, the specific server to use for 
production can be specified, and the remaining servers used for deception 
leading to alerts. The redundancy allows unknowing, automated, or uncar-
ing attackers to be deceived as to which are the production servers, and to 
have their activity quickly distinguished from benign or productive users. 
Occasionally, a curious user may contact one of the nonproduction servers, 
but defenders may distinguish those users via their brief and isolated contact, 
with no follow-up or attempts to corrupt the server.

As an example, consider an online retailer that is concerned about the secu-
rity of the shopping cart service associated with their customer website. One 
option for protecting this service is to implement several redundant shop-
ping cart servers with similar network connections and configurations. An 
adversary who identifies targets via scanning would find several similar sys-
tems, but only a small subset of these would actually be used in produc-
tion. Attempts to compromise the nonproduction servers would result in an 
immediate alarm to the network security group, which would then review 
the production servers to assure that they had not been compromised and to 
implement further appropriate protections.

S1 S2 S3S4 S5S6

Outside Users

Inside Users

Internal 
Proxy

Nonproduction servers

Production 
Servers

Border 
Router

Interior 
Router

FIGURE 3.3 
Defensive server deception. 
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Configuring the network’s border and interior routers to block any traffic ini-
tiated by the nonproduction servers prevents those servers from being used 
as a basis of attack, either to the local network or other networks. To prevent 
the nonproduction servers from capturing traffic (including authentication 
information) from the local network, they may be placed on a network seg-
ment of their own, such that the only visible traffic would be other adversar-
ies’ attempts to compromise the servers.

For services such as the Dynamic Host Configuration Protocol (DHCP), where 
the initial contact with the server is done via a broadcast message from the cli-
ent, having duplicate servers is more difficult. These services require that the first 
response to the broadcast message be an authoritative one. To ensure such a 
response, the nonproduction servers might be configured to delay their response 
to the broadcast message. The difficulty with this is ensuring that the delay is 
long enough for the production servers to respond first, but short enough that 
adversaries cannot easily use it to distinguish production and nonproduction 
servers. Since many of these broadcast protocols are intended only to origi-
nate inside the network, another method for achieving initial and authoritative 
response to the broadcast is to have the broadcasts restricted to the most local 
segment of the network, and to have a proxy on each segment that will relay 
both the broadcast request to the production servers and the response from 
these servers. Unauthorized broadcasts would still reach the nonproduction 
servers, so an adversary might still be deceived, but legitimate requests would 
see only authoritative responses. To supplement this protection, the interior 
router may be configured to drop traffic to and from the nonproduction servers.

One major limitation to deception by network structure is that adversaries 
who profile the network via traffic analysis prior to their attack will not be 
deceived, or such deception will not last. These adversaries are those with a 
goal that involves attacking a specific network and they are both resourced 
enough and patient enough to prepare their attack for the target network 
and carefully evaluate the attack to ensure they are hitting their desired tar-
gets within the network. While their initial contacts may produce alerts from 
the nonproduction servers, they will shift operations to only deal with the 
production servers and such alerts will cease. To deal with these adversaries, 
other forms of deception (and other strategies) are required.

OUTSOURCING
To protect an organization’s internal network from attacks by a persistent 
adversary, it may be necessary to move particularly public or vulnerable ser-
vices off of the internal network by arranging them to be hosted by an out-
side network. The security of these services is then a matter of the contract 
between the organization and the operators of the hosting network.
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There are several characteristics that suggest a service could be successfully 
outsourced. First, the service needs to be one that is separable from network 
operations. Services like route management, host virtualization, or device 
configuration on startup are very difficult to separate from the network struc-
ture. Services such as web hosting, external DNS, or email may be easier to 
outsource. Second, the information involved with the service needs to have 
a predictable flow from the internal network to the external hosting. Specific 
internal sources or protocols should be identified. Third, the level of cost 
(both contact and internal effort) involved in managing the external relation-
ship needs to be less than the cost for maintaining secure hosting internally. 
If not, then the hosting will not make economic sense. While there are other 
possible characteristics, these may serve as quick factors for evaluation.

For the organization, such hosting has two security benefits. First, other ser-
vices on the internal network may be unaffected by attacks against the relo-
cated service. The adversary will be attacking the wrong network and the 
associate collateral damage will be reduced. Second, the cost of securing the 
relocated service will be a predictable and contacted amount, rather than a 
function of the number of attacks against that service. On the other hand, 
the organization must ensure that the contract includes sufficient levels of 
security to protect its operations [13]. This may increase the cost of the con-
tract beyond what the organization can support. Also, the organization must 
arrange for the service to be supported without putting undue trust in the 
outside network or its operators. Such trust could provide an adversary with 
a route into the internal network and thus defeat the purpose of the hosting.

Arrangements for securing the service require the organization evaluate the 
hosting to ensure sufficient staffing and skills to properly secure the service, 
and sufficient investment in security effort and technology. The organization 
should examine other services hosted by the outside network and evaluate 
the availability and integrity maintained by the hosting organization. The 
specific security methods employed and the service measurements reported 
need to be included as terms of the contract.

Any internal host acting in support of the relocated service must be carefully 
configured to protect the network against this support becoming a conduit 
of attack. Maintaining such configurations will involve further cost to the 
organization.

However, when such factors can be dealt with, misdirecting the adversaries 
can be very effective in protecting the network. Adversaries often assume that 
public and important services are hosted internally, or can be exploited to 
give access to the internal network or interfere with its operation. Planning 
for such an assumption and exploiting it to deceive the adversary can be a 
powerful technique for the network defenders.
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APPLICATION HOSTING
In addition to outsourcing network services, it is possible to contract for spe-
cific applications that use network services. This is known as application host-
ing, or “software as a service.” Organizations often do this for cost reduction, 
but it does have potential security benefits as well, since particularly difficult 
to secure or frequently targeted software packages may be moved off of the 
internal network. As in outsourcing, this reduces the potential for the service 
to be used as a method of intruding on the rest of the organization’s network.

There are several options to implement application hosting [16]. Access 
to hosted applications is often via secure HTTP, but may use other network 
services as required (SSH or VPN protocols are common alternatives). In 
some cases, the hosting service simply takes over an application that the cli-
ent organization has already licensed from a traditional vendor, moving it 
to the hosting servers and providing access from the client’s infrastructure. 
Figure 3.4 diagrams a possible configuration. The client saves on operating 
costs and maintenance costs for the application, since these may be shared 
with other clients. In other cases, the hosting service offers already-installed 
software packages to clients to replace existing applications or provide new 

During the 2002 Winter Olympics in Salt Lake City, UT, the 
Olympic network was used both for the business of con-
ducting the games and for the exchange of data from the 
sporting competitions. The business end of things involved 
ticket sales, contracting, venue operations (coordinating the 
use of buildings and areas for competition), and so forth. 
The competition data involved event schedules (i.e., who 
was competing when for which sport), judging, results col-
lection, and results dissemination to news sources and 
the public. The Olympic network was assembled over 
more than a year, but was (due to the nature of the games) 
always intended to be temporary. It was dissembled within 
a few months after the close of the games.

However, the Olympic organizing committee was quite 
concerned about security in general (heightened by the ter-
rorist attacks of September 11, 2001, less than six months 
prior to the games) and about network security in particu-
lar [14]. Almost every aspect of the games was supported 
in some way by the network. The organizers also knew that 
some services, particularly public web-hosting and exter-
nal-facing DNS, were popular targets for attack. So they 

arranged for these two services to be hosted by a commer-
cial ISP outside of the Olympic network. The public-facing 
DNS information was quite static during the games, and 
thus no specific internal resources were required. The pub-
lic web hosting required frequent data transfers as results 
were disseminated, but these were very similar to the data 
transfers to news reporting outlets and to the sports federa-
tions involved in the games.

The wisdom of this foreign hosting was demonstrated 
when an American short-track speed skater, Apollo Ono, fell 
during a final and tripped a Korean skater. This resulted in 
the Korean not receiving his projected medal, although Ono 
was able to finish and medal. Numerous Korean protests 
occurred, and the Olympic public web service was subject 
to denial of service (flooding) attacks for several days [15]. If 
the public web hosting had been interior, the level of traffic 
directed against the service would have seriously degraded 
the Olympic network. With the external hosting, the ISP was 
able to shift traffic and continue the web service without 
degradation, as well as distracting the adversaries away 
from the internal Olympic network.

OUTSOURCING: 2002 OLYMPIC GAMES
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applications. Here, the client saves some of the installation costs in addition 
to operating and maintenance costs. In both cases, management of vulner-
abilities related to the hosted applications becomes the responsibility of the 
hosting service, and the cost is factored into the subscription fee for the host-
ing. Any security violations in the hosted application are also managed by the 
hosting service.

Consider the online retail example discussed earlier. One option for pro-
tecting the retail network against compromise of shopping cart service is 
to relocate this application to a hosting service. Shopping cart applications 
are common enough that a suitable hosting service should not be difficult 
to find, and suitable contract arrangements can be made. The retailer would 
modify the flow of processing such that the customer would use the retailer’s 
website to prepare a list of items for purchase, and then be transferred to the 
remotely hosted application to enter payment information and process the 
sale. In this way, attempts to intercept payment information by an adversary 
on the retailer’s network would fail, as that information would not go over 
this network.

There are several characteristics for good candidates for application host-
ing. First, the hosted application should be one that is common or standard 
among organizations. While it is possible to host unique applications, there 
will be less cost savings or security benefit in doing so. The cost savings will 
be reduced because the hosting organization has less clients to share the costs 
among. The security benefit is reduced because the hosting organization 
will have less experience with unique applications and less chance to apply 
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Hosting Service

Hosted 
Software

FIGURE 3.4 
Application hosting. 
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security knowledge, and also since unique applications are not targeted by 
adversaries as frequently as shared applications.

Second, the hosted application needs to be one that does not require tight 
binding to the organization’s infrastructure. If the application uses a relatively 
large number of other computers and services, it will be difficult to externally 
host that application without weakening network defenses. If the application 
is relatively independent of the organization’s infrastructure (e.g., applica-
tions that require connection only to already-public computers or services), 
then it is easier to move it to a hosting service.

Finally, externally hosting the application should provide some identifiable 
security benefit. The largest security benefits may come from externally host-
ing applications that are shared both internally and externally to the organi-
zation, that simplify access to the organization’s data, or that offer ready 
opportunity for exploiting vulnerabilities.

Conversely, there are several characteristics of applications that would rank 
low on the list of candidates for external hosting. Little security benefit may 
come from externally hosting applications that are available only internally 
to the organization. For these applications, an adversary would already 
have access to the organization’s computers, infrastructure, and probably its 
data before the application could be attacked, so the additional risk from 
the application is relatively slight. From a security viewpoint, it may not be 
worthwhile to externally host applications that provide no additional access 
to the organization’s data. Applications that are used primarily to format 
data for display, do not deal with confidential data, or otherwise do not 
give adversaries undue access, would be such low return that adversaries are 
unlikely to target these applications. Externally hosting these applications 
would not produce much reduction in the organizations security risk. In 
addition, if an application is already embedded within nested security protec-
tions, or is sufficiently simple and mature that there are very few vulnerabili-
ties in it, then hosting it externally won’t change the organization’s level of 
risk significantly.

External application hosting can make the task of the adversary more diffi-
cult. Adversaries exploit dependencies between applications and the under-
lying infrastructure to gain unauthorized privileges. If the underlying 
infrastructure belongs to a hosting service (with little access to the organiza-
tion) instead of the targeted organization, then the adversary’s attempts to 
exploit these dependencies will be misdirected. In addition, hosting services 
are in a better position to detect and respond to effects on their infrastructure 
from applications, since their business depends on high availability for appli-
cations. So attacks misdirected to external hosting services are quite likely to 
be dealt with rapidly and effectively.
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DYNAMIC ADDRESSING
Within the organization’s network, addresses for computers (both workstations 
and servers) may be assigned dynamically from the pool of available addresses. 
Dynamic addressing methods assign an address to each computer when it first 
uses the network, and may reassign addresses periodically thereafter, assuming 
the duration of use is sufficiently long. By assigning addresses dynamically, this 
method will make address-based attacks more difficult for the adversary.

One of the more common implementations of dynamic address assignment is 
DHCP [17]. With this protocol, a computer that needs an address sends out  
discover messages (typically, several of them), looking for servers that can pro-
vide the address. Figure 3.5 diagrams this interaction. Each available server 
responds with offer messages, identifying potential addresses, along with the 
terms of use (services, length of address use, and other configuration options). 
The requesting host then selects one of the offers and sends a request message to 
secure the selected address. It may then use the address for the length of time 
specified in the offer message. During its use, it may send a request for renewal, 
to secure a longer use, or a relinquishment, to surrender the address for other 
computers to use. Some computers on the network may renew their addresses 
repeatedly, using the same address for extensive lengths of time. Other comput-
ers use the network periodically and obtain a new address for each use.

DHCP is mainly intended for computers that use the network periodically, 
such as workstations that connect during the workday and are shut down 
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Dynamic addressing, showing request broadcast. 
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otherwise. There are at least two advantages to using dynamic addressing on 
these computers. First, it simplifies (and regularizes) the configuration of 
these computers. By downloading the address and a number of other net-
working characteristics, DHCP allows administrators to systematically update 
these computers rather than dealing with them one at a time. This allows for 
more even configuration of the networks and fewer mistakes that may lead to 
configuration vulnerabilities. Second, by varying the address over time, intrud-
ers face a somewhat more difficult task in maintaining an attack on a given 
computer, since some of their attacks are based on the address. On the other 
hand, since addresses do vary, network traffic analysis of the hosts involved is 
made a bit more difficult, since tracing activity of a specific computer (to find 
malware or diagnose an attack) could mean following several addresses.

Computers that provide ongoing service generally don’t use dynamic address-
ing. These servers may use DHCP for configuration (allowing for more regu-
lar network structures and security updates), but each server’s address is often 
permanently reserved for that server. The difficulty with using a dynamic 
address is that if the server shifts addresses, all ongoing communication with 
it will be disrupted, and only restored by starting the communication over, 
which will involve (at least) substantial delays and perhaps lost data (or lost 
customers). Generally, for these servers, other security strategies need to be 
applied.

SUMMARY
This chapter covers four techniques for improving network security by deceiv-
ing the adversary via the structure, services, and addressing on an organi-
zation’s network. This deception provides the defenders with a chance to 
misdirect the adversary from an intended target to a less productive (or more 
obvious) location of the defender’s choice. One advantage to this approach 
is that, since some damage is avoided, the overall cost of security may be 
reduced.

Chapter  4 continues the discussion of deception as a tool of information 
security. It focuses on more localized applications of deception to defend spe-
cific computers or services. This focus allows for another layer of defense and 
more difficulties for the network adversary.

Chapter Review Questions
1. Vendors providing security fixes without charge allows for wide distribution  

of such fixes and application of them without purchase delays, but their  
cost-free nature also has negative ramifications. Briefly describe two such 
ramifications.
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2. Define the following terms, and briefly explain their relevance to security:
a.  Peering
b. Transit
c.  Outsourcing
d. Application hosting
e.  Dynamic addressing
f.  Domain name system

3. How would outsourcing of email help to defeat an email-based virus targeted to a 
specific organization?

4. What kind of attacks might be wholly or partially defeated by application hosting?

5. How might use of dynamic addressing interfere with an ongoing compromise 
attempt against a workstation on an organization’s network?

6. How would using nonproduction servers as attack alerts help network defenders?

Chapter Exercises
1. While Arpanet and Usenet were two important progenitors of the Internet, they 

were not the only ones. Describe how the following networks have contributed to 
the practice of network security on the Internet:
a.  NSFnet
b. America online (AOL) and prodigy
c.  CERN
d. Berknet
e.  Decnet

2. Bob’s Bank is concerned about online attacks on its business-to-business site. 
The site is implemented with a front end that supports customer authentication 
connected to a back end that processes payments, provides account information, 
and maintains financial services. Since Bob’s Bank is a small local bank, they only 
have two servers for their business-to-business site. Briefly describe two ways that 
Bob’s Bank could use deception to aid in dealing with online attacks on this site.

3. Tres Rios Electric Service is a small power-generation company located in the 
southwestern United States. They use a variety of device control systems (SCADA) 
to optimize performance of their generators and support flexible power distribution. 
Recently, reports have described vulnerabilities in several SCADA systems, and 
Tres Rios management has become concerned about malicious manipulation of 
generation and distribution. Briefly describe two ways in which Tres Rios could use 
deception in preventing or detecting such malicious manipulation.

4. Tartan is a local ISP operating in the mid-Atlantic region of the United States. 
They support local customers’ access to the Internet as a bottom-tier ISP. They 
have become concerned about attempts to attack their authentication of their 
customers. Briefly describe two ways in which deception could aid the Tartan in 
addressing such attempts.
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5. Chris has recently been hired as a network security manager at Bob’s Bank, with 
an initial assignment of reviewing the existing network design to improve security. 
Some deception is already implemented on the network. Look at the network 
diagram in Figure 3.6 and identify where deception is already being employed.

6. Terry has just been hired by Bob’s Bank, and is proposing a new network plan as 
shown in Figure 3.7. What features of the new network plan incorporate deception, 
and what form of deception?
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Deception Strategies: Defensive Technologies

CHAPTER 4

INTRODUCTION
Beyond configuring the network to deceive adversaries, there are specific 
technologies that facilitate deception strategies in defense of computer net-
works. This chapter introduces four such technologies: proxies/gateways, 
honeypots/honeynets, tarpits, and virtual hosts. To understand how organiza-
tions may use these technologies, it is useful to understand how Internet pro-
tocols work, so the chapter starts with a brief overview of common Internet 
protocols, specifically TCP.

None of these technologies are complete solutions. They all have strengths 
that may aid organizations, caveats that need to be explored in deciding to 
deploy, and weaknesses that would need to be supported via other security 
controls.

INTERNET PROTOCOLS
Information on the Internet is transmitted in segments, often referred 
to as packets, but generically termed datagrams when part of the Internet 
Protocol (IP). The datagrams sent over the Internet have a specific struc-
ture, as diagrammed in Figure 4.1(a). The datagrams start with a formatted 
block of information on how routers are to pass the packet using the IP. This 
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block is referred to as the “Internet Protocol header” or, more commonly, 
“IP header.” The IP header contains information as to the source, destina-
tion, content of the datagram (i.e., checksum, length, encapsulated protocol, 
and protocol version), as well as parameters for the Internet routing algo-
rithms (i.e., time to live, which is the number of routers the datagram can 
go through before it must be dropped, or flags, which indicate options to 
handling fragmented packets). Following the IP header is a block of informa-
tion, which often includes another block of formatted information (a second 
header), the actual information the datagram carries, and, optionally, a final 
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block of information to terminate the datagram (the footer, although footers 
are much less common in IP datagrams than in the underlying local network 
protocols). Different encapsulated protocols format the information follow-
ing the IP header differently (see Figure 4.1(b)–(f)), according to the purpose 
of each encapsulated protocol.

The most common encapsulated protocols are the Transmission Control 
Protocol (TCP, see Figure 4.1(c) for its header fields) and the Universal 
Datagram Protocol (UDP, sometimes referred to as the User Datagram 
Protocol; see Figure 4.1(d) for its header fields). TCP provides for sequences 
of traffic, termed segments, grouped in a transmission, allowing for retrans-
mission of any lost portions of the transmission and thus providing for 
reliable communication. UDP provides for individual datagrams, without 
retransmission, and thus for service without the overhead required for reli-
able communication, but with the possibility of lost information.

A TCP transmission starts with a series of three segments that initiate the trans-
mission on both sides (referred to as the “TCP handshake”). One computer 
sends an initial segment to another with an encapsulated TCP header with the 
flags field such that only the SYN (synchronize) flag is 1 and the other seven 
flags are 0. Typically, this segment has no data, merely the IP and TCP head-
ers. The sequence number in the TCP header of this first segment provides 
the starting point for one side of the communication. The destination port 
in that TCP header specifies what type of service is requested. The source port 
in that TCP header is often a high value, and that specifies that the first com-
puter is the one requesting (rather than providing) service. The second com-
puter responds with a segment containing a TCP header with the source and 
destination ports swapped, its own starting sequence number, and either the 
SYN and ACK (acknowledgment) flags set to 1, or just the RST (reset) flag set 
to 1. If the SYN and ACK flags are set to 1, then the second computer is ready 
to provide service and the sequence number can be used as a starting point 
for error correction. If the RST flag is set to 1, then the computer is not ready 
to provide service and the transmission must be abandoned (in practice, busy 
servers use RST as a quick means to terminate transmissions after passage of 
data, but this is not part of the documented TCP protocol). The first computer 
then responds back with a segment containing a TCP header with just the ACK 
flag set to 1, indicating acceptance of the second host’s sequence number, and 
with the source and destination ports swapped back and a sequence number 
one greater than the number in the SYN segment (which completes the TCP 
handshake). The two computers then communicate further as required to 
implement the service. Each segment acknowledges the preceding portion of 
the transmission. Often the second computer’s response to the ACK segment 
has data containing a series of values identifying the implementation of the 
service (referred to as a “service banner”).
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Most of the common Internet services (Web, email, remote terminal access, 
file transfer, etc.) are implemented using TCP transmissions. If one of the 
segments in the transmission is lost or corrupted (indicated by having an 
inconsistent checksum in it header), no corresponding ACK segment will 
be received and the sender of that segment will retransmit it. At the end of 
the transmission, each side will send a segment with a TCP header contain-
ing only the FIN (finalize) flag set to 1. When both sides have received and 
acknowledged FIN segments, then the transmission is terminated.

As referenced in Chapter 3, there are numerous security threats that exploit 
weaknesses in IP and its encapsulated protocols. To provide for encryption as 
a control for some of these threats, the Internet Engineering Task Force (IETF) 
defined an architecture for encrypted connections on the Internet [1], termed 
IPsec. For an excellent introduction to IPsec, see the summary by Friedl [2].

The Authentication Header (AH) protocol (format shown in Figure 4.1(e)) 
provides for secure identification of the parties communicating, often fol-
lowed by the Encapsulated Secure Payload (ESP) protocol (format shown in 
Figure 4.1(f)), which supports encrypting the body (and much of the header) 
information in IP datagrams. AH provides for connectionless negotiation of 
encrypted transmission options. ESP provides for the setup and teardown of 
encrypted connections. An informational protocol, called Internet Security 
Association and Key Management Protocol (ISAKMP), is also part of IPsec, 
used when the communicating computers need more configuration informa-
tion to support a secure connection. Further exploration of these protocols is 
left as an exercise to the student (see chapter exercise 1).

When protecting network security, various controls use the datagram-based 
information. This chapter will refer to several of these controls and how they 
use this information in support of deception strategies.

PROXIES AND GATEWAYS
A proxy is a process (software, possibly hardware, or, rarely, human) that acts 
on behalf of a user or client [3]. A proxy receives the network traffic intended 
for or coming from a group of clients or servers. The term ‘protected elements’ 
refers to the network clients or servers a proxy acts on behalf of. This traffic is 
then processed to extract the service-related information (request, response, 
data transfer, or command, depending on the services involved). This infor-
mation may be filtered via a set of rules, then passed to appropriate protected 
elements. Normally, a proxy handles both incoming and outgoing traffic.

Figure 4.2 shows an example of proxy processing. In the figure, each comput-
er’s network activity is shown in a separate column, and activity at later times 
is shown below activity at earlier times. The network’s email proxy receives 
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the initial service request (in TCP-based services, the datagram with the SYN 
flag set) and identifies the proper server via the destination port embedded in 
the TCP header (as in this example), the UDP header, or via the protocol field 
in the IP header. The source port and source address information in the head-
ers are used internally in the proxy to differentiate multiple requests for the 
same service. The proxy responds to the initial contact with the TCP hand-
shake, then receives the email header fields and body from the mail handler 
on the sending network. The proxy processes and validates the incoming 
message, passing it to the local mail handler since it passed validation, then 
forwards the receipt response to the sender and shuts down the connection to 
both mail handlers. A second mail message, however, goes through the same 
initial contact and processing, but gets dropped (not passed to the receiving 
mail handler) since it fails validation of the message content (e.g., discussing 
an internal project inappropriately). When passing either input or responds, 
the proxy produces new packets with its address (rather than the original cli-
ent or server), while maintaining an internal table that permits services to be 
matched with the server appropriately. When the client and server signal the 
end of their communication (via service messages or flags in a TCP header), 
then the proxy drops the corresponding table entry.

Computer networks use proxies to either misdirect (deceive) adversaries or 
frustrate them. Proxies misdirect adversaries by receiving traffic for network 
clients and services. Proxies have a simpler function than their protected ele-
ments: traffic processing, rather than full network service provision or con-
sumption. This simplicity means that proxies possess fewer, or perhaps 
differing, vulnerabilities than protected elements. Deceiving adversaries into 
hitting proxies instead of actual clients or servers, therefore, puts the resulting 
attacks where they are less likely to succeed.
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FIGURE 4.2 
Example of proxy processing. 
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One example of an attack that may illustrate the usefulness of proxies is a 
web-based attack that uses ill-formatted requests (known as request split-
ting) to corrupt web processing and cause subsequent web traffic to involve 
the adversary’s site rather than a trusted one [4]. In this attack, the adversary 
is depending on a particular implementation of web request handling to 
improperly deal with the ill-formatted request. Via a proxy, the request would 
be received and rejected due to poor formatting. Even if the proxy’s informa-
tion was corrupted using the attack, this corruption would not affect future 
requests in the way that corruption in a web cache would. Thus, the decep-
tion as to where request processing is done would block the attack.

Proxies frustrate adversaries since their processing may block exploits against 
protected elements. Part of this processing is the application of rules to block 
interactions with protected elements that violate security policy. This means 
the rules will drop (and possibly alert on) traffic that the adversary needs for 
the attack to commence. Even if compromised, the proxy views traffic public 
on the network rather than accessing internal content used by their protected 
elements. This difference may impede the initial access required for a network 
attack.

One vulnerability adversaries use against a network service is a buffer over-
flow [5]. Carefully crafted messages are sent to the service to supply too 
much data to an unguarded input operation, causing that operation to over-
write memory including the memory used to keep track of the next opera-
tion to perform. The exploits for this vulnerability insert specific instructions 
in memory locations chosen for a specific implementation of a network ser-
vice. Since a proxy will provide network service identifying the actual server 
involved (rather than the proxy), but will process and validate input in the 
proxy environment (rather than the server), the buffer overflow will end up 
being attempted against the proxy. The proxy’s input validation will likely 
block the attack, but even if it does not, the instructions embedded in the 
input will not make sense in the proxy environment and the attack will fail.

A gateway is an intermediate system that connects (acting as a relay or inter-
face) two or more computer networks that have common functions but dis-
similar implementations [3]. Gateways may provide one-way or two-way 
communication among the networks. The dissimilar implementations may 
be varying network protocols, but often are variations in address usage, net-
work trust level, or network security policies. Gateways receive network traffic, 
process it to determine the equivalent traffic on the destination network, then 
send the equivalent traffic on that network. Gateways may run proxies as part 
of their processing.

Figure 4.3 shows an example of gateway processing. In this example the gate-
way is running two proxies, one for incoming email and one for incoming 
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encrypted login (secure shell, or SSH). The email proxy acts as the proxy 
acted in Figure 4.2. The SSH proxy on the gateway needs to be more intrusive 
in the client-to-server communication. During the setup of the encrypted con-
nection, it separately performs a key exchange with the client and the server, 
establishing itself as an intermediary. As commands to the server are received, 
it validates those commands and passes them on to the server. Responses 
from the server are also validated before passing them to the client. The gate-
way’s proxy does this on an interactive basis, rather than all at once, as is the 
case with the email proxy. For both sides of the communication, the gateway 
acts as the corresponding other party for a variety of services, concealing, fil-
tering, and protecting each party. This allows network defenders to deceive 
adversaries as to the size, scope, and structure of the internal network, as well 
as allowing the defenders to filter traffic and frustrate adversaries.

Specialized gateways intended to connect networks with differing security 
policies are referred to as guards. In addition to passing traffic, a major por-
tion of guard functionality is to filter and modify the traffic to comply with 
the security policy of the destination network. Filtering traffic involves recog-
nizing and dropping packets that involve content, services, sources, or des-
tinations impermissible on the destination network (either due to sources 
network security policy or destination network security policy). Modifying 
traffic includes shifting content values or precision to accommodate the 
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differences in security policy between the two networks. Filtering and modi-
fication may be implemented via a common set of software that implements 
rules as to what needs to be modified or filtered out.

In the web request example mentioned earlier, a gateway would receive the 
request and process it prior to validation. Due to its ill-formatted nature, 
either the processing would reject it or the subsequent validation would. The 
gateway itself does not maintain the information the attack seeks to corrupt, 
so the vulnerability the attack seeks to exploit would not be present. As such, 
the gateway would block the attack by deceiving the adversary as to what pro-
cessing environment it implements for the network.

Prior to attacks, adversaries often scan their targets, looking for vulnerable 
network services [16]. These scans tend to focus either on a single computer, 
contacting a large number of network services on that computer, or on multi-
ple computers, contacting specific network services across those computers. If 
the scans are attempting to contact services behind a gateway, the proxies on 
the gateway will respond to the scan and may deceive an adversary as to how 
the network services are actually implemented. As such, the adversary may 
attempt an attack against a service, only to have that attack intercepted and 
blocked by the proxy.

Proxies and gateways deceptively substitute for organizational servers and the 
internal network, respectively. They must have sufficient throughput to han-
dle the load required by the organization and its external relationships. The 
acquisition process needs to assess the actual load required and the through-
put provided by the proxies and gateways, ensuring they meet the required 
load plus a sufficient margin [6]. Rather than assuming vendor figures are 
accurate and applicable, the assessment needs to involve the actual using 
environment, or a close approximation. If sufficient throughput is not avail-
able, network designers may need to change the proxy and gateway configura-
tion to avoid undesirable bottlenecks in handling service requests.

Proxies and gateways need to be complex enough to receive and process 
all service requests desired by the organization’s business. They need to be 
simple enough to avoid most of the vulnerabilities in the servers associ-
ated with those requests. Achieving both of these properties requires devel-
opers and users to strike a balance in complexity. In practice, this will mean 
that the rules used by a proxy or gateway limit the range of service requests. 
Organizations must be aware of this, and configure service clients to accom-
modate this limited range. Conversely, organizations need to choose care-
fully the rules used by a proxy or gateway to mitigate the operational impact 
of this limited range. For example, if an email proxy limits use of debugging 
options in incoming email, the organization should provide an alternate way 
for authorized administrators to debug incoming email service.
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While proxies and gateways provide a number of advantages in network secu-
rity, their use may offer weaknesses that should be managed. A busy proxy or 
gateway may generate lengthy log files. While log file analysis tools exist (and 
will be discussed in Chapter  13), these tools have limits. Even if log analy-
sis tools reduce the effort by 99% on a 10-GB-per-day log file (an optimistic 
assumption), the administrator still needs to review the equivalent of 100 MB 
of log information daily (roughly the equivalent of 100 copies of Hugo’s Les 
Miserables or Tolkein’s The Lord of the Rings), seeking the rare entries that alert 
on an adversary’s activity. Many organizations lack the available workforce to 
maintain this, and so simply delete logs unread after a certain interval. If the 
authorization rules allowing service via the proxy or gateway get too complex, 
the performance of the network will suffer as service requests are delayed, pos-
sibly to the point of service interruption. If the rules are contradictory or over-
encompassing, then they may inadvertently block desired service requests.

Finally, as proxies and gateways mature, a desire for more complete checking 
and more rapid throughput may motivate adding increased functionality on 
them, which in turn may increase the number of vulnerabilities that adver-
saries may use to attack the proxy or gateway itself. A compromised proxy or 
gateway is a double threat: it allows more direct attacks on targeted servers or 
clients, and it also decreases the defensive capabilities of the network. While all 
of these issues can be managed, administrators need to actively manage them.

For over 35 years, William Cheswick [7] has been passion-
ately involved with improving information security in oper-
ating systems and computer networks. His experience has 
included academic, government, and industrial organiza-
tions, but he is most well known for his work with AT&T 
Bell Labs, where he was a network postmaster, researcher, 
and network security administrator for many years.

While the security issues in IP networks were well known, 
the events of the Internet Worm put these issues into sharp 
focus. At AT&T, Cheswick ran an internal sweep of net-
worked computers and found approximately one-quarter 
of them had well-known vulnerabilities. While correction 

of these vulnerabilities could provide a quick fix, Cheswick 
developed the concept of a proxy [8] and firewall [9] as more 
systematic solutions. His experience and effective speaking 
style lead to these methods becoming part of the commonly 
accepted network security approach.

His later work involves Internet mapping (now available via 
Lumeta), development of user interfaces, and improvements 
in password security. He continues his passionate advocacy 
of practical improvements in the protection of information, 
but his interests encompass much wider concepts, includ-
ing science education, medicine, and household technology. 
He is a frequent speaker at workshops and conferences.

PROFILE: WILLIAM CHESWICK

HONEYPOTS AND HONEYNETS
In contrast to gateways, a honeypot is a system or object that exists primar-
ily to attract adversaries [3]. The goal is to entrap these adversaries, distract-
ing them from targeting computers used for organizational operations.  
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A secondary goal is to expose adversaries, providing an opportunity to study 
their methods. Often, network defenders assign unused addresses to honey-
pots, routing all packets addressed to unallocated addresses on the network 
to the honeypot, so as to make the task of the adversary in differentiating 
target computers from honeypots that much more difficult. When a network 
packet initiating a new connection arrives, the router examines its destination 
address and, if it is in the local address space but not a known host (which 
does not happen for authorized connections, although defenders may need 
to make some provision for connections using obsolete information), sends 
the packet to the honeypot. The honeypot then carries forward the new con-
nection, recording the activity for later analysis.

One key feature of honeypots is that there are no authorized users. The hon-
eypot’s only functions are to be attacked, generate an alert of the attack, 
and profile the activity that constitutes an attack. It has no production or  
consumer-related use, so all activity on a honeypot is some form of attack. As 
such, analysis of activity on a honeypot is considerably easier than on a gate-
way host, as it is all attack activity.

The functionality of honeypots varies widely [10]. Thin honeypots respond 
with an initial packet to connection attempts on a defined set of services, 
but nothing more. Moderate honeypots support prescripted sequences of 
responses, going beyond the initial contact but permitting little variance in 
activity. Thick honeypots are virtual servers stocked with false (but attractive) 
information for the adversary to explore. Honeynets are collections of honey-
pots (and, in some installations, thin clients) designed to offer more complex 
deceptive interactions.

Thin honeypots provide a certain degree of confusion for the adversary, but 
repeated contacts will quickly pierce the deception. Often, these honeypots 
respond to the initial TCP handshake and then, if requested, provide an ini-
tial service identification string that indicates a known vulnerable configura-
tion. The honeypot records later packets contacting this service, but does not 
respond to them. As a result, thin honeypots offer a restricted opportunity 
to study the adversary’s methods; fundamentally, this is nothing beyond the 
initial contact information: targeted ports and protocols, flag characteris-
tics, packet sizing, whether the adversary continues past the initial response, 
or the initial form of vulnerability exploit. On the other hand, it also offers 
the adversary a limited opportunity to subvert the honeypot and use it as a 
basis for further violation of security. It is both quick to construct and easy to 
maintain, beyond analysis of logged activity.

Moderate honeypots are a middle-of-the-road option. The scripted interactions 
allow for more in-depth interaction with the adversary to capture more method-
ology information, but still offer little option for subversion (although somewhat 
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more than thin honeypots). Differentiating a scripted interaction from a live host 
interaction is much more intensive than identification of a thin honeypot, often 
requiring human analysis for the adversary rather than straightforward rules. 
However, the defenders may expend considerable effort in configuration of a 
moderate honeypot, maintenance of its capabilities (updating the script to reflect 
current attacks), and analysis of its logged activity. However, this level of effort is 
considerably less than thick honeypots or honeynets.

Thick honeypots offer full (but guarded) service configurations for the adver-
sary. The guards limit the outgoing connections through the honeypot, and 
also the level of exposure of the services on the honeypot. In some cases, the 
limits deliberately slow the responses from the honeypot to make it less effi-
cient to the adversary. By offering full-service configurations, these honeypots 
allow defenders to study host-specific adversary behavior in depth. Stocking 
the honeypots with volumes of deceptive information deepens opportuni-
ties for deception of adversaries. However, defenders need to expend a lot of 
effort designing the configurations, guards, and data to both effectively lure 
the adversary and proactively limit the utility of the deception in exposing 
their organization. Log, guard, and traffic information will likely require in-
depth human analysis for understanding.

Honeynets offer the fullest opportunities for studying the adversary, but also 
the largest expenditure of effort and the largest risks of compromise by the 
adversary. Defenders configure these networks as contained environments in 
which the adversary may interact with multiple computers, all being moni-
tored, and offering limited interaction beyond the network. Figure 4.4 shows 
an example network configuration including a honeynet. This configuration 
allows extensive deception of the adversary, focusing their attention on false 
information and false infrastructure, away from the production infrastructure 
and protected information. Even sophisticated adversaries may be deceived 
by a sufficiently detailed honeynet. Such detailed honeynets, however, 
require a level of maintenance effort equal to the production network, which 
involves costs prohibitive to many organizations.

Honeypots (particularly thick honeypots and honeynets) offer a number of 
deception options. They can deceive the adversary as to the degree of dili-
gence in maintaining security, lulling that adversary with a sense of safety 
while permitting the network defender to trace, profile, and limit the adver-
sary’s activities. These computers can offer false rewards to an adversary, 
which can both introduce a degree of confusion with respect to real informa-
tion and distract the adversary from targeting production computers for pro-
prietary information. Honeypots can deceive the adversary as to the deployed 
operating systems and their vulnerabilities, prompting unproductive and 
revealing attacks against production computers (running a different operating 
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system or not configured in such a vulnerable manner). In short, honeypots 
offer both tactical and strategic deception of adversaries.

Honeypots also have distinct disadvantages. They require some initial effort to 
configure as believable computers on the network. Installations using default 
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FIGURE 4.4 
Example network configuration with a honeynet. 

One early experience with adversary deception began in 
January 1991 when Bill Cheswick received an alert indi-
cating a persistent adversary on the gateway system at 
AT&T [11]. For several months, Cheswick interacted with 
the adversary (whom he dubbed “Berferd,” a deliberately 
insulting pseudonym) via a primitive honeypot (support-
ing manual interaction with the adversary). Cheswick sent 
Berferd a series of deceptive files (starting with a fake pass-
word file that lead Berferd to the honeypot) and interac-
tions (emulating various network services that Berferd was 
attempting to use, or introducing limitations on the types 
of attacks that Berferd could employ due to the simulated 
configuration), studying the responding activity and profil-
ing the adversary. Early on, Cheswick contacted a number 
of security experts, alerting them to his study of Berferd 
and enlisting their aid in both understanding and contain-
ing Berferd’s activity. One of these contacted experts was 
Wietse Venema, who was associated with the base network 

from which Berferd sent his attacks. From early on in the 
attack, Venema had identified Berferd’s real-world identity 
and contact information.

Unfortunately, Berferd was outside the jurisdiction of any 
then-current computer misuse laws. The network that 
Berferd was using had a liberal usage policy, so his access 
to this network could not be immediately terminated. As a 
result, Venema’s options in dealing with Berferd (and sev-
eral other adversaries who were associated with him) were 
limited. However, Berferd and his colleagues continued to 
impact a variety of computers on the Internet, and Venema 
received a continuing stream of complaints on these activi-
ties. Eventually, Venema phoned Berferd’s home (intend-
ing to simply tell him to quit), and ended up talking to his 
mother. After an extended conversation regarding Berferd’s 
activities, his mother indicated she would handle him, and 
Berferd’s attacks virtually stopped from that point.

SECURITY CASE STUDY: BERFERD
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parameters are of little use for deception, as adversaries rapidly identify them 
and subsequently avoid them. Even carefully configured honeypots (other 
than intricate honeynets) may be rapidly recognized as honeypots by vigilant 
adversaries. Therefore, the logged activities on these honeypots will be primar-
ily of scripted attacks or uncaring adversaries. This means that detailed analy-
sis of honeypot activity may produce low return on the analysis effort, since 
the adversaries profiled in that activity will largely be those who do not intend 
to make use of the organization’s network beyond formulaic methods. A more 
serious drawback, however, is that a honeypot has a potential to serve as the 
basis of attacks against third-party networks, putting the hosting organization 
at increased liability.

One method of attack (known as an echo attack) involves the adversary gen-
erating packets addressed to the organization’s network with a false source 
address such that responses go to a third-party target computer, with the 
expectation that the organization will generate responses. A thin honeypot 
may be exploited by an adversary to support an echo attack. For the adversary, 
the attack hides the identity of the computer sending the initial packets, since 
the organization would only see the false-source packet and the victim would 
only see the organization’s response to these packets. Tracing the initial 
packet to its actual source would require both that the adversary would persist 
in generating such packets and that the ISPs routing them would cooperate 
in the trace. Both may be difficult for a victim organization to rely on in the 
close timeframe of the attack for which relevant logs would be maintained.

Moderate to thick honeypots may be more directly compromised by adversaries 
and their use coopted to form part of the adversary’s attack resources. Honeynets 
often are closely configured to limit options for coopted use, but they may cap-
ture proprietary or personal data on third parties, which again raises the liability 
of the hosting organization. With these disadvantages (and the counterbalanc-
ing advantages) in mind, organizations need to carefully weigh their options in 
using honeypots or honeynets as a part of network deception.

TARPITS
A tarpit [12] is a computer programmed to return deceptive responses to ini-
tial contacts on services and protocols that the organization’s network do 
not implement. If an adversary scans a network before attacking it, to profile 
potential victim computers on the network and the services that those com-
puters implement, a tarpit will make this process fairly difficult. By generating 
a response to every initial contact (all addresses, all ports, all protocols), the 
tarpit will produce a deceptively open profile for the organization’s network. 
Initially, it will look to the adversary like a fully populated network with all 
potential network services enabled (many more than are currently defined, 
far beyond those in common use). Sifting through this mass of responses 
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will greatly increase the workload of the adversary. A tarpit is similar to an 
extremely thin firewall, but often its use is purely deceptive—there is no rec-
ognition supported. It isn’t a gateway or proxy, since it is not validating traffic; 
it just generates initial responses and stops there.

To successfully use a tarpit, the organization needs to define the range of 
addresses, protocols, and ports for deception by the tarpit. Normally, the net-
work administrators define ports and protocols supported elsewhere on the 
network. A router passes the supported traffic to the appropriate server and 
all other contacts to the tarpit. This is usually done prior to the organization’s 
border router, both because the organization wants minimal extra network 
load and to prevent the tarpit responses from overloading the border router. 
Figure 4.5 shows a sample network configuration for a network with a tarpit. 
Another form of tarpit [13] monitors network services that identify comput-
ers on the network. Unresolved requests are handled by the tarpit.

Tarpits provide a large degree or protection from casual adversaries [13]. By 
responding to scans, the tarpit produces so many false responses that many 
casual adversaries will simple break off their attacks. Tarpits are especially 
effective against programmed attacks, such as network worms [12]. This 
reduces the risk to the network to those adversaries who have some knowl-
edge of the actual service structure of the network (possibly by social engi-
neering, more often by using the proper network service channels to identify 
supported services and their servers). Tarpits are easy to set up and require 
little maintenance and updates. Since tarpits do not actually support any net-
work services, what maintenance is required must be done off the network, 
via physical proximity to the tarpit’s console.

Internet

Border 
Router

Internal
Network

Border 
(DMZ)

Network

Tarpit

FIGURE 4.5 
Example network configuration with Tarpit. 
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While tarpits may offer significant protection from casual or programmed 
adversaries, they also have disadvantages that defenders need to consider. 
Since a tarpit will reply to any contact, it effectively doubles the amount of 
nonproductive traffic that the organization’s network (at least its point of 
presence) must handle. An adversary might exploit this characteristic in a 
denial of service (DoS) attack against the organization. To prevent this, sev-
eral tarpit packages have rate-limiting features that restrict the pace at which 
the tarpit will generate response packets. Adversaries may also use the tarpit 
to generate echo traffic, as described earlier with honeypots. This is more 
difficult to defeat using rate limiting, as the adversary may use multiple net-
works to echo traffic against the third-party victim. Since the adversary doing 
the echo traffic attack will generate repeated initial contacts faked to come 
from the same address, often with the same source and destination points, 
defenders may look for such repeated contacts and configure the tarpit to 
limit the number of responses it generates. This would slow or block the 
adversary’s use of the tarpit.

Tarpits, while offering minimal deception, offer some significant protec-
tion against self-propagating malware and casual adversaries. These advan-
tages need to be weighed against the level of effort required to configure the 
tarpit, the extra network load it may generate, and the potential for abuse by 
adversaries.

VIRTUAL HOSTS
A virtual host is a restricted, simulated computer appearing on a network 
that is implemented using physical resources that are either part of the net-
work or hosted elsewhere [3]. In concept, virtual hosts are somewhat similar 
to the application hosting described in Chapter 3, but in detail and imple-
mentation there are a number of important distinctions. Where application 
hosting is focused on providing specific software services, virtual hosts imple-
ment complete emulated computer systems with independent operating sys-
tems, devices, storage, and applications. Virtual hosts can be virtual clients or 
virtual servers. One common configuration is for organizations to internally 
host virtual clients, but to contract with an external network to host virtual 
servers. This arrangement, diagrammed in Figure 4.6, balances a need for con-
trol with the costs of operating virtual hosts.

Network defenders would implement virtual clients to allow internal users to 
access services known to carry a degree of risk. In operation, the virtual cli-
ent acts (to the user) simply as an application running on a desktop com-
puter, although with limited access to the data and devices available through 
that computer. In actuality, the user’s request for service becomes a mes-
sage sent to a local hosting server, which loads a stored image hosting the 
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application and connects that application to the user’s computer. The hosting 
server routes commands to the application and results from the application 
between the user’s computer and the virtual client. The virtual client accesses 
its own simulated disk storage and devices, rather than using storage and 
devices on the user’s computer. After the application completes running, the 
hosting server shuts down the virtual client, storing data but no changes to 
the software.

Network administrators may implement or contract virtual servers for either 
cost or security reasons [14]. For virtual servers, the users access a local proxy, 
which establishes a connection with the external hosting computer to sup-
port the service request. That computer then connects to an internal image 
of a server, and handles the request in the context of this image. This image, 
in contrast to virtual clients, is normally persistent, with the hosting server 
retaining the image between requests.

Virtual servers are lower cost than physical hosts since a single physical com-
puter can host multiple virtual servers. Since many organizations do not 
require all the resources of a physical computer to host their services, shar-
ing the computer with multiple servers makes more efficient (and lower-cost) 
use of resources. Virtual servers may offer security improvement by sharing 
vulnerability fixes and other common administrative tasks, and also by being 
rapidly restored to a known clean state if the defenders suspect the virtual 
server is compromised. On the other hand, if the underlying operating sys-
tem of the hosting server is compromised, multiple services (and, potentially, 
multiple organizations) may be affected.

Inside Users

Internal 
Proxy

Outside Users

Internet

Hosting Service

Virtual 
Server

Virtual 
Client

Internal 
Hosting

FIGURE 4.6 
Example network configuration with virtual hosts. 
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Other than the chance of common compromise, virtual hosts pose few addi-
tional security problems for network defenders. Due to the controls placed 
on the simulated hosts, adversaries find few advantages gained by compro-
mising them, and the restart of these hosts sacrifices those advantages rapidly. 
There is some contractual and configuration work involved in setting up vir-
tual hosts and using them operationally, and this must be balanced against 
the gain in security.

SUMMARY
As this chapter shows, there are numerous technologies that can implement 
specific deception as to service implementations and processing on an organi-
zation’s network. These technologies work based on the traffic information, 
using the content of IP datagrams. However, each of these technologies offers 
only a limited amount of deception, and for specific services or purposes. At 
some point, this deception will be exhausted and a dedicated adversary may 
proceed against operational computers on the network. At that point, other 
security strategies are needed. The first of these other strategies, frustration, is 
discussed in Chapter 5.
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Chapter Review Questions
1. Proxies are widely used to protect network services. Often, firewall vendors offer 

a variety of such proxies as a part of their products. Identify two network services 
that might be particularly useful to protect via a proxy.

2. Define the following terms, and briefly explain their relevance to security:
 a. Datagram
 b. Transmission Control Protocol (TCP)
 c. Honeynets
 d. Tarpits
 e. Virtual hosts
 f. Network guards

3. How would use of a gateway facilitate protection of large file storage on an 
organization’s network?

4. What kind of attacks might be wholly or partially defeated by tarpits?

5. How might use of honeynets interfere with an ongoing compromise attempt 
against a workstation on an organization’s network?

6. How would using virtual clients to restrict vulnerability exploits help network 
defenders?
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79Chapter Exercises

Chapter Exercises
1. While TCP forms the majority of traffic on the Internet, many secure applications 

are now being implemented via the AH and ESP protocols [2]. Briefly describe 
how these protocols may improve the security of an application over the features 
available in TCP.

2. Bob’s Bank is concerned about online attacks on its business-to-business site. 
The site is implemented with a front end that supports customer authentication 
connected to a back end that processes payments and provides account 
information. Since Bob’s Bank is a small local bank, they only have two servers for 
their business-to-business site. Briefly describe two technologies that Bob’s Bank 
could use as deception to aid in dealing with online attacks on this site.

3. Tres Rios Electric Service is a small power-generation company located in the 
southwestern United States. They use a variety of device control systems (SCADA) 
to optimize performance of their generators and support flexible power distribution. 
Recently, reports have described vulnerabilities in several SCADA systems, and 
Tres Rios management has become concerned about malicious manipulation of 
generation and distribution. Briefly describe two deception technologies that Tres 
Rios could use in preventing or detecting such malicious manipulation.

4. Tartan is a local ISP operating in the mid-Atlantic region of the United States. 
They support local customers’ access to the Internet as a bottom-tier ISP. They 
have become concerned about attempts to attack their authentication of their 
customers. Briefly describe two ways in which proxies could aid Tartan in 
addressing such attempts.
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Frustration Strategies: Technical Controls

CHAPTER 5

INTRODUCTION
At some point, an adversary will defeat any deception techniques. 
Implemented correctly, the deception techniques have bought a defender 
some time from the more dangerous adversaries and caused the most oppor-
tunistic of thieves to pass them over as too much trouble. This chapter focuses 
on the next segment of a successful information security strategy: frustration.

The goal of frustration strategies is to prevent an adversary from successfully 
targeting the defender’s resources. When frustrating the adversary, we assume 
that the assets of value that will be attacked have been identified already 
with some accuracy. However, the defender has various tools available that 
can make it so that the attacker cannot successfully target the desired assets. 
There are both host-based and network-based frustrations, and, in general, all 
can be described as some version of reducing the attack surface of a system 
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or systems. There is a lot of literature on attack surface measurement, but the 
quick definition is “the set of ways in which an adversary can enter the system 
and potentially cause damage” [1].

MINIMIZATION GOALS AND OBJECTIVES
It is not generally possible to reduce the attack surface to zero. There is an 
old quip that the only secure system is one that is powered down, unplugged, 
dismantled, encased in concrete, and dropped to the bottom of a deep-sea 
trench. The information system will serve benign users, whether internal or 
external, and such an interaction presents some attack surface. The defenders’ 
goal is to minimize the attack surface, and thus an adversary’s entry points for 
attack. Since there are many types of information technology, there are mul-
tiple levels of minimization to frustrate an adversary. Each service and each 
computer will have minimization applied to it, but in different manners.

Minimization serves two goals. One is to present the smallest possible attack 
surface to the adversary. This will frustrate the adversary’s attempts to com-
promise the defender’s systems. The second goal is not always appreciated—
to minimize the cognitive complexity of the system the defender implements. 
If someone does not know anything about a running service, he or she can-
not be reasonably expected to defend it. If the policy rules someone is 
expected to implement are too many, he or she cannot be expected to under-
stand the importance of a violation. Simplicity has much bigger gains for the 
defender in the following step of the security strategy as well: a simple system 
is easier to recognize and remediate errors. The essence of the minimization 
strategy is captured in a quote often attributed to Albert Einstein: “Everything 
should be made as simple as possible, but not simpler” [2,3].

This chapter discusses minimization in the context of three aspects of network 
defense—servers, services, and network protocols—and sums up by discussing 
how an appropriate network architecture ties it all together. The various strate-
gies are summarized in Figure 5.1 on several relevant axes. These are heuristic 
estimates, and may not be to scale. Each axis is related to the others, but not 
necessarily in a linear fashion, so each axis is presented separated with each 
strategy marked on each axis. Note that no strategy scores well on all axes 
(desirable computational complexity is low); a complete strategy must use a 
combination of the available approaches to account for the weaknesses of each.

ASYMMETRY IN INFORMATION SECURITY
The asymmetry inherent in computer network defense makes minimization, 
and frustration generally, all the more important. This asymmetry is that the 
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adversary only needs to find one of any of the available services to exploit to 
be successful, whereas the defender needs to equally maintain all of them. 
This problem can be described in terms of three distinct cases to model the 
dependability of systems [4]:

■ In some cases, it is a sum of efforts where everyone’s efforts are 
aggregated.

■ In some cases, it is based on minimum effort where the weakest link in 
the chain will cause the chain to snap.

■ In some cases, it is a best effort where only the high-water mark of the 
best individual matters.

Unfortunately, program correctness is often a minimum-effort, or weakest-
link, activity because it only takes an error from the weakest programmer to 
compromise the program. Further to the adversary’s advantage, compromis-
ing that weakness is either a best effort of a skilled individual adversary or, 
even worse for the defender, a sum of efforts of an organized group of adver-
saries [5, p. 229].

But do not despair. Although the adversary has an asymmetric advantage 
in exploitation, the defender has significant advantages as well. Defenders 

Performance
Low

Monetary
cost

Complexity
(to maintain)

Granularity
(of control)

Computational
complexity

Central
control

Disable
services

Application
management

Static firewall

Dynamic firewall

Stateless firewall Application-level
proxy

Stateful firewall

Network-level
(circuit) proxy

AM

SF

DF

LF AP

FF

NPService
wrappers

Host-based intrustion 
detection and 

prevention systems

P
er

fo
rm

an
ce

 d
im

en
si

on

W

NP

SF LF NP DF FF W D AM H AP

SF
LF W DF FF H D AM AP

D SF LF
DF
AM NP FF H AP

High

D AM SF W

H AM

LF
NP
DF FF H

LF
SF DF FF

AP

AP NP

W

D

D

H

W

FIGURE 5.1 
The frustration strategies discussed in this chapter, roughly displayed by their estimated performance in 
various dimensions. 



CHAPTER 5: Frustration Strategies: Technical Controls86

choose what systems to run, how to connect them together, and what policies 
to implement. Smart decisions on these fronts can frustrate the adversary’s 
advantage. However, the ability to make smart decisions can be hampered by 
default settings on vendor devices. The vendors, quite reasonably, want their 
product to work out of the box for the widest number of customers. With all 
good intentions, the vendor will have enabled quite a few features and ser-
vices that are not precisely necessary. Thus, the defender must inventory the 
features that are actually required for the system to function and minimize 
the set of features to just those. This practice will help frustrate the adversary’s 
asymmetric advantages because fewer features reduces the possible attacks, 
and it also means management is simpler [1].

HOST HARDENING
Hardening individual hosts has several aspects. The defender can remove ser-
vices, close ports, use local intrusion detection and prevention services, utilize 
service wrappers, and generally manage the applications allowed to run on 
the operating system. In general, host-based security solutions are more sen-
sitive than network-based solutions, since they have access to all the host’s 
information. This is a double-edged sword, however. Since the host-based sys-
tems are on the host, a successful compromise of the host may be able to 
invalidate or otherwise modify the host-based system, which is not possible 
in the same way in a distributed network-based solution. For appropriate 
defense-in-depth strategies, both network- and host-based solutions should 
be applied. The following categories of host-based strategies can also be 
applied rather granularly to individual hosts with different risk profiles. This 
also provides some more flexibility than the available granularity to network-
based approaches, which, due to their centralized nature, are forced to cover 
solutions with slightly broader strokes.

Disabling Services
Footprint minimization reaches as far as the basic operating system (OS) 
functions. Whatever OS the computer is running, there are going to be 
many system functions that are not necessary. This is true no matter the OS, 
whether it is Windows, Mac OSX, Linux, BSD, Android, or iOS. It is true 
about servers and end-user machines, including mobile devices. In an archaic 
example, many hosts used to listen on port 79 for the finger protocol by 
default [6]. The finger protocol is designed to provide information about the 
users on a computer to a remote host that asks about them. Modern OSs no 
longer open this port by default because the potential information leakage 
turned out to be too damaging. In general, administrators were not doing 
their own service minimization on hosts. Especially for high-value assets, OS 
functions and listening ports should be minimized.
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The extent of host service minimization will depend on the risk assessment 
of the system, as well as the specialization of the system. A very specialized 
system is easier to pare down. A more valuable system is more important to 
pare down. The latter should be the driving factor; for example, take Google’s 
OS minimization on its servers that run the virtual machines for the Google 
API services [7]. The Google virtualization infrastructure is a good example of 
defense in depth generally, however, in particular the version of Linux that runs 
the computers is a specialized build that contains only the functions necessary 
for virtualization and administration. Continuing the finger protocol example, 
this means more than merely turning off the standard listening port. It means 
all code that is used to run a finger protocol is deleted from the machine.

Importance of Disabling Services
There are some default services that are important to disable, not due to 
direct harm to the computer running the service, but from reflected damaged 
to other computers. One obvious example is domain name system (DNS) 
servers. The DNS protocol supports the addressing system on the Internet—
it allows the computer to find the logical location of, say, www.example.com 
[8]. In this way, it is much like a post office. An envelope addressed “123 N. 
Main Street, Somewhere, KS, 12345” is taken by the post office, translated 
into a physical latitude and longitude, and delivered to the right house. For 
this reason, most computers have a DNS resolver installed by default, so the 
computer can ask questions. However, many devices come with a DNS server 
enabled by default also. The metaphor begins to break down, but this is a lit-
tle like every house coming with a small post office inside, rather than just a 
postbox to send letters.

The attack scenario goes something like this. The defender and 999 others all 
have devices running small DNS servers. Let’s say there are no known bugs in 
the servers, but they will answer queries from anyone who asks. As far as this 
organization is concerned, this is of little importance. The computer doesn’t 
have enough bandwidth to really consume noticeable amounts of resources, 
and the server doesn’t know any information that is sensitive. But the attacker 
can harm me in this way: the attacker repeatedly asks all 1,000 DNS serv-
ers a small question that has a large answer, such as the name servers for the 
root of the DNS zone. But the attacker lies and says that you asked, which is 
easy to do, so all 1,000 servers tell you the answer and now you perhaps can’t 
access the Internet. This attack would have two main benefits: the attacker’s 
throughput is multiplied upwards of 20 times because the DNS answers are 
larger than the queries, and the attack source becomes randomized and hard 
to block. For a simple illustration, see Figure 5.2. The defender’s organization 
may suffer unnoticeably this time, but the next attack will probably put the 
crosshairs in a different place.

http://www.example.com
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The only realistic way to prevent such distributed denial of service attacks 
(DDoSs) from using reflection and amplification techniques such as the 
above, is for the Internet community as a whole to band together and have 
appropriate service minimization policies, such as the IETF best current prac-
tices (BCP) document BCP 38. This is similar to the benefits of immunization 
in promoting public health, which are well documented [9].

Local Intrusion Detection
The line between intrusion detection and prevention is a thin one. In gen-
eral, the only difference is that intrusion detection systems (IDSs) do not 
automatically react to a detected intrusion, whereas intrusion prevention sys-
tems (IPSs) do. The detection capabilities and strategies of each are roughly 
the same. However, an IPS is arguably a frustration strategy, whereas an IDS 
is a recognition strategy. One difference is that the data an IPS can use in 
real time is more restricted, and that IPS machines are usually more resource 
intensive and therefore expensive. Furthermore, only detection methods with 
a high confidence should be allowed to automatically act, otherwise false 
positives can ruin the user experience and encourage them to circumvent the 
system. For this reason, we will briefly touch on local IDSs/IPSs here, but a 
full treatment on host-based IDSs is part of Chapter 13. Similar logic makes 
the treatment of network-based IPSs in this chapter short, since a full treat-
ment of network IDSs is part of Chapter 12.

IDSs and IPSs are traditionally partitioned into network- and host-based 
strategies, however, storage system–based IDSs have also been proposed [10]. 
Host-based IDSs detect changes in local information to detect malicious 
changes to the system, such as system calls [11]. Some open-source solutions, 
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FIGURE 5.2 
The amplification and anonymization of a denial of service (DoS) attack using reflection (e.g., with DNS). 
Many attackers could execute this attack at once against a single target. 
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such as Tripwire, detect changes to files in configurable locations and can be 
used to log or prevent those attempted changes [12]. High-risk computers, 
such as public-facing servers like web or DNS servers, or high-value comput-
ers, such as domain controllers [13] or Kerberos authentication and ticket-
granting servers [14,15], should have local intrusion detection or prevention 
services installed. This will help frustrate the attacker who will invariably find 
a way to communicate with such important computers. It is feasible to run 
IDSs on every computer in an organization, but whether the management or 
licensing costs of such an endeavor are worth the gains is up to each organi-
zation to evaluate. Open-source tools exist that might lower this cost.

Service Wrappers
A Transmission Control Protocol (TCP) wrapper is a tool to add flexibility 
to the way that a host handles incoming service requests on the network, 
permitting both monitoring and manipulation [16]. A TCP wrapper func-
tions on network connections, and in that regard is more like a firewall than 
a host-based IDS. While wrappers are not a replacement for a good firewall 
policy (see the “Network Devices and Minimization” section), they allow for 
more fine-grained control and more response options for the services that are 
permitted through the firewall [17].

On any computer waiting to provide services over the Internet, there is a 
management process that waits and listens for requests on the network inter-
face. When the server receives a request, this management process starts the 
appropriate process or daemon to handle the request and then goes back to 
listening. Each process or daemon would then be in charge of its own access 
control. However, if the program has a bug or error, the adversary may abuse 
it. Furthermore, changing the code for all possible services to reflect a consist-
ent security and access control policy would be infeasible anyway [16].

To manage the connection process while making minimum changes to the 
services themselves, a TCP wrapper inserts itself between the initial manage-
ment process and the daemons, so the management process calls the wrap-
per, the wrapper consults the security policy about the requested connection, 
and then it takes a specified action. This action can be a simple allow or  
deny, like firewalls, but it can also be any arbitrary command. The action can, 
therefore, be to gather more information, respond to the request with an 
error message, send mail to the system administrator, log some information, 
or most anything else [17].

Service wrappers are a useful layer of frustration against an adversary. They 
do not replace either network firewalls or host-based protection systems. 
However, they have some benefits of each. Like network-based strategies, the 
wrappers use mostly network header information, and require relatively few 
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resources and no modification of host systems. However, like host-based sys-
tems, wrappers have added information from sitting on the actual host and 
added flexibility of a fully functional command line to craft actions. The 
result is a strategy halfway between a network- and host-based strategy that 
fills some gaps left by both. Therefore, using a wrapper for more granular 
access control and logging of necessary services is advisable.

Application Management
In addition to removing default programs, host hardening also means care-
ful management of what additional programs are installed on the computer. 
This tactic is more relevant to end-user computers, but applies to high-value 
servers as well. Many organizations’ IT departments manage the applications 
a user is allowed to install for this reason. In an obvious example, if a user 
receives an email with a malicious Microsoft Office document attached to it, 
but he or she does not have the office suite of programs installed, he or she is 
not vulnerable to the attack. While most employees may do document pro-
cessing, do they need to compose music in GarageBand, which comes pack-
aged with Mac OSX? Or do they need to run a node in a covert peer-to-peer 
network to make digital phone calls, like Skype [18,19]?

Each program the user installs and uses increases the attack surface. For this 
reason, it is ideal to have a list of permitted programs rather than attempting 
to maintain a list of forbidden programs. These concepts are more broadly 
termed white lists and black lists. White lists enumerate acceptable elements, 
with an implicit default action of deny. Black lists are the opposite—they 
enumerate forbidden elements, with a default policy to accept anything not 
on the list. The choice of implementing a policy as a white list or a black 
list is a recurring question in security. In general, white lists are more secure 
and more troublesome. We will revisit the topic of white and black lists in 
the context of router ACLs later in the chapter, where for some time the best 
practice has been to implement white lists. Although it is not as straightfor-
ward to implement a white list of permitted, managed applications within an 
organization, it is the recommended lower-risk strategy and a stronger defen-
sive posture.

The rapid pace of software development makes a thorough analysis of each 
application update before installing it within an organization difficult. See 
Chapter 10 for a complete discussion of change and configuration manage-
ment. To make this task easier, careful thought needs to be given to the appli-
cations that will be permitted to run in the first place. Perhaps all peer-to-peer 
programs are forbidden from the organization, for example, or a nonstandard 
email client is the permitted client because it has been demonstrated to have 
much better security properties and the organization has been breached via 
email before.
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NETWORK DEVICES AND MINIMIZATION
Network-based frustration and minimization are also an important aspect of 
an information security strategy. Network devices can be used to architectur-
ally reduce information that leaves the organization and to detect or block 
suspicious traffic. Routers, static and dynamic firewalls, stateful firewalls, net-
work IDSs and IPSs, and various service proxies are the basic logical categories 
of blocking devices [23]. Many physical devices are comprised of more than 
one of these categories—it is hard to buy a router nowadays without at least 
a static firewall embedded in the device. As a rule of thumb, the more com-
plex devices can also mimic the functionality of the less complicated devices. 
This mimicry is often at a performance cost, so it is often wise to have a lay-
ered defense of networked devices as well. For example, a static firewall can 
be configured to drop blatantly abusive traffic with minimal overhead, which 
prevents the more expensive devices from wasting time down the line.

