

solutions @ s y n g r e s s . c o m

Over the last few years, Syngress has published many best-selling and
critically acclaimed books, including Tom Shinder’s Configuring ISA
Server 2004, Brian Caswell and Jay Beale’s Snort 2.1 Intrusion
Detection, and Angela Orebaugh and Gilbert Ramirez’s Ethereal
Packet Sniffing. One of the reasons for the success of these books has
been our unique solutions@syngress.com program. Through this
site, we’ve been able to provide readers a real-time extension to the
printed book.

As a registered owner of this book, you will qualify for free access to
our members-only solutions@syngress.com program. Once you have
registered, you will enjoy several benefits, including:

■ Four downloadable e-booklets on topics related to the book.
Each booklet is approximately 20-30 pages in Adobe PDF
format. They have been selected by our editors from other
best-selling Syngress books as providing topic coverage that
is directly related to the coverage in this book.

■ A comprehensive FAQ page that consolidates all of the key
points of this book into an easy-to-search web page, pro-
viding you with the concise, easy-to-access data you need to
perform your job.

■ A “From the Author” Forum that allows the authors of this
book to post timely updates, links to related sites, or
additional topic coverage that may have been requested by
readers.

Just visit us at www.syngress.com/solutions and follow the simple
registration process. You will need to have this book with you when
you register.

Thank you for giving us the opportunity to serve your needs. And be
sure to let us know if there is anything else we can do to make your
job easier.

Register for Free Membership to

Brian Wotring
Bruce Potter Technical Editor

Host
Integrity
Monitoring
U s i n g O s i r i s a n d S a m h a i n

FOREWORD BY
MARCUS J. RANUM

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or produc-

tion (collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results to be

obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents.The Work is

sold AS IS and WITHOUT WARRANTY.You may have other legal rights, which vary from state to

state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other

incidental or consequential damages arising out from the Work or its contents. Because some states do not

allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation

may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working

with computers, networks, data, and files.

Syngress Media®, Syngress®,“Career Advancement Through Skill Enhancement®,”“Ask the Author

UPDATE®,” and “Hack Proofing®,” are registered trademarks of Syngress Publishing, Inc.“Syngress:The

Definition of a Serious Security Library”™,“Mission Critical™,” and “The Only Way to Stop a Hacker is

to Think Like One™” are trademarks of Syngress Publishing, Inc. Brands and product names mentioned

in this book are trademarks or service marks of their respective companies.

KEY SERIAL NUMBER

001 HJIRTCV764

002 PO9873D5FG

003 829KM8NJH2

004 HGTTYY87YT

005 CVPLQ6WQ23

006 VBP965T5T5

007 HJJJ863WD3E

008 2987GVTWMK

009 629MP5SDJT

010 IMWQ295T6T

PUBLISHED BY

Syngress Publishing, Inc.

800 Hingham Street

Rockland, MA 02370

Host Integrity Monitoring Using Osiris and Samhain

Copyright © 2005 by Syngress Publishing, Inc.All rights reserved. Printed in the United States of

America. Except as permitted under the Copyright Act of 1976, no part of this publication may be repro-

duced or distributed in any form or by any means, or stored in a database or retrieval system, without the

prior written permission of the publisher, with the exception that the program listings may be entered,

stored, and executed in a computer system, but they may not be reproduced for publication.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 0

ISBN: 1-597490-18-0

Publisher:Andrew Williams Page Layout and Art: Patricia Lupien

Acquisitions Editor: Gary Byrne Copy Editor: Judy Eby

Technical Editor: Bruce Potter Indexer: Nara Wood

Cover Designer: Michael Kavish

Distributed by O’Reilly Media, Inc. in the United States and Canada.

For information on rights, translations, and bulk sales, contact Matt Pedersen, Director of Sales and Rights,

at Syngress Publishing; email matt@syngress.com or fax to 781-681-3585.

Syngress Acknowledgments

v

Syngress would like to acknowledge the following people for their kindness

and support in making this book possible.

Syngress books are now distributed in the United States and Canada by

O’Reilly Media, Inc.The enthusiasm and work ethic at O’Reilly are incredible,

and we would like to thank everyone there for their time and efforts to bring

Syngress books to market:Tim O’Reilly, Laura Baldwin, Mark Brokering, Mike

Leonard, Donna Selenko, Bonnie Sheehan, Cindy Davis, Grant Kikkert, Opol

Matsutaro, Steve Hazelwood, Mark Wilson, Rick Brown,Tim Hinton, Kyle

Hart, Sara Winge, C. J. Rayhill, Peter Pardo, Leslie Crandell, Regina Aggio,

Pascal Honscher, Preston Paull, Susan Thompson, Bruce Stewart, Laura

Schmier, Sue Willing, Mark Jacobsen, Betsy Waliszewski, Kathryn Barrett, John

Chodacki, Rob Bullington,Aileen Berg, and Wendy Patterson.

The incredibly hardworking team at Elsevier Science, including Jonathan

Bunkell, Ian Seager, Duncan Enright, David Burton, Rosanna Ramacciotti,

Robert Fairbrother, Miguel Sanchez, Klaus Beran, Emma Wyatt, Chris Hossack,

Krista Leppiko, Marcel Koppes, Judy Chappell, Radek Janousek, and Chris

Reinders for making certain that our vision remains worldwide in scope.

David Buckland, Marie Chieng, Lucy Chong, Leslie Lim,Audrey Gan, Pang Ai

Hua, Joseph Chan, and Siti Zuraidah Ahmad of STP Distributors for the

enthusiasm with which they receive our books.

David Scott, Tricia Wilden, Marilla Burgess, Annette Scott, Andrew Swaffer,

Stephen O’Donoghue, Bec Lowe, Mark Langley, and Anyo Geddes of Woodslane

for distributing our books throughout Australia, New Zealand, Papua New

Guinea, Fiji,Tonga, Solomon Islands, and the Cook Islands.

Rainer Wichmann, Samhain creator, for sharing his expertise.

vii

Author

Brian Wotring is the CTO of Host Integrity, Inc. a company that

specializes in providing software to help monitor the integrity of

desktop and server environments. Brian studied computer science

and mathematics at the University of Alaska and the University of

Louisiana.

Brian founded and maintains knowngoods.org, an online

database of known good file signatures for a number of operating

systems. He also is the developer of ctool, an application that pro-

vides limited integrity verification for prebound Mac OS X exe-

cutables. Brian is currently responsible for the continued

development of Osiris, an open source host integrity monitoring

system.

As a long-standing member of The Shmoo Group of secu-

rity and privacy professionals, Brian has an interest in secure pro-

gramming practices, data integrity solutions, and software usability.

Along with Bruce Potter and Preston Norvell, Brian coauthored the

book, Mac OS X Security. Brian has presented at CodeCon and at

the Black Hat Briefings security conferences.

Bruce Potter is a Senior Associate at Booz Allen Hamilton. Prior

to working at Booz Allen Hamilton, Bruce served as a software

security consultant for Cigital in Dulles, VA. Bruce is the founder of

the Shmoo Group of security professionals. His areas of expertise

include wireless security, large-scale network architectures, smart-

cards, and promotion of secure software engineering practices. Bruce

coauthored the books 802.11 Security and Mac OS X Security. He

was trained in computer science at the University of Alaska,

Fairbanks.

Technical Editor

viii

Rainer Wichmann is system administrator and research scientist at

the University of Hamburg. He has studied physics and astronomy

at the University of Heidelberg and received his Ph.D. in astronomy

from there. He is responsible for the development of the Samhain

host integrity monitoring system, and he has authored various other

small applications in the fields of astronomy and computer security.

He has written several computer security articles published by

Samhain Labs. Rainer reviewed Chapter 7 covering Samhain.

Marcus Ranum has been building computer security systems since

the late 1980s, when he was an early innovator in designing Internet

firewall systems and products. Since that time he has been involved

in every aspect of the computer security field: writing, teaching,

designing and developing products, consulting, and managing and

founding successful product companies. He lives in Morrisdale, PA,

with his wife, Katrina, and a small herd of horses, dogs, and cats.

Technical Reviewer

Foreword Contributor

ix

First and foremost, I would like to thank my beautiful wife, Kaleigh, and my

perfect son, Ezekiel.This book would never have happened without your

patience and support.Thanks to Bruce Potter for providing solid technical

editing for all of these chapters.Your practical perspective on security has made

this book even better.Thanks to Holt Sorenson, who has always impressed me

with his knowledge and authority on this subject, and for reviewing various

related works of mine over the last couple of years.Thanks to Dave Hooley for

reviewing some of my initial work on this book.Thanks to Rainer Wichmann

for writing Samhain, and for reviewing the Samhain chapter.Thanks to Andrew

Williams and Gary Byrne from Syngress for all of your help throughout this

process.

I would like to express my gratitude to all of the people who have con-

tributed to the development of Osiris over the years.Thanks to Preston Norvell

and Bruce Potter for conceiving the idea and making it a reality.Thanks to Paul

Holman for providing invaluable contributions to the original design, specifi-

cally with respect to security and usability.

Additional thanks to John Viega, Ben Laurie, Rodney Thayer,Tina Bird,

Crispin Cowan, Jon Callas, Brian Caswell, Spike Illaqua, Len Sassaman,Adam

Shand, Peter Johanson, Duane Dunston, Karen Wieprecht, Luke West, Peter

Frey, Lance Ahern,Tim Laughlin, Jeremy Verne, Robert Tarrall, Orrie Gartner,

Brian Daugherty, Scott Hallock, Zach DiUbaldo, Jeremy Gebben, David Thiel,

Jason Frisvold, John A. Sullivan,Andrew Steingruebl,Aaron Racine,Yuri D’elia,

Richard Johnson,Alan Sparks,Andrew Norsworthy, and Indra’s Net in Boulder.

Brian Wotring

brian@hostintegrity.com

Author Acknowledgments

x

xi

Contents

Foreword .xxi

Preface .xxiii

Chapter 1 Host Integrity .1
Introduction to Host Integrity .2

What Is Integrity? .2

Host Intrusion Detection .3

Host Intrusion Prevention .3

File Integrity Checking .4

Security Administration .4

Change Management .5

Network Security .5

Introducing Host Integrity Monitoring 5

What Is Host Integrity Monitoring? 6

How Do HIM Systems Work? .7

Scanning the Environment .8

Centralized Management .11

Feedback .12

Arguments against Integrity Monitoring 12

Administrative Overhead .12

Too Much Noise! .13

Return on Investment .14

Subversion .14

Attacking the Agent .15

Playing Hide and Seek .16

Hiding Files .16

Kernel Rootkits:The Ultimate Subversion17

Arguments for Integrity Monitoring 18

xii Contents

Auditing .18

Detecting Internal Attacks .19

Detecting Intrusions .20

Forensics .20

Summary .22

Solutions Fast Track .22

Frequently Asked Questions .24

Chapter 2 Understanding the Terrain 27
Introduction .28

Users and Groups .28

Users and Groups on UNIX .29

Logging In .30

SUDO and the SU Command 32

Advanced User Management 32

Users and Groups on Windows 33

Windows Users .34

Windows Groups .34

Where Are Users and Groups Stored? 34

Files and File Systems .35

What Is a File System? .36

UNIX File Security .36

A Realistic View of Files .37

File Permissions .38

Special File Permissions .40

Hidden File Flags .41

File Links .42

File Time Stamps .43

Tying It All Together .44

Windows File Security .44

NTFS File Structure .45

NTFS ACLs .45

ACE .47

The Windows Registry .48

Forks and Streams .50

The Kernel .52

Extending the Kernel .53

Contents xiii

Linux .53

FreeBSD .54

Solaris .55

Mac OS X .56

Windows .57

BSD Kernel Security Levels .58

Libraries and Frameworks .59

Problems with Shared Libraries 60

Dynamic Libraries on Mac OS X 61

Runtime .64

SUID and SGID Privileges .64

Windows Access Tokens .67

RPC and DCOM .68

Processes .69

Networking .70

Interfaces .70

Ports .71

Nonvolatile Memory .72

Summary .74

Solutions Fast Track .74

Frequently Asked Questions .77

Chapter 3 Understanding Threats 79
Introduction .80

Malicious Software .80

Viruses .80

Worms .81

Trojans .81

Spyware .82

General Considerations .82

Internal Threats .83

Local Access .84

Administrative Negligence .85

Administrative Abuse .86

Rootkits .86

A Tour of Successful Worms .88

Worm #1: W32 Blaster .88

xiv Contents

Description .88

Footprint .88

Analysis .89

Worm #2: Linux Slapper .89

Description .89

Footprint .89

Analysis .89

Worm #3: BugBear .90

Description .90

Footprint .90

Analysis .90

Worm #4: SQL Slammer .91

Description .91

Footprint .91

Analysis .91

Worm #5: Nimbda .91

Description .92

Footprint .92

Analysis .92

Conclusion .92

Circumventing Host Integrity Monitoring93

The Never-Ending War .93

Former Battlefields .94

The Modern Battlefield .95

Mitigation Techniques .95

Session Keys .95

Executable Keys .96

Log and Database Signing .96

Invisibility .96

Summary .97

Solutions Fast Track .97

Frequently Asked Questions .99

Chapter 4 Planning .101
Introduction .102

Understanding the Big Picture .102

Understanding Roles:The Bank Analogy 102

Contents xv

Planning Principles .105

Make Everything Simple .105

Keep Functionality to a Minimum 106

Document Your Requirements 106

Requirements .106

Goals .107

Build and Test Environments .108

Network Topology .109

Host Count .109

Operating Systems and Architecture Types 110

Monitoring Requirements .111

Scheduling and Scan Frequency 112

Notifications .112

Logging .113

Incident Response .114

Forensics .114

Planning a Management Console .115

General Security Considerations 115

Physical Access .117

User Access .117

Hardware Requirements .118

Summary .119

Solutions Fast Track .119

Frequently Asked Questions .121

Chapter 5 Host Integrity Monitoring with
Open Source Tools .123

Introduction .124

Osiris .124

How Osiris Works .124

Authentication of Components 126

Scan Data .127

Logging .128

Filtering Noise .129

Notifications .129

Strengths .130

Weaknesses .131

xvi Contents

Samhain .131

How Samhain Works .132

Authentication of Components 133

Scan Data .134

Logging .134

Strengths .136

Weaknesses .137

Summary .138

Solutions Fast Track .138

Frequently Asked Questions .139

Chapter 6 Osiris .141
Introduction .142

Configuring and Building Osiris .142

Getting Osiris .143

Establishing Build Environments 146

UNIX Build Environment 147

Windows Build Environment 147

Configuration Options .151

Adding Modules .154

Building Installer Packages .154

Building UNIX Install Packages 154

Building a Windows Installer156

Additional Deployment Considerations 156

Read-Only Media .157

Pre-provisioning Digital Certificates 157

Operating System Specifics .159

Testing .160

Establishing a Management Console 161

Management Console Components 161

Directory Structure .162

User Authentication Database: auth.db164

Comparison Filter Database: filter.db 164

Management Console Processes 164

Command-line Arguments .166

Installing the Management Console on UNIX 167

Installing a Management Console on Windows170

Contents xvii

Understanding Configuration Settings 172

Configuring the Management Console for the

First Time .174

Command-line Interface .178

Command-line Basics .178

Authentication and Certificates 179

Online Help .181

Scan Agents .182

Scan Agent Overview .182

Installing the Scan Agent .184

Installing on UNIX .185

Installing on Windows .187

Configuration .188

Adding a Host .188

Talking to Agents with the Command Line 194

Scan Databases .200

Session Keys .204

Advanced Scan Configuration 204

Scan Configuration Syntax 204

Examples .208

Shared versus Local Scan Configurations 211

Creating a Custom Scan Configuration 211

Mass Deployment .213

Administering Osiris .217

Logging .218

Notifications .218

Scheduling .222

Filters: Reducing False Positives 224

Multiple Management Consoles228

Database Files .228

Users .232

Storing Scan Data in Relational Databases 233

Summary .235

Solutions Fast Track .236

Frequently Asked Questions .238

xviii Contents

Chapter 7 Samhain .241
Introduction .242

Features and Constraints .242

Deploying Samhain Stand-Alone .244

Obtaining and Verifying Samhain245

Establishing a Samhain Build Environment 248

Configuring Samhain .249

General Options .250

Module Options .255

GnuPG Signing Options .255

Building Samhain .257

Installing Samhain .258

Configuring Samhain .259

Configuration Policies .259

Understanding the Configuration Sections261

Stand-Alone Configuration 265

Creating a Baseline with Samhain 267

Tuning Samhain .267

Configuring Notifications .268

Responding to Change .269

Running Samhain .270

Uninstalling Samhain .271

Deploying Samhain with Centralized Management 271

Overview of Yule .272

Build Environments .273

Installing and Configuring Postgresql 274

Configuring Yule .278

Building Yule .280

Configuring Yule .280

Building Network-Aware Samhain Agents 285

Pairing Agents with the Yule Server 287

Configuring the Agent .288

Creating an Agent Baseline .289

Dealing with Detected Changes291

Yule Server Status .292

Using Beltane:The Web-Based Console292

Contents xix

Beltane Requirements .293

Preparing to Install Beltane .294

Building and Installing Beltane295

Configuring Beltane .296

Using Beltane .299

Summary .302

Solutions Fast Track .302

Frequently Asked Questions .304

Chapter 8 Log Monitoring and Response 307
Introduction .308

Log Monitoring .308

Log Monitoring Using Swatch309

Installing Swatch .310

Configuring and Using Swatch 312

The Basics .312

Swatch Configuration .313

Swatch Rules for Osiris and Samhain 315

Running Swatch .318

Incident Response .319

General Overview of Incident Response 320

The Incident Response Cycle 320

Planning .321

Detection .322

Response .323

Feedback .324

Summary .325

Solutions Fast Track .325

Frequently Asked Questions .326

Chapter 9 Advanced Strategies 327
Introduction .328

Performing SUID/SGID Security Audits 328

Conducting Unscheduled Scans .333

Looking for Rogue Executables .335

Testing and Verification .343

Is It Working? .343

xx Contents

Testing Filters .348

Testing Notifications .351

Prebinding and Prelinking .352

Prebinding: Mac OS X File Integrity 352

Prelinking: Linux File Integrity 356

Summary .363

Solutions Fast Track .363

Frequently Asked Questions .364

Appendix A Monitoring Linksys Devices 367
Using Prebuilt Firmware .369

Building Custom Firmware .370

Configuration and Administration 372

Appendix B Extending Osiris and Samhain
with Modules .375

Osiris Modules .376

An Example Module: mod_hostname377

Testing Your Module .380

Packaging Your Module .382

General Considerations .383

Samhain Modules .383

An Example Module: hostname 384

Testing Your Module .392

Packaging Your Module .393

Appendix C Further Reading .395
Online Documentation .396

Online Publications .396

Books .396

System Security Resources .397

Organizations .398

Useful Web Sites .398

Software .398

Mailing Lists .399

Companies .399

Index .401

Are you comfortable with the idea of being ignorant and complacent? I bet

you’re not—very few people are! Yet, somehow, in the last 10 years of computer

networking, we’ve built massive networks of systems that we literally do not

understand.They are like huge, uncharted forests, with system/network admin-

istrators who are afraid to wander into the far reaches out of fear that some-

thing may grab them in the darkness. From a standpoint of security, virtually all

the networks I’ve seen in the last five years are out of control—if you ask a

system administrator “what applications do you have running on your net-

work?” you can expect little more than a blank stare in response.Ask system

administrators “do you know which files on your servers change on a regular

basis?” and many of them will reply,“I’d just be happy if I knew where my

servers are.”

Let’s start with some history. Back in the mainframe days of computing,

administrators used to follow a mysterious process called “change control.”

Basically, it’s the idea that you should follow a process to understand and manage

the updates, upgrades, and alterations to your system. Mainframe administrators

consider change control absolutely crucial to keeping the system up and run-

ning reliably. On the other hand, users view change control as an impediment

to getting things done.They think that following the change control process is

too slow and that it’s basically a trick the system analysts use to protect their

position of importance.

But the desktop revolution changed all that: suddenly people who could

afford a relatively inexpensive computer could do whatever they wanted with

it, when they wanted, without asking or telling anyone. It’s impossible to over-

state the importance of the desktop revolution to computing because it simul-

taneously liberated computing by driving costs down and stimulated the

xxi

Foreword

development of hundreds of thousands of user-oriented applications. It also

murdered the art of system administration.

So, welcome to this book.This book is about one of the crucial (and often

ignored) aspects of system and security management: host integrity protection.

Fundamentally, the idea of host integrity protection is all about understanding

the changes that happen to your system—friendly or hostile, deliberate or acci-

dental—and understanding the impact of those changes. In other words, it’s

change control in a hostile environment. Best of all, this book is written by

Brian Wotring, a man who has been there and done that—someone who has

designed and deployed host integrity monitoring systems, used them, and relied

on their results. It’s hard to overstate the value of such experience; people like

Brian, who has worked on a problem with his own hands, are the best-qualified

people to teach about it because they understand what’s real and what’s merely

theoretical.And they can explain the difference. Books like the one you’re

holding are the survival kits for the future of computing.They’re full of the

important clues that you’re going to need if you want to be one of the sur-

vivors instead of the statistics.
—Marcus J. Ranum

mjr@ranum.com

www.syngress.com

xxii Foreword

In February 2004, portions of Microsoft’s source code for Windows NT and

Windows 2000 were posted to Internet Relay Chat (IRC) chat rooms and even-

tually all over the Internet. In March 2004, Cisco took a similar blow when a

Russian Web site reported that roughly 800MB of Cisco’s IOS source code had

been stolen. In the following days, an analysis of the stolen material revealed that

it was taken from one of Cisco’s Sun servers; thus, it is reasonable to conclude

that it was taken from within Cisco’s corporate network. In August 2003, the pri-

mary File Transfer Protocol (FTP) servers for the GNU project were compro-

mised and all of the source code packages they served were at risk.

What is interesting about all three of these incidents is that the initial com-

promise was not discovered for months, and in some cases it was an outside

source that brought attention to the fact.This is not a good thing. Cisco’s IOS

platform is the most widely deployed networking platform to date, Microsoft

owns the home desktop market, and GNU software is increasingly being

deployed in many small business and enterprise environments. Monitoring the

integrity of host environments used in the development and distribution of

such critical software should not be considered optional. Furthermore, detecting

a compromised host should not take months.

About This Book
This book provides you with the information necessary to understand the

what, why, and how of host integrity monitoring. My goal was to provide a

book that walks people through the entire process of establishing host integrity

monitoring, including the fundamentals, understanding threats, planning,

deployment, administration, and response.Too often people skip to the deploy-

ment part and just throw software at a problem. Effective host integrity involves

xxiii

Preface

more than just installing a security application; it is an ongoing process that

involves understanding your host environments, understanding threats, and

developing a well-thought-out plan for deployment, administration, and inci-

dent response.

The first half of this book focuses on what you should know about host

integrity.This information is foundation building and is applicable to any product

or environment.The second half focuses on the deployment and administration

of Osiris and Samhain, two of the most popular and widely deployed open

source host integrity monitoring systems (HIMS). Both have enjoyed recognition

and integration into commercial software products. Osiris is the cornerstone of a

host-based integrity-monitoring product sold by Host Integrity, Inc., and has

been featured in many books.Advanced implementations of Beltane are available

for commercial use, and Samhain was featured in Linux Magazine and numerous

online publications. Both of these products have been deployed in small business,

government, educational, and commercial environments.

This book is not a complete reference for any particular host environment.

Operating systems are constantly changing; therefore, this chapter focuses more

on the core elements of commonly deployed desktop and server environments,

including FreeBSD (and the like), Mac OS X, Linux, Solaris, and Windows

2000, XP, and Advanced Server 2003. However, much of the emphasis is on the

principles of host integrity that are common to all systems.

After reading this book, you will have a solid understanding of what is

involved in planning and deploying an effective host integrity monitoring

system.You will learn the importance of monitoring various elements of the

host environment, how to plan for deployment, and how to interpret and

respond to integrity violations.You will also learn the ins and outs of deploying

Osiris and Samhain.

Target Audience
This book was written with intermediate to advanced security and system

administrators in mind.The information is relevant for networks of all sizes,

from home networks to large-scale desktop and server environments.This book

assumes that you have a basic understanding of system administration and that

you purchased this book because you want to learn more about the fundamen-

tals of host integrity and how to properly deploy and maintain a HIMS.

www.syngress.com

xxiv Preface

Preface xxv

www.syngress.com

This book is also valuable for system and security administrators that are

already using a failed host-based monitoring scheme and are looking for a sim-

pler, more effective means of monitoring the integrity of their host environ-

ments.As a security administrator, it is important to understand the details

surrounding the proper deployment and usage of host integrity monitoring

tools in order to be effective in maintaining the security of managed hosts.

Finally, this book will appeal to anyone who wants to learn about moni-

toring host integrity, what it does and does not include, and how open source

software can be used to establish an effective HIMS.This includes computer

security professionals, analysts, and consultants who must stay abreast of host-

based security for their clients.

Organization and Content
This book consists of nine chapters and three appendices. It does not have to

be read in sequence, but read Chapter 1 first, as it provides a realistic perspec-

tive on host integrity monitoring, what it includes, and why it is necessary, and

presents information that is built on throughout the rest of the book.

Chapter 1,“Host Integrity,” reveals everything that is involved in main-

taining the integrity of your hosts. Host integrity monitoring is introduced and

some arguments for and against it are explored.

Chapter 2,“Understanding the Terrain,” explores many areas of the host

environment with respect to establishing effective host integrity monitoring.

Topics include users, groups, files and file systems, the kernel, libraries, runtime

issues, network stacks, and nonvolatile memory.

Chapter 3,“Understanding Threats,” examines some of the most common

threats to the integrity of a host environment. It looks at malicious applications,

internal threats, rootkits, and circumvention of integrity monitoring systems. It

also looks at some of the most popular and successful worms, and examines the

effects they have on their environment.

Chapter 4,“Planning,” is dedicated to walking you through the process of

planning the deployment of a HIMS. It looks at network topology, system

architectures, requirements and security policies, and general considerations

related to management.

Chapter 5,“Host Integrity Monitoring with Open Source Tools,” intro-

duces Osiris and Samhain. It briefly looks at their background and history, how

each of these systems works, and their respective strengths and weaknesses.

Chapter 6,“Osiris,” provides in-depth practical information about how to

properly deploy, configure, and administer the Osiris HIMS.

Chapter 7,“Samhain,” provides in-depth practical information about how

to properly deploy, configure, and administer the Samhain HIMS.

Chapter 8,“Log Monitoring and Response,” deals with life after deploy-

ment. Solutions for logging, reporting, and noise reduction are provided. In

addition, it discusses some practical considerations to aid in the incident

response process.

Chapter 9,“Advanced Strategies,” outlines some progressive techniques that

can be used to strengthen and fine-tune your host integrity monitoring deploy-

ment. It looks at audits for SUID/SGID and rogue executables, fire drills, and

methods for dealing with prebinding and prelinking.

Appendix A,“Monitoring Linksys Devices,” provides detailed information

about how to monitor some popular Linksys routers using Osiris.

Appendix B,“Extending Osiris and Samhain with Modules,” looks at the

modular interfaces to Osiris and Samhain for specialized deployment require-

ments.

Appendix C,“Additional Resources,” provides a list of resources that are

helpful in complementing the content presented in this book.

Support and Contact Information
A Web site (http://www.syngress.com/solutions) has been established specifi-

cally for this book.This site contains all of the source code examples and scripts

used throughout the practical chapters in this book.

For further information regarding this book, Osiris, Samhain, or host

integrity monitoring, feel free to send me an e-mail at

brian@hostintegrity.com.

www.syngress.com

xxvi Preface

Host Integrity

Solutions in this chapter:

■ Introduction to Host Integrity

■ Introducing Host Integrity Monitoring

■ Arguments against Integrity Monitoring

■ Arguments for Integrity Monitoring

Chapter 1

1

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Introduction to Host Integrity
Right now, you are settling down to read this book, and I am reading your e-mail.

Not really, but how can you know for sure? If you are like most people, you have

taken a number of steps to protect your hosts. Firewalls serve to deflect attacks, but

complete protection is not a reality. Most software is poorly written, and there is a

great deal of software standing between you and your e-mail. So, again, if an attack

against your e-mail server were successful, how soon would you know? More

importantly, how would you know what was compromised in the attack?

A great deal of energy is directed at perimeter security, and for good reason.

Network monitoring can detect that an attack has occurred, but not whether that

attack was successful.Attacks do not always originate from outside the network. Efforts

are made to secure hosts, but compromises are a reality. Most countries have militaries

to defend their borders and various levels of law enforcement to maintain order on the

inside. Banks put alarms on their doors, and they place cameras and armed guards

inside to keep watch over valuables. In addition to monitoring the perimeter, you also

need to ensure the integrity of your hosts by monitoring their environment. Most cor-

porations are well aware of the need for network security, but many are still learning of

the importance of implementing host-based integrity solutions.

What Is Integrity?
In the world of computer security, when we discuss the integrity of a network or

host, we mean adherence to an established security policy. Integrity is subjective and

has no useful meaning without specifying which states or activities are acceptable.

This book discusses integrity at the host level. What is considered a valid state

can vary significantly from host to host. For example, the integrity of a production

build server may require that specific libraries and compiler tools not be tampered

with.The integrity of a Web server may require that Hypertext Markup Language

(HTML) and server configuration files not be altered. User logins might be a regular

occurrence on an Internet service provider’s dial-up server, but suspect on the

provider’s corporate Web server.Again, the thing to remember about integrity is that

it is not an absolute.As an administrator or security officer, you establish what

integrity means for each of your managed hosts.

Integrity can be threatened in many ways.Authorized users may attempt to ele-

vate privileges using local exploits.A malicious attacker may scan your network

looking for hosts that are vulnerable to remote exploits, or an administrator may

install substandard software that leaves the host open to attack.Aside from substan-

dard software, many security problems stem from the misconfiguration of software.

www.syngress.com

2 Chapter 1 • Host Integrity

As a result, there are many different types of tools that administrators and security

officers use to manage the integrity of their hosts. Each of these tools deals with cer-

tain types of threats better than others; therefore, the deployment of multiple tools is

best.Truly effective host integrity requires many layers of security.The process of

protecting at multiple layers is called security in depth.

Host Intrusion Detection
What constitutes a Host Intrusion Detection System (HIDS) is often the subject of

debate. I have seen a simple file integrity checker labeled as a HIDS. In other cases, I

have seen products that monitor incoming network traffic, logs, and configuration

files labeled as a HIDS. In any case, a HIDS analyzes and reports on data that origi-

nates from the host environment as opposed to the network.The goal is to detect

and report on changes that are suspicious or symptomatic of an intrusion.

Traditionally, a HIDS analyzes log files, but it can also monitor events such as file

access requests, user login/logout events, and buffer overflow attempts.

One advantage of a HIDS is that you can customize what is considered suspi-

cious on a per-host basis. However, a truly effective HIDS will correlate events that

occur on many hosts, factoring in time and input from a known bad signature

database.A Hybrid Intrusion Detection System (IDS) is even more sophisticated

than a HIDS; a hybrid IDS merges the management of both network- and host-

based IDSes. Many security professionals consider this approach better than distinct

host- and network-based intrusion detection deployments because, in theory, it is

easier to correlate events that occur on both landscapes.

The two most common reasons for a HIDS deployment are to complement

Network Intrusion Detection Systems (NIDS) and to keep tabs on any insider

attacks or abuse.A HIDS is usually a passive participant in the world of host

integrity, meaning that it detects and reports.A HIDS does not alter the host envi-

ronment or attempt to engage suspicious behavior. For that, you must look at intru-

sion prevention.

Host Intrusion Prevention
A Host Intrusion Prevention System (HIPS) is newer than a HIDS, with the main

difference being that a HIPS can take action toward mitigating a detected threat. For

example, a HIPS deployment may detect the host being port-scanned and block all

traffic from the host issuing the scan.A HIPS often monitors memory, kernel, and

network state, log files, and process execution.A HIPS also protects against buffer

overflows.

www.syngress.com

Host Integrity • Chapter 1 3

The advantage of intrusion prevention is that you do not have to wait for a

security officer to respond before preventive measures are taken to maintain host

integrity.This approach may prove helpful, especially because recent studies show

how vulnerable systems can be compromised in minutes.A HIPS is often both sig-

nature and anomaly based. Unlike signature-based systems that can defend against

only known bad signatures, an anomaly-based HIPS attempts to distinguish normal

from abnormal behavior.This capability helps when a threat either has no known

signature, or the signature database has not yet been updated.

The disadvantages of a HIPS is that the response taken may render the host use-

less or possibly impact the availability of a critical resource. It is one thing for an IDS

to issue a false positive, but a false positive with some kind of reflexive action could

be worse.

Like a HIDS, the functionality of a HIPS can vary significantly with each

product.A good example of a successful and effective HIPS is Immunix, an intrusion

prevention system (IPS) for Linux. Basically, Immunix takes access control that is

normally applied at the user level and applies it to applications.Administrators can

set up profiles that specify exactly what certain executables can and cannot do. Since

a great deal of attacks involve the abuse of software, this method of intrusion preven-

tion can be very effective. In this case, attacks can be stopped before they occur.

File Integrity Checking
File integrity checkers are programs designed specifically to watch for changes to files

and to report on those changes.The basic concept is that periodic snapshots of certain

files are taken and compared with the previous snapshot.The first version of Tripwire,

written by Gene Kim and Gene Spafford, was a file integrity checker. Like most file

integrity checkers, this version of Tripwire is limited because it is generally not client

or server based.The problem with this is that all of the data is stored on the hosts

themselves and at risk to tampering.Another problem with file integrity checkers is

that they are notorious for being cumbersome to administer because of their deploy-

ment architecture and the amount of false positives that they tend to generate.

Security Administration
Security administration involves anything from patching and updating vulnerable

software, to conducting penetration testing and fixing any of the vulnerabilities dis-

covered in a host environment. Staying abreast of critical software security fixes and

patches goes a long way toward maintaining the integrity of a system. Intrusion

detection and prevention software applications can do only so much.The older the

www.syngress.com

4 Chapter 1 • Host Integrity

software updates, the easier it is for someone to unleash havoc on your systems.This

is true of both internal and external threats.

Change Management
Change management has less to do with intrusions and more to do with auditing

and policy enforcement. Change management attempts not only to pinpoint

unwanted changes but also to note which user made the change and why.Another

difference is that change management products often have the ability to roll back

undesired changes to the last known good state.The commercial version of Tripwire

is an example of a commercial change management solution.An open source

example of this is Radmind (http://www.radmind.org).

The integrity of a host or set of hosts is not always about breaching firewalls,

buffer overflows, or privilege escalation; it is also about enforcing your security

policy. In the event that something bad happens, having a detailed audit trail of

activity surrounding the event can prove very helpful in pinpointing the problem,

responding to it, and preventing future violations.

Network Security
What does network security have to do with host integrity? The answer is security in

depth. Network intrusion detection, inline IPS, intelligent network configurations, and

firewalls all do their part to shield hosts from malicious traffic. Network security plays

an important role because it is the first line of defense at keeping the bad guys out.

Ideally, all threats would be caught by perimeter or network defenses.

Unfortunately, this is not always the case.As I write this, three new Internet Explorer

(IE) vulnerabilities for XP SP2 have been published. Network security cannot always

prevent you from unintentionally inviting threats onto your desktop, but sometimes

it can help prevent threats from spreading to other hosts. In addition, host integrity

monitoring (HIM) can serve as a valuable audit mechanism for your perimeter secu-

rity. In some cases, it will be possible to detect how an attacker was able to compro-

mise a host.You can sometimes use that information to strengthen your perimeter

security so that it does not happen again.

Introducing Host Integrity Monitoring
Now that we have looked at host integrity in general, let’s focus specifically on

HIM—that is, what it is, how it works, and how it fits into the world of host

integrity.

www.syngress.com

Host Integrity • Chapter 1 5

What Is Host Integrity Monitoring?
HIM is the recurring assessment of a host’s environment based on a known good

state or policy.A host can be a home user’s PC, a corporate e-mail or Web server, a

production build system, or a computer in an Internet café.A host can also be a

router or a switch.

As shown in Figure 1.1, host’s environment can be broken down into three cate-

gories: files, configurations, and runtime. Files are the most obvious and include the

content and attributes associated with individual files as well as the file systems

themselves.The configurations of an environment are higher-level elements such as

users and groups, access control, configurations for services, and basically anything

that dictates the initial state of the system.The runtime involves the dynamics of a

running system such as the state of a network stack (e.g., open ports), user

login/logout activities, kernel state (e.g., extensions, services, drivers), system

resources such as memory, and the running process table.

Figure 1.1 Functional Overview of HIM

www.syngress.com

6 Chapter 1 • Host Integrity

Kernel:
 drivers
 modules/extensions
 symbols

Network:
 ports
 stack

Events :
 login /logout

Runtime Files and File Systems Configuration

Users

Groups

Scan Agent

Host Environment

To Management Console

.

checksum
time stamps
size
owner
permissions
...

The overall goal is to detect and report on changes in the environment.

However, things get tricky when we try to establish which of the detected changes

are good, and which are not. Enter the concept of integrity. It may be that a change

seems perfectly reasonable on one host, but suspect on another. For example, adding

an entry to the /etc/passwd file might be a regular occurrence on an Internet service

provider’s dial-up server, but not on its corporate Web server. Or it may be that an

added entry is fine as long as the newly added UID is non-zero.

The main distinction between HIM and host intrusion detection is that the pur-

pose of a HIDS is to detect an attack or an intrusion, whereas HIM is concerned

with any changes to the environment that violate security policies.There are many

disparate products that are referred to as host-based intrusion detection systems; you

may be able to pigeonhole some into reporting all kinds of change, but in general

this is not the case. However, intrusions are often the most concerned with changes

to a host environment, so HIM applications usually pay a lot of attention to

detecting changes related to an attack or intrusion.

HIM can also be used to ensure that the environment of a host or set of hosts

has not been compromised. Often, this is the only way a violation of corporate

policy is detected. Now that we know what a HIM system is, let’s take a closer look

at some of its most important attributes.

How Do HIM Systems Work?
A HIM system comprises software agents and at least one management console.The

details of how these two components interact may vary, but in general, the agents

gather information about the host environment, and the console performs analysis

and reporting on that data. Because you are dealing exclusively with data that origi-

nates from the host environment, it is necessary to install an agent onto each host

that is being monitored.This is often referred to as an agent-based deployment scenario.

Initially, each monitored host is scanned to create a baseline.The baseline is con-

sidered to be the trusted data set.This trusted data set contains information about

the host environment, including file attributes, users, groups, kernel files, kernel

modules and extensions, network ports, and login/logout events—basically anything

about a host that is worth monitoring.The baseline is usually stored in some type of

database.

www.syngress.com

Host Integrity • Chapter 1 7

Tools & Traps…

Baseline Integrity
It is strongly recommended that the baseline be established before the system is
deployed or placed onto a network. Collecting baseline information from a pris-
tine system allows you to start monitoring from a known good state. (See
Chapter 4, “Planning.”)

Monitoring can be either inline or polling.An inline HIM system is resident in

the kernel and is able to monitor changes and events as they occur.A polling HIM

system takes periodic snapshots of the host environment. Most HIM systems are

polling.The advantage of a polling HIM system is that it can be easily ported to

many systems, and does not necessarily involve running in the kernel.The disadvan-

tage is that changes that occur between polling may go undetected.The advantage of

an inline HIM system is that it is in a better position to monitor lower-level events

such as binding to a privileged network port, system calls, and other kernel-level

events.The disadvantage is that specialized development is necessary for each plat-

form that the agent runs on.The two HIM systems discussed in this book, Osiris

and Samhain, are polling HIM systems.

Polling a HIM system involves regularly scanning a host and comparing the

results of the scan against the baseline.The security officer is then notified (e.g., e-

mail, logs, paging) of the detected changes.As time goes on, the list of deltas

between the current environment and the baseline grows. Each HIM system has its

own way of updating the baseline.

Now that you have a basic understanding of the function of HIM systems, let’s

take a closer look at some key characteristics, including the scanning process, man-

agement, and common feedback vectors.

Scanning the Environment
Scan agents are used to periodically gather specific information about the host envi-

ronment. Like a HIDS, they are passive; that is, they do not alter the environment.

Scanning can be initiated by the agents themselves or by the console, depending on

the design of the product.Agents that initiate a scan then must initiate a network

connection to the console (non-trusted to trusted), as opposed to the console con-

necting to the agent (trusted to non-trusted). Depending on your network configu-

ration and security policies, one of these scenarios may be preferable.

www.syngress.com

8 Chapter 1 • Host Integrity

The polling frequency is determined by policy (why you are monitoring) and

terrain (what you are monitoring). Like any security product, a HIM system has a

trade-off with usability. Monitoring your executables every 10 seconds will most

likely end up in a fight for resources and not be well received.The two most

common (and important) questions that I have encountered when helping people

deploy a HIM system are (1) What do I monitor? and (2) How often? The

remaining chapters in this book will help you answer these two questions.

Scanning Files
Files make up a majority of a host’s environment.They are used to store important

data, and executed to operate on that data, which is why files and file systems are

given so much attention. Secret or important information eventually ends up in

some kind of file.

A HIM system monitors the attributes and content of files.The attribute list

varies from system to system, and includes things such as the size, access permissions,

and the last time the file was changed.A HIM system monitors the content of files

the same way a file integrity checker does: with cryptographic checksums. Some

HIM systems can monitor the actual content of certain critical system configuration

files, but for most files, only the signature is maintained.

Files can also have hidden attributes or hidden data such as streams or forks, and

some suffer from the efficiency of pre-binding or pre-linking. (See Chapter 2,

“Understanding the Terrain.”)

Scanning Configurations
HIM systems break away from file integrity checkers when they begin to monitor

other elements of the host environment.This involves having an understanding of

certain system files or stores, such as user and group databases. Sometimes this is in

regular files (e.g., /etc/passwd), and sometimes not, such as with NIS or NetInfo.

Agents must know the specifics of how to acquire this information so that it can be

included as part of the data collected during the scanning process. Other examples of

agents scanning configurations include the kernel security level on Berkeley

Software Distribution (BSD) systems, the service pack level on Windows, the

Windows registry, and an Apache Web server configuration. Configuration scanning

can be very helpful in detecting vulnerabilities in a host’s configuration, whether

intentional or not.

www.syngress.com

Host Integrity • Chapter 1 9

Scanning the Runtime
Scan agents that can collect information from the runtime environment provide a

great deal of insight into the state and activities taking place on a host. Having a way

to pin down a time window on certain changes can be very helpful in highlighting an

attack vector, or filling in the gaps on a suspicious set of activities. Examples of runtime

scanning include monitoring the state of the kernel and kernel extensions, user login

and logout events, the content of system logs, system calls, the system process list, the

use of network ports, and system resources (e.g., memory and disk usage).

Sometimes, monitoring the runtime is the first (or only) indication of a

problem.The following is an example.

At a previous job, I came in one day to the following Osiris alert regarding one

of our build machines:

[223][darwin][missing][mod_kmods][kern:com.apple.driver.AppleUSBKeyboard]

At first I thought this was an odd alert, but then realized that the keyboard for

that system must be unplugged.As it turned out, someone had taken the keyboard

from the system. In this case, the intention was not malicious in nature; no files were

altered, and no system configuration changes were made.This could have been

written off as a useless alert, but it was not.This was a trusted build machine and it

was now apparent that anyone in the building had physical access to it. Runtime

monitoring is extremely helpful.

Agent Security
Because scan agents operate in an environment that may be compromised, they

often have mechanisms to mitigate attempts at tampering and subversion.Agents

may have keys built into their executables and they may run self-checks as part of

their normal initiation.Trusted communication with the console may be further

established by maintaining pre-shared keys in memory so that start and stop events

leave a mark. Or the agent process may be hidden from the normal methods of

viewing the system process table, with the intent being to hide the fact that the host

is being monitored.

Another useful feature is privilege separation.Agents almost always have to conduct

privileged operations. Reading root-owned files and monitoring the list of kernel

modules are good examples. It is not wise for the entire function of the agent pro-

cess to run with root or admin privileges, especially when it is bound to a network

port. Superuser privileges are only needed on occasion. Privilege separation is good

for many applications of this nature, and goes a long way toward preventing an

attacker from beating on the agent process itself, in an attempt to exploit a potential

software defect or compromise the monitoring process.

www.syngress.com

10 Chapter 1 • Host Integrity

Agents are software, and software can be smashed, but that does not mean that

anti-tampering schemes like this are useless. I have been witness to more than one

case where a HIM system was clearly in place and yet the attacker did not bother to

disable or subvert it.

Centralized Management
Scanning agents send all of the data gathered from their environment to a manage-

ment host for processing.This is important for two reasons: administration and data

integrity.

Good for Administration
Having centralized management for monitored hosts is extremely valuable and may

be necessary if you are monitoring hundreds or thousands of environments. From an

administrative standpoint, centralized management saves time and helps prevent

human error.

As an example, imagine that you are an administrator at a university, and

required to monitor the integrity of 500 desktop environments using the open

source version of Tripwire.This release of Tripwire is not centrally managed. Now,

imagine you have to make changes to each host’s local configuration file.As software

is installed, many of these hosts will need baseline updates. Dealing with these tasks

on a host-by-host basis is not only impractical, but also poor security administration.

It will lead to poor configuration, gaps in monitoring, and ignored alerts.

Another administrative task made easier under centralized management is

backups. If all configurations and scan data archives are stored in a single location, it

is more likely that you will implement a sound backup procedure.

Good for Data Integrity
Centralized management allows for scan data and agent configurations for each host

to be stored in a single secure location, and not on the less-trusted host environ-

ments.This goes a long way toward protection against tampering or loss. Scan agents

run in environments that are not always trusted. In fact, the reason the agents exist in

the first place is to detect a compromise of their environment. If a host is compro-

mised or suffers a hardware failure, all of the data associated with that host could be

lost or rendered unreliable. Backups can help with the loss problem, but again, this

becomes an unnecessary administrative burden.

A good HIM system will keep the amount of data stored on a host to a min-

imum. Usually, this is not much more than an executable. Configuration files can be

pushed to the host when needed, and scan data can be sent directly to the console,

never having to be written to disk.

www.syngress.com

Host Integrity • Chapter 1 11

Because the management console is the keeper of sensitive data such as configu-

rations and environment scans, it is absolutely critical that this host be locked down

and protected at all costs, including both network and physical security.Although

centralized management is beneficial, it can also be a single point of failure (see

Chapter 4,“Planning”).

Feedback
One of the most important aspects of any HIM system is the ability to provide feed-

back on detected changes. Logs are the most common way that feedback is given.

Depending on the product, there are a variety of methods for alerting a security

officer, which often vary depending on the urgency of the alert. Other alert vectors

include e-mail, a pipe, an application, or even a page.

More important than having the correct feedback mechanisms, is making sure

that feedback is being received. Logs are useless if they are not analyzed or moni-

tored.To be truly effective, any alerts generated by the HIM system must be audited

in a timely fashion (see Chapter 8,“Analysis and Response”).

Arguments against Integrity Monitoring
This section explores some common arguments against deploying a HIM system.As

with any security system, identifying and examining any weaknesses you can find is

worthwhile, because then you can focus your efforts on finding ways to address

those weaknesses.

The following arguments are not directed at any specific HIM system, but rather

against HIM software in general.

Administrative Overhead
One of the more traditional arguments against HIM is that it requires a great deal of

administrative overhead.This involves developing plans for deployment, configura-

tion, response, and integration.

Unlike network monitoring, host-based monitoring requires some type of soft-

ware agent to be installed on each host.This may involve a mass deployment effort,

and a means to keep these software agents up to date for features and security. With

large corporations, it is more likely that the information technology (IT) staff is

familiar with this responsibility. If not, you may decide that it is only worthwhile to

monitor a handful of critical hosts.

Another administrative issue with HIM is configuration.Again, unlike network

monitoring, HIM software is configured on a per-host basis.The difference in use

www.syngress.com

12 Chapter 1 • Host Integrity

for any given host is limitless.As an administrator, you must examine each monitored

host and understand what integrity means for that environment, to properly con-

figure the monitoring system.This also means an investment in understanding the

specifics of the HIM system software.

Integrity monitoring systems generate alerts just like an IDS system.As an

administrator, you must be prepared to receive and respond to those alerts.The

response will vary depending on the nature of the alert. Sometimes, this may require

you to take the box offline for further analysis. Other times, it may require you only

to restore a change to the environment. Like an IDS, a HIM system will also pro-

duce false positives.Again, since each host is often different, a false positive will

require revisiting the requirements for that particular host and adjusting the configu-

ration accordingly.

Finally, HIM systems have their own space in any security architecture.As a

security administrator, you must understand the role of the HIM system and how it

can be made to complement other tools in your security arsenal.Although it may be

possible to integrate the management of the HIM system with the other manage-

ment tools you are using, it is more than likely that deployment involves the use of

yet another management interface.

There are a number of administrative burdens associated with security tools.You

must make a conscious decision on whether you have the administrative resources to

make HIM a worthwhile investment. It may be that you choose to deploy integrity

monitoring for a thousand boxes on your network, or that you have the resources to

monitor only a select few critical servers. In the end, it is all about maintaining the

security of your environments. If you have to scale back in order to fulfill other

more important security tasks, so be it.

Too Much Noise!
HIM systems report on all types of change.The goal in fine-tuning a HIM system is

to prevent legitimate changes from generating alerts.Therefore, a false positive in a

HIM system is essentially an alert regarding a legitimate change. If these false posi-

tives are too frequent, it may frustrate the administrator, and changes that would nor-

mally be given attention may go unseen.They get lost in the noise, so to speak.

Although this is something that can be classified as administrative overhead, I

have singled it out because it is a legitimate gripe about HIM. Given the administra-

tive overhead in deploying any agent-based integrity monitoring system, security

administrators will most likely shelve these applications if they are too noisy.The

academic version of Tripwire was often so cumbersome to use with respect to false

positives that it was not uncommon for administrators to stop using it.

www.syngress.com

Host Integrity • Chapter 1 13

Return on Investment
Another question regarding HIM is whether or not the visibility it provides is worth

the effort put into deployment and maintenance.To be effective, you must first

define integrity and then understand the host environment enough to know how to

maintain that integrity. Finally, the administrator must understand and deploy a soft-

ware solution that satisfies the requirements. In the end, how do you know that all

your work has paid off? This is not an easy question to answer.

Consider for a minute what would happen if you did not install monitoring

software. Now imagine that a malicious attacker has compromised a system or that a

disgruntled employee has taken aim at a production server. When would you be

aware of these attacks? How much damage would be done in the meantime? How

much different would the outcome be in these situations if you did or did not have

integrity monitoring? There is no doubt that a properly deployed IMS will detect

violations; the question is whether the detection is worth the administrative cost of

deploying and maintaining the system, and whether it will detect the most important

of violations.There are a lot of variables at work here. Determining cost-effectiveness

is equally as complicated as with any IDS.

Questions to ask include the following: Is the detection system timely enough?

What is the worst thing that can happen as a result of not staying on top of the

integrity of these environments? What are the risks? Is it monetary loss? Is it a

breach of privacy? Is it public humiliation? These risks are subjective and in turn are

hard to quantify.As a result, it is difficult to assess whether the return on investment

(ROI) for HIM is justifiable.

Another thing to consider with respect to ROI is how much administrative

effort your environment requires. If you have thousands of hosts that are configured

the same, it may be easy to deploy and maintain agent-based monitoring software.

However, if you have many disparate configurations, the administrative costs of setup,

deployment, fine-tuning, and response may be overwhelming.

Subversion
Another argument that surfaces from time to time is that HIM tools can be sub-

verted. If an attacker knows that a host is being monitored, there are various ways

they can compromise a system without the integrity monitoring software detecting

it.An attacker can slip in under the radar or attack the integrity monitoring software

directly.This section examines some ways in which HIM software can subverted.

www.syngress.com

14 Chapter 1 • Host Integrity

Attacking the Agent
A simple means of attacking a host integrity system is to kill the monitoring agent

process.The basic idea is that if the monitoring agent is not running, it cannot per-

form scans of the environment and thus cannot report on any detected changes.The

problem with this approach is that it is probably not going to go unnoticed for very

long.This may have worked 10 years ago, but most modern integrity monitoring

systems produce an alert if a scheduled scan fails to occur for any reason.Also, the

attacker would then have to clean up any log messages that occurred as a result of

the process going away.These logs may be system logs or logs produced by the agent

process as it is shutting down. Furthermore, if the host is set up to pipe logs to a log-

ging host, tampering with the logs will be a more involved process.

Notes from the Underground…

Script Kiddies
A couple of years back, a friend of mine detected that one of his servers was com-
promised. Although the attackers were able to root the box, it was clear (after
performing some analysis on the system) that they had no real idea what to do
with their newly conquered prize. The commands that they were trying to exe-
cute clearly revealed they had no idea what they were doing. The integrity mon-
itoring system picked up on it, and there was absolutely no way these attackers
would have known how to subvert it. In this case, they probably did not even
know that it was running.

Killing the agent process is probably not the greatest subversion technique, but

what about replacing it with an imposter agent process? The basic idea is that

attackers could compile their own agent applications that are similar in function but

designed to serve the needs of the attacker.After the real agent is killed, the imposter

agent is executed to take its place.Assuming that nothing tips off the administrator

during the downtime, the main problem here is that the data that the agent normally

reports back to the console acts as an authentication mechanism.That is, the attacker

does not know what the agent last reported, so attempting to fool the console in this

manner is difficult. It may be that the administrator decides to conduct a random

scan of certain elements not normally monitored (see Chapter 9,“Advanced

Strategies”).

www.syngress.com

Host Integrity • Chapter 1 15

Clearly, attacking the agent process is not the best way to subvert a HIM system.

However, the thing to remember about subversion techniques like this is that the

attack will likely be detected, but it may not be detected until it is too late.

Remember, most integrity monitoring agents do not report in real time. If the goal

is to set up a backdoor or to own the host for some long-term purpose, the problem

is relatively minor. However, if the attacker is able to compromise a host and make

off with sensitive data, the fact that your monitoring system detects the compromise

within an hour does little good.This is where the whole concept of security-in-

depth becomes important.A log analysis application or a HIPS may prove more

helpful in this example.

Playing Hide and Seek
Common in many rootkits, are programs that can be used to subvert monitoring

software by setting back timestamps on executables or log files.The process is rather

simple.An attacker would replace any executables with Trojans. Just before the moni-

toring software is run, the original executables would be restored and the necessary

timestamps set back to trick the monitoring agent into thinking nothing has

changed.The problem here is that the attacker must make sure that any files tam-

pered with are restored whenever the agent conducts a scan. If the agent’s scans are

periodic, it is a more cumbersome issue and the attack may be successful. Some

HIM systems purposely conduct scans on an irregular basis for this very reason.

Hiding Files
There are many reasons that an attacker may want to store files on a host without

them being detected.They may be providing a safe house for Trojan executables, or

providing unauthorized backdoor access to sensitive information. On both Windows

and UNIX systems, it is possible to store data on the file system without it being

seen by the normal operating system commands (such as dir or ls) or by a moni-

toring agent.The attacker knows where these files are and is able to access them, but

the administrator and the HIM system are unaware that they exist.

Applications such as The Coroner’s Toolkit (TCT) allow you to scan entire disk

images for traces of hidden files. However, this type of analysis must be conducted

offline, so any regular analysis such as this is not realistic.Your only real shot at

detecting something like this is if the attacker messes up during the process and trig-

gers something that prompts your attention.

www.syngress.com

16 Chapter 1 • Host Integrity

Kernel Rootkits:The Ultimate Subversion
The most effective way to subvert any software is to conduct an attack at the heart

of the operating system—the kernel. Kernel rootkits have existed for years and are

familiar on Windows, Solaris, BSD, and Linux.The idea is basically the same for all:

intercept and bend the function of system calls to hide anything and everything.

Because kernel rootkits run in the kernel, they can control everything, including the

hardware.There are many different kinds of rootkits, and using one to subvert a

HIM system is very effective, though not necessarily as easy as some of the afore-

mentioned subversion methods.

A kernel rootkit does not have to disrupt the function of a monitoring agent or

modify system files.The HIM system can be left intact and go about its normal exe-

cution.The basic idea is that the kernel is modified to intercept specific system calls

that are then redirected to perform whatever the attacker wishes. Even if you have

trusted executables on read-only media, they cannot be trusted once the kernel has

been compromised.An intelligent attacker can do anything at this point, and detec-

tion is no longer in the realm of practical.The only way to detect something like

this is to perform an offline analysis of the system or make use of specialized hard-

ware (see Chapter 3,“Understanding Threats”).

HIM agents are software, and software can always be smashed.Always. Whatever

measures are taken to detect attacks can be outdone by the attacker. Basically, it is a

never-ending battle of wits. One ever-present disadvantage for the attacker is that

they never know for sure whether they have sounded any alarms during the course

of an attack.Attacks can be simulated, but the environment that is eventually

attacked is never the same as the simulation.

From a security perspective, it is extremely useful to know where software falls

short so that you can take action toward mitigating threats that attempt to exploit

those shortcomings. In fact, it is good practice to constantly be on the lookout for

holes in your HIM systems. In the same way that building managers conduct exer-

cises in fire alarm systems, you should simulate integrity violations so that you can

verify the system, stay on top of gaps in your defenses, and be prepared to deal with

real violations (see Chapter 9,“Advanced Strategies”). In Chapter 3, we take a closer

look at some additional threats directed specifically toward HIM systems.

www.syngress.com

Host Integrity • Chapter 1 17

Arguments for Integrity Monitoring
Now that we have examined some arguments against HIM, let’s look at some

important benefits.The arguments in favor of host-based monitoring are similar to

those for network monitoring.Although there is some intersection, the two actually

complement each other quite well. In fact, most experts will tell you that a hybrid

approach involving the analysis of both host- and network-based events is the most

effective.

Auditing
An advantage of HIM is that it allows you to maintain records of change activity for

later analysis. With each scan, all information gathered can be archived and secured

against tampering.This is good for a number of reasons. It may be that you want to

enforce something specific in your security policy and that you want to conduct

periodic reviews of the data. Let’s look at a few reasons why you might want to

audit a change history for managed hosts.

You want to make sure that your administrators are not abusing their privileges.As

part of their job, system administrators often require elevated privileges to perform

software upgrades, add new accounts, or deal with the configuration and set up of

system services. If an administrator installs a backdoor account, sets up a public MP3

server on company resources, or reads the CEO’s e-mail, he or she should be fired.

NOTE

This is a good reason why security officers should be in charge of han-
dling the HIM system, and not system administrators.

Administrators sometimes make mistakes.They sometimes fat-finger the sudo

command or type a command in the wrong shell window. Having a record of what

has happened and when can prove very helpful in tracking down a mistake.

In larger corporations, it is not uncommon for the IT staff to test, approve, and

bless specific versions of software applications to be considered the corporate stan-

dard.This process reduces the technical support burden and helps ensure a smoother

operation of technical resources. Having a record of an unauthorized software

upgrade can help prevent a violation in corporate policy and wasted resources.

www.syngress.com

18 Chapter 1 • Host Integrity

Detecting Internal Attacks
Detecting internal attacks is the strongest argument for deploying some type of HIM

system. Network monitoring is most helpful in shielding private networks from out-

side attacks. Host-based security is primarily directed at thwarting insider attacks, and

HIM is no exception.This is true for two reasons: origination and proximity. More

often than not, attacks originate from within a network. Because host-based security

applications run on the hosts themselves, they are better equipped to detect the

activity.

The media in the United States have done a wonderful job of convincing the

public that most computer-related crimes have to do with malicious hackers

breaking through firewalls to steal money and install viruses.As is often the case, they

are distorting the truth in order to sell ad space. Malicious attacks regularly occur,

but most attacks originate from within the network by authorized users.This may

take the form of a disgruntled employee, an abusive administrator, or a user trying to

gain access to privileged information. Most of the theft reported by retailers comes

from employees, not shoplifters. It should not be surprising that employees with

access to computer systems would be any different.

The second reason that HIM systems are best at detecting internal attacks is

because of their proximity to the activity. If an attacker already has authorized access

to a host, the noise surrounding the attack is often not on the wire, but the environ-

ment being attacked may be littered with symptoms. Symptoms of an attack can be

found in log files, system resources, and altered files.

When I was in college, the computer science department had just deployed a

new lab filled with relatively fast Sun boxes.The lab was intended for computer sci-

ence students, but other students had access to it as well. It did not take long for

other students to figure out that this new small lab had much faster systems than the

main labs on campus, and soon it became impossible for the computer science stu-

dents to walk in and find an available terminal.The most frustrating thing about this

was that most of these students seemed to be busy chatting on Internet Relay Chat

(IRC) and downloading music. Being the practical computer science student that I

was, I dealt with the problem by developing a program that would bring these Sun

boxes to their knees within seconds.This was not a technical feat by any means, but

it sure was useful. Before going to the lab, I would log in to an unsuspecting chat-

terer’s terminal from the old lab and run the malicious program. By the time I got to

the lab, the “busy” student was long gone, having given up waiting for the system to

respond. I would power-cycle the system, and then have a computer to use.

The point here is that network security is useless at detecting this type of abuse.

From the perspective of the network, nothing out of the ordinary was going on. Of

www.syngress.com

Host Integrity • Chapter 1 19

course, the administrator could log in and detect that the system was being abused or

that the uptime had changed, but how would the administrator know to check in

the first place?

Detecting insider abuse and attacks is the most important reason for deploying a

HIM system. Without a HIM, there is no way to realistically manage the integrity of

a host environment. Furthermore, they provide a way to help with damage assess-

ment to determine what was compromised and how to prevent future compromises.

Detecting Intrusions
An intrusion is basically an unauthorized entering. For our purposes, we mean

detecting successful attacks that originated from outside your private network.

Firewalls are useful in defending against these types of attacks. NIDs such as Snort

are excellent at detecting malicious or suspicious activity pounding on the doors of

your network. However, how do you know for certain whether a detected attack

was successful?

Again, host security should complement network security.A network IDS such

as Snort can be configured to watch for specific types of attacks.The next logical

step is to configure HIM to continue that watch in the host environment. Without a

HIM solution or a HIDS, you have to conduct an offline analysis of the system. If

the host in question is your corporate Web server, this is probably not going to be

well received every time you detect an attack.

Although HIM systems are often the first to pick up on internal attacks, some-

times they can also be the first to pick up on intrusions. I have been witness to mul-

tiple cases where an intrusion was first detected by the HIM system, not the

network IDS.

Forensics
The last argument in support of HIM is forensics. When a host is compromised, it is

often subjected to a thorough analysis.The reasons for this may vary, but the common

ones include finding vulnerabilities and learning from them, discovering what was

compromised, and establishing an audit trail for use in building legal recourse.

It is not uncommon for attackers to cover their tracks, which they do mainly to

avoid detection and to exclude other attackers from taking their prize. Having

detailed information about a host’s environment before, during, and after an attack

can help prevent future attacks by highlighting compromised elements of the system

over time.

Although much can be learned from a forensic examination, having an archive

of data about the environment of a host can also be helpful when the examiner is

www.syngress.com

20 Chapter 1 • Host Integrity

trying to discover the “when,”“where,” and “how” of the initial intrusion.This is a

lot like a fireman examining a burned-out building trying to find out what started

the fire and where it originated. Now, imagine that the firefighters had time-

stamped pictures of every room in the house before and while the fire was burning.

I think they would find that helpful. HIM systems can provide a great deal of visi-

bility for forensic examiners to construct an audit trail and piece together what actu-

ally occurred on a host or set of hosts.

To be considered reliable in a legal sense, care must be given to the handling of

forensic and archived scan data. Storage usually involves the physically secure storage

of read-only media and a detailed custody chain. For the details of what constitutes

legally viable evidence, I suggest talking to a lawyer.

www.syngress.com

Host Integrity • Chapter 1 21

Summary
This chapter provided a solid introduction to the world of host integrity, with an

emphasis on HIM systems. We examined how integrity is a subjective term, and

looked at the types of tools that security professionals and administrators use to

verify and maintain the integrity of managed hosts. Finally, we looked at some argu-

ments for and against HIM. Reasonable arguments against a HIM system include

administrative overhead and certain subversion techniques.The strongest arguments

in support of a HIM system are detecting internal attacks and damage assessment. By

now, it is likely that you appreciate the important role that host-based integrity

monitoring tools can play in your security architecture.

Solutions Fast Track

Introduction to Host Integrity

� Integrity is a subjective term that becomes meaningful only after acceptable

change or activities have been determined.

� A host can be anything from a home PC to a corporate Web server.To

maintain integrity of managed hosts, their environments must be

monitored.

� There are many host-based tools in the arsenal of the security professional,

including intrusion detection and log analysis, intrusion prevention, and

security administration.

Introducing Host Integrity Monitoring

� HIM systems work by monitoring and reporting on changes to a host

environment, including files, configurations, and runtime.

� HIM systems can provide visibility of host environments and are used to

detect unwanted change, internal attacks, and intrusions.

� A HIM system will detect all kinds of change, not just malicious change.

You can use integrity monitoring to maintain an audit trail of any type of

change specified in your corporate security policy.

www.syngress.com

22 Chapter 1 • Host Integrity

Arguments against Integrity Monitoring

� HIM involves agent-based software deployments. Software is susceptible to

tampering, and HIM agents are no exception.

� Host-based integrity software has a reputation for being too noisy.As a

result, there exists the risk that legitimate events go undetected, or the

administrator ignores the system altogether.

� Since integrity can vary from host to host, the administrative burden

associated with configuring a HIM system can be considered more trouble

than it is worth.

Arguments for Integrity Monitoring

� Monitoring the integrity of a host environment is sometimes the first

indication of unwanted or malicious activity.

� HIM complements existing security measures by filling in gaps left behind

by both network- and other host-based security products.

� HIM provides periodic snapshots of the state of a host environment that

can be used in forensic analysis in the event that a host is compromised.

www.syngress.com

Host Integrity • Chapter 1 23

Q: What is the difference between host intrusion detection and HIM?

A: Many different types of applications are labeled as host-based intrusion detec-

tion. In general, the distinction is that with a HIDS the end goal is the detec-

tion of malicious activity in a host environment, whereas a HIM system aims

to provide visibility into all kinds of change. Detecting malicious change or

activity is a big part of a HIM system, but that is not the entire motivation

behind its deployment.

Q: Will I still need to maintain internal network defenses if I use a HIM system?

A: If you still want to protect your networks from policy violation or abuse, then

yes.Although a HIM system can be the first line of defense in combating

internal attacks, it is passive. Internal firewalls and other network defenses are

still needed to detect and mitigate internal threats from spreading.

Q: Is it useful to deploy a HIM system on a home network?

A: Yes. With the increasing popularity of broadband, home users are leaving

their personal computers connected to the Internet more than not. It is not

uncommon for laptops to find themselves jumping to and from wireless

hotspots.A HIM system can be just as effective at detecting unwanted change

on a personal computer as it can on the enterprise.

Q: Can a HIM system tell me which user made a change to a file or

configuration?

A: Some can, some cannot. It is harder for integrity monitoring systems that poll

the environment to determine this. Information as to which users modified

an environment is something more commonly found in change management

systems.

www.syngress.com

24 Chapter 1 • Host Integrity

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: My network IDS boats real-time processing of events. Should my HIM

system be real time as well?

A: Not necessarily.There is a belief that real-time processing of host-based

events is good because it is natural at the network level.This is simply not the

case. Host-based integrity monitoring usually involves a great many more

nodes compared with network monitoring. If you receive host-based alerts in

real time, are you going to respond to them in real time? Usually the answer

is no.The best way to stop attacks in their tracks is to prevent them from

happening in the first place.The intrusion prevention product made by

Immunix is a good example of this.

www.syngress.com

Host Integrity • Chapter 1 25

Understanding
the Terrain

Solutions in this chapter:

■ Users and Groups

■ Files and File Systems

■ The Kernel

■ Libraries and Frameworks

■ Runtime

■ Network

■ Nonvolatile Memory

Chapter 2

27

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Introduction
You must understand a host’s environment to effectively monitor its integrity for

two reasons: planning and response.

A solid understanding of a host’s environment will facilitate the translation of

security requirements into a practical configuration, thereby providing a foundation

for effective planning. Imagine that one of your goals is to protect the data associated

with a Web server. First, you must know where the data files are kept, who has

access to them, which file permissions will compromise the security of the data,

which access methods the Web server provides, and which changes indicate a com-

promise in security. Being able to answer these questions requires an understanding

of the host environment, file permissions, access control, and so on.

The second reason for understanding the environment is your response.As an

administrator or a security officer, you must understand the meaning of any alert and

any significance that those changes will have on the integrity of the system. Is the

change a false positive? Does it indicate a serious threat to the integrity of your host?

Understanding the nature of a detected change can help you initiate the incident

response procedures defined in your security policy and, in turn, effectively manage

the integrity of your hosts.

This chapter examines some of the important elements of modern host environ-

ments, including users and groups, files and file systems, kernels, libraries, runtime

security issues, networks, and nonvolatile memory.The goal is to provide informa-

tion about the most commonly monitored parts of the system, not a complete refer-

ence of any of these topics.

Users and Groups
Users and groups constitute the backbone of the security model for most operating

systems. Users are granted a certain level of privilege that dictates access to the

system, access to files, and the ability to execute or perform certain operations. User

accounts can be tied to a person or used for a service (known as a logical user). Users

can be organized into groups to apply policy to a set of users for a particular opera-

tion, or to provide access to a resource.

This section looks at the various ways users and groups are handled on UNIX,

Linux, and Windows.An improper configuration or change in the user and group

settings can leave a host wide open to attack.

www.syngress.com

28 Chapter 2 • Understanding the Terrain

Users and Groups on UNIX
Traditionally, users and groups on UNIX systems are defined in flat files. Users’

accounts are listed in the /etc/passwd file and groups are listed in the /etc/group file.

In both files, each user or group entry is listed on a single line with the attributes

separated by colons.

The /etc/passwd file stores information about local user accounts. Not all of these

accounts are associated with a person; many are system accounts used for services

(e.g., Secure Shell [SSH]). Following the principle of least privilege, most of these

service accounts do not have a login shell.The following example lists a password

file from a FreeBSD system:

root:*:0:0:Charlie &:/root:/bin/csh

toor:*:0:0:Bob Root:/root:/bin/csh

daemon:*:1:1:Owner of many system processes:/root:/usr/sbin/nologin

operator:*:2:5:System &:/:/usr/sbin/nologin

bin:*:3:7:Binaries Commands and Source:/:/usr/sbin/nologin

tty:*:4:65533:Tty Sandbox:/:/usr/sbin/nologin

kmem:*:5:65533:KMem Sandbox:/:/usr/sbin/nologin

news:*:8:8:News Subsystem:/:/usr/sbin/nologin

man:*:9:9:Mister Man Pages:/usr/share/man:/usr/sbin/nologin

sshd:*:22:22:Secure Shell Daemon:/var/empty:/usr/sbin/nologin

www:*:80:80:World Wide Web Owner:/nonexistent:/usr/sbin/nologin

nobody:*:65534:65534:Unprivileged user:/nonexistent:/usr/sbin/nologin

brian:*:1001:0:User &:/home/brian:/usr/local/bin/bash

osiris:*:2223:2223:Osiris Host Integrity

Monitor:/usr/local/osiris:/sbin/nologin

Each unique user account is assigned a User ID (UID), which is an integer.The

UID of zero is reserved for the root user, who has complete control over the system.

The names assigned to users are not important; the UID uniquely identifies a user.

Thus, any user with a zero UID is considered a root user.

The /etc/group file contains a listing of all groups for a host and which users

belong to each group.The following example shows a group file from FreeBSD:

wheel:*:0:root

daemon:*:1:

kmem:*:2:

sys:*:3:

tty:*:4:

operator:*:5:root

www.syngress.com

Understanding the Terrain • Chapter 2 29

bin:*:7:

news:*:8:

man:*:9:

staff:*:20:

sshd:*:22:

guest:*:31:

network:*:69:

www:*:80:

nogroup:*:65533:

nobody:*:65534:

osiris:*:2223:

Each group is issued a Group ID (GID), which is also an integer.The zero GID

is usually known as the wheel group or the system group and is reserved for privileged

users.

The information kept in these two files is referenced by the system when

enforcing file permissions and runtime privileges. Changes to these files can signifi-

cantly undermine the security of a host.Again, this is the traditional UNIX

user/group model.Although the cumbersome process of managing multiple hosts

has led to the adoption of other means of defining users and groups on UNIX sys-

tems, monitoring these files is still important. In some cases (e.g., Mac OS X), these

files are not used by default, but can be. If the system becomes mindful of these files,

you must make sure that they have not been compromised.

It is not uncommon for an attacker to add user accounts as a means of estab-

lishing a backdoor into the system. Changes especially suspect include additions to

the wheel group or adding another user with a zero UID. Even if your user and

groups are defined elsewhere, the changes to user and group files can be the first

indication of an attack.

Logging In
Local access to a host is very important and should be very secure. Once an attacker

obtains local access, an abundance of opportunities for misuse and abuse become

available.At this point, network defenses become powerless. Perimeter defenses serve

to prevent attackers from exploiting software and obtaining unauthorized access;

however, eventually a situation will exist where the perimeter can be breached.

The security surrounding passwords has caused the password file to evolve, with

most systems now shadowing their passwords. Basically, this means that the encrypted

passwords are not found in the /etc/passwd file, but in a separate file with stricter file

www.syngress.com

30 Chapter 2 • Understanding the Terrain

permissions.The name of the shadow file varies depending on the type of system,

but the file is usually named /etc/master.password or /etc/shadow.

Initially, passwords were stored in the /etc/passwd file as the second field of each

user entry, which was obviously a security problem.To help secure passwords, they

were encrypted and only the encrypted passwords were stored. Upon login, the pass-

word presented by the user was encrypted and compared against the entry in the

passwd file. Because it was trivial to conduct brute-force attacks on these passwords,

it became necessary to remove them from the file altogether.Today, most UNIX sys-

tems store encrypted passwords only in a shadow file, and introduce a salt into the

encryption process as a means of mitigating dictionary attacks.The key is to realize

that all password authenticating has been susceptible to compromise.Access to user

accounts is not well protected, and therefore, monitoring the surrounding elements

of user logins is critical in detecting unauthorized access.

A common authentication scheme used on UNIX systems is the pluggable

authentication module (PAM). PAM is basically an interface to various authentica-

tion schemes that allow many disparate applications to offload their user authentica-

tion handling. PAM is modular, so administrators can, with relative ease, add a new

authentication scheme to a host, as long as a PAM module has been implemented

for it. Configuration files for PAM were originally stored in /etc/pam.conf, but are

now commonly found in the /etc/pam.d directory with a file for each module.The

following example shows a PAM module file for Secure Shell Daemon (SSHD) on

FreeBSD:

PAM configuration for the "sshd" service

#

auth required pam_nologin.so no_warn

auth sufficient pam_opie.so no_warn

no_fake_prompts

auth requisite pam_opieaccess.so no_warn

allow_local

auth required pam_unix.so no_warn

try_first_pass

account required pam_login_access.so

account required pam_unix.so

session required pam_permit.so

password required pam_unix.so no_warn

try_first_pass

The four module types (auth, account, session, and password) deal with various

aspects of the authentication scheme.The auth type handles verification.The account

type is used to place restrictions on access.The session type is used to handle various

www.syngress.com

Understanding the Terrain • Chapter 2 31

tasks upon login/logout related to the service before and after access has been

granted.The password module is responsible for updating authentication tokens.

Changes to a PAM configuration file can seriously impact the integrity of a

system. administrators must make sure that their PAM configuration files are under-

stood and secure.All PAM files should be monitored for any type of change.

Finally, user login activity is commonly stored in the log files /var/run/utmp,

/var/log/wtmp, and /var/log/lastlog.The utmp file is a binary file that contains records

of the users currently logged in to the system, and is used by commands such as

“who.”The wtmp file is a binary log file with records of user login and logout

activity, and of system restart/reboot.The lastlog file is a log file with records listing

the time, terminal, and connecting host associated with each user’s last login.All of

these files should be owned and only writable by root and monitored for any

changes to the access permissions.

SUDO and the SU Command
All UNIX and UNIX-like systems require administration; eventually, updates must

be performed and services configured. administrators sometimes need privileged

access to the system to perform these operations, which is accomplished by joining

an administrative group and gaining access to the Super User DO (SUDO) and

Super User (SU) commands.The main difference between SUDO and SU is

auditing. SUDO is generally preferred because it logs the time, identifies the user,

and provides fine-grained access control over what operations SUDO users can per-

form; the SU command lacks these auditing capabilities. Depending on the configu-

ration, it may be possible to subvert additional auditing with the following

command:

$ sudo bash

The SUDO configuration file is usually found in /etc/sudoers or

/usr/local/etc/sudoers. It is common for this file to be readable only by the root or the

wheel group, and writable only by the root.This file should be monitored for any

kind of change.Another thing to note is that changes to groups often have an effect

on SUDO privileges. It is not uncommon for SUDO to be restricted to users in the

wheel group.Aside from the obvious effect, a user being added to the wheel group

in this case is equivalent, giving that user root access to the host.

Advanced User Management
Maintaining password and group files for thousands of hosts is impractical.As a

result, some solutions to this problem have evolved and are still in widespread use.

www.syngress.com

32 Chapter 2 • Understanding the Terrain

Some popular solutions include the Network Information Service (NIS) and

NetInfo.

NIS was developed by Sun Microsystems in the 1980s. NIS manages users, groups,

and hosts, essentially /etc/passwd, NIS/etc/group, and /etc/hosts. Instead of consulting

local files for user authentication, an NIS server is used to verify authentication cre-

dentials. Improvements to NIS (including the encryption of the authentication process

over a network) were made and released as NIS+.The good thing about NIS is that

the user and group data for thousands of hosts can be stored in a central location.The

bad news is that the user and group data for thousands of hosts can be stored in a

single location.This information is stored by the NIS server in dbm files, usually some-

where under /var, depending on the system (usually /var/yp).

Although Mac OS X assumes a great deal of its UNIX underpinnings from

FreeBSD, some legacy NeXTStep features still persist. One such feature is NetInfo,

which essentially solves the same problem as NIS. By default, Mac OS X and Mac

OS X Server do not use /etc/passwd and /etc/group; rather, they use a local NetInfo

domain. administrators can configure Mac OS X to make use of an actual NetInfo

domain, or the traditional /etc files.The local NetInfo domain files are stored in

/var/db/netinfo/local.nidb and should be monitored.This file is owned by root, and

should be readable and writable only by root.

All UNIX systems have important files related to logging in, authorization,

access to services, and for raising privileges (e.g., SUDO).All of these files should be

monitored by your HIMS. Both Osiris and Samhain have the ability to monitor

these files.

Users and Groups on Windows
Although they serve the same purpose, users and groups are very different on

Windows than on UNIX and UNIX-like systems. Managing a network of users and

groups was initially handled by domain controllers and more recently with Active

Directory.Active Directory is based on Lightweight Directory Access Protocol

(LDAP) and is used to control all resources (including users and groups) that are part

of a Windows network. (When we refer to Windows, we mean various versions of

Windows XP, Windows 2000, and Windows 2003 Advanced Server.)

Every user and group on a Windows network is either local or considered part

of a domain.This distinction is important because even though a Windows host can

authenticate against an Active Directory controller to gain access to the network,

local accounts are still very much alive and involved in specifying what users can and

cannot do to the host.

www.syngress.com

Understanding the Terrain • Chapter 2 33

Unlike UNIX systems, Windows uniquely identifies users and groups with a

Security ID (SID).The SID is a binary structure, and can be represented by a string

that looks like the following:

S-1–5-32-544

The format is: S-R-I-S… where S means the string is an SID, R is the revision, I

is the authority, and S is one or more sub-authorities.A SID is similar in purpose to

the UID on a UNIX system.The key difference is that the SID is a structure, not an

integer, and it contains more information about the user, such as which domain the

user belongs to.The SID structure is a key element in the complicated Windows

security model. In the world of computer security, simplicity is your friend.As you

will see in the next couple of sections, simplicity is not the appropriate word to use

to describe the Windows security architecture.

Windows Users
Windows users are either local or part of a domain.The equivalent to the root on a

Windows system is the administrator.The local administrator has complete control

over a host, just like the root user on UNIX systems.A distinct characteristic of the

administrator account is that it cannot be deleted or disabled; however, the local

administrator can add local users, domain users, and domain groups to the local

machine.

The guest user has limited access to the system and does not have a password. By

default, the guest account is created but initially disabled.The guest user is a member

of the guest group, which is given the least amount of privilege by default. However,

the guest account does have the ability to shut down or restart the system.

A user’s privileges on Windows are determined by the groups that user belongs

to. For example, if you add user “Bob” to the administrator’s group, then Bob is

essentially an administrator user.

Windows Groups
Every Windows host has a handful of built-in groups, each with varying levels of

privileges. By default, the administrators group has the most privileges, with at least

one administrator user.The administrator group is similar to the wheel group on

UNIX systems.The group with the least amount of privileges is the guest group.

Where Are Users and Groups Stored?
Before Active Directory, all information about users and groups was stored in the

registry where the escalation of privileges (or group hopping) was not uncommon.

www.syngress.com

34 Chapter 2 • Understanding the Terrain

Monitoring the integrity of a Windows host under this system requires persistent

monitoring of the registry, which contains important data that can indicate a com-

promise in the integrity of the host and is an important part of HIM on Windows

systems.

With Active Directory, all user and group information is stored in the

%SystemRoot%\ntds\ntdis.dit file. Host integrity monitoring systems that monitor

users and groups on an Active Directory server will not interact with this file

directly, but rather use a Windows application program interface (API) to get the

information. However, this file itself should be monitored for changes in permissions

or ownership.

User and group information for all local users on a Windows host are stored in

the %SystemRoot%\Windows\user.dat file in the registry. Usually, backup files exist

with similar names and are used in case one of the registry files becomes corrupted

or is missing.

In summary, Windows users and groups are more complex than UNIX users and

groups.As a result, there are many ways an attacker can subvert access control on

Windows and elevate their privileges. Monitoring users and groups on Windows is

absolutely necessary when monitoring the integrity of a Windows host.

Files and File Systems
Files make up the majority of a host environment and come to mind when consid-

ering the integrity of a host.The configurations, the certificates, the private keys, and

the executables (that get loaded and affect the runtime) are all stored in files. On

UNIX systems, everything, including memory and peripherals, is represented by the

OS in the form of a file.

The security of any host depends on file permissions. Executables, shared

libraries, and other system files are only writable by the root or administrator.A large

part of the distinction between privileged and unprivileged users resides in the

degree to which they interact with files. File permissions serve to limit the impact

certain users or system services have on the overall function of the system. UNIX

and Linux file permissions are relatively simple compared with Windows.Again, sim-

plicity is a friend to security and a simple file permissions model, though limited in

some respects, can be a blessing.

When a system is attacked or misused, at least one file in the process is usually

altered.This is similar to throwing a stone into a calm body of water.The key is to

know what ripples to look at and be able to understand the impact that certain

changes in the file system have on the integrity of a host.This section looks at files

and file systems in both UNIX and Windows environments.

www.syngress.com

Understanding the Terrain • Chapter 2 35

What Is a File System?
To understand some of the common attributes of files and the impact of certain

types of changes to a file system, it helps to understand their general makeup.

In basic terms, a file system is a collection of files. Disks are divided into parti-

tions and each partition contains at least one file system.There are three basic com-

ponents to most file systems: superblocks, inodes, and data.The superblock contains all

of the data regarding the current state of the file system, including the number of

blocks in the file system, the size of each block, and the number of inodes.The

superblock is basically a map of the file system; without it, retrieving data from the

file system would be very difficult. Most file systems maintain multiple backups of

the superblock in case it becomes corrupted. When a file system is created, it is

divided into sections (usually called blocks), each with a certain number of inodes.As

files are created, they are each assigned an inode, which contains metadata associated

with that file (e.g., permissions), as well as where all of the data for that file is physi-

cally stored on the disk.

There are many different types of file systems, and some are better suited for cer-

tain deployments than others.The most common local file system on UNIX plat-

forms is the Unix File System (UFS), which is relatively basic but still widely use

today. FreeBSD and NetBSD both use a version of UFS. Mac OS X has the option

to install UFS, but by default uses an extension to Apple’s Hierarchical File System

(HFS) called HFS+. On Linux systems, you usually encounter ext2 or ext3 and

sometimes Reiser FS, a journaling file system.

Windows XP, 2000, and 2003 Advanced Server use the NT File System (NTFS).

