yme to the

Home /

BE svssTaT

Useful links:
Ereecode

1:(.'._ e)

Download Documentation | Tutorial

Sysstat tutorial

You will find here a tutorial describing a few use cases for some sysstat commands. The first section below concerns the sai
commands. The second one concerns the pidstat command. Of course, you should really have a look at the manual pages
features and how these commands can help you to monitor your system (follow the Documentation link above for that).

Section 1:
Section 2:

BB v = @ gy Section 1: Using sar and sadf

W3

~ HTML
- 4.01

sar is the system activity reporter. By interpreting the reports that sar produces, you can locate system bottlenecks and suggr
possible solutions to those annoying performance problems.

The Linux kernel maintains internal counters that keep track of requests, completion times, I/O block counts, etc. From this al
information, sar calculates rates and ratios that give insight into where the bottlenecks are.

The key to understanding sar is that it reports on system activity over a period of time. You must take care to collect sar data
appropriate time (not at lunch time or on weekends, for example). Here is one way to invoke sar:

The -u option specifies our interest in the CPU subsystem. The -o option will create an output file that contains binary data. F
take 3 samples at two-second intervals. Upon completion of the sampling, sar will report the results to the screen. This provi
snapshot of current system activity.

The above example uses sar in interactive mode. You can also invoke sar from cron. In this case, cron would run the /usr/lib
script and create a daily log file. The /usr/lib/sa/sa2 shell script is run to format the log into human-readable form. These scrif
invoked by a crontab run by root (although | prefer to use adm). Here is the crontab, located in /etc/cron.d directory and using
syntax, that makes this happen:

In reality, the sa1 script initiates a related utility called sadc. sa1 gives sadc several arguments to specify the amount of time
samples, the number of samples, and the name of a file into which the binary results should be written.

A new file is created each day so that we can easily interpret daily results. The sa2 script calls sar, which formats the binary
human-readable form.

Let's think of our system as being composed of three interdependant subsystems: CPU, disk and memory. Our goal is to find
subsystem is responsible for any performance bottleneck. By analyzing sar's output, we can achieve that goal.

Listing below represents the report produced by initiating the sar -u command. Initiating sar in this manner produces a report
log file produced by sadc.

The %user and %system columns simply specify the amount of time the CPU spends in user and system mode. The %iowai
columns are of interest to us when doing performance analysis. The %iowait column specifies the amount of time the CPU s
for 1/O requests to complete. The %idle column tells us how much useful work the CPU is doing. A %idle time near zero indi
bottleneck, while a high %iowait value indicates unsatisfactory disk performance.

Additional information can be obtained by the sar -q command, which displays the run queue length, total number of process
load averages for the past one, five and fifteen minutes:

This example shows that the system is busy (since more than one process is runnable at any given time) and rather overloa
sar also lets you monitor memory utilization. Have a look at the following example produced by sar -r:

http://sebastien.godard.pagesperso-orange.fr/index.html
http://sebastien.godard.pagesperso-orange.fr/features.html
http://sebastien.godard.pagesperso-orange.fr/download.html
https://github.com/sysstat/sysstat
http://sebastien.godard.pagesperso-orange.fr/documentation.html
http://sebastien.godard.pagesperso-orange.fr/tutorial.html
http://sebastien.godard.pagesperso-orange.fr/faq.html
mailto:sysstat%20%3Cat%3E%20orange.fr
http://freecode.com/
http://www.icewalkers.com/
http://www.linux-foundation.org/
http://www.kernel.org/
http://lkml.org/
http://tldp.org/
http://validator.w3.org/check?uri=referer
http://sebastien.godard.pagesperso-orange.fr/documentation.html

Linux 2.6.8.1-27mdkcustom (localhost) 03/29/2006

smemus

1632920 0

20

This listing shows that the system has plenty of free memory. Swap space is not used. So memory is not a problem here. Yo
check this by using sar -W to get swapping statistics:

Linux 2.6.8.1-27mdkcustom (localhost) 03/29/2

swpout/s
0.00
0.00
0

sar can also help you to monitor disk activity. sar -b displays I/O and transfer rate statistics grouped for all block devices:

Linux 2.6.8.1-27mdkcustom (localhost) 03/29/2006

Linux 2.6.8.1-27mdkcustom (localhost) 03/29/2006

avgqu-sz

sar has numerous other options that enable you to gather statistics for every part of your system. You will find useful informat
in the manual page.

OK. As a last example, let's show how the sadf command can help us to produce some graphs.

We use the command sar -B to display paging statistics from daily data file sa29 (see example below).

sar -B -f /var/log/sa/sa29
Linux 2.6.8.1-27mdkcustom (1

PM
PM
PM
PM
) BM
PM

09:00:

sadf -d extracts data in a format that can be easily ingested by a relational database:

sadf -d /var/log/sa/sa29 -- -B
’ 5012 03-29 19:1

If we saw this as a text file, both Excel and Open Office will allow us to specify a semicolon as a field delimiter. Then we can
performance report and graph.