This section will give a taste of the important points and complexities of net-
work-based blocking as a frustration strategy. For more in-depth coverage of 
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network issues, see Kaufman et  al. [24], and for a discussion focused more 
specifically on firewall usage and configuration, see Cheswick et al. [23].

Routers and Access Control Lists
Routers direct traffic throughout a network. To do this efficiently, they only 
inspect the address to which the information is going, and sometimes where 
it came from. Therefore, any security services installed on a router only have 
access to this information. When the device begins to inspect information 
beyond the addressing information, it becomes an IDS, IPS, or proxy.

For the remainder of the chapter we will treat routers and network devices as 
inert, trusted participants in the network. Before we do that, a quick reminder 
that this aspect is not to be taken for granted. As routers have become more 
complicated, they require remote management. In this regard they are 
just like any other computer, and these remote management interfaces can 
be compromised. Primarily this is via the Systems Network Management 
Protocol (SNMP), such as reported in Vulnerability Note #225404 from 
US-CERT [25]. Furthermore, network devices have their own OSs; Cisco’s IOS 
(not to be confused with Apple’s iOS) is one example. These operating sys-
tems also can have vulnerabilities, just like any other OS.

Access control lists (ACLs, sometimes pronounced “ackles,” as rhyming with 
“tackles”) are the basic way in which routers exert static policy decisions on 
routing behavior. They are a coarse but centralized method of frustrating the 
adversary. The rules in the ACL can operate on relatively few attributes of the 
packet: source and destination IP, IP type (e.g., TCP, UDP, ICMP, etc.), and 
some attributes based on the protocol type like ports in TCP/UDP and flags 
in TCP. ACLs usually specify an information pattern and an action. The infor-
mation pattern is some set of values for the addressing information, specify-
ing a value for one or more source or destination IP addresses (as either a 
single address or range of addresses), source or destination ports, and TCP 
flags if applicable. The action is usually one of a small list, such as allow, 
block, or log, or a combination of two, such as block and log.

Routers have four interface types, which are named in a mildly confusing 
manner. There are two external interfaces, which connect to routers outside 
the organization, and two internal interfaces, connecting to computers the 
organization owns. There are two incoming, or ingress, interfaces that receive 
messages, and two outgoing, or egress, interfaces that send messages. One 
internal interface is incoming, taking packets from computers the organiza-
tion owns, and one is outgoing, sending packets to computers the organi-
zation owns that it has processed from the outside. Likewise, one external 
interface is ingress, and one is egress. These interfaces are always duplexed—
the internal ingress interface is connected to the external egress interface, and 
the external ingress interface is connected to the internal egress interface.
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All security policies should be applied at the ingress, or incoming, interfaces. 
This saves some computing time—the router doesn’t have to process the bad 
packet before it drops it. Therefore, while the outgoing interfaces are impor-
tant, they are not relevant to security policies. So, when we mention a router 
interface, if not specified, we will are referring to the ingress interface.

The defender should specify a very different ACL on the external and internal 
router interfaces. The external-interface ACLs are to frustrate the adversary’s abil-
ity to get blatantly malicious packets into the organization. The external-interface 
ACL should also make scanning and reconnaissance more difficult for the adver-
sary. For example, if the organization only has one public DNS server, only that 
server needs to accept incoming traffic on port 53. The defender can frustrate the 
adversary’s ability to scan for computers listening on port 53 by blocking traffic 
to any computer but the DNS server on this port. Note that this does not mean a 
skilled adversary has no chance of scanning an internal network for erroneously 
configured services on port 53. It just means the adversary needs to compromise 
or manipulate some computer inside the trusted zone behind the ACL to do so. 
A successful ACL implementation does not mean that the defender can ignore 
the host hardening recommendations mentioned earlier in the chapter.

There are several quick wins for external-interface ACLs that will reduce bogus 
traffic volumes and frustrate an opportunistic adversary. Any packet on the 
external-ingress interface with a source IP address from inside the organi-
zation is spoofed, or forged, and an attempt to deceive some internal host. 
These should be blocked. There are also some well-known abusive pack-
ets, such as a “smurf attack,” which involves sending ICMP echo requests to 
a broadcast address [26]; a “Christmas tree scan” to fingerprint OSs and ser-
vices, where all the TCP flags are set (so called because the packet is “lit up like 
a Christmas tree”) [27, ch. 15]; and some easily abused services such as UDP 
echo (port 7) [28], qotd (UDP port 17) [29], and chargen (UDP port 19) [30].

Internal-interface ACLs have different goals from external-interface ones. The 
external interface will deal with a lot of backscatter—the remnants of attacks 
elsewhere [31]. While backscatter is annoying, there is not much to be done 
about it, and so like a loud construction project outside your window, it is 
best to just close the window and ignore it. However, it would be rather rare 
for a construction worker to come into someone’s office and start jack ham-
mering and pouring concrete—and a serious security breach. Likewise, the 
internal interface of any network security device should also block malicious 
outgoing behavior, but instead of ignoring the traffic, rather treat it as evi-
dence of a possible infection inside the organization, namely a recognition 
strategy. Since these events are less common outbound, an internal interface 
can also be more strict about what it blocks. This is an example of synergy 
between different layers in the security strategy, and Chapters 11 through 14 
discuss recognition strategies in detail.
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Firewalls
A firewall is any device that enforces a set of access rules on communications 
between two networks [32]. A static ACL implemented in a router is an exam-
ple of a simple network security device, a static firewall. The concepts from 
the previous section can be expanded and generalized to increase usability 
and frustrate the more nuanced attacker. Increasing usability may be the more 
important feature, as an unusable security device or policy will be bypassed 
by frustrated users and decrease security in practice [33,34]. The increased 
flexibility is accomplished by either remembering the status of individual 
communications or inspecting more details about the packets on the net-
work, or a combination.

With a static firewall, certain common ports would need to be permitted 
through to the clients on the inside simply for the network to be usable, such 
as ssh (22) [35], DNS (53) [8], and web (80) [36,37]. This provides oppor-
tunities to the adversary. He or she can attempt connections to internal hosts 
on these ports. This is akin to building a wall around a city, but leaving a 
wide gap open. The gap is necessary for the citizens to get in and out of the 
city, but all it does when the city is attacked is to force the invading army or 
flood waters to come in through a known place. As with cities, in the case of 
the Internet and information security, this approach is not sufficient. Draw 
bridges and gates are dynamic defenses. Though simple, they can be moved 
as information about those nearby changes.

A dynamic firewall can be configured with rules that will dynamically make 
changes to its ACL. This has many advantages. Although we don’t want to 
permit any host on the Internet to communicate with our computers arbitrar-
ily, if a user wants to connect to most any web server, for example, the firewall 
ought to permit the legitimate connection. This is accomplished by keeping 
track of what the computers on the internal network ask for and letting legiti-
mate responses come back through the firewall on the external interface [23, 
p. 188]. The device must have a basic understanding of the IP protocols being 
used and expanded internal memory resources to keep track of unique con-
nections, defined by the set of [time, source IP, source port, destination IP, 
destination port]. Dynamic firewall rules usually are of the form that if the 
device logs a packet going out to a computer A on a certain port from internal 
computer B, allow a response back in from A to B on the same port. Usually 
these rules expire after a small number of seconds, to limit the time period 
where the opening can be abused.

To accurately make rules dynamically, a firewall must remember the status of 
communications on the network. This process is known as keeping state, since 
the device keeps a record of the state of all the communications. Firewalls 
that keep state are known as stateful. What features of the communication are 
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stored, and for how long, may vary from device to device. A stateful device 
has more information to make access decisions, since it knows about past 
communications as well as the present. This comes at some performance cost. 
Technically, a stateful device does not have to use dynamic rule sets, but in 
practice almost any stateful firewall is also a dynamic firewall.

The dynamic firewall may keep state, but the term firewall means the device 
does not inspect the contents of packets. A device that inspects packet contents 
should be called an IDS, IPS, or proxy. A packet that a dynamic firewall right-
fully accepts may have an unexpected payload. There are at least two situations 
in which this is common. One, if the network is operating a server it must expect 
unsolicited traffic to that computer. The point of servers is to give services to a 
relatively unknown set of client computers. On the other hand, even a trusted 
source may have become untrustworthy. In this case, a client may be tricked 
into requesting malicious content from the adversary. In one instance of such a 
case, malicious advertisements were served on Yahoo!’s and Fox’s websites [38]. 
No dynamic firewall would protect the client here—the computer did ask for 
the Yahoo! web server, it just got much more than it bargained for in return.  
A defense that inspects packet contents, such as a proxy, would be needed.

Proxies
In general usage, a proxy is something that acts on the behalf of someone  
else [39]. Following this common English usage, as opposed to firewalls, 
proxies do not allow two hosts to connect directly; rather each host will have 
a complete connection with the proxy [32]. Proxies are, therefore, more com-
plicated, more expensive both monetarily and in computational resources, 
and allow the defender to implement more detailed defensive strategies. 
But as Uncle Ben reminds us, “with great power there must also come great 
responsibility” [40], and so with the added detail power available in a proxy 
also comes increased upkeep costs and a greater chance the defender will 
make a configuration error or misunderstand a policy violation. Yet, when 
implemented properly, a proxy will greatly increase the defender’s ability to 
frustrate, and recognize, attackers.

Proxies disrupt the communication between two computers in a way that 
firewalls do not. Figure 5.3 demonstrates the effect on a single request and 
response set of messages. This session duplication is one major computing cost 
and source of delay in proxies. Since the proxy will establish a new session of 
the application, the proxy must implement completely whatever application 
for which it is a proxy. However, there is a significant benefit to frustrating the 
adversary: only the network address of the proxy is known to the outside world.

Proxies can be divided into network-level proxies, which only translate 
addresses and ports, and application-level proxies, which proxy a particular 
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application. The most common network-level proxy is the Network Address 
Translation (NAT) service [41]. One common example of an application-
level proxy is a web proxy for HTTP and HTTPS sessions. A common open-
source web proxy is the Squid Proxy [42]. Both kinds of proxies can be used 
to frustrate the adversary when implemented by the defending organization. 
There are also some frustrating uses of proxies by the adversary of which any 
defender should be aware.

NAT for Frustration
NAT allows for a large number of computers to advertise only a single IP 
address to the public Internet. The internal network uses a reserved address 
space,1 and the NAT device maintains a table between these private addresses 
and individual external communications and tags the communications by 
manipulating port numbers. NAT was initially introduced as a temporary 
fix for issues of Internet address space depletion and scaling. The primary 
existing addressing scheme is IP version 4 (IPv4), and its roughly 4 billion 
addresses are nearly exhausted. The original NAT document also addresses 
some security and privacy trade-offs of the service [41]. The defender is inter-
ested in these security and privacy side effects for frustration purposes, how-
ever, keep in mind that these are side effects of NAT, and not a design goal, 
unlike in some other proxies.

Time

Time

(a)

(b)

Outside Border

Firewall

Proxy
Key:

:  One message

Inside

Computer

Computer

FIGURE 5.3 
One message and response transiting (a) a firewall and (b) a proxy service. 

1 The private address spaces for this purpose are the 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16 net 
blocks [43].
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NAT devices provide a simple, application-independent privacy shield for the 
defender’s computers. When a packet leaves the network, it is not immediately 
obvious which computer issued it. This screen cannot protect public services, 
such as the web server, since it needs to have a well-defined public address to per-
form its function. NAT also makes it impossible to address an internal machine 
directly from the outside. In many cases, this is a desirable security property, 
however, NAT prevents legitimate usages as well. This shortcoming has led to 
some interesting methods to circumvent the problem, such as Session Traversal 
Utilities for NAT (STUN) [44], proving that such security side effects as the pri-
vacy screen can be overcome by determined users, and thus determined adversar-
ies. Note that STUN is an official IETF standard for legitimate use, just like NAT 
itself. It is not realistic for the defender to implement NAT and expect it not to be 
defeated. It is not a defensive technology and so the Internet community is free 
to subvert the privacy side effects for usability concerns, such as via STUN.

NAT provides a useful service in frustrating the attacker’s reconnaissance of 
the target network via eavesdropping and counting target IP addresses and 
mapping observed requests to specific computers. NAT also adds a layer 
of inconvenience when the attacker attempts to address internal hosts. 
While these are desirable security services, NAT does not guarantee them. 
Furthermore, NAT breaks the ability to secure TCP sessions with a proto-
col such as IPsec, because NAT modifies the TCP header, thereby preventing 
end-to-end encryption or verification of it [41, p. 7]. A mature organization 
should implement the IETF-recommended solution for adding IP space, IP 
version 6 (IPv6). IPv6 has 128 bits of address space, as compared to the 32 
bits in IPv4. IPv6 manages the address space depletion issue, and the organi-
zation should implement ACLs and internal proxies to provide the desired 
security services, as described in this chapter.

Application Proxies for Frustration
When the defenders implement a proxy service on a computer on their inter-
nal network for use by computers they own, let’s call that an internal proxy 
service. Internal proxy services have several desirable properties. Since they 
require planning and maintenance, internal proxy services are often imple-
mented for commonly or heavily used services, such as web, email, and DNS. 
The following discussion will take a web proxy as an example, however, the 
principles are applicable to a proxy service for any application. Figure 5.4 
demonstrates a simplified network map with a web server and web proxy in 
the recommended conservative configuration, and Table 5.1 lists the simpli-
fied access controls to use in this example configuration. This setup is analo-
gous to that for a DNS proxy service or another service.

An internal web proxy will frustrate an attacker in two ways: footprint mini-
mization and protocol enforcement. First, only the web proxy will make web 
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requests to the outside world. Therefore, the attacker will not know which 
or how many hosts on the defender’s network use the web, and will there-
fore not be able to develop a list of targets by eavesdropping. Second, the 
proxy must completely implement the HTTP protocol to communicate with 
each the internal computer and the external web server. If the external server 
attempts to supply abusive or malicious content, or the internal host sim-
ply requests a resource known to be abusive, the proxy should not relay that 
information back to the internal computer. Since the proxy has a logically 
separate connection with the internal computer, this is technically relatively 
easy. The proxy also has access to all information that would go to the host in 
the same format the host would view it (i.e., reconstructed), and so can make 
a judgment on the complete package that should not permit the attacker to 
obfuscate any attacks.

Due to the fact that proxy servers must implement the applications they 
proxy, they may be vulnerable to errors in the protocols in a way that fire-
walls are not. Therefore, it is particularly important to harden the application 
proxy against attacks on that application and keep its patches up to date. The 
host hardening guidelines in this chapter are a beginning, however, more par-
anoia is likely justified. Also notice that the proxy is not located on the same 
subnet as the other internal hosts; this location would be called a demilita-
rized zone (DMZ). This placement limits potential damage to the internal 
computers in case the proxy is compromised, and limits the opportunities 

FIGURE 5.4 
A simplified network map demonstrating a useful implementation of a web service and internal proxy. 
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for compromised internal hosts to attack the proxy and escalate the infec-
tion. This location is an example of network architecture for frustration, as 
described later in the chapter.

Proxies that Aid the Attacker
The attacker can also use proxies external to the organization. In this respect, 
the attacker/defender roles are flipped, and the attacker is attempting to frus-
trate the defender. But before terminology gets too muddled, let’s just explain 
an example scenario.

The defender has an ACL rule to prevent internal connections to a particu-
lar malicious IP address. The attacker notices the disruption, however he or 
she is unable to alter the malicious resource’s IP address. In the same way an 
internal proxy service obscures the internal IP addresses using a service, so 
too would a proxy service external to the organization hide the attacker’s IP 
address. With a new IP address, the attacker will bypass the ACL rule. There 
are many free, open proxies available on the Internet that could be used for 
this purpose [45], and the TOR (derived from The Onion Router, although 
officially the name is no longer an acronym) network would also largely 
accomplish this goal [46]. Internal users frustrated by strict ACLs may also 
turn to external proxies to bypass security policies.

If the defender is implementing ACLs as black lists, or lists of resources to 
block access to, lists of active open-proxy IP addresses should be added to 
the block list. The most secure and restrictive option would be to only per-
mit users to visit known-benign resources—that is, to use a white list—and 
to route those users through a web proxy and use firewall ACLs to prevent all 
other traffic on common web ports 80, 443, and 8080 [37]. This was the tac-
tic in mind for the example in Figure 5.4.

NETWORK ARCHITECTURE AND FRUSTRATION
The physical and logical connections between devices are an important aspect 
of a security strategy. There are aspects of network architecture that enable 
effective policies to be implemented, and there are architectures that in them-
selves contribute to a security strategy.

The first enabling aspect of a network architecture is simply to have it be 
planned and well documented. It is difficult to make effective access control 
policy when the defender does not know which networks and subnets con-
tain which resources. This includes both a good logical map or chart of what 
is connected to what, and physically labeling cable and devices so they can be 
easily charted. What the labeling scheme is does not much matter, but it must 
be consistent.



Network Architecture and Frustration 101

The second enabling aspect of a network architecture is based on the old 
principle of “need to know,” with the general best practices of least access 
and least privilege in mind [47]. On a local subnet, each computer has unre-
stricted access to each other computer on the subnet. However, each com-
puter should have unrestricted access to the minimum number of computers 
that it can while still accomplishing its function. For servers, this generally 
means placing them in a screened subnet or DMZ, logically separated from 
the outside world, end-user host computers, and other servers [23, p. 14]. 
With each important class of computers in their own subnet, useful ACL rules 
can be written for the devices that control access between the subnets. Just 
putting a web server on its own subnet doesn’t protect it, but properly pro-
tecting it without that step is infeasible.

Network architecture can be used as part of the strategy itself. An architec-
ture can frustrate the adversary’s ability to do traffic analysis by keeping traffic 
segregated from the public Internet. For an organization in a single building 
this may be trivial. But for a larger organization this takes some planning. 
Furthermore, many organizations find it inefficient to buy or lease a dedi-
cated cable between sites. A more economical option is to deploy a virtual 
private network (VPN) between two sites. Without a VPN, even if the appli-
cation contents are encrypted, the adversary could still count the number 
of users of a service, and profile how often it is used by observing network 
headers. A VPN eliminates this possibility—all the adversary can know is how 
much data is transmitted over the VPN. This effect is illustrated in Figure 5.5.

A VPN carves out a logically distinct network cryptographically. More details 
on cryptography are covered in Chapter  8. VPNs have several distinct uses, 
and there are a few different implementation strategies, IPsec [48] and SSL/
TLS [49] being the most common [50]. To construct a protected connection 
between two sites, each computer at a site uses a network proxy to connect 
to the other site. The proxy has a long-standing VPN with a proxy within 
the other site. The remote proxy terminates the VPN and then the connec-
tions can proceed as if they transited private, trusted networks instead of 
the Internet. Implementing a VPN requires some care; for details on uses 
see Cheswick et al. [23, p. 236ff], for a comparison of implementations see 
Rosen [50], for an accessible discussion of IPsec and TLS see Anderson [5,  
p. 669], and for the details see Kent and Seo [48], Dierks and Rescorla [49], 
and Kaufman et al. [51].

A VPN can also be used by remote computers to create a trusted connection 
across the Internet to within the host organization. This is helpful for employ-
ees who may travel often. The defender would like to offer them services as 
if they are in the office, but cannot just open those services to the Internet 
population at large without serious risks. The employee’s computer has a 
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long-standing secret with the VPN endpoint within the organization, which 
allows the two computers to resume a VPN upon the employee’s request. This 
enables service minimization in general, while still permitting employees to 
access resources in a reasonable way. Such remote VPNs are fraught with dan-
gers, however. If the employee’s computer is connected to the Internet via a 
second network connection, then that computer has created a bridge between 
the Internet and the internal network that bypasses the major security mech-
anisms. Therefore, the VPN endpoint must be treated with the utmost care, 
and placed in a heavily screened and monitored subnet of its own.

SUMMARY
There are a variety of techniques available to the defender to frustrate the 
adversary by minimizing various aspects of the IT infrastructure. Broadly 
speaking, these strategies are either host-based or network-based strategies, 
with each particular strategy carrying its own benefits and shortcomings. The 
strategies include such elements as disabling services, local intrusion detec-
tion and prevention, service wrappers, application management, access 
control lists, firewalls, proxies, and network design. An intelligent and 
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FIGURE 5.5 
VPN usage to frustrate traffic analysis by an adversary. 
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comprehensive array of the available strategies is the best defensive strategy, 
as there is no single solution. This chapter presents frustration strategies in 
the context of specific available technologies. Chapter 6 continues the discus-
sion of frustration strategies, broadening the context to include formal verifi-
cation of implementations and strategies.
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Chapter Exercises
1. Let’s say that some hacktivist group that shall remain anonymous has decided to 

target your organization’s public web server with a DoS attack. The strategy used 
is an old one—a TCP SYN flood. Hosts from the Internet are making legitimate 
connection requests to the web server, but they are not completing the TCP 
handshake. The web server keeps the port open and the resources allocated to 
answer the handshake until the handshake times out, which takes several seconds. 
This quickly exhausts one particular resource of the web server—the number of 
TCP port numbers that it can keep open at one time. Legitimate users cannot 
access the web server. Without expanding the web server’s resources, what are 
some strategies that you could implement to frustrate the attackers? Describe at 
least two host-based and two network-based strategies.

Chapter Review Questions
1. What is the general goal of a frustration strategy?

2. Provide a one-sentence definition of the four host-based frustration strategies 
introduced in this chapter.

3. Distinguish between the following types of firewalls, without using the words 
themselves in your answer (static, dynamic, state, stateful, stateless):
 a. Static versus dynamic
 b. Stateful versus stateless

4. Similarly, distinguish between:
 a. Firewall vs. proxy

5. What features of application-level proxies make them more vulnerable to 
adversaries? Give an example mitigation of these risks.

6. Why is an appropriate network architecture required to build effective ACLs?

7. What types of frustration strategies are best implemented in network-based 
approaches, and what types in host-based approaches?

https://www.torproject.org/about/overview.html.en
https://www.torproject.org/about/overview.html.en
http://refhub.elsevier.com/B978-1-59749-969-9.00005-5/sbref12
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2. Describe the security and privacy features that NAT happens to provide, and then 
try to describe how these features could be more reliably provided, using some 
combination of host-based, network-based, and network architecture–based 
frustration strategies.

3. Not all frustration strategies are technology based. In what ways could you train 
average users to make themselves more resistant to social engineering attacks, 
such as phishing? (For a definition of phishing, see Chapter 7.)

4. Draw a network diagram, similar to Figure 5.4, but instead for a secure DNS service. 
The service must provide resolution of names for use by internal hosts (e.g., the 
web proxy) to hosts in the organization, and the service must provide resolutions 
of public names (e.g., the web server) to the Internet. Also, create a table similar 
to Table 5.1 with the general ACL rules that should be implemented to secure the 

services on your diagram.
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Frustration Strategies: Formal Verification

CHAPTER 6

INTRODUCTION
Most security defenses are based on best practice. These defenses work by 
improving the relative security of the systems involved (in comparison to 
other possible configurations), rather than by providing a fundamentally 
trustable infrastructure on which to produce, process, and disseminate infor-
mation. For many applications, this is sufficient—for example, where adver-
saries are unlikely to expend the resources to determine and evade security 
measures. For especially critical systems, where high-value information is 
stored, best practice may not be sufficient. A frustration strategy in such sys-
tems may include application of a formally secure computing system, even 
though such systems may be somewhat difficult to apply and use.

The implementation of a formally secure computing system starts with devel-
opment of a formal model of security—defining security before building 
it. In a technical sense, the word “formal” refers to working from a basis of 
explicitly defined aspects of a system, and then expressing properties using 
those aspects and a restricted set of explicitly defined operations, based on 
rules of mathematics [1]. This chapter starts with an explanation of how these 
explicit definitions are presented. Over the last several decades, a number of 
formal security models have been developed and applied [2]. This chapter 
describes the more common formal models of security. It ends with a discus-
sion of the limits of formal models when applied to common security needs.

■ Formal models and model verification
■ Discretionary models
■ Confidentiality models
■ Integrity models
■ Limits of formal models

INFORMATION IN THIS CHAPTER
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FORMAL MODELS AND MODEL VERIFICATION
Formally secure operating systems are designed and implemented in compli-
ance with formal security models. A security model is a schematic descrip-
tion of a set of entities and relationships by which a specified set of security 
services are provided by or within a system [1]. The description provides an 
unambiguous and consistent definition of secure processing within the sys-
tem. Several examples of these formal security models will be given later in 
this chapter. The model itself does not specify any processing, but rather pro-
vides a set of properties that must be present for any secure processing.

Formal models are often expressed mathematically, since the regularity 
of mathematics (where the same rules always apply) provides a means of 
expressing things without the ambiguity of natural languages. Two of the most 
common forms of mathematics used for this expression are high-level alge-
bras and mathematical logic. A high-level algebra defines objects with explicit 
operations, then uses those operations to express desirable properties [6]. For 

The most commonly implemented method of security is 
reactive: wait for a vulnerability to be identified (or a security 
penetration to occur) and then do a minimal correction (a 
“patch” in technical jargon) to deal with the vulnerability—a 
process often termed penetrate and patch security. One diffi-
culty with this process is that it is extremely labor-intensive, 
as vulnerabilities are constantly identified, leaving the manu-
facturers constantly developing patches and the users con-
stantly applying them. Another difficulty is that this process 
does not address fundamental aspects of the system that are 
insecure: when the insecurity of an operating system comes 
from the structure of the system itself, rather than from 
details of how the operating system is implemented.

As an example, consider a commonly used structure when 
implementing an operating system: the kernel. Kernels are 
small, trusted parts of a system that provide services on 
which the other parts of the system (including resource allo-
cation, object control, or the program interface) depend [1]. 
When the kernel structure of an operating system is shown 
to be vulnerable, it may be a systemic vulnerability that can-
not be fully addressed by minimal changes.

There are a number of methods to exploit the kernel struc-
ture, which has been applied against both Windows [3] and 
Linux operating systems [4]. There are a variety of basic 

approaches taken in these exploit methods: corruption of 
the kernel (e.g., via feeding information to the kernel that 
causes overwrite of the kernel executable instructions), 
augmenting the kernel (e.g., replacing pieces of the kernel 
with code from the attacker, done via a device driver or 
other normal augmentation method), man-in-the-middle 
(e.g., intercepting calls to the kernel from the application 
software and inserting calls to malicious code in its place), 
and augmentation of the application (e.g., exploiting kernel 
operations that set up for program execution to insert mali-
cious code to be executed at the program user’s privilege 
level) [5]. All of these attacks work by identifying vulner-
abilities in the kernel, in the configuration methods, and in 
the interaction between the kernel and either the operating 
system or the programs being executed by the user.

Dealing with these systemic vulnerabilities demands a 
more thorough approach than is currently practiced. While 
specific malicious attacks can (and are) patched, the under-
lying insecurity remains. The kernel itself needs to be 
designed to be secure in its internal operation and updates, 
and to assure interactions between the kernel and the oper-
ating system. The secure design requires a detailed and 
unambiguous expression of secure action, which implies a 
formal security model.

SECURITY CASE: KERNEL HACKING
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example, a model may define algebraic objects “file” as a tuple F = {C,o,p,s} 
where C is the content, o identifies the owner, p is a permission, and s is a file 
state (open, closed, read, modified, and others if needed by the specification). 
A permission, in turn, would be described as a mapping between users and 
rights. Using these descriptions, the model can define grant(i, (u,q), F) (indi-
cating the user i is granting user u a permission q with respect to the file F). An 
algebraic formal model may then express that users may grant write access if 
they are the owner of the file by the property:

 grant( write ) { write } ifx y F F C F o F p y F s x F o F,( , ), . , . , . ( , ), . . ; ootherwise

This property states that a user x is providing a user y with permission to write 
on a file F if x is the owner of F; if not, F is unchanged, which in this case 
means y is provided no new permissions on F. This property allows for the 
case where y already has write permissions on F, but x is not the owner and 
tries to grant y write permissions redundantly—x’s attempt to add permis-
sions would fail, but y would retain the permissions previously granted.

A mathematical logic describes properties in terms of predicates—combinations 
of statements asserted to be true [7]. These predicates are mathematical expres-
sions of characteristics of the system. A logic-based security model may express 
that a file F has an owner o as o O F= ( )  and that y’s permissions for F contain 
w (for write) as w P y Fε ( , ). Then we can express that users may grant write access 
only if they are the owner of the file as g x y F w x O F( , , , ) ( )↔ � . In contrast 
to the algebraic semantic, the logical semantics simply state the granting—they 
provide no model of how such a grant is accomplished. However, the redundant 
(and unauthorized) grant described earlier could also be handled via the logi-
cal statement, in that while x’s unauthorized grant would violate the principle 
(and should be blocked by security controls), a prior authorized grant would be 
unaffected by the attempted grant (since the statement of the property does not 
describe denial of permissions previously granted).

Once the initial definitions are laid out, further properties may be described 
in the formal model using the operations of the underlying mathematics. 
While such constructions may become difficult to read, they do follow regu-
lar structures and can be manipulated in a systematic manner. The regularity 
of structure yields unambiguous statements, which allows for consistency in 
design and implementation, and may make the resulting property descrip-
tions suitable for formal proof.

As system developers construct security models, they also apply those models 
to verify and validate the security of the systems being developed. Verification 
is the process of examining information to establish the truth of a claimed fact 
or value [1]. In security, claimed facts or values are expressions of the security 
properties of the system, and are verified with respect to the security model. 
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This is done in several ways, as diagrammed in Figure 6.1. In the construction 
approach the developers progressively derive the design and implementation 
of the system from its specification while establishing that each stage in the 
derivation is consistent with the security model [8]. In the proof approach, the 
developers establish the consistency of each portion of the design or imple-
mentation with the security model via application of mathematical proof 
techniques [9]. In the testing approach, the developers identify test cases from 
either the elements of the security model or the assumptions present in it, 
then apply those test cases to establish consistency between the model and the 
system implementation (or, less commonly, the system design) [10].

Validation is the process of establishing the soundness or correctness of a 
construct [1]. In security, the developers validate that the approach taken in 
construction of the security model is sound with respect to the intended secu-
rity environment for the system under development. In contrast to verifica-
tion, which establishes truth in terms of consistency between the system and 
the model, validation establishes truth between the model and the applica-
tion environment (i.e., the real world). But while verification will hold for 
any environment that meets its assumptions, validation will only hold for the 
specific class of environments to which it is applied. Still, the unambiguity 
and regularity of the security model provides for a far more complete valida-
tion than do informal methods for security.

DISCRETIONARY MODELS
Formal models may apply to describe multiple aspects of the information sys-
tem security, including security policies. One division of these policies is into 

Validation
Formal model

Verification
Derivation

Verification

Verification
Derivation

Testing

System
Implementation

System
specification

System design

FIGURE 6.1 
Formal models, verification, and validation. 
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mandatory and discretionary policies, particularly for access control. Discretionary 
access control is defined as an access control service that (1) enforces a security 
policy based on the identity of system entities and the authorizations associated 
with the identities, and (2) incorporates a concept of ownership in which access 
rights for a system resource may be granted and revoked by the entity that owns 
the resource [1]. This definition implies that different users may or may not apply 
security consistently to similar objects, and that a single user may or may not 
apply security consistently to different objects that they own. The advantage to a 
formal discretionary access control is that the mechanisms for securing objects are 
defined clearly, as are the dependencies between access rights.

Mandatory access control is an access control service that enforces a security 
policy based on comparing (1) security labels, which indicate how sensitive 
or critical system resources are, with (2) security clearances, which indicate 
that system entities are eligible to access certain resources [1]. In contrast to 
discretionary access control, mandatory access control policies are enforced 
by the system, not the user, and are applied consistently across users and the 
objects that they own. However, as will be seen in the next two sections, man-
datory access control models cover more restricted issues in security than dis-
cretionary access control models.

One simple model for discretionary access control is access groups. An access 
group is an algebra on the relationships between users and owners (self, collabo-
rators, and other users on the computer), on which security controls can make 
access decisions based on the rights that the owner gives to various relationships. 
In the Unix/Linux access groups, users are assigned to groups, based on the roles 
they assume in the processes supported by the information on the computer 
[11]. More details on the applications of access controls are covered in chapter 7.

A single user may be assigned to one or more groups, and groups are defined 
with zero or more users. A group with zero users is a placeholder for a role not 
currently associated with the users on the computer, although it may be associ-
ated with programs. Each file is associated with one group. Figure 6.2 diagrams 
this access control method. Explicit access rights are granted on each file by the 
owner to each of these groups (often using the default settings configured for 
the owner), and access decisions are enforced by the operating system based 
on these access rights. The operations implemented to set, modify, and retrieve 
access rights can be modeled by algebraic rules, but informally, they correspond 
to access rights that can only be retrieved by individuals with read rights on the 
directory in which the file is stored. They are initially set to the default access 
rights configured by the owner of the file as part of his or her login environ-
ment. They can only be modified by the owner of the file or by individuals with 
write access to the directory in which the files are stored. While there have been 
proofs of selected security properties of this model [8], those properties tend to 
be somewhat weak, due to the vagary of the grouping of the relationship.
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An access control list (ACL) is a mechanism that implements access control 
for a resource (e.g., a file, device, or area of memory) on the computer by enu-
merating the users or agents who are permitted to access the resource and 
stating, either implicitly or explicitly, the permissions granted to each user or 
agent [1]. Figure 6.3 diagrams an ACL for file protection. As an operational 
convenience, users are often enumerated by establishing groups, but this does 
not change the formal semantics of the ACL. Formally, this forms an alge-
bra of tuples coupling users with privileges related to the object. The opera-
tions on this algebra identify allowed actions similar to the preceding access 
group discussion [12]. Generally, ACLs are tightly associated with the objects 
they protect, which means that analysis of all of the rights that an agent has 
requires polling of all of the objects on the computer. This level of indirection 
limits the generality of the properties that can be proved from ACLs.

An access matrix is a rectangular array of cells, with one row per subject and 
one column per object. The entry in a cell—that is, the entry for a particular 
subject–object pair—indicates the access mode that the subject is permitted 
to exercise on the object [1]. This extends the semantics of ACLs by allowing 
semantics across objects and across agents. One formal model expressed in 

Project 1 

Project 2

Database users

User

File Permissions:

user: all

project 1: read, write

others: read

FIGURE 6.2 
Group access control. 

User Access Control List:

User: all

tshimeall: read+write

jspring: read+append
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assistants: read+write

Project1: read+write

others: read

FIGURE 6.3 
Access control list. 
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terms of access control matrices is the Graham–Denning security model [13]. 
This model defines eight explicit rules for secure manipulation of the access 
control matrix. Developers may apply these rules as a formal means of verify-
ing the security of the access control mechanisms, and then use these mecha-
nisms for discretionary protection of information.

Figure 6.4 illustrates the relationships in models for discretionary access con-
trol. Taken together, these models offer defenders several options to control 
the access rights to files, devices, and other objects on defended computers. 
Many implementations of these access controls exist for a variety of operating 
systems. However, due to the nature of discretionary protection (users may or 
may not follow policy), it is insufficient to verify protections to information, 
which need mandatory access control.

CONFIDENTIALITY MODELS
Confidentiality, as described in Chapter  1, is one of the core properties on 
which security is based. If an organization cannot prevent unauthorized 
disclosure of information, then it is difficult for that organization to retain 
control over the use of that information. When the information is critical 
enough, a clear and unambiguous structure for the analysis of confidential-
ity becomes useful. This section describes two such structures: Bell–LaPadula, 
and Chinese Wall.

The Bell–LaPadula model [2] has both mandatory and discretionary com-
ponents for expressing confidentiality properties in computer systems. Each 
object in the system has a label expressing its degree of confidentiality, and 
this label may not be changed or removed from the object (the “tranquility 
principle”). Each subject has both a clearance level and a current confiden-
tiality level, which may not exceed the clearance level, and is no lower than 
the maximum confidentiality of the information that has been read. Bell and 
LaPadula express algebraic semantics in a state-machine form, then define a 
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number of security axioms. Figure 6.5 illustrates these axioms. For mandatory 
access control, the two most important axioms are the:

■ Simple security property: No subject has read access to an object with a 
classification level higher than the clearance level of the subject.

■ *-property (“star property”): No subject may write to an object with a 
classification level lower than the current confidentiality level of the 
subject.

The first property prevents an actor from reading information at a level the 
subject isn’t cleared for (or, colloquially, “no read up”). The second prop-
erty prevents an actor from declassifying information for unauthorized 
dissemination (or, colloquially, “no write down”). The discretionary por-
tion of the Bell–LaPadula model uses access control matrices similar to the 
Graham–Denning model, but with increased stringency to support the two 
central properties. The Bell–LaPadula model was successfully applied to sev-
eral secure developments, including secure Xenix [8]. It forms the basis for 
many of the criteria used for certifying confidentiality, including the common 
criteria.

The Chinese Wall security model [14] is a formal logic model that takes a 
different approach to confidentiality than Bell–LaPadula. In the Chinese Wall 
model, the set of objects on a computer system is partitioned into conflict 
classes, where a conflict class is defined to be objects that relate to informa-
tion from competing sources. For example, if an organization is receiving bids 
from multiple vendors, then the information on a given vendor is bound into 
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Simple security

FIGURE 6.5 
Bell–LaPadula properties. 
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a company subset, and the collection of company subsets for a given contract 
form a conflict class. If a subject may access multiple company subsets for 
the same contract, then the potential for information leakage (violating the 
competition) may occur. The model allows for sanitization of information, 
which involves transformation such that the source of the information may 
no longer be deduced from the information.

The Chinese Wall security model provides properties preventing such 
violations:

■ Once a subject has accessed any object in a conflict class, then the subject 
may only access objects that belong to the same company subset, or that 
belong to an entirely separate conflict class. This implies that a subject 
may at most have access to one company subset in each conflict class and 
that if, for some conflict class X, there are at least Y company subsets, then 
at least Y subjects are required to process X.

■ A subject may write to an object if the subject has accessed only 
information in compliance with the preceding property, and if no 
object containing unsanitized information has been read in another 
company subset in the same conflict class. This implies that unsanitized 
information remains contained in the company subset, but sanitized 
information may be processed freely.

Figure 6.6 visualizes these properties. The Chinese Wall security model has 
been incorporated in a number of audit models and applied to commercial 
data processing systems. Figure 6.7 contrasts the Bell–LaPadula and Chinese 
Wall confidentiality models.
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FIGURE 6.6 
Chinese Wall security model properties. 
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There are a number of other confidentiality models that have been devel-
oped (see, for example, the military need-to-know model described in 
Chapter 9). However, these should provide an insight into how such models 
constrain the flow of information in a computer system to provide verifiable 
confidentiality.

INTEGRITY MODELS
Integrity is the property that data has not been changed, destroyed, or lost in 
an unauthorized or accidental manner [1]. This implies both that control is 
exercised over the content of information in the system and over modifica-
tions made to that information. The primary formal model of integrity, the 
Biba model that extends the Bell–LaPadula model, incorporates both of these 
aspects.

The Biba model focuses on mandatory integrity policies [2]. It specifies integ-
rity labels on each object in the system, which cannot be modified by any 
operation on the data (although a new copy of the object with a different 
integrity label is possible). Each subject has an integrity class (maximum level 

Bell-LaPadula Chinese Wall
Basis Algebraic Logic
Goal Privacy of objects Information disclosure
Method Rating of objects and subjects Company subsets and conflict classes
Application OS security Financial security

FIGURE 6.7 
Bell-LaPadula contrasted to Chinese Wall. 

Roger Schell was born in the 1930s in eastern Montana [15]. 
He grew interested in electronics working on radios at an 
early age, which grew into an academic career in electrical 
engineering with graduate degrees at Washington State and 
MIT. In the course of his graduate studies he was more and 
more involved with computers, eventually working on the 
development of MULTICS while at MIT. Exposure to some 
prominent formal methods professors lead him to experi-
ment and master formal derivation approaches, although 
formal security models did not exist at the time.

After his Ph.D., he returned to the U.S. Air Force and eventu-
ally became interested in computer security. He developed 

the concept of the security kernel, and used that as a basis 
for making formal statements about the security of an oper-
ating system. This design approach, in turn, lead him to 
experience in developing security models and evaluating 
operating systems. This experience eventually allowed him 
to spearhead the development of the influential “Trusted 
Computer System Evaluation Criteria,” colloquially known 
as the “Orange Book” for the brightly colored covers given 
it in production.

After leaving the U.S. Air Force, Schell became active in 
industry, leading companies that build trustable computing 
systems. He currently remains active in such efforts.

PROFILE: ROGER SCHELL



Limits of Formal Models 117

of integrity) and an effective integrity rating (taken from the integrity of infor-
mation sources that have been read, and no higher than the integrity class), 
shown in Figure 6.8. In contrast to Bell–LaPadula, most Biba applications 
have had only a small number of integrity levels (e.g., just “user” and “admin-
istrator”). The model then defines a simple integrity policy that a subject may 
not read sources of lower integrity than his or her effective integrity rating, 
and a * property that a subject may only write objects that are of his or her 
effective integrity rating or lower.

LIMITS OF FORMAL MODELS
While formal models are a powerful tool for the improvement of security, 
there are a number of significant factors that limit their utility. These range 
from limitations on the basic properties that they depend on, to limitations 
in the realism of the underlying mathematics, to limitations on the imple-
mentation of trust, to difficulties in using the resulting system. This section 
explores these limits, and their implication for formal model techniques.

The basic preconditions of some formal models may be unrealistic for many 
organizations. For example, the Bell–LaPadula and Biba models depend on 
labeling governed by the tranquility constraint—the labels, once set, cannot 
change (although some interpretations allow for shifts outside of data access, 
but doing so may lead to potential violations of the security properties). In 
practice, the confidentiality level of a piece of information changes. Sales plans 
may be highly confidential prior to the sales campaign, but not at all confiden-
tial thereafter. Financial records may be highly confidential, until the period of 
required disclosure to stockholders and regulators. This shift in confidentiality 
cannot be captured without invalidating the security models—the change would 
open numerous opportunities to break the security of the resulting system.
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FIGURE 6.8 
Biba model properties. 
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The underlying mathematical system supporting the model provides a regu-
larity and clarity of semantics, but is also a subject of concern when apply-
ing security models. There are many factors (e.g., wear, hardware failures, or 
chip manufacturing issues) that are extremely difficult to include in a for-
mal model. The regularity of the mathematics makes it difficult to model the 
irregularity of the real world [16]. Attempts to include such irregularities yield 
a formal model of unwieldy size and complexity, which makes use with secu-
rity extremely difficult.

As the system is developed, the derivation or verification operations on the 
implementation also make assumptions. Full validation is not possible, as 
there are always variations in manufacture and operation. At some point, the 
developers must make assumptions, which are always a source of challenge, 
and occasionally a basis of attack.

These factors produce theoretical limits on the application of formal mod-
els, but often the dominant limitations are usage factors. To support knowl-
edge or level limits, users must often explicitly gain or relinquish privileges 
frequently while using these systems. This tends to make the system cumber-
some to use in comparison to general computer systems. Common software 
is not developed securely, and may not support the trust operations required 
to comply with secure systems. As such, formal systems are likely to remain 
confined to a specific niche of operations—one that does not demand fre-
quent user interaction or as a general-purpose computer system.

SUMMARY
When considering the frustration strategy, the ultimate in frustration for an 
adversary is a system that possesses known security properties that cannot 
be evaded. There are few technologies that offer the possibility of providing 
known security properties in the system, but among those is formal modeling 
for derivation or verification. This chapter discusses this technology and sev-
eral of the common models associated with it. While there are several fac-
tors that limit the utility of this technology, its advantages make it useful to 
understand in considering how to improve organizational security.

Chapter 7 initiates the discussion of resistance, which hampers the ability of 
an adversary to propagate through the system once an initial foothold has 
been gained. Several resistance technologies will be discussed as a means of 
improving the security of organizations.

REFERENCES
 [1] Shirey R. Internet security glossary. IETF Request for Comment 4949. Retrieved October 10, 

2011, from <http://tools.ietf.org/html/rfc4949>; 2007, August.

http://tools.ietf.org/html/rfc4949


119References

 [2] Landwehr C. Formal models for computer security. ACM Comput Surv 1981;13(3):247–78.

 [3] Crazylord (pseudonym). Playing with Windows /dev/(k)mem. Phrack 2002;11(59), Phile 
16. Retrieved April 18, 2013, from <http://www.phrack.org/issues.html?issue=59&id=16>.

 [4] Palmers (pseudonym). Sub proc_root Quando Sumus (Advances in Kernel Hacking). 
Phrack, 2002, February;11(58), Phile 6. Retrieved April 18, 2013, from <http://www.phrack.
org/issues.html?issue=58&id=6>.

 [5] Palmers (pseudonym). 5 Short Stories about execve (Advances in Kernel Hacking II). Phrack 
2002, 11(59), Phile 5. Retrieved April 18, 2013, from <http://www.phrack.org/issues.
html?issue=59&id=5>.

 [6] Ehrig H, Mahr B, Classen I, Orejas F. Introduction to algebraic specification. part 1: meth-
ods for software development. Comput J 1992;35(5):460–7. Retrieved April 18, 2013, from 
<http://0-comjnl.oxfordjournals.org.library.hct.ac.ae/content/35/5/460.full.pdf>.

 [7] Nielson F, Nielson H, Hankin C. Principles of program analysis. Berlin: Springer; 1999.

 [8] Gligor V, Burch E, Chandersekaran G, Chapman R, Dotterer L, Hecht M, et al. On the design 
and on the implementation of secure xenix workstations. IEEE security and privacy sym-
posium. Oakland, CA; 1986, May. p. 102–17. Retrieved April 18, 2013, from <http://www.
cs.washington.edu/research/projects/poirot3/Oakland/sp/PAPERS/00044466.PDF>.

 [9] Gligor V. Analysis of the hardware verification of the honeywell SCOMP. IEEE security and pri-
vacy symposium. Oakland, CA; 1987, May. p. 32–43. Retrieved April 18, 2013, from <http://
www.cs.washington.edu/research/projects/poirot3/Oakland/sp/PAPERS/00044529.PDF>.

 [10] Gligor V, Chandersekaran G, Cheng W, Jiang W, Johri A, Luckenbaugh G, et al. A new secu-
rity testing method and its application to the secure Xenix Kernel. IEEE security and privacy 
symposium. Oakland, CA; 1986, May. p. 40–58. Retrieved April 18, 2013, from <http://
www.cs.washington.edu/research/projects/poirot3/Oakland/sp/PAPERS/00044455.PDF>.

 [11] Tutorialspoint. UNIX-File permissions/Access Mode. Retrieved April 18, 2013, from <http://
www.tutorialspoint.com/unix/unix-file-permission.htm>; 2013.

 [12] Gruenbacher A. POSIX access control lists on Linux. Retrieved April 18, 2013, from <http://
users.suse.com/~agruen/acl/linux-acls/online/>; 2003, April.

 [13] Graham G, Denning P. Protection—principles and practice. Proceedings of the 1972 Spring 
AFIPS Joint Computer Conference. Anaheim, CA; 1972, May. p. 417–29.

 [14] Brewer D, Nash M. The Chinese Wall Security Policy. IEEE Security and Privacy Symposium. 
Oakland, CA; 1989, April. p. 206–214. Retrieved April 18, 2013, from <http://www.
cs.washington.edu/research/projects/poirot3/Oakland/sp/PAPERS/00044340.PDF>.

 [15] Yost J. An interview with Roger R. Schell. Computer security history project, Retrieved 
December 8, 2012, from <http://conservancy.umn.edu/bitstream/133439/1/oh405rrs.pdf>; 
2012, May.

 [16] Denning D. The limits of formal security models. National Computer Systems Security 
Award Acceptance Speech. Retrieved April 18, 2013, from <http://faculty.nps.edu/dedennin/
publications/National%20Computer%20Systems%20Security%20Award%20Speech.htm>; 
1999, October.

 [17] Denning D. A lattice model of secure information flow. Commun ACM 1976;19(5):236–
43. Retrieved April 18, 2013, from <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.84.5776&rep=rep1&type=pdf>.

http://refhub.elsevier.com/B978-1-59749-969-9.00006-7/sbref1
http://www.phrack.org/issues.html?issue%26equals;59%26amp;id%26equals;16
http://www.phrack.org/issues.html?issue%26equals;58%26amp;id%26equals;6
http://www.phrack.org/issues.html?issue%26equals;58%26amp;id%26equals;6
http://www.phrack.org/issues.html?issue%26equals;59%26amp;id%26equals;5
http://www.phrack.org/issues.html?issue%26equals;59%26amp;id%26equals;5
http://0-comjnl.oxfordjournals.org.library.hct.ac.ae/content/35/5/460.full.pdf
http://refhub.elsevier.com/B978-1-59749-969-9.00006-7/sbref3
http://www.cs.washington.edu/research/projects/poirot3/Oakland/sp/PAPERS/00044466.PDF
http://www.cs.washington.edu/research/projects/poirot3/Oakland/sp/PAPERS/00044466.PDF
http://www.cs.washington.edu/research/projects/poirot3/Oakland/sp/PAPERS/00044529.PDF
http://www.cs.washington.edu/research/projects/poirot3/Oakland/sp/PAPERS/00044529.PDF
http://www.cs.washington.edu/research/projects/poirot3/Oakland/sp/PAPERS/00044455.PDF
http://www.cs.washington.edu/research/projects/poirot3/Oakland/sp/PAPERS/00044455.PDF
http://www.tutorialspoint.com/unix/unix-file-permission.htm
http://www.tutorialspoint.com/unix/unix-file-permission.htm
http://users.suse.com/&#x0007E;agruen/acl/linux-acls/online/
http://users.suse.com/&#x0007E;agruen/acl/linux-acls/online/
http://www.cs.washington.edu/research/projects/poirot3/Oakland/sp/PAPERS/00044340.PDF
http://www.cs.washington.edu/research/projects/poirot3/Oakland/sp/PAPERS/00044340.PDF
http://conservancy.umn.edu/bitstream/133439/1/oh405rrs.pdf
http://faculty.nps.edu/dedennin/publications/National%20Computer%20Systems%20Security%20Award%20Speech.htm
http://faculty.nps.edu/dedennin/publications/National%20Computer%20Systems%20Security%20Award%20Speech.htm
http://citeseerx.ist.psu.edu/viewdoc/download?doi%26equals;10.1.1.84.5776%26amp;rep%26equals;rep1%26amp;type%26equals;pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi%26equals;10.1.1.84.5776%26amp;rep%26equals;rep1%26amp;type%26equals;pdf


CHAPTER 6: Frustration Strategies: Formal Verification120

Chapter Exercises
1. How might use of an access control matrix aid in restricting indirect release of 

information on a computer system?

2. Bob’s Bank is concerned about online attacks on its business-to-business site. 
The site is implemented with a front end that supports customer authentication 
connected to a back end that processes payments and provides account information. 
Since Bob’s Bank is a small local bank, they only have two servers for their 
business-to-business site. Briefly describe how use of a formal model of the financial 
transactions might aid in protecting the validity of the back-end system. Explain why 
such a system is more closely related to the Bell–LaPadula model or the Biba model.

3. Tres Rios Electric Service is a small power-generation company located in the 
southwestern United States. They use a variety of device control systems (SCADA) 
to optimize performance of their generators and support flexible power distribution. 
Recently, Tres Rios management has become concerned about attempts to shut 
down the SCADA control network by repeated transmission of valid requests. 
Briefly explain how a formal model might be constructed to aid management in 
analyzing the control network with respect to this concern, and what factors might 
make such a model difficult to apply.

Chapter Review Questions
1. Briefly explain one reason each for why clarity and unambiguity are important in 

formal models.

2. Define the following terms, and briefly explain their relevance to security:
 a. Logical semantics
 b. Algebraic semantics
 c. Access control list
 d. Access control matrix
 e. Tranquility principle
 f. Verification
 g. Validation

3. How would the Bell–LaPadula model hamper the ability of a rogue system 
administrator to release information held in a computer based on this model?

4. What kind of attacks might be wholly or partially defeated by systems based on the 
Biba model?

5. How might use of the Chinese Wall security model interfere with attempts to 
pass data regarding a competitive bid using a workstation on an organization’s 
network?

6. Which of the limiting factors on formal models would be of greatest importance to 
organizations considering application of these models to improve their security?
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4. Tartan is a local ISP operating in the mid-Atlantic region of the United States. They 
support local customers’ access to the Internet as a bottom-tier ISP. They have 
become concerned about attempts to attack their authentication of customers. 
Briefly describe two ways in which the Biba model could aid Tartan in addressing 
such attempts.

5. How would virtual images be used to support a system based on the Bell–LaPadula 
model?
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Resistance Strategies: Authentication and 
Permissions

CHAPTER 7

INTRODUCTION
The previous chapters described deception and frustration strategies, which 
respectively aim to hide resources from an attacker and prevent the attacker 
from targeting any discovered resources. Good frustration strategies should 
have turned away most opportunistic attackers. However, at some point a 
determined attacker will evade even the best frustration strategies; the next 
step is to resist the attacker at the point of attack.

The goal of resistance strategies is to prevent the adversary from successfully 
exploiting a resource that has been successfully targeted. Resistance strat-
egies are numerous, because there are so many different types of resources 
that are targeted. This chapter, as well as Chapters 8, 9, and 10, considers vari-
ous resistance strategies commonly available to the defender. This chapter 

■ Authentication and authorization objectives
■ Authentication methods

■ Passwords
■ Security tokens
■ Biometrics

■ Authentication systems
■ Agent-based permissions

■ File permissions
■ Access control lists

■ Role-based access control
■ Attacks

■ Social engineering and phishing
■ Password cracking
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focuses on strategies for controlling access to resources via authentication 
and permission, which are agent-centric resistance strategies. Other strategies 
focus on information (Chapter  8), preventing abuse by authorized persons 
(Chapter 9), and systems (Chapter 10).

AUTHENTICATION AND PERMISSION GOALS AND 
OBJECTIVES
Authentication has to do with verifying that an entity is in fact the entity that 
it identifies itself as. This is a separate issue from permissions, which has to 
do with granting legitimate parties access to the correct resources. Consider 
passports in the physical world. My passport contains my name and other 
identification information, as well as my photograph. When I’m holding 
the passport, I can show airport staff that I am who I say I am, because the 
passport serves to authenticate that my name and my picture are linked. 
This authentication works because a trusted party, here the U.S. Department 
of State, has bound my name and photograph to the information therein. 
However, whether or not I am authorized to get on the plane, or through 
immigration, is another matter entirely. And although my identity doesn’t 
change—I only even need to renew my passport every 10 years—I may only 
be permitted to visit a foreign country (i.e., access the resource) for 30 days 
without renewing my permissions.

This chapter discusses systematic methods for authenticating users or ser-
vices, as well as determining what resources those entities are authorized 
for—that is, permitted to access. For this chapter, assume the attacker is not 
a genuine user of the system. Authentication mechanisms should prevent 
the attacker from pretending to be a genuine user of the defender’s system. 
Permission mechanisms will then prevent the attacker from accessing pro-
tected resources, since only genuine users have permission to do so. There are 
two general categories of authentication: humans authenticating themselves 
to computers, and computers authenticating to other computers. Often, 
 computer–computer authentication is one computer on behalf of its human 
user. Since humans are comparatively slow and unreliable with processing 
large numbers, it makes sense to offload authentication procedures to com-
puters as much as plausible.

AUTHENTICATION METHODS
An authentication method is some process for determining whether an entity 
is what it claims to be. There are three factors by which one can base authen-
tication methods: what the subject knows, what the subject has, and what 
the subject is [1]. The subject is the entity that needs to be authenticated. The 
quintessential example of something known is a password. Possession of an 
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object is an authentication method used often in the physical world, such as 
a house key or student ID card. Authentication can also be based on inherent 
physical details of the subject that are intricate and not easily changed, such 
as human faces or fingerprints (e.g., when greeting friends, people subcon-
sciously authenticate who they are by their face or voice).

Authentication can be made significantly more rigorous by combining multi-
ple factors. However, the improvement only occurs when using two different 
factors, not just two different instances of one factor [1]. If a website asks for 
a password, and then asks for the user’s mother’s maiden name to verify, the 
website has not added a factor. It has asked for something the subject knows, 
and then asked for something else the subject knows. This does not signifi-
cantly increase resistance to attackers. Two-factor authentication is more 
secure because the different types of factors require entirely differently sorts 
of channels to be subverted, and the difficultly for the attacker is subverting 
the channel. If the attacker can eavesdrop on the channel, the subject will 
reveal any answers to tests about what is known—it doesn’t matter if there 
is one or six questions. But no amount of eavesdropping can steal a physical 
item, so to obtain that second factor—a possession—would require coordina-
tion of a separate attack.

One simple example of two-factor authentication is common when with-
drawing money from a bank. The customer must be in possession of his or 
her ATM card and know the PIN to make a withdraw at the ATM. The card is 
something the customer has; the PIN is something the customer knows. If the 
customer did not need a PIN, then losing the ATM card would be much more 
damaging because anyone who found it could withdraw money.

The following sections detail one example of each of the three factors usable for 
authentication. Passwords are something one knows, security tokens are some-
thing one has, and biometrics are something one is. Refer to the last section of 
the chapter for possible attacks on and common misuses of these methods.

Passwords
Passwords are a classic authentication and access control mechanism, although 
the people implementing passwords in the 1820s probably did not think of 
it in this way. The term password was coined around 1815 [2], but the general 
idea of a secret word that grants the speaker access requires no technology, and 
is an ingenious method for scaling access control so that each guard or gate-
keeper does not need to know the face of each person who is to be admitted 
(face recognition would be a form of biometric authentication, discussed later 
in this chapter). Passwords are suitable for situations with minimal technology, 
for example, in J. R. R. Tolkien’s Lord of the Rings series, the mines of Moria 
have a password—the Elven word for “friend.” However, one might claim the 
password is not the secret in this single-factor,  knowledge-based authentication 
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scheme. “Friend” is written over the door—the knowledge factor is that the 
subject must know how to read the Elven language (which is presumably 
beyond orcs’ capabilities) [3]. Passwords in the modern conception are a bit 
more specific than requiring someone to read a language.

The most important item to know about passwords is they alone should be 
considered insufficient to protect any important system. This section will 
elaborate details, and the “Attacks” section later in this chapter should drive 
that point home. Several banks and militaries have come to this conclusion 
years ago [4,5, p. 72], but it would be doing the reader a disservice to state 
this fact in any uncertain terms.

Passwords are natural for people to remember—we are pretty good at remem-
bering language. This made passwords one of the first authentication mecha-
nisms for identifying a human to a computer. If the human supplies a name 
and matching password, the computer considers the human to be the genu-
ine owner of the account name. It is first helpful to understand a little bit 
about how computers make this verification. There are several methods that 
have been implemented over the years, some to better effect than others.

Password Verification Mechanisms
The computer must store some information to match against the user- 
supplied password. In the first implementations, this was simply a file with 
one column for the user name and one column for the matching password, 
in plaintext. This makes checking passwords a trivial operation—the computer 
just checks if the input password matches the column in the password file. 
However, there are some obvious problems with storing passwords in plain-
text. Even if only privileged users of the system have permission to read the 
file, those users will know everyone’s passwords. Furthermore, if any malicious 
user gains such privileges, the attacker instantly gains everyone’s password.

On Linux and Unix systems there was incremental improvement. The pass-
word verification information was stored in /etc/passwd and was readable 
by everyone, but it was obscured. It was obscured using the Data Encryption 
Standard (DES), the standard algorithm at the time. The action was to 
obscure, not encrypt; there is a technical difference between those two words. 
Encryption using DES means that the information is recoverable, or that the 
process is reversible, given the key. However, in the Unix password system, the 
user’s password was the key, and the starting text was known: a string of all 
zeros. To verify the user’s password, the computer would encrypt this string 
using the password as the key, and if the resulting string matched the con-
tents in the /etc/passwd file, then the user was considered authentic.

This is a one-way function—an attacker cannot recover the password by 
reversing some function of the resulting string using the “key.” If the attacker 



Authentication Methods 129

can, it doesn’t matter, because that is the password, which is the critical piece 
of information anyway. One-way functions are not encryption—there is no 
“key” in the same way. Encryption is a two-way function. One-way func-
tions are called hash functions. Hash functions have many uses in informa-
tion security. Encryption is covered in Chapter 8; hashes are touched on in 
Chapter 8 as well and explored more in Chapter 14.

There are severasl shortcomings with this approach, which became apparent 
as computing speeds increased and internetworking exposed more computers 
to attacks. First, due to the features of the DES algorithm, the key is only 56 
bits long. This amounts to 8 ASCII characters. Anything longer was thrown 
away when calculating the password match. For example, if my password 
were “hippopotomonstrosesquipedaliophobia,” an attacker could gain access 
to my account by just typing “hippopot” at the password prompt.

Furthermore, password guessing became easier with faster computers. Since 
the /etc/passwd file was readable, anyone with system access could try to 
guess the password that would result in the hashed string stored in the file. 
The original Unix password system took this into account. First, when hash-
ing the password and checking user credentials, DES is actually run 25 times, 
instead of just once. This does not add extra randomness or further obscure 
the text or key. It just takes longer. This is not noticeable to a regular user—it 
is the difference between a couple hundred microseconds and a couple milli-
seconds. However, it makes it significantly harder to go through guessing mil-
lions of passwords.

Second, the passwords were salted. A salt is a number that changes the con-
figuration of the password verification algorithm, so that two users with the 
same password will not produce the same hashed text. This is important, 
because if the obscured text is the same, then the password used to generate 
it is the same, and so without additional obscurity all users with the same 
password would know who shares their password. The salt bits are appended 
in plaintext to the hashed string. They do not add security to an individual 
user, but to a group of users. Due to the features of the DES algorithm, there 
were 4,096 (212) possible salts. Therefore, if one system had fewer than 4,096 
users, the system could guarantee that no two users would have the same 
entry in the /etc/passwd file.

As will be explained in the “Attacks” section, both the 56-bit password and 
the 12-bit salt are too small on modern systems, with millions of users [6] 
and supercomputers available for rent [7]. The mathematics behind how a 
password is sufficiently large is unintuitive when many users are involved, 
because the adversary often only needs access to one account to escalate privi-
leges. As more users are involved, the chances that someone picked a weak 
password is nearly certain.
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Despite modern computational shortcomings, conceptually the Unix 
approach to storing and checking passwords is valid. Namely, store the result 
of a one-way function of the password and salt the function; one adjustment 
though: do not allow any user to read the results. The /etc/passwd file is still 
in use today, but with different parameters, and different algorithms used 
to hash the password. The hashes are stored in /etc/shadow, which only the 
superuser can read [8]. This does not mean that all systems use a robust check-
ing or storage mechanism. Several million-user web companies were found 
not to have salted their password files, as described in the “Attacks” section.

The Problem with Passwords
Passwords just are not long enough to be secure any more. Once they are long 
enough, people generally cannot remember them. This is not to mention 
that people can only remember so many distinct passwords, and users have 
more and more distinct accounts that ought to have distinct passwords. There 
may be different resistance strengths against different kinds of attacks, but a 
general estimate to protect against an offline brute-force attempt to guess a 
password or secret key is that the secret should have about 90 bits of infor-
mation [9]. A brute-force attempt is the least sophisticated kind of attack—
the attacker just keeps trying every possible input until the correct answer is 
guessed. Offline means the attacker can make attempts on his or her own 
resources, off the target system, at speeds only limited by hardware, and is not 
subject to the defender’s password-checking rate limits or attempt maximums.

A common QWERTY keyboard produces 94 possible characters. If users could 
truly randomly select from them, 14 characters would provide 90 bits of 
information (290≈9414). Thus, a password like “;M%aa~+g\p42? E” might be 
safe. But users do not make passwords like this. What about English words? 
The Oxford English Dictionary estimates English contains about 250,000 dis-
tinct words [10]. If the user actually selected randomly from all of these, then 
5 words would be sufficient (290≈250,0005), which would yield passwords 
such as “anopisthograph inclined yukata verandas jassid.” However, in com-
mon written usage the average information per word is only 2–3  bits  [11]. 
This is due to redundancy in the language that restricts words to certain 
combinations of letters, sentences to certain patterns of words, and so on. 
Assuming Shannon was correct, it would take about 57 words of written 
English to reach 90 bits of information (290≈357), or the first three sentences 
of this section.

So, the sorts of things that people can remember are now easy for comput-
ers to guess quickly. And the sorts of things that are hard for computers to 
guess are nearly impossible for humans to remember. This is the gist of the 
problem; the last section describes some attacks that make the situation even 
worse. Thus, authentication using simply one factor—something the subject 
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knows—should be considered insufficient. If passwords are used, a second 
factor should probably be implemented to reduce risk.

A Brief Note on Cryptology
This book does not endeavor to teach cryptology (the study of both making 
and breaking methods for encoding information, which are called cryptogra-
phy [making] and cryptanalysis [breaking], respectively), however, some con-
cepts are essential to understanding information assurance strategies. For a 
complete discussion, see Katz and Lindell [12] or Stallings [13, chs. 2–10]; for 
a shorter discussion, see Anderson [5, ch. 5]. For details on symmetric encryp-
tion as a resistance strategy, see Chapter 8.

In a cryptographic system, the key is a secret between two parties that want to 
communicate privately. The key is a relatively short piece of information, on 
the order of hundreds of bits. System architects generally follow what is known 
as Kerckhoffs principle: the system itself must not be secret; system design 
details must be able to fall into the hands of the enemy without trouble [14].

In modern cryptography the system is broken up into two parts: the algo-
rithm and the protocol. The algorithm does the hard math of obscuring bits 
using the secret key. The protocol is the method for communicating the infor-
mation, the design decisions on what algorithm is applied to what informa-
tion, and so on.