NTFS is quite different from many of the aforementioned file systems, but the

overall concept is basically the same.The first portion of an NTFS partition is used

to store data about the volume and metadata (inodes) for all of the files.

Modern operating systems work with many different types of file systems.To

shield the kernel from knowing the specifics of any particular file system, a software

abstraction known as a virtual file system (VFS) is used.A VFS facilitates the reading

of many different local file systems, as well as other types of file systems such as NFS

or media-specific file systems such as the ISO9660 CD-ROM.

UNIX File Security
Everything in the UNIX world has a file representation, including devices and

peripherals, sockets, pipes, and memory.This being the case, the overall security of a

UNIX or UNIX-like system such as Linux is very dependent on file permissions

and file security. File permissions on UNIX are relatively simple.Although you may

www.syngress.com

36 Chapter 2 • Understanding the Terrain

encounter more complicated Access Control Lists (ACLs) with IRIX, Solaris, and

some Linux deployments, most UNIX systems do not have them.

This section examines the structure of files on UNIX, specifically permissions

links and misconceptions, and also takes a close look at the metadata associated with

files on a UFS.

A Realistic View of Files
Files have names, metadata (such as permissions and an owner), and data.All of the

elements associated with files are not stored in one place on a disk.The filename is

stored as part of the directory, the metadata is stored in an inode, and the file data is

stored across multiple logical blocks on the disk.The hardware driver further

abstracts the physical disk locations of all of the data associated with that file. For the

sake of usability, the operating systems will hide these details when you interact with

files through a terminal or some type of graphical user interface (GUI).

File Inodes
Every file is assigned one inode when it is created.The purpose of an inode is to

maintain information about the file (e.g., permissions) as well as which blocks on the

file system make up the data portion of the file (see Figure 2.1).

Figure 2.1 The Structure of a Typical Inode

Understanding the Terrain • Chapter 2 37

mode

uid

gid

mtime,atime,ctime

size

inode

data block

data block

data block

data block

www.syngress.com

The file’s mode consists of the file type and the permissions.The first 16 bits of

the mode are usually reserved for the file type.The three time stamps are: modifica-

tion, access, and change (discussed later in this chapter).The size is the number of

bytes of data associated with a file.The UID and GID are the user and group

owners of the file. Figure 2.1 is a simplification; these fields are found in most file

systems. Each file system has different fields and designates its own layout for how

these fields are organized in the inode structure.

Directories
The names given to files are stored in a directory, which is a file containing a list of

file names and their inodes. Directories serve the obvious logical purpose, and also

provide mapping between a file’s inode and a file’s name.Although every file is

uniquely identified by its inode, they also have names for the sake of usability, similar

to hostnames and Internet Protocol (IP) addresses.

Deleting, adding, or renaming a file is a modification of a directory and not the

file itself (see Figure 2.2).

Figure 2.2 Relationship between File Inodes and Directories

File Permissions
Every file on UNIX has an owner, a group, and a set of permissions called the mode.

The mode actually contains information about the file type, as well as access control.

The access control information defines who can access the file and what they can do

with it.The mode is usually represented as a string reading from left to right (see

Figure 2.3).

www.syngress.com

38 Chapter 2 • Understanding the Terrain

mode

uid

gid

mtime,atime,ctime

size

Inode 222

data block

data block

...

DIRECTORY /some/direcotory

file1:

file2:

file3:

Inode 222

Inode 333

Inode 222

...

Figure 2.3 The UNIX File Permissions String

The file type is represented by a single character,“-” for regular files,“s” for

sockets,“b” for block devices,“c” for character devices,“p” for FIFO or named

pipes, and “l” for symbolic links.The next three sections of the mode specify access

permissions and apply to the file owner, file group, and all other users.Table 2.1

describes the read, write, and execute privileges for files and directories.

Table 2.1 Read, Write, and Execute Privileges for Files and Directories

Execute
Read Privileges Write Privileges Privileges

File Contents can be File contents can File can be
viewed. be altered. loaded and

executed.

Directory Can list files Files can be added Directory can be
contained in the or removed from searched or
directory. the directory. entered (e.g.,

with the cd
command).

Although this system of access control seems simple, there are some caveats to

watch out for.A change in permissions, though seemingly benign, may violate your

security policy. Following are some things to consider:

■ Because a directory is basically a list of file names, read access for a direc-

tory means you can view a listing of the files in that directory, not the files

themselves. Disabling read access to a directory does not prevent files in

that directory from being read, modified, or deleted.

■ Disabling write access to a directory does not prevent existing files from

being modified; it only prevents files from being added, removed, or

renamed.

■ If write access to a directory is enabled, files can be added or deleted

regardless of their permissions. (The only exception to this is described later

in this chapter.)

www.syngress.com

Understanding the Terrain • Chapter 2 39

r w x r w x r w x

} } }

owner group others

}

file type

■ If a user owns a file and is also a member of the group that owns the file,

the owner privileges apply to that user and the group privileges are

ignored.

■ Enabling execute privileges for a directory allows a user to see the details

for files in that directory, regardless of their permissions. Disabling execute

privileges for a directory prevents users from being able to see file details or

write to files in the directory, regardless of the permissions for those files.

Special File Permissions
The mode specifies execute privileges for the owner, the group, and all other users.

However, there are three additional types of file privileges that can be represented in

the execute sections of the mode string.This includes the set user ID (SUID), the set

group ID (SGID), and sticky bits.

An SUID file means that (when executed) it runs with the effective UID of the

owner of the file. Directories can be set with SUID, but in most cases, it has no

effect. On some systems, setting a directory to be SUID means that the user who

owns the directory automatically owns any files created in that directory.A SUID

file is represented in the owner-executable portion of the mode string. However, the

SUID status is distinct from the owner execute privileges, so there are certain sym-

bols that are used to designate which bits are set (see Table 2.2).

Table 2.2 UNIX File Execute Permissions

Symbol Meaning

- Execute bit not set; SUID bit not set

x Execute bit set; SUID bit not set

S Execute bit not set; SUID bit set

s Execute bit set; SUID bit set

The passwd program is a good example of an SUID executable.The mode string

for the passwd program on Mac OS X is:

-r-sr-xr-x 1 root wheel 39992 17 Dec 07:17 /usr/bin/passwd

An SGID file is similar to a SUID file except that when executed, it runs with

the effective GID of the group that owns the file. Likewise, the mode string is

handled the same as with SUID except that it is represented in the group execute

section of the string.

www.syngress.com

40 Chapter 2 • Understanding the Terrain

The third special case for file privileges is the sticky bit.The sticky bit is used for

shared directories and means that even the owner of the directory cannot remove a

file marked “sticky.”The sticky bit is represented in the execute section of the file

mode string.

NOTE

The sticky bit is represented in the execute section of the file mode
string, because sticky originally meant that the application was kept in
swap. This is no longer the case, but the convention for representing the
sticky bit in the mode string remains.

(The details of the SUID and SGID applications are discussed later in the

“Runtime” section of this chapter.)

Hidden File Flags
On Berkeley Software Distribution (BSD)-based systems, there are additional access

control bits associated with each file.These file flags are sometimes referred to as

immutable flags (see Table 2.3).

Table 2.3 BSD Special File Flags

Flag Name

uchg User immutable

schg System immutable

uappnd User append-only

sappend System append-only

Normally, the mode string can be viewed with the -la options to the ls com-

mand; however, use the o option to view the immutable flags for a file. For example:

$ ls -lo /tmp/myuchgfile

-rw-r--r-- 1 brian wheel uchg 0 25 Jan 22:11 /tmp/myuchgfile

When the user immutable flag (uchg) is set on a file, the owner cannot modify

or delete it no matter what permissions that file has.

The system immutable flag (schg) is the same as the uchg, except the root user

cannot modify or delete a file. Once the schg flag is set on a file, the root user

www.syngress.com

Understanding the Terrain • Chapter 2 41

cannot remove the flag.The only way to unset the flag or modify the file is to boot

into single-user mode.The main point of a schg is to attempt to prevent files from

being modified in case the root account has been compromised.

The uappnd flag and the system append flag (sappnd) only allow data to be

appended to a file.Any existing data in the file cannot be altered. Like the

immutable flags, the root user cannot remove the sappnd; to do so requires that the

system be booted into single-user mode.

Immutable flags are used as a means of preventing unintentional or unauthorized

access to system-critical files.The basic idea is that physical access to the box is

required (single-user mode) in order for the files to be modified, deleted, or the flags

removed.These flags are also tied to the BSD security level. (Kernel security levels

are discussed in detail later in this chapter.)

File Links
Most UNIX systems have two types of links: hard and soft (usually called a

symbolic link).

Hard links are directly referenced to files residing on the same file system.A file

can have a number of hard links, but there is only one copy of the file contents on

the file system.Any changes made to the hard link are also made to its corre-

sponding file.A hard link is an entry in a directory structure for a file that exists

somewhere on the same file system. Because of this, hard links can refer only to files

on the same file system, not to directories.

Symbolic (soft) links are different from hard links in that a symbolic link is a sep-

arate file, which contains the path to another file. Since symbolic links are paths, they

can point to the existing directory as well as to files and directories on other file sys-

tems. Because symbolic links are actually files, determining whether an operation is

applied to the link file or the target file can be confusing. Most applications operate

on the target file (called traversing the link). Some applications that operate on the

link file (and do not traverse the link) are the ls, rm, file, and mv commands.The

mode of a symbolic link denotes the file as a link file, symbolized by the l character.

Because a symbolic link is a special type of file, it does not have permissions associ-

ated with it.The ls command displays a symbolic link’s permissions; however, they

are meaningless.

www.syngress.com

42 Chapter 2 • Understanding the Terrain

WARNING

Mac OS X is a UNIX-based system containing a third type of file link
called an alias. Mac OS X is based on BSD, specifically FreeBSD.
Consequently, Mac OS X has soft links, hard links, and aliases. The alias
is a legacy concept originating from the original Mac OS environment,
and is similar to a symbolic link because it is a file that can be modified
or deleted without modifying the target file. However, unlike symbolic
links, an alias is more resilient because it can be moved around while still
pointing to the target file. An alias stores information about the target
file in a special file fork. (File forks on HFS+ are discussed later in this
chapter.) Aliases are higher-level file links, similar to shortcuts on
Windows. As a result, some of the traditional file system applications on
Mac OS X do not handle alias files well.

File Time Stamps
Every UNIX file has three distinct time stamps: modification, access, and change.

These time stamps exist for every type of file except symbolic links.Although these

seem straightforward, there are some pitfalls to consider when determining why a

given time stamp has changed and the significance of that change.

The modification time (mtime) is the last time the file data was modified, which

is what most users see when they view the details of files in a directory either

through the GUI or a command such as ls –l. If a file’s inode changes, it does not

necessarily mean that the data has changed. Whenever a file’s mtime is changed, the

contents of that file have been altered or written to disk.The mtime of a file can be

set using the touch command.

The access time (atime) is the time that a file was last accessed, and is updated

whenever the file is opened or the inode is modified. Some operating systems pro-

vide a means for setting the access time, and some do not.

The change time (ctime) is the time that the metadata stored in the inode associ-

ated with the file was last changed. Like with the mtime, it is possible for the ctime of

a file to change without actually altering the contents of the file. Common commands

that will alter the ctime for a file include chown, chmod, chgrp, and chflags.

Most UNIX File Systems provide these three time stamps and, depending on the

file system, the inode may contain even more time stamp information. For example,

the Linux ext2 file system contains time stamps associated with inode creation and

deletion.

www.syngress.com

Understanding the Terrain • Chapter 2 43

Tying It All Together
File access control is critical to maintaining the integrity of UNIX hosts.Although

the simplicity of traditional UNIX file permissions should be commended, there are

elements that may seem odd until you understand some of the basics of file system

design.A single change to file permissions, intentional or not, can place the entire

host environment at risk of compromise. Make sure you understand the privileges

afforded by file permissions, and any oddities on the file systems you are using.

SUID and SGID flags alter the runtime permissions of a process. Like regular file

permissions, one change will render a system vulnerable to attack or misuse.The

SUID and SGID permissions also affect the runtime privileges of a process, not just

access to files.Any change involving SUID and SGID should immediately be

brought to an administrator’s attention. (The significance of the SUID and SGID

bits are discussed later in this chapter.)

Although symbolic links are convenient, malicious users can use them to subvert

file access control.There are many poorly written software applications that blindly

open files without paying attention to the fact that the file is a symbolic link. Some

software applications make this distinction, but most do not. Pay close attention to

any newly created symbolic links that point to system-critical files or root-owned

files. Since a symbolic link is a path, it can point to any file, even those that are not

readable by the user who created the link. Symlink attacks can also be a serious

threat to the integrity of a host, the basic concept being that poor judgment on the

part of the software can lead to a compromise in privileged information, unautho-

rized escalation in privileges, and denial of service (DOS) attacks.

Finally, file time stamps must be monitored (usually just the modification and

ctimes time stamps).Aside from scheduled upgrades, libraries and executables should

not change without the knowledge of an administrator or security officer.

Windows File Security
The following section discusses the NT File System (NTFS). Previous file systems

for Windows (FAT16/FAT32/VFAT) have no security features; therefore, anyone

maintaining the file system security on Windows must use NTFS.

NTFS is a recoverable file system found on true 32-bit Windows operating sys-

tems’ such as Windows NT, Windows 2000, Windows XP, and Windows 2003

Advanced Server.Transactions involving the file system are logged in multiple places

before being committed, which make it easy to recover or roll back the file system

in the event of a failure or unexpected shutdown.Although there are similarities

between the overall structure of the file system and the file systems mentioned ear-

lier, NTFS is more complicated.That being the case, we do not detail how NTFS is

www.syngress.com

44 Chapter 2 • Understanding the Terrain

structured. Instead, we examine the elements of NTFS files that interest integrity

monitoring, including access control, various file attributes, and the registry.

NTFS File Structure
With the NTFS, files are a collection of attributes and the file contents are an attribute

of that file.The design of NTFS is conducive to the practice of extending the list of

attributes associated with files (discussed in more detail later in this chapter).

Every NTFS file has the following set of attributes: name, standard information,

data, and security descriptor. File names on NTFS are based on the Unicode (16-bit)

character set.The standard information attribute of a file includes the modification,

change, and access time stamps, as well as some legacy attributes carried over from

file allocation table (FAT) file systems (e.g., system, hidden, read-only).A file’s secu-

rity descriptor contains ownership and access control information similar to an

inode, but slightly more complicated.

Directories are a mapping from the file name to references of that file.The dif-

ference with NTFS is that directories are an index as opposed to a regular file.

Indexing allows the directory to organize its contents for faster searching.Also, cer-

tain attributes of a file (including the standard attributes) are resident on the equiva-

lent of a superblock on NTFS—the master file table (MFT).This allows for quick

listing of contained files and their time stamps (a common operation on a directory).

Included in part of the design of the NTFS was the ability to dynamically alter

the file system without changing the underlying implementation.An example of this

is reparse points.An NTFS reparse point has the ability to associate a set of data and

some functionality with a file. Establishing a reparse point involves providing a

unique tag for the reparse point and providing the file system with a set of code

called the filter that will act on that data when the file is accessed. Basically, when any

request is made for a file containing a reparse point, the tag is used to look up the

filter and the data associated with the reparse point is then handed off to the filter

for processing. Reparse points are application-specific, meaning applications decide

on the functionality and format of the data. Microsoft uses reparse points to handle

special cases such as symbolic links (shortcuts) and junctions (links to a directory).

Tags associated with a reparse point for a file are stored in that file’s attributes.

Another unique aspect of files on an NTFS volume is their ability to store mul-

tiple data streams (discussed in detail later in this later chapter).

NTFS ACLs
The NTFS complicates administration by implementing a complex system of access

control. Every object in Windows (including NTFS files) has an attribute known as

www.syngress.com

Understanding the Terrain • Chapter 2 45

a security descriptor, which contains information about the owner of the object and

the ACL.The ACL specifies which users and groups may operate on a file and what

they can do to it.

There are two types of ACLs on Windows: a Discretionary Access Control List

(DACL) and a System Access Control List (SACL).The SACL contains auditing infor-

mation and specifies which operations on the file must be audited by the system. Only

the system administrator can modify a SACL. File permissions are stored in a DACL.

(For the remainder of this section we refer to a file’s DACL as an ACL.)

An ACL contains a sequence of entries known as Access Control Entries (ACE).

An ACL can have any number of ACEs. Each entry contains a reference to a user or

a group, a set of permissions, and an entry type.A SID denotes the user or group.

The permissions include attributes such as read, write, and so on.The type specifies

whether the specified permissions are allowed or denied (see Figure 2.4).

Figure 2.4 Altering Windows ACLs

Not every file has an ACL attached to it, which leaves it without security. Files

without an ACL allow every user and group to have full control over that file. If a

file has an ACL but no entries in that ACL, access to the file is implicitly denied.

When a file is created, the system attempts to inherit the ACL from the parent

folder. If that fails, a default ACL is provided by the system’s object manager and, if

that fails, the user account may have a default ACL associated with it. It is possible

www.syngress.com

46 Chapter 2 • Understanding the Terrain

for all of these attempts to fail and for the file to be created without an ACL object.

Again, this leaves the file without security.

ACE
Every ACE specifies a type (allowed or denied), an SID, and a set of permissions.The

permissions in an ACE include:

■ Generic read

■ Generic write

■ Generic execute

■ Generic all access

■ Ability to modify the SACL

■ Ability to delete

■ Ability to read the security descriptor

■ Ability to synchronize

■ Ability to write the DACL

■ Ability to change ownership

When access to a file is requested, the system steps through the ACE list until

the access request is either granted or denied. One problem is that the allowed per-

missions specified by a list of ACEs vary, depending on their order.A file’s ACE list

can consist of inherited and object-specific ACEs and two ACEs can directly contra-

dict each other. Enter the permissions resolution problem. Windows attempts to miti-

gate these problems by establishing an order or grouping that ACEs should be kept

in.The following list is from the Microsoft Developer Network online documenta-

tion describing the preferred order of ACE in an ACL, which can be found at:

http://msdn.microsoft.com/library/default.asp?url=/library/enus/secauth

z/security/order_of_aces_in_a_dacl.asp.

1. All explicit ACEs are placed in a group before any inherited ACEs.

2. Within the group of explicit ACEs, access-denied ACEs are placed before

access-allowed ACEs.

www.syngress.com

Understanding the Terrain • Chapter 2 47

3. Inherited ACEs are placed in the order in which they are inherited.ACEs

inherited from the child object’s parent come first, then ACEs inherited

from the grandparent, and so on up the tree of objects.

4. For each level of inherited ACEs, access-denied ACEs are placed before

access-allowed ACEs.

Obviously, these rules are not simple.To make matters worse, the rule set is not

always enforced by the system.Applications that directly modify a file’s ACL are not

forced to comply with the aforementioned precedence suggestions.

ACEs can be inherited and inherited dynamically. When a file is created, it can

inherit permissions from the directory it is created in. In addition, an ACE can be

created specifically for that file; thus, an ACE is considered either inherited or direct.

Furthermore, inherited ACEs are dynamic in that they are linked to the parent ACE

so that when the parent’s ACE is updated, the change propagates down to all of the

inheriting ACE objects. Each ACE has a header that can be flagged inherited or not

inherited. In addition, every file can be set to not inherit permissions.An ACE that is

directly applied to a file takes precedence over all inherited ACEs in an ACL.

File access control on Windows is not simple.Administrators and IT departments

usually favor the fine-grained system of access control provided by Windows; how-

ever, this is another example of feature sets taking precedence over security.You can

learn all of the details and become an expert, but the reality is that complicated sys-

tems are generally not understood as well as less complicated systems. Less under-

standing leads to holes in security policies that go unnoticed until they are taken

advantage of.

The Windows Registry
One of the big differences between the UNIX and Windows systems with respect to

file integrity, is the registry.The registry was an attempt by Microsoft to shed itself

from inconsistent formats for metadata associated with applications and system-level

services.The problem is that it is now an underground hierarchical system of data

that is somewhat out of control. Registry keys have ACLs, just like files, which is

good because it is a familiar concept for administrators. However, it can also be con-

sidered dangerous because of how complex Windows ACLs are.The registry, like

files, runs the risk of being misconfigured with respect to access control.

The registry is a hierarchical system of information that is stored in two files:

ntuser.dat and System.dat.These files are not edited directly, but through specialized

applications that allow you to edit, import, and export the data.The structure of the

registry consists of five top-level keys called hives:

www.syngress.com

48 Chapter 2 • Understanding the Terrain

■ HKEY_CLASSES_ROOT

■ HKEY_CURRENT_USER

■ HKEY_LOCAL_MACHINE

■ HKEY_USERS

■ HKEY_CURRENT_CONFIG

The CLASSES_ROOT hive exists primarily to provide support for older

Windows applications, and contains information about file extensions and their

associations with specific applications.This information is currently stored in the

LOCAL_MACHINE and CURRENT_USER hives.The CURRENT_USER

hive is the currently logged in user’s profile that resides in the USERS hive.The

LOCAL_MACHINE hive is the main hive, which contains the bulk of the informa-

tion about installed software, security settings, and various bits of system information.

The USERS hive stores profiles for all local users.The CURRENT_CONFIG is

used for information related to the system’s hardware configuration.

Not all of these hives are stored in the same physical files. Beginning with

Windows XP, a new format for registry files was created (called the “latest” format).

Windows NT and Windows 2000 use the “standard” format (see Table 2.4).

Table 2.4 File Locations for Windows Registry Hives

Registry Hive File Location

HKEY_CURRENT_USER ntuser.dat

HKEY_LOCAL_MACHINE system.sav,software.sav,
security.sav,SAM,Sam.log,Sam.sav

HKEY_USERS DEFAULT

HKEY_CURRENT_CONFIG SYSTEM,System.sav,
System.dat,System.log,System.alt

Some of these files may not exist, depending on the version of Windows and the

format being used for the files (either latest or standard).All of these files reside

either in the system root drive, user-specific folders, or in

%SystemRoot%\system32\config.

Monitoring the registry is very important, because changes to the registry can

undermine the integrity of the system. In fact, it is common for malicious applications

to launch themselves at startup by adding themselves to the run section in the registry.

There are many sections in the registry that can be altered so that executables are run

upon startup, including those in the LOCAL_MACHINE and CLASSES_ROOT

www.syngress.com

Understanding the Terrain • Chapter 2 49

hives. In fact, the blaster worm made use of a registry setting to launch itself. Registry

hacking is so common that antivirus and anti-spyware applications routinely monitor

the registry for specific changes that could indicate malicious activity.

Forks and Streams
File permissions and access control mechanisms are very important; however, some file

systems have problems that many administrators are not aware of. Steps can be taken to

hide data or executables on the file system; however, some file systems provide legiti-

mate storage mechanisms that are usually ignored by the tools commonly used to view

files and their attributes.This section examines two specific examples of how this can

effect common files systems. First, we look at the resource forks that can exist with the

HFS+ file system, and then we look at alternate data streams on NTFS.

HFS+ Resource Forks
By default, Mac OS X installs the HFS+ file system.This file system has some legacy

attributes of the Mac OS world, specifically resource forks. Files on HFS+ consist of

two forks, a data fork and a resource fork. Resource forks are used by applications to

store bitmaps, UI resources (e.g., icons audio files), and other pieces of information

specific to the application. Modern Mac OS X applications do not use the resource

forks, but some older carbonized applications still do. One example of such an appli-

cation is the version of Acrobat Reader that shipped with the first versions of Mac

OS X. Since Mac OS X,Apple has begun the process of suggesting that application

developers store these resources in the data fork. One problem is that the BSD tools

are ignorant of the resource fork; command line operations involving files would

deal with only the data fork, and data stored in the resource fork would get lost.

To reference the resource fork of a file, append /rsrc onto the end of any filename.

For example, create an empty file in the /tmp file and add data to the resource fork.

$ mkdir /tmp/example

$ touch /tmp/example/myfile

$ ls -la /tmp/example

total 0

drwxr-xr-x 3 brian wheel 102 29 Jan 19:36 .

drwxrwxrwt 13 root wheel 442 29 Jan 19:36 ..

-rw-r--r-- 1 brian wheel 0 29 Jan 19:36 myfile

Now, add some data to the file’s resource fork and show that the file size (of the

data fork) is still zero.

www.syngress.com

50 Chapter 2 • Understanding the Terrain

$ cat /etc/hosts > /tmp/example/myfile/rsrc

$ ls -la /tmp/example

total 8

drwxr-xr-x 3 brian wheel 102 29 Jan 19:36 .

drwxrwxrwt 13 root wheel 442 29 Jan 19:36 ..

-rw-r--r-- 1 brian wheel 0 29 Jan 19:36 myfile

Now let us look at the file size for the resource fork and note that it is not zero:

$ ls -la /tmp/example/myfile/rsrc

-rw-r--r-- 1 brian wheel 375 29 Jan 19:36 /tmp/example/myfile/rsrc

As far as most command-line applications are concerned, the data in the resource

fork is not there. If you copy the file around, list the size, or compute its Message

Digest 5 (MD5) checksum, the resource fork is ignored. If the data in a resource fork

on Mac OS X is modified, the only attributes that change are the mtime and the

ctime.Therefore, even if your monitoring solution is not able to monitor resource

forks, it is still possible to detect that a file’s resource fork has been modified.

Monitoring resource forks directly will give you more information about the nature

of the change. Osiris has the ability to monitor all aspects of resource forks for files

on Mac OS X that contain them.

NTFS Alternate Data Streams
Like HFS+, NTFS also has more than one data segment associated with a file, which

are called Alternate Data Streams.As mentioned earlier, an NTFS file consists of

attributes; the file’s data is also an attribute. Most files on NTFS have only one data

attribute; however, unlike HFS+ where there are two data streams, NTFS can have

many data streams, because each stream is another attribute of the file.There are

many reasons that NTFS supports multiple data streams, one of them being to sup-

port Macintosh files (resource forks). However, the ability to support multiple data

segments in a file has created the perfect hiding place for attackers wanting to hide

data on the file system.

To specify a specific data stream in an NTFS file, separate the filename and the

name of the stream with a colon. Using an example similar to the preceding one,

you can create a new data stream in a file and add some example data, as follows:

C:\temp>echo random_text > myfile:mystream

C:\temp>dir

Volume in drive C is SYSTEM

Volume Serial Number is BCF7-6665

Directory of C:\temp

www.syngress.com

Understanding the Terrain • Chapter 2 51

01/29/2005 08:02 PM <DIR> .

01/29/2005 08:02 PM <DIR> ..

01/29/2005 08:02 PM 0 myfile

1 File(s) 0 bytes

2 Dir(s) 2,580,427,776 bytes free

C:\temp>dir myfile:mystream

Volume in drive C is SYSTEM

Volume Serial Number is BCF7-6665

Directory of C:\temp

File Not Found

C:\temp>

Note that the dir command is not aware of the data stream. If the file were

opened with Notepad, the data would be visible. Unlike with HFS+, alternate data

streams can be added to directories.To specify the stream for the current directory,

leave out a filename. For example:

C:\temp>echo random_text > :mystream

Again, the dir command would not reveal this newly created stream.Alternate

data streams for files do not have permissions for themselves.The permissions that

apply to the file are the same when an alternate data stream is accessed.The copy

commands in Explorer, as well as with the copy command, maintain alternate data

streams as long as the files remain on an NTFS file system. If an alternate data stream

for a file is altered, the mtime is also altered.

It is possible to put something into NTFS file streams that could easily reside

undetected under normal use. Executables or scripts can be hidden inside images and

other types of files, and the administrator probably would not know they exist. No

known malicious programs have been known to use alternate data streams, but that

is not for a lack of demonstration. Proof-of-concept viruses have been written to

bring attention to the fact that this characteristic of NTFS files could be abused.

The Kernel
The kernel is the core of the OS. In general, the kernel is a piece of software

designed to provide controlled access to the underlying hardware. Modern kernels

serve mainly to control process and thread management, memory management, file

systems, network management, and interprocess communication. Most users do not

interact directly with the kernel, but every process makes use of the kernel in some

way.Access to the services provided by the kernel is done through software inter-

faces known as system calls.

www.syngress.com

52 Chapter 2 • Understanding the Terrain

There are a few different kinds of kernels, but most systems have either micro-

kernel or a monolithic kernel.A microkernel breaks down kernel services into modules

that run in (unprivileged) user space, whereas the monolithic kernel implements all

abstractions provided by the kernel in (privileged) kernel space.The advantage of a

microkernel is that a software defect in one service does not necessarily take down

the entire system.The advantage with the monolithic kernel is that the abstractions

are tightly coupled and therefore more efficient.The original UNIX, BSD variants,

and Linux are all monolithic kernels. Mac OS X, MACH, and AIX are popular sys-

tems that have microkernels. Supporters of each are happy to argue about the differ-

ences and advantages, but the reality with either model is that the kernel controls the

hardware. If you own the kernel, you can basically do whatever you want.

Every good host integrity monitoring system monitors the kernel in some way.

Rootkits that install themselves into the kernel can be used to subvert monitoring

tools, buffer overflow prevention, or hide changes to other parts of the system (e.g.,

files, processes).There are entire books written about the implementation details of

specific kernels.This section is concerned with the general structure of kernel exten-

sions (KEXTs), drivers, modules, and runtime security levels.

Extending the Kernel
Most kernels provide a means of expanding their functionality in some way. Even with

monolithic kernels, it is necessary to provide a means to do this, because no kernel

should attempt to support every type of service or oddball hardware component.

Linux
An extension to the kernel on Linux is known as a Loadable Kernel Module

(LKM). Kernel modules on Linux are used to implement device drivers, system calls,

network drivers or shims (e.g., virtual private network [VPN]), file systems, and exe-

cutable interpreters. LKMs have been around since Version 1.2 of the Linux Kernel

(the mid 1990s).The location of the kernel module files has changed over time, and

is generally somewhere such as /modules or /lib/modules.To list the currently loaded

modules in the Linux kernel, use the lsmod command:

$ lsmod

Module Size Used by Not tainted

ipt_pkttype 472 4 (autoclean)

ipt_TOS 1048 12 (autoclean)

ipt_MASQUERADE 1496 0 (autoclean)

ipt_REJECT 3256 4 (autoclean)

ipt_LOG 3480 12 (autoclean)

www.syngress.com

Understanding the Terrain • Chapter 2 53

ipt_state 568 23 (autoclean)

ip_nat_irc 2704 0 (unused)

ip_nat_tftp 2096 0 (unused)

ip_nat_ftp 3472 0 (unused)

ip_conntrack_ftp 4496 1 [ip_nat_ftp]

ipt_multiport 696 2 (autoclean)

ipt_conntrack 1208 0 (autoclean)

iptable_filter 1740 1 (autoclean)

iptable_mangle 2168 1 (autoclean)

iptable_nat 18360 3 (autoclean) [ipt_MASQUERADE ip_nat_irc

e100 59796 1

To insert a Linux kernel module into the running kernel, use the insmod com-

mand.To remove a running kernel module, use the rmmod command.

FreeBSD
FreeBSD originally provided kernel extensions through the Linux LKM interface.

However, starting with FreeBSD 3.0, FreeBSD provided a replacement for that

known as Kernel Loadable Modules (KLD). Kernel loadable modules can be used to

implement drivers, generic kernel code, or additional system calls.

Kernel modules are stored in /modules or /boot/modules and can automatically be

loaded by adding them to the configuration files under /etc/rc.conf, or by using the

kldload command.The files that usually reside in the modules directory and that end

in .ko are called link files.A link file is not necessarily a module; it may contain a

single module, or it may contain many modules. For example, to view a list of cur-

rently loaded link files, use the kldstat command:

-bash-2.05b$ kldstat

Id Refs Address Size Name

1 3 0xc0400000 322824 kernel

2 14 0xc0723000 537f0 acpi.ko

This command lists the files that have been dynamically linked into the kernel,

not the individual modules.This is an important distinction.To view the loaded

modules, use the verbose flag. For example, to view the modules contained within

the acpi link file:

-bash-2.05b$ kldstat -v -n acpi.ko

Id Refs Address Size Name

2 14 0xc0723000 537f0 acpi.ko

Contains modules:

www.syngress.com

54 Chapter 2 • Understanding the Terrain

Id Name

1 nexus/acpi

2 acpi/acpi_button

3 acpi/acpi_isab

4 pcib/acpi_pci

5 acpi/acpi_pcib

6 pci/acpi_pcib

7 acpi/acpi_sysresource

8 acpi/acpi_timer

9 acpi/acpi_tz

10 acpi/acpi_acad

11 acpi/acpi_cmbat

12 acpi/cpu

13 acpi/acpi_ec

14 acpi/acpi_lid

Solaris
Solaris also supports the concept of dynamic LKMs. Many kernel components

(including drivers and system calls) on Solaris are implemented as modules.A typical

Solaris installation has more than 100 loaded kernel modules.Also, Solaris has had

multiple reported vulnerabilities involving unauthorized insertion of LKMs.To load

and unload kernel modules on Solaris, use the modload and modunload commands.To

view a list of currently loaded kernel modules on Solaris, use the modinfo command:

$ modinfo

Id Loadaddr Size Info Rev Module Name

6 1014c000 431b 1 1 specfs (filesystem for specfs)

8 10151bf8 331c 1 1 TS (time sharing sched class)

9 101547d0 8d4 - 1 TS_DPTBL (Time sharing dispatch table)

10 10154858 28f63 2 1 ufs (filesystem for ufs)

11 1017b74b 1f7 - 1 fssnap_if (File System Snapshot Interface)

12 1017b89b 12238 226 1 rpcmod (RPC syscall)

12 1017b89b 12238 226 1 rpcmod (32-bit RPC syscall)

12 1017b89b 12238 1 1 rpcmod (rpc interface str mod)

13 1018b17b 666b0 0 1 ip (IP Streams module)

13 1018b17b 666b0 3 1 ip (IP Streams device)

14 101e7d5b 1952 1 1 rootnex (sun4u root nexus 1.90)

15 101e92b8 210 57 1 options (options driver)

www.syngress.com

Understanding the Terrain • Chapter 2 55

17 101e99ac 18d8 12 1 sad (Streams Administrative driver's)

18 101eb00c 67b 2 1 pseudo (nexus driver for 'pseudo')

19 101eb515 176d0 32 1 sd (SCSI Disk Driver 1.340)

...

Mac OS X
There are two methods for dynamically adding functionality to the kernel on Mac

OS X systems,: KEXTs and IOKit drivers.A KEXT can be used to implement sup-

port for a file system or to enhance the network stack. IOKit drivers are generally

reserved for interacting with hardware or providing device-driver functionality.

IOKit drivers are based on a well-designed C++ framework, whereas the KEXT

implementations are written in C and are more in line with the way kernel modules

are implemented on other platforms.

KEXTs are traditionally stored in /System/Library/Extensions on Mac OS X.To

load and unload KEXTs or IOKit drivers, use the kextload and kextunload com-

mands.To view a list of all currently running KEXTs or IOKit drivers, use the

kextstat command:

$ kextstat

Index Refs Address Size Wired Name (Version) <Linked Against>

1 1 0x0 0x0 0x0 com.apple.kernel (7.7.0)

2 1 0x0 0x0 0x0 com.apple.kpi.bsd (7.7.0)

3 1 0x0 0x0 0x0 com.apple.kpi.iokit (7.7.0)

4 1 0x0 0x0 0x0 com.apple.kpi.libkern (7.7.0)

5 1 0x0 0x0 0x0 com.apple.kpi.mach (7.7.0)

6 1 0x0 0x0 0x0 com.apple.iokit.IONVRAMFamily

(7.7.0)

7 1 0x0 0x0 0x0 com.apple.driver.AppleNMI

(7.7.0)

8 63 0x0 0x0 0x0 com.apple.kernel.6.0 (6.9.9)

9 1 0x0 0x0 0x0 com.apple.kernel.bsd (6.9.9)

10 1 0x0 0x0 0x0 com.apple.kernel.iokit (6.9.9)

11 1 0x0 0x0 0x0 com.apple.kernel.libkern

(6.9.9)

12 1 0x0 0x0 0x0 com.apple.kernel.mach (6.9.9)

...

www.syngress.com

56 Chapter 2 • Understanding the Terrain

Windows
Microsoft Windows allows extensions to the kernel through the implementation of

kernel mode drivers.A Windows driver can control everything from a specific hard-

ware component to file systems, network interfaces, or virtual devices such as VPN

network adapters. Every driver exports a common set of functionality that Windows

uses to interact with the device, whether virtual or physical.The Windows driver

module is layered, and some drivers are made up of components in multiple layers.

This section is concerned only with Windows 2000, Windows XP, and Windows

Advanced Server 2003 drivers.The driver models for older versions of Windows

(including NT) are much different and have their own particular complexities.

There are three types of kernel mode drivers: high, intermediate, and low.The

highest drivers sit closest to and interpret data from the application layer, and depend

on the functionality of other lower-level drivers that deal with the hardware.

Intermediate drivers also depend on low-level device drivers and include function

drivers and filter drivers.A function driver is what you normally think of when

thinking about a driver for a device. Function drivers exist to provide a functional

interface (support) for a hardware device. Filter drivers serve to modify the features

provided by a device by modifying input/output (I/O) requests for the device.The

lowest type of device driver for Windows deals specifically with managing the I/O

bus that devices use.

Extending the kernel functionality on Windows is complicated.To make things

even more difficult , Windows does not provide a native way to list all of the currently

loaded drivers. Drivers interact with different areas of the system; you can view loaded

drivers through GUI tools, but not in any one specific location.The Windows 2000

Resource Kit provides a command called drivers.exe that functions similar to lsmod on

Linux, and lists the names and attributes of currently loaded drivers:
C:\ drivers.exe

ModuleName Code Data Bss Paged Init LinkDate

--

ntoskrnl.exe 429184 96896 0 775360 138880 Tue Dec 07 16:41:11 1999

hal.dll 33600 5536 0 31680 15680 Sat Oct 30 16:48:14 1999

BOOTVID.DLL 5664 2464 0 0 320 Wed Nov 03 18:24:33 1999

pci.sys 12704 1536 0 31264 4608 Wed Oct 27 17:11:08 1999

isapnp.sys 14368 832 0 22944 2048 Sat Oct 02 14:00:35 1999

www.syngress.com

Understanding the Terrain • Chapter 2 57

compbatt.sys 2496 0 0 2880 1216 Fri Oct 22 16:32:49 1999

BATTC.SYS 800 0 0 2976 704 Sun Oct 10 17:45:37 1999

intelide.sys 1760 32 0 0 128 Thu Oct 28 17:20:03 1999

PCIIDEX.SYS 4544 480 0 10944 1632 Wed Oct 27 17:02:19 1999

pcmcia.sys 32800 8864 0 23680 6240 Fri Oct 29 17:20:08 1999

ftdisk.sys 4640 32 0 95072 3392 Mon Nov 22 12:36:23 1999

...

To control the quality and security of loaded drivers, Microsoft digitally signs

drivers that pass a suite of tests.These tests inspect the driver for reliability and com-

patibility with the system and Microsoft standards. For systems that support driver

signing (Windows 2000, Windows XP, Windows Server 2003), driver signing

checking can be set to ignore, warn, or block drivers that fail the driver signing

checks.The default is to warn and prompt the user whether to load the driver or

not.This warning can be ignored (or subverted through registry changes), but given

the complexity of the Windows driver model, the whole driver-signing process is

not a bad idea.

BSD Kernel Security Levels
All of the operating systems that descend from BSD4.4, including FreeBSD,

NetBSD, OpenBSD, and Mac OS X, support the concept of kernel security levels.

The basic idea is that the kernel attempts to establish levels of runtime security by

limiting certain operations.The levels range from –1 to 2 (or 3, depending on the

system) with the higher levels being more restrictive.The goal is to prevent unautho-

rized or unintentional change from occurring. Even the root user is not allowed to

make certain changes under the higher security levels.

During the boot sequence, the init process sets the security level.The root user

can raise the security level, but only the init process can lower it.Table 2.5 lists the

security levels and their meanings.

www.syngress.com

58 Chapter 2 • Understanding the Terrain

Table 2.5 BSD Kernel Security Levels

Level Significance

-1 Permanently Insecure Mode: Setting to –1 means that the
system will always run at security level 0 in multiuser mode.

0 Insecure Mode: Immutable and append flags can be turned on
or off.

1 Secure Mode: Immutable and append flags cannot be turned
on or off. Memory devices (/dev/mem and /dev/kmem) are
read-only. FreeBSD only: kernel modules may not be loaded.

2 Very Secure Mode: Immutable and append flags cannot be
turned off. Certain file system restrictions exist, such as not
being able to run newfs or unmount file systems. The system
clock can only be advanced, not set back. FreeBSD: The system
clock cannot be modified by more than one second.

3 Ultimate Security (FreeBSD only): Same as level 2 except that IP
packet filter rules cannot be modified. This includes ipfw,
ipfirewall, and pfctl.

One of the problems with this type of security is that there are often operations

performed during the boot process that are restricted by the higher security levels.

Consequently, the kernel security level is set late in the boot process, and therefore,

full protection cannot be relied on during the initial boot sequence.

Another problem is that the security level can only be raised, not lowered, and

certain types of administrative tasks may require that the system be taken offline.

The kernel security level can be lowered by init, by booting into single-user

mode, or by adjusting a file that dictates what level init should set the level to upon

booting. With Mac OS X, running at level 0 requires a rebuild of the kernel; to run

at level 1 or 2 requires adjusting the /etc/rc file. For FreeBSD and NetBSD, the

kernel security level can be set in the /etc/rc.local file. OpenBSD stores the security

level in the /etc/rc.securelevel file.

Libraries and Frameworks
Most systems allow for the creation of two different kinds of libraries: static and

shared (or dynamic). Static libraries are essentially a collection of compiled code that

developers can link into their programs.Thus, static libraries are relevant only during

compilation, not during runtime.

Shared libraries allow multiple applications to use a common set of code

without having to incorporate that code into multiple executables. Each program

www.syngress.com

Understanding the Terrain • Chapter 2 59

linked against a static library contains the used code from that library. With a shared

library, each application contains a reference to the library. Only one copy of the

shared library is loaded into memory, where all applications can use it. Static library

files usually have file suffix .a (archive) and shared library files have file suffix .so

(shared object). On Windows, shared libraries are known as dynamic link libraries (.dll).

If a library has both static and shared versions, most systems will produce exe-

cutables that use the shared library. However, developers can specify explicitly that

they want the library to be statically linked to the executable.The exception is with

Mac OS X (discussed later in this chapter).

Problems with Shared Libraries
There are downsides to all shared libraries, but the two that concern us most regard

the integrity of the applications that use them.

First, there is the integrity of the library files themselves. With a statically com-

piled executable, the only dependency is with the runtime environment. Executables

that use shared libraries not only depend on the integrity of the runtime environ-

ment, but also on the integrity of the shared library files they use, every time they

are executed. It is possible for an attacker to replace a shared library with one that

performs malicious acts to the system. Furthermore, it is possible for an attacker to

replace a shared library that continues to perform its normal function, but also does

malicious things, making it difficult to detect .

The second problem has to do with the location of the shared library files.Table

2.6 shows some common places where shared libraries are kept.

Table 2.6 Common Locations for Library Files

OS Library Directories

*BSD /lib, /usr/lib, /usr/local/ib

Mac OS X /usr/lib, /usr/local/lib, /System/Library/Frameworks,
/Library/Frameworks

Linux /lib, /usr/lib, /usr/local/lib

Solaris /lib, /usr/lib, /usr/local/lib, /opt/…

Windows %WindowsRoot%, %SystemRoot%

Shared libraries can reside anywhere on a file system. When an application that

requires a shared library is executed, the system attempts to find the required library.

Every system has its own procedure for how the dynamic loader locates the neces-

sary library files; some use environment variables.A couple of problems exist under

www.syngress.com

60 Chapter 2 • Understanding the Terrain

these circumstances. Upgrades may leave a previous (possibly vulnerable) library in

the search path first.An attacker may place a malicious library ahead in the search

path, or may modify the search path and order directly. Monitoring the integrity of

shared library files is very important; almost all modern systems use them.The

problem is that you do not necessarily know where to look.The locations listed in

Table 2.6 are common for shared libraries, but they can exist anywhere. It is not

uncommon for applications to have their own lib directories.This is important

because applications can be running with dependencies on dynamic libraries that

exist anywhere on the file system, and you may or may not be monitoring the

integrity of those libraries (see Chapter 4,“Planning”).

Dynamic Libraries on Mac OS X
Frameworks are a unique concept of Mac OS X.A framework is basically a direc-

tory tree that contains a dynamic (shared) library. Bundled as part of the framework

are header files, documentation, and icons or other images. Frameworks are ver-

sioned; in other words, multiple iterations of the framework exist in the same direc-

tory tree. When an executable is linked with a framework, the path to that

framework is embedded into the executable. Because a framework is essentially a

dynamic library, only one copy of the framework is loaded into memory at any one

time. Multiple applications use the same loaded framework. Just as with other oper-

ating systems, there are standard locations, but a framework can exist anywhere on

the file system. When an application must make use of a framework and that frame-

work cannot be located, the following paths are searched:

■ $(HOME)/Library/Frameworks

■ /Library/Frameworks

■ /Network/Library/Frameworks

■ /System/Library/Frameworks

Dynamic libraries on Mac OS X do not necessarily have to be in the form of a

framework, but most of them are. Dynamic libraries on Mac OS X have file name

suffix dylib (dynamic library). Some examples of stand-alone dynamic library files can

be found in /usr/lib and /usr/local/lib.

Another interesting piece of information about Mac OS X is that all executables

are linked against at least one dynamic library—the System Framework

(/System/Library/Frameworks/System.framework).This is not necessarily peculiar; by

default, many systems will link executables against a dynamic version of the C run-

time. What is peculiar about Mac OS X is that it is not possible to produce a com-

www.syngress.com

Understanding the Terrain • Chapter 2 61

pletely statically linked executable. Most other development environments allow

developers to statically link an executable at compile time.This is not possible with

Mac OS X.

Technically, it is possible to produce a completely static executable on Mac OS

X; however, it requires importing a static C runtime library from the Darwin Source

tree.Apple does not support complete static linking with its shipped development

environment, and highly recommends against doing so.The other exception to this

is with KEXTs, which are also statically linked.

To view the list of the dynamic libraries that an executable is linked against, use

the otool application:

$ otool -L /bin/ls

/bin/ls:

/usr/lib/libncurses.5.dylib (compatibility version 5.0.0, current

version 5.0.0)

/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current

version 71.0.0)

The otool command is somewhat similar to the ldd command on Linux and

FreeBSD.

Another oddity of Mac OS X with respect to shared libraries is the concept of

prebinding. Prebinding involves determining the addresses of all of the symbols in

other libraries referenced by an executable or a library, and storing those addresses in

the executable or library file.The goal is to prevent this from having to be done by

the dynamic linker each time an application is run, and to reduce launch times for

applications. Prebinding is a complex tree of dependencies.Applications depend on

libraries, and libraries in turn depend on other libraries.The built-in Mac OS X

installer and software update applications refer to updating prebinding information

such as “optimizing.”

The main problem with prebinding is that with every library update, any exe-

cutables that use that library must have their prebinding information updated.

Depending on what information needs to be updated, the mtime, ctime, checksum,

and possibly the inode for files change every time prebinding for an executable is

updated.The system performs a check when an application is launched and updates

the prebinding information if needed.This makes monitoring the integrity of exe-

cutable files on Mac OS X very difficult and, for all practical purposes, impossible.To

complicate things further, the system checks for stale prebinding when applications

are launched; therefore, time stamps and checksums will change at irregular intervals,

which produces a great deal of noise for host integrity monitoring systems.

www.syngress.com

62 Chapter 2 • Understanding the Terrain

An application does not have to be prebound; however, all of the system exe-

cutables that ship with Mac OS X are prebound. In addition, all applications built

using Apple’s development environment (xcode) are built as prebound executables by

default.To check if an executable or a library is prebound, use the otool command

with the h and v options. For example:

$ otool -hv /bin/ls

/bin/ls:

Mach header

magic cputype cpusubtype filetype ncmds sizeofcmds flags

MH_MAGIC PPC ALL EXECUTE 15 1912 NOUNDEFS

DYLDLINK PREBOUND TWOLEVEL

One way to mitigate the noise problem of prebinding is to isolate when it will

occur.This can be done by renaming the system utilities that update prebinding

(redo_prebinding,update_prebinding).The problem with this approach is that you will

suffer a performance impact as more and more prebinding information becomes stale.

To deal with the performance problems, you can schedule prebinding updates to mini-

mize the window of change.The problem with this approach is that there is a race

condition between the time the prebinding is updated and the time the new states are

established.A more obvious problem with this approach is that it requires more admin-

istrative overhead, and this is an administrative decision.Turning off prebinding com-

pletely will ensure that more reliable monitoring can be conducted.

Another way to deal with prebinding updates is with the ctool command

(http://www.hostintegrity.com/tools/ctool).The ctool application computes MD5 and

SHA-1 checksums of the portions of the files that are not affected by prebinding.

The idea is that no matter what kind of prebinding information is updated, the

checksum will not change.The downside to this approach is that it will not detect

malicious changes to prebinding information (known exploits that take advantage of

this do not currently exist).Another downside is that ctool is a stand-alone applica-

tion that is not easily integrated into a monitoring system.Tools like ctool are more

useful when conducting a close examination or spot-checking a handful of files.The

ctool will detect if an executable is completely replaced. Otherwise, you have no way

of knowing if the whole executable is different, or if only the prebinding informa-

tion is different.

Finally, the /usr/bin/redo_prebinding command (installed with the developer tools)

has an undo feature where it will zero out the prebinding information in a pre-

bound executable. However, it does not appear to be the most reliable command. In

the past, I have had to run the command multiple times to arrive at a checksum that

www.syngress.com

Understanding the Terrain • Chapter 2 63

could be used for comparison with other systems.To use the redo_prebinding com-

mand, use the -z and -u arguments. For example, to undo prebinding on /bin/ls do:
$ cp /bin/ls /tmp

$ cd /tmp

$ redo_prebinding -u -z /tmp/ls

$ openssl md5 /tmp/ls

MD5(/tmp/ls)= 601a9c34aaae8f8fd52786eebc95eb2a

$ redo_prebinding -u -z /tmp/ls

$ openssl md5 /tmp/ls

MD5(/tmp/ls)= a5abdd473d4ae550d73991c2fa02b8b8

$ redo_prebinding -u -z /tmp/ls

$ openssl md5 /tmp/ls

MD5(/tmp/ls)= a5abdd473d4ae550d73991c2fa02b8b8

In this case, the undo operation had to be performed twice.There may be a

good reason for this, but the main page for this command does not offer any clues.

Mac OS X is not alone in this approach.The Gentoo distribution of Linux pro-

vides a similar feature for speeding up the load times of executables (called pre-

linking). However, Gentoo provides the ability to undo the prelink information with

the undo option to the prelink command.This feature facilitates monitoring the

integrity of prelinked files.

Runtime
When a host is powered up, the process table comes alive with activity. File access

control, runtime privileges, and various other elements of the host environment

interact to make up the runtime integrity of the host.The system and user processes

affect the kernel and network states.This section takes a closer look at some of the

more consequential elements of the runtime, including runtime privileges and access

tokens, RPCs, and processes in general.

SUID and SGID Privileges
Every running process on UNIX and Linux systems has at least three UID values

associated with it: real, effective, and saved.There are also real, effective, and saved

GID values.

www.syngress.com

64 Chapter 2 • Understanding the Terrain

NOTE

Older UNIX systems did not have the concept of a saved UID; however,
almost all systems you encounter today do. The saved UID was intro-
duced with the 4.4 release of BSD.

The real UID is the UID of the user that started the process.This value never

changes, or at least it should not.The effective UID can change, and is used to deter-

mine privileges at any point in time when it is necessary to know whether a process

can perform a certain operation (e.g., opening a file).The saved UID is the initial

value of the effective UID.The existence of the saved UID allows the effective UID

to change and then be restored.

With most executables, the real, effective, and saved UID values are all the same

and do not change. If user Bob starts a process, the real, effective, and saved UID are

all Bob’s UID.The SUID permissions bit changes all of this. If Bob executes an

SUID root application, the real UID is Bob’s UID, the saved UID is zero, and the

initial effective UID is also zero.The SGID bit has the same effect, except that it

affects the real, saved, and effective GID values.

Although some SUID applications are not owned by root, most are.The point

is to allow users limited abilities to do things that require root privileges.A classic

example of this is the “passwd” program that requires write privileges to the

password file.

On some systems (e.g., Linux), it is not possible to make a shell script SUID, and

for good reason. On other systems such as Mac OS X, it is possible to make a shell

script SUID root. (For security reasons, starting with release 10.3.9 of Mac OS X, it

is no longer possible to create SUID shell scripts. However, previous versions of Mac

OS X still allow for them.) SUID shell scripts should never exist. Monitoring for

shell scripts that are SUID is a very good idea, because shell scripts can be manipu-

lated very easily. Shell scripts usually invoke many other commands and often do not

use full paths. Other considerations with shell scripts include runtime race condi-

tions and homebrewed use of temporary files,, which generally lend themselves to

patched-together error-prone logic made to perform administrative tasks.

Any executable can be installed as SUID root.There are essentially three ways

that applications handle this special privilege. First, they ignore it and allow them-

selves to run with root privileges for the entire duration of execution. Second, the

application can lower its privileges and raise them only when root privileges are

needed. Finally, the application may perform privileged operations upon start-up and

permanently lower its privileges for the remainder of the process execution.This

www.syngress.com

Understanding the Terrain • Chapter 2 65

option is ideal because the amount of time the process has root privileges is limited.

If privileges are raised and lowered as needed, an attacker who has compromised the

process will always be able to restore the effective UID to the root privileges in the

saved UID.

Another option available to SUID applications is to implement a form of privilege

separation.This works by spawning a child process that permanently drops its privi-

leges and performs the bulk of the functionality of the application.The privileged

parent process exists solely to perform privileged operations; the privileged process is

limited in functionality and less likely to be exploited. Obviously, this complicates

things with respect to signal handling, interprocess communication, and some overhead

involved in offloading privileged operations. However, the reduced risk is generally

considered worth the trade-off in development and runtime overhead.

As an administrator, you should be aware of all SUID root applications on a

system. It is not easy to determine how responsible an SUID or SGID application is

with its privileges.Applications that implement privilege separation may not do so

correctly and could possibly jeopardize the system more with the added complexity.

The best way to manage SUID and SGID applications is to not have any of them;

however, this is not a realistic goal because the base installation of most systems con-

tain at least a handful of SUID and SGID applications.As an administrator, it is up to

you to decide which of these applications are necessary. In any case, third-party

SUID root applications should be highly suspect.

WARNING

As a professional software engineer, I have seen my fair share of soft-
ware applications installed as SUID root that were very problematic. In
one case, an application was installed as SUID root when it never needed
the privileges in the first place. As a result many systems contained a
poorly written piece of software that ran as root, for no good reason. In
another case, I encountered a project that consisted of more than 5MB
of poorly written buggy code. This executable would launch other exe-
cutables, open network ports, and communicate with kernel modules.
One day the developers discovered that this application was parsing con-
figuration files multiple times a second, and none of them knew why.
This application was installed as a SUID root and deployed onto thou-
sands of hosts. Not surprisingly, buffer overflow vulnerabilities were
eventually disclosed, much to the embarrassment of the company and
risk to the users.

www.syngress.com

66 Chapter 2 • Understanding the Terrain

Poorly written software installed as the SUID root can jeopardize the integrity

of a host or a network of hosts. Monitoring for the appearance of SUID root appli-

cations is critical.A reasonable assurance that an SUID or SGID application is not a

threat to the integrity of a host can be acquired by knowing all of the ways that such

an application can be used, abused, and misused, which is practically impossible to

determine.Therefore, minimizing the number of SUID/SGID files on your systems,

auditing the ones that exist, and monitoring them for changes is your best course of

action with respect to powerful file permissions (see Chapter 9,“Advanced

Strategies”).

Windows Access Tokens
Runtime privileges, like file permissions, are more complicated on Windows. Every

running process on a Windows system contains an access token.Access tokens pro-

vide information about the identity and privileges associated with a user account.

Windows runtime security involves many elements such as SIDs, security descriptors

(ACLs), security principles, and generic access permissions.All of these are managed

using access tokens.

Upon login or authentication, a primary access token is created.This access

token includes the user’s SID, the group SIDs for all groups that the user is a

member of, default access control information, impersonation level (explained later

in this chapter), and other privilege specifications.After authentication, any process

launched on behalf of the user maintains a copy of this access token. Modifications

to user accounts on Windows or any of the groups or privileges associated with the

user do not take effect until the next time that user authenticates.

Whenever a process requests access to the system or attempts to perform a privi-

leged operation, the system consults that process’s access token to determine if the

operation should or should not be allowed. In the same way that UNIX and Linux

systems have effective and real UID values, Windows processes and threads have a

similar concept with access tokens. In the Windows world, there are primary access

tokens and impersonation access tokens.The primary access token is associated with

the user who is responsible for the process, or thread, whereas the impersonation

access token is a deviation from the primary token, though not quite the same in

purpose as the effective UID on UNIX.

The main goal of impersonation access tokens is to allow services to assume a

user’s privileges when providing access to a resource; these are usually client/server

interactions. When a request is made of a service, the client provides an imperson-

ation level that designates to what degree the service can impersonate the client.The

service then assumes the identity of the client for the duration of the request by

using an impersonation access token.

www.syngress.com

Understanding the Terrain • Chapter 2 67

RPC and DCOM
Search on Google for Remote Procedure Call (RPC) and Distributed Component

Object Model (DCOM), and you will most likely see a list of vulnerability bulletins

and security alerts involving known exploits, viruses, and worms on Windows. RPC

is a more general term that describes the process of allowing an application to

invoke a procedure within another process on another host. Microsoft Windows

implements support and implementation of RPC. Windows provides built-in RPC

support that is enabled by default, and developers can incorporate RPC into their

own applications. RPC is basically an abstraction of interprocess communication that

takes place over a network.The RPC runtime takes care of hiding the fact that there

is a network standing between the processes. Windows RPC makes use of Hypertext

Transfer Protocol (HTTP) as the transport protocol.

The DCOM is an extension to the Component Object Model (COM). DCOM

is a protocol that uses Windows RPC.The relatively scalable, language-independent

DCOM provides for network efficiency for RPC-related functionality. DCOM is

associated with many recent Windows RPC exploits.Any Windows host that has

RPC over HTTP enabled will also accept DCOM requests. It is possible to disable

DCOM, but it requires a registry tweak.A more effective approach is to simply dis-

able RPC.

If you look at the Services program on Windows, you will notice two RPC-

related services. One is the RPC locater service and the other is the general RPC

service that listens on port 135 (see Figure 2.5).

Figure 2.5 Windows RPC Services

68 Chapter 2 • Understanding the Terrain

www.syngress.com

The RPC service is used for many applications. For example, Exchange and

Active Directory are big users of RPC, but many other Windows services also

depend on it. Disabling RPC can have a significant impact on functionality. For this

reason, the RPC service cannot be stopped through the services panel. Disabling

RPC can be done, but requires uninstalling it through the Windows control panel.

Although workarounds for RPC-related vulnerabilities have been to disable RPC in

the past, the practical solution is to download and patch the system.

The RPC Locater Service is responsible for maintaining a listing of available

RPC services and servers.The locater is generally only run on servers or domain

controllers.This service does not run (set to manual) by default. Both the RPC ser-

vice and the locater service have a history of vulnerabilities that have led to the

development of some malicious remote exploits. Exploits taking advantage of RPC

can demonstrate themselves in a number of ways.A HIMS will often pick up on,

but not necessarily highlight, the fact that it is related to RPC. For example, there

have been many worms that have taken advantage of RPC vulnerabilities that are

most often found through the existence of new files, modified system executables,

and suspect registry modifications.

Processes
On a typical default installation of RedHat 9, there are more than 60 processes run-

ning, with more than half of them running as root. On Mac OS X, the results are

similar. On most of the Linux systems I have access to, the process count is close to

200 at any given time. Users and administrators place a great deal of faith in these

nebulous blocks of executable code.There is an implicit trust in the processes that

ship with the baseline distributions of popular operating systems, but that does not

mean that these processes cannot have a negative impact on the integrity of the run-

time environment. Even with systems such as FreeBSD where the source for the

entire system is available, most administrators trust that someone else is reviewing the

code and that any noteworthy security risk will come across the bugtraq mailing list.

The point is that most administrators do not spend their time with binary analysis or

proofreading source code.

When a system shows signs of being overloaded, unresponsive, or suspicious in

any way, a common response is to look at which processes are running and how

much system resources they are each consuming. Resource consumption can be any

combination of CPU, memory, or I/O.The ps command can reveal a great deal of

information about running processes, including CPU and memory usage. On

Windows, the “task manager” reveals most of the relevant information, including

CPU and memory usage. For advanced process analysis, the Resource Kit provides

www.syngress.com

Understanding the Terrain • Chapter 2 69

the pstat application to reveal detailed per-process memory and CPU utilization.

Most UNIX systems also support lsof, a very useful utility that will display a list of all

opened files and their associated PID and user.The lsof command is a very useful

utility for analyzing the file activities of suspicious executables. Finally, most systems

also provide a means of tracing the system calls requested by an application. On

Linux and BSD systems, there is the strace command, for Mac OS X there is ktrace,

and for Solaris there is truss.

One of the roles of the kernel is process management. However, this usually

involves things such as CPU scheduling, responding to system calls, and maintaining

the integrity of the memory space of each process.As far as keeping processes inline,

the kernel allows most processes (even those executed by unprivileged users) to con-

sume massive amounts of system resources.An application that does nothing but

consume I/O, memory, or CPU cycles can bring a system to its knees.Therefore,

monitoring the system process table and various elements of process behavior is an

important part of monitoring a host’s integrity.

Networking
What does networking have to do with the integrity of a host? Plenty. In many

cases, it is easy to distinguish between security at the network level and security at

the host level. However, the data on a network originated from a host of some kind.

Although network monitoring can detect attacks, pinpoint vectors for worms, or

detect unauthorized activity, in some cases, it makes more sense to monitor the

origin of this activity by monitoring your host’s networking environments.

Interfaces
After gaining control of a system, an attacker sometimes places a network interface

into promiscuous mode in order to sniff the network for other sensitive information.

Although network security monitoring can detect a promiscuous interface, it is also

something that a host integrity monitoring system can easily detect. Most UNIX

systems reveal promiscuous status in the interface viewed with the ifconfig command.

For example, on FreeBSD:

$ ifconfig bfe0

bfe0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500

options=8<VLAN_MTU>

inet6 fe80::20f:1fff:fe4a:e945%bfe0 prefixlen 64 scopeid 0x1

inet 10.10.0.1 netmask 0xffffff00 broadcast 255.255.255.255

ether 00:0f:1f:4a:e9:45

www.syngress.com

70 Chapter 2 • Understanding the Terrain

media: Ethernet autoselect (100baseTX <full-duplex>)

status: active

It is possible to mitigate this problem through system configuration. On

FreeBSD, it is possible to disable an interface from being put into promiscuous mode

by removing Berkeley Packet Filter (BPF) support in the filter.This requires a kernel

recompile as the default kernel comes with BPF support. However, this is not always

an option because some applications (e.g., Snort) require this support. In that case, it

makes sense to monitor your network interfaces so that you are aware of which

interfaces are promiscuous and when.

Ports
Open network ports are sometimes the first indication of a problem for a host.

Worms or trojans may open network ports as a means of propagation or to relay

information back to a home base of some kind.An attacker may open a network

port as part of a backdoor for access to the system later. Or a new piece of software

may have been installed without authorization. In any case, it is very important to

stay aware of your host’s listening network ports. Network monitoring tools such as

Nessus and Nmap can be used to analyze a host’s open network ports. However,

these tools are more suited for random scans. Scanning all of your hosts for open

ports every few minutes is not practical and will probably trigger false positives on

your network-monitoring infrastructure. It makes more sense for this to be done by

a host integrity monitoring system.

The netstat command is common on most systems and can be used to list net-

work ports that are currently in the LISTEN state, waiting to receive connections:

$ netstat -na | grep LISTEN

tcp4 0 0 127.0.0.1.631 *.* LISTEN

tcp46 0 0 *.22 *.* LISTEN

tcp4 0 0 *.3306 *.* LISTEN

The following example was taken from Mac OS X. In this case, there is one port

(631) accepting only local connections.This is the CUPS printing support.The

other two allow remote connections (SSH, MySQL). However, these are only the

TCP ports; you can also get a listing of open UDP ports:

www.syngress.com

Understanding the Terrain • Chapter 2 71

$ netstat -na -p udp

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

udp4 0 0 127.0.0.1.52671 127.0.0.1.52671

udp4 0 0 *.5353 *.*

udp4 0 0 *.* *.*

udp4 0 0 127.0.0.1.49162 127.0.0.1.1023

udp4 0 0 *.* *.*

udp4 0 0 *.631 *.*

udp4 0 0 10.10.1.190.123 *.*

udp4 0 0 127.0.0.1.123 *.*

udp4 0 0 *.123 *.*

udp4 0 0 127.0.0.1.49159 127.0.0.1.1022

udp4 0 0 127.0.0.1.49158 127.0.0.1.1022

udp4 0 0 127.0.0.1.1022 *.*

udp4 0 0 127.0.0.1.1023 *.*

udp4 0 0 *.68 *.*

udp4 0 0 127.0.0.1.1033 *.*

udp4 0 0 *.514 *.*

udp6 0 0 *.514 *.*

Obviously, ports accepting remote connections expose the host more, but all

should be monitored. Firewalls can prevent open ports from being reachable, but can

also be subverted.Also, local users or malicious applications can attack an open local

network port in an attempt to disrupt a service or escalate privileges. Monitoring

hosts for changes in their list of open network ports is very important.

Nonvolatile Memory
Ten years ago, conducting an integrity assessment of a system involved performing

checksums of certain binaries. Rootkits were not nearly as involved as they are today.

If a system was compromised, attackers might hide their tracks by planting evil ver-

sions of ls or ps, but not all methods for getting information about files or processes.

In today’s world, integrity assurance is a much more difficult task. Rootkits have

evolved significantly; attackers and security administrators are constantly fighting to

stay ahead of each other in a world that is increasingly becoming obsessed with the

importance of security at both network and host environments.As older threat

models are being dealt with, attackers are resorting to newer, less protected fronts in

www.syngress.com

72 Chapter 2 • Understanding the Terrain

order to compromise a host. One of the fronts destined to attract more attention will

be with the exploitation of nonvolatile memory.

Nonvolatile memory is a hardware component like FLASH and EEPROM.

Devices including Ethernet controllers, graphics, and video boards, and the basic

input/output system (BIOS) or CMOS contain writable memory elements that

retain their state even when not powered.The concept of malicious code being

written to the BIOS is not new, and BIOS manufacturers have since resorted to

taking steps toward virus protection, but it has not proved to be very successful. With

advances in technology for components such as Ethernet, graphics cards, disk con-

trollers, and others, writable nonvolatile memory is finding itself in more elements of

a system, and with greater capacity. If a system is compromised, most people believe

that erasing the disk and rebuilding the system from trusted media will result in a

known good trusted initial state. However, if the malicious source is actually stored

in nonvolatile memory of some kind, rebuilding may not help at all. With non-

volatile memory gaining a bigger footprint on systems, this is becoming more of a

risk to the integrity of hosts.

The problem is that attack scenarios involving nonvolatile memory are specific

to hardware and certain system configurations.This can significantly limit the ease at

which malicious software can propagate. For the same reasons, it is difficult to imple-

ment support for monitoring all of these disparate hardware sources of nonvolatile

memory. In any case, the problem exists; it is not impossible for a worm to exploit

something like an Ethernet controller and spread many similar hardware configura-

tions throughout a network.Think about the security of mobile devices such as

phones and personal digital assistants (PDAs). By and large, security relied on the

proprietary nature of their environments; however, we are starting to see antivirus

software for mobile devices.

www.syngress.com

Understanding the Terrain • Chapter 2 73

Summary
This chapter covered many facets of a typical host environment, including common

UNIX, Linux, and Windows operating systems.Although these environments vary, it

is helpful to understand the general landscape of a host, and that host integrity

involves monitoring more than just files.

Users and groups provide the backbone of access control, whether for the rela-

tively simplistic UNIX model or with the more byzantine access control mechanisms

found on Windows.Although the kernel serves to abstract and facilitate safe use of

hardware, it is exposed through the ability to dynamically load code and other APIs

that make it vulnerable to abuse. Libraries and frameworks are an important and crit-

ical aspect to the runtime security of a host. Processes run with varied privileges and

interact with other processes consuming various amounts of system resources.The net-

work stack provides a gateway to the network, allowing incoming and outgoing data

that must be controlled. Finally, areas of the host environment that are not often

included in integrity monitoring, such as nonvolatile memory, are future battlegrounds

in the overall fight to maintain host integrity. Monitoring the integrity of a host

involves keeping a watchful eye on all areas of the host environment.

Solutions Fast Track

Users and Groups

� Users and groups provide the basis by which access control and privilege is

enforced for file system activity and processes.

� Escalation of privilege is a common goal for attackers and malicious users.

Effective host integrity monitoring on any platform includes monitoring

changes to user and group configurations.

Files and File Systems

� Files make up a large part of host integrity monitoring because most system

interaction involves operating on files in some way.

� The integrity of a host is dependent on the file system security, especially

for system executables and libraries.

www.syngress.com

74 Chapter 2 • Understanding the Terrain

� Understanding the basic structure of file systems and file attributes will help

you understand the significance of a detected change, and how to respond to

that change.

The Kernel

� Most kernels support dynamic loading of code; this feature is often the target

of attack.

� The kernel has complete control over the system.An attacker that has

compromised the kernel can make it very difficult to detect that an intrusion

has occurred, and can destroy the integrity of the environment by altering the

behavior of system calls.

� Monitor as many aspects of the kernel as possible, including kernel object files,

the kernel file itself, symbol tables, and the list of currently running KEXTs.

Libraries and Frameworks

� Dynamic libraries are an ongoing integrity concern because the integrity of

the library files is an issue each time a dependent application is run.

� Dynamic libraries are often neglected because they are separate from the

executables and can exist anywhere on the file system.All dynamic library files

should be treated like executables and strictly monitored for any changes.

� Prebinding and prelinking present a serious problem for file integrity

monitoring because they change files without any practical way of verifying

the nature of the change.Applications such as ctool and prelink on Linux are

helpful, but not ideal solutions.

Runtime

� SUID and SGID applications allow processes to run with specific privileges,

regardless of which user started the process.These access permissions must not

be taken lightly. Host integrity monitoring should include regular audits for

SUID root executables.

� Operating systems allow unprivileged processes to consume massive amounts

of resources.A host integrity monitoring deployment must watch for processes

that are consuming more than acceptable amounts of system resources.

www.syngress.com

Understanding the Terrain • Chapter 2 75

� Complicated access control and runtime privilege schemes are a threat to the

integrity of a host.Administration is difficult, and the ramifications of changes

are not often realized. Monitoring the integrity of the runtime environment is

an essential part of host integrity monitoring.

Network

� A compromised host is sometimes used as a launching pad for other attacks.

Monitoring your host’s network facilities can sometimes be the first indication

that you are being attacked or misused, or that malicious activity is attempting

to spread to other hosts.

� Buggy software attached to the listening end of a network port can create a

vector for worms to spread from host to host. Monitoring open network ports

is essential in detecting when a host has left itself open to attack.

Nonvolatile Memory

� Nonvolatile memory will likely become more and more popular in the area of

host integrity.

� Attacks involving nonvolatile memory are more complex, but also becoming

more of a reality. Mass deployments of like hardware configurations are ripe

targets for worms or viruses that hide themselves in nonvolatile memory of

some kind.

www.syngress.com

76 Chapter 2 • Understanding the Terrain

Q: Other than changes to the root or administrator user, why is it so important

to monitor changes to other users or groups?

A: Changing user and group information usually involves administrator privi-

leges. If a change to the user or the group configuration of a host was not

done by an administrator, this is a problem. Monitoring for unauthorized

changes can detect compromised accounts, as well as unauthorized or unin-

tentional change. Whether or not a change was authorized, the resulting

impact of a user or group change is not always apparent. Users added to

groups open new file system privileges and may provide them with addi-

tional runtime privileges.

Q: Do I need to understand how file systems and files are implemented?

A: No; it is not necessary. What is important is being familiar with the attributes

of files so that when you see a change, you understand the significance of

that change.

Q: Does disabling the ability to load kernel modules prevent the kernel from

being tampered with?

A: No. While kernel modules and extensions are often attacked, there are other

ways of compromising the kernel. First, the kernel file itself can be altered or

replaced with one that is built to do the bidding of the attacker. Second, the

running kernel memory itself can be altered and compromised.Thus, it is

important to monitor as many facets of the kernel as possible, including run-

time characteristics and the supporting files.

www.syngress.com

Understanding the Terrain • Chapter 2 77

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: Does performing a regular analysis on the checksum of a file detect all

changes to that file’s contents?

A: No. Changes to resource forks and alternate data streams are often not picked

up even by moderately sophisticated integrity monitoring tools.

Q: I protect my hosts with firewalls. Why is it necessary to monitor for open

network ports?

A: External firewalls exist mainly to protect software services that cannot be

trusted to withstand an attack. Firewalls are themselves software that can fail

or be subverted. It does not make sense to build a wall around your host

while network services are allowed to run, because eventually, the wall will

crumble. Instead, configure your host as if you do not have a firewall, locking

down services and exposing only ports that you need. Monitor this configu-

ration for any change.The firewall serves as an added layer of protection.

 JG32

www.syngress.com

78 Chapter 2 • Understanding the Terrain

Understanding
Threats

Solutions in this chapter:

■ Malicious Software

■ Internal Threats

■ Rootkits

■ A Tour of Successful Worms

■ Circumventing Host Integrity Monitoring

Chapter 3

79

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Introduction
Threats to hosts are everywhere.They include software such as remote exploits,

viruses, and poorly written software applications.A threat can also be a malignant

administrator, a malicious user, or even uncontrolled physical access.This chapter

focuses on the threats that host integrity monitoring looks for, specifically insider

threats and rootkits. We also look at some successful worms and their effect on the

hosts they infected. Finally, we look at threats to host integrity monitoring (HIM)

tools and discuss ways to mitigate them.

Before you can establish a plan for monitoring the integrity of your hosts, you

must understand their environment and the threats to that environment.This process

includes defining what the threat is and its potential impact on the environment.

Once you understand the impact, you can define symptoms that will indicate if a

threat has been realized.Those symptoms are used to establish a plan for monitoring

the environment.

An example of this is the training required to become a doctor. Even though most

doctors eventually specialize, their medical training still requires them to understand

basic anatomy.This background proves helpful when detecting things that are out of

the ordinary. In addition, doctors study the nature and effects of diseases to learn how

they behave and to be able to detect them. Like all analogies, this one eventually breaks

down, but effective host integrity monitoring requires an understanding of the host

environment, how it can be attacked, and how those attacks can be detected.

Malicious Software
Malicious software is classified and comes in many different forms.These classifica-

tions are not perfect and there are always exceptions; however, they help relay infor-

mation about the nature and behavior of the software in question, including viruses,

worms,Trojans, and spyware.

Viruses
A computer virus is software that attaches itself to other software with the intent of

spreading to other systems.The secondary purpose of a virus is to consume resources,

destroy data or other software, and inflict damage to the underlying hardware.

A computer virus is self-replicating, traveling from computer to computer

through human interaction (opening e-mail attachments, downloading and installing

software from unknown sources, sharing infected files). Viruses generally do not

spread on their own; they take advantage of common human interaction. Melissa is a

www.syngress.com

80 Chapter 3 • Understanding Threats

good example of a successful virus. Melissa took advantage of Microsoft Word

macros and spread by mailing itself to the first 50 e-mail addresses in the Microsoft

Outlook address book. People often open attachments and unintentionally run

viruses because they recognize the sender of the file.

Viruses have infected computer systems for many years. Many people consider

purchasing antivirus software a necessary part of the cost of owning a personal com-

puter.The reality is that many viruses can be thwarted by responsible use; using

antivirus software is not always the best way to deal with the problem. Unfortunately,

some people are easily convinced that they need a yearly subscription for antivirus

software.

Worms
A software worm is self-replicating and moves from computer to computer

autonomously.The distinguishing factor between a virus and a worm is that a worm

can spread on its own accord; no human interaction is needed.This can be more

problematic than a virus because a worm can spread rapidly. Even if you detect that

a system is infected, the worm may have already been used as a stepping-stone to

infect other machines.A successful vector for a worm is determined by access and

the nature of the vulnerability. Worms can also adversely affect patch management.

In some cases, it may not be possible to patch vulnerable hosts before they are

infected. For example, the SQL Slammer worm doubled its infected host count

every 8.5 seconds, and hit 90 percent infection of vulnerable hosts in 10 minutes.

After this worm took off, patching was not possible. Furthermore, a HIMS in this

situation would be completely useless to you.Also, vulnerabilities may be made

public before the vendor provides a fix. Sometimes there are workarounds, but they

can be challenging when thousands of hosts are involved.

Although the first Internet worm surfaced in the late 1980s, they did not garner

much attention until recent years.The widespread adoption of broadband Internet

connections has resulted in more vulnerable computers being connected to the

Internet for longer periods of time.This development, combined with the continual

discovery of software vulnerabilities, has resulted in network landscapes ripe for

spreading software worms. Some examples of popular worms include Blaster, Linux

Slapper, Code Red, SQL Slammer, and Nimbda (discussed later in this chapter).

Trojans
Trojan software is software that looks legitimate, but is actually used as a vehicle for

conducting malicious activity on a host.There are many vectors for Trojan software.

A Trojan can be sent in an e-mail disguised as an attractive piece of software, or,

www.syngress.com

Understanding Threats • Chapter 3 81

ironically, as a security update.An attacker may compromise a vendor’s Web site and

plant Trojan copies of its software. Users who cannot verify the source of the soft-

ware then become victims. Because Trojans mask themselves as legitimate software,

they are not easy to detect.A good example of this is the GNU File Transfer

Protocol (FTP) server compromise (http://www.linuxsecurity.com/content/

view/114468/65/).

A classic use for Trojans is with rootkits. When an attacker compromises a

system, it is not uncommon for them to replace certain system executables with ver-

sions containing Trojans in order to leave backdoors, hide specific information about

the environment from administrators, or hide the intrusion itself.

Some examples of popular backdoor Trojans include Back Oriface and NetBus.

These two Trojans install servers that allow unrestricted remote access to certain ver-

sions of Microsoft Windows.The Phel.A Trojan affects more recent versions of

Windows, specifically XP SP2.This Trojan modifies the registry so that it is executed

every time the system is booted.

Spyware
Another software-based threat is spyware, which is software that collects information

about the host environment or the actions of users (without their consent), and then

sends the information to a central location.There are many different types of spy-

ware. Some attempt to steal passwords or financial information. Some collect statis-

tics-related usage such as purchasing habits, which Web sites are visited, and search

engine activity. Most spyware is hidden so that the users do not know it exists on

their systems; however, there are many Web browser add-on modules that claim to

provide some sort of benefit. Regardless of the function, the attribute that ties all of

this software together is collecting information without the consent of the user.

In recent years, many companies have tried to find a solution for this threat.

Even Microsoft has released software to deal specifically with spyware

(http://www.microsoft.com/athome/security/spyware/software). Many antivirus companies

claim that their technical support lines are ringing off the hook with issues related to

spyware.These types of threats have existed for years; however, now there is a means

for them to see widespread infection.

General Considerations
Software can also be unintentionally malicious.Although not common, there have

been cases where someone developed a virus or a worm but did not intend it to be

destructive. Sometimes proof-of-concept viruses and worms are written to bring

attention to a vulnerability. In other cases, someone may be developing software for

www.syngress.com

82 Chapter 3 • Understanding Threats

educational purposes and accidentally release it.A doctoral student at Cornell

University wrote the first Internet worm in 1988.The first worms were designed to

make computer systems and networks more productive.

NOTE

The most important thing to remember is that the real problem is flawed
software. Viruses are not a problem, because people do not have the
latest trendy antivirus program or up-to-date virus signatures. Internet
worms are not a problem because people leave their computers connected
to a DSL modem overnight. The real problem is that most software is
flawed. Software applications may satisfy a list of functional requirements,
but they often unintentionally allow themselves to be abused and leave
hosts vulnerable to attack. The primary line of defense for a host should
not be a firewall, network security appliances, antispyware, or antivirus
software. These are all tools that may prove helpful, but they should not
constitute the backbone of your host’s security defenses.

Operating systems and software applications and services should provide ade-

quate security for hosts, and firewalls should be considered icing on the cake for

secure host environments. In my experience as a software engineer, the development

of secure software is not a goal for most commercial software vendors, even those

with security-related products. Until this situation changes, you will see vulnerabili-

ties in software systems being exploited every day. In the meantime, it helps to know

how some of these malicious software applications work. (We look at a few effects of

some software worms later in this chapter.)

Internal Threats
Internal threats are not a new concept. Employees abuse insider privilege, store clerks

help themselves to cash from the register, CIA agents sell national secrets to other

governments, and so on. It is no surprise that people with internal access to com-

puter systems abuse their access privileges.

Firewalls and other perimeter defenses are powerless to detect internal attacks or

misuse. So much effort is directed at keeping the bad guys out, that many systems are

left vulnerable to inside attacks. I have seen studies that concluded that internal

attacks are more prevalent than external attacks. I have also seen studies that claim

the opposite or that they are equally as frequent. Whatever the case, most systems are

www.syngress.com

Understanding Threats • Chapter 3 83

designed to defend from the outside more than from the inside.The problem with

this is there are different factors involved with threats that originate from the inside.

An attacker may know the established protocol for incident response, and whether

network- or host-based monitoring or auditing is being conducted and how to subvert

it. Insiders often know of weaknesses or vulnerabilities, defense mechanisms, software

versions, patch levels, and information about where sensitive information is being

stored. Furthermore, a malicious insider may have designed network or security archi-

tecture or been an administrator or security officer.They may have physical access to

systems.The insider threat is indeed a problem.To understand how to detect insider

abuse, we look at some of the ways that internal attacks are realized.

Local Access
Local access implies that you have circumvented perimeter security, legitimately or

not. It means that you have shell access in some form or that you are sitting in front

of the console and have access to accounts on a host or network of hosts. Local

access is a big deal. Many security professionals consider unauthorized local access to

a host the final stretch in rooting a box.That is, once an attacker has taken advantage

of a non-root remote exploit to gain access to a system, it is simply a matter of time

before he is able to elevate his privileges; there always seems to be a way.The abuse

of local access can be seen in different forms.

The humdrum of unprivileged local access can be remedied through a number of

local exploits. Locally based exploits that allow non-root users the ability to elevate

their privileges, are constantly being discovered. For example, cve.mitre.org reports more

than a dozen Solaris vulnerabilities in 2004 alone, involving locally based exploits

being used to gain unauthorized access. One of the more interesting of these is the

Solaris root exploit using the passwd program (http://www.ciac.org/ciac/bulletins/

o-088.shtml). Sun Microsystems claims there are no symptoms that would indicate that

the exploit has been executed. However, if you are monitoring processes on your

Solaris system and see a shell process being executed by the root, I would argue that it

is a symptom. Local exploits are not going away; however, steps can be made to detect

when an attacker is pounding on the door attempting to gain access.

Bad software is another risk that fuels the threat of local access. In the same way

that lousy software paves the way for remote exploits, it also allows for locally based

exploits.The difference is that many times there is no firewall to deny access to open

ports. Some applications listen exclusively on the loopback adapter, which means

local users have the ability to hurl data at those open ports. Software often makes the

bad assumption that local users always have the best of intentions. Finally, software is

often not installed correctly with respect to permissions, file and group ownership, or

www.syngress.com

84 Chapter 3 • Understanding Threats

special permissions such as Set User ID (SUID) root. Local users attempting to abuse

software can show a variety of symptoms. First, you may see the appearance of core

files generated by system utilities. Core dump files from SUID root applications are

highly suspect. Furthermore, you may see time stamps for configuration files

changing that cannot be traced back to an administrative task.Another indication of

software abuse is increased resources associated with scripts or software that is being

made to run a marathon of cycles in hopes that it will falter.

