

Slawek Ligus

Effective Monitoring and Alerting

ISBN: 978-1-449-33352-2

[LSI]

Effective Monitoring and Alerting

by Slawek Ligus

Copyright © 2013 Slawek Ligus. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Andy Oram and Mike Hendrickson

Production Editor: Rachel Steely

Proofreader: Mary Ellen Smith

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrator: Robert Romano

Revision History for the First Edition:

2012-11-20 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449333522 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Effective Monitoring and Alerting, the image of a largetooth sawfish, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449333522

Table of Contents

Preface. vii

1. Introduction. 1
Monitoring, Alerting, and What They Can Do for You 1

Early Problem Detection 2
Decision Making 3
Automation 4

Monitoring and Alerting in a Nutshell 5
Metrics and Timeseries 5
Alarms, Alerts, and Monitors 6
Monitoring System 6
The Process of Alerting 8
Issue Tracking 9

The Challenges 10
Important Terms 12

2. Monitoring. 15
The Building Blocks 15

Data Collection 15
Coverage 17
Metrics 21
Example: Inputs, Metrics, and Timeseries 25
Understanding Metrics 26
Timeseries Patterns 32

Drawing Conclusions from Timeseries Plots 34
Interpretation of Anomalies 35
Frequently Encountered Anomalies 38
Determining Causality 41

iii

Capturing the Daily Cycle, Trends, and Seasonal Changes 44

3. Alerting. 47
The Challenge 47
Prerequisites 48

Monitoring and Alerting Platform 48
Audit Trail 48
Issue Tracking 49

Understanding Failure and Its Impact 49
Establishing Significance 49
Identifying Causes 52

Anatomy of an Alarm 53
Boolean Function 54
Suppression 57
Aggregation 58

Case Study: A Data Pipeline 60
Types of Alerts 62
Setting Up Alarms 63

Identifying Impact 63
Establishing Severity 64
Picking the Right Timeseries 65
Configuring Monitors 66
Setting Up Alarms 72
Testing Alerting Configurations 72

Alerting Suggestions 73

4. At Scale. 75
Implications of Scale 75
Composition of Large-Scale Systems 77
Commonalities of Large-Scale Alerting Configurations 78
Monitoring Coverage 79

Reflecting Dimensions in Metrics 80
Managing Large Alerting Configurations 82

Addressing the Problems 83
Suggested Solution 85
Result 96

5. Monitoring in System Automation. 99
Choosing Appropriate Maintenance Times Automatically 100
Controlling the Rate of Upgrade 101
Recovery-Oriented Admission Control 102

iv | Table of Contents

Automated Deployment and Rollback 105

6. The Work Environment. 109
Keeping an Audit Trail 109
Working with Tickets 110

Root Cause Analysis 111
Dealing with Anomalies 114
Learning from Outages 115
Using Checklists 115
Creating Dashboards 116
Service-Level Agreements 116
Preventing the Ironies of Automation 117
Culture 118

7. Measuring Success. 119
The Feedback Loop 120

Root Cause Classification 120
Timing 122

Ticket Reporting 122
Frequency of Incidence 123
Incidence Times 123
Time to Respond and Time to Resolution 124

Measuring Detectability 125
False Positives and False Negatives 125
Precision and Recall 126
The F-Measure 127

Transition to Automated Alarms 127
Maintenance Overhead 128
How (Not) to Measure 129

8. The Principles. 131
Get in the Habit of Measuring 131
Draw Conclusions Reliably 132
Monitor Extensively 132
Alarm Selectively 132
Work Smart, Not Hard 133

Learn from the Experience of Others 133
Have a Tactic 133
Run a Bank of Cases 134
Enjoy the Process 135

A. Setting Up OpenTSDB. 137

Table of Contents | v

Preface

I’ve been fortunate to get hired into medium-sized operations teams at large technology
companies. All ops teams (a customary term for operations teams) share two interesting
characteristics: compared to other engineering departments, they work under more
pressure, and they attract bad attention much easier than good attention. Digital fire‐
fighting is the nature of the job. We might get noticed when things go awry and we fix
them. If we don’t react fast enough, we definitely get noticed. If you know anyone in
network operations, ask if that’s the way he or she feels about the job—I bet you’re going
to get an answer along those lines.

Working in ops is all about effectiveness: there is no time for re-engineering. We must
get things right the first time and we have to act fast. We go through a lot of reprioritizing
and context-switching. There is relatively little room for creativity, at least the kind that
doesn’t love constraints. All this makes operations a great place to learn and grow.

This book is based on experiences of working in ops. I was extremely lucky to work with
some of the smartest people in the industry. I would like this book to be a tribute to all
these invisible ops guys who struggle daily to maintain the highest standards of service
availability.

In my career, I’ve stared at all sorts of timeseries plots, a lot of them. At one point it was
my full-time job—no kidding. With time, I learned to extract meaning from data point
fluctuations just by a brief glance, without having to study their origin. It’s a funny kind
of intuition that system engineers develop in the course of their jobs, and one that
probably saves us a lot of time. Some of us are unaware of it, and it’s definitely not
something we brag about. It is a very useful skill, nevertheless, and in this book I attempt
to verbalize it in order to assist you, dear Reader, to absorb it in a more conscious way
than I did, possibly saving you weeks or months of getting up to speed.

vii

Some people on my team believed that putting in motion the ideas described here led
to a visible paradigm shift. I must agree that in a relatively short period of time, the work
caused by our alerting configuration went from mundane to effortless.

This book focuses on monitoring and alerting in the context of distributed information
systems, but I’m hoping that the principles presented here will also be applicable to
timeseries and datasets generated by all sorts of complex systems. The book does not
focus on any particular software package. Rather, it attempts to extract and summarize
regularities that system engineers come across in their daily work. You won’t find many
long code listings here, but you’ll definitely find ideas: ones that I hope you’ll be able to
relate to and apply either at work or in a research project.

Enjoy!

Who Should Read This Book
The main audience of this book are system operators, those who fight the daily battle
of delivering the best performance at lowest cost as well as those who use monitoring
as a means and not an end. Read it if you work extensively with monitoring and plan
alerting configurations. If keeping high availability and continuity of service is your job,
read on. If monitoring and alerting bring up unpleasant associations, that’s an even more
valid reason to read the book. If you’re trying to quantify the effectiveness of your alerting
configurations, the book might have good answers.

Administrators who are setting up a monitoring or alerting configuration with a po‐
tential to grow big might also find the book useful. The ideas presented here have been
tested on large alerting configurations with a high degree of success. By “large,” I mean
thousands of monitors and hundreds of alarms. The book should help you replicate this
setup in your environment.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

viii | Preface

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Effective Monitoring and Alerting by Slawek
Ligus (O’Reilly). Copyright 2013 Slawek Ligus, 978-1-449-33352-2.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand
digital library that delivers expert content in both book and video
form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley

Preface | ix

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals

Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/Monitoring_and_Alerting.

The author has set up a small blog for this book. It can be accessed at http://effectivemo
nitoring.info/.

To comment or ask technical questions about this book, send email to bookques

tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgements
I’d like to start by saying thanks to my grandparents, Zuzanna and Marian Osiak, who
in 1998 helped me buy my first O’Reilly book, the first edition of Linux in a Nutshell by
Ellen Siever et al., when at 13 years of age I was on a very limited budget. Specifically,
grandma Zuzia persuaded the shop clerk in Katowice, Poland to drop the price by 50%
despite bookstore’s strict policy of not offering discounts in excess of 20%. Little did we
suspect that after fast-forwarding into the future by a decade and a half, I got to work
with Ellen’s editor, who created the idea of this Linux book.

x | Preface

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/Monitoring_and_Alerting
http://effectivemonitoring.info/
http://effectivemonitoring.info/
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

The person most helpful in the creation of the book was my wonderful partner, Natalia
Czachowicz, who assisted me at all stages of the authoring process from coming up with
an idea and writing the proposal through to setting up the plan, its execution and fi‐
nalizing. Natalia acted as my consultant, editor, reviewer, proofreader, marketer and
counsellor, and the amount of support she provided is ineffable; Nati, I’m indebted to
you for life!

I want to offer my gratitude to Benoît “tsuna” Sigoure, my technical reviewer, whose
critical remarks and suggestions greatly added to the value of this book. Special thanks
go to Viktor “vic” Trnka who kindly allowed me to instrument the network and systems
of MS-Free.NET to use generated data points for illustrations. Last but certainly not
least I’d like to give credit to Andy Oram, who patiently edited our way into completion
of this work.

I’d also like to take this opportunity to say massive thanks to all my friends and family
for enormous support in idea bouncing, spreading the word on social networks, proof‐
reading and for all kind words I received in the process—thank you all, it really meant
a lot.

Preface | xi

CHAPTER 1

Introduction

Present-day information systems have became so complex that troubleshooting them
effectively necessitates real-time performance, data presented at fine granularity, a thor‐
ough understanding of data interpretation, and a pinch of skill. The time when you
could trace failure to a few possible causes is long gone. Availability standards in the
industry remain high and are pushed ever further. The systems must be equipped with
powerful instrumentation, otherwise lack of information will lead to loss of time and—
in some cases—loss of revenue.

Monitoring empowers operators to catch complications before they develop into prob‐
lems, and helps you preserve high availability and deliver high quality of service. It also
assists you in making informed decisions about the present and the future, serves as
input to automation of infrastructures and, most importantly, is an indispensable learn‐
ing tool.

Monitoring, Alerting, and What They Can Do for You
Monitoring has become an umbrella term whose meaning strongly depends on the con‐
text. Most broadly, it refers to the process of becoming aware of the state of a system.
This is done in two ways, proactive and reactive. The former involves watching visual
indicators, such as timeseries and dashboards, and is sometimes what administrators
mean by monitoring. The latter involves automated ways to deliver notifications to
operators in order to bring to their attention a grave change in system’s state; this is
usually referred to as alerting.

But the ambiguity doesn’t end there. Look around on forums and mailing lists and you’ll
realize that some people use the term monitoring to refer to the process of measurement,
which might not necessarily involve any human interaction. I’m sure my definitions
here are not exhaustive. The point is that, when you read about monitoring, it is useful
to discern as early as possible what process the writer is actually talking about.

1

Some goals of monitoring are more obvious than others. To demonstrate its full poten‐
tial, let me point out the most common use cases, which are connected to overseeing
data flow and the process of change in your system.

Defining Monitoring and Alerting

Because there are many ways to view these activities, I’ll provide some more formal
definitions that may help you put each of the activities in this book in context.

Monitoring is the process of maintaining surveillance over the existence and magnitude
of state change and data flow in a system. Monitoring aims to identify faults and assist
in their subsequent elimination. The techniques used in monitoring of information
systems intersect the fields of real-time processing, statistics, and data analysis. A set of
software components used for data collection, their processing, and presentation is
called a monitoring system.

Alerting is the capability of a monitoring system to detect and notify the operators about
meaningful events that denote a grave change of state. The notification is referred to as
an alert and is a simple message that may take multiple forms: email, SMS, instant mes‐
sage (IM), or a phone call. The alert is passed on to the appropriate recipient, that is, a
party responsible for dealing with the event. The alert is often logged in the form of a
ticket in an Issue Tracking System (ITS), also referred to simply as ticketing system.

Early Problem Detection
Speedy detection of threatening issues is by far the most important objective of moni‐
toring and is the function of the alerting part of the system. The difficulty consists of
pursuing two conflicting goals: speed and accuracy. I want to know when something is
not right and I want to know about it fast. I do not, however, want to get alarmed because
of temporary blips and transient issues of negligible impact. Behind every reasonable
threshold value lurks a risk for potentially disastrous issues slipping under the radar.
This is precisely why setting up alarms manually is very hard and speculating about the
right threshold levels in meetings can be exhausting, frustrating, and unproductive. The
goal of effective alerting is to minimize the hazards.

Availability

In the business of availability, downtime is a dreaded term. It happens when the system
is subject to full loss of availability. Availability loss can also be partial, or unavailable
only for a portion of users. The key is early detection and prevention in busy production
environments.

2 | Chapter 1: Introduction

Downtime usually translates directly to losses in revenue. A complete monitoring setup
that allows for timely identification of issues proves indispensable. Ideally, monitoring
tools should enable operators to drill down from a high-level overview into the fine
levels of detail, granular enough to point at specifics used in analysis and identification
of a root cause.

The root cause establishes the real reason (and its many possible factors) behind the
fault. The subsequent corrective action builds upon the findings from root cause analysis
and is carried out to prevent future occurrences of the problem. Fixing the most super‐
ficial problem only (or proximate cause) guarantees recurrence of the same faults in the
long run.

Performance

Paying close attention to anomalous behavior in the system help to detect resource
saturation and rare defects. A number of faults get by Quality Assurance (QA), are hard
to account for, and are likely to surface only after long hours of regression testing. A
peculiar group of rare bugs emerge exclusively at large scale when exposed to extremely
heavy system load. Although hard to isolate in test environments, they are consistently
reproducible in production. And once they are located through scrupulous monitoring,
they are easier to identify and eliminate.

Decision Making
Operators develop a strong intuition about shifts in utilization patterns. The ability to
discern anomalies from visual plots is a big part of their job knowledge. Sometimes
operators must make decisions quickly, and in critical situations, knowing your system
well can reduce blunders and improve your chances for successful mitigation. Other
times, intuition leads to unfounded assumptions and acting on them may lead to cata‐
strophic outcomes. Comprehensive monitoring helps you verify wild guesses and gut
feelings.

Baselining

Monitoring provides an immediate insight into a system’s current state. This data often
takes quantitative form and, when recorded on timeseries, become a rich source of
information for baselining.

Establishing standard performance levels is an important part of your job. It finds
application in capacity planning, leads to formulation of data-backed Service-Level
Agreements (SLAs) and, where inconsistencies are detected, can be a starting point for
in-depth performance analysis.

Monitoring, Alerting, and What They Can Do for You | 3

Predictions

In the context of monitoring, a prediction is a quantitative forecast containing a degree
of uncertainty about future levels of resources or phenomena leading to their utilization.
Monitoring traffic and usage patterns over time serves as a source of information for
decision support. It can help you predict what normal traffic levels are during peaks and
troughs, holidays, and key periods such as major global sporting events. When the usage
patterns trend outside the projected limits, there probably is a good reason for it, even
if this reason is not directly dependent on the system’s operation. For instance, traffic
patterns that drop below 20% of the expected values for an extended period might stem
from a portion of customers experiencing difficulties with their ISPs. Some Internet
giants are able to conclusively narrow down the source of external failure and proactively
help ISPs identify and mitigate against faults.

On top of predicting future workload, close interaction with monitoring may help pre‐
dict business trends. Customers may have different needs at different times of the year.
The ability to predict demands and then match them based on seasonality translates
directly into revenue gains.

Automation
Metrics are a source of quantitative information, and the evaluation of an alarm state
results in a boolean yes-no answer to the simple question: is the monitored value within
expected limits? This has important implications for the automation of processes, es‐
pecially those involving admission control, pause of operation, and estimations based
on real-time data.

Admission Control

Bursts of input may saturate a system’s capacity and it may have to drop some traffic. In
order to prevent uniformly bad experience for all users an attempt is made to reject a
portion of inputs. This is commonly known as admission control and its objective is to
defend against thrashing that severely denigrates performance.

Some implementations of admission control are known as the Big Red Button (BRB),
as they require a human engineer to intervene and press it. Deciding when to stop
admission is inherently inefficient: such decisions are usually made too late, they often
require an approval or sign-off, and there is always the danger of someone forgetting to
toggle the button back to the unpressed state when the situation is back under control.

Consider the potential of using inputs from monitoring for admission control.
Monitoring-enabled mechanisms go into effect immediately when the problems are first
detected, allowing for gradual and local degradation before sudden and global disasters.
When the problem subsides, the protecting mechanism stops without the need for hu‐
man supervision.

4 | Chapter 1: Introduction

Autonomic Computing

Monitoring’s feedback loop is also central to the idea of Autonomic Computing (AC), an
architecture in which the system is capable of regulating itself and thus enabling self-
management and self-healing. AC was inspired by the operation of the human central
nervous system. It draws an analogy between it and a complex, distributed information
system. Unconscious processes, such as the control over the rate of breath, do not require
human effort. The goal of AC is to minimize the need for human intervention in a similar
way, by replacing it with self-regulation. Comprehensive monitoring can provide an
effective means to achieve this end.

Monitoring and Alerting in a Nutshell
Having discussed what these processes are for, let’s move on to how they’re done. Mon‐
itoring is a continuous process, a series of steps carried out in a loop. This section outlines
its workings and introduces monitoring’s fundamental building blocks.

Metrics and Timeseries
Watching and evaluating timeseries, chronologically ordered lists of data points, is at the
core of both monitoring and alerting.

Monitoring consists of recording and analyzing quantitative inputs, that is, numeric
measurements carrying information about current state and its most recent changes.
Each data input comes with a number of properties describing it: the origin of the
measurement and its attributes such as units and time at which sampling took place.

The inputs along with their properties are stored in the form of metrics. A metric is a
data structure optimized for storage and retrieval of numeric inputs. The resulting col‐
lection of gathered inputs may be interpreted in many different ways based on the values
of their assigned properties. Such interpretation allows a tool to evaluate the inputs as
a whole as well as at many abstract levels, from coarse to fine granularity.

Data inputs extracted from selected metrics are further agglomerated into groups based
on the time the measurement occurred. The groups are assigned to uniform intervals
on a time axis, and the total of inputs in each group can be summarized by use of a
mathematical transformation, referred to as a summary statistic. The mathematical
transformation yields one numeric data point for each time interval. The collection of
data points, a timeseries, describes some statistical aspect of all inputs from a given time
range. The same set of data inputs may be used to generate different data points, de‐
pending on the selection of a summary statistic.

Monitoring and Alerting in a Nutshell | 5

Alarms, Alerts, and Monitors
An alarm is a piece of configuration describing a system’s change in state, most typically
a highly undesirable one, through fluctuations of data points in a timeseries. Alarms are
made up of metric monitors and date-time evaluations and may optionally nest other
alarms.

An alert is a notification of a potential problem, which can take one or more of the
following forms: email, SMS, phone call, or a ticket. An alert is issued by an alarm when
the system transitions through some threshold, and this threshold breach is detected by
a monitor. Thus, for example, you may configure an alarm to alert you when the system
exceeds 80% of CPU utilization for a continuous period of 10 minutes.

A metric monitor is attached to a timeseries and evaluates it against a threshold. The
threshold consists of limits (expressed as the number of data points) and the duration
of the breach. When the arriving data points fall below the threshold, exceed the thresh‐
old, or go outside the defined range for long enough, the threshold is said to be breached
and the monitor transitions from clear into alert state. When the data points fall within
the limits of the defined threshold, the monitor recovers and returns to clear state.
Monitor states are used as factors in the evaluation of alarm states.

Monitoring System
A monitoring system is a set of software components that performs measurements and
collects, stores, and interprets the monitored data. The system is optimized for efficient
storage and prompt retrieval of monitoring metrics for visual inspection of timeseries
as well as data point analysis for the purposes of alerting.

Many vendors have taken up the challenge of designing and implementing monitoring
systems. A great deal of open source products are available for use and increasingly more
cloud vendors offer monitoring and alerting as a service. Listing them here makes little
sense as the list is very dynamic. Instead, I’ll refer you to the Wikipedia article on
comparing network monitoring systems, which does a superb job comparing about 60
monitoring systems against one another and classifying each in around 17 categories
based on supported features, mode of operation, and licensing.

It’s good to ask the following questions when selecting a monitoring product:

• What are the fees and restrictions imposed by product’s license?

• Was the solution designed with reliability and resilience in mind? If not, how much
effort will go into monitoring the monitoring platform itself?

• Is it capable of juxtaposing timeseries from arbitrary metrics on the same plot as
needed?

• Does it produce timeseries plots of fine enough granularity?

6 | Chapter 1: Introduction

http://bit.ly/RUbrWW

• Does its alerting platform empower experienced users to create sophisticated
alarms?

• Does it offer an API access that lets you export gathered data for offline analysis?

• How difficult is it to scale it up as your system expands?

• How easily will you be able to migrate from it to another monitoring or alerting
solution?

The vast majority of monitoring systems, including those listed in the article, share a
similar high-level architecture and operate on very similar principles. Figure 1-1 illus‐
trates the interactions between its components. The process starts with collection of
input data. The agents gather and submit inputs to the monitoring system through its
specialized write-only interface. The system stores data inputs in metrics and may sub‐
mit fresh data points for evaluation of threshold breach conditions. When a threshold
breach is detected, an alert may be sent to notify the operator about the fault. The
operator analyzes timeseries plots and draws conclusions that lead to a mitigative action.
Generally speaking, the process is broken down into three functional parts:

1. Data Collection

The data about system’s operations is collected by agents from servers, databases,
and network equipment. The source of data are logs, device statistics, and system
measurements. Collection agents group inputs into metrics and give them a set of
properties that serve as an address in space and time. The inputs are later submitted
to the monitoring system through an agreed-upon protocol and stored in the met‐
rics database.

2. Data Aggregation and Storage

Incoming data inputs are grouped and collated by their properties and subsequently
stored in their respective metrics. Data inputs are retrieved from metrics and sum‐
marized by a summary statistic to yield a timeseries. Resulting timeseries data
points are submitted one by one to an alarm evaluation engine and are checked for
occurrences of anomalous conditions. When such conditions are detected, an alarm
goes off and dispatches an alert to the operator.

3. Presentation

The operator may generate timeseries plots of selected timeseries as a way of gaining
an overview of the current state or in response to receiving an alert. When a fault
is identified and an appropriate mitigative action is carried out, the graphs should
give immediate feedback and reflect the degree to which the corrective action has
helped. When no improvement is observed, further intervention may be necessary.

Monitoring and Alerting in a Nutshell | 7

Figure 1-1. Interactions within a monitoring system

A monitoring system provides a point of reference for all operators. Its benefits are most
pronounced in mature organizations where infrastructure teams, systems engineering,
application developers and ops are enabled to interact freely, exchange observations and
reassign responsibilities. Having a single point of reference for all teams significantly
boosts the efficacy of detection and mitigation. Chapter 2 discusses monitoring in depth.

The Process of Alerting
Human operators play a central role in system monitoring. The process starts with
establishing the system’s baseline, that is, gathering information about the levels of per‐
formance and system behavior under normal conditions. This information serves as a
starting point for the creation of an initial alerting configuration. The initial setup at‐
tempts to define abnormal conditions by defining thresholds for exceptional metric
values.

Ideally, alarms should generate alerts only in response to actual defects that burden
normal system operation. Unfortunately, that’s not always the case.

When the thresholds are set up too liberally, legitimate problems may not be detected
in time and the system runs a greater risk of performance degradation, which in the end
may lead to system downtime. When the problems are eventually discovered and mi‐
tigated, the alerting configuration ought to be tightened to prevent the recurrence of
costly outages.

8 | Chapter 1: Introduction

Alarm monitors can also be created with unnecessarily sensitive thresholds, leading to
a high likelihood that an alarm will be triggered by normal system operation. In such
scenarios, the alarms will generate alerts when no harm is done. Once again, the baseline
should then be reevaluated and respective monitors adjusted to improve detectability
of real issues.

Most alarms, however, do go off for a valid reason and identify faults that can be miti‐
gated. When that happens, an operator investigates the problem, starting with the metric
that triggered the threshold breach condition and reasoning backwards in his search for
a cause. When a satisfactory explanation is found and mitigative measures are taken to
put the system back in equilibrium, the metrics reflect that and the alarm transitions
back into the clear state. If the metrics do not reveal any improvement, that raises ques‐
tions about the effectiveness of the mitigation and an alternative action might need to
be taken to combat the problem fully.

Once more, after a successful recovery, the behavior of system metrics might improve
enough to warrant yet another baseline recalculation and subsequent adjustment of the
alarm configuration (Figure 1-2).

Figure 1-2. The alerting loop

Issue Tracking
An Issue Tracking System (ITS) is a database of reported problems recorded in the form
of tickets. It facilitates prioritization and adequate tracking of reported problems as well
as enabling the efficient collaboration between an arbitrary number of individuals and
teams. Alerts often take the form of tickets, and therefore their role in prioritization and
event response is very relevant to the process of alerting.

Monitoring and Alerting in a Nutshell | 9

Tickets and queues

A ticket is a description of a problem with a chronological record of actions taken in
attempt to resolve it.

Tickets are an extremely convenient mechanism for prioritizing incoming issues and
enabling collaboration between multiple team members. They may be filed by humans
or generated by automated processes, such as alarms attached to metric monitors. Either
way, they are indispensable in helping to resolve problems and serve as a central point
of reference for all parties involved in the resolution process. New information is ap‐
pended to the ticket through updates. The most recent update reflects the latest state of
the ticket. When a solution to the problem is found and applied, the ticket is archived
and its state changes from “open” to “resolved.”

Every ticket comes with a title outlining symptoms of the reported problem, some more
detailed description, and an assigned severity. Typically, the severity level falls into one
of four or five possible categories: urgent, high, normal, low, and, optionally, trivial.
Chapter 3 describes the process of selecting the right priority. Tickets also have a set of
miscellaneous properties, such as information about the person making the request, as
well as a set of timestamps recording creation and modification dates, which are all used
in the process of reporting.

The operator dealing with tickets is expected to work on them in order of priority from
most to least severe. To assist the operator, the tickets are placed in priority queues. Each
ticket queue is a database query that returns a list of ticket entries sorted by a set of
predefined criteria. Most commonly, the list is sorted by priority in descending order
and, among priorities, by date from oldest to newest.

Depending on the structure and size of the organization, an ITS may host from one to
many hundreds of ticket queues. Tickets are reassigned between queues to signal transfer
of responsibility for issue resolution. A team may own a number of queues, each for a
separate breed of tickets.

Tickets resolved over time are a spontaneously created body of knowledge, with valuable
information about the system problems, the sources of the problems, solutions for mit‐
igation, and the quality of work carried out by the operators in resolving the problems.
Practical ticket mining techniques are described in Chapter 7.

The Challenges
It is commonly believed that for monitoring to be effective it has to take conscious,
continuously applied effort. Monitoring is not a trivial process and there are many facets
to it. Sometimes the priorities must be balanced. It is true that an ad hoc approach will
often require more effort than necessary, but with good preparation monitoring can
become effortless. Let’s look at some factors that make monitoring difficult.

10 | Chapter 1: Introduction

Baselining
The problem with baselines is not that they are hard to establish, but that they are
volatile. There are few areas for which the sentence “nothing endures but change” is
more valid than for information systems. Hardware gets faster, software has fewer
bugs, the infrastructure becomes more reliable. Sometimes software architects trade
off the use of one resource for another, other times they give up a feature to focus
on the core functionality. The implication of all that on monitoring and alerting is
that alarms very quickly become stale and meaningless, and their maintenance adds
to the operational burden.

Coverage
Full monitoring coverage should follow a system’s expansion and structural changes,
but that’s not always the case. More commonly, the configurations are set up at the
start and revisited only when it is absolutely necessary, or—worse yet—when the
configurations are so out of date that real problems start getting noticed by end
users. Maintaining full monitoring coverage, which is essential to detecting prob‐
lems, is often neglected until it’s too late.

Manageability
Large monitoring configurations include tens of thousands of metrics and thou‐
sands of alarms. Complex setups are not only expensive to maintain in terms of
manual labor, but are also prone to human misinterpretation and oversight. Without
a proper systematic approach and rich instrumentation, the configurations will
keep becoming increasingly inconsistent and extremely hard to manage.

Accuracy
Sometimes faults will remain undetected, whereas other times alarms will go off
despite no immediate or eventual danger of noticeable impact. Reducing the inci‐
dence of both kinds of errors is a constant battle, often requiring decisions that
might seem counterintuitive at the beginning. But this battle is far from being lost!

Context
Monitoring’s main objective is to identify and pinpoint the source of problems in a
timely manner. Time is too precious and there is not enough of it for in-depth
analysis. In order for complex data to be presented efficiently, large sets of numbers
must be reduced to single numeric values or classified into a finite number of buck‐
ets. As a consequence, the person observing plots must make accurate assumptions
based on a thorough understanding of the underlying data, their method of col‐
lection, and their source. Where do the inputs come from? In what proportions?
What is the distribution of the values? Where are the limits? Correct interpretation
requires in-depth knowledge of the system, which monitoring itself does not
provide.

The Challenges | 11

Human Nature
In striving for results, humans often see what they want rather than what’s actually
there. All too often, important pieces of information get discarded as outliers or as
having negligible impact. Operators get away with neglecting outliers most of the
time, but on rare occasions, especially at a large scale, neglecting these information-
rich outliers may result in a high visibility outage. In addition, humans are terrible
intuitive statisticians. We are prone to setting round thresholds, with a particular
fondness for powers of 10, and we easily lose the sense of proportion.

Important Terms
There is a fair amount of discrepancy in the use of monitoring vocabulary. Many or‐
ganizations, especially those with long established culture, use specific monitoring terms
interchangeably. I’d like to close this chapter with a short glossary of the most important
terms used throughout the book. I hope it will help to avoid some of the confusion.

Agent
A software process that continuously records data inputs and reports them to a
monitoring system.

Alarm
A piece of configuration describing an undesirable condition and alerts issued in
response to it.

Alert
A notification message informing about a change of state, typically signifying a
potential problem.

Alerting
The process of configuring alarms and alerts.

Data Input
A numeric value with an accompanying set of properties gathered at the source of
the measurement by a monitoring agent.