There are a few ways for an attacker to defeat a cryptographic system. The 
algorithm itself could be broken—either it was poorly designed and is not 
as random as was believed, or new developments in mathematics make the 
computationally hard parts of the algorithm easier practically. Currently, 
publicly available cryptographic algorithms have been rigorously tested, and 
algorithmic failures are rare. Alternatively, the protocol for communicating 
the secret information could have a flaw. There are several common flaws that 
permit replay or middle-person attacks, for example, and will be discussed 
later. The final possibility is that the secret key could be discovered. The key 
could be disclosed by trickery, such as social engineering or brute-force guess-
ing, both discussed in the “Attacks” section.

The most widespread damage and risk is caused by an algorithmic break, 
then a protocol break, and finally by a key break. This is due to the num-
ber of agents and sessions using each part unchanged. There are relatively 
few algorithms, so if one is broken, many things are at risk. Each algorithm 
is used in a variety of protocols, and fewer agents use any one given protocol. 
Finally, a key should be unique to an agent or a communication, causing the 
least widespread damage; there are actually different kinds of keys as well—
some designed to be secret for years and some for only seconds, which cause 
correspondingly less damage upon disclosure.
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There are two broad types of encryption algorithms: symmetric and asymmet-
ric. Symmetric algorithms use the same key for encryption and decryption. In 
asymmetric encryption, there are two keys, or a key pair: one is for encrypting 
and one is for decrypting. The mathematics of the algorithms usually center 
around discrete logarithms, or elliptic curves in discrete fields—a completely 
different type of algorithm than those used for symmetric encryption [12]. 
One key is called the private key, because only one entity should know it. The 
other key is called the public key, because anyone can know it. The use cases 
for each type are quite different; the basic advantages and uses of each are 
introduced throughout the rest of this chapter and in Chapters 8 and 14.

Security Tokens
Security token is a broad term, but every security token serves as a “some-
thing you have” element in an IT authentication system. Just like elements of 
physical systems, such as house keys, IT security tokens contain some piece 

The Asymmetric Key Revolution

Whit Diffie, along with his collaborator Martin Hellman, ini-
tiated a sea change in cryptography when they presented 
their key exchange method in 1976. The Diffie–Hellman key 
exchange is still widely used today, with minor adjustments 
for defense against a middle-person attack and increases in 
the key size to resist brute-force attacks. The key exchange 
is the first published instance of asymmetric key cryptog-
raphy, in which the two parties need not share a secret to 
begin with to decide on a secret that, provably, only those 
two parties know. This ability is nothing less than required 
for widespread use of cryptography, and the feature was 
missing until the Diffie–Hellman key exchange.

Diffie has certainly led a colorful life. Born in 1944 and raised 
in Queens, NY, he reportedly did not bother with reading 
until he was 10 years old. However, only a few months later 
he was introduced to ciphers by his public school teacher, 
and asked his father, a City College of New York history pro-
fessor, to check out every book from the New York Public 
Library that had to do with cryptology. Whit promptly for-
got about crypto throughout high school and university 
at MIT and his work for MITRE through the Vietnam War. 
Not until 1970, when he took a position at Stanford in John 
McCarthy’s artificial intelligence (AI) lab, did he return to 
the field that would shape his life, and that he would shape 
for the rest of his [15].

With how pervasive cryptography is on the Internet now, 
it is hard to imagine the culture around cryptography 
when Diffie was working on it. He, and anyone else work-
ing on new cryptography methods, essentially worked 
under the threat of prosecution from the U.S. government. 
Cryptography was held in the same regard as other high-
tech implements of war under the International Traffic in 
Arms Regulations (ITAR). As late as 2000, the U.S. govern-
ment still rather heavily restricted the export of implemen-
tations of cryptographic technology [12, p. 324].

The fact that Diffie has been subtly bucking the administra-
tion for so long probably has a lot to do with his current roles. 
He has been a critic of bad cryptography policy—during the 
formation of the DES [16] and during the infancy of the web 
[15]—and continues to maintain a public stance on many 
such issues. However, he does so with a charisma, respect, 
and goodwill that some of his would-be opponents have 
found surprising. After a long tenure at Sun Microsystems, 
Diffie took a position with ICANN (Internet Corporation for 
Assigned Names and Numbers) in 2010. He still maintains a 
signature full beard and long white hair, which is now almost 
iconic of the irreverent technocrat, just as Albert Einstein’s 
disheveled hair worked its way into the cultural ethos as a 
symbol of the scatterbrained genius-scientist.

PROFILE: WHITFIELD DIFFIE
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of secret information that identifies the item as authentic. The item also has 
some properties that are difficult to reproduce without the appropriate equip-
ment. With house keys, the information is contained in the pattern of ridges 
on the key. However, just having a picture of the pattern won’t suffice to open 
a door—an attacker would also have to have a machine for making keys. 
These two features are true, in some way or another, about security tokens in 
IT systems as well.

With security tokens, the secret information is usually just a relatively short 
string of bits, which serves as the key in a cryptographic system that can prove 
the identity of the device. It is wise for an organization to implement authen-
tication using tokens because, as noted earlier, passwords can no longer be 
considered sufficient to resist attackers’ attempts to subvert authentication 
mechanisms. In this way, tokens are just like house keys. If everything goes 
well, only someone with a token can access the electronic resources. Of 
course, tokens can be lost or stolen. So a good resistance system will require 
not only the token, but that the user of the token verify they are the valid 
owner of the token with something they know—a password.

A section on how security tokens work would be lengthy, because that is too 
broad. A token system can use almost any protocol or algorithm to authen-
ticate the validity of the token to the home system. Furthermore, some of 
the popular token systems use proprietary algorithms and protocols. RSA’s 
SecurID token is one example, and this disregard for Kerckhoffs principle 
has occasionally caused the company difficulty in maintaining the security of 
their token system [17,18].

At a high level, there are several methods for designing a token authentica-
tion system. The protocol can be a simple assertion, or a challenge-response 
protocol [5, p. 66ff]. The keys stored in the devices could be for asymmet-
ric or symmetric encryption. Some systems are more simple than others. At 
some point, complexity is the enemy of security and so simple is better, but 
in some places simplicity is a euphemism for laziness in system design. An 
assertion protocol is more simple than a challenge-response protocol, and 
key management in symmetric cryptography systems is probably more simple 
than managing asymmetric keys.

If a token simply asserts its identity, it presents an identify for itself along 
with a proof-of-identity. This proof is an encrypted set of data with some spe-
cial properties to demonstrate the token is authentic. At a minimum, the data 
encrypted is the identifier for the device, and a nonce, or a number used only 
once. The properties of the nonce are important. It can be a simple counter, a 
timestamp, or a random number, and each of these choices has ramifications 
for the cryptographic system. However, the basic purpose of the nonce is to 
prove freshness—that is, to prevent an attacker who has observed a previous 
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communication from trivially replaying it to defeat the system. The identi-
fier and the nonce are bound together and encrypted by a key that only the 
device contains. Therefore, if the plaintext and enciphered identifiers match, 
and the message is fresh, the authenticator will admit the device.

Assigning the keys is important. One possible method is that the authentica-
tion service has its own master secret key, and every token’s internal secret key 
is just a function of the master secret and a device identifier, like the serial 
number. This way, the authenticating computer doesn’t have to remember a 
whole lot. The computer is presented with a token’s ID, and the computer 
looks up its serial number, computes its key, and uses that key to verify its 
assertion of identity by decrypting the proof-of-identity and comparing it 
with the asserted identity. Of course, this is also dangerous because there 
is a single point of failure—if the master key is compromised, it becomes 
trivial for the attacker to discover the secret key of any device. The attacker 
just has to know its serial number. This appears to be the method used by 
RSA’s SecurID, because after the company was compromised in 2011, one of 
the recommendations was that customers under no circumstances reveal the 
serial numbers of their tokens [18].

There are at least two different key management schemes possible. One is for 
each device to still use symmetric encryption, but for the key to actually be ran-
domly assigned instead of derived using a single secret. This table of device IDs 
to secret keys would then have to be stored at the authentication computer, 
and so it is still a single point of failure. However, it would make it so that the 
attacker could only gain secret keys up to the time of compromise, unlike the 
previous derived secret key method where once the attacker learns the master 
key, any key for any device in the future can be derived without repeated com-
promise. Of course, the manufacturer could change the master key with the same 
effect, but it does require the manufacturer notices their key has been stolen.

The second option is to use asymmetric, or public key, encryption, which 
makes key distribution simpler. Additionally, by using the public and pri-
vate keys wisely complex assertions of identity can be proven and no central 
repository of keys is necessary. This removes the single point of failure in the 
case of a compromise. However, public key cryptography is computationally 
more intensive than symmetric cryptography, so tokens or devices to use it 
will be more expensive to manufacture.

More robust tokens would use asymmetric cryptography to identify the 
tokens. The security token would contain the only instance of its private key. 
The authentication system would contain a list of token IDs to public key 
mappings. The proof-of-identity supplied by the token in the exchange would 
be its ID, as well as several pieces of information to prove its authenticity and 
freshness of the message encrypted with its private key. To verify the message, 



Authentication Methods 135

the authenticating system would look up the public key, and check that only 
the private key on the token would be able to create a message matching the 
known public key.

An even more robust token protocol could be constructed. A simple asser-
tion might be sufficient when the token is in close physical proximity to the 
authenticator, such as an RFID (radio-frequency identification) fob to enter 
a building. However, a challenge-response protocol is more robust when the 
authentication is remote. Although the token can sufficiently prove its iden-
tity, we may want the system to which it is authenticating to prove itself. The 
basic idea is that to authenticate, the authentication system provides a chal-
lenge, and the token computes and returns the appropriate response. The 
challenge could simply be a number, and the response could simply be to 
add one to the number and send it back. Using the features of the proof-of-
identity previously discussed, this can be constructed simply to ensure both 
parties are assured of the authenticity of the other. The authentication system 
will also have a key pair, so it can encrypt the challenge with its private key. 
As long as there are timestamps to prevent replay of old requests, since the 
authentication system’s private key encrypted the challenge the token can 
verify the correct system sent the challenge. Then the token can generate the 
appropriate response, and encrypt it with its private key and send it back, 
completing this simplified authentication. An analogous challenge-response 
protocol can be written using symmetric cryptography as long as both parties 
share a single secret key.

Desirable Features of Security Tokens
If you are designing or managing the resistance strategies for an organization, 
there are some basic types of features in tokens to consider before purchasing 
and implementing one. Whether the token is hardware or software, whether 
the hardware is wired to a USB or sealed or wireless, and other physical fea-
tures of the token are more dependent on the intended use of the device than 
security concerns. However, the cryptographic choices effect any token sys-
tem. Ask about the algorithms used; secret algorithms should be suspicious, 
because if the manufacturer cannot reveal the algorithm then it is not follow-
ing best practices for algorithm design, namely Kerckhoffs principle [14].

Also ask about key management and generation. If the key space (number of 
possible keys) is too small, then the tokens have the same problem as pass-
words—there are not enough to prevent the attacker from guessing them. 
“Small” varies if the algorithm is symmetric or asymmetric, but the equiva-
lent of 128 bits of information is the lowest reasonable amount that should 
be sufficient for the near future [9, sec. 5.6.2]. If keys are generated from 
device identifiers like serial numbers, then there need to be enough possible 
serial numbers that the generated key space is not too small, which means 
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randomly assigning the serial numbers in a space at least 2112 large. Key 
management also should avoid a central point of failure or compromise, if 
authentication is remote (as opposed to fob access to a door, which is local), 
which probably means using public key cryptography.

Biometrics
Biometrics is a commonly used factor for “something you are.” As the ety-
mology of the word implies, biometrics refers to measuring aspects of bio-
logical systems or entities. It has had this broad usage since the early 20th 
century, developed in places such as the scholarly journal Biometrics. Only rel-
atively recently has the term acquired the specialized sense of identification of 
individuals via differentiation within specific biological traits, especially for 
the purpose of identification and authentication to computers [19].

However, that this term usage is new may be misleading—authenticating a 
subject’s identity by what they are is perhaps the oldest form of authentica-
tion. Facial recognition seems to be as old as history, and identifying a per-
son by his or her signature or handwriting has been a common practice for 
hundreds of years. However, the scientific research to demonstrate that other 
physical characteristics were sufficiently unique for identification purposes 
took some time. Fingerprints were demonstrated to be unique and persistent 
through a human lifetime in the late 19th century [20], and other characteris-
tics have followed (e.g., iris or voice patterns).

Authentication via biometrics is attractive in security for several reasons. 
Unlike passwords or tokens, your fingerprints can’t be forgotten or lost. 
Biometric details also are not transferable (easily), and so where multiple 
humans may share a single account password, making attribution to a sin-
gle individual difficult, biometric details should always identify one indi-
vidual. Security also has a lot to do with deterrence and legal frameworks, 
and since fingerprints and handwritten signatures have a longer history, 
they have a legal standing that, while perhaps not directly relevant to biom-
etric technology, at least people are used to the idea of these aspects of sub-
jects being used for authentication. For example, even though handwritten 
signatures are relatively easy to forge, the banking system works reasonably 
well using them and authenticates billions of dollars of transactions with 
little practical loss, due to the legal framework surrounding the verification 
system [5, p. 458ff].

There are a wide variety of aspects of human beings that have been tried for 
automated, computerized biometric identification, with varying levels of suc-
cess. In 2001, the National Physical Laboratory (NPL) in the United Kingdom 
tested six different human characteristics for authentication: facial recogni-
tion, fingerprints, hand geometry, iris patterns, hand vein recognition, and 
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voice recognition [21]. Retina scans (the inside of the eye, rather than the iris 
on the outside) have also been used, but are more invasive than iris scans 
[22]. All of these examples are physical biometrics. There are also behavioral 
biometrics, which are characteristics of behavior that are deemed both unique 
and relatively static across a lifetime. Examples include keystroke typing pat-
terns and the pattern and speed of pen strokes and lifts while hand writing a 
signature. Although it may seem surprising, keystroke biometrics have lower 
error rates [23] than some physical biometrics, such as automated facial rec-
ognition [5, p. 463].

Despite these benefits, biometric identification systems are not as widely 
implemented as the other two factors. Perhaps because they require special-
ized equipment and have relatively high error rates, both in false positives 
and false negatives. A false positive is when a system incorrectly attributes a 
result or attribute to a subject, for example, identifies an innocent person as 
the criminal. A false negative is when the system fails to attribute a test char-
acteristic to a subject, for example, a fingerprint examiner fails to identify a set 
of prints as belonging to a criminal.

The impact of a false positive or a false negative varies depending on the 
application. In some situations it is more important to minimize one or the 
other. For example, in medical tests it may be considered more important 
to accurately identify a disease if it exists (minimize false negatives) than to 
reduce the number of healthy patients who are wrongly diagnosed (false pos-
itives). For further discussion of false negatives and positives, and some coun-
terintuitive interplay between the two, see Chapter 12.

CAPTCHAs
CAPTCHAs are another example of testing what the subject authenticating 
is. In this case, the test tries to check whether the subject is a human or a 
machine. The term CAPTCHA (Completely Automated Public Turing Test to 
Tell Computers and Humans Apart) was coined in 2000 at Carnegie Mellon 
University [24]. These are images of distorted text that are keyed on difficult 
problems for AI to solve but are generally easy for humans. As AI improves, 
CAPTCHAs have to become more difficult. With reCAPTCHA, the tests come 
directly from old digitized books that the optical character recognition (OCR) 
could not understand, and the results are used to improve that very process 
[24]. Figure 7.1 demonstrates some basic CAPTCHAs.

CAPTCHAs are generally used on sites that want to make sure a genuine 
human is doing something, but do not care who. This is an effective anti-
abuse measure for things like free account generation or sending mes-
sages. If a computer could do it, the volume of unwanted events would be 
overwhelming.
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AUTHENTICATION SYSTEMS
There is really only one system in use for distributed authentication of enti-
ties within an enterprise: Kerberos. Certainly other systems have been 
described, but practically speaking, essentially all organizations use Kerberos 
internally, whether they know it or not. Microsoft’s Active Directory domain 
services use Kerberos for authentication [25]. There are other authentication 
systems in use over the Internet, such as X.509 certificates with certificate 
authorities, but an understanding of Kerberos will provide the major con-
cepts in authentication systems generally, as well as the practical usefulness 
that Kerberos is common. This section will explain the conceptual details 
of Kerberos, but will abstract away from technical details such as precise 
message contents. Kerberos makes use of passwords and tokens, methods 
described in the previous section, however, for details on the composition of 
the tokens and messages see Stallings [26, p. 99ff], or for the authoritative, 
complete details see the RFCs [27–31].

Kerberos is organized into domains. One domain contains all the human 
users and servers that can be authenticated to one another. The steps in 
a Kerberos authentication are displayed in Figure 7.2. The first step in a 
Kerberos authentication is that the human must authenticate him- or her-
self to the local workstation, usually using a password. The local workstation 
can then process the remaining requests on the user’s behalf. The first request 
is to an authentication server. The authentication server verifies the user is 
permitted to use servers within the domain. The authentication server then 
grants a digital ticket to the user. Kerberos tickets function as a “something 

FIGURE 7.1 
Some examples of text-based CAPTCHA styles. 
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you have” kind of authentication for future exchanges. This first ticket is for a 
special kind of server—the ticket-granting server (TGS).

The TGS is a special server in Kerberos because it can grant access to any other 
server in the domain. Using the ticket from the authentication server, the user 
can request access to other servers within the domain from the TGS, which 
will then provide a separate ticket granting access to the desired server. It is 
also possible to establish relationships between two domains in Kerberos ver-
sion 5, if the TGS in domain A has a relationship with the TGS in domain B. 
This just adds one more set of tickets the users in domain A need to obtain 
before getting access to the services in domain B.

Kerberos minimizes the number of times a user must input a password, and 
is therefore a very usable system. To achieve this design goal, the contents of 
the tickets contain a lot of information to prevent replay of tickets and ensure 
they are fresh. The system is also scalable and reliable, which requires some 
abstraction of the roles of computers in the service and ticket contents, to 
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1: User authenticates to work station using password
2: Work station provides proof-of-identity from user, requests ticket for TGS
3: Ticket for local TGS
4: Request for service-granting ticket for some service
5: Ticket for some service
6: Request some service, includes ticket for some service
7: Access to service, server identifies itself to workstation

FIGURE 7.2 
The basic, abstract flow of a Kerberos authentication. Steps 1, 2, and 3 only happen once per user logon. 
Steps 4 and 5 are repeated for each service to which the user requests access during that logon. Steps 6 
and 7 are repeated for each session between the user’s computer and the server, for as long as the ticket 
is valid. 
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make sure it is sufficiently modular to supply these design goals. The system 
is generally considered to be well designed, which means that as long as the 
Kerberos server is secure, the authentication service is secure [26]. What this 
really means is that if the attacker wants to defeat your resistance strategies 
of requiring all users to authenticate, the attacker will go after the Kerberos 
server by whatever means necessary. This computer should, therefore, be 
monitored very closely, on a separate subnetwork, as well as housed in a 
locked room or cabinet to which the access is tightly controlled.

The only service that Kerberos provides is authentication of the user to the 
end-system. It does not determine if the user has permission to access all 
or part of the services to the end-system. Permissions are the responsibility 
of each individual system. Role-based access control and agent-based per-
missions, including file permissions, are common methods of determining 
authorization, as described in the following sections.

PERMISSIONS AND ACCESS CONTROL
Assuming the security system authenticates everyone accurately, one still must 
ensure that the authentic entities only perform the actions that they are per-
mitted to perform. This restriction is particularly important for systems that 
are designed to allow anonymous access to a resource, such as web servers. 
It may seem simple—just do not permit users or their processes to do things 
that they are not allowed to do. However, once the security manager gets into 
the details of what each user should be permitted to do, what all the possible 
actions are, and what the possible targets of the actions are, the sheer volume 
of options can become overwhelming. This management difficulty presents 
practical problems for a security manager.

When the “Orange Book” was published in 1983, it contained only two 
models of access control, and these seemed to be the only two available 
[32]; namely, mandatory access control (MAC) and discretionary access con-
trol (DAC). These two formal models were introduced in chapter 6. MAC 
is generally associated with highly trusted systems for processing classified 
or sensitive proprietary information, whereas an example of DAC is the file 
protections on Linux or Windows operating systems. These were the only 
two models for nearly a decade, when role-based access control (RBAC) was 
introduced and the concept demonstrated to be irreducible to either MAC or 
DAC [33]. Both MAC and DAC assign permissions on the level of individual 
agents, whereas RBAC is more general: RBAC assigns permissions to roles, 
and roles to agents. This is not to say that the idea of roles for access con-
trol was completely new in RBAC; MAC has a sense of roles via the concept 
of compartments, further discussed in chapter 9, but agents are not assigned 
roles based on job function, which is the key contribution in RBAC.
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The following sections build up to a description of RBAC. Where possible, the 
description avoids the rigorous set theory and access control matrix notation 
that is used to formally describe access control mechanisms in favor of nat-
ural language descriptions. For a formal description, see Osborn et al. [34]. 
The following subsections first describe the Unix file system permissions as an 
example, then the more modern access control lists (ACLs). The final subsec-
tion will consider the benefits and difficulties of RBAC as a resistance strategy.

Agent-based Permissions
The traditional Unix file permissions and ACLs are both agent-based permis-
sion management methods. An agent is an individual user or software pro-
cess. The methods are termed agent-based because access to every file is based 
on the identity of the agent requesting access. There is a set of permissions 
allowed to each agent for every file on the system. This complete description 
of agents to file can be represented in one access control matrix (ACM), how-
ever, this is often impractical to implement, although attempts have been 
made [35]. With traditional Unix file permissions, as well as ACLs, each file is 
marked with its permissions and ownership information.

File Permissions
File permissions control what user is permitted to perform which actions on 
a file. File permissions form a crucial part of a resistance strategy. On public 
systems, only part of the system is public. The system files, at least, need to be 
protected from wanton modification by attackers. Furthermore, on internal 
systems, file permissions help support the best practices of least privilege and 
least access, and therefore reduce damage from attacks by insiders.

File permissions are a construct developed on multi-user systems, namely Multics 
and all the *nix operating systems. Microsoft’s Windows did not have a concept 
of file permissions until Windows NT, more than 20 years after the Unix method 
was determined. The two methods for describing file permissions are the tradi-
tional Unix method and ACLs. Either method is a form of DAC—users are per-
mitted to change file permissions, at least on files they own. In the traditional 
method, files have attributes describing the owner of the file and the group the 
file is in, as well as permissions for the owner, group, and everyone else.

On a *nix system, every object is treated as a file (including directories and 
network devices), and so every object has file permissions. There are three 
possible permissions, which can be granted in any combination. These are 
read (r), write (w), and execute (x) [36]. These can be granted independently 
to each of three mutually disjoint sets of users: the owner (u), the group (g), 
and other (o), which means anyone on the system [36]. Additionally, there is 
a single special-purpose 1-bit flag that can be on or off called the sticky bit, or 
restricted deletion flag.
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The meaning of the permissions changes slightly depending on the type of 
object. For files, the permissions have their common English meanings. If a 
user has read permission, he or she can read but not modify the file. A user 
needs write permissions to modify the file. To run the file as a compiled pro-
gram, the user needs execute permissions. However, with the proliferation of 
powerful scripting languages like Python and Perl, to name just a couple, it is 
important to note that scripts only need to be read to be run by the interpreter, 
and so do not need execute permissions themselves. The sticky bit promotes 
behavior that helps the file load more quickly (to stick in memory) [36].

For directories, read, write, and execute have slightly different meanings. Read 
allows the indicated users to view the names of files in the directory. Write per-
mission is needed to add or remove files from the directory. However, unless 
the sticky bit is set, properly called restricted deletion flag on directories, a user 
with write access to a directory can delete any file in that directory, regardless 
of whether he or she owns it. If the restricted delete flag is set, a user with write 
access in a directory can only delete files that he or she owns. Execute permis-
sions for a directory permit the user to work from that directory.

*nix systems have a variety of users and groups by default. Many users are 
human users of the system, but many are also software agents such as the 
web server, DNS server, or the process that controls writing to the network 
interface. By making these specific processes owners of the files they need, but 
no more, file permissions can help resist an attacker who compromises the 
web server process in the same way as an attacker who compromises a user 
account. The end goal for an attacker is usually superuser access, sometimes 
called the root user, because that user can read and modify all files on the sys-
tem, including the ones that maintain file permissions and group access.

The system maintains a file of what users are in what groups (often /etc/
group), which allows for a very rudimentary role-based kind of access. There 
are lots of default groups for various purposes. This is also configurable. For 
example, if the administrator puts all the human users who are full-time 
employees in one group, then all of them can be given access to certain 
resources without worrying about exactly who has been hired recently. A user 
can then also share results with colleagues, easily, but without giving the 
interns access to data that perhaps they should not have.

Access Control Lists
In practice, each file can have an ACL associated with it, and this ACL per-
mits more detailed permission control than the traditional Unix file per-
missions. On Unix-like systems, the ACL permissions granted are the same 
as the traditional operations—read, write, and execute—however, there is 
more fine-grained control over which users have these permissions [37]. 
This need not be the case. On Windows systems ACLs are the only access 
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control, and they often contain a fourth basic operation for which rights 
are controlled: delete. This can be misleading, because it only is permission 
to remove a file. A user with write permission could still overwrite the file 
contents to make it empty [38]. This is similar to a directory in a Unix-like 
system with the restricted delete flag set, however, the attributes are only 
connected to the file.

Role-based Access Control
In RBAC, permission for operations is not based strictly on the identity of 
the agent performing the operation. Each entity, termed a subject, is assigned 
some number of roles, and each role has some number of permissions. 
A  subject acting in a particular role has permission to do actions permitted 
to that role. Roles are usually somewhat abstract, such as “full-time techni-
cal employee” or “HR manager.” In this way, roles can be assigned across the 
organization, and implemented on each of the specific computer systems. The 
permissions assigned to each role will vary on each computer system, as well 
as the technical implementation of the controls to enforce the permissions.

RBAC is more abstract than either of the agent-based methods, and this 
abstraction helps security folks manage permissions in larger organizations. 
Roles can also inherit permissions from other roles. If all employees have 
some permissions, then there could be an “employee” role. If there is a “data-
base manager” role and a “contracts management” role, both of those can 
inherit permissions from “employee,” which promotes clarity in the rules and 
simplifies the interpretations for the humans who have to set the whole thing 
up. Managing permissions in a large organization is still labor-intensive, but 
RBAC provides the most sane method of doing so.

Figure 7.3 demonstrates all the elements of an RBAC policy and their rela-
tionship to one another. One organization can have many roles. Each role 
can itself inherit attributes from many roles in the role hierarchy. Roles are 
assigned to subjects in “user assignment,” and this process is limited by for-
mal user/role constraints. A common example of a constraint is any user 
who may authorize a transaction also may not order the transaction. This 
would prevent a user from easily embezzling funds, by ordering transactions 
to themselves and then authorizing them right away. If there is separation of 
duties, such abuses of privilege are less likely.

One subject can have many sessions, which might be on different machines 
or across time, to which their roles are applied. No session can have more 
than one subject, so the subject–session relationship is one-to-many. This 
is denoted by the asterisk (*) on the line to the session, but no such mark 
next to the subject. We see that most of the relationships in RBAC are many-
to-many, which is one of the reasons it is so flexible. Roles are assigned per-
missions in a many-to-many fashion, so each role can have zero or more 
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permissions, and each permission can be assigned to zero or more differ-
ent roles. Likewise with the mapping between permissions and individual 
operations.

ATTACKS
There are several attacks possible on any system. The attacks discussed here are 
by no means an exhaustive list. However, social engineering and brute-force 
attacks are particularly dangerous because they are not based on exploiting 
errors in the technology or the protection strategies, but rather attacking the 
assumptions defenders make about what they are defending. If authentication 
and permissions systems are working properly, only a human with valid creden-
tials can access a system. If the organization is managing its credentials properly, 
then the attacker should be resisted and should not be able to get a foothold 
within the organization. However, social engineering attacks the human users, 
rather than the technology, to bypass the technological resistance strategies.

Brute-force attacks on passwords and cryptographic keys bypass a differ-
ent elemental assumption. Cryptography generally does not provide what is 
known as perfect forward secrecy, which is a guarantee of secrecy going for-
wards forever in time so long as the key remains secret. This is because to 
provide this, the key has to be the same size as the data protected, and this 
is impractical [12, ch. 2]. The reason for this has to do with the amount of 
information an adversary can gain from the protected data, and as long as the 
key is shorter than the data, the adversary can gain some additional informa-
tion thath theoretically eventually breaks forward secrecy [39].

Therefore, protection has generally been satisfied with computational secu-
rity. Computational security is based on practical assumptions about com-
putational speed and resources, as well as the mathematics of the algorithm 
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not having shortcuts. The general idea is while a defender cannot have 
 perfect secrecy, one can select a large enough random key that it would take 
many times the age of the universe to compute all possible keys, given cur-
rent technology [12, ch. 3]. If any of these assumptions change or are sub-
tly  violated—randomness of the key, size of the key, computational resources 
available, strength of the algorithm, etc.—computational security may not 
last as long as the defender expects.

Social Engineering and Phishing
Social engineering is a general term for extracting credentials or other 
 security-relevant information from legitimate human users by trickery and 
subterfuge. Military-grade interrogation is generally not included, however, 
the term is more broad than merely the ubiquitous phishing email. Attackers 
have been known to use phone calls, paper mail, or just casually walk past 
security guards to obtain useful information, to name a few [40]. There are 
also plenty of other scams that can use email. We will focus on phishing 
because a phishing attack is often designed to provide credentials to an adver-
sary that can be used to gain further access into the organization, whereas 
plan scams are not.

Phishing requires relatively little work by the attacker, and still returns reason-
able results. A phish is an email that is sent to the victim. The email purports to 
be from a trusted organization, however, it is a forgery. A distinguishing charac-
teristic from other abusive or unsolicited email is that phish asks the recipient 
to divulge their personal information, such as user name and password, credit 
card credentials, social security number, etc. Figure 7.4 shows an example.

Figure 7.4 highlights some distinguishing aspects of phishing attempts, 
besides that it was tagged as spam by the web-mail provider. Most obviously, 
it asks for user ID and password. It also contains a from address with a com-
pletely different domain than the reply-to address; this discrepancy is also sus-
picious. Of course, it is asking about university web-mail at a noneducational 
email address. It also contains some subtle typos—no spaces after the com-
mas. And finally, a common phishing tactic seems to be to implore the recipi-
ent to take immediate action or some consequence will happen very shortly. 
This was a dangerous social engineering email because it is in plaintext, with 
no attachments or HTML, and therefore the email is not technologically dan-
gerous and more easily evades automated scanning and blocking systems.

Phishing is relatively successful, and quite prevalent. Between 2009 and 2012 
the number of unique websites hosting phishing attacks rose from about 
30,000 to 60,000 [41,42]. However, the number of emails sent as lures to 
these websites is much larger. Although the purpose of the abusive mails is 
not specified (phishing or some other purpose), in general, abusive mail con-
sistently accounts for about 90% of all email [43].
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                        @Gmail.com>

Dear Webmail Account Owner,

Webmaster Alert <uni_webmaster@w.cn>       Tue, Jan 1, 2013 at 2:38 PM
Reply-To: uni_webmast@aim.com

Dear Webmail Account Owner,

This is our second message to you from the University Webmail Messaging Center to all email account owners.

We are currently carrying out scheduled maintenance, upgrade of our web mail service and we are changing our
mail host server,as a result your original password will be reset.

We are sorry for any inconvenience caused.

To complete your webmail email account upgrade, you must reply to this email immediately and provide the
information requested below.

**********************************************************
CONFIRM YOUR EMAIL IDENTITY NOW
E-mail Address:
User Name/ID:
Password:
Re-type Password:

**********************************************************
Failure to do this will immediately render your email address deactivated from the University Webmail.
**********************************************************
This E-mail is confidential and privileged. If you are not the intended Recipient please accept our apologies;
Please do not Disclose, Copy or Distribute Information in this E-mail or take any action in Reliance on its
contents: to do so is strictly prohibited and may be Unlawful.

Please inform us that this Message has gone astray before deleting it.

Thank you for your Co-operation.

Copyright ©2011 University Webmaster. All Rights Reserved

Suspicious!

FIGURE 7.4 
An example phishing email that one of the authors received at a Google mail address, with some hallmarks of phishing attacks annotated. 

The attacker’s basic idea in a phishing scheme is that it is too difficult to 
break the authentication system, so it is easier to simply acquire valid creden-
tials to use on the system by asking for them. “Ask” is a flippant description, 
but it is accurate insofar as the attacker is taking nothing by force, nor exploit-
ing vulnerabilities in an email client or web browser to gain these creden-
tials. Granted, phishing sites are not usually run by upstanding members of 
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society, so there is often also malicious code on the sites. But at the heart of 
it, the user is simply tricked and gives the credentials away. There is no tech-
nological defense for this. A relatively strict (but recommended) approach 
to email would be to strip all attached files, and to only allow plaintext (no 
executable code such as HTML). However, even with this approach, phishing 
could succeed almost unchanged.

Phishing is common enough that it has developed subcategories. Generic 
phishing generally refers to mass emails, sent to as many addresses as pos-
sible, asking for credentials from common brands such as Bank of America 
or PayPal. These are the easiest to spot. They often have spelling and gram-
mar errors, and don’t look particularly like emails a company would send. 
However, they are still sufficiently effective. The tagline is commonly some-
thing that requires urgent attention, such as a locked account or missed deliv-
ery on a package, to rush the recipient in to action (divulging the password) 
without thinking. If the attacks are more targeted, the metaphor with “fish-
ing” is stretched and the attacks are called spear phishing. In this case, the 
attacker probably actually knows who the target is by name, and can address 
the email appropriately and asks for something relevant to the target’s pro-
fession or recent activity. For anyone who regularly receives email from 
unknown persons, such as HR staff or professors, these can be difficult to 
detect. Stretching the metaphor to its breaking point, if the target of the attack 
is a high-profile person in an organization, such as the CEO, then the attack 
is called whaling.

Although there is no complete technological defense against phishing, that 
does not mean there are no defenses. Technical defenses can limit, but not 
eliminate, user visits to suspicious web pages and receipt of suspicious mail. 
An appropriate resistance strategy must also consider the human element of 
the organization and train employees appropriately, as well as provide suf-
ficient technological resources and protections. There are training approaches 
specifically for phishing that go beyond simple briefings. Some systems 
send benign phish to employees, and not only keep statistics on how many 
employees were tricked, but present educational material to the employee on 
what went wrong instead of stealing their data [44,45].

Technologically, the best defense against the threat of malicious email is shar-
ing among organizations. This is a resistance strategy, as the phishers are 
successfully targeting the organization’s employees. For the phish (as well 
as other scams and malicious code sent via email) that are mass-mailed to 
organizations indiscriminately by the attackers, if the defending organiza-
tions can share effectively, then the attackers cannot reuse the same messages 
to attack each organization. It may hit the first few organizations that see it, 
however if they share, then the next 100 or 1,000 organizations can prevent 
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the attack easily. Information sharing is also the only way to discover if an 
attack is a spear phish, or in general if the attack is targeted at one organiza-
tion, because no other organization in the sharing network will report it.

Organizations often object to information sharing of this sort because there 
is a culture of not cooperating with direct economic competitors. It may not 
be surprising, therefore, that the most successful instance of such sharing of 
attack data is within the research and higher-education space, by the REN-ISAC 
(Research and Education Network Information Sharing and Analysis Center), 
and their open-source Collective Intelligence Framework (CIF) [46]. However, 
if other sectors expect to not all fail together, other organizations will have to 
figure out how to work together. In some sectors, such as defense contractors, 
the U.S. government has identified this shortcoming and has attempted to 
fund and construct a sharing network among the companies [47].

Password Cracking
Earlier in this chapter, some of the problems with passwords were discussed. 
However, there are multiple styles of attacks on passwords, and the require-
ments to resist each type are different. The primary attack types are online 
and offline. There is also an important difference from password cracking as 
described in the early 1990s, which is the scale of computer and password 
usage today. Two high-profile breaches provide evidence, using a bit of statis-
tics, of the new problem, which has more to do with human psychology than 
computers.

An online attack on a password means the attacker is making guesses about 
the password to the live verification system. In an offline attack the attackers 
have some means of checking if the right key or password has been guessed 
independently, and can make the guesses at their leisure. An online attack 
is defensible while it is in progress. The verification system should include 
resistance measures, such as limits on password attempts for one account, 
and perhaps, more importantly, should make each guess relatively slow. If the 
verification system enforces a half-second wait time, then the amount of time 
for the attacker to make 10,000 guesses will be much longer than if the sys-
tem verifies the passwords as fast as possible. A human will not likely notice 
the difference between a hundredth of a second and half a second, however, 
when the attacker wants to make 10,000 guesses, that increases their attack 
time from 1.7 minutes to 83.3 minutes. This difference adds up, as upwards 
of a million guesses is feasible.

To conduct an offline attack, the attacker must obtain some piece of infor-
mation that permits verifying their guesses. For passwords, this is commonly 
the password file for the operating system. Even large web services have an 
equivalent file, although it may or may not follow the best practices in the 
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Unix-like password verification system. Once the information is obtained, 
offline attacks are often successful. The defender has no further defenses once 
the password file is stolen, the attacker can calculate with only the physi-
cal limitations of their machines. And several optimizations are possible. 
Previously in this chapter, it was noted that a safe passphrase might need to 
be over 50 common English words long. This is to resist an offline attack.

Part of the reason offline attacks are so successful is due to a feature of 
humans. As it turns out, we all often tend to pick the same passwords. This 
has likely been true for a while, however, it has become painfully obvious 
with large-scale breaches of RockYou and Gawker, in 2009 and 2010, respec-
tively [48,49]. For example, with the RockYou breach, 32 million accounts 
had their details (account name and securely encoded password) leaked. 
Only 116 unique passwords were needed to open approximately 1.6 million 
of the accounts. These included passwords like “123456” and “password,” 
but there are some more surprising commonalities. In the Gawker leak, the 
most common password was “monkey.” Figure 7.5 demonstrates these com-
mon password selection patterns.

So what does a poor attacker do, since no one has the computational 
resources to try every possible password? The attacker makes a dictionary 
of common passwords, including common English words, simple substitu-
tions, and additions of numbers and special characters. The dictionary is the 
plain-text password paired with its securely stored version that would be in 
a password file. Then, instead of attempting to guess what password would 
make the obscured text in the password file, the attacker simply looks in the 
dictionary to see if he or she has the obscured text. If the lookup is success-
ful, then the attacker knows that password was used to generate the obscured 
text, and saves a lot of work. This is called a dictionary attack [50], and they 
can be quite successful. In the RockYou breach, 6.4 million out of 32 million 
accounts could have been accessed in this way, or 20% [48].

It may seem impossible to protect against this human predictability. 
However, the defender actually has a somewhat simple solution, even though 
it may frustrate users. If it is so trivial to crack a password that is in a dic-
tionary, when a user is selecting a password for the organization it should be 
checked against some common password dictionaries (which are freely avail-
able online now). If the password is in a dictionary, then the user should not 
be allowed to select it. Conveniently, the attackers have even already gone 
through the trouble of collecting the list of common passwords for us, since 
the dictionaries used in attacks today are freely available on the Internet.

There has been another important event in the password-cracking landscape 
in the 2010s. It used to be very expensive to purchase and maintain 10 or 100 
parallel computers. However, in 2009, some security researchers realized that 
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Amazon was renting just such a resource at quite a reasonable price. They 
could try 9.36 billion keys an hour for only 30 cents per hour [51]. Jumping 
on this idea, a year later wireless router passwords using Wi-Fi Protected 
Access (WPA) an up-to-date standard, could be broken in about six minutes 
using Amazon’s resources [52]. Defenders must take this lesson to heart—
if you are targeted, the password can be broken using rented resources very 
quickly, even if one has taken care to avoid such simple mistakes as being vul-
nerable to a dictionary attack.

SUMMARY
This chapter discusses resisting attackers by authenticating users and only giv-
ing them the appropriate minimal permissions. Each of authentication and 
permissions has various methods and implementations appropriate for dif-
ferent situations. Some attacks against authentication methods were also dis-
cussed: social engineering and password cracking. These methods are some of 
the strategies for resisting attackers; further methods are discussed in the fol-
lowing three chapters. Authentication and permissions resist attackers from 
accessing computing resources. Chapter 8 discusses symmetric encryption, a 
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FIGURE 7.5 
Although exact numbers may vary, the distribution of passwords among many users generally takes this 
shape. There are very few passwords that are popular, and therefore will open a rather large percentage 
of accounts. 
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resistance strategy for protecting information, whether it is on the defender’s 
computing resources or not.
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methods like a token or something you have?
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Chapter Exercises
1. Find a phish that you received recently. How would you know it was a social 

engineering attempt without help from your email service? If you had received 
a phishing email, report it to Phish Tank (http://www.phishtank.com/). If you are 
extremely lucky and haven’t received one recently, go to Phish Tank and look at 
one phish that has been recently submitted.

2. Consider the security services of confidentiality, integrity, and availability as 
described in the seminal NSTISSI whitepaper [53]. Which of these services does 
managing permissions support, and how?

3. Find a password-guessing dictionary on the Internet. How many of the passwords 
that you use are in the dictionary? For those passwords that are not in the 
dictionary, about how long would it take to brute-force find the password? The 
section “The Problem with Passwords” has some values for password elements if 
they are random characters, random words, or random common words. Common 
substitutions, like 3 for E or 0 for O, add about 1 bit of information per possible 
substitution place. Don’t use the value for random characters if the password is 
actually a word followed by numbers and punctuation (or numbers followed by 
a word). This is a common enough pattern to treat it as a word, possibly with 
substitutions, followed by 1 of 10 digits and 1 of 22 punctuations.

4. Rigorously describe the authentication and permissions methods you use when 
you are in your house and you receive a knock at your door. Explain how you 
would navigate several scenarios, such as receiving a friend you were expecting, 
girl scouts selling cookies, your postal worker delivering a package, a police officer, 
and a stranger late at night when you are expecting a friend to visit. How do you 
authenticate these people? What permissions do you give them? What possibilities, 
if any, do you see for these methods to be subverted? What similarities, if any, do 
you see to the technical protocols discussed in this chapter?

5. Regarding key management, specifically in security tokens, what does it mean for a 
key space to be small, and why is a small key space a problem?

6. How does RBAC simplify assigning permissions to subjects?

7. Why is phishing and social engineering generally difficult to address or prevent 
with technological controls?

http://www.phishtank.com/
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Resistance Strategies: Symmetric Encryption

CHAPTER 8

INTRODUCTION
This chapter continues the discussion of resistance strategies with the discus-
sion of encryption and modern cryptography. Cryptography may be defined 
as the study of rigorous scientific methods of obscuring information from those who 
are not meant to read it. This is a more colloquial definition than other authors 
may use. For example, modern cryptography has also been defined as “the 
scientific study of techniques for securing digital information, transactions, 
and distributed computations” [1, p. 3]. Encryption and decryption are the 

■ Encryption concepts
■ Definitions
■ Utility and failings

■ Historic cryptography
■ Substitution ciphers
■ Transposition ciphers

■ Modern symmetric encryption
■ Block ciphers
■ Stream ciphers
■ Disk encryption
■ File encryption
■ Database encryption

■ Asymmetric encryption
■ Key management and distribution
■ Host identification

■ Digital certificates
■ Transport layer security

■ Steganography—not a cryptography
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two sides of cryptography. Encryption obscures information, and decryption 
recovers the information. Cryptography is a subset of the scientific field of 
cryptology, which also includes the study of attacking and breaking encryp-
tion, called cryptanalysis. A discussion of cryptanalysis is beyond the scope of 
this book. Additionally, although the history of cryptography goes back over 
2,500 years, past ancient Rome, this book focuses on modern cryptography. 
“Modern” in cryptography begins about 19801 [1].

Cryptography is an extremely useful tool in securing computers and net-
works. It is not, however, a panacea or a solution to all problems. Encryption 
is a particularly useful tool for resisting an adversary who has the ability to 
read the defender’s data, either on the network or on a computer. The first 
section discusses the general principles of cryptography, as well as some limi-
tations. It also discusses cryptography in contrast to a related but distinct 
field: steganography, the hiding of information. The older kind of encryption 
in modern cryptography is symmetric encryption, which the second section 
focuses on, as well as various methods for using it. The newer cryptographic 
method, asymmetric encryption, is discussed next. Asymmetric encryption is 
particularly important in the discussion of key management. The final section 
briefly covers host identification.

ENCRYPTION CONCEPTS
Cryptography is a specialized field, and the use of some special terms to 
describe it is unavoidable. The following list captures these terms. The defini-
tions given sacrifice some rigor to provide a more colloquial understanding 
of the important kernel ideas. More rigorous readers will hopefully forgive 
this expedience, and may find more expansive definitions in either Katz [1] 
or Stallings [2], and the officially recommended definitions are found in 
Shirey [3]. The goal of the list ordering is that reading from the top, you will 
not encounter any special term that has not been previously defined.

■ Cryptography: The study of rigorous scientific methods of obscuring 
information from those who are not meant to read it.

1 A prerequisite of calling cryptography “modern” is the scientific undertaking, which in turn requires 
wide publication of results for peer review and a sense of a methodological, repeatable, and empirical 
critique of results. Until the mid-1970s, cryptography was the unique purview of militaries, which 
almost by definition do not publish their results widely, and what was published had no systematic 
method for evaluation. So before this it is not considered modern, although this is not to say that 
World War II and following did not see a tremendous amount of work on cryptology. The publication 
of and public attention surrounding Data Encryption Standard (DES) and public key cryptography in 
the late 1970s provided the final springboard into the modern era.
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■ Cryptographic algorithm: A set of step-by-step instructions that can be 
used to obscure information or recover obscured information. It is often 
implemented by a computer, but need not be.

■ Key: A secret. The key is used in a cryptographic algorithm to vary the way 
in which the information is obscured. Therefore, if everything goes as it 
is designed, properly managing the secrecy of the key, and only the key, 
keeps the obscured information from being read by those who are not 
supposed to read it.

■ Encryption: Applying a cryptographic algorithm to information to obscure 
it. Encryption requires a key as input, as well as the information to 
encrypt.

■ Plaintext: The original, readable information (but not the key) input 
during encryption.

■ Ciphertext: The information output from encryption, in obscured 
(enciphered) form.

■ Decryption: Restoring the obscured information (ciphertext) to its original, 
readable form (plaintext). The cryptographic algorithm used to decrypt 
the ciphertext may be the same or different from the one used to encrypt 
the information, but for the sake of simplicity, the design goal is usually 
that it is the same algorithm. Likewise, cryptographic algorithms differ as 
to whether the same key is used for encryption and decryption or not.

■ Hashing algorithm: A set of instructions that takes in a piece of data of 
any length, and outputs a fixed length of data. Any change to the input 
produces a large, unpredictable change in the output—that is, the 
function is sensitive to input changes. Hashing algorithms share this 
property of sensitivity with cryptographic algorithms; however, hashing 
algorithms are fundamentally different from encryption because there is 
no intended way to recover the input data from the data that is output. 
That is, there is no equivalent decryption function to a hashing algorithm.

■ Hash: The output of a hashing algorithm.
■ Cipher: A cryptographic algorithm that can be used for both encryption 

and decryption.
■ Symmetric key: A type of cryptographic algorithm or cipher in which the 

same key is used for encryption and decryption.
■ Asymmetric key: A type of cryptographic algorithm or cipher in which 

the same key is not used for encryption and decryption. Such a cipher 
employs two mathematically related keys, where one key is used for 
encryption and the other key is used for decryption. For an introduction 
to one of the inventors of asymmetric key cryptography, see the sidebar in 
Chapter 7.

■ Key management: The process for handling keys during the period of 
time for which they exist. This includes making the keys, and storing, 
protecting, distributing, and archiving the keys. Importantly, key 
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management also includes destroying keys when they should no longer 
exist, and accounting for keys and the parties who are responsible for 
each step in the process.

■ Key lifetime: The amount of time in a key management process between 
when a key is created and when a key is destroyed. Also sometimes called 
a cryptoperiod. The longer the key lifetime, the more time an adversary has 
to attempt to guess the key.

■ Cryptosystem: The system made up of both a set of cryptographic 
algorithms and a key management process that can be usefully 
implemented to achieve the goal of obscuring information from 
adversaries, as well as ensuring those authorized to view the information 
can recover it.

These definitions should be sufficient to begin the conversation. Note that the 
goal is generally to build cryptosystems, and that encryption is only a piece 
of such a system. Cryptography without adequate key management is not 
terribly useful. However, choosing the appropriate cryptographic algorithms 
for the system is also vital to resisting the adversary. To this end, parts of this 
chapter provide some description of how algorithms work, at least in the 
abstract. If the defenders have no idea how any algorithms work, they will be 
hard-pressed to choose the appropriate algorithms and cryptosystem.

Utility and Failings
The utility of cryptography is in the ability to protect information from 
unauthorized access. This property can be used to provide a wider variety of 
services than it may appear at first glance. If it can be assured that only one 
entity possesses a particular key, then information encrypted by that key can 
be trusted to have originated from that entity. Likewise, the integrity of infor-
mation can be checked using hashing algorithms in conjunction with cryp-
tographic algorithms. Asymmetric key algorithms can also be used by two 
entities to agree on a single key without worrying about eavesdropping by an 
adversary, which is a tremendously important step in key management.

However, there are several services and strategies that cannot be fulfilled using 
cryptography or cryptosystems. Authentication mechanisms can be aided with 
cryptography, but the essential act of linking an identity with a key cannot 
be done without account management and the authentication factors dis-
cussed in Chapter 7. Partitioning information also must be done independent 
of cryptography. Like authentication, mechanisms for partitioning informa-
tion may use cryptography, but they need not, and the essential aspect of 
partitioning is the organizational policy on which individuals have the need 
to know certain information and which do not. If that policy is inadequate, 
then the wrong individuals will access information regardless of any crypto-
graphic controls. Partitioning as a resistance strategy is discussed in Chapter 9. 
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Change management, the resistance strategy discussed in Chapter  10, also 
can fail despite the best applications of cryptography. If the defender is run-
ning the wrong or otherwise out-of-date software, it is probably vulnerable 
to attack. Important tactics used in the other security strategies are also inde-
pendent of cryptography, but are still necessary for a complete defense.

Several defensive mechanisms that fail regardless of cryptography resistance 
strategies are policy decisions. Here, policy quite broadly means an abstract 
set of rules for humans to guide system design and operation. Firewall rule 
sets (a frustration strategy) enact a policy, for example, regarding what traf-
fic is allowed in or out of an organization. User password choices are also 
governed by a policy, although they have to be enforced by procedures. The 
organizational response to an incident, discussed in Chapter  15, is also 
largely driven by policies. An organization’s risk tolerance is a complex policy 
choice that affects many aspects of operation. These are just a few examples, 
but most other chapters of this book describe aspects of security that cryp-
tography cannot help with. Therefore, while cryptography is the technical 
crux of modern computer security, it should be clear that there are a myriad 
of other aspects of a complete security strategy that must also be adequately 
addressed.

SYMMETRIC ENCRYPTION
Symmetric encryption is the oldest kind of encryption, in which the same 
key is used both for encryption and decryption. There are two basic func-
tions used to obscure the plaintext in symmetric encryption ciphers: substitu-
tion and transposition. Modern cryptographic algorithms use both in rather 
labyrinthine fashion; the first subsection will briefly discuss some classical 
cryptography to more simply present each of these functions. Symmetric 
ciphers can also operate either on chunks of input or on each bit of input 
serially. If the cipher operates on chunks, or blocks, of input as one unit, it 
is creatively called a block cipher, whereas if it operates on each bit serially, in 
a stream, it is called a stream cipher. These types of ciphers are discussed in 
the next two sections. The main difference is that stream ciphers have perfor-
mance and energy consumption advantages over block ciphers, and are easier 
to implement in hardware, however, stream ciphers are much more vulner-
able to certain attacks, and so are generally only used when this performance 
enhancement is absolutely necessary. The final subsection discusses an exam-
ple implementation of symmetric encryption: disk and file encryption.

Historic Ciphers
For almost as long as people have wanted to keep writing secrets there have 
been ciphers. Many of these are very simple by modern standards. However, 
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the principles of substitution and transposition are still the only building 
blocks in modern symmetric key algorithms. When asymmetric key cryptog-
raphy was introduced in the 1970s, discussed later in this chapter as well as 
briefly in Chapter 7, it was the first novel cryptographic algorithmic building 
block in over 2,000 years. Therefore, understanding the principle of how his-
toric ciphers work is still relevant to a general understanding of cryptography, 
although this book will not explore the gritty details of modern symmetric 
algorithms. First, substitution ciphers will be discussed, in which each symbol 
in the plaintext is substituted for another to create the ciphertext. Then trans-
position ciphers are tackled, in which the plaintext is rearranged to produce 
the ciphertext.

Substitution Ciphers
Substitution ciphers encrypt the plaintext by swapping each letter or symbol 
in the plaintext by a different symbol as directed by the key. Perhaps the sim-
plest substitution cipher is the Caesar cipher, named after the man who used 
it. To modern readers, the Caesar cipher is perhaps better known through the 
Captain Midnight Code-O-Graph and secret decoder rings that even came 
inside Kix cereal boxes [4]. Technically speaking, the Caesar cipher may be 
differentiated from other, more complex substitution ciphers by terming it 
either a shift cipher or a mono-alphabetic cipher; both are correct.

Let’s take a look at an example. Since case does not matter for the cipher, we 
can use the convention that plaintext is represented in lowercase letters, and 
ciphertext in uppercase. Spaces in the ciphertext are just added for readability; 
they would be removed in a real application of the cipher to make attacking 
the ciphertext more difficult.

Plaintext: speak, friend, and enter

Key: E

Ciphertext: WTIEOD JVMIRHD ERH IRXIV

This cipher’s method of combining the plaintext and the key is actually addi-
tion. Each letter of the alphabet is assigned a number—that is, A is 0, B is 1, 
and so on, through Z at 25. The set of letters used can be more complex. This 
example also uses the comma character as the final character of the alphabet, 
26. The spaces in the plaintext are ignored, for now. For each letter in the plain-
text, it is converted to its number, then the value for the key is added, and the 
resulting number is converted back to a letter: S is 18 and E is 4. So the result 
is 22, or W. This is repeated for each character in the plaintext. Decryption is  
simple—the inverse of addition is just subtraction, so the key is subtracted 
from the ciphertext to get the plaintext back. Of course, 22 − 4 = 18.

There are obviously lots of problems with this. To decrypt the message, one 
could quickly try all 26 keys. The number of possible keys is called the key space. 
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If the key space is small enough that an adversary can try all possible  
keys in a “short” amount of time, then it doesn’t matter what the algorithm 
is, it is essentially useless. This is known as the sufficient key space principle 
[1, p. 11]. “Short” is in quotes because the exact length of time depends on 
the use of the key in the cryptosystem and the risk model that the defender 
has for how long the communication needs to be secret. However, if the 
adversary can try all of the keys in a day or a week, then the key space is 
generally too small for general commercial use. On modern computer sys-
tems, about 280 keys can be tried in a “short” amount of time, so any algo-
rithm employed by the defender to resist attack should have a key space at 
least this large. However, if the defender does not want to have to change the 
cipher relatively soon, we suggest a rather larger key space, and so does NIST 
(National Institute of Standards and Technology) [5].

In this simple shift cipher, the key space is small. The best case for a mono-
alphabetic cipher does not have a small key space, however. If A is randomly 
assigned to one of the 26 letters, B one of the remaining 25, C to one of the 
remaining 24, and so on, we create a table for the key that looks like this:

Plaintext character: a b c d e f g h i j k l m n o p q r s t u v w x y z

Key character: X F Q G A W Z S E D C V B N M L K J H G T Y U I O P

This is called a mono-alphabetic substitution cipher. For this cipher, there 
is no equivalent addition for encrypting the plaintext. The key is the whole 
table, and each letter is substituted by the key character. Decryption uses the 
same key, but you look up the ciphertext character on the bottom row and 
substitute the top-row character. The previous plaintext, “speak, friend, and 
enter,” becomes HLAXCWJEANGXNGANGAJ, ignoring commas and spaces. 
The whole key space is quite large. There are 26 × 25 × 24 × 23 × … × 2 × 1 
possible keys. This is written as 26!, read “twenty-six factorial.” 26! is about 
equal to 288, which is large enough to resist brute-force attacks that try all 
the possible keys; that is, it satisfies the sufficient key space principle. But that 
does not mean the algorithm resists all attempts to subvert it.

The mono-alphabetic cipher is subject to frequency attacks or guess-
ing. The ciphertext has just as many ‘A’ characters as there are ‘e’ characters 
in the plaintext. Anyone trying to attack the ciphertext could use a table of 
the frequency of letters in the English language to make some smart guesses 
about which ciphertext characters are which plaintext characters. This suc-
ceeds relatively easily. Humans can do it, rather slowly, once they have about  
10 words, sometimes less. This is a relatively common puzzle in newspapers, 
so it should not be surprising it’s easy to break. Computers can also do it  
reliably when they have at least 150 characters [6, p. 131].

Frequency attacks are not limited to single letters. The problem applies to 
modern systems as well. If a bank begins every transaction with the same  
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10 characters, then an adversary would rightfully guess that that string is more 
 frequent. Modern algorithms try to be robust against this in a variety of ways, 
which will be discussed later. However, sometimes the best course of action 
for the defender to resist such frequency attacks is for the defender to modify 
the contents of the actual message, before encryption, to remove these regular-
ities. If that is not possible, regularities in the plaintext should be minimized.

One method of frustrating frequency attacks on the underlying plaintext is 
to increase the block size of the cipher. The block size is how many units (in 
our example characters) are encrypted at once. Both the Caesar cipher and 
the mono-alphabetic substitution have a block size of one—only one char-
acter is encrypted at a time. A different defense is to use a key that changes 
per element of plaintext, whether or not the block size increases. The num-
ber of changes in the key per element of plaintext before the key repeats is 
called the period of the key; both preceding cipher examples have a key period 
of 1 as well as a block size of 1. Block ciphers are ciphers with a block size 
greater than 1, and they will be discussed in more detail in the context of 
modern encryption in the section “Block Ciphers”. However, before moving 
to the discussion of transposition ciphers, we will discuss one more substitu-
tion cipher: one with a key period of arbitrary length.

The Vigenère cipher, or polyalphabetic shift cipher, was invented in 16th- 
century France, and for many centuries was considered unbreakable. Instead 
of choosing a single letter as the key, we choose a word or random string of 
letters. The encryption per character is the same as the Caesar cipher—let-
ters are converted to numbers and added. When the final letter of the key has 
been used, the algorithm loops back to the beginning of the key and starts 
again, and so on, until it reaches the end of the message. For example:

Plaintext: speak, friend, and enter

Key: FRODO

Ciphertext: XFSDYE WELSSUN DAI VAWSW

To encrypt, use the first letter s + F = X, the second letter p + R = F, the third 
letter e + O = S, and so on. On the sixth character we reach the end of the 
key, and so go back to the beginning of the key to compute , + F = E, fol-
lowed by f + R = W, and so on. The cipher is conceptually like using multiple 
different mono-alphabetic cipher keys in sequence.

In this example, the letter e in the plaintext is variably encrypted to S and 
V, and in the ciphertext W is, in different places, the result of a plaintext f, t, 
and r. This variability makes attacking the ciphertext by the frequency of letters 
in English much more difficult. Note a feature of the math here that did not 
arise in the previous example. The letter P is 15, R is 17, and so 15 + 17 = 32. 
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However, 32 is greater than the value of a comma, 26, the last character in our 
alphabet. To bring 32 back into our ring of numbers, we subtract by the num-
ber of characters we have (27) and then convert the answer to the letter F. What 
mathematicians use to be rigorous about this is the modulus operator, which 
uses the “mod” symbol, %. So we write 32 % 27 = 5, read “32 modulo 27” or 
“32 mod 27” for short. The operation is technically to divide by 27 and then 
take the whole number remainder that is left. It comes up a lot in cryptography, 
but that is all that needs to be said about it for now.

The Vigenère cipher is still breakable, although it is harder. If the adversary 
knows the key period, frequency attacks are possible on each unit that uses 
the same key. And in the mid-19th century a robust method for discovery of 
the key period of the cipher was developed. This problem persists to this day. 
The Vigenère cipher is an example of a stream cipher. Modern stream ciphers 
are discussed in a following section. However, the general method for avoid-
ing this problem has simply been to make a key period that is long enough 
that it essentially never repeats, and if it does repeat, to start using a new key. 
There is no good algorithmic way around the problem of short key periods—
once it starts to repeat, the cipher is breakable.

Transposition Ciphers
Transposition ciphers are the other primary type of cipher that can be used. 
Unlike substitution ciphers, which change the content of the plaintext, trans-
position ciphers change the order of units in the plaintext but leave the val-
ues unchanged. The first example of a transposition cipher is also taken from 
ancient Mediterranean military use, probably by the ancient Greeks, although 
the first complete description we have is from the Roman historian Plutarch 
[7]. The key in this example is a stick of wood. Two identical sticks, called 
scytale, must be produced. A strip of parchment one letter wide is then 
wrapped around the scytale and the message is written along the length of 
the scytale. A scytale with writing wound around it is shown in Figure 8.1. 
When the parchment is unwound the letters are transposed, and the message 
is not readable. Only the person with the other scytale can read the message. 
By wrapping the parchment around the other, identical stick, the message is 
decrypted—that is, unscrambled.

Throughout history people thought of more clever methods of scrambling 
messages. The difficult part is to make the method reversible but also easy 
enough to do that human error does not disrupt the process. One example, 
published in 1902 by a retired French colonel and the cipher’s namesake, is 
Myszkowski transposition [8]. The message is written horizontally across col-
umns, and the columns are numbered based on a keyword. The key must 
have at least two letters that repeat for the cipher to work as intended. The let-
ters in the key are numbered according to their relative order in the alphabet; 
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duplicate letters have the same number. Using a quote from Mark Twain as 
the plaintext (ignoring punctuation and truncating the last two letters, “ly” so 
the columns are the same size), and “samclemens” as the key, we would write:

Key:

7 1 5 2 4 3 5 3 6 7

Plaintext:

i o n c e s e n t a

d o z e n o f m y f

r i e n d s a t e l

e g r a m s a y i n

g f l e e a t o n c

e a l l i s d i s c

o v e r e d t h e y

a l l l e f t t o w

n i m m e d i a t e

To obtain the ciphertext, we read columns in the order they are numbered. 
If the column has a unique number, it is read straight down. Any columns 
that share a number are read in sequence horizontally before moving to 
the next line. So the ciphertext from the preceding would be the following, 
with spaces inserted for readability: OOIGF AVLIC ENAEL RLMSN OMSTS 
YAOSI DHFTD AENDM EIEEE NEZFE ARALT LDETL TMITY EINSE OTIADF 
RLENG CECOY AWNE. To decrypt the message, you would need the keyword 
and then just fill in the columns in the order prescribed by the keyword and 
reconstruct the plaintext.

FIGURE 8.1 
A simple scytale. The word “gust” would be legible when the leather is wound around the stick, but when 
the leather is unwound the message is not readable. 
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The transposition is not vulnerable to frequency attacks in quite the same 
way that substitution ciphers are. The letters in this ciphertext are already in 
the same proportion as letters in English, because the cipher does not change 
the letters. However, this is also a major weakness. Word scrambles are also 
a popular newspaper challenge, and humans are naturally fairly good at 
unscrambling words. In general, just transposition is not sufficient to resist an 
attack on the ciphertext.

Father of Information Theory

Claude Shannon was born in 1916 in Petoskey, MI. After 
graduating from the University of Michigan, he attended 
MIT and worked with such luminaries as Vannevar Bush. 
By the age of 21, he had completed his master’s the-
sis at MIT. His paper, “A Symbolic Analysis of Relay and 
Switching Circuits,” has been called one of, if not the most, 
important master’s theses of the 20th century [9]. This idea 
of electronic circuit switching underlies almost all digital 
communications and computing that occur today.

It is difficult to adequately describe how much influence 
Shannon had with his work. Not only did he begin the con-
version of cryptography from an art to a science, but the 
very concept of digital computing and digital telecommu-
nications would not be possible without his contributions 
[notably 10–12]. This includes the first prominent men-
tion of mathematically encoding information to transmit 
it successfully. This idea seems trivially obvious now, but 
when Shannon started there essentially was no concept of 

information as a mathematical construct. Much of this work 
was done in the heat of the WWII effort from 1941–1945, 
during which time Shannon worked at Bell Laboratories in 
New Jersey. As if cryptography and computing were not 
enough, Shannon also did important work on ground-to-air 
defense systems that helped protect England during the 
Blitz. He continued to be affiliated with Bell Labs until 1972.

Given his technical prowess, one might expect a taciturn or 
unapproachable personality. This was not so. Among other 
frivolities, Dr. Shannon was known to ride the halls of Bell 
Labs on a unicycle, juggling three balls. He also had some 
more whimsical inventions, such as a mechanical mouse 
that could navigate a maze [9].

Dr. Shannon continued to teach at MIT until 1978. He 
passed away in 2001, at the age of 84, in a Massachusetts 
nursing home. The interested reader should consult 
Gallager [13] for a more detailed account of Shannon’s life 
and his influence on the modern world.

PROFILE: CLAUDE SHANNON

Modern Ciphers
Modern symmetric key ciphers can be broken down into two broad catego-
ries: block ciphers and stream ciphers. While the use cases for each type var-
ies, the design principles behind each are largely similar. Katz and Lindell 
identify three principles of modern cryptography [1, p. 18]. The principles 
can be cast in the light of resistance strategies as follows:

1. Principle 1: Before attempting a solution, precisely what is meant by 
security must be rigorously and precisely defined. At a minimum, this 
means exactly what kinds of adversary are being resisted, what the 
resources and access abilities of the adversaries are, and for how long they 
need to be resisted.
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2. Principle 2: All assumptions must be completely and precisely stated. 
There are bound to be some unproven assumptions, however, stating 
them precisely and explicitly is necessary to manage risk from those 
assumptions. Since assumptions carry some risk, assumptions should be 
minimized.