The default installations of most operating systems do not have strict compliance

with the principle of least privilege, specifically about file permissions. Unprivileged

users can often view system logs, the contents of configuration files such as the

syslog, and the contents of /etc/passwd.A strict interpretation of least privilege means

that unprivileged local users should not have access to this information. In the event

that an account is compromised, an attacker can gain a great deal of information

about the system, its configuration, and other users.All of this can be used to mount

a successful attack.There is no reason that unprivileged users have to execute or read

access to all of the executables in /sbin or /usr/local/sbin, or the like.Although most

systems do not allow non-root users the ability to write to system executables, they

often allow them to read or execute them.

Universities, Internet service providers, and other organizations that have systems

with thousands of users run the risk of having compromised accounts. When I was

in school, getting credentials for a university account was easier than finding your

way around campus.Aside from all of the aforementioned symptoms, compromised

accounts can sometimes be detected by monitoring the login and logout events asso-

ciated with users. Specifically, you can check for an unrealistic amount of login ses-

sions or logins to systems at suspicious times.

Finally, local access enables users to consume more system resources than you

might expect. Most operating systems prevent themselves from falling over, but most

do not stop users from doing anything short of that. On most systems you can write

applications that will continually allocate memory, or make use of an input/output

(I/O) device and bring all other facilities to a slow crawl. Serious abuses of this are

easy to discover by monitoring the network, I/O, memory, and other resources.This

can sometimes lead to the detection of other unauthorized activities or compromise

such as a backdoor or a file sharing service.

Administrative Negligence
An often-overlooked internal threat is administrative negligence. If an administrator

or security officer does not keep abreast of new security information, they cannot

apply it to their jobs. If they are careless with their administrative tasks, they can

leave hosts open to attack.

www.syngress.com

Understanding Threats • Chapter 3 85

Poorly written software can have a big impact on the integrity of a host envi-

ronment.Administrators are not aware sometimes that a certain software application

can leave a host open to local or remote exploits. Fortunately, the installation of new

software is easy to detect. When your host integrity monitoring system (HIMS) con-

tinually monitors the system for new executables, it is unlikely that another adminis-

trator (or software) will install new applications without your knowledge.

Along with poorly written software is the configuration of software.An adminis-

trator may not learn how to properly configure a software deployment and trust the

integrity of the host to the vendor’s default configuration.The configuration of remote

access services such as Secure Shell (SSH), database servers, and Web servers can deter-

mine the fate of a host. Configuration issues are harder to monitor directly. However,

once you have established a known good configuration, you can monitor the content

changes to certain configuration files so that any changes do not go unnoticed.

Auditing and logging are critical for maintaining the security of a host.The

establishment of proper logging mechanisms can be used to detect local and remote

attacks. It is also useful when conducting damage assessment or forensics. Logging

systems that are attacked or simply never set up, are a threat to the integrity of the

host. Monitoring logging services (such as syslogd), as well as their configuration, is a

good practice.

Administrative Abuse
Administrative abuse is the ultimate in local threats, because system administrators

not only have local access to the system but they also have privileged access as a

requirement for some of their duties. System administrators often know how systems

are designed, where auditing trails are, and how they can cover their tracks.

Ideally, security administrators are not in charge of security for a host or net-

work. Instead, they have privileged access, but their actions are fully logged and

audited. If another person or department is in charge of security, it is much harder

for a malicious administrator to subvert security measures. Mitigating the threat of an

administrator abusing their privileges can be done by involving multiple administra-

tors in the reporting of host integrity monitoring reports or any other security-

related alerts for that matter.

Rootkits
A rootkit is a collection of modified system applications or kernel code that is used to

create a backdoor to a system without being detected. Rootkits can be deployed onto

a system via a worm, or an attacker can use a local vulnerability.Traditionally, rootkits

www.syngress.com

86 Chapter 3 • Understanding Threats

were modified system utilities such as ps, ls, find, netstat, and others, which would

perform their function, but be built to serve the needs of the attacker; for example,

hiding a system process or files, collecting passwords, or opening a backdoor.Although

effective at one time, modern host integrity monitoring systems will notice these right

away.When talking about rootkits today, what we mean is kernel rootkits.

The idea is the same with a kernel rootkit; alter the system and create an unde-

tected backdoor.The difference with a kernel rootkit is that the altered code

involves a Trojan or patched kernel code.A kernel rootkit is loaded as a driver or a

kernel extension and usually takes advantage of call hooking. Because kernel rootkits

involve compromising the kernel, they can basically do anything, including avoiding

detection by other software.

Kernel rootkits require a full compromise of the system to be installed.That is,

an attacker must have obtained root or administrative privileges to install the rootkit.

Unfortunately, remote administrative level exploits of Microsoft Windows is not

unheard of. It is not surprising that many kernel rootkits are developed for

Windows.This is another case in point for the power of local access. Locally based

exploits provide a means for malicious users to install kernel rootkits.Although there

has been a great deal of discussion about this topic (e.g., Microsoft, RSA 2005),

kernel rootkits for Windows have existed for years; they are not a new phenomenon

and are becoming more refined.

NOTE

An interesting thing to note about kernel rootkits is that they are mostly
based on call hooking. This involves redirecting the normal execution of
code to code placed by an attacker, which can happen within an applica-
tion, a library, or OS syscalls. An attacker will often call the original code
to simulate what would be the normal result of the call, which is a
common way to avoid detection. An example would be to return the
contents of a directory; only the list would exclude the attacker’s file(s).

Rootkits can do various things, such as provide backdoor access to a host, cap-

ture network traffic, or steal sensitive information by logging keystrokes.A kernel

rootkit that installs itself without being detected and does not bring attention to

itself, presents a very serious problem.At this point, the only recommended way to

detect this kind of attack involves offline analysis. Other indications may involve the

events surrounding the initial compromise, a mistake in covering the installation of

the rootkit, or some other detected hiccup or change in system behavior.

www.syngress.com

Understanding Threats • Chapter 3 87

A Tour of Successful Worms
This section takes a close look at the impact some of the more popular software

worms have had on their infected hosts. For each worm, we provide basic information

about how it gains access to the host and what it does to the environment.The goal of

this section is to see firsthand the effects of software worms and learn from the foot-

print left on the host terrain. Worms come and go, and although these worms were

not released yesterday, you can see how they impact their environment and use that

information to develop a plan of what to monitor in the host environment.

Worm #1: W32 Blaster
Name: W32/Blaster

Affected systems: Windows NT, Windows 2000, Windows XP, Windows 2003 AS

CVE: CAN-2003-0352

Description
The Blaster worm exploits vulnerabilities in the Remote Procedure Call (RPC)

Distributed Component Object Model (DCOM) implementation of certain versions

of Microsoft Windows. In addition to performing all of the attributes of a worm

such as locating and infecting other hosts, this worm also attempts to conduct a

denial-of-service (DOS) attack on the Microsoft Windows update Web server

(http://www.windowsupdate.com).

Footprint

■ Sets the registry key:

HKLM\SOFTWARE\Microsoft Windows\CurrentVersion\Run "windows auto

update"="msblast.exe"

■ Sends traffic on port 135 to attempt to infect other hosts.

■ Opens a backdoor by listening on Transmission Control Protocol (TCP)

port 4444 to accept remote commands.

■ Opens User Datagram Protocol (UDP) port 69 to send msblast.exe to other

hosts.

www.syngress.com

88 Chapter 3 • Understanding Threats

Analysis
The interesting thing to note here is that you may not see any changes to the file

system; the closest thing is the registry key change.This worm will not be detected

by port 135, because most Windows systems require that port. UDP 69 is also not

likely to trigger alerts.TCP port 4444 being open and in the LISTEN state will

likely be the alerting factor with this worm.

Worm #2: Linux Slapper
Name: Linux Slapper

Affected Systems: Linux

CVE: CAN-2002-0656

Description
This worm attempts to exploit one of the vulnerabilities of OpenSSL to obtain a

root shell on the target host.This worm looks for Apache Web servers running

Hypertext Transfer Protocol over Secure Socket Layer (HTTPS) and attempts to

exploit the vulnerability and execute /bin/sh. Vulnerable versions of OpenSSL

include all released versions up to and including version 0.9.6d.Although other

products suffer from this vulnerability, the Slapper worm uses a Linux shell code

exploit and thus, is limited to Intel-based Linux systems.The purpose is to allow

remote root access and use it in a distributed DOS (DDOS) attack.

Footprint

■ A single process called “.bugtraq” is running.

■ Opens UDP port 2002.

■ The following files exist:

■ /tmp/.uubugtraq

■ /tmp/.bugtraq.c

■ /tmp/.bugtraq

Analysis
In this case, files are stored in /tmp, which is not a common place to monitor. Seeing

small .c files in /tmp may or may not be uncommon. Monitoring for a process called

“.bugtraq” is also not likely to be found by an integrity monitoring system.The

opening of UDP port 2002 would be detected.

www.syngress.com

Understanding Threats • Chapter 3 89

Worm #3: BugBear
Name: W32 BugBear

Affected Systems: Windows 95, Windows98, Windows ME, Windows 2000, and

Windows XP

CVE: CVE-2001-0154

Description
This worm is busy. It can be spread through the automatic opening of e-mail attach-

ments, or it can spread by locating open network shares and copying itself into the

start-up locations of remote hosts.This worm infects executables, logs keystrokes, opens

backdoor access to the system, and attempts to kill executables used by antivirus and

firewall products.The list of applications that are infected are hard-coded, as are the list

of e-mail addresses to send logged keystrokes. Some variants of this worm target finan-

cial institutions.This worm is sometimes called a virus because it involves e-mail inter-

action; however, it can spread on its own, so technically it is a worm.

Footprint

■ Worm executable copied to start-up folder with a varying name.

■ Over 20 executables are possibly altered in the content.

■ Firewall or antivirus process may be terminated.

■ New dynamic link library (DLL) file in %SystemRoot that is 5,632 bytes.

■ New .dll and .dat files in %WindowsRoot% and %SystemRoot%.

■ Open TCP port 1080.

Analysis
The easiest place for this worm is the listening network port on TCP 1080.

Additionally, this worm installs files under the system directory for keystroke log-

ging.Although you can monitor startup folders or the process table to check that a

firewall or antivirus program has been disabled, watching for new files is easiest.

www.syngress.com

90 Chapter 3 • Understanding Threats

Worm #4: SQL Slammer
Name: SQL Slammer

Affected Systems: Windows systems running Structured Query Language (SQL)

Server or the Microsoft Desktop Engine 2000 (MSDE)

CVE: CAN-2002-0649

Description
This worm does not obtain root privileges; it just spreads itself. However, the

damage caused in network downtime and availability of resources was huge, espe-

cially considering how bad it was at locating and infecting other machines.This

worm attacks a host by connecting to UDP port 1434 and exploiting a buffer over-

flow with the SQL service. It then randomly computes Internet Protocol (IP)

addresses and attempts to propagate.

Footprint

■ Increased network resources and DOS to the SQL server.

Analysis
The use of UDP allowed this worm spread quickly. Not only that, but the code

basically attacked as many vulnerable hosts as it could find.The other frustrating

factor with this worm is that it does not leave a trail on the file system. Instead, it is

only contained in memory (most virus checkers at the time never stood a chance).

The best way to detect this worm is by monitoring process utilization on the host.

However, given the rapid speed of this worm, prevention is the only effective coun-

termeasure.Another interesting thing about this worm is that the vulnerability was

known, and Microsoft had released patches.The worm would have been a failure

had system administrators patched their servers.

Worm #5: Nimbda
Name: W32 Nimbda

Affected Systems: Windows (IIS, Outlook, Outlook Express, Internet Explorer)

CVE: CVE-2001-0154

www.syngress.com

Understanding Threats • Chapter 3 91

Description
This worm can arrive as an e-mail attachment that takes advantage of a

Multipurpose Internet Mail Extensions (MIME) exploit, or it can infect via Internet

Explorer if the browser is being used to view a compromised Internet Information

Server (IIS) Web server. It also spreads by locating IIS servers vulnerable to the

Unicode Web traversal exploit (FIXME) and opening a network port on UDP 69.

Upon infection, the IIS server index files are modified to redirect clients to an .eml

file in an attempt to infect clients through their browser.

Footprint

■ Modifies system.ini file and adds the following:

Shell = explorer.exe load.exe -dontrunold

■ Registers a new service.

■ Worm executable stored in %SystemRoot%\load.exe

■ Modifies the registry key:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Network\LanMan\[C$ -> Z$]

■ Trojans the Windows DLL: Riched20.dll and copies this file to many dif-

ferent locations.

Analysis
The easiest target here is the detection of the Riched20.dll file being compromised

from the system directory and possibly appearing in many places on the file system.

The next thing to monitor for is the addition of a new service; however, it is pos-

sible that Nimda will not create a service. Monitoring for a new file called load.exe

under the system root directory is also easy.

Conclusion
Software worms are similar to music superstars. Many are considered very successful,

yet most are not rooted in any real talent. We have examined only a few successful

software worms, but from this we can see that detection is not that difficult as long as

you are monitoring the right areas of the host environment. In cases like the SQL

Slammer worm, detection would not have helped the problem much, but for the rest,

detection does not involve complicated rules or configurations.The appearance of new

.dll or .exe files under system directories should always generate an alert. Likewise, the

www.syngress.com

92 Chapter 3 • Understanding Threats

appearance of TCP ports accepting outside connections should also warrant investiga-

tion. UDP ports are not as easily detectable because of the difference in UDP and

TCP protocols; UDP is connectionless whereas TCP has specific states and it is easier

to detect an open and listening TCP port than an open UDP port.

In all of these cases, it is obvious that we are not dealing with the most sophisti-

cated programmers. If you read the detailed descriptions for these and other famous

viruses or worms, you will find some very entertaining failures. For example, the

VBS/SST virus (aka Anna Kournikova) attempts to replicate itself on the system and

ends up creating an empty file, it is clearly not the most tested of code. Further analysis

of the propagation techniques for these malicious bits of code will reveal that they are

somewhat lacking in their propagation logic.The Nimbda worms are an exception to

this; their logic is somewhat intelligent for locating and infecting other hosts.

Circumventing Host
Integrity Monitoring
Chances are that the most severe threats to your host involve all of the things previ-

ously mentioned in this chapter, and not the subversion of your host integrity moni-

toring system; however, it is possible. Generally, the way this works is that someone

analyzes the monitoring tool of the day (this has been done for Tripwire many

times) and then figures out ways to defeat it and publish the findings.The next step

is to integrate this into a rootkit or bundle it as part of an exploit.This section

explores ways that people can subvert monitoring, and the attempts by application

developers to mitigate this threat.

The Never-Ending War
As long as the solutions to monitor the integrity of hosts are entirely built in software,

they will be defeated. Software can never be fully trusted to implement a completely

reliable integrity monitoring system.The only way to end this war is to have the host

integrity monitoring system use some type of separate hardware key storage mecha-

nism.This may not sound like a good idea, but we run services all of the time and rely

on software to protect things such as passwords, certificates, private keys, and so on.

In the last decade, we have seen a handful of papers and presentations showing

how to defeat integrity monitoring systems.The problem is that most of this informa-

tion is no longer an issue; attacks and subversion techniques and integrity monitoring

systems are more advanced.The current threat of subversion lies within the kernel.

www.syngress.com

Understanding Threats • Chapter 3 93

Former Battlefields
There was a time when simple file integrity verification would buy a great deal of

integrity assurance.Those days are clearly over.The following techniques should be

considered standard procedure as far as a HIMS is concerned.

Time-Stamp Modification
A time-stamp modification attack occasionally appears in a 2600 article.The idea is

that an attacker has installed a backdoor or modified a system-critical file and needs

a way to cover his tracks so that his attack is not picked up by a file integrity check.

This involves saving the time-stamp information for a file or files, changing those

files, and restoring their time stamps back to their original values.The mtime of the

file is set back with a touch command or something similar. Resetting the file’s

inode time (ctime) can be easily accomplished with methods that involve altering

the system clock.The problem is that most host integrity monitoring systems will

detect a change in the checksum; therefore, this subversion technique is flawed.

Process Killing
If the monitoring system runs as a daemon or a service, it can be eradicated so that

the agent does not continue to monitor the host environment. If it does not run as a

service, the executable or configuration files can be altered so that the application

does not run.This is equivalent to disabling a surveillance camera with spray paint.

This is no longer an intelligent way to subvert a modern host integrity monitoring

system. Centralized management allows for the console to expect agents to check in

and provide information about their environment. If an agent fails to do this, an alert

is usually generated.

Falsifying Scan Data
Technically, it is possible for an attacker to hijack an agent and replay the same infor-

mation to the console so that alerts are not generated.The problem with this is that

most agents do not maintain information on the last scan locally; it is sent to some

type of console.Therefore, an attacker would not only have to hijack the agent exe-

cutable, but also monitor at least one scan and save that information for replay.This

also assumes that the agent is configured to scan the same information each time.A

tactic used by administrators is to rotate scan configurations.To be successful, the

attacker must save the entire state of the current system to properly spoof the scan

results.Thus, the data returned by the scan agent is often a secondary means for the

console to authenticate the agent.

www.syngress.com

94 Chapter 3 • Understanding Threats

Hide and Seek
Another attack technique is to analyze the scan period of the agent and restore the

environment for the duration of the scan.The problem with this is that it assumes

the scans are periodic. If they are not, this technique fails.

The Modern Battlefield
All of the techniques in the previous section were valid for very simple file integrity

checking systems such as the academic version of Tripwire, but not with modern

host integrity monitoring systems. Not only are those attacks ineffective, they are

hard to maintain and can fail in too many ways to keep track of.To truly subvert a

host integrity monitoring system, you must attack it by owning the kernel.

Most host integrity monitoring systems trust the kernel, which presents a problem

for systems that do not have a means of verifying kernel integrity.The problem is that

kernel rootkits can fool agents by hiding the fact that various elements of the system

have been altered.A good example of this is when a kernel rootkit is designed to hide

files containing Trojans by altering the way the system calls to open() and exec() work.

Imagine that an attacker wants to plant Trojans but does not have the changes detected

by a monitoring agent. First, the attacker will maintain the original executable and

plant a Trojan copy on the file system. When any application issues a call to open the

executable, the rootkit directs the application to the original version; however, any calls

to execute that file will be directed toward the Trojan.The agent is thus tricked into

computing a checksum for a different file than what is actually being executed. In a

similar manner, calls to stat() that return inode information can also be redirected or

spoofed. Finally, the rootkit can take steps to hide the fact that the file containing the

Trojan exists.This technique can be used to hide files, processes, drivers, and kernel

extensions from being detected by the agent.

Mitigation Techniques
Most host integrity monitoring systems assume that they will eventually be a target,

and, therefore, have some type of defensive strategies built into their design.

Although they are not foolproof, they can serve to deflect many attacks or subver-

sion attempts.

Session Keys
Scan agents that are persistent or run as a daemon can exchange and establish a

shared key, which is kept resident in memory only. Whenever the agent communi-

cates with the console they exchange keys, which serves two purposes. First, it can

www.syngress.com

Understanding Threats • Chapter 3 95

act as part of the authentication process based on the last known contact. Second, it

can be used to determine if the agent process has been restarted. Since the key is

only kept in memory, it will be lost upon process termination.The assumption is

that memory has not been compromised.An attacker that has obtained the session

key can spoof the authentication and the uptime.

Executable Keys
The agent executable file may be signed or have a key built into it. If another com-

ponent of the system has knowledge of this key, it can be used to perform limited

verification of the data produced by an agent.The basic idea is that an attacker

cannot easily Trojan the agent executable.The problem is that reverse engineering

the executable will reveal the key. Steps can be taken so that only the root can read

the executable, however, an attacker who has the ability to overwrite the agent exe-

cutable has the ability to read and extract the key. Sometimes the key is distributed

across the executable, but again, this is more of a hindrance to the person performing

the reverse engineering than a foolproof method of preventing access to the key.

Log and Database Signing
Log messages and scan databases can be digitally signed, which is helpful for two rea-

sons. First, it makes it more difficult for an attacker to spoof log and database data.

Second, it is useful for forensics. Having archives of monitoring data can be helpful,

but the authenticity of that data must be preserved. Having digitally signed logs and

databases is one step in the process of establishing trusted monitoring data that is

used for forensic examinations or as evidence in legal contexts.

Invisibility
If a process does not appear to be running on the system, it probably will not be

found.This also holds true for the scan agent. Scan agents should not have much

presence on the file system; hiding a running process may fool an attacker into

thinking that the agent is not installed or is not running. Steganographic steps can be

taken to hide the agent executable and any configuration file(s) into an unrelated file

such as a JPEG or an audio file.

The fact that most of these features exist in modern host integrity monitoring

systems is testament to the fact that they are real threats.Although none of these

techniques are perfect, they go a long way toward mitigating the threat of an attacker

subverting an established host integrity monitoring process.

www.syngress.com

96 Chapter 3 • Understanding Threats

Summary
There are many disparate threats to host environments. Some examples of common

threats are viruses, worms,Trojans, and spyware. Internal threats are varied and range

from unprivileged local access to administrative abuse of privileges.The developers

of kernel-level rootkits are orchestrating very complicated and effective schemes for

compromising a system and remaining undetected—a far cry from the rootkits of

the past. Malicious software worms spread faster than systems can be patched; how-

ever, they can be detected because most leave some type of imprint.You have to

know which elements of the environment to monitor.The circumvention of host

integrity monitoring efforts is possible, but the development of most systems reveals

that this problem has been considered and that mitigation techniques have been

implemented to protect the integrity of the monitoring process.

Solutions Fast Track

Malicious Software

� Malicious software comes in many forms, but some common labels are

viruses, worms,Trojans, and spyware.

� Computer viruses are like biological viruses in that they require human

interaction to perform their function, as opposed to a worm that propagates

on its own.

� Trojan executables hide themselves inside or are masked as legitimate

software applications, but really serve to perform malicious activities.

Internal Threats

� Local access is a very big deal. Intelligent attackers intent on obtaining root

privileges will likely do so if they have local access. Fortunately, detecting

the abuse is usually possible; even the best of exploits leave some kind of

evidence.

� Local attacks often involve the abuse of poorly written software.These

attempts can be detected by monitoring for unexpected changes to

configuration files, use of system resources, and core dump files.

www.syngress.com

Understanding Threats • Chapter 3 97

www.syngress.com

98 Chapter 3 • Understanding Threats

� Administrative abuse is not easy to detect because system administrators

often have the privileges to cover their tracks and know how to do so.

Rootkits

� Rootkits alter and Trojan a system, but require the existence of either a

local or remote root exploit to be installed.

� Kernel-level rootkits are a serious threat to host integrity, because they can

effectively avoid detection by today’s security defenses and are often well

written, as opposed to viruses or worms.

A Tour of Successful Worms

� Most of the worms seen in the last few years are easily detected by

monitoring system files and network ports.

� Although worms are still not very well written pieces of code, they seem to

be able to take advantage of poorly written software and badly configured

systems.

Circumventing Host Integrity Monitoring

� Although circumvention is possible, most host integrity monitoring systems

have a way of detecting compromise through executable keys, session keys,

and signed reports and logs.

� The data collected by a host integrity monitoring system is itself part of the

authentication of the scan agent and testament to the integrity of the

monitored host.

Q: What does disabling loadable kernel modules do to prevent locally based root

exploits?

A: Many local root exploits take advantage of kernel modules. However, dis-

abling loadable kernel modules (LKMs) is not a foolproof way to prevent

modifications to the kernel.An attacker can modify kernel memory directly

or modify the kernel file itself. Disabling the loading of kernel modules may

stop some specific attacks, but not all.

Q: What are some of the ways that rootkits can be detected?

A: The best way to deal with rootkits is to prevent them from happening.

However, there are a few different approaches you can take for a suspicious

host. First, applications such as Osiris and Samhain may indicate a compro-

mise by revealing changes in the environment using known good records of

previous state. Offline analysis of the file system may reveal the existence of a

rootkit.There are also applications such as chkrootkit that can be used to

detect the presence of known rootkits.The www.rootkit.com Web site has a

great deal of information and source code for rootkits and related techniques.

Q: What is the role of host integrity monitoring with respect to viruses, worms,

and spyware?

A: There are many tools available to monitor hosts for threats like viruses,

worms,Trojans, and spyware. None of them is complete and all of them have

their strengths and weaknesses.Antivirus software is generally signature-based

and is useless for newly discovered worms.The more recent anomaly based

intrusion prevention software is best at detecting potential new threats out to

do malicious things to the environment. Host integrity monitoring can catch

many threats that are less obvious, and also fill in where antivirus and intru-

sion prevention solutions have failed.

www.syngress.com

Understanding Threats • Chapter 3 99

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: What are some ways that host integrity monitoring can be used to mitigate

the damage done by poorly written software?

A: Establish a dedicated testing environment to analyze the effects of the soft-

ware. Host integrity monitoring software reveals changes in the environment

after the software has been installed or is running.This can reveal many

things, including new network ports, SUID root executables and other file

permissions, new processes or kernel modules, changes to users or groups,

and all of the files that were installed. Use past vulnerabilities in the software

as a starting point for where to look for signs that the software may be

putting your host(s) at risk.

www.syngress.com

100 Chapter 3 • Understanding Threats

Planning

Solutions in this chapter:

■ Understanding the Big Picture

■ Understanding Roles: The Bank Analogy

■ Planning Principles

■ Requirements

■ Planning a Management Console

Chapter 4

101

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Introduction
One of the most important steps in deploying a host integrity monitoring system

(HIMS) is to plan ahead. Every deployment scenario is different; however, all are

driven by the demands and constraints of the security policy and the objectives for

deploying a HIMS.The goal of planning a host integrity monitoring deployment is

to increase the visibility of the integrity of your hosts without placing excessive

demands on your administrative resources. If your deployment suffers from too much

noise, it will be a wasted effort. More importantly, if it distracts from other critical

security issues, it will be a failure. Proper planning can make a big difference in how

you plan to use your integrity monitoring software, which features you decide to

leverage, and which hosts you monitor.

This chapter provides practical information for planning every step of your

deployment process, including the initial setup and build environments, agent

deployment, establishing your management console, and administration.

Understanding the Big Picture
In many respects, host integrity monitoring is no different than any other tool used

by security administrators: if not deployed correctly, it can be a real headache.The

key to proper deployment is understanding that host integrity monitoring is just a

“drop in the bucket” as far as overall security is concerned.The best deployments are

the simplest ones, because they are the easiest to understand. If your deployment is

so complicated that you must send your security administrators for additional

training, you are off to a bad start.The “big picture” is maintaining the security and

integrity of your network and hosts. Software vendors instigate the problem by pro-

viding complicated interfaces and facilitating complicated deployment scenarios.

Whenever possible, deploy only what you need to maintain the security of your

enterprise. Do not be lured into using complicated software features if you do not

need them (this applies to both Osiris and Samhain). Both of these products have

features that seem impressive but may not be the best choice for your deployment.

Later in this chapter, we present some fundamental principles to keep in mind

throughout your planning process.

Understanding Roles: The Bank Analogy
One of the initial steps in planning a host integrity monitoring deployment is to

understand the role that it will play in the security architecture (i.e., the “big pic-

ture”). One common analogy is bank security, which has numerous layers, many of

www.syngress.com

102 Chapter 4 • Planning

which are similar to the layered security of a host.This analogy highlights the impor-

tance of host integrity monitoring, and will help you plan which role host integrity

monitoring will play in your existing security measures.

Table 4.1 lists common bank security measures and their corresponding host-

based security approaches.

Table 4.1 Common Bank Security Measures

Bank Security Host Security

Limited entry/exit Network security (firewalls)
points (thick doors
with locks)

Guards with guns Host Intrusion Prevention System (HIPS)

Alarm system, tellers Host Intrusion Detection System (HIDS)
(with silent alarms),
motion detection,
infrared triggers

Security procedures: Security administration/change management
access control, internal
auditing, employee
background checks

Cameras HIMS

This table shows that each measure is necessary for establishing a complete host

security solution.The intersection of coverage of these areas will vary depending on

the tools used. Each of these tools address a specific layer of security.

Notes from the Underground…

Which Approach Is Better?
I once had a brief encounter with a vice president of engineering who manages
software security products for a large corporation. The topic of integrity moni-
toring came up, and this person dismissed it as an outdated approach to host
security compared with “modern” technologies such as HIPS. The problem with
this way of thinking is that it can lead to gaps in your host security structure.

www.syngress.com

Planning • Chapter 4 103

Continued

Believing that one approach to host security is better than another is irrespon-
sible. It is no different than believing that regular vehicle inspections are anti-
quated compared with the more modern airbag. Each handles different threats
related to vehicle safety; however, neither is better than the other.

Network security is ideal for blocking malicious and unauthorized network

traffic from penetrating a host.Although useful for fending off attackers, it is useless

once an attacker breaches the perimeter. Once a thief enters a bank, the fact that the

bank has thick steel walls and doors with locks is insignificant. Detecting and pre-

venting a compromise in security now rests with the other security measures that are

in place.

Host intrusion prevention is best applied towards the active and dynamic defense

of a host from non-specific threats. When a host is deployed, it should be locked down

and steps taken to prevent it from being abused or compromised.The HIPS is similar

in that it attempts to enforce the security policy by filling in the gaps in the lockdown

process and in undiscovered vulnerabilities. With respect to host security, the HIPS

implements policy enforcement by acting as overseer to the interactions between

applications and privileged kernel space. If anything violates the policy, the HIPS will

take action to stop or mitigate the event. Likewise, banks have armed guards to prevent

robberies. For example, a robber inside a bank pulls out a gun and attempts to open

the vault. In this scenario, the guards may be able to foil the robbery attempt; however,

if they do not see what is happening or are rendered ineffective, the security of the

bank rests with the additional security measures.An alternative analogy would be to

give tellers guns so that they have a means to fight back.

Host intrusion detection is implemented by monitoring logs and system events.

A good example of what a HIDS detects and reports on is multiple remote login

attempts that generate failed passwords. Considering the bank analogy, we find many

items that trigger compromise in a bank, including an alarm system, motion detec-

tors, infrared cameras, and a silent alarm button under the teller’s desk.All of these

things can pinpoint the area of compromise, but cannot monitor the specifics of a

situation.The motion detector may provide the time and location of a bank robbery,

but it will not provide a detailed description of what was stolen, what the robbers

looked like, or how many there were.The HIDS serves as a major deterrent to

attackers. Likewise, if thieves know that a bank has motion detectors and silent

alarms, they will be less likely to attempt a break-in.

Security administration and change management help establish a protocol for

how authorized operations take place, and highlights deviations from those proce-

dures. Locking down a host is an effective way to protect its integrity. Because there

are so many software solutions addressing security issues, the basic system security

www.syngress.com

104 Chapter 4 • Planning

administration is not getting enough attention. Regarding the bank analogy, there are

internal procedures and policies that can prevent a number of compromises,

including employee background checks, internal audits, multiple checks and balances

for authorizing high-dollar transactions, and implementing least-privilege policies for

passwords and keys.

Finally, host integrity monitoring allows you to gain visibility into the specifics

of what has occurred in a host environment.This is similar to placing cameras inside

a bank; although the cameras may not be the first indication of a compromise, they

may be the only way of knowing what happened during a robbery (i.e., how many

robbers were involved, what they looked like, how they got in, and what was stolen).

However, the cameras may not be aimed at the right places or they may have been

replaced with old footage; consequently, the attackers go unnoticed. Host integrity

monitoring completes the security arsenal by providing detailed information about

changes that have occurred on hosts. It can detect a compromise and, most impor-

tantly, it helps conduct damage assessment, therefore, aiding forensic examinations

and preventing future compromises.

The bank analogy is not perfect, but it does illustrate that even though these

layers intersect others in certain areas, they are each distinct and an important com-

ponent of host integrity.

Planning Principles
Keep the following three principles in mind throughout your planning process.

These principles are useful for any type of security-related software deployment and

are also helpful in keeping you on track when designing and deploying a host

integrity monitoring solution.

Make Everything Simple
This is the most important of the three planning principles.At every step of plan-

ning and deployment, consider whether or not you are introducing unnecessary

complexity into the system.The effects of not maintaining simplicity can render

your deployment a failure and possibly do more harm than good. With the docu-

mentation fresh in your mind, you will easily recognize that certain configurations

translate to a more administrative burden in the long term.This includes everything

from large decisions such as which features to use, to simple decisions such as

naming conventions. It is pretty straightforward: the simpler your plan, the easier it

will be to understand and use the deployment.The rest of this book points out the

complicated aspects of Osiris and Samhain that you want to avoid if possible.

www.syngress.com

Planning • Chapter 4 105

Keep Functionality to a Minimum
Following in the footsteps of simplicity, configure your host integrity monitoring

software to do only what is necessary (i.e., the less going on, the less that can go

wrong). For example, if you have a HIDS in place to monitor login and logout

events and application or kernel events, you should focus specifically on changes to

files and the file system. Osiris and Samhain both have the ability to monitor dif-

ferent elements of a host environment; however, you do not have to use all of them.

Do not fill your host integrity monitoring deployment too full; the more hosts it

monitors, the more you have to deal with on an administrative level.Table 4.1 shows

that host integrity monitoring fulfills a need that no other layers of security can pro-

vide: maintaining a database of changes to the host environment over time (i.e., find

out what needs the most attention and stick to it).

Document Your Requirements
The remainder of this chapter explores the necessary steps needed to set up a HIMS.

Through each step of this process, you must determine how this information applies

to your requirements, constraints, and security policy. Reading and soaking up infor-

mation is not sufficient; you must document how this information applies to your

network, host environments, and administrative resources. Not only will this facilitate

the deployment process, but it will also help prevent you from neglecting or forget-

ting important aspects of your system.

Requirements
This section covers the major issues to consider when establishing a requirements

document for your host integrity monitoring deployment.You could simply read

this chapter and absorb the information; however, it is strongly recommended that

you translate this information into written form. It does not have to be complicated,

just one document stating how each of the following issues apply to your situation.

This will help you maintain simplicity, share your goals with other administrators

and management, and translate your plan into practical information.Your document

should contain a heading for each of the following topics:

■ Goals

■ Build and Test Environments

■ Network Topology

■ Host Count

www.syngress.com

106 Chapter 4 • Planning

■ Operating Systems and Architecture Types

■ Monitoring Requirements

■ Scheduling and Scan Frequency

■ Notifications

■ Logging

■ Incident Response

■ Forensics

List as many requirements and notes for each topic as possible, keeping them

clear and concise. List the requirements and the non-requirements. Non-require-

ments are useful because they allow you to document what you are doing and why.

The goal is to have a collection of information that describes exactly how you will

fix these problems so that you can make design decisions and solve deployment

problems before you begin writing your requirements document.

Goals
The most important step in identifying your integrity monitoring goals is planning.

Your motivation for establishing a HIMS will affect all aspects of the deployment

process.This is important because it not only sets the stage for the remainder of the

planning and design process, but also provides you with expectations and allows you

to define criteria for success. Without this, you have no way of knowing whether

your efforts were effective.

There have been situations where security administrators were told to deploy a

HIMS either because management deemed it important or because it was required

by a security policy. In some cases, the motivation was not clear; it was simply con-

sidered “a good thing to do.” In this case, you must inquire as to what the motiva-

tion is, or establish one.Try to determine what you are attempting to accomplish

with your deployment and document it. Some examples include:

■ Detecting internal attacks, or attempting to gain privileged access to the

system.

■ Detecting intrusions or rootkits by analyzing changes to specific files or the

kernel.

■ Monitoring upgrades to system executables and libraries.

■ Monitoring changes to users or group settings.

www.syngress.com

Planning • Chapter 4 107

Start by listing the general goals, and then attempt to narrow them down.

Finally, put them in order by priority.

Build and Test Environments
If possible, establish a dedicated system for both build and testing.Although not a

necessity, it is strongly recommended. Not all systems that you deploy on will have

compilers. If you have to build the software from source, do so in a single trusted

location. For anything more than casual inspection, you will want a trusted platform

for building and testing.

The most important reason for establishing a dedicated build environment is so

you can easily update new, trusted releases of your scan agents, or establish a new

console. Updates to software are inevitable; security fixes and feature enhancements

arrive with each release.At some point, you will want (or need) to upgrade both

your console and your agent software. In the case of security issues, having a trusted

build environment specific to your deployment can be very helpful.Another reason

is reliability. Building all like agents from the same platform ensures consistency in

configuration and compilation and also facilitates testing. Finally, a dedicated build

environment allows you to build trusted executables for your console and your scan

agents. If you start with a compromised management console, the entire system is

worthless. If you start with flawed agents, you have potentially compromised all of

your hosts.Although it is technically possible for the source code and installer pack-

ages to be compromised or contain back doors, it is not likely. What is more realistic

is that you will encounter the need to address a security issue or upgrade your agent

software.A dedicated build environment allows you to easily deal with these issues.

Another important reason for establishing a dedicated testing system is so you

can test configuration changes before applying them to your production system.You

must do this periodically; systems and policies change, and sometimes monitoring

configurations change. If you test a configuration change on a production system

and it backfires, you are at risk of compromising the integrity of your monitoring

system or disrupting normal services.Another reason for having a dedicated testing

environment is to test your deployment; ideally, a test system is a mirror image of the

production system.This way, you can experiment with configurations and test per-

formance issues while becoming familiar with administration, before loading them

onto your real hosts.You can also fine-tune your scan configurations on a test system

without worrying about the consequences of an incorrect configuration. Once the

settings are stable and working, you can translate them to your production system.

Establishing dedicated systems for building and testing is important; at the very

least you should establish test systems. Software is not infallible.Test it with safety nets

www.syngress.com

108 Chapter 4 • Planning

before going into production or you may find that you have to revise your deploy-

ment strategy. One thing to consider is ways to replicate these systems. For both build

and test systems, it is helpful to ghost or image a build environment in the event that

you have to recreate it. For test systems, you want to have a way to mirror as much of

the production environment as possible. For build and test systems, you must have at

least one system for every architecture type (e.g., if you are only monitoring Windows

servers, you only need one build environment. However, if you have Windows, Linux,

and Berkeley Software Distribution (BSD) systems, you must build a system for each

unique operating system and architecture type). If you have an existing test environ-

ment, use it to establish a new test system for your HIMS.

Network Topology
The organization of your network affects how many management consoles you need

and where they will be located. If all of the hosts you are monitoring are on the same

network, you will probably only need a single management console. However, if you

have hosts spread across multiple networks, you must establish a management console

on each separate network. Some administrators attempt to modify their networks,

punch holes in firewalls, and set up routing hacks just so they can administer all of

their hosts from a single management console.Although this can be done, it is gener-

ally not a good idea. More than likely, the networks were separated for a reason (e.g.,

lab networks versus corporate networks). Questions you should ask yourself include:

■ How many networks do I need for the hosts that have to be monitored?

■ How many management consoles do I need?

■ What are the concerns or limitations for the physical location of manage-

ment consoles?

Host Count
If you are monitoring only a handful of hosts, a host count is not an issue. However,

if you plan to monitor hundreds or thousands of hosts, there are three major consid-

erations:

■ Management Console Resources

■ Deployment

■ Administration

www.syngress.com

Planning • Chapter 4 109

If you have a lot of hosts sending data to the management console, you must con-

sider the amount of disk space and other hardware requirements that are necessary for

managing so many scan agents.Your requirements will vary depending on how many

hosts you have and how you configure them. More frequent scans means storing more

data.A higher host count translates into an increased load on your network and on the

management console processor that is analyzing the received scan data. On average

(using the default configurations), a single scan consumes approximately 1MB of disk

space (if using Osiris or Samhain); a CPU can sometimes top 50 percent.

The more hosts the bigger the deployment effort. Because integrity monitoring

is an agent-based deployment model, you must plan for how you will initially deploy

the agent software, and how you will perform updates on all of your hosts. If you are

only monitoring a few hosts, you should do this on a host-by-host basis. However,

for thousands of hosts, you need to devise a way to deploy the software or integrate

the installation process into an existing mass deployment scheme that your enterprise

already uses. Both Osiris and Samhain have ways of facilitating mass deployment;

however, neither of them provides a complete solution.

Finally, you must consider the administrative effort required to manage the hosts

that you will be monitoring.The biggest administrative issue you will encounter as

you increase the number of monitored hosts is responding to events. Issues related to

the initial setup and deployment are not uncommon. However, fine-tuning configu-

rations for each of your systems and responding to detected changes can be over-

whelming when monitoring hundreds or thousands of systems.The more varied

your hosts are, the bigger this issue will be (e.g., the administrative effort involved in

monitoring 100 disparate desktop systems is going to be far more involved than

monitoring 100 test systems that have identical configurations.

Operating Systems and Architecture Types
When considering all of the hosts that you will be monitoring, you must also con-

sider how many unique combinations of operating systems and architecture types are

involved.There are two reasons for this:

■ It will directly impact the amount of effort involved in building and

deploying scan agent software.You have to establish a build system and pos-

sibly a test system for each different operating system. Likewise, if you have

different architecture types, you must build and test systems for each of

them (e.g., if you deploy Solaris on x86 and Sparc, you have to establish a

build and test system for each).

www.syngress.com

110 Chapter 4 • Planning

■ Each operating system involved will require unique scan configurations and

involve different fine-tuning efforts.The more operating systems you have

means more work establishing custom configurations.The worst-case sce-

nario is that you will need to develop a different scan configuration for

every monitored host.The best-case scenario is that you will only need to

develop one configuration for each operating system.At the very least, note

the number of distinct combinations of operating systems and architectures

involved in your deployment.

Monitoring Requirements
Developing monitoring requirements is a critical part of the planning process. If

neglected or done in haste, they can severely limit the effectiveness of an integrity-

monitoring effort.To be reasonably assured of the integrity of critical components,

you should determine which elements of the environment must be monitored. Once

you have a list of requirements for each host, they can be translated into a practical

configuration.The overall process for determining monitoring requirements for a

host is as follows:

1. Determine the most critical components.

2. Determine the environmental elements required to constitute the integrity

of each critical component.

3. Determine which critical element changes are violations.

4. Determine which critical element changes are not violations.

Again, you should document each of these steps for all like hosts. Once you

complete these steps, it will be easier to translate the information into a practical

configuration specific to your monitoring tools.This is very important; there have

been situations where security administrators attempted to develop a configuration

from the defaults and adapt it to their systems while on the fly.This often results in

critical elements being left out of the configuration, and as a result, it is possible that

a critical element was modified without being detected.

You do not have to document every single change; however, you should pin-

point the ones that are clear violations, which will help with incident response.The

changes that are not violations will help establish and verify the correctness of filters

either through the monitoring system itself or through log analysis.

Also, remember not to monitor everything; your monitoring will be more effec-

tive if you stick to the basics and the most critical elements of the system. Decide

which components are important, and analyze the system elements that can be used

to detect violations in those components.

www.syngress.com

Planning • Chapter 4 111

Scheduling and Scan Frequency
Various factors, including forensics, resources, risk assessment, and scan configuration

details, will influence your decision about how often to scan your hosts.

If you require a certain degree of granularity for forensic purposes, you must

make sure that your hosts are being monitored with enough frequency to capture

the desired amount of information.The concern here is that you may miss informa-

tion that could prove helpful in a forensic examination. For example, if a host is

being monitored once per day, you may only get the before-and-after effects of an

incident. However, if you are monitoring events on the hour (or more frequently),

you will see a more detailed view of the sequence of events.The reason for this is

that multiple changes to the same parts of the system could occur between scans,

and therefore not be included in the information trail.

Hardware and administrative resources are also influencing factors when estab-

lishing scan schedules. If you are archiving all of your scan data, you must consider

that every scan will consume additional disk space.Another issue to consider is the

load on the network and the management host.

Hosts have different levels of risk. Some run services such as mail or Domain

Name System (DNS) and some have Web servers. Others store source code, produc-

tion build systems, and key management systems.All of these examples have varying

levels of risk based on their exposure and the content and services that reside on them.

Finally, scan configurations themselves influence scan frequency and scheduling.

Scanning certain resources during peak usage times may have a negative impact;

consequently, you may have to conduct scans when usage is low.Also, the types of

information from the environment may dictate scan frequency. For example, Set

User ID (SUID)/Set Group ID (SGID) audits are not something that you would do

every 10 minutes. In addition to being impossible, conducting scans of that nature

often has no added value.A counterexample is scanning for open network ports;

querying a host every 10 minutes for that information may not be unrealistic in

some cases.

Notifications
Notification can mean the difference between being alerted and not being alerted to

a security incident.All scanning and log analysis is useless if the information does not

go to the correct security administrator. Issues to consider with respect to notifica-

tions include:

www.syngress.com

112 Chapter 4 • Planning

■ What information should be considered worthy of notification?

■ Who should receive notification for each of the monitored hosts?

■ How should the notifications be issued?

Some of the information regarding detected changes is logged, whereas other

information is sent to a security administrator in addition to being logged. What

constitutes the difference is related to the goals that you have established. For

example, if you are mostly concerned with the integrity of a source code repository,

you may want changes involving that part of the host sent directly to a list that the

security administrator monitors.All other alerts may be analyzed and logged so that

they do not draw attention from the most critical part of that host.

Decide who will be involved in the notification process; it may be one person or

an entire group within an organization.You will sometimes find yourself monitoring

hosts that are the responsibility of various other security groups; thus, it is important

to decide how this information will be distributed.Also, for accountability reasons,

you should enforce a policy dictating that no one single person be responsible for

receiving information regarding certain hosts.

Finally, decide how you want the information to be transmitted. E-mail is the

most common way of providing information regarding critical alerts. Both Osiris

and Samhain support this and other notification vectors. Other means of notification

include wearing a pager or being available on the Web.

Logging
Logging is another important planning consideration, because if important informa-

tion about a detected change is not logged, it cannot be interpreted and thus it

cannot invoke a response.There are many outlets for logging, including system logs,

files, pipes to applications, console logging, and storage in relational databases.

The most important consideration regarding logging is access—how to facilitate

the analysis and regular interpretation of log data. It does not make sense to send log

information to a database if there is no practical means for security administrators to

review that data.

Next, consider storage. Logs contain sensitive information. Decide which secu-

rity measures you have to put into place to protect sensitive data.There is also

integrity; think about how you will react if someone tampers with your log data.

Also, consider backing up log data.The advantage of a management console pro-

viding a centralized store for logging data is that you can build a wall around and

protect a single location.The downside is that it is also a single point of failure. It is

important to decide on a solution for securely backing up log data.

www.syngress.com

Planning • Chapter 4 113

Finally, plan to use some kind of log analysis tool. Logging enthusiasts encourage

collecting as much log data as possible, which is generally a good thing. However, to

organize log data in order of importance, you will have to use a log analysis system.

(Chapter 8 details the use of Swatch to monitor logs for Osiris and Samhain.) If you

have another solution for log analysis, consider what is involved in using it with your

host integrity monitoring deployment.

Incident Response
There will come a time when you receive a notification or alert requiring a

response. Every enterprise should have an incident response team and a set of proce-

dures established to handle these events.This is important to consider when you are

planning so that you can facilitate the correct transfer of information to the correct

people.This is much like the scan configuration, logging, and forensics issues (e.g., an

incident response team requires certain information such as timestamps and an IP

address to effectively deal with an incident).

Tools and Traps…

Plan for Response
I once worked at a company where an employee inadvertently placed an open
wireless access point onto the corporate network. Established network moni-
toring measures picked up on it and notified the appropriate incident response
team.

To satisfy forensics and incident response team requirements, document what

you need regarding detected changes.Take into account what you are monitoring

and use for the starting point to gaining information; the information you want to

collect and maintain may not always be obvious.

Forensics
One of the most important benefits of periodically monitoring host integrity is the

ability to ascertain which elements of the system were modified. Having snapshots of a

host environment for many periods of time can be invaluable to forensic examinations.

When considering forensics, you must consider your requirements for the internal

analysis of collected data, as well as the legal issues associated with using that data.

www.syngress.com

114 Chapter 4 • Planning

Both Osiris and Samhain can be configured to report changes; however, they do

not save any logs or scan data associated with the detected change.Although this

helps conserve disk space and reduce administrative overhead, it is of little forensic

use. Generally, the more information you have the better. Save as much scan data and

logs as possible.Again, the more frequent you scan, the more data you will have.

Consult a lawyer regarding any legal issues surrounding scan data and logs.The

laws change constantly. Do not assume that a time stamp or a Pretty Good Privacy

(PGP) signature is sufficient.You may need to maintain a log detailing the chain of

custody, write-once functionality, and multiple storage locations. Consult legal

counsel to determine the requirements for using your logs in a legal setting.

Two excellent resources for acquiring more in-depth information regarding

forensics include Computer Forensics: Incident Response Essentials by Warren G. Kruse

and Jay G. Heiser, and Forensic Discovery by Dan Farmer and Wietse Venema.

Planning a Management Console
The management console is the core of the HIMS.Thus, there are some important

considerations to document as part of the planning process.

General Security Considerations
You must secure the host that will serve as your management console. Following are

some of the most important general issues to consider when planning the deploy-

ment of your management console:

■ Dedicate a host

■ Location on the network (access)

■ Choice of operating system

■ Installed software and services

■ Worst-case scenario plan

Even if you do not establish dedicated build and testing environments for your

deployment, it is important that you dedicate a system specifically for use as a manage-

ment console.There are a few reasons for this. First, you will not have to establish a

way to protect the console data from other users, services, or applications. Downtime

or administration of other services could impact or conflict with the runtime demands

of the console. Second, you will almost always require all of the processing power, disk

space, and input/output (I/O) available for handling interaction with scan agents.

Finally, the more a host is responsible for, the more that can go wrong. Using a host

www.syngress.com

Planning • Chapter 4 115

specifically for the management console will enable you to manage the simplicity and

security of the system.

Consider the network location of the console host. On one hand, you need to

make sure that the console host is available to all of the hosts that are being moni-

tored; ideally you want nothing else to have access to it. Consider the risks associated

with the network location you decide to use for your console, specifically which

hosts or networks have access to it. Document this in your plan so that when you

secure the console host this information is available when configuring various ele-

ments of network security (e.g., firewalls, network monitoring, or Transmission

Control Protocol [TCP] wrappers).

You will probably pick the operating system you will use for your management

console. The most important thing to remember is that the operating system you decide

on should be the operating system that is known best by the administrative staff.

Everyone has his or her opinion about what system is “better,” but it is pointless if

none of the staff knows how to lockdown and administer the “better” system. If you

know Windows 2003 Advanced Server inside and out, but have never used FreeBSD,

it makes sense to deploy your console on a Windows environment. Subsequent con-

siderations regarding the operating system include licensing, hardware compatibility

and costs, and performance issues.

Install only the software necessary for the function of the management console

or the HIMS in general (e.g., log analysis). In many cases, you must make a con-

scious effort to install only the minimal footprint or base of the operating system.

Do not install software at every step, unless you can justify it regarding the function

of the console. In some cases, you will not have a choice. For example, it is possible

to bootstrap a Gentoo Linux system fairly easily. However, with Windows 2000, you

may or may not have a choice regarding certain components. Remote Procedure

Call (RPC) is a good example. In these cases, you must perform some post-installa-

tion lockdown and removal of services. No operating system will result in the ideal

installation for your management console. Plan to configure, lockdown, and remove

unnecessary services. Document which services you need to remove and why.This

procedure is a good argument for creating an image or ghost of your management

console so that you can easily resurrect or establish additional consoles with the same

lockdown configuration.

Finally, consider the available options for protecting the console in the event it is

compromised. For example, an encrypted file system can prove very helpful if the

physical system is stolen. Consider and document everything that you must do to

protect the compromise of data in the event that of unauthorized access.

www.syngress.com

116 Chapter 4 • Planning

Physical Access
All of the security precautions in the world will be useless if your management con-

sole host is physically accessible by someone other than the trusted administrators.

Physical access is important for a couple of reasons. First, physical access means that

someone can literally steal the console host, at which point all of the security

patching, lockdown, and other precautions you have taken become useless.This is

not unlike the security of a locked briefcase. Why bother picking the lock when you

can just take the briefcase and smash the lock? Even if you are using encrypted file

systems and are fortunate enough to have backups of your management console,

there is still the downtime between the compromise and when your console is avail-

able again.

The second reason physical access is important is because an attacker can com-

promise the host by booting into single-user mode or booting off of a CD to gain

access to the system. Consider all of your options for protecting the system in the

event that there is unauthorized physical access. Few of these options are complete

solutions, but they can help raise the bar in the event that someone attempts to gain

unauthorized access to the system.There are some steps that you can take (such as

Basic Input/Output System [BIOS] or firmware passwords) to prevent the most

unsophisticated types of attacks.

Finally, you should monitor the integrity of the management console itself. With

a scan agent installed on the monitoring host, you can detect reboots, changes to

hardware configuration, and kernel modules that may indicate physical access. If you

have configured your management console to periodically report a status, chances

are that any kind of attack involving physical access will not go undetected.

Document your plans for protecting physical access to the console, including

where you plan to physically store the system, which administrators have access to

the system and what their roles are, any hardware configurations that you make, and

steps that you take to audit access to the system.

User Access
The management console should only be accessible to security administrators who

need to read logs or manage monitored hosts. Do not install the management con-

sole on your corporate mail server and expect passwords or file permissions to pro-

vide adequate security for the system. Guest accounts should be shut off; at the very

least remote access should be limited to only those who need it. List all of the per-

sonnel who require an account on this system and what their role is.This will facili-

tate the general security administration for the host (e.g., which accounts will have

SUDO access).

www.syngress.com

Planning • Chapter 4 117

Note how you will be auditing the actions of user accounts on the management

console host in your planning document.This is important for accountability, change

management, and the detection of suspicious behavior.

Hardware Requirements
Two issues to consider regarding hardware are the requirements for your manage-

ment console system(s), and is the hardware necessary to establish build and testing

environments.

If monitoring more than 10 hosts, you must consider what your hardware require-

ments are.The biggest issue with running a management console is I/O.All monitored

hosts send their scan data or logging information to the console over the network.The

management console performs analysis, which often involves large files or large

amounts of data. When you think about a management host receiving data from

potentially hundreds of hosts at the same time and performing analysis on that data,

this is not a job for your average personal computer. If you have thousands of hosts,

you need more than a single management console.There is no magic number of hosts

that a single management console can handle; the determining factors are how much

scan data you are archiving and your scan frequency.You can easily monitor 500 hosts

from a single console if you are only monitoring the integrity of their kernels and

have distributed their schedules. However, you can easily consume the resources of a

single management console with 20 hosts if you scan the complete file system every

hour and archive all of the data (another reason to establish a test environment).

Ideally, you will have hardware dedicated to building and upgrading agents and

for testing.The hardware necessary for building agents and console software does not

have to be speedy.All that is necessary is that the system supports the operating

system necessary for generating compatible executables for all of your deployment

systems. For testing, you want to have hardware that is as close to the production

systems as possible.These systems do not have to be self-aware; they do need to be

able to produce builds. For the management console, you want something that can

handle the I/O and disk requirements.

www.syngress.com

118 Chapter 4 • Planning

Summary
The importance of proper planning should not be underestimated. Document as

much as possible before beginning your deployment, to reduce the number of prob-

lems you may encounter along the way. Do not worry about producing too much

information during the planning process; you can always review and edit informa-

tion so that it is clear and usable for future reference. Remember to consider all

aspects of your deployment, including your goals, testing, network architecture, the

number of hosts, the operating systems involved, scheduling, notifications and log-

ging, incident response, and forensics.

Even if you do not utilize all of the information in this chapter, it is important

that you document what does not apply and why.You cannot expect to tackle

everything; however, developing a written plan will initiate the thought process, dia-

logues, peer reviews, and brainstorming about what is involved in deploying your

management console(s).

Solutions Fast Track

Understanding the Big Picture

� Ease of use is the most important objective in deploying a HIMS.

� Avoid complicated configurations and administrative tasks; they will have a

negative impact on the long-term maintenance of the system.

� The best deployment is the simplest deployment.

Understanding Roles:The Bank Analogy

� A HIMS is a necessary component for maintaining host integrity. Be aware

of other host-based security measures and plan how a HIMS will

complement the security of your hosts.

� A HIMS is analogous to the placement of security cameras within various

parts of a bank to capture the state of the environment.

www.syngress.com

Planning • Chapter 4 119

Planning Principles

� Make everything as simple as possible.

� Keep functionality to a minimum.

� Document your requirements and develop a written plan.

Requirements

� Develop a written plan that details your goals and plans for deploying a

HIMS.

� Document requirements and non-requirements.

Planning a Management Console

� The management console is the heart of the HIMS; plan to dedicate a host

(or set of hosts) to be used exclusively to manage scan agents.

� Choose an operating system that your administrative staff knows how to

secure, administer, and maintain.

www.syngress.com

120 Chapter 4 • Planning

Q: If I am monitoring only two or three systems, is it still better to deploy a

single console to manage those hosts?

A: Osiris and Samhain are both designed to be deployed as a centrally managed

system. Both of them also support being able to deploy in a stand-alone

fashion where the console and agent are both installed on each monitored

host.The obvious problem is that you have to administer each console.The

bigger problem is that the trusted data resides on the monitored host.

However, there are cases where this makes sense. For example, you may have

network restrictions that make it more of a problem to deploy a single con-

sole. Or, you may not have the resources available to establish a dedicated

console. Running Osiris or Samhain as stand-alone configurations is usually

more effective, but not always.

Q: I already have a HIDS and a HIPS deployed for my hosts. Do I still need a

HIMS?

A: The goal is to be able to effectively establish a means of detecting and

reporting on critical changes. If you have enough intersection between your

HIDS and HIPS, there is little point in adding additional administrative

burden. However, chances are the HIPS and HIDS will not provide as com-

plete and in-depth reporting on the details of detected changes to your host

environment as a HIMS.

Q: How long should I plan to archive scan data?

A: As long as you possibly can.You can never have too much log data or too

much scan data. Be realistic, but plan to maintain archives of as much of this

data as you can.

www.syngress.com

Planning • Chapter 4 121

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: Can I use Osiris or Samhain as a change management system?

A: Yes, but they are far from the best change management solutions. Commercial

and open source change management solutions offer more in-depth auditing

of changes and allow administrators more interaction and control in the

change auditing process. Osiris and Samhain attempt to minimize the inter-

action necessary by enabling you to isolate certain attributes to monitor, and

by focusing on the critical elements of a host that are indicators of compro-

mise.Tripwire is a good example of a commercial change management solu-

tion, and Radmind is a good example of an open source change management

solution.

www.syngress.com

122 Chapter 4 • Planning

Host Integrity
Monitoring with
Open Source Tools

Solutions in this chapter:

■ Osiris

■ Samhain

Chapter 5

123

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Introduction
Osiris and Samhain are two of the most widely deployed open source host integrity

monitoring systems today.This chapter examines how each of these systems work

and their respective strengths and weaknesses. Osiris and Samhain are very different;

therefore, one of them will be more suited to your requirements than the other.

Osiris
Preston Norvell and Bruce Potter released the first version of Osiris in the summer of

1999.This release consisted of two small Perl scripts designed to provide file integrity

checking for Windows NT.The popularity of these scripts paved the way for the

Osiris project, which released its first version (written in C) in the fall of 1999.

At the time, open source options for file integrity monitoring were limited.

Tripwire was too cumbersome to use, and many administrators found it difficult,

primarily because it was not centrally managed.Thus, the Osiris project was borne

out of the desire to produce a host integrity monitoring application that would do

the following:

■ Provide easy-to-use, centralized management

■ Monitor as much of the host environment as possible

At the time of this writing, Osiris Version 4.1 monitors files, network ports,

users, groups, kernel modules, and more. Information about Osiris, including the

latest releases, anonymous source access, support mailing lists, and documentation,

can be found at http://hostintegrity.com/osiris.

How Osiris Works
Osiris consists of three distinct components: a command-line client, a management

console, and a scan agent.A scan agent is deployed onto every host that is to be

monitored.A single management console stores all of the scan data, scan agent con-

figurations, and logs; manages scheduling; and handles notifications—it is the brains

of the system.The command-line client communicates only with the management

console, and only the management console communicates with scan agents (see

Figure 5.1).

www.syngress.com

124 Chapter 5 • Host Integrity Monitoring with Open Source Tools

Figure 5.1 Components That Make Up the Osiris Host Integrity Monitoring

System

The console regularly tells the agents to scan.The scan agents respond by col-

lecting information from their environment and sending it back to the console.The

console stores this information in a database file, compares it against data from a pre-

vious scan, and reports on the differences.

The significance of the three components of the architecture that makes up

Osiris is best explained by learning how they are used in a typical deployment.The

management console and the scan agent software running on each monitored host

constitute the majority of the functions of Osiris.As an administrator, you generally

do not use these two components; however, there will be times when you must log

in to the console using the command-line interface (CLI).The CLI is commonly

used to configure and add additional scan agents to the console, fine-tune scan con-

figurations, and take steps to reduce false positives. When an incident occurs, you

may log in to the console to obtain access to logs or data associated with previous

scans (see Figure 5.2).

www.syngress.com

Host Integrity Monitoring with Open Source Tools • Chapter 5 125

Server

Command-Line Client

Host (Laptop)

Host (Workstation)

Host (Server)

Host (Server)

Host (Router)

Figure 5.2 Interactions of Osiris Components When Obtaining Status

Information from Agent

Authentication of Components
All of the Osiris components communicate over a Secure Sockets Layer (SSL)

tunnel.The scan agent sends sensitive data to the console, which must be authenti-

cated. Likewise, the console must trust the scan agent. Osiris accomplishes this by

using session keys and X509 certificates.

The management console maintains a certificate and a private key. Upon initial

contact with an agent, the console presents it with a session key. With every subse-

quent connection to that agent, the scan agent is required to present that session key

as a form of authentication.

The scan agent maintains the root certificate for the console. Upon contact, the

scan agent validates the certificate presented by the console using the root certificate.

The command-line client works similar to the scan agent in that it maintains the

root certificate, but the pre-shared key is actually a password.The console maintains a

password database and requires the client to present a password to gain access.

Thus, scan agent and CLI authentication is a pre-shared key, whereas console

authentication is basic SSL certificate validation.The scan agent authenticating the

console is similar to the way a Web client validates the authenticity of a Web server.

www.syngress.com

126 Chapter 5 • Host Integrity Monitoring with Open Source Tools

Host (Scan Agent) Management Console

Status Response

Status Request

CLI

Login

Status Request

Status Response

By default, Osiris generates a self-signed certificate; however, you can generate one,

signed by a trusted certificate authority (CA), as shown in Figure 5.3.

NOTE

The use of SSL by all Osiris components exists to protect the integrity
and privacy of all communications during transport. Keep in mind that
all of the scan data and log messages are not signed or encrypted when
they are stored on the management console.

Figure 5.3 Osiris Uses SSL and Digital Certificates to Secure All

Communication between Components

Scan Data
When a scan agent scans the environment, it packs things into records and sends

them to the console.The scan agents never store their scan configuration or scan

www.syngress.com

Host Integrity Monitoring with Open Source Tools • Chapter 5 127

CLIHost (Scan Agent)

Management Console

Logs

Scan
Data

SSL
SSL

……
……
…...
...

Root Certificate

……
……
…...
...

Root Certificate

……
……
…...
...

Key and Server Certificate

data on disk. In fact, the only thing kept on monitored hosts is the root certificate

and the scan agent executable.

When the console receives scan data, it stores it in a Berkeley database file.The

structure of this file is platform independent and can be moved offline for further

examination or storage for forensic and auditing purposes.This is true of the entire

directory where the console stores logs, configurations, and databases.The amount of

scan data can vary significantly, but the average for each scan is roughly 1MB.

There are three different ways to configure the management console to maintain

scan data, which can be configured on a per-host basis: the console can save every

scan database, only the databases that contain changes, or only the latest created scan

database.The reason for this is that some administrators may want to keep archives of

every scan and every log for forensic purposes.The problem with keeping archives,

however, is that they consume disk space, and not everyone wants to keep all of the

data.Therefore, you have the option of storing only the databases that indicate

change.The console defaults to storing only the minimal information necessary to

provide a report of what has changed since the last scan.

With every host integrity monitoring system (HIMS), there is a baseline con-

cept, which is considered the last known good scan of the environment. Osiris can

be configured to automatically set the trusted database to be created with this scan.

This capability, combined with the minimal storage of scan data, allows for a fairly

low maintenance monitoring system that sends reports on what is changing in the

host environments.

Logging
The management console is responsible for all data analysis; therefore, all log data

resides on the console host.After every scan, the console performs a comparison

between all of the data in the newly created scan database and the trusted database

for that host.Any differences result in a log message.

Osiris has a few different logging vectors. Scan logs generated by the console can

be saved to a file, sent to the system log, or piped to an application. Just as with scan

databases, logs associated with a scan can be configured in three different ways

ranging from minimal to one for each scan.

Each log message has an ID to facilitate parsing by log analysis tools (see

Figure 5.4).

www.syngress.com

128 Chapter 5 • Host Integrity Monitoring with Open Source Tools

Figure 5.4 Osiris Log Format Structure

Filtering Noise
To deal with noise, Osiris has a filter engine that can be used to exclude certain

detected changes from generating a log entry.This filter engine is essentially a list of

regular expressions that are applied to each log message. Filters do not prevent data

from being saved; they serve to prevent the creation of log messages. If necessary, you

can always compare the two databases at a later date to see the complete list of

changes.

Notifications
In addition to using Osiris to send log messages to an application or to the system

log, administrators can configure Osiris to send them detected change reports via e-

mail.This is configurable on a per-host basis.These e-mail notifications can be sent

after every scan or only if changes are detected. Some administrators want to receive

notification after each scan as an assurance that monitoring is taking place and that

no changes were detected. In addition, Osiris can be configured to send e-mail noti-

fications in case a scan agent is unresponsive or has lost its resident session key.This

may happen if the scan agent process was restarted or if the host was rebooted.The

following is an example of a typical e-mail notification report generated by the

Osiris console:

From brian@example.com Mon Feb 28 11:53:42 2005

To: brian@example.com

From: "Osiris Host Integrity System" <osirismd@example.com>

Date: Mon, 28 Feb 2005 11:53:43 -0700

Subject: [osiris log][host: powerbook][3 changes]

compare time: Mon Feb 28 11:53:43 2005

www.syngress.com

Host Integrity Monitoring with Open Source Tools • Chapter 5 129

[211][foo][cmp][/etc][mtime][Thu, 17 Feb 2005 11:47:5][Tue, 22 Feb 2005 08:20:4]

Previous Value

Current Value

Attribute

Object

Log Type

Host

Log ID

host: foo

scan con g: stat (cbbd7002)

log le: no log le generated, see system log.

base database: 2

compare database: 3

[211][foo][cmp][/usr/local/bin][mtime][Mon, 28 Feb 2005 11:53:2][Mon, 28 Feb

2005 11:53:3]

[215][foo][cmp][/usr/local/bin][bytes][340][374]

[203][foo][new][/usr/local/bin/nmap]

Change Statistics:

checksums: 0

SUID les: 0

root-owned les: 1

 le permissions: 0

new: 1

missing: 0

total differences: 3

Strengths
The biggest accomplishment of the Osiris project is that it resulted in a host-based

integrity-monitoring product that is easy to use. One of the risks with any security

product is that it is too complicated, and administrators end up either not using it or

not configuring it correctly.A typical ./configure;make;make install routine can be used

to build and install a working copy of Osiris on any host.Also, administrators do not

need to edit configuration files directly; this is accomplished through a CLI to pre-

vent misconfiguration. In addition, Osiris has intelligent defaults for host configura-

tions and default scanning configurations for common operating systems.

The Osiris architecture allows for centralized management. One of the biggest

problems with Tripwire and others like it is that they require you to either log in to

each monitored host or create your own custom shell scripts (Secure Shell [SSH]) as

part of the regular usage model. Centralized management not only eases the admin-

istrative burden associated with monitoring more than a handful of hosts but also

allows you to establish a central secure location for sensitive data.

www.syngress.com

130 Chapter 5 • Host Integrity Monitoring with Open Source Tools

Osiris runs on all true 32-bit versions of Windows (Windows NT, Windows

2000, Windows XP, and Windows 2003 Advanced Server). It also runs on most

UNIX and UNIX-like systems, including FreeBSD, NetBSD, OpenBSD, Mac OS X,

Linux, IRIX,AIX, and Solaris.The management console can be established on any

of these platforms. What is unique is that you can monitor Windows and UNIX-like

hosts from a single location.

The Osiris scan agent has a modular interface; therefore, if you are not satisfied

with the abilities of the scan agent, you can easily write and integrate your own

modules to extend what is gathered from the host environment.

Finally, excluding all arguments for and against open source, Osiris is free and

released under a Berkeley Software Distribution (BSD)-style license.

Weaknesses
The biggest downfall to Osiris is that, like any host-based security product, it

requires software agents to be installed on every monitored host, which creates an

administrative overhead. Scan agents have to be installed and maintained. In the case

of security-related problems, updating all of the agents is a big job. IT departments

often deal with this problem with respect to deploying software updates for other

applications or with updates to the operating system itself.Additionally, if your agents

are all configured differently, the ongoing administrative operations can be difficult.

Another weakness of Osiris is that managing thousands of hosts can be a chal-

lenge from a Unique Identifier (UI) perspective.The CLI does not lend itself well to

deployments of this size.There is no concept of dealing with groups of hosts. Each

host is treated independently.

Osiris log filtering is handled by regular expressions.Although this allows for

great flexibility, the reality is that many administrators may not know how to trans-

late what they want in a filter into a regular expression without some research. Or

even worse, they could unintentionally prevent critical log entries from triggering

alerts because of a mistake in writing a filter rule.

The scan agents are modular, and the console is not.This presents a problem if

you want to alter how the console does some of its analysis of detected change.As

you will see with Samhain, both the scan agent and the server can be modularized.

Samhain
Rainer Wichmann released the first version of Samhain on October 31, 1999. It was

released on October 31, the date that the ancient Celts labeled as the end of

summer.This initial release was a simple file integrity checker and, like the first ver-

sion of Osiris, was not centrally managed.

www.syngress.com

Host Integrity Monitoring with Open Source Tools • Chapter 5 131

The goal of Samhain was to produce a centrally managed host integrity moni-

toring system that would monitor many disparate aspects of the environment, not

just the files.The idea was to think beyond Tripwire and provide an open source

product that would enable people to monitor the integrity of their hosts. In

December 1999, Samhain released Version 0.8, which implemented true centralized

management of logging, configuration, and scan data.Although Osiris and Samhain

shared very similar goals, they evolved independently of each other, as proved by the

distinct differences in their design.

At the time of this writing, Samhain is at Version 2.0.4 and has the ability to

monitor files, file system mount points, and login and logout events; to conduct Set

User ID/Set Group ID (SUID/SGID) audits; and to monitor the integrity sur-

rounding the kernel.All information about Samhain, including the latest releases,

support mailing lists, and documentation, are on the official Web site located at

http://www.la-samhna.de/samhain.

How Samhain Works
Samhain consists of three components: a console, a server, and a scan agent (often

called the client).The agents are deployed onto every host that is to be monitored.A

single server acts as a central location for logs, scan configurations, and scan data.The

console is a Web-based control center written in Hypertext Preprocessor (PHP) that

presents a UI that can be used to update databases or edit scan configurations.An

optional component is a relational database server (e.g., PostgreSQL or MySQL) that

can be used for log storage (see Figure 5.5).

Figure 5.5 Components That Make Up the Samhain Host Integrity

Monitoring System

132 Chapter 5 • Host Integrity Monitoring with Open Source Tools

Relational Database
Server

Samhain Server

Host (Laptop)

Host (Workstation)

Host (Server)

Host (Server)

Beltane Web Console

www.syngress.com

Each scan agent has a configuration that determines when and what to scan on

the host environment.The agents compare the current environment against the

trusted database established from a previous scan.Any differences generate logs,

which are then sent back to the server.An agent’s scan configuration and the trusted

database can be stored on the server and are requested by the scan agent when

needed. Optionally, logs can be stored in a relational database.

Notes from the Underground…

Push or Pull
Samhain follows a completely different model than Osiris with respect to the
communication between the scan agents and the console. Specifically, Samhain
agents initiate communication with the console, as opposed to Osiris where the
console initiates connections to the scan agent. There are advantages and disad-
vantages to each model. The main benefit with the Samhain method is that the
monitored hosts do not have to open a listening network port. The main benefit
of Osiris is that administration is much easier because the deployed agents do not
have to maintain the location of the management console. Furthermore,
Samhain pulls the baseline database from the server down to the monitored host
for comparison, whereas Osiris pushes the scan data to the console for analysis.
The benefit of Samhain is that the console only needs read privileges for the base-
line database. The benefit of Osiris is that the trusted data is never kept resident
on the monitored host and thus is less susceptible to tampering.

Authentication of Components
The scan agent sends sensitive logging data back to the console, and the console pro-

vides the scan agent with the scan configuration and trusted database to be used for

comparison.Thus, these components must authenticate each other.Additionally, all

of this communication must be encrypted.

The Samhain scan agent and server authenticate each other using the Secure

Remote Password (SRP) protocol. When the scan agent is compiled, a password is

embedded into the executable.Additionally, a verifier is stored in that agent’s config-

uration file. When the scan agent and the server connect, they each compute a key

based on an initial data exchange.The scan agent and the server authenticate each

other by verifying that they both computed the same key.

www.syngress.com

Host Integrity Monitoring with Open Source Tools • Chapter 5 133

Samhain encrypts all traffic between the scan agent and the server using

Advanced Encryption Standard (AES) for encryption.As a result of the authentica-

tion process, the scan agent and the server establish ephemeral keys.These keys are

used to sign and encrypt communication between the two for the duration of that

session.This is a very effective means of securing scan agent and server communica-

tion because an attacker would have to take apart the running Samhain scan agent

process to get the current keys or take apart the executable to obtain the password

used to authenticate to the server.

Scan Data
Samhain can be run as a stand-alone process in a manner similar to Tripwire; how-

ever, most deployments are centralized where the agents store their configuration

and scan data on the server.

Upon start-up, a scan agent requests and downloads a signed copy of the trusted

database.After a scan is completed, logs are generated that contain all of the informa-

tion that is different between the current environment and the trusted database.

These logs are sent back to the server for verification and storage.

To update the contents in the trusted database, the administrator uses the console

to integrate data from the logs into the database file.Alternatively, the database file

can be transferred to the monitored host, and Samhain can perform the update by

integrating the state of the current environment into the database file.The database

file then must be transferred back to the server.

Logging
There are many logging mechanisms available with Samhain. Logs can be sent to the

server, a remote Structured Query Language (SQL) database such as PostgreSQL or

MySQL, and a local log file redirected to an application, printed to standard output

or the console, or sent to syslog.

Samhain agents have an embedded 64-bit key that is used to sign all log mes-

sages. Each log message has an attached signature computed by using the embedded

key and the actual contents of the log message. Upon receipt of the log message, the

server verifies the signature, signs it, and stores the log data or directs it to the cor-

rect logging facility.

Samhain defines many different severities and classes for log messages.This process

is useful for analysis as well as throttling the amount of log data sent back to the server.

The severity may be low, such as debug, or it may indicate a more severe message, such

as an error or critical event.The log class is used to describe the payload of the log

message, such as whether it is a rekey event, a keep-alive, or a policy violation.This is

www.syngress.com

134 Chapter 5 • Host Integrity Monitoring with Open Source Tools

basically the same thing as the facilities and priorities used by syslog.To filter out cer-

tain log messages, the server can be configured to set thresholds for each facility. If an

incoming log message does not meet that threshold, it is not logged (see Figure 5.6).

Figure 5.6 Samhain Log Format Structure

Notifications
Aside from all of the logging vectors supported by Samhain, logs can also be

OpenPGP signed and e-mailed to an administrator.This can also be configured on a

per-host basis. Samhain has Simple Mail Transfer Protocol (SMTP) code built into it

so that it is not dependent on a Mail Transfer Agent (MTA). E-mail notifications can

be sent to one or more recipients, and a limit can be specified to prevent too many

e-mail notifications from being sent within a specified time window.The following

is an example of a Samhain e-mail notification:

From: <daemon@example.com>

To: <brian@example.com>

Date: Tue, 01 Mar 2005 06:31:49 MST

Subject: [2005-03-01T06:31:48-0700] example.com

-----BEGIN MESSAGE-----

[2005-03-01T06:31:48-0700] example.com

CRIT : [2005-03-01T06:31:48-0700] msg=<POLICY [ReadOnly] ----H---TS>,

path=</usr/local/bin>, hardlinks_old=<10>, hardlinks_new=<11>,

size_old=<340>, size_new=<374>, ctime_old=<[2005-03-01T13:31:03]>,

ctime_new=<[2005-03-01T13:31:43]>, mtime_old=<[2005-03-01T13:31:03]>,

mtime_new=<[2005-03-01T13:31:43]>,

CRIT : [2005-03-01T06:31:48-0700] msg=<POLICY ADDED>,

path=</usr/local/bin/nmap>, mode_new=<-rwxr-xr-x>, imode_new=<33261>,

www.syngress.com

Host Integrity Monitoring with Open Source Tools • Chapter 5 135

CRIT : [2005-03-01T06:31:08-0700] msg=<POLICY [ReadOnly] --------T->, path=</usr/
local/bin>, ctime_old=<[2005-03-01T13:28:26]>, ctime_new=<[2005-03-01T13:31:03]>

Log Severity

Time Stamp

Previous Value

Current Value

Log Type

Object

hardlinks_new=<1>, idevice_new=<0>, inode_new=<952675>, owner_new=<root>,

iowner_new=<0>, group_new=<wheel>, igroup_new=<0>, size_old=<0>,

size_new=<400340>, ctime_new=<[2005-03-01T13:31:43]>, atime_new=<[2005-03-

01T13:31:43]>, mtime_new=<[2005-03-01T13:31:43]>,

chksum_new=<75553746C7D7F779F7A02B8965648A7271CD026DC9A49B0F>

-----BEGIN SIGNATURE-----

CA4FD78E2209BEAA1595D5F29F5D4B1BA60F5652D6415FC6

000000 1109683908::example.com

-----END MESSAGE-----

Strengths
One of the biggest strengths of Samhain is its ability to monitor specific elements of

a host environment on different time schedules. For example, you may want to con-

duct an SUID check once a day, but monitor the contents of /bin every hour.

Another strong feature of Samhain is the vast array of logging vectors, especially

the ability to log to a solid relational database such as PostgreSQL. Logging is crit-

ical; without logs, the integrity monitoring system would be almost useless.The

many logging outlets provided by Samhain make integration into an existing log

analysis infrastructure easier.

Samhain’s design allows for a very powerful modular interface that lets you

extend which elements of the environment are monitored.You not only add func-

tionality to the scan agent but also customize how that data is analyzed and com-

pared with subsequent scans.The configuration file syntax is also customizable so

that you can pass any kind of parameters to custom modules.

Samhain has many strong antitampering features as part of its design. Executables

have built-in keys to prevent an attacker from dropping a Trojan scan agent onto a

host.The scan agent executable, log files, and database files can all be altered so that

it is not obvious that they are related to Samhain.The executable name can be

renamed upon installation so that it is not obvious that Samhain is installed.

Furthermore, the Samhain process can be hidden from the process listing so that an

attacker cannot see the scan agent daemon running.The scan configuration file can

be steganographically hidden (i.e., attached to an image or postscript file) to avoid

detection—an excellent feature.

Finally, Samhain has the ability to monitor the integrity of the kernel on Linux

and FreeBSD systems. When these kernel checks are enabled, Samhain checks for

the presence of rootkits by monitoring modifications to the system call table and the

interrupt descriptor table.

www.syngress.com

136 Chapter 5 • Host Integrity Monitoring with Open Source Tools

Weaknesses
One of the biggest problems with Samhain is that it is not easy to configure and

install.The configuration file is complicated with respect to logging, modules, and

file monitoring. Samhain is very configurable, has a great deal of features, and has

many antitampering defenses, but deploying it can be a huge undertaking.

Samhain modules, though very powerful, are not easy to develop. Developing

even the most simple of modules requires modifying various parts of the code,

including the build environment itself.The functions used to store data in the

database are very file oriented, making writing modules to monitor other elements

of the environment cumbersome.

The bulk of the kernel-monitoring facilities implemented by Samhain are only

useful for Linux and FreeBSD. Likewise, some of the stealth features, such as hiding

the scan agent process, are only supported for Linux systems.

Samhain is very UNIX and Linux centric.Although you can compile and run

Samhain under the Cygwin environment, this is not supported, or even recom-

mended, for security reasons.The Samhain code was designed to monitor UNIX

and Linux environments, so if you have to monitor Windows environments, this may

create an administrative burden.

www.syngress.com

Host Integrity Monitoring with Open Source Tools • Chapter 5 137

Summary
Osiris and Samhain are the two most popular and widely deployed open source host

integrity monitoring products. Each has an agent-based deployment model that pro-

vides detailed reports about changes to various aspects of a host’s environment,

including files, network ports, users, groups, kernel modules, kernel state, user login

events, and more.

Neither one is better than the other; they both have their strengths and weak-

nesses.Although they both share the same goals, Osiris and Samhain have different

feature sets; therefore, some environments are going to favor one over the other.

Solutions Fast Track

Osiris

� Osiris provides centralized host integrity monitoring for UNIX and

Windows platforms.

� Osiris is easy to use and can be extended with modules; however, the

modular interface is somewhat limited.

� Osiris relies on SSL to secure all communication between the agents, the

console, and the command-line interface.

Samhain

� Samhain provides centralized host integrity monitoring for UNIX and Linux

environments.

� Samhain has many antitampering defenses and can digitally sign log

messages and database files.

� Samhain makes use of the Secure Remote Password protocol and AES

encrypted Transmission Control Protocol (TCP) sessions for all

communication between the agents and the console.

www.syngress.com

138 Chapter 5 • Host Integrity Monitoring with Open Source Tools

Q: Can I use Osiris and Samhain to monitor the same host?

A: Yes. Osiris and Samhain will not get in each other’s way; however, managing

both applications means you have to monitor two different sets of logs for

the same type of service.

Q: Can I set up multiple Osiris consoles or multiple Samhain servers?

A: Yes, you can. Sometimes network topology does not give you a choice. In

both cases, the consoles are distinct and do not share data.The exception to

this is with Samhain where both consoles can talk to the same SQL database.

Q: How many agents can an Osiris or Samhain management console handle?

A: Hundreds, possibly thousands.There are many variables at play. It depends on

how often the agents are scanning, how much data each agent is collecting,

and the hardware and system resources available to the management console.

Q: What are the license restrictions for Osiris and Samhain?

A: The Osiris source code is licensed under a BSD-style license. Samhain is

licensed under the GNU Public License. Both are free to use in commercial

and noncommercial environments.

Q: What is the difference between Osiris and Samhain with respect to the oper-

ating systems they support?

A: Samhain is somewhat UNIX centric and runs on Linux, BSD, Mac OS X,

Solaris,AIX, HP-UX, UnixWare, and Alpha/True64. Osiris runs on BSD,

Mac OS X, Solaris, Linux,AIX, IRIX, and Windows NT/2K/XP/2003.The

major difference is that Osiris has native support for Windows, whereas

Samhain requires POSIX emulation like Cygwin to run on Windows.

www.syngress.com

Host Integrity Monitoring with Open Source Tools • Chapter 5 139

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Osiris

Solutions in this chapter:

■ Configuring and Building Osiris

■ Additional Deployment Considerations

■ Establishing a Management Console

■ Command-Line Interface

■ Scan Agents

■ Administering Osiris

Chapter 6

141

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Introduction
Osiris is one of the most widely deployed open source host integrity monitoring

systems available today. In Chapter 5, we explored how Osiris works; this chapter

covers all of the steps involved in deploying Osiris, including building from source,

deployment, configuration, and administration.

It is always good practice to test software in a dedicated testing environment

before incorporating it into your production system.This is useful for a few reasons.

First, it allows you to gain familiarity with the software before you deploy it (mis-

takes can be made without much consequence). Second, it allows you to determine

what functionality you need for your software agents (modules). It also allows you to

fine-tune configurations so that you can begin production with fewer false positives.

Finally, it is recommended that you maintain at least one test system to be used just

for experimenting, testing policy changes, and simulating upgrades.

This chapter marks the start of the practical section of this book. It contains

more information and detail about deploying Osiris than any other source.As of this

writing, Osiris is at version 4.1.8.The goal here is to provide detailed, applicable

information on how to deploy Osiris.Although the attempt is made to stick to the

core elements, keep in mind that Osiris is under active development, so not all of the

screenshots or output will exactly match future versions.

Configuring and Building Osiris
The first step in deploying Osiris is to create trusted software builds.The best way to

do this is to verify the source, build it offline on a trusted host, and then burn the

binary installers to read-only media. Having trusted binaries on read-only media is

helpful because you can easily distribute the software to new hosts.

