

Sudo Mastery:
User Access Control for Real People

by Michael W Lucas

Tilted Windmill Press

Praise for other books by Michael W Lucas

Absolute OpenBSD, 2nd Edition
"Michael Lucas has done it again." – cryptednets.org
"After 13 years of using OpenBSD, I learned something new and
useful!" – Peter Hessler, OpenBSD Journal
"This is truly an excellent book. It's full of essential material on
OpenBSD presented with a sense of humor and an obvious deep
knowledge of how this OS works. If you're coming to this book
from a Unix background of any kind, you're going to find what you
need to quickly become fluent in OpenBSD – both how it works
and how to manage it with expertise. I doubt that a better book on
OpenBSD could be written." — Sandra Henry-Stocker,
ITWorld.com
"Do you need this book? If you use OpenBSD, and have not yet
achieved guru status, yes, this book is just for you. Even gurus will
find valuable things in this book that they did not know… But

beyond the OpenBSD aspect, there are great sections on cross-
platform applications like sudo that are almost enough on their
own to justify getting this book. And there are several of those
chapters. So: even if you don’t use OpenBSD directly, would you
like a quick reference on sudo, IPv6 networking, and NFS setup?
Oh, and also tftpd, PXE, and diskless BSD systems? But wait, what
if I told you these references came with a free book on OpenBSD
installation and configuration?" – Warren Block, wonkity.com
"It quickly becomes clear that Michael actually uses OpenBSD and
is not a hired gun with a set word count to satisfy... In short, this is
not a drive-by book and you will not find any hand waving." –
Michael Dexter, callfortesting.org

DNSSEC Mastery
"When Michael descends on a topic and produces a book, you can
expect the result to contain loads of useful information, presented
along with humor and real-life anecdotes so you will want to

explore the topic in depth on your own systems." — Peter
Hansteen, author of The Book of PF
"Pick up this book if you want an easy way to dive into DNSSEC."
— psybermonkey.net

SSH Mastery
"…one of those technical books that you wouldn’t keep on your
bookshelf. It’s one of the books that will have its bindings bent,
and many pages bookmarked sitting near the keyboard." — The
Exception Catcher
 “…SSH Mastery is a title that Unix users and system
administrators like myself will want to keep within reach…” —
Peter Hansteen, author of The Book of PF
"This stripping-down of the usual tech-book explanations gives it
the immediacy of extended documentation on the Internet. Not the
multipage how-to articles used as vehicles for advertising, but an
in-depth presentation from someone who used OpenSSH to do a

number of things, and paid attention while doing it." —
DragonFlyBSD Digest

Network Flow Analysis
"Combining a great writing style with lots of technical info, this
book provides a learning experience that's both fun and interesting.
Not too many technical books can claim that." — ;login:
Magazine, October 2010
"This book is worth its weight in gold, especially if you have to
deal with a shoddy ISP who always blames things on your
network." — Utahcon.com
"The book is a comparatively quick read and will come in handy
when troubleshooting and analyzing network problems." —Dr.
Dobbs
"Network Flow Analysis is a pick for any library strong in network
administration and data management. It's the first to show system
administrators how to assess, analyze and debut a network using

flow analysis, and comes from one of the best technical writers in
the networking and security environments." — Midwest Book
Review

Absolute FreeBSD, 2nd Edition
"I am happy to say that Michael Lucas is probably the best system
administration author I’ve read. I am amazed that he can
communicate top-notch content with a sense of humor, while not
offending the reader or sounding stupid. When was the last time
you could physically feel yourself getting smarter while reading a
book? If you are a beginning to average FreeBSD user, Absolute
FreeBSD 2nd Ed (AF2E) will deliver that sensation in spades. Even
more advanced users will find plenty to enjoy.” — Richard
Bejtlich, CSO, MANDIANT, and TaoSecurity blogger
“Master practitioner Lucas organizes features and functions to
make sense in the development environment, and so provides aid
and comfort to new users, novices, and those with significant

experience alike.” — SciTech Book News
“…reads well as the author has a very conversational tone, while
giving you more than enough information on the topic at hand. He
drops in jokes and honest truths, as if you were talking to him in a
bar.” — Technology and Me Blog

Cisco Routers for the Desperate, 2nd Edition
“If only Cisco Routers for the Desperate had been on my bookshelf
a few years ago! It would have definitely saved me many hours of
searching for configuration help on my Cisco routers. . . . I would
strongly recommend this book for both IT Professionals looking to
get started with Cisco routers, as well as anyone who has to deal
with a Cisco router from time to time but doesn’t have the time or
technological know-how to tackle a more in-depth book on the
subject.” — Blogcritics Magazine
"For me, reading this book was like having one of the guys in my
company who lives and breathes Cisco sitting down with me for a

day and explaining everything I need to know to handle problems
or issues likely to come my way. There may be many additional
things I could potentially learn about my Cisco switches, but likely
few I'm likely to encounter in my environment." — IT World
"This really ought to be the book inside every Cisco Router box for
the very slim chance things go goofy and help is needed 'right
now.'" — MacCompanion