3. Principle 3: There ought to be a rigorous proof of the security of any piece 
of a cryptosystem. The proof should demonstrate that the definition from 
principle 1 is obtained, given any assumptions stated from the process 
described in principle 2.

These principles are valuable not just for cryptosystems and resistance via 
encryption, but for security strategies generally. Cryptography is one part of 
the strategy that is most suited to rigorous proof, and so fewer assumptions 
may be needed here than elsewhere. But all strategies would benefit from a 
precise statement of assumptions and how those assumptions interact with 
the level of security that is desired.

Modern symmetric key ciphers have two primary functional components: 
some substitution steps and some transposition steps. These two compo-
nents are conceptually the same as in historic ciphers. By using both substi-
tution and transposition, the conceptual weaknesses of substitution can be 
supported by the strengths of transposition, and vice versa. The functions are 
more sophisticated than the historical examples, and according to the preced-
ing principles, they have been much more rigorously tested. But the concepts 
of what is done to the plaintext to produce the ciphertext and then decrypt it 
again has not changed as much in symmetric key ciphers as one might expect.

Information Theory
In discussing modern cryptography, we must briefly introduce a special 
use of the term information. Without this numerical definition of informa-
tion rigorous proofs of cryptography do not seem possible. In fact, without 
Shannon’s work on quantifying information, networked communication 
as we know it, including the whole Internet, probably would not be possi-
ble. The seminal work is Claude Shannon’s article “A Mathematical Theory 
of Communication” [10], which was published in 1948 and expanded into a 
textbook published the following year [12]. These works are the foundation 
of a broad field now called information theory.

The only aspect of information theory with which we will be concerned here 
is Shannon’s definition of information. Since Shannon is formulating a the-
ory for engineering communications systems, he is only concerned with the 
information provided by signals on the wire. He goes on to formalize a math-
ematical notion of information. The information in a message is based on 
the statistical likelihood of a message given all possible messages. The unit 
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of information, as far as we are concerned, is bits, short for binary digits. Bits, 
and later the playfully named byte, that are stored and transmitted on mod-
ern digital computers are named after this information theoretic unit, which 
at the time of Shannon’s publication was primarily an abstract unit rather 
than something one buys trillions of at the store.

Bits on a computer disk are represented by a string of 1’s and 0’s. The number 
of combinations of 1’s and 0’s in a string N binary digits long is the num-
ber of possible messages. For example, there are 16 possible combinations 
in a string of 4 binary digits, as demonstrated in Figure 8.2. The maximum 
amount of information is the same as the length of the string, namely N.2

It is in this numerical sense that information is used for the remainder of this 
discussion. In this sense, increases and decreases in information are explicitly 
calculable. Such calculations are extremely useful in robust proofs of security 
concepts and cryptosystems, as recommended by principle 3. We will not, 
however, delve into any such mathematical proofs in this chapter.

Perfect Secrecy
The concept of perfect secrecy was first defined by Claude Shannon in 1946, 
although the work was not declassified and published until three years later 
[11]. This paper is one of the foundational works of modern cryptography; 
perfect secrecy is only one of the contributions. The definition of perfect 
secrecy is based on statistics and probabilities. A ciphertext maintains per-
fect secrecy if the attacker’s knowledge of the contents of the message is the 
same both before and after the adversary inspects the ciphertext, attacking it 
with unlimited resources. That is, the message gives the adversary precisely no 
information about the message contents.

0000 0100 1000 1100
0001 0101 1001 1101
0010 0110 1010 1110
0011 0111 1011 1111

FIGURE 8.2 
All the possible combinations of 4 binary digits. This string is equal to 4 bits of information, because there 
are 16 possible combinations and 4 = log216. 

2 This is because the amount of information is based on the logarithm of the possible messages. A 
logarithm is the inverse of exponentiation. Logarithms, in this binary (base 2) system of 1’s and 0’s, 
are a mathematical function where the output increases by 1 when the input doubles. When the length 
of the string of bits increases by 1 bit, the number of possible combinations doubles. Since the base-2 
logarithm of a binary string happens to be equal to its length, the length of the shortest string of bits 
that can encode a message is also the maximum information carried in the message.
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The result of working through what would be required for perfect secrecy is 
that there must be as many possible keys as there are possible ciphertexts. 
Therefore, the key material must be as long as the ciphertext, when both are 
represented in bits. This is generally considered impractical. The only cipher 
that meets this requirement is known as the one-time pad, which was invented 
before Shannon’s formalization of the problem by either 30 or 65 years, 
depending on how credit is distributed for the cipher and realizing its value 
[14]. The one-time pad is rather simple. It is a Vigenère cipher, as described 
earlier, where the key period is at least as long as the message, it never repeats 
or is reused, and the key is truly random. Shannon proves the one-time pad is 
perfectly secure, and that the key material for any other perfectly secure cipher 
must have the same properties as keys in one-time pads [11].

Perfect secrecy is impractical to implement. There are enough potential opera-
tional difficulties that provide the adversary an attack vector that the defend-
er’s effort is often better spent on something besides the one-time pad key 
management problems. Therefore, modern cryptography suffices with what 
is called computational security. The symmetric cipher might use a 256-bit 
key, which does not provide perfect secrecy if the message is more than 256 
bits. Most messages are. However, as long as the cipher is well designed, the 
adversary must try all the keys—actually, half the keys on average—to break 
the encryption. For a random 256-bit key, this would currently take all the 
computing resources of the world running for more time than the universe 
has existed so far. This is generally considered sufficient.

Block Ciphers
Block ciphers, if used properly, are an effective method for resisting adver-
sarial attempts to read data, either data stored on disk or in transit on the 
network. A block cipher is one of the two common modern symmetric cipher 
types. It is distinguished from a stream cipher, because a block cipher per-
forms operations on a chuck of data at once, whereas a stream cipher can 
operate on a single bit of plaintext at a time. The foremost example of a mod-
ern block cipher is the Advanced Encryption Standard (AES) [15]. AES is the 
primary cipher approved for use by the U.S. government to protect electronic 
data. It was certified in 2001, and has been something of a de facto standard 
cryptographic algorithm worldwide. It replaced the aging DES, also a block 
cipher, which was issued in 1977 [16]. There are too many block ciphers to 
list them all, but DES and AES are the two most famous examples.

A block cipher maps each possible input block of plaintext to an output block 
of ciphertext. For a cipher with 64-bit inputs and outputs, to write down this 
complete mapping would take about 269 bits [17, p. 60], or about 74 exa-
bytes of memory. This is too much. But as we saw with historical substitution 
ciphers, a “short” block size makes breaking the cipher too easy. To efficiently 
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use large enough input blocks without using infeasible amounts of memory, 
ciphers are used. A well-designed cipher will map an input value to an output 
value using the key in such a way that the mapping appears random unless 
one knows the key. Modern block ciphers tend to have block sizes of 128 bits 
or larger, because if the block size is too small there is the same problem as a 
small key space as described previously—the adversary can enumerate all the 
possible options and thus undermine the algorithm.

This book will not describe in any detail the operation of AES or DES. Briefly, 
each is composed of rounds. A round is a substitution phase followed by a 
transposition phase, each of which is conceptually the same as the substitu-
tion and transposition ciphers historically used. In this regard, the ciphers 
are quite simple. However, there are plenty of subtle mathematical attacks 
to defend against. This defense requires rigorous design of the algorithm in 
sometimes surprising ways. Designing a sound algorithm is extremely diffi-
cult for this reason. The general recommendation is that no modern organi-
zation should try to design its own cryptographic algorithm. AES is freely 
available and quite safe. Ten years after it was certified by NIST minor inroads 
were made against the algorithm, yet the paper itself states the advances “do 
not threaten the practical use of AES in any way” [18].

Just because the defender is using a secure block cipher does not mean it is 
automatically operated in a secure manner. Although each block of input is 
128 bits, the message is almost certainly longer than that. There are multi-
ple modes of operation with which to adapt the cryptographic algorithm to 
this situation [3]. Most have some interaction between the blocks in a mes-
sage. For example, the value of the block i is combined with the key material 
used to encrypt block i + 1, cryptographically linking the blocks to be in that 
order. This is preferable because it links the blocks together both as part of 
the same message and in the correct order.

To see why this is necessary, imagine a bank that sends its transactions 
encrypted via AES. If the account numbers are 128-bit numbers, and are 
always in the same place in the message, there can be trouble. If block 6 con-
tains the account number to withdraw money from, and block 8 contains the 
account to deposit the money in to, then an adversary could make a deposit 
into someone’s account and wait. If he or she sees the transaction go out, the 
adversary could modify the message by swapping blocks 6 and 8. The adver-
sary does not need to know the key used in the encryption to do this. As long 
as the blocks do not depend on each other, everything will decrypt properly 
and the victim’s account will likely be debited for the amount that the adver-
sary asked to deposit.

In most computing equipment, block ciphers are the preferred symmet-
ric encryption cipher. The ability to ingest blocks of data, perform both 
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substitution and transposition, and then use the appropriate mode of opera-
tion to link the blocks together is a robust method for protecting data and 
resisting attacks. However, there will always be devices with resource con-
straints. Small devices such as embedded sensors and RFID (radio-frequency 
identification) tags lack the memory, computing power, and/or electrical 
power reserves for a block cipher. In these cases, it is advisable to use a stream 
cipher.

Stream Ciphers
Stream ciphers are good for fast implementations with low resource con-
sumption. These two features help the defender implement resistance 
strategies in devices that may not have the resources for a block cipher 
implementation. Stream ciphers are also useful for encrypting wireless sig-
nals, which more naturally fit a streaming model than transmitting data in 
larger, fixed-size chunks. For example, the A5/1 stream cipher is used in GSM 
phones [19], and the RC4 stream cipher has been used in the security sys-
tem for wireless local area networks (WLANs) [20]. The simplicity of stream 
ciphers is both a blessing and a curse. It appears to be more difficult to ade-
quately include stream ciphers in cryptosystems. For example, the implemen-
tation of RC4 in Wired Equivalent Privacy (WEP) for WLAN security was a 
failure, even though the RC4 cipher itself was not broken—it was just imple-
mented badly [20]. Specifically, the implementation artificially shortened the 
key period; the technical reason this is a problem will be explained shortly.

Stream ciphers can be broadly classified into those that work better in hard-
ware and those that work better in software. A5/1 is an example of a cipher 
better suited to hardware. It is one of a class of algorithms called linear feed-
back shift registers (LFSRs), which are easy to construct with a little electri-
cal engineering knowledge. RC4 is an example of a cipher suited for software, 
but optimized for low resource usage. It only requires less than 1 kilobyte of 
memory and simple array-based operations.

Stream ciphers use conceptual tools similar to block ciphers. Substitution is 
the primary tool: each bit or byte of plaintext is combined with the key mate-
rial by an exclusive-or (XOR) operation to substitute the plaintext bit into the 
ciphertext bit. Binary XOR is quite simple. There are only two possible values, 
1 or 0, and if the two inputs are the same the result is 0, otherwise it is 1.  
A small table of these results is presented in Figure 8.3.

Since stream ciphers cannot do transposition per se, as the cipher can-
not cache one block of input and transpose the contents, successful stream 
ciphers create a feedback system where current key material depends on the 
previous operation of the system. Therefore, one rather short key can initial-
ize the system to produce a pseudorandom stream of key material that does 
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not repeat for quite a long time. Due to the XOR operation, once a stretch of 
key material has been used it can never be used again. This is a common mis-
take in stream cipher implementation, and was one implementation error in 
WEP [20].

This attack is possible because the XOR operation is its own inverse. Any 
number +2 − 2 equals itself because addition and subtraction are inverses. 
Likewise, combining two ciphertexts encrypted with the same key eliminates 
the key, since it is XOR’d with itself. In this case, when the key is eliminated 
the two plaintexts remain. They are still XOR’d together, but from this infor-
mation, statistical methods like those used to defeat the mono-alphabetic 
substitution cipher, described earlier, can be used to recover each plaintext 
without much difficulty.

To demonstrate the danger of this graphically, see the process in Figure 8.4. 
In this case, black and white are used instead of 0 and 1, respectively, but oth-
erwise the XOR operation is the same. When either image is XOR’d with the 
key, it is adequately protected by the encryption. However, if the same key 
image is reused, the two source images are quite starkly and easily recovered 
when the two ciphertexts are XOR’d.

Due to the preceding problems, stream ciphers must be used carefully. 
However, they serve a useful role in the defender’s resistance strategy. 
Encrypting network traffic resists the adversary’s efforts to eavesdrop on the 
traffic or modify it. For details on how a stream cipher can be successfully 
implemented, consult explanations of the Wi-Fi Protected Access (WPA) pro-
tocol, for example, in Stallings [22, ch. 6]. However, note that in WPA the 
preferred mode of operation is to use AES to create a key stream, rather than 
RC4 [6, p. 667]. One viable mode of operation for block ciphers is to encrypt 
a counter with the key to create a stream of key bits to XOR with the plaintext 
stream. In this way, a block cipher can be used like a stream cipher. It does 
not have the resource savings that RC4 has, however, the algorithm and mode 
of operation are more robust and certified by NIST for use on U.S. federal 
government systems. Since computing power has become cheaper, wireless 

Plaintext Xor Key Result

1 ⊕
1 ⊕
0 ⊕
0 ⊕

1 0
0 1
1 1
0 0

FIGURE 8.3 
A simple example of the XOR operation on a single bit of input from two sources—plaintext and a key—
to produce the ciphertext. 
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access points have enough processing power to perform these AES computa-
tions without trouble.

There are three modes of data that need to all be protected: data in motion, 
data at rest, and data being processed. Encrypting data on the network is pro-
tecting data in motion. Block ciphers are commonly used to protect data at 
rest, such as on file systems. Protecting data at rest is the topic of the next sec-
tion. Unfortunately, there is currently no common practice for protecting data 
while it is being processed. It is very difficult to process data without knowing 
what the contents are. Solutions to this problem have been proposed [23], 
but are currently considered infeasible. Therefore, it is notable that encryp-
tion, either with block or stream ciphers, does not help protect data while it is 
being processed. This fact is important to consider in a comprehensive resist-
ance strategy, especially when considering cloud computing, in which data 
processing is outsourced [24,25].

FIGURE 8.4 
An example of why key reuse is dangerous when encryption with XOR is used. Black and white pixels are 
treated as 0 and 1 bits, respectively. The two initial images are each adequately protected on their own, 
but since the key was reused the two ciphertexts can be XOR’d, canceling out the key and revealing the 
two plaintexts XOR’d. This example was inspired by Smith [21]. 
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File and Disk Encryption
File encryption and disk encryption are complementary technologies for resist-
ing the adversary’s access to data at rest. File encryption is the more granular 
technology, whereas disk encryption has broader coverage but is less  precise. 
Disk encryption is best for resisting the threat of media being physically 
 stolen—it functions best when the computer is powered off. A computer that is 
powered on has access to read the disk on-the-fly, otherwise performance would 
suffer unacceptably, so an adversary who can issue commands to a powered-on 
machine may bypass disk encryption. File encryption only permits access on a 
per-file basis, and so is better suited to protect particular files of interest from 
being read even if the adversary has access to the machine. But the logistical 
overhead of encrypting individual files makes it unsuitable for encrypting all 
the files on a computer, a task that disk encryption does quite easily.

File Encryption
Individual files on a computer can be encrypted to resist the adversary’s 
attempts to read the contents of the file. This is useful for particularly sensi-
tive files on a computer, but is also useful for application-level transfer of files 
across an insecure channel such as email. Any suitably secure modern sym-
metric cipher can be used as part of a file encryption mechanism. Some com-
mon mechanisms for file encryption are PGP (pretty good privacy) and GPG 
(GNU privacy guard), both of which are implementations of OpenPGP as 
described in RFC 4880 [26]. The RFC gives a good concise description of the 
system purpose: “OpenPGP software uses a combination of strong public-key 
and symmetric cryptography to provide security services for electronic com-
munications and data storage.”

Public key cryptography is synonymous with asymmetric key cryptography, as 
discussed briefly in Chapter  7 and in more detail in the following section, 
“Asymmetric Encryption”. Asymmetric cryptography supports, among other 
services, entity authentication. This feature is not necessary for understand-
ing file encryption; however, it is important and is discussed in the section on 
Asymmetric Encryption as well.

File encryption usually uses block ciphers. The process is best accomplished 
in the following order. The file is compressed using a program like winzip or 
gzip. When a file is compressed, common long strings in the file are replaced 
with an encoding that shortens the file. These encodings are likely different 
for each file. Therefore, this step is both for efficiency—the file is smaller so 
less encryption rounds are needed—and for security—eliminating long, 
repeated strings makes frequency analysis more difficult. The compressed file 
must be padded with extra bits to make sure the length is a multiple of the 
block size. The file is then encrypted, with AES, for example.
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Generating the secret key for file encryption is an important step. It can use a 
user-supplied password, but this subjects the file encryption to all the human 
problems with passwords. Note that encryption without any form of authen-
tication (described in Chapter  7) is not useful. For this reason, the recom-
mended PGP behavior is to generate a random key for symmetric encryption, 
called the session key, and then encrypt the session key with an asymmetric 
key that can authenticate an entity. This method is particularly useful when 
encrypting email contents, as then only the recipient can decrypt the session 
key, and thus the message.

Database encryption is related to file encryption, but is not exactly the same. 
Databases are, at some level, files on the system, and so can be encrypted to 
protect them. However, many database systems provide more granularity on 
what particular contents can be protected with encryption. Individual tables, 
columns, or records might be protected. Implementation details vary by data-
base provider, but the concepts are no different from file encryption using PGP. 
A symmetric key is used to encrypt the desired data, and that key is protected 
and stored using a key or password related to users authorized to view the data.

Disk Encryption
Disk encryption prevents a disk drive, such as a hard drive in a laptop com-
puter or a portable USB storage device, from booting up unless the user 
inputs valid authentication data. The standard process for booting up an 
operating system is that the first section of the disk, called the master boot 
record, instructs the system where to read the first file that begins the instruc-
tions for loading the operating system. There are then no special instructions 
needed for interpreting the contents of the disk—files are in plaintext by 
default. Installing a disk encryption technology modifies this process.

When disk encryption is installed, the contents of the disk—except the mas-
ter boot record and a small system that it loads—are encrypted using any 
suitable modern symmetric cipher by a secret key. The master boot record is 
modified to first load this small system, which can validate authentication 
information from the user. If the user authenticates successfully, the encryp-
tion key is unlocked. This small system, which varies per implementation, 
contains the master key for the device encrypted to one or more keys based 
on the authentication information, which can be a password, a fingerprint 
scan, a public key–based token, etc. When the valid authentication informa-
tion is read, it can decrypt the master key. This master key then remains in 
the computer’s memory for the duration of power-on so that the operating 
system can first read itself from the disk to boot up, and then any other disk 
contents the user requests during operation of the computer.

There are a variety of implementations of whole disk encryption. One open-
source implementation is Linux Unified Key Setup-on-disk-format (LUKS; 
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http://code.google.com/p/cryptsetup/), which is the standard for most flavors of 
the Linux operating system. Hardware-based disk encryption technologies 
also exist, in which the disk drive itself contains the small authentication sys-
tem as part of its firmware or device driver [27]. Software solutions such as 
LUKS are flexible and allow the defender to encrypt existing disks that are not 
specially built. Intuitively, there seems to be greater possibility for user mis-
configuration of software solutions because of this added flexibility, which is 
a potential problem. But in general, there are two weak points of disk encryp-
tion solutions:

1. If the computer is powered on, including in sleep mode, the disk 
encryption keys are available to an adversary who can access system 
memory.

2. It is only as strong as the authentication method used, and human users 
are known to select poor passwords if they are permitted to do so.

These weak points are not serious. They simply demonstrate that full disk 
encryption, like any other security strategy, is not sufficient in itself to pro-
tect data. Other strategies can be used in coordination with disk encryption 
to provide a more comprehensive strategy. In particular, file encryption as 
discussed earlier and strong user authentication as discussed in Chapter  7 
directly address these two weak points and help to formulate a comprehen-
sive resistance strategy.

ASYMMETRIC ENCRYPTION
Asymmetric encryption uses completely different elementary pieces and 
methods than symmetric encryption. There are no substitution and transpo-
sition steps. The methods are “asymmetric” because there are two different 
keys: one for encryption and one for decryption. This creates lots of good 
opportunities. There are two keys: the public key and private key. These are 
kept secret as the English meaning of their names implies: everyone can know 
the public key, and no one should know the private key but the owner. The 
two related keys together are known as a key pair. Public key cryptography 
was initiated by Diffie and Hellman [28], although the RSA algorithm was the 
first to implement the concepts. The Diffie–Hellman key exchange soon fol-
lowed, with their own implementation.

Use of a key pair permits some interesting and useful implementations 
and properties that are not available with symmetric key cryptography. If 
no adversary interferes, there are primarily two properties. First, a message 
encrypted by the private key can be read by anyone, but it demonstrates 
that only one entity—the owner of the private key—authored the message. 
Second, anyone can encrypt a message with the public key, but only the 

http://code.google.com/p/cryptsetup/
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owner of the private key can read it. These two features enable robust state-
ments about authentication without the complicated and fragile logistics that 
would be necessary to accomplish the same level of authentication with sym-
metric key encryption.

Asymmetric encryption is more resource-intensive than symmetric key encryp-
tion. For this reason, it is common to encrypt only a small piece of informa-
tion with the relatively expensive asymmetric operation. This small piece 
is a symmetric key that can be used to encrypt and decrypt the bulk of the 
information; it is usually called a session key. This method permits the com-
puter to generate a strong random key for use with the symmetric encryption.  
A further beneficial property is that each operation can use a different session 
key, and therefore if one section of data is compromised by cryptanalysis, the 
other parts or files are encrypted with a different key and so are not. Of course, 
if the asymmetric key pair is compromised, all the session keys could still be 
discovered. But compromise by attacking the key pair is essentially impossible 
when the plaintext is random strings such as session keys. The key manage-
ment cycle (see the next section) is the more vulnerable target.

Asymmetric encryption is based on operations in mathematics that are hard 
to reverse. There are a couple different candidates. The original method 
devised by Diffie and Hellman in the late 1970s is straightforward, even 
though the mathematics were obscure at the time [28]. We have already intro-
duced the basics in another context. All available asymmetric key algorithms 
rely on the modulus operator, which we encountered in our discussion of the 
Vigenère cipher. The modulus operation forces the result to be a whole num-
ber (no decimals or fractions), and also to be restricted to a certain range. 
So it creates a sort of unique set of numbers on which to do operations. For 
example, the only numbers that can result from anything mod 7 are the num-
bers 0, 1, 2, 3, 4, 5, or 6.

The Diffie–Hellman method involves the difficulty of finding inverses for cer-
tain mathematical operations on these novel sets of numbers. For example, 
addition and subtraction are inverses. In the mod 7 example, 1 + 6 = 7, but 
7 is not a possible number; 7mod 7 = 0, and so 1 and 6 are inverses for the 
addition operation. In the common set of numbers that are not restricted, 1 
and −1 are inverses. This result in mod 7 is different, but not hard to find.

Diffie–Hellman takes advantage of a different operation, raising numbers to 
an exponent, for which there does not seem to be any method to find the 
inverse except to try most of the possible options.3

3 The inverse of exponentiation is the logarithm: 23 = 8 and log2 8 = 3. Further, logb(bx) = x. Logarithms 
are well defined in sets made up from a modulus—there is an answer. Diffie–Hellman just takes 
advantage of the fact the answer is “hard” to calculate.
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For example, 23mod7 = 8mod7 = 1, but knowing that the base is 2 and the 
answer is 1, there is no known method to find the power was 3 without just 
guessing until the correct answer is found. There are a few careful aspects of 
how you select the numbers involved in the system, which are beyond the 
scope of this book. The interested reader may consult Katz and Lindell [1] or 
Stallings [2] for such details on how these mathematics can be used to create 
and exchange keys.

Other examples of asymmetric key cryptographic algorithms include elliptic 
curve, El Gamal, Digital Signature Standard (DSS), and RSA (for its inventors, 
Rivest, Shamir, and Adleman). Diffie–Hellman is the basis for El Gamal and 
DSS; the others use related but different mathematical problems. El Gamal 
and RSA can be used for encryption in their own right, rather than just key 
exchange. In practice, though, what they are usually used to encrypt is a sym-
metric key that protects the data of interest.

KEY MANAGEMENT AND DISTRIBUTION
All cryptography rests on one assumption: the key is secret. The beauti-
ful thing about cryptography is that a huge amount of information can be 
kept secret if only a small key is kept secret. This is also a danger, and the 
operational considerations of getting and sharing a secret key are significant. 
And unlike other aspects of cryptography covered so far, we will not come to 
some seemingly magical mathematical function in which we can place our 
trust. Key management and distribution are process management exercises. 
Although there are some cryptographic tools that can assist the process, in the 
end the policy on key management must be aligned to the organization’s risk 
tolerance and enforced with human involvement.

Key distribution is concerned with transporting a key from where it is gener-
ated to where it is used in a cryptographic algorithm. This might involve a key 
distribution center (KDC), which actually creates the keys, or a key transla-
tion center (KTC), which merely serves as a trusted broker for keys that are 
generated elsewhere. Key management is a larger process that includes the 
whole life cycle of each key used by the organization. Key management is 
generally considered to have several steps, including “ordering, generating, 
storing, archiving, escrowing, distributing, loading, destroying, auditing, and 
accounting for” keys [3]. Certain functions, such as escrow, need not be per-
formed at all. NIST publishes more detailed standards for key management 
that are binding for U.S. government executive branch organizations, but can 
also serve as a good reference for best practices more generally [5,29].

Two essential lessons from the NIST documentation are about key usage 
purposes and duration. For anyone designing a key management system, 
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it is recommended you read the whole document. Please. However, for the 
general audience these two lessons get at the heart of the way to think about 
resisting the adversary using encryption.

Keys can be used for many purposes, including encryption itself, but also 
authentication, key transport, random number generation, and others. A sin-
gle key should only be used for a single purpose [5, p. 45]. Using a key for 
more than one purpose can weaken the security services provided by one or 
both of those services by increasing the adversary’s ability to attack the key. 
Furthermore, the damage done if the key is compromised is greater because 
the key had multiple purposes. Finally, different key purposes should have 
different durations of time the key is active for legitimate use. Using keys 
across different purposes disrupts this duration-management task.

The duration of time that a key is available to users for valid use is called the 
cryptoperiod of the key. Keys used for different purposes should have differ-
ent cryptoperiods. The length of time a key is in valid use is influenced by a 
number of factors, including [5, p. 46]:

■ The strength of the algorithm being used to resist attacks.
■ The expected adversary access to the operating environment.
■ To the volume of data encrypted.
■ How long the data needs to remain protected from disclosure.
■ The purpose of the key.
■ The robustness of the process to install new keys.
■ The human cost of the process to install new keys.

A stronger algorithm means the key can be used for longer time periods. 
More access by the adversary means the key should be replaced more fre-
quently. Larger data volumes likewise require shorter key lifetimes. Shorter 
cryptoperiods increase security, in general, so the longer the data needs to 
remain protected the shorter the cryptoperiod should be. In this manner, 
each piece of data that needs to be protected for a long time may have its own 
key, so that compromise of one key does not compromise much data. Short 
cryptoperiods can be counterproductive, however. If the rekeying process is 
not robust but rather a manual, human-intensive process, operator error may 
be a much more serious concern to key integrity than anything else [5, p. 47].

There are several models for key distribution and several methods or tools for 
doing so. The primary cryptographic tool that enables large-scale key distribu-
tion is asymmetric key cryptography. Although key distribution can certainly 
be done without asymmetric key algorithms, it is impractical to do key distri-
bution on the web or any other large system without such algorithms.

The primary models for the key distribution architecture are either a cen-
tralized, oligarchical, or distributed architecture. Key distribution and 
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management on the Internet relies on a public key infrastructure (PKI). A 
PKI is comprised of all the hardware, software, people, and policies needed to 
manage keys. PKI is usually used to refer to the management in a centralized 
or oligarchic model, and usually includes a method of binding keys to identi-
ties using digital certificates, described shortly.

In a centralized architecture, users trust one computer or entity to negotiate 
and distribute keys on their behalf. This one entity is a single point of failure, 
and in general, this makes centralized architectures fragile, which is danger-
ous. An oligarchical model divides up this authority among a small number 
of entities with different areas of responsibility; however, authority is still 
vested in a few hands that have significantly different responsibilities than the 
average user. The way that Transport Layer Security (TLS) certificates are man-
aged for host identification on the Internet follows an oligarchical model. 
This infrastructure is described in more detail in the following section. In a 
distributed key distribution model, no user has more authority to negotiate 
keys than any other. PGP is a common example of this type of architecture. 
In both the TLS architecture and PGP, asymmetric key algorithms are used to 
distribute a symmetric key for the session.

In PGP, users trust other users based on a network of trust relationships. If 
Alice knows Bob, she can make this known by signing Bob’s PGP key and 
then publishing this. Keys happen to live on key servers that generous organ-
izations run for everyone’s benefit, but these key servers have no special 
authority. All the data about Bob’s key is self-contained within the key for-
mat. If Bob trusts Charlie, Bob can sign that key and publish it. Charlie can 
do the same for Dan. If Alice wants to send Dan a file, she can decide if she 
trusts Dan based on her policy about how far away Dan is from a key Alice 
has signed and trusts. In this example, Dan is three degrees away. Alice’s deci-
sion as to whether to trust him is based on her risk tolerance for the data she 
wants to send; there is no categorically correct answer as to whether or not 
she ought to.

COMPUTER IDENTIFICATION
An important task in the functioning of the Internet, or any large network, is 
to verify that the computer the defender is communicating with is the correct 
one. Early in the development of the Internet, this identification was implic-
itly asserted with the IP address. Even though there was no formal method 
protecting the IP address from modification or hijacking in the operation of 
the IP protocol, in the 1970s the network was a research network shared by a 
small enough number of people that they all could call one another on the 
phone. In this environment, it was adequate to know who the operation of 
an IP address was assigned to in order to trust that the connection was to that 
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computer. This implicit assumption worked its way into several early remote 
tools, such as rlogin and rcp (remote copy).

Implicit computer identification caused several security problems once the 
Internet grew large enough. The older remote-access programs (rcp and tel-
net) have been replaced by programs with more robust authentication that 
replicate the function, such as scp (secure copy). However, at the most basic 
level, the IP protocol has not been updated. It is too ingrained in the oper-
ation of the network to be easily changed. Efforts have been made, namely 
IPsec, to improve this situation, however, they have not been adopted on a 
large scale. In this environment, host identification is an important service 
that needs to be provided independent of the IP protocol.

Secure Socket Layer (SSL), the new version of which was renamed Transport 
Layer Security (TLS), is a common distributed computer identification proto-
col in use on the Internet. The original SSL protocol was developed privately 
by web browser pioneer Netscape [30], however, it was later standardized 
publicly by the IETF (Internet Engineering Task Force) as TLS [31]. When a 
URL (uniform resource locator) begins with https://, rather than just http://, 
this means “HTTP over SSL/TLS.”

TLS provides a number of security services besides computer identification, 
and the protocol does not require the parties perform the identification step. 
However, in practice, most of the services provided by the protocol require at 
least one computer to identify itself [31, p. 3]. The identification uses asym-
metric key cryptography. The crux of the work is done by a network of digi-
tal certificates. A discussion of computer identification would be incomplete 
without an understanding of the digital certificates. In some ways, the digital 
certificate infrastructure is the keystone of the system, and TLS is just a flexible 
specification for utilizing the certificates.

Digital Certificates
Digital certificates can come in many forms, but the most com-
mon is the X.509 certificate. The X.509 format is an ITU (International 
Telecommunication Union) standard, but the implementation for use on 
the Internet for identifying computers is standardized by the IETF [32]. This 
section will focus on the X.509 implementation for any details, but certifi-
cates are conceptually rather simple. A certificate links certain information 
together. The most important fields are a public key for use in asymmetric 
cryptography, a domain name, and an expiration date.

The fields in a certificate are all linked together because they are signed by the 
private key of some certificate authority (CA), which verifies the certificate as 
genuine. Anyone can use the CA’s public key to verify the certificate. Anyone 
with a certificate can use their private key to sign other certificates, which 
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users can verify as long as they can verify the matching public key. Users can 
do this so long as a chain of certificates leads back to a CA. To ground the sys-
tem, CA public keys come preinstalled in web browsers. The way Microsoft, 
Google, or Mozilla determine what CAs are preinstalled involves internal pol-
icies idiosyncratic to the browser author, but it usually involves the CA paying 
a recurring fee.

These CAs are then authorized to issue certificates (i.e., sign them with their 
private key) for other people or organizations. There are no official rules 
about how these certificates are issued. It is generally done by private com-
panies, and market forces drive the competition among them. Incentive for 
cost-cutting is not always a good motivator for secure practices. If there is a 
valid chain of signed certificates back to a CA, a website is considered secured. 
All this really means is that a person with access to the email address that was 
used to register the domain name for the website agreed to let someone pay 
for a certificate to be issued, and the computer who served the website has 
that certificate. Some companies used to force applicants to show up in per-
son, or receive mail at a physical address. However, this rigor is not required. 
This is not an awful model, but it has several opportunities for subversion.

A useful exercise is to investigate the number of CAs preinstalled in your 
browser. There are about 100, which is far more than most users need for 
their daily browsing. This has caused significant trouble in the past. The secu-
rity of everyone browsing the Internet is the result of the weakest link among 
these CAs. Weakest-link efforts are dangerous to rest security on, as compared 
to sum of efforts or best efforts, as discussed in Chapter 5 and Anderson [6, 
p. 229]. Even if a relatively obscure CA that mostly only provides services 
to Dutch users has the CA’s private key compromised, browsers in Iran or 
Washington, DC, can be redirected to a perfect forgery of any website by an 
adversary.

This is precisely what happened when DigiNotar’s private key was compro-
mised in 2011 [33]. The adversary was able to issue his or her own certificates 
as if they were DigiNotar. Unless the user noticed by a stroke of pure luck that 
DigiNotar had signed their Google login page instead of Thawte, the valid CA 
for the site at the time, there was no warning of the forgery. This permitted 
the adversary to steal credentials from users for a number of sites, since the 
users did not notice the forgery and input their credentials as if they were log-
ging in to the real site.

Forged certificates were issued for over 500 organizations, from Google to 
the intelligence agencies of the United States, United Kingdom, and Israel. 
All these organizations possibly had user credentials stolen. Further exac-
erbating the situation was that DigiNotar certificates could not be univer-
sally revoked—the company had legitimately signed several sites used by 
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the Dutch government to deliver critical services to its citizens. Revoking 
the DigiNotar certificate would invalidate these legitimate certificates at the 
same time as the forgeries. To give the Dutch enough time to provide alter-
natives, there was a browser patch issued to try to block the DigiNotar cer-
tificates being used on known-forged sites, and eventually the certificates were 
revoked. The company went bankrupt not long after, but the damage to many 
unwitting Internet users had been done.

Many of the CAs that come preinstalled in browsers will never be used by a 
user. This is because many of them specialize in business in one geographic 
area or for speakers of a particular language. One mitigation for attacks on 
CAs is to remove as many of the defaults as is feasible. However, this only 
reduces the risk, it does not eliminate the fundamental problem. Security 
based on a weakest-link architecture such as this gets weaker the more entities 
are added [6, p. 229], and as the Internet grows more, CAs are inevitable.

Transport Layer Security
TLS makes use of digital certificates in the handshake phase of the protocol. 
When the handshake is completed, the server should have presented a valid 
certificate to identify itself. The client computer can also be required to pre-
sent one, if the server requests it. At the end of the handshake the two com-
puters have also agreed on a symmetric key cipher to use to protect the 
session, as well as a session key to use. TLS guarantees that only the two com-
puters in the communication know the session key, and the selection of the 
session key cannot be influenced by a middle-person attack [31].

There are not any glaring problems with TLS itself. It can also be used by 
any application, not just web traffic, with relatively little modification to the 
application. This makes it a flexible solution to provide encryption and entity 
authentication for applications that are otherwise security-agnostic.

All of these items—CAs, TLS, certificates—as well as the policies and peo-
ple that implement them, make up the PKI of the Internet. The technology 
is sound, but without accurate certificates to identify the endpoints, a secure 
connection is not of much help in resisting attacks. Namely, an encrypted 
connection to the adversary instead of the intended target does not help. For 
this reason, a robust public key infrastructure that adequately ties public keys 
to real identities is extremely important. The existing PKI has shown weak-
nesses, not in the technologies themselves, but via attacks on CAs.

STEGANOGRAPHY
Steganography is the study of hiding messages [3]. This is quite different 
from cryptography, although related through the fact that both fields have 
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been used by spies for espionage. Where cryptography secures a message from 
being read by someone without the key, steganography hides the very exist-
ence of a message. Modern steganography does this by subtly manipulating 
bits with computers. There is a long history of steganography, just like there is 
for cryptography. Interested readers should consult Kahn [34] for the histori-
cal methods.

Much of modern steganography takes advantage of the fact that digital for-
mats for media files tend to contain more detail than the level at which 
human senses can perceive differences. Since these media, usually audio or 
images, are just stored as numbers, those numbers can be manipulated to 
store information in addition to information about the audio or picture [35]. 
But it need not. For example, readers of the print book will have a hard time 
reading this white-on-white message, however, anyone with a digital copy can 
highlight the text to read the message: xkcd.com/538/.

A secret message, photo, or letter to your mother or a web-browsing program 
are all encoded the same way in the end: in bits. These are written as a string 
of eight 1’s and 0’s, for example, 190 is 10111110 and 191 is 10111111. Letters 
are also represented this way; capital J is 01001010. So only using the green 
color, if we have a string of eight green pixels, all the same color, say green 
190, we can encode a J by manipulating the low-order bits. Low-order bits 
are the ones that change the color the least—that is, the ones to the right of 
the string, and the ones that differentiate between green 190 and 191. Instead 
of the picture having eight pixels of green 190 in a row, the steganographer 
would change the eight pixels to green 190, 191, 190, 190, 191, 190, 191, 
190. This changes the image very little, but hides the character J in the low-
order bit of these pixels.

There are various further ways to hide and obscure the message. It can be 
encrypted or compressed first, so it doesn’t immediately look like a mes-
sage in case some computer program is trying to find messages in pictures. 
The pixels in which the message is hidden can also be scrambled, so only 
the receiver knows how to reconstruct the message. But this is the gist. Audio 
steganography works similarly—the human ear cannot discern between  
1 millisecond of sound at 10,000 hertz and 1 millisecond at 10,001 hertz. 
Any steganography relies on the fact that the cover file (picture, audio, etc.) 
is much larger than the message to be hidden. A mouse may be able to hide 
behind a tree, but an elephant cannot.

The human senses are not as sensitive as digital representations of the world 
can be—this is the key behind digital steganography. Figure e8.5 displays two 
colors of green, each with their associated numerical values. In the common 
24-bit color scheme, each color of red, green, and blue has 256 (28) different 
values, for a total of 16,777,216 (224) possible colors. Figure e8.5 only takes 
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advantage of the green axis, and makes the colors four steps apart instead 
of one. Also keep in mind that each pixel of green would be between 1/60 
and 1/120 inches on a side when printed, making identification even more 
difficult. We picked green as the example because the human eye can detect 
the most different shades of green (this is why night-vision goggle output is 
viewed as green), to give the reader the best possible chance of discerning the 
difference.

The following example shows the use of steganography in a 24-bit bitmap 
file. The original picture is Figure e8.6, a 3.2-megabyte image. Using the 

FIGURE e8.5 
Two swatches of green color that barely differ. Steganography takes advantage of the fact that the human 
eye cannot detect this difference to hide information in the undetectable differences. 

FIGURE e8.6 
A 3.2-megabyte image of the Great Wall of China without any hidden information. Source: Photo by 
Jonathan Spring.
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open-source program SilentEye [36], encoding the text in 1 bit per pixel, the 
witches’ speech from Shakespeare’s Macbeth can easily be encoded. In fact, 
the Project Gutenberg text copy of the whole play is only 117 kilobytes. This 
text is encoded in Figure e8.7, with no visible change to the image. How far 
can this be pushed? Uncompressed, the complete works of Shakespeare are 
6.6 megabytes, twice the size of our original file. The text can be compressed 
to about 2 megabytes, which can still be encoded in our original image, how-
ever, it requires using 18 of the 24 bits per pixel in the image. This results in a 
noticeable degradation in the image, as seen in Figure e8.8, but then it seems 
a tall order to hide the complete works of Shakespeare in one 3.2-megabyte 
image of the Great Wall of China.

Steganography is not a particularly good resistance strategy for most modern 
use cases. Hospitals are not trying to hide the existence of patient records, 
they are trying to make sure only authorized personnel read them. Banks are 
not trying to hide the existence of transactions (regulations generally forbid 
that), but to prevent unauthorized modifications to transactions. And so on 
with most items for business uses. Furthermore, it is not generally possible 
to provide a mathematical estimation of how difficult a steganographic tech-
nique is to discover. It is possible to calculate such difficulties for cryptogra-
phy, the preferred resistance strategy for keeping information private. This 
provides a much better ability to anticipate and plan for risk than steganogra-
phy does, which is the most compelling reason to prefer cryptography.

FIGURE e8.7 
The same image, of the same size, but with the complete text of Shakespeare’s Macbeth hidden within 
the low-order 3 bits (out of 24) of the pixels of the image. 
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SUMMARY
Encryption is a broad topic in security that can support a variety of secu-
rity services. This chapter introduces the basic terminology and concepts, 
described methods for hiding information that is not ciphers, and introduced 
the function of modern ciphers by way of their historical predecessors. In a 
broader security strategy, encryption as resistance is best suited for resisting 
adversarial attempts at unauthorized access to data, whether that data is at 
rest or in transit. Negotiating and distributing keys is particularly difficult 
for symmetric encryption, however, asymmetric encryption provides an irre-
placeable tool to facilitate key distribution. The tool needs to be used well 
and appropriately; there is no silver bullet and administrative errors can still 
undermine the benefits of cryptography. Finally, some of the uses of cryptog-
raphy that support remote authentication are discussed, building on the con-
cepts of authentication for resistance introduced in Chapter 7.
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Chapter Review Questions
1. Differentiate between symmetric and asymmetric key encryption.

2. Draw the relationship between the elements in a cryptosystem for which terms are 
defined in the section “Encryption Concepts.”

3. What are the elements of key management?

4. What is a session key? Why do session keys improve security?

5. What is a brute-force attack?

6. What are the differences between file encryption and disk encryption? How are 
they similar?

Chapter Exercises
1. What is the difference between a code and a cipher? Which term, if either, does 

steganography fall under?

2. Find the list of certificate authorities preinstalled in your browser (in Firefox 
this is under something like Edit→Preferences→Advanced→Encryption→View 
Certificates). In your browser history, figure out which sites used HTTPS. Then 
figure out how many certificate authorities you have relied on during the browser 
history. Would it be sensible to remove some of the certificate authorities from your 
browser?

3. Attack the following ciphertext and discover the message: ENJ,NWXBRWBN,NAB
NMRWBQNOJLBBQJBBQNK,JRWQJABQNLXWARABNWLGXOLXUMYXRMPNIJ
UJWBC,RWP. See footnote4 for answer.

4 Answer: “We are not interested in the fact that the brain has the consistency of cold porridge, Alan 
Turing.”
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Resistance Strategies: Partitioning and  
Need to Know

CHAPTER 9

INTRODUCTION
The previous resistance chapters have discussed methods for authentication 
and for increasing the resistance of networks from attacks via encryption. This 
chapter covers how limitations on internal information flow can aid in reduc-
ing the effective attacks against networks. In general, there are two approaches 
to controlling information: restricting usage and restricting availability.

Restricting usage in information systems generally relates to restrictive infor-
mation formats, content, or encryption. Restricting availability involves 
ensuring that even authorized individuals have access to only the informa-
tion and services required to perform their assigned functions. This restric-
tion of information involves understanding what information and services 
are required for various job functions, and ensuring that the network traffic 
related to that information is segmented, but remains useful for the busi-
ness processes that demand it. The restriction of information also demands 
an understanding of the threats to the information, even threats from per-
sons either currently or recently given authorized access to the network or the 
information stored on the network.

This chapter starts with a discussion of adversaries, especially internal threats, 
covers management of these threats via technical and managerial means, 
and closes with discussion of the support for these means in an organiza-
tion’s information security policies. Organizations find it difficult to manage 

■ Insider and outsider threats
■ Internal security partitions
■ Need to know
■ Policy management
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persistent and knowledgeable adversaries, particularly when those adversar-
ies are already allowed some access to the infrastructure. Knowledge of the 
characteristics of these threats and balance in the approach taken in handling 
them provides options to address the difficulty.

On the morning of July 31, 1996, an employee of Omega 
Engineering, a parts manufacturing company, started one 
of the company’s production servers to download the tool-
ing programs to the manufacturing systems. Instead of the 
normal startup messages, the computer reported a “fix-
ing” message, and then it crashed. Employees rapidly dis-
covered that all of the software on that server, including 
all of the custom tooling programs used by Omega, had 
been deleted and purged. When employees searched for 
a backup tape, none could be located. Subsequent data-
retrieval efforts were unsuccessful—these critical programs 
were simply and thoroughly gone [1]. Suspicions quickly 
lead to a former network administrator who had been fired 
approximately three weeks earlier, Timothy Lloyd.

Timothy Lloyd was a self-taught administrator who had 
started with Omega Engineering as a machinist, and 
worked to learn and improve his skills progressively during 

his employment. At one time, he was the key administra-
tor and developer for Omega, responsible for implementing 
the production network. As Omega expanded, Lloyd had 
become increasingly displaced by individuals with higher 
qualifications. Eventually, Lloyd was relegated to managing 
the network backups, a low-status job. This caused signifi-
cant tensions between Lloyd and his managers, to the point 
where Lloyd was terminated [1].

Investigators eventually pieced together clues confirm-
ing the suspicions against Lloyd. Backup tapes were found 
marked with his name and key dates, but reformatted to 
remove any contents. Investigators linked to Lloyd frag-
ments they retrieved from the damaged server of a short 
program designed to destroy its contents. Lloyd eventually 
was tried and convicted for the damage he caused, but this 
did not reduce the millions in lost revenue and permanent 
loss of market share experienced by Omega Engineering.

OMEGA ENGINEERING VERSUS TIMOTHY LLOYD

OUTSIDER AND INSIDER THREAT

An insider is any individual (including an employee, contractor, customer, 
or vendor) who currently or recently has authorized direct access to private 
capabilities on a computer network or set of organization-owned comput-
ers. An insider threat is an insider who intentionally misuses or exceeds this 
authorized access in a manner that damages the organization that owns the 
network [2, p. 2]. An outsider is any user of the network resources that is not 
an insider—that is, a user who has only access to public capabilities or has no 
authorized access to capabilities.

Dealing with insider threats is both difficult and necessary. It is difficult, as 
insiders, by the authorization provided them, already possess the means 
to employ paths past most defenses of the organization’s information. 
Deception is largely inapplicable, since they have valid authentication infor-
mation, and they may have valid access to the encryption keys protecting 
the information. Defenses must not interfere with proper business activities 
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by authorized insiders. Managing insider threat is necessary, as all adversar-
ies will seek to act as insiders during some part of their attacks against the 
organization. Improving the resistance of the organization’s network to the 
progress of the adversary’s attacks, therefore, aids in managing adversaries as 
insiders.

Managing insider threats also involves positive management. Malicious insid-
ers rarely act without warning. Managers need to be alert to threatening state-
ments (even if expressed as theory or in humor) and to follow up on such 
statements by direct interaction with the individuals involved. Often express-
ing that such statements have been recognized as a potential threat is enough 
to head off further action, since now the individuals will know they are at the 
attention of management. Without such follow-up, many cases lead to ini-
tial experimentation with activities damaging to the organization, including 
small compromises, minor actions designed to “slip under the radar,” or brief 
escalation of privileges. If those experiments do not lead to identification, the 
insiders tend to grow bolder, and shift to more damaging actions. This cycle 
of progressively more damaging action continues until either the insider quits 
the organization, or the damage becomes so obvious that the organization 
must act against the insider. Once the cycle reaches this point, the organiza-
tion has experienced significant loss. Positive management and consistent fol-
low-up help to break the cycle before it reaches the point where termination 
(and/or prosecution) is required.

People act in many roles in an organization. A given person, particularly in 
a small-to-medium-size organization, may propose acquisition of a piece of 
equipment, participate in the approval of the purchase, place the order, receive 
the equipment, configure it, and employ it in his or her daily work. While 
this combination of roles is natural, it poses problems in combating insider 
threats. To fulfill all those roles, an insider requires broad access to the services 
of the organization, and to the data handled via those services. The breadth of 
access increases the number of ways an insider may both damage an organiza-
tion and conceal this damage. To manage access, organizations need to plan 
restrictions on the roles that an employee may perform, segmenting the chain 
of processing for critical actions so that separate individuals are deliberately 
involved. An example segmentation is diagrammed in Figure 9.1.

Specify
purchase

Employee 1 Employee 1

Employee 2

Collect
bids

Prepare
P. O.

Approve
P. O.

Place
order

Receive
purchase

Install
purchase

FIGURE 9.1 
Separation of roles. 
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Until 2013, Dawn Cappelli was a technical manager and 
founder of the CERT Insider Threat Center at the Software 
Engineering Institute of Carnegie Mellon University [3]. 
This center has explored a large number of case studies of 
malicious insiders, looking at both technical and behavioral 
indicators of their malicious activity, including prior to the 
activity (spotting the lead up), during the activity (assessing 
the damage), and after the activity (dealing with the con-
sequences). From this, the center has proposed a variety of 
security controls, including both technical and behavioral 
measures, to combat insider threats. The technical con-
trols include reinforcement of separation of roles and need 
to know in information systems. The behavioral controls 
include active management of technical personnel, and 
specific threat indicators, although not constructing a fixed 
profile of a malicious insider.

After graduating with a B.S. in computer science from the 
University of Pittsburgh, Dawn worked for Westinghouse for 
eight years developing software for nuclear power plants. 
Following that, she worked at the Software Engineering 
Institute (SEI) as an information technology manager, 
moved to the Carnegie Mellon University’s computing 
services as a manager of web development projects, then 

shifted to the Carnegie Mellon Research Institute (CMRI). 
While at CMRI, she headed a team that developed a diverse 
selection of security-critical systems, including information 
sharing on weapons of mass destruction, public epidemiol-
ogy, and a collaboration portal for teachers and educational 
consultants of special-needs children. It was during this 
time, realizing how important security was to such portals, 
that she began to be systematically interested in informa-
tion security. After CMRI, she moved to the SEI as a man-
ager, eventually focusing on the prevention, detection, and 
response to insider threats.

Dawn is an extremely outgoing individual who has a pro-
ductive management style, combining multiple view-
points to focus on various aspects of complex problems. 
She has been instrumental in the publication of numerous 
papers and reports on insider threats, and coauthored The 
CERT Guide to Insider Threats: How to Prevent, Detect, 
and Respond to Information Technology Crimes (Theft, 
Sabotage, Fraud), published in 2012. She has also served 
on the program committee of numerous conferences and 
technical boards. Dawn is quite passionate about her work, 
focusing on the importance of dealing proactively and 
effectively with adversary actions.

PROFILE: DAWN CAPPELLI

Separation of roles is achieved by examining the sequence of operations 
required to conduct transactions critical to the organization and deliberately 
arranging permissions so that no single individual—however trusted—has 
sufficient access to perform all of those operations on a transaction. In the 
purchasing example, the organization may choose that an individual who 
proposes equipment acquisition may not approve that acquisition or actually 
place the order. Separation of roles requires having multiple individuals who 
can perform each role within the organization, limiting the access of individ-
uals with respect to transactions, and monitoring the sequence of operations 
to ensure that the limits are maintained [2]. One method of limiting access 
involves partitioning the flow of operations on the organization’s network.

INTERNAL SECURITY PARTITIONS
Partitioning a network means logically or physically separating the computers 
on a network into disjoint groups. Each of these groups is called a network 
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partition. Partitioning an organization’s network to secure the flow of oper-
ations works by localizing both the data required for a transaction and the 
access to the operations that process that data [4].

Localizing the data means establishing a required storage location for the 
data, and placing the processing resources that use that data within the same 
network partition. In the purchasing example, an organization may localize 
the accounting data required to place an order by maintaining it on a dedi-
cated accounting server. Only resources that can retrieve the accounting data 
may issue a debit against those accounts. To localize the data, both the stor-
age server and the retrieval resources must be in the same network partition. 
One method of localizing the data uses a packet filter between the network 
partitions to limit data moving between the separate partitions [5].

Partitioning the organization’s network to separate the flow of operations 
involves localizing access to these operations, as well as to the data processed 
by them. This localization may take the form of only permitting key software 
to be installed on particular servers, then restricting access to those servers. 
This may involve blocking of shared authentication across network parti-
tions, restricting network file sharing, monitoring or limiting data transfers, 
and establishing an audit trail of information processing that can be used to 
identify the roles in which individuals process information and track or block 
separation of roles by an individual. There are several forms of journaling sys-
tems that can be used for this audit trail. In some cases, automated decisions 
about when an individual may be allowed to execute software may be deter-
mined by previous actions with the data. For example, having developed a 
purchase request against a particular account, an individual may be blocked 
from issuing expenditure approvals against that account until the request is 
approved or denied by other parties. The audit trail would tie the individual 
to the purchase request, and application proxies would consult the audit 
information before allowing approvals to be issued.

Partitioning the network does little good, however, without partitioning the 
trust that the elements of the network have in each other. If the trust remains 
global on the network, then adversaries may abuse the functional relation-
ships between computers to spread through the network unimpeded. A trust 
boundary is a network partition that blocks shared functional relationships 
between computers in the separate partitions. Partitioning trust has several 
elements [6]: authentication, privileges, object spaces, communication paths, 
and delegation.

Partitioned authentication requires explicit reidentification for actors employ-
ing resources across the trust boundary. For example, a user accessing a com-
puter on one side of the trust boundary from the other side must provide 
authentication information (possibly via a one-time-password scheme) to the 
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target computer; this authentication does not use any identity on the origi-
nating side. Partitioned privileges require explicit assumption of access rights 
when crossing the trust boundary, including relinquishment of privileges 
on the originating side that might form an unprotected path to the receiv-
ing side. These privileges are revoked at the end of the communication, and 
require reestablishment for each contact. Similarly, the trust partition also 
requires partitioned object spaces, in which device, file, and program identifi-
cation are not shared across the partition. Where objects must pass the parti-
tion, a specialized import/export process, known as a network guard, inspects 
the object and establishes its suitability for passage. In some cases, this guard 
may modify the attributes of the object to clear its suitability. For example, 
if shipping and receiving are partitioned from each other, and an outgoing 
order requires receipt of certain components, then the guard may permit 
information about the receipt status of the components to be communicated 
to the shipping partition, but not the purchase order, price, and shipment 
information from the receiving partition.

Partitioning communication pathways involves providing for separate physi-
cal links, or separate logical paths, through the network for each partition, 
with the logical paths often reinforced by encryption with separate key 
spaces. Communication partitioning reinforces several of the previous prop-
erties, and makes leakage across partitions more difficult. Partitioning dele-
gation requires that operations on one side of the trust boundary may only 
make requests to the other side of the trust boundary if explicitly authorized 
by an authenticated party on both sides of the partition. This prevents leakage 
across the trust boundary via covert channels. Figure 9.2 diagrams a computer 
network with trust partitions.

It is somewhat rare that all of these aspects of a trust boundary are fully 
enforced, but doing so provides for maximum protection against threats 
that propagate across the organization’s network. On the other hand, the 
redundant infrastructure and management effort that such partitioning 
requires makes it quite expensive, and as such, it is only warranted in critical 
conditions.

NEED TO KNOW
Shirey defines need to know as “the necessity for access to, knowledge of, or 
possession of specific information to support official duties” [7]. Need to 
know involves each piece of controlled information having a designated 
guardian who accepts requests for information and makes determinations 
on the need before releasing the information to the requesting individual. 
This system enforces separation of roles, as guardians require need to know 
(approved by a separate individual) prior to acting as guardians. Guardians 
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are also responsible for monitoring changes to the information and assuring 
appropriate integrity and availability of that information [8, p. 5-3-4].

To support need to know, organizations need to define key groups of infor-
mation used by employees in their specific duties. These groups are specific 
to operations involved in those duties, rather than broad groups. For the 
example shown in Figure 9.3, the need to know for purchase requests may 
be determined separately from the need to know for invoices. Purchasing 
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and receiving personnel may require access to approved purchase requests, 
but may not require access to invoices. Sales and shipping personnel may 
require access to invoices for shipment addresses and verification, but may 
not require access to purchase requests. Accounting personnel may require 
access to both invoices and purchase requests. Once the groups of informa-
tion are determined, then the organization maps groups to individuals deal-
ing with the information, and appoints guardians for each group responsible 
for enforcing need to know.

Need to know is systematically enforced in the military security model, used 
by multiple military organizations worldwide. In the military security model, 
individuals are investigated to determine a personal clearance level. The clear-
ance level documents the sensitivity level with which the individual may be 
trusted: only general information, information critical to one organizational 
mission, or information critical to multiple organizational missions. In mili-
tary terms, “critical to” is often defined as “possibly threatening loss of life 
and resources required for military operations.” In addition to the initial 
investigation establishing personal clearance level, individuals are reinvesti-
gated when they require access to more sensitive information, and periodi-
cally thereafter. Then, for the individuals’ specific official duties, their need to 
know determines which groups of information (in military terms, compart-
ments) they require access to.

Access is reviewed and approved by the guardian for the compartment. Before 
access, the guardian informs the individuals explicitly of the permissible 
operations on the information, and with any special processes involved in 
handling the information (a process referred to as read-in). When access is 
no longer required (due to a shift in responsibilities, change in position, or 
leaving the organization), the guardian informs the individuals explicitly of 
the termination of their access, required ongoing protections after access, and 
explicitly denied operations unless need to know is reestablished (a process 
referred to as read-out). Current authorized access to compartments is docu-
mented and tracked by the guardians involved [8].

POLICY MANAGEMENT
Policy, in information security terms, refers to detailed statements of what 
is allowed and prohibited with the organization’s information, along with 
statements of purpose and decisions as to what organizational positions are 
responsible for interpreting and enforcing these statements. In more gen-
eral terms, policy may also be used for “documentation of security decisions 
by the organization” [9], but this section will tend toward the more specific 
definition. In principal, information security policies are broadly similar 
to policies designed to deal with other sorts of threats to the organization  
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(e.g., threats to finances, logistics, or physical security). These policies are 
used to guide implementation and modification of the organization’s security 
infrastructure, allowing the organization to manage its risks. As risks change, 
policy must also change, but Chapter 10 deals with that topic as an aspect of 
change management.

Since policy provides the opportunity for systematic decision making, all 
security should be developed from policy. NIST defines three levels of infor-
mation security policy [9]:

■ Program (or enterprise) policy covers the broad scope of information 
protections across the organization.

■ Issue-specific policies focus on protections related to specific security threats 
or types of information.

■ System-specific policies specify protections related to specific processing or 
storage assets within the organization.

Together, these policies, with their implementing procedures and mecha-
nisms, need to provide an organization with a flexible but enduring structure 
for protecting their information.

In general, a policy statement covers four aspects of a security decision: pur-
pose, position, responsibility, and compliance:

■ Purpose covers the need and motivation for the policy statement, although 
this may be shared across multiple policies.

■ Position identifies the scope of the statement (to whom and what it 
applies) together with characterization of the mechanisms and procedures 
used to implement the statement.

■ Responsibility establishes who in the organization is responsible for 
interpreting, implementing, enforcing, and revising the statement.

■ Compliance describes acceptable and unacceptable practices associated 
with the statement, together with consequences (vetted by the 
organization’s legal and human resources departments) for infractions, 
along with other remediation actions.

In the example of information related to purchasing, a policy statement 
(issue-driven, in this case), might look something like the following:

To ensure appropriate use of organizational funds, all departments shall 
define and enforce a purchasing process for acquisition of information 
technology computers and software. This process shall mandate 
separate individuals acting to recommend and specify an acquisition, 
to approve the acquisition, and to receive, install, and configure the 
acquisition. No fewer than two individuals, acting separately, shall 
be mandated for these actions. Acquisition documentation and audit 
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journals shall be used to document the execution of the process and 
identify the individuals acting in the process. This documentation and 
audit journal content shall be reviewed by and found acceptable to the 
financial audit committee chair. The chief operating officer shall review 
and approve all department purchasing processes and the implementing 
mechanisms. In cases where this multiple-individual process is violated, 
the acquisition in question shall either be voided, or the acquisition 
costs shall be taken from the individual’s compensation, unless variance 
from the chief operating officer or chief executive officer is granted. 
Any such variances shall be reported to the board of directors for their 
review.

In this example (although admittedly generic), the purpose is briefly given 
in the opening clause. The position is given by the remainder of the first sen-
tence and the three sentences that follow. The responsibility description starts 
with “The chief operating officer,” the compliance section starts with “In cases 
where” and covers the rest of the clause. Together, these sections lay out a 
clear statement of protection, while providing both for reasonable variation 
within the organization and modification of processes over time as needs 
arise.

A generic policy life cycle is shown in Figure 9.4. Enterprise policies gener-
ally are introduced and refined as an organization is established and matures. 
Issue-specific policies are defined when new threats or capabilities are intro-
duced. System-specific policies are introduced along with the assets to which 
they apply. Often, such policies codify previous practice or record decisions 
consistent with such practice. Practices tend to be modified as conditions 
demand. Enterprise policies are retired when there is a major shift in security 
posture due to mergers or significant shifts in mission. Issue-specific policies 
are retired when the issue is no longer significant to the organization or when 
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one issue is subsumed by another. System-specific policies are retired when 
the system itself is retired.

Two factors largely drive the policy management life cycle: cost of policy 
change and risk to the organization. Changing policy can cost the organiza-
tion significant effort and lead to confusion of employees. Old policies and 
their supporting mechanisms need to be retracted or modified. New proce-
dures need to be instituted with the attendant training and mentoring. In 
some cases, the corporate culture of the organization needs to be modified 
to support the new policy. On the other hand, insider and external risks can 
also cost the organization large amounts of funds. Policy offers a roadmap to 
dealing with such risks, and the mechanisms and processes that implement 
the policy provide for systematic risk management. In some cases, particularly 
insider cases, dealing with the risk without a clear directive policy may itself 
be a risk to the organization, as incomplete or biased attempts to deal with 
the risk may leave the organization exposed and yet prevent management 
from recognizing this exposure.

SUMMARY
This chapter discusses a number of aspects for dealing with persistent and 
knowledgeable adversaries. Understanding these adversaries and the impor-
tance of resistance as a responsive strategy are key starting points. Use of sepa-
ration of roles, network partitions, and need-to-know information structures 
provides for resistance, and may support other strategies like recognition. The 
coverage of recognition starts in Chapter  11, which discusses how network 
traffic may be examined to identify actions by adversaries. Policy support, 
particularly when assessing remediation or punishment actions to be taken 
against individuals, is also a significant issue. Taken together, this chapter pro-
vides a broad basis for increasing the resistance of the organization to mali-
cious actions by persistent and knowledgeable adversaries.
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Chapter Review Questions
1. Briefly define the following terms:

 a. Insider
 b. Need to know
 c. Network partition
 d. Trust boundary
 e. Network guards
 f. Need-to-know guardians
 g. Information security policy
 h. Policy life cycle

2. What are two reasons that managing insider threats requires both technical 
controls and managerial follow-up?

3. What three protections to information does need to know (and the associated 
guardians) enforce?

4. What are two reasons why it is useful to define need to know in terms of small 
groups of information (e.g., invoices, purchase requests, sales contacts, production 
schedules, or assembly instructions) rather than in terms of larger groups of 
information (e.g., accounting, engineering, sales)?

5. What are two ways in which having a clear information security policy helps 
manage costs to an organization?
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Chapter Exercises
1. Examine the network in Figure 9.5 and identify three of the partitions present.
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2. Sales-O-Matic, a maker of online sales support software, has become concerned about 
the security of its product development plans. The accounting division is currently 
sharing cubical space with the programming staff, and the sales staff is working 
remotely. All of the company files are stored in a central cluster, with access rights 
given out on request by the programming staff administrative secretary. The company 
does have a firewall, but it does not currently cover the VPN traffic from the sales staff.
 a. What are three risks that you think this company is taking?
 b. How should the network be restructured to allow Sales-O-Matic to address its risks?
 c. What are three policy statements that need to be made to support addressing 

its risks?

3. Examine the network in Figure 9.6 and redraw the diagram to support partitioning 
the network.

4. Explain which of the following might be indicators of illicit insider behavior:
 a. The main file server spontaneously reboots, but comes up fine.
 b. Unexplained large email messages are sent to a web-based public email.
 c. Files associated with a core product development are encrypted with an 

unknown key.
 d. Large amounts of network scanning activity are detected.
 e. Organizational routers stop communicating.
 f. Organizational competitors start approaching key customers with underbids on 

contracts.
 g. Unexplained files are downloaded to organizational servers, but not corrupted 

or replaced files.
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5. What are three items that are missing in each policy statement?
 a. Based on reported threats, the chief operating officer shall communicate a 

statement of threat to the board of directors, together with an estimate of 
potential loss associated with such threats.

 b. The information security officer shall be responsible for specifying an approved 
file-import policy for the organization that shall be used for all data downloads.

 c. To comply with email retention regulations, the information security officer shall 
identify a retention solution that the chief operating officer shall implement and 
apply to the email of all company officers. Any email not participating in such 
a retention solution shall not be delivered or passed through the organization’s 
network.

