
Unprivileged login daemons in Linux

Serge Hallyn
IBM

serge@hallyn.com

Jonathan T. Beard
GeekNet / Sourceforge

jbeard@geek.net

Abstract

Login daemons require the ability to switch to the userid

of any user who may legitimately log in. Linux provides

neither a fine-grained setuid privilege which can be tar-

geted at a particular userid, nor the ability for one priv-

ileged task to grant another task the setuid privilege. A

login service must therefore always run with the ability

to switch to any userid.

Plan 9 is a distributed operating system designed at Bell

Labs to be a next generation improvement over Unix.

While it is most famous for its central design princi-

ple - everything is a file - it is also known for simpler

userid handling. It provides the ability to pass a setuid

capability - a token which may be used by a task owned

by one userid to switch to a particular new userid only

once - through the /dev/caphash and /dev/capuse files.

Ashwin Ganti has previously implemented these files in

Linux. His p9auth device driver was available for a time

as a staging driver. We have modified the concepts ex-

plored in his initial driver to better match Linux userid

and groups semantics. We provide sample code for a

p9auth server and a fully unprivileged login daemon.

We also present a biased view of the pros and cons of

the p9auth filesystem.

1 Introduction

For the past fifteen years, the Computer Security In-

stitute has surveyed security practitioners and govern-

ment and private institutions regarding security breaches

and cybercrime [14]. In 2008, they surveyed 522 re-

spondents with an average annual loss report just un-

der $300,000. From 2004 through 2008, the number

of respondents reporting unauthorized access (including

privilege escalation) as a component of their reported

attacks remained approximately a third. Similarly, in

the mobile computing and console gaming arenas, jail-

breaks through privilege escalation remain one of the

leading security concerns for these platforms. As Linux

forms the core operating system for a growing number

of these devices [5], a solution that greatly reduces or

eliminates opportunities for privilege escalation would

represent a potential savings worth tens or hundreds of

millions – at least from a comparison of potential losses

due privilege escalation as described above.

One avenue to privilege escalation is the exploitation

of flaws in privileged programs. For instance, a buffer

overflow in the ping program might allow a regular

unprivileged user to pass specific data as an argument

to ping, invoking a shellcode resulting in a root shell.

Therefore, it is a laudable goal to reduce the number of

programs which need to run privileged.

We begin by reviewing the current design of login

servers in Linux. We present two ways in which Linux

could be extended to support making these login servers

unprivileged. For the first, we provide sample code for

both the privileged and unprivileged servers. We dis-

cuss the pros and cons of both approaches, in the hopes

of raising a discussion on the merits of supporting one

of the designs upstream.

2 Login services in Linux

Throughout this paper, familiarity with the user [11] and

privilege [7] mechanisms of Linux is assumed. Tasks

are owned by a numerical user ID and one or more nu-

merical group IDs. These numerical IDs are known

in userspace by textual names. Tasks also carry three

sets of privileges which for historical reasons are called

“POSIX capabilities” or just “capabilities”. We usu-

ally say a task has some privilege if that privilege is in

the task’s “effective” set, in which case the task is al-

lowed to escape certain access checks or perform sen-

sitive tasks. For instance, the CAP_DAC_OVERRIDE

privilege allows a task to read other users’ private files

and CAP_SYS_BOOT allows a task to reboot the system.

Usually, user IDs and privileges are linked, and user ID

• 91 •

92 • Unprivileged login daemons in Linux

0 is special in that its privilege sets are full, while privi-

lege sets for other user IDs are by default empty.

Tasks in Linux can switch user IDs in two ways. One

is to execute a file with the “setuid bit” set. This bit

indicates that when the file is executed, the “effective”

user ID should be set to that of the file owner. The “real”

user ID remains unchanged. The other way is to use the

setuid family of system calls. This can be used by

unprivileged tasks to switch values between the effective

and real (and another, called “saved”) user IDs. To set

a user ID to an entirely new value requires the CAP_

SETUID privilege. The changing of primary group IDs

is analogous. Changing the set of auxiliary group IDs

(for which there is no analogy with user IDs) always

requires the CAP_SETGID privilege.

A simple login service in Linux can be structured as in

Figure 1. The login daemon, running with process ID

(PID) 300 waits for a username to be entered on its ter-

minal, /dev/tty. Generally it then asks for a password

on the same terminal. It can verify the validity of the

password by checking hashed entries in /etc/passwd

or /etc/shadow. If the password is valid, then the lo-

gin task finds the user’s default auxiliary groups, pri-

mary group ID, and user ID, switches to these creden-

tials, and executes the user’s default shell. The user now

has a shell running with his credentials on /dev/tty.