This section covers establishing a trusted build environment and creating installa-

tion packages to be used for deployment, including UNIX-like platforms and

Windows.Although not necessary, it is helpful to dedicate a system specifically for

building Osiris, which makes adding a module to the scan agent or deploying a

newer version of the software easier. Ideally, the host used to create trusted builds is

never connected to a network, and is secured physically.

This may seem overly cautious, but it is not.As a software engineer, I have seen

many broken production build environments: build hosts on the corporate network,

unpatched and unsecured; build hosts where all of the developers have access to the

system; and build hosts where the root password is written on sticky notes on the side

of the box.As a result, I have seen builds with Trojans and releases containing software

viruses. When you consider that this software may be deployed on thousands of hosts,

www.syngress.com

142 Chapter 6 • Osiris

it is a serious concern. When you consider what is at stake, the small burden associated

with maintaining an isolated build environment is a worthy investment.

Getting Osiris
The source code for Osiris can be downloaded from http://hostintegrity.com/osiris

(distributed as a gzipped tar file).The Message Digest 5 (MD5) checksum and a Pretty

Good Privacy (PGP) signature are posted for every Osiris release.The Osiris source

can also be downloaded from an anonymous subversion mirror that contains tags for

all of the releases and the latest (unstable) development code; however, the subversion

repository is simply a mirror, and none of the code is signed. Other than for experi-

menting, you should always obtain the source code from the Osiris Web site, because

it is the only source that can be verified.

All Osiris releases are signed with a PGP key with the following fingerprint:

FBBA B237 EF74 19F1 AC2F 8C0F 0DEC 799E 9674 763D

This PGP key is available on the Osiris Web site and on public PGP key servers.

The first step to obtaining a verified copy of the source is to download the key

using Gnu Privacy Guard (GnuPG) or PGP software.The most important thing is to

make certain that you verify the software on a trusted environment, and that the fin-

gerprint of the key is the same as the one we just showed. Next, download the

Osiris source code and its corresponding PGP signature using either a Web browser

or a command-line utility such as curl or wget:

$ curl hostintegrity.com/osiris/data/osiris-4.1.8.tar.gz -o osiris-

4.1.8.tar.gz

$ curl hostintegrity.com/osiris/data/osiris-4.1.8.tar.gz.sig -o osiris-

4.1.8.tar.gz.sig

Burn these two files to read-only media such as a CD-ROM or DVD, and verify

the PGP signature.Assuming that the signatures match, you now have verified copies

of the Osiris source that cannot be altered. If you are using any Osiris modules,

follow the same procedure and place them on the same disc.This is useful because

you can use this disc as a starting point to building trusted binaries of the software.

The fact that the build host is not on a network is a non-issue; all that is required is

that it has a CD-ROM or DVD drive.

Download the PGP key from www.hostintegrity.com/brian/brianwotring.asc or,

if you are using GnuPG, download the key from one of the key servers by doing the

following:

$ gpg --search-keys osiris@hostintegrity.com

gpg: searching for "osiris@hostintegrity.com" from hkp server

subkeys.pgp.net

www.syngress.com

Osiris • Chapter 6 143

(1) Brian Wotring <brian@shmoo.com>

Brian Wotring <brian@fortnocs.com>

Brian Wotring <brian@metasecura.com>

Brian Wotring <brian@hostintegrity.com>

Brian Wotring <osiris@hostintegrity.com>

1024 bit DSA key 9674763D, created: 1999-11-10

Keys 1-1 of 1 for "osiris@hostintegrity.com". Enter number(s), N)ext, or

Q)uit > 1

gpg: requesting key 9674763D from hkp server subkeys.pgp.net

gpg: key 9674763D: public key "Brian Wotring <brian@shmoo.com>" imported

gpg: no ultimately trusted keys found

gpg: Total number processed: 1

gpg: imported: 1

What is important is that the specified key matches the fingerprint, which can

be verified by doing the following:

gpg -- ngerprint osiris@hostintegrity.com

pub 1024D/9674763D 1999-11-10

Key ngerprint = FBBA B237 EF74 19F1 AC2F 8C0F 0DEC 799E 9674 763D

uid Brian Wotring <brian@shmoo.com>

uid Brian Wotring <brian@fortnocs.com>

uid Brian Wotring <brian@metasecura.com>

uid Brian Wotring <brian@hostintegrity.com>

uid [jpeg image of size 4891]

uid Brian Wotring <osiris@hostintegrity.com>

sub 2048g/D33C2213 1999-11-10

Once you have the correct key and have verified the signature, set its trust and

verify that the signature file matches the downloaded source.Assuming that the

source and signature are in your current directory, use the following commands to

trust the signing key and verify the source:

$ gpg --edit-key osiris@hostintegrity.com

gpg (GnuPG) 1.4.1; Copyright (C) 2005 Free Software Foundation, Inc.

This program comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute it

under certain conditions. See the le COPYING for details.

pub 1024D/9674763D created: 1999-11-10 expires: never usage: CSA

www.syngress.com

144 Chapter 6 • Osiris

trust: full validity: unknown

sub 2048g/D33C2213 created: 1999-11-10 expires: never usage: E

[unknown] (1). Brian Wotring <brian@shmoo.com>

[unknown] (2) Brian Wotring <brian@fortnocs.com>

[unknown] (3) Brian Wotring <brian@metasecura.com>

[unknown] (4) Brian Wotring <brian@hostintegrity.com>

[unknown] (5) [jpeg image of size 4891]

[unknown] (6) Brian Wotring <osiris@hostintegrity.com>

Command> trust

pub 1024D/9674763D created: 1999-11-10 expires: never usage: CSA

trust: full validity: unknown

sub 2048g/D33C2213 created: 1999-11-10 expires: never usage: E

[unknown] (1). Brian Wotring <brian@shmoo.com>

[unknown] (2) Brian Wotring <brian@fortnocs.com>

[unknown] (3) Brian Wotring <brian@metasecura.com>

[unknown] (4) Brian Wotring <brian@hostintegrity.com>

[unknown] (5) [jpeg image of size 4891]

[unknown] (6) Brian Wotring <osiris@hostintegrity.com>

Please decide how far you trust this user to correctly verify other users'

keys

(by looking at passports, checking ngerprints from different sources,

etc.)

1 = I don't know or won't say

2 = I do NOT trust

3 = I trust marginally

4 = I trust fully

5 = I trust ultimately

m = back to the main menu

Your decision? 5

Do you really want to set this key to ultimate trust? (y/N) y

pub 1024D/9674763D created: 1999-11-10 expires: never usage: CSA

trust: ultimate validity: unknown

sub 2048g/D33C2213 created: 1999-11-10 expires: never usage: E

[unknown] (1). Brian Wotring <brian@shmoo.com>

www.syngress.com

Osiris • Chapter 6 145

[unknown] (2) Brian Wotring <brian@fortnocs.com>

[unknown] (3) Brian Wotring <brian@metasecura.com>

[unknown] (4) Brian Wotring <brian@hostintegrity.com>

[unknown] (5) [jpeg image of size 4891]

[unknown] (6) Brian Wotring <osiris@hostintegrity.com>

Please note that the shown key validity is not necessarily correct

unless you restart the program.

Command> quit

dhcp-64-101-69-190:~/Desktop brian$ gpg --verify osiris-4.1.8.tar.gz.sig

gpg: Signature made Thu Mar 24 07:47:03 2005 MST using DSA key ID 9674763D

gpg: checking the trustdb

gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model

gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u

gpg: Good signature from "Brian Wotring <brian@shmoo.com>"

gpg: aka "Brian Wotring <brian@fortnocs.com>"

gpg: aka "Brian Wotring <brian@metasecura.com>"

gpg: aka "Brian Wotring <brian@hostintegrity.com>"

gpg: aka "Brian Wotring <osiris@hostintegrity.com>"

Assuming that the signature is good, you now have a trusted source on read-only

media and are ready to begin setting up your build environments and building Osiris

from a trusted source.

NOTE

Software signing applies to all PGP- and GnuPG-signed software. Make
every effort to verify the authenticity of the software that you download.
I recommend that you use the “ultimate” trust setting for the key to
avoid confusion with trust warnings during the verification process. Feel
free to use a lesser trust setting, and do not always trust keys that you
download from the Internet.

Establishing Build Environments
You must establish at least one build environment for every platform you want

Osiris scan agents on. For UNIX-like systems, this is relatively easy; for Windows, it

is more involved, which is why binaries for Windows are available with every Osiris

www.syngress.com

146 Chapter 6 • Osiris

release. However, this is only for convenience.The Windows binaries are the default

configuration options and contain only the stock modules. If you are planning to

monitor Windows hosts, it is recommended that you establish a Windows build

environment.

UNIX Build Environment
The Osiris source uses two major software projects: OpenSSL and Berkeley database

(DB).The functionality of Osiris is highly dependent on Berkeley DB; therefore, the

source for a trusted and tested version of Berkeley DB is included with Osiris. Osiris

will not use Berkeley DB on your system.The present version of Berkeley DB

(v.4.2.52) included with Osiris, has been tested extensively and works well with

Osiris. OpenSSL is an external dependency.The software requirements for building

Osiris on UNIX-like systems are:

■ American National Standards Institute (ANSI) C compiler (gcc recom-

mended)

■ OpenSSL (v.0.9.7e or greater recommended: www.openssl.org)

In addition, some utilities such as tar and GNU Zip (gzip) are used to create

install files.Although gcc is not required, it is recommended. For platforms that do

not normally contain gcc (such as Solaris,AIX, IRIX, and so on), gcc ports are avail-

able.Although the Osiris source code has been stripped of any gcc dependencies,

modules may or may not have gcc dependencies.You will likely save yourself some

trouble by compiling Osiris using gcc.

Windows Build Environment
This section lists the steps required to create a Windows build environment using

Windows XP.This environment can be used to build a console or scan agents, which

can be deployed on Windows 2000, Windows XP (Home or Professional), and

Windows 2003 Advanced Server.The software requirements for building Osiris on

Windows are:

■ MinGW v.3.1.0 or greater (www.mingw.org)

■ MSYS v.1.0.10 or greater (www.mingw.org)

■ NSIS Installer v.2.0.5 or greater (nsis.sourceforge.net)

■ Active Perl v.5.6.1 or greater (www.activestate.com)

■ OpenSSL v.0.9.7e or greater recommended (www.openssl.org)

www.syngress.com

Osiris • Chapter 6 147

The preceding software requirements are all open source requirements; no com-

mercial software is needed (other than Windows) to build Osiris. Minimalist GNU

for Windows (MinGW) is a Windows development suite consisting of header files

and libraries that can be used to produce native Windows executables that are not

dependent on third-party libraries (such as Cygwin). MSYS provides an environment

that can take advantage of the configure scripts and Makefiles traditionally used to

build software on UNIX-like systems. MinGW and MSYS together, allow you to

create native Windows executables without Visual Studio, and also allow all plat-

forms to take advantage of the same build system. NSIS is a highly configurable,

scriptable Windows installer system that provides a graphical installer familiar to

Windows environments, and allows for silent installations that are useful in mass

deployment scenarios. Perl is needed to configure and build OpenSSL. Other Perl

distributions can be used for Windows, but Active Perl is easy to install.

You can download from the preceding project sites or from the Osiris Web site.

The first step is to download the most current Osiris Windows development kit and

its PGP signature:

■ http://hostintegrity.com/osiris/data/windows-dev.zip

■ http://hostintegrity.com/osiris/data/windows-dev.zip.sig

Burn these files to a CD and verify the PGP signature. Windows XP has native

support for reading zip files, so this should be all that you need. If your build host is

Windows 2000 or 2003 Advanced Server, you must download a zip utility.The soft-

ware should be installed in the following order:

1. NSIS

2. Active State Perl

3. MinGW

4. MSYS

5. OpenSSL

Accept the defaults for NSIS,Active Perl, and MinGW, which put Perl in your

path and leaves MinGW installed on c:\mingw. When installing MSYS, change the

install path to c:\msys (see Figure 6.1), which will make it easier to work with.

www.syngress.com

148 Chapter 6 • Osiris

Figure 6.1 Installing MSYS

At the end of the MSYS installation, there is a post-install script that will prompt

you for the location of MinGW.Answer y to the first two questions, and provide the

path C:/mingw (see Figure 6.2). Note that the path is a forward slash, not the tradi-

tional path separator for Windows.

Figure 6.2 MSYS Post-install Script

www.syngress.com

Osiris • Chapter 6 149

Next, compile and install OpenSSL. Copy the OpenSSL source into your MSYS

home directory (located in C:\msys\home by default). Next, start MSYS from the Start

menu; you should see an rxvt terminal (see Figure 6.3). By default, you will be in

your MSYS home directory and should see the OpenSSL source file.

Figure 6.3 Starting MSYS from the Start Menu

To build OpenSSL, first unpack the source:

$ tar xvfz openssl-0.9.7e.tar.gz

Next, configure it for MinGW and build the toolkit:

$ cd openssl-0.9.7e

$./con gure mingw

$ make

Finally, install OpenSSL so that the Osiris build system can use it:

$ make install

At this point, the build environment for Windows is complete.All you need to

do is place the Osiris source in your MSYS home directory. From this point on, there

is no difference in the way you configure and build the Osiris executables between

the Windows and UNIX-like systems.

www.syngress.com

150 Chapter 6 • Osiris

Configuration Options
The configure script used to prepare the source tree for building, has a number of

options that can be used to custom-build Osiris. If you do not specify any options,

reasonable defaults will be used.To see what these defaults will be, run configure:

$./con gure

This command configures the source, and prints the default values at the end of

the configuration process as well as the modules that will be linked into the scan

agent (if built).The default values look like this:

==> Con guration Complete.

==> Osiris has been con gured with the following options:

Host: powerpc-apple-darwin7.8.0

Compiler: gcc

Compiler ags: -Wall -g -O2

Preprocessor ags:

Linker ags:

Libraries: -lpthread -lssl -lcrypto -lresolv

Privilege Separation: yes

SSL Location: (system)

Osiris Root Directory: /usr/local/osiris

Osiris user: osiris

Osiris MD Directory: /usr/local/osiris

Osiris MD user: osiris

Osiris MD con g dir: /usr/local/osiris

======================================

Found Scan Agent Modules:

==> mod_groups

==> mod_kmods

==> mod_ports

==> mod_users

======================================

The source code for the local copy of Berkeley DB is also configured.All con-

figure options are passed only to the Osiris source code.The Berkeley DB code is

configured to build only the static copy of the library, and is not installed on the

system.

www.syngress.com

Osiris • Chapter 6 151

The following are available configure options and their significance:

--with-ssl-dir=<PATH>

All three components of Osiris, including the command-line interface (CLI), the

management console, and the scan agent, are linked against the OpenSSL library.

This option allows you to specify where that copy of OpenSSL is on the file system.

By default, the build system attempts to find an installation of OpenSSL and uses the

first one it encounters.This option is useful in cases where you do not have

OpenSSL installed, or you do not want to install it on the build system.You can

build OpenSSL and have just Osiris linked against that build. For example, if you

download and build OpenSSL in /usr/local/src/openssl-0.9.7e/, you can link against

that build by doing:

$./con gure --with-ssl-dir=/usr/local/src/openssl-0.9.7e

Some systems (such as IRIX) may already have OpenSSL installed, but built

with a different compiler or settings that make it incompatible with gcc. If this is the

case, you should download and compile a local build of OpenSSL and use it to build

Osiris:

--with-root-dir=<PATH>

Both the scan agent and the management console have a directory on the file

system where they store certificates and host data. By default, this directory is

/usr/local/osiris on UNIX-like systems and %WindowsRoot%\osiris on Windows.This

configure option allows you to change where the Osiris repository is established

upon installation.There are several reasons not to use the default location:

■ Different operating systems have different conventions for storing various

types of data.

■ Your administrative policy places constraints on where you can store data of

this nature.

■ Disk space; depending on how many hosts you are monitoring or how

much scan data you are storing, you may want to dedicate a disk specifi-

cally for Osiris scan data and logs:

--with-osiris-user=<USERNAME>

As part of the installation process, a user and a group are created specifically for

Osiris; the default name for this user and group is “osiris.”The console and scan

agent processes all run as this unprivileged user, and all files used by Osiris are

owned by the Osiris user and group.This configuration option allows you to specify

www.syngress.com

152 Chapter 6 • Osiris

the user and group used by Osiris. If the user and group specified do not exist, they

are created.The console service and scan agent service on Windows run as adminis-

trator; therefore, this configure option has no effect on Windows systems:

--with-md-dir=<DIR>

This configure option is the same as the --with-root-dir option, except that it

is specific to the management console.Again, if you have partition constraints or you

want to specify exactly where the console stores all logs, configurations, and scan

databases, this is the option to use.The default location is /usr/local/osiris:

--with-md-conf-dir=<DIR>

Following is another console-specific option that is used to specify the directory

where the Osiris management console configuration file (osirismd.conf) is stored. By

default, the configuration file is stored in the Osiris root directory (/usr/local/osiris):

--with-md-user=<USERNAME>

Use this option to specify a user and group specifically for the management con-

sole. By default, the scan agent and management console use the same user and

group:

--enable-fancy-cli=YES|NO

For example, to enable the fancy-cli feature and specify an alternative default path

(/var/local/osiris), you would run configure as follows:

$./con gure --enable-fancy-cli=yes --with-root-dir=/var/local/osiris

The Osiris command-line application can be configured to provide useful

enhancements such as command completion and a command history buffer. Osiris

will automatically use the GNU readline library if it is installed. If it is not installed

or if you would rather use the built-in Osiris command-line enhancements, specify

the fancy-cli argument to configure. Because the built-in command-line enhance-

ments are not stable, they are turned off by default.

In most cases, the default configure options are sufficient.These options exist to

make it easy for administrators to customize the deployment of the Osiris agents and

console according to the particulars of their systems. Once the source has been con-

figured, check the final output to make sure that any options you provided were

interpreted correctly.

www.syngress.com

Osiris • Chapter 6 153

Adding Modules
The Osiris source contains four native modules at the time of this writing:

mod_users, mod_groups, mod_kmods, and mod_ports.At one point, these modules were

part of the scan agent code, but were removed when the modular interface was

developed. Not all modules are this useful, but there are a few other modules that

you may want to add.A collection of modules that has been reviewed and tested can

be found on Osiris’ Web site http://hostintegrity.com/osiris/modules.html.

All modules are kept in a directory called modules under the source code for the

scan agent. Each module is in its own directory.To add a module to the build, all

you have to do is unpack it in the src/osirisd/modules directory.You do not have to

run the configure script again; the build system will automatically build the module

into the scan agent executable.

Building Installer Packages
The final step is to build the Osiris executables and create the installer package.An

installer package is a single file that can be distributed to your production (or test)

systems that allows you to run a script (or an executable on Windows) or to install

the agent or the console software, which makes it easy to distribute the software to

multiple hosts. If you are installing many agents, you will want to create an installer

package.

Many operating systems come with ways to download and install binaries or

build and install from source using only a couple of commands. FreeBSD has ports

and packages, Mac OS X has fink, Gentoo Linux has ebuilds, RedHat uses RPMs,

and so on. Using a port or a package of some kind can prove helpful for deploy-

ment, but is not recommended: ports and packages make assumptions about con-

figure and installation options, and your target systems may not have compilers on

them. Binary packages strive to attain maximum compatibility, catering to the lowest

common denominator as far as optimizations go.To control exactly how Osiris is

built, you must build it from source.

Building UNIX Install Packages
For UNIX-like systems, there are two installer packages: one for the agent and one

for the management console.After the source has been configured, you can build the

agent and create an installer with the following command:

$ make agent

www.syngress.com

154 Chapter 6 • Osiris

This command builds only the necessary files for the scan agent, creates an

installation script mindful of your configuration options, strips the binaries, and

stores everything in a gzipped tar file.The installer file is located in the src/install

directory, and the filename contains the Osiris version, operating system, and archi-

tecture type. When the package is created, you will see output that lists the installer

file name and its contents:

building release tarball: src/install/osiris-agent-4.1.8-rc1-powerpc-Darwin-

7.8.0.tar

installer package contents:

total 1984

-rw-r--r-- 1 brian brian 5132 18 Mar 21:08 LICENSE

drwxr-xr-x 6 brian brian 204 18 Mar 21:08 darwin

-rwxr-xr-- 1 brian brian 31081 18 Mar 21:08 install.sh

-rwxr-xr-x 1 brian brian 843208 18 Mar 21:08 osiris

-rwxr-xr-x 1 brian brian 125208 18 Mar 21:08 osirisd

-rw-r--r-- 1 brian brian 72 18 Mar 21:08 version.h

installer package created.

To build an installer package for the console, use the following command:

$ make console

This will create another gzipped tar file that contains all of the binaries necessary

to install a management console.The location and naming convention for the

installer file are similar to the agent installer. Once you have built packages for the

agent and the console, burn them to read-only media. Remember, whatever plat-

form and architecture you build a package on is the only kind of platform that

package can be installed on (e.g., if you build the package on Mac OS X, you can

only install it on Mac OS X systems. If you build it on Linux, it will be useful only

for Linux systems, and so on).The Osiris build system does not have a means of

building fat binaries for use on multiple platforms.

www.syngress.com

Osiris • Chapter 6 155

Building a Windows Installer
The agent and console are packaged as a single installer for Windows. First, you must

build the Osiris components:

$ make

Before you build the Windows installer, you must strip the executables:

$ strip src/cli/osiris.exe

$ strip src/osirisd/osirisd.exe

$ strip src/osirismd/osirismd.exe

This will reduce their size by roughly one half, and keep the installer from being

bloated.The src/install/windows/osiris_install.nsi file dictates how to build the Osiris

installer. Right-click on this file and select menu option Compile NSIS script.You

will see a dialogue listing the details of the creation process (see Figure 6.4). If suc-

cessful, the installer file is named osiris_install.exe. Rename this to something mean-

ingful and burn it to read-only media.

Figure 6.4 Details of the Osiris Creation Process

Additional Deployment Considerations
At this point, you should have trusted copies of installers on read-only media.

However, before you begin deployment, there are additional issues that you should

consider.

www.syngress.com

156 Chapter 6 • Osiris

Read-Only Media
It is possible to deploy a scan agent to be run from read-only media, which is often

suggested as the “secure” way to deploy host-based security agents.The idea is that

an attacker cannot alter the agent executable or related files; thus, they can always be

trusted. Not true. In previous chapters, you learned that there are many different

ways to subvert software agents.They depend on the integrity of the runtime envi-

ronment (kernel syscalls, memory, and so on); therefore, preventing the agent exe-

cutables from tampering is only a partial solution. Furthermore, updates are

cumbersome because you have to burn new media. Servers often do not have CD-

ROM or DVD drives, or you may not want to dedicate the drive to be used specifi-

cally for Osiris.All things considered, this is not a good idea because it is not

practical.

NOTE

I have seen deployments of software such as Osiris, where administra-
tors were sold on the idea of deploying on read-only media because that
was the “secure” way to do it. In the end, the administrative overhead
became such a burden that the entire system became useless. At that
point, you have to ask yourself which is better; a useful deployment that
you know is not perfect or nothing at all?

Pre-provisioning Digital Certificates
Another deployment consideration is the pre-provision of digital certificates.The

scan agent and the CLI both authenticate the management console using certificates.

By default, the management console generates a self-signed certificate upon installa-

tion.The first time the CLI connects to the console, it saves the presented root cer-

tificate to be used to authenticate the console on subsequent connections (not

unlike the way Secure Shell [SSH] saves host keys). Likewise, the scan agent auto-

matically trusts and saves the first root certificate that connects to it.

The most obvious problem with the default behavior is that the scan agents are

vulnerable; any host can connect to them and force the agent to save any root cer-

tificate.Another problem is that the system is using a self-signed certificate. In any

case, it is recommended that you pre-provision certificates whenever possible.The

main reasons this is not mandatory is because of usability and convenience.

www.syngress.com

Osiris • Chapter 6 157

Administrators who do not know how to generate key pairs and deploy root certifi-

cates do not have to; the system provides adequate security, especially for evaluation

purposes.At the same time, you have the ability to change it; it is recommended that

you do so.

There is no way to pre-provision the CLI, which is not much of a problem

because the user interface displays the presented certificate fingerprint and gives you

the option of whether to save it or not.The CLI is not installed on different

machines, so you only have to deal with this once.The certificate is saved in your

home directory; for UNIX-like machines, it is ~/.osiris/osiris_root.pem and for

Windows systems, it is %SystemRoot%\Documents and Settings\<username>\Application

Data\.osiris\osiris_root.pem.

To install your own certificate on the console, you must replace two files: the

certificate and the key.The certificate is stored in

<OSIRIS_ROOT>/certs/osirismd.crt and the key for this certificate is stored in

<OSIRIS_ROOT>/private/osirismd.key.These two paths and filenames are not con-

figurable. Whether or not you encrypt your key file is up to you. Keep in mind, if it

is encrypted, you will not be able to start the console until you manually enter a

password.

In order to pre-provision your agent installer, you must copy your root certifi-

cate into the Osiris source directory, specifically src/install/osiris_root.pem, and then

rebuild the agent installer. On UNIX-like systems, make sure you see osiris_root.pem

listed as one of the files added to the installer:

-rw-r--r-- 1 brian brian 5132 19 Mar 09:24 LICENSE

drwxr-xr-x 6 brian brian 204 19 Mar 09:24 darwin

-rwxr-xr-- 1 brian brian 31081 19 Mar 09:24 install.sh

-rwxr-xr-x 1 brian brian 843208 19 Mar 09:24 osiris

-rw-r--r-- 1 brian brian 1155 19 Mar 09:24 osiris_root.pem

-rwxr-xr-x 1 brian brian 125208 19 Mar 09:24 osirisd

-rw-r--r-- 1 brian brian 72 19 Mar 09:24 version.h

On Windows, you have to scroll up on the installer creation log and look for the

line that begins with File: osiris_root.pem (see Figure 6.5).

www.syngress.com

158 Chapter 6 • Osiris

Figure 6.5 Copying the Root Certificate into the Osiris Source Directory on

Windows Systems

Operating System Specifics
You must build a separate agent installer for every type of operating system you want

to monitor. Each operating system has its own peculiarities and restrictions for

binary compatibility. Osiris does not have any kernel-resident code; therefore, it is

relatively easy to build agent installers that are compatible with a variety of different

operating system releases.The following is a list of helpful hints to consider when

building installer agents:

■ If you build on Windows XP, this installer will work on all of the Windows

platforms supported by Osiris, including all versions of Windows 2000,

Windows XP, and Windows 2003 Advanced Server.

■ For Mac OS X, the general rule is to build on the lowest version that you

need to support. For example, if your build host is running Mac OS X

v.10.1.5, the built executables will run on v.10.1.5 and greater. However, if

you build on v.10.4, you may encounter problems with library versions on

older Mac OS X hosts. Since Osiris has no kernel run code, there are no

issues related to kernel compatibilities to worry about.

■ You will not encounter any problems with Linux as long as you compile

the agent statically against all used libraries. If you are using gcc, set your

www.syngress.com

Osiris • Chapter 6 159

CFLAGS environment variable before you build the source. For example,

assuming you are using a bash shell, you would set this by doing:

$ export CFLAGS="$CFLAGS -static"

$./con gure [options]

$ make

■ Berkeley Software Distribution (BSD) systems such as FreeBSD, NetBSD,

and OpenBSD are the least problematic as far as binary compatibility is

concerned. Obviously, you have to build separate installers for each sup-

ported architecture type.

■ Osiris is tested on Solaris versions 2.8 and 2.9, and this should work fine

for systems running version 2.5 or greater. For older SunOS-based systems,

it is recommended that you compile separate agent installers. By default, the

executables on Solaris are static and compiled as 32-bit applications.There

is no significant advantage in altering the build so that it produces 64-bit

executables.

Testing
The last thing you want to consider before deployment is testing.At this point, you

have trusted installers on read-only media. It is a good idea to test these installers and

the software itself. Only after you are satisfied with the installs and familiar with

Osiris should you put it into production.

When testing the installer, you want to make sure that the init scripts work.

Reboot your test system and make sure that the agent started correctly.Also, make

sure that the default file permissions for the Osiris root directory, the root certificate,

and any other installed files are set correctly. By default, these files are owned by the

Osiris user and group. On UNIX-like systems, the permissions should look some-

thing like the following:

drwxr-xr-x 9 osiris osiris 306 Mar 15 11:24 .

drwx------ 3 osiris osiris 102 Nov 2 20:08 ./certs

-rw-r--r-- 1 osiris osiris 1155 Nov 2 20:08

./certs/osirismd.crt

drwxr-xr-x 20 osiris osiris 680 Mar 15 07:48 ./con gs

-rw------- 1 osiris osiris 8192 Feb 21 13:52 ./ lter.db

drwx------ 4 osiris osiris 136 Mar 11 06:58 ./hosts

-rw------- 1 osiris osiris 1155 Mar 15 11:22 ./osiris_root.pem

-rw------- 1 osiris osiris 225 Mar 15 11:24 ./osirismd.conf

www.syngress.com

160 Chapter 6 • Osiris

drwx------ 4 osiris osiris 136 Nov 2 20:08 ./private

-rw------- 1 osiris osiris 8192 Nov 2 20:08 ./private/auth.db

-rw------- 1 osiris osiris 1679 Nov 2 20:08

./private/osirismd.key

The init scripts are located in different locations for each platform.Table 6.1

shows the locations for the init scripts on common systems.This is useful informa-

tion if you are testing or troubleshooting.

Table 6.1 Locations of Init Scripts on Common Operating Systems

Platform Init Scripts Location

Mac OS X /System/Library/StartupItems/Osiris/Osiris

Solaris /etc/init.d/osirisd, /etc/init.d/osirismd

Linux /etc/init.d/osirisd, /etc/init.d/osirismd

BSD systems /usr/local/etc/rc.d/osirisd,
/usr/local/etc/rc.d/osirismd

IRIX /etc/init.d/osirisd, /etc/init.d/osirismd

AIX /etc/rc.osirisd, /etc/rc.osirismd

Establishing a Management Console
This examines everything that you need to know to establish a management con-

sole. Specifically, we examine the anatomy of the management console, look at its

components and features, and discuss how the management console can be config-

ured.Then, we walk through a typical installation. Finally, we configure and do some

post-installation tasks.

By now, you should have decided which operating system you will use for your

console. In addition, you should have installed the base operating system and locked

it down. (For more information see Chapter 4.) The host that you are using as a

management console is the most important part of the Osiris system; a compromised

management host will render the entire integrity monitoring system useless. Make

sure that this host is fully patched and locked down before installing the console

software.

Management Console Components
The management console consists of the osirismd executable and a directory of files

that are used to store logs, configurations, certificates and passwords, scan data, and

www.syngress.com

Osiris • Chapter 6 161

more.This section looks at some of the major components that make up the Osiris

directory.

Directory Structure
By default, all of the data related to the management console is stored under a single

directory (/usr/local/osiris on UNIX systems and %WindowsRoot%\osiris on

Windows) (see Figure 6.6).

Figure 6.6 Directory Structure for the Osiris Management Console

Every host that is monitored by the console has its own directory under the

hosts directory (see Figure 6.7).

www.syngress.com

162 Chapter 6 • Osiris

osiris

certs

configs

private

hosts

filter.db

osirismd.conf

osirismd.crt

auth.db

osirismd.key

Figure 6.7 Host Directories

Because this directory contains all of the information about each host, including

scan data and logs, you might want to consider a separate disk partition for your

osiris directory.This will help with disk space, and allow greater flexibility with

respect to the analysis and portability of your installation.

Notes from the Underground…

Remember Your Backups
All of the files in the Osiris directory are platform-independent; therefore, all of
the data related to the console can be kept under a single directory. Thus, it is
easy to make backups of your console. For example, on UNIX you can take a quick
snapshot of the management console by doing the following as root:

tar cvfz /tmp/console-backup.tar.gz /usr/local/osiris

This will create a backup of the console data in the /tmp directory. You can
then copy this to another host or burn it to read-only media. Furthermore, you
can set up a cron job to do this on a regular basis.

On Windows XP systems, you can accomplish something similar by
choosing “File->New->Compressed (zipped) Folder” from any Explorer Window.

www.syngress.com

Osiris • Chapter 6 163

host

configs

logs

databases

host.conf

Continued

After copying the files from %WindowsRoot%\osiris into the newly created zip
folder, you can burn this file to read-only media or copy it to another host. How
you choose to back up this directory is up to you; everyone’s backup procedures
are different. The important thing to remember is that you should back this data
up and take steps to secure it. The information collected by the console is sensi-
tive. Whenever I create backups for the systems that I monitor, I encrypt the
backup file(s) before I burn them to read-only media.

Another useful thing about keeping backup files and the platform-indepen-
dent characteristic of the osiris directory is that you can easily migrate your man-
agement console to another operating system. For example, if you want to
migrate from Windows to FreeBSD, all you have to do is install the console on
your FreeBSD system, unpack your console backup file, and restart the osirismd
daemon. This ability is due largely in part to the use of Berkeley DB files as stores
for the scan data.

User Authentication Database: auth.db
When you login to the management console using the CLI, you must authenticate

by providing a password.The management console stores passwords in the

private/auth.db file, which is a Berkeley DB file.The passwords are not encrypted. In

fact, the file does not contain passwords; instead, it contains the MD5 checksums of

the passwords. Upon login, the console computes the MD5 of the provided password

and matches that to the one found in the database.This file is protected by file per-

missions and is readable and writable only by the Osiris user. (For more information

about console users, see “Administering Osiris” later in this chapter.)

Comparison Filter Database: filter.db
In an attempt to help reduce noise, the management console can maintain a database

of filters, which is a list of regular expressions. Each log message generated by the

management console is subjected to this list of filters before being written to the

various logging vectors. Filters are stored in the filter.db file in the root of the main

Osiris directory. For efficiency reasons, this file is a Berkeley DB file; therefore, you

must use the CLI to edit or view the filter list.

Management Console Processes
On UNIX, the management console is a daemon and consists of a single executable

called osirismd. By default, this executable is stored in /usr/local/sbin.The osirismd

application is Set User ID (SUID) and owned by the Osiris user and group.The

permissions should look something like the following:

www.syngress.com

164 Chapter 6 • Osiris

$ ls -la /usr/local/sbin/osirismd

-rwsr-xr-x 1 osiris osiris 856832 19 Mar 14:13 /usr/local/sbin/osirismd

This executable is large for a typical daemon, because it is statically linked against

both the OpenSSL libraries and the Berkeley DB library. When osirismd starts up, it

spawns two processes: a master daemon process and a scheduling process.The master

daemon process is responsible for accepting and handling new requests.The

scheduling process is responsible for monitoring the schedules of hosts and telling

them when they must scan.The osirismd process is not multithreaded on UNIX sys-

tems, so it spawns a new process for each request, including CLI sessions and han-

dling incoming scan streams from monitored hosts.Thus, at any point in time, you

will see two or more osirismd instances.

On Windows, the management console consists of a single executable called

osirismd.exe, which is stored in %SystemRoot%\osirismd.exe.The osirismd service is

launched on startup and runs with administrator privileges. Unlike on UNIX sys-

tems, the osirismd application is multithreaded and starts out with two threads: one

to handle requests and one scheduling thread. New threads are created to handle

CLI sessions and any scheduled scan sessions (see Figure 6.8).

Figure 6.8 Configuring osirismd Elements through the Windows Service

Control Panel

www.syngress.com

Osiris • Chapter 6 165

Alternatively, you can start and stop the osirismd service at any time by using the

net command. For example:

C:\>net stop osirismd

The Osiris_IDS_Management service is stopping.

The Osiris_IDS_Management service was stopped successfully.

C:\>net start osirismd

The Osiris_IDS_Management service is starting.

The Osiris_IDS_Management service was started successfully.

Command-Line Arguments
Generally, the console is configured through the CLI and, ultimately, through a flat

configuration file (osirismd.conf). However, the osirismd process does accept some

command-line arguments.To see a listing of these arguments, do the following at a

shell or command prompt:

$ osirismd –help

Osiris Management Console - Version 4.1.8-release

usage: osirismd [-r <directory>] [-f < le>] [-h]

-r directory : specify alternate directory for certs and hosts.

-f le : specify alternate con guration le.

-h : this usage statement.

On Windows, use the following code:

C:\>osirismd.exe --help

Osiris Management Console - Version 4.1.8-release

usage: osirismd [-r <directory>] [-f < le>] [-d] [-h] | [-u|-i]

-r directory : specify alternate directory for certs and hosts.

-f le : specify alternate con guration le.

-h : this usage statement.

-i : install as a windows service on local machine.

-u : uninstall windows service from local machine.

-d : run this application as a normal daemon, not a service.

www.syngress.com

166 Chapter 6 • Osiris

The -r and -f options allow you to specify alternate locations for the Osiris root

directory and the osirismd.conf file, respectively.The osirismd process accepts some

additional arguments that can be helpful.The -i and -u options allow you to install

and uninstall the osirismd service on the command line.The -d option can be used

to run osirismd from a command prompt as opposed to a service, which can be

helpful when trying to debug a problem with the console. Stop the service and start

it up on a command prompt with the -d option; you will see the log messages

printed to the window (see Figure 6.9).

Figure 6.9 A Command Prompt with Log Messages for osirismd -d

Installing the Management Console on UNIX
The first step to installing the management console is to move the installer tar.gz file

to a reasonable location and unpack it. In this case, we use a Linux host:

$ cd /usr/local/src

$ tar xvfz osiris-console-4.1.8-linux.tar.gz

Installing the management console is fairly straightforward.The installer is a

simple shell script (install.sh) that asks you a few questions and installs the executa-

bles. Specifically, install.sh will:

1. Prompt to continue the installation.

2. Display installation defaults.

3. Create local “osiris” user if it does not exist.

www.syngress.com

Osiris • Chapter 6 167

4. Create local “osiris” group if it does not exist.

5. Prompt to install local scan agent.

6. Prompt to install management console.

7. Prompt to install CLI.

8. Copy executables and default scan configuration files.

9. Copy init scripts for installed daemons.

10. Set reasonable permissions on installed files.

As root, run the install.sh script and select yes to continue installation:

$ cd osiris-console-4.1.8-release

./install.sh

Continue with installation? (y/n) [y] y

You will see the installation script create an Osiris user and group:

==> creating user and group (osiris, osiris).

==> group 'osiris' added.

==> user 'osiris' added.

==> using existing Osiris management console user.

When prompted for what to install, answer yes to all three components. It is

always a good idea to install a scan agent on the console.You will need the CLI to

perform the initial installation.

Install osiris agent? (y/n) [y] y

Install management console? (y/n) [y] y

Install CLI? (y/n) [y] y

When prompted for a location for the executables, accept the default.The

installer will install the start-up scripts and set permissions for the executables:

Installation directory for binaries: [/usr/local/sbin]

==> installed osiris CLI: /usr/local/sbin/osiris

Osiris scan agent root directory doesn't exist, creating.

==> installed scan agent: /usr/local/sbin/osirisd

==> installed management console /usr/local/sbin/osirismd

==> installed default scan con gs.

==> installing rc startup for daemon(s).

Linux Distribution: gentoo

==> Skipping osirisd symlink creation.

* osirisd added to runlevel default

www.syngress.com

168 Chapter 6 • Osiris

* Caching service dependencies...

* rc-update complete.

==> Skipping osirismd symlink creation.

* osirismd added to runlevel default

* Caching service dependencies...

* rc-update complete.

==> change owner and permissions on /usr/local/sbin/osiris

-rwxr-xr-x 1 root wheel 765508 Mar 19 09:12 /usr/local/sbin/osiris

==> change owner and permissions on /usr/local/sbin/osirisd

-rwxr-xr-x 1 root wheel 110020 Mar 19 09:12 /usr/local/sbin/osirisd

==> change owner permissions on /usr/local/sbin/osirismd

-rwsr-xr-x 1 osiris osiris 788096 Mar 19 09:12 /usr/local/sbin/osirismd

Do not start the console and the scan agent when asked:

Start management console now? (y/n) [y] n

--> to start management console, run: /usr/local/sbin/osirismd

Start scan agent now? (y/n) [y] n

--> to start the scan agent, do sudo /usr/local/sbin/osirisd

Documentation is included with this source and available online at:

http://hostintegrity.com/osiris/docs

(c) 2005 - Brian Wotring

At this point, Osiris is installed. Before starting the daemons, you must copy in

your root certificate and private key. Copy your certificate file to /usr/local/osiris/

certs/osirismd.crt and your key file to /usr/local/osiris/private/osirismd.key. If you want to

have the console generate a self-signed certificate , you do not have to do anything.

Next, start the daemons.This will vary depending on your operating system. For

BSD systems, this is usually accomplished by running the following commands as

root:

/usr/local/etc/rc.d/osirisd start

/usr/local/etc/rc.d/osirismd start

For Solaris- and Linux-based systems, you can start the daemons with the fol-

lowing command:

/etc/init.d/osirisd start

/etc/init.d/osirismd start

www.syngress.com

Osiris • Chapter 6 169

For Mac OS X, use the following command:

/System/Library/StartupItems/Osiris/Osiris start

Now verify that the daemons are running by using the ps command.You should

see two instances of the management console daemon (osirismd) and two instances

of the scan agent (osirisd). For example, on Linux:

$ ps -ef | grep osiris

root 17984 0.0 1.2 3028 772 pts/0 S 09:29 0:00

/usr/local/sbin/osirisd

osiris 17986 0.0 2.1 3220 1304 pts/0 S 09:29 0:00

/usr/local/sbin/osirisd

osiris 18035 0.0 2.6 3696 1612 ? S 09:29 0:00

/usr/local/sbin/osirismd

osiris 18037 0.0 2.6 3700 1616 ? S 09:29 0:00

/usr/local/sbin/osirismd

All osirismd processes should be running as the Osiris user. For the scan agent,

you should see one running as root and one running as the Osiris user.The root run

scan agent process exists solely to perform privileged operations for the scan agent;

the root run process does not listen on any network ports.

Installing a Management Console on Windows
Installing a management console on Windows is easy; simply run the installer pro-

gram by double-clicking on it.The first prompt you will encounter is the “End User

License Agreement.” Click the button that reads I Agree.The next prompt asks you

which components to install. Since you are installing the management console, make

sure that all three components are selected (see Figure 6.10).

www.syngress.com

170 Chapter 6 • Osiris

Figure 6.10 Installing the Management Console on Windows

Installation takes at least one minute because the installer attempts to locate and

gracefully shut down any existing Osiris services. When the installation is complete,

you will see the phrase “Setup was completed successfully” at the top left of the dia-

logue box (see Figure 6.11). Click the Close button.

Figure 6.11 Completing the Installation of Osiris on Windows

www.syngress.com

Osiris • Chapter 6 171

After the installation is complete, the scan agent and the console are installed and

running. Unfortunately, there is no option to not start the services upon installation.

Therefore, to add your own certificate to the management console, you must stop

the service, copy in your own certificate, and restart the service.To stop the Osiris

console service, open a command prompt and type the following:

C:\>net stop osirismd

The Osiris_IDS_Management service is stopping.

The Osiris_IDS_Management service was stopped successfully.

Next, copy your own certificate file to %WindowsRoot%\osiris\certs\osirismd.crt and

the key file to %WindowsRoot%\osiris\private\osirismd.key. Restart the service:

C:\>net start osirismd

The Osiris_IDS_Management service is starting.

The Osiris_IDS_Management service was started successfully.

Understanding Configuration Settings
Now that the management console is installed and running, you must define some

additional configuration parameters. However, before you do that, you should go

over all of the configuration options so that you know what is available and what

each of them does.

The configuration for the management console is stored in the osirismd.conf file,

which is kept in the root of the Osiris directory.This is a flat file that is relatively

easy to understand. When osirismd starts up, it looks for this file; if it is not there, it

creates one with reasonable defaults. Following is an example of the default

osirismd.conf file:

syslog_facility = DAEMON

control_port = 2266

http_port = 0

http_host =

notify_email =

notify_smtp_host = 127.0.0.1

notify_smtp_port = 25

notify_app =

allow = 127.0.0.1

hosts_directory =

www.syngress.com

172 Chapter 6 • Osiris

The following is a complete list of settings that are found in the osirismd.conf file

as of Osiris v.4.1.8:

■ syslog_facility=<FACILITY> Use the specified syslog facility to log all

log messages.The management console will log everything to the system

log on UNIX hosts and the event viewer on Windows.This setting is only

applicable to UNIX systems.Although there is a common set of syslog

facilities, some have facilities that others do not. Consult your syslog main

page for available facilities.The default value for this setting is DAEMON.

(Do not include the LOG_ prefix that is commonly associated with syslog

facilities.

■ control_port=<PORT> This is the network port that osirismd listens on

for connections from the CLI.The default value for this port is 2266.

■ http_port=<PORT> The management console has the ability to listen on

a port and accept Hyper Text Transfer Protocol over Secure Socket Layer

(HTTPS) requests from a Web browser, to review and acknowledge

detected changes for a host.This is a legacy feature that was initially devel-

oped for convenience purposes.The default value for this setting is zero

(disabled).

■ http_host=<NAME> All e-mail notifications sent out by the management

console identify the management console by its current hostname; specifi-

cally, it uses what is returned by the system function (gethostname()).

Depending on your system configuration, you may or may not find this

acceptable. Whatever value is set here will be used to identify the manage-

ment console, including the value of the “From:” header in e-mails.The

default value for this setting is empty, meaning the result of gethostname()

will be used.

■ notify_email=<EMAIL_ADDRESS> This is the e-mail address where all

notifications about the status of the console or hosts are sent.The default

value for this setting is empty (disabled).

■ notify_smtp_host=<SMTP_SERVER> This is the Simple Mail Transfer

Protocol (SMTP) server that will be used to send all e-mail notifications.

The default value for this setting is local host (127.0.0.1).

■ notify_smtp_port=<PORT> This is the remote port that will be con-

nected to the host specified in the notify_smtp_host field.The default value

for this setting is 25.

www.syngress.com

Osiris • Chapter 6 173

■ notify_app=<FULL_PATH> This is the full path to a local executable

where all log messages will be piped to. Upon start up, osirismd will launch

the specified path and send all log messages to standard input on the

launched application. Log messages are still sent to syslog or the event

viewer, which is simply an additional outlet for log data.The default value

for this setting is empty (disabled).

■ allow=<IP>|<HOSTNAME> The management console will refuse all

connections to the port specified in the control_port except for those explic-

itly allowed in the configuration file under this setting.This is for security

reasons. It is not recommended that you allow remote CLI connections to

your management console, but if you do, this will allow you to limit which

hosts the console will accept connections from.The syntax is one Internet

Protocol (IP) address or hostname per line.You can use wild cards. For

example, to specify two hosts, you could do:

allow=10.10.0.1

allow=10.10.0.2

Or, to allow an entire subnet, you could do:

allow=10.10.0.*

By default, osirismd will accept connections only from local host

(127.0.0.1).

■ hosts_directory=<FULL_PATH> If you want to keep the hosts’ directory

outside of the main Osiris directory, you specify the location of that directory

here.There are a few reasons for wanting to do this; one common reason is

for disk space.The default value for this field is empty, meaning the host’s

directory is kept in the root of the Osiris directory (/usr/local/osiris/hosts on

UNIX and %WindowsRoot\osiris\hosts on Windows).

Configuring the
Management Console for the First Time
Now that you understand what the available settings are, you need to configure your

newly installed console.The way to edit these settings is to use the Osiris CLI appli-

cation. By default, the management console accepts connections only from the local

machine, so you must be logged in to your management host or sitting in front of

the console.

www.syngress.com

174 Chapter 6 • Osiris

First, start Osiris without command-line arguments; it will connect to the local

machine by default. Because this is the first time that you have connected to the

management host, the CLI does not recognize the root certificate presented by the

console.You will see a warning message that looks like the following:

$ osiris

Osiris Shell Interface - version 4.1.8-release

unable to load root certi cate for management host:

(/Users/brian/.osiris/osiris_root.pem)

>>> fetching root certi cate from management host (localhost).

The authenticity of host 'localhost' can't be established.

[server certi cate]

subject = /C=US/CN=Osiris Management Console/OU=Osiris Host Integrity

System

issuer = /C=US/CN=Osiris Management Console/OU=Osiris Host Integrity

System

key size: 2048 bit

MD5 ngerprint: 6D:6D:C6:60:94:C5:03:DA:9D:F8:79:4C:D3:98:56:C1

Verify the ngerprint speci ed above.

Are you sure you want to continue connecting (yes/no)?

When you see this prompt, respond yes to save the root certificate. When asked

for a username, type admin. When asked for a password, press ENTER:

User: admin

Password:

connected to management console, code version (4.1.8-release).

hello.

WARNING: your password is empty, use the 'passwd' command

to set your password.

osiris-4.1.8-release:

www.syngress.com

Osiris • Chapter 6 175

At this point, you are logged into the management console. Upon successful

authentication, the management console prints its software version and then displays

a shell prompt.To set the admin password, type passwd admin at the prompt and

give it a reasonable password.After the password has been set, you will be asked to

log in again using your newly established password.

osiris-4.1.8-release: passwd admin

Password:

>>> user: (admin) updated.

current login was edited, you must re-authenticate.

>>> authenticating to (localhost)

Password:

connected to management console, code version (4.1.8-release).

hello.

osiris-4.1.8-release:

Next, you must edit the management console configuration settings.To do this,

use the edit-mhost command.This prompts you for each setting and displays the cur-

rent value in square brackets.To accept the default value, press ENTER.To clear a

setting, enter a space and press ENTER.The following example shows how to set

the e-mail address and add a host to the allow list:

osiris-4.1.8-release: edit-mhost

[edit management host (localhost)]

> syslog facility [DAEMON]:

> control port [2266]:

> http control port [0]:

> notify email (default for hosts) []: bob@example.com

> noti cation smtp host [127.0.0.1]:

> noti cation smtp port [25]:

> authorized hosts:

127.0.0.1

Modify authorization list (y/n)? [n] y

www.syngress.com

176 Chapter 6 • Osiris

s) show current listing.

a) add a new authorized host.

r) remove authorized host.

q) quit

> a

> authorized hostname/IP (*=wildcard): admin.example.com

s) show current listing.

a) add a new authorized host.

r) remove authorized host.

q) quit

> q

[management con g (localhost)]

syslog_facility = DAEMON

control_port = 2266

http_port = 0

http_host =

notify_email = bob@example.com

notify_app =

notify_smtp_host = 127.0.0.1

notify_smtp_port = 25

hosts_directory =

allow = 127.0.0.1

allow = admin.example.com

Is this correct (y/n)? y

>>> management host con guration has been saved.

You can continue to use the edit-mhost command as many times as you want to

configure the management console.All changes take effect in real time. If at any time

you wish to see the current configuration, use the mhost-config command:

osiris-4.1.8-release: mhost-con g

[management con g (localhost)]

www.syngress.com

Osiris • Chapter 6 177

syslog_facility = DAEMON

control_port = 2266

http_port = 0

http_host =

notify_email = bob@example.com

notify_app =

notify_smtp_host = 127.0.0.1

notify_smtp_port = 25

hosts_directory =

allow = 127.0.0.1

allow = admin.example.com

There are two reasons why you should use the CLI to edit your management

console configuration: it serves to protect you from introducing syntax errors, and it

will restart the necessary components so that the changes will take effect in real

time. If you edit the osirismd.conf file directly, the changes may or may not take effect

immediately.

You may have noticed that there are actually two configuration settings that the

CLI does not prompt for: hosts_directory and notify_app.The reason is that most

administrators do not need to use them, and they would make the configuration

process more complicated.These settings are documented; if you need to use them,

edit the osirismd.conf file by hand and restart the osirismd process.

At this point, the initial configuration of your management console is complete.

To close the command-line session to your console, use the quit command or type

q:

osiris-4.1.8-release: q

Command-Line Interface
The Osiris command line is used for all interactions with the management console

and indirectly with your monitored hosts.Although used briefly in the last section

when initializing the console, in this section you are going to explore it in more detail.

It is very useful to gain familiarity with the Osiris CLI, since it is the part of Osiris

that you will use the most. CLI is used throughout the remainder of this book.

Command-Line Basics
The Osiris CLI is a connection-based client.The name of the application is Osiris

on UNIX systems and osiris.exe on Windows.The CLI provides a shell-like inter-

face to the console.All aspects of the Osiris system can be controlled through this

www.syngress.com

178 Chapter 6 • Osiris

interface.The CLI talks exclusively to the console, never to the agents, and all com-

munications are done over a Secure Sockets Layer (SSL) tunnel, even if you are using

the CLI on the console host.At this point, you have installed the CLI on the man-

agement host, but you can also install just the CLI on a workstation, or whatever

you find to be most convenient. If you do not specify any command-line arguments,

the console attempts to connect to a console running on the local system.As of this

writing, the CLI accepts the command-line arguments:

$ osiris --help

Osiris Shell Interface - version 4.1.8-release

usage: osiris [options] <management-host>

-f < le> specify a root cert le to authenticate management host.

-p <port> specify remote port for management host.

-h print this usage statement.

-v print version.

The -f option allows you to use a specific root certificate file to authenticate the

console.The client does not manage multiple root certificates, so if you manage con-

soles with different root certificates, this option can be helpful.The -p option allows

you to specify an alternate remote port to connect the console on. If not specified,

the client will assume the default console port of 2266.

Authentication and Certificates
The first time you connect to the management console, the CLI does not have any

way to verify the remote host.The CLI will print the fingerprint of the presented

certificate and ask you if you want to trust it:

The authenticity of host 'localhost' can't be established.

[server certi cate]

subject = /C=US/CN=Osiris Management Console/OU=Osiris Host Integrity

System

issuer = /C=US/CN=Osiris Management Console/OU=Osiris Host Integrity

System

key size: 2048 bit

MD5 ngerprint: 6D:6D:C6:60:94:C5:03:DA:9D:F8:79:4C:D3:98:56:C1

www.syngress.com

Osiris • Chapter 6 179

Verify the ngerprint speci ed above.

Are you sure you want to continue connecting (yes/no)?

If you are not connecting from a remote host, you can safely accept the certifi-

cate by entering yes. However, if you have explicitly allowed and are connecting

from a remote host, you should verify the fingerprint. Once you accept this root

certificate, it is automatically saved in your home directory. On UNIX systems, this

is ~/.osiris/osiris_root.pem and %SystemRoot%\Documents And

Settings\<username>\Application Data\.osiris\osiris_root.pem. Every time you make a con-

nection to the console, the CLI will read this certificate file and use it to verify the

certificate presented by the console. If the certificate validation fails, you will receive

a message that looks like the following:

WARNING: certi cate authentication failure: self signed certi cate.

[presented certi cate]

issuer = /C=US/CN=Osiris Management Console/OU=Osiris Host Integrity

System

subject = /C=US/CN=Osiris Management Console/OU=Osiris Host Integrity

System

untrusted MD5 ngerprint: 6D:6D:C6:60:94:C5:03:DA:9D:F8:79:4C:D3:98:56:C1.

If you trust this certi cate, delete the saved root certi cate and start

this application again.

The only way this will fail is if the certificate is no longer valid or if it does not

match the certificate presented by the console. Sometimes, certificate validation fails

because your system clock is set to an unreasonable value outside the validity period

for the certificate. Or, you may have replaced the certificate on the console and need

to purge the old root certificate stored by your client.

Once you have successfully logged in, you can display the details of the SSL ses-

sion between the CLI and the console using the ssl command:

osiris-4.1.8-release: ssl

connected to (localhost)

protocols allowed: TLSv1/SSLv3

cipher list: AES256-SHA

[server certi cate]

www.syngress.com

180 Chapter 6 • Osiris

subject = /C=US/CN=Osiris Management Console/OU=Osiris Host Integrity

System

issuer = /C=US/CN=Osiris Management Console/OU=Osiris Host Integrity

System

public key size: 2048 bit

MD5 ngerprint: 6D:6D:C6:60:94:C5:03:DA:9D:F8:79:4C:D3:98:56:C1

Online Help
The CLI contains online help that you can use to list commands; you can also

obtain the syntax and a brief description of any of these commands.To see the

listing of available commands enter help at the prompt:

osiris-4.1.8-release: help

[Management Commands]

mhost host new-user edit- lters

edit-mhost edit-host edit-user print- lters

print-mhost-con g list-hosts list-users

test-notify new-host delete-user test- lter

[Host commands]

status list-con gs start-scan list-db

watch-host new-con g stop-scan base-db

disable-host push-con g print-log set-base-db

host-details edit-con g list-logs print-db

print-host-con g print-con g print-db-errors

rm-host rm-con g print-db-header

init drop-con g rm-db

con g verify-con g unset-base-db

[Misc commands]

help version quit ssl

For help with a speci c command, try: help <command>

osiris-4.1.8-release:

www.syngress.com

Osiris • Chapter 6 181

The command list is organized by commands: those that apply to the console

and those that apply to monitored hosts. Many of these commands are intuitive, but

some are not; therefore, we will go over them here. Using the help command, you

can see the syntax and description for each command. For example, to see details for

the rm-db command:

osiris-4.1.8-release: help rm-db

usage: remove-db <db-name>

Cause the management host to remove the speci ed database le from the

currently selected host's database store.

aliases: rm-db, delete-db, del-db

Scan Agents
Scan agents must be deployed onto every host that you want to monitor.The agent

is a lightweight daemon that periodically collects information from the host environ-

ment and securely transmits that data back to the console.This section covers every-

thing you need to know about Osiris scan agents, including an overview of the

agent itself and its installation, configuration, and administration.

Scan Agent Overview
On UNIX systems, the scan agent is a daemon called osirisd and is installed in

/usr/local/sbin by default.This daemon implements a form of privilege separation.

Upon start-up, there are two osirisd processes: one running with root privileges and

one running with non-root privileges (usually the Osiris user).The non-root process

handles all of the work; the root process is mostly idle. When the agent needs to

access a file or element of the environment that requires root privileges, it asks the

root process to do the work and return a file handle or the requested data.The root

run process never opens any network ports and is only capable of performing a lim-

ited number of tasks. When the agent is asked to perform a scan, it forks another

process to handle collecting and sending the information.

On Windows, the scan agent is a service that is run as Administrator.This service

is always installed in %SystemRoot%\osirisd.exe and, by default, is started automatically

upon boot.The scan agent on Windows is multithreaded so that all scans spawn a

new threat.

The scan agent consists of a single executable and a root certificate file. On

UNIX systems, the default location for the root certificate file is

www.syngress.com

182 Chapter 6 • Osiris

/usr/local/osiris/osiris_root.pem; on Windows, the agent stores the root certificate in

%WindowsRoot%\osiris\osiris_root.pem.To see a list of the command-line arguments,

do the following at a shell or a command-line prompt where the agent is installed:

$ osirisd --help

Osiris Scan Agent - Version 4.1.8-release

usage: osirisd [-r <path>] [-p <port>] [-n <level>] [-q] [-h]

-n <level> use speci ed nice level.

-p <port> specify an alternate listen port (default:2265)

-q quiet mode, agent produces no log messages.

-r specify alternate root directory containing root cert.

-h print this usage statement.

On Windows, the supported arguments are as follows:

C:\>osirisd.exe --help

Osiris Scan Agent - Version 4.1.8-release

usage: osirisd [-i|-u] [-p <port>] [-h] [-d] [-q]

-i install as a windows service on local machine.

-u uninstall windows service from local machine.

-d run this application as a daemon, not a service.

-p <port> specify an alternate listen port (default:2265)

-q quiet mode, agent produces no log messages.

-r specify alternate root directory containing root cert.

-h print this usage statement.

The -r option allows you to specify the location of a root certificate file to be

used to authenticate the management console.The -p option allows you to specify a

listen port in case the default is not acceptable.The -q option prevents the scan

agent from producing any local logs; this option is useful in cases where you do not

want the activity of the daemon to be logged to the event viewer.The scan agent

never logs information about scanning the environment, only about the daemon

itself. On Windows, there are a couple of different options for installing and unin-

stalling the scan agent service.These are the same options that are available for the

management console. Windows also has an additional option (-d), which starts the

www.syngress.com

Osiris • Chapter 6 183

scan agent in debug mode (see Figure 6.12).This can be a quick way to debug some

problems. Basically, everything that would be sent to the logs is printed to standard

output.

Figure 6.12 Starting the Osiris Scan Agent on Windows in Debug Mode

The scan agent process collects data from the host environment and passes that

data back to the console.The agent does not scan on its own; it is merely a shell and

responds only to the requests of the console. When the internal scheduler of the

console decides it is time for a host to be scanned, it pushes a scan configuration file

to the agent.The scan agent maintains a copy of that configuration in memory; it

does not store it on disk.The agent then collects all kinds of data from the environ-

ment based upon the configuration.The scan data is sent directly back to the con-

sole; it is never written to disk on the monitored host.

Installing the Scan Agent
One of the biggest problems with the Osiris scan agent and all agent-based systems

is that you must install the software onto every host you wish to monitor. If you

have hundreds of hosts, this can be a cumbersome ordeal. Many operating systems

such as FreeBSD and versions of Linux have source ports, or binary packages, avail-

able for Osiris. It is recommended that you build your own agent installer packages

instead of using pre-built packages or ports. Building your own installers makes more

sense because if you use a port, you are left with whatever configuration or set of

modules the author of the port or package has included. If you are going to make

www.syngress.com

184 Chapter 6 • Osiris

the effort to set up a solid management host and deploy Osiris on many scan agents,

you should have agents that do exactly what you want.

Another thing to consider with respect to agent installation is the ability to per-

form a non-interactive installation. If you plan on deploying more than a handful of

agents, you want to make sure that the installer package installs the agent exactly as

you want it to for that system (i.e., without prompts). Later in this chapter we look

at some solutions for mass deployment that will allow you to build your own custom

installer packages or automate using the default Osiris agent installer.

Installing on UNIX
In the beginning of this chapter, we discussed how to build agent installer packages.

You must build an installer package for every operating system and architecture type

you will be deploying. For UNIX systems, the installer package is a gzipped tar file.

Installing the agent software involves unpacking the tar.gz file and running the instal-

lation script.

First, copy the installer tar.gz file to a reasonable location and unpack it. In this

example, we install the agent onto a Gentoo Linux system:

$ osiris-agent-4.1.8-linux.tar.gz /usr/local/src/

$ cd /usr/local/src/

$ tar xvfz osiris-agent-4.1.8-linux.tar.gz

As with the management console installer, the installer is a simple shell script

(install.sh) that will ask you a few questions and install the executables. Specifically,

install.sh will:

1. Prompt to continue the installation.

2. Display installation defaults.

3. Create a local “osiris” user if it does not exist.

4. Create a local “osiris” group if it does not exist.

5. Prompt to install the local scan agent.

6. Prompt to install the CLI.

7. Copy the osirisd executable.

8. Create init script for osirisd.

9. Set reasonable permissions for osirisd.

As root, run the install.sh script and answer yes to continue installation:

$ cd osiris-agent-4.1.8-release

www.syngress.com

Osiris • Chapter 6 185

./install.sh

Continue with installation? (y/n) [y] y

You will see the installation script create an Osiris user and group:

==> creating user and group (osiris, osiris).

==> group 'osiris' added.

==> user 'osiris' added.

==> using existing Osiris management console user.

When prompted for what to install, type ‘y’ to the agent.

Install osiris agent? (y/n) [y] y

When prompted for a location for the osirisd executable, accept the default.The

installer will set the suggested file permissions for osirisd and install an init script so

that the daemon will be started upon boot.

Installation directory for binaries: [/usr/local/sbin]

Osiris scan agent root directory does not exist, creating.

==> installed scan agent: /usr/local/sbin/osirisd

==> installing rc startup for daemon(s).

Linux Distribution: gentoo

==> Skipping osirisd symlink creation.

* osirisd added to runlevel default

* Caching service dependencies...

* rc-update complete.

==> change owner and permissions on /usr/local/sbin/osirisd

-rwxr-xr-x 1 root wheel 110020 Mar 19 09:12 /usr/local/sbin/osirisd

Finally, when asked about starting the scan agent, type y:
Start scan agent now? (y/n) [y] y

At this point, the scan agent is installed. Now, verify that the daemon is running

by using the ps command.You should see two instances of the osirisd process: one

running as root and the other running as the Osiris user. For example, on Linux:

$ ps –ef | grep osirisd

root 17984 0.0 1.2 3028 772 pts/0 S 09:29 0:00

/usr/local/sbin/osirisd

osiris 17986 0.0 2.1 3220 1304 pts/0 S 09:29 0:00

/usr/local/sbin/osirisd

www.syngress.com

186 Chapter 6 • Osiris

In addition, you should see syslog messages indicating that the scan agent has

started. On most UNIX systems, you will see the scan agent log messages being

written to the main syslog file. For example:

$ tail /var/log/messages | grep osirisd

Mar 23 21:22:57 localhost osirisd[5534]: [info] using root directory:

/usr/local/osiris

Mar 23 21:22:57 localhost osirisd[5534]: [info] SSL server running.

Mar 23 21:22:57 localhost osirisd[5534]: [info] server started on port:

2265.

You can also verify that the agent is alive and listening on port 2265 using the

netstat command:

$ netstat -na | grep 2265

tcp4 0 0 *.2265 *.*

LISTEN

Installing on Windows
Installing the scan agent on Windows involves using the same installer package as

you used to install the console. Run the installer program by double-clicking on it.

Accept the End User License Agreement by clicking the button that reads I agree.

When prompted for which components to install, make sure that only the one

labeled Scanning Service is selected, then click Install (see Figure 6.13).

Figure 6.13 Installing the Scan Agent on Windows

www.syngress.com

Osiris • Chapter 6 187

This will install only the scan agent and any pre-provisioned root certificate.The

installation takes less than a minute. When the installation is complete, you will see

the phrase “Setup was completed successfully” at the top left of the dialogue (see

Figure 6.14). Click the Close button.

Figure 6.14 Completing the Installation of the Scan Agent on Windows

At this point, the scan agent is running and will only accept connections from

your management console (or any console that presents a certificate signed by the

root certificate the agent is using).

Configuration
This section covers everything you need to know about adding a host to the Osiris

management console so that it can be monitored.This includes basic configuration

settings, establishing a baseline, scheduling, and creating custom scan configurations.

We start by configuring the agent that is installed on the management console host.

However, the information presented here applies to any kind of host that you want

to place under the control of the management console.

Adding a Host
The first step to adding a host is to login to the management console:

$ osiris

Osiris Shell Interface - version 4.1.8-release

>>> authenticating to (localhost)

www.syngress.com

188 Chapter 6 • Osiris

User: admin

Password:

connected to management console, code version (4.1.8-release).

hello.

osiris-4.1.8-release:

Next, the new host command is used to start the process of adding a new host.

This command will ask a series of configuration questions and then populate the

Osiris directory with a configuration for this host.

The first prompt asks for the name that will be used to identify the host.You can

enter anything you want here, but keep in mind that this will be used to identify the

host in logs as well as e-mail notifications.The name cannot contain any spaces.

Since you are adding the host that resides on the console, use the name local; how-

ever, you can use whatever makes sense to you.

osiris-4.1.8-release: new-host

[new host]

> name this host []: local

The hostname is the actual hostname or IP address of the host. Since this is a

local agent, we use 127.0.0.1 as the IP address. Using a hostname versus the IP

address is up to you. If you find yourself reassigning IP addresses to your hosts, host-

names may be more practical. Depending on your environment either may be the

better choice.

> hostname/IP address []: 127.0.0.1

The description is optional, and meant to be a one-line description of the host

to help identify hosts when interacting with the Osiris CLI.The description is not

used outside of the CLI:

> description []: agent installed on management console.

The agent port is the network port that the agent is listening on. If you have

deployed your agents so that they are listening on a port different from the default,

this is where you configure that port. In this case, we installed the agent on the man-

agement console using the default port.

> agent port [2265]:

www.syngress.com

Osiris • Chapter 6 189

After every scan, the console produces a log file containing the results of the

scan.This log file is stored under that host’s logs directory. Because this can consume

disk space, the default is to not create log files for every scan. If you want the con-

sole to generate a separate log file for each scan, answer yes to this question.

> enable log les for this host? (yes/no) [no]:

The next few questions deal with the storage of scan data for the host. For the

agent stored on the console, accept the default options for prompts.The defaults are

helpful, because they ensure that the databases directory for the host will not grow

without bound:

Scan Databases:

=> keep archives of scan databases? Enabling this option means that

the

database generated with each scan is saved, even if there are no

changes

detected. Because of disk space, this option is not recommended

unless your security policy requires it. (yes/no) [no]:

=> auto-accept changes? Enabling this option means that detected

changes are reported only once, and the baseline database is

automatically set when changes are detected. (yes/no) [yes]:

=> purge database store? Enabling this option means that none

of the scan databases are saved. That is, whenever the baseline

database is set, the previous one is deleted. (yes/no): [yes]:

The next series of questions deal with e-mail notifications. Enter yes to enable

the e-mail notifications for this host:

Noti cations:

=> enable email noti cation for this host? (yes/no) [no]: yes

The next option is the scheduled scan failure notification. When the scheduler

tells a host to scan, if it fails for any reason, an e-mail is sent that discloses the details

surrounding the failure. Enter yes for this option.

=> send noti cation on scheduled scans failures? (yes/no) [no]: yes

When enabled, the next option sends an e-mail notification after every scan,

regardless of whether or not there were any detected changes. Some administrators

www.syngress.com

190 Chapter 6 • Osiris

enable this option for a positive confirmation that the host was scanned (i.e., silence

could mean that there were no changes or that there was a fatal error). Enabling this

option rules out the error case and provides assurance of a scan. Unless you abso-

lutely want this, it is usually best to accept the default (no), which is to send notifi-

cations only when changes have been detected:

=> send scan noti cation, even when no changes detected (yes/no) [no]:

The next notification option is to send e-mail when the agent does not present

a session key.The session key is kept resident in memory by the agent and used as a

means of authentication. If the agent loses this key, it means that it was restarted.This

often indicates the monitored host was rebooted, but not necessarily; it could be that

the daemon or service was simply restarted. In any case, it is almost always a good

idea to enable this option, as it may be the first indication that some unauthorized

activity is occurring on the monitored host. Enter yes for this prompt:

=> send noti cation when agent has lost session key (yes/no) [no]: yes

The last notification option is an e-mail address for all of the aforementioned

notification settings. By default, hosts make use of the e-mail address specified in the

management console configuration. However, at times you may find it useful to

direct notifications about a host to another administrator or mailing list. Since you

are configuring the agent that resides on the console, accept the default and use the

one specified in the management configuration:

=> noti cation email (default uses mhost address) []:

The next few prompts deal with scheduling.The console periodically tells the

monitored host to start a scan. Scheduling is very basic, consisting of a start date and

a period specified in minutes.The first prompt asks about configuring a schedule for

this host. Enter yes:

Scheduling:

> con gure scan scheduling information? (yes/no) [no]: yes

Next, establish the schedule starting point. By default, the date is the current

time minus a minute (i.e., so that the scheduler will not try to scan this host before

they are done configuring it).The only reason to worry about the schedule start

point is if you are going to scan the host on a daily or weekly basis and want to

specify the time that the scan occurs. For example, you may want to schedule it in

the early morning when the load on the system is low. For the console, choose a

www.syngress.com

Osiris • Chapter 6 191

reasonable scan time of once per hour so that the start point does not matter.Accept

the default schedule start time:

[scheduling information for local]

Scheduling information consists of a start time and a frequency value.

The frequency is a speci ed number of minutes between each scan,

starting from the start time. The default is the current time.

Specify the start time in the following format: mm/dd/yyyy HH:MM

enter the start date and time

using 'mm/dd/yyyy HH:MM' format: [Sat Mar 26 11:07:53 2005]

Next, specify how often you want the host to be scanned (in minutes).You may

find that the load restricts how often you can run scans. On UNIX systems, the scan

agent can be given a “nice” value so that it does not consume too many resources.

Otherwise, it is not uncommon for the input/output (I/O) to consume over 50 per-

cent of the CPU.The default scan period is 1440 minutes (once per day). For this

prompt, enter 60 so that the host will be scanned every hour:

enter scan frequency in minutes: [1440] 60

The final configuration question is whether or not to enable the host, which

means that it will fall under the control of the scheduler.The scheduler ignores any

disabled host .This is useful when you want to suspend the scheduled scans for a

host, but not delete it. For example, if you take a host offline for some time and do

not want to be bombarded with schedule failure notifications, disable it and then

enable it once the host is back online.You are setting this host up for the first time,

so you do not want to enable it just yet. Enter no to this prompt:

> enable this host? (yes/no) [yes]: no

At this point, you have configured a new host to be added to the management

console.All of the configuration settings are displayed for final approval. Enter y to

add this host to the console:

host => local

hostname/IP address => 127.0.0.1

description => agent installed on management console.

agent port => 2265

www.syngress.com

192 Chapter 6 • Osiris

host type => generic

log enabled => no

archive scans => no

auto accept => yes

purge databases => yes

noti cations enabled => yes

noti cations always => no

notify on rekey => yes

notify on scan fail => yes

notify email => (management con g)

scans starting on => Sat Mar 26 11:07:53 2005

scan frequency => hourly (every 60 minutes).

enabled => no

Is this correct (y/n)? y

>>> new host (local) has been created.

Every time you create a new host and add it to the management console, you

are prompted to initialize it.This gives you the option to specify a scan configuration

(or use a default) and then perform an initial scan on the host to establish a baseline

database. Enter yes to this prompt and, when asked for confirmation, enter yes

again:

Initialize this host? (yes/no): yes

Initializing a host will push over a con guration, start

a scan, and set the created database to be the

trusted database.

Are you sure you want to initialize this host (yes/no): yes

The console then contacts the agent and determines the operating system and

version so that it can suggest a default scan configuration to use.You are then asked

if you want to use this default scan configuration, which are specific to a certain

operating system.This can be valuable if you are overwhelmed by having to figure

out how to create a custom configuration and what to include as part of your scans.

Enter yes

OS Name: Darwin

OS Version: 7.8.0

www.syngress.com

Osiris • Chapter 6 193

use the default con guration for this OS? (yes/no): yes

The console then pushes the default scan configuration to the agent and tells the

agent to start the scan.At this point, there are no databases for this host, so the

database created as a result of the scan automatically becomes the baseline database.

Also, because there was no baseline database, there is no report generated after this

scan, because there is nothing known about the previous state of this host.At this

point, you should see that the host was scanned and be at prompt:

>>> con guration (default.darwin) has been pushed.

>>> scanning process was started on host: local

osiris-4.1.8-release:

The scan agent installed on the management console is now fully configured.

The only thing left to do is enable it so that the console’s scheduler regularly tells

this agent to scan. Do this with the enable command. It takes a single argument—the

name of the host:

osiris-4.1.8-release: enable local

>>> host local is now enabled.

At this point, you have successfully added and configured the agent running on

the management console host.This agent has a baseline database and is scanned reg-

ularly.The procedure for adding more hosts is exactly the same. If you have a lot of

hosts that you wish to add to your management console and configure in the same

manner, you probably do not want to add each one manually.

At any time, you can edit the configuration of any host using the edit-host com-

mand.This command takes a single argument: the name of the host to edit (use the

hosts command to obtain a list of hosts).The prompts are almost the same as the ones

you will encounter with the new-host command.The only difference is that you

cannot change the name of the host, and you are not asked to initialize it at the end

of the configuration sequence.

You can establish a new baseline for a host with the init command.This com-

mand pushes a configuration to the host, runs a scan, and sets the baseline database

to be the just-created database. Ideally, you would create a baseline for the host

offline, before it is ever connected to a network, but that is not always possible.

Talking to Agents with the Command Line
The Osiris CLI provides useful commands for interacting with your agents.You can

obtain information about their current state, settings, scan databases, scan configura-

tions, and logs.Additionally, you can control their behavior, including starting and

www.syngress.com

194 Chapter 6 • Osiris

stopping scans, enabling or disabling the agent, loading a new scan configuration, or

purging their current scan configuration from memory. When you first login to the

management console, you can list your available hosts using the hosts command.The

following list includes the names of the hosts (in alphabetical order) that the man-

agement console is aware of and whether or not they are enabled:

osiris-4.1.8-release: hosts

[name] [description] [enabled]

local local scan agent. no

test1 test system. yes

test2 test system. yes

test3 test system. yes

test4 test system. yes

total: 5

osiris-4.1.8-release:

The prompt in the preceding example is not in any specific context. What this

means is that any commands that are entered are not directed toward any specific

host. Use the host command to enter a host context. For example, to deal specifically

with the local agent installed on our management console:

osiris-4.1.8-release: host local

local is alive.

osiris-4.1.8-release[local]:

Notice how the prompt has changed to display the name of the specified host.

This command connects to the agent to make sure it is up and running. Once in a

host context, all host-related commands are applied to that host unless otherwise

specified.To check the status of a host, use the status command:

osiris-4.1.8-release[local]: status

[current status of host: local]

current time: Mon Mar 28 07:32:42 2005

up since: Sat Mar 26 09:30:12 2005

last con g push: Mon Mar 28 06:50:56 2005

www.syngress.com

Osiris • Chapter 6 195

con guration id: dae4b2e8

agent status: idle.

con g status: current con g is valid.

osiris version: 4.1.8-release

OS: Darwin 7.8.0

osiris-4.1.8-release[local]:

The status command displays a report on the current state of the agent.The last

config push line is usually the last time the agent scanned, because the scheduler

always pushes a configuration to the host before a scheduled scan.

Use the details command to display the settings for a host.This command accepts

the name of the host as an argument; however, this is not necessary if you are in a

host context:

osiris-4.1.8-release[local]: details

[host details for: (local)]

enabled : no

hostname/IP : 127.0.0.1

con gs : 0

databases : 1

host type : generic

log les : no

archive scans : no

auto accept : yes

purge databases : yes

notify enabled : no

notify always : no

notify on rekey : no

notify scan fail : no

notify email : (management con g)

scans start : Mon Mar 28 06:49:35 2005

scan period : every 1440 minutes

base DB : 1

agent port : 2265

description : local scan agent.

www.syngress.com

196 Chapter 6 • Osiris

To see the actual contents of the host.conf file, use the print-host-config command:

osiris-4.1.8-release[local]: print-host-con g

[host con g (local)]

host = 127.0.0.1

description = local scan agent.

type = generic

enabled = no

notify_enabled = no

notify_ ags = 0

notify_email =

session_key = 51869C2A8C837DF337B7F209BF02023868276AF0

base_db = 1

log_to_ le = no

schedule_start = 1112017775

schedule_period = 1440

db_ ags = 6

port = 2265

con g =

Use the databases command to print a listing of every scan database for a host.

The baseline database is marked with an asterisk:

osiris-4.1.8-release[local]: databases

This may take a while...

[name] [created]

* 2 Tue Mar 29 06:47:21

3 Tue Mar 29 06:47:39

total: 2

(*) denotes the base database for this host.

To see just the baseline database, print out the details of the host or use the base-

line command.To manually set which database you want to use for a baseline, use

www.syngress.com

Osiris • Chapter 6 197

the set-baseline command.This command accepts a single argument—the name of

the database. For example:

osiris-4.1.8-release[local]: set-baseline 3

>>> database: 3 is now the baseline for host: local

There are a handful of commands related to viewing the contents of a database,

the most common being print-db-header and print-db.The print-db-header command

displays the metadata associated with a database, including the configuration file

used, time stamps, and the results of the scan.You must be in a host context for this

command, and you must provide the name of a database:

osiris-4.1.8-release[local]: print-db-header 3

DATABASE: 3

status: complete

errors: 0

records: 1015

con g: default.darwin (c3dcf455)

SCAN RESULTS:

record type: UNIX1

 les encountered: 1015

 les scanned: 1015

symlinks encountered: 25

symlinks followed: 0

 les unreadable: 0

directories unreadable: 0

symlinks unreadable: 0

scan started: Mon Mar 28 13:01:38 2005

scan nished: Mon Mar 28 13:01:57 2005

The print-db command displays the actual contents of the database. Because

databases can be large, this command may take some time to download the specified

database.This command is not something you will use on a regular basis, but it is

www.syngress.com

198 Chapter 6 • Osiris

helpful when you are fine-tuning your scan configuration and want to ensure that

the agent is monitoring the correct elements of the environment. When you print a

database, the CLI enters a new context that is specific to that database.You are then

presented with a menu of options:

osiris-4.1.8-release[local]: print-db 3

This may take a while...

100% [==>] 913408 bytes

h) show database header.

r) list le records.

d) list le record details.

m) list module records.

x) list errors.

q) quit

You can print the database header, errors, all of the files, all of the information

about a scanned file, and all of the information gathered from the modules. For

example, suppose you want to verify that this database contains the file /bin/ls.You

can print the details gathered about this file by doing the following:

[local:database: 3]: d

 le path: /bin/ls

-------- begin scan record -------

 le: /bin/ls

record type: UNIX1

checksum: 7e35987a1b03b968ad39cb8138ad664f464915ee

checksum algorithm: sha

permissions: -r-xr-xr-x

user: root

group: wheel

device: 1039

inode: 70675

mode: 33133

links: 1

uid: 0

gid: 0

mtime: Thu Nov 4 18:24:59 2004

www.syngress.com

Osiris • Chapter 6 199

atime: Tue Mar 15 07:55:02 2005

ctime: Thu Dec 2 10:30:17 2004

device_type: 0

bytes: 22784

blocks: 48

block_size: 16384

To leave the database context, enter q.To leave any host context, enter q again:

[local:database: 3]: q

osiris-4.1.8-release[local]: q

osiris-4.1.8-release:

Alternatively, you can switch to another host context with the host command.

Using the print-db command is useful when you are initially tuning a scan con-

figuration; however, it is not the best way to view the contents of a database.This

functionality exists as a quick way to peer into a database for small amounts of infor-

mation.To look at all of the data in a database, or to export it for statistical, forensic,

or any kind of analysis, use the printdb command-line tool that is bundled with

Osiris (discussed in detail in the “Administration” section of this chapter).

Use the scan command to manually start a scan.This tells the host to begin scan-

ning with its current configuration. If there is no configuration, the CLI prints an

error message that indicates that the host does not have a configuration. Use the

push-config command to send a configuration to the agent. If the host has a configu-

ration, it will begin scanning and automatically compare the scan against the baseline

database:

osiris-4.1.8-release[local]: scan

>>> scanning process was started on host: local

These are only a few of the host-related commands available from the Osiris

CLI. Some commands were singled out because administrators use them frequently

as part of the initial setup and administration of Osiris.All of the commands available

from the CLI are documented and fairly straightforward.

Scan Databases
Whenever you add or edit a host configuration, you are asked a series of questions

about how you want the console to maintain scan databases for that host.The main

reason that these questions exist is because of the disk space involved in maintaining

scan databases. Each time a host is scanned, the data is streamed back to the console

www.syngress.com

200 Chapter 6 • Osiris

and stored in a database file.The amount of disk space this takes up depends on how

much information is scanned, and how often you scan your hosts.The default scan

configurations generally produce database files that are between 500K and 2MB

each, depending on the host. Imagine you have hundreds of hosts that are monitored

once every hour or every thirty minutes; without a doubt this is something you

must consider.

The advantage of saving every scan stream is twofold. First, you have a snapshot

of the monitored host from every time that host was scanned. Much of the informa-

tion is redundant; however, your security policy may require that you maintain this

data as opposed to the deduction of what the state was based on the content of the

logs.The second advantage of maintaining all of the scan data is that the contents of

the database are not affected by filtering.That is, you cannot trust the contents of the

logs to provide you with a complete list of detected changes for a host. For example,

imagine that you need to know the permissions of a file at a certain time period. If

you have all of the databases, you can find the database for that time period and

view its contents to obtain permissions for the file in question. However, if all you

have are the logs for that time period, you have no way of knowing if the permis-

sions are the same as the previous scan, or whether they changed but were not

logged because of a filter.

In most cases, you will not want to save every scan database; it is not practical for

most deployments.You have already learned that taking the minimalist approach to

scan databases leaves you with only the data in the logs, which is not complete

because of log filtering.To deal with this problem, Osiris allows you to configure

hosts such that only the databases that contain differences between the last databases

are saved.That is, if a scan detects no new changes, the created database is not saved.

Keep in mind that the size of the databases directory for a host can still grow without

bound, but it only grows when changes are detected.Therefore, if you tune your

configurations correctly, you will not be constantly dealing with disk space issues.

The default for a host configuration is to not grow at all, saving only the baseline

database.

Understanding the significance of each of the host configuration options related

to scan data is very important. Not only can it mean more administrative overhead

with respect to disk space, but you must also understand which scan data is being

saved and which is not.To properly configure your hosts, you must know exactly

what these options do.

www.syngress.com

Osiris • Chapter 6 201

Database Files
All scan data is stored in a Berkeley DB file and saved in the host’s databases direc-

tory.The database filenames are numbers (starting with 1). When a database is saved,

the name is always one number greater than the highest numbered database file in

the databases directory.This scheme makes it easy to see the order in which databases

were created. If a host does not have a baseline database, the first saved database file

is automatically tagged as that host’s baseline. What this means is that the host.conf file

contains the name of the baseline database; the database file itself is never modified.