6. What are three problems with the security of the following organization as 
described here: LazyLaxSec.com, a low-cost network application service, 
implements regular weekly backups of all storage. It offers SSL-encrypted 
connectivity as well as password-protected file transfers. All applications are 
regularly checked for viruses. A current set of IDS signatures is maintained to 
screen traffic on the company network. All user concerns are routed to the chief of 
engineering for evaluation and resolution.
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Change Management

CHAPTER 10

INTRODUCTION
Change management is the process by which changes to an installation are 
implemented in a systematic manner following a well-defined set of proce-
dures. The process applies to all hardware and software including network 
components. The procedures are typically based on a change management 
model or framework, such as ISO [1]. There are also models for the related, 
but distinct, field of configuration management, such as PMI [2].

■ Change management versus configuration management
■ Why use change and configuration management
■ Change management process
■ Minor or insignificant change process
■ Automation of the change process
■ Change management and security-related issues
■ Change management and software control issues
■ Change management documentation
■ Patch management
■ Configuration management system
■ Software configuration management
■ Configuration management and information assurrance
■ Configuration management and system maintenance
■ Automation of configuration management
■ Network configuration management system
■ Configuration management database
■ Certification for configuration management
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Organizational security technologies typically include intrusion detection, 
intrusion prevention, firewalls, event management systems, network access 
control, identity management, anti-virus software, security policies and pro-
cedures, and security standards. These common topics are covered in vari-
ous other chapters, and change and configuration management impact the 
operations of all of them. However, change and configuration management 
are rarely prominently considered. Change management and its associated 
process of configuration management are usually ignored as part of security 
measures and risk analysis [3].

In the real world, change management may range anywhere from an infor-
mal process, such as an email involving only some advance notifications of 
the intention to make a change, to a formal process that requires a change 
request form to be input and submitted to a change control committee that 
reviews and ultimately approves or disapproves the requested changes [4].

Effective change management allows organizations to introduce change 
into an information technology (IT) environment quickly and with mini-
mal service disruption and minimal security risk. Change management is 
responsible for the process of making changes in technology, systems, net-
works, applications, hardware, tools, documentation, and processes, as well 
as changes to roles and responsibilities. The primary goal of change manage-
ment is to ensure that everyone affected by a particular change to an IT envi-
ronment understands the impact of the impending change and to ensure that 
security and the operating environment are not negatively impacted. Since 
most systems and networks are heavily interrelated, any change made to one 
component of a system or network can have a major impact on other sys-
tems, networks, or parts of the same system or network. Change management 
attempts to identify all affected systems, networks, users, and processes before 
the change is implemented so that adverse effects, especially those related 
to security, can be eliminated or held to a minimum. Providing an effective 
change management process is one of the most challenging aspects for IT and 
network management.

The closely associated activity of configuration management is the process 
of handling changes to the configuration of a system or network so that it 
maintains its integrity over time. Configuration management implements 
the policies, procedures, techniques, and tools as required to manage change, 
evaluate proposed changes, track the status of changes, and maintain an 
inventory of system and support documentation as the system changes. 
Configuration management systems and associated plans provide both tech-
nical and administrative procedures for the development, implementation, 
procedures, functions, services, tools, processes, and resources required to 
successfully develop and support a complex IT environment.
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During system development, configuration management allows program 
managers to track requirements throughout the program life cycle, includ-
ing acceptance, design, implementation, operations, and maintenance. As 
changes are inevitably made to the requirements and design of any system, 
they must be approved and documented, thereby creating an accurate record 
of the system status. Ideally, the configuration management process is applied 
frequently throughout the system life cycle. Although there are several system 
life-cycle models, the major components of most of them are composed of 
the following phases:

1. Conceptual system design phase: The identified need is examined, 
requirements for potential solutions are defined, potential solutions are 
evaluated, and a system specification is developed.

2. Preliminary system design phase: Subsystems that perform the desired 
system functions are designed and specified in compliance with the 
system specification. Interfaces between subsystems are defined, as well as 
overall test and evaluation requirements.

3. Detail design and development phase: The development of detailed designs 
that bring the preliminary design work into a completed form based 
on the specifications. This work includes the specification of interfaces 
between the system and its intended environment, and a comprehensive 
evaluation of the systems logistical, maintenance, and support 
requirements.

4. Production and construction phase: The product is built or assembled in 
accordance with the requirements specified in the product, process, and 
material specifications, and is deployed and tested within the operational 
target environment.

5. Utilization and support phase: The system is used for its intended 
operational role and maintained within its operational environment.

6. Phase-out and removal phase: When continued existence of the operational 
need and meeting operational requirements and system performance is 
no longer feasible, the system is phased out and removed assuming the 
availability of alternative systems.

Change and configuration management may be utilized in all the life-cycle 
phases to minimize system and service disruptions, as well as security risks.

CHANGE MANAGEMENT VERSUS CONFIGURATION 
MANAGEMENT
Many project managers are not sure about the difference between a configu-
ration management system and a change management system. Most project 
managers know about a change management system, and change control, 
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but most of them are neither aware of nor have used a configuration manage-
ment system. Configuration management is primarily a version control sys-
tem for the products of a project or system. These products are referred to 
as configuration items, such as software modules, hardware devices, database 
tables, etc. A configuration is the identified and documented functional and 
physical characteristics of a product or service, or components of a system 
such as hardware devices and software modules. The work that is done as part 
of a project such as programming is considered a process. The change man-
agement system oversees how any change to the processes related to a pro-
ject should be done. The configuration management system oversees how any 
changes to a product’s configuration should be performed.

The following is an example of the difference between a configuration man-
agement system and a change management system. Suppose a software prod-
uct has been designed as a two-tiered set of software modules. This would 
be the configuration aspect of the software product and would come under 
configuration management. The actual process of writing code, testing, inte-
grating modules, making changes, etc. would be the process of making the 
product and would come under the control of change management. If it was 
decided to change the product from a two-tiered set of modules to a three-
tiered set of modules, this would come under the configuration management 
system since it is a change to the product configuration in terms of adding an 
additional component to the structure and relationships within the project.

WHY USE CHANGE AND CONFIGURATION 
MANAGEMENT SYSTEMS
Change in the IT world is inevitable because technology changes, businesses 
and services change, laws and regulations change, and users change (both 
productive users as well as hackers). Therefore, it is essential for any IT organ-
ization to have a change management plan and a configuration management 
plan in place and functioning. A change management plan documents how 
changes will be monitored and controlled. It defines the process for manag-
ing changes to a product like an accounting system. A configuration manage-
ment plan documents how configuration management will be performed. It 
defines those items that are configurable, those that require formal change 
control, and the process for controlling changes to such items. Basically, a 
change management plan is a generic plan that guides the project manager 
in terms of making any kind of change to a product, especially the ones that 
can impact the baselines (scope, time, security, cost), whereas a configuration 
management plan guides an IT organization in making changes that are 
specific to a project or service configuration [5].



Why Use Change and Configuration Management Systems 205

Why are change and configuration management important for system, net-
work, and information security?

1. New sources of risk or elevation in the severity of identified risks 
frequently accompany changes in software or hardware. Changes in an 
application, utility program, or operating system software can easily result 
in coding errors, as well as new functions that compromise security.

2. Changes in the configuration of systems and network devices can result 
in new paths of attack. For example, opening a Transmission Control 
Protocol (TCP) port on a firewall to help a colleague get access to a host 
within the internal network increases the likelihood of successful attacks 
via this port.

3. Without change control in effect, a system can be left open for attack since 
any person can make any desired change. Inconsistency in settings, code 
substitutions and revisions, and other areas increases attackers’ ability to 
gain entry since all an attacker has to do is discover and take advantage of 
an inappropriate setting or lines of code.

4. Change and configuration management decisions are the outcome of 
deliberations by multiple individuals who generally are chosen to be on 
a change control committee or board because they possess the necessary 
technical and management knowledge and skills that typically result in 
better change and configuration management plans than that of a single 
individual.

5. Change and configuration management also help prevent fraud by 
those inside an organization. Fraud is almost always performed by an 
individual changing something in a system, network, or application to 
allow some illegal action. Change detection processes implemented as 
part of a change management plan will discover the fraud changes and 
report them and lead to the identification of the fraud attempt.

6. Change and configuration management usually result in traceability 
that enables an organization to determine why a configuration is the 
way it is, or why certain changes were made and when the decision that 
resulted in the change was made. This is because change management 
and configuration management decisions are normally documented 
and archived. Traceability and good documentation can lead to better 
decisions about security measures.

7. Change and configuration management should be part of good 
information security governance.

It is becoming more commonly known that change and configuration man-
agement are important in minimizing security risks. As a result, organizations 
are creating more internal documentation related to information security 
policies and standards. Automated change management systems are not new 
to the IT community. Change management systems like BMC Remedy, HP 
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Service Manager, and AlgoSec’s FireFlow have been around for many years, 
and standards like Information Technology Infrastructure Library (ITIL) 
and ANSI-649-B-2011 [6] that include frameworks for change management 
are also available. The ITIL-process security management documentation 
describes how the structure of information security fits into the management 
of an organization. ITIL security management is based on the code of practice 
for the information security management system (ISMS) now known as  
ISO/IEC 27002.

Change and configuration management are concerned with four layers within 
an IT environment as shown in Figure 10.1. The network layer includes all the 
devices within a domain or organization and how they are connected. The 
host/server OS layer includes the operating system and associated utilities. 
The application layer includes all the application programs including those 
developed in-house and from third-party vendors. The data layer includes 
all files and databases within the IT environment. A change in any layer can 
have an impact on any of the other layers both in terms of security as well as 
services and functionality. For example, a change to a database can have an 
effect on how an application program functions, the performance and secu-
rity of a host/server operating system, or the performance and security of a 
network depending on the configuration of the IT environment and the pro-
cess of making changes. Likewise, a change in a host/server operating system 
can have an impact on a network as well as a functioning database.

Many organizations do not have an adequate process for managing change 
requests. Change requests are often received via emails and even at cof-
fee-break conversations. When existing change management systems are 
used, they are limited in their capabilities to enforce a workflow based on 
a request. That is, person 1 performs something based on a change request 

Network and Hardware

Host/Server OS

Application

Data

Change Impact

Change Impact

FIGURE 10.1 
Four layers of change and configuration management. 
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and the change request is then forwarded to person 2 who performs another 
part of the change request, and the change request is passed to others who 
make changes based on the request. In many cases, these individuals have no 
understanding of firewall rule sets, network topology, or the company’s secu-
rity policy and procedures, which leaves security operational teams with a lot 
of manual and error-prone work that needs to be done, such as:

■ Understanding which firewalls need to be modified to fulfill a specific 
change request that may be business related.

■ Analyzing the security and compliance implications of making the 
requested change, such as whether the organization still is payment-card-
industry compliant if they make the requested change.

■ Designing the change in an optimal manner, such as making use of 
existing firewall objects as opposed to creating duplicate objects that add 
even more complications to the system.

■ Ensuring that changes are performed as requested, and in some cases 
discovering changes that are performed without a formal request.

The goal of the change management process is to introduce change into the 
IT environment quickly, correctly, securely and with minimal disruption. 
In addition, such changes should be justified and approved. A basic com-
ponent of IT operations is to accept change and control it correctly. A good 
change management plan and associated processes should include a process 
for quickly implementing urgent changes required to quickly restore IT ser-
vices. Change management should be a core and regularly utilized part of all 
IT operations, not simply for a major upgrade. Configuration management 
should make sure that only authorized components are used in the IT envi-
ronment and that all changes are recorded in a configuration management 
database. Effective change management allows an organization to introduce 
change into their IT environment quickly and with minimal service disrup-
tion. Change management attempts to identify all affected systems and pro-
cesses before a change is implemented so that adverse effects and risks are 
minimized.

CHANGE MANAGEMENT PROCESS
To effectively manage change within an organization, the types of changes 
that might occur need to be categorized [7]. The types of changes might 
include:

■ Applying service packs
■ Adding new servers
■ Adding new users
■ Adding new administrative groups
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■ Changing routing group topology
■ Changing backup and restore procedures
■ Modifying and applying security policies
■ Changing a process or script utilized to administer servers
■ Adding new application programs
■ Modifying existing software modules (patches)
■ Adding network components
■ Adding new IP addresses
■ Changing firewall settings
■ Changing database management systems

These changes can be categorized as follows:

■ Application changes: Changes to any application code that is running on or 
linked to any hardware or software in the IT environment. These changes 
are typically made to enhance functionality or performance or to fix a 
known error in the IT application environment.

■ Hardware changes: All IT equipment installations, discontinuances,  
and relocations are controlled by the change and configuration 
management.

■ Visual image changes: Changes to the “artistic” presentation of web pages 
are not required to make entries into the change management system. 
Changes to “active” areas of the web page are required to use the change 
management procedure.

■ Software changes: The criteria for entering software changes into the 
change management process are based on the effect that the changes may 
have on IT resources. If the changes affect the system, users, or support 
staff, there is a requirement to enter it into the change management 
process. If the change is made for the exclusive benefit of the requester 
and if failure could not affect anyone else, that change would be exempt 
from the change management process. For example, a change made by 
a programmer affecting a procedure or a program under development 
on a test application requires no entry. However, when standalone test 
time is required on a production system, a request for change (RFC) form 
is required. Typically, software changes would include changes to the 
operating system, vendor-supplied program products (e.g., Visual Studio, 
Java, etc.), or common application support modules.

■ Network changes: All installations, discontinuances, and relocations of 
equipment used for IT teleprocessing communications are entered into 
the change process. This includes all routers, switches, and telephone 
lines, as well as personal computers if they are connected to the network.

■ Environmental changes: Environmental changes normally involve the 
facilities associated with the IT Installation. These facility changes include 
items such as air conditioning, chilled water, raised flooring, security, 
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motor generators, electricity, plumbing, and the telephony system for 
voice and data.

Changes can be categorized into four general groups, each requiring a differ-
ent type of change management process [7]:

■ Major change: Widely impacts the entire IT environment, and requires 
major resources to plan, build, and implement the change (e.g., 
upgrading all server hardware or network routers).

■ Significant change: Requires a large amount of resources to plan, 
develop, and implement the change (e.g., upgrading to a new database 
management system).

■ Minor change: Requires no significant resources and doesn’t have a large 
impact on the IT environment (e.g., applying a service pack).

■ Insignificant change: Follows a well-documented procedure that is not 
expected to affect the IT environment at all (e.g., adding a new user).

Some organizations and standards categorize requests for change as:

■ Level 1 (minimal risk)
■ Level 2 (low risk)
■ Level 3 (medium risk)
■ Level 4 (high risk)

These categories respectively match the insignificant, minor, significant, and 
major categories.

By thoroughly documenting as much of the IT environment and how changes 
should be made, it should be possible to maximize the number of changes 
that are categorized as minor or insignificant, and thus decrease the costs and 
impact associated with major hardware and software changes [7].

Change management involves the following activities:

1. A RFC is initiated.
2. The impacts (technical and business) of making the changes are assessed, 

which should include extensive testing and risk analysis.
3. The change is authorized or denied by teams and committees established 

by the organization to assess the change request and perform an impact 
analysis of making the change.

4. The change is given to a release management team for implementation.
5. The change is evaluated, verified, and documented.

A number of different personnel should be involved in change management. 
The following phases of change management demonstrate how organiza-
tional personnel would be involved [7]. The example phases that follow are 
based on a major change, such as upgrading all servers with new software.
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Phase 1: Request for Change is Submitted to a Change 
Manager
Everyone in an organization should be authorized to submit a RFC. In most 
major change situations, the RFC has probably come from a member of the 
IT staff. Other change sources include IT staff responsible for systems and net-
works, service-level managers who are planning to sell new services or upgraded 
levels of existing services, programmers who need to make a change to an 
application, or a third party who has changed their software, hardware, etc.

Phase 2: Change Manager Assesses the RFC
The change/project manager receives the RFC and records it in the change 
management database. The manager examines the RFC, making sure it is a 
complete and practical proposal. The manager also determines the tech-
nical feasibility of the proposed change and the impact it will have on the 
current IT environment including security vulnerabilities. In some organiza-
tions a cost-benefit analysis is performed as part of this phase. If the request 
is considered unsatisfactory, it is returned to the person who submitted the 
RFC (known as the requestor or initiator) with colored marks and comments 
indicating problem areas. Even if the change request is approved, the change 
manager may pass it back to the requestor or others (e.g., system engineer/
designer, software engineer/implementer, a manager/customer/user) for fur-
ther analysis and further documentation.

When the change request is determined to be satisfactory, and adequate infor-
mation is gathered, the change manager prioritizes the change. Changes can 
be prioritized as urgent, high, medium, or low, which determines how soon 
the change will be made:

■ Urgent: Changes that must be performed immediately and are quickly 
transferred to the urgent change process.

■ High priority: Changes that must be performed quickly to maintain system 
availability to a significant number of users.

■ Medium priority: Changes that are necessary to resolve problems, but are 
not of immediate importance, or only affect a small number of users.

■ Low priority: Changes that can typically wait until the next major release of 
software or hardware to resolve the problem.

Next the requested change needs to be categorized. In this case, a change such 
as upgrading all servers with new software would be judged to be a major 
change. The change manager will make a record of this prioritization and 
categorization in the change management database. During this phase, if the 
RFC is assessed as a minor or insignificant change, the change manager may 
pass the RFC directly to the change implementers responsible for implement-
ing the change. If the RFC is considered to be a significant or major change, 
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it will be passed to an appointed team or committee that will prepare imple-
mentation details for consideration in the next phase.

Phase 3: Change Request is Forwarded to an  
IT Executive Committee for Approval
An IT executive committee should have the responsibility of approving major 
changes in an organization. It will typically consist of senior members of the 
IT staff in an organization. It will decide if the change should proceed or not 
based on the information gathered in phase 2.

Phase 4: Change Request is Passed to the Change 
Advisory Committee for Scheduling
The change advisory committee should consist of a knowledgeable group of 
personnel who are familiar with organizational and business requirements, 
the user community, IT system and network technology, and the IT organi-
zation’s application development, testing, and support staffs. Typically, the 
change advisory committee includes the release, capacity, configuration, net-
work, security, and systems administration managers. In addition, the change 
manager may appoint others who have expertise relevant to a particular 
RFC and representatives from the group affected by the change. In this case, 
expertise with software and hardware is very important. The change advisory 
committee determines the upgrade schedule, according to the IT executive 
committee recommendations. The change advisory committee is also respon-
sible for monitoring the change and ensuring that all authorized changes are 
coordinated and scheduled to eliminate the possibility of one change nega-
tively affecting another change.

Phase 5: Change Request is Passed to the Change 
Implementers
The change implementers are responsible for planning and implementing the 
change once it has been approved and scheduled by the change management 
process. The change implementers will provide feedback to the change advi-
sory committee, the change manager, and in some cases the requestor during 
the implementation stage. However, the change manager remains involved at 
this stage, monitoring what the change implementers are doing and recording 
it in a database. After the change is complete, the change implementers will 
help the change manager and requestor assess the impact of the change.

This may appear to be a complicated process, but this ideally describes a 
major change to the IT environment. Minor and insignificant changes could 
pass through a simpler path, primarily involving the change implementer.
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Phase 6: Change Process Evaluation
After the change is implemented, the entire change management process 
from receipt of RFCs through implementation must be evaluated. This is 
done by conducting personnel interviews and reviewing documentation. 
The main objective is to evaluate the effectiveness of the change process. 
Unsuccessfully implemented changes should also be evaluated so that prob-
lems can be identified and corrected before additional changes are initiated.

Figure 10.2 illustrates the change management process, with the personnel 
responsible for each stage of the process. The process moves from left to right 
starting with the submission of an RFC, which is then assessed by the change 
manager as to technical feasibility, service impact, security risks, and cost ben-
efit. The change manager may pass the RFC back to the requestor for addi-
tional explanation or information. In some cases the change manager may 
deny the change. If the change manager determines that it is an urgent change 
it is sent through an urgent change process, otherwise it is sent to the IT exec-
utive committee for approval. If the executive committee approves the change 
request, it is sent to a change advisory board/committee for scheduling. The 
change advisory board/committee then passes the change request to those 
who will be responsible for actually implementing the change.

MINOR OR INSIGNIFICANT CHANGE PROCESS
The advantage of minor or insignificant changes is that individuals with 
less authority can be preassigned permission to perform them. This is a 
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FIGURE 10.2 
Change management process. 
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reasonable policy, because the changes are not likely to cause significant 
problems when implemented. The change manager, and in some cases the 
change advisory committee, will need to decide whether a particular change 
is minor or insignificant. However, once this is done and the nature of the 
change is documented, the change implementers can be preauthorized to 
perform the change [7].

A typical example of an insignificant change is the addition of a new user to a 
system. This type of change can be anticipated in advance, so the change manager 
should have already preauthorized the change implementer to be responsible for 
this change. The change should be adequately documented with appropriate set-
tings for factors such as disk quotas, password renewal intervals, etc.

Father of Computer Science, and Information Warrior

Alan Turing (1912–1954) was a British mathematician. 
He studied and worked at King’s College, Cambridge, 
from his undergraduate studies in 1931 until the British 
entry in WWII, when he began working full time for the 
U.K.’s Government Code and Cypher School (GCCS). At 
Cambridge, Turing no less than founded theoretical com-
puter science. And at Bletchley Park, the GCCS headquar-
ters, Turing’s cryptanalysis of German communications 
proved absolutely essential to the British victory.

Turing was a mathematician by training. There was no 
such field as computer science in 1936 when he proposed 
the concept of a “universal machine” that would read and 
follow simple instructions from a ticker tape. Turing was 
able to prove that this construction—just the set of instruc-
tions and the tape to read and write to—was sufficient to 
simulate any possible computation. This conception is now 
called a universal Turing machine. All modern computers 
are Turing machines. This concept provided the first foun-
dations of computer science.

Not only did Turing revolutionize the world, he also saved 
it. At Bletchley Park, with a jumpstart from the Polish 
Cipher Bureau, Turing and his colleagues Dilly Knox and 
Gordon Welchman invented a machine to break the German 
Enigma cipher. The machine to break the Enigma was 
called the bombe, first developed in the spring of 1940. The 
German navy used the cipher to send messages to subma-
rines patrolling the ocean attempting to disrupt shipping to 
the British Isles. The British had no technical answer to the 
superior German U-boats. However, the Enigma messages 

decoded by the bombes told the British where the U-boats 
were, so they could be avoided. Without this information, 
the Isles probably would have been cut off, sieged, and 
starved out. From 1940 to the end of the war, the German 
navy had no idea Turing and Bletchley Park were reading 
their messages. Turing also had four other major cryptana-
lytic breakthroughs after the bombe.

Turing was eccentric. During the war, he was known to run 
the 40 miles from Bletchley Park to London for meetings at 
a pace a marathon runner would respect. When there was 
not enough funding for the bombes, he and his colleagues 
wrote directly to Winston Churchill for funding. In 1950, 
he developed the concept of the Turing test, still relevant 
to artificial intelligence studies today, which proposes a 
method for testing whether machines can think or not. He 
studied biology, and wrote a chess program for computers 
that did not exist when he wrote it.

Sadly, Alan Turing’s promising life and career was cut short. 
Homosexuality was illegal in the United Kingdom in the 
1950s, and in 1952 Turing was convicted of “gross inde-
cency.” He was embarrassed, stripped of his military clear-
ance, prevented from pursuing most of his previous work 
(he now did not have the clearance to read his own papers), 
and subjected to hormone treatments. Eighteen months 
later, he committed suicide. Only recently, in 2009, has the 
British government acknowledged this mistreatment of 
one of the country’s biggest war heroes. The prime minis-
ter issued an official apology for Turing’s mistreatment in 
September 2009.

PROFILE: ALAN TURING
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AUTOMATION OF THE CHANGE PROCESS
Although both minor and insignificant changes may not take very long, they 
are among the most frequent and repetitive tasks and, therefore, the ones 
most likely to benefit from automation. To further reduce the amount of 
time spent on any of these change-related tasks, it may be more efficient to 
use automated tools. Using the example of creating a new user, the change 
advisory committee may have previously categorized users according to the 
type of user and established a set of parameters for each type. Administrators 
could then use a tool to create users by specifying their type.

Over time, the change management team could build or acquire a set of tools 
that are used to administer minor or insignificant changes. Similar tools 
could be used for implementing both major and significant changes as well. 
If change management tools and procedures are considered configuration 
items, then controlling their changes demonstrates the relationship of change 
and configuration management.

CHANGE MANAGEMENT AND SECURITY-RELATED 
ISSUES
An important and not always recognized part of effective change management is 
the organizational security infrastructure. Without careful control of who has the 
authority to make certain changes, the organization will have undocumented 
or unauthorized changes occurring. The organization should ensure that only 
authorized personnel have the capability to perform tasks that they have been 
specifically authorized to perform. It is well known that a number of system vio-
lations occur as a result of individuals inside an organization making unauthor-
ized changes. These unauthorized changes are typically either to avenge what an 
insider considers as being treated unfairly or simply greed for financial gain. But 
regardless of the reason, the change management system must be able to recog-
nize such change possibilities and protect against them occurring.

CHANGE MANAGEMENT AND SOFTWARE 
CONTROL ISSUES
Updating software represents a major change since it can have an impact 
on a large number of users. As a result, software updates should be carefully 
planned so that any update has an insignificant impact on users. Changes 
to operating systems have significant impacts, especially changing from 
Windows to UNIX, for example.

At times a change may be required immediately, and the change manage-
ment teams and committees will not have time for planning as carefully and 
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thoroughly as desired, but they should plan as much as possible. In an organ-
ization with distributed administration and technical personnel, a major 
challenge is to ensure that software updates are distributed with as little dis-
ruption as possible to users.

CHANGE MANAGEMENT DOCUMENTATION
Linking all of the change management phases together is needed for up-to-
date, complete, and accurate documentation. Without complete and accu-
rate documentation, the benefits of change management will not be useful 
to an organization. Complete and accurate documentation when implement-
ing recurring changes makes the process more efficient and effective. One of 
the major benefits of thorough documentation is that it can make a major 
or significant change seem more like a minor or insignificant change. Many 
changes are major or significant simply because they have never been made 
previously. But if there are documented standard procedures and a record of 
prior changes, as well as a thoroughly documented and up-to-date system 
and network configuration, it will allow the organization to avoid downtime 
and intervals of poor performance. It may allow the IT executive committee 
or change advisory committee to preauthorize certain changes for the future, 
thereby reducing the number of steps required to make the change the next 
time it occurs.

An organization should ensure that the entire process of change is properly 
documented in the change management database tables. The database should 
contain information about the change, including RFC status, schedule infor-
mation, and work orders. It is the responsibility of the change requester, 
change manager, and change implementers to make certain that the organi-
zation has complete documentation about the change. Change management 
should also work closely with configuration management to ensure that all 
changes to IT components are properly documented in the configuration 
management database, which is used to track the status of all components 
of the IT environment. It is not only necessary to have the change and con-
figuration management data available, it needs to be readily accessible by 
those who need it, it should be easy to search and retrieve data, and it should 
follow a standard form and format.

Two primary tools are used to manage the change request process. The RFC 
form is used to forward requested changes to the change manager as well 
as record the impact, resolution, and approval decision. The change man-
ager uses a change request database to track the status of change requests. 
Figure 10.3 is an example of a RFC form. This could be a paper form (to 
be avoided if possible) or an electronic form that the requestor is required 
to complete and submit. An electronic form and associated database is the 
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preferred context for documenting the data related to change and configura-
tion management [8].

The change request database is used to track the progress and status of a 
requested change. Figure 10.4 illustrates what a change request log printout 
might look like [8].

PATCH MANAGEMENT
A patch is software designed to fix problems with computer programs at 
the system and application level or its supporting data. This includes fixing 

Project Change Request Form

Change Request Description

Change Impact Analysis

Change Request Number

Change Description (Include impacted obectives, deliverables and any new objectives and deliverables)
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Priority

Impact Of Not Matching The Change

Impact on Project Requirements

Impact on Project Risk

Impact on Project Schedule

Impact on Project Budget Projection
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On Hold Denied
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Requirement Document Yes N/A By Date Comments
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Yes N/A By Date Comments
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High Medium Low
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FIGURE 10.3 
Sample Change Request Form using Washington State format. 
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security vulnerabilities, other bugs, and improving the usability or perfor-
mance of the software. Change management is critical to every phase of 
the patch management process. As with all system modifications, patches 
and updates are performed and tracked through the change and configura-
tion management systems. It is not likely that a patch management program 
can be successful without being integrated with the change and configura-
tion management systems. Patch applications should be submitted through 
change management and must have contingency and back-out plans in 
place. In addition, information on risk considerations for patches should be 
included in the change management system.

Patch management is an important part of change management, but has 
become increasingly important because of the increase of worms and mali-
cious code targeting vulnerabilities of unpatched systems, and the resulting 
cost incurred. Also, the regulatory compliance issues related to such things as 
HIPAA and Sarbanes–Oxley has caused organizations to provide better con-
trol over their information assets. The main objective of a patch management 
program is to ensure that software updates or fixes that are inevitable in mod-
ern applications are introduced expediently but also effectively, and mini-
mize the disruption to the system or other unintended consequences. A patch 
management system must also create a uniformly configured environment 
that is protected against known vulnerabilities in the operating system and 

Project Change Request Log
No. Requestor Date Change Request Description Impact and deliverables affected Status Status

Date
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Top,
High,
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FIGURE 10.4 
Change request log using Washington State format. 
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application software. Managing updates for all the applications and operating 
system versions used in an organization is complicated, and becomes even 
more difficult when additional platforms, systems and application availability 
requirements, and remote locations and personnel are involved [9].

Security and Patch Information Knowledge
A key component of patch management is the acquisition and analysis of 
knowledge and related information about security issues and patch releases, 
because IT personnel must know which security issues and software updates 
are relevant to the organization’s environment. Organizations should have 
personnel responsible for keeping up to date on newly released patches and 
security issues that affect the systems and applications in its environment. 
These personnel should be part of the change management process and 
should take the lead in alerting administrators and users about security issues 
or updates to applications and systems the organization supports and uses. 
A comprehensive and accurate configuration management system can help 
determine whether all existing systems are accounted for when researching 
and processing information on patches and updates. Ideally, an organization 
should have contacts with their operating system, network devices, and appli-
cation vendors to keep up to date on the release and distribution of informa-
tion about product security issues and patches.

Establishing Patch Priorities and Scheduling
Scheduling standards and implementation plans should exist as part of a 
patch management program and should include patch cycles. A patch cycle 
should be generated that guides the application of patches and updates to 
systems. This patch cycle is not specifically concerned with security or other 
major updates. It is intended to implement the application of standard 
patch releases and updates. This cycle can be time or event driven. Another 
patch plan cycle can deal with major security and functionality patches 
and updates. A number of factors are routinely considered when determin-
ing patch priority and scheduling. Vendor-reported criticality (e.g., high, 
medium, low) and known intrusions by malicious code are important vari-
ables for calculating a patch’s significance and priority.

Patch Testing
Patch testing starts with the acquisition of the software updates and contin-
ues through acceptance testing. The initial component of patch testing is the 
verification of the patch’s source and integrity. This ensures that the update 
is valid and has not been intentionally or accidentally altered. Digital signa-
tures or some form of checksum or integrity verification should be a part of 
patch validation. Once a patch has been determined valid, it can be placed in 
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a test environment. Many organizations use a subset of production systems 
as a test environment using department-level servers and IT programmer sys-
tems. The actual mechanics of testing a patch vary widely by organization. 
The approach taken to perform in-depth patch testing will be determined by 
system criticality, system availability requirements, available resources, and 
patch severity level.

Patch Installation and Deployment
Installation and deployment of patches is where the actual work of applying 
patches and updates to production systems occurs. The most important tech-
nical factor affecting patch deployment is the choice of tools that are utilized. 
In the past, many organizations have created custom solutions using script-
ing languages combined with available platform tools to distribute and apply 
patches. As the demand for automated updates has increased, tools have 
become available to help manage the patch application process. Many exist-
ing system management tools have the capability to perform software and 
system updates.

While applying patches they must be made in a controlled and predictable 
manner. The type of controls will be determined by organizational policy, 
such as restricting user rights (who has the authority to apply updates) and 
network-based access controls in terms of whether the system can access the 
resources needed to perform an update.

Patch Audits
Regular audits should be performed to assess the success of the patch man-
agement program. The patch audit phase of the patch management program 
determines what systems need to be patched for any given vulnerability and 
whether the systems that were scheduled for patching were actually updated. 
System discovery and auditing should also be part of the audit process. This 
will aid in identifying systems that are out of compliance with organizational 
guidelines. To supplement the audit process, controls should be in place to 
determine whether newly deployed and rebuilt systems are up to specifica-
tions in terms of patch levels. All patches and updates that are approved and 
installed should be integrated with the change and configuration manage-
ment systems, providing an audit trail to determine if they followed proce-
dural guidelines.

CONFIGURATION MANAGEMENT SYSTEM
Configuration management is a process for establishing and maintaining 
the status of a product’s functional attributes, physical attributes, and per-
formance along with its related requirements, design, and operational status 
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throughout its life cycle. Configuration management verifies that a system 
performs as intended, and is documented at an adequate level of detail to 
support its planned life cycle, which requires detailed recording and updat-
ing of information that describes an organization’s hardware, software, and 
network components. This information typically includes the versions and 
updates that have been applied to installed software packages and the loca-
tions and network addresses of hardware devices. Special configuration 
management software is commercially available. When a system requires a 
hardware or software upgrade, IT personnel can access the configuration man-
agement software and database to determine what is currently installed for 
the system. The IT personnel can then make a more informed decision about 
the impact of the upgrade.

The configuration management process is intended to facilitate the manage-
ment of system changes for such purposes as to enhance user and system 
capabilities; enhance applications, system, and/or network performance; 
improve reliability; support changes to the system (maintenance); extend the 
system’s life; reduce risk and liability; and correct system defects (fix bugs). 
The return on investment (ROI) of implementing a configuration manage-
ment system by an organization is reduced cost due to down time and the 
resources needed to make changes. The lack of a configuration management 
system, or its low-quality implementation, can be expensive for an organiza-
tion and possibly have catastrophic consequences like a complete failure of 
system components.

Configuration management documentation is primarily concerned with the 
functional relationships among parts, subsystems, and systems for controlling 
system change. It supports verifying that proposed changes are systematically 
analyzed to minimize adverse effects. Changes to a system are proposed, evalu-
ated, and implemented using a standard process that should ensure consist-
ency and requested changes are evaluated in terms of their expected impact 
on the entire system. Configuration management documentation verifies that 
changes are implemented as prescribed and that documentation of objects and 
systems reflects their specified configuration. A complete configuration man-
agement system includes provisions for the storing, tracking, and updating of 
all system information on a component, subsystem, and system basis [10].

A well-structured configuration management process ensures that documen-
tation for objects, such as requirements, design, test, and acceptance, is accu-
rate and consistent with the actual physical and logical design of the system 
objects. Without configuration management, the documentation may exist, 
but it may not be consistent with the object itself. Because of this, engineers, 
contractors, and management are sometimes forced to develop documen-
tation reflecting the actual status of an object before they can proceed with 
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making a change. This reverse-engineering process is expensive in terms of 
resources and can be eliminated using a good configuration management 
system. An example of the steps in the configuration management process is 
demonstrated in Figure 10.5.

The configuration management process for both hardware and software con-
figuration objects comprises five areas as established in the MIL-HDBK-61A 
[11] and ANSI/EIA-649 [10]. These areas are implemented as policies and 
procedures for establishing baselines and performing a standard configura-
tion management process. The basic areas to be included in the process are as 
follows:

■ Configuration management planning and management: A formal document 
and plan to guide the configuration management program that includes 
items such as personnel, policies, responsibilities and resources, training 
requirements, administrative meeting guidelines including a definition 
of procedures and tools, baselining processes, configuration control and 
configuration status accounting, naming conventions, audits and reviews, 
and subcontractor/vendor configuration management requirements.

■ Configuration identification: Consists of setting and maintaining baselines 
that define the system or subsystem architecture components. It is the 
basis by which changes to any part of an information system are identified, 
documented, and later tracked through design, development, testing, and 
final delivery. Configuration items incrementally establish and maintain 
the inclusive and current basis for configuration status accounting of a 
system and its configuration items throughout their life cycle.

■ Configuration control: Includes the evaluation of all change requests and 
change proposals, and their subsequent approval or disapproval. It is the 
process of controlling modifications to a system’s components.

Request for a
Configuration

Change 

Evaluate the
Configuration

Change
Request

Plan for the
Change

Implement
the Change 

Verify the
Change

Document the
change 

Feedback

Update the
configuration

documentation

Use configuration
documentation

FIGURE 10.5 
Steps in the configuration management process. 
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■ Configuration status accounting: Includes the process of recording and 
reporting configuration item descriptions and all variations from a 
baseline during design and production.

■ Configuration verification and audit: An independent review of hardware 
and software for the purpose of assessing compliance with established 
performance requirements and standards, as well as functional, allocated, 
and product baselines. Configuration audits verify that the system and 
subsystem configuration documentation matches their functional and 
physical performance characteristics before acceptance as an architectural 
baseline.

The critical information in a configuration management process is:

1. Version control: The capability to check the configuration information into 
a common repository, retrieve it to see any changes done by anyone, and 
maintain a complete version history.

2. Baseline and release information: Knowing when the last version was 
released, what the last version contained, and maintaining a baseline 
version to deploy at any time.

3. Audits and review: Conduct a periodic audit of the process to make 
sure that personnel are following the configuration management and 
versioning system correctly and consistently.

4. Documented process: Make sure that the documented process is agreed on 
by all team and committee members to guarantee compliance with the 
configuration management system processes.

5. Build, integrate, and deploy software: Utilize standard software that 
automates the work of building, testing, integrating, and deploying, and 
eliminates errors made manually from the configuration and change 
process. Standardization of the processes and their implementation are 
important.

Configuration Management Example
The example used here is for a large organization with over 100 locations, 
and the organization determines that it is time to upgrade the hardware and 
software at each location. This requires sending a team to upgrade the soft-
ware and hardware, and get the systems up and running in each of the loca-
tions around the country as soon as possible.

Assume each location has its own servers that need to be upgraded to stand-
ard versions of the system components, which may or may not all be compat-
ible with each other. The organization may have a good change management 
system in place that will track how changes to the requirements in terms of 
scope, time, cost, quality, etc. are to be managed. But the IT team will have 
a difficult time doing the upgrade if the organization does not implement a 
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good configuration management system, which tracks the different versions 
of the hardware, software, and compatibility across the versions that are run-
ning on each server. This will enable the IT team to know what is compatible, 
what is not compatible, and what has been upgraded or not.

This is a large project and the IT team is going to be spread out, and no single 
team member will be able to remember the different versions of each server 
specification and its upgrade status. With a proper configuration management 
system, all changes to the servers would have been tracked and team mem-
bers can easily find out what version is running where, on which server, its 
compatibility, and other attributes. This will make implementing and manag-
ing the project easier, more effective, more efficient, and less stressful for the 
IT team [5].

SOFTWARE CONFIGURATION MANAGEMENT
The software configuration management process is considered by many IT per-
sonnel as the best solution for handling changes to software projects. The soft-
ware configuration management process identifies the functional and physical 
attributes of software at critical points in time, and implements procedures to 
control changes to an identified attribute with the objective of maintaining 
software integrity and traceability throughout the software life cycle.

The software configuration management process traces changes and veri-
fies that the software has all of the planned changes that are supposed to be 
included in a new release. It includes four procedures that should be defined 
for each software project to ensure that a reliable software configuration man-
agement process is utilized. The four procedures typically found in a reliable 
software configuration management system are:

1. Configuration identification
2. Configuration control
3. Configuration status documentation
4. Configuration audits

These procedures have different names in various configuration management 
standards but the definitions are basically the same across standards.

■ Configuration identification is the procedure by which attributes are 
identified that defines all the properties of a configuration item. A 
configuration item referred to as an object is a product (hardware and/
or software) that supports use by an end user. These attributes are 
recorded in configuration documents or database tables and baselined. 
A baseline is an approved configuration object, such as a project plan, 
that has been authorized for implementation. Usually a baseline is a 
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single work product or set of work products that can be used as a logical 
basis for comparison. A baseline may also be established as the basis 
for future activities. The configuration of a project often includes one or 
more baselines, the status of the configuration, and any measurement 
data collected. A current configuration refers to the current status, current 
audit, current measurements, and the latest revision of all configuration 
objects. Sometimes a baseline may refer to all objects associated with a 
specific project. This may include all revisions made to all objects, or only 
the latest revision of objects in a project, depending on the context in 
which the term baseline is used.

Baselining a project attribute forces formal configuration change control pro-
cesses to be enacted in the event that these attributes are changed. A baseline 
may also be specialized as a specific type of baseline, such as

1. Functional baseline—initial specifications, contract specifications, 
regulations, design specifications, etc.

2. Allocated baseline—state of work products once requirements have been 
approved.

3. Developmental baseline—status of work products while in development.
4. Product baseline—contains the contents of the project to be released.
5. Others, based on individual business practices.

■ Configuration change control is a set of processes and approval stages 
required to change a configuration object’s attributes and to rebaseline 
them.

■ Configuration status accounting is the ability to record and report on the 
configuration baselines associated with each configuration object at 
any point in time.

■ Configuration audits are divided into functional and physical 
configuration audits. An audit occurs at the time of delivery of a 
project or at the time a change is made. A functional configuration 
audit is intended to make sure that functional and performance 
attributes of a configuration object are achieved. A physical 
configuration audit attempts to ensure that a configuration object is 
installed based on the requirements of its design specifications.

Configuration Management and Information Assurance
Configuration management is closely associated with information assur-
ance. Information assurance is typically defined as managing the risks asso-
ciated with the use, processing, storage, and transmission of information or 
data and the systems and processes used for those purposes. Information 
assurance includes protection of the integrity, availability, authenticity, non-
repudiation, and confidentiality of user data. In the context of information 
assurance, configuration management is the management of security features 
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and assurances through the control of changes made to hardware, software, 
firmware, documentation, and tests throughout the life cycle of an infor-
mation system [12]. This is sometimes referred to as secure configuration 
management (SCM), which includes baselines of performance, functional 
attributes of IT platforms, physical attributes of IT platforms, IT products, and 
the IT environment to determine the appropriate security features and assur-
ances that are used to measure the state of a system configuration. For exam-
ple, configuration requirements may be different for a network firewall that 
functions as part of an organization’s Internet boundary versus one that func-
tions as an internal intranet network firewall.

Configuration Management and System Maintenance
Configuration management can be used to maintain an understanding of the 
status of system components that can help provide a high level of serviceabil-
ity at a reasonable cost. Configuration management attempts to ensure that 
operations are not disrupted due to a system failure by exceeding the limits of 
its lifespan or functioning below required quality levels. In this context, con-
figuration management attempts to define which components of a system are 
available and operating up to standard. Configuration management can even 
be used to maintain operating system configuration files [12]. Examples of 
automated configuration control systems include products such as CFEngine, 
Bcfg2, Puppet, and Chef.

Automation of Configuration Management
A theory of configuration maintenance was worked out by Burgess [13,14, 
15], with a practical implementation on present-day computer systems using 
the software program CFEngine, which is able to perform real-time repair as 
well as preventive maintenance. Its primary function is to provide automated 
configuration and maintenance of large-scale computer systems, including 
the unified management of servers, desktops, embedded networked devices, 
mobile smartphones, and tablet computers.

One of the main concepts in CFEngine is that changes in computer configu-
ration should be carried out in a convergent manner. This means that each 
change operation made should have the characteristic of a fixed point. Rather 
than describing the steps needed to make a change, the CFEngine language 
describes the final state in which to end up. The CFEngine agent then ensures 
that the necessary steps are taken to end up in this policy-compliant state. 
Thus, CFEngine can be run many times and whatever the initial state of a sys-
tem happens to be, it will end up with a predictable result. CFEngine sup-
ports the concept of statistical compliance with policy, meaning that a system 
can never guarantee to be exactly in an ideal or desired state, rather one con-
verges toward the desired state by best effort, at a rate that is determined by 
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the ratio of the frequency of environmental change to the rate of CFEngine 
execution. Thus, if the system environment changes one time every day (e.g., 
a system update) and the CFEngine is run every two days and completely 
accommodates the changes, the ratio is 1:2 or 0.5 as to having the system in 
the ideal state.

Chef is another popular configuration management software tool written in 
Ruby and Erlang. It uses a pure-Ruby, domain-specific language (DSL) for 
writing system configuration “recipes” or “cookbooks.” Chef was written by 
Opscode and is released as open source under the Apache License 2.0. Chef is 
a DevOps tool used for configuring cloud services or to streamline the task of 
configuring a company’s internal servers. Chef automatically sets up and mod-
ifies the operating systems and programs that run in data centers. Chef can be 
integrated with cloud-based platforms, such as Rackspace and Amazon EC2.

Traditionally, Chef is used to manage GNU/Linux and later versions run on 
Microsoft’s Windows platform as well. The user of Chef writes recipes that 
describe how Chef manages server applications (e.g., Apache, MySQL, or 
Hadoop) and how they are to be configured. These recipes describe a series 
of resources that should be in a particular state, packages that should be 
installed, services that should be running, or files that should be written. Chef 
makes sure each resource is properly configured, and automatically discovers 
data points of the system. When used in a client-server model, the Chef client 
sends various attributes about a node to the Chef server. The server uses Solr 
to index these attributes and provides an API for clients to query this infor-
mation. Chef recipes can query these attributes and use the resulting data to 
help configure a node.

Understanding the current state of a system and its major components is 
an important element in preventive maintenance. Serviceability of a system 
and its components is critical to an organization and is defined in terms of 
the level of usage a component has had since it was acquired, since it was 
installed, since it was repaired, over its life, and other maintenance-related 
factors. Understanding how near the end of its life each system component 
is has been a major undertaking by IT personnel involving labor-intensive 
record-keeping until recent developments in software that support this func-
tion. Many types of components use electronic sensors to capture data that 
provides live condition monitoring. This data is analyzed on board or at a 
remote location by computers to evaluate its serviceability, and increasingly 
its likely future state using algorithms that predict potential future failures 
based on previous examples of failure through field experience and mode-
ling. This is the basis for predictive maintenance.

Availability of accurate and timely serviceability and maintenance data is 
essential for a configuration management system to provide operational 
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value, and a lack of this data can often be a limiting factor to the usefulness 
of a configuration management system. The consumers of this data have 
grown more numerous and complex with the growth of programs offered by 
original equipment manufacturers (OEMs). This data is designed to offer an 
operator guaranteed availability of maintenance data, but makes the situation 
complex with the operator managing the asset but the OEM taking on the lia-
bility to ensure its serviceability. In such a situation, individual components 
within an asset may communicate directly to an analysis center provided by 
the OEM or an independent analyst.

NETWORK CONFIGURATION MANAGEMENT 
SYSTEM
A network configuration management system is similar to a software configu-
ration management system but is the process of acquiring, organizing, and 
maintaining information about all the components of a computer network. 
When a network needs repair, modification, expansion, or upgrading, the 
network administrator can refer to the network configuration management 
database to determine the best course of action. This database must con-
tain the locations and network addresses of all hardware devices, as well as 
information about the programs, versions, and updates installed on network 
computers.

Network configuration management tools are vendor neutral or vendor 
specific. Vendor-neutral tools, by far the more common, are designed for 
networks containing hardware and programs from multiple suppliers. 
Vendor-specific tools usually work only with the products of a single com-
pany, and can offer enhanced performance in networks where that vendor 
dominates. Many network configuration management tools use the Simple 
Network Management Protocol (SNMP) standard [16].

The major advantages of a network configuration management system 
include:

■ Systemizing the processes of maintenance, repair, expansion, and 
upgrading.

■ Reducing configuration errors.
■ Eliminating downtime.
■ Increasing network security.
■ Making sure that changes made to a device, software, or system don’t 

adversely affect other devices, software, or systems.
■ Reverting to a previous configuration if change results are unsatisfactory.
■ Documenting and saving the details of all network configuration changes.
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CONFIGURATION MANAGEMENT DATABASE
A configuration management database (CMDB) is a storage facility of infor-
mation related to the components of an IT installation. It contains details 
of the configuration items, sometimes referred to as objects, in the IT infra-
structure. Although database facilities similar to CMDBs have been used by 
IT departments for some time, the CMDB stems from ITIL. In the context of 
ITIL, a CMDB represents the authorized configuration of all the significant 
components in the IT environment. A CMDB helps an organization under-
stand the relationships between these components and track their configu-
ration and changes made to the configuration objects. The CMDB is a basic 
component of the ITIL framework’s configuration management process.

A CMDB contains data describing the following entities:

■ Managed resources, such as computer systems and application software
■ Process artifacts, such as incident, problem, and change records
■ Relationships among managed resources and process artifacts

Relationships among the configuration items are of the highest importance 
and the most difficult to determine and create. Figure 10.6 illustrates a sim-
ple example of the types of items/objects in the CMDB and the relationships 
among them. All relationships are bidirectional using foreign keys in the 
database tables.

Hardware –
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FIGURE 10.6 
CMDB item relationships. 
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The contents of the CMDB should be managed by a configuration manage-
ment process and serve as the foundation for other IT management processes, 
such as change and availability management. With good configuration, the 
CMDB is an essential part of an organization. It is essential that it be backed 
up regularly so that it can be recovered to the point of failure.

Concepts for building a CMDB can use the management information base 
(MIB) model, which also has the objective of providing logical models of the 
IT infrastructure and has a long history in the area of systems management [17].

CERTIFICATION
In Chapter  16 certifications for information assurance are discussed. That 
chapter also discusses some of the pros and cons of certification. However, 
there are several certifications specific to configuration management that are 
useful to mention here. Formal training and certification for configuration 
managers is available from sources such as:

■ Configuration Management Process Improvement Center (CMPIC) offers 
configuration management training and certification (http://cmpic.com/)

■ Configuration Management Training Foundation offers certified 
international configuration manager (CICM), certified international 
software configuration manager (CISCM), and certified configuration 
management professional (CCMP) certifications (http://www.cmtf.com/)

■ Institute of Configuration Management offers five levels of certification 
(http://www.icmhq.com/)

SUMMARY
Many information security models are struggling to keep up with the chang-
ing business and technology environment due in part to the nature of today’s 
system infrastructure. Current system infrastructures require constant change 
due to device customization, application enhancements, fixing security risks, 
cloud computing, and constant hardware and software upgrades. This forces 
system and network components to become context dependent and adaptive 
to support emerging requirements and minimize threats. Change manage-
ment systems in conjunction with configuration management systems can 
help improve system and network security as the nature and complexity of 
requested changes continue to vary greatly.

The risk attributed to each change has become increasingly more impor-
tant. Existing change and configuration management processes often rely on 
incomplete risk analysis leading to ineffective security. Patch management is 
part of the change management process and is highly important since patches 

http://cmpic.com/
http://www.cmtf.com/
http://www.icmhq.com/
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to software at all levels occur frequently and must be considered as possible 
security risks. A well-defined change management process in conjunction 
with a highly structured configuration management plan and associated pro-
cesses can improve system security and information assurance. In addition, 
by leveraging automated solutions that detect difficult-to-determine weak-
nesses in security resulting from system and network changes, organizations 
can move security from being reactive to proactive in mitigating risks.
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Chapter Review Questions
 1. Name three things that organization security typically includes.

 2. What is one thing that is typically missing in organizational security?

 3. Effective change management allows organizations to introduce change into an 
IT environment using what two criteria?

 4. What is the primary goal of change management?

 5. What is configuration management?

 6. What are the phases of a system life cycle?

 7. Name one automated change management system.

 8. What does ITIL stand for?

 9. Name four types of changes that occur in an IT environment that should be managed.

10. What is an RFC?

11. What are the four general categories for grouping changes?

12. What is one of the major benefits of thorough and complete documentation of the 
change management processes?

13. Name three types of critical information in a configuration management process.

14. What is information assurance?

15. What is a CMDB?

16. Describe how a change in an application program could compromise the security 
of an entire system.

17. What security issues are involved in installing a new database management 
system such as SQL Server or Oracle?

Chapter Exercises
1. Describe how change and configuration management can help prevent fraud.

2. Use the forms in Figures 10.3 and 10.4 to make and log a hypothetical change 
request in a system that you use regularly.

http://refhub.elsevier.com/B978-1-59749-969-9.00010-9/sbref6
http://refhub.elsevier.com/B978-1-59749-969-9.00010-9/sbref6
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Network Analysis and Forensics

CHAPTER 11

INTRODUCTION
This chapter begins the first of four on strategies for recognizing when an 
attack has penetrated the defender’s resistance. This chapter focuses on 
human-driven network-based analysis. Chapter  12 considers automated 
detection in the form of network-based intrusion detection and prevention 
systems (NIDPSs). Chapter  13 changes focus from the network to the host 
and discusses both recognition and forensics after an attack has been recog-
nized. Finally, Chapter 14 discusses data integrity and recognition based on 
various properties of the data that can be location-independent.

There are several benefits to network-centric recognition strategies. This is 
true of both manual and automated analysis; this chapter focuses on manual 
analysis, because every automated rule was at some point discovered and ana-
lyzed by a human, probably in response to an incident. The techniques and 
procedures described in this chapter are likely to be performed due to some 
suspicion that something is wrong, either as part of the incident response 
process (see Chapter  15) or due to public reporting or news coverage of a 
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common problem. This chapter describes some tools and policies necessary 
to enable such retrospective analysis.

Much of the preparation process for establishing a network traffic analy-
sis and forensics capability is a set of practical trade-offs about what the 
defender can reasonably expect to detect with a particular detail level in their 
sensor architecture and inspection. Before discussing a variety of inspection 
and analysis options in more depth, the chapter begins with an overview of 
OSI-model protocol layers and what information is available at each layer to 
frame the discussion.

The remainder of the chapter discusses these levels of analysis, along with the 
practical trade-offs they include, such as processing time and storage space. 
This discussion echoes that in Chapter  5 regarding the resources necessary 
for various network-based frustration technologies, such as packet filters and 
proxies. Along with the details the chapter provides some example tools or 
uses for each specialization.

INTRODUCTION TO THE OSI MODEL
The Open Systems Interconnection (OSI) model is a way to divide up the 
problem of communicating between two remote computers. The abstract 
model has seven layers, and each layer has certain functions that should be 
performed by the service at that layer [1]. Further, each layer needs only know 
about the layer below it, and needs to only worry about providing reliable 
information to the layer above it. This structure makes the communication 
structure modular and flexible. For instance, a web application does not need 
to know if it is being transmitted over radio waves, fiber optics, or copper 
phone lines, because the application (web) is more than one layer removed 
from the transmission media. If the web application did need to know this, 
communications over the Internet would be too complicated.

In practice, the implementation of communications protocols does not 
strictly align with the OSI model. OSI was developed by the International 
Organization for Standardization (ISO) as ISO 7498, and has some support 
from the International Telecommunication Union (ITU) as the X.200 series. 
However, much of the Internet infrastructure standards have been developed 
by the Institute of Electrical and Electronics Engineers (IEEE) and Internet 
Engineering Task Force (IETF), which do not strictly abide by the OSI model 
in their protocol definitions. An introduction to how the Internet actually 
works using the IEEE and IETF protocols is covered in Chapter 3.

Nonetheless, Internet protocols are roughly arranged to follow the OSI 
model, and regardless, it provides a useful framework for thinking about the 
different layers of abstraction in Internet protocols. Once the reader has a 
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handle on these abstractions, understanding the trade-offs for network analy-
sis at different network architecture layers is easier.

Figure 11.1 summarizes the seven layers of the OSI model. There are some 
features of network communications that are not explicitly represented in the 
model, such as management and security. Conceptually, these can be applied 
in different ways at each layer. This discussion will leave these aspects aside. 
Layer 1 deals with the physics of how to transmit information reliably on a 
medium, such as copper or radio waves. Layer 7 is transitioning data on the 
host computer to a format for the user or his or her application. The interme-
diate layers are steps along that process.

Each layer has some control information to accomplish its task. For exam-
ple, layer 3 is responsible for logical addresses of endpoints; IP addresses 
can be considered the layer 3 header. Layer 2 is responsible for transmitting 
data between each computer along the way. So to make a layer-2 frame, the 
machine adds a media access control (MAC) address and some other infor-
mation to the IP datagram. IP and MAC addresses are not defined in or 
related to the OSI model, but conceptually this is where they fit.

At each network hop, the router strips off this layer-2 information, reads the 
layer-3 information, decides where the next destination is to move the data 
toward the desired endpoint, prepends new layer-2 information, and resends 
it. This process of adding addressing and other information around the data 
is called encapsulation. A similar encapsulation process, with different details, 
happens every time data is passed from one layer to the layer above or below 
it. Figure 11.2 displays this process.

Through several layers of encapsulation, decoding, and reencapsulating, 
data is transmitted across the Internet. Different network devices and net-
work security devices strip off different numbers of layers to do their job. A 
rough schematic of this process is displayed in Figure 11.3. As a general rule, 
the more layers a device has to read and process, the more computationally 

Name of Data Layer Summary
7. Application From network process to application process
6. Presentation Encryption, convert to/from host-specific representations
5. Session Manage sessions between applications between hosts

Segments 4. Transport End-to-end connections and reliability
Packets/Datagram 3. Network Logical address for end-to-end delivery, routing to logical addresses
Frames 2. Data link Physical address for one-hop delivery
Bits 1. Physical Transmission and signals on physical medium

OSI Model -- a summary

Processed
on Host

Data, Messages

Processed
on Network

FIGURE 11.1 
The seven layers of the OSI model, the term for data units of that layer, and a short summary of the 
functions of each layer [1]. 
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expensive that process is. Switches only understand up to layer 2. Routers 
only need to understand up to layer 3. Application proxies need to under-
stand all seven layers. This is also true of human analysts. If the analyst is just 
looking for communication between IP addresses, the task will be simpler, 

Application header and trailer

Data

Data

Session header and trailer

Transport header and trailer

Link header and trailer

FIGURE 11.2 
The general idea behind encapsulation. When each header and trailer is added or removed, the layer 
treats the data in the darkened area as mere data and passes it along, even though it may have header 
and trailer information for other layers. 

Source computer

Layer 7

Layer 1

Physical network connections

National information flow up and down layers as information is transmitted across a network, 
according to the OSI model

Proxy Router
Destination
computer

FIGURE 11.3 
Sample transmission of data from one host to its destination across the network, as viewed by what OSI 
model layers are involved in each step. Note repeated encapsulation and processing of data units as the 
data traverses different layers. 
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both cognitively for the analyst and computationally for the computer assist-
ing, than piecing back together a whole application from what was seen on 
the network.

The next discussion provides starting points for those who might manage 
analysts. The remainder of the chapter will start the discussion of network 
analysis with information available at lower layers of the OSI model. This 
focus is perhaps unorthodox. On smaller networks, analysts can often start 
analyzing whole packets without too much trouble. However, the discussion 
will focus on structures that can help defenders find their way through a com-
plex problem, from general (lower layers) to more specific (higher layers). 
This process of starting in quick broad strokes, characterizing, and drilling 
down when indications of specific problems are found helps analysts be suc-
cessful. The appropriate technical and policy frameworks also need to be in 
place to support this analysis architecture. There is a cost to supporting analy-
sis architecture, and to extract value from this expenditure it is important the 
rest of the organization understands the analysts’ capabilities.

ANALYSIS FOR MANAGERS
Not everyone in an organization is an analyst, and more people than just the 
analysts need to benefit from the results of analysis. For those who will not 
be performing analysis but managing those who are, an important item to 
know is what questions one can reasonably ask an analyst and expect a useful 
answer. There is not one single set of reasonable questions; different ques-
tions are more or less reasonable with different classes of tools. This chap-
ter discusses tools and what information they provide to help guide these 
expectations.

The following sections are roughly organized such that later sections describe 
techniques that use information from higher layers in the OSI model. This 
organization is necessarily rough because the Internet protocols do not 
strictly adhere to the OSI model. However, the general idea of trade-off holds: 
as one inspects traffic in more detail, the analyst trades precision for breadth. 
More detail equates to analyzing more layers of the model. On small net-
works, an organization might afford equipment to provide both. On larger 
networks, the analysts and managers must jointly decide if precision or 
breadth is the priority; different preferences may be possible at different lev-
els of the organization. If these choices are made cohesively, subunits of the 
organization may be able to prioritize precision while an organization-wide 
team can prioritize breadth—both organizationally and temporally—storing 
multiple years of records. Such specialization provides better organizational 
defense.
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Each analysis focus allows different questions, as the following sections 
describe. However, not every question can be answered, no matter what 
technology and sensors are deployed in the organization. Management can-
not expect analysts to perform feats from Hollywood any more than Indiana 
Jones represents the average life of an archaeologist. A more subtle point is 
that Google has not only spent an unbelievable amount of money, but a dec-
ade of work from most of the leading experts and textbook authors on the 
topic to develop its search capability and infrastructure. Security analysts can-
not be expected to answer questions or provide network situational awareness 
with the ease of an Internet search engine unless the organization has made a 
similarly intensive decade-long investment.

There are questions that no amount of engineering support can provide an 
answer to. The most frustrating questions are often the most simple. Perhaps 
the top of the list is “Who sent this?” or, relatedly, “What country did this 
come from?” The key to understanding why these questions are not sensible 
to ask is to understand that the Internet is a logical addressing scheme, not 
a physical one. An IP address is not bound to a computer or a country any 
more than a person named John must have short red hair. The method that 
is used to distribute IPs gives this illusion, and there are some bureaucratic 
structures that try to pin a certain IP to a certain locality, but none of that is 
built into the logical addressing structure of the Internet. As such, the Internet 
protocols are happy to oblige any attacker who wants to work around these 
bureaucratic assumptions. Furthermore, as discussed in Chapter  5, the 
attacker can use a previously compromised host as a proxy to anonymize his 
or her actions, so there is no reason to believe that the external IP in a com-
munication is actually the final endpoint or the attacker’s IP, even if we could 
know where this IP was located.

The people and computers who are playing by the rules and being good 
citizens may not evade the IP location structures, providing an illusion that 
Internet protocols are accurately geolocated. However, network security 
analysis is primarily concerned with those who are not playing by the rules. 
Therefore, questions about where something came from or where it went are 
less productive than questions about which internal resources were affected 
and what behavior or attacks were observed. The precision of the information 
about a particular attack and the breadth of information about all attacks will 
vary based on the analytic capability.

FLOW-LEVEL ANALYSIS
Network flow is a relatively abstract method of working with network data. 
It is mostly concerned with information abstracted from layer-3 and layer-4 
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headers (e.g., TCP/IP suite headers). Cisco created flow as a data format for 
routers to report high-level, condensed status information about the traffic 
traversing a network. The IETF eventually adopted this data format as a stand-
ard router reporting format [2].

A flow is a summary of all the packets identified by a set of properties. For 
example, a common method is to group all the packets in one direction from 
the same source IP and port to a particular destination IP and port, on an 
IP protocol—for example, Transmission Control Protocol (TCP) or User 
Datagram Protocol (UDP)—together into one flow. When the conversation is 
terminated, such as with a TCP FIN packet (a packet with the finished flag set), 
or after some configured amount of time, the flow is closed and the router 
exports it. The flow includes many statistics about the related set of packets—
for example, number, total bytes, duration, and sometimes such items as a 
guess about what application protocol was used in the communication—but 
not the packets themselves.

One feature of network flow is that it can quickly and concisely tell the ana-
lyst that IP address 10.0.0.1 communicated with 10.0.0.2, sent 1 megabyte, 
used the port usually associated with web traffic, and did so in less than a sec-
ond. If the analyst does not have any context for what IP 1 and 2 are, this may 
not be helpful. So the human analyst must be flexible about incorporating 
context from various sources to make flow data meaningful.

For example, the Swiss CSIRT (computer security incident response team) 
publishes IP addresses of known command-and-control (C2) servers [3,4]. 
Hosts in the defender’s network should not communicate with these IP 
addresses. If complete conversations are observed, then the defender’s 
machines are almost certainly infected; botnet C2 servers usually do not have 
benign uses. Network flow is a convenient resource to investigate such que-
ries. The query is relatively fast, and the content of the communication is less 
important than that the communication occurred at all. Additionally, since 
flow condenses years of traffic, data can be stored and investigated once such 
malicious addresses are known. This historical perspective allows the analyst 
to trace back to evidence of the initial problem; it is not uncommon for com-
promises to go undetected for months or even years, and so such historical 
records are often necessary to piece together what happened [5–8].

SiLK (System for Internet-Level Knowledge) and Argus are two common 
open-source network flow analysis tool suites. Both are under active devel-
opment and have active communities of users. Sincer 2004, there is even an 
annual conference focusing on open-source network flow analysis, FloCon. 
The interested reader can find a variety of good network flow–related material 
in the past proceedings at www.flocon.org.

http://www.flocon.org
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METADATA ANALYSIS
Metadata is data about data [9]. This can be used to contextualize network 
data, or some metadata is useful to analyze in its own right. Metadata comes 
from a variety of sources, and one can expect to learn very different things 
from different metadata. Some examples of metadata include the following:

■ Application label of what application seemed to be running in a 
flow [10].

■ Domain names that were hosted on an IP address at the time traffic was 
captured.

■ ID of intrusion detection and prevention system (IDPS) alerts triggered by 
network traffic or flow.

■ Users logged in to a system at the time traffic was captured.
■ Uniform resource locators (URLs) extracted from an email message.
■ Autonomous system numbers (ASNs) offering routes to an IP address at 

the time traffic was captured.
■ User-agent strings in an HTTP transaction.