Figure 1 also shows communication between login and

PAM [15]. PAM is a set of libraries which offer au-

thentication and session management services and ease

system-wide configuration through a single set of con-

figuration files. While these are great advantages over

the alternative of each service implementing their own

authentication and session management, library func-

tions execute with the credentials of their caller. There-

fore PAM does not help with reducing the amount of

privilege required for login daemons to perform their

authentication and to switch user IDs.

The principle of privilege separation [13] advises that a

privileged program be structured so that privileged op-

erations are pushed out into small, easier to verify, privi-

leged helpers, each serving precisely one purpose. Then

the bulk of the program can run without privilege. Fig-

ure 2 shows how the privilege-separate OpenSSH server

manages to prevent the user from directly interacting, at

any time, with a privileged process. A privileged parent

process communicates with an unprivileged child run-

ning as an unused user ID (usually “ssh”). The child

passes authentication communications to the parent and,

if they are correct, then the parent ends the first unprivi-

leged child and forks a new child which calls setresgid()

and setresuid() to drop privilege and assume the authen-

ticated user’s identity.

While this can make successful privilege escalation at-

tacks far less likely by reducing the types of messages

which an attacker can cause to be sent to the privileged

task, it does not completely eliminate attacks. While

privilege is kept further away from the unprivileged

user, the number of programs running with privilege are

not reduced. The implementation of each login service

is also greatly complicated.

3 Credentials passing

Unix domain sockets in Linux support the ancillary

messages SCM_RIGHTS and SCM_CREDENTIALS.

The first allows passing an open file descriptor to a tar-

get task. The second allows passing the sending task’s

credentials (user ID, group ID and PID) so the receiv-

ing task can verify the sender’s identity. Alan Cox

has proposed a new ancillary message type, which we

call SCM_AUTH, which any task may use to convey

the right for the recipient to switch to its own creden-

tials. Such a feature could provide interesting new fea-

tures, such as one unprivileged user granting another un-

privileged user the temporary credentials needed to de-

bug an environment problem for the first. Even a sys-

tem service which is partially privileged (but without

CAP_SETUID) or unprivileged could make use of this

feature to act on behalf of its clients.

This proposal also elicited discussion about a related,

less dangerous ancillary message for passing only audit

credentials. These could be used to augment audit mes-

sages with the credentials of a client on whose behalf a

back-end server was acting. This would make the audit

messages more informative than if they carry only the

server’s credentials.

3.1 Unprivileged login based upon SCM_AUTH

The SCM_AUTH ancillary message type would facil-

itate the implementation of unprivileged login clients

in Linux. A simple architecture for such a system is

shown in Figure 3. A single privileged daemon can

serve all unprivileged login servers. The login servers

2010 Linux Symposium • 93

login

300

PAM

root

300

setgid

setuid
exec

bash

joe

Figure 1: Simple login design using setuid.

PAM 300

root

sshd

301

ssh

sshd bash

300

root

sshd

302

exec
setuid
fork

joe

Figure 2: Login using privilege-separated OpenSSH.

act as a proxy to facilitate the communication allow-

ing a user to authenticate his identity to the privileged

server. Once satisfied of the user’s identity, the priv-

ileged server forks a new task which establishes for

itself the user’s desired credentials using the standard

setresgid, setgroups and setresuid system

calls. It then passes a SCM_AUTH message to the login

daemon, which uses a new accept_id system call to

assume these received credentials. The login process

can now proceed calling the user’s login shell as it nor-

mally would after having explicitly called setuid if it

had been running with privilege.

3.2 Security Considerations

When POSIX capabilities were first introduced, file ca-

pabilities remained unimplemented. In a POSIX capa-

bility system, file execution causes a task’s permitted

capability set to be recalculated. Any capabilities which

end up in that set must be active in one of the executable

file’s capability sets. Therefore, without file capabilities,

no task can have permitted capabilities after executing a

file. As a way to achieve non-root partially privileged

tasks, capsetp was implemented as a Linux-specific

way to grant capabilities to another task [9]. Doing so

required the CAP_SETPCAP privilege. However, the

ability to grant privileges to another task was deemed so

unsafe that the CAP_SETPCAP capability was placed in

the system-wide capability bounding set, so that effec-

tively no one was ever able to employ it.