Archiving
When archiving is enabled, every scan produces a new database, which occurs

whether or not changes are detected. For example, after a host has been initialized, it

will have a single database named “1” that is the baseline database. Regardless of the

configuration, the next scan will produce a database named “2.” If you have

archiving enabled, the next scan database created will be “3,” then “4,” and so on. If

you do not have archiving enabled, the last database created will continue to be

overwritten and compared to the baseline.

Auto-accept
The auto-accept host configuration option allows you to automatically reset the

baseline database after changes have been detected.This option prevents you from

being pestered by the same list of changes. Some administrators want to be bothered

until they investigate a change and set the baseline themselves. However, most do

not; therefore, auto-accepting the changes means you only hear about the same

detected changes once.This makes sense, because there is little advantage in continu-

ally being notified about a change that has already occurred. In fact, it is better to be

informed only once about a specific change, for a couple of reasons. First, having to

set the baseline database manually can be a serious burden for many hosts. For hun-

dreds of hosts, this is simply not practical. Second, if you do not set the baseline in a

timely manner, the change reports can grow so large that you run the risk of not

noticing critical changes.

The second reason for enabling auto-accept has to do with the archiving option.

If you are not archiving your databases, you run the risk of overwriting the last scan

database until the baseline is set.This option combined with not archiving allows

you to preserve all changes and maintain some control over the size of the databases

directory by saving only the databases that reflect change, not the duplicates.

www.syngress.com

202 Chapter 6 • Osiris

Purging
When the baseline is set, the previous database is deleted if the purging option is

enabled.The main reason this option exists is to prevent the database directory from

growing without bound. When scans are archived, it is obvious why this can have an

impact on available disk space. However, even with the non-archiving auto-accept

configuration defined above, the database directory can still grow over time.The

database purging option provides administrators with the ability to store only two

databases for a host: the baseline and the last scanned database.To adopt this mini-

malist configuration, disable archiving, enable auto-accept, and turn the feature on.

Using the purging option in conjunction with archiving makes no sense; the Osiris

interface will notify you if you configured a host in this manner.

Putting It All Together
Using the three aforementioned options to specify how hosts under Osiris deal with

scan data, is confusing. Presenting this information in a chart can sometimes be

helpful.Table 6.2 includes some common configurations for a host and their signifi-

cance.

Table 6.2 Common Configurations for a Host

Archive Auto-Accept Purge Significance

Most common N Y N Saves all unique databases;
baseline updated automati-
cally.

Minimalist N Y Y Saves no databases; has no
disk increase; baseline
updated automatically.

Maximum Y Y N Saves all scan data; baseline
updated automatically; con-
sumes great deal of disk
space.

Paranoid N N N Saves databases only when
baseline is updated manu-
ally; does not delete any-
thing.

www.syngress.com

Osiris • Chapter 6 203

Session Keys
One of the configuration options for scan agents is to send out an e-mail notifica-

tion when the agent claims to have lost its session key.This is a very useful feature,

and it is recommended that it always be enabled.

To authenticate the agent, the console provides each scan agent with a unique

session key.The agent does not actually save this key to disk, but retains it in

memory.The console in turn, stores a hash of the assigned key in the host.conf file.

Every time the agent and the console communicate, the agent presents the console

with its session key.The console hashes it and verifies it with what is stored in the

host.conf file. If it matches, communication continues; however, if it does not match,

the console refuses to communicate with that agent.The third possibility is that the

agent has lost its key.This usually happens because the agent process was restarted or

the host was rebooted. In that case, the agent presents a null key to the console and

the console responds by assigning that agent a new key and issuing an alert.

Optionally, you can have the console send out e-mail when this happens.As an

administrator, you should be aware of any reboots or tampering with the Osiris

agent process.

Advanced Scan Configuration
Osiris comes bundled with default scan configuration files for common platforms.

These configurations exist so that Osiris can be useful out of the box (i.e., new users

can install Osiris and begin monitoring their hosts without having to edit any con-

figuration files).The problem with this is that they are very generic; you will almost

always want to customize what elements of the environment are monitored on your

hosts.This section covers everything you need to know about writing custom Osiris

scan configurations.

Scan Configuration Syntax
Osiris scan configuration files are flat files with a relatively simple syntax. If you are

familiar with Apache configuration files, you will notice similarities. Configuration

files consist of global options, a block containing a list of modules to execute, and a

series of directory blocks related to file scanning (see Figure 6.15).

www.syngress.com

204 Chapter 6 • Osiris

www.syngress.com

Osiris • Chapter 6 205

Figure 6.15 The Components for the Default Linux Scan Configuration File

Every line in the scan configuration file consists of a directive; which are case-

insensitive, except when specifying literals such as the names of files or directories.

Spacing and tab characters are not important; however, directives cannot span mul-

tiple lines.You can place comments in the file by making the first visible character of

a line the “#” sign.

The modules block defines which modules the agent should attempt to execute.

This block consists of a list of Include directives, one for each module to execute. If

the configuration references a module that is not compiled into the agent, the agent

produces a log message to that effect.The modules start tag does not take any argu-

ments. For example, to have the scan agent execute only the mod_users and

mod_groups module, you would define your module block as follows:

<Modules>

Include mod_users

Default Configuration for Linux.

Recursive no
FollowLinks no

Hash sha1

<Modules>
 Include mod_users
 Include mod_groups
 Include mod_kmods
 Include mod_ports
</Modules>

<Directory /bin>
 IncludeAll
</Directory>

<Directory /usr/bin>
 IncludeAll
</Directory>

<Directory /usr/local/bin>
 IncludeAll
</Directory>

<Directory /usr/local/sbin>
 IncludeAll
</Directory>

<Directory /sbin>
 IncludeAll
</Directory>

<Directory /usr/sbin>
 IncludeAll
</Directory>

<Directory /boot>
 IncludeAll
</Directory>

globals

Module
Block

Directory
Blocks

Include mod_groups

</Modules>

Directory blocks are used to define what and how the agent should scan the files

contained in the specified directory.The directory start tag takes a single argument—

a full path to a directory.A directory block consists of options and rules.The options

specify the “how” and the rules specify the “what.”The following is a list of the cur-

rently supported options:

■ Recursive <boolean> When the boolean is set, the agent recursively scans

all subdirectories in the current directory; otherwise, only a top-level scan

of the files is performed.The default value for this is set.

■ FollowLinks <boolean> When the boolean is set, the agent traverses all

symbolic links when scanning; otherwise, all symbolic link targets are

skipped.The only exception to this is when the symbolic link points to a

directory and the recursive option is not yet set.The default value for this

option is “not set.”

■ Hash <algorithm> Use the specified algorithm to compute all file check-

sums in the current directory. The default is MD5.

The values for a boolean must be one of the following: yes, y, 1, yup, no, n, 0,

nope.The valid values for algorithms must be MD5, sha1, or ripemd; character

case does not matter.To apply options to a specific directory, place them in a direc-

tory block.To set the default values for these options, place them outside of any

directory block. If a directory block does not contain an option, the global value will

be used. If the option is not set globally, the default value will be used.

The list of valid rules for a directory block include:

■ IncludeAll Include all files.

■ ExcludeAll Exclude all files.

■ Include <filter> Include all files that match the specified filter.

■ Exclude <filter> Exclude all files that match the specified filter.

■ NoEntry <dir> Do not scan the specified subdirectory.The specified

directory is assumed to be relative to the directory block this rule resides

in.This directive does not accept regular expressions.

The agent interprets rules in the order they appear in the directory block. When

the agent encounters a file, it proceeds to traverse the rules for that directory block

until it finds one that matches, or it reaches the end of the rules.As soon as a match

is found, all other rules are ignored and the agent moves on to the next file. If a

directory block contains no rules, all files are included.A common mistake is to add

www.syngress.com

206 Chapter 6 • Osiris

rules to an empty block to filter out certain files.You must remember to add an

“IncludeAll” rule at the end of the block. Otherwise, all files will be ignored,

because the agent will only execute the rules that are in the block. For example, the

following block has no rules and will include all files:

<Directory /bin>

</Directory>

Now, suppose you wanted to exclude the file /bin/ls.You could do something

like:

<Directory /bin>

Exclude le("^/bin/ls$")

</Directory>

Now that this block has one or more rules in it, the default no longer applies,

and because only an exclude rule exists, no files are actually monitored in this direc-

tory.The correct way to do this is as follows:

<Directory /bin>

Exclude le ("^/bin/ls$")

IncludeAll

</Directory>

Osiris defines a number of filters that can be used to help specify exactly which

files you want to monitor. Use these filters as arguments to the Include or Exclude

rules.You probably will not use most of the filters; however, there are some very

useful ones.The following is a list of all of the supported rule filters:

■ sticky Any directory or file with the sticky permissions bit set.

■ suid Any file with the SUID permissions bit set.

■ sgid Any file with the Set Group ID (SGID) permissions bit set.

■ uid(x) Any file that is owned by a user with the specified User ID (UID).

■ gid(x) Any file containing the group owner with the specified group ID

(GID).

■ user(x) Any file that is owned by the specified username.

■ group(x) Any file that is group-owned by the specified group name.

■ sid(s) Any file that is owned by the specified Security ID (Windows only).

■ executable Any file that matches a common executable format for the

system the agent is currently running on.

www.syngress.com

Osiris • Chapter 6 207

■ Perl Any file that appears to be a Perl script based on the presence of the

path to the Perl executable within the first 30 bytes of the file.

■ python Any file that appears to be a python script based on the presence

of the path to the python executable within the first 30 bytes of the file.

■ script Any file that appears to be a shell script of some kind based on the

presence of the string #! or BEGIN appearing within the first few bytes of

the file.

■ file(<regex>) Any filename matching the specified regular expression.

■ suffix(x) Any filename matching the dot-suffix .x.

■ md5(x) Any file with the specified MD5 checksum.

■ sha1(x) Any file with the specified Secure Hashing Algorithm 1 (SHA-1)

checksum.

■ ripemd(x) Any file with the specified Race Integrity Primitives

Evaluation Message Digest (RIPEMD-160) checksum.

■ permissions(x) Any file with a permissions string matching the specified

string. Use * as the wildcard character.

■ header(x) Any file that begins with the specified hexadecimal string.

■ tar Any file that appears to be a TAR archive file.

■ gzip Any file that appears to be a GNU gzipped file.

■ zip Any file that appears to be a zip file.

■ pgp Any file that appears to be a PGP-related file including public

keyring, secret keyring, encrypted data,American Standard Code for

Information Interchange (ASCII)-armored data, public key block,

encrypted message, signed message, or signature file.

■ rpm Any file that appears to be a Red Hat Package Manager (RPM) file.

More than likely, only a few of the filters above will be of use to you.The most

commonly used are the file, suid, and suffix filters.

Examples
An effective method for learning the Osiris scan configuration syntax is by looking

at some common examples.The following configuration snippets are examples that

frequently appear on the Osiris users’ mailing list. Some of these examples use reg-

ular expressions.

www.syngress.com

208 Chapter 6 • Osiris

Excluding a Directory
It often becomes necessary to monitor a directory and all of its subdirectories,

except for one or two. For example, suppose you want to recursively monitor the

contents of /usr/share, but not /usr/share/x or /usr/share/y.To do that you must use

the NoEntry rule as follows:

<Directory /usr/share>

Recursive yes

…

NoEntry x

NoEntry y

IncludeAll

</Directory>

The IncludeAll rule is necessary because the scan agent interprets rules by iter-

ating through them until a match is found. If no match is found, the file is ignored.

In this case, the first two rules are NoEntry rules.The last rule is a catchall rule that

includes everything else.The NoEntry rule only accepts literal directory names; reg-

ular expressions are not permitted.

Excluding a Specific File
To exclude a specific file from a scan, use the Exclude rule with the file filter. For

example, suppose you want to monitor the contents of /etc, but you want to exclude

the /etc/resolv.conf file.To do that you would use something like the following:

<Directory /etc>

…

Exclude le("^/etc/resolv\.conf$")

IncludeAll

</Directory>

The file filter uses regular expressions that match the full path of the file. In this

case, the ^/etc/resolv\.conf$ expression is used.The “^” and “$” characters are “special

characters” (anchors) for regular expressions that signal the beginning and end of the

string, which ensures an exact match.The “.” is a special character that must be

escaped using the “\” character.Again, there is a catchall rule to include everything

except the resolv.conf file.

Excluding Dot Files
Configuration files (also called dot files) are known to change; therefore, you may

want to ignore them.An example is when monitoring the contents of the /root

directory excluding any dot files.To do this you would use the directory block:

www.syngress.com

Osiris • Chapter 6 209

<Directory /root>

Recursive yes

…

Exclude le("^\.")

IncludeAll

</Directory>

Excluding Log Files
On UNIX systems, many log files end with the suffix .log.You can exclude these

files using the suffix filter:

Exclude suf x("log")

You can also use a more generic approach with the file filter and a regular

expression:

Exclude le("\.log$")

The advantage of the second approach is that you can replace the “.” with any

other character, whereas the suffix filter only applies to filenames in the ame.log form.

Recursion and Subdirectories
At times, you may want to scan a directory recursively, but not other directories

under that directory.To do this, define specific directory blocks for those subdirecto-

ries. When the agent encounters a directory, it first looks for a block specific to that

directory. For example, if you want to recursively scan the contents of /etc but not

/etc/init.d, you would define a specific block for /etc/init.d to turn off the recursive

option:

<Directory /etc>

Recursive yes

…

</Directory>

…

<Directory /etc/init.d>

Recursive no

IncludeAll

</Directory>

This causes all files in the /etc directory to be monitored, whereas only the top-

level files under /etc/init.d are monitored.

www.syngress.com

210 Chapter 6 • Osiris

Shared versus Local Scan Configurations
The management console stores configurations in the configs directory under the

Osiris root directory. On UNIX, this is /usr/local/osiris/configs and on Windows, it is

%WindowsRoot%\osiris\configs.These configurations are known as shared configura-

tions because any host can use them.Additionally, each host has a configs directory

for scan configurations to be used exclusively for that host.The idea is that anytime

you need to customize a configuration for a particular host, you make it a local con-

figuration thus storing that configuration in the local configuration directory for that

host.This keeps the shared configuration store from becoming cluttered.

Your like hosts should use the same scan configuration files as much as possible.

The main benefit is that you can change a single configuration file and have mul-

tiple hosts automatically take advantage of that change. For example, imagine you

have a network of Linux servers, and you upgrade them or add a new service to

them that requires you to begin monitoring a new directory. If they are all using the

same scan configuration, you can edit that configuration and make the appropriate

change. However, if they are all using local configurations, you must update every

host’s configuration file. In the same way that shared configurations are useful, they

can also be problematic. Remember that whatever change you make to a shared

configuration will impact all of the hosts using that configuration.

Creating a Custom Scan Configuration
To create a new scan configuration file, use the new-config command in the Osiris

CLI.This command requires a single argument—the name of the configuration. For

example:

osiris-4.1.8-release: new-con g darwin

If the CLI is in a host context, the created configuration will be a local configu-

ration for that host; otherwise, it will be saved as a shared configuration.This com-

mand will spawn a text editor as defined by your $EDITOR environment variable.

Edit the configuration as necessary. If prompted to save the file, choose to do so.

Before the configuration file is saved, it is automatically analyzed for syntactical

errors. For example, specifying Message Digest 4 (MD4) as a hash algorithm will

cause the following error:

line 3: ==> Hash md4

unrecognized hash algorithm: md4

 x errors before saving? (y/n)

www.syngress.com

Osiris • Chapter 6 211

At this point, you have the option to fix the mistake. Choose y to open the

editor, fix the error, and resave the configuration. When stored, you should see a

message that looks something like:

>>> the con guration: darwin has been saved as a shared con guration le.

osiris-4.1.8-release:

Alternatively, you can start with one of the default scan configurations and

extend it.To do that, make a copy of the configuration you want to modify using

the copy-config command:

osiris-4.1.8-release: copy-con g default.darwin darwin

>>> con guration: (default.darwin) has been copied to (darwin).

osiris-4.1.8-release:

This creates a copy of the specified configuration and saves it in the context you

are currently in. If you are in a host context, the copied configuration will be local

to that host; otherwise, it will be a shared configuration.You can then edit the copy

instead of starting from scratch.This can be helpful when first learning about scan

configuration files.

To cause a host to start using your newly created scan configuration, use the init

command. When asked to use a default configuration, enter no.You are then

prompted for a configuration to use. For example, to initialize a host called “local” and

have it start using a newly created configuration called “darwin,” do the following:

osiris-4.1.8-release: init local

Initializing a host will push over a con guration, start

a scan, and set the created database to be the

trusted database.

Are you sure you want to initialize this host (yes/no): yes

OS Name: Darwin

OS Version: 7.8.0

use the default con guration for this OS? (yes/no): no

[shared con gs]

[name] [id]

www.syngress.com

212 Chapter 6 • Osiris

default.aix 6d2857b0

default.bsdos 99a38a8c

default.darwin dae4b2e8

default.freebsd c3dcf455

default.irix ed6c0108

default.linux c8ce9c09

default.netbsd 0cf39a70

default.openbsd 91a7a6a1

default.sunos 5c4aef88

default.unix-generic e088d50b

default.windows2000 951cbd4e

default.windowsnt 69a22176

default.windowsserve 63f6bd00

default.windowsxp 974cd899

default.wrt54g cd2c17fa

darwin a0b8217f

total: 16

-no local con gurations-

Specify a con guration: darwin

>>> con guration (darwin) has been pushed.

>>> scanning process was started on host: local

When this scan is complete, the resultant database will be tagged as the baseline

and the host will be using the newly created scan configuration file.You can verify

the syntax of a configuration file at any time, using the verify-config command:

osiris-4.1.8-release: verify-con g darwin

the con guration: darwin is valid.

One thing to consider with respect to custom scan configurations is that they

affect how much data is being stored for each host. Keep in mind your host’s scan

data configuration while making changes to a configuration.Also, think of how

many hosts are using that configuration.A single change to one configuration file

could significantly increase disk usage on the management console.

Mass Deployment
There are two main problems with the mass deployment of agent-based solutions

such as Osiris. First, there is the issue of actually getting the agent software installed

www.syngress.com

Osiris • Chapter 6 213

onto the remote hosts. If you have hundreds of hosts, this is not something you want

to do manually. Second, setting up a configuration and adding each of the hosts to

the management console is a problem.(Developing a well-designed user interface for

the management of many hosts is also a challenge.

Osiris does not provide any direct solutions for these two problems.

Organizations with multiple hosts probably already have a means of performing

administrative tasks to a massive network of hosts.Another mass deployment method

and application interface would bloat the system. Instead, Osiris provides indirect

ways to facilitate mass deployment.To deal with the installation of software, both the

UNIX and Windows installers have the ability to be deployed in a non-interactive

mode.Administrators can set up the install packages the way they want them, and

then install them with a single command.To help facilitate the integration of hun-

dreds of hosts into the management interface, the management console’s directory

store was developed in such a way that it would be trivial to script it; that is, it is not

in an odd or proprietary format.

Noninteractive Installations
To run the scan agent installer on UNIX systems without any prompts, provide

command-line argument “silent.”This assumes all of the defaults and runs the entire

installation process:

./install.sh silent

When the script is completed, the agent will be installed and running. If you

wish to customize any of the default values, you have to edit the install.sh file.All of

the default settings are defined at the top of the install.sh file. Some parameters you

might want to customize include the Osiris root directory, the user and group to be

created/used by Osiris, and the location where osirisd will be installed.

www.syngress.com

214 Chapter 6 • Osiris

Notes from the Underground…

Mass Deploying Osiris
Last year, Duane Dunston of NCDC posted an article to LinuxSecurity.com pro-
viding a step-by-step tutorial on how to use SSH and a Perl script to mass deploy
Osiris scan agents. You may already have a solution for this, but if not, this may
prove helpful. Although it is written with Linux in mind, with little to no modifi-
cations you can use this for any UNIX-like system as long as it has an accessible
SSH server running. The URL for the article is: www.sukkha.info/tap/osiris.html.

To run the Windows installer without any interaction, you must use the silent

switch (/S) followed by the names of the components you want to install.To specify

the silent switch, you must run the installer on a command prompt or through some

type of remote administration tool.The names of the components are “cli,”“osirisd,”

and “osirsimd.” In most cases, you will only be interested in this for agent deploy-

ments.To install only the agent on Windows hosts, without interaction or

prompting, execute the following command:

C:\>osiris-4.1.8-win32.exe /S osirisd

The silent switch is a capital “S.”To install all three components, execute the fol-

lowing command:

C:\>osiris-4.1.8-win32.exe /S cli osirisd osirismd

Depending on the version of the installer program, this command may return

right away, but the installer will run in the background and install the specified com-

ponents.

Adding Multiple Hosts to the Console
The source code for Osiris contains a tools directory with some helpful tools. One of

them is a Perl script (mass_add.pl) that enables you to create host directories pre-con-

figured for already-deployed agents.The benefit is that you do not have to add them

to the management console manually.The inputs to this script are the IP addresses

for the hosts you are adding and how you want those hosts configured.The output is

a directory tree that you then copy into the root of your Osiris directory.There is no

need to initialize these hosts; this script will generate the scan configuration and

www.syngress.com

Osiris • Chapter 6 215

scheduling information.This script was written in Perl because Perl is one of the

requirements for OpenSSL; therefore, it is assumed that at least one of the hosts

available to you has Perl installed.This script depends on the NetAddr::IP module.

Finally, this script is only useful for many hosts of similar configuration. If you have

many different configurations, IP ranges, or operating systems, it may be faster to add

them to the management console through the CLI.

The mass deployment script works by accepting a start and end IP address in

Classless Inter-Domain Routing (CIDR) notation. For example, you may want to

add hosts in range 192.168.1.100/24 through 192.168.1.200/24. In addition to con-

tiguous addresses, the hosts must also share all of the same configuration settings,

including the scan configuration file and the scheduling period.The mass_add.pl file

is located in src/tools/mass_add.pl in the Osiris source.This script requires no argu-

ments. For example, to create a hosts directory for agents in address range

192.168.1.100/24 through 192.168.1.200/24:

$./mass_add.pl

Enter con g name to use for this set of hosts: default.linux

Enter IP address range: 192.168.1.100/24 - 192.168.1.200/24

Enable these hosts? (y/n): y

Enable email noti cation? (y/n): y

Notify on scan failures? (y/n): y

Notify always? (y/n): n

Notify on rekeys? (y/n): y

Enable logging to les? (y/n): n

Schedule period in minutes (1440=daily):

Archive Scan Databases? (y/n): n

Auto-Accept changes? (y/n): y

Purge Old Databases? (y/n): y

Agent listen port (suggested 2265):

>>> Building hosts for range (192.168.1.100/24) to (192.168.1.200/24)

>>> created 192.168.1.100

>>> created 192.168.1.101

>>> created 192.168.1.102

>>> created 192.168.1.103

>>> created 192.168.1.104

>>> created 192.168.1.105

...

>>> hosts archive created.

www.syngress.com

216 Chapter 6 • Osiris

To deploy these hosts, copy the contents of hosts/*

to your osiris root directory. This is usually /usr/local/osiris

on UNIX and %WindowsRoot%\osiris on Windows.

Once copied, do the following to setup permissions correctly:

chown -R osiris hosts

chgrp -R osiris hosts

The end result is a directory named hosts in the current directory, containing a

directory for each host in the specified range.Assuming agents are installed on all of

these hosts, all you have to do is copy these host directories into the Osiris root

directory to begin monitoring these systems.Assuming you are on a UNIX system,

first move the host directories as root:

mv ./hosts/* /usr/local/osiris/hosts

Next, you have to set the permissions on these files so that the management

console process owns them and has the ability to write to them:

chmod –R go-rwx /usr/local/osiris/hosts/

chown -R osiris /usr/local/osiris/hosts/

chgrp –R osiris /usr/local/osiris/hosts/

The final step is to stop and restart the management console service, which is nec-

essary for the management console scheduler to recognize the newly added hosts.

How this is done varies with every platform.At this point, you do not have to ini-

tialize any of the hosts; they will start being monitored according to their schedules.

Administering Osiris
One of the biggest pitfalls with software security solutions (including Osiris) is that

adequate administration is often ignored or the system is misconfigured.After you

have deployed Osiris and established a management console, it is critical that you

understand some administrative issues so that your deployment is a benefit to your

security administration.The following sections deal specifically with logging, notifi-

cations (e.g., e-mail), scheduling, filters, users, and the management of the scan data.

The goal is to make sure that your deployment does not become more of a problem

than it is worth.

www.syngress.com

Osiris • Chapter 6 217

Logging
Logging is the most important behavioral aspect of Osiris (or any system like it).

Whenever the management console performs analysis on scan data, the results are

directed to the logs.The only downside to logs is that they must be read.This is a

fundamental part of administrating a host integrity monitoring system that exists

specifically to make sure that Osiris logs are presented to the appropriate person in a

readable manner (see Chapter 9,“Analysis and Response”).

The Osiris management console is the source of all logging data and has three

vectors for log data: system logs, files, and pipes to external applications.All logging

information is directed to the system log (usually syslog or the Event Viewer); which

includes information about the workings of the management console itself, as well as

all of the information about detected changes on monitored hosts. In addition to

system logs, each host has a directory specifically for log files.After each scan, a host

generates a report about detected changes and stores it in a log file. Finally, the man-

agement console has the ability to feed logs to an external application.This can be

an executable or some kind of script.This works by redirecting log data to the stan-

dard input of the application.

Every Osiris log message has a code and a human readable text message.The

code allows you to easily use log analysis tools to look for specific messages by not

having to rely on the exact matching of the text message.All of the logging codes

for Osiris are listed on the Osiris Web site at http://hostintegrity.com/

osiris/logs.html. For example, the logging code for the detection of a file size differ-

ence is “215.”An example log message using this code is as follows:

[215][local][cmp][/usr/sbin/winbindd][bytes][1565028][1580212]

Logs are each on a single line and made up of a series of fields defined by “[].”

Note that the logging code is the first field.

The thing to remember about Osiris logs is that the information sent to the

system log or piped to an application is the only complete outlet for information

from the management console. Log files for hosts are strictly scan reports. E-mail

notifications are also only scan reports.As an administrator, you must establish an

analysis mechanism for Osiris logs (see Chapter 9).

Notifications
Osiris has the ability to send e-mail notifications about detected changes. If you are

using some type of external log analysis system, it probably has the ability to notify

you. In that case, you can easily turn off the notification features in the management

console.The main reason that Osiris has its own notification system is to make

www.syngress.com

218 Chapter 6 • Osiris

deployment easier on the Administrator; no third-party applications are necessary.

The biggest downside to Osiris notifications is that the information is not complete.

If you want to be notified about any information related to the console itself, you

have to use another application that specifically monitors the console logs.Although

you can use a combination of the Osiris notifications and a log analysis tool, I do

not recommend it. If for any reason you do not have the ability to set up a log anal-

ysis solution, the built-in Osiris notifications can prove helpful. However, if you are

going to analyze the console logs, there is nothing in the Osiris notifications that

cannot be gathered from analyzing the logs; thus, it is suggested that you do not mix

the two.

Osiris notifications report on three different types of events:

■ Scan Results

■ Scan Agent Session Re-keys

■ Scheduled Scan Failures

Scan results include all of the detected changes in the standard Osiris logging

format, as well as a brief summary of the change.This is what makes the notification

more of a report than simply a dump of the applicable logs.After every scan, the con-

sole compares the recently created database against the baseline database. During this

comparison, some basic statistics are gathered and written to a temporary file (log.temp)

along with all of the log entries. Specifically, it is stored in the logs directory for the

appropriate host.At that point, depending on the notification settings, the contents of

this file is mailed out as a scan report. If file logging is enabled for that host, the tem-

porary log file is renamed and kept in the logs directory. Otherwise, the temporary log

file is overwritten with the next scan.The following is an example of the information

you can expect to find in an Osiris-generated scan report:

compare time: Wed Mar 30 07:46:00 2005

host: local

scan con g: default.darwin (971e7550)

log le: no log le generated, see system log.

base database: 4

compare database: 5

[211][local][cmp][/bin/cp][mtime][Thu May 13 00:50:57 2004][Wed Mar 30

07:45:58 2005]

[211][local][cmp][/bin/ls][mtime][Thu Mar 24 09:47:19 2005][Wed Mar 30

07:45:58 2005]

[211][local][cmp][/bin/mv][mtime][Thu May 13 00:50:58 2004][Wed Mar 30

07:45:58 2005]

www.syngress.com

Osiris • Chapter 6 219

Change Statistics:

checksums: 0

SUID les: 0

root-owned les: 3

 le permissions: 0

new: 0

missing: 0

total differences: 3

In Example 6.85, there are only three changes detected, which are related to the

mtime values of three executables.At the top of the report is the time, the host, the

configuration used in the last scan, the name of the log file (if logging to files is

enabled), and the databases analyzed while generating this report.After the logs are

some basic statistics to help give you an idea about the overall nature of the detected

changes.

As an assurance that scheduled scans are taking place, you can configure Osiris to

e-mail scan reports for hosts after every scan, even if there are no detected changes. If

you are monitoring many hosts and/or your scan frequencies are high, this can be a lot

of mail.An alternative to this is to turn on notifications for scheduled scan failures.

Regardless of whether or not you have notifications or file logging turned on,

you can still see this report data because it is written to a temporary file.To see the

latest scan report generated for a host, login to the console, enter a host context, and

view the logs with the logs command:

osiris-4.1.8-release: host local

local is alive.

osiris-4.1.8-release[local]: logs

This may take a while...

[name] [date]

log.temp Wed Mar 30 07:46:00

total: 1

www.syngress.com

220 Chapter 6 • Osiris

Unless the host has never been scanned after the baseline, you will always see the

log file log.temp.This is the temporary file that is created after every scan.To see the

contents of this file through the CLI, use the print-log command:

osiris-4.1.8-release[local]: print-log log.temp

The next kind of notification that the console is capable of providing is related

to session keys. Whenever an agent claims to have lost its session key (from a reboot

or a restart) Osiris can be configured to send a notification about it.The following is

an example of an e-mail notification about a session rekey:

To: bob@example.com

From: "Osiris Host Integrity System" <osirismd@example.com>

Date: Sun Mar 20 11:52:07 2005

Subject: [osiris rekey][host: local] session rekey.

The host, "local" seems to have lost its resident session key.

This key is lost when the agent is restarted or the host is rebooted.

This host is con gured to generate an alert upon detection of this event.

To change this, adjust the noti cation settings for this host.

The third type of notification that you can set up within Osiris is related to the

scheduler. When the scheduler attempts to tell an agent to start scanning its environ-

ment, it is possible that the agent is not running, does not respond, or the host itself

is no longer available.This is important information for administrators, because the

scheduler can be configured to send out e-mail notifications in the event that a

scheduled scan failed to occur for any reason. Here is what an example of such a

notification looks like:

To: bob@example.com

From: "Osiris Host Integrity System" <osirismd@example.com>

Date: Fri Nov 19 12:57:23 2004

Subject: [host: local] failed to start the scheduled scan.

The scheduler was unable to initiate the following scan:

host: local

scheduled scan time: Fri Nov 19 12:57:23 2004

The scheduler produced the following error message:

Unable to connect to host.

www.syngress.com

Osiris • Chapter 6 221

This notification is sent only if the scan agent does not acknowledge the sched-

uler’s initial request to start scanning. If the agent encounters an error of any kind, or

if the scan stream halts for any reason, you will not receive the notification. I have

encountered situations where it was a requirement that the administrator be given

confirmation that scans took place and were complete. In that case, you will need to

either turn on notifications for every scan report for your hosts, or analyze the con-

sole logs to watch for the scan complete log entry (Log ID 501).

Scheduling
The Osiris console has a relatively primitive scheduling mechanism. Hosts are

scanned in regular intervals as specified in their configuration file (in minutes).

When the scheduler detects that it is time for a host to be scanned, the console

pushes the configuration found in the baseline database to the agent, and sends that

agent a start scan message.As an administrator, there are some things that you must

be aware of regarding the Osiris scheduler.

First, you can specify a start time.This exists only in the cases where you want to

control what time of day the scan should take place. For example, if you are scanning

a host once per day, you can set the start time to be 4 A.M. so that scans do not take

place during peak usage hours. Likewise, if you plan to scan a host once per week,

you could set the start date to be on a Saturday or a Sunday for the same reason.The

start time is in relation to the clock on the console, not the agents.

The minimum frequency that a host can be scanned is one minute (e.g., if you

are only scanning ports, kernel modules, or some other element of the environment

where scans are quick).The thing to keep in mind with respect to schedule fre-

quency is how long a scan will take. For example, it makes a little sense to schedule a

host to scan every minute if the scan process itself takes the agent two minutes. If

that happens, you may end up receiving notifications (if enabled) that the scheduler

was unable to start the scan because the host was already scanning the environment.

One way to avoid this is to look at the latest scan results and see how long the scan

took. Make sure the schedule for that host or hosts is higher than that time. Scan

results are stored in the scan database.To see how long the last scan took for a host,

use the databases command to see the listing of databases and then use the print-db-

header command on the last database:

osiris-4.1.8-release[local]: databases

This may take a while...

www.syngress.com

222 Chapter 6 • Osiris

[name] [created]

2 Tue Mar 29 06:47:21

3 Tue Mar 29 06:47:39

4 Wed Mar 30 07:45:47

* 5 Wed Mar 30 07:45:59

6 Wed Mar 30 08:25:45

total: 5

(*) denotes the base database for this host.

osiris-4.1.8-release[local]: print-db-header 6

DATABASE: 6

status: complete

errors: 0

records: 34

con g: default.darwin (971e7550)

SCAN RESULTS:

record type: UNIX1

 les encountered: 34

 les scanned: 34

symlinks encountered: 0

symlinks followed: 0

 les unreadable: 0

directories unreadable: 0

symlinks unreadable: 0

scan started: Wed Mar 30 08:25:45 2005

scan nished: Wed Mar 30 08:25:45 2005

In this case, the scan took only one second so we are able to set the frequency to

any resolution. Keep in mind that although you may be able to scan a host once per

minute, it probably will not be useful, especially if you have many hosts or are

archiving all of your scan data. Whether or not your scan frequency is reasonable

www.syngress.com

Osiris • Chapter 6 223

depends on what you are scanning for, how soon you require detection, and how well

you are able to respond. It may be that scanning a host every minute or every few

minutes has little impact on the performance of the system. Or, it may be that scan-

ning a host once per day is not sufficient because all that does is narrow down the

window of change to a day when you require that window to be within minutes.

These are all issues that you must take into account when determining how to

schedule scans for your monitored hosts. Remember, the strong point of Osiris is that

it will provide details about what has changed in your host environment. Whether or

not you are informed in an hour or within 12 hours is not often significant.

Finally, you can suspend scheduled scans using the disable command at any time.

In the CLI, enabling and disabling a host means it is under the control of the sched-

uler, which can prove helpful when you take a host offline for a scheduled task and

do not want to be bothered by error messages during the downtime:

osiris-4.1.8-release[local]: disable local

>>> host local is now disabled.

osiris-4.1.8-release[local]: enable local

>>> host local is now enabled.

Filters: Reducing False Positives
Filtering log messages is arguably the most important administrative responsibility of

Osiris (or any solution like it).Again, if you are using your own log analysis solution

external to Osiris, you will likely offload this functionality to your log analysis

engine as opposed to having Osiris do it. However, many Osiris deployments take

advantage of this feature, because with no additional setup you are able to single out

only certain attributes of the environment to monitor, or to filter out elements that

you do not care about. For example, you may not care about timestamps on a file

but you may care a great deal about the ownership or permission information.

Osiris filters are applied to every log message before it is distributed to the var-

ious logging vectors.Thus the information directed to e-mail notifications, log files,

system logs, and pipes to an application are all affected by filtering.The biggest pitfall

with respect to filtering is that there is the potential to inadvertently block impor-

tant log messages from being generated.The good thing about filters is that they are

applied on the output of the database analysis process as opposed to the ingress

stream of scan data.This means that at any point in time you can compare two

databases manually to see the true reflection of change without filtering.Therefore, if

you are attempting to remove noise from the system, when in doubt add a filter

instead of adjusting the scan configuration.Another useful element of filtering

www.syngress.com

224 Chapter 6 • Osiris

mechanisms is that they are applied to all log messages, not just messages related to

change reports.The advantage here is that you have the option to throttle the

amount of diagnostic information about the console being sent to the system log (if

that is problematic for you).

Osiris filters are a collection of regular expressions.These regular expressions are

stored in a Berkeley DB file named auth.db in the Osiris root directory.To see a

listing of filters use the filters command:

osiris-4.1.8-release: lters

exclude anything matching: "\[^/etc$\]*\[mtime|ctime\]"

1 comparison lters.

This prints all of the filters stored in the filter database.To edit the filter database,

use the edit-filters command; which opens an editor and allows you to add to or edit

the current filter list using a standard text editor. Filters are stored one per line (see

Figure 6.16).

Figure 6.16 Editing a Filter List Using vi

When you save the file and quit the editor, the filters are sent back to the con-

sole and stored in the filter database:

osiris-4.1.8-release: edit- lters

>>> comparison lters have been saved.

osiris-4.1.8-release:

www.syngress.com

Osiris • Chapter 6 225

Filters are applied in the order that they are seen when you print them out with

the filters command.As soon as a filter in the filter database matches, the rest are

ignored. If the end of the list is reached and no matches have occurred, the log mes-

sage is sent to all of the appropriate logging outlets.

To disable a filter, use the “#” character at the beginning of the filter to com-

ment it out.This allows you to preserve the filter itself, but it will not be applied to

log messages until you enable it again by removing the comment.

The biggest problem you will likely encounter with filters is being able to come

up with regular expressions that do exactly what you intend them to do. It may be

that your regular expressions catch more than you intended, or they may not work

at all. Use the test-filter command to help debug your filters before you add them to

the filter database.This command will ask for the source data and a regular expres-

sion and print the result applying that expression to your source data.To test your

filters, paste a log message in as your source data and see if your regular expression

matches. For example, using the filter added in the preceding example, we will paste

a sample log message and see if it matches:

osiris-4.1.8-release: test- lter

> enter sample data:

[215][local][cmp][/usr/sbin/winbindd][bytes][1565028][1580212]

> enter regex: \[bytes\]

>> pattern matches.

To try a failure case, we could change our regular expression slightly and verify

that it does not match:

osiris-4.1.8-release: test- lter

> enter sample data:

[215][local][cmp][/usr/sbin/winbindd][bytes][1565028][1580212]

> enter regex: \[csum\]

>> pattern does NOT match.

Although Osiris filters are very powerful, they can also be problematic if you do

not have experience with regular expressions.The following examples are based on

questions from the Osiris users mailing list and are geared towards scenarios you will

likely encounter when developing rules to filter out certain types of log messages.

www.syngress.com

226 Chapter 6 • Osiris

■ Block all mtime changes for the file /etc/resolv.conf:

\[/etc/resolv\.conf\].*\[mtime\]

■ Block all mtime or ctime changes for /etc/resolv.conf:

\[/etc/resolv\.conf\].*\[(mtime|ctime)\]

■ Block all mtime or ctime changes for files under the /etc

directory:

\[/etc.*\].*\[(mtime|ctime)\]

■ Block all mtime changes for files under /etc and host foo:

\[foo\].*\[/etc.*\].*\[mtime\]

■ Block all mtime or ctime changes from host foo:

\[foo\].*\[(mtime|ctime)\]

■ Block all session rekey messages for host foo:

^\[604\]\[foo\]

■ Block all console informative messages:

\[info\]

Remember that you need to escape periods and square brackets with a backslash

character.The period matches almost any character, and the asterisk (*) repeats the

previous item zero or more times.The “^” character matches the start of the string

and the “$” character matches the end of the string.These are also known as

anchors.A good online reference for regular expressions is www.regular-

expressions.info.A good book for regular expressions is Mastering Regular Expressions

by Jeffrey Friedl (O’Reilly and Associates).

Although you can filter out noise with filters, you can also filter out noise by

adjusting your scan configuration; at some point, this is the better choice for han-

dling noise. For example, if you are scanning /var/log because you want to monitor a

few files, you are probably going to encounter more files that change on a legitimate

basis than those that do not. In this case, it makes sense to adjust your scan configu-

ration for /var/log so that you are only scanning specific files as opposed to scanning

all of them and creating filters to block the legitimate changes.You can block all of

the changes related to an entire directory by using a filter or a NoEntry directive; the

result is essentially the same.Another thing to consider with filtering is that it does

not stop the changes from being stored in the database, only the logs.

It is not obvious which way is the best route to take when dealing with noise,

but generally, the rule is that filters are used only to tweak things; the majority of

www.syngress.com

Osiris • Chapter 6 227

what is scanned should not be elements of the environment that you know are

going to change regularly.

Multiple Management Consoles
The Osiris management console was not designed to work in conjunction with

other console deployments.You can deploy multiple management consoles, which

can be configured to not step on each other’s toes, but there is little advantage.

One reason why you may want to deploy a second or third management console

is because of the load on your console host. If you are managing thousands of hosts, it

may be more practical to set up two or three consoles to distribute the overhead.

Another reason has to do with your network topology. It may be that your network

design restricts you from placing a console on the network where it can connect to all

of the hosts you wish to monitor. Or, you may have hosts on completely separate net-

works. In any case, the problem with deploying more than one console is that you

then have to manage more than one console.This includes the data associated with a

console, as well as maintaining it (e.g., backups). Scan configurations, scan data, and logs

are spread across multiple hosts and become more of a management burden.

I have also seen deployments with multiple consoles where the administrator was

monitoring the same agent from different consoles.This has little value and is not

recommended. Not only do you have the burden of managing more than one con-

sole, you now have to make sure that the consoles do not fight over the agents as far

as scheduling is concerned. Never run multiple instances of a management console

on the same host.

Database Files
All scan data that the console receives from the scan agents is stored in Berkeley DB

files.As an administrator, you can choose whether to store all of the received scan

data, at least some, or none at all.The advantage of storing at least some of this scan

data is that you can go back and create a timeline of activity for a specific host.

Osiris databases take advantage of the Berkeley DB feature, which stores four

separate databases within a single file. Every Osiris scan database file contains the fol-

lowing sub-databases:

■ Headers

■ Errors

■ File Records

■ Modules

www.syngress.com

228 Chapter 6 • Osiris

The Headers database contains information about the scan, including the scan

results and statistics.The Errors database contains any errors the scan agent produced

while scanning the environment.The File Records database contains only file-related

data The Modules database contains any information gathered by the executed

modules.

WARNING

Scan database files contain sensitive information about your host environ-
ments. You should be very careful with these files if you are planning on
removing them from your management console host for analysis. Never
attempt to perform analysis on the actual databases files located in the
Osiris root directory. Always make copies of those databases and perform
any analysis on those copies. Also, the database files are not encrypted so
be careful where you store these files when analyzing them.

The tools directory in the Osiris source contains an application named printdb, a

small command-line application that allows you to view the contents of an Osiris

database.The nice thing about Osiris database files is that they are platform indepen-

dent.Thus, you can analyze their contents with printdb on your preferred platform or

environment.To see the options available, run this command without any arguments:

$./printdb

osiris db command line utility (v0.2).

usage: printdb [-h] [-e] [-m] [-a] <database>

-h : print database header.

-e : print scan errors.

-m : print module records.

-f : print le records.

-a : print everything.

To print the headers for a database, use the print-db command with a single argu-

ment: the name of the database file. For example:

$./printdb 8

DATABASE: 8

status: complete

www.syngress.com

Osiris • Chapter 6 229

host: local

con g: default.darwin (6f973f54)

errors: 4

 le records: 34

system records: 124

SCAN RESULTS:

record type: UNIX1

 les encountered: 36

 les scanned: 34

symlinks encountered: 0

symlinks followed: 0

 les unreadable: 0

directories unreadable: 4

symlinks unreadable: 0

scan started: Thu Mar 31 06:56:47 2005

scan nished: Thu Mar 31 06:56:47 2005

In this case, you can see that this database is from the host called local and was

created with the configuration default.darwin on March 31.The scan agent encoun-

tered four errors while scanning the environment. To see these errors, use the -e

option to see only the errors:

$./printdb -e 8

[101] [Thu Mar 31 06:56:47 2005] [error conducting lstat on le "/foo"]

[100] [Thu Mar 31 06:56:47 2005] [unable to open directory "/foo"]

[101] [Thu Mar 31 06:56:47 2005] [error conducting lstat on le "/bar"]

[100] [Thu Mar 31 06:56:47 2005] [unable to open directory "/bar"]

In this case, the agent was not able to open some of directories, probably because

they do not exist.To see all of the records in the database, use the -a option, which

will print everything in the database, including the headers, file data, modules, and

errors.

www.syngress.com

230 Chapter 6 • Osiris

To view only a single file record, use grep to show only the output related to the

file(s) you are interested in. For example, to view the details for the file /bin/ls in the

directory, do the following:

$./printdb -a 8 | grep -A 19 "/bin/ls"

 le: /bin/ls

record type: UNIX1

checksum: 1b9ad9baabb63854faccfe5f43f0970b

checksum algorithm: md5

permissions: -r-xr-xr-x

user: root

group: wheel

device: 234881026

inode: 860280

mode: 33133

links: 1

uid: 0

gid: 0

mtime: Wed Mar 30 07:45:58 2005

atime: Thu Mar 31 06:52:43 2005

ctime: Wed Mar 30 07:45:58 2005

device_type: 0

bytes: 32464

blocks: 64

block_size: 4096

In this case, the record type was for UNIX files; therefore, we grepped for 19

lines. For other record types (such as Windows records) you will have to tweak the

arguments to grep to get them to print the correct number of lines.

If your database file has modules in it, you can print out all of the data in the

modules database using the -m option:

$./printdb -m 8 | less

[MODULES]

[group:admin][admin:*:80:root,brian]

[group:appserveradm][appserveradm:*:81:brian]

[group:appserverusr][appserverusr:*:79:brian]

[group:bin][bin:*:7:]

[group:brian][brian:*:501:]

...

www.syngress.com

Osiris • Chapter 6 231

Each module item is printed on a single line. One way to isolate the contents of

a specific module item is to use grep with a regular expression. For example,

assuming you had mod_users and mod_groups enabled when this database was created,

you can view the group bin or the user root by doing the following:

$./printdb -m 8 | grep "^\[group:bin\]"

[group:bin][bin:*:7:]

$./printdb -m 8 | grep "^\[user:root\]"

[user:root][root:*:0:0:System Administrator:/var/root:/bin/sh]

Users
Near the beginning of this chapter when we established a management console, we

set the password for the admin user. By default, this is the only user that exists when

the management console is installed.Although you can add additional users to your

console, remember that they are all created equal; there is no concept of privileged

and non-privileged users. Why create additional users? Two reasons: revocation and

logging.

If you have more than one security administrator using your management con-

sole, it makes sense to assign a user to each, which will make it easy to prevent that

administrator from logging in if necessary. Of course, since all users are essentially

root users, they can add backdoor accounts, lock other administrators out, or set the

admin password. If you are worried about such things with your administrators, you

should give them accounts on your console.

The second, most important reason that you should use multiple users on the

console is for logging purposes. Every action performed through a CLI session is

recorded in the system logs, along with the username.This makes it easy to see

which administrator did what. For example, when the admin user logs in:

Mar 31 07:47:50 localhost osirismd[285]: [16][*][info] authorized connection

from: 127.0.0.1 (localhost).

Mar 31 07:47:50 localhost osirismd[1131]: [101][*][info] authenticated user:

admin

Mar 31 07:47:51 localhost osirismd[1131]: [400][*][info] received hello from

management application.

Then, suppose the admin user sets the base database for the host local to “8.”

This action is recorded in the logs as follows:

Mar 31 07:49:38 localhost osirismd[1131]: [302][local][info] [admin] trusted

database set to: 8.

www.syngress.com

232 Chapter 6 • Osiris

I do not promote using multiple users for your management console, but if you

require multiple security administrators to interact with your console, it is a good

practice to set up individual user accounts so that each administrator’s activities are

logged.

Storing Scan Data in Relational Databases
One feature that Osiris lacks is the ability to log to a relational database. Samhain has

the ability to do this, and do it well. Many administrators like this feature because it

allows you to easily store and search massive amounts of data collected from your

hosts over time. It also opens up more possibilities for analyzing the collected data.

Although Osiris lacks this ability natively, there are ways you can set up the console

to send this data to a database with a little scripting.

The easiest way to get Osiris to scan data automatically sent to a relational

database is to use the notify_app features of the console.This is a logging outlet that

allows you to configure the console to pipe all log messages to the standard input of

an executable.The tools directory in the Osiris source code contains a sample python

script (notify.py), which shows how to read the log messages and write them to a file.

This script is relatively small and looks something like the following:

#!/usr/bin/python

import sys

f = open('osiris.log', 'a')

while 1:

try:

line = sys.stdin.readline()

no more data.

if not line:

break

f.write ("%s" % line)

f. ush()

except:

print "error reading data."

f.close()

www.syngress.com

Osiris • Chapter 6 233

It would not take much effort to modify this script so that, instead of writing

these logs to a file, they are instead sent to a PostgreSQL, MySQL, or some other

relational database.To set this up, all you have to do is place your script or executable

somewhere, adjust the management console configuration file (osirismd.conf), and set

the notify_app line accordingly.You have to edit this configuration file by hand, as the

CLI does not acknowledge that this configuration setting exists.After restarting your

console, your application should be receiving all log messages, not just logs related to

scans. For example, a typical configuration calling /usr/local/bin/osilog.py is as follows:

syslog_facility = DAEMON

control_port = 2266

http_port = 0

http_host =

notify_email =

notify_app = /usr/local/bin/osilog.py

notify_smtp_host =

notify_smtp_port = 0

hosts_directory =

allow = 127.0.0.1

www.syngress.com

234 Chapter 6 • Osiris

Summary
Osiris is one of the most widely deployed open source host integrity monitoring

systems available today. Osiris can monitor everything from UNIX environments like

AIX and Mac OS X, to Windows desktops systems and servers. Osiris can monitor

files, network ports, users, groups, and various elements of the kernel and adminis-

trator services. One of the biggest advantages of Osiris is that it is quite simple to

use. Usability and simplicity were critical goals in the design of the Osiris system.

The less complicated your Osiris deployment is, the more likely you will be suc-

cessful in monitoring the integrity of your environments.The more complicated

your Osiris deployment is, the more likely you will end up ignoring it altogether.

In this chapter we have covered all of the steps involved in deploying a simple

and effective Osiris deployment. Some of the more complicated features of Osiris

were intentionally left out.To find more information about Osiris, I recommend

consulting the most current online documentation.

www.syngress.com

Osiris • Chapter 6 235

Solutions Fast Track

Configuring and Building Osiris

� Burn the Osiris source to read-only media, and verify the PGP signature

before building installer packages.

� Establish dedicated building environments so that your installer packages

can be trusted, and so that you can easily build trusted updates or make

changes to your installers.

� Burn all installer packages to read-only media before your deploy them, so

that you have a copy of what you have deployed that is free from

tampering.

Additional Deployment Considerations

� Pre-provision all of your scan agents with root certificates so that way they

trust only a specific management console out of the box.

� Always test your scan agents before you deploy them.

Establishing a Management Console

� The management console manages all of the information about monitored

hosts; guard this host with your life.

� The management console should be a dedicated system that does not run

any services except for what is needed for the function of the console.

� After installation, make certain you understand and configure the console

according to your needs and requirements for logging, notifications, users,

and access control.

Command-Line Interface

� The Osiris command-line interface is used to configure your console, and

interact with your deployed scan agents.

� Ideally, the CLI should be run from only the console host; however, you

can log in to your console from remote hosts if necessary.

www.syngress.com

236 Chapter 6 • Osiris

Scan Agents

� Scan agents collect information from your host environments and securely

report on that information to the console; the gathered information is

never stored on the monitored host.

� Always install the scan agent from installers that you have built from a

trusted source.Avoid using ports or packages whenever possible because

they are tied to specific configurations and modules.

� Think of the default scan configuration files as a starting point.You will

almost always need to extend these configurations to suit the monitoring

needs of your hosts.

Administering Osiris

� The proper configuration and administration of Osiris can mean the

difference between a useless burdensome deployment, and one that will

allow you to realize change in your host environments.

� Log and store as much scan data as possible. If something bad happens, you

want as much data as possible at your disposal so you can attempt to track

down as much of the details as possible.

� Find the sweet spot of scheduling.As an administrator, you want to be

careful to monitor the right stuff, at the right frequency. Scans that are too

infrequent means less detail; too frequent means unnecessary overhead on

your hosts.

www.syngress.com

Osiris • Chapter 6 237

Q: Is it really necessary to go through the hassle of verifying the source and

establishing dedicated build machines to build the agent and console

installers?

A: Yes. It is necessary if you are serious about deploying a system that works, and

that you can trust to provide reliable information about changes to your

hosts.The verification step is necessary because, as seen in the last few years,

source code repositories are not immune from attacks and just computing an

MD5 means little.The source is PGP signed by the key listed in the begin-

ning of this chapter. Dedicated build machines are necessary for a couple of

reasons. First, it makes little sense to build your trusted source in an environ-

ment that you do not trust.There are certain elements to this whole process

that you can control (e.g. build environments), and there are those that you

cannot (quality of software).At the very least, take advantage of the steps you

can control to better your chances of a successful deployment.The second

reason dedicated build and test environments are useful is because they allow

you to easily build upgrades or make small changes to your deployments.

Q: When I attempt to initialize or contact an agent, I encounter an error about

session key negotiation failures. Why?

A: There are a couple of reasons that this may occur.The most common reason

is that the host running the agent has a different concept of time than the

console.The agent performs some certificate validation on the certificate

presented by the console upon every connection. If the agent host has a

messed-up system clock, certificate validation fails and (for security reasons)

the agent immediately halts communication.As far as the console is con-

cerned, the agent refused to give a session key; hence, the error.

www.syngress.com

238 Chapter 6 • Osiris

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: Why are some configuration options for the console and agents not

acknowledged by the CLI?

A: If there is an option in one of these configuration files that the CLI does not

allow you to configure, it is because that option was considered something

that is not commonly used by most deployments.The main reason they are

not in the CLI is because most users will not care, not understand what they

are, or possibly configure them incorrectly. These options are documented. If

you know what they are and how to use them, it should not be a problem to

directly make a small edit to the configuration file.

Q: I made changes to a scan configuration file and scanned the host but the

changes did not seem to take effect. Why?

A: When you scan a host manually with start-scan, all the command does is

inform the agent to start scanning with its currently loaded configuration. If

you make a change to a configuration file, you must push it to the agent(s)

first using the push-config command, and then start the scan.This is only a

problem if you are scanning manually using start-scan. If you make changes

to a scan configuration file, the next scheduled scans that makes use of that

configuration will assume the changes.This scheduler will always send the

scan configuration file to the host before starting the scan, so that the host is

always scanning based off of the current configuration.

Q: How do I disable all of my hosts at once? I have over 100 agents deployed

and I want to suspend monitoring for maintenance.

A: There is no way to do this via the CLI. If you need to temporarily disable

Osiris, shut down the console process.The way this is done will vary with

each operating system. Since the agents never initiate communication with

the console, this will not have any impact on the system.

www.syngress.com

Osiris • Chapter 6 239

Samhain

Solutions in this chapter:

■ Features and Constraints

■ Deploying Samhain Stand-Alone

■ Deploying Samhain with Centralized

Management

■ Using Beltane: The Web-Based Console

Chapter 7

241

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Introduction
Samhain is one of the most successful open source host integrity monitoring systems

available today.This chapter examines all of the steps involved in a successful deploy-

ment of Samhain, including building and verifying the source, installation, and admin-

istration.The goal of this chapter is to show you how to effectively use Samhain to

monitor the integrity of your hosts.Although all of the features and abilities available

through Samhain are covered, this chapter focuses on the aspects of the system that

will help you establish a simple yet effective integrity monitoring solution.

It is very important that you establish dedicated build and test environments.A

dedicated build environment allows you to create trusted binaries of the software. If

you are deploying the Samhain agent to many hosts, you must be sure that the exe-

cutables are trusted and sound. Establishing a dedicated test environment is helpful

for research and ongoing administration. Initially, a test environment can be used to

gain familiarity with Samhain. Once you have deployed Samhain, your dedicated test

environment can be used to test configuration changes, aid in the reduction of false

positives, and test various administrative tasks before loading them into your produc-

tion environment.

Samhain can be deployed in a solitary fashion (stand alone), and in a

client/server mode. Deploying Samhain as stand-alone is useful when you have only

a handful of hosts.The client/server mode is a centrally managed deployment for the

enterprise or any situation where you have a large number of hosts that must be

monitored.The first part of this chapter covers the basics of Samhain in a stand-

alone deployment scenario.The second part of this chapter details deploying

Samhain as a centrally managed system. If you are new to Samhain, it is recom-

mended that you follow the first part of this chapter, even if you are going to use

centralized management; the information is an excellent introduction, and the exer-

cise will help you understand some of the fundamentals of Samhain.

The Samhain Web site has excellent documentation on building, installing, con-

figuring, and using Samhain.This documentation can be found at www.la-

samhna.de/samhain/s_documentation.html.

Features and Constraints
This section provides details of the capabilities and limitations of Samhain that are

the most relevant to the installation and deployment process To better appreciate

each of the steps presented in the following sections, let us first examine what

Samhain can do, discuss where it can be deployed, and describe the security features

inherent in its design.

www.syngress.com

242 Chapter 7 • Samhain

The main function of Samhain involves monitoring the integrity of files; how-

ever, additional development has features that allow it to monitor other elements of a

host, thus qualifying Samhain as an integrity monitoring system, not simply a file

integrity checker. Samhain can perform Set User ID (SUID)/Set Group ID (SGID)

audits. In addition to being able to single out and keep track of any files with these

special privileges, Samhain also provides some quarantine options to mitigate the

damage possible by rogue SUID/SGID executables. Samhain can monitor login and

logout events and audit the login and logout activity of users for a host.Additionally,

Samhain has the ability to monitor the integrity of the kernel and to detect certain

rootkits.This functionality is available for limited versions of Linux and FreeBSD

kernels. Specifically, Samhain can monitor the integrity of the syscall table, syscall

functions, and the interrupt descriptor table.

Notes from the Underground…

Monitoring Kernel Integrity
Samhain can monitor certain parts of the FreeBSD and Linux kernels by moni-
toring the integrity of system calls. System calls provide an interface between
user applications and privileged kernel space and are the primary target for most
rootkits. Most operations eventually translate to a system call (e.g., opening a file
or initiating network activity). The handler for each system call is stored in a
system call table. To deal with a system call, an interrupt is issued, and the han-
dler for that system call is located and executed. It is not uncommon for a rootkit
to modify some portion of the chain of events involved in executing a system call.
On Linux, Samhain monitors the interrupt handler, the contents of the system call
table, parts of the virtual file system layer, and a portion of each system call han-
dler. For FreeBSD, only the system call table and the handlers are monitored.
There are other means of compromising the kernel, but monitoring the integrity
surrounding the invocation of system calls handlers can be very successful in
detecting rootkits.

Samhain can monitor the mount settings for a host’s file systems, which can be

used to ensure that the policies you have established for mounting your file systems

remain intact. For example, if you are mounting a certain file system with the nosuid

option to prevent the existence of SUID executables on that file system, Samhain can

detect and notify you if it changes. Samhain also has the ability to monitor specific files

in certain users’ home directories (e.g., a user’s .login or .profile files).The idea is that

changes to these files can compromise the integrity of that user’s environment and be

www.syngress.com

Samhain • Chapter 7 243

indicative of an attack.All of the aforementioned features have their own configuration

sections in the Samhain configuration file and are optional.

The development of Samhain is based on Portable Operating System Interface

(POSIX) compliance.As a result, Samhain is limited to UNIX environments, with the

biggest disadvantage being that it cannot monitor Windows hosts.Although you can

run Samhain on Windows through Cygwin, it cannot handle Windows-specific issues

(e.g., registry, users, groups, services, drivers, and so on). However, developing with

POSIX compliance means that Samhain can be used on a variety of UNIX-based sys-

tems, including Mac OS X, Berkeley Software Distribution (BSD),Advanced IBM

UNIX (AIX), Hewlett Packard UNIX (HP-UX), Solaris, Unixware, and others.

Kernel monitoring capabilities are limited to specific Linux and FreeBSD kernels;

other UNIX systems do not benefit from the kernel integrity-monitoring feature.

Intrinsic in Samhain’s design are some powerful security features.Although their

intentions are good, some of them significantly complicate the deployment and

administration of Samhain. Every deployment scenario is different. In some cases,

you can choose to ignore the features for the sake of simplicity; in others you

cannot.The Samhain agent can be put into stealth mode, which means that the

agent executable can be hidden from the process table; additionally, you can encrypt

and pack the executable so that it can be easily hidden (such as appending it to a

.JPG image file).The Samhain agent executable also contains a compiled-in key used

for the verification of signed notifications (e-mail) and log messages.Additionally,

each Samhain agent executable has an embedded password that is used to authenti-

cate to the server and establish ephemeral keys for securing their communication.

Upon installation, executables are stripped of debug symbols. Furthermore, the

installer comes with “sstrip,” which is used on systems that support it to further strip

the executable of debug symbols to complicate attempts to debug the process.

Finally, Samhain can use the GNU Privacy Guide (GnuPG) to sign database and

scan configurations.

Deploying Samhain Stand-Alone
Samhain can be installed in a stand-alone fashion, meaning it is installed onto each

host that you want to monitor, and all of the functionality and data associated with

monitoring each host is contained to that host; no console is involved.The downside

to this is that the baseline database is stored on the monitored host and is therefore

at risk to tampering.Another problem with this approach is that the more hosts

involved, the more administrative burden you incur. Basically, it does not scale.

However, if you are a small corporation with only a few servers, this may be your

best option, because stand-alone Samhain installations are very easy to install and

maintain for a small number of hosts.

www.syngress.com

244 Chapter 7 • Samhain

This section covers a stand-alone installation of Samhain on a FreeBSD system.

You can install Samhain on other UNIX systems by following this example

(excluding kernel monitoring). We cover all of the configuration options, but stick

to the most simple and practical approaches.Along the way, we point out features

and configuration options that are prone to complexity.The point is to end up with

an easily administrable integrity monitoring system.

Obtaining and Verifying Samhain
The most current version of Samhain can be found on their main Web site at

http://la-samhna.de/samhain. For all releases of Samhain, a Message Digest 5 (MD5)

and a Pretty Good Privacy (PGP) signature are provided so that you can verify the

authenticity of the source code.The most current version of Samhain can be

obtained at http://la-samhna.de/samhain/samhain-current.tar.gz.

Download this file to your system.You can use a Web browser, or if you have

wget, you can download the source with the following command:

$ wget http://la-samhna.de/samhain/samhain-current.tar.gz

Alternatively, if you fancy curl, use the following command:

$ curl http://la-samhna.de/samhain/samhain-current.tar.gz -O

Next, unpack this tar.gz file with the following command:

$ tar xvfz samhain-current.tar.gz

samhain-2.0.5b.tar.gz

samhain-2.0.5b.tar.gz.asc

This leaves you with two files: the actual Samhain source in a tar.gz file and the

PGP signature for the source file. Burn these two files to read-only media such as a

DVD or a CD-ROM. It does not make sense to verify the authenticity and integrity

of these files if they can still be modified. Burning them to read-only serves two

purposes. First, you only have to conduct the verification once. Later, when you

want to deploy the software again, you will not have to go through the verification

process because you know that the files on the read-only media cannot be altered.

Second, it facilitates and provides for a more controlled deployment. Establishing this

as the trusted source for your installation(s) means that all of your hosts use the same

release of the trusted software, at least initially.

The next step is to verify the PGP signature.All software should be verified as

much as possible, but for software like Samhain, it is especially important because it

is common to deploy the software on a large number of your hosts, many of them

critical systems. If the source were compromised in some way (such as a backdoor),

www.syngress.com

Samhain • Chapter 7 245

you would have a real mess on your hands. Do not think that just because you

acquire the source code from a known server that you can trust it. Within the last

two years, the GNU File Transfer Protocol (FTP) servers were compromised.Always

attempt to verify the PGP signatures for software if signatures are available.An infor-

mative reference for this practice can be found on the Samhain Web site at www

.la-samhna.de/library/PGPSignatures.html.

All Samhain releases are signed with the PGP key that has the following

fingerprint:

EF6C EF54 701A 0AFD B86A F4C3 1AAD 26C8 0F57 1F6C

The KeyID is 0x0F571F6C, and the owner of the key is Rainer Wichmann, the

author of Samhain. If you are using GnuPG, you can search for and import this key

by doing the following:

$ gpg --search-keys 0x0F571F6C

gpg: searching for "0x0F571F6C" from hkp server subkeys.pgp.net

(1) Rainer Wichmann <rwichmann@la-samhna.de>

Rainer Wichmann <rwichmann@hs.uni-hamburg.de>

1024 bit DSA key 0F571F6C, created: 1999-10-31

Enter number(s), N)ext, or Q)uit > 1

gpg: requesting key 0F571F6C from hkp server subkeys.pgp.net

gpg: key 0F571F6C: public key "Rainer Wichmann <rwichmann@la-samhna.de>"

imported

gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model

gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u

gpg: Total number processed: 1

gpg: imported: 1

Next, verify the fingerprint on the key:

$ gpg -- ngerprint 0x0F571F6C

pub 1024D/0F571F6C 1999-10-31

Key ngerprint = EF6C EF54 701A 0AFD B86A F4C3 1AAD 26C8 0F57 1F6C

uid Rainer Wichmann <rwichmann@la-samhna.de>

uid Rainer Wichmann <rwichmann@hs.uni-hamburg.de>

sub 1024g/9DACAC30 1999-10-31

Once you have the correct key and have verified the signature, set its trust and

then verify that the signature file matches the downloaded source.Assuming that the

source and signature are in your current directory, use the following commands to

trust the signing key and verify the Samhain source:

www.syngress.com

246 Chapter 7 • Samhain

$ gpg --edit-key 0x0F571F6C

gpg (GnuPG) 1.4.1; Copyright (C) 2005 Free Software Foundation, Inc.

This program comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute it

under certain conditions. See the le COPYING for details.

pub 1024D/0F571F6C created: 1999-10-31 expires: never usage: CSA

trust: unknown validity: unknown

sub 1024g/9DACAC30 created: 1999-10-31 expires: never usage: E

[unknown] (1). Rainer Wichmann <rwichmann@la-samhna.de>

[unknown] (2) Rainer Wichmann <rwichmann@hs.uni-hamburg.de>

Command> trust

pub 1024D/0F571F6C created: 1999-10-31 expires: never usage: CSA

trust: unknown validity: unknown

sub 1024g/9DACAC30 created: 1999-10-31 expires: never usage: E

[unknown] (1). Rainer Wichmann <rwichmann@la-samhna.de>

[unknown] (2) Rainer Wichmann <rwichmann@hs.uni-hamburg.de>

Please decide how far you trust this user to correctly verify other users'

keys

(by looking at passports, checking ngerprints from different sources,

etc.)

1 = I don't know or won't say

2 = I do NOT trust

3 = I trust marginally

4 = I trust fully

5 = I trust ultimately

m = back to the main menu

Your decision? 5

Do you really want to set this key to ultimate trust? (y/N) y

pub 1024D/0F571F6C created: 1999-10-31 expires: never usage: CSA

trust: ultimate validity: unknown

sub 1024g/9DACAC30 created: 1999-10-31 expires: never usage: E

[unknown] (1). Rainer Wichmann <rwichmann@la-samhna.de>

www.syngress.com

Samhain • Chapter 7 247

[unknown] (2) Rainer Wichmann <rwichmann@hs.uni-hamburg.de>

Please note that the shown key validity is not necessarily correct

unless you restart the program.

Command> quit

$ gpg --verify samhain-2.0.5b.tar.gz.asc

gpg: Signature made Sat Apr 2 08:40:03 2005 MST using DSA key ID 0F571F6C

gpg: checking the trustdb

gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model

gpg: depth: 0 valid: 2 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 2u

gpg: Good signature from "Rainer Wichmann <rwichmann@la-samhna.de>"

gpg: aka "Rainer Wichmann <rwichmann@hs.uni-hamburg.de>"

NOTE

In the previous chapter, attention was given to the significance of verifying
PGP keys when verifying the PGP signature of the Osiris source code. PGP
signatures should not be blindly trusted. If the key you are using to verify
a software signature is not trusted, all you are doing is verifying that some
key was used to sign the software. The goal is to verify that it was signed
using a key belonging to someone in particular. Even then, you have to
trust that the person who signed it is trustworthy. In this case, the PGP fin-
gerprint for the author of Samhain is printed in this book; however, even
that is not completely foolproof. The common way to trust PGP keys is to
exchange fingerprints in person, or to rely on the fact that someone you
trust has signed the key in question.

Assuming the signature is good, you now have a trusted source on read-only

media and are ready to begin setting up your build environment and to build

Samhain from a trusted source.You do not have to verify the MD5 if you have veri-

fied the PGP signature.

Establishing a Samhain Build Environment
Building Samhain for stand-alone installations is useful because you can become

familiar with the software and how to administer it before attempting a complicated

client and server installation. When you are ready to start building agents for deploy-

ment, you will have to establish a build environment for each unique operating

www.syngress.com

248 Chapter 7 • Samhain

system and architecture type. Here, you are concerned only with a stand-alone

installation, so if you are building on a test system, build and install Samhain on the

same system. If you want to establish a dedicated build environment, you can make

installer packages that can be installed onto your target system. In any case, the main

requirements for building Samhain include a:

■ POSIX environment

■ American National Standards Institute (ANSI) C Compiler

■ GnuPG

Samhain was developed with strict POSIX compliance in mind, the benefit

being that it will likely run on any POSIX-compliant system ranging from the run-

of-the-mill Linux and Solaris to less popular systems such as Minux or AIX.

Samhain can be made to run on Windows, but only in an environment such as

Cygwin. If you have a large Windows base, you may want to consider using Osiris.

Samhain requires an ANSI C Compiler. If you encounter any problems or have

questions about building Samhain, you will be able to find help if you are using

GCC (most people who use Samhain use GCC). For systems such as Solaris or

IRIX, you will probably have other compilers in place; as long as they are ANSI

compliant, you should have no problems.

GnuPG must be installed if you want to use the configuration and database file

signing features that are part of Samhain. Samhain uses the GPG executable; there-

fore, building the source in /usr/local/src is not sufficient.At the very least, the GPG

executable must be installed.

Once you have established a build environment or located the host that you will

install Samhain on, copy your verified build source tar.gz file onto our system (e.g.,

/usr/local/src) and unpack it:

$ tar xvfz samhain-2.0.5b.tar.gz

$ cd samhain-2.0.5b

Configuring Samhain
There are many configuration options for Samhain. First, run configure without any

options:

$./con gure

You will see the source configured for your system and a list of the default set-

tings that will be used to build Samhain:

www.syngress.com

Samhain • Chapter 7 249

samhain has been con gured as follows:

System binaries: /usr/local/sbin

Con guration le: /etc/samhainrc

Manual pages: /usr/local/man

Data: /var/lib/samhain

PID le: /var/run/samhain.pid

Log le: /var/log/samhain_log

Base key: 814595996,541491316

Selected rc le: samhainrc.linux

If you do not agree with any of these options, these (and others) can be changed

via configure.You can run configure with any options that you want to use to

reconfigure the source. Most of these options are fairly straightforward.The Base

key is the key that will be embedded into the executable. It is actually a 64-bit key,

but for programmatic reasons, it is listed as two numbers (two 32-bit integers).You

can set the value for this key with a configure option.To see a listing of the available

configure options, use the --help option:

$./con gure --help

This will print standard information common to many configuration scripts, and

will then print the information relevant to Samhain under the headings,“Optional

Features” and “Optional Packages” (covered in more detail in the Centralized

Management section of this chapter). Here, we are concerned with only the config-

uration options that affect a stand-alone deployment.

General Options

--with-rnd=egd|dev|unix

This option allows you to configure how the Samhain executable will acquire

entropy for use in cryptographic operations. By default, Samhain will use

/dev/random (dev). If you want to use the Entropy Gathering Daemon (EGD) or the

built-in UNIX entropy gatherer, specify EGD or UNIX here.

--with-egd-socket=PATH

If you are using EGD, you must specify the path to the EGD socket file (the

default is /var/lib/samhain/entryopy). EGD is a daemon designed specifically to collect

entropy from the system.You can read about EGD by downloading it from

http://egd.sourceforge.net.

www.syngress.com

250 Chapter 7 • Samhain

--with-sender=EMAIL

This option can be used to configure the e-mail address to use as the sender of

Samhain e-mail notifications. If only a username is given, the fully qualified domain

name of the host is used. If no username is given, the daemon is used.

--with-recipient=EMAIL[,EMAIL…]

This option allows you to configure e-mail addresses to be sent to all Samhain

e-mail notifications. If you specify more than one, separate them with commas or

spaces. If you use spaces, make sure to use quotes.You can also specify this in the

configuration file.

--with-trusted=UID[,UID…]

Samhain implements some security checks on the directory where the configu-

ration file is stored. In the case of an agent, if the configuration file is stored in a

directory where users other than root can write to, Samhain will not run. If you

want to store the configuration file somewhere where other users have write access,

you must specify those UIDs here (separate them by commas [e.g., --with-

trusted=501,502]).You should almost always add “0” to this list of UIDs since the

root user is almost always the owner of the path to the configuration file.

NOTE

Keep in mind how you will be running Samhain on your hosts, and what
UIDs will need to be set there. This is a compile option and cannot be
changed in the configuration file.

--with-timeserver=HOST

This allows you to specify a time-server to use; the default is to use the system

clock.This option can be set in the configuration file.

--with-alttimeserver=HOST

Use this option to set a backup time-server in the event that the time-server is

not responsive.

--enable-stealth=XOR

Samhain provides the ability to be installed and run in stealth mode. When

enabled, it is much harder for an attacker to determine that Samhain is installed or

running on the host. Specifically, this option enables the following:

www.syngress.com

Samhain • Chapter 7 251

■ All of the strings in the Samhain executable are obfuscated with an XOR

operation, using the argument specified with this configuration option.

■ All log messages are obfuscated with an XOR operation, using the argu-

ment specified with this configuration option.

■ All strings in the database file are obfuscated with an XOR operation,

using the argument specified with this configuration option. In addition,

you can append the database file to another file such as an image, to hide

its existence.

■ The configuration file is hidden in a postscript image file.The image

cannot be compressed, and if this configuration option is used with signed

configuration files, the configuration file must be signed before it is hidden.

This can be accomplished automatically when you perform “make install”

to install Samhain.

--enable-micro-stealth=XOR

This is the same as the aforementioned stealth option, except it does not require

the configuration file to be embedded into an image file. In this case, XOR is the

value that will be used to obfuscate strings in the executable, log messages, and

strings in the database file.

WARNING

Unless you know exactly what you are doing and have justifiable reasons
for doing so, do not enable stealth mode. You would complicate your
deployment and make administration more of a burden by hiding the
existence of Samhain from an attacker.

--enable-nocl=PASSWORD

This option enables a relatively interesting feature.The password specified as an

argument to configure is used to control whether the Samhain executable acknowl-

edges command-line arguments. If the password is given as the first argument,

Samhain will read all other arguments from standard input; otherwise, if the password

does not match, all other arguments are ignored.This allows the Samhain executable

to look like it is running as something other than Samhain.

--enable-install-name=NAME

www.syngress.com

252 Chapter 7 • Samhain

The name passed to this configuration option will be used to rename the database

file and the executables. For example, if you specified foo instead of

/var/log/samhain_log, the file would be called /var/log/foo_log. Likewise, the executables

/usr/local/sbin/samhain would be /usr/local/sbin/foo.This is another way to further hide

Samhain from being noticeable.

--enable-khide=SYSTEM_MAP

For x86-based Linux deployments, Samhain can build and install a kernel

module that will hide various elements of Samhain from the system.The

SYSTEM_MAP is the path to the System.map file that was created during the com-

pilation of the Linux kernel (usually under the /boot directory). It hides files con-

taining the string Samhain or the name specified with the --enable-install-name

configuration option.A second kernel module is then built to hide the khide module

itself. For 2.6-based kernels, only one module is needed because the khide module is

self-hiding.

TIP

It is not recommended that you use the configuration option for hiding
files and kernel extensions unless you can provide solid justification. This
is another feature that will probably be more trouble than it is worth. In
this case, it is like a loaded gun under your pillow; it may seem like you
are protecting yourself, but it can also be used against you. These mod-
ules hide kernel modules and files with a specific string in their name
from the system. If this name is discovered, an attacker or malicious user
can also hide other files from the system. Read all of the caveats in the
Samhain documentation to get a better feel for what you will encounter
if you use this option.

--enable-base=B1,B2

This configuration option allows you to specify the 64-bit key value that will be

embedded into the Samhain executable.This is relevant for signing e-mail notifica-

tions and for all log messages.You can then use the executable to verify the authen-

ticity of the e-mail or log data.The key is specified as two 32-bit numbers, separated

only by a comma (e.g., --enable-base=814595996,541491316).

--enable-db-reload

www.syngress.com

Samhain • Chapter 7 253

When this configuration option is enabled, the agent loads the database file

whenever it receives a SIGHUP signal. By default, only the configuration file is

reloaded on receipt of this signal.

--enable-xml-log

This option turns Extensible Markup Language (XML) formatting on for all log

messages:

--with-database=mysql|postgresql|oracle|odbc

Use this configuration option to enable logging to relational databases (only one

can be specified). (This will not interest you if you are performing a stand-alone

installation.)

--with-prelude

Prelude is a hybrid Integrated Decision Support (IDS) system that collects and

correlates information from various systems into a single interface.This includes

everything from Cisco devices to syslog daemons, as well as open source monitoring

systems such as Samhain and Snort.To use this option, you must have the basic pre-

lude library installed (libprelude).

--enable-debug

You should enable this only if you will be doing testing or troubleshooting an

incident.This will slow down Samhain and produce more logging information. In

addition, the Samhain agent will be allowed to produce core files.

--enable-ptrace

This is another Linux-specific option. When enabled, Samhain will periodically

check whether a debugger is attached to the process. If a debugger is detected, the

process will exit (unless --enable-debug is set).

--with-c ags=FLAGS

If you are a developer or are familiar with the process, you can use this option to

pass additional compiler flags to the compilation process.

--with-libs=LIBS

Like the cflags option, this option is used to pass libraries that must be included

in the link process.

www.syngress.com

254 Chapter 7 • Samhain

Module Options
The following options are used to specify which modules the Samhain agent will use:

--enable-login-watch

Enabling this option allows you to monitor the login and logout events on

the host.

--enable-mounts-check

Enabling this option allows you to monitor the various settings that are used

when mounting your file systems.

--enable-user les

When enabled, the agent monitors certain files in users’ home directories.The

specifics for what files and which users must be configured in the configuration file

under this module’s settings.

--enable-suidcheck

This option enables the agent to perform SUID/SGID audits.

--with-kcheck=SYSTEM_MAP

This option allows Samhain to monitor the kernel for Linux and FreeBSD sys-

tems.The SYSTEM_MAP is the path to the System.map file that corresponds to the

running kernel.

GnuPG Signing Options
The following options apply to using GnuPG to OpenPGP sign configurations and

database files:

--with-gpg=PATH

This option turns on GnuPG to sign databases and configuration files.The argu-

ment must be the full path to the GPG executable.The GnuPG key used will be the

public key of the effective user that the Samhain executable is running as (usually

root).

--with-checksum=CHECKSUM

This option provides the TIGER checksum of the GPG executable. It embeds

the GPG checksum into the Samhain executable so that it can perform a check on

the executable before executing it.TIGER is a hash algorithm that produces a 192-

bit key.The value specified must be the output from the following command:

www.syngress.com

Samhain • Chapter 7 255

$ samhain -H /usr/local/bin/gpg

/usr/local/bin/gpg: 166FC24A D16E4661 EC760122 DDB81374 10CB98F8 D323ED2E

In this case, you would use the following configuration argument:

--with-checksum="166FC24A D16E4661 EC760122 DDB81374 10CB98F8 D323ED2E"

If configuring Samhain for the first time, you will not have a Samhain exe-

cutable.To get around this, use GnuPG to generate the TIGER checksum. (Note

that you have to compile GnuPG with the --enable-tiger=yes configuration option,

because it is not included by default.) Compute the TIGER checksum of the GPG

executable as follows:

$ gpg --load-extension tiger --print-md TIGER192 /usr/local/bin/gpg

In both cases, use the output exactly as it is produced, including spaces.

NOTE

As of GnuPG v.1.2.2, support for the Tiger/192 hash algorithm was dis-
abled by default, and eventually removed from the GnuPG source code.
This makes using this configuration option problematic. If you still want
to use GnuPG, we recommend not using this option; if you do, you will
probably have to build Samhain, use it to compute the Tiger checksum,
and reconfigure it accordingly.

--with-fp=FINGERPRINT

This is an extra safety precaution. If you specify the GnuPG fingerprint for the

key with this argument, it will be compiled into the Samhain executable. Samhain

will then verify the fingerprint before using the key. It is up to you whether or not

you include the spaces in the key fingerprint; it does not make any difference. Here

is an example of how to get your GnuPG key fingerprint:

$ gpg -- ngerprint

/Users/brian/.gnupg/pubring.gpg

pub 1024D/9674763D 1999-11-10

Key ngerprint = FBBA B237 EF74 19F1 AC2F 8C0F 0DEC 799E 9674 763D

uid Brian Wotring <brian@shmoo.com>

uid Brian Wotring <brian@fortnocs.com>

uid Brian Wotring <brian@metasecura.com>

uid Brian Wotring <brian@hostintegrity.com>

www.syngress.com

256 Chapter 7 • Samhain

Your key value will be different, but as an example, specify the key fingerprint

with the following configuration option: --with-fp= FBBA B237 EF74 19F1 AC2F

8C0F 0DEC 799E 9674 763D.

You may not need to use many of these configuration options, but it helps to be

familiar with them so that you know what Samhain is capable of. Configuration is a

big part of Samhain deployment; you should take the time to consider how they

match up to what you are attempting to achieve with your Samhain deployment. If

you are overwhelmed by these options, you can run configure without any arguments.

For the FreeBSD stand-alone deployment, enable the file system mount check, the

SUID auditing, and monitoring the kernel. For FreeBSD systems, you do not have to

specify the system map file, just the configure argument. For Linux systems, you have

to specify the path to the kernel symbol map file (e.g., --with-kcheck=/boot/System.map-

2.4.20). For FreeBSD, run configure as follows:

$./con gure --enable-mounts-check --enable-suidcheck --with-kcheck

This runs through the configuration process and determines the correct settings

for your system. When finished, you should see something similar to the following:

samhain has been con gured as follows:

System binaries: /usr/local/sbin

Con guration le: /etc/samhainrc

Manual pages: /usr/local/man

Data: /var/lib/samhain

PID le: /var/run/samhain.pid

Log le: /var/log/samhain_log

Base key: 275284074,278527851

Selected rc le: samhainrc.freebsd

Your base key will be different.