In some ways, metadata is the result of application-level analysis applied to 
another context than that in which it was derived. Domain name system (DNS) 
information is a good example of this. To extract the name–address mapping 
from DNS there has to be the capability to monitor it at the application level. 
However, as far as metadata about IPs generally is concerned, it does not matter 
who sent the DNS query, just what the contents are. In this way DNS analysis 
can provide metadata about what domains are hosted on what IPs. DNS anal-
ysis as application-level analysis would be about what computers asked what 
questions, which is a different analysis and provides different insights.

One example of a rather complex analysis that provides metadata for the 
whole network is to do “network profiling using flow” [11]. If the organiza-
tion has a flow-monitoring capability, one can do this analysis to construct a 
profile about how IP addresses have behaved in the past. This provides meta-
data for other analysis, since IPs can be tagged with labels like “DNS client” 
and “NAT/Gateway.”

Sometimes, abstracted data is not the analyst’s choice but rather the lawyer’s. 
Some amounts of data are considered too sensitive to be collected without 
cause. The extent to which this is true varies by jurisdiction. For example, the 
U.S. Department of Homeland Security issues privacy impact assessments 
(PIAs) about what is acceptable for security analysts to capture on U.S. gov-
ernment networks. This includes network flow and passive DNS, but not full-
packet capture unless there is a reason. However, a vetted intrusion detection 
system (IDS) signature alert is considered sufficient cause to capture a small 
amount of the subsequent related packets [12].
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If enough metadata has been collected it can be analyzed. This is usually a 
task for interorganizational groups like coordination centers and information 
sharing and analysis centers (ISACs) since these groups are collection points 
for information sharing. In general, when information is collected from mul-
tiple organizations patterns can be discerned that the individual organizations 
would not be able to discover on their own, since they lack the context of the 
other organizations. Information sharing is also the only way an organization 
can determine if an attack was a specially targeted attack, because no one else 
will have seen the attack. This information is itself further metadata. It is impor-
tant to determine what attacks are targeted because these represent attacks from 
more determined adversaries who are not merely opportunistic attackers.

Some organizations share their collected intelligence back out to the public. 
These resources are usually more casual blogs and websites rather than for-
mal scholarly articles. The following are a sample of some useful (network) 
security context–related blogs, as of 2013, which the reader will likely find 
helpful to read occasionally:

■ Krebs on Security (http://krebsonsecurity.com/)
■ CERT Coordination Center blog (http://www.cert.org/blogs/certcc/)
■ Swiss CSIRT blog (http://www.abuse.ch/)
■ Securelist, a collaborative blog with multiple respected authors (https://

www.securelist.com/en/blog)
■ Dark Reading, cyber-security news (http://www.darkreading.com/)
■ For more, there is a list of 20 security-related blogs at http://www.veracode.

com/blog/2012/02/top-20-security-blogs/

In general, analysts should be encouraged to spend some time reading about 
current threats and security trends. The point of metadata is to help analysts 
contextualize the data. There is some context that cannot be fit neatly into a 
tag on a flow, such as what the particular exploit-of-choice of a certain organ-
ized crime group is this week. Such information does often find its way to 
publication through various blogs and casual postings.

Metadata is useful, especially if the analyst knows where it came from and how 
it was generated. In many cases, this is derived from application-level analysis, 
both within the organization and data shared from other organizations.

APPLICATION-LEVEL ANALYSIS
Application-level analysis is about analyzing the data transmitted by an appli-
cation as the application would have interpreted it. This is a resource-intensive 
type of analysis in several regards. To capture it, the device has to traverse all 
seven layers of the OSI model, including possibly decrypting data, which 
requires computing time. Further, there needs to be a different application 

http://krebsonsecurity.com/
http://www.cert.org/blogs/certcc/
http://www.abuse.ch/
https://www.securelist.com/en/blog
https://www.securelist.com/en/blog
http://www.darkreading.com/
http://www.veracode.com/blog/2012/02/top-20-security-blogs/
http://www.veracode.com/blog/2012/02/top-20-security-blogs/
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parser for each application to be analyzed. One tool, such as Wireshark, can 
utilize these parsers together, but this is additional overhead. The payoff for 
this effort depends on the application, but as mentioned in other chapters, the 
most popular applications are those likely to be the target of application-level 
analysis. The following are good candidates:

■ HTTP
■ DNS
■ Email
■ Kerberos (perhaps within Microsoft Active Directory)
■ BGP (Border Gateway Protocol)1

■ TLS (Transport Layer Security)2 connection information and certificates

Analyzing each of these applications in detail allows the analyst to extract 
information that is otherwise unavailable. This approach requires appropriate 
monitoring at the relevant servers, network edge, or both, depending on the 
application and whether the goal is to collect information about internal or 
external computers. Selective application-level analysis can provide benefits 
over blanket full-packet capture since it potentially eliminates a lot of noise 
from the data by extracting just the features of the application that an ana-
lyst finds interesting. The other side of this coin is that if the analyst is not 
consulted in the development of the system, or as analytic goals change, the 
system may not collect the correct information.

A mature analytic group within an organization will want to ask questions of 
all of these applications for various reasons. Each provides some information 
that only it can provide. However, that does not mean that throwing all of 
these application data sources at a novice analyst capability will instantly pro-
vide situational awareness and actionable intelligence. The opposite is more 
likely—novice analysts will be overwhelmed by the avalanche of different 
information types. The analysis will have to be tailored to the organization 
itself, and the human analytic capability will also need to grow up with the 
organization to some extent. For this reason, organizational memory and low 
staff turnover are important goals; a reasonable expectation might be that it 
would take an analyst two to five months to understand how to fluently ana-
lyze each particular application. Each of flow, packet capture, IDS logs, and 
so on has a similar learning curve. Therefore, supporting people is still one of 
the most important steps in ensuring quality application-level analysis, and 
analysis in general.

2 TLS is not technically an application, but runs at what could be called layers 5 or 6 of the OSI model.

1 Although BGP is a method of determining how IP addresses are routed, it is also an application that 
runs on TCP/IP; by default it listens on TCP port 179 [13].
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SIGNATURE ANALYSIS
Signature analysis is, most simply, looking for something that is already 
known to be suspicious or malicious. Usually the term applies to an IDS 
inspecting full-packet and application data and comparing it to known signa-
tures, producing alerts. Network IDSs are the topic of Chapter 12, so we will 
leave that description aside for now. Human analysts can use signatures in a 
few ways: testing, as metadata, hunting, and campaign detection.

Before signatures are installed in an IDS, they should be tested. This pro-
cess is a special case of change management, as described in Chapter 10. The 
producers of a signature are probably good at determining that the signa-
ture has a high true-positive rate: that it detects what it is supposed to detect. 
Signatures should be tested before deployment because the false-positive 
rate—that is, erroneous alerts—will be different for each environment. As dis-
cussed in Chapter 12, too many false positives can render a system useless.

More interesting is to use the fact that some particular trace of traffic matched 
a known-malicious signature as metadata for other analysis. If this capability 
is designed well, the analyst can ask for details such as “Show me all the traf-
fic flows that matched the most recent flash zero-day exploit signature.” Such 
questions help the analyst orient him- or herself faster to recognize which 
attacks succeeded and which the host managed to resist.

Skilled analysts will be able to go hunting for evidence of attacks that have 
evaded all the automated detection and recognition systems. Part of this 
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process is the rather fuzzy process of looking for behavior that is outside the 
accepted normal behavior of machines on a network. This knowledge of what 
is unacceptable behavior is more complex than what a machine can usu-
ally bring to bear, because it depends on context and inferring intent to an 
extent that machines have not been able to match human capabilities. It also 
requires an analyst with detailed knowledge of both how the Internet pro-
tocols are intended to be used and how they are used in practice. Any one 
tool or monitoring capability is probably insufficient to allow an analyst to 
hunt down intrusions. A hunting capability within an organization is expen-
sive, but it is an important investment if the organization is being specifically 
targeted by attackers. So far, persistent human attackers can always outsmart 
machines, so the only way to find them is with other persistent humans look-
ing to defend the network.

Detecting campaigns against the organization is related to the task of finding 
persistent human attackers. If an analyst detects 50 distinct attack events, it is 
important to know if those attackers were by 15 different entities or 1. The organi-
zational response to attacks by 15 distinct entities should be different than if there 
is 1 entity that is so tenacious and successful. The best public example of cam-
paign identification is Mandiant’s tracking of APT1 (advanced persistent threat) 
as an element of the People’s Republic of China armed forces [5]. Campaign 
detection relies on certain attackers using certain signature tactics, techniques, and 
procedures (TTPs). Attackers cannot really avoid this; having no pattern is itself a 
pattern. For example, the TDSS (aka Alureon) botnet randomizes certain charac-
teristic startup communications to avoid signature detection, which itself can be 
used as a signature to detect its startup communications [14].

FULL-PACKET CAPTURE
Full-packet capture is any technology that records every bit that goes over the 
wire for later inspection. The results are often colloquially referred to by their 
file extension: pcap.3 This is the most voluminous network analysis option; 
even a rather modest 100-megabit link—a good and common residential 
connection in 2013—could fill up a terabyte of hard drive space in just 22 
hours. A common corporate link of 10 gigabits could fill the same space in 
less than 14 minutes. As discussed before, many if not most intrusions are 
not detected for weeks [8]. Retention of sufficient packet capture data so that 
it can be analytically useful is a challenge. On the other hand, packet capture 
is the only way to reconstruct the exact details of an attack, which makes it an 
important tool.

3 Various pcap files are available for free for training or research. For an index, see http://www.netresec.
com/?page=PcapFiles.

http://www.netresec.com/?page%26equals;PcapFiles
http://www.netresec.com/?page%26equals;PcapFiles
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Unfortunately, network payload traffic is often obscured. Defenders advo-
cate network encryption, such as discussed in Chapter 8. Attackers have taken 
this lesson as well, and often enough it is precisely the data that would make 
pcap valuable that is encrypted. In some cases this encryption can be avoided, 
such as by forcing the hosts on the network to use a proxy and simply hav-
ing the proxy record the traffic in its unencrypted state. The proxy breaks the 
connection into two distinct connections, and since network encryption only 
protects data in transit and not at the endpoints, the proxy can observe it. 
However, attackers can still obscure data from proxies, such as by encrypting 
or encoding the data twice.

Once packet capture data is stored, and assuming it has the desired data in an 
unencrypted format, it can still be challenging to find the important data. 
Searching through a large collection of pcap files has been likened to finding a 
needle in a needle-stack. Most of the solutions to this problem involve using one 
of the OSI analysis levels as an index into the pcap itself. Network flow particu-
larly lends itself to this task, since it contains a condensed form of all the same 
data as full-packet capture. Broad queries can be done using flow tools, and then 
when more detail is needed all the packets that were part of the flow in question 
can be pulled out. Some flow meters provide the option to retain and index the 
pcap files when it processes packet capture to produce network flow [10].

Full-packet capture remains an important tool for analysts, but it needs to be 
filtered before it is stored. Judicious full-packet capture, rather than blanket cap-
ture, provides useful information. Do you really need a complete copy of every 
streaming video that the employees have watched for the past three weeks? 
No. Realistically, even if it becomes important to watch for some odd reason, 
keeping the URL should be enough to fetch the video again from the content 
provider. When planning a packet capture capability, it is important to allow 
time for optimizing what is captured and what is allowed to be summarized by 
other technologies. That process will be idiosyncratic to each network, but with-
out adaptation and a focused goal, packet capture can be hard to work with.

NETWORK FORENSICS
The difference between what might be called human-driven network analy-
sis and network forensics is not sharply drawn. One might say that network 
forensics is network analysis in some relation to a reactive investigation, 
although not necessarily a legal one. Kessler and Fasulo [15] provide a more 
detailed discussion of the attributes of network forensics, and its importance 
within digital forensics. Network forensics is a subset of digital forensics, 
which is a topic covered more thoroughly in Chapter 13. This section intro-
duces some features specific to networks, but there are many aspects shared 
with forensics more generally as discussed in Chapter 13.
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To do network forensics the network traffic must be intentionally recorded. 
This fact contrasts sharply with host-based forensics, since hosts generally 
write information to stable storage media as a matter of course. Traffic can 
be recorded under specific goals, in response to a warrant or other cause for 
concern raise by the CSIRT (see Chapter  15), or traffic can be recorded as 
a matter of course all the time. The level of detail about traffic that can be 
recorded without cause varies by legal jurisdiction. On most large networks, it 
is impractical to keep full-packet capture of the whole network for long peri-
ods of time anyway, and so network flow is both a reasonable technical and 
legal compromise. This is essentially the assessment the U.S. government has 
reached in regard to monitoring its own civilian networks [12], for example.

The other primary purpose of network forensics is to support root-cause 
analysis. The goal of root-cause analysis is to discover the initial method and 
manner of compromise. These results can be used to harden the organiza-
tion against future attacks; for more information on this feedback process, see 
Chapter 15. As noted earlier, most intrusions go undetected for weeks, if not 
months or years [5–8]. This makes network forensics particularly challenging. 
It is even more difficult if only reactive network capture is used, since there 
is no network evidence of how the compromise began. Without general his-
torical records (as opposed to purpose-captured traffic in response to an inci-
dent), root-cause analysis is often impossible.

A network forensics capability is an important supplement to host forensics 
because the traffic record provides out-of-band evidence of activity. If the 
adversary compromises a host, he or she may be able to erase some or all 
the evidence of the compromise. However, the network monitoring devices 
are not subject to such manipulation, and so can provide a more stable, if 
less precise, measure of activity in the organization. There are certainly steps 
that an adversary can take to avoid network detection; some are discussed in 
Chapter 12. All the same, most common attacks arrive on the network, and 
so they will leave some trace.

The tools for network forensics are largely the same as those for network 
analysis. As alluded to before, it is mostly the motivation that differentiates 
the two terms. With forensics, the motivation is more about gathering evi-
dence to assign responsibility to specific individuals. The anonymity possible 
on computer networks makes attribution particularly challenging. There are a 
variety of special considerations that need to be made to preserve the proper 
legal and ethical frameworks while performing work with this motivation. 
These considerations are not special to network forensics, but hold more gen-
erally for digital forensics. Since these handling considerations make up the 
bulk of the difference between human-driven network analysis and network 
forensics, they are left for Chapter 12.
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SENSOR NETWORK ARCHITECTURE
Where the network sensors are located in the network is important. Sensor 
architecture is a subset of the importance of network architecture generally, 
which was introduced in Chapter 5. Just as some analysis techniques are bet-
ter or worse at detecting certain attacks, certain sensor placements are better 
suited for detecting certain attacks or gathering certain information. All of the 
preceding types of sensors can be located in various places on the organiza-
tion’s network. It is also important for analysts to understand where a sen-
sor is located to accurately analyze the information from the sensor and its 
impact on the organization.

There are two broad types of sensor placement: on the edge and internal. 
Observing traffic as it is entering or leaving the organization is more com-
mon. There are usually a small number of Internet access points for an organ-
ization, so installing sensors on the edge is somewhat easier. The other reason 
for sensing on the edge is the assumption that attacks on the organization 
come from the outside. If this were true, then if the defenders can observe 
and analyze all the attacks coming in on the edge, then the defenders could 
see all the attacks.

Unfortunately, not all attacks come from the outside. Internal sensors are nec-
essary to detect such problems. There are two general use cases for internal 
attacks that could be important. One is detecting insider attacks where the 
attacker is actually a member of the organization with some valid credentials 
and authorizations. The other would be in the case where an attacker com-
promises an internal resource and uses that resource to compromise other 
internal resources. Therefore, determining the full scope and root cause of an 
infection likely will involve monitoring internal communications as well as 
communications at the edge.

SUMMARY
Human-driven network analysis is an important part of a recognition strat-
egy because IT systems are made by humans, for humans, and are attacked by 
humans, therefore, humans must also be involved in their effective defense. 
There are several specializations of network analysis. The OSI model can be 
used to conceptualize the different analysis types. One benefit of this model 
is the idea that as an analysis moves up to process more and higher layers, 
the resources required for the analysis increase. Figure 11.4 provides a rough 
guide for which layers are involved in which analysis type. It introduces a 
layer 8, for human intelligence tasks like reading blogs and campaign analysis 
that do not easily fit into the technical OSI model.
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The questions that one can expect an analyst to answer vary depending on 
what technology and analysis types are available to them. However, some 
questions are always difficult to answer based on certain features of the 
Internet, such as the fact that IP addresses are logical, not physical, which 
makes physically locating machines and attacks difficult. Yet, in most cases, the 
variety of analysis techniques available can be arranged in a complementary 
manner, such that the strengths of one support the weaknesses of the others.

For better or worse, effective human-driven analysis remains trade craft rather 
than science. A skilled analyst derives much benefit from familiarity with the 
network he or she is defending, and this specific knowledge is not easy for an 
organization to capture. This difficulty is not true for all analyst experiences. 
Chapter 12 discusses the aspects of analyst workflow that are easier to codify, 
and the tools and procedures used to capture those experiences and apply 
them to network defense at machine speed.
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Recognition Strategies: Intrusion Detection 
and Prevention

CHAPTER 12

INTRODUCTION
This chapter expands on the strategy for recognition. Due to the nature of 
the modern computer infrastructure, compromises are inevitable. Chapter 11 
detailed various analysis techniques that a human analyst might use to detect 
evidence of a compromise on the network. This chapter discusses the natu-
ral next step in that process: reducing the workload on the human analyst 
by automating some of the functions. Intrusion detection and prevention sys-
tems aim to do just that.

The formal definition of an intrusion detection system (IDS) is a system 
that “monitor[s] the events occurring in a computer system or network 
and analyz[es] them for signs of possible incidents, which are violations or 
imminent threats of violation of computer security policies, acceptable use 
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policies, or standard security practices” [1, p. 2-1]. This National Institute of 
Standards and Technology (NIST) definition has also been adopted by the 
Internet Engineering Task Force (IETF) [2]. Intrusion prevention is directly 
related, for it is “the process of performing intrusion detection and attempt-
ing to stop detected possible incidents” [1].

Following NIST, this chapter will use the combined term intrusion detection 
and prevention system (IDPS) for brevity. This does not replace the terms IDS or 
IPS, which are well established. However, most of the functions of an IDS are 
shared with an IPS, and devices termed IPSs can usually be configured to dis-
able the prevention activity and function just as an IDS can [1]. So combining 
the terms is convenient and generally accurate. Any exceptions will be noted.

There are several types of IDPSs, based on what the system is monitoring. 
The most common is a network IDS, a machine that observes traffic at a 
choke point in the network and inspects it for intrusions across the organiza-
tion [3, p. 660]. Network-based IDPSs are also characterized by the fact that 
they reassemble the packets of the network communication and attempt to 
interpret them as the target host would. The other three types are host based, 
wireless, and network behavior analysis (NBA) [1]. This chapter focuses 
on network-based IDPSs, however, the general principles are relevant to all 
IDPS technologies. Anti-virus software can be considered a type of host-
based IDPS, but these products have expanded to attempt to prevent exploits 
and have taken on many characteristics of an IDPS [4]. Wireless IDPSs are 
intended to detect abuse of wireless networks themselves, either interference 
with the radio spectrum or rogue access points.

This chapter discusses several issues related to IDPSs. First, why instrument-
ing an IDS is important in addition to the network resistance and frustration 
strategies previously discussed; also, why it should be instrumented indepen-
dently of these other devices. Next, the chapter covers some common his-
torical pitfalls of intrusion detection devices, and their fixes, to describe the 
uses and limitations of IDPSs. Two common modes of detection for IDPSs 
are then discussed: signature-based and anomaly-based detection. Finally, the 
modifications necessary to go from an IDS to an IPS, and the ramifications, 
are discussed before concluding.

It is important to note that an IDPS is a conceptual device. Just as with fire-
walls and proxies discussed in Chapter 5, actual devices on the market may 
combine features of more than one category of device. For example, applica-
tion-level proxies may contain IDPS features specific to an application, or a 
firewall may contain IDPS features for network traffic. The defender should 
account for this fact when designing and purchasing a sensor architecture. 
Sensor architecture and some other network analysis concepts relevant to 
IDPSs are discussed in Chapter 11.
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WHY INTRUSION DETECTION
An IDPS is one of the more important devices in an organization’s overall 
security strategy. There is too much data for any human analyst to inspect all 
of it for evidence of intrusions, and the IDPS helps alert humans to events 
to investigate, and prioritize human recognition efforts. An IDPS also serves 
an important auditing function. If the machines that form the technologi-
cal backbone of the frustration and resistance strategies are misconfigured, 
the IDPS should be positioned to detect violations due to these errors. 
Furthermore, some attacks will exist for a period of time before there is any 
available patch or mitigation. An IDPS may be able to detect traffic indica-
tive of the new attack, either as soon as a signature is made available or if the 
attack traffic is generally anomalous.

An IDPS has many actions available when responding to a security event. 
Generating an alert for human eyes is a common action, but it can also log 
the activity, record the raw network data that caused the alert, attempt to ter-
minate a session, alter network or system access controls, or some combina-
tion thereof [5]. If managed well, the different rules stratify the actions into 
different categories related to the severity of attack, reliability of rule, critical-
ity of target, timeliness of response required, and other organizational con-
cerns. Once the notifications are stratified, the human operator can prioritize 
response and recovery actions, which are the topic of Chapter 15.

Returning to our walled-city metaphor from Chapter 5, we already have our 
static defenses—moats, walls, and gates—as well as the more active defenses, 
such as guards who inspect people coming into the city. An IDPS is similar to 
a sentry posted above the city gate and/or in a tower nearby. If the guard gets 
overrun by a suddenly unruly mob, the guard cannot call for help. The sen-
try provides a basic defense-in-depth function of recognizing that a problem 
has occurred and an alert needs to be issued. Also like an IDPS, the sentry 
may have some immediate corrective actions available, such as telling the gate 
operator to close it temporarily or in some castles there are grates over the 
entryway from which a sentry could pour boiling oil to deter invaders who 
breached the outer defenses. But like an IDPS, while these responses may 
be effective stop-gap measures, they are not sustainable methods of network 
management. The most important functions are to alert the authorities so 
that a recovery of security can begin, and to keep a record of how the incident 
occurred so a better system can be put in to place going forward.

The three major components of an IDPS and how they interact with the rel-
evant organizational components are summarized in Figure 12.1. The IDPS 
sensor infrastructure observes activity that it normalizes or processes into 
events, which the analyzer ingests and inspects for events of interests. The 
manager processes deals with the events appropriately. In the tower sentry 
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metaphor, these components are all inside the one human sentry. In an IDPS, 
they can be part of one computer or distributed to specialized machines.

Figure 12.2 displays the internal components of an IDPS in more detail. The 
operator interacts with the system components through the graphical user 
interface (GUI); some systems use a command-line interface for administra-
tion in addition to or instead of a GUI. The alarms represent what responses 
to make. The knowledge base is the repository of rules and profiles for match-
ing against traffic. Algorithms are used to reconstruct sessions and understand 
session and application data. The audit archives store past events of interest. 
System management is the glue that holds it all together, and the sensors are 
the basis for the system, receiving the data from the target systems.

NETWORK INTRUSION DETECTION PITFALLS
A network-based IDPS (NIDPS) has many strengths, but these strengths 
are also often its weaknesses. A NIDPS strength is that the system reassem-
bles content and analyzes the data against the security policy in the format 
the target would process it. Another strength is that the data is processed 
passively, out of band of regular network traffic. A related strength is that a 
NIDPS can be centrally located on the network at a choke point to reduce 
hardware costs and configuration management. However, all of these benefits 
also introduce pitfalls, which will be discussed serially. Furthermore, there 
are some difficulties that any IDPS suffers from simply due to the fact that 
the Internet is noisy, and so differentiating security-related weird stuff from 
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general anomalies becomes exceptionally difficult. For some example benign 
anomalies, see Bellovin [6].

The following sections are not intended to devalue IDSs or to give the impres-
sion that an IDS is not part of a good security strategy. An IDS is essential 
to a complete recognition strategy. The following pitfalls are remediated and 
addressed to varying degrees in available IDPSs. Knowledge of how well a 
potential IDPS handles each issue is important when selecting a system for 
use. Despite advances in IDPS technology, the following pitfalls do still arise 
occasionally. It is important for defenders to keep this in mind: no one secu-
rity strategy is infallible. Knowing the ways in which each is more likely to 
fail helps design overlapping security strategies that account for weaknesses in 
certain systems. For these reasons, we present the following common pitfalls 
in IDPSs.

Fragmentation and IP Validation
One of the pitfalls of reassembling sessions as the endpoints would view 
them is that endpoints tend to reassemble sessions differently. This is not just 
true of applications. This is true of the fundamental fabric of the Internet, 
the TCP/IP (Transport Control Protocol/Internet Protocol) protocol suite. To 
handle all possible problems that a packet might have while traversing the 
network, IP packets might be fragmented. Furthermore, if packets are delayed 
they might be resent by the sender. This leads to a combination of situations 
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in which the receiver may receive multiple copies of all or part of an IP 
packet. The RFCs (request for changes) that standardize TCP/IP behavior are 
silent on how the receiver should handle this possibly inconsistent data, and 
so implementations vary [7, p. 280].

Packet fragmentation for evading IDS systems was laid out in detail in a 1997 
U.S. military report that was publicly released the following year [8]. Evasion 
is one of three general attacks described; the other two attacks against IDSs 
are insertion and denial of service (DoS). Insertion and evasion are both 
caused, in general, by inconsistencies in the way the TCP/IP stack is inter-
preted. DoS attacks against IDPSs are not limited to TCP/IP interpretation, 
and are treated throughout the subsections that follow. DoS attacks are pos-
sible through bugs and vulnerabilities, such as a TCP/IP parsing vulnerability 
like the teardrop attack [9], but when this chapter discusses DoS on IDPSs 
it refers to DoS specific to IDPSs. DoS attacks such as the teardrop attack are 
operating system vulnerabilities, and so such things are not IDPS specific, 
even though many IDPSs may run on operating systems that are affected.

The general problem sketched out by the packet fragmentation issues is that 
the strength of the IDPS—namely, that it analyzes the data against the secu-
rity policy in the format the target would process—is thwarted when the 
attacker can force the IDPS to process a different packet stream than the target 
will. This can be due to insertion or evasion. For example, if the IDPS does 
not validate the IP header checksum, the attacker can send blatant attack 
packets that will initiate false IDPS alerts, because the target system would 
drop the packet and not actually be compromised. This insertion attack can 
be more subtle. IP packets have a time-to-live (TTL) value that each router 
decrements by 1 before forwarding. Routers will drop an IP packet when the 
TTL of the packet reaches 0. An attacker could send the human responder 
on lots of confusing, errant clean-up tasks if the TTL of packets are crafted 
to reach the IDPS, but be dropped before they reach the hosts [8]. And if an 
attacker knows your network well enough to manipulate TTLs like this, it is 
technically hard to prevent. The IDPS would have to know the number of 
router hops to each target host it is protecting—a management nightmare.

Another result of Ptacek and Newsham’s report [8] was some research into 
how different operating systems handle different fragmentation possibili-
ties [10]. Some NIDPS implementations now utilize these categories when 
they process sessions, and also include methods for the NIDPS to fingerprint 
which method the hosts it is protecting use so the NIDPS can use the appro-
priate defragmentation method [11]. This method improves processing accu-
racy, but management of this mapping is not trivial. Further, network address 
translation (NAT) and Dynamic Host Configuration Protocol (DHCP) will 
cause inconsistencies if the pool of computers sharing the IP space does not 
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share the same processing method. This subtle dependency highlights the 
importance of a holistic understanding of the network architecture—and 
keeping the architecture simple enough that it can be holistically understood.

Application Reassembly
NIDPSs perform reassembly of application data to keep states of transactions 
and appropriately process certain application-specific details. The precise 
applications reassembled by an IDPS implementation vary. Common appli-
cations like File Transfer Protocol (FTP), Secure Shell (SSH), and Hypertext 
Transfer Protocol (HTTP) are likely to be understood. Down the spectrum of 
slightly more specific applications, Gartner has published a business defini-
tion for “next-generation” IPSs that requires the system understand the con-
tent of files such as portable document format (PDF) and Microsoft Office 
[12]. The ability to process this large variety of applications when making 
decisions is a significant strength of IDPS devices, as most other centralized 
network defense devices are inline and cannot spend the time to reassemble 
application data. Proxies can, but they are usually application specific, and so 
lack the broader context that IDPSs usually can leverage.

The large and myriad application-parsing libraries required for this task intro-
duce a lot of dependencies into IDPS operations, which can lead to some 
common pitfalls. First, IDPSs require frequent updates as applications change 
and bugs are fixed. If the IDPS was only purchased to fill a regulatory require-
ment and is ignored afterwards, it quickly becomes less and less effective as 
parsers fall out of date.

Even in the best case where the system is up to date, many of the variable pro-
cessing decisions that were described earlier related to IP fragmentation are 
relevant to each application the IDPS needs to parse. The various web brows-
ers and operating systems may parse HTTP differently, for example. This is 
less a problem in application handling, because as long as the IP packets are 
reassembled correctly, at least the IDPS has the correct data to inspect. But 
due diligence in testing rules might indicate that different rules are needed 
not just per application, but one for each common implementation of that 
application protocol. Bugs might be targeted in specific versions of applica-
tion implementations, further ballooning the number of required rules. So 
far, NIDPSs themselves seem to be able to handle the large number of rules 
required, although rule management and tuning are arduous for system and 
security administrators.

Out-of-Band Problems
Although an IDPS is located on a central part of the network, it may not be 
in the direct line of network traffic. An inline configuration is recommended 
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only when IPS functionality will be utilized, otherwise an out-of-band con-
figuration is recommended [1]. When an IDS is running out of band it has 
some benefits, but it also introduces some possible errors. If the IDS is out of 
band, then if the IDS is dropping packets no network services will suffer. This 
is a benefit, except that the security team then needs to configure the IDS to 
alert them when it is dropping packets so they can take that into account. A 
more difficult problem to detect is if the network configuration that delivers 
packets to the IDS develops errors, either accidental or forced by the attacker, 
that result in the IDS not receiving all the traffic in the first place. There is a 
similar problem with other resource exhaustion issues, whether due to attacks 
or simply to a large network load, at the transport and application layer.

Inline architectures have to make harder decisions about what to do when 
the IPS resources are exhausted. Despite the best planning, resource exhaus-
tion will happen occasionally; if nothing else, adversaries attempt to cause it 
with DoS attacks. Whether the IPS chooses to make network performance suf-
fer and drop packets, or it chooses to make its analysis suffer and not inspect 
every packet, is an important decision. The administrator should make 
the risk analysis for this decision clear. This is an example of a failure con-
trol situation [2]. In general, a fail-secure approach is recommended; in this 
example the IPS would fail-secure by dropping packets. This approach fails 
securely because no attack can penetrate the network because of the failure, 
unlike the other option.

In either case, the resource exhaustion failure still causes damage. The 
IDPS cannot log packets it never reads, and if its disk space or processor is 
exhausted, then it cannot continue to perform its recognition functions prop-
erly. Therefore, appropriately resourcing the IDPS is important. On large net-
works, this will likely require specialized devices.

Centrality Problems
Since the NIDPS is centrally located, it has a convenient view of a large num-
ber of hosts. However, this central location combined with the passive strat-
egy of IDPS also means that data can be hidden from view. Primarily this is 
due to encryption, whether it is IPSec [13,14], Transport Layer Security (TLS) 
[15], or application-level encryption like pretty good privacy (PGP) [16]. 
Encryption is an encouraged, and truthfully necessary, resistance strategy 
(Chapter 8). However, if application data is encrypted, then the IDPS cannot 
inspect it for attacks. This leads to a fundamental tension—attackers will also 
encrypt their attacks with valid, open encryption protocols to avoid detection 
on the network. One strategy to continue to detect these attacks is host-based 
detection. The host will decrypt the data, and can perform the IDPS function 
there. However, this defeats the centralized nature of NIDPS, and also thwarts 
the broad correlation abilities that only a centralized sensor can provide. And 
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as groups like the Electronic Frontier Foundation encourage citizens with pro-
grams like “HTTPS Everywhere” [17], in addition to the push from the secu-
rity community, the prevalence of encryption will only increase.

On a controlled network it is possible to proxy all outgoing connections, 
and thereby decrypt everything, send it to the IDPS, and then encrypt it  
 again before it is sent along to its destination. It is recommended to imple-
ment each of these functions (encryption proxy, IDPS) on a separate 
machine, as each are resource-intensive and have different optimization 
requirements [18].

Base-rate Fallacy
The final problem that IDPSs encounter is that they are trying to find inher-
ently rare events. False positives—that is, the IDPS alerts on benign traffic—
are impossible to avoid. If there are too many false positives, the analyst is 
not able to find the real intrusions in the alert traffic. All the alerts are equally 
alerts; there is no way for the analyst to know without further investigation 
which are false positives and which are true positives. Successful intrusions 
are rare compared to the scope of how much network traffic passes a sensor. 
Intrusions may happen every day, but if the intrusions become common it 
does not take an IDPS to notice. Network performance just plummets as SQL 
Slammer,1 for example, repurposes your network to scan and send spam. But 
that is not the sort of intrusion we need an IDPS to find. And hopefully all of 
the database administrators and firewall rule sets have learned enough from 
the early 2000s that the era of worms flooding whole networks is passed [19]. 
It also seems likely criminals realized there was no money in that kind of 
attack, but that stealing money can be successful with stealthier attacks [20]. 
Defenders need the IDPS to recognize stealthy attacks.

Unfortunately for security professionals, statistics teaches us that it is partic-
ularly difficult to detect rare events. Bayes’ theorem is necessary to demon-
strate this difficultly, but let’s consider the example of a medical test. What we 
are interested in finding is the false-positive rate—that is, the chance that the 
medical test alerts the doctor the patient has the condition when the patient 
in fact does not. We need to know two facts to calculate the false-positive 
rate: the accuracy of the test and the incidence of the disease in the popula-
tion. Let’s say the test is 91% accurate, and 0.75% of the population actually 
has the condition. We can calculate the chance that a positive test result is 
actually a false positive as follows: Where Pr is the probability of the event 

1 Structured Query Language (SQL) is a common database language. SQL Slammer is so named because 
it exploits a vulnerability in the database and then reproduces automatically through scanning for other 
databases to exploit.
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in brackets ([ ]) and the vertical bar ( | ) between two events can be read as 
“given,” it means that calculating an event is dependent on, or given, another. 
For example, the probability that the patient does not have the condition 
given the test result was positive could be written Pr[healthy|positive]. This is 
the probability the test result is an incorrect alert. Therefore:

Pr healthy positive
Pr positive healthy Pr healthy

Pr po
[ ]

[ ] [ ]

[
|

|

ssitive sick Pr sick Pr positive healthy Pr healthy| ( |] [ ] [ ] [ ])

There will be a subtle difference here. We are not calculating the false-positive 
rate. That is simply Pr[positive|healthy]. We are calculating the chance that the 
patient is healthy given the test alerted the doctor to the presence of the con-
dition. This value is arguably much more important than the false-positive 
rate. The IDPS human operator wants to know if action needs to be taken 
to recover security when the IDPS alerts it has recognized an intrusion. That 
value is Pr[healthy|positive], what we’re trying to get to. Let’s call this value the 
alarm error, or AE. Let’s simplify the precding equation by calling the false-
positive rate FPR, and the true-positive rate TPR. The probabilities remaining 
in the equation will be the rate of the condition in the population, repre-
sented by the simple probability that a person is sick or healthy:

AE
FPR Pr healthy

TPR Pr sick FPR Pr healthy
 

(
[ ]

[ ] [ ])

Let’s substitute in the values and calculate the AE in our example. The test 
is 91% accurate, so the FPR is 9% or 0.09, and the TPR is 0.91. If 0.75% of 
people have the condition, then the probability a person is healthy is 0.9925, 
and sick is 0.0075. Therefore:

AE

AE

0 09 0 9925
0 91 0 0075 0 09 0 9925

0 089325
0 006825

. .
. . ( . . )

.
. ( . )
. %

0 089325
92 9AE

Therefore, with these conditions, 92.9% of the time when the test says the 
patient has the condition, the patient will in fact be perfectly healthy. If this 
result seems surprising—that with a 9% false-positive rate that almost 93% of 
the alerts would be false positives—you are not alone. It is a studied human 
cognitive error to underestimate the importance of the basic incidence of 
the tested-for condition when people make intuitive probability evaluations 
[21,22]. One can bring intuition in line with reality by keeping in mind that 
if there are not very many sick people, it will be hard to find them, especially 
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if the test for something is relatively complicated (like sickness or computer 
security intrusions). It is the proverbial needle-in-a-haystack problem.

There has been some research into the technical aspects of the effects of the 
base-rate problem on IDPS alarm rates [23]. The results are not very encour-
aging—the estimate is that the false-positive rate needs be at or below 
0.00001, or 10−5, before the alarm rate is considered “reasonable,” at 66% 
true alarms. However, in the context of other industrial control systems, the 
studies of operator psychology indicate that in fields such as power plant, 
paper mill, steel mill, and large ship operations, the operator would disregard 
the whole alarm system as useless if the true alarm rate were only 66%.

The base-rate fallacy provides two lessons when considering an IDPS. First, 
when an IDPS advertises its false-positive rate as “reasonable,” keep in mind 
that what is reasonable for a useful IDPS is much lower than is intuitively 
expected. Second, the base-rate problem has a lot to do with why signature-
based operation is the predominant IDPS operational mode. It has much lower 
false positives, and so even though signatures may miss many more events, they 
can achieve sufficiently low false-positive rates to be useful. Given how noisy the 
Internet is, anomaly-based detection is still largely a research project, despite the 
alluring business case of a system that just knows when something looks wrong. 
The following two sections describe these two modes of operation.

An additional important point is that a grasp of statistics and probability is 
important for a network security analyst. For a treatment of the base-rate fal-
lacy in this context, see Stallings [24, ch. 9A]. For a good introductory statis-
tics text that is freely available electronically, see Kadane [25].

The Father of Snort

As the story goes, one weekend in 1998 Marty Roesch sat 
down and wrote a little Linux program for traffic analysis, 
and after those two days he shared his creation with the 
open-source community [26]. Roesch was amazed at the 
positive response from the project, and how many people 
downloaded the code. This was how one of the most influ-
ential open-source projects of the current era was born: the 
Snort IDS. This led to a quick set of developments for a man 
who had just graduated from Clarkson University in 1992, 
a smaller technical school in upstate New York. In early 

2001, Roesch hired four employees and founded Sourcefire, 
a network defense company. While Sourcefire sells a lot of 
commercial products to enhance Snort’s capabilities, they 
still maintain the core Snort IDS engine as an open-source 
product.

In 2009, InfoWorld included Snort in their Open-Source 
Hall of Fame [27]. It was one of only three security-related 
tools included in the 36-item list. It’s hard to accurately 
convey the impact Snort has had on the network defense 

PROFILE: MARTIN ROESCH
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MODES OF INTRUSION DETECTION
In broad strokes, NIDPSs can operate with signature-based or anomaly-based 
detection methods. Practically, both modes are used because they have impor-
tant benefits and uses. However, it is useful to understand the different ben-
efits, and limitations, of each style of detection, even though a single IDPS 
that is purchased will likely possess both signature-based and anomaly-based 
detection capabilities to some extent. For example, Snort (an open-source 
IDS, see the preceding sidebar) has been extended to perform some anomaly 
detection capabilities in various ways [28]. This categorization is similar to the 
reason to understand NIDPSs as a separate kind of device from the various 
types of firewalls as described in Chapter 5, even though devices on the mar-
ket often do not strictly adhere to any category. Categorizing is helpful for the 
network defender to conceptualize and plan a coordinated defense strategy.

Network Intrusion Detection: Signatures
Signatures are one of two modes that IDPSs use to detect intrusions. The idea 
is that the NIDPS detects a known pattern, or signature, of a specific malicious 
activity that is exhibited within the traffic. Signature-based detection is simpler 
to implement than anomaly-based detection, and a good signature will have 
a lower, more consistent false-positive rate. However, signatures can be easy to 
evade and require the attack to be known before they can be written and the 
attack detected. Rules can usually be written fairly quickly once an attack is 
known, but someone, somewhere, must first detect it without a signature.

Signatures are quite flexible. A NIDPS aims to inspect the content of all the 
traffic that traverses the network. This is opposed to firewalls, which tend to 
only inspect the headers for the packets. This increased scope is arduous, and 

community. Reading the academic literature about intru-
sion detection systems before 1998, there is a tangible 
undercurrent of depression in the academic literature. The 
implementations up to that time were expensive, bulky, and, 
despite the cost, ineffective. Snort was not only free, but it 
consumed fewer computational resources than many of 
the commercial counterparts. Furthermore, it ran well in 
software and did not require special equipment purchases 
for smaller networks, unlike most IDSs at the time that did 
require special hardware.

In 2013, it is expected as a matter of course that you have 
NIDS defending your network. In 1998 a single NIDS was 

a luxury item. Snort and Marty Roesch are the primary 
forces that have bridged that gap. Roesch is still the CTO 
of Sourcefire, overseeing the technical development of Snort 
and all the other software components that enhance it. He 
also occasionally spends stints as the interim CEO, dem-
onstrating a management and salesman skill that is rare 
in people who can write a functional piece of software in a 
weekend. Although Sourcefire is best known for its technol-
ogy, Roesch says that his real goal and vision are to make 
Sourcefire “instrumental in transforming the way organiza-
tions manage and minimize their risks” [26].
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partly explains why NIDPSs can have performance issues. It also is the reason 
that they are such a useful tool.

To understand what a signature can accomplish, it may be helpful to under-
stand the anatomy of a rule. The de facto standard format for a signature 
is its expression in a Snort rule. Snort is an open-source NIDPS that began 
development in 1998, and is primarily signature based. Due to its popularity, 
many other NIDPSs accept or use Snort-format rules. A rule is a single expres-
sion of both a signature and what to do when it is detected. Figure 12.3 dis-
plays a sample text Snort rule and annotates the components.2 For a complete 
rule-writing guide, see the Snort documentation [29].

Figure 12.3 is not as complex as it may appear at first glance. There are three sec-
tions in this rule: one for what kind of rule this is and packets to look at, one for 

2 Compiled Snort rules exist, and these are in binary format, unreadable by humans. They have a different 
format than this text rule, which will not be discussed here, but the function is essentially the same.

Action to take when rule matches.
Includes combinations of alerting,
logging, blocking, and user-defined
actions.

Source IP address. In this case, a variable configured when
Snort loads that includes all the IPs on the home network
being defended.
The ! character means check any source IP that’s not the
home net, i.e., the packet is from the outside coming in.

Negation operator, Tests -- such as
IPs, ports, protocols, and content --
can also be defined by what the
value is not, rather than what it is.

Source port. “any” can
be used for IP or port
fields to match any
value.

Destination IP. Besides variables,
IPs can be single IPs, ranges in
CIDR notation (as this example),
or lists in brackets [ ].

Destination port, in this case
the default port for IMAP
email.

Direction of the packet.
Options are “->” for
source to destination, or
“<>” for either direction,
such as when logging
both sides of a
conversation.

IP Protocol, ex: TCP,
ICMP, or UDP.

alert

(content:”|E8C0 FFFF FF|/bin/sh”; msg:”IMAP Buffer Overflow”;)

tcp !$HOME_NET any -> 192.168.1.0/24 143

Rules header,
Matches info in the

packet header

Payload detection
rule options.

These options
determine what

the rule looks for
in the application
data, and some
options to tune

that search.

The content to look for, enclosed
in double quotes, text inside bars
|FF| indicates hexadecimal
encoding, rather than regular text,
for added flexibility.

The description to
include.

Payload detection option,
“content”. Snort will search for the
given content in the message.

General option, “msg”. The alert or
log will include the given text when
the rule matches network traffic.

General rule
options

These options
support

bookkeeping
functions, like
messages and
references to

include with any
logs or alerts.

FIGURE 12.3 
An example snort rule. The different features and fields of the rule are labeled. Source: Roesch et al. [30].
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what to look for in the packets, and a third for what to say once the rule finds a 
match. These sections are enclosed in light-gray dashed lines. The first section is 
the rules header, which is the more structured of the three. This section declares 
the rule type. Figure 12.3 is an “alert,” one of the basic built-in types.

Rule types define what to do when the rule matches, which we’ll return to 
later. The rest of the rule header will match against parts of the TCP/IP headers 
for each packet. This essentially performs a packet-filter, like a firewall access 
control list (ACL; see Chapter  5), even though the syntax and capabilities 
are different than a firewall. IP addresses can be matched flexibly, either with 
variables or ranges. Although not demonstrated in this rule, ports can also be 
specified with ranges or variables. IP addresses can also be specified as “any,” 
for any value matches. The arrow indicates direction, and <  > (not pictured) 
means either direction matches. Although the first versions used to allow it to 
be either →or←, that soon became confusing. Now only → is allowed, so the 
source IP is always on the left and the destination is always on the right.

The contents of the rule all go inside parentheses, with different parts sep-
arated by semicolons. This is where the flexibility of an IDPS rule can really 
be leveraged. Figure 12.3 demonstrates two of the simpler sections—payload 
detection and general—each with only their quintessential option demon-
strated. Payload detection dictates what to look for in packet payloads, and it 
also offers some options to describe how and where to look for the content, 
which are not demonstrated in the figure. The content field is the quintessen-
tial option, as it defines the string that the signature will look for. In the exam-
ple, there is a particular sequence of bits that can be used to inject malicious 
data into a particular email process in a known way, and this rule looks for that 
sequence of bits. Since this sequence is in the application data, it is clear why 
such signatures can be easily evaded with encryption—encrypting the payload 
would change these bits while in transit. The general section includes descrip-
tors about the rule whenever an alert is sent or packets logged, so that the ana-
lyst does not have to remember that the hex sequence E8COFFFFFF is particular 
to a buffer overflow in the Internet Message Access Protocol (IMAP), for email.

As the amount of available software has grown, so have the number of vulner-
abilities. At the same time, older vulnerabilities do not go away—at least not 
quickly. If a vulnerability only afflicts a Windows 98 machine, most IDPSs in 
2013 do not still need to track or block it. The basic premise is that if a vulnera-
bility does not exist on the network the IDPS is protecting, it does not need sig-
natures to detect intrusions resulting from it. But this in practice provides little 
respite, and the number of signatures that an IDPS needs to track grows rapidly.

There is a second way to view this threat landscape, and that is to ask what 
vulnerabilities attackers are commonly exploiting, and preferentially defend 
against them. There is always the chance that a targeted attack will use an 
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unknown, zero-day vulnerability to still penetrate the system undetected, but 
that is a different class of attacker. There is a set of common, lucrative crimi-
nal malicious software that exploits a small set of known vulnerabilities, and 
these are the attacks that are all but guaranteed to hit an unprepared network. 
There are only about 10 vulnerabilities of this mass-exploit quality per year, 
against only a handful of applications [31]. The best way to defend against 
such common exploits may not be an IDPS, however, an IDPS should be a 
device that helps the defenders decide what exploits are most common on 
their network, and thus which exploits deserve the special attention to pre-
vention, such as the steps described in Guido [31].

Network Intrusion Detection: Anomaly Based
Anomaly-based detection generally needs to work on a statistically signifi-
cant number of packets, because any packet is only an anomaly compared to 
some baseline. This need for a baseline presents several difficulties. For one, 
anomaly-based detection will not be able to detect attacks that can be exe-
cuted with a few or even a single packet. These attacks, such as the ping of 
death, do still exist [32], and are much better suited for signature-based detec-
tion. Further difficulties arise because the network traffic ultimately depends 
on human behavior. While somewhat predictable, human behavior tends to 
be changeable enough to cause NIDPS anomaly detection trouble [33].

While signature-based detection compares behavior to rules, anomaly-based 
detection compares behavior to profiles [1]. These profiles still need to define 
what is normal, like rules need to be defined. However, anomaly-based pro-
files are more like white lists, because the profile detects when behavior goes 
outside an acceptable range. Unfortunately, on most networks the expected 
set of activity is quite broad. Successful anomaly detection tends to be profiles 
such as “detect if ICMP (Internet Control Message Protocol) traffic becomes 
greater than 3% of network traffic” when it is usually only 1%. Application-
specific data is less commonly used. This approach can detect previously 
unknown threats, however, it can also be defeated by a conscientious attacker 
who attempts to blend in. Attackers may not be careful enough to blend in, 
but the particularly careful adversaries are all the more important to catch. In 
general, adversaries with sufficient patience can always blend in to the net-
work’s behavior. Therefore, anomaly detection serves an important purpose, 
but it is not a panacea, especially not for detecting advanced attackers.

NETWORK BEHAVIOR ANALYZERS
A network behavior analyzer (NBA) is an IDPS device that does not inspect 
the full packet data [1, p. 6-1]. Since anomaly detection often works on 
packet headers and dynamics, much of this value can be realized in a NBA 
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without the overhead of a full-fledged IDPS. There are many advantages to 
using such a lightweight device for anomaly detection, in which the payload 
data is much less useful. It is possible to custom build a NBA, however, there 
are already several existing data formats that store partial network traffic data, 
and these can be leveraged more easily. One such common format is network 
flow, which is introduced in Chapter 11.

There are several open-source tools for working with network flow data, such 
as SiLK [34]. This tool suite includes a NBA called Analysis Pipeline [35]. 
Since a NBA using network flow only has to process about 5% of the volume 
of data as an IDPS processing the full-packet capture, it can be a bit more 
scalable. This savings can be most felt when data from multiple sensor points 
needs to be aggregated. If full-packet capture needs to be rebroadcast from a 
monitoring point to a central location, bandwidth to and from that moni-
toring point needs to be double what it would be without the rebroadcast. 
The traffic needs to be sent to its intended location and the central anomaly 
detector, so it needs to be sent twice, doubling the bandwidth. If only flow is 
aggregated at the anomaly detector, bandwidth only needs to increase about 
5%. A 5% increase instead of a 100% increase for full-packet capture makes 
back-haul more feasible.

WIRELESS IDPS
A wireless IDPS focuses on preventing abuse of the wireless access point and 
medium in the first place. According to the OSI model layers described in 
Chapter 11, a wireless IDPS only analyzes up to layer-2 data. Since this data 
is only useful in point-to-point communications, not end-to-end commu-
nications, a wireless IDPS must collect data from the wireless access points. 
This fact means that the sensor architecture needs to be distributed, unlike a 
NIDPS or NBA.

Wireless IDPSs monitor the radio waves for abuse or attacks on the wireless 
access points. They can also detect attempts to establish rogue access points 
for subversive communication. A wireless IDPS has its own radio antennae 
that it uses to scan the radio waves and issue commands to devices to correct 
abuse. The types of events that a wireless IDPS can detect include the follow-
ing [1, p. 5–8]:

■ Unauthorized wireless local area networks (WLANs) and WLAN devices
■ Poorly secured WLAN devices
■ Unusual usage patterns
■ The use of wireless network scanners
■ DoS attacks and conditions (e.g., network interference)
■ Impersonation and middle-person attacks
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Entities attacking a wireless device need to be physically close to the device, 
unlike most network attacks. Thus, the impact of these events is different than 
those detected by other IDSs. If an adversary can gain access via a wireless 
device, the adversary can often evade other defensive technologies, such as 
those described in Chapter 5. A wireless IDS is helpful in detecting attempts 
at such attacks.

NETWORK INTRUSION PREVENTION SYSTEMS
A network intrusion prevention system (NIPS) acts like a NIDS, except that 
it must process packets quickly enough to respond to the attacks and pre-
vent them, rather than merely report the intrusion. This is much easier if the 
NIPS can enforce a choke point in the traffic flow. Therefore, a NIPS is recom-
mended to be deployed inline, whereas a NIDS is recommended out of band 
[1]. This decision has several ramifications. It determines what risks the NIPS 
brings to the system and what remediations are feasible.

There are dangers associated with putting the NIPS inline, namely that it 
can become a single point of failure for the network. This possibility raises 
a question of what the NIPS should do when it can no longer keep up with 
traffic: Does it drop the packets, or pass them along without inspecting them 
for possible intrusions? If a device has the property that when it fails it main-
tains the security of the system, it is said to be fail-secure. The fail-secure 
operation option for an overloaded NIPS is to drop packets, because packets 
that are not routed cannot damage the system, whereas uninspected packets 
passed on may. This fail-secure operation may make the network fragile, and 
if it occurred would cause a DoS condition on that network link, and thus 
possibly the whole organizational network. Since an IDPS consumes a lot of 
computational resources, a NIPS will reach this overloaded condition more 
quickly than other network devices. Therefore, it is important to ensure that a 
NIPS is sufficiently provisioned before deploying it.

There are prevention attempts that a NIDPS can make either inline or out 
of band. As a general rule, out-of-band remediations are less effective than 
inline remediations. Inline remediations include performing a firewall action 
on the traffic, throttling bandwidth usage, or sanitizing malicious content. 
These three actions are unique to inline systems. The three actions available 
out of band are attempting to end TCP sessions, usually by spoofing TCP RST 
packets (packets with the reset flag set); changing the configuration of other 
network security devices to block future traffic; and executing some arbitrary 
program specified by the administrator to support functionality the IDPS 
does not natively support [1, p. 4–12ff]. Out-of-band actions are also avail-
able to inline systems, but inline systems do not usually use them because 
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out-of-band actions are less effective. The six available remediations, both 
inline and out of band, can be summarized as follows:

■ Perform a firewall action (inline only): Dynamically create a rule to drop, 
reject, or log the packet. This rule might be only for the packet in 
question, or may apply to packets for some period of time into the future.

■ Throttle bandwidth (inline only): Reduce the bandwidth available to a 
certain type of activity while it is evaluated further.

■ Sanitize malicious content (inline only): Remove or overwrite certain parts 
of the packets before forwarding them along. Some proxies naturally do 
this by normalizing traffic, such as collecting all fragments of a packet and 
writing them back in a predictable format before forwarding, which will 
sanitize any fragmentation attacks.

■ Reset TCP session: Spoof a packet to both the source and destination as if 
the IDPS is the other party in the communication, with the RST flag of 
the TCP header set. This flag is used to represent a forcible end to the TCP 
session, or a reset. A well-behaved host should abandon the connection, 
however, this is not guaranteed.

■ Reconfigure other network security devices: Insert or change rules in devices, 
such as those described in Chapter 5, to affect future transactions and 
prevent further damage.

■ Execute a program: If the IDPS cannot perform a certain action, the data 
can be passed to another program that can. An example might be to make 
a domain name system (DNS) or WHOIS (pronouced as “who is”) query 
to include that data in a log file.

The superiority of inline remediations can be captured by discussing race con-
ditions. Race conditions are a situation in which the outcome of the process 
is unpredictable due to two or more processes occurring in an unpredictable 
order. The term originates in software engineering [36], however, the con-
cept applies to network behavior as well. At the risk of oversimplification, 
out-of-band remediations are race conditions and inline remediations are 
not. Therefore, out-of-band remediations are less reliable because the order 
in which operations occur is not stable or predictable. The condition is so 
named because, for example, the adversary and the IDPS are in a race as to 
which entity can execute its commands to affect the target host first.

There is one large-scale example of using TCP reset packets as a NIPS sys-
tem. TCP resets are one of the methods used by the censorship system of the 
People’s Republic of China (mainland China), commonly called the “Great 
Firewall of China.” This method is less prone to overblocking and false posi-
tives than other methods at such a scale, such as DNS poisoning or dropping 
packets. On the other hand, it is also easy to evade a TCP-RST NIPS, such as 
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demonstrated in Clayton, Murdoch, and Watson [37], so long as both end-
points ignore the resets. Therefore, if both parties to a communication are 
intent on persisting, such as a bot and its command and control server, the 
defender should assume that a TCP-RST-based defense will be insufficient.

SUMMARY
This chapter discusses automated intrusion detection and prevention, pri-
marily via the network. Intrusion detection and prevention systems are val-
uable tools in recognizing adversarial attacks on the network and initiating 
an appropriate response programmatically. Properly configuring an IDPS is 
a challenge, and the devices must be properly resourced. Problems detect-
ing events with a low base-rate fallacy of occurrence also present a significant 
challenge to making use of IDPS alerts. Despite these challenges, IDPSs can 
provide crucial value to the network defender. No defensive strategy should 
be considered complete without a network IDPS to assist in recognition.

IDPSs operate in two general detection modes: signature based and anom-
aly based. These modes have different strengths and weaknesses that should 
be used to complement each other. A network behavior analyzer can lever-
age the strengths of anomaly detection with less overhead than a full NIDPS. 
Automatic prevention and remediation mechanisms can be enacted for rules 
or profiles that indicate particularly dangerous attacks or are particularly cer-
tain to be accurate. The available mechanisms vary based on the NIDPS archi-
tecture. Chapter 13 continues to discuss recognition strategies, in the context 
of host-based recognition and forensics.
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Chapter Review Questions
1. What is IP fragmentation? How can it be used to evade an IDPS?

2. What is the base-rate fallacy? What challenge does it present to utilizing IDPS 
alerts?

3. How does an IDPS signature work?

4. What are two major differences between signature-based detection and anomaly-
based detection?

5. Imagine a medieval king trying to test for poison in his food. He has a different 
food-tester taste each dish before he eats it (this is extravagantly many food-
testers, but let’s just go with it because it makes the math easier). Let’s say the 
king eats 10 different dishes per day. If a food-tester eats a poisoned dish, there is 
a 95% chance that person dies within the testing window, before the king eats the 
food. Due to poor sanitation and food preparation conditions, two food-testers die 
every 30 days of natural causes during the testing time. If there are two attempts 
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Chapter Exercises
1. Use [1, ch. 9] to evaluate an IDPS product. If you need an open-source product to 

consider, Bro-IDS (http://www.bro.org/documentation/) or Snort (http://snort.org/) 
would probably be suitable.

2. Using available reporting, try to determine the top 5 to 10 crucial vulnerabilities that 
are being exploited right now on the Internet at large.

3. The “Great Firewall of China” has been modernizing to resist evasive users [38]. 
Can you think of, or find, any methods to circumvent these new additions? Have 
there been further updates since the end of 2012 that also would need to be 
evaded?

3 Answer: If there are 10 attempts to poison the king in 5 years, if the food-testers are 95% effective, then 
10 × 0.95 food-testers should die. During the same course of time, 120 testers will die of natural causes 
(2 12 5( / / /testers month months year years sample period) ( ) ( _ )� � ). The alarm error rate can be calculated 
with Bayes’ theorem as follows:

AlarmError
FPR Pr no poison

TPR Pr poison FPR Pr no poison
[ ]
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/ /

/ / /
AE
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Therefore, if a food-tester died, there is a 92.66% chance the food was not poisoned. Therefore, the 
chance that the food was actually poisoned is 1 − 0.9266 = 7.44%.

to kill the king with poisoned food per 360 days, over 5 years (360-day cycles—they 
have bad calendars), how many food-testers actually died from poisoned food? 
What is the expected probability if a food-tester died that the food destined for the 
king was actually poisoned?3

http://www.bro.org/documentation/
http://snort.org/
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Digital Forensics

CHAPTER 13

INTRODUCTION
Today’s adversaries’ tactics, techniques, and procedures (TTPs) are constantly 
evolving, becoming more complex and sophisticated. Understanding how 
our enemies attack and what their objectives are can provide the information 
we need to effectively defend our networks. Digital forensic processes, princi-
ples, and procedures give us the tools we need to gather this understanding 
and combat these challenging attacks.

USES OF DIGITAL FORENSICS
Because of the world’s heavy dependence on technology, digital forensics 
plays a key role in a wide variety of situations. Criminal cases at the local, 
state, and federal levels now rely heavily on a wide variety of digital evidence. 
The sources of this evidence include, but are not limited to, single computers, 
networks, cell phones, tablets, gaming platforms, and global positioning sys-
tem (GPS) units. With the pervasiveness of technology in our society, almost 
every crime can involve some type of digital evidence. Network security and 
incident response receive tremendous benefit from the application of sound 
forensic procedures, processes, and methods. Forensic techniques can help 

■ Forensic fundamentals
■ Digital forensics process
■ Properties and characteristics of digital evidence
■ Storage media technology
■ Dealing with volatile memory
■ Potential evidence
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locate the breach, establish the scope and method of the compromise, and 
the reconstruction of security-related events.

Digital evidence also plays a significant role in civil litigation. Companies no 
longer exchange massive amounts of paper documents (memos, reports, and 
the like) as part of the legal discovery process. Digital evidence is just as legiti-
mate as paper documentation in a legal context, and its admissibility relies 
heavily on forensics.

Digital evidence has found its way onto the battlefield. It is routine prac-
tice today for cell phones and computers to be seized during raids and then  
rapidly analyzed to provide actionable intelligence to the battlefield com-
mander [1].

Furthermore, digital forensics can play a significant role in the investigation 
of administrative violations of company policies. Behavior that may not be 
criminal may still be in direct violation of established company rules. For 
example, using company computers for personal gain or to view pornography 
could be violations of company policy. These violations could result in the 
discipline or termination of the employee(s) involved. Digital forensics could 
be used to uncover and prove these violations.

FORENSIC FUNDAMENTALS
Digital forensics goes by several different names, depending on if the process 
is emphasized or the term is more general. It is commonly referred to as digi-
tal forensics, computer forensics, network forensics, postmortem forensics, 
and digital and multimedia forensics, among others.

The definitions for digital forensics vary as well. The National Institute 
of Standards and Technology (NIST) defines digital forensics as follows: 
“Generally, it is considered the application of science to the identification, 
collection, examination, and analysis of data while preserving the integrity of 
the information and maintaining a strict chain of custody for the data” [2]. 
The Scientific Working Group on Digital Evidence (SWGDE) uses the term 
computer forensics, and defines it as “a sub-discipline of Digital & Multimedia 
Evidence, which involves the scientific examination, analysis, and/or evalua-
tion of digital evidence in legal matters” [3].

General Forensic Principles
There are certain broad forensic principles that underpin the entire forensic 
process. They are designed and implemented with the singular goal of reach-
ing a reliable and accurate result. These general principles can provide a deci-
sion-making framework for any exigent circumstances that may arise.
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Preserve the Original Evidence
Classic forensic thought dictates that any potential modification to the origi-
nal evidence is of major concern and should absolutely be avoided. Any 
change to an original evidentiary item calls the integrity of that item into 
question. Once the item’s integrity has been compromised, it is no longer 
reliable. For example, items in a crime scene such as the murder weapon 
should remain completely undisturbed until its location, description, condi-
tion, etc. have been fully documented.

Once documentation is complete, evidence must be collected in a manner to 
preserve any blood, DNA, or fingerprints that may be present. Digital evidence 
must be treated with this same level of care. The evidence should remain in its 
original pristine condition. With digital evidence, however, this is often easier 
said than done. The volatile nature of digital evidence has created both signifi-
cant challenges and exceptions to its preservation and collection. Sometimes 
situations arise that necessitate tampering with the original state of the evi-
dence. Nothing illustrates this issue better than a running computer.

Interacting with a running machine, even in a very minimal way, will cause 
changes to the system. The traditional response to collecting data from a run-
ning computer was to pull the power from the back of the machine, with the 
thought that this was the cleanest way to power down the computer without 
making changes to the state of the evidence. Today, pulling the plug in every 
situation is unrealistic. There is simply too much potential evidence in vola-
tile memory, known as random access memory (RAM), to ignore, not to men-
tion other associated risks. In fact, some evidence may only exist in RAM and 
may never touch the hard drive. The only way to acquire such volatile evi-
dence is by tampering with the running computer. As such, digital forensic 
philosophy has begun to evolve—interaction with a running computer is no 
longer the taboo action it once was.

Forensic science as a whole can be very slow to change. Thus, this relatively 
new approach is not fully accepted by all courts and agencies. A major hurdle 
is ensuring that first responders are properly trained and equipped to success-
fully collect evidence in volatile memory.

There is a significant amount of evidence that can be found in the RAM of a 
host that is powered on. This very fragile data will disappear when power is 
lost. As we know, any interaction with a running machine will cause changes 
to the system. However, these changes may have zero impact on the evidence 
that is relevant to the investigation.

Documentation
Complete, detailed, and thorough documentation underpins any foren-
sic process. Documentation provides a record of what was done, who did 
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it, when they did it, and the condition and location of any evidence upon 
discovery. Documentation should enable others to recreate the steps taken 
so that they may reach the same results and conclusions about the collected 
evidence.

Documentation can take many forms, including written notes, photographs, 
sketches, and video. Good documentation covers the entire forensic process 
from start to finish. The value of the documentation is directly related to the 
level of detail. Proper notes should include details such as who, what, where, 
when, and how. See Table 13.1 for an example.

Chain of Custody
As part of the documentation, a detailed record of who had care, custody,  
and control of specific evidentiary items should be maintained. This record 
starts from the very beginning of evidence collection. It continues through 
the examination and analysis process, and should only conclude when the 
case or incident is officially closed. A well-documented chain of custody can 
be very helpful in case questions arise about where a particular item came 
from, how it was handled, and who collected it. Secure storage plays a key 
role in the chain of custody. Evidence should be secured at all times so that 
it cannot be altered, stolen, or destroyed, either intentionally or accidently. 
Storing the evidence in a fireproof data safe is one way to achieve this level of 
security.

Table 13.1 Example Forensic Data Acquisition Documentation

Category Description Example

Dates and times The date and time particular 
actions or events took place.

“08/11/13, 1432 hrs”
“August 11, 2013, 2:32 PM”

Names Who performed specific actions, 
such as collected evidence, 
conducted an examination, etc.

“Tim Smith”

Actions taken What was done? What tool was 
used?

“…collected hard drive 
from office computer…” “…
conducted examination …”

Descriptions and 
observations

What did you see? What did you 
find? Descriptions of locations 
and devices. Device description 
should include make, model, 
serial number, condition (damage 
observed, etc.), size, etc.