Likewise, passing credentials over a UNIX socket could

be seen as too dangerous a way to spread privileges and

access rights. It particularly spreads the risk of any pro-

94 • Unprivileged login daemons in Linux

luser

/dev/tty

bash

luser

300

kernel

userspace

PAM factotum

login

login

300

/dev/tty

login
300

/dev/tty

granter
301

luser

login

fork

use_auth
exec

setuid

root

150

Figure 3: Login design using SCM_AUTH.

gram running with CAP_SETUID, since any task which

may arbitrarily set its user ID can then pass the result-

ing credentials along to any other task. It also makes a

Trojan even more dangerous. The Trojan now does not

need to immediately do its damage, open a back door,

release the information it targets, or hide a task which

it creates with the victim’s credentials. Instead, it can

simply transfer the conquered credentials to the attacker

who can stash them away for later. This could be unde-

tectable.

One part of a defense against such a situation is notion

of a timeout on the passed credentials. This could help

prevent the tokens being too liberally passed around, ac-

cidentally inherited by an untrusted child task, or simply

stashed away as a long term privilege token for later use.

Analysis of used and stashed tokens could also help mit-

igate the dangers. Both the sending and the use of tokens

should obviously be audited. Additionally, a list of sent

but unused tokens and details on the sending and receiv-

ing tasks should be available, possibly through a /proc

interface.

4 The p9auth filesystem

Ashwin Ganti implemented [6] a device driver for Linux

which implemented the Plan 9 “capability 1 device” [2].

Briefly, an unprivileged login client persuades a privi-

leged daemon that it is authorized to change to a particu-

lar user ID. The privileged daemon writes to the /dev/

caphash device a token consisting of the client’s cur-

rent user ID and the authorized new user ID joined

1Capability here is used in its classical sense, not as the unfortu-

nately chosen pseudonym for a privilege.

together with a special separating character (’@’) and

hashed with a random string. This token is then ap-

pended by the kernel to a list of such hashes. The

daemon communicates the random string to the client,

which can then use the token by writing the unhashed

values (old user ID, new user ID, and random value,

separated by ’@’) to /dev/capuse. This causes the

client’s real and effective user IDs to be changed. Since

this was a proof of concept, some shortcuts were taken.

For instance, the saved user ID is not updated 2, the pri-

mary and auxiliary groups remain unchanged, and the

filesystem user ID (fsuid), which is used for filesystem

accesses and by convention mirrors all effective user ID

changes, is not updated.

We have changed the Linux p9auth semantics to better

suit the Linux user and group behavior and simplify us-

age. The p9auth setuid capability now contains the orig-

inal user ID, new user ID, a new primary group, and a

list of auxiliary groups. Upon presenting a valid capa-

bility, a task’s real, saved, effective, and filesystem user

and group IDs are all assigned to the new values. While

different effective and real user IDs can be useful for ap-

plications to get things done, a newly logged-in process

needs a simple, sane, and useful initial set of credentials.

We have also changed from a device interface to a more

standard one using a custom filesystem. We have also

implemented a timeout on setuid capabilities, placed a

limit on the number of unused capabilities stored in the

kernel, and made the implementation user namespace

aware as will be discusssed later.

Figure 4 shows how login services can be structured

2This may be intended as a feature to increase flexibility at the

cost of more complicated users.

2010 Linux Symposium • 95

luser

luser

luser

bash
300

PAM root

login

login

300

login
300

joe

cred_grant cred_use
backend

exec

Figure 4: Login design using p9auth setuid tokens.

with the new p9auth filesystem. A single privileged

backend service, called p9auth, can serve all login

clients, and need never interact directly with users. An

unprivileged login client, perhaps running with user ID

“login”, interacts with the user and passes the commu-

nication for an authentication protocol between the ter-

minal and the privileged p9auth service. This service

itself uses PAM for the actual authentication. Assum-

ing authentication succeeds, p9auth looks up the ini-

tial credentials for the new user and creates a random

string (XYZ) and a p9auth capability token which looks

something like 121@1001@1001@0 In this example

user ID 121 may switch to user ID 1001, primary group

1001, and no auxiliary groups. P9auth hashes the ca-

pability token with the random string and writes that

to the cred_grant file in the p9auth filesystem. It

also passes the token and the random string to the user.

The user then passes 121@1001@1001@0@XYZ to the

cred_use file to effect the change of credentials.

From a higher level, we see that, as with SCM_AUTH an-

cillary messages, an unprivileged login client was made

possible by providing a way for the ability to switch

user IDs to be sent between tasks. In this case, one iso-

lated privileged task can send to unprivileged console-

or network-facing tasks tokens representing the ability

to switch to a particular user ID.