Data Point
A numeric value summarizing one or multiple data inputs reported in a defined
time interval. A series of data points makes up a timeseries.

Metric
A collection of data inputs described by a set of properties. Timeseries are often
mistakenly referred to as metrics. Monitoring metrics should not be confused with
performance metrics either, which are a set of high level business performance
indicators.

12 | Chapter 1: Introduction

Monitor
A process evaluating the most recent data points on a timeseries for threshold fit.
This is an integral part of an alarm.

Monitoring
The process of collecting and retrieving relevant data describing a change of state.

Timeseries
A list of data points sorted in natural temporal order, most commonly presented
on a plot.

Important Terms | 13

CHAPTER 2

Monitoring

Some benefits of monitoring are immediate, such as early detection, evidence-based
decision making, and automation. But its full value extends beyond that. Monitoring
plays a central role in the absorption of job knowledge and driving innovation. You can’t
manage what you don’t measure. A widely deployed monitoring solution keeps everyone
on the same page. Timeseries plots allow for the exchange of complex ideas that would
otherwise take a thousand words. Monitoring adds great value to the system and helps
to foster the culture of rapid and informed learning.

The Building Blocks
The main purpose of monitoring is to gain near real-time insight into the current state
of the system, in the context of its recent performance. The extracted information helps
to answer many important questions, assists in the verification of nonstandard behavior,
lets you drill down for more information on an issue that has been reported, and helps
you estimate the capacity of the system. Before I move on to discussing all these useful
aspects, I think it will help if I discuss the fundamental building blocks of a system from
the bottom up.

Data Collection
The process of monitoring starts with gathering data by collection agents, specialized
software programs running on monitored entities such as hosts, databases, or network
devices. Agents capture meaningful system information, encapsulate it into quantitative
data inputs, and then report these data inputs to the monitoring system at regular in‐
tervals. The inputs are then collated and aggregated into metrics to be presented as data
points on a timeseries at a later stage. Input collection may be a continuous process or
it may occur periodically at even time intervals, depending on the nature of the meas‐
urement and the cost of the resources involved in data collection.

15

Data collection agents can be categorized into the following groups:

White-box
Log parsers

These extract specific information from log entries, such as the status codes
and response times of requests from a web server log.

Log scanners
These count occurrences of strings in log files, defined by regular expressions.
For instance, to look for both regular errors and critical errors, you can check
the number of occurrences of the regex “ERROR|CRITICAL” in a log file.

Interface readers
These read and interpret system and device interfaces. Examples include read‐
ings of CPU utilization from a Linux /proc pseudo-filesystem and readings of
temperature or humidity from specialized devices.

Black-box
Probers

These run outside the monitored system and send requests to the system to
check its response, such as ping requests or HTTP calls to a website to verify
availability.

Sniffers
These monitor network interfaces and analyze traffic statistics such as number
of transmitted packets, broken down by protocol.

Monitoring Overhead and the Observer Effect

Agents are processes, and as such they consume a small portion of the resources of the
monitored entity. This is known as monitoring overhead, a small price to pay for data
collection work. This overhead is not to be confused with the Observer Effect, which
refers to a change in behavior of the observed entity when that one is being monitored.

Agents might generate the Observer Effect if they alter the state of the monitored object
or when data collection intensifies or weakens based on the result of measurement. For
instance, suppose that an agent measures performance of some object every 60 seconds
under normal operation, but when measurements exceed expected bounds the agent’s
logic instructs it to start probing once every second, in the hope of reporting more
granular results. This approach largely intensifies the frequency of probing, for which
proportionally more resources are consumed. The introduced Observer Effect likely
exacerbates the problem.

16 | Chapter 2: Monitoring

It is important to remember that monitoring agents ought to keep their logic simple and
do two things really well: gather data inputs and push them to the monitoring system.
Any additional features introduce unnecessary variation into the process of investigation
and detection.

Before the data collection can take place, agents must be deployed to the monitored
entities system-wide. However, in some circumstances, it might be desirable to monitor
remote entities without the use of deployable agents. This alternative approach is re‐
ferred to as agentless data collection, during which the data is transmitted from the
monitored entity through an agreed protocol and is interpreted outside the monitored
system.

You might want to resort to agentless monitoring in systems with heavy restrictions on
custom software deployments, such as proprietary systems that disallow custom addi‐
tions, legacy systems that don’t support the execution of agents, and high-security sys‐
tems with restrictions imposed by policy.

Examples of agentless data collection include:

• Gathering statistics from proprietary operating systems running on networking
gear via Simple Network Management Protocol (SNMP).

• Periodically executing diagnostic commands via SSH and parsing the output.

• Mounting the /proc on Linux remotely via sshfs for local interpretation.

Agentless monitoring comes with a couple of disadvantages:

• Network link outages between the monitored and the interpreting entity can result
in missing data points.

• There is additional overhead, as the data must first get transferred to the interpreting
entity, where the inputs are extracted.

Coverage
Complete monitoring should cover three major groups of metrics: resource availability,
software performance, and, where applicable, user behavior. The metrics for all groups
should be retrievable as a timeseries through a common interface that allows for effective
identification of problem sources by correlating the timeseries of neighboring layers in
a system stack. Full monitoring coverage spans networking, hardware, OS, middleware,
the application, and a set of key performance indicators. Figure 2-1 illustrates the layers
of coverage in a system stack.

The Building Blocks | 17

Figure 2-1. Monitoring coverage of system stack

Resources

Every action in the system costs CPU cycles. Most require memory, information
exchange takes up bandwidth, data takes storage space, and communication between
devices consumes I/O throughput. Resource usage patterns change with load. Large
systems with human users tend to follow load patterns based on circadian rhythm with
increased consumption of resources during the day and minimal utilization at night. It
is important to realize what typical usage patterns are. Monitoring resource utilization
helps you do that. Networking and computational resources require close and constant
attention.

Data on resource utilization and availability can be collected directly from devices pro‐
viding the resources. Usage levels are reported in the form of statistics from drivers
through a programmable interface.

Network. Data delivered over the network travels with a sometimes noticeable latency:

the time delay caused by digital processing and physical transport media. A network

18 | Chapter 2: Monitoring

link also has a limited throughput, defined as the amount of information conveyed per
unit of time. Latency must be kept to a minimum and the higher the throughput the
better. Transmission disruptions can be expressed in terms of increased latency and
reduced throughput.

Because computer networks are central to the idea of distributed computing, any net‐
work disruptions will inevitably be manifested in the overall system’s performance. Ap‐
plications are designed with an assumption that the network simply works, but in reality
it’s dangerous to take this for granted. System performance problems resulting from
network dysfunction have been succinctly captured in the set of Fallacies of Distributed
Computing formulated in the nineties by L. Peter Deutsch. In essence, packet loss will
take place, network latency will affect the application’s performance, and network band‐
width will become limited. For these reasons, the network must be monitored closely.

Computational resources. The basic currency in the world of information systems is a unit

of capacity. The cost of any user activity can be expressed in terms of the resources it
uses. But overdrafts of this currency are not allowed, which is why it is so important to
keep a close eye on resource saturation at all times.

A typical computational action in a web service environment is a request. Every request
takes resources: at a minimum it consumes memory and CPU cycles, but frequently it
also reads and writes some data to other devices such as disk drives, introducing further
I/O cost.

The depletion of any resource required to serve a request leads to creation of the so-
called performance bottleneck. Usage patterns cannot be predicted with 100% reliability
and resource shortages may not always be prevented by accurate capacity planning or
dynamic allocation of instances in the cloud. Remember that meeting the load with
additional capacity is not always desirable. Consider Denial of Service (DoS) attacks,
where the attacker’s objective is to shut down the service by driving the saturation of
the scarcest resource it can manipulate. Monitoring computational resources in the
context of system use is necessary to discern patterns and react accordingly.

Solution stack

A solution stack commonly consists of three parts: the operating system (OS), middle‐
ware, and an application running on top. Each layer generates information about the
state of each component. It is important to have an overview of and collect metrics for
all components of the solution stack, because faults can arise at any layer. The more
software metrics that are reported, the more conclusions you can draw without digging
into logs. There is nothing wrong with log analysis—logs will contain crucial, precise
information that may never make it into a timeseries—but plotting metrics is much
faster, and most of the time you don’t need the precise data logs yield, while you almost
always need to see the big picture fast.

The Building Blocks | 19

Operating system. While tightly bound to resource utilization, operating system moni‐

toring examines resource usage more at the software level: it aims to find out how effi‐
ciently resources are being used, in what proportions, and by whom. Typically, OS level
metrics report on the proportion of user-to-system CPU time; virtual memory man‐
agement including swapping and memory statistics; process management, including
context switching and waiting queue states; and finally filesystem level statistics like
inode information.

Various operating systems respond differently to different usage patterns, and within
any OS many parameters are tunable. Fine tuning the OS according to your use case
may result in better performance, which will obviously be reflected in monitoring met‐
rics.

Early indications of physical hardware failures sometimes get reported in OS level logs,
which may enable operators to act preventively before a machine fails in production.

Middleware. On top of the OS, the middleware layer serves as the platform for an ap‐

plication. It provides a standard set of combinable, purpose-specific software compo‐
nents which, put together, act as the engine of the solution. Middleware in distributed
computing includes software web servers and application server frameworks. For mon‐
itoring purposes, these gather per-request information, keeping track of the amount of
open sessions and states of transactions.

Application. Application metrics contain information specific to the operation and state

of the application only. They often introduce high-level abstract constructs specific to
the domain of the application. Thus, a batch processing system can express a batch in
terms of size and number of items contained. A content management system can de‐
scribe a modification operation by the extent of changes (major or minor), type (addi‐
tion, deletion, or both), the time a person took to update content, etc.

Application inputs may vary from relatively few long-lived events (e.g., open sessions)
to an extremely large number of short-lived metrics (such as ad impressions). In both
cases it is usually appropriate to measure their turnaround times and express them as
delay measurements. The application-level load measurements can be expressed
through input levels (i.e., incoming traffic and number of submitted inputs).

Availability is also measured at the application level of the stack. A failure in any of the
underlying layers of the system stack takes away from the overall availability of your
system. Therefore, for an availability metric to be meaningful, it must be recorded from
external locations so the network is measured as well.

20 | Chapter 2: Monitoring

User experience

Finally, monitoring user behavior is carried out with web analytics software in order to
answer questions about user experience. Classic user behavior metrics used in websites
are the average time spent on the site and the percentage of returning visitors. User
behavior monitoring is a broad subject and is beyond the scope of this book.

Metrics
Monitoring metrics are collections of numeric data inputs organized in groups of con‐
secutive, chronologically ordered lists. Each data input consists of a recorded measure‐
ment value, the timestamp at which the measurement took place, and a set of properties
describing it.

When data inputs from a metric are segmented into fixed time intervals and summarized
by a mathematical transformation in some meaningful way, they can be presented as a
timeseries and interpreted on two-dimensional plots.

The length of data point intervals, also referred to as time granularity, depends on types
of measurements and the kind of information that is to be extracted. Common intervals
include 1, 5, 15, and 60 minutes, but it is also possible to render intervals as granular as
one second and as coarse one day.

The single most important advantage of using timeseries for monitoring is their property
of accurately illustrating the process of change in a context of historical data. They are
an indispensable tool for finding the answer to the critical question: what has changed
and when?

Timeseries are two-dimensional with data on the y-axis and time on the x-axis. This
means that any two independent timeseries will always share one dimension—time.
This way, plotting data from multiple metrics against one another adds just a single layer
of complexity at a time to the chart. For that reason, timeseries provide an efficient
means of highlighting correlative relationships between data from many sources, such
as interlayer dependencies in a software stack.

Summary statistics

Monitoring metrics store data inputs and describe their properties. Generating and
plotting a timeseries involves retrieving a subset of data inputs by specifying a set of
properties (for example, hostname, group), dividing them into evenly spaced time in‐
tervals, and mathematically summarizing data inputs in each interval. This is done with
the use of summary statistics. Commonly used summary statistics are:

The Building Blocks | 21

n
The count of inputs per interval

sum
Sum of values from all inputs

avg
Mean value for all inputs (sum / n)

p0-p100
Percentiles (0-100) of the input values including min (p0) and max (p100) values
as well as the median (p50)

deviation
Standard deviation from the average in the distribution of the collected inputs

Summary statistics describe observed input sets by their centers (average or median),
the total (sum, n), and the distribution and spread (percentiles and deviations). They
can summarize huge data sets in a compact and concise way. Turning many numbers
into a single one does cause information loss, but the summary is usually accurate
enough to draw reliable conclusions. Figure 2-2 shows how data from an irregular data
set are represented through summary statistics.

Figure 2-2. 3D representation of a sample data set and its two dimensional summary

Frequency distribution and percentiles. Frequency distribution is a summary of a data set

that combines numeric items (a process called binning) into groups and presents the
groups in manner that lets you quickly see their relative size. The distribution is most

22 | Chapter 2: Monitoring

commonly illustrated in a histogram, as depicted on Figure 2-3. The x-axis here is not
a timeline, as it is when presenting a timeseries. The left side of Figure 2-3, labeled
“milliseconds,” answers the question “How many transactions took 300 milliseconds,
compared to 100 milliseconds, etc.?”

Histograms often fall along a normal distribution, with their bins fitting right under the
famous Gaussian curve. But system data is usually not that regular and typically displays
a long right tail; that is, the distribution is skewed to the left. There is a simple reason
for that: the lower limit on performance is a hard one—it can’t break the laws of physics.
Think of latency, for instance: the best case scenario turnaround time must always be
more than zero time units. Its upper limit, on the other hand, is a soft one—theoretically,
you could wait forever.

Figure 2-3. Histogram and percentile plot describing distribution of data inputs that
make up data points on timeseries

Summary statistics plotted as data points over time are convenient for observing change,
but timeseries don’t necessarily reveal the true nature of the data.

You can extract raw data inputs from offline log analysis and present them on a histo‐
gram to show their relative frequency. This information gives operators a good idea of
what value to expect from a typical input and what the input distribution looks like
behind each summarized data point.

An alternative way to summarize frequency distribution is a percentile plot. For any set
of inputs, a percentile is a real number in the range of 0 to 100 with a corresponding
value from that set. The number at a particular percentile shows how many values are
smaller than the value of that percentile.

Percentiles get calculated by sorting the set of inputs by value in ascending order, finding
the rank for a given percentile (that is, the address of the value in the sorted list), and
looking up the value by rank.

The Building Blocks | 23

The 0th percentile is the measurement of the lowest value (the first element in a sorted
list, min), and the 100th percentile is the maximum recorded value (the last element in
the list, max). The 50th percentile or p50 is commonly referred to as the median, and
stands for the middle value in the set. Percentiles make distribution easy to interpret;
for example, for measuring response time a p98 value of 3 seconds means that 98% of
all requests completed in 3 seconds or less. Conversely, 2% of the slowest requests took
3 seconds or more.

Rate of change. Rate of change illustrates the degree of change between data points on

a timeseries or other curve. Effectively, where the slope of the original timeseries plot is
rising, its rate of change has positive values. Conversely, when the slope descends, the
values on the rate of change series are negative. The rate of change derived from a
timeseries can be presented as another timeseries.

Rate of change is a useful conceptual tool for illustrating levels of growth or decline over
time. It is used extensively with counter metrics (discussed further) to express number
of counter increments per time interval.

Time granularity

Data points in a timeseries are presented at a fixed time granularity. Fine granularity
translates to short data point periods. The coarser the granularity, the longer the period.

Fine granularity metrics tend to reveal the exact time of an event and are therefore useful
for finding direction in causal relationships, as well as describing timelines. They might,
however, be more expensive to store. Coarse granularity metrics, on the other hand, are
much more suited for illustrating trends.

Selecting the right granularity to present a metric is important for accurate interpreta‐
tion of data. Both too granular and very coarse measurements may obscure the point
you’re trying to convey.

Some monitoring systems lock the user into using predefined constant intervals, where‐
as others allow the user to specify arbitrary periods. However, some minimum interval
is always required. Even if we were able to present events on a continuous time scale
(with an infinitesimally fine granularity), it would probably not be very helpful. In the
real world, no two events happen at the exact same time, so recording that on a con‐
tinuous scale would never make the event count stack up on the plot. In other words,
the maximum event count on our continuous timeseries would never exceed 1 at any
given data point. Going to the other extreme, if the data point interval is extremely long,
such as one year, the output will be a huge collection of event occurrences. That can be
somewhat useful for purposes of data analysis but not for monitoring.

24 | Chapter 2: Monitoring

Metric aggregation

In distributed systems, data inputs for the same metric come from many sources. Think
of a group of web servers behind a load balancer, reporting statistics about requests
being served. One way to view the request data is in the form of multiple timeseries, one
for each web server, plotted out against each other. However, aggregation could combine
the results from the web servers into a single timeseries with a total of all requests.

Aggregation enables you to get an overview of the data and simplifies the chart, but the
ability to drill down to view each source of data is no less important. Suppose one of the
servers stops taking requests. It will either report zero-valued data points or stop sending
inputs altogether. The fault can be detected by looking at the individual server metrics,
but it wouldn’t necessarily show on the aggregated plot.

Many faults, however, are a lot subtler than that and manifest themselves through slight
depressions in the number of requests rather than their complete disappearance. In these
cases, it is also desirable to aggregate data points from all sources and present them as
a single metric to show the cumulative effect.

Metric aggregation is not to be confused with alarm aggregation, discussed in more
detail in Chapter 3.

Example: Inputs, Metrics, and Timeseries
I created some sample data by sending ICMP echo requests every second for a period
of one hour and recording the round-trip time for each request. Figure 2-4 shows a 3D
plot of latency. The plot includes all data inputs in their unreduced form. Two clusters
of very high latency are visible: one peaking at 177ms between 10 and 20 seconds of
minute 14, and the other peaking at 122ms between 40 and 50 seconds of minute 40.
Their empty bars signify packet loss.

The plot on Figure 2-5 was created from the same set of inputs as that on Figure 2-4.
The inputs were gathered in active mode and served as a basis for two separate multi-
N metrics, one for packet loss and one for latency. Both are presented as timeseries with
data points at one-minute intervals and summarized by arithmetic mean.

This time we see latency as a line with crosses (green). Each cross marks one data point,
summarized from measurements taken at the interval of one minute. The y-axis of this
line is measured by the numbers on the left-hand side of the figure. Packet loss is shown
as a plain red line). The y-axis for packet loss is measured by the numbers on the right-
hand side of the figure, which range from 0 (no packet loss, which is the case most of
the time) to 0.035 (3.5% packet loss).

The Building Blocks | 25

Figure 2-4. ICMP echo messages sent every second for a duration of one hour

Because the data is chunked by minute, and the test sent a packet once per second, the
packet loss metric is calculated by dividing the number of packets lost during a minute
by 60. The two spikes in packet loss are at minute 14, where it reached 0.017 (1.7%),
denoting that 1 out of 60 inputs was lost, and almost 3.5% at minute 40, which denotes
2 lost packets.

Overall, Figure 2-5 illustrates how you can trade off the loss of some detail in order to
get a quicker grasp of underlying issues.

Understanding Metrics
A solid understanding of data presented in metrics is essential to drawing reliable con‐
clusions from timeseries plots. Knowing which category a metric belongs to and where
its data originates is helpful in realizing the impact of pattern shifts and presenting the
information in the most conclusive ways. Some summary statistics emphasize the key
insight better than others, and the same data may appear dissimilar when displayed at
a different time granularity. Realizing differences of that sort assists in constructing plots
that clearly convey the point.

26 | Chapter 2: Monitoring

Figure 2-5. The plot of average latency and packet loss

This section breaks down the interpretation of metrics by looking at their basic prop‐
erties. Looking at metrics in this way should enable you to make reliable assumptions
about the data and their origin and understand likely changes in metric behavior. But
hey, don’t just take my word for it. Visit RRDTool Gallery. The page contains tens of
performance graphs and timeseries examples submitted by RDDTool users from around
the globe. Try going there before and after reading this section. Are you able to extract
some more meaning the second time?

Type of unit

Each metric can be seen in three general ways based on the type of its units.

Amount
A collection of discrete or continuous values resulting from inputs; examples in‐
clude number of matches in a search result, packet size, price, free disk space.

This group of metrics is by far the most common. Resulting data plotted as times‐
eries illustrates operational flow and states. Amounts are typically recorded at all
levels of the software stack.

The Building Blocks | 27

http://oss.oetiker.ch/rrdtool/gallery/

Units: bytes, kilograms, price, sum of returned items.

Time Delay
An amount of time required for an action to complete; examples include latency,
web request response time, ICMP round-trip time, time spent by a user on the
website.

Just like amounts, delays are typically recorded at all levels and play a crucial role
in performance monitoring due to the immediate effect of response times on user
experience. Resulting data points are almost always a blend of multiple inputs that
happened in a given time period. Typically, their average, median, and high per‐
centile values are watched most closely.

Units: milliseconds, seconds, minutes, hours, days, CPU cycles.

Amount per Time
Discrete or continuous amounts flowing through the system per unit of time, more
generally referred to as throughput; examples include bit rate and Input/Output
Operations Per Second (IOPS).

Such metrics are suitable for monitoring small data bits produced in big amounts
with high potential variability of values. They are most commonly used for moni‐
toring lower level metrics such as hardware device statistics. Typically, the under‐
lying hardware device has a built-in mechanism for keeping track of and reporting
on the flow of throughput. In such cases, amount per time metrics represent one
input per data point: that is, the device was queried for its state once in a given data
point period. In other cases, where multiple inputs are available per data point, the
variability of throughput can be observed through input distribution via use of
percentiles, just as in case of the previous two types.

Units: bits per second, IOPS, miles per hour.

Let me illustrate this classification with an example of requests to a web server.

A web server accepts HTTP requests and issues a response to each of them that takes a
non-zero amount of time. The duration dependent on the size of the request.

Suppose the server accepts up to 15 simultaneous requests and that each request takes
on average 200 ms to complete. Requests may come at different times and their duration
may vary, but let’s assume that the server can safely take 75 requests per second. All three
types of metrics could find application here:

• Amount: Request size, or the record of each request’s magnitude in bytes. The metric
can be interpreted in terms of multiple summary statistics:

— The sum of inputs reveals the total size of incoming user data. This information
can later be used for billing purposes.

28 | Chapter 2: Monitoring

— The avg, p0, p50, and p100 carry information about the variability of request
sizes, revealing the average, smallest, most typical, and largest values respectively.
This information about distribution of request sizes can be used for stress testing
and capacity planning.

• Time Delay: Response time, or amount of time necessary for a request to complete.
Interesting summary statistics include the average, the fluctuation of which reveals
sudden changes in the underlying distribution, and p99, which holds the time of
the slowest 1% of all responses.

• Amount per Time: Number of requests per second, the effective throughput of re‐
quests. Assuming that the inputs are measured every second to construct one-
minute data points, p100 reveals the maximum number of requests per second.
When this number approaches the defined limit of approximately 75 requests per
second, a degradation of user experience might be observed; in the absence of a
queuing mechanism, the requests will have to be dropped and the user will be forced
to retry them.

In this particular case, there exists a strong correlation between all three measurements.
The first two are positively correlated: the larger the request, the longer the response
time. The amount per time metric and the other two are negatively correlated: the bigger
the requests and thus the longer the responses, the fewer requests per second may be
accepted.

Data Collection Mode

Data collection agents can operate in two modes, active or passive, depending on the
actions taken to extract the data.

Active
An active monitoring entity proactively issues test requests to gather state and health
information; examples include an ICMP ping request or an HTTP GET health
probe.

Active monitoring introduces overhead into the net cost of system operation. The
overhead is not usually monitored itself, but the operator should be aware of the
proportion of introduced cost to the overall cost of normal system operation. When
possible, monitoring impact should be kept at negligible levels.

Passive
In passive monitoring, the agent watches the flow of data and gathers statistics
without introducing any cost into the system. In monitoring networks, the data is
gathered by reading statistics from network gear and through the use of packet
sniffers. The resulting information yields the number of transmitted packets and
proportion of traffic divided into OSI model.

The Building Blocks | 29

Data Source

Another way to classify measurements is by the locus of the data gathering agent, in‐
ternal or external.

Internal
Measurements are gathered within the system (log data, device statistics).

Data inputs are collected internally with the help of agents executed continuously
or at specific intervals and reporting statistics read from system’s interfaces such as
the /proc filesystem in Linux. Centralized monitoring systems may also gather data
in an agentless fashion by opening SSH sessions from their central location to a set
of monitored destination hosts in order to read the statistics and interpret them
locally.

External
Measurements are gathered and reported by an external entity. External monitors
typically operate in an active mode to establish availability (see the earlier examples
of active monitoring), but they can also passively monitor data flow (through net‐
work sniffers inspecting and classifying traffic, for instance).

External black-box monitoring is aimed at verifying the system’s health. Health
check agents send probes through system entry points to measure end-to-end
availability.

When the scale of the organization is significant enough, a special kind of external
monitoring is possible through watching social networks. A huge number of results
for “is Google down or is it just me” in a Twitter search query, for instance, might
be an indication of problems with accessing the website.

Number of Inputs per Data Point

Metric measurements can be further divided into multiple subcategories based on the
number of inputs required to construct a data point and the nature of the measurement.

Multi-N
Data points for multi-N metrics are summary statistics combined from multiple
processed inputs. The inputs get aggregated and the resulting data point contains
a full set of useful summary statistics describing cumulative effects (sum, n), typical
values (average, median) and distribution of the data (percentiles).

Examples include bytes transferred, number of HTTP requests, average time on
site, and p99 of the response time.

30 | Chapter 2: Monitoring

Single-N or 1-N
Data points for these metrics require only a single input in order to construct a
meaningful data point. In most cases, the metric illustrates state change over time.
Although the schema of the data point may include the full set of summary statistics,
the one and only recorded value will be assigned to all of them and n will be equal
to 1.

Examples include IOPS, CPU utilization, and message count.

Type of Quantity

Metrics can also be interpreted by the type of quantity they represent.

Flow
This kind of metric records events and their properties.

Flow records a variable number of inputs per interval (that is, it is multi-N). The
data is gathered from multiple sources and is summarized after being aggregated.
A high variability of input values allows the viewer to draw conclusions from the
distribution of inputs. High values of extreme percentiles are an early indication of
changes, some of which could be interpreted as worrying.

Examples include the sizes of packets sent, prices of sold items, and response times
for each request.

Throughput
This measures the rate of processing over a period of time.

Throughput metrics record continuity and intensity of flow. They are expressed in
units per time and illustrate levels of resource consumption. Because throughput
limits can be reliably tested and clearly defined, this type of metric is used for
alarming on resource saturation and identifying bottlenecks.

Examples include bit rate and IOPS.

Stock
This indicates an accumulated quantity at a specific point in time.

Stock metrics are single-N. They record a single data input per data point interval.
They are expressed in simple units of quantity and represent a total of the agglom‐
erated value. The levels of stock may be changed by processes that are recorded by
flow metrics, and the intensity of these changes is expressed by throughput metrics.

Examples include memory usage, free disk space, queue length, temperature, and
volume level.

Availability
This measures the degree to which the expected result is returned.

The Building Blocks | 31

The source of input for availability metrics are probes—requests issued proactively
that return success on the receipt of an expected response or failure otherwise.
Probes may be internal or external. As a multi-N metric, with low variability of
input values (1 on success and 0 on failure), the average of inputs yields availability
in percentage terms (a number ranging from 0.0 to 1.0).

Examples include HTTP GET requests expecting a 200 response code, ICMP ping
results, and packet loss.

Timeseries Patterns
Data points on a time series follow patterns that strongly depend not only on the number
and variability of recorded inputs but also on the temporal granularity and the properties
of the selected summary statistic. The finer the temporal granularity, the more spiky the
timeseries will appear, while series with coarser granularity demonstrate less variability
of data point values. Summarizing multiple inputs with extreme percentiles also leads
to higher variability (more fluctuations) than when summarizing with average. Ana‐
lyzing timeseries in terms of their patterns is crucial in understanding their normal
behavior and plays a role in selecting the right alerting strategy.

Figure 2-6 shows eight common patterns. We’ll take a look at what each pattern indicates.

Spiky
This is often found in flow and throughput metrics and can be attributed to high
variability or burstiness of inputs: their sudden change in values or quantity. Spiky
patterns are often noticed on metrics relating to bandwidth usage and computa‐
tional resources that are prone to rapid changes in utilization patterns.

Steady
This appears when data point values have a low variability at a non-zero level. Their
value range is probably restrained from one side, for instance, by the laws of physics
(latency, speed of light in glass) or a hard limit at 100%. This pattern is seen when
measuring availability and underutilized resources. When no distinguishable
trends are present, accurate alarm threshold values can be calculated from average
and standard deviation.

Counter
This is a special case that occurs with a stock metric, where a discrete value keeps
increasing until it gets flushed. These metrics are a reflection of a counter variable
plotted over time. Counters include records of event occurrences since a certain
date or indicate an age, where the counter variable increases at a constant time
interval, thus measuring the temporal distance since a point in time. Counters do
not decrease, but they might get reset to 0. They are used for evidencing and pre‐
dicting the necessity for maintenance. The record of counter’s rate of change can be
interpreted as a flow of incrementing events (see Flow).

32 | Chapter 2: Monitoring

Figure 2-6. Common timeseries patterns

The Building Blocks | 33

Examples include the number of seconds since last update (age in seconds) and the
number of reboots since last filesystem check (usage-age).

Bursty
These metrics come as a result of an intermittent operation of system components,
with extended periods of inactivity, as in the case of CPU utilization on batch pro‐
cessing systems such as map-reduce clusters. These jump up to almost 100% on the
processing of a job, but stay low while awaiting submissions.