Absolute OpenBSD
"My current favorite is Absolute OpenBSD: Unix for the Practical
Paranoid by Michael W. Lucas from No Starch Press. Anyone
should be able to read this book, download OpenBSD, and get it
running as quickly as possible." — Infoworld
"I recommend Absolute OpenBSD to all programmers and
administrators working with the OpenBSD operating system (OS),
or considering it." — UnixReview
“Absolute OpenBSD by Michael Lucas is a broad and mostly

gentle introduction into the world of the OpenBSD operating
system. It is sufficiently complete and deep to give someone new
to OpenBSD a solid footing for doing real work and the mental
tools for further exploration… The potentially boring topic of
systems administration is made very readable and even fun by the
light tone that Lucas uses.” — Chris Palmer, President, San
Francisco OpenBSD Users Group

PGP & GPG
"...The World's first user-friendly book on email privacy...unless
you're a cryptographer, or never use email, you should read this
book." — Len Sassaman, CodeCon Founder
“An excellent book that shows the end-user in an easy to read and
often entertaining style just about everything they need to know to
effectively and properly use PGP and OpenPGP.” — Slashdot
“PGP & GPG is another excellent book by Michael Lucas. I
thoroughly enjoyed his other books due to their content and style.

PGP & GPG continues in this fine tradition. If you are trying to
learn how to use PGP or GPG, or at least want to ensure you are
using them properly, read PGP & GPG.” — TaoSecurity

Sudo Mastery

Sudo Mastery: User Access Control for Real People
copyright 2013 by Michael W Lucas

(http://www.michaelwlucas.com/)
All rights reserved.

Amazon Edition.

Author: Michael W Lucas
Cover design: Bradley K McDevitt
Copyediting: Aidan Julianna "AJ" Powell
Cover Photo: Elizabeth Lucas (concertina wire at abandoned

factory, Detroit)

published 2013 by Tilted Windmill Press
www.tiltedwindmillpress.com
All rights reserved. No part of this work may be reproduced or

transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage
or retrieval system, without the prior written permission of the
copyright owner and the publisher. For information on book
distribution, translations, or other rights, please contact Tilted
Windmill Press (accounts@tiltedwindmillpress.com).

The information in this book is provided on an "As Is" basis,
without warranty. While every precaution has been taken in the
preparation of this work, neither the author nor Tilted Windmill
Press shall have any liability to any person or entity with respect to
any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

For Liz

Acknowledgements
I want to thank the folks who reviewed the manuscript for Sudo
Mastery before publication: Bryan Irvine, JR Aquino, Hugh Brown,
and Avigdor Finkelstein. Special thanks are due to Todd Miller, the
current primary developer of sudo, who was very patient and
helpful when answering my daft questions.

While I appreciate my technical reviewers, no errors in this

book are their fault. All errors are my responsibility. Mine, do you
hear me? You reviewers want blame for errors? Go make your
own.

XKCD fans should note that the author does not particularly

enjoy sandwiches. However, Miod Vallat, currently exiled to
France, would really like a sandwich with nice fresh bread, really
good mustard, and low-carb ground glass and rusty nails. And

Bryan Irvine would like a rueben.

This book was written while listening obsessively to Assemblage
23.

Contents
Chapter 1: Introducing sudo
Chapter 2: sudo and sudoers
Chapter 3: Editing and Testing Sudoers
Chapter 4: Lists and Aliases
Chapter 5: Options and Defaults
Chapter 6: Shell Escapes, Editors, and Sudoers Policies
Chapter 7: Configuring sudo
Chapter 8: User Environments versus Sudo
Chapter 9: Sudo for Intrusion Detection
Chapter 10: Sudoers Distribution and Complex Policies
Chapter 11: Security Policies in LDAP
Chapter 12: Sudo Logging & Debugging
Chapter 13: Authentication
Afterword

Chapter 1: Introducing sudo
Resolved: controlling user access to a computer's privileged
programs and files is a right pain. None of the systems that evolved
to cope with mapping real-world privileges onto digital schemes
are very good. The best access control systems merely hurt less
than others.

Unix-like systems control programs and file access through
users and groups. Each individual user has a unique identifier,
given either as a username or a user ID number (UID). Users are
arranged in uniquely identified groups, given either as a group
name or a group ID number (GID). Specific users and groups have
permission to access specific files and programs.

This scheme sufficed during UNIX's childhood. A large
university might have a couple of UNIX servers. Hundreds of users
logged onto each server for mail, news, and computation-intensive
applications. Students went in one group, grad students in another,

then professors, staff, and so on. Individual classes and
departments might have their own groups.