Building Samhain
Once you have configured Samhain, you have to build the Samhain agent.The

Samhain source is relatively small; therefore, on modern hardware, compiling should

take less than one minute:

$ make

After the agent has been built, you can optionally build an installer package for

your system. Unfortunately, there is no package installer for FreeBSD. If you are

installing on Linux or Solaris, you can use one of the make arguments shown in

Table 7.1 to make various package types.

www.syngress.com

Samhain • Chapter 7 257

Table 7.1 make arguments for Building Installer Packagers on Linux or Solaris

Package Type make argument

Debian Package deb

RPM rpm

Gentoo (tbz2) tbz2

Solaris solaris-pkg

For example, to build a Linux rpm package, do the following:

$ make rpm

Installing Samhain
The next step is to install the Samhain documentation, agent, configuration file, init

scripts, and directories.To do so, you must run make with the install argument as

root:

make install

/usr/bin/install -c -s -m 700 samhain /usr/local/sbin/samhain

./sstrip /usr/local/sbin/samhain

/bin/sh ./mkinstalldirs /usr/local/man/man8

/bin/sh ./mkinstalldirs /usr/local/man/man5

/usr/bin/install -c -m 644 ./man/samhain.8 /usr/local/man/man8/samhain.8

/usr/bin/install -c -m 644 ./man/samhainrc.5

/usr/local/man/man5/samhainrc.5

gcc -DHAVE_CONFIG_H -I. -I./include -O2 -Wall -W -fno-strength-reduce -

fno-omit-frame-pointer -DSH_STANDALONE -DSH_IDENT=\"daemon\" -DTRUST_MAIN -

DSL_ALWAYS_TRUSTED=0 -o trust le ./src/trust le.c

mkdir /var/lib

mkdir /var/lib/samhain

./samhain-install.sh --destdir= --express --verbose install-data

cp samhainrc.freebsd samhainrc

cp samhainrc samhainrc.pre

mv -f samhainrc.pre samhainrc.install

./samhain-install.sh --install-sh -m 600 samhainrc.install

/etc/samhainrc

checking whether paths are trustworthy

con guration le /etc/samhainrc ... OK

state directory /var/run ... OK

state directory /var/log ... OK

www.syngress.com

258 Chapter 7 • Samhain

data directory /var/lib/samhain ... OK

Next, install the init scripts, which will enable Samhain to start when the system

is booted.As root, use the following command to install the proper init scripts:

make install-boot

./samhain-install.sh --destdir= --express --verbose install-boot

FreeBSD system detected

./samhain-install.sh --install-sh -m 700 init/samhain.startFreeBSD

/usr/local/etc/rc.d/samhain

mv /usr/local/etc/rc.d/samhain /usr/local/etc/rc.d/samhain.sh && chmod

755 /usr/local/etc/rc.d/samhain.sh

installing init scripts completed

This will install an init script in /usr/local/etc/rc.d/, the preferred location for

these files on FreeBSD systems. If you are installing on Linux, it will probably be

installed under the /etc/init.d directory.

Configuring Samhain
After Samhain has been installed, look over the configuration file to see what it is

monitoring. For systems including FreeBSD, Linux,AIX, and Solaris, the installation

process automatically copies a reasonable default configuration file into

/etc/samhainrc.You can run just this configuration; however, you should at least set up

some reasonable defaults for e-mail notification and such.The main items to con-

figure in this file include what should be monitored and how the administrator

should be notified.

The Samhain configuration file consists of groups, called policies. In addition,

there is a section for each module. In this case, we have enabled three modules:

SUID/SGID checks, file system mount point checks, and kernel integrity checks.

Each module has settings that dictate how often to scan, and what to involve in that

part of the scan.

Configuration Policies
One nice attribute of Samhain is its ability to specify what needs to be monitored

through security policies. Basically, some files should remain static in all aspects (e.g.,

executables). On the other hand, log files continually change in their content, size,

and time stamps, but they should rarely (if ever) change ownership or permissions. It

makes sense to define policies and then add the files you want to monitor under the

appropriate policy.

www.syngress.com

Samhain • Chapter 7 259

Each policy is noted in the configuration file with square brackets (e.g.,

[ReadOnly]).To specify files and directories, use the dir and file directives.Always

specify the full path to files. For example:

 le = /bin/ls

Directories require full paths and are specified in a similar manner:

dir = /bin

By default, directories are not monitored recursively.To specify that a directory

be monitored recursively, prepend a recursive depth to the beginning of the path in

the form [N]/path/to/dir. For example, to scan two directories deep into /usr/local,

use the following directive:

dir = 2/usr/local

The maximum recursion depth is 99. If you want to scan an entire directory tree

recursively, do the following:

dir = 99/usr/local

Both the file and dir directives must be absolute paths; however, you can use file

globbing to specify multiple files or directory paths. For example, to get all files begin-

ning with rc under the /etc directory, you would use the following file directive:

 le = /etc/rc*

Samhain supports the following monitoring policies.

[ReadOnly]
For all files under this policy, all attributes will be monitored, except access time

stamps.This is the policy where you want to place your executables and library files.

[LogFiles]
This policy ignores time stamps, file size, and checksums.All other attributes are

monitored.

[GrowingLogFiles]
This policy is the same as the LogFiles policy except it generates alerts for files that

decrease in size.This is a stricter policy; the basic idea is that log files should not

decrease in size, only increase.A decrease in size could indicate a compromise or that

an attacker is attempting to cover their tracks by removing the log messages.

However, logs files are rotated and sometimes do legitimately decrease in size; that is

www.syngress.com

260 Chapter 7 • Samhain

why there are two policies. If you have the ability to be mindful of your log rota-

tions and correlate these two events, use this policy; otherwise, it is best to avoid false

positives and use the LogFiles policy.

[Attributes]
Under this policy modifications of user and group ownership and file permissions

are monitored for files.

[IgnoreAll]
This policy ignores all changes to files. However, it generates reports when files are

added or go missing.

[IgnoreNone]
This policy monitors all of the attributes of the file (including access time) except

for the change time stamp. It is difficult to monitor both the access time and the

change time, because monitoring the file attributes resets the access time and reset-

ting the access time involves modifying the time.This is similar to the ReadOnly

policy except that instead of access time, the change time is ignored. Use this only

where you want to specifically monitor the access time stamp of the file.

[User0] and [User1]
These are user-defined policies. By default, they are configured to monitor all modi-

fications to files under this policy.You can change the meanings of these and other

policies (described later in this chapter).There are only two user-specified policies.

[Prelink]
This policy exists solely for monitoring prelinked files on Linux systems.This policy

ignores modifications to time stamps, file size, and inodes (all of the attributes that

can change as a result of a prelinking update). In addition, the checksums of files are

computed by using the prelink executable to perform the verify operation

(described in detail in Chapter 9,“Advanced Strategies”).

Understanding the Configuration Sections
The following is a brief description of each of the sections you will encounter in a

Samhain configuration file.

www.syngress.com

Samhain • Chapter 7 261

[Misc]
The Misc section contains various configuration options for Samhain. One thing to

note is that this section allows you to redefine some of the default policy meanings.

To be effective, you must first specify these redefinitions in the configuration file.

The redefinition involves providing a list of attributes to add or remove from the

monitoring process (Use the “+”to add monitoring for specific attributes and use

the “-”to remove monitoring for specific attributes.) Table 7.2 lists the valid codes to

use when specifying a policy modification rule:

Table 7.2 Valid Codes to Use when Specifying Policy Modification Rules

CODE Attribute

CHK Checksum

LNK Symbolic Link

HLN Hard Link

INO Inode

USR User

GRP Group

MTM mtime

ATM atime

CTM ctime

SIZ File Size

RDEV Device Number

MOD File Permissions (mode)

For example, to modify the ReadOnly policy to not include checks to exclude

monitoring device numbers, use the following rule in the Misc section of the

Samhain configuration file:

RedefReadOnly=-RDEV

To remove monitoring of ctime from the User0 policy use:

RedefUser0=-CTM

The next sections of the configuration file are typically the policy sections.

Basically, you add files that make sense to each section (e.g., log files to the LogFiles

policy, executables and libraries to the ReadOnly policy, and so on).The defaults are

helpful, so start with those and then adjust them as needed to satisfy your moni-

toring requirements.

www.syngress.com

262 Chapter 7 • Samhain

[EventSeverity]
This configuration section allows you to configure severities to policy violations

(e.g., if an executable in the ReadOnly section is modified and the checksum

changes, you can decide how severe of an event it is).This becomes powerful when

you consider that you can provide thresholds for certain logging facilities so that

only severities of a certain level generate alerts.Thus, you can essentially eliminate

noise and redirect the most critical of events to the appropriate logging outlets.Table

7.3 (taken from the Samhain documentation) shows the list of event severities.

Table 7.3 Event Severities

Level Significance

None Not logged

Debug Debugging-level messages

Info Informational message

Notice Normal conditions

Warn Warning conditions

Mark Time stamps

Err Error conditions

Crit Critical conditions

Alert Program startup/normal exit, or fatal error, causing
abnormal program termination

Inet Incoming messages from clients (server only)

For example, to set the ReadOnly violations to only be warnings, add the fol-

lowing line under the EventSeverity section of the Samhain configuration file:

SeverityReadOnly=warn

Basically, just prepend the word “Severity” to the policy name and assign it a

value.The order of these severities is not important. In addition to policy violations,

you can assign event severities to the following events:

■ File access errors (SeverityFiles)

■ Directory access errors (SeverityDirs)

■ Obscure file names (SeverityNames)

You can also set severity levels for login and logout events; however, that must be

done in that module’s configuration section.

www.syngress.com

Samhain • Chapter 7 263

[Log]
This section of the configuration file allows you to specify the various logging out-

lets and their severity thresholds. If an event is equal to or above a logging facility’s

threshold, that event is logged to that logging facility.To turn off a logging facility,

set it to none. For example, the following configuration has mail logging turned off,

will log all events to the console, and will log events to syslog if they are at least

warnings:

MailSeverity=none

PrintSeverity=*

SyslogSeverity=warn

Table 7.4 lists the available logging outlets.

Table 7.4 Logging Outlets

Log Outlet Description

MailSeverity E-mail notifications

LogSeverity Log files.

PrintSeverity Console

SyslogSeverity Syslog

PreludeSeverity Prelude IDS system

ExportSeverity Logs sent to the Log Server

ExternalSeverity External program

DatabaseSeverity External Relational Database Server

In addition, you can specify that certain system calls be logged.The only outlets

available include syslog and the console. Specify which system calls you want logged

with the following:

LogCalls=<calls>

Calls should be a comma-separated list of system calls on your system that you

want to monitor. For example:

LogCalls=open,kill

Most of these logging outlets are disabled by default. Valid system calls include

execve, utime, unlink, dup (+ dup2), chdir, open, kill, exit (+ _exit), fork, setuid, setgid, and

pipe. Be careful when specifying these calls, and mindful of the impact a rule like this

can have on disk space and, more importantly, processor usage.

www.syngress.com

264 Chapter 7 • Samhain

[Misc]
Next, the configuration file contains various sections specific to logging outlets and

modules.At the very end of the configuartion file, you will see a large number of

miscellanious configuration settings. Some of the most important ones are as follows:

Daemon=yes

This tells Samhain to fork into the background and run as a daemon unless

explicitly told otherwise by the --forground command-line option.The only time this

is ignored is during the creation of the baseline database (initialization). Set this to

no if you do not want Samhain to run as a daemon.

ChecksumTest=check

This option dictates whether or not Samhain will update, check, or initialize a

database.This option is best kept to “check” for stand-alone deployments. Setting to

none requires the user to specify what they want to happen on the command line.

SetFileCheckTime = 7200

This is the time period in seconds between file monitoring checks. Setting it to

7200 means that the Samhain agent will wake up every 2 hours and check the file

system.

ReportOnlyOnce = True

Samhain maintains a copy of violations in memory so that subsequent scans do

no report on the same violations. If you set this to false, all violations will be

reported on each check.This is not recommended, as it will produce a great deal of

noise.

Stand-Alone Configuration
The Samhain configuration file can be complicated, so it is important to strive

towards simplicity; otherwise, you could end up with a great deal of false positives

and false negatives. In our case, we are concerned with a basic stand-alone deploy-

ment, so the default configuration is created during installation and then adjusted to

turn on and configure the modules to reasonable values. Open the configuration file

in an editor such as vi (as root):

vi /etc/samhainrc

First, comment out the directories that do not exist on your system.Take a look

through the policies and verify that each directory and file exists. In the case of a

typical FreeBSD 5.3 installation, you will have to comment out the following lines:

www.syngress.com

Samhain • Chapter 7 265

#dir=/stand/modules

#dir=/var/spool/lp/tmp

le=/kernel

#dir=/modules

#dir=/usr/X11R6/man

le=/usr/compat/linux/etc

le=/usr/compat/linux/etc/ld.so.cache

Next, locate the [SuidCheck] module section. Using the following configura-

tion, adjust the configuration so that it is active, it monitors the SUID/SGID files

every Sunday at 4:00 P.M., and it warns about SUID/SGID files:

[SuidCheck]

SuidCheckActive = yes

SuidCheckSchedule = 0 16 * * Sun

SeveritySuidCheck = crit

SuidCheckQuarantineFiles = no

Next, find the [Kern] section of the configuration file and activate it to run

every 5 minutes with the following configuration:

[Kernel]

KernelCheckActive = True

KernelCheckInterval = 300

SeverityKernel = info

The default FreeBSD configuration does not have a mounts section; therefore,

add one after the [Kern] section. First, find out what file systems are being mounted.

You can easily find this by printing the contents of the fstab file:

cat /etc/fstab

Device Mountpoint FStype Options Dump Pass#

/dev/ad0s1b none swap sw 0 0

/dev/ad0s1a / ufs rw 1 1

/dev/acd0 /cdrom cd9660 ro,noauto 0 0

In this case, there is only a “/” single file system If you have more, add those

options as well. In this case, add the following to the Samhain configuration file:

[Mounts]

MountCheckActive=1

MountCheckInterval=7200

SeverityMountMissing=warn

SeverityOptionMissing=warn

checkmount=/

www.syngress.com

266 Chapter 7 • Samhain

Once all of the aforementioned elements have been added to the configuration

file, save it.

Creating a Baseline with Samhain
Now that Samhain is installed and the configuration file is set up, initialize the base-

line database. Ideally, you will do this offline, before the host is ever connected to a

network. However, this is not always possible. Create the baseline database with the

following command:

/usr/local/sbin/samhain -t init

The -t flag specifies the type of scan, which can be either initialization, check, or

update. Since you are creating the baseline, use the initialization type.At any time,

you can run a check against the database and the current system state by using the

check test.The update command updates the database with the current system state.

The preceding command prints a great deal of information to the console as it cre-

ates the baseline database.You will see a final message about Samhain exiting:

ALERT : [2005-04-23T14:36:13-0600] msg=<EXIT>, program=<Samhain>,

status=<None>

Although this seems alarming, it is normal; it means that Samhain has exited.

After this command, the baseline is created and stored in the

/var/lib/samhain/samhain_file by default.You should never run Samhain in initializa-

tion mode again. Doing so will append the created baseline to this file and it will be

ignored by subsequent checks. If you ever want to recreate the baseline, remove the

/var/lib/samhain/samhain_file file (or rename it) and run the preceding command

again to create the new baseline.

Tuning Samhain
Now that the baseline is established, run a check on the system to see if there are

any configuration problems. Run a check against the database with the following

command:

/usr/local/sbin/samhain -t check –p warn --foreground

You must run with --foreground, otherwise, Samhain will become a daemon pro-

cess.You want to see the output to see if there are any errors in your policy. If there

are errors, they should be labeled as policy warnings and provide meaningful output of

what the problem is (e.g., missing files or directories). In cases where you do not see

any problems, the check should look something like the following:

www.syngress.com

Samhain • Chapter 7 267

/usr/local/sbin/samhain -t check -p warn --foreground

ALERT : [2005-04-23T14:56:08-0600] msg=<START>, program=<Samhain>,

userid=<0>, path=</etc/samhainrc>,

hash=<D35F502AA0E9264DBD4A4021DCB58550E4A2B61DE7E28AE5>,

path=</var/lib/samhain/samhain_ le>,

hash=<6236062364D2F76F3551B241F55F817AB36220216492D1DD>

ALERT : [2005-04-23T14:56:09-0600] msg=<EXIT>, program=<Samhain>,

status=<None>

The -p flag takes an argument for the console severity threshold. In this case, you

do not care about informative messages; you only want to see anything above or

equal to warnings.

Configuring Notifications
Now it is time to set up e-mail notifications regarding changes. Our policy is pretty

simple; we can safely enable e-mail notifications with just a few tweaks to the con-

figuration file. With Samhain, you have to be careful because, by default, e-mail noti-

fications are problematic; each alert is sent in its own e-mail message.

The first thing to do is open the configuration file and enable the mail log

severity. In this case, we set the threshold severity to warn; by default, it is disabled:

MailSeverity=warn

Next, set the e-mail address target.You can comma-separate them (maximum of

eight) by putting each additional address on a separate line. Initially, set it to a single

administrator until the system is known to be stable and working as expected:

SetMailAddress=admin@example.com

If you have to use a mail relay, set the following field to be your mail server; oth-

erwise, Samhain will use the built-in Mail Transport Agent (MTA):

SetMailRelay = mail.example.com

Run another check to see if your notifications are working:

/usr/local/sbin/samhain -t check –p warn –foreground

Samhain detects a change in the checksum of the configuration file and reports

on it (/etc/samhainrc was updated with mail settings, which is a legitimate change).

You should receive a notification that looks something like the following:

From: <daemon@example.com>

To: <admin@example.com>

Date: Sat, 23 Apr 2005 15:11:16 MDT

Subject: [2005-04-23T15:11:15-0600] localhost

www.syngress.com

268 Chapter 7 • Samhain

-----BEGIN MESSAGE-----

[2005-04-23T15:11:15-0600] localhost

CRIT : [2005-04-23T15:11:15-0600] msg=<POLICY [ReadOnly] C-------TS>,

path=</etc/samhainrc>, size_old=<13012>, size_new=<13024>, ctime_old=<[2005-

04-23T20:55:39]>, ctime_new=<[2005-04-23T21:10:48]>, mtime_old=<[2005-04-

23T20:54:46]>, mtime_new=<[2005-04-23T21:10:48]>,

chksum_old=<D35F502AA0E9264DBD4A4021DCB58550E4A2B61DE7E28AE5>,

chksum_new=<B59CEE1499D9C6D99915B52B27232AB58CD413D8C7C2744D>,

-----BEGIN SIGNATURE-----

7EDFC17FFA75F70EA7825158D3913BC80DCF486EE4911847

000002 1114290673::localhost

-----END MESSAGE-----

Responding to Change
The point of monitoring the integrity of your host is to detect changes.At some

point, you will inevitably have to deal with updating your baseline database(s).

For your stand-alone installation, you want to run Samhain in “update” mode. In

the previous example, changes were made to the Samhain configuration file, which

resulted in the baseline having a different checksum for that file.Those changes were

made; therefore, it was a legitimate change and it makes sense to update the database

with the current information about that file.To do this, run Samhain with the fol-

lowing arguments:

$ /usr/local/sbin/samhain -t update --interactive

This will force an interactive update session to the database.You should do this

so that you can make sure that it is the only change going into the database.You do

not have to specify foreground; Samhain never does updates in the background.You

will be prompted to accept the change:

CRIT : [2005-04-23T15:28:08-0600] msg=<POLICY [ReadOnly] C-------TS>,

path=</etc/samhainrc>, size_old=<13012>, size_new=<13019>, ctime_old=<[2005-

04-23T20:55:39]>, ctime_new=<[2005-04-23T21:20:02]>, mtime_old=<[2005-04-

23T20:54:46]>, mtime_new=<[2005-04-23T21:20:02]>,

chksum_old=<D35F502AA0E9264DBD4A4021DCB58550E4A2B61DE7E28AE5>,

chksum_new=<48141D8599C46914C98A1AEDF363E33911459CF471A8DC63>,

Update /etc/samhainrc [Y/n] ?

The database is updated. Verify this by running another check:

/usr/local/sbin/samhain -t check -p warn --foreground

www.syngress.com

Samhain • Chapter 7 269

ALERT : [2005-04-23T15:31:00-0600] msg=<START>, program=<Samhain>,

userid=<0>, path=</etc/samhainrc>,

hash=<48141D8599C46914C98A1AEDF363E33911459CF471A8DC63>,

path=</var/lib/samhain/samhain_ le>,

hash=<DE472D90B7B20939939A8123593C5D6A8919AA5D052BADE2>

ALERT : [2005-04-23T15:31:02-0600] msg=<EXIT>, program=<Samhain>,

status=<None>

The baseline is now in sync with the state of the system.You are ready to start

Samhain as a daemon and let it do what it does best: monitor the integrity of your

system.

Running Samhain
When Samhain was installed, the init scripts were also installed. If you rebooted your

system, Samhain would automatically start up as a daemon and periodically monitor

your system. However, rebooting is not a practical option; therefore, Samhain can be

started as a daemon using the init script with the start argument:

/usr/local/etc/rc.d/samhain.sh start

samhain#

You should see “samhain#.” Verify that Samhain is running as a daemon by

doing the following on FreeBSD (this command varies for each system):

ps -A | grep samhain

35852 ?? S 0:01.22 /usr/local/sbin/samhain -D

How do you know that Samhain is running? Tail the Samhain log file:

tail -f /var/log/samhain_log

According to the previous configuration, files will be monitored every two

hours; however, Samhain is also monitoring the state of the kernel every 5 minutes.

The kernel check will show up in this log file within a few minutes.

At this point, Samhain is installed in a stand-alone configuration.All logs and

scan data are stored on the host that is being monitored.Administration requires that

you login to that host and perform database updates whenever changes are detected.

Samhain will not report on the same changes twice; however, if the system is

rebooted or the agent restarted, you will be inundated with all of the differences

between the system and the baseline. It is best to keep your baseline database

updated.

www.syngress.com

270 Chapter 7 • Samhain

Uninstalling Samhain
When building from source, not many open source software applications provide the

ability to easily uninstall. Samhain does.You can uninstall Samhain by changing to

the original source directory and typing (as root):

make uninstall

This command removes everything except the Samhain configuration file and

log files. If you want to remove the configuration file, use the following:

make purge

This runs the make uninstall process and removes the Samhain configuration file

(usually /etc/samhainrc). Finally, to uninstall the init scripts, do the following:

make uninstall-boot

If you have removed the source or installed it via a package, Samhain can be

uninstalled using the supplied uninstall script, samhain-install.sh. For example, to

uninstall do:

./samhain-install.sh purge

To uninstall the init scripts:

./samhain-install.sh uninstall-boot

Deploying Samhain
with Centralized Management
Samhain provides a server known as “Yule,” that provides for the centralized man-

agement of logs, scan data, and configuration files. Stand-alone deployments versus

centrally managed deployments require that you configure, build, and install Samhain

differently.That is, even if you already have some stand-alone deployments of

Samhain, you must rebuild the agents and reinstall Samhain in order for them to use

the Yule server. In the same way that you can over-complicate your stand-alone

deployment, you can do the same with Yule and centrally managed Samhain agents.

This section discusses how to establish a simple and effective centralized Samhain

deployment. We will install Yule on a FreeBSD system and use Postgresql as a

database server that will store all of the log data collected from the Samhain agents.

To keep the commands from becoming confusing, prompts have been established:

the monitored host will be agent# and the prompts on the Yule server will be yule#.

www.syngress.com

Samhain • Chapter 7 271

Overview of Yule
Yule is a server that is responsible for maintaining trusted communications with

Samhain agents by storing their configuration files, scan data, and logs.Yule requires

that the Samhain agents authenticate with a key embedded in the agent executables.

This means that if you establish a Yule server and then install Samhain from a binary

package or some type of ports tree, they will not be compatible without performing

additional steps to reset the key.This makes for more of a deployment effort, but also

forces you to deploy a more secured system.

Notes from the Underground…

Centralized Management
of Configuration and Scan Data
If you want Yule to act as a centralized store for your host’s scan configuration
files and baseline database, you will have to compile the Samhain agents your-
self. These options cannot be specified in the configuration file. Samhain can be
compiled to use a local path for the configuration file as a backup, but if you
want the agent to request the configuration file and scan data from the server,
you must use special configure options to hard-code this functionality into the
agent.

Yule is first and foremost a log server.You can choose not to have configuration

files and scan databases stored by Yule, in which case,Yule would just be used as a cen-

tralized log server.Yule can log to all of the same logging outlets that Samhain can,

only it manages streams of logs coming from remote Samhain agents, verifies them,

and signs them.Yule is not much different than Samhain in the sense that it is built

from the same source and does not monitor the host.The locations for configuration

files, database files, logs, and the format of the configuration file are all the same.

Yule can also act as a minimal console for Samhain agents by writing Hypertext

Markup Language (HTML) files locally for administrators to view the status of each

agent and some statistics about connections for managed agents. For more informa-

tion about monitored hosts, use Beltane, the Web-based console (covered in the next

section).

Yule can also be used to send messages to agents in a limited fashion. Since the

agent always initiates communication to the Yule server, agents do not listen on a

www.syngress.com

272 Chapter 7 • Samhain

network port.Thus, it is not possible to send messages to the agents in real time.

However, messages can be queued so that the next time the agent connects to the

server, it is given the message.Yule can send two kinds of messages: RELOAD and

STOP.The RELOAD message tells the agent to reload its configuration file.The

STOP message tells the agent to shut down.The only way to send these messages to

the agent is through a separate command-line application called yulectl.The yulectl

executable is built as part of the Yule compilation process.

Figure 7.1 illustrates the functionality provided by the Yule log server in a cen-

trally managed Samhain deployment.

Figure 7.1 Functionality Provided by the Yule Log Server

Build Environments
It is recommended that you establish a separate build and test environment, and that

you establish a Yule server and some test hosts to become familiar with how the pro-

cess works and how to administer Samhain in a centralized deployment scenario.

Once you understand how things work, you will be better prepared to establish a

solid centrally managed Samhain deployment in your production environment. Plan

to dedicate a host specifically to the Yule server. Ideally, this host will run nothing

but Yule, and possibly a relational database server. If you want to use the Beltane

console, you have to run a Web server; however, there are obvious risks involved.You

need to determine if the benefits associated with the Web-based console outweigh

the risks.

www.syngress.com

Samhain • Chapter 7 273

Samhain executableYule Executable

64-bit key 64-bit key

<password verifier> <password>
SRP protocol

Signed Logs and Email

host1
host2

Scan Databases Configuration Files

Yule Server

Monitored Host

The build requirements for Yule are the same as with the Samhain agents.

Specifically, you need a:

■ POSIX Environment

■ ANSI C Compiler

■ Gnu Privacy Guard (GnuPG)

■ Database Server (Postgresql, MySQL, Oracle, or Open Database

Connectivity (ODBC) Compliant)

GnuGP is a requirement only if you have to have your configuration files and

database files cryptographically signed.The database server is only a requirement if

you want to store your logs in a database. If you are monitoring many hosts, it makes

sense to put them into a database. Configuring Samhain to do this is easy and makes

sense for large-scale deployments. If you do not want to do this, you can skip the

related steps; the configuration options that are only used for the database will also

be explained.

You can build your Yule server and your Samhain agents on the same host and

from the same source tree. If you need to build Samhain agents for multiple oper-

ating systems, you must build an environment for each unique operating system and

architecture type.

Installing and Configuring Postgresql
Postgresql is the chosen database server to store all of the received log data; however,

MySQL or some other database can also be used.The general idea is the same: install

the database environment, create a database for Samhain, and establish the schema

from the template provided in the Samhain source. (If you are not interested in

storing logs in a database, feel free to skip this section.)

Installing Postgresql on FreeBSD is simple if ports are installed. Otherwise, it is

relatively easy to build from source. Change to the ports directory and, as root, run

make install to install the Postgresql port:

yule# cd /usr/ports/databases/postgresql73

yule# make install

This will take a few minutes, depending on your hardware configuration and

how many dependencies you already have installed.Alternatively, if you are on a

Linux system and you use the yum system, you can install Postgresql by doing some-

thing like the following (as root):

yule# yum install postgresql

www.syngress.com

274 Chapter 7 • Samhain

If you do not have a ports system, of if you are not using yum on Linux, it is

suggested that you build Postgresql from source. Once you have downloaded and

unpacked the source, the well-known process is:

yule# ./con gure

yule# make

yule# make install

Once you have installed Postgresql, make sure it is initialized. Each port may

vary in how Postgresql is installed.You will probably be informed of what you need

to do to start the database; it may already be initialized.To see if Postgresql is run-

ning, use the init script. On FreeBSD, do this with the following command:

yule# /usr/local/etc/rc.d/010.pgsql.sh status

pg_ctl: postmaster or postgres is not running

To see if Postgresql has been initialized as part of your installation, look in the

pgsql directory for a directory called data. On FreeBSD, verify this by doing:

yule# ls /usr/local/pgsql

dot.cshrc.dist dot.pro le.dist post-install-notes

In this case, it has not been initialized; therefore, it is initialized (as root) with the

following command:

yule# su -l pgsql -c initdb

The les belonging to this database system will be owned by user "pgsql".

This user must also own the server process.

The database cluster will be initialized with locale C.

creating directory /usr/local/pgsql/data... ok

creating directory /usr/local/pgsql/data/base... ok

creating directory /usr/local/pgsql/data/global... ok

creating directory /usr/local/pgsql/data/pg_xlog... ok

creating directory /usr/local/pgsql/data/pg_clog... ok

creating template1 database in /usr/local/pgsql/data/base/1... ok

creating con guration les... ok

initializing pg_shadow... ok

enabling unlimited row size for system tables... ok

initializing pg_depend... ok

creating system views... ok

loading pg_description... ok

www.syngress.com

Samhain • Chapter 7 275

creating conversions... ok

setting privileges on built-in objects... ok

vacuuming database template1... ok

copying template1 to template0... ok

Success. You can now start the database server using:

/usr/local/bin/postmaster -D /usr/local/pgsql/data

or

/usr/local/bin/pg_ctl -D /usr/local/pgsql/data -l log le start

The commands suggested by the port can be used, but you might as well start

Postgresql with the installed init script:

yule# /usr/local/etc/rc.d/010.pgsql.sh start

pgsql

yule#

Now, verify that it is running:

yule# /usr/local/etc/rc.d/010.pgsql.sh status

pg_ctl: postmaster is running (pid: 745)

Command line was:

/usr/local/bin/postmaster

Next, create a database and populate some tables using a schema that Yule will

expect and use. First, create the Samhain database using the Postgresql command

createdb; call it “samhain”:

yule# sudo -u pgsql /usr/local/bin/createdb samhain

CREATE DATABASE

Now, create a user for this database called “samhain”:

yule# sudo -u pgsql /usr/local/bin/createuser samhain

Shall the new user be allowed to create databases? (y/n) n

Shall the new user be allowed to create more new users? (y/n) n

CREATE USER

www.syngress.com

276 Chapter 7 • Samhain

NOTE

The user created here is a Postgresql user, not a system user. This is gen-
erally done to limit users who connect to the database, to certain
databases, or to parts of databases. In this case, we are creating a
database for Samhain, and only the Samhain user created will have
access to this database. Locking down a database such as Postgresql is
not a simple task. Read the “Security” section of the Postgresql manual
for tips on how to harden the security of your database.

Finally, create the tables within the Samhain database. Fortunately, the Samhain

source contains a script specific for Postgresql that can be used to populate the

database. By default, the Samhain user does not have access to the log table, so it

must be added to the script.Assuming that you have unpacked the Samhain source

in /usr/local/src, navigate to the source and, using the psql command, redirect the

contents of the samhain.postgres.init file:

yule$ cd /usr/local/src/samhain-2.0.5b

yule$ cd sql_init/

yule$ echo "GRANT SELECT ON log TO samhain;" >> ./samhain.postgres.init

yule$ sudo -u pgsql /usr/local/bin/psql -d samhain <

./samhain.postgres.init

CREATE SEQUENCE

CREATE TABLE

CREATE INDEX

CREATE INDEX

CREATE INDEX

CREATE INDEX

GRANT

GRANT

GRANT

The database is set up and Yule can send data to it.This database could be estab-

lished on another host, but it is not recommended. Samhain has no native way to

protect the information once it leaves the host that the Yule server is running on. If

it must be sent to another host, steps must be taken to secure the privacy of the log

data.Technically, the integrity of the log data can be verified because the Samhain

agents and the Yule server sign them; however, that does not prevent an attacker or

eavesdropper from monitoring that data.

www.syngress.com

Samhain • Chapter 7 277

Configuring Yule
Configuring Yule source code is the same process as for configuring a Samhain

agent.The major difference is that you must use configure the argument --enable-net-

work=server to tell the build system that you will be building Yule, not Samhain.

Likewise, you need to configure all Samhain agents with --enable-network=client to tell

Samhain that it will be communicating with a Yule server, and not in stand-alone

mode.All of the configuration options listed in the previous section except for the

enabling of modules, are applicable to Yule.There are additional configuration

options specifically for centralized deployment:

--enable-network=client|server

This option is used to specify that a network-aware executable will be built, and

specifically, whether or not it will be a Yule server or a Samhain agent.

--disable-encrypt

This option allows you to disable encrypted communications between Yule and

the Samhain agents. By default, all communications are encrypted using AES.The

main reason this configuration option exists is to allow the use of Samhain in envi-

ronments where strong cryptographic algorithms are prohibited. Never use this

option in a production environment.

--enable-encrypt=1

Starting with version 1.8.x of Samhain, a new enhanced version of client/server

encryption was implemented (i.e., version 2). By default,Yule can communicate with

agents that use either implementation of client/server encryption. However, to

explicitly set Yule to only communicate with agents that use version 1, use this

option, which will produce a Yule server that is unable to communicate with version

2 agents.

--disable-srp

As detailed in Chapter 5, Samhain uses the zero-knowledge protocol known as

the Secure Remote Password (SRP) protocol. If you wish, you can disable SRP

using this option. However, SRP is behind the scenes and best left on. If you use this

option, you must be consistent and use it on all of your Samhain agents.

--with-libwrap=PATH

This configuration option allows you to specify the location for the libwrap file

in order to force Yule to use Transmission Control Protocol (TCP) wrappers.

--with-port=PORT

www.syngress.com

278 Chapter 7 • Samhain

You can specify the port that the Yule server listens on with this configuration

option. By default,Yule listens on port 49777.Although Yule will always drop root

privileges, it will do so only after this port is bound to, so that you can specify a

privileged port (privileged ports are ports less than 1024). If you use this option, you

must be consistent and use it on all of your Samhain agents so that they know which

port the Yule server is listening on.

In this case, you will establish a basic Yule server on a FreeBSD system and use

Postgresql as storage for all of the log data.To use the database server, you must

enable XML-formatted log messages.Also, you have to use the --with-database con-

figuration option. Configure the Yule server with the following configuration

options:

yule# ./con gure --enable-network=server --with-database=postgresql --

enable-xml-log

NOTE

If you do not want to use a database server with Yule, do not use the —
enable-xml-log or the —with-database configuration options. Instead,
run configure as follows: yule# ./configure —enable-network=server

The configure will run through a series of tests and configure the source for a

Yule build, and eventually print out the configuration settings that were established:

samhain has been con gured as follows:

System binaries: /usr/local/sbin

Con guration le: /etc/yulerc

Manual pages: /usr/local/man

Data: /var/lib/yule

PID le: /var/run/yule.pid

Log le: /var/log/yule/yule_log

Base key: 816971544,813154367

Selected rc le: yulerc

Note how the configuration file is /etc/yulerc and that the other configuration

options all make sense for a Yule build and installation, as opposed to the Samhain

agent. Save the base key used to build Yule, because you will need it when building

agents.This key should be the same for all agents so that the Yule server can verify

the authenticity of the agent’s log messages.

www.syngress.com

Samhain • Chapter 7 279

Building Yule
It is now necessary to build the Yule server executable and relevant utilities (e.g.,

yulectl). With modern hardware, the build process should take less than a minute:

yule# make

Next, install Yule:

yule# make install

This will install all of the binaries relevant to the Yule server, man pages, default

configuration file, and all of the needed paths.To have the Yule server start upon

boot, install the init scripts relevant for the platform you are running:

yule# make install-boot

./samhain-install.sh --destdir= --express --verbose install-boot

FreeBSD system detected

./samhain-install.sh --install-sh -m 700 init/samhain.startFreeBSD

/usr/local/etc/rc.d/yule

mv /usr/local/etc/rc.d/yule /usr/local/etc/rc.d/yule.sh && chmod 755

/usr/local/etc/rc.d/yule.sh

installing init scripts completed

Yule is now installed and will start upon boot.The default configuration file is

installed in /etc/yulerc, the database file(s) will be kept in /var/lib/yule, and all logs

related to the Yule server will be in the /var/log/yule/ directory.

Configuring Yule
The Yule configuration file is relatively simple compared to a typical Samhain agent

configuration file.The format for a Yule configuration file has the following main

sections:

■ [Log]

■ [Database]

■ [External]

■ [Misc]

■ [Clients]

www.syngress.com

280 Chapter 7 • Samhain

The following section establishes a reasonable starting point for your Yule server

configuration.The file is located in /etc/yulerc. Open this file (as root) with vi or

your preferred editor:

yule# vi /etc/yulerc

Put the severity thresholds for the various logging outlets in the [Log] section.

This will have a direct impact on the amount of data that is sent to your database

server.The first time you deploy Samhain in your test environment, be mindful of

the effects that certain settings will have on your database server. It is always a good

idea to log to syslog. Since this is a dedicated Yule server, the console can be used;

however, remember that if something happens, you may have to start dodging con-

sole messages while performing administrative tasks, which can be annoying. Locate

the [Log] section of your configuration file and use the following settings:

[Log]

MailSeverity=none

Console

##

PrintSeverity=info

Log le

##

LogSeverity=none

Syslog

##

SyslogSeverity=info

External script or program

##

ExternalSeverity = none

Logging to a database

##

DatabaseSeverity=info

www.syngress.com

Samhain • Chapter 7 281

NOTE

If you are not using Postgresql to store your logs, you should set the
DatabaseSeverity setting to none.

Next, you will configure Yule to use your Postgresql database server.This will be

set up so that it uses the defaults you created (specifically, the database named

“samhain” as the “samhain” pgsql user on the local server):

NOTE

If you are not using Postgresql to store your logs, you should leave the
default values established for this section, which is disabled.

[Database]

##

--- Logging to a relational database

##

Database name

#

SetDBName = samhain

Database table

#

SetDBTable = log

Database user

#

SetDBUser = samhain

Database password

#

SetDBPassword = (default: none)

For the external section, you can safely leave the defaults, which means not

using any external logging outlets. If you want to set up additional logging outlets,

www.syngress.com

282 Chapter 7 • Samhain

establish a base configuration, get it to work according to your requirements, and then

go back and add external logging.This reduces the number of variables involved and

allows you to easily build upon a working configuration one step at a time.

The next section is the miscellaneous section where you can set a number of

things related to the runtime and behavior of the Yule server.The important setting

is the daemon setting, which is set to yes so that Yule can start in the background.

The SetClientFromAccpet setting specifies whether or not Yule should use the address

provided by the client or from the socket communications layer. Locate the [Misc]

section and configure it as follows:

[Misc]

Daemon=yes

Interval between time stamp messages

SetLoopTime = 600

SetClientTimeLimit = 86400

SetClientFromAccept = False

SeverityLookup = crit

SetConsole = /dev/console

UseSeparateLogs = False

#SetUDPActive = False

#MessageQueueActive = False

SetReverseLookup = False

SetUseSocket = False

SetSocketAllowUid = 0

--- E-Mail ---

SetMailTime = 86400

Maximum number of mails to queue

SetMailNum = 10

SetMailAddress=root@localhost

SetMailRelay = NULL

MailSubject = NULL

www.syngress.com

Samhain • Chapter 7 283

--- end E-Mail ---

SamhainPath=/usr/local/sbin/yule

SetTimeServer = (default: compiled-in)

TrustedUser = (no default; this adds to the compiled-in list)

HideSetup = False

SyslogFacility = LOG_AUTHPRIV

MACType = HMAC-TIGER

The e-mail settings are left disabled. Once you have verified that the system is

working, attempt to establish some e-mail notifications.Again, this is to keep things

simple and establish the functionality of the server one part at a time.

Save this configuration file.The clients have not been configured yet; it will be

done after verifying that the configuration is valid. On FreeBSD, start the Yule server

with the following command:

yule# /usr/local/etc/rc.d/yule.sh start

<log sev="INFO" tstamp="2005-04-24T12:20:00-0600" msg="/usr/local/sbin/yule

has checksum: 15EA067554C512429052DD8E641318B5BE06C267D629E42F"

subroutine="sh_unix_self_hash" />

If there are any errors in the configuration file, they will be printed as error

messages to the console, along with their line numbers. Configuration errors some-

times occur if you mistype a configuration setting, or if an option is enabled that was

not included as part of the configuration process. If there are no errors, you should

see something similar to what is listed in the preceding command snippet.To verify

that Yule is running, do the following on FreeBSD:

yule# ps -A | grep yule

20630 ?? S 0:00.05 /usr/local/sbin/yule -D

You should see Yule start with the daemon option (-D). Now you need to build

and configure clients. Stop the Yule server and verify that it is stopped with the fol-

lowing commands:

yule# /usr/local/etc/rc.d/yule.sh stop

yule

yule# ps -A | grep yule

yule#

www.syngress.com

284 Chapter 7 • Samhain

Building Network-Aware Samhain Agents
Building Samhain agents that talk to a Yule server requires special configuration

options, and also requires you to compile in the Internet Protocol (IP) address (or

hostname) of the Yule server. If you plan on storing the configuration file and base-

line database file on the Yule server, you have to use additional configuration options

to tell the build system. For Yule to verify log data, the base key built into the Yule

server must be the same one that is built into the Samhain agent.You will use a con-

figuration option to set the base key that will be embedded into the agent; other-

wise, the configuration script will generate a random key that will not work with

your Yule server.

This section builds agents similar to the ones in the stand-alone section, except

that now they are built to talk to the newly established Yule server.The agent will

use a similar configuration to monitor the file system mount points, will be capable

of performing SUID/SGID audits, and will monitor the integrity of the kernel.

The first step is to establish a build environment.You can use the same source tree

as you used to build the Yule server for FreeBSD agents (with different configuration

options), but you have to use a different source tree for other operating systems.

Assuming that you have the source code downloaded and verified on a host that

satisfies the build requirements, unpack the source:

agent# cd /usr/local/src

agent# tar xvfz samhain-2.0.5b.tar.gz

Enter the source directory and configure the source. Use the same options for

modules as were used before.To build a network-aware Samhain agent, use the

--enable-network=client configuration option. In addition, use configuration option

--with-logserver to specify the hostname or IP address of the Yule log server. Use the

--with-config-file option to tell the agent to request the configuration file from the

Yule server. Finally, use the --with-data-file option to tell the agent to request the

database file from the Yule server. Configure the source with the following

command:

agent# cd samhain-2.0.5b

agent# ./con gure --enable-network=client --enable-mounts-check --enable-

suidcheck --with-kcheck --with-logserver=10.10.0.5 –-enable-xml-log --with-

con g- le=REQ_FROM_SERVER/etc/samhainrc --with-data-

 le=REQ_FROM_SERVER/var/lib/samhain/samhain_ le --enable-

base=816971544,813154367

For the --with-logserver argument, you must specify the IP address of your Yule

server. Likewise, the base key specified should match the key printed at the end of

www.syngress.com

Samhain • Chapter 7 285

your Yule configuration.The path at the end of the --with-data-file and --with-config-

file arguments is the path to these files on the monitored host.Although you will be

storing them on the Yule server, they are still needed during the initialization pro-

cess.Thereafter, the database and configuration files are stored on the Yule server and

downloaded for checking, when necessary. When completed, the configuration pro-

cess will configure the Samhain source for a network-aware agent and produce

output that looks something like this:

samhain has been con gured as follows:

System binaries: /usr/local/sbin

Con guration le: REQ_FROM_SERVER/etc/samhainrc

Manual pages: /usr/local/man

Data: /var/lib/samhain

PID le: /var/run/samhain.pid

Log le: /var/log/samhain_log

Base key: 816971544,813154367

Selected rc le: samhainrc.freebsd

Make sure that the base key is the same key generated by the configuration of

the Yule source code.These keys must match for log message verification. Make sure

you keep this key in a safe place.

Next, build the agent:

agent# make

Next, install the Samhain agent:

agent# make install

mkdir /var/lib

mkdir /var/lib/samhain

./samhain-install.sh --destdir= --express --verbose install-data

cp samhainrc.freebsd samhainrc

cp samhainrc samhainrc.pre

mv -f samhainrc.pre samhainrc.install

./samhain-install.sh --install-sh -m 600 samhainrc.install

/etc/samhainrc

checking whether paths are trustworthy

con guration le /etc/samhainrc ... OK

state directory /var/run ... OK

state directory /var/log ... OK

data directory /var/lib/samhain ... OK

www.syngress.com

286 Chapter 7 • Samhain

You can use 'samhain-install.sh uninstall' for uninstalling

i.e. you might consider saving that script for future use

Use 'make install-boot' if you want samhain to start on system boot

Alternatively, if you have packaged Samhain using one of the package-make tar-

gets, install the package accordingly. If you are installing from source, install the init

scripts with the following command:

agent# make install-boot

./samhain-install.sh --destdir= --express --verbose install-boot

FreeBSD system detected

./samhain-install.sh --install-sh -m 700 init/samhain.startFreeBSD

/usr/local/etc/rc.d/samhain

mv /usr/local/etc/rc.d/samhain /usr/local/etc/rc.d/samhain.sh && chmod

755 /usr/local/etc/rc.d/samhain.sh

installing init scripts completed

Pairing Agents with the Yule Server
Now that you have built a network-aware Samhain agent, you need to establish trust

between that Samhain agent and the Yule server.To accomplish this, embed a shared

key (password) into the agent executable, and then register that key with the Yule

server.The yule executable is used to generate new passwords, and then a utility

named samhain_setpwd embeds that password into the Samhain agent executable.

Finally, the Yule configuration file is updated with a string that contains the gener-

ated password so that it can be used to authenticate communications with that par-

ticular agent.This process must be done for every host communicating with the Yule

server.

On the Yule server, generate a random password:

yule# /usr/local/sbin/yule -G

9819459AC26B3AD3

Your password should be different. Next, generate a configuration file entry for

this agent, using the generated password as input (again, your output should vary):

yule# /usr/local/sbin/yule -P 9819459AC26B3AD3

Client=HOSTNAME@6463C338BED5B77B@45D32B98039A9A50B8817DB7BF828CCE70C5EBE4679

6C00967BED3E9D0A017064439EB201EDE39D0BA6D3F94C4AEFD7D53C850FE3DFFFCD67CA3F65

4BC1B82C3DB5085432F188F8AC53EC0E788B423A50B77744D559BFE5DE63DAD031A5CA9C98F2

6D733060B25B805103C7DBB93C3832DF4FFA808B2C875EB5077DF31871854

www.syngress.com

Samhain • Chapter 7 287

This output must be placed into the configuration file with HOSTNAME

replaced by the hostname for this agent.You can add this to the configuration file

directly, or you can generate the password, replace the hostname, and add this data to

the configuration file automatically with the following command:

yule# /usr/local/sbin/yule -P 9819459AC26B3AD3 | sed

s%HOSTNAME%host.example.com% >> /etc/yulerc

You have to replace example.com with a hostname or IP address for the agent you

are configuring. Verify that the correct information was added to the yulerc file:

yule# tail -1 /etc/yulerc

Client=host.example.com@6463C338BED5B77B@45D32B98039A9A50B8817DB7BF828CCE70C

5EBE46796C00967BED3E9D0A017064439EB201EDE39D0BA6D3F94C4AEFD7D53C850FE3DFFFCD

67CA3F654BC1B82C3DB5085432F188F8AC53EC0E788B423A50B77744D559BFE5DE63DAD031A5

CA9C98F26D733060B25B805103C7DBB93C3832DF4FFA808B2C875EB5077DF31871854

Now, you need to update the Samhain agent executable. On the host where you

just installed the Samhain agent, navigate to the Samhain source code; the

samhain_setpwd executable should be in the root of the source tree.This executable

takes a “samhain” executable and a password as input and then outputs that same

executable with the password replaced. By default, the password is arbitrary.The pass-

word must be generated in the preceding Yule server, as shown previously. Reset the

password with the following commands:

agent# cd /usr/local/src/samhain-2.0.5b

agent# ./samhain_setpwd /usr/local/sbin/samhain new 9819459AC26B3AD3

INFO old password found

INFO replaced: f7c312aaaa12c3f7 by: 9819459ac26b3ad3

INFO nished

This command leaves /usr/local/sbin/samhain unmodified and creates

/usr/local/sbin/samhain.new.Your output will vary with respect to the password, but the

results should be similar. Now, replace the old samhain executable with the new one:

agent# mv /usr/local/sbin/samhain.new /usr/local/sbin/samhain

Configuring the Agent
The final step in establishing an agent that can successfully trust and communicate

with the Yule server is to make changes to the configuration file. Since the agent you

built is basically the same as the one you built in the beginning of this chapter, you

need only to make slight modifications to the configuration file before creating

the baseline database. Specifically, you must tell it to redirect log messages to the

Yule server.

www.syngress.com

288 Chapter 7 • Samhain

Copy the configuration file that was established on the agent host in the begin-

ning of this chapter, and edit it using vi or your preferred editor:

agent# vi /etc/samhainrc

For simplicity, disable the e-mail settings established in this configuration file.You

will make Yule handle all of the e-mail notifications, which will make administration

much simpler. Make sure the e-mail configurations are commented out as follows:

SetMailTime = 30

Maximum number of mails to queue

#

#SetMailNum = 30

Recipient (max. 8)

#

#SetMailAddress=admin@example.com

Mail relay (IP address)

#

#SetMailRelay = mail.example.com

Custom subject format

#

MailSubject = NULL

Next, locate the [Log] section of the configuration file and make sure the mail

severity threshold is set to none (to disable it); the export severity will send all alerts

of severity errors and greater to the Yule log server.

MailSeverity=none

Remote server (yule)

##

ExportSeverity=err

Save the configuration file after making these changes.

Creating an Agent Baseline
Now that the agent is configured to successfully communicate with the Yule server,

you have to establish a baseline database for this host.The result will be a configuration

www.syngress.com

Samhain • Chapter 7 289

file and database that will be stored on the Yule server. If your Yule server is not run-

ning, start it now with the following command (FreeBSD):

yule# /usr/local/etc/rc.d/yule.sh start

<log sev="INFO" tstamp="2005-04-24T13:50:49-0600" msg="/usr/local/sbin/yule

has checksum: 15EA067554C512429052DD8E641318B5BE06C267D629E42F"

subroutine="sh_unix_self_hash" />

If Yule is already running, make sure that it has reloaded its configuration since

you lasted updated with the client password information. On FreeBSD, do this with

the following command:

yule# /usr/local/etc/rc.d/yule reload

On the agent host, run Samhain in the foreground in init mode to create the

baseline database:

agent# /usr/local/sbin/samhain -t init -p warn

This establishes the baseline database.To keep these on the server, you must copy

them. Use the secure copy command to copy both the local Samhain configuration

file and the baseline database to the Yule server. By default, the Yule server stores the

configuration files and database files in /var/lib/yule with the fully qualified domain

name or IP address as part of the file.The database names are in the:

file.<hostname>form and the configuration files are in the rc.<hostname> form.

Assuming your Yule server is 10.0.0.5 and the hostname is foo, copy the files to the

Yule server with the following command:

agent# scp /var/lib/samhain/samhain_ le admin@10.0.0.5:/var/lib/yule/ le.foo

agent# scp /etc/samhainrc admin@10.0.0.5:/var/lib/yule/rc.foo

Subsequent scans will download both the configuration file and the database

from the Yule server and run checks.This can be verified by doing a scan by hand:

agent# /usr/local/sbin/samhain -t check -p info --foreground

INFO : [2005-04-25T14:58:19+0000] msg=<Session key negotiated>

INFO : [2005-04-25T14:58:20+0000] msg=<File download completed>

INFO : [2005-04-25T14:58:20+0000] msg=<Downloading database le>

INFO : [2005-04-25T14:58:21+0000] msg=<File download completed>

...

You can now safely start the Samhain agent to run as a daemon using the

installed init scripts. On FreeBSD this command is:

agent# /usr/local/etc/rc.d/samhain.sh start

www.syngress.com

290 Chapter 7 • Samhain

Dealing with Detected Changes
Eventually, you will have to deal with the fact that your monitored systems are get-

ting out of sync with your baseline databases.There are two options for updating

your Samhain agent databases. First, you can login to the monitored host and run

Samhain manually with the update option.The second option is to use the Beltane

Web-based interface (explored in the next section).

To update the database from the agent host, login to the host and disable the

agent so that there is no chance of concurrent access to the Yule server. Do this by

sending a SIGUSR2 signal. For example, on FreeBSD, do the following:

agent# ps -A | grep samhain

21423 ?? S 0:00.10 /usr/local/sbin/samhain –D

agent# kill -USR2 21423

The Process ID (PID) you encounter will likely be different than what is shown

in the previous example. Next, on the Yule server, use SCP to transfer this host’s

Samhain database file to the agent host.Agent database files are kept (by default) in

/var/lib/yule/ and are named in the file.name format where name is the hostname

where the agent is running. For example, to update the database for the host foo

logging in as the user “admin” (assuming the correct privileges):

yule# cd /var/lib/yule/

yule# scp le.foo admin@foo:/var/lib/samhain/samhain_ le

Then, on the agent host, run Samhain in update mode in the foreground to

update the /var/log/samhain/samhain_file database:

agent# samhain -t update --foreground --interactive

This will produce a series of questions and ask you to update the database for

each one. When finished, bring the database file back down to the Yule server with

the following command:

yule# scp admin@foo:/var/lib/samhain/samhain_ le le.foo

Finally, wake up the Samhain agent so that it can continue monitoring. Do that

by sending another SIGUSR2 signal to the same agent process:

agent# kill -USR2 21423

The database file for this agent is now updated.To manage large numbers of

hosts, use Beltane to update databases and monitor the status of your agents.

www.syngress.com

Samhain • Chapter 7 291

Yule Server Status
Yule exports an HTML status page by default, which is located in the same location

as the yule_log file (/var/log/yule/yule.html by default,). If you have a Web server

enabled on this host, you can view the basic status of the agents being managed by

the Yule server (see Figure 7.2).

Figure 7.2 Viewing the Basic Status of the Agents Managed by the Yule

Server

To gain more control over managed agents, you will need to use the Beltane

Web-based console interface as described in the next section.

Using Beltane: The Web-Based Console
Beltane allows you to administer Samhain agents and update their databases through

a Web browser interface. It is based on PHP and requires that you install both PHP

and Apache on your Yule server.The true benefits of Beltane can be realized when

Samhain is deployed in a client/server setup, and making use of a relational database

such as Postgresql.This section covers the basic setup and use of Beltane to make the

administration of Samhain more enjoyable.

www.syngress.com

292 Chapter 7 • Samhain

NOTE

This section covers using Beltane version1, not v.2, which requires pay-
ment to Samhain Labs. Go to http://www.la-samhna.de/beltane to see the list
of Beltane version 2 features. If you are investing a great deal in a
Samhain deployment, you will probably want to get Beltane v.2.

Beltane Requirements
To run Beltane, you have to install both Apache and PHP. On FreeBSD, if you have

ports installed, you should be able to do this with the following commands:

yule# cd /usr/ports/databases/postgres7

yule# make install

yule# cd /usr/ports/textproc/expat2

yule# make install

yule# cd /usr/ports/www/apache2

yule# make install

yule# cd /usr/ports/lang/php4

yule# make install --enable-pgsql

yule# cd /usr/ports/textproc/php4-xml

yule# make install

WARNING

Using Beltane requires the installation of Apache and PHP. Installing
these on your Yule server can be a security risk. Securing Apache and
attempting to secure a PHP installation (if that is even possible) is
beyond the scope of this book. If you do deploy Beltane, be sure to con-
sider the risks involved and establish a plan for how you will protect the
data stored on the Yule server. A common tactic is to configure Apache
to listen only on localhost and use SSH to tunnel your Web session to
Beltane. This allows only local shell users the ability to access Beltane
remotely.

www.syngress.com

Samhain • Chapter 7 293

Before continuing, verify that you have a working Apache configuration that

allows you to execute the PHP parser for files that end in .php.You can usually do

this by creating a test PHP file that looks like the following:

<html>

<head>

<title> PHP Test Script </title>

</head>

<body>

<?php

phpinfo();

?>

</body>

</html>

Basically, you want to make sure that the PHP library is being loaded by Apache,

and that you have a type handler for PHP scripts defined in your Apache configura-

tion file (httpd.conf). Once you can successfully execute PHP scripts, you are ready to

install Beltane.Additionally, the Beltane source provides help in various formats

(including HTML) in the beltane_help directory of the source code. If this fails, you

should revisit your Apache configuration and your PHP installation.Additionally,

check your Apache error log for hints as to why you are not seeing the PHP script

execute correctly.

Preparing to Install Beltane
The installation of Beltane is problematic with respect to permissions. Every system

installs Apache differently, with different locations on the file system, and with dif-

ferent file permissions. It is likely that you will run into problems getting Beltane to

work correctly the first time; this is usually due to file permissions in some way.The

following steps are not necessary, but may help you set up a Beltane/Yule server

configuration that works.These steps were performed on a FreeBSD system:

yule# mkdir /usr/local/www/data/beltane

yule# chown www /usr/local/www/data/beltane

www.syngress.com

294 Chapter 7 • Samhain

Building and Installing Beltane
After you have downloaded the source for Beltane and verified the PGP signature,

copy the source file to a logical place on your system (e.g., /usr/local/src). Next,

unpack the source tar.gz file:

yule# tar xvfz beltane-1.0.7.tar.gz

Enter the Beltane source directory and run configure.You must provide configu-

ration options that are dependent on your Apache and PHP installation. For

FreeBSD, if you have used the ports to install Apache and PHP, you must run con-

figure with the following options:

yule# ./con gure --enable-mod-php --with-php-dir=/usr/local/www/data/beltane

--with-php-extension=php --with-user=www --with-user-

home=/usr/local/www/data/beltane

This configures the Beltane source for your system and enables the PHP module

as opposed to the PHP Common Gateway Interface (CGI). It will install the Beltane

configuration file (.beltanerc) in /usr/local/www/beltane and run as the Apache user

(WWW). Since we are using the PHP module, this must be the user that Apache

runs as. If you are on Linux, your Apache user and home-dir location will probably be

different.At the end of the configuration, you will see a configuration summary that

looks something like the following:

beltane has been con gured as follows:

PHP les: /usr/local/www/data/beltane

System binaries: /usr/local/bin

Con guration le: /usr/local/www/data/beltane/.beltanerc

Log le: /var/log/beltane_update_log

Data: /var/lib/yule

PHP user: www

PHP group: www

Home directory: /usr/local/www/data/beltane

PHP le extension: php

PHP is module: yes

XOR value: 0

Next, build the Beltane system; this will take only a few seconds:

yule# make

gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-

omit-frame-pointer -o encode ./encode.c

encode 0 con g.h

www.syngress.com

Samhain • Chapter 7 295

./encode 0 beltane_update.c --> x_beltane_update.c

gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-

omit-frame-pointer -c x_beltane_update.c

gcc -O -o beltane_update beltane_update.o

./encode 0 beltane_cp.c --> x_beltane_cp.c

gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-

omit-frame-pointer -c x_beltane_cp.c

gcc -O -o beltane_cp beltane_cp.o

Next, install Beltane:

yule# make install

This installs the utilities needed by Beltane, as well as the PHP code, images, and

some configuration files. Now, you need to adjust some file permissions so that the

Beltane console will be able to read databases, logs, and other related files.

yule# chgrp www /var/log/yule/yule.html

Configuring Beltane
The first thing to do once Beltane is installed is reset the Administrator password.

Using a Web browser, type in the IP address or hostname for your Yule server and

the path to Beltane. If you configured Beltane with the aforementioned options on

FreeBSD, it would be in the format:

http://<yule_hostname>/beltane

You should see a login screen that looks something like the one shown in

Figure 7.3.

www.syngress.com

296 Chapter 7 • Samhain

Figure 7.3 Beltane’s Login Screen

Next, log in as user rainer with the password wichmann.You will be presented

with a console interface that looks similar to one shown in Figure 7.4.

Figure 7.4 Beltane’s Console Interface

You will now be asked to set your password. In the upper right-hand corner of

the browser is a button named Configure (see Figure 7.5). Click on that to be pre-

sented with the configuration screen.The bottom right frame of the browser should

www.syngress.com

Samhain • Chapter 7 297

reveal many fields for configuring Beltane, including the admin username and pass-

word. Enter your admin user name and choose a password. While this configuration

settings pane is open, make sure that the Postgres radio button is set to TRUE and

that the Yule HTML file path is /var/log/yule/yule.html. When finished, click the OK

button at the bottom of the frame.

Figure 7.5 Setting a Password on Beltane

Next, add your Samhain client to the Beltane database. Click on the Add link in

the Clients pane.This will produce a dialog similar to the one shown in Figure 7.6.

Figure 7.6 Adding a Samhain Client to the Beltane Database

298 Chapter 7 • Samhain

www.syngress.com

This will prompt you for some generic fields such as the hostname, the oper-

ating system, and the init date.The installation name is the name of the Samhain

executable on the remote host.The installation prefix is the path to the Samhain

executable. Fill those in according to the settings for your Samhain host and click

OK to save.

At any time, you can view the latest status of the Yule server by clicking on the

Server Status link in the upper-left frame (see Figure 7.7).This pull the data out of

the yule.html file generated by the Yule daemon.

Figure 7.7 Viewing the Latest Status of the Yule Server

Using Beltane
Beltane is really useful for managing a number of clients, and for updating their

databases when changes are detected.To see how this process works, you will create

a change by modifying the time stamp of an executable, note that Beltane reports

this, and then update that host’s database.

On the agent host, open the /bin/ls file to modify the ctime value:

agent# touch /bin/ls

Next, run Samhain in the foreground to download the database and check the

current system. Normally, the agent would be running in the background and detect

this on its normal schedule; however, we want to see the results immediately:

agent# /usr/local/sbin/samhain -t check --foreground

www.syngress.com

Samhain • Chapter 7 299

You should see the last scan trail, including a critical alert shown in red for the

time-stamp modification just created (see Figure 7.8).

Figure 7.8 Viewing Beltane’s Last Scan Trail

To update the database, select the checkbox to the left of the critical record (in

this case, record 1946) and click Update.After the database is updated, you will see

the message shown in Figure 7.9.

Figure 7.9 Updating the Beltane Database

www.syngress.com

300 Chapter 7 • Samhain

Next, to confirm the noncritical alerts regarding the scan, select them and click

Confirm.You should see an acknowledgment. Click Refresh and the console will

return to its normal state (see Figure 7.10).

Figure 7.10 Confirming Noncritical Alerts from a Beltane Scan

Using Beltane can ease the administrative burden associated with monitoring the

changes on a large number of hosts.Although it requires installing a Web server, a

database, and PHP, these may be worthwhile risks considering the benefits associated

with being able to quickly acknowledge changes on your host through a Web

browser.

www.syngress.com

Samhain • Chapter 7 301

Summary
Samhain provides a very efficient way to monitor the integrity of your UNIX and

UNIX- like host environments. It can be installed as a stand-alone system such that

each host has a self-sufficient installation that requires its own administration. In

cases where there are only a few hosts, it is recommended that you take this

approach.Alternatively, for monitoring a large number of hosts, you can deploy

Samhain to be centrally managed using the log server Yule and a Web-based console

named Beltane.

Samhain can monitor file attributes as well as user login and logout events, file

system mount options, SUID and SGID executables, sensitive files in user home

directories, and various attributes surrounding the integrity of the kernel. Samhain

can monitor these elements of a host environment and report on changes to a

number of logging outlets including files, syslog, external applications, the console,

and relational databases. When configured correctly, Samhain can be an effective

HIMS. However, its configuration can be problematic due to the design of the

client/server architecture it implements and the security features that are available as

an administrator.Throughout your planning and deployment of Samhain, be mindful

of the ongoing efforts that will be needed to administer and maintain the system,

and how receptive it will be to common administrative changes.

Solutions Fast Track

Features and Constraints

� Samhain provides solid support for monitoring various elements of the host

environment, including kernel integrity, login/logout events, and file system

mount options.

� Samhain is UNIX-based and supports many disparate UNIX-based systems

such as AIX and HP-UX. Consequently, Samhain is not designed to

monitor the integrity of Windows systems.

� Samhain has many attractive security features as part of its design, including

the ability to hide itself inside an image file, hide itself from the process

table, and GnuPG signed configuration and database files.

www.syngress.com

302 Chapter 7 • Samhain

Deploying Samhain Stand-Alone

� Samhain can be deployed in a stand-alone fashion meaning that all

configurations, scan data, and logs are kept on the monitored host as

opposed to being managed centrally by a server or a console.

� Stand-alone deployments of Samhain are much easier to install and

administer.

� Stand-alone deployments of Samhain do not scale. If you are monitoring a

large number of hosts, you must deploy Samhain using Yule.

Deploying Samhain with Centralized Management

� Yule is a log server that provides a secure trusted system for managing logs,

scan configuration files, and scan databases for all Samhain agents.

� Samhain agents must be registered with the Yule server by embedding a

shared password into the Samhain agent and then keeping that shared key

in the configuration file for the Yule server.

� The Yule server requires strict security and pairing between the Samhain

agent and the server, which can be problematic for complex deployments

or changes in your deployment scenario.

Using Beltane:The Web-Based Console

� Beltane v.1 is an open source PHP Web-based console for managing

Samhain agents, which allows you to perform updates to your agent

databases.

� Beltane requires the installation of Apache and PHP on your Yule server,

which may present a problem for the security of your Yule server system.

www.syngress.com

Samhain • Chapter 7 303

Q: I receive the error,“Untrusted Path” when running Samhain. What does this

mean?

A: This will occur if your Yule or Samhain paths are group writable and the

group contains members that are not considered “trusted.” By default, only

the effective user and the root are trusted users.To specify additional trusted

users, use the configuration option —with-trusted (e.g., trust users with UID

501 and UID 502, using configuration argument —with-trusted=501,502).

Q: Can Samhain be used to monitor prelinked files?

A: Yes, there is a specific policy for monitoring files that are prelinked.This

policy (by default), ignores modifications to the inode, change time, and file

size.To verify the contents of the file, the verify option to the prelink applica-

tion is used to undo and perform a cryptographic checksum on the file

contents.

Q: What are my options for mass deployment of Samhain agents?

A: The source for Samhain has a system for mass deployment that uses a shell

script and Secure Shell (SSH).This deployment system is capable of installing

and automatically initializing (or updating) the database. Information on the

deployment system can be found in the Samhain manual at www.la-

samhna.com/samhain/manual/ under the “Deployment” section.

Q: Can I install and run Samhain on the Yule server?

A: Yes, and it is a good idea to do so. Monitoring the integrity of your Yule

server is critical. If the Yule server is compromised, your entire deployment is

meaningless.This Samhain agent is handled just like any other Samhain host.

www.syngress.com

304 Chapter 7 • Samhain

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: Can Samhain be integrated with hybrid IDS systems or other integrity mon-

itoring solutions?

A: Yes. Samhain can be used with host monitoring system Nagios

(http://www.nagios.org) and with Prelude (http://www.prelude-ids.org), a hybrid

intrusion detection framework that can serve as a centralized reporting sta-

tion for host and network security tools.

www.syngress.com

Samhain • Chapter 7 305

Log Monitoring
and Response

Solutions in this chapter:

■ Log Monitoring

■ Incident Response

Chapter 8

307

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Introduction
At this point, you have successfully deployed either Osiris or Samhain and are now

generating log data and alerts that detail changes to your host environments.The

next step is monitoring and responding to events. Many security administrators that

install Osiris and Samhain do not take advantage of the information provided (i.e.,

do not monitor the logs, configure a solution to monitor the logs, or establish a plan

for incident response).At some point, changes will happen that initiate some kind of

response. Even though hosts are secured, eventually they will be subject to attacks or

some type of misuse.To be prepared, you must first establish a means of detecting

the important change and then have a plan for responding to that change.This

chapter discusses practical ways to establish log monitoring for Osiris and Samhain,

and explores issues related to incident response.

Log Monitoring
Logs are essential. For your host integrity monitoring system (HIMS) deployment to

be useful, you must configure, maintain, and analyze the logs that it produces. Both

Osiris and Samhain have the ability to send notifications regarding detected changes

to various outlets such as applications, databases, and e-mail addresses. However, the

most effective way to analyze the information is to use an additional application to

analyze and respond to logs.

Osiris and Samhain were not designed to be log analyzers, even though each can

be configured to single out and report on certain types of change.These features

were added for convenience; it makes sense to have Osiris and Samhain report on all

types of changes, use a specific application to monitor changes, and use the appro-

priate notification vectors for changes concerning your enterprise.This allows you to

configure Osiris and Samhain to log and archive everything, and to use a config-

urable log-monitoring engine with more capabilities than the ones integrated into

Osiris and Samhain.

Another reason to use a separate log-monitoring system is for the correlation of

logging data. Osiris and Samhain are still in their infancy with respect to host corre-

lation (i.e., they focus on each host as a separate entity and cannot perform any

high-level analysis on the overall changes that are occurring in your host landscapes).

Log-monitoring systems that can report and provide collective information and

statistics are useful for troubleshooting, optimizing performance, and detecting weak

areas in networks.

Having a separate log-monitoring engine is convenient because it can be used to

monitor and correlate logs for a number of applications, not just your HIMS. Several

www.syngress.com

308 Chapter 8 • Log Monitoring and Response

attacks and anomalies can be prevented if the logs are read and analyzed regularly.

With a separate log-monitoring system, you can correlate log data for all of the hosts

you are monitoring and the applications and services (e.g., Web, mail, Secure Shell

[SSH], Domain Name System [DNS], and so forth), intrusion detection, and net-

work security measures such as NIDS and firewalls. Collecting and analyzing data

from all of these areas helps highlight and confirm where you should focus your

attention as a security administrator.The following section covers the installation and

deployment of Swatch (Simple WATCHer) to monitor logs and alerts generated by

Osiris and Samhain. For more information about tools and techniques associated

with log analysis see www.loganalysis.org.

Log Monitoring Using Swatch
Swatch is an open source active log-monitoring application, which is written in Perl.

The official site for Swatch source code, mailing lists, and documentation is

http://swatch.sourceforge.net. Swatch can monitor and respond to log events in real

time and can be run as a UNIX daemon or on the command line. Swatch has many

different notification methods that can be used for specific events; essentially, you

provide regular expressions for it to match against log data and a list of notification

methods.This feature is useful because you can establish different notification

methods based on the severity of the event (e.g., you may want to be paged when

Osiris or Samhain produce log events about changes to system executables, whereas

changes involving user home directories may only generate e-mail).There are many

open source log-monitoring tools and hybrid log-monitoring solutions available.The

reason Swatch is highlighted is because it is simple to install, configure, and use.

There are two distinct versions of Swatch.This section uses the most recent imple-

mentation, which is hosted at sourceforge.

Swatch is available only for UNIX and UNIX-like platforms, which works fine

for Samhain; however, if you are using Osiris and have already established your man-

agement console on Windows, there are a handful of log-monitoring and log-

parsing tools available for Windows listed in the “Library” section at

www.loganalysis.org.

www.syngress.com

Log Monitoring and Response • Chapter 8 309

Installing Swatch
The source code for Swatch can be downloaded from the SourceForge project site

at http://swatch.sourceforge.net. Unfortunately, there is no Message Digest 5 (MD5)

or Pretty Good Privacy (PGP) signature provided, therefore, it is not possible to

verify that you are working with the correct source.At the time of this writing,

Swatch is at Release 3.1.1 and the MD5 source is:

$ openssl md5 swatch-3.1.1.tar.gz

MD5(swatch-3.1.1.tar.gz)= fe38cc8d073e692a7426693837c3749d

NOTE

It is best to install Swatch on the host being used as your management
console. However, if you are uncomfortable because of the set up
required for the various notification methods (e.g., mail or paging), a
reasonable solution is to establish a dedicated log-monitoring system.
You can have all of the logs that are sent to syslog or the Event Viewer
directed to a dedicated log host using Osiris or Samhain.

First, verify that you have the proper dependencies for Swatch. Specifically, you

need Perl 5 and the following Perl modules:

■ Time::HiRes

■ Date::Calc

■ Date::Parse

■ Date::Format

■ File::Tail

Verify the version of Perl by doing:

$ perl --version

This is perl, v5.8.1-RC3 built for darwin-thread-multi-2level

(with 1 registered patch, see perl -V for more detail)

...

List and verify that you have the required modules with the following com-

mand:

$ perl -MCPAN -e autobundle

www.syngress.com

310 Chapter 8 • Log Monitoring and Response

Install any missing modules that use Comprehensive Perl Archive Network

(CPAN) by typing the following command:

cpan install <module_name>

Unpack the Swatch source file.Your filename may be different if a newer release

is available; all of the information in this section assumes Version 3.1.1:

$ tar xvfz swatch-3.1.1.tar.gz

Enter the created directory and read the README file looking for any impor-

tant information related to the specific release that you downloaded. Use Perl to

create the makefile:

$ cd swatch-3.1.1

$ perl Makefile.pl

Writing Makefile for swatch

Build Swatch by typing make:

$ make

cp lib/Swatch/Actions.pm blib/lib/Swatch/Actions.pm

AutoSplitting blib/lib/Swatch/Actions.pm (blib/lib/auto/Swatch/Actions)

cp lib/Swatch/Throttle.pm blib/lib/Swatch/Throttle.pm

cp swatch blib/script/swatch

/usr/bin/perl "-MExtUtils::MY" -e "MY->fixin(shift)" blib/script/swatch

Manifying blib/man1/swatch.1

Manifying blib/man3/Swatch::Throttle.3pm

Manifying blib/man3/Swatch::Actions.3pm

Next, test the build:

$ make test

PERL_DL_NONLAZY=1 /usr/bin/perl "-MExtUtils::Command::MM" "-e"

"test_harness(0, 'blib/lib', 'blib/arch')" t/*.t

t/01cpan_modules....ok

All tests successful.

Files=1, Tests=1, 0 wallclock secs (0.25 cusr + 0.04 csys = 0.29 CPU)

Finally, as root, install Swatch:

make install

Installing /Library/Perl/5.8.1/auto/swatch/Actions/autosplit.ix

Installing /Library/Perl/5.8.1/Swatch/Actions.pm

Installing /Library/Perl/5.8.1/Swatch/Throttle.pm

Installing /man/man1/swatch.1

www.syngress.com

Log Monitoring and Response • Chapter 8 311

Installing /man/man3/Swatch::Actions.3pm

Installing /man/man3/Swatch::Throttle.3pm

Installing /usr/bin/swatch

Writing ///Library/Perl/5.8.1/darwin-thread-multi-

2level/auto/swatch/.packlist

Appending installation info to ///System/Library/Perl/5.8.1/darwin-thread-

multi-2level/perllocal.pod

At this point, you should have the Swatch executable installed in /usr/bin/swatch

or /usr/local/bin/swatch.You may want to modify the default permissions so that all

users can read and execute the Swatch application. For example:

chmod a+rx /usr/bin/swatch

Configuring and Using Swatch
Although Swatch can be run on the command line, you should run it as daemon so

that it continually monitors log events generated by Osiris or Samhain. Swatch

works by monitoring what is appended to a log file, which is similar to the UNIX

tail command. When started, Swatch reads a configuration file that contains a list of

regular expressions to be matched against each log message, and an action to per-

form when a match occurs. Swatch can only monitor one log file at a time; if your

Osiris or Samhain logs are being sent to multiple files, you must run an instance of

Swatch for each file. By default, Osiris sends log messages to the main syslog file

(usually /var/log/messages), and Samhain sends them to /var/log/samhain_log. Ideally,

you want all of your events going to a single file specific to Osiris or Samhain.

We recommend that you establish a configuration file and add a few basic rules

to understand how Swatch works.To view the main page for Swatch, use the fol-

lowing command:

$ perldoc swatch

As you become comfortable with its features, add the rules for Osiris or

Samhain. It will not take long for you see how powerful this simple log-monitoring

tool is.

The Basics
Swatch is run when it is provided a file containing log data and a configuration file

that specifies all of the patterns and actions to perform when a match is found.

Swatch can read log data that is input in three ways:

www.syngress.com

312 Chapter 8 • Log Monitoring and Response

■ Read the file and wait for more input (tailing)

■ Read the file and exit

■ Read the output from a command

You should use the tail method for Osiris and Samhain. By default, Swatch auto-

matically uses this method on the syslog file; however, you should always specify the

file you want to monitor. For example:

$ swatch --tail-file=/var/log/messages

The next step is to establish a configuration file.This file should be stored some-

where reasonable, such as /etc/swatchrc.Then, run Swatch as follows:

$ swatch --tail-file=/var/log/messages --config-file=/etc/swatchrc --daemon

The daemon option causes Swatch to fork as a background process. In this case,

Swatch uses the /etc/swatchrc file to continue monitoring the syslog file.You must

specify whether Osiris or Samhain are logging to a different file instead of to

/var/log/messages. If your system has locked-down file permissions on syslog files, you

should run syslog with the required privileges.This should also be configured to start

monitoring upon boot.All that is left to do is to create the configuration file that

will match and report on changes that are important to you.

Swatch Configuration
The Swatch configuration file contains a list of rules, which can be specified on a

single line or on multiple lines.These rules have one of the following formats:

watchfor /regex/,[/regex/,...] action,[action,...]

ignore /regex/,[/regex/,...]

The watchfor rule performs a list of actions for every log entry that matches any

of the specified regular expressions. In all cases, the resultant action causes the

matching log entry to be used (e.g., e-mail causes the matching line to be sent in an

e-mail message.

The ignore rule causes Swatch to explicitly ignore every log entry that matches

the specified regular expressions.This is useful when you have additional rules

catching all remaining log messages or messages of a certain type; you want to

explicitly exclude certain log entries from those rules.

Swatch rules are best explained with examples.The following is a rule that

catches failed pseudo attempts, prints the error to the console in red, and sends e-

mail to an administrator:

watchfor /sudo.*incorrect password/

www.syngress.com

Log Monitoring and Response • Chapter 8 313

echo=red

mail=admin@example.com,subject=--[sudo: denied access]----

Suppose you want to receive mail about these failed pseudo attempts if they

occur after hours (e.g., between 5 P.M. and 7 A.M).The modified rule would be:

watchfor /sudo.*incorrect password/

echo=red

mail=admin@example.com,subject=--[sudo: denied access]----

when=1-7:17-7

The “when” option has the format day_of_week:hour_of_day. In this case, all days

between 5 P.M. and 7 A.M. are the only times when the actions are performed.The

complete list of supported options is as follows:

■ echo [mode] Print the log message to the console.The mode is used to

specify the type of text to print including highlighting, bolding, blinking,

and various colors.The following modes are valid: normal, bold, under-

score, blink, inverse, black, red, green, yellow, blue, magenta, cyan, white,

black_h, red_h, green_h, yellow_h, blue_h, magenta_h, cyan_h, and/or

white_h The _h modes are highlighted text; the default is normal.

■ bell[[N] Issue a system bell N number of times.

■ exec Execute the specified application.

■ mail Send the log message via e-mail.

■ pipe command[,keep_open] Pipe matching a log entry to a command.

If keep_open is specified, the pipe to the command remains open until

another pipe match occurs.

■ write [user:user:...] Send the matching log entry to a user(s) using the

“write” command.

■ throttle hours:minutes:seconds,[use=message|regex|<regex]>

Limit the number of times the actions will be performed in a specified

period of time.

■ threshold events:seconds,[repeat=no|yes] Limit the number of times

the actions will be performed based on how many times a match has

already occurred in a given time frame.

■ continue Continue to apply the other rules in the configuration after a

match.

www.syngress.com

314 Chapter 8 • Log Monitoring and Response

The following is an example of an e-mail regarding Osiris detecting a time-

stamp change on an executable:

To: brian@example.com

Subject: [osiris log: executables changed]

Date: Sun, 17 Apr 2005 15:34:13 -0600 (MDT)

From: brian@example.local (Brian Wotring)

Apr 17 15:34:12 localhost osirismd[22357]:

[211][local][cmp][/usr/bin/as][mtime][Fri Apr 15 21:12:56 2005][Sun Apr 17

15:34:05 2005]

For details on using any of the Swatch options, see the perldoc main page.

Swatch Rules for Osiris and Samhain
There is no perfect Swatch configuration file for Osiris and Samhain.The rules that

you specify in your Swatch configuration file will be based on your goals, your

existing notification infrastructure, and your available resources. It may be that

sending e-mail about critical alerts works best for you. Or, your organization may

have an alert database that you will have Swatch send critical alerts to. In any case,

what you consider critical and how you deal with those critical alerts is something

that you must decide as early as the planning phase of your HIMS deployment.This

section provides some useful Swatch configurations that will catch critical events.

Rules for both Osiris and Samhain are provided.These configurations work well as a

starting point for your own custom Swatch configurations.

Example Swatch Configuration for Osiris
The following is an example Swatch configuration file for Osiris, which captures the

most important Osiris log messages:

swatch configuration template for Osiris

monitors for the following changes:

email, bell, and red echo for changes to bin and libs.

watchfor /\[cmp\].*(bin|lib)/

echo=red

bell 1

mail=admin@example.com,subject=[osiris log: executables changed]

continue # for SUID/SGID changes.

www.syngress.com

Log Monitoring and Response • Chapter 8 315

yellow echo for attempts to login to console from unauthorized host.

logging code 15.

watchfor /\[15\]\[*\]/

echo=yellow

yellow echo for failed login attempts.

watchfor /\[102\]\[*\]/

echo=yellow

green echo for console logins.

watchfor /\[101\]\[*\]/

echo=green

green echo for scan started

watchfor /\[504\]\[*\]/

echo=green

red echo for scan failures.

watchfor /\[503\]\[*\]/

echo=red

mail=admin@example.com,subject=[osiris scan failure]

red echo and email for SUID/SGID related changes.

watchfor /\[perm\].*\[-r.*s/

echo=red

mail=admin@example.com,subject=[osiris SUID/SGID changes]

yellow echo and email for lost/invalid/missing session keys for agents.

watchfor /\[(603|604|605)\]/

echo=yellow

mail=admin@example.com,subject=[osiris agent rekey]

www.syngress.com

316 Chapter 8 • Log Monitoring and Response

white echo for all other osiris logs.

watchfor /osirismd/

echo=white

NOTE

You must customize this configuration to your environment. Upgrades to
many system executables or libraries could generate a great deal of mail.

Example Swatch Configuration for Samhain
Unlike Osiris, which only has informational, warning, and error messages, Samhain

has thresholds for alerts and a number of severity levels that can be assigned to cer-

tain types of log messages in the Samhain configurations.The following Swatch con-

figuration takes advantage of those severities.

swatch configuration template for Samhain

monitors for the following changes:

email, bell, and red echo for changes to bin and libs.

watchfor /\[ReadOnly\]/

echo=red

bell 1

mail=admin@example.com,subject=[samhain log: executables changed]

debug messages

watchfor /^DEBUG/

echo=blue

info messages

watchfor /^INFO/

echo=cyan

notice messages

www.syngress.com

Log Monitoring and Response • Chapter 8 317

watchfor /^NOTICE/

echo=magenta

Warning messages

watchfor /^WARN/

echo=yellow

timestamps

watchfor /^MARK/

echo=green

error conditions

watchfor /^ERR/

echo=red_h

critical alerts

watchfor /^CRIT/

echo=red

program startup/normal exits.

watchfor /^ALERT/

echo=green

all other messages.

watchfor /.*/

echo=white

Running Swatch
After establishing a config file, you can begin testing it by running it on the console.

One you have it to the point where you are comfortable, you can set up your system

to automatically daemonize the Swatch process on boot.To run Swatch on the con-

sole, do something like the following for Osiris:

www.syngress.com

318 Chapter 8 • Log Monitoring and Response

$ swatch --config-file=/etc/swatchrc.osiris --tail-file=/var/log/osiris.log

or, the following for Samhain:

swatch --config-file=/etc/swatchrc.samhain --tail-file=/var/log/samhain_log

To run Swatch as a daemon process, use the following argument:

--daemon

Incident Response
The majority of host integrity monitoring is planning and configuring software to be

able to successfully detect change. However, a critical final step to being successful in

establishing a HIMS is “response.”You have taken steps to lock down and secure your

networks and hosts, but eventually you will be attacked and will have to deal with

breaches in your security.You must plan for responding to alerts. It is not uncommon

for companies to establish complicated schemes for integrity monitoring (at the host

or network level) to detect attacks within seconds, only to fumble with procedure

because they do not know how to respond or who to direct the information to.

This section provides some fundamental information regarding incident response

in general, as well as how it applies to your HIMS deployment. Incident response is

not a simple topic; there are entire books written about it (see Appendix C).There is

no simple set of answers. How you choose to respond and the policy you define

regarding incident responses, will depend on the nature of your business and your

available security administration resources.This section sticks to the main points of

incident response, including the incident response cycle and where you can get more

information on the topic.The following books contain more information on inci-

dent response:

■ Incident Response by Ken van Wyk and Richard Forno A concise guide to

all of the ins and outs of incident response.Additional information is avail-

able at www.oreilly.com/catalog/incidentres/index.html.