Cyclic
Series following sinusoidal patterns are subject to cycles. Virtually all metrics that
come as a result of interactions with humans from a selected geolocation and at
scale—for instance, website traffic—reflect humans’ diurnal cycle with trends and
seasonal effects.

Binary
These appear for availability metrics recording only two values: 1 and 0 on success
and failure, or the presence and absence of events. Depending on the graphing
system, a binary pattern can be presented as a square wave alternating between 0
and 1 or as a change of background color in affected temporal space (for instance,
a red background for data points during which health probes failed).

Sparse
Sparse timeseries are ones whose metrics do not receive inputs at every interval.
They record events that happen irregularly. Sparse timeseries can be subdivided
into two categories: ones that record a value of zero even when no data inputs were
reported, and ones that don’t. In the former case, the recording of null values pre‐
vents interpolation between distant data points and makes the plots more inter‐
pretable, while the latter solution, less expensive to store and retrieve, may be a good
fit for measurements taken on an irregular basis.

Sparse series are commonly used for recording errors and events unlikely to occur
in normal operation.

Stairy
This pattern is observed when data points rise and fall sharply to stay at the same
level for extended periods. It’s commonly seen in stock metrics expressing level of
consumption or activity, such as those that measure disk space, free memory, or
number of processes running.

Drawing Conclusions from Timeseries Plots
Timeseries data are used to extract information about the past, present, and future. Real-
time plots help to detect problems while they are occurring and help to confirm the
validity of mitigative actions (for instance, in the case of high memory usage on a server

34 | Chapter 2: Monitoring

and you watch it decrease after throttling an offending client IP). Data points gathered
over time describe the operational system state in historical context, facilitating the
detection of chronic problems that would otherwise not be classified as critical. In ad‐
dition to preventative analysis, trends and seasonal variations are used for more accurate
capacity planning.

Interpretation of Anomalies
Deviations of data points from standard patterns carry meaning that can be read like a
symbolic language, its alphabet the spikes and dips, bursts and plummets, depressions
and elevations, as well as flattening effects. The vocabulary of the language is somewhat
limited and, therefore, the grammar must be based on strong contextual knowledge and
a sense of proportion.

For a vast majority of timeseries, data point values change all the time, but only some
of the time are they significant enough to be noticed and categorized as anomalies.
Anomalous fluctuations can be considered in terms of their direction (rise or fall),
magnitude of deviation (distance from the baseline), duration in data points, and pro‐
gression.

Spikes and dips differ in direction (dips are negative spikes). They are short-lived (the
timeseries recovers just after a few data points) and because of their short duration, they
manifest no progression.

Elevation and depression also differ in direction, but take more data points to recover
from and therefore may reveal different progression patterns: a sudden jump with sus‐
tained level, a linear increase/decline, or an exponential rise and fall.

The key to interpreting these sorts of fluctuations in a timeseries is to recognize the type
of recorded quantity and the summary statistic used. Summary statistics can be binned
in two groups: one describes the total of inputs as a bulk quantity, such as their sum or
recorded amount (n), whereas the other describes how steady individual inputs are by
means of average and percentile distribution.

The previous section described five quantity types: flow, stock, availability, and through‐
put.

Flow

Flow records some property shared by multiple events. The n statistic describes flow
levels, that is, number of inflowing events per interval of time. Think again of requests
incoming to a web server and their response times. The n statistic displays traffic levels.
Sudden bursts and spikes can be attributed to client usage patterns. Given that not all

Drawing Conclusions from Timeseries Plots | 35

requests have equal costs, the sum of request times can be interpreted as the total cost
of operation expressed in computational hours. The average (avg) is the mean request
time. An unsteady average hints at changes in the distribution of input values, typically
a slowdown of a portion of requests.

Such a change is best highlighted by the use of high percentiles, such as p95 or p99. Their
exceptionally high values imply a shortage of resources or bandwidth saturation. If it’s
the former, spikes of p99 should align with spikes of the sum (total computation time)
and underlying CPU utilization stats. Although the average might be skewed by a frac‐
tion of slow requests, p50 reliably describes typical user experience.

The reason why it is more common to see distribution changes at higher
rather than lower percentiles is that most metrics have hard limits for
values at the lower end. At the same time, there is no restriction at the
other end. Let me take network latency as an example: the lowest value
is only as small as permitted by the laws of physics, while nothing pre‐
vents the response from taking arbitrarily long.

Stock

Stock quantities record information about capacity levels. They may pertain to storage,
memory, or abstract constructs such as software queues. Stock metrics are inherently
single-N, so their only valid summary statistic is the sum. Changes in data point values
reflect inflows and outflows, which may be described in more detail by related flow
metrics.

Suppose you monitor a data pipeline consisting of three components: a submitting entity,
a queue, and a processing entity. The submitting entity enqueues requests and the pro‐
cessing entity dequeues and processes them sequentially. If the rate of submissions is
lower than the rate of processing, the stock metric describing the queue level will remain
at 0, occasionally reaching the value of 1. When the submission rate is higher than
processing rate, the queue will increase steadily and a backlog will accumulate. If the
submitting entity ceases its operation, the processing entity will drain the queue over
time.

The counter type is a specialized case of a stock quantity, in which regular inflows are
accepted, but the outflow is performed explicitly once in a while to flush the counter
back to zero. As a stock metric, it is single-N and doesn’t make any use of summary
statistics. Deriving rate of change from a counter produces a timeseries for flow, de‐
scribing the rate at which the counter increases.

In information systems, counters are often used to hold information about periodic
maintenance, such as the number of partition mounts since the most recent filesystem

36 | Chapter 2: Monitoring

check or the time in seconds since the most recent content update. Counters find their
application also at the application level. Suppose you run an advertising platform, and
display ads in rounds of 1000 impressions. When the counter reaches the impression
limit, the counter is reset and the next ad is served.

The rate of increase should change with rates of Internet penetration. If the data points
flatten out at a steady level for suspiciously long, the ads have probably been discontinued
for some reason, and the issue might need to be investigated.

Consider another example. A fleet of machines requires regular maintenance that has
to happen at least once every five days, but may happen more often. The way to keep
track of time elapsed since the last maintenance is to record the difference between the
current timestamp and the timestamp when the last maintenance completed. An alarm
set up around such a metric’s sum statistic with a threshold of 432000 seconds (five days)
will issue a alert notification about a missed update.

Availability

Availability is a special case of a flow metric in which data inputs take one of two possible
values, 0 and 1, corresponding to failure and success, respectively. When the total of
collected inputs is averaged per data point, the data point takes a value of a fraction
reflecting availability expressed in percentage terms. For example, if 9 out of 10 probes
return success and 1 returns failure, the average availability for that data point equals:

(9*1 + 1*0) / 10 = 0.9 or 90%

Throughput

Throughput metrics record intensity of utilization and are expressed as average units of
flow during a period of time or a percentage of total resource utilization per interval.
Resource limitations are conveniently expressed in terms of their throughput, so this
type of metric is perfectly suited for observing and alarming when resource saturation
occurs. Examples of throughput metrics include CPU utilization, which really is a ratio
of utilized clock ticks to all available ticks in a given interval of time, and the speed of
transmission, or bit rate.

Applications of quantities

Table 2-1 summarizes the kinds of information extractable from combinations of sum‐
mary statistics and quantity types.

Table 2-1. Information extractable from different types of metrics.

Type of Quantity Measure of Total (n, sum) Measure of Steadiness (average, percentiles)

Flow Input levels, processing rate, total work or gain Existence of bottlenecks, early indications of resource

saturation, regularity of inputs

Drawing Conclusions from Timeseries Plots | 37

Type of Quantity Measure of Total (n, sum) Measure of Steadiness (average, percentiles)

Stock Available space, freshness, state since last reset,

continuity of operation

N/A

Availability N/A Level of availability, event incidence in percentage terms,

content coverage

Throughput N/A Intensity of utilization, saturation, burstiness

Frequently Encountered Anomalies
We can now survey a few commonly seen patterns in the quantity data discussed in the
previous section.

Flattening Effect

A flattening effect is manifested when the line on the plot reaches an artificially steady
level, compared to historical data points (Figure 2-7). The effect may occur in many
different types of metrics and for various reasons, but it almost never brings good news.
It usually signifies a saturation of a resource or discontinuation of flow.

Figure 2-7. HTTP response time 99th percentile flattening at around 200 ms

Some concrete examples include:

• A sudden flattening on a counter metric indicates a discontinuation of flow. Its rate
of change series is equal to flow metric continuously recording a 0 value.

• A flattening at 200 ms of p99 in a response time metric may be a fallout of high
packet loss combined with a retransmission timeout setting of 200 ms.

• Flat lines in CPU utilization point to resource saturation.

38 | Chapter 2: Monitoring

Figure 2-8. A warm-up effect on response time after content update

Warm-Up Effect

This effect occurs when a new server is put in service and the application has had no
time yet to get up to speed. Due to initially empty system caches, the host processes data
at a rate slower from the one observed in a steady running state. Warm-up effects man‐
ifest themselves as short-lived increases in response time (Figure 2-8).

Warming up a server before placing it in service is a tested method of avoiding degraded
user experience. The idea is quite simple: simulate the load that the machine will handle
and prepare the machine for operation by feeding the server with a sample of production
traffic extracted from historical logs as it reenters the system.

Regular Anomalies

This consists of a returning record of anomalies, usually spikes, happening at equally
spaced time intervals during resource-intensive automated processes (Figure 2-9).

The sources of the spike can be either internal or external. The fastest way to locate the
internal cause is to check the crontab logs. Correlating the times of spikes with time‐
stamps in the logs uncovers the direct cause. Anomalies occurring at shorter intervals

Drawing Conclusions from Timeseries Plots | 39

Figure 2-9. A cron job submitting computational tasks at 7:00 AM every day

up to an hour may be caused by a failing hardware device that is performing a periodic
self-check or a retry. External causes are reflected in the input to the system, for example,
intensified frequency or cost of incoming requests as observed during periodic web
scraping.

Spikes During Troughs

On some occasions, traffic troughs correlate with high values of response time on ex‐
treme percentiles (deep in tail of input distribution) despite no performance degradation
(Figure 2-10). During a trough, the system comes under very little load, so a trough
should influence overall response times in a positive way—and it does. Still, mysterious
indications of poor response time during a trough sometimes turn up, and feeble alerting
configurations may set off alerts on this peculiarity. The effect might be a little coun‐
terintuitive at first, but it can be easily explained when one understands the nature of
percentiles.

Consider a system that accepts 500 user queries per minute during its peak. Response
times are monitored by watching the p99 values on a minute-by-minute basis. Through‐
out the day, a healthcheck prober sends a single control request to the database every
minute. It is very comprehensive and takes disproportionately longer than a normal user
query. During a trough, the user query volume falls to the level of approximately 100
per one-minute data point, and this is when the data point values of the p99 go high.

Let’s take a look at what happens to p99: at peak, it represents the fastest out of five
slowest queries (1% of 500). At trough, when the system gets only 100 queries a minute,

40 | Chapter 2: Monitoring

Figure 2-10. Correlation between trough and higher values at 95th percentile of response
time

the slowest query makes it into p99. This is why p99 jumps up so drastically. Only at
trough does it include one exceptionally long running query. The general lesson one can
derive from this example is to ensure that the underlying metric can supply your ob‐
servation with a big enough sample size.

Determining Causality
To respond effectively to emergent system events, you must break through uncertainty
in real time. The operator is expected to find the root of the problem by backward
chaining from its symptoms to the cause and to subsequently apply mitigative action.
When the process is broken down in three logical steps, the efficacy of investigation is
significantly improved.

1. Find correlation. Most commonly, the process starts with the identification of un‐
desired symptoms. To find the potential cause, gather and juxtapose timeseries from
other system metrics that display similar levels of abnormality. Your timeseries

Drawing Conclusions from Timeseries Plots | 41

database might host thousands of metrics, but you need not look at all of them. It’s
important to remember that computer systems are organized in software stacks.
Keep checking successively for metrics originating from layers or components sur‐
rounding the one that reveals symptoms.

Generic practical hints: for loss of availability, refer to network metrics. For prob‐
lems with performance, check levels of resource utilization. For higher-level prob‐
lems related specifically to a service, display metrics generated from system logs.

Found something? Great, but correlation does not imply causation, which brings
up the next point.

2. Establish direction. Which is the horse and which is the cart? The need for a cause
to precede its effects gives you the answer. Knowing that the problem comes either
downstream or upstream (a layer above or below in the system stack), which anom‐
alous timeseries recorded abnormal data points first? Here is where a timeseries of
fine time granularity comes in very handy, as temporal precedence is usually a
matter of seconds. If the time interval on your series is too coarse, you can still try
to parse the logs. If that’s not possible, maybe one of the outer-layer timeseries
reveals less visible anomalies leading up to the trouble.

At this point you should have identified one or more potential troublemakers among
components of the system.

3. Rule out confounding factors. Okay, so you think you have it, but you can’t be sure
until your hypothesis is verified. Under exceptional circumstances, many compo‐
nents may display abnormal behavior, but it doesn’t necessarily mean that they are
contributing. If a number of potential sources of trouble are identified and the sit‐
uation permits (if the fleet of hosts is big enough to allow for such experimentation),
try to switch off or restart the suspected faulty components separately, each on its
own host. This tests the hypothesis with all other things being equal. The machine
that recovers after sample corrective action wins.

With time and experience, operators tend to develop strong intuition, which signifi‐
cantly expedites the identification of faults. To save time they have to make assumptions,
and they will be right most of the time. On rare occasions, though, the assumptions
prove wrong. At this point, backtracking and performing a full three-step search for
cause might be a good idea.

How Causality Can Be Tricky to Find

I remember an interesting incident that happened during one of my on-call shifts. We
were monitoring a fleet of front-end servers with web content generated on the back
end. The back end continuously delivered the content in the form of updates to the front-
end servers. The rate of updates was variable, but never reached alarming levels. The
inexpensive process accepting updates on the front-end servers was commonly known

42 | Chapter 2: Monitoring

to be absolutely independent from the web server part; that is, it could be shut down for
extended periods of time without affecting the web server functionality in the slightest,
almost as if it wasn’t there at all. It was the web server that kept the machines busy, while
the update processing component typically utilized CPU and I/O at negligible levels.

At one point we observed a huge increase in response latency at the web server. To
establish the source of the symptoms we looked upstream and downstream, so we plotted
traffic levels and CPU utilization along high latency on the graph. Our hope, as this
chapter has stressed, was to conclusively determine the direction of the problem. High
CPU utilization combined with low incoming traffic levels could imply that the problem
is caused internally, while very high traffic levels would explain exceptionally high load
reflected in CPU utilization. And in fact, the traffic graph showed five times the normal
levels—easy! Some very aggressive client deserved to get blocked.

Remarkably, though, the CPU utilization graph started going up a moment before the
client pounded the fleet with requests, as if anticipating and preparing for it
(Figure 2-11). This suggested a downstream cause of the problem. Eventually, we cor‐
related the initially high CPU levels with significantly more updates coming from the
back end, which had some effect on the fleet’s resource utilization. We dismissed this as
a coincidence and blocked the offending client—the two systems are orthogonal, right?

Figure 2-11. CPU utilization and traffic

The next day at a completely different time the same thing happened—five times the
traffic, shortly after big amounts of updates had started to arrive. Okay, what were the
odds of this double crisis?

Drawing Conclusions from Timeseries Plots | 43

The second time we didn’t interpret the symptoms as coincidence. We switched off the
component accepting updates and, to our surprise, the traffic went away. And turning
it back on reinvited the traffic. How?

After some digging, it turned out that massive amounts of incoming back-end updates
did have an impact on the system resources and contributed somewhat to raised re‐
sponse times. Most of the fleet continued to work at tolerable levels, but a few hosts
responded really slowly. The web client in question was an automated process with an
impatient retry mechanism, implemented to get the answers as quickly as possible. Es‐
sentially, when the client had not received a response fast enough, it assumed packet loss
and issued another query. Then it used one of the two responses, whichever came first.

This had worked in the past, but now the system was genuinely slower because of the
volume of incoming content updates. The client kept aggressively issuing requests up to
five times, until it finally got an answer. This put additional load on the fleet already
under strain, in effect causing increasingly more hosts to serve requests at really long
response times. The harder the client pounded us with retries, the more hosts were going
out of balance…

Of course, the problem had many facets: lack of a sufficient throttling mechanism, no
admission control for incoming updates, and a bad retry mechanism on the part of the
client, just to name a few factors. But that’s not really unusual. Most outages do not have
a single cause. What’s interesting is the ease with which a plausible conclusion—in this
case an external attack—got accepted immediately while the actual cause was discarded
as a coincidence despite some evidence to the contrary.

Tracking causality is not the same as root cause analysis (RCA), but may serve as its
starting point. Chapter 6 covers RCA in more detail.

Capturing the Daily Cycle, Trends, and Seasonal Changes
Most metrics record system state information pertaining to the current operation of the
system. They are recorded “just in case” and are extremely useful for troubleshooting
during outage responses. For instance, Figure 2-12 shows data points aggregated over
one, twelve, and twenty-four hours.

As the system evolves, gets upgraded, and changes scale, the specific performance in‐
formation becomes less and less relevant. This is why the retention period for resource
utilization metrics rarely exceeds four weeks: a little bit of historical context is necessary
to make reliable assumptions while troubleshooting, but retaining the I/O and CPU data
for each individual host beyond this period is of little value.

However, metrics recording usage patterns encapsulate a more universal kind of infor‐
mation and should be retained much longer to be analyzed for trend and seasonality.
The demand for the service your system provides is by and large dictated by its overall
effectiveness and to a lesser extent by specific technical conditions. Your users will not

44 | Chapter 2: Monitoring

Figure 2-12. Traffic metric displaying a strong cyclic pattern and trend

care how effectively your resources are utilized as long as they are not affected by their
shortage. When you measure demand progression, you should exclude inconsiderable
variables that are present in resource utilization metrics. These variables include fleet
size (because host utilization levels vary depending on the breadth of the fleet), hardware
type, software efficacy, etc.

Systems with seasonal usage patterns must identify and capture demand indicators so
you can plan capacity accurately. Planning is important because underutilizing resour‐
ces is wasteful, but when there is not enough of them you’re at risk of degraded perfor‐
mance and availability loss.

Non-realtime data pipelines and batch processing systems may defer excess load for less
busy periods, so the problem is most pronounced for interactive systems, such as most
websites.

First of all, identify a metric that objectively reflects the usage pattern. For all intents
and purposes, traffic metrics seem to be the best choice. For a conclusive outcome, a
minimum of a yearly record of at least one hour granularity of traffic sum is necessary.

All websites follow the 24-hour daily cycle from peak to trough. It is important to be
aware of the exact times at which the system enters and leaves the periods of most intense
activity. It is during that time that the system is most productive but at the same time
most vulnerable. All maintenance work should be pushed out to the quieter trough
periods.

Drawing Conclusions from Timeseries Plots | 45

In addition to a daily fluctuation, a weekly variance is observed. Weekend usage will
probably differ from that of trading days. The pattern strongly depends on the nature
of hosted content and cultural factors. For instance, websites with professional infor‐
mation are busiest during the week, while deals, movie streaming, and entertainment
websites will be busier on weekends.

A trend is a long-term, gradual change of data point values, not influenced by seasonality
and cyclical components. The quickest way to highlight its existence is to aggregate data
points by week. Such improvised trend estimation satisfies most informal needs by hid‐
ing trading day effects. If you need exact trend estimation, export your data and use a
statistical package capable of timeseries analysis.

Finally, long-term observations of traffic patterns reveal seasonal fluctuations caused
by calendar events and holiday periods. Seasonal events occur around the same time
every year. Some months of the year require more resources than others; in retail the
first quarter of the year is known to be the quietest, while the final quarter the busiest
due to the holiday season.

46 | Chapter 2: Monitoring

CHAPTER 3

Alerting

Some people believe that alerting is an art for which proficiency takes long years of trial
and error. Perhaps, but most of us can’t wait that long. I prefer to view alerting as an
exact science based on logic and probability. It’s about balancing two conflicting objec‐
tives: sensitivity, or when to classify an anomaly as problematic, and specificity, or when
is it safe to assume that no problem exists. These objectives pull your alerting configu‐
ration in two opposite directions. Figuring out the right strategy is not a trivial task, but
its effectiveness can be measured. The right choice depends on organizational priorities,
the level of recovery built into the monitored system, and the expected impact when
things go awry. At any rate, there is nothing supernatural about the process; getting it
right is well within everyone’s reach.

The Challenge
In my experience, it’s simply impossible to maintain focused attention on a timeseries
in anticipation of a problem. The vast amount of information running through the
system generates a great number of timeseries to watch. Hiring people solely for the
purpose of watching performance graphs is not very cost effective, and it wouldn’t be a
very rewarding job either. Even if it was, though, I’m still not convinced that a human
operator would be better at recognizing alertable patterns than a machine.

The process of alerting is full of unstable variables of a qualitative nature, and it presumes
an element of responsibility. Priorities are open to interpretation, but the level of severity
usually depends on what’s at stake. The extent of pressure involved in incident response
varies from organization to organization, but the overall process has a common pattern.

The goal of alerting is to draw operators’ attention to noticeable performance degrada‐
tion, which manifests itself in three general ways:

47

• Decreased quality of output

• Increased response time

• Loss of availability

The onus on the operator who receives an alert is to respond to it in a timeframe ap‐
propriate to the severity of the degradation. His task is to isolate and identify the source
of the problem and mitigate the impact in the shortest time possible. The challenge of
balancing sensitivity and specificity is to alert as soon as possible without raising false
alarms.

Prerequisites
Effective alerting is more than creating alarms and sending notifications. It should fa‐
cilitate the human response to mechanical faults and drive continuous improvement.
To meet these goals, alerting requires a few basic components of IT infrastructure,
without which a mature organization simply cannot exist.

Monitoring and Alerting Platform
First and foremost, you need a monitoring platform that meets a few conditions: it must
have a well supported and easily definable way to deploy data gathering agents; it should
have a flexible, feature-rich plotting engine that allows for graphing multiple timeseries
on a single chart; and it must include an alerting engine that can support sophisticated
alarm configurations (tens of thousands of alarms, aggregation, and suppression).

This book does not help you deploy a monitoring platform; I assume you already have
one. If you don’t and are wondering which monitoring system best addresses your needs,
I recommend making an informed decision by consulting the following Wikipedia ar‐
ticle, mentioned earlier in Chapter 1.

Audit Trail
A lot of issues result from the fallout of planned production changes. Some of them may
be executed automatically, such as a periodic rollout of security patches. Others are
manual, like configuration changes carried out by an operator through step-by-step
instructions. Maintaining an accurate and complete audit trail—a chronological record
of changes in the system—helps in pinpointing cause and effect by letting you correlate
aberrant system behavior with the times in the event log. A quick discovery of faults in
this way significantly boosts the process of recovery.

48 | Chapter 3: Alerting

http://bit.ly/RUbrWW
http://bit.ly/RUbrWW

Issue Tracking
An issue tracking system (ITS) helps prioritize reported alerts and thus helps you track
the progress of issues as they are being resolved. Tickets coordinate collaboration be‐
tween resolvers and ensure that the ball does not get dropped, so each and every alert
should be recorded in an ITS. With it, the effectiveness of alerting can be reliably meas‐
ured over time. This helpful side effect of an ITS helps in driving higher standards.

Understanding Failure and Its Impact
Maintaining a robust alerting configuration starts with realizing the cost of failure and
the significance of reacting in time. The cost can be understood and expressed in a
variety of ways: time, money, effort, quality, prestige, trust. Each organization can come
up with its own definition. The bottom line is that each failure incurs costs correspond‐
ing to the extent of the failure’s impact. The first step on the way to effective alerting is
to come up with clear range of significance in order to set the priorities right.

Establishing Significance
Among many failures experienced in a daily system operation, only a fraction deserve
an operator’s attention.

Failures are eligible for alerts when their significance is high enough to negatively affect
the system’s operation. They are significant if the system will not recover from them by
itself. Therefore, the severity of a failure can be considered in terms of two properties:
recoverability and impact. Let’s consider those two for a moment.

Recoverability is the potential of a system to restore its state to the prefailure mode
without operator intervention. Recoverability can be imagined as a score combining the
likelihood of a given failure to go away and the time necessary for its cessation.

Impact is the negative effect on the system’s operation, reflected in the level of resource
utilization as well as end user experience. It can be described as an unanticipated cost,
which comes in various orders of magnitude. To quote just a few examples for an ecom‐
merce website, from most to least severe:

Downtime
People can’t buy stuff, leading to loss of immediate revenue as well as potential future
customers.

Partial loss of availability
A fraction of customers won’t spend their money on your site.

Increased response times
Some users will get impatient and go off to the competition.

Understanding Failure and Its Impact | 49

Decrease in content quality
People are less likely to remain on the site and therefore purchase stuff.

Suboptimal utilization of resources
This uses up money that can potentially be spent better.

Let’s stagger recoverability and impact into three levels each, as depicted on
Figure 3-1, to describe the severity of undesired events. The matrix illustrates a classi‐
fication of events into nine separate bins, from most to least severe.

Figure 3-1. Eligibility and severity of alarming

1. Critical

Sudden events with impact so severe as to block user access or severely impair the
system’s operation. A failure to prevent critical events increases system downtime
and directly translates to unrecoverable losses in productivity or revenue.

2. Urgent

Events when partial loss of availability is observed, when a fraction of users is unable
to get onto the system, or a significant portion of the system becomes unresponsive.
These kinds of events require fast intervention to minimize their impact and prevent
them from escalating into critical events.

50 | Chapter 3: Alerting

3. Intervention necessary

Events that require intervention to prevent them from intensifying into critical
events. They are not immediately catastrophic, but the system is at a high risk of
collapsing without treatment. For instance, the system may build up a backlog that
leads to processing delays.

4. Recoverable

Negative events with relatively noncritical effect on the system, but with the po‐
tential to develop into bigger problems if not recovered within an expected time‐
frame. For instance, the failure of a background map-reduce job may be noncritical
to the system’s operation, and no alarm is necessary if a subsequent job succeeds.

5. Inactionable

A group of events in which a small fraction of users faces transient but serious
failures that immediately disappear by themselves. Because of the high speed of
recoverability, the inactionable events get resolved before an operator could re‐
spond, so it would be ineffective to issue alerts for them. The frequency of these
inactionable events should, however, be occasionally verified to ensure that mo‐
mentary performance degradation remains isolated and negligible.

6. Automation Tasks

Faults not having an immediate impact on the system’s operation but with a po‐
tential of being a supporting factor in other failures.

7. Early Indicators

Transient events of small to moderate impact affecting a tiny fraction of users. They
come as a result of momentary resource saturation and small bugs and may be early
indicators of the inability of a system to handle stress.

8. Optimization Tasks

Events bearing no effect on a system’s functionality but causing inefficiencies in
resource utilization that could be eliminated by architectural restructuring or soft‐
ware optimizations.

9. Nonissues

Anomalies with no perceivable impact, observable as a part of any system operation,
particularly at scale.

Only the first four groups require alerting, because only in those cases is the system
actually at risk and only then should the operator intervene and alter the system’s state.

For the four alertable groups, the alerting configuration is considered in terms of two
contradictory goals: speed and accuracy of detection.

Understanding Failure and Its Impact | 51

The alerts for critical events should trigger as soon as the initial symptoms of grave
failure are present. Critical events require immediate intervention, so it’s okay to trade
off reliability of detection for precious time that could be spent on mitigative action. If
a few false positives are generated in the process—so be it.

The second group of events, classified as urgent, also necessitate quick intervention, but
their relatively higher incidence and lesser severity allow you to wait for additional data
points before raising an alarm. The alert is still issued relatively early, but with higher
confidence.

System issues for the which operator’s intervention is necessary but does not have to be
immediate allows for more liberal data collection times. Effectively, an alert should be
issued only when the existence of the problem has been established with a high degree
of certainty—when enough aberrant data points are recorded.

Similarly, recoverable events should not trigger alerts until it becomes apparent that
their recovery would take too long or could evolve into more serious problems.

The remaining five groups do not require alerting, but some organizations might choose
to issue alerts and create low priority tickets for the purposes of accounting and offline
investigations. In general, it is enough that low impact events are monitored and occa‐
sionally investigated to verify whether their levels of impact remain negligible.

Identifying Causes
The multitude of possible causes for a failure can be generally classified into four groups:

Resource unavailability or saturation
This is by far the most common problem in production systems. Network blips and
resource saturation routinely cause increased response times. In extreme cases, they
may be responsible for a complete denial of service. Events causing excessive re‐
source consumption include:

• Exceptionally high rates of input

• Malicious attacks

• Shutting down portions of the system for maintenance

• A whole range of operator errors

Often these causes gradually lead up to saturation, rather than creating it immedi‐
ately, and they might be prevented if they are detected early enough in the process.
Well-designed systems implement throttling mechanisms or other sorts of admis‐
sion control to gracefully degrade under excess load, as opposed to failing slow and
hard.

52 | Chapter 3: Alerting

Software problems
Software faults are very common and range from bugs to architectural limitations,
dependency problems, and much more. Software bugs are present everywhere, but
their likelihood is greater under conditions of high complexity, premature releases,
bad design, and poor quality control practices. Some bugs are reproducible under
high load, whereas other shows up after long running times. Once identified, they
can be fixed relatively fast through the deployment of a patched version.