“… Dell Optiplex 9010, service 
tag #123456 …” “User 
observed dialog box with anti-
virus warning…”

Photos and video Record of scenes and specific 
evidentiary items. Should start 
with general shots of the scene.

Photos of room, desk, hard 
drive, cell phone, etc. that 
show makes, models, and 
serial numbers.
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Validation
Validation ensures that a particular tool, technique, or procedure performs as 
intended, and produces reliable and consistent results. The SWGDE defines 
validation as the “process of performing a set of experiments, which estab-
lishes the efficacy and reliability of a tool, technique or procedure or modifi-
cation thereof” [3].

Take, for example, a specific tool that is used to make a forensic clone of a 
hard drive. Prior to its use in the field, it should be put through a validation 
process. A known sample drive should be used to test the tool and verify that 
it indeed captures everything on the drive including both the allocated and 
unallocated space. This validation process should be well documented and 
a record kept for future reference. In addition, the process must be repeated 
every time a tool or procedure is upgraded or changed.

Quality Assurance
For any process that must yield reliable, highly accurate results, quality 
assurance is a must. The SWGDE defines quality assurance (QA) as a set of 
“planned and systematic actions necessary to provide sufficient confidence 
that an agency’s/laboratory’s product or service will satisfy given requirements 
for quality”[3].

Attention must be paid to all of the individual factors that come together to 
achieve accurate and reliable results. Proper QA encompasses every facet of 
any forensic process. At a minimum, the QA program should address:

■ Personnel qualifications and training
■ Personnel competency testing
■ Validation procedures
■ Required documentation
■ Policies and procedures

Locard’s Exchange Principle
Dr. Edmond Locard’s exchange principle states that whenever two objects come 
in contact, a transfer of material occurs. For example, when a killer enters and 
subsequently departs a crime scene, the attacker could leave blood, DNA, latent 
prints, hair, and fibers [4], or pick up such evidence from the victim.

Locard’s exchange principle also applies to a digital environment. Registry keys 
and log files can serve as the digital equivalent to hair and fiber [5]. Like DNA, 
our ability to detect and analyze these artifacts relies heavily on the technol-
ogy available at the time. Look at the numerous cold cases that are now being 
solved due to the significant advances in DNA science. Viewing a device or inci-
dent through the “lens” of Locard’s exchange principle can be very helpful in 
locating and interpreting not only physical but also digital evidence.
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Digital Forensic Process
Just as there are several ways to define digital forensics, there are also multiple 
schemes used to describe the forensic process. The NIST breaks down the process 
into four distinct phases: collection, examination, analysis, and reporting [2].

During the collection phase, data is identified, labeled, and recorded from 
potentially relevant sources. A well-devised plan prior to collection is highly 
beneficial. It reduces mistakes and saves time. As always, maintaining the 
integrity of the evidence is of paramount importance throughout the process.

The examination phase forensically processes the data collected, seeking to 
separate out data that is most relevant to the investigation. One of the major 
objectives of this phase is to reduce the volume of data to be analyzed. 
Reducing the “noise” helps save time and money. For example, much, if not 
all, of the operating system code has no forensic value. Therefore, it serves no 
purpose in our analysis. These files can be automatically excluded (removed) 
during the examination phase using their digital fingerprint (hash value). 
The data elements are either processed by hand or through some automated 
means. Throughout the process, pieces of data are assessed for relevance, and 
are also extracted into a format that will enable analysis. As always, care is 
taken not to compromise its integrity.

After the information has been examined, it is then analyzed to develop 
information that can be useful to the investigation. The data produced during 
the examination phase is evaluated and the results are validated using differ-
ent tools and possibly different examiners.

Lastly, the results of the analysis are reported. The report can take many forms 
and its depth and detail will vary depending on the situation, as well as the 
policies and procedures of the organization producing the report. The report 
should detail the actions taken, and how the data was collected, examined, 
and analyzed. It should also contain the results of the analysis, the chain of 
custody, etc. Figure 13.1 depicts the four-phase process as defined by NIST.

Collection Analysis ReportingExamination

EvidenceInformationDataMedia 

FIGURE 13.1 
Four phases of the digital forensic process. Source: Kent et al. [2].
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HASHING
How do we know our clone is an exact duplicate of the evidence drive? The 
answer comes in the form of a hash value, which is the result of a hash func-
tion. Hash functions are introduced in Chapter  8 and further discussed in 
Chapter 14. One use of hash functions is evidence integrity; this is a special 
case of data integrity as discussed in Chapter 14. Hash values are commonly 
referred to as a “digital fingerprint” or “digital DNA.” Any change to the hard 
drive, even by a single bit, will result in a different hash value, making any 
tampering or manipulation of the evidence readily detectable as long as the 
original hash value is securely stored.

Types of Hashing Algorithms
There are multiple types of hashing algorithms, but the most common are 
Message Digest 5 (MD5) and Secure Hashing Algorithm (SHA) 1 and 2. The 
slightest change in the data will result in a dramatic difference in the resulting 
hash values. Let’s hash a short phrase to demonstrate what happens with only 
a minor change. For this exercise we’ll use part of the book title.

Phrase: Introduction to Information Security

MD5 hash value: d23e 5dd1 fe50 59f5 5e33 ed09 e0eb fd2f

Now let’s make one small alteration, changing the “t” in “to” from lowercase 
to uppercase:

Phrase: Introduction To Information Security  
MD5 hash value: 0b92 f23e 8b5b 548a aade bd1b 40fa e2a3

Note the complete change in the resulting hash values. Here they are stacked 
for an easier comparison:

d23e 5dd1 fe50 59f5 5e33 ed09 e0eb fd2f  

0b92 f23e 8b5b 548a aade bd1b 40fa e2a3

As you can see, small changes make a big difference. If you would like to try 
this yourself, it is easy to do. For example, go to www.wolframalpha.com and 
enter the hash function you would like to use (MD5, SHA1, etc.), followed by 
a space and then the phrase.

Uses of Hashing
Hash values can be used throughout the digital forensic process. They can 
be used to identify specific files. In this application, they can identify files of 
interest like malware, or files to exclude like most operating system files. Hash 
values can be used after the cloning process to verify that a forensic image is 
indeed an exact duplicate. Examiners often have to exchange forensic images 

http://www.wolframalpha.com
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with the opposing examiner. A hash value is sent along with the forensic 
clone so that it can be compared with the original to ensure its integrity.

The relevant hash values that were generated and recorded throughout the 
case should be kept and included with the final report. These digital finger-
prints are crucial to demonstrating the integrity of the evidence and ulti-
mately getting them before the jury. Figure 13.2 shows an example of a hash 
verification.

TECHNOLOGY
Any real understanding of digital forensics must start with the technology, 
specifically how data is created, stored, transmitted, and processed. This 
underlying knowledge provides a basis to determine what will be searched, 
what will be collected, how evidence is handled, and more. Since the focus of 
this chapter is on a single networked computer or host, we will concentrate 

Created by AccessData@ FTk@ Imager 3.0.1.1467 110406

Information for D:\book hash:

Physical Evidentiary Item (Source) Information:
[Deive Geometry]
 Cylinders: 5,874
 Heads: 255
 Sectors per Track: 56
[Physical] Drive Information]
 Drive Interface Type: buslogic
[Image]
 Image Type: VMWare Virtual Disk
 Source data size: 40960 MB
 Sector count:  83226080
[Computed Hashes]
 MD5 checksum: 4963c323e507b2db85d4ec7bc93d54b1
 SHA1 checksum: 5b9f88d9247f50c42267bc3e481c5985409c0701

Image Information:
 Acquisition Started:  Tue Sep 06 05:47:17 2011
 Acquisition finished: Tue Sep 06 06:04:13 2011 
 Segment list:
  D:\book hash.001

Image verification Results:
 Verification started:  Tue sep 06 06:04:15 2011
 Verification finished: Tue sep 06 06:14:37 2011
 MD5 checksum: 4963c323e507b2db85d4ec7dc93d54b1 : verifed
 SHA1 checksum: 5b9f88d9247f50c42267bc3e481c5985409c0701 : verified

Case Information:
Acquired using: ADI3.0.1.1467
Case Number: 1
Evidence Number:1
Unique Description:
Examiner:
Notes:

FIGURE 13.2 
A text file containing the hash verification for a piece of evidence. This example is generated by 
AccessData’s FTK Imager. Note the MD5 and SHA1 hash values and the “verified” confirmation for each. 
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on the data, hardware, and software that comprise these systems. This is simi-
lar to the fact that technical expertise is required for network analysis, as dis-
cussed in Chapter  11. It is important to understand the technology so that 
one can understand what questions are reasonable to ask of digital forensics.

Characteristics of Digital Evidence
It is important to recognize the unique characteristics or properties of digital 
evidence. Failure to understand or appreciate them can lead to trouble. Take 
volatility, for example: digital evidence is very susceptible to change. It can be 
changed without any human interaction, via an automated process such as a 
virus scan, backup routine, purge, etc. Even “stable” digital data can be eas-
ily wiped away—for example, some credit cards’ magnetic strips can be dis-
rupted simply by being too close to electrical devices like a cell phone. Failing 
to recognize the threat to potential evidence can result in the destruction of 
evidence. Potentially damaging processes must be recognized and stopped as 
soon as possible.

Data Types
Data can be divided into three distinct categories: active, latent, and archival. 
Data from each of these categories could yield evidence that would be helpful 
to an investigation.

Active data is the data that is tracked by the computer’s file system. It is read-
ily accessible by the user and the operating system. The files you can see and 
open through Windows Explorer are examples of active data.

In contrast to active data is latent data, which is not tracked by the file sys-
tem, nor is it readily accessible to the user. Latent data cannot be accessed 
by the operating system. A deleted file (emptied from the recycle bin) is one 
example of a latent data element. When the operating system deletes the file 
it removes links and pointers to the start of the file, but the file information 
remains on the drive until it is physically overwritten, which may take quite a 
long time if left to chance.

Archival data elements are backups located on other storage devices, such as 
backup tapes, hard drives, USB devices, servers, and cloud storage.

Volatility
Digital evidence is extremely volatile. The nature of digital evidence should 
be a primary concern at the start of an investigation. Changes can be easily 
made with or without human interaction. For example, a scheduled anti-virus 
scan can change the last accessed date of a particular file. This will impact not 
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only how the evidence is preserved and collected, but also the order in which 
it is collected.

Some digital evidence is more volatile than others. This differentiation is 
known as the order of volatility, and it lists the locations of potential evi-
dence in order from the most volatile to the least. The order of volatility will 
be discussed in more detail later in the chapter.

Persistence
It is a bit of a contradiction, but digital evidence can be both persistent and 
volatile. Digital evidence can be hard to destroy. Many actions, such as delet-
ing a file or reformatting a hard drive, might seem to destroy the data. In 
reality, these events can be very ineffective at destroying data. Even if a file 
is successfully destroyed, there could be multiple copies in other locations. 
These additional sources could include network devices like servers and tapes, 
as well as mobile devices and home computers. Responders should keep this 
in mind when setting the scope of the evidentiary sources to be collected and 
examined.

Volume
The sheer volume of potential digital evidence is staggering. Host machines 
alone can store terabytes of data. A terabyte is equivalent to 1,099,511,627,776 
bytes of data. A single terabyte of data would equal approximately:

■ 65,536,000 pages of text in a Microsoft Word document
■ 333,333 MP3 songs
■ 20 high-definition Blu-ray films

The volume of data in a case to be forensically processed is a major con-
cern. While care must be taken not to exclude relevant data, all reasonable 
steps to “whittle down” the mountain of potential evidence should be taken. 
Many forensic tools provide the functionality needed to efficiently reduce 
the “noise” in a case and examine the files of most interest to the examiner. 
Failing to adequately address the volume of data in a case can exact signifi-
cant costs in terms of time and money.

Computing Environments
There are substantial differences between various computing environments. 
An accurate clarification of the environment is useful to have right from the 
start of an investigation, even before an investigator responds to the scene. 
We can encounter individual computers, networks of various sizes, or even 
more complex systems. These disparities will have an impact on the collec-
tion process, such as where to look for data, the tools used, and the level of 
complexity. In today’s hyperconnected world, few machines operate in a true 
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vacuum. Environments can be broken down into four categories: standalone, 
networked, mainframe, and the cloud:

■ A standalone machine is one that is not connected to another computer. 
These are the easiest of the four environments to deal with. Any potential 
evidence is reasonably contained, making locating, preserving, collecting, 
and analyzing less complicated than other environments.

■ A networked computer is connected to at least one other computer and 
potentially many, many others. This escalates the complexity of the 
investigation, as well as the number of places evidence could be found. In 
such a situation, files and artifacts normally found on the local machine 
have spread out to servers or network devices.

■ Unlike a standalone machine, a mainframe system centralizes all of 
the computing power into one location. Processors, storage, and 
applications can all be located and controlled from a single location. This 
environment, like the cloud, can significantly raise the complexity of any 
forensic process.

■ The cloud, a remote and heavily virtualized environment, is rapidly 
gaining popularity with individuals and enterprises alike. Cloud 
providers offer not only storage but software as a service (SaaS), platform 
as a service (PaaS), and infrastructure as a service (IaaS). Forensically, 
the environment is highly challenging from both technical and legal 
perspectives. Forensic tools and techniques for virtualized systems are still 
being developed. The transient and cross-border nature of cloud-stored 
data often creates complex legal problems that must be solved just to get 
access to the data.

Inside the Host Machine
Intimate knowledge of the inner workings of a computer and, more specifi-
cally, how data is created, stored, transmitted, and processed, is a necessity. 
It is this knowledge that permits us to work through the digital forensics pro-
cess and render an accurate opinion. It is important to note that not all pro-
cesses and hardware hold the same forensic value. While memory and storage 
play major roles in almost any examination, the central processing unit 
(CPU) plays little, if any, role.

Storage and Memory
Where and how data elements are stored and written is one of the major fun-
damental concepts that must be learned to get a full grasp of digital foren-
sics. There is more than one way to write data. Today, data is generally created 
using three different means: electromagnetism, microscopic electrical transis-
tors (flash), and reflecting light (CDs, DVDs, etc.). Storage locations inside a 
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computer serve different purposes. Some are for the short term, used to tem-
porarily hold data that the computer is using at the moment. Others are for 
more permanent, long-term storage.

Magnetic Disks
Most drives in today’s host computers read and write data magnetically. They 
will render each particle either magnetized or not magnetized. If the particle 
is magnetized, it is read as a 1; if not, it is read as a 0. The drives themselves 
are usually made up of aluminum platters coated with a magnetic material. 
These platters spin at very high speeds. The platters spin in the neighborhood 
of 7,000 rpm to 15,000 rpm. The speed could even be greater for high-end 
drives. These heavy-duty drives are typically found in servers or professional-
grade workstations. From a forensic standpoint, faster drive speeds can result 
in faster acquisitions.

A standard magnetic drive is comprised of several components. The platter 
revolves around a small rod called a spindle. The data is physically written 
to the platter using a read–write head attached to an actuator arm, which is 
powered by the actuator itself. The actuator arm moves the head across the 
platter, reading and writing data. The read–write head floats on a cushion of 
air. The read–write head, as it is called, is barely floating above the platter sur-
face, at a height less than the diameter of a human hair. Figure 13.3 shows 
the inside of a typical magnetic drive. We can clearly see the platters, actuator 
arm, and the read–write head.

Flash Memory
Flash memory is used in a wide range of devices including thumb drives, 
memory cards, and solid-state hard drives. Unlike RAM, flash memory 
retains data without electricity. Flash is made up of transistors. Each transis-
tor is either carrying or not carrying an electric charge. When the transistor is 
charged, it is read as a 1; without a charge it is read as a 0.

Flash-based hard drives are starting to become more and more common. 
They are referred to as solid-state drives (SSDs). Unlike magnetic drives, flash 
drives are solid state, meaning they have no moving parts. They offer several 
significant advantages, including increased speed, less susceptibility to shock, 
and lower power consumption.

The use of SSDs will continue to grow. While these devices offer improved 
performance, they also present a major challenge to digital forensics. It cer-
tainly appears that recovering deleted files, the “bread and butter” of digital 
forensics, is in serious jeopardy.
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Solid-State Drives
Magnetic drives have been a mainstay in personal computers for years. 
Forensically, they afford examiners the ability to potentially recover signifi-
cant amounts of user-deleted data, including data that has been partially 
overwritten. That easy accessibility may very well be coming to an end. These 
traditional magnetic drives are increasingly being replaced by SSDs.

How SSDs Store Data
Traditional magnetic drives have multiple moving parts, including plat-
ters and the actuator arm, which moves the read–write head. As the name 
implies, solid-state drives do not. SSDs are similar to RAM and USB thumb 
drives, storing data in tiny transistors. Unlike RAM, SSDs are nonvolatile and 
can store data even without power. To keep charge over long periods of time 
without power, SSD transistors employ an additional gate, called a floating 
gate, which is used to contain the charge [6].

If you recall, magnetic drives break up the storage space into smaller units. 
These units include sectors, clusters, cylinders, and tracks. SSDs also separate 
the storage space into smaller units. The base units are called blocks and are 

FIGURE 13.3 
The inside of a typical magnetic drive. 
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normally 512 kilobytes in size. Blocks are then subdivided into even smaller 
units called pages; each page is typically 4 kilobytes in size.

Wear is a concern with SSDs. Each block can only withstand a certain number 
of writes. Some estimates put that number somewhere between 1,000 and 
10,000 times. Given this limitation, you would want the drive to avoid writ-
ing to the same block over and over. Writing to the same space repeatedly will 
cause it to wear out faster than others. Manufacturers solved the issue by insti-
tuting a wear leveling process performed by the SSD.

File Translation Layer

On a SSD, where the computer thinks the data is stored is 
not really where it is physically located. An SSD uses a file 
translation layer to ensure that the computer isn’t writing 

to the same block over and over. If the SSD detects this is 
occurring, it will “translate” the new writes to a less used 
location [6].

MORE ADVANCED

Magnetic drives have the ability to instantly overwrite data to any sector that 
is located in the unallocated space of a hard drive. SSDs do not. Each transis-
tor must be “reset” (erased) before it can be reused. This reset process can 
slow down the drive as it writes. To speed things up, SSD manufacturers have 
configured the drive’s controller to automatically reset unused portions of the 
drive. This process is known as garbage collection.

Taking Out the Trash: A Game Changer
SSDs have a mind of their own. Many drives initiate this garbage collection 
routine completely on their own, without any prompting by the system at all. 
This process can start in a matter of seconds once the drive is powered up. 
Forensically, this is both problematic and troubling. First, verifying the integ-
rity of the evidence becomes extremely difficult and jeopardizes its admis-
sibility in court. More difficult to cope with is the fact that SSDs routinely 
automatically destroy potentially relevant data. If the garbage collection rou-
tine is run during or after the drive’s acquisition, validation becomes more 
difficult because the hash values are changed after garbage collection. Even 
though the file’s content is not changed, it moves, and this change in location 
information changes the hash.

Volatile versus Nonvolatile Memory
Memory and storage are two terms that are somewhat synonymous when it 
comes to computers. They both refer to internal places where data is kept. 
Memory is used for short-term storage, while storage is more permanent. 
No matter what you call it, there is a significant difference between the two, 
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especially from a forensic perspective. That difference lies in the data’s volatil-
ity. Data in RAM exists only as long as power is supplied. Once the power is 
removed (i.e., the machine is turned off), the data starts to disappear. This 
behavior makes this kind of memory volatile. In contrast, files saved on a 
hard drive remain even after the computer is powered down, making it non-
volatile. RAM stores all the data that is currently being worked on by the 
CPU. Data is fed from the RAM to the CPU where it is executed. Traditionally, 
forensic analysis of a host computer focuses on the hard drive since much of 
the evidence can be found there. Today, we are finding that that is not always 
the case. Many types of malware clean up after themselves and might only be 
visible in RAM while the machine is running. Therefore, RAM should be cap-
tured from a running machine whenever possible. There is more on this later 
in the chapter.

File Systems
With all the millions or billions of files floating around inside a computer, 
there has to be some way to keep things organized. This indispensable func-
tion is the responsibility of the file system. The host file system determines 
how files are named, organized, and stored. The file system tracks all of the 
files on the volume noting their location and size, along with markers for the 
created, accessed, and modified dates and times.

There are many different types of file systems. Some of the most commonly 
encountered by forensic examiners include FAT, NTFS, and HFS+:

■ The File Allocation Table (FAT) is the oldest of the common files system. 
It comes in four types: FAT12, FAT16, FAT32, and FATX. Although not 
used in the latest operating systems, it can often be found in flash media 
and the like.

■ The New Technology File System (NTFS) is the system used currently by 
Windows 7, Windows 8, Vista, XP, and Windows Server. It is much more 
powerful than FAT, and capable of performing many more functions.

■ The Hierarchical File System (HFS +) and its relatives HFS and HFSX are 
used in Apple products. HFS+ is the upgraded successor to HFS.

Allocated and Unallocated Space
Generally speaking, the file system categorizes all of the space on the hard 
drive in one of two ways. The space is either allocated or unallocated (there 
are a few exceptions; see the sidebar). Put another way, the space is either 
being used or it is not. Windows cannot see data in this unallocated space. To 
the operating system, files located in unallocated space are essentially invis-
ible. It is important, however, to understand that “not used” does not always 
mean “empty.” Unallocated space can contain files that have been deleted or 
disk space that has yet to be used. It is also known as drive-free space.
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Remember, the file system’s job is to keep track of all files and storage space. 
Think of a file system as an index in the back of a book. When looking up 
a particular subject, we flip through the index until we find the term we are 
looking for. The index then gives us the page number, which allows us to 
find each iteration of the term in the book. The file system works basically 
the same way. Using the book analogy again, deleting a file would be akin to 
removing the entry from the book’s index. Although our subject is no longer 
referenced in the index, the page and all of its contents are still in the book, 
intact and untouched.

The file system tracks the locations of the separate clusters so they can be reas-
sembled the next time you open a specific file. Clusters can get spread out 
throughout the drive. Moving them closer together speeds things up for your 
computer. The closer they are, the faster they can be put together and made 
available to you. Defragmenting the drive moves these disparate pieces as 
close together as possible.

Files that are overwritten are generally considered to be unrecoverable. It is 
possible that the new file assigned to that space will not require as much 
space as its predecessor. If that is the case, the original file is only partially 
overwritten. The piece that remains can be recovered and could contain infor-
mation we can use. This remaining space is called slack space.

How Magnetic Hard Drives Store Data
To further our understanding of how the computer stores files, we must 
understand drive geometry. Computers store data in defined spaces called sec-
tors. Think of sectors as the smallest container a computer can use to store 
information. Each sector holds up to 512 bytes of data as illustrated in Figure 
13.4. It can hold less, but it cannot hold more.

1. A file, test1.doc, is created and saved to our example hard drive. Test1.doc 
is 2,075 bytes. The file system, using a best-fit algorithm, assigns the file 
to clusters 5245 and 5246. The file system now shows these two clusters 
as allocated. The file will occupy all of 5245 and only 27 bytes of the first 
sector of 5246. See Figure 13.5.

2. That leaves 485 bytes in the first sector of 5246. The system will 
automatically fill those remaining bytes with 0 s. See Figure 13.6.

3. The first file, test1.doc, is deleted. Note that the data is still there. It hasn’t 
been erased. The file system now shows that clusters 5245 and 5246 
are unallocated and available to store data. Note that even though in 
unallocated space, these clusters are not empty. See Figure 13.7.

4. A new file is created, test2.doc. This file is 546 bytes in size. The file 
system assigns the new file to cluster 5245. Since the file is less than 2,048 
bytes, it is assigned to a single cluster. It just happens to be assigned to 
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One cluster = 2048 bytes

512 bytes 512 bytes512 bytes 512 bytes

Cluster 

Sector Sector Sector Sector

FIGURE 13.4 
One 2,048-byte cluster comprised of four 512-byte sectors. 

5245

Test1.doc

5246

0’s

FIGURE 13.5 
File test1.doc as assigned to clusters 5245 and part of 5246. 

First Sector of Cluster 5246

0000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000

Test1.doc System zeros out 
remainder of sector

FIGURE 13.6 
Note the remainder of the first sector of 5246 (the second cluster) is filled with zeros and the remaining 
three sectors are free. 
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cluster 5245, one of the clusters recently marked as unallocated.  
File test2.doc will occupy the entire first sector and 34 bytes of the second 
sector. The remaining 478 bytes in the second sector will be overwritten 
with 0 s by the system See Figure 13.8.

5. Note that the original data from test1.doc still resides in the second two 
clusters. The data is located in the slack space and can be recovered with 
forensic tools. See Figure 13.9.

We can recover fragments of the previous file out of the slack space. It may or 
may not be of any use, however. It could be part of an incriminating spread-
sheet, email, or picture. These fragments could contain just enough of an email 
to identify the sender or the sender’s IP address. A partial picture of the victim 
could link them to the suspect. Slack space cannot be accessed by the user or 
the operating system. As such, this evidence exists unbeknownst to the suspect.

5245

Test1.doc

5246

Test1.doc
System Zeros out
Remainder of sector 

FIGURE 13.7 
File test1.doc is deleted but still occupies the same space it did before deletion. 

Cluster 5245

Test 1.doc

Deleted Test1.docSystem zeros out
remainder of sector

Test 1.doc Test 1.doc Test1.doc

Test 2.doc Test2.doc 00000000000000
00000000000000

New File - Test2.doc

FIGURE 13.8 
A new file, test2.doc, is saved to cluster 5245. The new file only overwrites part of the original file,  
test1.doc. Note the zeros that fill the void in unused portion of the second sector. Also note the portion of 
test1.doc that is not overwritten. 
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Virtual Memory or Page File
The page file is used when all of the computer’s RAM has been exhausted. 
This virtual memory is called the page file or swap space. The page file is 
not a function that is used on a consistent basis. The RAM holds everything 
your computer is working on at the moment. All of the data and instructions 
(programs, etc.) must move from the main memory to the CPU, where it is 
processed. Every computer comes with a limited amount of RAM. When the 
RAM runs out, the computer is going to need an additional temporary space 
to hold the extra data that needs to be in RAM. To alleviate this situation, 
the computer will swap data in and out of the RAM, writing data to the page 
file to free up room in the RAM. The great thing about the page file is that it 
can contain files and file fragments that no longer exist anywhere else on the 
drive. Even suspects who are successful in deleting and overwriting their files 
will overlook the swap space, leaving this evidence for later recovery.

ONSITE COLLECTIONS
At the scene, examiners could be confronted with a variety of devices and 
storage media. They could find one or more running computers and wireless 
devices like cell phones. Together, these devices present some unique chal-
lenges for the investigator. All the following onsite collections must follow a 
chain of custody as described previously in the chapter.

Actions during the collection process must be well documented. Notes, pho-
tos, video, and sketches record actions and refresh investigators’ recollections. 

Cluster 5245

Test 1.doc

Slack Space

Test 1.doc Test 1.doc Test1.doc

Test 2.doc Test2.doc 00000000000000
00000000000000

FIGURE 13.9 
Note the data that remains after part of the original file, test1.doc, has been overwritten. The remaining 
data contained in the slack space can be recovered. 
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As digital evidence is extremely volatile, preservation is paramount. If at all 
possible, a forensic image or clone (which is an exact bit-for-bit copy) is 
made from the original media. The examination and analysis is conducted on 
the clone rather than the original.

Documenting the Incident
Any time evidence is collected, documentation is a vitally important part of 
the process. There are several different types of documentation. Photographs, 
written notes, and video are the most common methods for documenting 
evidence.

This documentation process begins the moment investigators arrive at the 
scene. Typically, investigators start by noting the date and time of their arrival 
along with all the people at the scene. The remainder of the notes consists of 
detailed descriptions of the evidence collected, its location and condition, the 
names of who discovered and collected it, and how it was collected. It is also 
a good idea to note the items’ condition, especially if there is visible damage.

Accurately and precisely describing the evidence is of critical importance. A 
piece of digital evidence is described by make, model, serial number, or other 
similar descriptors. It is also important to note whether a device is on or off 
or if it is connected to other devices, such as printers, or a network, such as 
the Internet. Virtually everything investigators see, find, and do should be 
documented.

In contrast, a scene with digital evidence presents an entirely new dimension 
of access. Most computers and digital devices are connected to the Internet, 
cellular, or other kinds of networks. It is this connection that permits remote 
access and puts the evidence at risk. Computers and wireless devices must be 
made inaccessible as soon as the investigators are sure that no volatile data 
would be lost [7]. For computers, it may be a matter of removing the Ethernet 
cable or unplugging a wireless modem or router. With wireless devices such 
as cell phones, investigators must take steps to isolate the phone from net-
work signals.

After securing the evidence, a survey of the scene will give the investigators an 
accurate sense of what is ahead. Several questions need to be answered, such as:

■ What kinds of devices are present?
■ How many devices need to be dealt with?
■ Are any of the devices running?
■ What tools will be needed?
■ Is the necessary expertise on hand?

Once these questions are answered, the real work begins. It is a good idea to 
prioritize the evidence to be collected, which will in turn assist responders. 



Onsite Collections 295

Evidence that is most at risk is collected first, while evidence denoted as least 
volatile is collected last. The order of volatility is [8]:

1. CPU, cache, and register content
2. Routing table, Address Resolution Protocol (ARP) cache, process table, 

kernel statistics
3. Memory
4. Temporary file system/swap space
5. Data on hard disk
6. Remotely logged data
7. Data contained on archival media

Photography
Next, the entire scene should be photographed. Photos should be taken of 
the scene before anything is disturbed, including the evidence. It is helpful to 
think of the photos as telling a story. Remember: at some point, the investiga-
tor may have to revisit this scene weeks, months, or even years later.

Photographs are used to depict the scene and the evidence exactly as it was 
found to help supplement the notes. However, photographs do not replace 
notes. Notes capture personal observations that would, and could, not be 
recorded in a photo. They are used to refresh investigators’ recollections 
weeks, months, or even years later.

Notes
As someone photographs the evidence, someone else should take detailed 
notes of actions and any potential evidence. There is no set standard for note 
taking. It is really up to the individual on how to document findings at the 
scene. Chronological order is common groundwork. Note things such as the 
arrival time, who was present at the scene, who took what action, who found 
and collected which piece of evidence, etc. Detailed notes are important not 
just for others, but for oneself (months or years later, perhaps in court), and 
should be sufficiently detailed for someone who was not present to recon-
struct the event accurately.

Marking Evidence
The first “link” in the chain of custody in any case is the person collecting the 
evidence. An organization’s IT staff is often the first link in this chain. The evi-
dence is marked as it is collected. Typically, evidence items are marked with ini-
tials, dates, and possibly case numbers. Permanent markers are best to ensure 
markings are not smudged or removed altogether. Marking the evidence is also 
essential to keep it from being lost or confused with other cases or items.
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Purpose of Cloning
A forensic clone is an exact bit-for-bit copy of a piece of digital evidence. Files, 
folders, hard drives, and more can be cloned. A forensic clone is also known 
as a bit-stream image or forensic image. A forensic image of a hard drive cap-
tures everything on the hard drive, from the physical beginning to the physi-
cal end. Performing a “copy and paste” via the operating system is not the 
same as a forensic clone. A true forensic image captures both the active and 
latent data. That is a key difference between the two and the primary reason 
why a forensic image is preferred.

We know from earlier in the chapter that digital evidence is extremely vola-
tile. As such, one should never conduct an examination on the original evi-
dence unless there are exigent circumstances or no other options.

If possible, the original drive should be preserved in a safe place and only 
brought out to clone again if needed. Sometimes that is not an option, espe-
cially in a business setting wherein the machine and drive must be returned 
to service.

Hard drives are susceptible to failure. Having two clones gives an investigator 
one to examine and one to fall back on. Ideally, all examinations are done on 
a clone as opposed to the original.

Cloning Process
Typically, one hard drive is cloned to another forensically clean hard drive. 
The drive being cloned is known as the source drive, and the drive being 
cloned to is called the destination drive. The destination drive must be at 
least as large (if not slightly larger) than the source drive. While not always 
possible, knowing the size of the source in advance is quite helpful. Having 
the right size drive on hand will save a lot of time and aggravation.

As the first step in the cloning process, the drive we want to clone (the source) 
is normally removed from the computer. It is then connected via cable to a 
cloning device of some kind or to another computer. To safeguard the evi-
dence, it is critical to have some type of write-blocking device in place before 
starting the process. A write block is a crucial piece of hardware or software 
that is used to preserve the original evidence during the cloning process. The 
write block prevents data from being written to the original evidence drive. 
The hardware write block is placed between the cloning device (PC, laptop, 
or standalone hardware) and the source. Using this kind of device eliminates 
the possibility of inadvertently compromising the evidence.

A forensically clean drive is one that can be proven to be devoid of any 
data at the time the clone is made. “Clean” here is analogous to being ster-
ile before use in surgery. It is important to prove the drive is clean, because 
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comingled data is inadmissible data. Drives can usually be cleaned with the 
same devices used to make the clones.

The cleaning process overwrites the entire hard drive with a particular pattern 
of data, such as 1111111111111[9]. Most, if not all, forensic imaging tools will 
generate some type of paper trail proving that this cleaning has taken place. 
This paperwork becomes part of the case file.

The end result of the cloning process is a forensic image of the source hard 
drive. The finished clone can come in a few different formats. The file exten-
sion is the most visible indicator of the file format. Some of the most com-
mon forensic image formats include EnCase (extension .E01) and Raw dd 
(extension .001).

There are differences in the formats, but they are all forensically sound. Some, 
like DD, are open source, while others are proprietary. Choosing one format 
over the other can simply be a matter of preference, however, compatibility 
and interoperability should be considered when choosing a format. Most 
forensic examination tools will read and write multiple image formats.

Live System versus Dead System
Additional volatile information can be gathered from a “live” system, or one 
in which the power is still on. Keeping a system live has the potential risk of 
modifying or corrupting data that could otherwise be safely collected from a 
powered-down machine. The following are examples of the kinds of data that 
can only be gathered from a live machine.

Live System Forensic Benefits
Network connections (i.e., IP address and port) can lead investigators to the 
source of an intrusion, the command and control server for malware, or the 
destination of exfiltrated data. Ports could shed light on the type of traffic 
that was used in the attack. More detail on investigating network traffic is cov-
ered in Chapter 11. Usernames and passwords can be found in the clear in 
RAM. We have all seen the “dots” that populate the login fields as we enter 
our password. The letters, numbers, and special characters “underneath” the 
dots are stored in the clear in RAM. Recovering the password for an encrypted 
file in this manner could constitute a huge investigative break.

When looking at a running machine, we can see the open windows and 
use the task manager to view the running processes. That information is 
very helpful, but it does not tell the full story about all the activity on the 
machine. Identifying the running processes in RAM will give a much more 
complete picture of the device’s data. Using the task manager and noting the 
open windows will not reveal rootkits, key loggers, or other stealthy malware.
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The dynamically linked libraries (DLLs) loaded into memory are also of 
interest. A malicious DLL could have inserted itself into a running process 
that would result in the system becoming compromised. Data that has been 
keyed into an open window can also be recovered from RAM. This could 
include chats, form data, email contents, etc.

Malware is getting more and more sophisticated, and many specimens go to 
great lengths to avoid detection. Malware may reside on disk in a packed or 
encrypted state, making it very difficult to detect. The malware must decrypt 
or unpack itself to run. It is in RAM that we can find it in this state. Some 
types of malware only exist in RAM. Therefore, a live acquisition provides the 
only opportunity to collect and identify it. Additionally, tying a malicious 
process to a specific registry key can help investigators determine the mal-
ware’s functionality and potentially lead to the user account (via the security 
identifier, or SID) that initiated the process [10].

An alternative approach is to capture the data in RAM and fully document all 
open files, as well as all running processes and applications. Up until fairly 
recently, capturing RAM was not a realistic option. The solutions that existed 
were impractical for field work. In contrast, present-day examiners have some 
forensically sound alternatives. There are several commercial and open-source 
tools that can be used to collect this volatile data. Unlike the older lab-bound 
approaches, these tools are very simple to use. So simple, in fact, they are 
being marketed to nontechnical folks like most first responders.

A sudden loss of power could damage the data, rendering it unreadable. 
Lastly, some evidence may not get recorded on the drive unless and until the 
computer is properly shutdown. A proper shutdown is simply closing all open 
applications and following the normal shutdown procedure used every day.

Live System Forensic Detriments
The argument in favor of pulling the power centers around preventing 
changes to the system. Pulling the plug eliminates the need to interact with 
the running machine. Interacting with a running computer in any way causes 
changes to the system, and, as a general principle, any changes to the sys-
tem should be avoided. These changes can call the integrity of the evidence 
into question. When a computer is just sitting powered on, things are actu-
ally changing. When a person interacts with a running machine, even more 
things are changing. Knowing that change is a forensic faux pas, it is easy to 
see why pulling the plug is an attractive option. Even though these changes 
may have no impact on the artifacts relevant to the case, changes are frowned 
upon nonetheless.

Encryption is another compelling argument against pulling the power. 
The system or files may be unencrypted while the machine is powered on. 
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Abruptly pulling the plug could return them to an encrypted state, poten-
tially putting that evidence out of reach for good. Encryption available today 
is extremely powerful. If used properly, it can essentially put the data out of 
reach for parties without the encryption keys.

Conducting and Documenting a Live Collection
When interacting with a live machine, its best to always choose the least-inva-
sive approach possible. This will require thinking before clicking. Haste is not 
helpful in this situation. Collect the most volatile information first, by the 
order of volatility.

Properly conducting a live collection requires focus and attention detail. 
Once started, one must work uninterrupted until the process is complete. 
To do otherwise only invites mistakes. Before getting underway, gather 
all required tools such as report forms, pens, and memory capture tools. 
Detailed documentation is essential for a complete record of each and every 
interaction with the system. These details can be used to determine what if 
any changes were made to the system during the process. Every interaction 
with the system (and its response) should be noted.

The Association of Chiefs of Police Officers (ACPO) [7] offers the following 
advice regarding the capture of live data:

By profiling the forensic footprint of trusted volatile data forensic tools, 
an investigator will be in a position to understand the impact of using 
such tools and will therefore consider this during the investigation and 
when presenting evidence. A risk assessment must be undertaken 
at the point of seizure, as per normal guidelines, to assess whether it 
is safe and proportional to capture live data which could significantly 
influence an investigation.

Considering a potential Trojan defense, investigators should consider 
collecting volatile evidence. Very often, this volatile data can be used to 
help an investigator support or refute the presence of an active backdoor.

The recommended approach towards seizing a machine whilst 
preserving network and other volatile data is to use a sound and 
predetermined methodology for data collection. It may be worthwhile 
considering the selected manual closure of various applications, 
although this is discouraged unless specific expert knowledge is held 
about the evidential consequences of doing so.

For example, closing Microsoft Internet Explorer will flush data to the 
hard drive, thus benefiting the investigation and avoiding data loss. 
However, doing this with certain other software, such as KaZaA, could 
result in the loss of data.
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It is important to realize that the behaviors of specific applications are subject 
to change at any given time. Just because a specific version of a web browser, 
for example, will flush data to the drive when closed, does not mean the next 
version will do the same.

There are a wide variety of forensic tools available today 
that can increase the efficiency of the entire forensic pro-
cess. These tools can come in the form of hardware and 
software. There are open-source and commercial tools 
available on the market. There are advantages and disad-
vantages to both. Cost is one factor. The cost of commer-
cial forensic hardware and software can be quite high. In 
addition to the purchase price, most tools require an annual 
license fee for maintenance and support. Open-source fees 
are attractive from a cost perspective, but the support will 
likely be less than that provided with commercial tools.

There are general forensic tools that provide a wide range 
of functionality and there are tools that perform a more 
specific function. More targeted tools can provide better 

functionality. General tools can be compared to Swiss Army 
knives, as they have multiple functions. Two of these most 
widely used general exam and analysis tools are Guidance 
Software’s EnCase and AccessData’s Forensic Toolkit (FTK). 
The SANS Investigative Forensic Toolkit (SIFT) is a widely 
used open-source tool.

With the wide array of potential evidentiary sources, spe-
cialized collection tools are often needed. Cell phones are 
an excellent example. Specialized commercial hardware is 
available that greatly enables and enhances the forensic 
analysis of cellular phones. Cellebrite manufactures one 
of the most widely used commercial tools for the forensic 
analysis of cell phones.

MORE ADVANCED FORENSIC TOOLS

FINAL REPORT
At the conclusion of the analysis, the examiner may be asked to generate a 
final report. The report should detail what was done, what was found, and 
any interpretations. Ideally, final reports need to be crafted with the intended 
audience in mind. Many reports are filled with jargon and code, rendering 
them nearly useless to nontechnical readers. It is important to remember that 
the audience must be able to understand it, and the audience is probably 
partly, if not largely, nontechnical.

The major commercial forensic tools like EnCase and FTK have very robust 
reporting features, generating quite a bit of customizable information. 
However, as helpful as these reports are, they are just not adequate to stand 
on their own. Important information may be lacking (e.g., specific actions 
taken). Furthermore, they tend to be overly complicated for the average lay 
person. A professional report will consist of much more than the standard 
report generated by these tools. The final report should include a detailed 
narrative of all the actions taken by the examiner, starting at the scene if he 
or she was present. The examination should be documented with sufficient 
detail so that another examiner can duplicate the procedure.
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ORGANIZATIONAL PREPAREDNESS
Digital forensics is a vital part of an overall incident response strategy. As 
such, it should be addressed by the organization through its policies, proce-
dures, budgets, and personnel. All applicable policies and procedures should 
be drafted in such a way that it maximizes the effectiveness of the digital 
forensic process. Specific policies should be drafted covering digital forensic 
procedures and concerns. The budget should reflect the importance of digi-
tal forensics by dedicating funds for the tools and training needed to support 
an incident response. An adequate number of personnel should be trained 
in forensic fundamentals, as well as certified with the specific tools they will 
use. Validation is a fundamental principle of digital forensics. Maintaining 
both trained and certified personnel is essential to meeting that objective. 
More details on response policies and contingency planning are provided in 
Chapter 15.

SUMMARY
This chapter discusses digital forensic processes, principles, and procedures, 
and their overall value to an organization as they defend their network. 
Understanding how the enemy attacks provides vital information to the 
defenders, greatly enhancing their overall effectiveness.
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Chapter Review Questions
1. Define the following terms and describe their importance to digital forensics:

 a. Active data
 b. Allocated space
 c. File system
 d. Hash value
 e. Latent data
 f. MD5
 g. Registry
 h. Swap space
 i. Validation

2. Define Locard’s exchange principle and explain how it can be applied to the 
investigation of a network intrusion.

3. Compare and contrast volatile and nonvolatile memory. Give examples of each.

4. What are the four phases of digital forensics?

5. Compare and contrast each of the four computing environments described in the 
chapter. What are the forensic challenges presented by each?

6. Compare and contrast how magnetic drives store data versus a solid-state drive.

7. What is the biggest forensic challenge presented by solid-state drives?

8. What role does a write-blocking device play in the cloning process?

9. What is the order of volatility? Why should data in RAM be collected before 
evidence on the hard drive?

10. The MD5 hash value of an evidence drive you removed from the vault no longer 
matches the hash value obtained when it was collected three months earlier. What 
does that tell you? What are some possible explanations?

Chapter Exercises
1. Find reporting on a legal takedown of malicious activity, such as that of the 

DNSchanger botnet in 2012. What forensic evidence was obtained from the seized 
machines? How was it obtained?

2. How can network forensics and host-based digital forensics be used to 
complement one another?

 [9] Casey E. Digital evidence and computer crime: forensic science, computers, and the inter-
net, 3rd ed. Boston: Academic Press; 2011.
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Recognition Strategies: Integrity Detection

CHAPTER 14

INTRODUCTION
The final subject group of recognition strategies center around the concept of 
recognizing when something has changed. This process is called checking the 
integrity of the data. There are several different aspects of the data that can be 
checked for changes, and there are several different methods for each aspect. 
The first integrity detection methods were not developed against attackers, 
but simply against the random errors computers happen to make during their 
operation. This chapter begins with these more simple methods, and builds 
to more robust methods for checking data that use cryptography to detect 
not only accidental but purposeful changes. The focus of integrity detection 
is data generally, which can mean important or system-critical data such as 
software executables, configuration files, or file permissions. Maintaining the 
integrity of such data from accidental or intentional alteration is critical for 
the operation of all other security strategies.

■ Checksums:
■ Parity bits
■ Repetition code
■ Hamming codes

■ Cryptographic integrity detection:
■ Digital signatures

■ Rule-based integrity checking
■ Content comparisons
■ Integrity detection in GPS

INFORMATION IN THIS CHAPTER
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© 2013 Elsevier Inc. All rights reserved.2014
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The second part of the chapter discusses a different aspect of integrity detec-
tion than simply if the data has been altered. These aspects are more relevant 
to databases and such applications, and so have become more important 
as databases have become more popular. One method in this area is based 
on rules for the data, and the second method focuses on the content of the 
data. Finally, an example instantiation of integrity detection in the global 
positioning system (GPS) ties these different aspects together in a real-world 
application.

CHECKSUMS
Simple integrity detection is as old as electronic computers. Computers, 
as well as electric transmission and storage, are far from perfectly reliable. 
Therefore, to even make computers useful there needs to be some basic integ-
rity detection, otherwise random errors are introduced that ruin calculations. 
Checksum is the general term for this basic integrity detection, because you 
check the integrity of the bits by adding them up and making sure the sum has 
the correct properties. For example, every IP packet that traverses the Internet 
has a checksum to protect the integrity of the header [1].

Checksums are a safety mechanism, not a security mechanism. That is, they 
protect against random environmental changes to data—safety. However, 
they do not prevent an intelligent actor from purposefully subverting the 
data—security. However, checksums are an important basis for understanding 
secure integrity detection, and there are shared principles between the two. In 
the following subsections, parity bits and repetition codes will be discussed 
in preparation for the discussion about the 1940’s breakthrough, Hamming 
codes, which are still widely employed to this day.

This section is not a comprehensive survey of all important integrity check 
methods. For example, Berger codes, cyclic redundancy check (CRC) codes, 
Fletcher checksums, and a variety of noncryptographic hashing algorithms are 
all practically useful but not covered here. The topics covered are intended to 
adequately cover the concepts of safety integrity checks; the reader interested 
in more encoding algorithms could start with Pless [2] and Peterson and 
Weldon [3].

Parity Bits
A parity bit is part of an encoding that is designed to detect a single error in a 
set of binary bits. When sending a string of bits, say 1111010, the ASCII encod-
ing for the lowercase z, there will be noise on the transmission channel. If 
there is enough disturbance in the transmission the receiver may not receive 
the same bits as what were sent. This is true even if the transmission channel 
is just the wire from the keyboard to the computer.
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A naive method of detecting errors would just be to send every string twice. 
Thus, to encode a lowercase z one could send 11110101111010. However, if 
the receiver reads 11110101111011 it can detect an error, but cannot tell if the 
error was in the first version, second version, or some combination. Further, 
this method is inefficient, as it cuts throughput in half to send double the 
symbols. A more efficient method of detecting a single error is to add a single 
bit that indicates some property of the string. An even parity bit is 1 if the 
number of 1s in the string is odd, and 0 if the number of 1s is even. Another 
way to say this is that we add a bit to the message, and force the number of 
1 symbols to be even [2, p. 3]. So z could be encoded as 11110101, where the 
last bit is the parity bit. This is easy to check, because the receiver just checks 
that every 8-bit block has an even number of 1s. Otherwise, there is an error, 
which also detects an error in the check bit itself.

There are several limitations to this encoding. Most importantly, it can only 
detect an odd number of errors, where errors are assumed to be flipping a 
single bit from 1 to 0 or vice versa. If z is sent as 11110101, but 01010101 is 
received, then it passes the parity check and the receiver erroneously records a 
capital R.

Bar codes (universal product code, or UPC) use a parity check to ensure integ-
rity, although the UPC parity check is not in the binary but in the regular dec-
imal (0–9) number system. UPCs have 12 digits. The first 11 digits carry the 
information about the product. The twelfth digit is used to make sure that a 
function of all the digits is a multiple of 10 [4], just like a parity bit is used to 
make sure that the sum of the bits in a string is a multiple of 2. In this way, 
errors when entering or reading a UPC can be detected and the sales clerk 
can re-enter the information, rather than charging the customer for the wrong 
product accidentally.

Repetition Codes
To detect more errors, more bits are generally required. An alternative code 
would be to repeat each bit twice. Under this scheme, each 1 or 0 would actu-
ally be sent as 111 or 000. Not only can this encoding detect errors, it can also 
automatically correct them. This is because if the receiver reads 110 or 011 or 
101, it is more probable that the original message was 111 than 000, since the 
former only would require one bit to flip instead of two.

A common notation for codes is to write how many total bits are sent, 
n=error detection + data, with how many bits k represent just data. This is 
written in pairs, (n,k) [3]. The repetition code in this example is a (3,1) code, 
because there are three bits transmitted total, one of which contains the data 
to be communicated, per block. Seven-bit ASCII with parity bits, as described 
in the previous subsection, is a (8,7) code. A (3,1) code is inefficient. There 
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are theoretical limits that describe the best possible encoding given certain 
desired properties, such as single-error detecting, double-error detecting, or 
the ratio between k and n. While the repetition code can correct single errors, 
it is not the best code that can do so.

Hamming Codes
A Hamming code is an example of a perfect code. A perfect code is an encod-
ing that can be mathematically demonstrated to be the best possible code for  
its length and a set of error detection and correction properties [3, pp. 89,  
117]. Hamming code actually denotes a family of codes created in a formu-
laic manner, because the code can have an arbitrarily long block size and 
it is always a perfect code for that block size if the block length is a power 
of 2. The formal definition of Hamming codes is best done with matrices  
[3, p. 118ff], however, a more colloquial definition follows.

Hamming code uses parity bits in an overlapping manner. Each parity bit is 
calculated as to whether the number of 1s is even or odd. Overlapping man-
ner means each parity bit is only calculated on a subset of the data bits. 
However, each data bit is checked by a unique combination of parity bits. 
This way, if a data bit is in error, it can be uniquely identified by the combi-
nation of parity bits that fail the parity check. If a parity bit itself is flipped 
and in error, this is also detectable and identifiable based on the particu-
lar method of overlapping the parity check bits used in Hamming codes. 
To achieve this proper overlapping configuration, every bit position that is 
exactly a power of 2 is a parity bit, and other bits are data bits [5].

Hamming codes can correct single errors with much better data rates than 
repetition codes. The redundancy rate of a code is the ratio k∕n, or the number 
of data bits over the total number of bits. A (7,4) Hamming code redundancy 
rate is about 57%, compared to the repetition code’s 33% rate. A (31,26) 
Hamming code would have a redundancy rate of nearly 84%.

Hamming codes such as (7,4) can correct single errors, but they would fail to 
detect a double error in which two bits are flipped. To detect a second error, 
one more parity bit can be included over the whole block, just as in the ASCII 
(8,7) encoding, which will allow a second error in the block to be detected. 
Such a code would be termed single-error correcting, double-error detecting 
(SEC DED). Hamming codes, albeit with larger block lengths, have a long 
history of application. Hamming codes are used in modern hardware, such as 
flash drives, for error correction and detection [6]. They are also used in com-
munications with long transmission delays, where it is infeasible to simply 
retransmit the correct code; it is important for the receiver to be able to cor-
rect the error without retransmission. Space missions like the Mariner Mars 
Probe took advantage of this feature, using a (32,26) encoding.
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CRYPTOGRAPHIC INTEGRITY DETECTION
Cryptographic integrity detection takes the principles learned through a few 
decades of doing integrity detection for safety and applies them to secu-
rity—preventing intentional subversions of the data. Some of the properties 
of these techniques will be familiar from the last section on checksums, but 
since the goals of safety and security are surprisingly different, the design of 
cryptographic integrity detection is significantly different. In practice, check-
sums are used in combination with cryptographic integrity detection because 
neither supplies the services of the other. For a short introduction to the dif-
ferences between the concepts in safety and security, see Schneier [7].

The basic idea is that the author includes a secret in the checksum or other 
integrity check algorithm. As with encryption described in Chapter  8, this 
secret is called the key. The method for including the key in the calculations, 
and all the calculations themselves, are not secret. If the key is secret, only 
those entities that know the key can have produced the integrity check value. 
This certifies that one of the key holders produced the message, and that it 
has not been altered. When this is accomplished with symmetric (secret key) 
cryptography it is called a keyed hash function, and sometimes a message 
authentication code [8, p. 331].

The most common method of performing cryptographic integrity protec-
tion is with asymmetric (public key) cryptography, which is introduced in 
Chapter 7. Asymmetric key cryptographic integrity detection is best exempli-
fied in digital signatures. A different, but related, approach is to use a one-
way function instead of a cryptographic function, which is two-way, meaning 
reversible. One-way functions are called hash functions, which are introduced 
in Chapter  8. There are a variety of uses for cryptographic hash functions, 
however, the general principles can be captured with a discussion of digital 
signatures. For a more complete discussion of the uses of hash functions, 
see Stallings [8, part3]. Whatever method is being used, there needs to be a 
secret key. Otherwise the adversary can modify the message and recompute 
the integrity check value. Keys in this context carry all the difficulties of key 
management, just as in encryption, as discussed in Chapter 8.

Digital Signatures
The first rigorous description of a robust digital signature scheme and what it 
means to attack it was published in 1988 [9], although it drew heavily from 
Diffie and Hellman’s initial public key work [10]. The two predominant digi-
tal signature schemes in use are RSA (for its inventors, Rivest, Shamir, and 
Adleman) [11] and Digital Signature Standard (DSS) [12]. There are some 
differences between them in the math they use, and for the fact that RSA 
can be used more flexibly to also provide confidentiality as well as a digital 



CHAPTER 14: Recognition Strategies: Integrity Detection308

signature. However, this section will only be concerned with the digital sig-
nature aspects, and in this regard the two schemes are conceptually simi-
lar. Therefore, this section will discuss digital signatures, and group the two 
together, because at the provided level of detail it is not important to distin-
guish between the two.

Although there are many ways of applying a digital signature, Figure 14.1 
demonstrates an elegant method for providing integrity and authentication, 
but not confidentiality. The method, used in RSA and DSS, involves the crea-
tion and signing of a hash of the message. Hashing algorithms, the output of 
which is a hash, were introduced briefly in Chapter 8. Hashing is fundamen-
tally different from encryption because a hashing algorithm is not intended 
to be reversible. The requirements for a cryptographic hashing algorithm are 
summarized in Table 14.1

The hash provides the integrity protection. It takes in a piece of data of any 
length, and outputs a fixed length of data. But given the unique properties 
of sensitivity to change and collision resistance (see Table 14.1 for defini-
tions), it provides a high degree of assurance that a given message actually 
correlates to that hash. The size of the fixed output has similar requirements 
to the key size in encryption—if it is too small, the attacker can try enough of 
the possible values to find a match and break the defense. But with a properly 
defined hash, the chances of finding two messages with the same hash (i.e., 
collisions) are small enough as to be negligible. Collisions are always possi-
ble; with a properly sized hash the chance of finding them is computationally 
infeasible. This principle of computational security is also the principle used 
in key size of encryption algorithms, as described in Chapter 8.

A hash provides integrity protection just like a checksum—if one bit in the 
message changes, the hash does not match and an error is detected to be 

Creating a digitally signed message

Message

Key

Hash Encrypted
hash

Message
+

Signature

FIGURE 14.1 
One common method of creating a digitally signed message. First, the message is hashed; the resulting 
hash is then encrypted with the signer’s private key. The encrypted hash also includes a date or nonce to 
prevent the same message from being replayed; it is then appended to the original message. 
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somewhere in the message. In this case, the message is arbitrarily long, but 
the hash cannot determine where the error was. In this sense, it is inferior to a 
Hamming code for safety-related integrity detection.

There does not need to be a key involved with the hashing function itself. As 
Figure 14.1 shows, the hash is encrypted. This encryption provides the cryp-
tographic integrity protection. Only the message actually sent can produce 
the hash, but anyone could make a new message and a new hash if they were 
attacking the message. The essential step is to tie that hash to someone by his 

Table 14.1 Seven Required Properties of a Cryptographic Hash 
Function (call it H) and Their Purposes

Requirement Definition Purpose

variable input size H works on any size of input 
data

We want to compare all possible 
data sources, so we need to 
accept data of any size

fixed output size The output of H is always  
the same length

Will make all outputs easily and 
soundly comparable

efficiency H is reasonably easy to 
compute

H needs to be practical or no 
one will use it.

preimage resistant 
(one way function)

Given only the output of H, 
it is infeasible to guess any 
input that would produce  
that output. “Infeasible” 
generally means about 
50 billion years at current 
computing power, or longer 
than the universe is likely to 
exist.

That H is one-way is what makes 
it different from encryption. This 
is important because it allows a 
system to check the accuracy of 
an input without storing a copy 
of that input. This is particularly 
important for passwords, for 
example.

second preimage 
reisistant (weak 
collision resistance)

Given a input block, it is 
computationally infeasible 
to find a different input value 
which produces the same 
output

A digital signature is not 
very useful if after you sign 
a message the attacker can 
find another message that 
would have the same hash and 
exchange the two messages.

(strong) collision 
resistance

It is computationally  
infeasible to find any pair of 
different inputs that produce 
the same output

This stronger version is required 
if the adversary can choose a 
message that will be signed, 
because then no two message 
can collide or the adversary can 
choose the signature of one 
message and then substitute the 
other.

psuedorandom 
output

The output appears to be a 
statistically random string of 
bits

If the output is predictable then 
the adversary will be able to 
make predictions based on it.



CHAPTER 14: Recognition Strategies: Integrity Detection310

or her private key. Only the private key could make a hash recoverable by the 
public key, and in this way the hash cannot be modified. So if the message is 
modified, the hash cannot be tampered with afterwards. Therefore, the algo-
rithm can guarantee that the message is the one that the person created and/or 
sent. Cryptographic hash functions also exist, which incorporate a key directly; 
the strategic result and use is essentially the same between these two methods.

The application to recognition strategies is straightforward. The defender may 
not always be able to prevent the adversary from modifying the contents of a 
message or file. So in case the adversary modifies the contents, it is important 
to be able to recognize the change in reference to some data incorporated in 
the content but that the adversary cannot readily forge. This can be used for 
files transferred over the network, as well as for files stored locally.

Father of Coding Theory

Although Richard W. Hamming (1915–1998) wanted to 
study engineering, he studied mathematics for both his 
undergraduate (University of Chicago, 1937) and doctorate 
(University of Illinois at Urbana-Champaign, 1942) degrees. 
This degree was already an accomplishment for someone 
who grew up modestly on the south side of Chicago dur-
ing the Great Depression, but it was just the beginning. He 
was recruited into the Manhattan Project in 1945, and with 
his wife, Wanda, moved to Los Alamos, NM. Hamming’s pri-
mary task during the project included running the comput-
ers the physicists used for their calculations in designing 
the atomic bomb [13].

This time at Los Alamos was formative for 30-year-old 
Hamming for two reasons. First, he came into contact with 
renowned scientists such as Enrico Fermi, Edward Teller, and 
Robert Oppenheimer, and became envious of their greatness 
and captivated by the question of what made them so good 
at what they did [14]. Second, the Manhattan Project gave 
Hamming confidence and responsibility that would give him 
the clout and confidence to do “unconventional things in 
unconventional ways and still [get] valuable results” [15 p. 61].

It was much in this way that Hamming pioneered the field 
of coding theory at Bell Labs. Hamming worked at Bell from 
1946–1976. Since Claude Shannon also worked at Bell Labs 
during these formative years, much of the theoretical basis 
for modern computing and telephony was laid in those 
walls within a remarkably short period of time. Hamming 
had a strong personality; he was always direct and was not 
afraid to challenge his colleagues or friends. Despite his 

harshness, Hamming was a genuine person and displayed 
an unflagging respect for hard work.

After retiring from Bell, Hamming quit researching but took 
a position as a professor at the Naval Postgraduate School 
in Monterey, CA. He focused on teaching and writing, espe-
cially textbooks. He shifted his intellect from coding theory 
to mathematics pedagogy, attempting to modify teach-
ing methods by supplying innovative textbooks. He also 
remained interested in what made great scientists great, 
a theme still carried over from his encounters with Fermi 
and Oppenheimer but seeded now with his own experi-
ence with success. He had several recommendations, but 
besides the rather obvious hard work—sensibly directed—
and cleverness, he singled out the ability to tolerate ambi-
guity such that one can work within a theory but also 
question it enough to expand it [14].

Hamming taught in Monterey for 21 years as an adjunct 
professor. He accepted emeritus status in December 1997, 
but despite this change he continued to come in daily. 
A month later he passed away. He left quite a legacy, not 
only in the various aspects of information theory that 
carry his name, but in the impression he made on his stu-
dents and colleagues. He has also been memorialized 
in many awards, scholarships, and namesakes, includ-
ing the observatory at Cal State. A group of his former 
students at the Naval Postgraduate School have recon-
structed his capstone course, including video of his pres-
entations, available at https://savage.nps.edu/hamming/
HammingLearningToLearnRecovered/.

PROFILE: RICHARD HAMMING

https://savage.nps.edu/hamming/HammingLearningToLearnRecovered/
https://savage.nps.edu/hamming/HammingLearningToLearnRecovered/
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RULE-BASED INTEGRITY CHECKING
Rule-based integrity checking is most commonly associated with database 
systems or other structured data formats. Whenever a process reads data in, it 
should check that the data adheres to the rules it is expecting, otherwise seri-
ous errors can occur. Both SQL injection and buffer overflow attacks, two of 
the three most common and damaging software programming errors ever, are 
a failing to check that data adheres to the expected rules [16]. Recognition of 
these violations is a key aspect of a good security strategy.

Like intrusion detection systems discussed in Chapter 12, integrity checking 
sometimes blurs the line between recognition and resistance. A sufficiently 
accurate and fast intrusion detection system (IDS) can begin to perform pre-
ventative measures, and then it may be called an intrusion prevention system 
(IPS). Likewise with integrity checking, some processes are suitable to prevent 
the erroneous entry from being stored, whereas others are only suitable for 
recognition afterwards. Preventative integrity checking may be particularly 
useful during human data entry, where the computer will have enough time 
to keep up with the relatively slow human input rate and give feedback.

There are many different types of integrity rules. In general, any arbitrary rule 
can be made about the format and content of the data. When a program speci-
fies that a field must be filled by an integer, or a date, this is specified by a rule 
about the type of data. Tax calculation documents contain a lot of good exam-
ples of arbitrarily complex integrity rules. For example, “If box 2 is greater than 
4,000 and you checked yes in box 5, then enter the contents of box 2 in box 9; 
otherwise, enter the difference between box 3 and box 2, unless it is less than 
0, then enter 0.” Such a statement specifies a relation between different fields, 
in addition to simple rules like the value in the field is an integer. In database 
systems, arbitrary integrity rules can be specified using table constraints and 
assertions [17, p. 69]. The types of integrity rules that usually get special atten-
tion in database systems are entity, referential, and domain integrity.

Entity Integrity
Entity integrity is a constraint on the uniqueness of the entity. In a postal 
system, it may be a constraint that within one zip code there cannot be two 
streets with the same name. There can be differently defined constraints for 
different relevant realms. Within the whole country, there may be allowed to 
be multiple streets with the same name. However, there should probably be 
a constraint that no two buildings share the same address. Entity integrity is 
maintained by uniqueness constraints in a database system, which are techni-
cally called primary key constraints [17, p. 64].

When specifying the rules for a primary key constraint, it is important to 
specify the minimal subset that is of interest. Considering houses again, some 
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features of the house could be confusing when specifying a unique house. We 
do not care what color the house is or if it is made of cement or wood when 
we specify the unique address. The address alone can make up the primary 
key of the building, whereas a set of information {address, red, brick} would 
not help specify uniqueness. Such a set is a superset of the primary key.

In a file system, the unique entities are files as specified by their file path. One 
form of entity integrity checking is to see if there is already a file by the requested 
name before writing to it. If there is, the operating system often prompts for veri-
fication before overwriting the file, which is a form of integrity check.

Referential Integrity
Referential integrity is verifying that the relationships between different entities 
meet certain standards. For example, if we keep track of students enrolled in a 
course by their student ID numbers, there should be a referential integrity check 
on those IDs of students enrolled in the course to ensure that they are IDs of 
students who attend the school and have paid their tuition. Referential integrity 
is maintained by foreign key constraints in a database system [17, p. 66].

Domain Integrity
Domain integrity is a constraint on the possible values for an entity. This is 
perhaps the most basic integrity constraint. However, it can become rather 
complex. A shopkeeper might want to ensure all the items being sold in the 
“cameras” section are cameras. But what makes an item a camera versus a cell 
phone may need to be carefully defined, with no clear borders. As an aside, 
digital shopkeepers can solve this issue by giving items multiple types, and 
thus multiple legal locations [18]. Domain integrity is maintained by domain 
constraints in a database system [17, p. 61].

Failing to sanitize input data, or make sure that data accepted from users does 
not contain system commands, remains one of the most common computer 
exploits [16]. Input sanitization can be viewed as a special case of domain 
integrity. For a comical illustration of the importance of domain integrity, see 
http://xkcd.com/327/.

CONTENT COMPARISONS
Another possible integrity checking mechanism is to inspect the content of 
the file or container and compare it, either to a reference file or just to an 
older version to look for changes. This is more than just comparing the hash 
values of the files to see if they trivially differ, as is done with most crypto-
graphic integrity detection. Content comparison is more interested in where 
and how two files differ. This has uses in change and version management, 
as well as integrity detection. It also allows for making decisions about what 

http://xkcd.com/327/
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changes are allowed. Certain changes to a file may not violate organizational 
policy, but others might, and so a content comparison tool is necessary to 
pull out changes before it can be determined if they are appropriate.