■ Investigating Computer-Related Crime by Peter Stephenson A resource tai-

lored to the corporate security specialist who needs detailed information

on investigating attacks.This book provides thorough coverage of the tech-

nical and legal aspects of computer crime.

www.syngress.com

Log Monitoring and Response • Chapter 8 319

General Overview of Incident Response
How involved your incident response deployment is depends on your goals and an

analysis of risk. If you are a home user installing Osiris or Samhain on a couple of

systems, you do not need a large incident response policy. However, if you are a large

enterprise with thousands of monitored hosts, you need an official policy and an

entire coordinated response team that is ready to respond to incidents generated by

your HIMS and other security measures.

Incident response is not entirely an internal effort.There are a number of

external incident response teams that collect information, provide tips, and help

coordinate mitigation efforts for large-scale attacks.The most widely known external

incident response team is the Computer Emergency Response Team Coordination

Center (CERT/CC). CERT/CC was formed in 1988 (funded by the government)

after the Morris worm infected large portions of the Internet. CERT/CC releases

information about vulnerabilities, worms, viruses, and spyware.The information

released by CERT/CC can be very helpful for security administrators. For example,

consider that a new worm is making its way around the globe, infecting and com-

promising the security of the hosts it infects.Armed with information from an

external incident response team, you may be able to mitigate the damage by modi-

fying your HIMS configuration to look for known signs of infection, or by keeping

your eye out for HIMS notifications that seem related to the information provided

in the external alerts. More information about CERT/CC and the information it

provides can be obtained from the main Web site at www.cert.org.

Operating system vendors usually have regular security announcements regarding

patches, vulnerabilities, and known software exploits.As with CERT, this informa-

tion can be valuable when monitoring the alerts generated by your HIMS. Establish

a way to regularly receive this information so that your security administration staff

can incorporate it into the log analysis and incident response process.

If you are deploying a HIMS in a small to mid-size company or organization,

the rest of this chapter will be helpful. If you are a large organization with thousands

of monitored hosts, you will need to find a more in-depth discussion of incident

response.

The Incident Response Cycle
Developing an incident response cycle is a constantly improving process. Expect to

learn something from each incident, and use that knowledge to improve your

response procedures and fine-tune your response capabilities.There is no such thing

as perfect security; however, you can greatly improve the overall security of your

www.syngress.com

320 Chapter 8 • Log Monitoring and Response

hosts if you use your HIMS to detect incidents, you learn from those incidents, and

you use that information to harden your defenses against another attack.

In the same way that there are many software development methods, there are

many different incident response cycles. However, the goal is the same: to define

procedures for dealing with security incidents, detecting incidents, responding to

incidents, and then applying the knowledge to improve future security and response

(see Figure 8.1).The basic sequence is as follows:

■ Planning Create policy and procedures for anticipated incidents.

■ Detection Isolate and determine the severity of the incident.

■ Response Deal with the incident and fix any of the problems that it cre-

ated.

■ Feedback Study the incident and feed the learned knowledge back into

the response process.

Figure 8.1 The Incident Response Cycle

Planning
Planning for incident response is critical. Collecting as much information regarding

what to expect, how it will impact your hosts or networks, and how you will handle

it can be very helpful.The last thing you want to do is make rash decisions about

how to mitigate the effects of an attack, when you are trying to put out fires from all

directions including management, users, and the effects of the attack itself.

The first step in planning is to identify the systems involved, which may be fire-

walls, workstations and other endpoints, network sensors, intrusion detection sys-

tems, or servers. In addition to collecting a list of these systems, you should note any

www.syngress.com

Log Monitoring and Response • Chapter 8 321

Planning

Detection

Response

Feedback

significant resources they have and services they run, which will provide an overall

map of what is being monitored. (This information may already be assembled from

when you planned your HIMS deployment.) In addition to resources, collect contact

information for those technically responsible for the systems, as well as management

or business contacts that can be consulted when determining the most appropriate

course of action from the business perspective.

NOTE

As part of the planning process, make sure that you keep all of the infor-
mation about monitored systems, resources and services, and contact
information in a secured, accessible location. In the event of an incident,
you do not want to be scrambling to locate this information. If it is
stored on the monitored hosts, keep in mind that you may not have
access to it in the event that the host becomes unavailable.

Next, establish an “escalation” procedure, which is essentially a list of contacts

that must be notified with the details of an incident.You will probably need to

establish separate lists for each host or group of hosts, from management to technical

staff such as information technology to system and security administrators, and to

anyone who could be impacted from a business perspective.

As part of the planning process, you should establish a “chain of custody” proce-

dure for information related to the detection and analysis of the incident.This can

be very important for forensics; there may be requirements for handling log data,

scan data, alerts, or e-mail notifications. If you are going to use this in a legal setting,

you should determine what the requirements are for of this information.You must

have available procedures for creating the chain of custody documents that are kept

with the data at all times.This document should provide a detailed listing of who

had access to the data, where it was stored, and how it was secured.Your incident

response plan should state the procedures for how this will be accomplished in your

organization.

Detection
A successfully deployed HIMS can provide the detection share of the incident

response cycle; however, there is no such thing as a perfect system.You still have to

deal with false positives and false negatives.

www.syngress.com

322 Chapter 8 • Log Monitoring and Response

Sometimes, detected change is legitimate. Even with the fine-tuning of configu-

rations and filtering and prioritizing log messages, eventually a legitimate change

slips through the cracks and drums up the attention of your response team despite

the fact that there is no incident to deal with. In some cases, it may not be an attack

at all.This part of the incident response cycle should define steps to follow to intelli-

gently determine the nature of the incident, how severe it is, and how to avoid over-

reacting.The most important part about detection is to maintain a balance between

the facts and the security administrator’s experience. In some cases, you have to rely

on the facts to prevent jumping to conclusions. Consider what you know for sure,

and what the possibilities are. It may not be an attack. On the other hand, there are

cases where the experience of the system administrator combined with what you

know at the time will help direct your attention towards certain explanations for the

incident. For example, an increase in traffic on port 22 combined with recent advi-

sories about an SSH vulnerability may cause you to investigate some suspicious

changes detected on systems running SSH servers.

Response
This is where the response cycle gets tricky.Your responses to certain incidents may

be simple, or they may involve a complex sequence of procedures.The important

thing to remember is that your goal is to protect the integrity of your monitored

environments. How you choose to respond to certain incidents may jeopardize that

goal. Secondly, you need to collect as much information about the incident as pos-

sible.The thing to be mindful of is that your response could destroy valuable evi-

dence that would short circuit the response cycle by not allowing you to continue

to respond to the event (legally or technically), and then prevent you from learning

from the incident and utilizing that information for the betterment of the process.

Common procedure for response is to quarantine and make a copy of the

system.The first part of this process is to determine which hosts were affected. If a

host shows signs that it was compromised, the first thing to consider is that other

hosts of a similar configuration may also have been compromised. Using your

HIMS, you should be able to quickly verify if this has occurred.

Part of response is restoration. If you have the resources, you may already have

offline builds of a system waiting to be deployed (it is not uncommon for companies

to maintain backups of critical hosts to minimize the effect of a security incident). In

that case, you need to fix the vulnerability in your backup system before placing it

online. If you do not have a backup system, you need to dedicate resources to

restoring a new system after you have determined the source of the incident and

made any appropriate changes to prevent it from happening in the future.

www.syngress.com

Log Monitoring and Response • Chapter 8 323

Feedback
Once the incident has been responded to and any side effects dealt with, you need

to define a set of procedures for incorporating what was learned during the process,

which includes everything from the security details surrounding the incident to the

overall function of the incident response cycle itself. It may be that you underesti-

mated the amount of technical resources you need.You may have gaps in your con-

tact points or escalation chains.The most important thing you can do is document

everything surrounding the incident so that you can review it afterwards and find

ways to improve the overall incident response procedures.

At the very least, all of the security administrators involved should be assembled

to review the incident or incidents.The two main issues of concern are deciding

why the incident happened and how you can prevent it from happening in the

future. Remember to focus on improvement, not blame.This process is heavily based

on the interactions and successful communication between people. If your goal is to

improve the security of your hosts, pointing fingers will accomplish little towards

this goal.Also, in your review of the incident, keep the big picture in mind; it is easy

to focus on the details of an exploit or vulnerability and miss a bigger problem. For

example, if a server is continually being compromised because new vulnerabilities are

being discovered with a certain piece of software, it may be time to consider options

for migrating to a new solution, or finding ways to harden or protect that software.

Finally, decide which parts of the HIMS were effective for this incident, and which

were not. Document your analysis and use that to inject changes into your HIMS

configuration.

www.syngress.com

324 Chapter 8 • Log Monitoring and Response

Summary
Reading and analyzing logs on a regular basis is the most effective way to use HIMS

output. Without analyzing your log data, you will not have a high-level correlation

of events and will eventually be ignorant of critical events occurring on your hosts.

Swatch is a very simple yet effective way to make sense of all of the log data gener-

ated by Osiris and Samhain. If you do not use Swatch, at least make use of some

kind of log-monitoring system in order to effectively maintain visibility into the

most important changes occurring in your host environments.

No matter how well you have secured your hosts and networks, you will eventu-

ally encounter the need to respond to an attack or some type of security violation.

Having an established set of procedures in place for dealing with incidents before

they occur enables you to effectively handle the incident and learn from it so that

you can use that incident for the bettering of host integrity. Incident response is a

cycle; it is not a static set of procedures. Each incident should improve your response

capabilities and harden your defenses.

Solutions Fast Track

Log Monitoring

� When using Osiris or Samhain, you will need to use some kind of log-

monitoring tool to prioritize and send notification for detected critical

events.

� Swatch is a very useful tool for Osiris and Samhain because it is very

simple to use, very configurable, and easy to deploy.

� Swatch can also be used to monitor events other than Osiris and Samhain;

it can be used to help correlate other events surrounding the integrity of

your hosts.

Incident Response

� Incident response is a continually improving cycle for responding to

security events, not a set of static procedures that are defined once.

� Incident response involves planning for incidents, detection and analysis,

responding tactfully, and learning from the incident to better the response

cycle and prevent the incident from occurring in the future.

www.syngress.com

Log Monitoring and Response • Chapter 8 325

Q: I already have existing Swatch configurations. Should I add rules for Osiris or

Samhain to them, or create a separate configuration?

A: The obvious advantage of having a single configuration is that you only have

to administer one configuration. However, having a separate Swatch configu-

ration for Osiris or Samhain is likely to be more effective.You have less risk

of clobbering or interfering with your other monitoring rules.Additionally, it

is best to isolate the logs from Osiris and Samhain into their own log file;

therefore, if you are using Swatch, you have to use a separate configuration.

Plan on having a custom configuration and Swatch instance specifically for

monitoring Osiris and Samhain logs.

Q: With Swatch, how can I apply more than one pattern and action set to a cer-

tain log event?

A: Use the “continue” option.This option takes no arguments and will cause

Swatch to continue down the list of patterns and apply any additional rules

to be applied to that log event. Otherwise, it will stop applying rules after the

first match.

Q: How does active response play into the development of an incident response

plan for a HIMS?

A: Generally, it does not. Osiris and Samhain are not active.Technically, Samhain

has a couple of features that are arguably active, but both of them are essen-

tially passive in function. Unlike host intrusion protection systems or certain

host intrusion detection systems deployments, you do not have to worry

about issues related to active response with Osiris and Samhain.

Q: Should public disclosure of an attack or a compromise be addressed by my

incident response plan?

A: Yes.This falls under the business side of response. generally, a response should

consider everything from how the incident affects the technical side of the

business to the business impact the incident will have.

www.syngress.com

326 Chapter 8 • Log Monitoring and Response

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Advanced Strategies

Solutions in this chapter:

■ Performing SUID/SGID Security Audits

■ Conducting Unscheduled Scans

■ Looking for Rogue Executables

■ Testing and Verification

■ Prebinding and Prelinking

Chapter 9

327

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Introduction
This chapter contains strategies for the successful deployment of Osiris and Samhain.

You do not have to utilize all of this material to be successful; however, it is helpful

because it was gathered from personal experience, and from feedback from both

Osiris and Samhain users. Both of these systems are very effective at monitoring the

integrity of host environments, and each has their own strong points.The following

sections use some of those strong points to explore Set User ID (SUID) and Set

Group ID (SGID) audits, and to look for rogue executables, perform checks on a

deployment, and handle the cumbersome effects of prebinding and prelinking of

executables.

Performing SUID/SGID Security Audits
SUID and SGID executables require a great deal of scrutiny and caution. Poorly

written software is dangerous to host integrity; poorly written software with elevated

privileges is worse. Do not trust that the developers of SUID executables took steps

to protect the application from being exploited (including the applications that ship

with the operating system).Also, do not trust that the default file permissions limit

access to these types of executables. Staying on top of SUID and SGID executables is

an administrative effort that requires research and careful inspection of the systems

being managed. Osiris and Samhain can help with only part of that effort.

Specifically, they can look for and report on changes that involve SUID and SGID

executables.You can obtain a quick listing of the SUID and SGID executables by

running the following command on every applicable file system:

find / -perm -4000 -o -perm -2000 -type f -ls > /tmp/suid.txt

To narrow things down, you may want to only look for SUID or SGID root

applications:

find / -perm -4000 -o -perm -2000 -type f -ls –user root > /tmp/suid.txt

These commands save all of the found file paths to the /tmp/suid.txt file.This is

important. It does not make sense to monitor changes to SUID or SGID executables

if you start with a system that already has vulnerable or suspect SUID or SGID exe-

cutables. Before you start to monitor these executables, research every application on

the list. Consider the following helpful set of questions:

■ Is the executable running as the root?

■ Does this host need the executable to function?

www.syngress.com

328 Chapter 9 • Advanced Strategies

■ Do the permissions follow the principle of least privilege?

■ Does it have any vulnerability, or is there an updated version?

You may be able to purge many of the executables, or at least prevent non-privi-

leged users from accessing them.You should not conduct regular SUID and SGID

audits with Osiris or Samhain until you have conducted an audit of every exe-

cutable, made any appropriate changes (e.g., changing the permissions or removing

the executable), and are comfortable with your system.

You should periodically generate a new list of SUID executables and review the

resultant output for any changes.This is where Osiris and Samhain are helpful; you

do not have to do it manually, and you can perform this type of audit on thousands

of machines as often as you like and with little effort, and be notified of the results

via e-mail. If you do not have the “find” command on your system, or the command

does not support all of the arguments used in the aforementioned examples, you will

have to either use a more complicated script or have Osiris or Samhain develop the

list for you.

For Samhain, conducting an SUID or SGID audit is as simple as configuring

your build to include the SUID module, and enabling the SUID check in the

Samhain configuration file.The SUID/SGID check supported by Samhain scans the

entire file system, skipping all NFS, ISO9660, Virtual File Allocation Table (VFAT),

Microsoft Disk Operating System (MSDOS), and proc file systems. It also skips any

file system with the nosuid mount option specified (for systems that support it).To

enable the SUID check, add the following to your configuration file:

[SuidCheck]

SuidCheckActive = 1

Use the SuidCheckExclude directive to exclude a specific directory. For example,

to exclude the /dev directory, add the following to your configuration:

SuidCheckExclude = /dev

Scheduling can specify a cron-like format or an interval (in seconds). For

example, to have the system scanned every day at 3 A.M., add the following to your

configuration:

SuidCheckSchedule = 0 3 * * *

Because this is an input/output (I/O)-intensive operation, this module supports

a means of restraining the Samhain agent so that it does not bring the system down

when looking for SUID/SGID executables.To limit the number of files per second

that the agent processes, use the SuidCheckFps directive:

SuidCheckFps = 100

www.syngress.com

Advanced Strategies • Chapter 9 329

The quarantine feature of the Samhain SUID/SGID module allows you to do

more than report on changes to the list of SUID and SGID executables on a host.

When Samhain encounters an SUID or SGID executable, it can be configured to do

one of three things:

■ Delete the file.

■ Remove the SUID or SGID bit(s).

■ Move the file into quarantine.

Adding the following directive to your configuration file turns this feature on:

SuidCheckQuarantineFiles = yes

The action you take when you encounter an SUID or SGID file is determined

by the value of the SuidCheckQuarantineMethod directive. Specifying “0” means

delete,“1” means remove the suspect permissions from the file, and “2” means quar-

antine the file. When a file is deleted, it is truncated; it is not removed from the file

system.This means that the file is left empty with no SUID or SGID permissions

set. When quarantined, the file is moved to the Samhain root directory, into a direc-

tory named .quarantine. If you want Samhain to remove any discovered SUID or

SGID files instead of truncating, add the following to your configuration file:

SuidCheckQuarantineDelete = yes

Having an application like Samhain remove the files it encounters is not a good

idea.Although there may be occasional circumstances where this feature is useful, for

most deployments it is not. However, the other available quarantine options are

useful.Although they cross the line of monitoring, they may be able to mitigate fur-

ther damage without having an irreversible effect on the system. In some cases, you

will not be able to justify a full SUID/SGID scan every hour, or every day.The

scheduling will vary significantly.As for dealing with the SUID/SGID executable,

you should reset the permissions; you want to do the least amount of modifications

to the system to render the SUID/SGID executable powerless. In a case where the

Samhain agent encounters a rogue SUID/SGID executable, resetting the permissions

will render it powerless, much like moving it to a quarantine directory. Do not move

or delete files from arbitrary locations.The resultant Samhain configuration for mon-

itoring SUID and SGID executables once per day at 3 A.M and resetting the per-

missions on any discovered, is as follows:

[SuidCheck]

activate (0 for switching off).

www.syngress.com

330 Chapter 9 • Advanced Strategies

SuidCheckActive = 1

scheduled check every morning at 3am.

SuidCheckSchedule = 0 3 * * *

logging severity.

SeveritySuidCheck = crit

throttle files per second.

SuidCheckFps = 100

quarantine detected SUID/SGID files

SuidCheckQuarantineFiles = yes

remove SUID/SGID permissions on detected files.

SuidCheckQuarantineMethod = 1

in case this is gets enabled, set it to only truncation.

SuidCheckQuarantineDelete = no

Unfortunately, performing regular SUID/SGID scans using Osiris must be done

manually.To do this, you have to temporarily suspend normal scans, perform the

audit, and then reset the host so that the scheduler continues normal monitoring

activities.To conduct an SUID/SGID scan of a host using Osiris, create a new scan

configuration that looks like the following:

Recursive yes

Hash md5

<Directory />

Recursive yes

FollowLinks no

NoEntry dev

NoEntry .vol

NoEntry Network

NoEntry automount

NoEntry Volumes

www.syngress.com

Advanced Strategies • Chapter 9 331

Include suid

Include guid

</Directory>

The NoEntry directives are there to prevent the scan agent from entering direc-

tories that will cause it to hang onto device files.The configuration in the preceding

example is specific to Mac OS X; the NoEntry directives you need to add will vary

depending on the operating system. Next, disable and unset the baseline database for

that host (remember what the baseline is; you will be resetting it after the scan):

osiris-4.1.6-release: host local

local is alive.

osiris-4.1.7-dev[local]: baseline

Base DB: 10

osiris-4.1.6-release[local]: disable

>>> host local is now disabled.

osiris-4.1.6-release[local]: unset-baseline

>>> there is now NO baseline db for host: local

The host should be disabled so that the scheduler does not interfere with the

audit.The baseline is unset so that the scan will not be compared against the baseline

database for this host. When done, you can set the baseline back so that normal

monitoring for this host continues. Next, push the new configuration to the host

and start a scan:

osiris-4.1.6-release[local]: push-config suid-cfg

>>> the configuration: (suid) has been pushed to host: local

osiris-4.1.6-release[local]: scan

>>> scanning process was started on host: local

Scanning the entire file system takes time. When the scan is complete, note the

name of the created database, set the baseline for this host back to what it was before

the scan started, and enable it again so that the normal scan procedures for that host

continue:

osiris-4.1.6-release[local]: set-baseline 10

>>> database: 10 is now the baseline for host: local

osiris-4.1.6-release[local]: enable

>>> host local is now enabled.

You now have a database that contains only SUID or SGID files, which can be

printed using the print-db command through the Osiris command-line interface.

www.syngress.com

332 Chapter 9 • Advanced Strategies

Whenever you want to conduct an SUID or SGID audit, set the baseline database to

be the database that was created during the initial audit, push the SUID configuration

to the host, and start scanning. Next, set the baseline database back.Any detected

changes will be logged or e-mailed to you, depending on your notification settings.

The alternative method is to trick the management console by adding the same

host twice so that the second entry can be used specifically for SUID audits.The

advantage is that you can set up a separate schedule and maintain separate databases

without disrupting normal scans. Make sure that the schedules do not conflict; oth-

erwise, both scans will fail.

Samhain is equipped to conduct SUID and SGID audits as part of its regular

functionality. It was developed with more emphasis on monitoring hosts for bad as

opposed to general monitoring. It is only natural that SUID and SGID audits are

part of its native functionality. However, both Osiris and Samhain are capable of

monitoring hosts for these types of executables; these checks should be performed

on a regular basis.

Conducting Unscheduled Scans
One of the advantages of centralized monitoring is that you can automatically

establish regular scanning of many hosts.The downside is that an attacker can pos-

sibly avoid detection if the scan schedule is known.This is attractive to attackers

because they would not have to tamper with the monitoring system; as long as the

system is restored before the next scheduled scan, the agent reports no changes since

the last scan.

Both Osiris and Samhain lack built-in features to deviate from their normal

scheduled scans. However, scans can be run manually on a few select hosts. For

Osiris, it is as easy as logging into the console, pushing the host’s configuration, and

telling it to scan. In most cases, the agent already has its configuration loaded so you

can tell the hosts to scan without entering a host context:

$ osiris

Osiris Shell Interface - version 4.1.6-release

>>> authenticating to (localhost)

User: admin

Password:

connected to management console, code version (4.1.6-release).

hello.

www.syngress.com

Advanced Strategies • Chapter 9 333

osiris-4.1.6-release: scan local

>>> scanning process was started on host: local

osiris-4.1.6-release: scan freebsd1

>>> scanning process was started on host: freebsd1

osiris-4.1.6-release: scan freebsd2

>>> scanning process was started on host: freebsd2

osiris-4.1.6-release: scan freebsd3

>>> scanning process was started on host: freebsd3

...

If you are using Samhain, conducting a random scan is as simple as logging into

the remote host and running a check session. If Samhain is already running as a

daemon or daemon mode is specified in your configuration file, you should force

Samhain to run in the foreground. For example:

samhain -t check --foreground

ALERT : [2005-04-02T08:43:16-0700] msg=<START>, program=<Samhain>,

userid=<0>, path=</etc/samhainrc>,

hash=<289A179EF36AE3AC928A0845B41C4A918D9DF635A8A26CF4>,

path=</var/lib/samhain/samhain_file>,

hash=<3893C153614FEF7B440FA622D2FEE3B0253DF64509CF60B3>

CRIT : [2005-04-02T08:43:18-0700] msg=<POLICY [ReadOnly] --------T->,

path=</bin/ls>, ctime_old=<[2005-03-30T14:45:58]>, ctime_new=<[2005-04-

02T15:39:04]>, mtime_old=<[2005-03-30T14:45:58]>, mtime_new=<[2005-04-

02T15:39:04]>,

ALERT : [2005-04-02T08:43:18-0700] msg=<EXIT>, program=<Samhain>,

status=<None>

Keep in mind that this will reveal all of the differences between your host and

the database for that host.Any Samhain daemon that is running will have already

reported these alerts and are keeping them resident so that they are not reported

with each scan. Since you are already logged into the host to run a random scan, you

may also want to update the database interactively. If you have a running daemon

and are running Samhain in client/server mode, you must suspend it to prevent con-

current access to the log server.To do that, send a SIGUSR2 signal to the currently

running daemon, run the update, and resume the daemon by issuing another

SIGUSR2 signal:

$ ps -auxw | grep samhain | grep root

root 4171 0.0 0.0 75676 612 ?? S 8:35AM 0:24.94

samhain -t check

kill -SIGUSR2 4171

www.syngress.com

334 Chapter 9 • Advanced Strategies

MARK : [2005-04-02T08:50:30-0700] msg=<SUSPEND> program=<Samhain>

3E694FAFF8EA223A8EE84E31712492B5CDE4B8FE290673D8

samhain -t update --foreground --interactive

ALERT : [2005-04-02T08:51:20-0700] msg=<START>, program=<Samhain>,

userid=<0>, path=</etc/samhainrc>,

hash=<289A179EF36AE3AC928A0845B41C4A918D9DF635A8A26CF4>

CRIT : [2005-04-02T08:51:22-0700] msg=<POLICY [ReadOnly] --------T->,

path=</bin/ls>, ctime_old=<[2005-03-30T14:45:58]>, ctime_new=<[2005-04-

02T15:39:04]>, mtime_old=<[2005-03-30T14:45:58]>, mtime_new=<[2005-04-

02T15:39:04]>,

Update /bin/ls [Y/n] ? y

ALERT : [2005-04-02T08:51:27-0700] msg=<EXIT>, program=<Samhain>,

status=<None>

kill -SIGUSR2 4171

Looking for Rogue Executables
Operating systems have general guidelines for where certain types of files are kept.

For example, configuration files are commonly stored under /etc, growing and

changing files such as logs or Packet Identifier (PID) files are stored under /var, and

executables are stored in bin directories such as /bin /usr/bin, /usr/local/bin, and the

like. On Windows, executables are stored under %SystemRoot%\Program Files or

under the %WindowsRoot% directory.There are exceptions to all of these, but this is

generally the case.

Almost all scan configurations are created to monitor the standard locations for

executables, because they are relatively free from noise.These files should change

only when system updates are performed; therefore, monitoring them frequently is

generally not an administrative burden. For example, the following Osiris report

reveals that nmap has been installed on some kind of UNIX host:

compare time: Sat Apr 2 09:25:39 2005

host: local

scan config: default.darwin (f02587b9)

log file: no log file generated, see system log.

base database: 15

compare database: 18

[211][local][cmp][/usr/local/bin][mtime][Mon Mar 21 08:36:32 2005][Sat Apr

2 09:25:33 2005]

www.syngress.com

Advanced Strategies • Chapter 9 335

[213][local][cmp][/usr/local/bin][ctime][Mon Mar 21 08:36:32 2005][Sat Apr

2 09:25:33 2005]

[206][local][cmp][/usr/local/bin/nmap][inode][952675][1192113]

[211][local][cmp][/usr/local/bin/nmap][mtime][Tue Mar 1 06:31:43 2005][Sat

Apr 2 09:25:33 2005]

[213][local][cmp][/usr/local/bin/nmap][ctime][Tue Mar 1 06:31:43 2005][Sat

Apr 2 09:25:33 2005]

Change Statistics:

checksums: 0

SUID files: 0

root-owned files: 2

file permissions: 0

new: 0

missing: 0

total differences: 5

For certain types of systems, you should keep a detailed list of which executables

reside on the system and where they are located. For hosts that do not have a com-

piler and do not allow many user logins, there is no reason to look for executables

stored in different directories; executables will be installed with the operating system.

There are two parts to maintaining the integrity of the executable base of a host.

First, you need to determine what executables exist on your system. Once you have

compiled this baseline, you can begin to monitor for changes involving executables.

An executable may mean binaries or it could include executable scripts.Again, what

may be acceptable for one host may not be for another. Generally, this type of moni-

toring is the most effective on server environments where you know without doubt

that an executable should never reside outside certain locations on the file system.

This section examines how to use Osiris to monitor the state of a host focusing

exclusively on executable files or scripts. Osiris has an executable file filter and a script

filter, which examine the contents of files that look like native executables or scripts.

The advantage is that even if the permissions, the locations, or the file names are not

usually indicative of an executable, it will still be seen as an executable by the agent.

These filters are based on the UNIX file command. Samhain has the ability to mon-

itor for rogue SUID and SGID applications, but is not as well suited for this type of

monitoring.

www.syngress.com

336 Chapter 9 • Advanced Strategies

The following example explains how to set up and configure rogue executable

monitoring on a host running Mac OS X (note that the steps are the same for all sys-

tems). Because you will be doing this for only select hosts, you can use the strategy of

adding a host to the console a second time. In this case, you will create a scan configu-

ration specifically to look for executables and to monitor them whenever you choose;

in other words, this will not be a regularly scheduled scan for the host.

NOTE

When setting up and configuring rogue executable monitoring that uses
the executable and script filters implemented by Osiris, the executable
filter is only supported for Linux, FreeBSD, OpenBSD, NetBSD, Mac OS X,
Solaris, and Microsoft Windows. This filter is not supported on other
platforms.

First, add a new host entry to the console. In this case, the name of the host is

local, so this host is named local-rogue. Do not enable or initialize this host.Your con-

figuration should look something like the following:

host => local-rogue

hostname/IP address => 127.0.0.1

description => local scanner, rogue executable configuration

agent port => 2265

host type => generic

log enabled => no

archive scans => no

auto accept => yes

purge databases => yes

notifications enabled => yes

notifications always => no

notify on rekey => no

notify on scan fail => no

notify email => (management config)

scans starting on => (not configured)

scan frequency => daily (every 1440 minutes).

enabled => no

Is this correct (y/n)? y

www.syngress.com

Advanced Strategies • Chapter 9 337

>>> new host (local-rogue) has been created.

Initialize this host? (yes/no): no

Next, create a scan configuration for this host. If you plan on doing this for a

handful of different hosts, you may want to make the scan configurations local to

that host so that they do not clutter the shared configuration store. Name the con-

figuration something obvious and add the following to it:

Recursive yes

Hash md5

<Directory />

Recursive yes

FollowLinks no

NoEntry dev

NoEntry .vol

NoEntry Network

NoEntry automount

NoEntry Volumes

Include executable

Include script

</Directory>

Notice that the NoEntry directives are the same ones you used when scanning

for rogue SUID and SGID executables.This is to prevent the agent from getting into

infinitely recursive peril with file descriptors or proc-like file systems. Because this

scan will take time, you should disable the host so that your scan does not interfere

with regularly scheduled scans. Make sure the host is idle and then disable it:

osiris-4.1.6-release: status local

[current status of host: local]

current time: Sat Apr 2 09:59:02 2005

up since: Fri Apr 1 19:58:53 2005

last config push: Sat Apr 2 09:22:14 2005

www.syngress.com

338 Chapter 9 • Advanced Strategies

configuration id: f02587b9

agent status: idle.

config status: current config is valid.

osiris version: 4.1.6-dev

OS: Darwin 7.8.0

osiris-4.1.6-release: disable local

>>> host local is now disabled.

Next, initialize this host with your newly created configuration:

osiris-4.1.6-release: init local-rogue

Initializing a host will push over a configuration, start

a scan, and set the created database to be the

trusted database.

Are you sure you want to initialize this host (yes/no): y

OS Name: Darwin

OS Version: 7.8.0

use the default configuration for this OS? (yes/no): no

[shared configs]

[name] [id]

default.aix 6d2857b0

default.bsdos 99a38a8c

default.darwin f02587b9

default.freebsd c3dcf455

default.irix ed6c0108

default.linux c8ce9c09

default.netbsd 0cf39a70

default.openbsd 91a7a6a1

default.sunos 5c4aef88

default.unix-generic e088d50b

www.syngress.com

Advanced Strategies • Chapter 9 339

default.windows2000 951cbd4e

default.windowsnt 69a22176

default.windowsserve 63f6bd00

default.windowsxp 974cd899

default.wrt54g cd2c17fa

local-rogue 7c0052c0

suid 6fc8fcd3

total: 20

-no local configurations-

Specify a configuration: local-rogue

>>> configuration (local-rogue) has been pushed.

>>> scanning process was started on host: local-rogue

This scan will take time, depending on your hardware and how much disk

memory the agent has to go through. When the scan is complete, you will be left

with a baseline database for this host that contains all of the found executable files

and scripts.As soon as the scan is complete, enable the regular host entry so that

scheduled scans can continue:

osiris-4.1.6-release: enable local

>>> host local is now enabled.

To see the scan results, print the database header for this baseline:

osiris-4.1.6-dev[local-rogue]: print-db-header 1

DATABASE: 1

status: complete

errors: 0

records: 1320

config: local-rogue (7c0052c0)

SCAN RESULTS:

record type: UNIX1

www.syngress.com

340 Chapter 9 • Advanced Strategies

files encountered: 447538

files scanned: 1320

symlinks encountered: 9504

symlinks followed: 0

files unreadable: 0

directories unreadable: 0

symlinks unreadable: 0

scan started: Sat Apr 2 10:00:13 2005

scan finished: Sat Apr 2 10:20:52 2005

You can see that the agent scanned almost a half-million files and found more

than one thousand executables and scripts.The scan also took 20 minutes to com-

plete.This is something to consider when determining how often you will conduct a

rogue executable scan.

You can view the list of files by printing a file listing from the database using the

print-db command:

osiris-4.1.6-release[local-rogue]: print-db 1

This may take a while...

100% [==>] 891289 bytes

h) show database header.

r) list file records.

d) list file record details.

m) list module records.

x) list errors.

q) quit

[local-rogue:database: 1]: r

[/bin/\133]

[/bin/bash]

[/bin/cat]

[/bin/chmod]

[/bin/cp]

[/bin/csh]

www.syngress.com

Advanced Strategies • Chapter 9 341

[/bin/date]

[/bin/dd]

[/bin/df]

[/bin/domainname]

[/bin/echo]

[/bin/ed]

[/bin/expr]

[/bin/hostname]

[/bin/kill]

[/bin/ln]

[/bin/ls]

[/bin/mkdir]

...

Now that you have an established baseline, you can conduct subsequent scans of

this host for rogue executables by disabling scheduled scans, pushing the rogue con-

figuration, scanning the host, and then enabling normal scans.The procedure will

look something like the following:

osiris-4.1.6-dev: disable local

>>> host local is now disabled.

osiris-4.1.6-dev: host local-rogue

local-rogue is alive.

osiris-4.1.6-dev[local-rogue]: push-config

>>> the configuration: (local-rogue) has been pushed to host: local-rogue

osiris-4.1.6-dev[local-rogue]: scan

>>> scanning process was started on host: local-rogue

<wait until scan completes...>

osiris-4.1.6-dev[local-rogue]: q

osiris-4.1.6-dev: enable local

>>> host local is now enabled.

You must remember to push the rogue scan configuration because, by default,

the agent hangs on to its configuration after a scheduled scan. When you start the

scan, it will scan with the normal configuration for that host. When you enable the

host again, the scheduler will make sure the proper configuration is pushed before

resuming normal scans.

www.syngress.com

342 Chapter 9 • Advanced Strategies

Testing and Verification
If you use default scan configurations for deployments, you are less likely to have to

test beyond the initial deployment. However, once you start to develop your own

custom scan configurations and deployments, you should verify that the system is

working according to your expectations and intentions. It is also a good idea to con-

duct spot checks (fire drills) on your host integrity monitoring system so that you

have reasonable assurance that it will respond when needed. Systems change, host

configurations change, and security administrators come and go.Therefore, you

should take steps to ensure that your HIMS is up and running as it should be. In the

unfortunate case of a compromise, the last thing you want is for your HIMS to fail

because of an administrative error.The frequency in which you conduct fire drills on

your HIMS is up to you and your security policy.The following section shows you

how to conduct some simple tests, including verifying scan configurations against

real change, and verifying alerts thresholds and filters.

Is It Working?
The easiest test to perform is to verify that the files you are monitoring are actually

being monitored, and that any changes are being reported correctly. Generally, you

can make specific changes and then verify that they are reported on correctly. If your

file-scanning schedule is not frequent, you may be tempted to conduct manual scans;

however, it is best if you let the system find the changes, to keep the tests more real-

istic. If you start scans manually, make sure you take the proper care to disable or sus-

pend the scan agent so that you do not disrupt the normal scan cycle.

A good set of tests to perform for file-related monitoring include:

■ Creating a new file

■ Deleting a file

■ Changing time stamps (mtime and ctime)

■ Changing permissions

■ Changing user and group ownership

■ Changing the contents of a file

This can be done manually, or you can establish a script that does it for you.A

script may be more helpful if you plan to regularly monitor multiple locations on

your file system. Creating files is easy; however, making changes to system files is not

always possible.As a workaround, plant specific files into the location to be used for

test cases; the changes to these dummy files will have no impact on the system.

www.syngress.com

Advanced Strategies • Chapter 9 343

The following shell script can create files to add to your baseline, and can make

changes to them to verify that the proper alerts are being generated:

$ cat ./firedrill.sh

#!/bin/sh

LOC="/bin"

start()

{

create files to modify or be deleted.

touch ${LOC}/hitest.deleted

touch ${LOC}/hitest.timestamps

touch ${LOC}/hitest.perms

chmod g-rwx ${LOC}/hitest.perms

touch ${LOC}/hitest.owner

touch ${LOC}/hitest.contents

echo "init" > ${LOC}/hitest.contents

}

change()

{

test creating a new file

touch ${LOC}/hitest.new

echo " >> created new file: ${LOC}/hitest.new"

test deleting a file

rm ${LOC}/hitest.deleted

echo " >> deleted file: ${LOC}/hitest.deleted"

test changing mtime and ctime

touch ${LOC}/hitest.timestamps

echo " >> changing timestamps for: ${LOC}/hitest.timestamps"

test changing permissions

chmod g+rwx ${LOC}/hitest.perms

echo " >> changing permissions for file: ${LOC}/hitest.perms"

test changing

www.syngress.com

344 Chapter 9 • Advanced Strategies

chown nobody ${LOC}/hitest.owner

echo " >> changing owner for file: ${LOC}/hitest.owner"

test changing file contents

echo "garbage" >> ${LOC}/hitest.contents

echo " >> changing checksum for file: ${LOC}/hitest.contents"

}

restore()

{

rm ${LOC}/hitest.*

}

if ["$1" = "init"] ; then

start

elif ["$1" = "restore"] ; then

restore

else

change

fi

exit 0

The variable LOC at the top of this script is the location where all of the

dummy files will be kept. Change this value to whatever directory you want to test

in your scan configuration.To run this script for the first time, run it with the argu-

ment init as root:

./firedrill.sh init

This will create all of the necessary files, but will not produce any output. Next,

run another scan on your system to incorporate these files into your baseline.To test

what your agent is able to detect, run the firedrill script with no arguments.This will

perform some changes to the system on the dummy files:

$ sudo ./firedrill.sh

>> created new file: /bin/hitest.new

>> deleted file: /bin/hitest.deleted

>> changing timestamps for: /bin/hitest.timestamps

>> changing permissions for file: /bin/hitest.perms

>> changing owner for file: /bin/hitest.owner

>> changing checksum for file: /bin/hitest.contents

www.syngress.com

Advanced Strategies • Chapter 9 345

Finally, run another scan of the system to detect the changes; Osiris will produce

the following report.As you can see, it is relatively easy to find the changes that have

occurred, and whether or not they were expected.The contents file has a new

checksum as well as bytes and time stamps (since the file was modified).The files

that were changed in ownership and permissions also show ctime changes because

their inodes were updated.The time stamps for files were changed and are indicated

in the logs. Finally, a new file alert was generated for the created file, and a missing

file alert was generated for the file that was deleted.All of the changes were

detected.

compare time: Sat Apr 2 13:22:49 2005

host: local

scan config: default.darwin (5dc9978e)

log file: no log file generated, see system log.

base database: 31

compare database: 33

[211][local][cmp][/bin][mtime][Sat Apr 2 13:22:11 2005][Sat Apr 2

13:22:45 2005]

[213][local][cmp][/bin][ctime][Sat Apr 2 13:22:11 2005][Sat Apr 2

13:22:45 2005]

[204][local][cmp][/bin/hitest.contents][checksum][a8ba672d93697971031015181d

7008c3][6e7af3ca66b56a0cf58439d903c6f8ef]

[211][local][cmp][/bin/hitest.contents][mtime][Sat Apr 2 13:22:11

2005][Sat Apr 2 13:22:45 2005]

[213][local][cmp][/bin/hitest.contents][ctime][Sat Apr 2 13:22:11

2005][Sat Apr 2 13:22:45 2005]

[215][local][cmp][/bin/hitest.contents][bytes][5][13]

[202][local][missing][/bin/hitest.deleted]

[209][local][cmp][/bin/hitest.owner][uid][0][4294967294]

[213][local][cmp][/bin/hitest.owner][ctime][Sat Apr 2 13:22:11 2005][Sat

Apr 2 13:22:49 2005]

[207][local][cmp][/bin/hitest.perms][perm][-rw----r--][-rw-rw-r--]

[213][local][cmp][/bin/hitest.perms][ctime][Sat Apr 2 13:22:17 2005][Sat

Apr 2 13:22:49 2005]

[211][local][cmp][/bin/hitest.timestamps][mtime][Sat Apr 2 13:22:11

2005][Sat Apr 2 13:22:45 2005]

[213][local][cmp][/bin/hitest.timestamps][ctime][Sat Apr 2 13:22:11

2005][Sat Apr 2 13:22:45 2005]

[203][local][new][/bin/hitest.new]

www.syngress.com

346 Chapter 9 • Advanced Strategies

Change Statistics:

checksums: 1

SUID files: 0

root-owned files: 5

file permissions: 1

new: 1

missing: 1

total differences: 14

As you can see in the following example, Samhain detects the same changes after

a foreground check is performed:

samhain -t check --foreground

ALERT : [2005-04-02T13:22:59-0700] msg=<START>, program=<Samhain>,

userid=<0>, path=</etc/samhainrc>,

hash=<289A179EF36AE3AC928A0845B41C4A918D9DF635A8A26CF4>,

path=</var/lib/samhain/samhain_file>,

hash=<A41FE8148338E95D3E64B0E7F5CD181CD4AE834630521A44>

CRIT : [2005-04-02T13:23:00-0700] msg=<POLICY [ReadOnly] --------T->,

path=</bin>, ctime_old=<[2005-04-02T20:22:11]>, ctime_new=<[2005-04-

02T20:22:45]>, mtime_old=<[2005-04-02T20:22:11]>, mtime_new=<[2005-04-

02T20:22:45]>,

CRIT : [2005-04-02T13:23:01-0700] msg=<POLICY [ReadOnly] --------T->,

path=</bin/hitest.timestamps>, ctime_old=<[2005-04-02T20:22:11]>,

ctime_new=<[2005-04-02T20:22:45]>, mtime_old=<[2005-04-02T20:22:11]>,

mtime_new=<[2005-04-02T20:22:45]>,

CRIT : [2005-04-02T13:23:01-0700] msg=<POLICY [ReadOnly] -----M--T->,

path=</bin/hitest.perms>, mode_old=<-rw----r-->, mode_new=<-rw-rwxr-->,

ctime_old=<[2005-04-02T20:22:17]>, ctime_new=<[2005-04-02T20:22:49]>,

CRIT : [2005-04-02T13:23:01-0700] msg=<POLICY [ReadOnly] ------U-T->,

path=</bin/hitest.owner>, owner_old=<root>, owner_new=<nobody>,

ctime_old=<[2005-04-02T20:22:11]>, ctime_new=<[2005-04-02T20:22:49]>,

CRIT : [2005-04-02T13:23:01-0700] msg=<POLICY ADDED>,

path=</bin/hitest.new>, mode_new=<-rw-r--r-->, imode_new=<33188>,

hardlinks_new=<1>, idevice_new=<0>, inode_new=<1194522>, owner_new=<root>,

iowner_new=<0>, group_new=<wheel>, igroup_new=<0>, size_old=<0>,

size_new=<0>, ctime_new=<[2005-04-02T20:22:45]>, atime_new=<[2005-04-

02T20:22:45]>, mtime_new=<[2005-04-02T20:22:45]>,

chksum_new=<24F0130C63AC933216166E76B1BB925FF373DE2D49584E7A>

www.syngress.com

Advanced Strategies • Chapter 9 347

CRIT : [2005-04-02T13:23:01-0700] msg=<POLICY [ReadOnly] C-------TS>,

path=</bin/hitest.contents>, size_old=<5>, size_new=<13>, ctime_old=<[2005-

04-02T20:22:11]>, ctime_new=<[2005-04-02T20:22:45]>, mtime_old=<[2005-04-

02T20:22:11]>, mtime_new=<[2005-04-02T20:22:45]>,

chksum_old=<714E1C6E96547CFC17F18D418F0E2EF32855C3ACCE7CB4C0>,

chksum_new=<DD57DE6C0F6A3750EAAC362BFB85AB28309E48AD2D2B571E>,

CRIT : [2005-04-02T13:23:01-0700] msg=<POLICY MISSING>,

path=</bin/hitest.deleted>, mode_old=<-rw-r--r-->, imode_old=<33188>,

hardlinks_old=<1>, idevice_old=<0>, inode_old=<1194515>, owner_old=<root>,

iowner_old=<0>, group_old=<wheel>, igroup_old=<0>, size_old=<0>,

size_new=<0>, ctime_old=<[2005-04-02T20:22:11]>, atime_old=<[2005-04-

02T20:22:11]>, mtime_old=<[2005-04-02T20:22:11]>,

chksum_old=<24F0130C63AC933216166E76B1BB925FF373DE2D49584E7A>

ALERT : [2005-04-02T13:23:01-0700] msg=<EXIT>, program=<Samhain>,

status=<None>

To restore the dummy files to their original states (minus time stamps), run the

firedrill script again, this time with the restore argument:

./firedrill.sh restore

Testing Filters
The next test to perform is on alert filtering. It is obvious if you can reduce noise by

adding a filter or adjusting your scan configuration; however, it is not obvious if your

filter has blocked more than you intended. Improper filter or alert settings can intro-

duce false negatives.The best way to handle this is to simulate your production

system as much as possible. Ideally, you will clone a production system to try new

configurations and filters on before pushing those changes into your production

HIMS.This is undoubtedly better than conducting tests on a production host. For

example, suppose you have a directory /usr/local/web-app that contains executables

and log files under /usr/local/web-app/bin and /usr/local/web-app/logs, respectively.

Assuming you want to block changes to anything under the logs directory, you can

easily test a filter by making changes to files under both directories and verifying

that only the changes to the bin directory generate alerts.

Another way to test Osiris filters is to use the test-filter command with the

Command Line Interface (CLI).This can be useful in many cases, but if you are

going to test a lot of log messages against a filter, it will end up being a clumsy, time-

consuming solution.To get around this, run your log messages through the global

regular expression parser (grep) to test the effects your regular expressions will have

on real log files. Suppose you encounter the following log messages on a daily basis:

compare time: Sun Apr 3 20:28:33 2005

www.syngress.com

348 Chapter 9 • Advanced Strategies

host: local

scan config: default.darwin (67f3c6b4)

log file: no log file generated, see system log.

base database: 41

compare database: 42

[204][local][cmp][/var/log/lastlog][checksum][49b7c4d9db6a5d3f19b94ac50083cd

dd][f925180264138bd61e0d50f95d145978]

[211][local][cmp][/var/log/lastlog][mtime][Sun Apr 3 20:25:31 2005][Sun

Apr 3 20:28:03 2005]

[213][local][cmp][/var/log/lastlog][ctime][Sun Apr 3 20:25:31 2005][Sun

Apr 3 20:28:03 2005]

[204][local][cmp][/var/log/system.log][checksum][bb56a6a7352fa5688e411d4a315

c8a3f][ce4fc2a39e1f5d83d87b53a26c8bf4aa]

[211][local][cmp][/var/log/system.log][mtime][Sun Apr 3 20:27:50 2005][Sun

Apr 3 20:28:33 2005]

[213][local][cmp][/var/log/system.log][ctime][Sun Apr 3 20:27:50 2005][Sun

Apr 3 20:28:33 2005]

[215][local][cmp][/var/log/system.log][bytes][2803124][2910649]

[216][local][cmp][/var/log/system.log][blocks][5480][5688]

[204][local][cmp][/var/log/wtmp][checksum][e5b1bda706ab602d697e27596a877bbd]

[4e6e4314ad5ca0ccb2fe94b6aee99324]

[211][local][cmp][/var/log/wtmp][mtime][Sun Apr 3 20:25:31 2005][Sun Apr

3 20:28:03 2005]

[213][local][cmp][/var/log/wtmp][ctime][Sun Apr 3 20:25:31 2005][Sun Apr

3 20:28:03 2005]

[215][local][cmp][/var/log/wtmp][bytes][166932][167004]

Change Statistics:

checksums: 3

SUID files: 0

root-owned files: 3

file permissions: 0

new: 0

missing: 0

total differences: 12

www.syngress.com

Advanced Strategies • Chapter 9 349

The main problem is that you want to monitor these files, but not all of its

attributes. With Samhain, this is easy because you can simply drop this directory into

the LogFiles or GrowingLogFiles policy section. For Osiris, you need to create a filter

to weed out the attributes that are expected to change. In this case, you are not con-

cerned with time stamps, size, or checksums.All of the aforementioned log entries

apply to files under /var/log, so we limit the filter to that directory. First, copy the log

file somewhere where you can safely work on it. If you are not saving log files, the

last log is always called log.temp. Otherwise, it will be specified in the notification:

cp /usr/local/osiris/hosts/local/logs/log.temp /tmp

Next, test a regular expression using cat and grep. Capture just the log entries by

catching all lines that start with an open square bracket:

cat /tmp/log.temp | grep –E "^\["

[204][local][cmp][/var/log/lastlog][checksum][49b7c4d9db6a5d3f19b94ac50083cd

dd][f925180264138bd61e0d50f95d145978]

[211][local][cmp][/var/log/lastlog][mtime][Sun Apr 3 20:25:31 2005][Sun

Apr 3 20:28:03 2005]

[213][local][cmp][/var/log/lastlog][ctime][Sun Apr 3 20:25:31 2005][Sun

Apr 3 20:28:03 2005]

[204][local][cmp][/var/log/system.log][checksum][bb56a6a7352fa5688e411d4a315

c8a3f][ce4fc2a39e1f5d83d87b53a26c8bf4aa]

[211][local][cmp][/var/log/system.log][mtime][Sun Apr 3 20:27:50 2005][Sun

Apr 3 20:28:33 2005]

[213][local][cmp][/var/log/system.log][ctime][Sun Apr 3 20:27:50 2005][Sun

Apr 3 20:28:33 2005]

[215][local][cmp][/var/log/system.log][bytes][2803124][2910649]

[216][local][cmp][/var/log/system.log][blocks][5480][5688]

[204][local][cmp][/var/log/wtmp][checksum][e5b1bda706ab602d697e27596a877bbd]

[4e6e4314ad5ca0ccb2fe94b6aee99324]

[211][local][cmp][/var/log/wtmp][mtime][Sun Apr 3 20:25:31 2005][Sun Apr

3 20:28:03 2005]

[213][local][cmp][/var/log/wtmp][ctime][Sun Apr 3 20:25:31 2005][Sun Apr

3 20:28:03 2005]

[215][local][cmp][/var/log/wtmp][bytes][166932][167004]

Next, add another grep call to test the regular expression:

cat /tmp/log.temp | grep -E "^\[" | grep –E

"\[cmp\]\[/var/log.*\].*\[(mtime|ctime|bytes|blocks|checksum)\]"

[204][local][cmp][/var/log/lastlog][checksum][49b7c4d9db6a5d3f19b94ac50083cd

dd][f925180264138bd61e0d50f95d145978]

www.syngress.com

350 Chapter 9 • Advanced Strategies

[211][local][cmp][/var/log/lastlog][mtime][Sun Apr 3 20:25:31 2005][Sun

Apr 3 20:28:03 2005]

[213][local][cmp][/var/log/lastlog][ctime][Sun Apr 3 20:25:31 2005][Sun

Apr 3 20:28:03 2005]

[204][local][cmp][/var/log/system.log][checksum][bb56a6a7352fa5688e411d4a315

c8a3f][ce4fc2a39e1f5d83d87b53a26c8bf4aa]

[211][local][cmp][/var/log/system.log][mtime][Sun Apr 3 20:27:50 2005][Sun

Apr 3 20:28:33 2005]

[213][local][cmp][/var/log/system.log][ctime][Sun Apr 3 20:27:50 2005][Sun

Apr 3 20:28:33 2005]

[215][local][cmp][/var/log/system.log][bytes][2803124][2910649]

[216][local][cmp][/var/log/system.log][blocks][5480][5688]

[204][local][cmp][/var/log/wtmp][checksum][e5b1bda706ab602d697e27596a877bbd]

[4e6e4314ad5ca0ccb2fe94b6aee99324]

[211][local][cmp][/var/log/wtmp][mtime][Sun Apr 3 20:25:31 2005][Sun Apr

3 20:28:03 2005]

[213][local][cmp][/var/log/wtmp][ctime][Sun Apr 3 20:25:31 2005][Sun Apr

3 20:28:03 2005]

[215][local][cmp][/var/log/wtmp][bytes][166932][167004]

Keep in mind that grep is matching all of the log entries that are filtered out.

Therefore, make sure that each of the log messages that are printed using this com-

mand are log messages that you want filtered into subsequent scans. Feel free to

experiment with this regular expression to make sure that it matches the correct log

messages.To see which log entries are not being filtered out, use the -v option of

grep to invert the regular expression. (A good reference for regular expressions is

Mastering Regular Expressions by Jeffrey E. F. Friedel [O’Reilly and Associates]).

Testing Notifications
Another item to test for is notifications. If you are relying on Samhain or Osiris

directly regarding notifications about detected changes to your hosts, you should

regularly verify that these notification vectors are working correctly. For Osiris, there

is a notification test command in the CLI.To verify that the management console

can successfully send you e-mail, login to the management console and do the fol-

lowing:

osiris-4.1.7-dev: test-notify

>>> connecting...

>>> notification test message(s) sent.

www.syngress.com

Advanced Strategies • Chapter 9 351

If unsuccessful, an error is printed indicating the reason why the test message

was not sent.The standard Osiris test message is a plaintext e-mail that looks some-

thing like the following:

To: bob@example.com

From: "Osiris Host Integrity System" <osirismd@example.com>

Date: Sun, 3 Apr 2005 16:14:37 -0600

Subject: [osiris test][notification system test]

This is a test notification message sent by the Osiris management console.

Prebinding and Prelinking
With Mac OS X and some Linux systems, executables (and libraries) may contain

information about their dependencies on other libraries. Specifically, when an exe-

cutable that is linked against shared libraries is loaded, any referenced symbols must

be resolved at runtime. In order to speed this up, some systems have ways of embed-

ding this information into the executable so that the necessary runtime resolution is

reduced; therefore, the application starts quicker.This is called prebinding on Mac OS

X and prelinking on Linux. Whenever prebinding or prelinking information is

updated, it changes the contents of the executable, and as a result, the checksum for

the file.This makes it very difficult to monitor the integrity of these files.

Prebinding: Mac OS X File Integrity
With Mac OS X, both Samhain and Osiris generate false positives when prebinding

information is updated.This is problematic because prebinding information is

updated not only whenever new software is installed (including all software updates),

but also when applications are launched and the prebinding information is discov-

ered to be out of date.This means that at any point (not just when installing soft-

ware), prebinding information for executables or libraries may be updated.To make

this problem even more overwhelming, prebinding information is specific to the

host, so in theory, 100 Mac OS X systems could each produce a different set of

checksums for the same executable.

Although Osiris and Samhain cannot deal with this problem on Mac OS X,

there is a small command-line application called ctool that will produce the Message

Digest 5 (MD5) and Secure Hashing Algorithm 1 (SHA-1) values for prebound files,

minus their prebinding information. Ctool is available from www.hostintegrity.

com/tools/ctool and falls under a Berkeley Software Distribution (BSD)-style

license.The options for ctool are as follows:

www.syngress.com

352 Chapter 9 • Advanced Strategies

$ ctool

usage: ctool [options...] <file> | <directory> ...

options:

-a, --alg <alg> one of {md5,sha1} default is md5.

-d, --debug verbose; display verbose debugging information.

-r, --recursive recursively process a directory.

-s, --stat show all stat information for specified file.

-v, --version display program version information.

-h, --help display this usage statement.

To compute a checksum minus prebinding information, provide the path to the

executable as a single argument:

$ ctool /bin/ls

ctool-MD5(/bin/ls)= 3f678c69a72464f8a84287cb110d48d5

Remember, this is not the MD5 of the complete file contents, but the file con-

tents minus prebinding information.Any Mac OS X system with the same version

of /bin/ls will render this same checksum using ctool.The downside is that an

attacker could tamper with just the prebinding information. Since that information

is not included with the checksum, it is technically possible for a compromised exe-

cutable to appear sound when compared against a legitimate one using ctool.

However, the alternative is that you have no way of knowing that an executable was

modified because of prebinding or because the executable is compromised. While

prebinding information is sensitive, it is more likely that the entire executable has

been compromised.This being the case, ctool is useful in distinguishing prebinding

changes from a Trojan. Furthermore, attacks that take advantage of prebinding will

likely manifest themselves in other places.Any changes made to a library will cause

ripples of changes in all of the executables that use that library.

To see the details of what was excluded in the computation of the checksum,

run ctool in debug mode. For example:

$ ctool --debug /bin/ls

====[file: (/bin/ls)]====

file type: executable

number of load commands: (15)

...read section __TEXT,__text (offset=3404,size=17344).

...read section __TEXT,__cstring (offset=22796,size=1620).

www.syngress.com

Advanced Strategies • Chapter 9 353

...read section __TEXT,__literal8 (offset=24416,size=48).

file size: (32464) bytes.

excluded a total of 13452 bytes from checksum.

ctool-MD5(/bin/ls)= 3f678c69a72464f8a84287cb110d48d5

If you provide a directory, all of the files in that directory will be processed. If

you specify —recursive as an option, all of the subdirectories will also be processed.

For example, if you want to take a snapshot of your /bin directory on a host, assign it

a directory and it will automatically compute the contents:

$ ctool /bin

ctool-MD5(/bin/[)= 91f366fc40dc513bb98b1e732828e771

ctool-MD5(/bin/bash)= b10d9f6a19144dcb26844ed967f03853

ctool-MD5(/bin/cat)= e2c23a3a794e69d2d8ae2eb3f1bd4941

ctool-MD5(/bin/chmod)= a60aae9d2b863f4cbb049c9b265f1d5e

ctool-MD5(/bin/cp)= e1574422a105e0024bf0c723f47b4408

ctool-MD5(/bin/csh)= c2b372ee986a471b45337c762aed9a07

ctool-MD5(/bin/date)= 10aa150426017f195cdfa90b090e447e

ctool-MD5(/bin/dd)= 37b489d99a2d752de72b10317500660b

ctool-MD5(/bin/df)= 3f6fa1ae859fd16a04a09d42092645ca

ctool-MD5(/bin/domainname)= 3ea582c293c12969527652dffb09fd49

ctool-MD5(/bin/echo)= de4bfe4f8879fbca8b1fcddb62f05d32

ctool-MD5(/bin/ed)= 3c4db2aeef0ab0a7719a6db0303c126b

ctool-MD5(/bin/expr)= 2e83f9ec3d1549cce02f144762b5f634

MD5(/bin/hitest.contents)= 6e7af3ca66b56a0cf58439d903c6f8ef

...skipping zero length file.

...skipping zero length file.

...skipping zero length file.

...skipping zero length file.

ctool-MD5(/bin/hostname)= 157759db15edfbea7f63ac38e6a068f2

ctool-MD5(/bin/kill)= 3c4948a8bd94839c36e9a21065c124c4

ctool-MD5(/bin/ln)= 02e403e7ba0260b863bb40f3d298f9dd

ctool-MD5(/bin/ls)= 3f678c69a72464f8a84287cb110d48d5

ctool-MD5(/bin/mkdir)= a5aab25da37646158665c00e90beb7f3

ctool-MD5(/bin/mv)= 2a0de8e885a2f7a999a18956920974b5

ctool-MD5(/bin/pax)= 2bebd0dc665096faafd0a1181a7d9d26

ctool-MD5(/bin/ps)= bbc3cc36a12891cc9a159d1415e0425f

ctool-MD5(/bin/pwd)= cec65d53323bec319724b14191d70aa5

ctool-MD5(/bin/rcp)= 26aba7bd06163b8252e56160ce4ec95b

ctool-MD5(/bin/rm)= 6addb8226e6288b3d321f5674aaf29f5

www.syngress.com

354 Chapter 9 • Advanced Strategies

ctool-MD5(/bin/rmdir)= c049c4100bb68e98786021baa160e958

ctool-MD5(/bin/sh)= b10d9f6a19144dcb26844ed967f03853

ctool-MD5(/bin/sleep)= c38e6bc7139bdf0af593be9775607d27

ctool-MD5(/bin/stty)= 4e78d0e2a00a6b7c89b23bed62269ce5

ctool-MD5(/bin/sync)= 618b91dd04f4951f4aa40d090d17aef9

ctool-MD5(/bin/tcsh)= c2b372ee986a471b45337c762aed9a07

ctool-MD5(/bin/test)= 91f366fc40dc513bb98b1e732828e771

ctool-MD5(/bin/zsh)= 5075dc40cf5386412e16bfea074a32e3

ctool-MD5(/bin/zsh-4.1.1)= 5075dc40cf5386412e16bfea074a32e3

Finally, ctool can produce the stat record for a file (similar to the stat command

on Linux systems). Mac OS X does not have an easy way to view the contents of

the stat record for a file; therefore, ctool is used to do so:

$ ctool --stat /bin/ls

ctool-MD5(/bin/ls)= 3f678c69a72464f8a84287cb110d48d5

stats for (/bin/ls):

device: 234881026

inode: 860280

mode: -r-xr-xr-x (33133)

links: 1

uid: 0 root

gid: 0 wheel

rdev: 0

mtime: Sat Apr 2 08:39:04 2005 (1112456344)

atime: Sun Apr 3 08:46:22 2005 (1112539582)

ctime: Sat Apr 2 08:39:04 2005 (1112456344)

bytes: 32464

blocks: 64

block size: 4096

flags: 0

gen number: 0

One way to take advantage of ctool is to maintain an offline Mac OS X host to

use exclusively as a store for known good file checksums computed with ctool.The

known good system is then updated with software updates via read-only media that

have been verified; the system is never hooked up to a network.A current listing of

known good ctool checksums can be maintained and used to verify suspect files on

www.syngress.com

Advanced Strategies • Chapter 9 355

your systems.To create a listing of ctool-based checksums on your known good

system, run the following command after every update:

find / -type f -xdev -exec ctool '{}' \; > /tmp/ctool.txt

After taking some time to run, this command will produce a checksum for every

file on the system and store the list in /tmp/ctool.txt.That data can then be used to

perform spot checks on your systems. Keep in mind, that if you have reason to

believe that an executable is compromised, the only true way to do this is to per-

form an offline analysis of the suspect files.

Using ctool is not a perfect solution.The only reason it is useful is because the

alternative is nothing.The reason that ctool functionality is not built into Osiris is

that it is not viewed as a long-term solution. Prebinding has plagued file integrity on

Mac OS X systems for years.The real solution is to build a verification process into

the prebinding system itself so that the tree of dependencies can be verified external

to the host. In the meantime, ctool is better than nothing.

Prelinking: Linux File Integrity
Some Linux systems implement the concept of prelinking, which is basically the same

concept as with Mac OS X where the launch time is reduced by resolving symbols

beforehand and storing the information in the executable itself.The problem is that

it will generate false positives for the HIMS being used. When you think about it, it

is not really a false positive when the contents of an executable change. If this exe-

cutable were updated to a new or patched version, the result would be the same.The

difference with prelinking is that it can happen so much that it becomes noise to

most of us. For the few of you that enjoy being bombarded with each prelinking

alert, carry on. For the rest of us, there are steps to take to ignore them.

With Osiris, the only real option is to disable the prelinking system altogether.

Unlike Mac OS X, prelinking on Linux is something you have to seek out. With

Mac OS X, prebinding is on, it cannot simply be turned off, and every system has to

deal with it. If the decision to use prelinking on your Linux system(s) is not your

decision, then Samhain provides some ways to mitigate the noise problem.

Prelinking on Linux systems is handled by an application appropriately named

prelink, which is usually in /usr/sbin/prelink, but not always.All prelinking informa-

tion is handled by the /etc/prelink.conf configuration file. Specifically, this file contains

a listing of directories that contain files to be prelinked. Only files specified in this

configuration file or on the command line are altered by the prelink application.

This will help you configure Samhain correctly for your system.

www.syngress.com

356 Chapter 9 • Advanced Strategies

The prelink application can be used to interact with and modify prelinked files.

For example, to prelink a specific executable, you would do:

$ /usr/sbin/prelink --verbose /bin/ls

Assigned virtual address space slots for libraries:

/lib/ld-linux.so.2 41000000-

410126b8

/lib/libc.so.6 41015000-

4110f644

/lib/libpthread.so.0 41112000-

41161e64

/lib/libncurses.so.5 41164000-

4119cb2c

/lib/librt.so.1 4119f000-

411b09b8

dhcp-64-101-69-194 root #

This will update the prelink information for /bin/ls and any libraries it depends

on (assuming that the prelink information needs updating).To undo prelinking for a

file, use the —undo option:

$ /usr/sbin/prelink --undo --verbose /bin/ls

This restores the file to its original state. Verify that this has a reverse operation

by computing the MD5 or some other checksum before and after the undo opera-

tion:

$ openssl md5 /bin/ls

MD5(/bin/ls)= 53002c24dc40d2cb33d8c3d51e666d11

/usr/sbin/prelink /bin/ls

$ openssl md5 /bin/ls

MD5(/bin/ls)= 64efb2aec7647e992f8c2a904a631faf

/usr/sbin/prelink --undo --verbose /bin/ls

$ openssl md5 /bin/ls

MD5(/bin/ls)= 53002c24dc40d2cb33d8c3d51e666d11

This part of the Linux prelink system is very useful; similar functionality would

also be very useful on Mac OS X systems.This system also features an option to pre-

link called verify that will undo and then redo prelink information and verify that

the resultant executable is the same as before. If an executable is corrupted or mali-

ciously tampered with, undoing the prelinking and redoing it will reveal the differ-

ence. However, if the entire prelink system is compromised, the verify feature has

little value.And if the prelink system is corrupted, there are much bigger problems

www.syngress.com

Advanced Strategies • Chapter 9 357

to worry about.The verify option also outputs the contents of the unprelinked exe-

cutable, making it easy to pass to another application for checksumming:

/usr/sbin/prelink --verbose --verify /bin/ls | openssl

md5

53002c24dc40d2cb33d8c3d51e666d11

$ openssl md5 /bin/ls

MD5(/bin/ls)= 64efb2aec7647e992f8c2a904a631faf

This will verify the prelink information, and the resultant file will still be pre-

linked.The only exception to this is if the prelink information does not match. In

that case, an error is printed.To demonstrate this, make a copy of /bin/ls, modify it,

and attempt to verify it. It must be kept in the /bin directory so that it falls under

one of the directories specified in the /etc/prelink.conf file. Note that the modified

version of ls still seems to be functioning correctly. However, since the file was mod-

ified and the prebinding information does not match anymore, the verify option will

display an error as opposed to outputting the contents of the file.

cp /bin/ls /bin/ls.copy

/usr/sbin/prelink --verbose /bin/ls.copy

Assigned virtual address space slots for libraries:

/lib/ld-linux.so.2 41000000-

410126b8

/lib/libc.so.6 41015000-

4110f644

/lib/libpthread.so.0 41112000-

41161e64

/lib/libncurses.so.5 41164000-

4119cb2c

/lib/librt.so.1 4119f000-

411b09b8

echo "smargs" >> /bin/ls.copy

/bin/ls.copy /

bin dev home lost+found opt proc sbin tmp

var

boot etc lib mnt portage-20050326.tar.bz2 root sys usr

/usr/sbin/prelink --verbose --verify /bin/ls.copy

/usr/sbin/prelink: /bin/ls.copy: prelinked file size differs

rm /bin/ls.copy

www.syngress.com

358 Chapter 9 • Advanced Strategies

Finally, to make this even easier, prelink has the option to verify and print the

resultant MD5 checksum or SHA-1 checksum to standard output. Basically, this is

the —verify option, but instead of printing the file, it prints the checksum value.This

has obvious application; it is clear that the developers had integrity verification in

mind when designing this system:

/usr/sbin/prelink --verbose --verify --md5 /bin/ls

53002c24dc40d2cb33d8c3d51e666d11 /bin/ls

As of Version 2.0, Samhain addresses the prelink problem head on by defining a

specific policy for executables and files that are affected by prelinking. Usually, exe-

cutables fall under the ReadOnly policy. Files that are subject to prelinking fall under

the Prelink policy. Specifically, this means that changes to the time stamps, size, and

inode are ignored during file checks for files under this policy. Samhain uses the pre-

link executable to verify prelinked files using /usr/sbin/prelink —verify on each file

under the Prelink policy (i.e., the output of the verify option is used as input for

computing the checksum.

The good thing about prelinking is that prelinked files are specified by the pre-

link configuration file /etc/prelink.conf. Generally, anything being monitored under

this policy should be specified in the Prelink section of the Samhain configuration

file. For example, the following is a default prelink.conf file for a Gentoo Linux

system:

prelink.conf autogenerated by env-update; make all changes to

contents of /etc/env.d directory

-l /bin

-l /sbin

-l /usr/bin

-l /usr/sbin

-l /lib

-l /usr/lib

-h /usr/local/lib

-h /usr/lib/gcc-lib/i386-pc-linux-gnu/3.3.4

-h /usr/local/bin

-h /opt/bin

-h /usr/i386-pc-linux-gnu/gcc-bin/3.3

-b /usr/lib/wine

-b /usr/lib/valgrind

Assuming you are monitoring most of these directories, add them to the

Samhain configuration file under the Prelink policy. Make sure you remove them

www.syngress.com

Advanced Strategies • Chapter 9 359

from your ReadOnly policy section. The policy will look something like the fol-

lowing:

[Prelink]

Use for prelinked files or directories holding them

dir=/bin

dir=/sbin

dir=/usr/bin

dir=/usr/sbin

dir=/lib

dir=/usr/lib

dir=/opt/bin

Next, set up the Prelink options under the Misc section of the configuration file.

There are two different options: SetPrelinkPath and SetPrelinkChecksum.The

SetPrelinkPath is the full path to the prelink executable.The SetPrelinkChecksum

option is used to perform verification of the prelink executable. Because Samhain

will be launching the prelink executable to use the output of the verify option, it

makes sense to perform some sanity checks on the prelink executable itself. If you

do not specify the path, /usr/sbin/prelink is assumed. If you do not specify a

checksum for prelink executable, no checks are performed before executing it. Find

out where your executable is, and produce a TIGER-192 checksum:

which prelink

/usr/sbin/prelink

samhain -H /usr/sbin/prelink

/usr/sbin/prelink: 4A2B8C37 BA9CF227 C73E32C8 AF0A844B 26D9A660 BF4E8D0C

Next, add the proper path and checksum to the Samhain configuration file

under the Misc section. Make sure to remove the whitespace from the checksum

(your checksum and path may vary):

SetPrelinkPath = /usr/sbin/prelink

SetPrelinkChecksum = 4A2B8C37BA9CF227C73E32C8AF0A844B26D9A660BF4E8D0C

To test this, undo the prebinding information in /bin/ls and run another scan.

Because Samhain will be using the prelink —verify output, no alerts about changes

to this file are generated:

www.syngress.com

360 Chapter 9 • Advanced Strategies

openssl md5 /bin/ls

MD5(/bin/ls)= 64efb2aec7647e992f8c2a904a631faf

prelink --undo /bin/ls

samhain -t check

ALERT : [2005-04-03T06:12:11-0700] msg=<START>, prog

ram=<Samhain>, userid=<0>, path=</etc/samhainrc>,

hash=<5052F560713D1016CF10CAD7

B54EC36A728272070FCC6DA3>, path=</var/lib/samhain/samhain_file>,

hash=<98468F58F

4301B45D7F582826D3F2FEB318F64F3159BFBE6>

To verify, add a bogus application for /bin/ls and verify that Samhain picks up on

it.The following example makes a backup copy of /bin/ls in /tmp, then copy

/bin/mv to /bin/ls.The next scan reveals a violation in the Prelink policy. Specifically,

the checksum for /bin/ls no longer matches. However, notice what happens after

/bin/ls is restored:

cp /bin/ls /tmp

cp /bin/mv /bin/ls

samhain -t check

ALERT : [2005-04-03T06:16:52-0700] msg=<START>, prog

ram=<Samhain>, userid=<0>, path=</etc/samhainrc>,

hash=<5052F560713D1016CF10CAD7

B54EC36A728272070FCC6DA3>, path=</var/lib/samhain/samhain_file>,

hash=<98468F58F

4301B45D7F582826D3F2FEB318F64F3159BFBE6>

CRIT : [2005-04-03T06:17:02-0700] msg=<POLICY [Prel

ink] C--------->, path=</bin/ls>,

chksum_old=<9BF12969CF1EF0117B7A092F0AC9F542CF

F37E5BAFD1765B>,

chksum_new=<F1B8C3C66CDC214ABF7A0132F7C3E6CE3375C82CFE8D432A>,

cp /tmp/ls /bin/ls

samhain –t check

ALERT : [2005-04-03T06:20:33-0700] msg=<START>, prog

ram=<Samhain>, userid=<0>, path=</etc/samhainrc>,

hash=<5052F560713D1016CF10CAD7

B54EC36A728272070FCC6DA3>, path=</var/lib/samhain/samhain_file>,

hash=<98468F58F

4301B45D7F582826D3F2FEB318F64F3159BFBE6>

www.syngress.com

Advanced Strategies • Chapter 9 361

The alert regarding the /bin/ls file checksum not matching disappeared after

being restored it its original value. Because Samhain ignores time stamps, size, and

inode changes, it is possible to load new executables for files under the prelink

policy and remain undetected as long as the file is restored whenever Samhain con-

ducts a scan.This is the best argument for the importance of conducting random

integrity scans on your hosts.

www.syngress.com

362 Chapter 9 • Advanced Strategies

Summary
Both Osiris and Samhain are beneficial out of the box. However, every deployment

has its own requirements and needs. In this chapter you learned how to use some of

the selling points for both of these applications and put them to use to make a good

deployment even better.

Solutions Fast Track

Performing SUID/SGID Security Audits

� SUID and SGID root executables can prove deadly to the integrity of a

host and should be monitored.

� You can take advantage of Osiris and Samhain’s abilities to monitor, only

after conducting a full audit of your existing SUID/SGID executables.

� SUID and SGID audits are I/O-intensive and should be weighed against

the risk and needs of the host.

Conducting Unscheduled Scans

� Unscheduled scans are useful for spotting check hosts so that they are not

always scanned with the same frequency. In the event that an attacker has

learned your scan frequency, you can prevent them from evading detection.

� Unscheduled scans with Osiris and Samhain must be performed manually,

because neither of them has the ability to deviate from its schedule.

Looking for Rogue Executables

� Osiris has special filters that enable it to look inside the contents of files

looking specifically for native executables or scripts.These filters can be

used to locate rogue executables on a host.

� Rogue executable scans are very I/O-intensive and, like SUID/SGID

audits, consider the impact on the system before conducting them.

� Not all systems are good candidates for rogue executable scans because

there is too much noise. Generally, systems that are mostly static (e.g.,

servers) take to these scans the best.

www.syngress.com

Advanced Strategies • Chapter 9 363

Testing and Verification

� Performing spot checks on your integrity monitoring deployments is easy

and well worth the effort to ensure that your systems have not fallen into a

useless state.

� Filters can be used to reduce false positives, but they can also introduce

false negatives if not configured correctly.

Prebinding and Prelinking

� Prebinding and prelinking executables have the unfortunate side effect of

altering the contents and therefore the checksum of a lt to verify the

integrity of the file over time.

� Samhain has the ability to monitor the integrity of prelinked files on Linux

systems.

� Mac OS X has prebound executables that make monitoring the integrity of

executables very difficult for Osiris and for Samhain. Use ctool for spot

checks of executables on Mac OS X.

Q: Are SUID and SGID executables not owned by root worth noticing?

A: Yes.The SUID and SGID root executables are going to be the ones that you

scrutinize and can justify their existence; however, non-root owned SUID

and SGID executables must not to be overlooked. Often, applications create

users specifically to handle daemons or configurations or files containing sen-

sitive data. Some applications run with privileged groups such as kmem to

read kernel memory.All SUID and SGID applications that justify their exis-

tence and the appearance of new applications with these bits set should not

be taken lightly. Conducting regular SUID and SGID audits of a host using

Osiris or Samhain is worth the effort.

www.syngress.com

364 Chapter 9 • Advanced Strategies

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: SUID and SGID checks are very I/O-intensive. How often should I run

these scans?

A: There are many variables at play: the kind of host it is (e.g., server, vs. work-

station); network exposure; and running services (e.g., e-mail, Web, File

Transfer Protocol [FTP]). SUID- and SGID-based exploits are not going to

be at the top of the list, so do not constantly scan for SUID root applications.

Instead, concentrate on the more important areas such as scanning for new

open network ports and kernel modules. Make a decision based on your

configuration and facts. Often, SUID and SGID applications are targeted for

buffer overflows.A great deal can be accomplished in this area by doing an

audit on existing SUID/SGID applications.As far as scheduling goes,

Samhain provides excellent support for this; you can specify a scan interval

specifically for the SUID/SGID check. For some systems, once per day may

not be unrealistic. For others, spot checks might be sufficient.

Q: Despite testing my deployment, I still require proof that scans have taken

place. How is that accomplished with Osiris and Samhain?

A: For Osiris, you can turn on notifications regardless of scan results. For

Samhain, you can set the threshold severity to alert so that you will receive e-

mail even if no changes are detected. In both cases, receipt of e-mail confirms

that the scan is complete.

Q: Are unscheduled scans really helpful?

A: It depends. It is particularly important on systems with prebound executables

such as Linux and Mac OS X, as some tricks against prebounding are likely

to slip past administrators and integrity monitoring systems that conduct only

periodic scans. By introducing unscheduled scans, you increase your chances

of uncovering attacks based on knowledge of the monitoring schedule.

Q: How can I tell if I have prelinking installed on my Linux system?

A: Look for /etc/prelink.conf and an executable called prelink.The prelink exe-

cutable is usually located in /usr/sbin/prelink. Most Linux distributions have

prelink packages or ports of some type. It takes a conscious effort to install

prelinking; avoid installing it if possible. However, many administrators opt to

install it because the speed increase is significant.

www.syngress.com

Advanced Strategies • Chapter 9 365

Monitoring
Linksys Devices

Solutions in this chapter

■ Using Prebuilt Firmware

■ Building Custom Firmware

■ Configuration and Administration

Appendix A

367

Introduction
The Linksys WRT54G and WRT54GS wireless broadband routers are clever devices

that run Linux. Because of a licensing issue with the General Public License (GPL),

Linksys released the source code for its firmware.As a result, many open source pro-

jects began, which provided application ports, toolsets, and complete firmware

images packed with additional applications and features.This appendix explores the

options for monitoring the environment of a Linksys WRT54G(S) with Osiris.This

device is normally found on home or (very) small business networks.Additionally,

they are often positioned as border devices and, therefore, are exposed to many types

of threats. Given that their environment must remain fairly static, using a HIMS such

as Osiris is a very important.

These devices do not have disks, only nonvolatile random access memory

(NVRAM).The first models had just over 4MB, but recent models (starting with

Version 2.2) have twice as much memory. One of the biggest problems you will

encounter when building software for the WRT54G is the size of the executables.

The Osiris scan agent depends on OpenSSL, which is not a small library.As a result,

it may be challenging to run an Osiris scan agent and all of your favorite tools in

one firmware image. However, running the scan agent in addition to the stock func-

tionality of the device is easily accomplished. Most of the significant settings are

stored in NVRAM; thus, monitoring the environment necessitates monitoring these

settings.To monitor the contents of NVRAM, an Osiris module (mod_nvram) was

developed.

There are two options for running Osiris on the Linksys WRT54G.The first

option is to use a prebuilt firmware image based on code that was released by a

company called Sveasoft.The second option is to build the image from source. One

big advantage with building from source is that you can add additional tools to the

image, including the scan agent’s root certificate; otherwise, the root certificate is sus-

ceptible to tampering.

WARNING

Some of the steps outlined in this appendix may render your access
point a doorstop and void your warranty. Although I have gone to great
lengths to make sure the information is accurate, new versions of the
software and hardware may become available. Consequently, it is pos-
sible that your access point may wind up in an unusable state.

www.syngress.com

368 Appendix A • Monitoring Linksys Devices

Using Prebuilt Firmware
Using a prebuilt image is the easiest option.The biggest disadvantage is that you

have to trust that the image was built correctly and that it is not going to compro-

mise your security or harm your network.The biggest advantage is that you can be

up and running in a couple of minutes, without compiling any code.

A prebuilt image based on the Sveasoft firmware distribution is available from

the Osiris Web site at http://hostintegrity.com/osiris/linksys.html. Basically, it is the

Sveasoft image altered by the addition of the Osiris scan agent software.After down-

loading the image file, from the Administration tab select Firmware Upgrade and

use the provided form to upload the new image (see Figure A.1)

Figure A.1 Uploading a New Firmware Image

www.syngress.com

Monitoring Linksys Devices • Appendix A 369

WARNING

Do not attempt to upload custom firmware images via Trivial File
Transfer Protocol (TFTP); use only the Web interface. I have noticed that
using TFTP for images that are approaching the NVRAM size limit will fail
to upload correctly.

If you have Version 2.2 or later of the Linksys WRT54G(S), you will not be able

to use certain older Sveasoft firmware images.Attempting to upload older firmware

on a new device will fail soon after the upload process begins.The Osiris Web site

provides details about which images work with which devices.The version is printed

under the Linksys logo on the underside of each device.

After the firmware is uploaded, it will automatically reboot off of the new

image.At this point, you should have an Osiris scan agent running and listening on

port 2265.All that is necessary is to add this host to your Osiris management con-

sole.The root certificate is stored in /tmp/osiris_root.pem and is lost upon reboot. It is

created automatically the first time the management console connects to the agent.

Because this file is writable and not part of the firmware image, it is susceptible to

tampering.To prevent this, you must build a custom image and build the certificate

into the firmware image.

Building Custom Firmware
In order to build a custom firmware image for the WRT54G, you will need:

■ Access to a Linux system with a fair amount of disk space (~800MB)

■ The Linksys GPL source code

■ The modified Sveasoft source code

The Linksys source code can be found on the Web at www.linksys.com/

support/gpl.asp.There are source packages for many different Linksys devices; make

sure you get the firmware for the WRT54G.The modified Sveasoft source that con-

tains the Osiris scan agent code is also located at the Osiris Linksys Web site at

http://hostintegrity.com/osiris/linksys.html.

First, unpack the Linksys source code.You do not have to use the Linksys source,

but you do have to install the development toolset:

www.syngress.com

370 Appendix A • Monitoring Linksys Devices

$ tar xvfz wrt54g.2.04.4.tgz

$ tar xvfz wrt54g.2.04.4.tgz

WRT54G/

WRT54G/tools/

WRT54G/tools/README.TXT

WRT54G/tools/brcm/

...

This is a large tar.gz file, so it will take some time to unpack. Inside the

WRT54G directory is a tools directory. Follow the instructions specified in the

README.TXT to install the Linksys development tools. Recent releases of the

tools may have different instructions, so use the following only as a guide:

$ cd WRT54G/tools

cp -rf brcm /opt

$ export LINKSYS_PATH="/opt/brcm/hndtools-mipsel-

linux/bin:/opt/brcm/hndtools-mipsel-uclibc/bin"

$ export PATH="$LINKSYS_PATH:$PATH"

At this point, the Linksys source code that was unpacked is useless; feel free to

delete it. Next, unpack the modified Sveasoft source:

$ tar xvfz satori-4.0-osiris.tar.gz

WRT54G/

WRT54G/src/

WRT54G/src/et/

WRT54G/src/et/cfe/

...

This will take some time to unpack. If you want to update the osirisd source

code with the latest version or if you want to add modules, do so now (the

mod_nvram module is included).The osirisd source is located within the source tree

at WRT54G/src/router/osiris/src/osirisd/.You can drop in the osirisd source from any

Osiris source distribution and add modules to the source as you would for any build.

By default, the scan agent’s root certificate is stored in /tmp and will be lost

upon power cycling the device. If you want to avoid this and protect the certificate

from tampering, you can build it into the firmware image.The disadvantage of this is

that if you ever need to change this certificate, you will have to rebuild the firmware

image.To add a root certificate to the image, copy the file into

WRT54G/src/router/osiris/osiris_root.pem. It is important that the filename be

osiris_root.pem; otherwise, the scan agent will not use it.

www.syngress.com

Monitoring Linksys Devices • Appendix A 371

Next, to build the source, enter the top-level directory and type:

$ cd WRT54G

$ make

The build time will vary depending on your hardware, but it will generally take

at least a half hour to compile. Once finished, the image is WRT54G/image/code.bin

or WRT54G/image/code_gs.bin, depending on your device type.At this point, you

can attempt to upload the image to your device.