Software problems won’t go away by themselves, however, and so they should be
dealt with as part of daily operation. When monitoring brings software faults to
operators’ attention, those operators should be empowered to take corrective action.
To make mitigation effective, operators need a clear versioning scheme with rich
deployment instrumentation to allow for software rollbacks and roll-forwards.

Misconfigurations
Misconfigurations are a special kind of operational human error. Configuration
errors are difficult to detect programmatically. Unnoticed by humans, they are likely
to pass formal QA tests as well (if QA testing is a part of the process). They result
in unfortunate and unintended consequences and are quite often noticed by the
users before a mitigative rollback action can be taken. A notable example would be
a leading search engine marking all web results as malicious content. Configuration
settings, just like software, should be version controlled to make it possible to roll
them back to a steady state.

Hardware defects
Hardware defects occur less frequently than software bugs, but when they do occur
they tend to be hard to isolate and costly to deal with. The difficulty lies with the
physical nature of the fix. While hardware faults are observed to a lesser extent in
moderate-sized systems, they tend to emerge at large scale in busy production en‐
vironments and become the norm. Hardware faults can cause significant delays in
operation or cause complete device shutdown. Some hardware faults can be detec‐
ted through scanning for error messages in OS level logs, but they often don’t man‐
ifest their existence explicitly. They do become visible while monitoring groups of
machines where single hosts reveal aberrant behavior.

Anatomy of an Alarm
The core functionality of an alarm is to trigger on detection of abnormal timeseries
behavior, but the alerting system should also support the aggregation and conditional
suppression of alarms. Conceptually, all three kinds of functionality are the LEGO bricks
for creating robust and sophisticated alerting configurations.

This section attempts to describe a practical model for alarm configuration. It introduces
a level of abstraction that sits on top of the alerting system to simplify the work of

Anatomy of an Alarm | 53

planning and implementing alerting configurations. If this seems like overengineering
a combination of a threshold and a notification, please bear with me! With help, oper‐
ators can design the most sophisticated alerting configurations through the use of
Boolean logic, keeping things simple at the same time.

Boolean Function
An alarm can be seen as a definition of a Boolean function. At any point in time, its
evaluation returns one of two possible states: alert or clear. Let’s assign them binary
values of 1 and 0, respectively. When the result of an evaluation changes—when its value
goes from 0 to 1 or from 0 to 1—we’re dealing with an alarm state transition.

An alarm function describes a set of relations between an arbitrary number of inputs,
which fall into three types: metric monitors, date/time evaluations, and other alarms.
All three also evaluate to Boolean values of 1 or 0.

The alarm function is reevaluated when any of its input components changes state
(Figure 3-2). Every time a recalculation of the state leads to a transition from 0 to 1, the
predefined transition action may be triggered: an alert is sent, a ticket gets created, or
both.

Figure 3-2. Representation of an alarm in the form of a binary decision diagram

In essence, an alarm can be defined as a shell encapsulating a condition and an action
that will be triggered upon meeting the condition. That’s the high level model—simple
enough, right? Now, let me discuss its building blocks to justify the claim that it’s so
powerful as to allow for the creation of the most sophisticated configurations.

Metric Monitor

Metric monitors are the core of most alarms. They describe threshold breach conditions
and transition their state when data points on the observed timeseries exceed or fall
below expected limits. Metric monitors are made up of four parts:

54 | Chapter 3: Alerting

• Name and dimensions of a metric, together with a summary statistic yielding a
specific timeseries

• Threshold type and value

• Minimal duration of breach (number of data points for which the threshold must
be crossed to trigger)

• Time necessary to clear (amount of time to wait until data points return to values
within threshold, warranting a safe transition back into clear state)

It often happens that the monitored timeseries recovers after a single data point breach
and such an event produces no or negligible impact. In order to avoid alarming on
transient anomalies, a monitor defines the minimum number of data points required
for transition into the alert state. Conversely, if the timeseries has been in breach for
quite some time, a single healthy data point isn’t necessarily an indication of recovery
and shouldn’t be a reason to immediately transition back into the clear state. For that
reason, the monitor should also define the minimum number of healthy data points that
warrant the return to clear state.

Typically, four threshold types are used: above, below, outside range, and data points
that were not recorded.

Upper Limit. Upper limit threshold monitors trigger when data points exceed the pre‐

defined value. They are by far the most commonly used type of threshold. Whenever
excessively high values on the underlying metric translate to increased costs or perfor‐
mance degradation, use the upper limit threshold monitor. This applies to metrics re‐
porting resource consumption to warn about approaching utilization limits and to on-
delay metrics to notify about extreme slowness.

Lower Limit. Lower limit threshold monitors trigger when metric levels fall below ex‐

pected limits. They call the operator’s attention to the depression in or absence of flow,
events, or resource utilization. They are particularly useful for monitoring throughput
metrics and are therefore extensively used in data pipelines. They are also a good fit for
alarming on availability loss.

Outside Range. Range threshold monitors are used for timeseries whose data points are

expected to oscillate within an area capped both under and above the threshold limits.
They are useful for monitoring bidirectional deviations from a steady norm. An Outside
Range monitor can be interpreted as a combination of two monitors defined by both an
upper and lower limit condition, logically OR-ed together. By analogy, creation of an
Inside Range monitor is possible too, but this one would find a lot fewer areas of
application.

Anatomy of an Alarm | 55

Most of the time, an Upper Limit threshold monitor will suit you better
than its Outside Range counterpart. Just because a timeseries oscillates
within a certain range doesn’t mean that it is a good idea to use range-
based thresholds. Consider, for example, a cache hit rate metric ex‐
pressed in percentage terms: what percentage of web requests were
served out of a Memcache server instead of a database? Let’s assume
that the values oscillate between 20% and 50%. If the value falls below
10% it might mean more load dispatched to the database directly, but
if the upper limit is exceeded, there is no reason to worry: the caching
server is doing its job, and this certainly is not a good reason for setting
off an alarm.

Data Points Not Recorded. On some occasions a system may be down and thus stop re‐

cording any information. Technically, when no new data points arrive, neither the lower
nor the upper limit threshold is breached, but it does not mean that the system is okay
—quite the contrary. It is generally acceptable for a monitoring system to lag behind
real-time data collection by one or two data points, but if more of them fail to show up
on time, it might be a reason for investigation. This threshold type triggers on exactly
that—it does not include a threshold value, just the maximum number of delayed data
points that are considered an acceptable delay.

This threshold type can be used for monitoring irregular events with unpredictable
running times. Think of software builds that run for hours. Suppose their build times
vary from 3 to 10 hours, but they should never exceed 12 hours. Every time a build
completes, a data point is uploaded to the metric with hourly granularity. A monitor
that watches out for 12 empty data points could reliably report on suspiciously long
running builds for which an absence of results warrants further investigation.

Time Evaluation

A time evaluation function defines a temporal condition that returns true at a specific
point in time and false the rest of the time. There are many reasons why you’d want to
include a time evaluation function as an input into your alarms. Let me list just a couple
of examples:

• You want to suppress some group of alarms at a specific time of the day, when regular
maintenance is carried out.

• You don’t want the alarms to trigger actions on the weekends.

Time evaluation functions find their application mainly in the suppression of alarms,
but they may also be used as an auxiliary trigger. For instance,

56 | Chapter 3: Alerting

• If some metrics go beyond normal levels at specific times, due to the nature of your
business, you may build an alarm that triggers when the metrics remain steady
during expected peaks, and actually alarms on the absence of an anticipated event,
or

• When you need to initiate an outage drill exercise, create an alarm that goes off on
a certain day once a quarter, or

• You may simply wish to page the on-call engineer with a reminder about an up‐
coming event that requires extra vigilance.

Another Alarm as Input Source

Because alarm state evaluates to a Boolean, there is nothing preventing it from being an
input to another alarm. Nesting alarms is a powerful concept that enables the creation
of alarm hierarchies. Special attention must be paid to avoid circular dependencies,
referring directly or indirectly to one’s own value, possibly by a middle-man alarm; this
makes no practical sense and therefore should be guarded against.

Suppression
You put alarms in place to eliminate the need for a human operator to continuously
watch the system state. During scheduled maintenance, however, disruptions are ex‐
pected and system metrics should be closely inspected at all times. The metrics are
expected to display anomalies, and a planned outage should not trigger a storm of no‐
tifications that serve no purpose. It is therefore perfectly appropriate to momentarily
suppress alarms that are known to trigger. To suppress an alarm means to prevent it
from going off even when its threshold condition is breached.

Alarm suppression can be manual or automatic. Manual suppression should be enabled
only for predefined periods of time, with an expectation that the alarms will be enabled
automatically after the deadline is passed. This approach eliminates the danger that an
operator might forget to unsuppress alarms after maintenance, which can potentially
lead to prolonged dysfunction of the alerting setup.

In addition to manual control, the possibility of hands-off suppression opens the door
for automation. Thanks to the Boolean evaluation of alarms, suppression is trivial to
implement because a state of another monitor may be used as a Boolean input.

Let me explain this using an example. Suppose that two independent system compo‐
nents, A and B, exist on the same network. Each may fail for a number of independent
reasons, so the two components are watched by two separate availability monitors.

Anatomy of an Alarm | 57

When a monitor detects loss of availability, an alarm triggers and a ticket for the given
component is created and placed in the operator’s queue. One of the reasons for a failure
may be the network link itself, which is also watched by a separate monitor. The alarm
configuration for this system is summarized by the following table:

Alarm1 = ServiceA_Monitor

Alarm2 = ServiceB_Monitor

Alarm3 = Network_Monitor

When the network goes down, all three alarms go off and the operator receives three
tickets for one issue. In most circumstances this is not desired.

In order to suppress generation of tickets and notifications for downstream elements of
the system, event masking logic can be added. This is as simple as extending the con‐
dition of Alarm1 and Alarm2 by “AND NOT SuppressionCondition”, to the following
effect:

Alarm1 = (ServiceA_Monitor AND NOT Network_Monitor)

Alarm2 = (ServiceB_Monitor AND NOT Network_Monitor)

Alarm3 = Network_Monitor

This way, when the network fails the operator gets a single ticket of very high impact.
If, after recovery of the network problem, any of the services is still out of balance and
its state requires follow-up, appropriate tickets will get created automatically as soon as
the network returns and renders the suppression rule inactive.

Aggregation
The third fundamental feature of alarming is aggregation, the ability to group related
alarm inputs in order to de-duplicate the amount of resulting notifications.

Aggregation takes three basic forms:

Any
The Any aggregation type means logically OR-ing inputs. This is the most sensitive
type of aggregation and should be used when the monitored entity supports many
critical components, each of which preferably has a low failure rate. The template
for Any aggregation is:

AnyAlarm = (Input1 OR Input2 OR Input3)

58 | Chapter 3: Alerting

For an example where Any aggregation would be appropriate, think of a serial data
pipeline, built of five components: A, B, C, D and E. Data enters at A and is processed
sequentially until it leaves at E. If any single component or any combination of
components fails, the pipeline stops. Therefore, logically OR-ing individual moni‐
tors always informs you about stoppage and produces only a single ticket.

All
The All type of aggregation consists of logically AND-ing all inputs. This very in‐
sensitive type of aggregation is used for higher order entities containing multiple
noncritical subentities with a relatively high expected failure rate—in other words,
when redundant components share work and one can take on the load of the others.

AllAlarm = (Input1 AND Input2 AND Input3)

As an example, imagine a tiny map-reduce cluster with three servers, each of which
has a relatively high failure rate. Fortunately, over time and for the most part, the
servers are capable of recovering by themselves. A single working machine in the
cluster can handle number crunching on its own, even if it’s a little slower than when
it works with the other two. You want to alarm only when the continuity of work
has been interrupted, that is, when all three servers experience failure at the same
time. The solution is to aggregate all three monitors in an alarm through logical
AND.

By Count
The By Count aggregation adds the result of Boolean evaluations (binary 1 and 0
values) from each of the inputs and tests the sum against the maximum allowable
limit. So the following example allows at most one input to be in alarm at any given
time, and sets off the alarm if two inputs evaluate to 1.

ByCountAlarm = ((Input1 + Input2 + Input3) >= 2)

As an example, suppose you have a bunch of hosts on which you monitor con‐
sumption of computational resources. You want to alarm as soon as the CPU uti‐
lization exceeds 60% on at least 30% of all machines, no matter how idle the
remaining machines are. Assuming that you’d have a separate monitor for each host,
the implementation in Python pseudocode would look as follows:

cpu_alarm = sum(cpu_monitor() for cpu_monitor in host_inputs) > len(host_
inputs) * 0.30

Anatomy of an Alarm | 59

Aggregation is as important for effective alerting as getting an accurate thresholds.
When calculating how precise your alerting system is, duplicate tickets are seen as false
alarms. Fortunately, aggregation opportunities are relatively easy to spot in the layout
of the alarms structure. If you don’t get it right at the start, that’s fine, too. Getting enough
duplicate alerts over time will nudge you to identify potential areas for improvement!

Case Study: A Data Pipeline
I’ll use a concrete example to illustrate the applicability of the model in this chapter.
Imagine a data pipeline composed of three serially connected components processing
a stream of data: I will refer to them as loader, processor, and collector. For the pipeline
to stay operational, the continuity of data flow must be kept up at all times for each
component. If any one fails to process inputs, the pipeline stops. All three components
record a flow metric with number of processed items per interval.

In the simplest scenario, a single monitor is created for each component, watching its
respective flow metric. The condition on all monitors is set to trigger when the number
of processed items falls below the threshold of one—in other words, when the data flow
stops. The monitors are aggregated in a single alarm via the Any aggregation type. Thus,
the failure of any one of the components corresponds to the stoppage of the entire
pipeline. When the alarm triggers, an alert is issued to the operator.

Suppose that an empty pseudo-alarm has been created for signaling when the system is
in maintenance mode. The pseudo-alarm is put into the alert state for the duration of
a planned outage, whenever it takes place. This way, triggering the pipeline alarm can
be prevented during maintenance by use the pseudo-alarm as a suppression rule. See
Figure 3-3.

Now let me add a twist to the story. Suppose the pipeline is run by a large company that
has adapted the Service Oriented Architecture (SOA) model, with each component being
a separate service. The services are supported by independent teams, and the jurisdiction
of every team ends at the borders of their service entry. In this case, a more precise
alerting configuration might be required, as a failure of a single pipeline component
should not be the reason for engaging everyone in resolution of the issue. Three separate
alarms, each containing its own monitor, should be created to watch the pipeline with
a service-level granularity.

Additionally, the definition of service failure should also be clarified here: the service
experiences failure if it stops processing inputs—provided that the inputs are still being
sent by the upstream component. If the component doesn’t process inputs because it
hasn’t received any, then it’s not really at fault. This exception can be implemented by
expanding the suppressing condition by the monitor of the upstream service. See
Figure 3-4.

60 | Chapter 3: Alerting

Figure 3-3. Simple alarm aggregating all pipeline components

Figure 3-4. Separate alarms for each respective components with suppression when up‐
stream problems are detected

Case Study: A Data Pipeline | 61

By using a monitor of the upstream service as a suppression, downstream teams avoid
receiving inactionable alerts. Although, technically, both an alarm and a monitor could
be used for suppression, it makes functional sense only to use the latter. Only the monitor
truly reflects the operational state of the upstream service and, unlike an alarm, its state
cannot be suppressed. It does, therefore, reliably inform about upstream service health.
With this configuration, when a fault is detected in one of the components, only the
team responsible for that component will be engaged for resolving the issue.

Types of Alerts
When an alarm goes off and transitions into the alert state, it may send a notification
to draw the operator’s attention to the observed problem condition. Alarm notifications
are referred to as alerts. Whether triggered by a malicious attacker, a bad capacity plan,
bandwidth saturation, or software bugs, the resulting alert must be actionable, that is,
the operator must be empowered to take action to eliminate the fault. If the operator is
out of ideas, he should follow a clearly defined escalation path.

Alerts can take many shapes and forms, typically one of the following:

Email
The most common form of notification is an email message, due to lack of associated
costs, wide distribution, and high reliability of timely delivery.

Email is normally used as an auxiliary notification medium, because being so
abundant in our lives as it is today, it is likely to get ignored. In addition to that, at
present, GSM coverage is more widespread than Internet access, which is why SMS
and a cellular phone based notification process is considered more reliable.

SMS
An operator on duty may receive a text message with a brief description of the
problem referencing a ticket number. Because the notification system has no way
of knowing whether the message has arrived to the engineer, if the text message is
not acknowledged within a short time frame (5-15 minutes), the system proceeds
with automatic escalation to higher levels of support and often all the way up the
management chain.

Main advantages of SMS messages include their relatively low cost, fast and reliable
delivery, and the widespread audience of mobile phone users.

Phone call
Notification by phone involves an automated voice call to the on-duty engineer. It
requires immediate status confirmation and usually involves making some sort of
decision on the spot. The operator is presented with a choice of options to which
she may respond through dialing assigned action keys, such as

62 | Chapter 3: Alerting

1 - Acknowledgment

3 - Escalation to higher level support

9 - Resolution of the issue

The biggest advantage of alerting via voice call is that it experiences virtually no
response waiting time. If the responsible party does not take the call, the escalation
path may be followed immediately. Receiving an automated voice call takes on
average between 15 seconds and 1 minute. Although getting a large number of SMS
messages at once is tolerable, prioritizing a large number of phone calls might be
more challenging.

Miscellaneous notifications
Sound and flashing lights are an alternative way to catch an operator’s attention.
This kind of alert is rarely used (outside of Hollywood), due to lack of durability
(there is no sign that the alert happened) and dubious deliverability (the operator
might have been asleep while the light was flashing).

All production alerts should be recorded in an ITS as tickets. That way, you’re not letting
anything slip and you’re generating meta information about the alerting process that
can later be measured and used to institute alerting improvements.

Setting Up Alarms
Setting up alarms is a four-step process. It involves identifying threatening behavior,
establishing its significance, expressing that in terms of alerting goals, and implementing
alarm configuration along with suppression and aggregation.

Identifying Impact
The process begins with realizing what the problems actually are. At the beginning of
the chapter I listed the three main failure groups: decreased quality of output, increased
response time, and loss of availability. While this short list is universal, it isn’t necessarily
exhaustive, and specialized systems might consider other types of issues threatening. If
that’s the case with your system, it’s important to realize what the issues are.

Next, you must find out how problems are manifested through timeseries. What metrics
reveal the information you need? How are the symptoms measured? What are the bot‐
tlenecks? What kind of system behavior exacerbates these bottlenecks? If it turns out
that system metrics do not reliably indicate the issues, you might need to deploy an
external measurement source.

Availability is expressed as the percentage of time the system responds as expected. It is
measured through proactive probes issued at evenly spaced time intervals. When the
system does not reply with a pre-agreed response within an acceptable time delay, loss

Setting Up Alarms | 63

of availability is assumed. Internal health probes are helpful to offer evidence of system
state internally, but remember that availability can be measured reliably only from ex‐
ternal probes. It’s always a good idea to have both internal and external monitoring in
place.

When loss of availability is partial—affecting only a selected group of users—and does
not manifest itself immediately through failed health probes, it is also possible to notice
it from traffic levels that are running below forecast. This approach is less conclusive
because there might be many reasons for reduced traffic levels (such as an important
national sporting event), but it is still very reliable.

There is typically no single answer to what causes high response times, but a shortage
of an underlying resource is involved most of the time, be it network bandwidth, CPU,
I/O, or RAM. Keeping a close eye on these resources ensures fast and conclusive incident
response. It is important to note that requests with extremely long response times have
the same effect as loss of availability: impatient users will simply give up. At the same
time, long running requests still take up resources that could be used better by successful
requests.

Degradation in the quality of output is hardest to define. It depends ultimately on the
system’s purpose and is inherently subjective. But it is not impossible to measure! If your
system has users, try to draw conclusions from their behavior—your customers value
their time and recognize quality, especially when you have them pay for it.

Establishing Severity
Alarms are set off in response to fluctuations of data points on timeseries. Some value
changes are a clear-cut indication of existing trouble, whereas other reveal early symp‐
toms of potential risk, but they all can be assigned a meaning: a suspected impact and
its matching severity. Establishing severity is crucial for the effective prioritization of
issues coming in as tickets. Figure 3-5 suggests an assignment of severity based on impact
and recoverability factors based on the categories in “Establishing Significance” (page
49).

The following list is a suggested assignment of priorities to types of incidents, ranging
from highest to lowest priority:

1. System downtime

2. Partial loss of availability, severe performance degradation

3. Quality loss

4. Multisecond availability loss events, hard drives reaching 90% of used space

5. Minimal rates of errors observed over long periods, frequent CPU utilization spikes

64 | Chapter 3: Alerting

Figure 3-5. Assignment of alarm severity to event significance

Picking the Right Timeseries
Next, it’s time to select one metric, among the many candidates, that is best capable of
meeting your monitoring objectives. Chapter 2 described metrics in terms of their
properties. The classification can be used to answer questions regarding suitability:
What type of metric is best to alarm on throughput limits? If I want to alarm on avail‐
ability, is a metric generated by an internal source a good enough indicator? Will a passive
or active approach be more conclusive for my purpose? If I want to alarm on high
percentiles, will a single-N metric give me what I want?

Once the metric is selected, you must choose a summary statistic to generate a timeseries
to monitor. The statistic should reflect your alerting goals. Stats can be divided by ap‐
plicability as follows:

• n, sum: good fit for measuring the rate of inflow and outflow, such as traffic levels,
revenue stream, ad clicks, items processed, etc.

• Average, median (p50): suitable for monitoring a measurement of center. Timeseries
generated from these statistics give a feel for what the common performance level
is and reliably illustrate its sudden changes. When components and processes have
a fair degree of recoverability, an average is preferred to percentiles. When looking
for most typical input in the population, the median is preferred to the average.

• High and low percentiles: suited to monitoring failures that require immediate in‐
tervention. The extreme percentiles of the input distribution can reveal potential
bottlenecks early, through making observations about small populations for which
performance has degraded drastically. For speedy detection of faults, percentiles
are preferred to the average because extreme percentile values deviate from their
baseline more readily and thus cross the threshold sooner.

Setting Up Alarms | 65

Percentiles of input distribution are always presented in ascending order. When
using them, you must know whether you’re interested in numbers at the beginning
or at the end of the distribution. Let me illustrate this through an example: when
setting alarms around latency it is appropriate to watch high percentiles, such as
p95 or p99, because the smaller the value the better, while alarming on dips of
revenue inflow would require watching low percentiles, such as p1 or p10.

Most monitors are set up to inform about exceeding a limit (Upper Limit threshold
crossed), which is why the use of high percentiles is more widespread.

It’s not a good idea to set up monitors around p0 and p100. They
catch just the extreme values, which are not necessarily indicative
of a problem. Setting up alarms to alert on outliers guarantees
queue noise, confusion and, in the long term, frustration. It’s okay
to use p99 if your sample set is large enough, approximately 100
samples. Internet giants can reliably detect impact changes at p99.9
or even p99.99, but not on p100.

In practice, the selection of a summary statistic applies only to multi-N metrics. Single-
N metrics have one data input per data point, so every summary statistic produces the
same value, except for n, which is always equal to 1 (a single input per data point).

Configuring Monitors
Metric monitors are at the heart of most alarms. A monitor is attached to a timeseries
and evaluates a small set of recent data points against a predefined threshold condition
to detect and report a breach. To communicate the alert and clear states, it includes three
pieces of information: timeseries, threshold, and number of data points in the threshold
breach.

Coming Up with a Threshold

Threshold values carry a meaning. The threshold separates the normal from the po‐
tentially unhealthy state that might require intervention. This section discusses how to
come up with values for two types of thresholds: constant or static thresholds, for which
values can be established independently of the reported inputs, and data-driven thresh‐
olds, which derive their values from historical data points on timeseries.

Static thresholds. On many occasions, the value for a threshold may be predetermined

through prior analysis. Such thresholds are referred to as static ones. They do not require
readjustments over time. Let’s have a look at a couple of examples.

66 | Chapter 3: Alerting

By predetermined I do not mean as agreed by the SLA—beware of SLA-
driven thresholds. The point of setting up alarms is to facilitate timely
response to a production issue in order to avoid or minimize SLA
breaches. When an alert is sent on an SLA breach, it’s already too late.

Utilization limit
Utilization limits that represent a threat can be determined through stress testing
or by observing performance under production load. When severe performance
degradation can be tracked back to a utilization level of a particular resource, its
value at the point at which the degradation began should be recorded and used as
a threshold. Static utilization thresholds can be applied to all sorts of resources, such
as storage space, memory, and IOPS.

Discontinuation of flow
Flow continuity has special significance in data pipelines. Any disruption of oper‐
ation may lead to an accumulation of potentially unrecoverable backlog.

Suppose data is processed in a pipeline at a certain rate. Recording a flow metric
with the number of processed items produces a timeseries with non-zero values
during pipeline operation. It flattens out at zero when the pipeline isn’t operational.
With that, setting up a threshold condition as “below 1” reliably informs about
discontinuation of processing. Alarming at zero is a valid but extreme case. The
threshold may, of course, be set accordingly to a low nonzero value if a minimum
viable throughput rate is estimated (or established empirically during an outage).

Loss of availability
Availability metrics can be interpreted as expressing coverage of availability, and as
such they are presented in percentage terms. Ideally, availability should be main‐
tained at 100% at all times, so any episode of loss falling below three nines (99.9%)
in a measured interval might be a reason for investigation, depending on the scale
of operation and the impact resulting from loss. At any rate, availability metrics are
good candidates for a constant threshold ranging somewhere between 99% and
100%.

Data-driven thresholds. For timeseries with evolving patterns, thresholds should be cali‐

brated to reflect their most recent state. Data-driven thresholds require periodic
readjustment. This approach emphasizes the importance of monitoring as a process and
yields high rates of accuracy. Having said that, it comes at an expense of added com‐
plexity. The method to use for threshold calculations depends on the underlying pattern
of a given timeseries and may vary, but the most important thing is to anchor threshold
values to real data.

Here I’ll describe a model that I’ve used to successfully drive up precision and recall of
alerting configurations in a busy production environment. If you’re looking to set up

Setting Up Alarms | 67

alarms on timeseries that evolve from week to week, it will probably be the right choice
for you, too. It has been proved to work with a wide range of patterns, including p99 of
network latency, error rates, traffic bursts, and data queue levels on thousands of alarms
in a large-scale production system.

Distribution of Data Inputs and Data Points

Percentile distribution can be analyzed on any set of numbers. This book refers mostly
to distribution of data inputs per data point. In this section, however, I talk a lot about
percentiles of historical data point values. It’s important to keep these two apart, so just
to recap:

• Multi-N metrics produce timeseries whose data points are built of multiple data
inputs. Data inputs that construct each data point can be analyzed in terms of their
percentile distribution. In other words, data inputs in each time interval are sorted
and assigned a rank from 0 to 100, as described in Chapter 2. That way you can plot
a timeseries of, say, p99 of response times, which can generate a chart of the slowest
1% of the responses.

• A range of data point values on the resulting timeseries may also be interpreted in
terms of their percentile distribution. For the remainder of this section, I will refer
to percentile distribution of data points on a timeseries, as opposed to data inputs
making up a data point.

The idea behind the calculation model is a simple one: look at recent historical timeseries
and try to identify alertable data points. Depending on the context and type of metric,
these will have either extremely high or atypically low values. Let’s assume we’re looking
for high values, since this is the use case most of the time.

Suppose you’re looking at a timeseries representing error rates from a busy application
server, as represented on the lefthand side of Figure 3-6. The metric is of flow type and
the summary statistic used is sum. The metric is quite spiky, but most of the time the
errors oscillate at a rate of 80 per data point. They hardly ever exceed the value of 250
per interval. The same data points arranged in percentile plot are shown on the corre‐
sponding image on the right side.

This metric was recorded in a healthy state; that is, no sustained error rate was observed.
The few transient spikes reaching above 40 were short-lived and therefore inactionable.

Notice how the percentile distribution curve goes up steeply towards the end. Its value
at the 97th percentile is 240. It means that 97% of the time, the error rate is less than 239
errors per interval, and 3% of the time, it’s at 240 and more. It’s easy to agree with these
proportions when looking at the timeseries on the left.

68 | Chapter 3: Alerting

Figure 3-6. Timeseries and percentile plot of average response times

Let’s see whether 240 makes a good threshold in this case. Suppose the timeseries interval
is at one minute granularity. If the monitor is set to trigger on one data point, we’d get
about 40 false alarms a day. Alarming on two consecutive data points elevated to a value
of 240 ends up producing up to two false alarms per day, while three data points work
out at a false alarm once a month. That’s a reasonable speed-precision trade-off, but
extending it further by one data point gives in effect an almost sure-fire indication of
something going on.

Sounds good, but we’re left with two more problems:

• What if historical data registered a long lasting outage during which error rates were
very high? The next recalibration will drive the threshold so high that it will become
insensitive to any and all problems.

• What if the error rate decreases drastically over time? It would be annoying to have
alarms trigger on two errors per data point, if p97 goes down to a value of 1 some
time in the future.

Both problems are worth consideration: you want monitors to evolve with the metric,
but you also want to keep threshold values within reason.

The way to do that is to agree on the lower and upper monitor safety limits. You have
to answer the following two questions: what’s the highest possible error rate that will
not be considered a problem? and at what value do I want the threshold to stop going
higher? You can use your judgment, carry out an analysis on a larger data sample, or
look for guidance in the SLA to answer these questions (but effectively alarm on values
below SLA figures). That way you allow the threshold to self-adjust, but within the limits
of common sense.