4.1 A proof of concept p9auth service

Our goal is for a single p9auth service to serve all un-

privileged login servers. For simplicity, it will commu-

nicate with them over a Unix file socket. Given that

secrets like passwords will be sent over this socket, the

communication protocol should begin with the p9auth

service proving its own identity to the unprivileged lo-

gin daemon. Details of such an algorithm are outside the

scope of this paper, but could be based on a certificate

or public key pair for the p9auth daemon.

A proof of concept (POC) implementation of a p9auth

server and an unprivileged login client can be found

at github [?] 3. It is based upon the p9auth filesys-

tem patchset which as of this writing was out of tree,

and can be found at [?]. Since the userspace code

is POC and does not implement server authentication,

the client, called frontend and shown as pseudo

code in Figure 5, simply connects to the Unix socket

/var/run/factotum and assumes it is talking to

the valid backend server. It writes its current user ID and

desired new username, then serves as a PAM relay until

it receives the desired setuid token in a messages begin-

ning with “FINAL: ”. It then writes that token to the

cred_use file in the p9auth filesystem. That write

triggers a callback in the kernel which effects the group

and user ID changes. Finally, it executes the user’s spec-

ified shell to complete the login.

The privileged server, called backend and shown in

Figure 6, listens on the Unix socket for requests from

login clients. It uses the sock_conv() conversation

function (based on an example by Andrew Morgan [?])

to allow PAM, called with privilege by backend and

guided by the system’s PAM configuration file /etc/

pam.d/factotum, to perform the actual authentica-

tion.

Assuming the PAM authentication succeeds, backend

3Note that this is purely a proof of concept, and not intended to

be used as-is. For instance, the client does not currently clear the

environment before executing the login shell.

96 • Unprivileged login daemons in Linux

void client(int sfd)

{

sprintf(buf, "olduid %d\nusername %s\n", getuid(), username);

write(sfd, buf, strlen(buf)+1);

while (1) {

read(sfd, buf, MAXLINE);

if (strncmp(buf, "FINAL: ", 7) == 0) {

break;

...

} else if (strncmp(buf, "ECHO: ", 6) == 0 ||
strncmp(buf, "NOECHO: ", 8) == 0) {

/∗ get_input reads a user’s response ∗/
get_input(buf, buf[0] == ‚E‚);

write(sfd, buf, strlen(buf)+1);

}

}

cfd = open("/mnt/p9auth/cred_use", O_WRONLY);

p = buf + 7;

write(cfd, p, strlen(p));

shell = getpwnam(username)−>pw_shell;

execl(shell, shell, NULL);

}

Figure 5: Pseudo code for unprivileged p9auth login client.

generates a random string and a login token as described

in Section 4, writing the encrypted hash of the login to-

ken with the random string to the cred_grant file and

passing the concatenated token and random string to the

client.

The p9auth filesystem is user-namespace-aware. Any

setuid tokens granted by a particular privileged p9auth

server are tied to that server’s user namespace. There-

fore, a p9auth server in a container cannot be used to

bypass the host’s p9auth server. At the same time, since

each container will have its own /var/run directory

and therefore its own /var/run/factotum socket,

any properly configured container will be able to offer

its own privileged p9auth server for use within the con-

tainer.

4.2 Security Considerations

As with credentials passing, we must consider whether

the ability to grant the ability to switch to new cre-

dentials with the p9auth concept should raise the same

concerns as did transferring POSIX capabilities using

capsetp. Just as with granting capabilities to third

parties, we essentially have a privileged task which is

allowed to grant to other tasks the privilege to switch

to new user IDs. This is especially true since on most

systems, by default, switching to the root user ID also

raises all capabilities.

However, this concern is predicated on the risk of

spreading privileges because p9auth can authorize a

change of the user ID for an existing process. In fact,

the opposite case is true and is described in the exam-

ple below. First, assume that some unprivileged pro-

cess, PID 3451, improperly manages to get p9auth to

authorize its setuid to 0. This is no worse than if the

same process tricks a privileged login service into fork-

ing a new process with user ID 0, running a binary spec-

ified by the malicious process. Additionally, since a sin-

gle privileged p9auth service allows us to remove the

CAP_SETUID capability from all privileged login ser-

vices, like su, sudo, login, sshd, ftp, etc. By running

those services completely unprivileged, this approach

actually greatly decreases the amount of potentially vul-

nerable privileged code.