Paging activity

100

a0

80

70+

60+

50

404

30

20

10+

18:10:00 15:20:00 18:30:00 15:40:00 18:50:00

Section 2: Using pidstat

The pidstat command is used to monitor processes and threads currently being managed by the Linux kernel. It can also mc
children of those processes and threads.

With its -d option, pidstat can report I/O statistics, providing that you have a recent Linux kernel (2.6.20+) with the option
CONFIG_TASK_IO_ACCOUNTING compiled in. So imagine that your system is undergoing heavy I/O and you want to kno
are generating them. You could then enter the following command:

$ pidstat -d 2

Linux 2.6.20 (localhost) 09/26/2007

10:13:31 AM PID kB_rd/s kB wr/s kB ccwr/s Command
10:13:31 AM 15625 1.98 16164.36 0.00 dd
10:13:33 AM PID kB_rd/s kB wr/s kB ccwr/s Command
10:13:33 AM 15625 4.00 20556.00 0.00 dad
10:13:35 AM PID kB_rd/s kB _wr/s kB_ccwr/s Command
10:13:35 AM 15625 0.00 10642.00 0.00 dd

This report tells us that there is only one task (a "dd" command with PID 15625) which is responsible for these I/O.

When no PID's are explicitly selected on the command line (as in the case above), the pidstat command examines all the ta:
the system but displays only those whose statistics are varying during the interval of time. But you can also indicate which ts
monitor. The following example reports CPU statistics for PID 8197 and all its threads:

S pidstat -t -p 8197 1 3

Linux 2.6.8.1-27mdkcustom (localhost) 09/26/2007

10:40:05 AM PID TID %user %$system $CPU CPU Command
10:40:06 AM 8197 - 71.29 1.98 73.27 0 procthread
10:40:06 AM - 8197 71.29 1.98 73.27 0 |__procthread
10:40:06 AM - 8198 0.00 0.99 0.99 0 | __procthread
10:40:06 AM PID TID $user %$system $CPU CPU Command
10:40:07 AM 8197 - 67.00 2.00 69.00 0 procthread
10:40:07 AM - 8197 67.00 2.00 69.00 0 |__procthread
10:40:07 AM - 8198 1.00 1.00 2.00 0 | __procthread
10:40:07 AM PID TID $user %$system $CPU CPU Command
10:40:08 AM 8197 - 56.00 6.00 62.00 0 procthread
10:40:08 AM - 8197 56.00 6.00 62.00 0 |__procthread
10:40:08 AM - 8198 2.00 1.00 3.00 0 | __procthread
Average: PID TID Suser %system $CPU CPU Command
Average: 8197 - 64.78 3.32 68.11 - procthread
Average: - 8197 64.78 3.32 68.11 - |__procthread
Average: - 8198 1.00 1.00 1.99 - |__procthread

As a last example, let me show you how pidstat helped me to detect a memory leak in the pidstat command itself. At that tim:
the very first version of pidstat | wrote for sysstat 7.1.4 and fixing the last remaining bugs. Here is the command | entered on {
line and the output | got:

$ pidstat -r 2

Linux 2.6.8.1-27mdkcustom (localhost) 09/26/2007

10:59:03 AM PID minflt/s majflt/s VSZ RSS $MEM Command
10:59:05 AM 14364 113.66 0.00 2480 1540 0.15 pidstat
10:59:05 AM PID minflt/s majflt/s VSsz RSS $MEM Command
10:59:07 AM 7954 150.00 0.00 27416 19448 1.88 net applet
10:59:07 AM 14364 120.00 0.00 3048 2052 0.20 pidstat
10:59:07 AM PID minflt/s majflt/s vSz RSS $MEM Command
10:59:09 AM 14364 116.00 0.00 3488 2532 0.24 pidstat
10:59:09 AM PID minflt/s majflt/s VSsz RSS $MEM Command
10:59:11 AM 7947 0.50 0.00 27044 18356 1.77 mdkapplet
10:59:11 AM 14364 116.00 0.00 3928 3012 0.29 pidstat
10:59:11 AM PID minflt/s majflt/s VSZ RSS $MEM Command
10:59:13 AM 7954 155.50 0.00 27416 19448 1.88 net_applet
10:59:13 AM 14364 115.50 0.00 4496 3488 0.34 pidstat

| noticed that pidstat had a memory footprint (VSZ and RSS fields) that was constantly increasing as the time went by. | quicl
had forgotten to close a file descriptor in a function of my code and that was responsible for the memory leak...!