Setting Up Alarms | 69

I first used this method to monitor 800 logical entities with diversified usage patterns.
Error rates ranged from the average of 0 to 250 per data point. Manual estimation of
proper thresholds was out of the question and silver-bullet thresholds (at around 200
errors) for all entities was inherently ineffective: some alarms never triggered, while
others were constantly in alert. We monitored at p97 of the past weeks’ data, setting a
global lower limit for all alarms at 50 and an upper limit at 350.

The calculation model can be formulated in terms of reproducible steps and imple‐
mented in a few lines of code in your favorite scripting language.

1. Determine what the lower and upper limits as well as the selected percentile should
be.

2. Extract a week’s worth of data points from the timeseries to monitor. If you use a
one-minute interval, that should leave you with a list of 10080 numbers. For a five-
minute interval it’s 2016 numbers.

3. Sort them in ascending order. You’re now able to select percentiles of data point
distribution. The last item on the list corresponds to the largest data point: p100.
Every other percentile must be selected by rank. For the purpose of this exercise,
the following formula for calculating the rank should do:

nth percentile rank = (n * number of data points) / 100

4. Round the resulting number to the next integer and select the value at the nth
percentile rank as your threshold.

5. If the value exceeds the upper limit or falls below the lower limit, disregard the value
and choose the respective limit instead.

Example 3-1 is a simple implementation of the process in Python.

Example 3-1. Function assisting in selection of a percentile threshold.

def get_threshold(datapoints, percentile=97, lower=None, upper=None):
 """Calculate a percentile based threshold."""
 sorted_points = sorted(datapoints)
 if percentile == 100:
 return sorted_points[-1]
 perc_value = sorted_points[percentile*len(datapoints)/100]
 if perc_value < lower:
 return lower
 elif perc_value > upper:
 return upper
 return perc_value

70 | Chapter 3: Alerting

This calculation method is just an example. You could probably come up with another
one that’s better suited to your use case. For instance, you could set the threshold at three
standard deviations above the average of all data points for a timeseries with a steady
baseline, or you could pull out the median (p50) and set the threshold at two times its
value on a fluctuating stock metric.

If you have no idea which model would be best, though, the method I’ve presented
definitely makes a good start. Here are some reasons why:

• It can be applied to sparse metrics (those that happen to report no data in certain
intervals).

• It does not require a normal distribution of data points or of differences in their
values.

• It does not require timeseries to have a baseline.

• It puts emphasis on peaks in metrics following cyclic patterns,

• It can be applied to stock, flow, and throughput metrics with the same level of
validity based on the “percentage of time” limit.

Breach and Clear Delay

The selection of breach and clear delay is almost as important as accurate threshold
estimation.

Selecting the number of data points to alarm should reflect alerting goals. For critical
and urgent issues it makes sense to alarm as early as possible, because quick response
in these cases is vital. For less urgent and recoverable issues, it’s okay to wait a little longer,
because these are unlikely to immediately catch the operator’s attention anyway. Letting
a few more data points arrive raises the confidence level that something important is
happening and improves precision.

The question is how to set off alarms as soon as possible, but not too soon. Unfortunately,
it’s hard to get an easy answer along these lines, and the objectives will have to be bal‐
anced. The sooner the alarm comes, the more likely it’s just an anomaly. Of course, with
issues of high criticality it is better to be safe than sorry, but too many false positives
lead to desensitization in operators, which has some serious adverse effects.

The following table is a recommendation for an allocation of the monitor’s breach delay,
based on my experience of working in ops teams.

Setting Up Alarms | 71

Severity Breach Duration (minutes) Example

Super-critical 1-2 Shutdown, high visibility outage

Critical, high priority 3-5 Partial loss of availability, high latency

Medium, normal 6-10 Approaching resource saturation

Low priority and recoverable 11 and beyond Failed back-end build

Setting Up Alarms
In the final stage, the alerting configuration is implemented by putting all pieces of the
puzzle together: the monitors, alerting configuration, aggregation, and suppression.

An average alarm consists of one or more monitors aggregated in some fashion and a
notification action that is triggered by alarm’s state transition.

The alert takes one or more forms. It’s common to send out an email and a text message.
If the alarming engine interfaces with the ITS, the alarm may also define a ticket to be
filed.

It’s always a good idea to track all alertable production issues through tickets. Sometimes,
the alarm evaluation engine plugs directly into an ITS, which takes over alerting func‐
tionality with support for following escalation paths.

When including ticket definitions in an alarm, it’s a good idea to follow a few simple
guidelines:

• Set severity accordingly. It’s tempting to assign higher urgency to a group of tickets
just to have people pay more attention to them. But if it’s not justified, operators
will notice and start to ignore such tickets, and this will have adverse effects on the
quality of work in the long run.

• Put specific symptoms in ticket’s title. “Slow response times” is less informative than
“Response times p99 exceeded 3 seconds for 3 data points.” Do not include sus‐
pected causes in the description or you’re going to have your colleagues chase red
herrings.

• Place hints or a checklist in the description that outlines where to look for answers.
Not everyone is an expert in every type of problem and you won’t want to leave the
newcoming members of the team behind.

Testing Alerting Configurations
In order to verify the faultlessness of your alarm configuration, you can perform a quick
“smoke test.” The idea is to trick the alarms into thinking that a production system is at
risk, but without really exposing it to any.

72 | Chapter 3: Alerting

A good way to go about this is to attempt to fool the data collection agent by providing
it with false source information. For log reading and scanning agents, that means point‐
ing the agent at forged logs containing alertable data inputs. Simply injecting error
messages or replacing healthy logs with the forged ones should suffice.

It is somewhat harder to verify the correctness of health check probers or interface
readers, because they may be pointing at hardcoded destinations. If there is no other
way to fool the agent to report the arranged fault and you have access to its source code,
running a modified agent to see the results might still be OK.

This way you verify whether your monitoring system reports data inputs as expected
and whether the alarms responded to it accordingly. As a measure of last resort, you
may choose to manually inject data inputs into your metrics, imitating an agent. This
verifies the alarm setup, provided that the agent reports the inputs the same way.

Alerting Suggestions
Chapter 2 talked about monitoring coverage and suggested metrics that ought to be
gathered for purposes of monitoring. However, not all metrics should have alarms set
up against them. The following minimalist list offers practical suggestions for metrics
worth considering as candidates for alerting. Those metrics were used in production
systems I worked with. Your system might have different usage patterns, or you might
be responsible just for its small parts and won’t necessarily alert on all layers in the
solution stack. You might be running a throughput intensive application and need to
pay closer attention to I/O metrics. Whatever your business needs may be, try to operate
according to the principle of monitoring extensively and alerting selectively: identify
what metrics drive your business and work top-down to set up alarms around timeseries
behind key performance indicators.

1. Resources

Network latency and packet loss
Ping an external and an internal location a couple of times every minute. Record
the round-trip time for the latency metric, along with 0 if the packet returned
successfully and 1 otherwise as a packet loss metric. The average will return
packet loss in percentage terms.

CPU utilization
CPU utilization is a great universal indicator of computational strain. On Linux,
parse /proc/stat or have the System Activity Reporter (SAR) interpret it for you.

Available disk space and memory
Prevent local storage from filling up and monitor for the amount of free space
approaching limits. If you can’t do this reliably, you should alert on it. Using up
local storage space might induce unpredictable behavior in your application.

Alerting Suggestions | 73

2. Platform

Turnaround times
Extract and upload response time statistics from application or middleware
logs. Monitor changes in average and percentiles deep in the tail (p99).

Response codes
In a web application, record error HTTP response codes. Alarm on unusual
proportions of bad requests and server problems.

3. Application

Availability
Set up external health checks from multiple locations and issue a test request
once a minute. Record 1 on success and 0 on failure and alarm when the average
falls below 99% (0.99) or whatever your SLA dictates.

Error rate
Define what constitutes usage errors and monitor them closely. Alarm when
errors reach relatively high proportions.

Content freshness
If your application delivers evolving content, measure its freshness. Record an
age metric (the difference in seconds between now and last content update)
and alarm when the number of seconds approaches SLA deadline.

74 | Chapter 3: Alerting

CHAPTER 4

At Scale

Scale invites complexity. Complexity breeds confusion. Confusion, in turn, increases
the likelihood of error. Even more mistakes are made under pressure resulting from
deadlines, the time-critical nature of the business, or high external visibility. Timely
response to production issues becomes more difficult at scale.

Some amount of complexity is unavoidable, so striving for simplicity, while a good thing
in itself, is not the same as achieving it. Likewise, working under pressure is not some‐
thing that will go away anytime soon. When is the right time to expand the team? Then
again, the more people on the team, the harder it is to maintain consistency.

Increasing a system’s manageability is a sure way to counter these factors. Rich instru‐
mentation is a necessary yet not sufficient condition. If your system is expanding, this
chapter might help you in planning an alerting configuration that scales along with it.
If you have already reached the critical mass and monitoring is starting to become in‐
creasingly more complicated, this chapter will help you get back on track. It describes
best practices for developing managed alerting configurations.

Implications of Scale
Large-scale information systems consist of numerous groups of interconnected com‐
puters. Their numbers start in the region of hundreds and go beyond tens of thousands.
To improve resilience, availability, and access times, the systems may be distributed in
diverse locations across the world. The computers communicate over a best-effort net‐
work, reliability of which cannot be taken for granted. The more complex hardware
pieces the system consists of, the higher the possibility of failure in one of the individual
parts. At a large scale, failure is not unusual.

75

Operating large systems comes at a cost. Their operation typically provides an important
service and generates significant revenue streams. Any moment of downtime brings
down the service and translates to losses. This makes failures in big systems highly
visible, not only within the organization that runs them, but also in the media if the
system provides a popular public service.

It is for that reason that organizations operating at large scale put great emphasis on
preventative measures. They can include investigations into anomalies and atypical us‐
age patterns aimed at ruling out any possibility of problem escalation. In low-visibility
organizations, on the other hand, it is somewhat acceptable to respond to alerting events
in a reactive rather than proactive way. It is also permissible in small settings to close
up shop for an upgrade and ask users to come back later. The same is not an option in
big systems. They require staggered, continuous maintenance, carefully carried out in
phases.

Information systems process and store data to extract specific meanings. Raw data enter
the system with various, sometimes unpredictable frequencies and the outcome of pro‐
cessing takes different forms. Processed data may be volatile and lose validity within
minutes, as in the case of short-lived stock market price projections or relevance sug‐
gestions on a social networking site. Other processed data may be long-lived and rela‐
tively bulky to store, such as video clips on a broadcasting website. A system’s architecture
is shaped by existence and values of many such values, including data volatility and the
cost of retention.

The designer makes a series of trade-offs, giving up efficient utilization of one resource
in order to accommodate better utilization of a more essential resource. As a result,
specific purpose systems are well suited for solving one kind of a problem but not the
other—and some of their components will always be more prone to failure than others.
An overall calculation of a system’s durability should put the most weight on the dura‐
bility of its weakest link.

In busy production environments with data processing rates of terabytes per second,
the Law of Large Numbers applies. This makes their monitoring a great learning op‐
portunity. Data generated at such magnitude of scale approximates mathematical mod‐
els very closely and assumptions can be made with higher confidence. On the other
hand, even small changes, assumed to cause disruption at seemingly negligible levels,
might affect thousands of users. Even small mistakes can become highly visible. Finding
out about faults from your users is never a good place to be. This is yet another reason
for special care in carrying out daily operations and the need for fine-grained moni‐
toring.

Finally, delays tell the story. Increased network latencies and system response times
indicate overall performance degradation. Time delays can be seen as the most universal
currency of performance. Small increases in response times might be an indication of

76 | Chapter 4: At Scale

increased load, but when delays rise to exceptionally high levels, they become a serious
problem. Users tend to respond immediately by demonstrating their lack of patience.
Internet giants are extremely sensitive to latency because it directly affects their bottom
line.

Less pronounced shifts in delay time patterns might not always have a direct impact,
but they do point to potentially worrisome changes downstream in the solution stack.
Big systems supply enough inputs to reliably detect subtle changes. Detecting and deal‐
ing with them remains a focus of operations at scale.

Considering these aspects of large systems, a set of assumptions about the operation of
large-scale systems can be drawn.

• Data enters and leaves with varying intensity and frequency, both of which are
subject to a high degree of unpredictability.

• The scale of operation necessitates continuous maintenance.

• Increases in response time and latency adds costs to the organization.

• The longer the component interdependency chain is, the higher the likelihood of
hitting a bottleneck.

• Failures are inevitable; they are the norm. The aim is to minimize their effects.

Composition of Large-Scale Systems
Data flow in a system is often compared to fluid conveyance in a set of pipes. The data
is encapsulated in the form of messages and continuously passes through the system.
Large information systems are composed of subsystems made up of components, which
in turn are subdivided. The requests are routed between components according to some
application logic. Components in each subsystem take different functional shapes, in‐
cluding but not limited to the following:

Service interface
The way to take in and serve data, most frequently in the form of requests and
responses. Interfaces can be read-write to allow submission of data, or read-only,
meant exclusively for data consumption. Present day services are commonly built
on top of a well defined HTTP interface.

Data processor
Software that extracts selected aspects of information from the data and presents it
in an alternative, usually more compact form. Processors may be real-time or offline,
for example, a search result rank calculator or a map-reduce cluster.

Composition of Large-Scale Systems | 77

Data pipeline
A serial chain of specialized data processors and transformers, taking a data stream
at the ingress and returning it processed at the egress. Pipelines are built with con‐
tinuity of data processing in mind and their end-to-end latency of processing is
optimized to be as short as possible.

Datastore
A repository of data objects designed for specific access and persistence patterns.
Examples include databases, network filesystems, shared storage systems, and cache
fleets.

In order to meet the load and provide basic redundancy, the components are deployed
to groups of hosts, or server fleets. Placing any of the components on a single server
creates a Single Point of Failure (SPoF) because a failure of a single machine can be
responsible for an entire system stopping its functionality and postponing operation.
SPoFs must, therefore, be avoided.

The components of an application may be loosely or tightly coupled; the service interface
and data processor may operate as separate fleets of hosts, but it is not uncommon to
see them run out of the same server. Decoupling helps isolate failures, but introduces
additional cost and overhead in data transmission. Each component is a computational
platform consisting of a hardware and software stack. If components are coupled, it
means that they share a portion of the platform at least up to the operating system layer.
This has important implications for fault finding: an intensive utilization of resources
by one component might slow down another.

A system in distributed operation is a bunch of computers collaborating on the network.
While the computers are not necessarily plugged into each other in any particular order,
a system’s logical architecture does depend on how the data is processed, the frequencies
at which it enters and leaves the system, and in what form. Some systems crunch big
data sets, others are expected to produce meaningful result in real-time, and yet others
are developed with persistence in mind to provide distributed storage for high-
availability of data retrieval. Regardless of the purpose, a system’s composition should
be clearly defined in terms of its fundamental components, their coexistence, and ar‐
chitectural layout. Such a layout map serves as a base for establishing what areas should
be covered by monitoring, and in case of failures it may serve as a reference guide for
operators who are not familiar with the system intimately.

Commonalities of Large-Scale Alerting Configurations
Effective alerting configurations are rare. Most of them come with time, often
built through trial and error. Interestingly though, they all share the same three

78 | Chapter 4: At Scale

characteristics: the thresholds are cleanly ordered, data-driven, and reevaluated when
baselines shift. These rules apply to systems of any size, but their value becomes truly
apparent in large and complex settings, where the system evolves, maintenance is la‐
borious, and alarm thresholds are a moving target.

Order
Highly manageable large-scale systems are organized hierarchically and benefit ex‐
tensively from the use of namespaces. Such a structured organization of alarms
empowers the operators to work with alerts with more effectively.

Consistent namespacing allows for reliable audits and facilitates housekeeping.
Alarms may be reliably classified as stale or obsolete if they don’t reflect the current
configuration or hierarchy of the system. Such alarms may subsequently get cleaned
up to reduce their maintenance cost and prevent confusion among engineers. Ad‐
ditionally, order simplifies the task of setting up aggregation and suppression, and
is a major factor behind alerting’s effective manageability.

Data-Driven Organization
Timeseries data stores valuable information about the long-term process of change.
This information should be used to drive alarm thresholds, as explained in “Data-
driven thresholds” (page 67).

Threshold values, calculated from historical observations, anchor alarm behavior
at real data. Some metrics produce continuous streams of data. These may oscillate
around an almost constant value or be subject to seasonal cycles. Other metrics
yield occasional spikes, not all of which indicate real issues. The baseline, the mag‐
nitude of failure, and the existence of anomalies should all be taken into account.
A sound and reproducible calculation model leads to stronger detectability and
reduction in human effort. The applicability of each calculation model is tied to the
underlying data patterns, but they’ll nearly always do a better job than a human.

Reevaluation
Many things will change over time, starting with hardware and infrastructure,
through code efficiency, ending with traffic patterns. Although not all changes come
at once, they will arrive eventually. In reality some changes are more progressive
than others, and some configurations require a rich granular set of alarms while
others do not. For that reason, different groups of alarms require reevaluation at
different time intervals. When monitor thresholds are refreshed regularly to adjust
to changes in usage patterns, alerting becomes significantly more sensitive and
specific.

Monitoring Coverage
Large, manageable systems are organized in hierarchies, grouped by components and
their relevant logical entities, according to the number of abstract dimensions that they

Monitoring Coverage | 79

operate in. The resulting software stack is then replicated to multiple locations around
the world. In this context, a dimension is a way of presenting measurements that reflects
the system’s architecture and location. Full monitoring coverage should reflect as many
dimensions as there are in the system.

Consider a simplistic model of a three-tier system expressed in terms of its dimensions,
depicted in Figure 4-1.

• Dimension 1: covering each of the three tiers—the front end, the application layer,
and the back end

• Dimension 2: vertically spanning the layers of hardware and solution stack

• Dimension 3: all server entities

Effective monitoring should cover all components of a system at its many levels of gran‐
ularity. The operator must be able to get an immediate insight into parts of the system
where faults are suspected, zoom in or out into arbitrary levels of data granularity, and
overlay cross-layer metrics freely to highlight correlative relationships. You need to re‐
alize the kinds of structures shown in Figure 4-1 in order to make reliable assumptions.

Reflecting Dimensions in Metrics
Big systems with comprehensive monitoring collate millions of inputs into hundreds of
thousands of data points per minute. Most of them will never get looked at. The pene‐
tration rate of metric data in large enterprises is estimated to be around 1%—and that’s
okay, because most of the monitoring data is collected just in case, for real-time inspec‐
tion during an event response. In reality, only a small fraction of timeseries is constantly
monitored by alarms and through dashboards and even fewer of them will be used for
long-term analysis of seasonality trends.

When a need arises, the operator must know how to find her way through the remaining
99% of metrics in search of the defects. Data must be reported systematically. The ques‐
tion is how to report and store metrics so they can be retrieved with minimum effort
and, in the process, discovered intuitively.

The way to do this is by storing the data so as to reflect a system’s dimensions. In other
words, every data input consists of a numeric value and a set of properties describing
its origin and the circumstances under which the input was collected. All these prop‐
erties can be seen as dimensions and their values can be interpreted as data addresses
in an abstract multidimensional space. Through referencing data by their properties
and origin, specific subsets of recorded inputs can be carved out from a metric and
presented in the form of a timeseries.

Let me explain this idea by expanding a little on the example from Figure 4-1. Suppose
we have three groups of hosts representing the front end, middleware, and the back end.

80 | Chapter 4: At Scale

Figure 4-1. Simplistic system architecture expressed in three dimensions

The hosts report their average CPU utilization at one minute intervals. Front-end ma‐
chines take HTTP requests from the users and dispatch the logic to middleware, which
in turn engages the back end to do some heavy lifting. When the process is finished, the
middle layer fetches the result from the back end and passes it on to the front end to be
served back to a user.

Monitoring Coverage | 81

All three groups contain a different number of hosts, according to the frequency and
intensity with which they carry out their tasks. Each host sends CPU measurements
marked with the hostname of origin and the group the host belongs to.

Managing Large Alerting Configurations
A distributed system is typically composed of hundreds if not thousands of logical com‐
ponents performing some type of work. Present-day systems scale with demand, so
some parts might be more volatile than others. In addition, enterprise-level alerting
systems are extremely feature-rich, so learning to operate them effectively takes a bit of
experience and some attention. The former comes with time (which in itself is a scarce
resource), and the latter is split among many other aspects of work. In addition, rich
features often give the operators enough rope to hang themselves. This poses an im‐
portant question: how to maintain desired coverage without burdening operators with
the nontrivial, yet mundane and unreliable process of manual updates? Let me break
down the problem of alerting at scale into smaller components expressed in terms of
monitoring.

Coverage
Relying on human operators for setting up complex alerting configurations through
makeshift scripts is inherently unsound. The system may be composed of moving
parts. Unless the operator remembers to amend the configuration after every
change, the coverage will deteriorate. This reduces the reliability of detecting alarms.

Detectability
Coming up with threshold values is not a trivial task. The process is often counter‐
intuitive, and it’s simply not feasible to carry out an in-depth analysis for a threshold
calculation on every monitored timeseries. A data-driven approach to setting up
alarms significantly improves precision.

Consistency
The value of consistency seems a little abstract, but it is very real. A consistent
convention for the structure of alarms drives simplicity and allows for predictability.
It can serve as a common interface to read-only information about the current
system’s state. Chapter 5 explains how to realize this potential through system au‐
tomation.

Maintenance
The creation of thousands of alarms and monitors is a labor-intensive task. When
a system is cloned to another availability zone, or some parts of it are copied or
expanded, a significant amount of work has to be put in reproducing its alerting

82 | Chapter 4: At Scale

configuration. The same goes for tearing down alarms: cruft (irrelevant or outdated
code) builds up over time. Cruft doesn’t always incur direct costs, but it is often a
source of unnecessary confusion. Any attempt to do manual clean-ups introduces
the likelihood of accidental damage to the functioning configuration.

The answer to complexity lies in the automation of the process in a way that detects
changes in system layout and acts on them before a human operator would. Automation
makes alarms systematic and greatly simplifies the preservation of reliable coverage,
detectability, and consistency. Additionally, it takes away human effort. Using a managed
solution saves lots of operations time, but its most important benefit is a systematic
approach to making monitoring better. The change is perceivable by everyone on the
team and can be reliably measured with the methods described in Chapter 7.

Addressing the Problems
When the system reaches a certain size, work invested in monitoring may become ex‐
cessively laborious due to the complexity of the system combined with high rates of
change. To solve the problem, the following issues must be addressed directly.

Organize alarms and monitors in a namespace

The alarm setup should reflect the logical topography of the system. Giving alarms
namespace-like names brings order and allows you to maintain a hierarchical view.
Namespacing provides a convenient abstract container and helps you divide and con‐
quer huge amounts of independent monitors and alarms by functional classification.
It’s a much better idea to give your alarms systematic rather than descriptive names,
such as “All throttled requests for the EU website.”

Let me explain this with the familiar three-tier system example. Suppose the system
provides some data crunching web service and is located in Europe. The three tiers—
front end, middleware, and back end—each run on a separate fleet of hosts. Let me call
them frontend, app, and db. Now, assume you want to measure CPU utilization and
response latencies in each of the tiers. You could build the structure of alarms and give
them names according to the following convention:

<service name>.<location>.<tier>.<alarm type>.<alarm>[.<monitor>]

Figure 4-2 illustrates the breakdown of alarms. For instance, cruncher.eu.frontend.cpu-
util.critical would be the name of an alarm for critical CPU utilization levels on the
frontend tier in EU’s instance of “cruncher.” If you wish to expand the system to serve
another geographical region, the overall alarm structure and naming convention would
remain the same. Only the location identifier in the namespace would change.

This approach is very powerful. Consistently named alarms provide efficient reporting,
ease maintenance, and open the door for using monitors as inputs in automation. Let
me point out just a few examples:

Managing Large Alerting Configurations | 83

Figure 4-2. Namespaced alarm setup

• Low-level alarms or their aggregates can be used as suppression rules for higher
level alarms.

• Transparency into alarms’ coverage increases because the alarms may be listed by
prefix or regular expression.

• The need to remember alarms by name is replaced by understanding their structure.

Calculate threshold values from metric data

If monitored timeseries are subject to changes in patterns, be it sudden or progressive,
their thresholds should be anchored at baselines to reflect the most recent system state.
This approach makes detection significantly more accurate.

Imagine that our example system accepts three types of requests for data crunching:
small-frequent, medium-regular, and big-infrequent. Let’s assume that the frequency of

84 | Chapter 4: At Scale

submission corresponds to the strain of the front end and that the size of requests dictates
the load on the back end. The bigger the requests, the less frequently they come in.
Suppose you monitor front-end traffic to predict back-end load. In order to do it accu‐
rately, you need different thresholds for each type of request, since a few extra big re‐
quests have the same effect on load as a huge uptake of small requests.

When the system deals with hundreds of logical entities, each with different load and
usage patterns, it’s impossible to select a silver-bullet threshold. In such cases, each
timeseries is treated as a special case and should get a custom threshold calculated for
it.

Where possible, the method of calculation ought to reflect the underlying pattern. For
instance, where you want to catch small and relatively infrequent deflections from a
steady norm, a threshold based on average of data points and their standard deviation
might be most appropriate. For other cases, long streaks of low data points may be
discovered by watching for continued occurrences of data points below last week’s me‐
dian or p40 value. A practical, universal method for many use cases was discussed in
more depth in “Data-driven thresholds” (page 67).

Periodically refresh and clean up the configuration

Setting up data-driven thresholds requires their periodic readjustment. Depending on
the frequency with which the system gets upgraded, the varying quality of infrastructure,
and the system’s usage intensity, the metrics will demonstrate changes in patterns at
different intervals. The idea is to keep the thresholds coherent with values of the un‐
derlying timeseries baseline.

Periodic recalibration also responds to the second type of change, one in the system’s
internal structure. With time, some parts of the system might go away, while other
branches might expand. In the former case, refreshing the alarms is a great opportunity
to get rid of cruft, while the latter allows you to extend alerting coverage to the new parts
of system.

Suggested Solution
This section attempts to provide a brief specification for creating a small framework
that will help you manage thousands of alarms effectively. It combines the previous
chapters into a concrete, practical solution, a basic implementation of which should not
exceed 400 lines of code in your favorite scripting language.

Think of the solution as a black-box framework composed of two parts: configuration
modules and an engine for refreshing the alarms that they describe. The framework is
meant to glue together and extend the functionality of your existing monitoring and
alerting platform to make maintenance of thousands of alarms a manageable and ef‐
fortless process.

Managing Large Alerting Configurations | 85

It breaks the whole configuration down in three hierarchically ordered concepts:

1. Configuration modules with specifications of related alarms, organized in period
groupings

2. Alarm specifications describing alarms as groups of monitors and time evaluations
aggregated accordingly

3. Monitors pointed at specific timeseries with thresholds calculated according to
alarm specification

In its simplest form, the solution can be implemented as a periodically running cron job
executing a triple nested “for” loop. The loop iterates over the creation of monitors for
each alarm, all alarms for each configuration module, and all modules in a refreshment
interval grouping.

The result of the operation is a consistent alarms setup. All alarms and monitors are
given namespace-like names, leaving the setup in an ordered, hierarchical structure.

The remainder of this section assumes the ability to programmatically interface with
the monitoring and alerting platform, in particular:

• To read timeseries data

• To create and delete alarms and monitors

• To list existing alarms and monitors

Refresh intervals

The task of the engine is to periodically refresh alarms according to their specification.
It implements reusable procedures for threshold calculation, alarm setup, and alarm
tear-down to provide the following core functionality:

• Interpretation of configuration modules

• Plugging into the monitoring platform to manipulate alarms and monitors accord‐
ing to their specification. This includes their creation, modification, and deletion.

• Calculating thresholds from historical timeseries data with at least one method. An
idea for a robust method and simple implementation was presented in Chapter 3.

Alarm refresh intervals are central to the concept of managed alerting. Alarm groups
are classified by the frequency with which their monitor configuration is to be reeval‐
uated. I recommend four practical refresh intervals:

86 | Chapter 4: At Scale

Weekly
This is useful for data inputs that change frequently and are critical to the system
operation. You should typically set up a relatively small number of alarms against
their monitors. A weekly refresh interval is particularly suitable for systems that
run on aggressive release schedules, such as continuous integration.

Fortnightly
Similarly to weekly metrics, monitors set up around metrics susceptible to pro‐
gressive changes in usage patterns should be updated every two weeks, in particular
if the changes are caused by uncontrollable external factors, such as traffic levels. If
a weekly module defines thousands of alarms to readjust, it makes sense to also
place it in the fortnightly grouping.

Monthly
This interval is suitable for metrics reflecting the sustained growth of relatively
abundant resources, such as the levels of storage consumed by the customer.

Static
A certain group of monitors does not need periodic adjustments because static
thresholds reliably describe them. These alarms are still subject to automatic setup
and tear-down, but only once—at software roll-out time. Monitors with static
thresholds can be set up for watching utilization limits, loss of availability, or dis‐
continuation of flow. “Static thresholds” (page 66) discusses these examples in more
detail.

Figure 4-3 shows how some resources might be classified.

Figure 4-3. Classification of modules for refreshing alarms

Managing Large Alerting Configurations | 87

Figure 4-4. The operation of refreshing alarms

Running the engine. The engine gets kicked off periodically from cron. In practice, re‐

fresh intervals are groupings of configuration modules. When the engine gets started,
it is instructed to process modules belonging to one particular group. All modules from
that group are loaded and interpreted, and their configuration is subsequently refreshed.
See Figure 4-4 for the process.