2010 Linux Symposium • 97

void handle_client(int clientfd)

{

read(clientfd, buf, MAXLINE);

sscanf(buf, "olduid %d\nusername %s\n", &olduid, username);

/∗
∗ validate() performs PAM authentication and returns

∗ the password entry (struct passwd ∗pe) for username.

∗/
struct passwd ∗pe = validate(clientfd, username);

/∗
∗ readgroups() places all username’s auxiliary groups

∗ into gid_t ∗groups

∗/
numgroups = readgroups(username, pw−>pw_gid, &groups);

/∗
∗ make_token places the string

∗ olduid@newuid@newgrp@numgroups@grp1@...@grpn

∗ into char ∗token

∗/
make_token(token, olduid, pe, numgroups, groups);

/∗ generate a hash of the token and hand that to the kernel ∗/
len = generate_hash(token, hash, randstr);

capfd = open("/mnt/p9auth/cred_grant", O_RDWR);

write(capfd, hash, len);

/∗ write the token and the random string to the client ∗/
sprintf(clientstr, "FINAL: %s@%s", token, randstr);

write(clientfd, clientstr, strlen(clientstr)+1);

}

Figure 6: Pseudo code for p9auth backend.

Another advantage of the approach is that in a com-

pletely converted system we may have the init dae-

mon fork off the p9auth service early and then drop

CAP_SETUID from its capability bounding set, so that

all other privileged daemons will not be able to ex-

pose the system to CAP_SETUID empowered rootkit

exploits.

5 Other privilege needs

While the above designs, and the POC implementation

of the p9auth-based unprivileged login daemon suffice

for simple cases, some sites require additional setup

at login. That setup itself may require privilege. For

instance, in order to provide polyinstantiated directo-

ries, login session to an LSPP [3] system may require

a private mounts namespace and custom directories to

be mounted according to their privilege level. User

joe logged in as “secret” sees a different /tmp than

the same user logged in as “unclassified”. Other sites

may require a Smack [16] label to be specified at login,

which requires the CAP_MAC_ADMIN privilege. Still

other sites may wish to set up an initial inheritable capa-

bility set [7], which requires the login daemon to have

CAP_SETPCAP.

These obstacles ought not be insurmountable. For in-

98 • Unprivileged login daemons in Linux

stance, it it is hoped that both creating private names-

paces and directory mounting will eventually be allowed

for unprivileged users. The specification of Smack la-

bels and initial capabilities could be added as extensions

to the p9auth token specification, while the SCM_AUTH

ancillary message could well represent full credentials,

including security labels. Finally, while these designs

remove the need for CAP_SETUID and CAP_SETGID

from login daemons, other file capabilities can be added

to the login daemon binaries if needed. Upon the ex-

ecution of the login shell, the effective and permitted

capabilities will be recalculated, so while it would be

preferable to have the login daemon entirely unprivi-

leged, some capabilities could be enabled if needed.

More generally, a reliable way must be found to set

appropriate initial LSM (security) contexts upon login.

Proper behavior will differ per LSM. TOMOYO con-

texts are meant to purely reflect the history of executed

files, so a TOMOYO context should likely not be pass-

able with SCM_AUTH or p9auth. SELinux contexts are

the results of domain transitions initiated by execution

of carefully designated “entry points”. The login dae-

mons can remain unprivileged, but their execution can

trigger entry into a domain which can select an initial se-

curity context for the user’s session. For POSIX capabil-

ities, it would seem desirable to avoid the need to grant

CAP_SETPCAP to an unprivileged login daemon by al-

lowing the privileged backend daemon to specify an in-

heritable capability set. Passing permitted and effective

capabilities may be found to have uses for non-login ap-

plications of SCM_AUTH, but is not useful for login dae-

mons. We therefore may well want only the inheritable

set to be specified. Smack contexts are generally set by

userspace, but require the CAP_MAC_ADMIN capabil-

ity to set, and therefore should not be trivially change-

able, although allowing tasks with CAP_MAC_ADMIN

to transfer their Smack label along with their credentials

may be desirable.

Since LSMs may vary in how they treat the security

context passed through SCM_AUTH or granted through

p9auth, it seems prudent to provide a new LSM [?] hook

which processes a set of initial and intended credentials,

and produces the final LSM context for the login ses-

sion.

6 Conclusion

Exploitation of bugs in privileged programs can allow

an unprivileged user to illegitimately escalate privilege,

and can serve as the second step in an outsider attack

which begins with hijacking of a local unprivileged ac-

count. To reduce the potential for such attacks, it is de-

sirable to reduce the amount of code which must run

with privilege. We have presented two ways in which

Linux can be extended to support unprivileged login

daemons.