Configuration and Administration
There are a few differences between monitoring a Linksys WRT54G and moni-

toring the average Linux system.The biggest difference is with monitoring the con-

tents of NVRAM.The prebuilt images and the modified source code both include

mod_nvram. In addition, the normal built-in Osiris modules are also used to monitor

users, groups, network ports, and kernel extensions. Because of the nature of this

device, the network port module is arguably the most important.

Secure Shell (SSH) access may prove useful.The Sveasoft code has an SSH server

running by default; however, you will have to configure it in order to allow logins.

Having SSH access to the router makes it easy to troubleshoot problems and con-

duct additional configuration changes.Although not necessary, if you are going to

monitor your host for changes, it is recommended that you also establish SSH so

that you are not rushing to set it up when you need it. With the Sveasoft images,

you must provide an SSH key to make SSH connections (at the time of this

writing).The Web-based interface provides instructions for how to set this up.

Included with the Osiris source is a default scan configuration file for the

WRT54G:

Hash md5

FollowLinks no

<System>

Include mod_users

Include mod_groups

Include mod_kmods

Include mod_nvram

</System>

<Directory />

Recursive yes

www.syngress.com

372 Appendix A • Monitoring Linksys Devices

NoEntry dev

NoEntry proc

NoEntry tmp

NoEntry var

IncludeAll

</Directory>

This configuration is simple.The four modules, including mod_nvram, are used to

monitor various elements of the environment.Also, a recursive scan is done on most

of the root file system.This makes sense because the file system is read-only.The

mount points that are not monitored are dev, proc, tmp, and var. Because the file

system is read-only, many of these mount points are used to store volatile data while

the system is operating.

Although the WRT54G is a Linux environment, there are a few peculiarities to

be aware of:

■ Make sure that the date is set correctly.After loading images, the clock is set

to 1970 and it does not sync to a timeserver, which presents a problem for

certificate validation.As a result, any attempt to talk to the scan agent fails,

because the agent assumes that the certificate is not valid.To set the time

on the default image or the Sveasoft image, navigate to the Setup | Basic

Setup menu, scroll down to the bottom, and select automatic to have the

time automatically synced to an NTP server.

■ Set the boot_wait NVRAM parameter to on.This will cause the device to

wait at boot and give you the opportunity to use TFTP to upload a good

image in the event that the firmware upload did not work. If not set, the

router will rush into loading the bad image and then you will have no

choice but to open up the case and perform some odd hardware pin-

shorting tricks to recover it.

■ The Squash file system that comes with the Sveasoft image triggers false

positives for blocks and block_size changes to files.To ignore these, add the

following Osiris filter to prevent these changes from triggering alerts:

\[<hostname>\].*\[(blocks|block_size)\]

Monitoring the integrity of devices such as the Linksys WRT54G is not only

simple, but also very useful. Because these devices are often used as the border to

many home and small business networks, they are exposed to a great deal of threats.

Generally, these devices are configured once and left alone. Whenever possible, you

should add these devices to your HIMS.

www.syngress.com

Monitoring Linksys Devices • Appendix A 373

Extending Osiris
and Samhain
with Modules

Solutions in this chapter:

■ Osiris Modules

■ Samhain Modules

Appendix B

375

Introduction
Both Osiris and Samhain sport a modular interface that allows you to extend the func-

tionality of their scan agents.This interface is useful for a number of reasons. First, it

allows for a number of developers to contribute to improving the functionality of the

software. Second, it keeps the agent code small and manageable.As an administrator,

you can add modules to your agents to satisfy the various needs of your deployment;

you only have to add the modules that make sense for your environment.

The word “module” can be used to describe many things in software. With some

applications (e.g.,Apache) you can write modules that can by dynamically linked

into the application. Both Osiris and Samhain only allow for static modules, which

means that if you want to add or remove the functionality of a module from the

agent, you must recompile.This appendix examines ways to customize Osiris and

Samhain to extend the monitoring capabilities of their agents. Each section walks

through the creation of a simple module and shows you how to test it.The goal here

is to teach you the basic procedures so that you can develop your own modules.

Both Osiris and Samhain and their modules are written in C; therefore, it is

assumed that you have some familiarity with C programming.You must have a

system with a C compiler as well as the latest Osiris and/or Samhain source. Do not

attempt to follow these examples on a production system. It is recommended that

you establish a dedicated test environment just to be safe.

Osiris Modules
Osiris Interface Release 4.0 allows you to extend the functionality of the scan agent

by writing your own code for collecting information from the host environment.

Aside from monitoring files, all of the Osiris monitoring features (including the

monitoring of users, groups, kernel extensions, and open network ports) are imple-

mented as modules.

With each scan, the Osiris agent runs through its list of enabled modules and

passes execution to them by calling the module’s handler function. With most mod-

ules, the handler function involves collecting pieces of information (called records)

and sending them back to the console to be stored in the scan database. Each record

is a 1K buffer, and requires a unique identifier. When the management console com-

pares two scan databases, their unique IDs are used to iterate through the list of

records in each database.A string comparison is done on the text payload of the two

records, and if the payloads differ, an alert is generated.The console does not know

anything about the content of the modules; the details of what was monitored and

the significance of the collected data is contained in the agent code.

www.syngress.com

376 Appendix B • Extending Osiris and Samhain with Modules

An Example Module: mod_hostname
The best way to understand how Osiris modules are implemented is to build one.

This section goes through the process of implementing a module to monitor host-

names. If the hostname for the host is changed, an alert is generated.

The first step in making an Osiris module is creating a directory and setting up

the build environment. Since modules are just extensions to scan agent code, they

are kept in a modules directory under the osirisd directory of the Osiris source

(/src/osirisd/modules). Each module is in its own directory.All you need to do is

create the directory, the Makefile, and a .c file; the Osiris build environment does the

rest. First, make the directory:

$ cd src/osirisd/modules

$ mkdir mod_hostname

Next, create a Makefile; do this by copying another module’s Makefile and

modify it accordingly:

$ cd mod_hostname

$ cp ../mod_users/Makefile .

Edit the Makefile and change the SRCS line so that it reads:

SRCS=mod_hostname.c

Next, create your source file:

$ touch mod_hostname.c

All that is left is to implement the module’s handler function. Since this module

is very simple, all of the work can be done in a single function. Before doing that,

however, you need to include the module’s header files and define the module’s

name. Using your editor of choice, add the following to the mod_hostname.c file:

#include "libosiris.h"

#include "libfileapi.h"

#include "rootpriv.h"

#include "common.h"

#include "version.h"

#include "scanner.h"

#include "logging.h"

www.syngress.com

Extending Osiris and Samhain with Modules • Appendix B 377

Now define the module’s name:

static char *MODULE_NAME = "mod_hostname";

Next, define the handler function.The name of the handler function must match

the name of the module’s directory and the name set in the MODULE_NAME

character in the preceding example:

1 void mod_hostname(SCANNER *scanner)

2 {

3 char name[255];

4 SCAN_RECORD_TEXT_1 record;

5

6 if (scanner == NULL)

7 {

8 return;

9 }

10

11 if (gethostname(name, sizeof(name)) < 0)

12 {

13 log_error("module: %s, error getting hostname.",

MODULE_NAME);

14 return;

15 }

16

17 initialize_scan_record((SCAN_RECORD *)&record,

SCAN_RECORD_TYPE_TEXT_1);

18

19 /* copy module name into record. */

20 osi_strlcpy(record.module_name, MODULE_NAME,

sizeof(record.module_name));

21

22 /* copy a unique record name into the record's name field. */

23 osi_strlcpy(record.name, "hostname", sizeof(record.name));

24

25 /* copy value for this record. */

26 osi_strlcpy(record.data, name, sizeof(record.data));

27

28 /* send data. */

29 send_scan_data(scanner, (SCAN_RECORD *)&record);

30 }

www.syngress.com

378 Appendix B • Extending Osiris and Samhain with Modules

The first thing to notice is line 11, where you acquire the hostname value into a

buffer. Line 17 uses the initialize_scan_record function to set the record type and zero-

out the payload.At the time of this writing, the TEXT_1 record type is the only

type supported by modules; therefore, all modules use this function to initialize each

record.

Line 20 copies the name of the module into the scan record. Not all scan

records have a name; however, module records do so that records for each module

can be easily distinguished from other records in the database.This is a simple string

copy; however, note that function osi_strlcpy() is used instead of strcpy() or strncpy().

Osiris defines a number of safe string-handling functions in /src/libosiris/utilities.h.

For security reasons, you should always use one of these functions in place of the

typical C string functions.

Line 23 copies a unique identifier for this record. Since you only have one

record, this value is arbitrary. For clarity, copy in the string hostname. In line 30, the

value of the hostname acquired from line 13 was copied into the record payload.

Finally, the record is sent back to the console in line 34 using the send_scan_data()

function.

This module generates only one record. If you need to generate multiple

records, the code is not much different.The pseudo-code is something like the fol-

lowing:

For each record:

initialize_scan_record()

set record.module_name

set record.name

set record.data

send_scan_data()

There are no module initialization or shutdown routines.To generate a log mes-

sage, you can use three types of log messages including the log_error(), log_warning(),

and log_info() functions.These functions follow a printf() style format for arguments.

Now that you have implemented the mod_hostname, you must build and verify

that it compiles.To build the scan agent, cd into the osirisd directory and type

make.The Makefile should automatically find all modules and link them into the

scan agent executable.You should see something like the following:

www.syngress.com

Extending Osiris and Samhain with Modules • Appendix B 379

Making all in modules

./genmods.sh

======================================

Found Scan Agent Modules:

==> mod_groups

==> mod_hostname

==> mod_kmods

==> mod_ports

==> mod_users

======================================

This module is simple; therefore, barring any syntax errors, you should see the

Osiris agent build.This newly compiled agent executable has the capability to mon-

itor the hostname for changes.

Testing Your Module
Testing modules is very important; a misbehaving module can seriously impact the

overall functionality of a scan agent.To test the basic functionality of a module,

verify that the records are received and stored in the database, and verify that the

changes are properly detected. In this case, make sure that the database contains a

single record containing the value of the hostname.You will then change the host-

name and verify that the change triggers an alert.

The best way to test modules is to install a console and a scan agent on a system

dedicated for testing. Do not test modules on a production system.After you have

implemented and compiled your module and the new agent is running, log in to the

management console and create a test scan configuration using new-config:

osiris-4.1.3: new-config test

Add the following code to the test configuration file:

<Modules>

Include mod_hostname

</Modules>

In this case, you are going to run only the hostname module that you just cre-

ated. Next, push that configuration to the local agent.Assuming the agent is called

local and the configuration is called test:

osiris-4.1.3[local]: push-config test

>>> the configuration: (test) has been pushed to host: local

www.syngress.com

380 Appendix B • Extending Osiris and Samhain with Modules

Next, start the scan using the scan command; this should take less than a second.

Once complete, look at the database records to see if the hostname record is there:

osiris-4.1.3[local]: print-db 1

This may take a while...

100% [==>] 114688 bytes

h) show database header.

r) list file records.

d) list file record details.

m) list module records.

x) list errors.

q) quit

[local:database: 1]: m

[mod_hostname]

[hostname][myhost.example.com]

In this case, there is the single record sent by the mod_hostname module. Next,

change the hostname from myhost to myhost2 and run another scan.To view the

result of the scan, print out the latest log file.You should see something like the fol-

lowing:

osiris-4.1.3[local]: print-log log.temp

-------- begin log file --------

compare time: Mon Feb 21 15:37:17 2005

host: local

scan config: test (aba0a173)

log file: no log file generated, see system log.

base database: 1

compare database: 2

[223][local][cmp][mod_hostname][hostname][myhost.example.com][myhost2.exampl

e.com]

www.syngress.com

Extending Osiris and Samhain with Modules • Appendix B 381

Change Statistics:

checksums: 0

SUID files: 0

root-owned files: 0

file permissions: 0

new: 0

missing: 0

total differences: 1

-------- end log file --------

In this case, the testing is simple. If your module is more complicated, you must

perform additional tests to make sure that your code is functioning properly.

Modules are extensions of the scan agent code, and thus, it is very important that

your implementation be well tested. Redistributing scan agents because of a minor

bug in a module is not fun.Also, agents are daemons, so problems such as memory

leaks will eventually take their toll.

Packaging Your Module
If you are going to distribute your module for public use, make sure you include a

README file that explains the functionality of the module, any parameters, and the

supported platforms.All that is needed is to tar up the module directory. Make sure

you clean the directory of object files first:

$ cd src/osirisd/modules/mod_hostname

$ rm *.o

$ cd ..

$ tar cvfz mod_hostname.tar.gz mod_hostname

mod_hostname/

mod_hostname/Makefile

mod_hostname/mod_hostname.c

You can also submit Osiris modules to the Osiris developers list (osiris-

devel@lists.shmoo.com) to be included on the modules download page (http://

hostintegrity.com/osiris/modules.html).

www.syngress.com

382 Appendix B • Extending Osiris and Samhain with Modules

General Considerations
There are some limitations with the Osiris module interface. First, the records are basi-

cally text records of limited size; thus, any information that you gather from the envi-

ronment has to be translated into textual form. Second, only the agent functionality is

capable of being extended, not the management console. Since the console performs

all of the analysis, you are left only with string comparisons of the record data.

Another module issue to consider is that they do not have to generate records.

The point of producing records is to store them on the console so that previous

states of the host environment can be compared against the current state of the host

environment. It may be that you want to write a module to look at some element of

the environment for signs of malicious behavior. If nothing is detected, your module

does nothing. If you detect something worth noting, however, you can construct a

record and make the payload an alert message with the details of what was detected.

This would trigger a new record alert, but would also still serve its purpose: to alert

the administrator.

Samhain Modules
Like Osiris, some of the functionality of Samhain is implemented as modules.The

code is organized in such a way that you can copy an existing module and modify it

to suit your purposes. Some examples of this are the code for the kern, the Set User

ID (SUID) check, and the UTMP modules.

Developing a module for Samhain is more complicated than developing one for

Osiris, the main reason being that writing a Samhain module involves altering many

parts of the source tree.The benefit over Osiris is that in addition to being able to

extend what gets monitored, you can also control how your module interprets the

differences in the collected data. When you develop a module for Samhain, you can

also extend the syntax of the samhainrc file and add whatever options you want to

apply to your module. Writing a module involves four steps:

1. Defining and integrating a function pointer table.

2. Defining a header and implementation file.

3. Defining log message types.

4. Modifying the build system.

All modules are kept in the src directory.The log messages are defined in the

include/sh_cat.h and src/sh_cat.c files. Modifying the build system involves modifying

Makefile.in. It is recommended that you develop your Samhain modules on a test

www.syngress.com

Extending Osiris and Samhain with Modules • Appendix B 383

system using a local database file.This makes it easier to verify the contents and discard

the database file, if necessary. It is also faster to test your module on a localized setup.

An Example Module: hostname
As with the previous section, you are going to develop a very simple module to mon-

itor a host’s hostname.You will use a single parameter, HostnameCheckInterval, which

will specify the frequency at which the Samhain agent checks the hostname value.

First, define and extend the list of function tables defined in src/sh_module.c.

Every Samhain module has a function table.The structure for this is sh_mtype and is

defined in the include/sh_module.h file.An array of sh_mtype structures is initialized in

the src/sh_module.c file.The easiest way to define your module’s function table is to

copy and paste and modify an existing entry in the modList array.Your module name

is “hostname,” therefore, add the following as an entry to modList in src/sh_module.c:

#ifdef SH_USE_HOSTNAME

{

N_("HOSTNAME"),

0,

sh_hostname_init,

sh_hostname_timer,

sh_hostname_check,

sh_hostname_end,

sh_hostname_null,

N_("[Hostname]"),

sh_hostname_table,

},

#endif

The first item is the name of the module.The next five items are the names of

the functions you are required to define in your module implementation file.

Samhain will call these functions as part of the scan cycle.The last two items in the

structure are the name of the configuration file heading, and a function table

(defined later) for methods to handle any configuration directives you create for this

module.

Next, you create a header and implementation file for your module:

$ touch src/sh_hostname.c include/sh_hostname.h

www.syngress.com

384 Appendix B • Extending Osiris and Samhain with Modules

The header file contains prototypes and the declaration for the configuration

table:

#ifndef SH_HOSTNAME_H

#define SH_HOSTNAME_H

#include "sh_modules.h"

int sh_hostname_init (void);

int sh_hostname_timer (time_t tcurrent);

int sh_hostname_check (void);

int sh_hostname_end (void);

int sh_hostname_null (void);

int sh_hostname_set_timer (char * c);

int sh_hostname_check_internal();

extern sh_rconf sh_hostname_table[];

#endif

The module implementation file is more involved.All of the functions specified

in the header file of the preceding example, and some helper functions for storing

the hostname in the database are defined. Samhain records are geared toward storing

files, so you must be creative. Use the filepath element of a record to store the string

K_hostname as a unique identifier for your hostname record.“K” is specified as the

first character of the file path to signal to Samhain that it is not actually a record

about a file. Use the linkpath field of the record to store the value of the hostname.

The main function here is sh_hostname_check_internal(), which is called when the

timer for this module fires or whenever a check request is issued. Normally, the init

and end functions are used to initialize and free memory and other created resources;

however, this module is so simple, that these functions are basically empty.The two

functions used to obtain and store information into the database are sh_hash_get_it()

and sh_hash_pushdata(). The final implementation of sh_hostname.c is:

#include "config_xor.h"

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

www.syngress.com

Extending Osiris and Samhain with Modules • Appendix B 385

#include <unistd.h>

#include <errno.h>

#include <limits.h>

#include <sys/wait.h>

#include <signal.h>

#undef FIL__

#define FIL__ _("sh_hostname.c")

#if defined (SH_WITH_CLIENT) || defined (SH_STANDALONE)

#if TIME_WITH_SYS_TIME

#include <sys/time.h>

#include <time.h>

#else

#if HAVE_SYS_TIME_H

#include <sys/time.h>

#else

#include <time.h>

#endif

#endif

#include "samhain.h"

#include "sh_utils.h"

#include "sh_error.h"

#include "sh_modules.h"

#include "sh_hostname.h"

#include "sh_ks_xor.h"

#include "sh_unix.h"

#include "sh_hash.h"

#include "sh_cat.h"

#define HOSTNAME_KEY "K_hostname_0000"

static unsigned char db_hostname[256] = "";

sh_rconf sh_hostname_table[] = {

{

www.syngress.com

386 Appendix B • Extending Osiris and Samhain with Modules

N_("hostnamecheckinterval"),

sh_hostname_set_timer

},

{

NULL,

NULL

},

};

static time_t lastcheck;

static int ShHostnameActive = S_TRUE;

static int ShHostnameInterval = 300;

int sh_hostname_null()

{

return 0;

}

int sh_hostname_init ()

{

SL_ENTER(_("sh_hostname_init"));

if (ShHostnameActive == S_FALSE)

SL_RETURN((-1), _("sh_hostname_init"));

lastcheck = time (NULL);

sh_hostname_check_internal ();

SL_RETURN((0), _("sh_hostname_init"));

}

int sh_hostname_end ()

{

return (0);

}

int sh_hostname_timer (time_t tcurrent)

{

if ((int) (tcurrent - lastcheck) >= ShHostnameInterval)

{

lastcheck = tcurrent;

www.syngress.com

Extending Osiris and Samhain with Modules • Appendix B 387

return (-1);

}

return 0;

}

int sh_hostname_check ()

{

sh_error_handle (-1, FIL__, __LINE__, 0, MSG_HN_CHECK, "checking

hostname");

return (sh_hostname_check_internal ());

}

int sh_hostname_set_timer (char * c)

{

long val;

SL_ENTER(_("sh_hostname_set_timer"));

val = strtol (c, (char **)NULL, 10);

if (val <= 0)

sh_error_handle ((-1), FIL__, __LINE__, EINVAL, MSG_EINVALS,

_("hostname_timer"), c);

val = (val <= 0 ? 60 : val);

ShHostnameInterval = (time_t) val;

SL_RETURN(0, _("sh_hostnmae_set_timer"));

}

int get_hostname_from_db()

{

file_type tmpFile;

int result = 0;

result = sh_hash_get_it(HOSTNAME_KEY, &tmpFile);

if (result == 0)

{

strcpy(db_hostname, tmpFile.linkpath);

www.syngress.com

388 Appendix B • Extending Osiris and Samhain with Modules

}

else

{

db_hostname[0] = '\0';

}

return result;

}

void set_hostname_in_db(const char *hostname)

{

file_type tmpFile;

if (hostname == NULL)

{

return;

}

strcpy(tmpFile.fullpath, HOSTNAME_KEY);

strcpy(tmpFile.linkpath, hostname);

tmpFile.size = 0;

tmpFile.mtime = 0;

tmpFile.ctime = 0;

tmpFile.atime = 0;

tmpFile.mode = 0;

tmpFile.owner = 0;

tmpFile.group = 0;

sl_strlcpy(tmpFile.c_owner, _("root"), 5);

sl_strlcpy(tmpFile.c_group, _("root"), 5);

tmpFile.c_mode[0] = 'l';

tmpFile.c_mode[1] = 'r'; tmpFile.c_mode[2] = 'w';

tmpFile.c_mode[3] = 'x'; tmpFile.c_mode[4] = 'r';

tmpFile.c_mode[5] = 'w'; tmpFile.c_mode[6] = 'x';

tmpFile.c_mode[7] = 'r'; tmpFile.c_mode[8] = 'w';

tmpFile.c_mode[9] = 'x'; tmpFile.c_mode[10] = '\0';

www.syngress.com

Extending Osiris and Samhain with Modules • Appendix B 389

sh_hash_pushdata(&tmpFile,

_("00"));

}

int sh_hostname_check_internal()

{

char name[255];

SL_ENTER(_("sh_hostname_check_internal"));

if (gethostname(name, sizeof(name)) < 0)

{

sh_error_handle (-1, FIL__, __LINE__, 0, MSG_E_SUBGEN,

_("unable to retrieve system hostname!!")," ");

return 0;

}

if (sh.flag.update == S_TRUE)

{

set_hostname_in_db(name);

return 0;

}

/* get the hostname in the database. */

if (get_hostname_from_db() != 0)

{

sh_error_handle (-1, FIL__, __LINE__, 0, MSG_E_SUBGEN,

_("unable to retrieve hostname from database")," ");

return 0;

}

/* compare here with current. */

if (strcmp(name, db_hostname) != 0)

www.syngress.com

390 Appendix B • Extending Osiris and Samhain with Modules

{

sh_error_handle (-1, FIL__, __LINE__, 0, MSG_HN_DIFF, db_hostname,

name);

}

SL_RETURN((0), _("sh_hostname_check_internal"));

}

#endif

Next, establish logging identifiers and format strings for your module. Because

this is an example, define only two: one for announcing the module execution and

one for reporting on detected changes. Most modules have more than two log mes-

sage types; the log ID is defined in include/sh_cat.h, and the actual formats are

defined in src/sh_cat.c.Add the following to the large enum structure in

include/sh_cat.h:

#ifdef SH_USE_HOSTNAME

MSG_HN_CHECK,

MSG_HN_DIFF,

#endif

The src/sh_cat.c file contains the actual format strings for log messages.There are

two large enumerations in this file; one is Extensible Markup Language (XML) for-

matted, and the other is not.You should add your log messages to both of these enu-

merations. For the hostname module, add the following to the XML enumeration:

#ifdef SH_USE_HOSTNAME

{ MSG_HN_CHECK, SH_ERR_INFO, RUN, N_("msg=<Checking hostname>")},

{ MSG_HN_DIFF, SH_ERR_WARN, EVENT, N_("msg=<Hostname>, prev=<%s>,

now=<%s>")},

#endif

Then, to the non-XML enumeration, add the following:

#ifdef SH_USE_HOSTNAME

{ MSG_HN_CHECK, SH_ERR_INFO, RUN, N_("msg=\"Checking hostname\"")},

{ MSG_HN_DIFF, SH_ERR_WARN, EVENT, N_("msg=Hostname

previously=\"%s\" currently=\"%s\"")},

#endif

Finally, you have to adjust the build system so that your module is included and

compiled into the Samhain executable.To do that, you must (at minimum) edit the

Makefile.in file and follow these steps:

www.syngress.com

Extending Osiris and Samhain with Modules • Appendix B 391

1. Add sh_hostname.h to the HEADERS directive.

2. Add $(srcsrc)/sh_hostname.c to the SOURCES directive.

3. Add sh_hostname.o to the OBJECTS directive.

4. Add $(srcinc)/sh_hostname.h to the dependency list for sh_modules.o.

5. Add the following target:

sh_hostname.o: $(srcsrc)/sh_hostname.c Makefile config_xor.h

$(srcinc)/samhain.h $(srcinc)/sh_utils.h $(srcinc)/sh_error.h

$(srcinc)/sh_modules.h $(srcinc)/sh_hostname.h sh_ks_xor.h

$(srcinc)/sh_unix.h $(srcinc)/sh_hash.h $(srcinc)/sh_cat.h

Issuing a make from the top-level directory should recompile and build your

module. It is recommended that you turn off executable checksum verification on

Samhain while developing your module, as it can be cumbersome to deal with. Do

that by running the configure script again using the with-checksum configure

option:

$./configure --with-checksum=no

Testing Your Module
Testing Samhain modules is a little easier than testing Osiris modules. It is very

important that you do as much testing as possible on your module, no matter what

your distribution plans are. Modules are compiled into the Samhain agents; therefore,

fixing a development mistake has an unavoidable administrative overhead.

Install and test on a single dedicated testing environment as much as possible

(e.g., hostname module).After building and installing the Samhain agent that sup-

ports the hostname checking, modify the samhainrc configuration file and add the

following:

[Hostname]

HostnameCheckInterval = 30

This will cause the agent to check the hostname every 30 seconds. First, set the

hostname to something you can recognize and then perform a database update:

hostname foobar

samhain -t update

This will update the database with the current hostname record.You can verify

this by looking at the local Samhain database file:

strings /var/lib/samhain/samhain_file | grep -A 3 "K_hostname"

www.syngress.com

392 Appendix B • Extending Osiris and Samhain with Modules

K_hostname_0000

foobar

root

wheel

You can clearly see that the hostname has been saved in the database linkpath

entry of the file record. Next, run Samhain again to make sure that the check

worked as intended.You should see only the hostname module get initialized:

INFO : [2005-02-25T14:46:32-0700] msg=<Module initialized>,

module=<HOSTNAME>

Next, change the hostname to smarg, and run another check.The hostname

module will detect this and print out an alert that looks something like:

WARN : [2005-02-25T14:47:47-0700] msg=<Hostname>, prev=<foobar>,

now=<smarg>

Finally, to ensure that the agent properly conducts the hostname check at the

interval specified, run it in daemon mode and watch for this same alert to appear a

few times at 30-second intervals:

NOTICE : [2005-02-25T14:48:56-0700] msg=<File check completed.>, time=<2>,

kBps=<21733.504000>

INFO : [2005-02-25T14:49:24-0700] msg=<Checking hostname>

WARN : [2005-02-25T14:49:24-0700] msg=<Hostname>, prev=<foobar>,

now=<smarg>

INFO : [2005-02-25T14:49:54-0700] msg=<Checking hostname>

WARN : [2005-02-25T14:49:54-0700] msg=<Hostname>, prev=<foobar>,

now=<smarg>

INFO : [2005-02-25T14:50:24-0700] msg=<Checking hostname>

WARN : [2005-02-25T14:50:24-0700] msg=<Hostname>, prev=<foobar>,

now=<smarg>

Packaging Your Module
Modules for Samhain are not contained in a directory. Packaging the module means

packaging the entire modified source tree for custom agent building and distribution.

You can modify the source and hard-code your module into Samhain, or you can

adjust the proper configure files so that you can turn the module on and off.This

adjustment is useful if you ever need to build the agent without the module and do

not want to hack source files.To add a configure option, modify acconfig.h, aclocal.m4,

and configure.ac.Add the following to configure.ac in the enable features section:

www.syngress.com

Extending Osiris and Samhain with Modules • Appendix B 393

AC_ARG_ENABLE(hostname-check,

[--enable-hostname-check check for hostname changes[[no]

]],

[

if test "x${enable_hostname_check}" = xyes; then

AC_DEFINE(SH_USE_HOSTNAME)

fi

]

)

This allows you to specify —enable-hostname-check a value of either yes or no to

enable or disable the hostname module. For this to work, you must set up its macro

that is used throughout the source code.Add the following string to the

SH_ENABLE_OPTS variable in aclocal.m4:

hostname-check

Finally, add the following to acconfig.h:

#undef SH_USE_HOSTNAME

To rebuild the configure script, do:

$ autoheader

$ autoconf

If you run the new configure script with the —help option, you will see a line

that looks like:

--enable-hostname-check check for hostname changes[no]

The --enable-hostname-check option can now be used to toggle the module

from being included in the building of the Samhain agent. More information about

Samhain modules can be found online at http://la-samhna.de/samhain/HOWTO-

write-modules.html.

www.syngress.com

394 Appendix B • Extending Osiris and Samhain with Modules

Additional
Resources

Appendix C

395

Introduction
Host integrity monitoring intersects many areas of security, including intrusion

detection, change management, security administration, and intrusion prevention.To

effectively monitor the integrity of your hosts, you must understand them and how

they interact with each other.This appendix provides various resources and organiza-

tions related to host integrity and computer security in general.

Online Documentation
Osiris

http://hostintegrity.com/osiris/docs/documentation.html

Samhain

www.la-samhna.de/samhain/manual/

Online Publications
Dunston, Duane.“Mass Deploying Osiris”

www.linuxsecurity.com/content/view/101884/49/

Lesko, Matt.“Host-based Intrusion Detection with Samhain”

www.newsforge.com/article.pl?sid=03/07/29/1727249

Wichmann, Rainer.“A Comparison of Host/File Integrity Checkers”

www.la-samhna.de/library/scanners.html

Wichmann, Rainer.“PGP Signatures on Open Source Software and why You Should

Check Them”

www.la-samhna.de/library/PGPSignatures.html

Wotring, Brian.“Host Integrity Monitoring: Best Practices for Deployment”

www.securityfocus.com/infocus/1771

Books
Proctor, Paul E. Practical Intrusion Detection Handbook. Prentice Hall, 2001

www.syngress.com

396 Appendix C • Additional Resources

Rash, Michael, Angela Orebaugh, Graham Clark, Becky Pinkard, and Jake Babbin.

Intrusion Detection and Active Response: Deploying Network and Host IPS. Syngress, 2005

Northcutt, Stephen and Judy Novak. Network Intrusion Detection, New Riders, 2002

Beale, Jay, Brian Caswell et al. Snort 2.1 Intrusion Detection, Second Edition.

Syngress, 2004

Anderson, Ross. Security Engineering:A Guide to Building Dependable Distributed

Systems. Wiley, 2001

Viega, John, Matt Messier, and Pravir Chandra. Network Security with OpenSSL.

O’Reilly and Associates, 2002

Korff,Yanek, Paco Hope, and Bruce Potter. Mastering FreeBSD and OpenBSD

Security. O’Reilly and Associates, 2005

Hoglund, Greg and Gary McGraw. Exploiting Software How to Break Code. Addison

Wesley, 2004

Krusse, Warren G. II, and Jay G. Heiser. Computer Forensics Incident Response Essentials,

Addison Wesley, 2002

Farmer, Dan and Wietse Venema. Forensic Discovery. Addison Wesley, 2004

Friedl, Jeffrey E. F. Mastering Regular Expressions. O’Reilly and Associates, 2002

System Security Resources
FreeBSD Security Information

www.freebsd.org/security/

Mac OS X Security Information

www.apple.com/macosx/features/security/

Microsoft Windows Security Information

www.microsoft.com/security/

NetBSD Security Information

www.netbsd.org/Security/

www.syngress.com

Additional Resources • Appendix C 397

OpenBSD Security Information

www.openbsd.org/security.html

Sun Security Coordination Team

http://sunsolve.sun.com/pub-cgi/show.pl?target=security/sec

Organizations
CERT Coordination Center

www.cert.org

Forum of Incident Response and Security Teams (FIRST)

www.first.org

Samhain Labs

www.la-samhna.com

Useful Web Sites
Common Vulnerabilities and Exposures

http://cve.mitre.org

Known Goods Database

www.knowngoods.org

Log Analysis Information

www.loganalysis.org

RootKit:The Online RootKit Magazine

www.rootkit.com

Software
Academic Release of Tripwire

http://sourceforge.net/projects/tripwire

Bastille Project

www.bastille-linux.org

www.syngress.com

398 Appendix C • Additional Resources

Ctool

www.hostintegrity.com/tools/ctool

GnuPG

www.gnupg.org

SWATCH (Simple WATCHer)

http://swatch.sourceforge.net

Mailing Lists
Bugtraq (Security Focus)

www.securityfocus.com/archive/1

Forensics (Security Focus)

www.securityfocus.com/archive/104

Full Disclosure

http://lists.netsys.com/mailman/listinfo/full-disclosure

US-CERT Advisories

majordomo@us-cert.gov

Companies
Host Integrity, Inc.

www.hostintegrity.com

Immunix, Inc.

www.immunix.com

PGP, Inc.

www.pgp.com

Tripwire, Inc.

www.tripwire.com

www.syngress.com

Additional Resources • Appendix C 399

401

Index
A
access

local access attacks, 84–85
login of users/groups on UNIX, 30–32
to logs, 113
to management console, 117–118
physical access, 117
UNIX file permissions, 38–41

Access Control Entries (ACE)
of ACL, 46
order of in ACL, 47–48

access control lists (ACLs)
ACE order in, 47–48
NTFS, 45–47
registry and, 48

access time (atime) time stamp, 43
access tokens, 67
ACE. See Access Control Entries
ACLs. See access control lists
Active Directory, 33–35
Active Perl, 147, 148
admin password, 176
administration, 110

See also Osiris, administration of
administrative abuse, 86
administrative negligence, 85–86
administrative overhead

with HIM system, 12–13
of Osiris, 131

administrator account, 34
administrator group, 34
administrator password, Beltane, 296–298
administrators

multiple users on Osiris management
console and, 232

SUDO and SU commands for, 32
advanced strategies

prebinding/prelinking, 352–362
rogue executables, looking for, 335–342
scans, unscheduled, 333–335
SUID/SGID security audits, 328–333
testing/verification, 343–352

agent executable, 96
agent-based deployment scenario, 7
agents, 15–16
alert filtering, 348–351

alerts
administrative overhead of HIM system, 13
Beltane, 301
from HIM system, auditing, 12
host environment and, 28
notifications, planning, 112–113
See also notifications

alias, 43
allow=<IP>|<HOSTNAME>, 174
Alternate Data Streams, 51–52
American National Standards Institute

(ANSI) C Compiler, 249, 274
antitampering defenses, Samhain, 136
antivirus software, 81
Apache

for Beltane, 292, 293–294
Beltane build/installation and, 295

architecture types
HIMS deployment planning and, 110–111
Osiris installer package and, 155

archives
Osiris scan data, 128
of scan data, 121
scan databases, archiving, 202

atime (access time) time stamp, 43
attacks

internal attack detection with HIM, 19–20
on nonvolatile memory, 72–73
subversion of HIM, 14–17
user/group files and, 30
See also threats

attributes
NTFS Alternate Data Streams, 51–52
of NTFS files, 45

[Attributes] policy, 261
auditing

advantage of HIM, 18
host security with, 86

audits
security audits with Samhain, 243
SUID/SGID security audits, 328–333, 363

authentication
Osiris CLI, 179–181
Osiris components, 126–127
Osiris management console, 164
Samhain components, 133–134
scan agents, 204

402 Index

user/group, 31–33
auto-accept host configuration option, 202

B
Back Oriface, 82
backdoor, 86–87
backup time-server, 251
backups

centralized management and, 11
Osiris management console, 163–164

bank security analogy, 102–105
base key

Samhain configuration, 250
Yule, setting, 285–286
Yule configuration, 279

baseline
HIM system and, 7–8
for host, 194

baseline database
database files, 202–203
rogue executables, looking for, 340–342
Samhain, creation of, 267
Samhain, updates, 269–270
Samhain agent for Yule, 289–290
for scan agents, 197–198
SUID/SGID security audit in Osiris, 332,

333
basic input/output system (BIOS), 73
BD. See Berkeley database
bell[N], 314
Beltane

building/installation, 295–296
configuration, 296–299
function of, 292
installation preparation, 294
overview of, 303
requirements, 293–294
using, 299–301
Yule build environment and, 273

Berkeley database (DB)
Osiris configuration options, 151
Osiris database files, 228–232
UNIX Osiris build environment, 147

Berkeley Packet Filter (BPF), 71
Berkeley Software Distribution (BSD)

kernel security levels, 58–59

Osiris installer agent for, 160
special file flags, 41–42

binaries, 146–147
BIOS (basic input/output system), 73
Blaster worm, 88–89
books

on forensics, 115
on incident response, 319
list of, 396–397

boot_wait NVRAM parameter, 373
BPF (Berkeley Packet Filter), 71
broadband, 81
BSD. See Berkeley Software Distribution
BugBear worm, 90
build environment

hardware requirements for management
console, 118

HIMS deployment, 108–109
network-aware Samhain agents, 285–286
Osiris, dedicated, 142–143, 238
Osiris, establishing, 146–150
Osiris module, 377
Samhain, 242, 248–249
Yule server, 273–274

build system
modifying for Samhain modules, 383
for Samhain module, 391–392

C
C programming, 376
call hooking, 87
centralized management

of HIM system, 11–12
of Osiris, 130
See also Samhain, centralized management

deployment
CERT/CC (Computer Emergency

Response Team Coordination Center),
320

certificates
Osiris CLI and, 179–181
Osiris components authentication with,

126–127
Osiris digital certificates, pre-provisioning,

157–159
Osiris management console installation,

169, 172

Index 403

“chain of custody” procedure, 322
change

auditing with HIM, 18
incident response cycle, 322–323
Samhain’s response to, 269–270
scan configuration, 239
Yule server and, 291
See also notifications

change management, 5
change management system, 122
change time (ctime) time stamp, 43
checksum

cryptographic, 9
prebinding, 354–356
prelinking Linux file integrity, 357–362

CLASSES_ROOT hive, 49
CLI. See command-line interface (CLI),

Osiris
command-line arguments

Osiris CLI, 179
Osiris management console, 166–167
Osiris scan agent, 183

command-line client, Osiris, 124–126
command-line interface (CLI), Osiris

authentication/certificates, 179–181
communication with scan agents via,

194–200
configuration options, 153, 239
digital certificates and, 157–159
function of, 178–179
management console and, 125, 164
management console configuration with,

174–178
online help, 181–182
overview of, 236

communication, 194–200
companies, 399
comparison filter database, 164
Comprehensive Perl Archive Network

(CPAN), 311
Computer Emergency Response Team

Coordination Center (CERT/CC),
320

Computer Forensics: Incident Response
Essentials (Kruse and Heiser), 115

configuration
administrative overhead of HIM system,

12–13

advanced, Osiris scan agents, 204–213
Beltane, 296–299
HIMS test environment and, 108
host environment, 6
Linksys WRT54G device, 372–373
monitoring requirements, 111
Osiris, 130, 151–153
Osiris management console, 174–178
Osiris management console configuration

settings, 172–174
Osiris scan agents, 188–204
Samhain, 249–257, 259–267
Samhain agent, for Yule trust, 288–289
scanning, 9
software configuration, threats from, 86
Swatch, 312–318
Yule, 278–279, 280–284

configuration files
excluding from scan, 209–210
Samhain, 251
Samhain, centralized management of, 272
Samhain, hiding, 252
Samhain sections, 262–265
Yule server, location of, 290

configuration policies, Samhain, 259–265
configure.ac, 393–394
contact information, for incident response,

322
“continue” option, 326
control_port=<PORT>, 173
copy-config command, 212
correlation, log data, 308–309
CPAN (Comprehensive Perl Archive

Network), 311
cryptographic checksums, 9
ctool

prebinding Mac OS X file integrity,
352–356

prebinding updates, 63
CURRENT_CONFIG hive, 49
CURRENT_USER hive, 49
custom firmware, for Linksys device,

370–372
custom scan configuration, 211–213

D

404 Index

DACL (Discretionary Access Control List),
46–47

daemon
Osiris scan agents as, 182
unscheduled scans in Samhain, 334–335
Yule configuration, 283
See also scan agents

data, file system, 36
data forks, 50
data integrity, 11–12
data streams, 51–52
database

scan agent communication with Osiris
CLI, 197–200

scan data in relational database, 233–234
scan databases, 200–203
signing, 96
See also baseline database

database files
Osiris, 228–232
Osiris, administration of, 228–232
scan databases, 202

database server
Postgresql installation/configuration,

274–277
Yule configuration, 281–282
Yule configuration to use Postgresql, 282
Yule requirement, 274

databases command, 197
date, 373
DCOM (Distributed Component Object

Model), 68
debug mode, 183–184
dedicated build environment

for Osiris, 142–143, 238
for Samhain, 242

dedicated test environment, 242, 392–393
details command, 196
detection

in incident response cycle, 321, 322–323
of internal attacks with HIM, 19–20

digital certificates, 157–159
dir command, 52
directive, 205
directory

excluding in scan configuration, 209
mass deployment of Osiris, 215–217
NTFS, 45

of Osiris management console, 161–164
for Osiris module, 377
permissions for, 39
set user ID and, 40
UNIX file directories, 38

directory blocks
excluding dot files, 209–210
Osiris scan configuration syntax, 206–207

disable command, 224
Discretionary Access Control List (DACL),

46–47
Distributed Component Object Model

(DCOM), 68
documentation

of HIMS deployment requirements,
106–107

in incident response cycle, 324
online resources, 396

dot files, 209–210
downloads

ctool, 352
Osiris, 143–146
Samhain, 245
Swatch, 310

drivers.exe command, 57–58
Dunston, Duane, 215
dynamic libraries. See shared libraries

E
echo [mode], 314
edit-host command, 194
edit-mhost command, 176–177
effective UID, 65
EGD (Entropy Gathering Daemon), 250
e-mail

BugBear worm and, 90
Nimbda worm and, 91–92
notifications via, 113
viruses, 80–81

e-mail notifications
host configuration for, 190–191
Osiris, 129–130, 218–222
Osiris management console setting for, 173
Samhain agent configuration, 289
Samhain configuration, 251, 268–269
Samhain e-mail notifications, 135–136

Index 405

Yule configuration, 284
employees. See internal threats
—enable-hostname-check option, 394
encryption, 278
Entropy Gathering Daemon (EGD), 250
environment. See build environment; host

environment; test environment
Errors database, 229
“escalation” procedure, 322
/etc/group file, 29–30
/etc/master.password, 31
/etc/passwd file, 29, 30–31
/etc/shadow, 31
[EventSeverity] section, 263
Exclude rule, 209
exclusion, Osiris scan configuration, 209–210
exclusive OR operator (XOR), 252
exec, 314
executable file filter, 336, 337
executable keys, 96
executables

Mac OS X framework and, 61–62
non-root owned executables, 364
Osiris installer package and, 156
Osiris management console installation,

168–169
prebinding/prelinking, 352–362
rogue, looking for, 335–342, 363
SUID/SGID security audits, 328–333

execute privileges, 39, 40–41
extending, kernel, 53–58
Extensible Markup Language (XML)

Samhain logs in, 254
Samhain module, 391
Yule configuration, 279

external incident response, 320
[External] section, 282–283

F
-f option, 179
failed pseudo attempts, 313–314
false negative, 348
false positive

administrative overhead of HIM system, 13
filtering to reduce, 224–228
HIDS and, 4

prebinding and, 352
prelinking and, 356

Farmer, Dan, 115
feedback

from HIM system, 12
in incident response cycle, 321, 324

file forks, 43
file integrity checking, 4
file integrity, prelinking, 356–362
file links

symbolic links, 44
UNIX, 42–43

file name, 45
file permissions

ACE, 47–48
simplicity of, 35
testing Osiris installer agents, 160
on UNIX, 36–37, 38–41, 44

File Records database, 229
file system

definition of, 36
mount settings monitoring, 243–244
See also files/file systems

files
excluding from scan, 209
of host environment, 6
scanning, 9
subversion of HIM and, 16

files/file systems, 35–52
file system, defined, 36
forks/streams, 50–52
of host environment, 35
overview of, 74–75
UNIX file security, 36–44
Windows file security, 44–50

filter database, Osiris, 164, 225–228
filter drivers, 57
filter engine, Osiris, 129
filtering

alert filtering, testing, 348–351
log messages in Osiris, 224–228

filters
Osiris, 224–228
Osiris scan configuration syntax, 207–208

filters command, 225, 226
“find” command, 329
fingerprint

Osiris CLI authentication, 179–180

406 Index

Samhain GnuPG signing options, 256–257
firedrill script, 345
firedrill script, 348
firmware

custom firmware for Linksys monitoring,
370–372

prebuilt firmware for Linksys monitoring,
368–370

flags, 41–42
FollowLinks <boolean>, 206
Forensic Discovery (Farmer and Venema),

115
forensics

with HIM, 20–21
planning for, 114–115
scheduling/scan frequency for, 112

forks, 43, 50–51
Forno, Richard, 319
frameworks, 61–64
FreeBSD

kernel extensions, 54–55
kernel integrity monitoring with Samhain,

243
PAM module file for SSHD on, 31–32
Postgresql installation on, 274, 275
promiscuous interface on, 70–71
Samhain agent baseline, 290
users/groups on, 29–30
Yule configuration, 284

Friedl, Jeffrey E. F., 227, 351
function drivers, 57
function table, 384

G
gcc, 147
Gentoo

Osiris scan agent installation on, 185–187
prelinking feature, 64

GID (Group ID), 30
See also Set Group ID (SGID)

global regular expression parser (grep)
filter testing, 348, 350–351
for Osiris database files, 231, 232

Gnu Privacy Guard (GnuPG)
for Osiris source code, 143–144
for Samhain build environment, 249
Samhain verification, 246–248

signing options in Samhain configuration,
255–257

Yule requirement, 274
goals, of HIMS deployment, 107–108
grep. See global regular expression parser
Group ID (GID), 30

See also Set Group ID (SGID)
groups

changes to, 77
in general, 28
Osiris configuration, 152–153
on UNIX, 29–33
on Windows, 33–35

[GrowingLogFiles] policy, 260–261
guest user, Windows, 34

H
handler function, 376, 377–379
hard link, 42
hardware requirements, 118
Hash <algorithm>, 206
header file, 384–385
Headers database, 229
Heiser, Jay G., 115
help, online help of Osiris CLI, 181–182
HFS+ file system, 50–51
hidden file flags, 41–42
hidden files, 16
hiding

kernel in Samhain, 253
Samhain configuration file, 252

HIDS. See Host Intrusion Detection System
HIM. See host integrity monitoring
HIMS. See Host Integrity Monitoring

System
HIPS. See Host Intrusion Prevention System
hives, 48–50
home network, HIM system on, 24
host

adding to Osiris management console,
188–194

for management console, 115–116
monitoring requirements for, 111
for Osiris management console, 161
Osiris management console directory,

162–163
rogue executables, looking for, 335–342

Index 407

scan agent communication with Osiris
CLI, 194–200

scan databases, 200–203
SUID/SGID security audit in Osiris,

331–333
types of, 6

host command, 195
host correlation, 308–309
host count, 109–110
host environment

files/file systems, 35–52
functional overview of, 6–7
kernel, 52–59
libraries/frameworks, 59–64
networking, 70–72
nonvolatile memory, 72–73
runtime, 64–70
scanning with HIM system, 8–11
understanding of, 28
users and groups, 28–35

host integrity
change management, 5
file integrity checking, 4
host integrity monitoring, 5–12
host integrity monitoring, arguments

against, 12–17
host integrity monitoring, benefits of,

18–21
host intrusion detection, 3
host intrusion prevention, 3–4
integrity, 2–3
network security, 5
overview of, 22
security administration, 4–5

host integrity monitoring (HIM)
arguments against, 12–17
bad software, 100
benefits of, 18–21
circumventing, 93–96, 98
description of, 5–7
new software detection, 86
with Osiris, 124–131
overview of, 22–23
with Samhain, 131–137
system, processes of, 7–12
threat detection with, 99
threats to, 93–96

host integrity monitoring (HIM) resources

books, 396–397
companies, 399
mailing lists, 399
online documentation, 396
online publications, 396
organizations, 398
software, 398–399
system security resources, 397–398
Web sites, 398

Host Integrity Monitoring System (HIMS)
with HIDS and HIPS, 121
incident response, 319–324
testing/verification, 343–352
See also Osiris; Samhain

Host Integrity Monitoring System (HIMS)
deployment, planning

management console planning, 115–118
principles, 105–106
requirements, 106–115
roles and, 102–105
simplicity of, 102

host intrusion detection, 7
Host Intrusion Detection System (HIDS)

function of, 3
HIM vs., 24
HIMS with, 121
role of, 103, 104

Host Intrusion Prevention System (HIPS)
function of, 3–4
HIMS with, 121
log monitoring, 308
role of, 103, 104

HostnameCheckInterval parameter, 384
hostnames

Osiris management console, 189
Osiris module for, 377–380
Osiris module testing, 380–382
Samhain module for, 384–392
Samhain module, testing, 393

hosts
disabling, 239
hardware requirements for management

console, 118
host management in Osiris, 131
mass deployment, 213–217
security of, 102–105
unscheduled scans, 333–335

hosts command, 195

408 Index

hosts_directory=<FULL_PATH>, 174
http_host=<NAME>, 173
http_port=<PORT>, 173
Hybrid Intrusion Detection System (hybrid

IDS), 3
Hypertext Preprocessor. See PHP

I
ignore rule, 313
[IgnoreAll] policy, 261
[IgnoreNone] policy, 261
IIS (Internet Information Server), 91–92
Immunix, 4
immutable flags, 41–42
impersonation access tokens, 67
implementation file, Samhain module, 385
incident response

cycle, 320–324
overview of, 319–320, 325
planning for, 114
questions about, 326

Incident Response (Van Wyk and Forno),
319

include/sh_cat.h, 391
init process, 58, 59
init scripts

baseline for host with, 194
Samhain, running, 270
Samhain installation, 259
testing installer agents, 160–161

inline HIM system, 8
inodes, 36, 37–38
input/output (I/O), 118
insmod command, 54
installation

Beltane, 294, 296
Osiris management console installation on

Windows, 170–172
Osiris management console on UNIX,

167–170
Osiris scan agents, 184–188
Samhain, 258–259
Samhain agent, 286–287
Swatch, 310–312

installer agents
Osiris, testing, 160–161
Osiris and operating systems, 159–160

Osiris management console installation,
167

pre-provisioning certificates, 158–159
installer package

Osiris, building, 154–156
Osiris scan agent, 184–188

install.sh file
mass deployment of hosts, 214
Osiris management console installation,

167–168
Osiris scan agent installation on UNIX,

185–187
integrity

description of, 2–3
of management console, 117
shared libraries, problems with, 60–61
See also host integrity

interfaces, in promiscuous mode, 70–71
internal network defenses, 24
internal threats

administrative abuse, 86
administrative negligence, 85–86
detection with HIM, 19–20
in general, 83–84
local access, 84–85
overview of, 97–98

Internet Information Server (IIS), 91–92
intrusion prevention. See Host Intrusion

Prevention System
intrusions, detection of, 20

See also Host Intrusion Detection System
Investigating Computer-Related Crime

(Stephenson), 319
invisibility, 96
I/O (input/output), 118
IOKit drivers, 56
IP address, 189

K
[Kern] section, 266
kernel

BSD kernel security levels, 58–59
compromising, 77
disabling, 99
extensions, 53–58
function of, 52
HIM subversion and, 93, 95

Index 409

integrity monitoring with Samhain, 243
overview of, 75
process management, 70
rootkits, 86–87
Samhain configuration options, 253
Samhain kernel checks, 136
types of, 53

Kernel Loadable Modules (KLD), 54–55
kernel mode drivers, 57–58
kernel rootkits, 17, 95
KEXT, 56
keys

authentication of Samhain components,
133–134

digital certificate for Osiris, 158
HIM subversion with, 95–96
PGP key for Osiris, 143–146
Samhain, 245–248
Samhain configuration, 250
Samhain GnuPG signing options, 255–257
Samhain key value, 253
Yule, setting, 285–286
Yule configuration, 279
Yule server and, 272

keystroke logging, 90
khide module, 253
Kim, Gene, 4
KLD (Kernel Loadable Modules), 54–55
kldload command, 54
kldstat command, 54
Kruse, Warren G., 115

L
least privilege, 85
legal issues, 115
libraries

dynamic libraries on Mac OS X, 61–64
overview of, 75
prebinding Mac OS X file integrity,

352–356
prebinding/prelinking, 352
shared libraries, problems with, 60–61
static/shared, 59–60

license restrictions, 139
links, 42–43
Linksys devices, monitoring

configuration/administration, 372–373
custom firmware, 370–372
in general, 368–373
prebuilt firmware, 369–370

Linux
building Samhain, 257–258
kernel extension on, 53–54
kernel integrity monitoring with Samhain,

243
mass deployment of Osiris, 215
Osiris installer agent for, 159–160
Osiris management console installation,

169, 170
Osiris scan agent installation on, 185–187
Postgresql installation on, 274
prelinking, 352, 356–362, 365
Samhain and, 137
Samhain configuration options, 253, 254
SUID/SGID privileges, 64–67

Linux Slapper worm, 89
Loadable Kernel Module (LKM)

commands for, 53–54
disabling, 99
Solaris kernel extensions, 55–56

local access attacks, 84–85
See also internal threats

local configurations, 211
LOCAL_MACHINE hive, 49
log analysis tool

need for, 114
Osiris notifications and, 218–219

log class, 134–135
log files

excluding from scan, 210
filtering in Osiris, 131, 224–228
Osiris notifications and, 219–221

log monitoring
overview of, 325
separate log-monitoring engine, 308–309
Swatch, configuring, 312–318
Swatch, installing, 310–312
Swatch, running, 318–319
Swatch for, 309

[Log] section
Samhain configuration, 264, 289
Yule configuration, 281–282

[LogFiles] policy, 260
logging

410 Index

filtering log messages in Osiris, 224–228
forensics and, 115
host, adding to Osiris management

console, 190
host security with, 86
multiple users on Osiris management

console for, 232
Osiris, 128–129, 218
Osiris notifications and, 219–221
planning for HIMS deployment, 113–114
Samhain, 134–136
Samhain configuration options, 254
scan data in relational database, 233–234
scan databases, 200–203
Yule configuration, 281–282
by Yule server, 272

logging identifiers, 391
login, 30–32
logs

log signing, 96
Yule server to Samhain agent, 272–273

lsmod command, 53–54
lsof command, 70

M
Mac OS X

dynamic libraries, 61–64
file links of, 43
HFS+ resource forks, 50–51
kernel extensions, 56
monitoring network ports, 71–72
NetInfo feature, 33
Osiris installer agent for, 159
Osiris management console installation,

170
prebinding, 352–356
rogue executables, looking for, 337–343

mailing lists, 399
“make” arguments, 257–258
make command, 311
make uninstall command, 271
Makefile, 377, 379–380
malicious software

general considerations, 82–83
overview of, 97
spyware, 82

Trojans, 81–82
viruses, 80–81
worms, 81

management console
of HIM system, 7, 11–12
log storage in, 113
network topology for HIMS, 109
number of, 121
Swatch installation on, 310

management console, Osiris
authentication of components, 124–126
command-line arguments, 166–167
components, 161–164
configuration, 172–178
configuration options, 152–153
digital certificates, pre-provisioning,

157–159
establishing, 236
host, adding, 188–194
hosts, list of, 195
installation on UNIX, 167–170
installation on Windows, 170–172
installer package for, 155
logging, 128, 218
mass deployment of hosts, 213–217
multiple management consoles, 228
notifications, 218–219
prebuilt firmware for Linksys monitoring,

370
processes, 164–166
scan data and, 127–128
scan databases, 200–203
session key, loss of, 204
testing notifications, 351–352
users, multiple, 232–233

management console, planning
general security considerations, 115–116
hardware requirements, 118
physical access, 117
user access, 117–118

mass deployment
of Osiris scan agents, 213–217
of Samhain agents, 304

mass_add.pl file, 216–217
master daemon process, 165
Mastering Regular Expressions (Friedl), 227,

351
MD5 (Message Digest 5), 245, 310

Index 411

Melissa virus, 80–81
memory, 72–73
Message Digest 5 (MD5), 245, 310
metadata, 36, 37–38
mhost-config command, 177–178
microkernel, 53
Microsoft, 82

See also Windows
Microsoft Outlook, 81
Minimalist GNU for Windows (MinGW),

147–150
[Misc] section

Samhain configuration, 262, 265
Yule configuration, 283–284

mod_hostname module, 377–380
mode, 38–39, 40–41
modification time (mtime) time stamp, 43
modinfo command, 55–56
modules

adding to Osiris, 154
Osiris modules, extending, 376–383
Samhain module options, 255
Samhain modules, extending, 383–394

modules block, 205–206
modules database

information in, 229
printing data in, 231–232

monitoring
by HIM system, 7–12
Linksys devices, 368–373
network, 18, 76
ports, 71–72, 78
registry, 49–50
requirements for HIMS, 111
resource forks, 51
scheduling/scan frequency, 112
shared libraries, 61
user/group changes, 77
See also log monitoring

monitoring agent, 15–16
monolithic kernel, 53
mount settings

monitoring with Samhain, 243–244
Samhain, 266

MSYS, 147, 148–150
mtime (modification time) time stamp, 43

N
Nagios, 305
names. See hostnames
NetBus, 82
NetInfo, 33
netstat command, 71
network, management console location on,

116
Network Information Service (NIDS), 33
network intrusion detection systems (NIDS),

20
network security

host integrity and, 2, 5
role of, 103, 104

network topology
HIMS deployment planning and, 109
multiple management consoles and, 228

networking
interfaces, 70–71
monitoring, 18, 76
ports, 71–72

new host command, 189
new-config command, 211
NIDS (Network Information Service), 33
NIDS (network intrusion detection systems),

20
Nimbda worm

description of, 91–92
intelligence of, 93

NoEntry directive, 332, 338
NoEntry rule, 209
noise

filter database of Osiris management
console, 164

filtering, 224–228
of HIM system, 13
Osiris noise filtering, 129
of prebinding, 62–63

nonvolatile memory
attacks, 76
exploitation of, 72–73

nonvolatile random access memory
(NVRAM)

of Linksys devices, 368
Linksys WRT54G device configuration,

372, 373
Norvell, Preston, 124

412 Index

notifications
host configuration for, 190–191
Osiris, 129–130, 218–222
Osiris management console setting for, 173
from Osiris/Samhain, 365
planning, 112–113
Samhain configuration, 251, 268–269
Samhain e-mail notifications, 135–136
Swatch, 309
testing, 351–352
Yule configuration, 284

notify_app features, 233–234
notify_app=<FULL_PATH>, 174
notify_email=<EMAIL_ADDRESS>, 173
notify_smtp_host=<SMTP_SERVER>, 173
notify_smtp_port=<PORT>, 173
NSIS, 147, 148
NT File System (NTFS)

access control lists, 45–47
ACE, 47–48
Alternate Data Streams, 51–52
definition of, 44
file structure, 45
Windows registry, 48–50

NVRAM. See nonvolatile random access
memory

O
online documentation, 396
online help, 181–182
online publications, 396
open source tools

Osiris, 124–131
Samhain, 131–137

OpenSSL
Linux Slapper worm and, 89
for Osiris build on Windows, 147, 148, 150
Osiris configuration options, 152
UNIX Osiris build environment, 147

operating system (OS)
executables storage, 335, 336
HIMS build/test environments and, 109
HIMS deployment planning and, 110–111
init scripts locations on, 161
for management console, 116
Osiris and, 159–160

Osiris compatibility, 131
Osiris/Samhain and, 139
Samhain compatibility, 244
security announcements, 320

organizations, list of, 398
Osiris

advanced strategies overview, 363–364
authentication of components, 126–127
as centrally managed system, 121
as change management system, 122
changes reported by, 115
components of, 124–126
creation of, 124
HIMS deployment and, 102
host count for HIMS deployment, 110
incident response and, 326
Linksys device monitoring with, 368–373
log monitoring, 308–309
log monitoring with Swatch, 309–317
logging, 128–129
noise filtering, 129
notifications, 129–130
overview of, 138
as polling HIM system, 8
prebinding, 356
prebinding Mac OS X file integrity, 352,

356
questions about, 139, 364–365
rogue executables, looking for, 335–342
rootkit detection with, 99
runtime scanning by, 10
Samhain vs., 132, 133
scan data, 127–128
strengths of, 130–131
SUID/SGID security audits, 328–329,

331–333
Swatch configuration and, 326
testing alert filtering, 348–351
testing notifications, 351–352
testing/verification, 343–347
unscheduled scans in, 333–334
weaknesses of, 131

Osiris, administration of
database files, 228–232
filters, 224–228
in general, 217
logging, 218
management consoles, multiple, 228

Index 413

notifications, 218–222
overview of, 237
scan data in relational database, 233–234
scheduling, 222–224
users, 232–233

Osiris, deployment of
build environment, 142–143, 146–150
command-line interface, 178–182
configuration options, 151–153
digital certificates, pre-provisioning,

157–159
in general, 142
installer packages, 154–156
management console command-line

arguments, 166–167
management console components,

161–164
management console configuration,

172–178
management console installation on

UNIX, 167–170
management console installation on

Windows, 170–172
management console processes, 164–166
modules, adding, 154
operating systems and, 159–160
read-only media, 157
scan agent configuration, 188–204
scan agent installation, 184–188
scan agent overview, 182–184
scan agents, mass deployment, 213–217
scan configuration, advanced, 204–213
source code for, 143–146
testing, 160–161

Osiris command-line interface. See
command-line interface (CLI), Osiris

Osiris developers list, 382
Osiris modules, extending

in general, 376, 383
mod_hostname example, 377–380
packaging module, 382
testing module, 380–382

osirisd
custom firmware for Linksys monitoring,

371
of Osiris management console, 161
Osiris scan agent overview, 182–184
processes of, 164–165

osirismd service, 165–166
osirismd.conf file, 172–174
otool command, 62, 63

P
-p option, 179, 183
packaging

Osiris module, 382
Samhain module, 393–394

PAM (pluggable authentication module),
31–32

passwd program
Solaris root exploit with, 84
as SUID executable, 40

password
Beltane administrator password, 296–298
login of users/groups on UNIX, 30–31
Osiris management console, 164, 176
Samhain configuration, 252–253
Yule/Samhain agent trust, 287–288

patches, 81
perimeter security, 2
Perl

mass deployment of Osiris, 215–216
Osiris build on Windows, 147, 148
Swatch installation, 310–311

PGP (Pretty Good Privacy) signature
for Osiris, 143–146
for Samhain, 245–248

Phel.A Trojan, 82
PHP (Hypertext Preprocessor)

for Beltane, 292, 293–294
Beltane build/installation and, 295

physical access, 117
pipe command[,keep_open], 314
planning

host environment and, 28
in incident response cycle, 321–322
management console, 115–118

planning, host integrity monitoring system
(HIMS) deployment

deployment simplicity, 102
management console planning, 115–118
principles, 105–106
requirements, 106–115
roles and, 102–105

414 Index

pluggable authentication module (PAM),
31–32

policies, Samhain, 259–265
policy, HIM polling frequency by, 9
polling HIM system, 8–11
Portable Operating System Interface

(POSIX)
Samhain based on, 244
Samhain build environment, 249
Yule requirement, 274

ports
Blaster worm and, 89
monitoring for open, 78
monitoring network ports, 71–72
worm detection and, 93
Yule configuration, 278–279

POSIX. See Portable Operating System
Interface

Postgresql
installation/configuration, 274–277
Yule configuration, 279, 282

Potter, Bruce, 124
prebinding

definition of, 352
in Mac OS X, 62–63
Mac OS X file integrity, 352–356
overview of, 364

prebuilt firmware, 368–370
prelink application

installation, 365
prelinking Linux file integrity, 356–362

Prelink policy, 360–362
[Prelink] policy, 261
prelinking

definition of, 352
installation on Linux, 365
Linux file integrity, 356–362
overview of, 364
Samhain monitoring of prelinked files, 304

Prelude
Samhain configuration option, 254
Samhain with, 305

pre-provisioning, digital certificates, 157–159
Pretty Good Privacy (PGP) signature

for Osiris, 143–146
for Samhain, 245–248

primary access token, 67
printdb application, 229
print-db command

to display database contents, 198–200

for Osiris database files, 229–230
print-db-header command, 198
print-host-config command, 197
printing

checksum, 359
database, 198–200
Osiris database files, 229–230, 231–232

privilege separation
of scan agents, 10
for SUID application, 66

privileges
local access attacks, 84–85
SUID/SGID privileges, 64–67
Windows access tokens, 67

process killing, 94
processes, runtime, 69–70
promiscuous mode, 70–71
ps command, 69
publications, online, 396
purging, scan databases, 203

Q
-q option, 183
quarantine

in incident response cycle, 323
in Samhain, 330

R
-r option, 183
Radmind, 5, 122
read privileges, 39
README file, 382
read-only media

Osiris, 157
Osiris deployment from, 157
Osiris source code on, 143, 146
Samhain on, 245

[ReadOnly] policy, 260
real UID, 65
real-time processing, 25
recursion, 210
Recursive <boolean>, 206
registry

monitoring, 49–50
structure of, 48–49
users/groups stored in, 34–35

regular expressions

Index 415

Osiris filters, 225, 226–228
testing, 350–351

relational database, 233–234
RELOAD message, 273
Remote Procedure Call (RPC), 68–69
reparse points, 45
requirements

hardware requirements for management
console, 118

Osiris build software, 147–148
requirements, HIMS deployment

build and test environments, 108–109
forensics, 114–115
goals, 107–108
host count, 109–110
incident response, 114
list of, 106–107
logging, 113–114
monitoring, 111
network topology, 109
notifications, 112–113
operating systems/architecture types,

110–111
scheduling/scan frequency, 112

resource forks, 50–51
resources

books, 396–397
companies, 399
incident response books, 319
mailing lists, 399
online documentation, 396
online publications, 396
organizations, 398
software, 398–399
system security resources, 397–398
Web sites, 398
See also Web sites

response
host environment and, 28
in incident response cycle, 321, 323

restoration, 323
return on investment (ROI), 14
Riched20.dll file, 92
rm-db command, 182
rmmod command, 54
rogue executables

looking for, 335–342, 363
Samhain permissions and, 330

ROI (return on investment), 14
roles, of HIMS, 102–105

root certificate
for custom firmware for Linksys

monitoring, 371
Osiris CLI and, 179, 180–181
Osiris management console installation,

169
pre-provisioning for Osiris, 157–159
for Sveasoft firmware, 370

root privileges
local access attacks, 84–85
SUID/SGID privileges, 64–67

rootkits
detection of, 99
kernel integrity monitoring, 243
overview of, 98
purpose of/ process of, 86–87
Trojans and, 82

RPC (Remote Procedure Call), 68–69
RPC Locator Service, 68–69
rules

Osiris scan configuration syntax, 206–209
Swatch configuration, 313–315
Swatch rules for Osiris/Samhain, 315–318

runtime, 64–70
of host environment, 6
overview of, 75–76
processes, 69–70
RPC and DCOM, 68–69
scanning, 10
SUID/SGID privileges, 64–67
Windows access tokens, 67

S
SACL (System Access Control List), 46
Samhain

advanced strategies overview, 363–364
authentication of components, 133–134
Beltane and, 292–301
as centrally managed system, 121
as change management system, 122
changes reported by, 115
components of, 132–133
features/constraints, 242–244
in general, 242
HIMS deployment and, 102
HIMS deployment, host count for, 110
incident response and, 326
log monitoring, 308–309

416 Index

log monitoring with Swatch, 309–315,
316–319

logging, 134–136
overview of, 138, 302–303
as polling HIM system, 8
prebinding Mac OS X file integrity, 352
prelinking Linux file integrity, 356–362
questions about, 139, 304–305, 364–365
releases, 131–132
rogue executables and, 336
rootkit detection with, 99
scan data, 134
strengths of, 136
SUID/SGID security audits, 328–331, 333
Swatch configuration and, 326
testing filters, 350
testing notifications, 351
testing/verification, 347–348
unscheduled scans in, 333, 334–335
weaknesses of, 137

Samhain, centralized management
deployment

agent baseline, 289–290
build environments, 273–274
description of, 242
detected changes, 291
in general, 271
network-aware Samhain agents, 285–287
overview of, 303
Postgresql, installation/configuration of,

274–277
Samhain agent configuration, 288–289
Samhain agents/Yule server pairing,

287–288
Yule, building, 280
Yule configuration, 278–279, 280–284
Yule overview, 272–273
Yule server status, 292

Samhain, stand-alone deployment
baseline database creation, 267
build environment, establishing, 248–249
building, 257–258
centralized management deployment and,

271
configuration, 249–257, 259–267
installation, 258–259
notifications, configuration of, 268–269
obtaining/verifying, 245–248
overview of, 303
pros/cons of, 244–245

response to change, 269–270
running, 270
tuning, 267–268
uninstalling, 271
when to use, 242

Samhain agent
baseline database for, 289–290
baseline database, updating, 291
Beltane and, 292–301
building, 257–258
configuration for Yule trust, 288–289
mass deployment of, 304
module options, 255
network-aware for Yule, 285–287
security features, 244
Yule build and, 274
Yule configuration and, 278–279
Yule server and, 272–273
Yule server, pairing with, 287–288
Yule server status, 292

Samhain database, 276–277
Samhain modules, extending, 383–394

hostname module example, 384–392
packaging module, 393–394
testing module, 392–393
writing module, 383–384

saved UID, 65
scan agent, Samhain

authentication of, 133–134
function of, 132–133
scan data and, 134

scan agents
attacking, 15–16
centralized management and, 11
HIM subversion and, 94–95
invisibility of, 96
Osiris modules, extending, 376–383
Samhain modules, extending, 383–394
scan databases, 200–203
scanning by HIM system, 8–11
security of, 10–11
session key error, 238
session key, loss of, 204
session keys for HIM subversion

mitigation, 95–96
scan agents, Osiris

authentication of components, 124–126
communication with Osiris CLI, 194–200
configuration, 188–204
configuration options, 152–153

Index 417

digital certificates, pre-provisioning,
157–159

host configuration on management
console, 190–194

installation, 184–188
installer package for, 154–155
Linksys device monitoring with, 368
mass deployment, 213–217
modular interface of, 131
Osiris management console installation,

170
overview, 182–184, 237
scan configuration, custom, 211–213
scan configuration syntax, 204–210
scan configurations, shared vs. local, 211

scan command, 200
scan configuration

changes to, 239
filtering noise with, 227
testing, 343–348

scan data
archives of, 121
HIM subversion and, 94–95
for host, storage of, 190
Osiris, 127–128
Osiris, in relational database, 233–234
Osiris database files, 228–232
Samhain, 134
scan databases, 200–203

scan databases
configuration of, 200–203
Osiris scheduling and, 222–223

scanning
with HIM system, 8–11
host scan configuration, 193–194
host scheduling configuration, 191–192
Osiris, 124–126
Osiris notifications and, 219–222
Osiris scheduler, 222–224
scan frequency, 112
subversion of HIM and, 15–16

scans
by Beltane, 299–301
rogue executables, looking for, 337–341
SUID/SGID security audits, 328–333, 365
unscheduled, 333–335, 363, 365

scheduler
Osiris notification about, 221–222
Osiris scheduling, 222–224

scheduling

host configuration for, 191–192
Osiris, 165, 222–224
Samhain, 136
scan schedules, 112
unscheduled scans, 333–335, 363, 365

script filter
of Osiris, 336
rogue executables, looking for, 337

Secure Remote Password (SRP), 278
Secure Shell Daemon (SSHD), 31–32
Secure Shell (SSH), 372
Secure Sockets Layer (SSL), 126, 127
security

BSD kernel security levels, 58–59
HIMS role in, 102–105
incident response, 319–324
management console planning, 115–118
Samhain security features, 244
of scan agents, 10–11
See also threats

security administration
definition of, 4–5
role of, 103, 104–105

security audits
with Samhain, 243
SUID/SGID, 328–333, 363

security descriptor
NTFS ACLs, 46
of NTFS files, 45

Security ID (SID), 34
security-in-depth

definition of, 3
subversion of HIM and, 16

server, Samhain
authentication of, 133–134
function of, 132
logging and, 134–135
scan data and, 134

session keys
e-mail notification and, 191
HIM subversion mitigation with, 95–96
Osiris components authentication with,

126, 127
Osiris e-mail notification about, 221
scan agent error with, 238

Set Group ID (SGID)
audits with Samhain, 243
changes to, 44
execution of, 40
non-root owned executables, 364

418 Index

privileges, 64–67
Samhain configuration, 266
scanning, 365
security audits, 328–333, 363

Set User ID (SUID)
audits with Samhain, 243
changes to, 44
checks, in Samhain, 329–331
local access threats and, 85
non-root owned executables, 364
privileges, 64–67
Samhain configuration, 266
scanning, 365
security audits, 328–333, 363
UNIX file permissions, 40

set-baseline command, 198
SetClientFromAccept setting, 283
SetPrelinkChecksum, 360
SetPrelinkPath, 360
SGID. See Set Group ID
sh_hash_get_it(), 385
sh_hash_pushdata(), 385
sh_hostname_check_internal(), 385
shadow file, 30–31
shared configurations, 211
shared libraries

function of, 59–60
Mac OS X dynamic libraries, 61–64
problems with, 60–61

shell scripts, 65
SID (Security ID), 34
signature

PGP signature for Osiris, 143–146
Samhain GnuPG signing options, 255–257
Samhain verification, 245–248

signing, 96
SIGUSR2 signal, 334–335
Simple WATCHer. See Swatch
simplicity, 105
soft (symbolic) link, 42, 44
software

administrative negligence and, 86
host integrity monitoring, 100
installation for management console, 116
local access threats and, 84–85
for Osiris build environment on UNIX,

147
for Osiris build on Windows, 147–148
resources, 398–399
vulnerabilities, 83

See also malicious software
software agents

of HIM system, 7, 12–13
subversion of HIM, 15–17

Solaris
kernel extensions, 55–56
local access vulnerabilities, 84
Osiris installer agent for, 160
Osiris management console installation,

169
Samhain build, 257–258

source code
custom firmware for Linksys monitoring,

370–372
Osiris, 143–146
Osiris, adding modules to, 154
Osiris configuration options, 151–152
Samhain, 245–248
Swatch, 309, 310
verification of, 238

SourceForge project Web site, 309, 310
Spafford, Gene, 4
spyware, 82
SQL (Structured Query Language), 91
SQL Slammer worm

description of, 91
infection rate, 81

src directory, 383
src/sh_cat.c file, 391
SRP (Secure Remote Password), 278
SSH (Secure Shell), 372
SSHD (Secure Shell Daemon), 31–32
SSL (Secure Sockets Layer), 126, 127
stand-alone deployment. See Samhain, stand-

alone deployment
standard information attribute, 45
start time, 222
state record, 355
static libraries, 59, 60
status command, 195–196
stealth mode, 251–252
Stephenson, Peter, 319
sticky bit, 41
STOP message, 273
storage

logging information, 113
of Osiris scan data, 128
scan data in relational database, 233–234
scan databases, 200–203

string function, 379
Structured Query Language (SQL), 91

Index 419

SU (Super User) command, 32
subversion

of HIM, 14–17
of host integrity monitoring system, 93–96

SUDO (Super User DO) command, 32
suffix filter, 210
SUID. See Set User ID
[SuidCheck] module section, 266
SuidCheckExclude directive, 329
SuidCheckFps directive, 329
SuidCheckQuarantineMethod directive, 330
Sun Microsystems

NIDS developed by, 33
Solaris root exploit and, 84

Super User DO (SUDO) command, 32
Super User (SU) command, 32
superblock, 36
Sveasoft

Linksys WRT54G device configuration,
372

prebuilt firmware for monitoring devices,
368–370

source code for custom firmware, 370, 371
Swatch (Simple WATCHer)

configuration, 312–315, 326
configuration rules for Osiris/Samhain,

315–318
installation, 310–312
for log analysis, 114
log monitoring with, 309
running, 318–319

symbolic (soft) link, 42, 44
Symlink attacks, 44
syntax, Osiris scan configuration, 204–210
syslog file, 312, 313
syslog_facility=<FACILITY>, 173
System Access Control List (SACL), 46
system administrators

administrative abuse, 86
administrative negligence, 85–86
auditing with HIM and, 18

system calls
kernel access with, 52
monitoring with Samhain, 243

System Framework, 61–62
system group, 30
system log, 218
system resources, 85
system security resources, 397–398

T
tail method, 312, 313
tar.gz file, 185
TCP (Transmission Control Protocol), 93
TCT (The Coroner’s Toolkit), 16
terrain, 9

See also host environment
test environment

HIMS deployment, 108–109
management console, 118
Osiris, 142
Samhain, 242
Yule server, 273

test-filter command, 226, 348
testing

alert filtering, 348–351
notifications, 351–352
Osiris, 142, 160–161
Osiris installer agents, 160–161
Osiris module, 380–382
Samhain module, 392–393
scans, 343–348

TFTP (Trivial File Transfer Protocol), 370
The Coroner’s Toolkit (TCT), 16
threats

detection with HIM, 99
in general, 80
host integrity monitoring, circumventing,

93–96
internal threats, 83–86, 97–98
malicious software, 80–83
rootkits, 86–87
worms, successful, 88–93
See also attacks

TIGER checksum, 255–256
time stamps

change, Osiris detection, 315
subversion of HIM, 16, 94
UNIX file time stamps, 43

time-server, 251
Transmission Control Protocol (TCP), 93
Tripwire

centralized management and, 11
for change management, 5, 122
false positives and, 13
as file integrity checker, 4
for file integrity monitoring, 124

Trivial File Transfer Protocol (TFTP), 370

420 Index

Trojans, 81–82, 95
trust, 146

U
UDP (User Datagram Protocol), 91, 93
UID (User ID), 29
uninstall, Samhain, 271
UNIX

installer package for Osiris, 154–155
mass deployment of hosts on, 214
Osiris build environment, 147
Osiris compatibility, 131
Osiris management console backups, 163
Osiris management console installation on,

167–170
Osiris management console processes,

164–165
Osiris scan agent installation on, 185–187
Osiris scan agent on, 182–183
pre-provisioning certificates, 158
promiscuous interface on, 70–71
Samhain and, 137
Samhain configuration options, 250
Samhain limited to, 244
SUID/SGID privileges, 64–67
Swatch for, 309
testing Osiris installer agents, 160–161
users/groups on, 29–33

UNIX file security, 36–44
file links, 42–43
file permissions, 38–41
file time stamps, 43
in general, 35, 36–37
hidden file flags, 41–42
overview of, 44
view of, 37–38

unscheduled scans
conducting, 333–335, 363
usefulness of, 365

updates
Beltane database, 300
prebinding, 62–63, 352
Samhain baseline database, 269–270, 291

user access, 117–118
user authentication database, 164
User Datagram Protocol (UDP), 91, 93

User ID (UID), 29
[User0] and [User1] policy, 261
username, 297, 298
users

changes to, 77
in general, 28
Osiris, 232–233
Osiris configuration, 152–153
on UNIX, 29–33
on Windows, 33–35

/usr/bin/redo_prebinding command, 63–64

V
Van Wyk, Ken, 319
/var/log/lastlog, 32
/var/log/samhain_log file, 312
/var/log/wtmp, 32
/var/run/utmp, 32
VBS/SST virus, 93
Venema, Wietse, 115
verification, Samhain, 245–248
verify feature, 357–359
verify-config command, 213
virtual file system (VFS), 36
viruses

characteristics of, 80–81
flawed software and, 83

vulnerabilities. See threats

W
W32 Blaster worm, 88–89
W32 BugBear worm, 90
W32 Nimbda worm, 91–92
watchfor rule, 313
Web server, 28
Web sites

Beltane, 293
CERT/CC, 320
Entropy Gathering Daemon information,

250
host integrity monitoring resources, 398
Linksys source code, 370
log analysis, 309
Osiris logging codes, 218
Osiris modules, 154, 382

Index 421

Osiris source code, 143
PGP key, 143
regular expressions, 227
Samhain, 132, 242
Samhain agents mass deployment, 304
Samhain download, 245
Samhain module information, 394
Samhain verification, 246
Sveasoft firmware, 369
Swatch, 309
Swatch source code, 310

Web-based console. See Beltane
wheel group, 30
Wichmann, Rainer, 131
Windows

access tokens, 67
Blaster worm, 88–89
executables stored on, 335
installer package for Osiris, 156
kernel extensions, 57–58
kernel rootkits for, 87
log monitoring tools, 309
Nimbda worm and, 91–92
Osiris, mass deployment of, 215
Osiris build environment, 146–150
Osiris compatibility, 131
Osiris management console command-line

arguments, 166–167
Osiris management console installation,

170–172
Osiris management console processes,

165–166
Osiris scan agent installation on, 187–188
Osiris scan agent on, 182–184
pre-provisioning certificates, 158–159
RPC and DCOM, 68–69
Samhain and, 244
users/groups on, 33–35

Windows file security, 44–50
ACE, 47–48
NTFS ACLs, 45–47
NTFS file structure, 44–45
Windows registry, 48–50

Windows XP
Osiris build environment, 147–150
Osiris installer agent for, 159
Osiris management console backups,

163–164

worms, 88–93
BugBear, 90
CERT/CC and, 320
definition of, 81
detection with HIM, 92–93
flawed software and, 83
Linux Slapper, 89
Nimbda, 91–92
SQL Slammer, 91
W32 Blaster, 88–89

write [user:user:...], 314
write privileges, 39
WRT54G(S) routers, Linksys, 368–373

X
XML. See Extensible Markup Language
XOR (exclusive OR operator), 252

Y
Yule server

authentication of, 133
Beltane configuration and, 299
Beltane installation and, 293, 294
build environments, 273–274
building, 280
communication with scan agents, 133
configuration of, 278–279, 280–284
detected changes, dealing with, 291
function of, 132, 271
network-aware Samhain agents, 285–287
overview of, 272–273, 303
Postgresql installation/configuration,

274–277
Samhain agent baseline, 289–290
Samhain agent, configuration of, 288–289
Samhain agent, pairing with, 287–288
Samhain installation on, 304
scan data and, 134
status, 292
trust with Samhain, 304

yulectl executable, 273
yum system, 274–275

Snort 2.1 Intrusion Detection,
Second Edition
Jay Beale, Brian Caswell, et. al.

“The authors of this Snort 2.1 Intrusion Detection, Second Edition have produced a
book with a simple focus, to teach you how to use Snort, from the basics of get-
ting started to advanced rule configuration, they cover all aspects of using Snort,
including basic installation, preprocessor configuration, and optimization of your
Snort system.”
—Stephen Northcutt
Director of Training & Certification, The SANS Institute
ISBN: 1-931836-04-3

Price: $49.95 U.S. $69.95 CAN

Nessus Network Auditing
Jay Beale, Haroon Meer, Roelof Temmingh,
Charl Van Der Walt, Renaud Deraison

Crackers constantly probe machines looking for both old and new vulnerabilities.
In order to avoid becoming a casualty of a casual cracker, savvy sys admins
audit their own machines before they’re probed by hostile outsiders (or even
hostile insiders). Nessus is the premier Open Source vulnerability assessment tool,
and was recently voted the “most popular” open source security tool of any kind.
Nessus Network Auditing is the first book available on Nessus and it is written by
the world’s premier Nessus developers led by the creator of Nessus, Renaud
Deraison.
ISBN: 1-931836-08-6

Price: $49.95 U.S. $69.95 CAN

Ethereal Packet Sniffing

Ethereal offers more protocol decoding and
reassembly than any free sniffer out there and ranks well among the commer-
cial tools. You’ve all used tools like tcpdump or windump to examine indi-
vidual packets, but Ethereal makes it easier to make sense of a stream of
ongoing network communications. Ethereal not only makes network trou-
bleshooting work far easier, but also aids greatly in network forensics, the art
of finding and examining an attack, by giving a better “big picture” view.
Ethereal Packet Sniffing will show you how to make the most out of your use
of Ethereal.
ISBN: 1-932266-82-8

Price: $49.95 U.S. $77.95 CAN

AVAILABLE NOW
order @
www.syngress.com

Syn•gress (sin-gres): noun, sing. Freedom

from risk or danger; safety. See security.

Syngress: The Definition of a
Serious Security Library

AVAILABLE NOW
order @
www.syngress.com

AVAILABLE NOW
order @
www.syngress.com