88 | Chapter 4: At Scale

The nested loop should carry out three tasks: naming alarms, calculating monitor
thresholds, and cleaning up artifacts.

Naming. The engine should construct the namespace name for alarms and monitors as

follows:

<prefix>.<module>.<alarm>[.<monitor>]

where the elements of the name are as follows:

prefix

An identifier specific to the system. The prefix can be a simple word (“website,”
“cruncher”) or a combination of words describing the system and its properties
(“website.eu”).

module

The name of the module containing alarm specifications, (“cpu-util,” “network”).

alarm

The name of an alarm aggregate described by each alarm specification.

monitor

The name of member monitor in the alarm aggregate.

Alarm creation and threshold calculation. For each defined alarm aggregate and its corre‐

sponding monitors, the engine should be able to:

• Identify the timeseries for each monitor, extract its recent data points, and calculate
a threshold according to specification (see Chapter 3 for a universal threshold cal‐
culation method).

• Create the monitor and aggregate it in the parent alarm through one of the aggre‐
gation methods (Any, All, or By Count).

• Optionally, outfit the alarm with alerting and ticketing action.

Cleanup procedures. Having read the configuration of the module, the engine should be

able to compare the desired configuration state with the current one, created by the
previous iterations.

If more monitors are observed after an iteration of each run than are defined in the
specification, the excessive monitors can be identified by name and removed. If an alarm
specification got removed from the module, this fact should also be detected and the
corresponding alarm with all its monitors should be cleaned up.

Managing Large Alerting Configurations | 89

Writing Modules. Modules are pieces of configuration used in the loop to set up alarms.

They list and describe alarm specifications, including the alarm name, its monitors, the
type of aggregation, and the alerting configuration. The information extracted from the
modules describes the alarms to be created in detail. Such alarm specifications include
the following:

1. Alarm name.

2. Monitor names and handles for timeseries on which one or more monitors will be
based.

3. Alarm aggregation type (“Any,” “All,” or “By Count”).

4. Threshold calculation tactic. The threshold may be static or adjustable based on
recent data point patterns.

5. Alerting information: notification action and ticket definition.

Implementing Modules as Executable Scripts

Configuration modules may be implemented as static data files or dynamic code. I think
the second approach is more advantageous if you have the full control over your envi‐
ronment.

A static configuration is hard to write and more voluminous. After you create it, system
changes require deployments of new configurations. In contrast, a dynamic configura‐
tion specification implemented as a piece of code takes less time and space to write and
can figure out any system changes on the go.

The idea is to go with “convention over configuration.” Each module describes config‐
uration logic through code instead of static sets of key-value pairs. This way, you avoid
hardcoding the system’s moving parts, creating a more robust and maintainable con‐
figuration. The code will figure out what changed and apply fixes before you would, and
there will be no need to edit and peer review configuration files, saving you and your
colleagues lots of time.

So implement your configuration as programs that perform intelligence gathering, se‐
rialize it, and feed it to the loop.

Very often a single alarm may be supported by a number of monitors. Each monitor
relates to the same metric but watches its own dimension. This is why the definition of
a timeseries to be monitored should support some basic templating functionality. The

90 | Chapter 4: At Scale

following example substitutes the '$(MONITOR)' placeholder in the timeseries template
with the respective monitor name. This way, having defined the metric and timeseries
just once, you can create a number of related monitors, differing only by the one di‐
mension in the $(MONITOR) placeholder.

Consider the following content returned from a configuration module called “work‐
load”:

{
 'utilization': {
 'timeseries': {
 'metric': 'cpu-util',
 'dimensions': {
 'tier': 'backend',
 },
 'summary stat': 'avg',
 },
 'monitors': ['critical'],
 'aggregation': 'ALL', # Not really needed for a single monitor.
 'threshold': {
 'trigger': 'above',
 'datapoints': 4, # Alarm after 4 data points
 'static': 0.80, # Trigger when the level raises above 80%
 },
 'ticket': {
 'title': 'Critical levels of CPU utilization.',
 'description': 'Backend fleet CPU util exceeded 80%',
 'impact': 2, # Real threat of possible performance degradation.
 },
 },
 'traffic': {
 'timeseries': {
 'metric': 'requests',
 'dimensions': {
 'request_type': '$(MONITOR)',
 },
 'summary stat': 'n',
 },
 'monitors': ['small-frequent', 'medium-regular', 'big-infrequent'],
 'aggregation': 'ANY', # Trigger if any of the monitors go into alert
 'threshold': {
 'trigger': 'above',
 'datapoints': 5, # Alarm after 5 data points of unusually
 'percentile': 98, # high traffic levels. Do not let the threshold
 'lower': 50, # fall below 50 data requests per data point and
 'upper': 1000 # don't let it raise beyond 1000 requests.
 },
 'ticket': {
 'title': 'Unusually high traffic levels for last 5 data points.',
 'description': 'One or more request types come at increased rates.',

Managing Large Alerting Configurations | 91

 'impact': 3, # Real threat of possible performance degradation.
 },
 },
}

The configuration describes two alarm specifications.

The first alarm is called “utilization” and contains a single monitor. The monitor watches
fleet-wide CPU utilization of the back end and goes into alert state if the threshold of
80% is exceeded for 4 data points. When that happens, the alarm is instructed to file a
ticket of relatively high priority.

The second alarm is called “traffic” and includes three monitors observing the number
of requests per data point. Because the three types of requests have different usage pat‐
terns, threshold values for their monitors are allocated dynamically, based on the 98th
percentile in the distribution of historical data points. It was established that a threshold
value of below 50 should never be considered a threat, and at the same time, the value
should never drift beyond 1000 for any of the monitors. If any of the monitors goes into
alert state, a normal priority ticket is filed.

The process executing the loop glues together elements of the namespace to come up
with a full name for every monitor and alarm that it creates. It puts together the system
name (prefix) with names for module, alarm, and monitor, delimiting them with dots.
That way, the CPU alarm handle becomes “cruncher.workload.utilization.critical” and
the traffic monitor of the small and frequent type of requests is alarmed on via
“cruncher.workload.traffic.small-frequent.”

Suppression. The value and applicability of suppressions was explained in “Suppres‐

sion” (page 57). Manually suppressing large alerting configurations for hundreds of

alarms is a mundane and inconvenient task. Seeing alarms as Boolean functions, it is
really simple to implement suppression functionality by appending to the aggregate the
AND NOT condition pointed at a suppressing condition. That way, through changing
a state of a single alarm, alerting for an entire component could be put on hold and an
alert storm could be avoided.

Consider the following configuration for the data pipeline discussed in “Case Study: A
Data Pipeline” (page 60).

Example 4-1. Simple alerting configuration returned from the “pipeline” module

{
 'throughput': {
 'timeseries': {
 'metric': 'processed_items',
 'dimensions': {
 'component': '$(MONITOR)',
 },

92 | Chapter 4: At Scale

 'summary stat': 'sum',
 },
 'monitors': ['loader', 'processor', 'collector'],
 'aggregation': 'ANY',
 'threshold': {
 'trigger': 'below',
 'datapoints': 1, # Alarm as soon as the pipeline stops
 'static': 1, # Trigger when no items are processed
 },
 'ticket': {
 'title': 'Data pipeline has stopped.',
 'description': 'Unexpected pipeline stoppage.',
 'impact': 2,
 },
 'suppression': 'cruncher.suppressions.pipeline.maintenance'
 }
}

The resulting configuration is a single alarm, cruncher.pipeline.throughput, consisting
of three monitors aggregated in ANY mode. The alarm goes into alert if any single
monitor triggers. The threshold condition is set as static and goes off when the number
of processed items in the data point is less than one, i.e., when it is equal to zero. This
is desired except when scheduled maintenance is to be carried out, during time which
the pipeline stops for a short time under full control and supervision.

The final ‘suppression’ keyword could be interpreted by the engine as attenuating
circumstances in which the alarm should not be set off after all. The logical Boolean
resulting from the configuration could be expressed as follows:

(cruncher.pipeline.throughput.loader OR cruncher.pipeline.throughput.processor OR
cruncher.pipeline.throughput.processor) AND NOT cruncher.suppressions.pipe-
line.maintenance

See Figure 3-3 for a visual representation. In other words, trigger if any of the monitors
is set off unless a suppressing alarm exists and is in alert state.

To make the suppression process fully hands-off, you should extend the
pipeline shutdown procedure programmatically to put the
cruncher.suppressions.pipeline.maintenance alarm in alert state for the
expected duration of the outage, e.g. 1 hour. This way, the operator’s
only worry is to carry out maintenance and not to deal with instru‐
mentation, which further shortens the expected downtime.

Okay, let’s kick the requirements up a notch. Let’s say you want to create a more sophis‐
ticated configuration, with a separate alert for each component as illustrated in

Managing Large Alerting Configurations | 93

Figure 3-4. Additionally, you want the monitors to be more intelligent so they can also
detect exceptionally low levels of throughput, as opposed to just an absolute discontin‐
uation of flow. Suppose you don’t want the pipeline to go any slower than the slowest
5% of performance for a duration of three data points. Still, you want to use common
sense limits for both thresholds: the lower at 1 and the upper at 100. This means that if
the lowest 5% of historical performance turns out to be 0 items per data point, disregard
it and use 1 instead. If, on the other hand, the slowest 5% of data points point to a
performance of 100 items per data point interval, stick to the maximum threshold value
of 100. Example 4-2 describes this configuration, using the analogy of Example 4-1.

Example 4-2. Granular alarms with calculation of throughput threshold for each compo‐
nent

{'loader': {'monitors': ['throughput'],
 'suppression': 'cruncher.suppressions.pipeline.maintenance',
 'threshold': {'datapoints': 3,
 'lower': 1,
 'percentile': 5,
 'trigger': 'below',
 'upper': '100'},
 'ticket': {'description': 'loader is unexpectedly slow.',
 'destination': 'teamloader',
 'impact': 2,
 'title': 'loader has stopped.'},
 'timeseries': {'dimensions': {'component': 'loader'},
 'metric': 'processed_items',
 'summary stat': 'sum'}},
 'processor': {'monitors': ['throughput'],
 'suppression': 'cruncher.suppressions.pipeline.maintenance ' + \
 'OR cruncher.pipeline.loader.throughput',
 'threshold': {'datapoints': 3,
 'lower': 1,
 'percentile': 5,
 'trigger': 'below',
 'upper': '100'},
 'ticket': {'description': 'processor is unexpectedly slow.',
 'destination': 'teamprocessor',
 'impact': 2,
 'title': 'processor has stopped.'},
 'timeseries': {'dimensions': {'component': 'processor'},
 'metric': 'processed_items',
 'summary stat': 'sum'}},
 'collector': {'monitors': ['throughput'],
 'suppression': 'cruncher.suppressions.pipeline.maintenance ' + \
 'OR cruncher.pipeline.processor.throughput',
 'threshold': {'datapoints': 3,
 'lower': 1,
 'percentile': 5,
 'trigger': 'below',
 'upper': '100'},
 'ticket': {'description': 'collector is unexpectedly slow.',

94 | Chapter 4: At Scale

 'destination': 'teamcollector',
 'impact': 2,
 'title': 'collector has stopped.'},
 'timeseries': {'dimensions': {'component': 'collector'},
 'metric': 'processed_items',
 'summary stat': 'sum'}}}

All is well, but at three components the configuration starts getting lengthy. If the pipe‐
line was extended by another two components, maintaining this configuration would
become a real maintenance burden. This is precisely why static configuration files
should be replaced by executable configuration modules, which are easier to maintain
and can figure out system settings on the fly. See Example 4-3. The imported get_com
ponents function is assumed to be a part of a system’s programmatic interface that can
read the list of components at the time when configuration is compiled.

Example 4-3. Module generating alerting configuration

from system.pipeline import get_components
get_components() returns a tuple with component names.
The following code is assumed:
def get_components():
return ('loader', 'processor', 'collector')

alarms = {}
components = get_components()

for i in range(len(components)):
 alarms[components[i]] = {'monitors': ['throughput'],
 'suppression': 'cruncher.suppressions.pipeline.maintenance',
 'threshold': {'datapoints': 3,
 'lower': 1,
 'percentile': 5,
 'trigger': 'below',
 'upper': '100'},
 'ticket': {'description': components[i] + ' is unexpectedly slow.',
 'destination': 'team ' + components[i],
 'impact': 2,
 'title': components[i] + ' has stopped.'},
 'timeseries': {'dimensions': {'component': components[i]},
 'metric': 'processed_items',
 'summary stat': 'sum'}}
 if i:
 alarms[components[i]]['suppression'] += \
 ' OR cruncher.pipeline.%s.throughput' % components[i-1]
print alarms

That’s much shorter! Additionally, when the pipeline is extended by the fourth compo‐
nent, the generated configuration will take this fact into account and automatically

Managing Large Alerting Configurations | 95

create an alerting configuration for it, too. This way, there is no need for dispatching
update tasks to an operator, no one has to review it for correctness, and there is no
obligation to schedule tasks to push out production changes—the alerting configuration
should get regenerated the next time the loop runs to refresh alarms.

Extra Features. On top of core functionality, the engine may optionally also implement

the following:

• Distributed execution. The periodic update of thousands of monitors supporting
hundreds of alarms may necessitate staggered update of alarms from multiple hosts
for added reliability and to distribute load on internal monitoring tools.

• The ability to calculate a threshold value for one timeseries, based on data points
from a related timeseries. Sometimes the threshold value for one timeseries monitor
might be calculated most reliably from data points of a related timeseries. Thus, if
you want to alarm when errors exceed 1% of overall traffic, you’re setting up the
error series’ threshold based on a calculation of healthy traffic.

• Suggesting the severities and threshold levels for tickets based on human feedback
from the ticketing system (supervised learning).

and much more!

Result
The result of applying the proposed solution is a hierarchically ordered structure of
highly effective alarms with increased sensitivity and specificity. Let me provide some
anecdotal evidence.

One of the operations teams I worked for introduced this form of managed alerting by
implementing a simple engine and slowly migrating a portion of alarms. Figure 4-5 is
a rough illustration of the progress as it was taking place during the switch-over. The
yellow streak signifies human-created tickets. The green area at the bottom right is the
relative amount of tickets created with the managed solution and the gray area at the
top represents automated tickets created by legacy settings. Finally, the blue-dotted line
reveals in percentage terms the number of alarms migrated to the managed solution. In
the end, 85% of migrated alarms produce only 54% of overall tickets. Even with human
created tickets taken away, we achieved a noise reduction of more than 23%. Also, notice
how the streak of manually created tickets keeps decreasing during the transition—a
clear indicative of improved recall.

96 | Chapter 4: At Scale

Figure 4-5. Proportion of tickets relative to managed solution coverage

Managing Large Alerting Configurations | 97

CHAPTER 5

Monitoring in System Automation

System metrics are a source of valuable information about a system’s state. Alarms and
monitors evaluating to a Boolean value indicate the current state and operational context
of your systems. Thus, you can take advantage of them to programmatically drive re‐
silience and recoverability, while reducing the complexity of human interaction.

Self-Regulating Systems and Autonomic Computing

The holistic approach to the development of self-managing and self-regulating systems
is termed Autonomic Computing (AC).

By design, an AC system does not require an operator’s attention. Instead, it implements
a manager application in charge of configuration, governance, protection, optimization,
and maintenance of components. The manager is meant to operate in a closed loop of
four continuous steps: monitor, analyze, plan, execute. The loop opens with monitoring,
reading in the information from active sensors. Gathered data serves as a base for anal‐
ysis, from which the relevant action plan originates. Finally, the stabilizing action is
executed and the loop starts over. That keeps the system sustainable.

The autonomic manager requires a good deal of built-in knowledge to work: the system
must know what to look for, what decisions to draw from the observations, what alter‐
natives exist for taking an action, and how to execute it. While AC is a broad subject,
way beyond the scope of this book, it is well worth mentioning here, as monitoring and
alerting are one of the main ingredients in manager’s knowledge, at the very least in the
plan and analyze steps.

AC’s ability to decrease the ratio of operators to managed machines suggests that AC
will appear increasingly in the design and development of information systems. This
way, the role of monitoring and alerting will be more pronounced than today’s eyes and
ears of a system—they will become an integrated control loop, pretty much like the
autonomic nervous system in a human body.

99

For more information on AC specifically, I’d like to refer you to the book Autonomic
Computing by Richard Murch (IBM Press). This chapter describes how to add a pinch
of self-governance to your current systems through the use of monitoring data.

Choosing Appropriate Maintenance Times Automatically
Large-scale systems require regular maintenance operations, such as preventative
checks and content updates. These take place during normal system operation and in‐
volve removing selected servers from operation. As a result, the system runs at reduced
capacity relative to its normal levels and can handle a proportionately smaller load.

Every type of maintenance carries with itself a risk of an outage. However negligible the
hazards, they remain real. A minute of downtime at a peak is a lot more costly than the
equivalent duration during a trough, and for that reason all maintenance work should
be attempted under smallest possible load.

In systems with regular cyclic patterns, peaks and troughs can be clearly distinguished
by viewing incoming traffic plots (Figure 5-1). Both extremes of system activity can be
assigned to specific hours of the day. It is possible to create an alarm based on the time
of day evaluation that goes into alert state during peak. The maintenance processes can
be instructed to first consult the alarm state before kicking off their work and to postpone
execution when the alert is on. When the demand reaches trough again, the alarm
transitions back to a clean state and the processes are given a green light to carry on.

Figure 5-1. Timeseries with two days worth of traffic data points and a corresponding
percentile plot of their values

When usage varies in an irregular manner, is unstable, or goes progressively in one
direction, the time evaluation rule in the alarm may be replaced by a traffic monitor

100 | Chapter 5: Monitoring in System Automation

with a dynamically adjusted threshold, as described by “Data-driven thresholds” (page
67). Such a threshold could be calculated as the p50 of last week’s data points with an
additional upper limit set as an appropriate safety value, to avoid capacity reduction
when the demand evolves unexpectedly. See Figure 5-1.

In cloud-based settings, this technique can help with autoscaling, or dynamic capacity
allocation.

Controlling the Rate of Upgrade
In the same spirit of carrying out work only as resource levels permit, a case could be
made for controlling the rate of a staggered system upgrade with the CPU utilization
metric.

Suppose you’re dealing with a fleet of servers that is to be upgraded. For the upgrade to
complete, every server in the fleet must be taken momentarily out of service. Each such
operation immediately puts proportionately more load on the remainder of the fleet. It
is assumed that once the server gets upgraded it returns to the fleet on its own, and takes
on its due proportion of the load. The task is to complete the upgrade in a reasonable
time, but without noticeable performance degradation. The main goal is to avoid ex‐
cessive load put on too few machines.

It has been established that there will be no noticeable performance degradation as long
as the CPU util does not exceed 50% on minutely average. The level of utilization during
trough varies, but oscillates at around 30%.

The rate of migration may be controlled with a very simple algorithm as depicted the
flowchart in Figure 5-2. The loop continuously checks whether more hosts to be up‐
graded exist in the fleet. If so, fleet-wide CPU utilization is consulted. If the CPU levels
remain within the expected threshold, the fleet can be put under a little more strain by
taking another host out for upgrade. Otherwise, the process checks back after some time.
The hosts are assumed to automatically rejoin the fleet once they’re done upgrading.

Because CPU util is such a universal system load indicator, this very simple algorithm
accounts for a number of scenarios:

• The upgrade completes in optimal time keeping within the agreed threshold.

• At peak time, when utilization levels rise above 50%, the upgrade process is put on
hold to be resumed later when the demand reaches the trough period once again.
The process is illustrated in Figure 5-3, showing CPU utilization elevated during
before and after the daily peak, relative to baseline levels.

Controlling the Rate of Upgrade | 101

Figure 5-2. Flowchart of utilization-controlled upgrade loop

• If for some reason the upgraded hosts do get back in service as predicted, the up‐
grade stops at the agreed CPU level and the operator has more time to remedy the
situation.

• If during trough the load unexpectedly increases, the CPU util metric will reflect
that and the migration will be paused to meet the demand.

Recovery-Oriented Admission Control
Let me bring up one more time a data pipeline example from Chapter 3. Consider a
pipeline with three components serially processing a stream of inputs—Loader, Pro‐
cessor, and Collector. For simplicity, I’ll refer to them as A, B, and C. The inputs are
submitted by multiple independent sources to component A, which enqueues them for
processing in B. Component C fetches inputs from B and processes them at an almost
constant rate.

102 | Chapter 5: Monitoring in System Automation

Figure 5-3. CPU utilization during controlled update, plotted against normal levels

The inputs are processed by C in the order of arrival as retrieved from B’s FIFO queue.
The queue serves as an input buffer handling brief input spikes that cannot be handled
immediately by C. Whenever the input arrival rate is higher than the departure rate, the
queue builds up a backlog. When the arrival rate decreases, the backlog is steadily
drained by C.

The three components record their own monitoring metrics with performance infor‐
mation:

• Component A records the number of incoming inputs as a flow metric and a per‐
centage of admitted inputs as an availability metric.

• Component B records the queue size at any given time—a stock metric with number
of elements currently in the buffer.

• Component C records the rate of processing as a throughput metric—its average
input processing speed expressed in inputs per minute.

The pipeline operates with limited resources to be cost effective, yet there is no limit on
how much load can be submitted by each source at any one time. Data pipelines with
unpredictable input burstiness should be considered “best effort” and their operational-
level agreements must be defined to reflect that. For that reason, an accompanying SLA
defines the maximum allowable end-to-end latency to be one hour, but under normal
operation a typical turnaround time should not exceed 15 minutes. It also makes clear
that it’s better not to admit an input for processing at all than have it breach the SLA
latency level.

Suppose the arrival rate has been higher than the departure rate for long enough to
accumulate a serious backlog, the clearing of which takes exactly one hour
(Figure 5-4). From here on, it makes no sense to admit inputs to the pipeline any faster
than the current departure rate, as they will inevitably breach the SLA.

Recovery-Oriented Admission Control | 103

Figure 5-4. Backlog building up in the queue

Knowing the speed of processing (departure rate) and maximum latency as defined in
the SLA, you can easily calculate the maximum allowable queue size:

max queue size = SLA defined latency * maximum departure rate

Processing rate is recorded by component C. Let’s assume it’s at three items per minute.
If the SLA-defined latency is 60 minutes and the C component is capable of processing
up to 3 items / min, then the queue may reach up to 180 items before the system fails to
meet the SLA.

This way, the throughput metric describing the processing rate from component C can
be used to set an admission restriction on component A by calculating the threshold of
the queue size in component B.

Fine, but suppose the arrival rate stabilizes at around the maximum allowable queue
levels. If arrival rate is equal to departure rate all inputs will meet the SLA just barely,
but their end-to-end processing latency will still be very poor. This is not always desir‐
able. If the backlog level is steady for days without any improvement then every client
will have a uniformly bad experience. At least two problems exist in this solution:

• The clients experiencing poor performance were not necessarily responsible for the
build-up, yet they suffer the consequences.

• The buffer does not serve its original purpose anymore: it’s unable to capture and
deal with occasional, unsustained input bursts as it’s clogged with the backlog and
drops all inputs above the maximum queue size.

104 | Chapter 5: Monitoring in System Automation

Figure 5-5. Backlog levels with recovery oriented admission control enabled

A further tweaked admission control mechanism could aim at faster recovery to sus‐
tainable levels and could look like Figure 5-5.

Suppose that 25% of queue saturation, relative to maximum queue size, would cause an
end-to-end latency not exceeding 15 minutes.

Component A accepts all inputs until the queue in component B reaches approximately
25% of the SLA-defined maximum level. At that point component A attempts to drop
a percentage of inputs (reflecting relative maximum queue size) for as long as the queue
exceeds the limit and not less than the next 4 data points. If the intensity of arrival
increases, so does the queue size and so does the percentage of dropped inputs.

This way,

• queue saturation is kept below 25%, enforcing a tolerable latency instead of the
maximum allowable one hour when the demand exceeds supply

• when the sustained uptake in inputs is caused by one or a small group of offending
sources, they pay the biggest price in terms of number of dropped items

• when the speed of processing by component C changes, max queue size changes its
size but the SLA-defined values of one hour and fifteen minutes remain the same

Automated Deployment and Rollback
Traditionally, new software rollouts have required constant attention to ensure timely
rollback in case things go awry. However, in agile environments that adopt a continuous

Automated Deployment and Rollback | 105

integration model or in ones with an aggressive deployment schedule, attempting every
single rollout with the low possibility of failure by a human operator becomes too costly.
The solution is to push out all recent builds automatically. But what if a small, incre‐
mental change introduces a critical fault, capable of bringing down the entire system?

To the rescue comes monitoring-enhanced automated rollback.

The rollout is divided into two phases that are carried out consecutively. First, a fraction
of hosts is separated from the total and used for initial sample deployment of the new
software version. The metrics on the remainder of the fleet serve as a baseline for com‐
parison. Performance and availability are measured on both groups of hosts, typically
by comparing response times and error rates as well as key user metrics. If performance
levels on freshly deployed hosts do not reveal any worrisome signs, a staggered deploy‐
ment to the remainder of the fleet follows. Otherwise, an automated rollback is initiated
to minimize any possible negative impact, the deployment pipeline stops, and the issue
is brought to the operator’s attention. The verification may be repeated during the full
rollout and after its completion. If the outcome of the deployment is critical, the system
immediately reverts to the latest stable version.

The process is modeled on a finite state machine shown in Figure 5-6. In the illustration,
the metrics are consulted twice: first after sample rollout and then after completion of
all hosts.

Figure 5-6. A model of monitoring-enhanced continuous rollout workflow

While the idea behind the process is a simple one, its practical implementation has a
couple of caveats:

• The performance comparison must take into account the existence of warm-up
effects on the servers getting back into service, and disregard them.

• On occasions, false rollbacks may result from unrelated production issues which
trick the process into thinking that deployment was at fault.

106 | Chapter 5: Monitoring in System Automation

• Sometimes minimal levels of degradation not impacting the users at all may be the
reason for pipeline stoppage.

These are all special cases of false positives. Their existence is typically realized early in
the process and dealt with accordingly by threshold tuning.

This enhancement of the process connects the best of both worlds: it does not necessitate
the operators to be present at all times during numerous software rollouts, while at the
same time it keeps any possible negative impact to an absolute minimum.

Automated Deployment and Rollback | 107

CHAPTER 6

The Work Environment

Humans follow incentives, get easily distracted, and are forgetful. Systems keep evolving.
Remember this whenever a human operator is expected to become an integral part of
an operational process. Some fundamental problems related to monitoring and alerting
are due to making false assumptions about human nature; others are due to putting
insufficient weight on the importance of change. In general, the problem stems from
the perception of how things ought to be, rather than how they actually are. The system
is dynamic, many parts are movable, and it’s only predictable to a certain degree. The
people who designed it are most often not the ones in charge of 24/7 operations. For
that reason, the work environment should foster a flexible culture, one that assists in
the progress of adaptability and encourages growth.

Keeping an Audit Trail
Responding to alerts means dealing with uncertainty. Even in mature IT organizations
outages resulting from changes made by operators, such as new software rollouts, con‐
figuration updates, and infrastructure upgrades account for more than 50% of all out‐
ages. Keeping an audit trail and consulting it during early outage indications can, there‐
fore, reduce the initial uncertainty in every second case, giving the troubleshooter a
massive advantage.

An accurate and complete audit trail does not necessarily have to come at a cost of high
manual overhead. It can be greatly automated with the help of a publish-subscribe style
messaging system, with elements of the infrastructure automatically publishing updates
for routine tasks, such as deployments and upgrades. If the idea isn’t clear, think of
GitHub’s activity feeds. Such a model works best for big organizations running their
systems in Service Oriented Architecture (SOA). Any single team in charge of service
could subscribe to an audit trail feed of upstream services, so that any upstream changes
are easily identifiable on a timeline.

109

Working with Tickets
Most operation teams at any given time designate an on-duty operator (the On-call)
whose job it is to respond to incoming alerts and manage the ticket queue. The theory
states that on a typical day the On-call comes in to work, opens the ticket queue, and
iterates through the list of tickets in descending order of severity. However, the work is
prone to interruptions. When a new issue of high enough severity arrives in the queue,
the On-call is expected to drop whatever he is working on to deal with the incoming
event.

This theory doesn’t always apply in practice. More typically, the On-call comes in, opens
the queue with a list of all-too-familiar, inactionable tickets and glances over to catch
any new arrivals. When the queue grows big enough, new arriving medium-severity
tickets are not even noticed in the crowd of predecessors and therefore the time of the
initial response goes up.

On occasion the managers notice an unmanageable amount of tickets in the queue and
typically try to deal with the problem by allocating more resources. Here are the three
most common ways in which this is done:

Incentive Schemes
Letting engineers know that the count of tickets they resolve is a measure of their
performance

Allocating a Secondary On-Call
Getting another pair of hands to work on tickets

Occasional Queue Cleanups
Getting an entire team to clean the queue periodically for a day

All of these methods are equally ineffective because they all rely on the same flawed
assumption: that a ticket generated from an alert is a unit of work rather than an indi‐
cation of a problem in the system. In reality, the root of the problem is the impaired
detectability. To solve it, the alerting configuration should be made more effective.

Anomalous events that pose no customer impact should be recorded but they must not
be a reason for waking up operators in the middle of the night only to confirm the
system’s sanity. All alarms that trigger on nonissues should be done away with if there
is no evidence that the resulting alerts are actionable. If this policy is not followed, false
alarms will cause more harm than good. There are only two ways in which one can
respond to nonissue: ignore it or overreact.