Both the SCM_AUTH and p9auth designs remove the

need for login services to run with CAP_SETUID and

CAP_SETGID privileges, concentrating privilege in-

stead in a single system-wide authentication service.

Without this support, each service needing to switch

user IDs needs to be installed with the privilege to

switch to any user ID. In that case, it requires constant

vigilance and multiple redundancy to limit the privilege

granted to the immediate user-facing terminal program

– with every single instance being a potential oversight

leading to exploit. With this support, the number of

programs requiring privilege is reduced, and with it the

gross odds of a successful privilege escalation attack.

7 Legal Statement

This work represents the view of the authors and does

not necessarily represent the view of IBM.

IBM is a registered trademark of International Business

Machines Corporation in the United States and/or other

countries.

UNIX is a registered trademark of The Open Group in

the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the

United States, other countries, or both.

Other company, product, and service names may be

trademarks or service marks of others.

8 Acknowledgments

The authors would like to thank Ashwin Ganti for writ-

ing the original p9auth capability device, Greg Kroah-

Hartman for the drivers staging tree and for hosting the

p9auth driver, and Alan Cox for once again providing an

interesting new insight into a proposed design.

2010 Linux Symposium • 99

References

[1] Alan Cox. Regarding add p9auth driver, http://
lkml.org/lkml/2010/4/21/88, Apr 21 2010.

[2] Russ Cox, Eric Grosse, Rob Pike, Dave PResotto, Sean

Quinlan, "Security in Plan 9", Proceedings of the 2002

Usenix Security Symposium, San Francisco.

[3] Janak Desai, George Wilson and Chad Sellers. Extend-

ing SELinux to meet LSPP data import/export require-

ments, Proceedings of the 2006 Security Enhanced

Linux Symposium, March 2006.

[4] Chris Friedhoff. POSIX Capabilities and File POSIX

Capabilities, http://www.friedhoff.org/

posixfilecaps.html.

[5] C. Gallen. Linux to Be the Fastest-Growing Smartphone

OS over the Next 5 Years ABI Research. August 2007.

http://www.abiresearch.com/press/922.

[6] Ashwin Ganti. Plan 9 authentication in Linux, Operat-

ing Systems Review 42(5): 27-33 (2008).

[7] Serge E. Hallyn and Andrew G. Morgan. Linux Capa-

bilities: making them work, Proceedings of the Ottawa

Linux Symposium, July 2008.

[8] Linux man-pages project. Capabilities.7 man

page, http://linux.die.net/man/7/

capabilities.

[9] Andrew Morgan. capsetp(3) manpage, http://

linux.die.net/man/3/capsetp.

[10] C. Ozancin. Securing the linux environment: Programs

that need root access. pages 42âĂŞ45, March/April

2001.

[11] Dan Tsafrir and Dilma Da Silva and David Wagner. The

Murky Issue of Changing Process Identity: Revising

“Setuid Demysitified.”, Linux Journal.

[12] J. Saltzer and M. Schroeder. The protection of informa-

tion in computer systems. Fourth ACM Symposium on

Operating System Principles (October 1973).

[13] N. Provos, M. Friedl, and P. Honeyman. Preventing

Privilege Escalation Security ’03 Paper, USENIX Se-

curity ’03 Technical Program, 2003.

[14] R. Richardson. 2008 CSI Computer Crime & Security

Survey. Computer Security Institute. 2008.

[15] Vipin Samar, "unified Login with Pluggable Authen-

tication Modules (PAM)," Proceedings of the Third

ACM Conference on Computer Communications and

Security, March 1996, New Delhi, India.

[16] Casey Schaufler. Smack and the Application Ecosystem,

http://linuxplumbersconf.org/2009/

slides/Casey-SmackPlumbers2010.pdf.

[17] Ylonen, T., "SSH-Secure Login Connections Over the

Internet", 6th USENIX Security Symposium, pp 37-42.

San Jose, CA, July 1996.

100 • Unprivileged login daemons in Linux

Proceedings of the

Linux Symposium

July 13th–16th, 2010

Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,

Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Linux Symposium

Martin Bligh, Google

James Bottomley, Novell

Dave Jones, Red Hat

Dirk Hohndel, Intel

Gerrit Huizenga, IBM

Matthew Wilson

Proceedings Committee

Robyn Bergeron

With thanks to

John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights

to all as a condition of submission.