The Unix diff command-line utility is the quintessential content comparison 
tool. The diff algorithm is specified in Hunt and McIlroy [19], and the algo-
rithm has not changed much since 1976. The underlying problem is a compu-
tationally difficult one—the least common subsequence problem. But the diff 
algorithm has proven to be a practically good solution, in lieu of a theoretically 
optimal one. The output of diff specifies what changes are necessary to convert 
file 1 into file 2. This is listed as a series of insertions and deletions, by line num-
bers, necessary to make the conversion. Figure 14.2 displays some sample output.

If the defender has a reference copy of files on the file system, they can use content 
comparison to highlight possible material for further inspection. If one assumes 
that the system yesterday or last week was in a good state (a dangerous assump-
tion, but we have to start somewhere), then one could use a content comparison 
to prioritize resources. Both directories and files could be inspected. The contents 
of new and old directories can be compared to look for new files. The contents of 
files that existed both last week and now can be checked for changes.

Further, the defender can prioritize the new files and changes in the files for a 
possible scan to recognize malicious changes. The previously mentioned (see 
Chapter  5) host-based tool Tripwire is one example of a tool that provides 

Original text Edited text

18. All warfare is based on deception.
19. Hence, when able to attack, we must seem unable;
when using our forces, we must seem inactive;
when we are near, we must make the enemy believe we are far
away;
when far away, we must make him believe we are near.
20. Hold out baits to entice the enemy. Feign disorder, and crush
him.
21. If he is secure at all points, be prepared for him.
If he is in superior strength, evade him.
22. If your opponent is of choleric temper, seek to irritate him.
Pretend to be weak, that he may grow arrogant.

17. According as circumstances are favorable, one should modify one's plans.
18. All warfare is based on deception.
19. Hence, when able to attack, we must seem unable;
when using our forces, we must seem inactive;
when we are near, we must make the enemy believe we are far away;
when far away, we must make him believe we are near.
21. If he is secure at all points, be prepared for him.
If he is in superior strength, evade him.
22. If your opponent is of hyperbolic temper, seek to irradiate him.
Pretend to be weak, that he may grow arrogant.
23. If he is taking his ease, give him no rest.

diff output

0a1
> 17. According as circumstances are favorable, one should modify one's plans.
6d6
< 20. Hold out baits to entice the enemy. Feign disorder, and crush him.
9c9
< 22. If your opponent is of choleric temper, seek to irritate him.
---
> 22. If your opponent is of hyperbolic temper, seek to irradiate him.
10a11
> 23. If he is taking his ease, give him no rest.

FIGURE 14.2 
The output of diff on two sections of Sun Tzu’s Art of War [20]. The right side has been edited. The diff output consists of a encoding 
followed by a hunk of changes. The encoding is line numbers in the first file, a single letter for addition, deletion, or change [a, d, c], and 
line numbers in the second file. The lines are reproduced that were added, changed, or deleted, with > indicating the line was in the right 
file, and < in the left file. This is the default format; diff can also be used to simply state if the files differ, for example. 
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some of this functionality. This kind of local integrity check tool could also 
be termed a kind of host-based intrusion detection and prevention system 
(IDPS; see Chapter 12).

AN EXAMPLE: GPS
The global positioning system contains a practical and important example 
of integrity detection. The GPS is used by a receiver device to determine the 
receiver’s position on Earth. The receiver does this by measuring its distance 
from several satellites and triangulating its position. Synchronizing clocks 
between the satellite array and the receiver is also important, because the dis-
tance is measured by how long it takes a radio signal to reach the receiver. 
Since radio waves travel at the speed of light, this is a constant1 and simply 
knowing the time difference is enough to calculate the distance.

If one of the satellite signals is wrong, the navigator wants to know. Especially 
if they are flying a 747 plane. This is an integrity detection problem. GPS uses 
receiver autonomous integrity monitoring (RAIM) to detect faulty satellites. 
GPS needs four satellites to determine position while flying: one to sync the 
clocks and one each for latitude, longitude, and altitude. These distances are 
continuous numbers, rather than discrete bits; however, the math works simi-
larly to Hamming code and SED or SEC DED codes. If the receiver wants to 
detect an error it needs five satellites. To both detect an error and determine 
which signal is in error, discard it, and compute the correct value automati-
cally, the receiver needs six satellites [21].

The algorithm for detecting when a satellite is in error uses statistics and a 
specified error threshold, unlike Hamming codes, which are discretely either 
right or wrong. The position is calculated using several combinations of the 
satellites, since only four of the available ones are necessary per calculation. 
If all the results are close enough together, as defined by the threshold, the 
measurement is considered accurate. The chance that two satellites would be 
wrong in the same way is considered sufficiently low that this is not a con-
cern; such an error would be similar to the way that a double error in elec-
tronic transmission can avoid detection by parity bits.

In the United States, the FAA considers RAIM important enough that it 
requires aviators to check for the availability of RAIM before flying [21], such 
as on http://www.raimprediction.net/. This is application-level integrity, and is 

1 Technically, it is not quite constant. It is affected by gravity, as per Einstein’s theory of relativity. Furthermore, 
the clocks on the satellites do not count at the same speed as the receiver, since the satellites are orbiting 
enough faster than the receiver device for relativity to be relevant. However, both of these deviations are 
predictable and included in the calculations the receiver makes based on the timing difference.

http://www.raimprediction.net/
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much more specific than the IP packet header checksum or a Hamming code 
used to maintain accurate storage on a hard drive. However, the principles of 
all these safety-related integrity detection mechanisms are similar. And like 
most good services, the average consumer does not know they exist as long as 
they are working.

SUMMARY
This concludes the last of four chapters on recognition strategies. We have dis-
cussed network-based, host-based, and data-based recognition. In this chapter, 
methods of integrity detection are explored, beginning with simpler safety-
related checksums and Hamming codes, followed by more robust crypto-
graphic checksums capable of detecting intentional changes by an adversary.

This chapter also discusses higher-level integrity detection methods that do 
more than just check that the information received is the information that 
was input. Rule-checking integrity mechanisms verify that the data meets for-
matting, size, and style requirements. Failure to enforce certain integrity rules, 
such as input size, is still one of the most common sources of coding errors 
exploited by attackers. Content comparisons look for changes between versions 
of a file or data element. Finally, measurement integrity in the GPS is discussed.

Chapter 15 discusses perhaps the most important aspect of a security strategy: 
how to recover when a security violation is detected. Recognition strategies are 
not much use without a valid plan on what to do with the information that 
a violation has been recognized. And since one primary tenet of the book is 
that the defender will not be able to deceive, frustrate, or resist all attacks, it is 
essential that the defender be able to recover gracefully from successful attacks.
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1. What is a checksum?

2. How does a parity bit check the integrity of a block of data?

3. What is a digital signature for and how does it work?

4. What is the difference between a hashing algorithm and an encryption algorithm?

5. What are two common rule-based integrity rules?

Chapter Exercises
1. In the following block of data, the Hamming code integrity check bits are replaced 

with x. Fill in the correct values: xx1x010 × 1101001. What is the data encoding 
rate of this (15,11) code?
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or not integrity recognition methods could prevent them, and if so what methods.
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Recovery of Security

CHAPTER 15

INTRODUCTION
In previous chapters we discussed various aspects of a robust security strategy: 
deception, frustration, resistance, and recognition. The theme so far is to have 
a layered approach and fall back on later aspects of the strategy for support. 
If the adversary cannot be deceived, frustrate him or her. If the adversary can-
not be frustrated, then resist him or her. We have also emphasized that the 
defender cannot hope to frustrate every adversary—a sufficiently skilled and 
patient adversary will get past any frustration strategies deployed. And so on 
with resistance and recognition.

There is no such further bulwark with recovery. Furthermore, since compromises 
are inevitable, enacting recovery plans is inevitable. A recognition event will kick 
off the recovery phase; however, the initial indicator of compromise will invari-
ably be just the tip of the iceberg. A good recovery plan will interact with and 
draw from processes from each of the other four strategy aspects to perform a 
sufficient response. In this regard, responding to an information assurance inci-
dent is highly technical. These technical details can be found throughout the ref-
erence materials cited in the chapter, therefore, this chapter omits them.

Only a few aspects that differentiate a good recovery from a lackluster recovery 
are technical. A good recovery is an organizational wherewithal to accept that 

■ Emergency management
■ Recovery priorities
■ Building a response policy
■ Recovery from actions and continuity of operations
■ Recovery from malicious events
■ Incident handling
■ Incorporating lessons learned
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incidents happen and respond to them with appropriate care. There is a sig-
nificant body of work on disaster recovery and incident response in the physi-
cal world. The goal of this chapter is not to reproduce that body of work—that 
would take a book in its own right. This chapter points to related existing stra-
tegic documents for incident response, and highlights how these strategies can 
be adapted to provide a good grounding for cyber-incident response.

One last point is important to bear in mind before we begin. Since 2005, the 
security community has seen extensive evidence of adversaries routinely evading 
even diligent, intelligent defenders [1]. There have also been demonstrations of 
malicious software tenaciously penetrating physically separated, high-value sys-
tems [2]. An integrated recovery plan has been advocated for some time as part 
of a robust network [3,4], and in light of such persistent attacks, the practical 
benefits of such a recovery plan are evident. A good recovery plan will help dif-
ferentiate a robust organization from a hapless organization.

This chapter covers several topics that could be considered rather diverse. First, 
we discuss planning for emergencies, as cyber-incident response and recovery 
share some similar features with emergency handling. Specifically, recommen-
dations for building a response policy are covered as they vary relatively little. 
Next, continuity of operations is discussed and contrasted with recovery from 
malicious events. This captures the difference between strategies when deal-
ing with safety events versus security events, which is a theme that has been 
discussed in regards to other strategies in this book as well. Recommendations 
for cyber-incident handling and surrounding policy are covered once this 
background is established, through the target step of restoring a cleaned sys-
tem back into operations. The final section covers a critical but difficult opera-
tion—incorporating lessons learned back into the overall security strategies.

Contingency planning is the umbrella term that covers business continuity, 
continuity of operations, critical infrastructure protection, security incident 
response, disaster recovery, and other resiliency fields [5]. All of these opera-
tions and plans are important, but they have key differences. One reason this 
chapter treats several aspects of contingency planning, rather than just com-
puter security incident response, is to better place incident handling in com-
parison to other contingency planning disciplines. This approach promotes 
a clearer understanding of what incident response can do, and when other 
specialization is needed.

EMERGENCY MANAGEMENT
Emergency management includes all aspects of an organization. Work in 
emergency planning has been driven in large part by local, regional, and 
federal government needs to plan for natural disasters and terrorist attacks. 
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This has created a whole emergency management discipline, and many uni-
versities now offer doctoral, master’s, and bachelor’s degrees specifically in 
emergency management. For a list see the report by the Federal Emergency 
Management Agency [6].

Emergency management is part domain knowledge and part skills specific to 
managing emergencies. These skills translate across disciplines. So while it 
might be unwise to have the same person in charge of responses to tornadoes 
as well as successful phishing emails, the two positions do have a lot to learn 
from one another. Some organizations have realized this to the extent that they 
bring all of these management roles under one operational resilience office, 
rather than have the chief information officer (CIO) be responsible for infor-
mation technology (IT) emergency management, the chief information systems 
officer (CISO) responsible for information assurance breach management, the 
chief operations officer (COO) responsible for supply chain resiliency, etc. [7]. 
This consolidation reduces duplication of effort and allows different depart-
ments to share the expertise of those (few) trained in emergency management.

The steps of emergency management preparedness are planning, training, 
and exercises. These three steps make executing a recovery much smoother. 
The U.S. Federal Emergency Management Agency (FEMA) supports an 
Emergency Management Institute (EMI) that provides free training in emer-
gency management via a remote-learning, independent study program. The 
following courses may be of use to anyone who is involved in planning a 
recovery capability in an organization. It is not possible for this chapter to 
reproduce the useful knowledge in these courses, so it is highly recom-
mended that the recovery planner take advantage of these free resources:

■ IS-1.A: Emergency Manager: An Orientation to the Position
■ IS-100.B: Introduction to Incident Command System
■ IS-120.A: An Introduction to Exercises
■ IS-139: Exercise Design
■ IS-235.B: Emergency Planning
■ IS-241.A: Decision Making and Problem Solving
■ IS-293: Mission Assignment Overview
■ IS-454: Fundamentals of Risk Management
■ IS-523: Resilient Accord: Exercising Continuity Plans for Cyber Incidents
■ IS-547.A: Introduction to Continuity of Operations

Links to all of these courses and their materials are available from FEMA [8].

RECOVERY PRIORITIES
The first step on the long road of emergency planning is to know what needs 
to be protected. This aspect—the need for a principled risk assessment—is 
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shared between emergency planning and security incident planning. The 
recovery plan should contain priorities for what systems are treated first. If 
10 systems go out at once, or more likely a compromise is discovered that 
impacts 10 disparate systems, the response teams should not have to prioritize 
on-the-fly. The plan should prioritize what systems are the most important for 
the organization. This provides predictability for everyone in the organization 
when an incident occurs, and saves the responders time so that they can do 
their job as efficiently as feasible, which is critical to successful responses.

Inventorying assets and determining areas of greatest risk are both difficult 
tasks. They require strong organizational policies and the will to execute 
them. There are also several methods of considering which risks are greatest, 
and unfortunately these methods generally produce different results. An insur-
ance company might like to look at actuarial tables to determine past inci-
dence, cost per incident, and so on. The U.S. Social Security Administration 
keeps such data for life expectancy, for example [9], and so life insurance com-
panies can use this to determine the risk of a 25-year-old male or 65-year-old 
female dying, and therefore how much to charge for insurance.

An actuarial approach based on incident occurrence and cost is insufficient 
in cyber-incident risk determination and response planning for two reasons. 
First, there is insufficient public reporting of cyber-security incidents to con-
struct frequency models, and what reporting exists is insufficiently detailed 
to construct incident costs. Second, organizational structure, technology, 
software, architecture, core competencies, and services provided are too idi-
osyncratic, so it is unclear if the experiences of one organization generalize to 
those of other organizations.

In light of this difficulty, a more productive recovery planning strategy is 
likely to identify critical success factors (CSFs) for the organization and ana-
lytically determine key risks to them [10, p. 123ff]. This approach is advo-
cated by the CERT1 Resilience Management Model (RMM). There is more 
detail on the RMM in Caralli et al. [11]. CSFs are closely related to mission-
essential functions (MEFs) as described by FEMA’s EMI courses referenced 
earlier. This thread also runs through the Survivable Network Analysis 
method, because the method’s definition of “survivable” is the ability to 
maintain mission-essential functionality in the presence of attacks and acci-
dents [4]. This method provides a rather more practical approach than the 
RMM or FEMA models, but its scope is also more focused. In any case, this 
risk assessment function is separate from the incident response function; 
there are several business units involved in building a response policy.

1 CERT officially is no longer an acronym, although it formerly expanded to Computer Emergency 
Response Team.
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Perceptions of risk will likely be adjusted as the organization responds to inci-
dents. Critical success factors should also be reevaluated occasionally, perhaps 
annually, to determine if new technological structures have been introduced 
into the organization that may affect the critical functions, or if the organiza-
tion has new critical success factors. Learning from recovery events is a feature 
of good recoveries, and is described in more detail later in this chapter.

The process of identifying critical success factors—and the technological sys-
tems and data that support them—is a human-intensive and policy-driven 
process. Technology can assist this process, but it cannot automate it. There 
are several industry reports available on existing technology to support data 
discovery, such as Chuvakin’s [12]. However, deciding what is important to 
the organization is a human function. Once the emergency management 
team has decided on what systems are important and what attacks are likely, 
they can better construct a response policy and set of plans.

BUILDING A RESPONSE POLICY
An organizational response team policy is the set of organizational policies 
detailing how the organization responds to incidents, what incidents are han-
dled by whom, the standards for an acceptable response, responder code of 
conduct, organizational information disclosure policy, evidence handling 
procedures, eliciting lessons learned, and integrating feedback into the secu-
rity strategies. There are several guides on how to plan and design a response 
policy or some part of it [4,11,13–19]. Unfortunately, no one of these guides 
completely covers the whole complex policy. Recovery strategies touch on 
many aspects of an organization, so perhaps this is not surprising. RMM is 
the most comprehensive, but it is one level of abstraction above implementa-
tion [11]. The National Institute of Standards and Technology’s (NIST) guide 
on incident handling provides a more practical, focused starting point [19]. 
NIST also has recommendations for contingency planning [5].

There is a large list of guidance documents on creating and managing com-
puter security incident response teams (CSIRTs) available from the CERT/CC  
at http://www.cert.org/csirts/resources.html. A quality CSIRT is the heart of a 
good recovery policy. Building a CSIRT is discussed in more detail in subsec-
tion “CSIRTs” under “Incident Handling”. How a CSIRT interacts with the rest 
of the organization is part of a good response policy that is not covered by 
simply having a quality CSIRT; this section will focus on the CSIRT’s place in 
the organization.

How each organization defines these various policy choices depends on their 
abilities, perceived threats, and priorities. A good response policy has to strike 
a balance between being comprehensive and being sufficiently concise so the 

http://www.cert.org/csirts/resources.html
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incident responders do not waste their time re-reading the response policy to 
determine their responsibilities and procedures. Some aspects that a compre-
hensive response policy ought to address are the following:

■ The goals of the response team [14, p. 3].
■ How an investigation begins [13, p. 7].
■ Who is in charge of the investigation.
■ How and under what circumstances staff members escalate incident 

priority.
■ How and under what circumstances incident responses and responsibility 

are reported to other members of the organization, including upper-level 
management.

■ When the response team will clean infected systems and when they will 
observe the infection to gather information, either for intelligence or 
litigation [13, p. 9].

■ Organizational priorities in an emergency, such as critical success factors 
[11] or mission-essential functions [20, p. 3.8ff].

■ Who is responsible for various response functions, including but not 
limited to, incident command, operations, planning, logistics, and 
finance and administration [16, p. 4.3].

■ Incident handling procedures (see “Incident Handling” section later in 
chapter).

■ What information is disclosed to what parties under what circumstances 
[13, p. 10ff]. Furthermore, who is responsible for information 
dissemination [16, p. 5.23].

■ Who collects and archives information for internal recordkeeping and 
process improvement [15].

■ When lessons-learned data is collected, how [15] and when possible 
process improvements are reintegrated into the organization [11].

Building this policy is not an overnight task. It will take concerted organiza-
tional input, as several independent elements of the organization may have 
to share input to create the plan. This is one reason why a central, high-
level management position for operational resilience helps move the policy 
forward. The policy will also always be evolving, so it is okay if it does not 
emerge fully formed from the first iteration. Although some of these policy 
aspects draw from response to natural disasters, there are important differ-
ences between plans for responses to accidents and responses to attacks. 
These differences will be highlighted in the following two sections.

Disaster recovery and incident management are both functions within an 
organization that partly or wholly fall under IT operations. These are not the 
only two functions of the IT department. Security management involves an 
overlapping set of business functions, not all of which are IT functions. This 
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situation creates a complex set of relationships, since each business function 
has its own priorities, and personnel in each role require different, specialized 
training. Figure 15.1 displays the relationship between IT operations, incident 
management, disaster recovery, security, and other important organizational 
functions.

RECOVERY FROM ACCIDENTS: CONTINUITY  
OF OPERATIONS
Continuity is an important subject in resiliency. The plan may be embodied 
in a continuity of operations plan (COOP) [21] or service continuity process 
area improvements in RMM [11, SC area]. These plans are about more holis-
tic concerns than just IT. As part of these holistic plans, IT plays an important 
supporting role and thus is part of the plan. More and more, digital services 
are essential functions in themselves, and so maintaining continuous service 
is not a supporting role but a goal. Despite the plans’ broad applicability, 
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FIGURE 15.1 
Notional overlap of business functions involved in incident management, IT operations, and security 
management, including the difference between disaster recovery planning and incident management. 
Source: Reprinted with permission from Alberts et al. [17].
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this section will focus on IT resources. This focus produces some dissenting 
advice, different from a broader COOP.

With some notable exceptions, these plans largely describe reactions to random 
hazardous events. These may be a local earthquake that a local government 
must respond to, or an earthquake half the world away that disrupts an organi-
zation’s supply of an essential component for its business. In the context of a 
large computer system, the primary advice would be to have at least two data 
processing centers, and keep those two centers in geographically disparate loca-
tions. Several businesses learned this the hard way after Hurricane Sandy [22].

Sometimes COOP and business continuity plans do need to change to adapt 
to changing services, such as in the face of greater appreciation of the sever-
ity of a disaster like Hurricane Sandy or the 2011 Tohoku, Japan, earthquake. 
However, there is a fundamental difference between plans that react to acci-
dents like these and computer security incident response plans. The next 
time there is an earthquake, the quake will not have observed how the city 
responded last time and adjust the way it shakes the earth to most effectively 
defeat that response.

Consider this concrete IT example. If the defenders lose access to a mail server 
because the room it is in catches fire, it is entirely appropriate to bring an 
exact copy of that mail server online in another building. On the other hand, 
if the defender realizes an adversary has administrative access to the mail 
server, it is not appropriate to immediately bring an exact copy of the mail 
server online—the adversary will just compromise it too. Therefore, recovery 
personnel from security events need to carefully examine which COOP steps 
are appropriate for responding to a malicious event, and which need to be 
different. This is particularly true with IT, because attacks can be deployed 
against redundant IT resources automatically by the attacker at machine 
speed, faster than humans can respond.

RECOVERY FROM MALICIOUS EVENTS
This section discusses features of a security recovery versus a safety-based 
recovery. More detail on incident handling steps for a recovery of security is 
the subject of the following section.

Recovering from a malicious attack means the system needs to be taken 
down, possibly analyzed forensically to figure out what happened and what 
other systems need to be investigated, rebuilt, and reinstated. The act of tak-
ing the system offline is precisely the opposite of the objective for COOP. 
Thus, there is a tension between the two types of responses. This is further 
complicated by the fact that there are some systems that simply cannot come 
down for five minutes, let alone a day.
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In the situation where a critical system is infected the recovery needs to 
incorporate some aspects of safety and security responses. When recover-
ing from accidents, a copy of the affected system can be activated in a differ-
ent location. When maintaining continuity while investigating a malicious 
event, the recovery strategy should include a system that provides the same 
essential functionality but eliminates nonessential functions that may be 
exploitable. The backup system should also operate under stricter security 
device configurations, as discussed in the frustration and resistance strat-
egy chapters of this book. It is possible, depending on the adversary’s skill 
level and persistence, that there is an exploitable, unknown vulnerabil-
ity within the code for the essential functionality of the service. But limit-
ing services until the system’s shortcomings are diagnosed should help; the 
responder needs to keep in mind that compromises are rarely limited to one 
machine and may include various computers and network devices within 
the organization.

Having this added-security configuration of essential services prepared 
before the incident is part of recovery planning. Yet, the organization cannot 
have such backup systems for essential functions if they have not yet identi-
fied the essential functions. In most environments there are some systems 
that are likely to be critical and targeted by the adversary precisely for this 
reason. This includes the active directory or Kerberos server, email server, 
file server, domain names system (DNS) server, and network management 
server. These services cannot be brought down to be fixed; they must remain 
online.

Being ready for a malicious event recovery is not just a matter of having 
reduced-functionality, high-security backup plans for critical IT services. The 
organizational IT infrastructure has to be planned such that switching to a 
different service on short notice is possible. Executing practice exercises dur-
ing less busy times is a good way to test this readiness. However, there may 
be some subtle changes that need to be made to enable an effective recovery 
operation to keep a resilient network running. For example, the critical ser-
vices should be discovered by internal hosts through an internal DNS, and 
the time to live (TTL) on those DNS records should be on the order of min-
utes, so that internal hosts can be redirected to the backup services quickly 
by changing the DNS configuration. Then the infected systems can be taken 
offline without service disruption.

This is only one example; there are many possible methods to organize a 
resilient network with this in mind. But most of them are not likely to hap-
pen by accident—the network as a whole must be planned such that recov-
ery strategies are possible and efficient. This is related to the RMM technology 
management (TM) and resilient technical solution engineering (RTSE) pro-
cess areas [11].
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INCIDENT HANDLING
A security incident is a group of attacks on computers and networks that have 
some distinctive unifying characteristics, such as likely being performed by 
one attacker [26, p. 15]. However, defining what counts as an incident, and 
how to describe its various parts, is a slippery task. The interested reader will 
find 10 pages of clarifications and definitions in Howard and Longstaff [26] 
before a suitable definition of incident is described, let  alone the following 
discussion of parts of an incident. There is generally no completely agreed-on 
terminology or taxonomy, although Howard and Longstaff [26] do provide 
an oft-cited starting point.

Incidents are usually handled by a specialized team within an organization: 
the computer security incident response team (CSIRT). For each incident the 
team handles, we can describe five handling steps [13]:

1. Identification
2. Containment
3. Eradication
4. Recovery
5. Lessons learned
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University before going on to earn a doctorate in the rela-
tively new field of computer science in 1983. Soon after 
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This academic history demonstrates a versatility to 
address the salient problems of the day in most areas of 
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There are various other specifications that have slightly different steps than 
this, or different terms, but the steps all describe the same essential process 
[17]. NIST’s guide breaks the process into four similar sections: preparation; 
detection and analysis; containment, eradication, and recovery; and post-inci-
dent activity [19]. This section is organized similarly to the SANS guide [13], 
but the SANS guide is more condensed. The NIST guide [19] and CERT/CC 
recommendations [17] are more detailed, and the interested reader should 
consult these guides for a detailed treatment.

This section has two subsections. The first briefly discusses CSIRTs, with an 
emphasis on external resources for further learning, especially if the reader 
needs to help establish a CSIRT within an organization. The other subsection 
discusses the steps in handling a single incident.

CSIRTs
This subsection provides a skeleton of the process of building a CSIRT, to 
introduce the whole concept at a high level. Some extra details are fleshed out 
in particularly important areas.

One of the first CSIRTs was formed when the CERT program was formed at 
the Software Engineering Institute at Carnegie Mellon University. The CERT 
program was initiated in 1988, as part of the response to the first major 
Internet outage due to malicious software: the Morris Worm [29]. The pro-
gram since has become a repository for the lessons learned in building and 
operating CSIRTs, and has helped establish and coordinate many influential 
CSIRTs, such as US-CERT, the CSIRT and coordination point for the United 
States federal civilian government [30]. The other primary resource for infor-
mation on response teams is the Forum of Incident Response and Security 
Teams (FIRST), founded in 1990 [31]. Both of these resources can provide 
guidance to organizations establishing CSIRTs.

CERT recommendations identify 19 action items for an organization estab-
lishing a CSIRT. It is worth quoting this list in its entirety to present a sense 
of the diversity of tasks required. The action items, with more details and 
further resources for more detailed reading, are available from the Software 
Engineering Institute [32].

 1. Identify stakeholders and participants.
 2. Obtain management support and sponsorship.
 3. Develop a CSIRT project plan.
 4.  Gather information [from all stakeholders on policies, compliance, 

history, etc.].
 5. Identify the CSIRT constituency.
 6. Define the CSIRT mission.
 7. Secure funding for CSIRT operations.
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 8. Decide on the range and level of services the CSIRT will offer.
 9.  Determine the CSIRT reporting structure, authority, and organizational 

model.
10.  Identify required resources such as staff, equipment, and infrastructure.
11. Define interactions and interfaces.
12. Define roles, responsibilities, and the corresponding authority.
13. Document the workflow.
14. Develop policies and corresponding procedures.
15. Create an implementation plan and solicit feedback.
16. Announce the CSIRT when it becomes operational.
17. Define methods for evaluating the performance of the CSIRT.
18. Have a backup plan for every element of the CSIRT.
19. Be flexible.

This is neither a short nor easy process. However, the road has been traveled 
many times before. As long as the organization creating the incident response 
capability can leverage the existing lessons and documentation from past 
CSIRT creation, it should be able to proceed successfully.

The end result is a CSIRT—a person or persons who will be tasked with 
responding to computer security incidents within the organization. Although 
these are technically capable staff, they are not merely IT staff. Incident 
response requires not just special technical skill but also breadth to under-
stand how systems interact. Since no one can be proficient on every IT system, 
the CSIRT staff will potentially need access to documentation about all the 
systems in the organization. There is one more helpful ability for these staff 
members: detective skills, or the ability to think like an adversary. A common 
problem in staffing CSIRTs is that staff members are overspecialized and are 
not cross-trained in each other’s skills [32]. When this happens, if one key 
staff member leaves, the team is crippled.

The response team also has some material needs. It needs a secure place to 
store and investigate evidence, and the equipment to do so. The CSIRT needs 
a defined interface with constituents, whether it is a phone hotline, email 
address, physical desk, or otherwise.

At the heart of its function, the CSIRT is a service part of the organization—
to provide incident response expertise. However, there are some tensions with 
this characterization, because one of the most useful outcomes of an incident 
is lessons on how to manage the systems better. However, advice or require-
ments on system changes is not what the “customers” of the CSIRT requested. 
Resolving this tension is key to success. If there is no structure for CSIRT recom-
mendations to be implemented, and the culture does not provide support for 
this function, the CSIRT will be stuck chasing their tail, always resolving the 
same incidents over again as the underlying problems are not addressed.
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Incidents
This subsection will cover the identification, containment, eradication, and 
recovery steps of an incident. Since incidents are complex, it is probable that 
while investigating or containing one incident another incident may be dis-
covered. Adversaries can also use noisy incidents, such as distributed denial 
of service (DDoS), to cover up for stealthier attacks. Figure 15.2 displays one 
comprehensive description of the incident response process, including steps 
for taking lessons from the response and applying them to the prepare and 
protection processes in Alberts et al. [17], as discussed in the next section.

In any incident, the first stage is that the response team detects or otherwise 
is notified of a security violation. This step is generally before containment 
begins—incidents and the systems affected must be triaged [17]. Triage is a 
term for a prioritization step initially used by military field medics. The med-
ics would group the wounded into three groups: those who will probably sur-
vive without aid, those who will probably die even with aid, and those who 
will only survive if given aid. Priority is given to the last group. During an 
incident, the response team should try to categorize events similarly, and first 
try to contain damage where their efforts are most effective.

The essence of triage is a quick, rough categorization of what to work on first. 
If it takes too long, nothing gets done. Since computer incidents are harder 
to diagnose than bodily injuries, because most of the evidence is invisible, 
evaluation criteria for responders should reflect the difficulty of the process.

Incident and
Vulnerability reports

Prepare

Detect Triage

Protect

Respond

Network monitoring

Technology watch
and public monitoring
General information
requests

FIGURE 15.2 
Comprehensive flow of the incident management process. Notice that protection and preparedness are ongoing 
processes that learn from the response process. It is possible to further divide the response process into three 
steps: containment, eradication, and recovery. Source: Reprinted with permission from Alberts et al. [17].
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The outputs of triage are the priority aspects of the incident for the respond-
ers to manage. The CERT model calls this next step response, while the SANS 
models breaks up response into containment, eradication, and recovery steps 
[13,17]. However, the overall process described in both of these guiding doc-
uments is largely the same; as noted in the CERT document itself there is a 
variety of terminology from over a dozen sources that covers essentially the 
same process [17, p. 21ff]. The CERT model emphasizes the continuous inter-
action of the incident handling process with the rest of the organization’s 
preparations and protections. Breaking up response into substeps emphasizes 
the stages of response and its complexity. Both are valuable contributions.

Containment is essentially stabilizing the situation. The response team needs 
to keep the situation from deteriorating further before improvements can be 
made [13, p. 19]. There is also a key decision to be made just before begin-
ning to respond. If litigation is likely, there are special evidence handling 
procedures that need to be followed. These will be specific to the defender’s 
jurisdiction, but responding to an incident with the intent of prosecuting the 
perpetrators will almost always require more care while trying to restore the 
systems. During containment, in particular, evidence may be erased or con-
taminated in the fervor to improve defenses. For example, storing malicious 
code artifacts is more difficult than simply erasing the computer. Some of 
these handling requirements are discussed in Chapter 13; however, for a full 
plan the organization should consult a local legal expert.

Probable actions within the containment stage include the following [17, 
p. 128; 13, p. 19]:

■ Apply patches.
■ Change passwords and other authentication credentials.
■ Scan for malicious software.
■ Disconnect affected resources from the network.
■ Modify the infrastructure.
■ Modify network access control rules, such as any of those discussed in 

Chapter 5, to prevent malicious communications. This includes blocking 
specific:
■ IP addresses
■ Ports
■ Services

Once the malicious activity is contained, it can be rooted out and eradicated. 
Eradication is removal of all malicious software from defender-owned com-
puters. For nonessential hosts, this is relatively easy if the organization is pre-
pared. The hosts can be removed from the network, the storage media can all 
be completely erased, and a known-good copy of the operating system can 
be restored from read-only media. This is the only way to verify the hardware 
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is not still infected.2 As discussed earlier, there are always mission-essential 
functions that cannot simply be disconnected from the network. Eradication 
of malicious software from these resources is more difficult. Hardened ver-
sions of the service need to be activated before the compromised machines 
are disconnected for repair. This transition adds logistic and operational dif-
ficulties, in addition to the difficulties of incident response.

Eradication of malicious software from large, distributed systems is a further 
difficulty. If the entire network file server (NFS), for example, is compro-
mised, then the logistical details of guaranteeing every malicious data bit is 
removed from the system are daunting. Duplicating the data and scanning 
it may be implausible due to sheer scale. Furthermore, the adversary evaded 
the defender’s scans previously, and so probably could again. The method of 
erasing the data and starting over, which works for individual clients, does 
not scale to be applied to an organization’s whole knowledge base. This fact 
means that once the adversary has sufficiently penetrated the infrastructure, 
it is always possible for the adversary to retain some foothold within the net-
work, since as a matter of practicality the whole IT infrastructure of the organ-
ization cannot be taken down and rebuilt from scratch. The purpose of the 
eradication step is to make this as unlikely as is feasible. The lessons-learned 
step includes, but is not limited to, watching for indicators of this specific 
compromise recurring, as discussed later in the chapter.

The final stage in the response process is recovery. Recovery is marked by 
bringing the cleaned systems back into the production environment, usually 
after some preliminary testing within the business unit [13, p. 21]. The recov-
ery phase is marked by increased monitoring and vigilance to ensure that the 
eradication stage was successful. After some time period, the intensified mon-
itoring period comes to a close and the computer is considered healthy again.

These are only the technical phases of the response process. There are also 
managerial and legal response processes [17, p. 129]. Management responses 
include decisions such as when to escalate the importance of the incident, 
public relations, and other management functions that may be necessary on a 
case-by-case basis. Several of these functions are similar to the incident com-
mand system (ICS) defined by FEMA for emergency management [16]. An 
example of a managerial response occurs if, for example, the incident inves-
tigation determines personally identifiable information (PII) was disclosed. 
This fact must be escalated to higher-level management if the incident is in 

2 There is some indication that hard drive firmware can be infected with malicious firmware. This 
would completely evade erasing the hard drive itself and restoring the operating system. Keep in mind 
that eradication measures are a key step that malicious actors would like to avoid, so there is always a 
chance that technical advances will be made that require updates to the response procedures generally, 
and eradication in particular.
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a jurisdiction that legally requires the organization to notify individuals of 
PII disclosures. Then the management and legal responses must coordinate to 
notify the relevant parties.

INCORPORATING LESSONS LEARNED
As the old proverb goes, “Fool me once, shame on you; fool me twice, shame 
on me.” Literary references to this sentiment abound in one form or another. 
For example, “Those who cannot remember the past are condemned to repeat 
it,” as attributed to George Santayana. Learning from one’s mistakes is clearly 
not a new idea. Yet it remains important, as well as difficult.

Many of the guides on incident handling contain the assertion that learning 
from mistakes is important. For example, Proffitt [13, p. 21] and Alberts et al. 
[17, p. 140ff] both provide overviews of a lessons-learned process. However, 
these do not provide sufficient practical guidance in eliciting effective infor-
mation from weary responders, which is a significant leadership challenge.

To address this need, the U.S. Army developed a process called the after-
action review (AAR), targeted at commanders of smaller groups to provide 
such guidance [15]. Other groups have since recognized the utility of this 
process, and adapted it to nonmilitary situations [33,34]. After handling a 
computer security incident, an AAR seems like a reasonable process for col-
lecting the data required as input for feedback into preparation and protec-
tion; this feedback process is recommended, as described earlier.

An AAR has a few key features and steps of its own: planning, logistics, execu-
tion, and results from the AAR. It is generally recommended that a facilita-
tor who was not directly involved in the incident lead the AAR. This means 
that the facilitator has to meet with the team leader prior to the AAR to learn 
enough about the incident that he or she is able to facilitate and not hin-
der the process. Logistically, it is highly recommended to perform the AAR 
in person. There are some other functions during the meeting that should be 
prepared ahead of time, such as a note keeper and a time keeper, who may be 
the same person, and may be domain specialists, but ideally are not members 
of the team that is participating in the AAR.

The facilitator proceeds through the AAR with a standard set of questions, 
operating by an established set of rules. These ground rules need to be estab-
lished at the beginning of the meeting to help the participants stay on track. 
It is also important for the facilitator to give context and provide purpose at 
the beginning of the AAR. Some useful items to start out with include:

■ The goal is to collect information to improve future operations.
■ Success and failure are not determined or judged within an AAR.
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■ There will always be aspects of the response that could be improved.
■ There will always be aspects of the response that were performed well.
■ The goal is to collect objective observations, not praise or blame.
■ Encourage openness and a culture of sharing rather than fear or blame.3

Once these introductions are established, the facilitator needs to guide the AAR 
discussion itself and keep it focused on the goals using the established ground 
rules. Having a small, limited number of clear, established questions promotes 
this function. If time permits, the facilitator could gather short written responses 
first and use the meeting to elaborate on a summary of these written responses.

The ultimate goal of an AAR is a useful and succinct report of the information 
to learn from the incident. The military version of what qualifies as useful 
and succinct is a little bit out of sync with CSIRT needs. Even so, since there 
is much organizational experience in the U.S. Army with learning from AARs, 
it is still instructive to consider what the Army considers to be the contents of 
an outstanding AAR as a starting point [15, ch. 4]:

■ Commander’s executive summary

■ Task organization to include attached units

■ Chronology of key events

■ Number of soldiers deployed

■ Summary of casualties during deployment

■ Discussion of each phase in the deployment cycle

■ Participation in major operations

■ Discussion of stability operations

Many of these structural elements are immediately transferable to what a 
CSIRT team AAR might hope to produce. The team lead’s executive summary, 
what different elements of the team were tasked to accomplish, chronology 
of events as actually occurred, and discussion of primary phases of the inci-
dent handling operation are all applicable. “Number of soldiers deployed” 
needs to be modified to “incident responders,” and “casualties” needs to be 
modified to language regarding malicious software penetration into the infra-
structure; however, this is not a difficult conceptual shift.

By adapting these aspects of the AAR to the defender’s organization, lessons 
learned can be more effectively captured. This, in turn, means that lessons 
can be more effectively applied to the protection and prevention phases of 
organizational management [17]. In terms of defensive strategies, effective 

3 One example method of achieving this is that summaries to management should not include names 
or details usable in personnel evaluations.
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lessons learned means that deception, frustration, resistance, and recognition 
strategies can all be improved by judicious updates culled from the lessons 
learned after responding to incidents.

SUMMARY
Recovery from computer security incidents is a complicated process that relies 
on technology but is driven by good organizational planning and procedures. 
A recovery strategy integrates aspects of the other four strategies discussed in 
the previous chapters for two reasons. First, an organization can only recover 
from events it has recognized. Second, part of recovery involves changing 
strategies in response to a failed strategy.

Emergency management is a mature field of academic study and organi-
zational management, and computer security shares aspects with it. There 
is also a sufficient existing literature covering computer security incident 
response. This chapter summarizes the key aspects from both of these fields 
and attempts to demonstrate how they interact and how they are different. 
The summary presented here is particularly dense with references to other 
documents that the interested reader should pursue.
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Chapter Review Questions
 1. How is effective incident response a technical process?

 2. How is effective incident response a nontechnical process?

 3. What are critical success factors? What are mission-essential functions?

 4. What are some key aspects of a good incident response policy?

 5. How is COOP different from computer security incident response?

 6. How is COOP the same as computer security incident response?

 7. What five steps can be used to summarize the computer security incident 
handling process?

 8. What is a CSIRT?

 9. What is FIRST?

10. In the context of incident response, what is “triage”?

11. What are some key features of a good AAR?
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Chapter Exercises
1. Using one of the references for this chapter, find a different categorization of the 

computer security incident handling process you described in review question 7 
above. How are the two summaries related?

2. Outline a possible computer security incident response policy for your organization, 
school, or local government. Try to indicate who would be responsible for certain 
high-level tasks, and, if possible, name the individuals. Include some general idea of 
who would be in charge of various tasks. Some templates may be available on the 
Internet, such as at security.ucdavis.edu/pdf/iet_irp.pdf.

3. Outline a possible AAR for a computer security incident in your organization, 
school, or local government, given the plan described in exercise 2.

http://security.ucdavis.edu/pdf/iet_irp.pdf
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Professional Certifications  
and Overall Conclusions

CHAPTER 16

INTRODUCTION
This book presents a series of strategies for protecting information in an 
organization, and a number of technologies for implementing each strategy. 
The strategies do not exist independently of the culture of organizations or 
of each other. Understanding how the culture of security has been codified 
in specific security certifications provides a viewpoint on how strategic prin-
ciples may be applied in that culture. Understanding how the strategies relate 
to one another to form a cohesive and balanced approach to address specific 
threats provides a viewpoint on the value of multiple strategies. All of this 
leads to an ongoing need to improve one’s skills and knowledge to meet the 
shifting demands on security professionals.

PROFESSIONAL CERTIFICATIONS
In a field as complex and technical as information security, managers pre-
fer professionals with documented expertise. This preference has led to the 
emergence of a large number of security certifications. Some of these cer-
tifications have been mentioned in this book, particularly in Chapter  10, 
which listed several for change management certifications. This section 
deals with more general information security certifications, and with the 
strengths and limitations of each, and with certification in general (see 
Figure 16.1).

■ Professional certifications
■ Overarching concluding thoughts:

■ Tying the pieces together
■ Where to go from here
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Certified Information Systems Security Professional
One of the most widely cited information security certifications is the 
Certified Information Systems Security Professional (CISSP), offered by 
the International Information Systems Security Certification Consortium 
(ISC)2 [1]. This certification covers individuals who have five years or more 
experience  and covers multiple aspects of security. The certification requires a 
thorough exam, and normally preparatory course work.

The CISSP certification centers on 12 security domains [2]:

■ Access control
■ Telecommunications and network security
■ Information security governance and risk management
■ Software development security
■ Cryptography
■ Security architecture and design
■ Operations security
■ Business continuity and disaster recovery planning
■ Legal
■ Regulations
■ Investigations and compliance
■ Physical (environmental) security

Certified professionals are expected to have demonstrated knowledge in each 
domain (via the certification exam) and have at least five years’ experience 

Effective
Security

Experience and
Knowledge

CISSP – Specific
Technologies

GIAC – Specific
Approaches

CSIH – Specific
Actions

Vendor
Certification–
Specifi
cproducts and
tools

FIGURE 16.1 
Certification overview. 
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covering 2 of the 12 domains. This structure allows certified professionals 
to have documented breadth of knowledge, plus some degree of focus in 
their professional expertise. Further information on the types of knowledge 
expected of a CISSP certified professional may be obtained by examination 
preparation guides, including the CISSP Study Guide [3].

Depending on the experience factor, individuals with CISSP certification 
serve in multiple roles [2], ranging from consultants and security engineers 
to a variety of management and executive positions. The consortium cites a 
survey [4] indicating that certified professionals earn about 30% more than 
noncertified compatriots, although that survey is sponsored by the consor-
tium and weighted to respondents who had certification (at least 66%) and 
were employed in large, established industries (information technology and 
telecommunications only account for 20% of the total). The comparison in 
the survey was against averages, and was not normalized for amount of expe-
rience—that is, the survey did not compare salaries of similar individuals, but 
rather compared averages against averages.

(ISC)2 also offers a range of other certifications [1]. The Certified 
Authorization Professional is largely for U.S. Department of Defense systems 
authorization personnel—staff tasked with ensuring systems meet require-
ments and granting systems the authority to operate. The Systems Security 
Certified Professional is for individuals with limited experience. The Certified 
Secure Software Life-cycle Professional is for software developers working on 
security-critical systems. In addition, the consortium also offers add-on con-
centrations for the CISSP to document more specific expertise.

Global Information Assurance Certifications
The Global Information Assurance Certification (GIAC) is offered by the SANS 
(derived from sys-admin, audit, networking, and security) Institute [5]. This 
set of over 20 certifications closely connects to the SANS training offerings, 
but extends the content with requirements for a more in-depth examination, 
practicum, and report generation. A timespan of approximately four months 
is cited as the level of effort associated with a GIAC. In general, the topics 
of this certification are more hands-on, direct activity associated with secure 
administration, forensics, audit, and management. The SANS courses have a 
strong reputation in the field, and these certifications derive their respect (and 
the advantage of possessing them) from the affiliated SANS courses.

One difficulty with the GIAC is the breadth of certification available. While the 
certifications allow a range of individuals to be certified at the skill levels they 
possess, the large number of them makes it difficult for any one certification to 
be widely recognized. As such, employers may find it more difficult to connect 
these certifications to the required expertise of candidates or current personnel.
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CERT Computer Security Incident Handler
The Computer Security Incident Handler (CSIH) is a certification offered by 
the CERT1 Directorate at Carnegie Mellon’s Software Engineering Institute 
(SEI). Incident handling is a systematic set of recovery tactics for the resto-
ration of organizational security. Given that adversaries have already dam-
aged the organization’s security, this recovery is always time-critical and 
often stressful. To promote methodical application of these tactics, CERT 
provides training on incident handling, and certification derived from that 
training [6]. This certification requires only an examination, not the con-
nected training, allowing for cost-effective certification of expertise. The 
certification is valid for a period of three years, and may be renewed by 
application.

Since this certification has no experience component, it is less comprehensive 
than CISSP or GIAC. It certifies knowledge, but not skill in practice. This certifi-
cation is not as widely recognized or required by employers as CISSP or GIAC.

Certified Ethical Hacking
Certified Ethical Hacker (CEH) is a certification provided by the International 
Council of E-Commerce Consultants (EC-Council) [7]. This certification 
focuses on very current network intrusion methods, trained via hands-on 
exercises and classroom instruction. Expertise is verified via the CEH exam. 
The methods profiled are those observed in practice as used by adversaries 
against organizations. The underlying approach is that to be effective in pro-
tecting security, one needs to think like an adversary and proactively assess 
the organization’s network using methods like an adversary would. While this 
viewpoint is true to a certain extent, the details of making an attack work (or 
a sufficient sequence of attacks) may require a substantive effort that may not 
result in overall improvements in information security.

Vendor-specific Certifications
A large number of vendors offer completion certificates for training in their 
products. These certifications may or may not be associated with demon-
strated proficiency in the products involved. Often, the vendor provides some 
examination prior to awarding the certificate, but the overwhelming majority 
of participants pass such examinations. This type of certification rarely pro-
vides significant advantages to the participants, beyond the underlying train-
ing in the products involved. However, there are a few exceptions to the low 
value of vendor-specific certifications. Specifically, two of the more widely 
respected vender certifications are from Microsoft and Cisco Systems.

1 CERT originally stood for computer emergency response team, however, like IBM and KFC, the 
acronym is now trademarked as-is, and officially does not have an expansion.
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As Microsoft has become dominant in the operating system (and, to an extent 
in the browser) markets, demand for expertise in their products likewise grew. 
This has been reflected in courses and certification standards [8]. The courses mix 
very product-oriented information (the configuration of specific Microsoft com-
ponents, services, and systems) with explanation of the underlying (and more 
general) protocols and methods used in the products. The exams walk through 
the same mix of specific components and underlying protocols and methods. 
This mix allows certified professionals to apply the specific technologies (as con-
figured in current products) to provide for secure operations. One weakness of 
such certification is that, since it is tied to specific configurations of specific prod-
ucts, new certifications will be required as the products evolve. Recertification is 
required every two to three years for most Microsoft certifications, and requires 
either retaking the exams or becoming qualified as a trainer [8].

Cisco Systems is a major networking equipment manufacturer. They also 
provide training in their products and a range of associated certifications 
[9]. Cisco arranges these certifications in career tracks, going from entry-level 
through expert rankings on a four-step scale. For security, this range starts 
with the Cisco Certified Entry Technician, which covers fundamentals of net-
working and initial device configuration. This entry certification feeds into 
the Cisco Certified Network Associate level, which focuses on security poli-
cies and their enforcement via network devices. The associate level in turn 
feeds into the Cisco Certified Network Professional Security, which focuses on 
specific security components along with how those components are associ-
ated with network devices, such as firewalls, IDSs, and VPNs. The expert range 
for security certifications is the Cisco Certified Internet Expert Security. At the 
expert level, this includes overview of industry best practices and standards 
associated with security. As a whole, these certifications are more concept cen-
tered and less product centered than the Microsoft certifications. In general, 
the certifications require an examination, which covers topics taught in the 
recommended training. These training courses are five days of combined lec-
tures and exercises, which could be criticized for lack of depth. Cisco requires 
recertification every three years by taking a recertification exam.

Other Certifications
There are a variety of other certifications that are less often cited in relation to 
security, but may be useful in the course of a security career:

■ ISACA2—security audit (see http://www.isaca.org/CERTIFICATION/
Pages/default.aspx), for example, Certified Information Systems Auditor 
(CISA), Certified Information Security Manager (CISM), Certified in 

2 ISACA stood for Information Systems Audit and Control Association, however, like CERT, it now 
officially does not have an expansion.

http://www.isaca.org/CERTIFICATION/Pages/default.aspx
http://www.isaca.org/CERTIFICATION/Pages/default.aspx
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the Governance of Enterprise IT (CGEIT), and Certified in Risk and 
Information Systems Control (CRISC).

■ IEEE (Institute of Electrical and Electronics Engineers)—security 
engineering (see http://www.ieee.org/education_careers/education/professional_
certification/index.html )

■ BSI—business security standards (see http://www.bsigroup.com/en-GB/
our-services/certification/)

Critiques of Certification
Certification has become a frequently cited feature on many professional 
resumes, but due to the specifics of information security, there is reason 
for concern regarding such certifications. First, the security field is always 
changing, with new technologies and applications to protect, new threats to 
address, and emerging means of protection. The way organizations use net-
works today differs from five years ago. The forms of threat that were of high 
concern five years ago are not as high currently—new forms have emerged. 
The security tools available to protect organizations have also matured in the 
last five years. With this high a pace of change, it is very difficult to establish a 
fixed curriculum and examination that indicates a professional is current and 
productive in the protection of information.

Second, it is not clear that the effort (and cost) demanded to obtain certifica-
tion results in commensurate reward. Many certifications are closely tied to 
specific products or methods. If those products and methods age too rapidly, 
the productivity of a certified professional will not benefit an organization as 
much as a noncertified, but current, professional.

Third, there are lingering concerns of bias in the examination process. While 
several certifications do not demand preparatory coursework (only recom-
mend it), it may not be simple to understand the specialized vocabulary used 
in the examination (which derives from the courses). Such vocabulary shifts 
widely from vendor to vendor, so a similar course taken from another vendor 
may cover similar concepts, but not produce a passing score on the certifica-
tion examination. Certifications often focus on specific products, and require 
some knowledge of configurations that might not be gained from even long-
term exposure to the products. Some of this may be intentional, as the vendors 
typically want to sell training in addition to selling certification examinations.

Fourth, certification is a for-profit enterprise for many of the certifying bod-
ies. As such, the success rate of the certification examination must be carefully 
managed: too high a success rate and the value of the certification is disput-
able; too low and individuals are discouraged from attempting certification. 
These concerns are quite outside the issue of how specific certification actu-
ally improves the productivity of an organization, and may produce certified 
professionals who are not, in fact, productive.

http://www.ieee.org/education_careers/education/professional_certification/index.html
http://www.ieee.org/education_careers/education/professional_certification/index.html
http://www.bsigroup.com/en-GB/our-services/certification/
http://www.bsigroup.com/en-GB/our-services/certification/
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Fifth, security in general, and especially information security, is characterized 
by adversarial relationships between intelligent actors. Network defenders are 
acting to deceive, frustrate, resist, and nullify adversaries. Network aggressors 
are acting to deceive, evade, control, and nullify network defenses. The inter-
play between these adversaries will rapidly adjust to changes in the skill or 
knowledge level of either side. On the other hand, the certification process, 
by its very nature, demands a large amount of stable knowledge and common 
practice of certified professionals. This stability of knowledge and methods 
on the part of the defenders will likely produce blind spots that are oppor-
tunities for dedicated and persistent adversaries. Preventing such blind spots 
requires a degree of preparation and flexibility that is far beyond most, if not 
all, current certification programs.

Last, the certification itself may form a vulnerability. As managers focus on a set 
of certifications (rather than a record of accomplishment) as a hiring or pro-
motion justification, they are ceding a certain degree of judgment to an outside 
body that inherently does not have the same view of security as their own organ-
ization. As such, managers may trust individuals to perform certified actions that 
they, in fact, may be unprepared to perform in the context of the organization.

While certification is likely to remain an important feature of the security 
field for some time to come, the critiques noted here recommend that organi-
zations exercise a degree of caution in how they view such certifications and 
certified professionals. Particularly for product-tied certifications, a balanced 
approach may produce better results for the organization.

Since the middle of the 2000s, a series of long-term, high-
value attacks against computer networks have been 
observed [10]. These attacks have spanned months and 
years of ongoing activity (with a cited average length 
of activity greater than 10 months). These attacks have 
occurred despite diligent network defenses, although the 
adversaries rapidly exploited lapses in security. Commonly, 
the aggressors establish a command-and-control infra-
structure on compromised third-party networks, and then 
use that infrastructure for a series of attacks on a range of 
organizations. While there appear to be key individuals 
among the adversaries, there is apparently a large number 
of staff members engaged in the aggressor activity. The 
adversaries rapidly adopt (and discard) technologies to 
establish an initial point of presence on a targeted network, 

then propagate from this point of presence internally on the 
network to identify and export information of interest. The 
scope of the identified activity and the value of the assets 
compromised speak to the preparation and focus associated 
with these adversaries. In some cases, where the targeted 
network could not be compromised directly, subsidiary 
organizations or vendors (particularly of security solutions) 
were attacked to progressively gain access to the main 
target.
Dealing with such a focused, resourced, and aggressive 
adversary is a daunting challenge. It requires careful plan-
ning as to a series of protective measures operating in 
a supportive fashion. It requires a balance of protective 
 features deployed across the organization’s network, and 
usually a certain degree of luck.

ADVANCED PERSISTENT THREAT
Systematic Strategic Hacking
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TYING THE PIECES TOGETHER
The strategies of deception, frustration, resistance, recognition, and recov-
ery do not stand alone, fragmented, and independent. Choices in one strat-
egy should inform choices in another. Effective defense in depth requires 
coordinated strategies, both in the original military description [11] and the 
computer security metaphor as explained in Chapter 2. As described in the 
previous chapters, there are quite a few areas with which an architect of an 
overall security strategy needs to be familiar. There are some tools and mod-
els that can assist in crafting a coordinated, cohesive strategy.

There is no easy or magic solution to the problem of coordinating strate-
gies. People in decision-making positions need some domain knowledge to 
make appropriate choices; managers cannot quite be abstracted away from 
the technical details. There is organization guidance on how to cohesively 
manage these strategies. For example, the Resiliency Management Model 
(RMM) [12] and the Operationally Critical Threat, Asset, and Vulnerability 
Evaluation (OCTAVE®) [13] provide organizational guidance. Although the 
models are always developing, guidance such as RMM and OCTAVE, as well 
as many other models, have been under development since the 1990s and 
draw from experience prior to that. The field of computer security is not as 
raw and experimental as it once was. As discussed and cited throughout the 
book, guidance exists for an organization to improve the accuracy of assess-
ments of risk related to computer systems and, in most any area, improve the 
security of those computer systems if needed.

One method of visualizing the coverage of security programs for an organi-
zation against certain threats is with a coverage diagram [14], as introduced 
in chapter 2. A partially filled example coverage diagram is shown in Figure 
16.2. The concentric circles of the diagram represent different layers of the 
defense strategies. We have presented five strategic layers, with one circle for 
each. The three sectors in the diagram represent three distinct threats: denial 
of service (DoS), malicious software, and data theft. Each technology or pol-
icy that helps defend against each threat goes in the segment of the circle at 
the layer of defense. If there are multiple items at one layer for one threat, 
the segment is shaded darker. This provides a visualization of the weak points 
for the organization, as they are white. The DoS attack sector is filled in with 
examples from the book. If there are more protections at a strategic layer, the 
segment is darker. The other two sectors are left as an exercise.

One of the common properties of complex systems is that small changes 
can have large, unexpected consequences. One euphemism for this is the 
“butterfly effect,” the image that whether or not there is a storm in North 
America may depend on whether or not a butterfly flaps its wings in Asia a 
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few months prior. Security and security engineering definitely are attempts 
to manage a complex system [15]. Perrow [16] and others have studied acci-
dents in complex systems, and have found that tightly coupled complex sys-
tems (with extensive intercommunications, requiring behavior to span across 
components, and with large interdependencies among components for suc-
cessful operation) have systemic properties that inherently lead to accidents.

Healy [17] described a range of options for the future of networking as an 
international domain of either cooperation or conflict—anticipating that 
continued systemic weakness would lead to a balkanization of the network, 
but systematic and globally informed improvements in security could lead to 
increased cooperation. Bringing together all the pieces will help manage the 
complex system of organizational computer security. However, the external 
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FIGURE 16.2 
An expanded coverage diagram following Butler [14]. The DoS attack sector is filled in with examples 
from the book. If there are more protections at a strategic layer, the segment is darker. The other two 
sectors are left as an exercise. 
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environment is constantly changing. New exploits and technology are con-
stantly being created. The defender must remain flexible, adaptive, and con-
tinue to learn.

Sun Tzu (traditional Chinese: 孫子; simplified: 孙子; 
pinyin: Su– nzǐ), born Sun Wu, was a general, strategist, 
and philosopher just before the Warring States period 
in China [18]. His birth and death are generally put at c. 
544–496 BCE, although the two great histories of China 
disagree as to his birthplace. In any event, he was an 
important strategist for the state of Wu. After his military 
successes, he codified his strategic ideas in The Art of 
War. To this day, The Art of War [11] is still required read-
ing in many military officer training programs, although a 
suitable translation did not find its way into the Western 
training regimen until World War II [11]. The next oldest is 
probably Julius Caesar’s Gallic Wars, not written until 500 
years after The Art of War (and widely judged as much 
more limited application than Sun Tzu). Macchiavlli’s The 
Prince and Clausewitz’s On War are equally widely cited, 
but written about two millennia after The Art of War. Sun 
Tzu’s treatise has truly stood the test of time.

Sun Tzu provides strategic advice that cuts across tech-
nologies and eras. Whenever two commanders are 
vying for strategic victory, it can apply. This is as true 
of a defender and attacker in a digital conflict as in the 
state of Wu. Sun Tzu focuses on planning, careful study 
of one’s opponent, constructing careful strategy with flu-
idly changing applications to meet the opponent’s action, 
and readiness to exploit circumstances as they arise, to 
the advancement of one’s goals. While not laying out a 

specific organization, Sun Tzu characterizes aspects (and 
rewards) of effective leadership in conflict.

Military-grade determination is most present in so-called 
advanced persistent threats (APTs), where adversaries 
have specifically selected targets, and the defenders would 
know there is a specific enemy commanding the attack 
with whom the defenders must deal. With the advent of 
such adversaries, information security is shifting from deal-
ing with the bandit-like hacker groups of the 1980s through 
the early 2000s, to something closer to organized military 
forces. This transition is precisely what Sun Tzu faced in his 
military career. The state of Wu had historically been irri-
tated by roving groups of bandits, striking opportunistically. 
Sun Tzu noted that in addition to these bandits, addressing 
the newly emerging organized forces required systematic 
understanding of conflict—the motivation for The Art of War.

Some of Sun Tzu’s more practical comments, such as 
observing birds and dust patterns to infer enemy move-
ments, may not be applicable. However, there are many 
salient passages, such as “all warfare is based on decep-
tion” [11, ch. 1, no. 18], and the resulting recommendations 
for deceiving one’s opponent. Another example is Sun Tzu’s 
opening characterization of success in combat, starting 
with understanding the purpose and moral justification 
of the conflict (as in, why specifically is this organization’s 
information worthy of defense and what larger values are 
threatened) before engaging in it.

PROFILE: SUN TZU

WHERE TO GO FROM HERE
This book provides a broad, accurate overview of the computer security disci-
pline. This means we have covered (almost) everything, and in so doing, cov-
ered nothing in as much detail as a specialist from any information security 
field might like. If a particular area has struck the reader’s interest, follow the 
citations in the chapter and read the more detailed treatments therein. Many 
of the resources are available electronically, and any resources not available 
electronically are cited because the information in the book is worth a trip 
to the library. As a reminder, some of the textbooks cited often throughout 

The First Strategist



Where to Go from Here 349

are [15,19–21]. NIST’s Special Publication series, the IETF’s Request for 
Comments (RFC) series, and guidance from Carnegie Mellon’s Software 
Engineering Institute, as well as other government-funded research labs, make 
up another large portion of more detailed guidance on particular topics.

For more breadth of knowledge, there is a substantial catalog of informa-
tion security–related books available from Syngress. The Syngress imprint of 
Elsevier [22] focuses on cutting-edge technology and provides a large amount 
of information on topics of immediate use to the professional and to the 
student. Specific works that are relevant to the material in this book include 
Evan Wheeler’s Security Risk Management, John Sammon’s Basics of Digital 
Forensics, and Data Hiding by Michael Raggio et al.

In a field as applied and fluid as information security, a range of experience 
is essential. Serious students should deliberately diversify their career across 
industries and organizations of varying sizes. By understanding, at a practi-
tioner’s level, the driving factors in security improvements and organizational 
risk management, the need for new skills and new knowledge will emerge 
naturally. This experience will also allow professionals to accurately assess the 
utility of strategies, methods, and security products in protecting the informa-
tion for the organization with which they are associated. It is extremely dif-
ficult (if not impossible) to gain such an understanding from academic study 
alone. On the other hand, it is difficult to effectively apply such understand-
ing, without knowledge of the basic principles and trade-offs involved, which 
is often most efficiently gained via academic study.

At an extremely practical level, anyone involved in computer security would 
be well served to become familiar with the basic UNIX-like command-line 
interface (CLI). This is less useful on Windows machines, since there are 
fewer applications for Window’s PowerShell, but it is still helpful. Mac OSX 
includes a full-featured “terminal” similar to the UNIX-like CLI. A command 
line has a notoriously steep initial learning curve, because the user has to 
remember the basic commands, and even the help command can be over-
whelming initially. To make use of the CLI, the user has to be a moderately 
skilled typist, which also requires practice, but this is an important skill in its 
own right. There are several CLI tutorials available online. A friendly neigh-
borhood search engine may turn up better results, as these may change often; 
however, some places to start for introductory tutorials include:

■ http://www.ee.surrey.ac.uk/Teaching/Unix/
■ https://help.ubuntu.com/community/CommandlineHowto
■ http://www.tuxfiles.org/linuxhelp/cli.html
■ http://linuxcommand.org/learning_the_shell.php

Although it takes some practice, effort on the command line is rewarded by the 
fact that one can accomplish more tasks, and more complicated tasks, more 

http://www.ee.surrey.ac.uk/Teaching/Unix/
https://help.ubuntu.com/community/CommandlineHowto
http://www.tuxfiles.org/linuxhelp/cli.html
http://linuxcommand.org/learning_the_shell.php
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easily than one can with a standard graphical user interface (GUI; pronounced 
as “gooey”). Certain applications are better suited to GUIs, but no computer 
security professional would be disserviced by a familiarity with a CLI.

One ongoing challenge to improving security skills is finding relevant data on 
which to practice. There is no widely available reference data on which to per-
form analysis and understand security trade-offs. This lack of data is due to a 
number of factors: the large variability between organizations, legal ramifications 
involved in disclosure of organizational information, repeated failure to success-
fully remove identifying characteristics from data while preserving its utility, and 
the rapid shifting of technologies on both the aggressive and defensive sides.

There is still no replacement for practical experience. Thinking critically about 
unique practical situations will provide novel insights that no book can quite 
predict. Do not be afraid to ask questions. To this end, if readers have a dif-
ficult problem, the authors are always happy to offer some help, time permit-
ting. The authors can be reached at InfoSecurityFeedback@elsevier.com. This 
offer is in part standing behind the claim that there is still some tradecraft 
and apprenticeship in becoming a quality security professional—everything 
has not been codified and written down yet.
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Chapter Review Questions
1. Briefly explain at least one reason why certifications have become important as job 

requirements.

2. Briefly explain at least one of the reasons why overdependence on certifications 
may contribute to organizational vulnerability.

3. Define the following terms, and briefly explain their relevance to information 
security:
a. Deception strategy
b. Logical semantics
c. Frustration strategy
d. Algebraic semantics
e. Resistance strategy
f. Access control list
g. Recognition/recover strategy
h. Access control matrix
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i. Tranquility principle
j. Incident handling
k. Verification
l. Certification
m. Validation

4. What is one reason why the lack of “typical” security incident information is a 
barrier to improving information security practices?

5. What are two options available to build on the information in this book?

6. Which of the topics addressed in this book are of specific interest to you? Why?

7. Of the personality profiles identified in this book, which is most relevant to you? 
Why?

Chapter Exercises
1. What is one option, other than the coverage diagram shown in Figure 16.2, for 

summarization of information security protections in an organization?

2. Fill in the blank sectors for “data theft” and “malicious software infection” in Figure 
16.2 with strategies and technologies from the book.
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