In the former case the detrimental effects will be prolonged and difficult to measure.
Initially, the notifications will introduce a mild level of noise; the ticket queue will grow

110 | Chapter 6: The Work Environment

but it will be difficult to pinpoint the reason for this. After a while the operators will get
desensitized to real problems and will stop taking tickets seriously. This is where the ball
gets dropped. If the neglected problem develops into an outage, no one will understand
why the operator had ignored it in the first place.

In the latter case, overreaction, the outcomes can be quite immediate. Let me illustrate
this with an example of alarming on cache evictions in a memcache fleet. A cache evic‐
tion is dropping a relatively old entry from the cache in view of a memory shortage to
make some space for more frequent entries. Cache evictions are not by themselves an
indicative of a problem or degraded performance. Let’s assume that a high-priority ticket
is created when cache evictions are detected. An ambitious operator might at first try
to look for the root cause, but failing to find anything obvious he decides to at least put
the alarm out of alert state by restarting the memcache fleet. Now the cache is empty
and needs to regenerate itself. In the process the web server fleet must work much harder
because it is not being relieved by the caching layer, introducing strain and putting the
system at unnecessary risk.

Root Cause Analysis
The term root cause tends to be interpreted differently by everyone, which leads to
numerous breakdowns in communication. This issue can be clearly identified in the
process of assigning a root cause at ticket resolution time. The outcome depends on the
point of view of the person resolving the ticket. Let me explain the confusion with this
vague example: If an operator aims at rebooting a subset of hosts in sequence but mis‐
takenly manages to reboot the entire fleet at once, is this an operator error, misallocation
of responsibilities, lack of fine-grained tools, bad ACLs, or a problem with the process?
With each interpretation, the blame is pointed at someone else. In effect, it depends on
who gets asked the question. That subjective approach is not very constructive but there
are ways to avoid falling into this trap.

Root Cause Analyses (RCA) are carried out to determine the reasons that major events
cause detrimental effects on the production environment. The main goal of RCA is to
establish the real reason behind the fault in order to take an informed corrective action
and prevent future recurrences. Effective RCAs must have two objectives in mind: they
must be carried out with sufficient depth and they must not focus on personal assign‐
ment of blame. When executed to find the answers rather than a scapegoat, it quickly
becomes apparent that the situation was a lot more complex than we initially believed
and that the problem could have possibly been prevented at many levels with varying
degree of effort.

Working with Tickets | 111

The Five Whys

A practical RCA can be carried out via the Five Whys method. The method was devel‐
oped by Sakichi Toyoda, the founder of Toyota Industries Co., and later used extensively
at Toyota Motor Corporation as an efficient problem-solving tool and one of the core
concepts in the Toyota production system.

The method also finds its application in carrying out analyses of system failures. It
provides a practical approach to discovering causal relationships of events at several
levels and draws a clear distinction between technical difficulties, the situational cir‐
cumstances that led to them, and deficiencies in planning and resource allocation.

The method instructs us to ask approximately five consecutive, related “Why?” ques‐
tions about the event, starting with the symptoms. Table 6-1 illustrates the question
chain with a generalized example.

Table 6-1. Generalized Example of a Five Whys Analysis

“Why” Question Answer

Why were the symptoms observed? Because of an immediate cause.

Why did the immediate cause occur? Because of an exceptional condition.

Why did the exceptional condition arise? Because of a special circumstance.

Why was the special circumstance not handled properly or in time? Due to insufficient X or excessive Y.

Why was there a lack of X or too much Y? …

The first two questions focus on immediate technical cause and its source, the third
“why” tries to find out more about the circumstances that led to the problem, and the
last two questions focus on organizational inefficiencies and misallocations and their
origin. It’s worth noting that the answers further down in the chain become more sub‐
jective and open to interpretation. They serve well as conclusions, but may not neces‐
sarily be accurate.

The Five Whys method provides only an abstract skeleton for a causal chain of events.
In order to get to the bottom of issues, assumptions and deductive logic will not suffice.
A fair share of hands-on log mining and data analysis must take place in the process.
Let’s consider the analysis on a more concrete example:

A batch processing system does not accept new job submissions. Why not? The inspec‐
tion of running jobs shows that a backlog was accumulated. Why the backlog? Perfor‐
mance graphs show reduced processing throughput. Why reduced throughput? Long
delays are observed while processing certain batches. Why only selected batches? These
batches differ in structure and contain attributes not understood by the system. Why
does the system not understand them? The batches were built contrary to technical
specification.

112 | Chapter 6: The Work Environment

Asking five whys uncovered two contributing factors: submission of bad input and in‐
sufficient input validation. Of the two the root cause is the lack of sufficient input val‐
idation—accepting malformed input should never be the reason for an outage. The
corrective action involves implementation of an input validation and rejection mecha‐
nism.

Extracting Categories. A portion of answers to the questions in the Five Whys analysis

may be used to form a list of root cause classifying categories. Highly specific classifiers
are not very useful as there are too many of them and they get outdated too fast. On the
other hand, a classifier that’s too open-ended does not convey meaningful information
for the purposes of reporting. Well formulated categories come as a result of generalized
answers to the centermost of the five asked questions.

The following list of suspected causes was compiled through Five Why analysis from a
sample of tickets. The resulting twelve categories are divided into three main groups:
technical errors, monitoring problems used for measuring precision and recall, and
other, unidentified faults. The categories describe specific shortcomings; they do not
include coinciding events and contributing factors, such as content updates or specific
maintenance work that may have led to the problem.

Software Error
Problems as a direct consequence of software flaws. The category includes software
bugs, architectural limitations, and gross inefficiencies leading to perceivable im‐
pact to be eliminated through the rollout of patched versions.

Misconfiguration
Faults originating from suboptimal or incorrect system settings.

Hardware Error
Physical faults with a visible effect on the system’s operation.

Network Error
Diminished performance traceable to deterioration of the underlying network link.

Data Corruption
Faults incurred in the process of transmission, storage or extraction of data.

Operator Error
Faults that arise as a consequence of mishandling the system through the use of
operator privileges. Operator errors come from negligence, inexperience, and the
lack of a deep understanding of the system. They occur during migrations, host
upgrades, and cruft cleanups, typically due to overaggressive deactivation of parts
of the system or lack of adequate preparation.

Working with Tickets | 113

Capacity Limit
Issues resulting from running a system for which workload exceeds capacity in
normal operation. This category excludes capacity exhaustion caused by operator
errors or critical software bugs leading to saturation of computational resources.

Dependency Error
Faults generated by downstream services on which the system depends. Example
dependencies include databases, external workflow engines, and cloud services.
When dependencies experience downtime they may impair the dependent system’s
functionality.

False Alarm
Tickets that come as a result of oversensitive monitoring and bugs in monitoring
applications. The incidence of false alarms should be reduced to avoid noise.

Duplicate Ticket
Multiple tickets informing about the same issue that come as a result of insufficient
aggregation. Only the first ticket in the group should be considered as a valid alert.
The remainder introduces noise and should be discarded as duplicates. Their inci‐
dence should be reduced to avoid desensitization in operators.

Insufficient Monitoring
Tickets created manually as a result of deficiencies in monitoring. This category
applies when a lack of relevant metrics and alerting configuration allows a pre‐
ventable problem to go unnoticed and develop into a critical issue.

Unknown/Other
Unidentified or unclassified group of problems. It is often feared that the “Other”
category serves as a dumping ground for neglectful investigators and it is often
decided to remove the “Other” classifier. This approach increases operator effort
and reduces the accuracy of classification. When the number of items classified as
“Other” grows out of proportion, it is a sign that the classification process may be
flawed.

Dealing with Anomalies
In large-scale system operation failure is a norm. Transient errors often occur very
briefly, sometimes in spikes at unpredictable intervals. Low percentage errors occur
continuously during normal system operation and constitute a tiny percentage of failed
events (not more than 0.1%) in context of the all successful events.

Both types of errors will crop up at large scale and are seen as potential threats to avail‐
ability levels agreed in the SLAs. This belief is not unjustified, but it is important to keep

114 | Chapter 6: The Work Environment

a healthy sense of proportion as the real threat to availability comes from long lasting
outages and not occasional errors. Despite that fact, there is a tendency for more human
effort to be invested in root cause analysis of petty issues than prevention of potentially
disastrous outages.

Having said that, low percentage errors are by no means unimportant. They do happen
for a reason and often are an early indication of hitting resource limits. This is not
necessarily a bad thing—it might just mean that your fleet is not overscaled and that
you get optimal value for money! As long as the errors stay at negligible levels, there
might be other, more urgent things to worry about.

Learning from Outages
When high-visibility, unplanned outages hit the system they should be dealt with ac‐
cordingly—a quick response followed by root cause investigation. The root cause is used
to drive the corrective action, such as implementation of a safety trigger or rearrange‐
ment of components to limit performance bottlenecks.

But the failure could be embraced even further. There is a wealth of information in
outages since what we imagine the system to be is not necessarily what’s really out there.
Outages driven by extreme conditions often uncover unexpected behaviors of subsys‐
tems and components. Only a fraction of them might be relevant to current issue res‐
olution, but the remainder may be an indication of weak spots where they are least
expected. There is a strong case for observing failure beyond the root cause, paying
special attention to recoverability and resilience of all subsystems and their components.

Using Checklists
Checklists are an extremely useful device for reducing human error. They strengthen
consistency in following procedures and shorten the time otherwise spent on creating
improvised solutions. They are particularly suitable for dealing with high severity events.
Many of us experience temporary amnesia and panic states in the initial period of getting
under pressure. Opening an event response with a checklist is a great way to deal with
this.

Well conceived checklists must have a few characteristics:

• They must be used for nontrivial tasks that bear a degree of responsibility.

• They must be designed to check for essentials.

• They must be short.

If the above conditions are not met then some or all of the team will not follow the
checklist. This defeats the whole purpose.

Learning from Outages | 115

Checklists may have a detrimental effect if used inappropriately. Let me name as an
example a daily checklist to rule out all faults experienced historically.

Going through a long list of past problems to verify their absence is a boring and frus‐
trating task. It is carried out more reliably by system alarms. A quick peek into the ticket
queue combined with a dashboard glance-over should yield the same, if not better,
results. If it doesn’t, then either the dashboard or the alarm configuration needs to be
improved.

Some things are easier to put into existence than to remove, and check‐
list items definitely belong to this category. For a checklist to be effective,
their items must be meaningful and there must be very few of them.

Creating Dashboards
Dashboards are a collection of top-level performance indicators, all gathered in the same
place to serve as a central point of reference. They are great tools for conveying the
essentials of state information in real time. Dashboards are created by system admin‐
istrators soon after they identify a set of higher-order performance metrics. Frequent,
proactive examination of these metrics is essential and helps operators and adminis‐
trators to stay on top of things.

Creating dashboards is the art of communicating a lot with little. Good dashboards start
with high-level overview, assisted by succinct explanation, and allow an operator to click
through to ever finer levels of detail. They use browser’s real estate wisely. Poor dash‐
boards present the viewer with information overload and the data is not organized
systematically.

Dashboards are created to give an overview of the system but they are sometimes used
for watching in anticipation of a problem. That’s fine as long as observing timeseries
isn’t someone’s full time job. Allocating people solely for following data point fluctua‐
tions is considered a rewarding job only by very few. Even though our brains are superior
pattern matching engines, expecting humans to act as an alerting system is inherently
unreliable. It makes more sense to invest the time into creating a sophisticated moni‐
toring system.

Service-Level Agreements
SLAs pose a baselining danger. If a team is facing SLAs that can’t be met for purely
technical reasons, there are exactly two things that can happen: the team may use un‐

116 | Chapter 6: The Work Environment

realistic SLA as the baseline for monitoring or ignore it and use the system’s real baseline,
calculated on current availability and performance figures. The former solution has a
more detrimental effect on meeting the SLA due to the amount of false positives it
generates, yet the latter solution is almost never adopted, at least not initially.

Here is why false positives exacerbate the problem: Suppose an alarm was created with
the threshold reflecting an SLA that cannot be met. As a result the alarm constantly goes
in and out of alert. Suppose this happens a couple of times a day. Being used to frequent
alerts, the operators stop investigating the source of the problem and leave the ticket
alone (they are “maturing the ticket”). Once the SLA levels are back to normal the op‐
erator closes it off. All is well until a real issue is reported and the operator ignores it, as
the problem is assumed to be self-recoverable. The service levels deteriorate even further,
subjecting users to an even poorer experience. Tickets that are ever-present in the queue
will desensitize operators.

Unrealistic SLAs can be avoided. Inviting a senior member of the tech‐
nical team to service contract negotiation meetings is always a good
idea.

Preventing the Ironies of Automation
With time, increasingly more manual processes become automated. The operators,
while still tasked with supervision of the system, will be less and less in touch with system
internals. The skill deteriorates when not used. These ironies of automation can be
countered, but the process requires conscious cultural effort:

1. Seek simplicity. Complexity breeds confusion and leads to errors. Simplicity goes
hand in hand with consistency. Minimizing confusion and having everyone on the
same page expedites recovery.

2. Automate. You will save time, reduce costs, improve reliability, and have a lot of fun
while doing it.

3. Monitor extensively. Record every relevant piece of information, know where it
came from, and be able to pull it up at any time.

4. Keep SOPs short. De-automation of one end defeats the purpose of automation on
the other. The longer your SOP, the higher the likelihood of error.

5. Encourage learning. Operators are hired for quick and effective response. Some
develop strong intuition, but even intuition must be backed by experience, and
frankly, it’s not enough. Operators must know what they are doing. It makes sense
to give up some productivity in favor of a deepening understanding of the system.

Preventing the Ironies of Automation | 117

Culture
The human element plays the crucial role in the process. As a result, effective monitoring
depends heavily on the right culture of the organization. A strong culture is hard to
define in absolute terms but certain characteristics are universal. Successful cultures that
drive effectiveness will encourage consistency, trust in technology, and a healthy sense
of proportion. Ineffective cultures will do the opposite. In particular

• Assigning a high degree of personal responsibility to boring tasks will sooner or
later result in negligence

• Allowing for multi-step manual procedures guarantees that some of the steps will
be missed for a portion of the time

• Punishing everyone for one person’s mistake with added bureaucracy introduces
unnecessary overhead

In all of the above, the problem exists in the process, not in the operator. Processes can
be improved by review, streamlining, and automation. Realizing that yet still keeping
the human operator in the picture helps to drive a healthy culture: one that nudges even
the wrong people to do the right thing and turns problems into solutions instead of
blame.

118 | Chapter 6: The Work Environment

CHAPTER 7

Measuring Success

One can recognize the quality of collaboration by how success is measured. The task of
fostering the culture rests mainly with managers. The onus of maintaining a top-notch
configuration and event response is on operators. Measuring success, however, is a col‐
laborative effort, one requiring a fair amount of common sense and resisting the urge
to positively exaggerate results. Effective alerting configurations are hard to build and
even harder to measure. This chapter deals with measuring qualitative changes with
quantitative means.

Managers and the employees, here typically systems engineers, work towards common
goals but some of their priorities may vary. Engineers like getting things done; managers
like when things get done. In other words, engineers focus on problem solving while
managers put emphasis on efficiency of execution and reporting. The two priorities are
not conflicting as long as a healthy balance is maintained. If it is not the case, reporting
can become burdensome.

The problem is real: the more time spent by engineers on accounting, the less of it goes
into doing actual work. But it’s not just about overhead. When people see no value in
accounting (and if you hire smart people, as most IT businesses do, they most likely
have valid reasons for it) they might still carry out the tasks you ask but are more likely
to do it neglectfully. Ironically, inaccurate accounting makes it harder to reliably identify
pain points, which, when resolved, could free up engineers to work on more exciting
stuff.

For these reasons measuring quality must not be effortful, otherwise quality assessment
will come at a very high cost and with dubious credibility. Fortunately, it is possible to
draw reliable conclusions about the nature of issues and the workload required to deal
with them from basic classification and a set of timing metrics.

119

The Feedback Loop
Mature organizations run full-featured monitoring systems with an ability to display
metrics and send alerts. Monitoring systems are complemented by issue tracking sys‐
tems, specialized databases where alerts are stored in the form of tickets (Figure 7-1).

Figure 7-1. The monitoring feedback loop

A ticket contains information about a specific problem and a set of meaningful prop‐
erties, such as the source of the problem, its severity, time of the notification, time taken
to respond and resolve the issue, and finally, the suspected root cause. Accumulated over
time, tickets are a great source of feedback about the types of experienced problems,
time spent on resolving them, and certain aspects of the quality of work.

In essence, tickets are a rich source of information and a baseline for further improve‐
ments. In the remainder of this chapter I will assume that every alert results in a ticket
and will use the term ticket and alert interchangeably.

Root Cause Classification
Tickets can be divided into those generated automatically by alarms and those filed
manually by humans. All tickets are created for a good reason but only some for a valid
reason. All tickets, irrespective of their validity, should have a proximate cause assigned.

Tickets come as a result of faults originating from a set of finite causes. They can, there‐
fore, be binned into groups by their suspected causing factor. The process of classifica‐
tion is simple: at the time of resolution, the operator assigns to the ticket its most
appropriate proximate cause from a drop-down menu or via tagging functionality. The
suspected cause does not have to be unconditionally correct; it is enough if the suspicion
is strongly founded.

120 | Chapter 7: Measuring Success

The resulting classification serves as a source of wisdom as to what the perceived major
pain point is. Reported data can be used for the simplest form of analysis where the
output is interpreted in terms of relative proportions.

A Short Story of a Long Classifier List

One of the operations teams I worked for maintained a list of close to one hundred
problem category bins. This number was fluctuating with a strong tendency to increase.
The list included tens of entries with very specific historical root causes (such as “X of
Y failed due to Z”), that were unlikely to ever appear again after upgrades. At one point
the categories became so abundant that one ticket could have fit into several categories
depending on the interpretation, though only one category was allowed. Consequently,
each ticket ended up being assigned to the first matching category found either from
the top or from the bottom of the list and rarely from the middle. With time, the “Other
—Unknown” category, easily accessible as the last one on the list, gained popularity as
it required virtually no cognitive effort to classify a ticket that way. When this fact came
to light, we decided to abandon the generic category to prevent its “abuse.”

Ironically, despite maintaining the culture of problem classification for each ticket, no
one seemed to look at the resulting reports, at least not conclusively.

One particular recurring issue with degraded quality of output, later definitively iden‐
tified to be a timing problem, had been classified with fifteen separate root cause tags
including local data corruption, hardware failure, a software bug, managing system
being out of sync, and even database outage.

It seems that in the process of classification we forgot what purpose it was serving: the
identification of major pain points and an estimated portion of time spent on fighting
them. Instead we were gathering counters for specific failure cases with a level consis‐
tency that left a lot to be desired.

I drew two simple lessons from that experience.

1. Human attention is limited and it is practical to keep a list of categories to a rea‐
sonable minimum.

Think of a number of slices you’d like to see on a pie chart. It is impractical to have
too many categories. If they get too abundant you will have to account for the
unintended negligence of the person responsible for classification, increased error
rate, and lack of suitability for later analysis.

2. Generic categories are universal and better suited for reporting.

There is no point in adding specific failure causes to the category list. They will
probably evolve at the same pace as your system and you might not keep up with

The Feedback Loop | 121

adding and removing them. In this case, it is perfectly OK to aim for accuracy over
granularity: you can break down results to achieve finer granularity at any time,
that is, through in-depth introspection of tickets in the offending category. Cor‐
recting the accuracy of classification would be a much tougher task.

Timing
Tickets contain timing information in the record of their life time. These are the times
of ticket creation, initial response, successive updates, and resolution. Timing informa‐
tion is recorded without conscious effort and when analyzed on a group of tickets, it
yields an interesting set of observations about delay and recurrence.

The lifetime of a ticket looks roughly as follows: When the ticket is originally created it
takes a certain amount of time to attract resolvers attention. Initial response time typi‐
cally depends on the severity with which the ticket arrives as dictated by an internal
SLA. The ticket then is being worked on by one or more resolvers. The work is typically
carried out in multiple steps, and progress is noted through successive updates. Having
verified applied fixes, the ticket gets closed off.

Timing information gathered in the process can be used to form conclusions based on
a set of observations:

initial response delay (IRD)
IRD = initial ticket update – ticket creation date

ticket resolution delay
TRD = resolution time – ticket creation date

time spent resolving (TSR)
TSR = resolution time – initial ticket update

Additionally, ticket creation timestamps can show the cyclic nature of an issue—for
instance, due to regular maintenance—and may be indicative of insufficient capacity,
too aggressive update stagger, or oversensitive monitoring, which the following section
explains in more detail.

Ticket Reporting
While monitoring helps in detection and dealing with urgent issues, reporting on alert‐
ing data focuses on identification of lingering problems which, when untreated, generate
huge amounts of unnecessary effort over time. I like to think of them as a tax imposed
on the team in form of additional labor. When the operational pain is small enough and
distributed equally among team members we all agree to pay it, sometimes forgetting
that it builds up to multiple effort-weeks per year. Ticket reporting allows operators to
identify the pain points and to invest the time in resolving them.

122 | Chapter 7: Measuring Success

Frequency of Incidence
The ticket database can be used to report on relative frequency of incidence. The report
is based on classification of tickets according to characteristics of the researched fault,
such as the symptoms (the ticket’s subject), suspected root cause, or severity. The data
can be presented in a pie chart that illustrates relative proportions, as depicted on
Figure 7-2. The figure illustrates dependency and software errors and reaching capacity
as the biggest pain points. This type of visual introspection gives an idea of where the
operational effort is spent and facilitates making decisions about resource allocation.

Figure 7-2. Relative incidence of tickets per root cause

Incidence Times
To illustrate the idea with an example, suppose a system is updated daily with a database
of users. The update procedure happens twice a day at a 12h interval and takes 0.5h to
complete. The maintenance is performed on a fleet of 12 hosts, and involves taking the
updated host out of service. Shutting down the entire fleet for a full hour is an unac‐
ceptable loss of availability; the team therefore decides to trade off a smaller percentage
of reduction in capacity for a larger portion of time during which the staggered upgrade
is performed. The questions are: how much can the capacity be reduced, for how long,

Ticket Reporting | 123

and at what times of the day to minimize the impact? If the system utilization has peaks
and troughs, performing updates during peak guarantees that most users will be affected
by it and is therefore costly. Reducing capacity too low puts the system at risk of avail‐
ability loss. Increasing stagger times extends the duration of maintenance and therefore
the system is at risk for a longer period of time. Inadequate selection of these trade-offs
leads to an increased number of tickets at specific times of the day. This implies either
one of two undesirable things: hitting capacity limits or oversensitive monitoring.

A histogram of the frequency of incoming tickets per hour may reveal patterns of in‐
creased alarms. Where increase in ticket incidence overlaps with peak time one is most
likely dealing with hitting capacity bottlenecks. Figure 7-3 shows two periods of in‐
creased ticket incidence: 8 AM and midnight. High ticket incidence during trough pe‐
riods might hint at tickets caused by regular maintenance. Interestingly, processes that
get kicked off from cronjob tend to manifest themselves at midnight.

Figure 7-3. Hourly incidence of tickets

Time to Respond and Time to Resolution
It is fair to assume that easy tickets are picked out from the queue first. With that in
mind, looking at initial response times (IRD) is likely to reveal areas of knowledge de‐
ficiency and the need for more training.

Changes in average time spent resolving a ticket (TSR, measured as the difference in
time of initial response and time of resolution) points to ticket groups that are largely
inactionable. Tickets that are worked on actively take considerably less time to resolve
than those which are put away for “maturing” (when the symptoms are waited out).
Figure 7-4 shows the causes of the slowest five groups of tickets and the interquartile
mean of their TSR.

124 | Chapter 7: Measuring Success

Figure 7-4. Groups of tickets with slowest resolution times

Measuring Detectability

False Positives and False Negatives
A false positive happens when an alarm goes off on a nonissue, an event having no or
negligible user impact. A false negative, on the other hand, happens when a legitimate
fault does not trigger an alert and goes unnoticed. Effective alerting aims at reducing
the incidence of both phenomena.

Conversely, a true positive is a correctly detected alertable event and a true negative
refers to no alarm when in fact none was necessary. See Figure 7-5.

Figure 7-5. Detectability

Therefore, alertable issues are the sum of true positives (tickets created for correctly
identified issues) and false negatives (situations in which a ticket has not been generated
due to insufficient alarm sensitivity or coverage). The sum of generated tickets, on the
other hand, includes true and false positives (Table 7-1).

Measuring Detectability | 125

Table 7-1. Contingency Table of Type I and Type II Errors

 alertable issue non-issue

alarmed on true positive false positive

ignored false negative true negative

The implications of false negatives are obvious to everyone: the issues slip under the
radar. This is never good, especially when the problem remains undetected for an ex‐
tended period of time and long enough to be discovered by the users. Finding out about
problems from customers is not a place any of us wants to be.

False positives, on the other hand, result from oversensitive threshold values. Some
might view the problem only in terms of resource overallocation, thinking that there is
no immediate harm in keeping the technical staff just a little busier by responding to
events more frequently. But that is incorrect: eventually oversensitivity of alerting leads
to desensitization in humans: if 50% of alerts are false alarms, a new event will have less
than 50% chance of being taken seriously. If most alerts are false alarms then when the
real issue finally comes up it is almost guaranteed to be incorrectly rejected on an as‐
sumption that the alarm is false.

False alarms come in two flavors: false positives and monitoring software errors trig‐
gered by software bugs and errors in metric collection. In other words, false alarms are
a superset of false positives. Reduction monitoring software bugs is outside the scope
of this discussion, but it should be mentioned that false alarms resulting from them drive
down precision of the decision in the same way as false positives.

Precision and Recall
Precision is a ratio of true positives to the sum of true and false positives. In the current
context, it’s a ratio of tickets generated for a valid reason to the total of all created tickets.

Calculation of precision relies on the root cause classification discussed in the previous
section: the number of true positives can be interpreted as the count of all created tickets
less those to which “false alarm” classification has been assigned. To restate that in the
form of an equation

precision = (all tickets - false alarm tickets) / all tickets

Recall is the ratio of tickets created for a valid reason to the number of alertable issues.

There exists a problem in an exact definition of “alertable.” The exact meaning depends
on the policy of the organization—what events are considered impactful. It is hard to
precisely estimate the number of alertable issues that slipped under the radar, but their

126 | Chapter 7: Measuring Success

number corresponds to the number of tickets manually created by users. Naturally, it is
not a 1:1 relationship, as some user issues may result from lack of understanding rather
than system malfunction, but on the other hand not all alertable issues are reported. At
any rate, higher recall does correspond to fewer external reports of system malfunction.

recall = (all tickets - false alarm tickets) / (all tickets - false alarm tickets + user tick-
ets)

Both measures are relatively hard to acquire because their calculation relies on human
input. In the case of precision, a human operator must identify the incoming ticket as
false. Recall relies on the interaction with users or operators and their ability to report
undetected problems.

If everyone is on the same page when it comes to handling tickets—great! If not, then
the values of precision and recall will carry proportionately less meaning.

The F-Measure
With precision and recall defined, it’s time for F-measure—a weighted, harmonic mean
of precision and recall. As a score combining the two qualitative factors, the F-measure
serves as the universal indicator for effectiveness of alerting configurations. In its most
generic form, it is calculated as follows:

F = 2 * (precision * recall) / (precision + recall)

The resulting F score reflects the quality of the current alerting configuration. It is a
good idea to track it, along with precision and recall, on a monthly basis and watch all
three of them respond to improvements as these get implemented (see Figure 7-6).

Transition to Automated Alarms
If, encouraged by Chapter 4, you decide to switch over to automatic generation of alert‐
ing configuration then in addition to evidencing qualitative improvements in monitor‐
ing with precision and recall metrics, I recommend juxtaposing the effectiveness of the
legacy and the new solution during the switch-over process. Given that the transition
process will happen gradually, there are four things that you should keep track of on a
weekly or monthly basis:

1. Percentage of alarms migrated to the managed solution

2. Amount of tickets submitted by humans

Transition to Automated Alarms | 127

Figure 7-6. Progressive improvement in quality of alerting configuration

3. Amount of tickets generated by legacy alarms

4. Amount of tickets generated by your managed solution

Figure 4-5 shows an example result of such transition.

Maintenance Overhead
Monitoring and alerting are a means and not an end for vast majority of organizations.
At the same time they are critical to system operation—monitoring is your eye into the
system, and when you wish to look away alerting becomes the ear. As much as we would
like for those two pieces of instrumentation to always function and never break, in reality
they do require maintenance. Downtime of the monitoring system does not translate
directly to downtime that impacts the user, but it does put the rest of the system at risk.
It does, therefore, make sense to keep track of yearly failure count and cumulative
downtime of the monitoring system.

The work with monitoring should boil down to altering the configuration metadata to
reflect the desired state, and no further manual work (writing custom scripts to setup

128 | Chapter 7: Measuring Success

or clean up alarms) should be necessary. If it is, then the number of engineer-hours spent
on dealing with setting up alarms manually might add up to weeks per year. Automation
through managed alerting configurations solves this problem; it might be a good idea
to invest the time in implementing it to avoid paying this unnecessary tax.

How (Not) to Measure
It is too easy to use trivial indicators like number of alerts received, tickets resolved,
alarms, or metrics existing in the system. While these numbers might convey some
information, mostly about scale, they do not tell the story and are not very useful without
context. As tempting as it seems to measure accuracy of alerting by the number of alerts
generated, it’s not the way to do it—the F-measure is a more reliable score.

The really interesting questions have a qualitative nature and are more difficult to track:

• What is the quality of our work (e.g., with tickets)?

• Do we learn in the process?

• How many alerts were actually necessary? Have we missed many issues? How many?
How serious?

• What is the total cost of ownership (TCO) for maintaining the current monitoring
configuration? What is their penetration rate of metrics? Do we look at and make
use of our data?

Coming up with meaningful answers involves interpretation of numbers, not just their
mere presentation. The following questions might point you in the right direction:

• Context—How have we been doing historically? Are we doing better or worse than
others? Where are we heading?

• Validity—Is there a way to verify findings? Are the drawn conclusions relevant?

• Reproducibility—Can the findings be reproduced? Can I rerun the procedure next
week or month for comparison?

How (Not) to Measure | 129

CHAPTER 8

The Principles

I would like to close this book with a few principles that I consider fundamental for
effective work with monitoring and alerting. I put them at the end as a summary of the
message I’m trying to send. If I were to boil these principles down to a just a few sentences,
they would read as follows.

Get in the Habit of Measuring
Monitoring is about detecting state changes from fluctuating timeseries or, more gen‐
erally, about extracting meaning from the data in real time. The first step on the way to
systematic discovery of useful information is to make a habit of measuring relevant
information.

Collect the data starting with important metrics. Focus on top-level performance indi‐
cators and keep adding related ones as necessary. Try to understand the relationships
between subsystems and their components. Do strong relationships exist? Are they in‐
variant? Are they of linear or exponential nature? Do they have a confounding factor?

Secondly, it is very important to look at the gathered data. Too often the measurements
are never analyzed. It’s okay not to look at all the generated metrics—you want these to
be there for you just in case. If, however, data collection involves human effort then not
looking at the outcome renders data collection pointless.

Then, discern signal and discard noise. Not all data will be rich enough for extraction
of relevant information at the cost you’re willing to pay, but be careful not to disregard
information-rich outliers. In many cases, it’s the extreme measurements that tell the
interesting story.

131

Draw Conclusions Reliably
The data at hand isn’t always what we expect it to be. You might wish to have gotten a
different result than what it really was. It is important to learn and recognize that feeling
when it arises. Do not indulge it, just accept the reality—the system as perceived is not
the system as found.

System engineers can develop a strong sense of intuition about system’s operation. It’s a
useful thing to have, but the process takes time and nothing compares to strong evidence.
Use your gut feeling only when looking for concrete answers is unfeasible.

That is not to say that making assumptions is inappropriate—most of the time it’s nec‐
essary as it will help you save a lot of precious time. However, the more data points to
support the assumption, the more reliable it will be.

Monitor Extensively
Make the monitoring platform your sharpest tool. Collect metrics from all components
of your application stack, ranging from network to user experience.

Make sure you’re able to drill down from highest level metrics right down to those of
finest granularity. Correlate them and develop a sense of which two timeseries belong
on a plot together. Be fluent in reading them—see the picture beyond the timeseries
plot. Know what type of metric you’re dealing with and how it was measured.

Every time you’re hit by an outage, take a snapshot of the system’s metrics and analyze
them offline. Were early indicators present? Did some components behave unexpect‐
edly? How did they recover?

Alarm Selectively
Alarm only on things that matter. It only makes sense to send alerts for actionable events.
While any suspicious behavior should be monitored, not all of it is worth the distraction.
If too much noise is generated, you’ll learn too fast to ignore it. I have seen enough cases
where a production issue was downplayed without further investigation based on pre‐
vious experience with false positives.

Make your alerting configurations breathe the data. Where possible, set adjustable
monitor thresholds to raise precision and recall of detectability and save yourself a ton
of maintenance work. Reevaluate them automatically and as often as necessary. Set
severities accordingly—blowing small issues out of proportion affects ability to prioritize
under pressure in a bad way.

132 | Chapter 8: The Principles

Work Smart, Not Hard
In operations, time is a scarce and precious resource. That’s one of the reasons why
keeping attention only on things that matter is key. Here are a few ideas to maintain a
strong operational focus and make it an enjoyable task.

Learn from the Experience of Others
Organizations of different size and scale share their findings in research papers. Reuse
their efforts! There is no need to learn everything from your own mistakes anymore.
The Internet is an immense and expanding body of knowledge. Relevance of informa‐
tion is a much bigger problem than access to it. The perfect place to start is the white‐
paper “On Designing & Deploying Internet-Scale Services” by James R. Hamilton. I
consider it is the single most concise guide for application designers and ops teams. It
encapsulates years of relevant experience in just over twelve pages of text. I guarantee
that if you read it you’ll be surprised how much of it is relevant to your current situation.

Have a Tactic
During daily operations things will happen that you’re unprepared for. There will be no
time to think and no place to hide. With the pressure on, you might experience mental
blackouts. There is no good reason not to have a troubleshooting tactic at hand, just in
case.

Event response is a process of answering two fundamental questions: a) what broke? b)
how to fix it? Naturally, the answer to them is made up of many smaller questions. With
the right questions asked in proper order the mitigation process is much faster and
makes you stay in the saddle. Here is a sample troubleshooting tactic to illustrate the
idea:

1. Think timeline.

What time exactly at has the event started? Has it occurred suddenly, or were there
earlier indicatives?

2. Scope out the problem.

What portion of the system is affected? Is there user impact?

3. Look into the audit log.

What might have caused it? What events were happening just before and at the start
of the problem?

4. Tick off emergency checklist.

Work Smart, Not Hard | 133

• If more people take part in the recovery, have their roles been assigned?

• Is the problem external or internal? If internal, is it up- or downstream from your
system?

• Should others be notified? Who?

5. Work towards problem resolution.

While researching the problem, keep an open mind, but look at the facts.

6. Carry out corrective action.

7. Monitor for recovery.

In communication with your peers:

• Do not introduce information overhead. Resist the urge to contribute the irrelevant.

• Always back your argumentation with evidence.

• Avoid chasing red herrings.

• Use intuition only when necessary.

Run a Bank of Cases
When investigating sources of suspicious fluctuations in timeseries, keep a record of
your findings and try to use it in subsequent investigations. With time, a list of usual
suspects will be established and following it during investigations in order of descending
likelihood of occurrence will save much time and effort.

Typically a wiki-based content management system is used for recording instructions
on how to deal with tickets. Unfortunately, maintenance of articles requires effort and
does not always work well in practice. The articles become outdated very quickly and
are hardly ever removed, resulting in a burden of documentation.

The problem can be solved when the needs are addressed directly, and what you need
is a mapping of symptoms to potential causes. It would be even better if relative prob‐
ability of symptom-to-cause could be established. It can! With no effort.

Make use of reporting capabilities of your ticketing system, specifically reports on root
cause assignment, as described in Chapter 7.

You can make it happen with no added operational burden, if only your organization
makes a habit of the following:

134 | Chapter 8: The Principles

• The incoming ticket’s summary includes symptoms of the problem, e.g. “Website
response time’s p99 exceeds 3 seconds.”

• The tickets resolved in the past have a suspected root cause assigned to them and
an audit trail of actions points at ways to resolve the problem.

If these two conditions are met, then every time a ticket comes in, the ITS can be searched
by keywords from the incoming ticket’s title. This action should yield a history of similar
tickets resolved in the past. When the result is grouped and sorted by the number of
root cause occurrences, it gives the investigating operator a massive hint as to what the
suspected origin of failure might have been. When the root cause is confirmed, the
operator can reuse mitigative actions carried out by his predecessors. In short, dedu‐
plication of effort.

Enjoy the Process
Busywork takes the joy out of a job; do not let that happen. You will typically find it in
established organizations with entrenched status quo. Busywork will lurk in routine
tasks defined by Standard Operating Procedures (SOP) or daily checklists. It is very
unfortunate that these things are easier to create for no good reason than they are to
eliminate them for a valid one.

Always try to make a strong case to phase out mundane tasks that have no value. Phase
them out through automation and process improvements.

Most anomalies observed during system operation might not be worth digging into.
When you are about to begin an investigation, do it with the goal of getting some value
from the findings. If the outcome of the investigation won’t matter at all, maybe it’s better
to invest your attention somewhere else and fry the bigger fish.

While mitigating freshly discovered faults, try to formulate repetitive tasks as repeatable
steps. In this way, the task will be ready to be automated. There really is no point in
keeping processes manual. Automation is fun, drives reliability, and saves you time and
money.

And finally something I only realized now, while working on this book on my own:
smart people who share your passions are the single most important factor in the process
of professional growth. If you’re lucky enough to be surrounded by a team of such tal‐
ented individuals, congratulations! Make the most of it.

Work Smart, Not Hard | 135

APPENDIX A

Setting Up OpenTSDB

OpenTSDB is a distributed timeseries database designed to accommodate the needs of
modern dynamic large-scale environments. It was built with resilience in mind and has
been proven to handle extremely high data loads. OpenTSDB embodies many concepts
described in this book. It implements plotting functionality and has the ability to in‐
terface with alerting solutions, such as Nagios. If you’re looking to build a robust and
scalable monitoring platform, OpenTSDB is the right place to start.

The Software
OpenTSDB was initially developed at StumbleUpon by Benoît Sigoure to address the
issues of cost-effective, long-term metric retention and durability at an extremely large
scale. OpenTSDB’s most distinctive feature is its decentralized nature. The implemen‐
tation rests on top of HBase, a fully distributed, nonrelational database that offers a high
degree of fault-tolerance. OpenTSDB uses that to provide resilience at the same time
not compromising on performance and feature richness.

The code is distributed under GNU Lesser General Public License (LGPL) version 2.1.

Architecture
Figure A-1 illustrates OpenTSDB in its operation. At the core of the solution lies the
Timeseries Daemon (TSD), which assists the clients in storing and retrieving metrics
from the HBase cluster. The two core components are loosely coupled and can be scaled
independently.

Multiple instances of TSDs communicate between three actors: input sources, clients,
and the datastore.

137

Input sources are servers with data collection agents deployed to them. The collectors
gather and report hardware statistics, quantitative data extracted from application logs
as well as SNMP information reported by the network devices and sensors.

The clients are system operators plotting the charts via the HTTP interface, alerting
systems evaluating most recent data points for existence of alertable behavior, and au‐
tomated processes that use monitoring information as input for routine tasks. TSD’s UI
allows for juxtaposing any combination of timeseries at arbitrary temporal granularity
starting with one second. The data points may also be exported over HTTP in clear text
as inputs to alerting engines and for offline analysis. Such fine granularity is unprece‐
dented at the scale that OpenTSDB can support.

Datastore typically refers to an HBase cluster, although the open source community has
reported success with using alternative NoSQL solutions. It should be noted, however,
that at the time of this writing HBase is the only supported datastore.

OpenTSDB’s data collection takes place by pushing data to the datastore, that is, the
sources report data points to TSD instances with put operations. All put operations are
independent in that the reporting servers are not assigned to specific TSDs or the other
way around.

Figure A-1. OpenTSDB Architecture, courtesy of Benoît Sigoure

138 | Appendix A: Setting Up OpenTSDB

Getting OpenTSDB
A single-box installation of OpenTSDB can be completed in 15 minutes. It involves
deploying an HBase instance and populating it with OpenTSDB schema, spinning up
the Timeseries Daemon (TSD), and feeding it with data! OpenTSDB fetches most of its
dependencies at build time except for GNUPlot, Java Development Kit (JDK), and
HBase. These three need to be installed separately.

To bootstrap a single-node HBase instance, visit this website.

Then for the latest OpenTSDB setup instructions, go here.

First Steps
From here on I will assume that you followed the Getting Started guide on the
OpenTSDB project website and have a running instance of HBase. In particular I assume
that you have completed the following:

• Downloaded and successfully built OpenTSDB

• Deployed and started an HBase instance

• Populated HBase with the OpenTSDB schema

To verify whether you’re ready to go, visit your HBase node on port
60030 if you’re running a single node cluster) and check for the existence
of tsdb and tsdb-uid tables under Online Regions. If the page does not
load or the tables aren’t there, consult the logs in your HBase’s installa‐
tion logs/ directory.

Starting TSD
Enter the build/ directory in the root of where OpenTSDB was built. It contains the tsdb

shellscript wrapper which you’ll use for managing the TSD. Launching a TSD instance
requires three mandatory command line options: the TCP port number to use, location
of the web root from which to serve static files, and the request cache directory.

Addition of --auto-metric flag gets TSD to create metric entries in TSDB for you on
the fly. Otherwise, metrics have to be created with tsdb mkmetric subcommand. While
automatic metric creation might not be ideal for a production environment, this very
convenient feature saves a lot of typing while playing with tsdb.

The “staticroot” should already be present in the current directory. Create the cache

directory and start tsdb on port 4242.

First Steps | 139

http://opentsdb.net/setup-hbase.html
http://opentsdb.net/getting-started.html
http://localhost:60030/
http://localhost:60030/

$./tsdb tsd --port=4242 --staticroot=./staticroot --cachedir=/tmp/tsd --

auto-metric

The last line should read “Ready to serve”. Now go here. You should be greeted by TSD’s
HTTP interface. It’s time to upload some data inputs.

Pushing Data
A running TSD instance is meant to receive inputs from data collectors in push mode
(Figure A-2). The collectors connect to TSD and upload data via clear-text protocol with
help of simple put operations. Submitting inputs requires four pieces of information:

Figure A-2. TSD’s HTTP interface

1. The name of a metric that the input should be assigned to

140 | Appendix A: Setting Up OpenTSDB

http://localhost:4242

2. A Unix timestamp at which to assign the value

3. The numeric value

4. One or more tags associated with the input

The template for the put directive is as follows:

put <metric> <timestamp> <value> <tagkey=tagvalue> [<tagkey=tagvalue> …]

Every data input must to be described by at least one tag.

To report a data point simply open a TCP connection to a TSD and supply the data as
follows:

$ echo "put test.metric $(date +%s) 1 order=first" | nc localhost 4242

$ echo "put test.metric $(date +%s) 2 order=second" | nc localhost 4242

$ echo "put test.metric $(date +%s) 3 order=third" | nc localhost 4242

Now, go back to the HTTP interface and in the metric form field enter “test.metric”.
An auto-suggestion helper window should pop up as you type. Leave the tags blank.

Click on the “From” field and when the calendar expands double click the “1m” link.
This will set the start time at two minutes ago. Now, click on the “(now)” hyperlink next
to the “To” field to select the present time as the end time of the observation. At this
point, you should see a plot with three data points.

Okay, now let’s report something more useful. Assuming that System Activity Reporter
(SAR) is installed on your system, telling it to run with 1 second frequency should result
in a fine-grained report of CPU utilization in percentage terms.

$ sar 1

Linux 3.0.0-22-generic (hostname) 14/07/12 _i686_ (2 CPU)

01:18:10 CPU %user %nice %system %iowait %steal %idle

01:18:11 all 18.59 0.00 13.57 2.51 0.00 65.33

01:18:12 all 19.00 0.00 13.00 0.00 0.00 68.00

01:18:13 all 20.81 0.00 11.17 0.00 0.00 68.02

01:18:14 all 17.82 0.00 12.38 0.00 0.00 69.80

…

The following shellscript reads in sar’s output, translates it into TSDB put instructions
and uploads them to TSD.

#!/bin/bash
Ignore sar's header.

First Steps | 141

sar -u 1 | sed -u -e '1,3d' |
while read time cpu usr nice sys io steal idle;
do
 NOW=$(date +%s)

 echo put cpu.util $NOW $usr time=user
 echo put cpu.util $NOW $sys time=system
 echo put cpu.util $NOW $io time=io
 echo put cpu.util $NOW $idle time=idle
 # Report values to standard error.
 echo timestamp:$NOW user:$usr sys:$sys io:$io idle:$idle >&2
done | nc -w 30 localhost 4242

Let it run and pull up the TSD’s HTTP interface in the browser:

1. Enter “cpu.util” in the metric name.

2. Select last ten minutes as start date and now as the end date.

3. The first tag field under the metric name should get populated with “time” key by
now. Enter an asterisk (“*”) in its corresponding value.

4. Select the “Autoreload” checkbox, and set the interval for 5 seconds.

Soon enough the resulting plot should look something like the one in Figure A-3.

Figure A-3. Plot of SAR’s CPU utilization

142 | Appendix A: Setting Up OpenTSDB

Input Tagging
Tagging provides an extremely convenient and flexible mechanism for aggregation by
source of data at many levels. Tags are attributes of data inputs that describe their prop‐
erties and origin. You can think of each tag as an added dimension on your data, with
the help of which OpenTSDB will allow you to slice and dice through the data points at
will.

Let me explain the idea on a simple example: network traffic measurement. On a high
level, network traffic is a flow of bytes encapsulated in packets. Looking closer, each
packet has a source and destination, it represents one or more of the OSI layer protocols,
and it has a direction—it either leaves or enters the network. Consider monitoring traffic
flow in bytes per interval of time. The put operation for each host would look something
like this:

put traffic <time> <value> src=<hostname> subnet=<name> proto=<protocol>

direction=<in|out>

Reported traffic data can now be analyzed as cumulative flow, by protocol, by direction,
and even by specific source host or any combination of these, for example, incoming
HTTP traffic per subnet or outgoing ICMP traffic per host, as illustrated in Figure A-4.

Tag Wildcards

OpenTSDB supports basic wildcarding of tag values. This way, single metric entry may
be plotted in a form of multiple timeseries, the number depending on how many tag
values were reported by the sources.

There are currently two ways in which multiple timeseries can be plotted out of a single
Metric tab. First, you enter the tag key in the lefthand input box next to the “Tag” label
and then in the value input box

• placing an asterisk (“*”) will render timeseries for all possible tag values in that
metric,

• delimiting selected tag values by a pipe sign (“|”) will make TSD render only the
timeseries for selected tag values.

Temporal Aggregation
Short-lived technical blips that cause cascading failures up and down the solution stack
happen in a matter of seconds. OpenTSDB was designed specifically to continuously
monitor large clusters of servers at sufficient granularity, empowering the operators to
detect and evidence problem sources without having to dig into logs just to extract
quantitative information. OpenTSDB records data inputs at one second granularity,
which is much finer than the vast majority of monitoring systems can offer.

First Steps | 143

Figure A-4. 72 hours of TCP/IP traffic at different levels of aggregation

Having said that, OpenTSDB does not lock the user into data point intervals of specific
length. When one second interval is too short to reliably plot the desired effect on a
timeseries, it’s possible to select custom temporal input aggregation. In the UI, this is
referred to as downsampling. To make the data points on the selected metric’s timeseries
less granular, select the “Downsample” checkbox and enter desired interval. The TSD
will divide the timeseries into an evenly spaced time period group, aggregate all data
inputs reported in that duration, and summarize them with a statistic of choice.

Summary Statistics
At the time of writing this, the TSD can condense inputs into data points with a selection
of summary statistics: min and max—the smallest and largest values per interval (p0
and p100), the sum and average of values, and standard deviation. TSD’s UI refers to
summary statistics as aggregators.

144 | Appendix A: Setting Up OpenTSDB

Rate of Change
Rate of change is a series of data points derived from another timeseries by calculating
the difference between two consecutive values from the original series.

Deriving the rate of change is especially useful for counter metrics, which are a special
type of stock metric described in detail by Chapter 2. A rate of change of a counter metric
is a flow-type metric, describing counter increases per interval.

For all other timeseries, rate of change illustrates the velocity of data point values: speed
of their increase or decline, with the latter plotted in negative range. As a result, it usually
makes sense to place the rate of change series on the right y-axis, leaving the left side y-
axis for series ranging in nonnegative values only.

To plot the rate of change in OpenTSDB check the “Rate” box in the metric options
window.

Gathering Data System-Wide
OpenTSDB is accompanied by a light-weight framework for data collection, tcollector.
Its main objective is to gather inputs from local agents on all hosts in the system and
push them to a TSD instance. Using tcollector over trivial, custom-built agents brings
about a number of advantages:

• Occasionally crashing local collectors get restarted.

• Problems in communication with TSDs are handled for you, thus ensuring con‐
tinuity of reported data.

• Repeated inputs get deduplicated to keep the overhead to the minimum.

• Data transfer to TSD is abstracted out so that any future changes to OpenTSDB will
not require local code updates.

When data collection takes place from many machines system-wide, these advantages
become really apparent.

The framework comes with a number of ready-made input collectors that support read-
outs from standard Linux interfaces and software packages, such as /proc pseudo-
filesystem, MySQL instances, and more. For custom data collection agents, tcollector

provides a simple, clean, and consistent interface.

Running tcollector
tcollector is written in Python and comes ready-to-run with a number of standard input
collectors.

To get it, check out the latest version from the official repository:

Gathering Data System-Wide | 145

$ git clone git://github.com/stumbleupon/tcollector.git

$ cd tcollector

The directory should contain licensing files, base tcollector code and a number of stan‐
dard input collectors in the collectors/0 subdirectory. If you’ve started your TSD with --
auto-metric option, all you need to do now is to start tcollector. The following line will
kick off the process with root privileges.

$ sudo TSD_HOST=localhost TCOLLECTOR_PATH=. ./startstop start

Starting ./tcollector.py

Okay, tcollector is running and reporting metrics. After fifteen seconds first inputs
should have arrived. Switch back to the HTTP interface and plot some metrics; for
example, juxtapose proc.stat.cpu with proc.meminfo.highfree and df.1kblocks.used. A
detailed description of each metric’s supported by tcollector can be found here.

For production settings, tcollector should be packaged and deployed system-wide to
every monitorable host. Typical setup on each machine involves the following:

• Place tcollector in /usr/local/tcollector.

• Leave only those local collectors in collectors/0/ subdirectory that you want to gather
inputs and remove all the rest.

• Place startstop script in /etc/init.d/tcollector and make it start at boot time.

Writing a Custom Collector
It is extremely easy to plug a custom collection agent into tcollector—simply create an
executable script or binary that reports data inputs at an interval and place it alongside
other agents. The inputs should be printed one per line to standard output in similar
format as for the put directive, but with the put directive itself omitted:

<metric> <timestamp> <value> <tagkey=value> [<tagkey=value> …]

The following agent gathers temperature information for selected cities. It runs contin‐
uously in a closed loop at 5 minute intervals.

#!/usr/bin/python
import sys
import time
import urllib2

COLLECTION_INTERVAL = 300
CITIES = ['Beijing', 'Cambridge', 'Farnham', 'Koeln', 'Sebastopol', 'Tokyo']
WEATHER_API = 'http://citytemp.effectivemonitoring.info/get'

def get_temperature(city, scale='c'):

146 | Appendix A: Setting Up OpenTSDB

http://opentsdb.net/tcollector.html

 """Get temperature for a city."""
 city_url = WEATHER_API + '?city=%s&scale=%s' % (city, scale)
 api_response = urllib2.urlopen(city_url).read()
 if api_response.strip().isdigit():
 return eval(api_response)

def main():
 while True:
 for city in CITIES:
 ts = int(time.time())
 city_temp = get_temperature(city, scale='f')
 city_label = city.lower().replace(' ', '_')
 print 'temperature %d %s city=%s' % (ts, city_temp, city_label)
 sys.stdout.flush()
 time.sleep(COLLECTION_INTERVAL)

if __name__ == "__main__":
 main()

tcollector will always add a host tag to the reported data. This way, data are guaranteed
to have at least one dimension, and data points can always be reliably tracked back to a
set of machines from which the inputs originated (Figure A-5).

Timeseries Plots
A monitoring platform should empower the operators to make the most of gathered
data. OpenTSDB does exactly that. The following features make OpenTSDB’s interface
a powerful one:

• Setting arbitrarily many system metrics against each other to allow for visual cor‐
relation in establishing cause and effect

• Ability to model the plot on the fly through selection of summary statistic, temporal
aggregation, trimming value range, rate of change and logarithmic scale transfor‐
mations for each metric separately

• Browser history, allowing for multi-metric plots to be statelessly exchanged between
users with a copy and paste of a URL

Plotting Tips
There exist a number of tricks that skillful plotters use to extract the desired effect. Here
are just a few of them:

Timeseries Plots | 147

Figure A-5. Data gathered with custom collector

1. When values of data points between two timeseries differ greatly, the fluctuations
described by them may become less distinct. To emphasize the deviations from
baseline of both timeseries, it is best to superimpose the two by plotting them on
separate scales each laid out on both left and right y-axes.

To assign a timeseries to the right axis, check the “Right axis” box in the metric tab.

2. When three or more timeseries with data point values differing by orders of mag‐
nitude are to be plotted on a single chart, distributing the series between axes is not
enough and logarithmic scale should be used. The best effect is achieved by grouping
timeseries of similar magnitude on the same axes.

Check the “Log scale” box in the Axes tab to have one of the y-axes display in
logarithmic scale.

3. In view of extreme value jumps, deviations that are still significant may become
obstructed. To counter this effect, the value range of the y-axes may be trimmed
from top and bottom:

Enter “[:100]” into the Range input box in the Axes window, to limit the plot from
the lowest recorded value up to a value of one hundred.

148 | Appendix A: Setting Up OpenTSDB

4. The right balance between temporal granularity and selected time range should be
struck, in accordance with what you’re trying to demonstrate. Very granular graphs
spanning long periods may be visually appealing, but are very hard to extract
meaning from. Long data point intervals plotted over relatively short periods, on
the other hand, do not convey relevant information about the process of change.

To make default 1-second time interval coarser, click on “Downsample” and enter
a selected time period, for example, 30m to plot half-hourly data points.

5. The summary statistic tells half the story. Average and median will smoothen out
timeseries curves while the extreme percentiles and sum might make them spikier.

Experiment with a summary statistic from the “Aggregator” dropdown menu of the
Metric tab.

Get Involved
To learn more about OpenTSDB, visit the project’s main website. Start by reading the
manual and FAQ. For the latest code changes, follow the project on GitHub. For current
developments, join the mailing list at opentsdb@googlegroups.com.

Get Involved | 149

http://opentsdb.net/
https://github.com/OpenTSDB/opentsdb
mailto:opentsdb@googlegroups.com

About the Author
Slawek is a systems and software engineer with a background in web operations and
service-oriented architectures. He specializes in implementing solutions to tough prob‐
lems in large-scale information systems. Slawek has been involved in automation of
infrastructures and product development, working with leading Internet giants.

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgements

	Chapter 1. Introduction
	Monitoring, Alerting, and What They Can Do for You
	Early Problem Detection
	Decision Making
	Automation

	Monitoring and Alerting in a Nutshell
	Metrics and Timeseries
	Alarms, Alerts, and Monitors
	Monitoring System
	The Process of Alerting
	Issue Tracking

	The Challenges
	Important Terms

	Chapter 2. Monitoring
	The Building Blocks
	Data Collection
	Coverage
	Metrics
	Example: Inputs, Metrics, and Timeseries
	Understanding Metrics
	Timeseries Patterns

	Drawing Conclusions from Timeseries Plots
	Interpretation of Anomalies
	Frequently Encountered Anomalies
	Determining Causality
	Capturing the Daily Cycle, Trends, and Seasonal Changes

	Chapter 3. Alerting
	The Challenge
	Prerequisites
	Monitoring and Alerting Platform
	Audit Trail
	Issue Tracking

	Understanding Failure and Its Impact
	Establishing Significance
	Identifying Causes

	Anatomy of an Alarm
	Boolean Function
	Suppression
	Aggregation

	Case Study: A Data Pipeline
	Types of Alerts
	Setting Up Alarms
	Identifying Impact
	Establishing Severity
	Picking the Right Timeseries
	Configuring Monitors
	Setting Up Alarms
	Testing Alerting Configurations

	Alerting Suggestions

	Chapter 4. At Scale
	Implications of Scale
	Composition of Large-Scale Systems
	Commonalities of Large-Scale Alerting Configurations
	Monitoring Coverage
	Reflecting Dimensions in Metrics

	Managing Large Alerting Configurations
	Addressing the Problems
	Suggested Solution
	Result

	Chapter 5. Monitoring in System Automation
	Choosing Appropriate Maintenance Times Automatically
	Controlling the Rate of Upgrade
	Recovery-Oriented Admission Control
	Automated Deployment and Rollback

	Chapter 6. The Work Environment
	Keeping an Audit Trail
	Working with Tickets
	Root Cause Analysis

	Dealing with Anomalies
	Learning from Outages
	Using Checklists
	Creating Dashboards
	Service-Level Agreements
	Preventing the Ironies of Automation
	Culture

	Chapter 7. Measuring Success
	The Feedback Loop
	Root Cause Classification
	Timing

	Ticket Reporting
	Frequency of Incidence
	Incidence Times
	Time to Respond and Time to Resolution

	Measuring Detectability
	False Positives and False Negatives
	Precision and Recall
	The F-Measure

	Transition to Automated Alarms
	Maintenance Overhead
	How (Not) to Measure

	Chapter 8. The Principles
	Get in the Habit of Measuring
	Draw Conclusions Reliably
	Monitor Extensively
	Alarm Selectively
	Work Smart, Not Hard
	Learn from the Experience of Others
	Have a Tactic
	Run a Bank of Cases
	Enjoy the Process

	Appendix A. Setting Up OpenTSDB
	The Software
	Architecture
	Getting OpenTSDB

	First Steps
	Starting TSD
	Pushing Data
	Input Tagging
	Temporal Aggregation
	Summary Statistics
	Rate of Change

	Gathering Data System-Wide
	Running tcollector
	Writing a Custom Collector

	Timeseries Plots
	Plotting Tips

	Get Involved

	About the Author