The system owners had a special account, root. The root account
has ultimate system control. As a security and stability precaution,
Unix-like systems restrict certain operations so that only root can
perform them. Only root can reconfigure the network, mount new
filesystems, and restart programs that attach to privileged network
ports. This made sense when you had two servers for an entire
campus – reconfiguring the network or adding a new disk drive is a
serious task in that environment. The job of managing
multimillion-dollar systems should remain in trusted, highly
skilled hands.

In the 21st century, Unix-like systems are cheap and plentiful.
Teams of people might share systems administration tasks, or one
person might have complete control over a system, or anything in
between. Either situation completely changes your security
requirements from those of the previous century.

Large organizations often divide systems administration
responsibilities between skilled individuals. One person might be
responsible for care and feeding of the operating system, while a
second person handles the application running on the server. The
server supports the application, and the application is why the
server exists, but both people need to perform tasks that require
root-level privileges. But root-level privilege is an all-or-nothing
affair. There's no division between "access to change the kernel"
and "access to run privileged applications." If the application
administrator has root-level access, he can change the kernel. You
can always rely on gentleman's agreements to only touch the parts
of the system you're responsible for, but when your organization
employs a team of systems administrators and a team of database
administrators to support dozens or hundreds of servers, these
gentleman's agreements quickly decompose into finger-pointing
bloodbaths – even without vendor-provided application setup
scripts that helpfully customize the kernel without telling anyone.

These organizations need a finer-grained access control system
than root provides.

The all-or-nothing model breaks down even more when
everyone has a Unix-like system. Setting aside the innumerable
phones and tablets which have extra software to make them user-
friendly, many folks run Unix-like operating systems on a desktop
or laptop. Every time they access a USB drive or use a coffee shop
wireless network, something on the system needs root-level
privileges. Using root privileges isn't terribly onerous – log in with
your regular account, use the su command to switch users, enter the
root password, run the commands that need root access, and exit
the root account. But when you must use the root account any time
you put in a USB drive, bounce the network, add, reconfigure, or
restart software, it quickly becomes downright annoying. While
software can manage much of this for you, sometimes you must
trigger root privileges for routine tasks.

The computing industry is full of really smart people that have

expanded the classic UNIX privilege control models. One method
is through setuid and setgid programs. While programs normally
work with the privileges of the user who runs them, setuid and
setgid programs change their effective UID and GID to some other
value. You can have a setuid program that runs as root. Changing
your password requires editing secured files in /etc/, so the passwd

command is setuid. But intruders really like setuid and setgid
programs. Flaws in these programs might be exploited into full
root access. And most operating systems don't let you make shell
scripts setuid, only programs.

Then there are several varieties of access control lists (ACLs)
which more broadly expand the user-group-others ownership
model. ACLs allow you to declare something like "This person
owns the file, but these groups and people can modify it, with these
exclusions, and these groups and people (with some exclusions, of
course!) can execute it, while these other people can read data from
it, except for…" At this point the systems administrator gets a

headache and starts contemplating a career cleaning up real sewage
instead of the metaphorical kind. And of course, all the different
ACL implementations are ever so slightly incompatible. Very few
people can correctly implement ACLs on a single platform, and
that expertise doesn't really extend to other platforms. ACLs have a
place in systems administration, and if you really need them,
they're invaluable. But most of us don't need them.

And sadly, access control lists are about as good as it gets.
Except for sudo.

What Is Sudo?
Sudo is a program that controls access to running commands as
root or other users. The system owner creates a list of privileged
commands that each user can perform. When the user needs to run
a command that requires root-level privilege, he asks sudo to run
the command for him. Sudo consults its permissions list. If the
user has permission to run that command, it runs the command. If
the user does not have permission to run the command, sudo tells
him so. Running sudo does not require the root password, but rather
the user's own password (or some other authentication).

The system administrator can delegate root-level privileges to
specific people for very specific tasks without giving out the root
password. She can tell sudo to require authentication for some
users or commands and not for others. She can permit users access
on some machines and not others, all with a single shared
configuration file.

Some applications, notably big enterprise database software, run

under a specific dedicated account. Users must switch to this
account before managing the software. You can configure sudo to
permit users to run specific commands as this account. Maybe your
junior database administrators only need to run backups, while the
lead DBA needs a full-on shell prompt as the database account.
Sudo lets you do that.

Finally, sudo logs everything everybody asks it to do. It can
even replay the contents of individual sudo sessions, to show you
exactly who broke what.

What's Wrong with Sudo?
If sudo is so awesome, why doesn't everybody use it?

Sudo adds another layer of systems administration. Adding that
layer requires time, energy, and attention. It requires learning yet
another danged program when you already have too much to do. If
you're responsible for running an enterprise system with several
groups of administrators, investing in sudo reduces your workload.
But you must learn how to use it first.

Some commercial UNIXes don't include sudo because they
already include their own proprietary escalated privilege
management system. OpenSolaris-based systems have pfexec and
role-based access control (RBAC). HP has pbrun. If you were a
commercial UNIX vendor who spent lots of money and energy
developing an ACL-based privilege management system, would
you include and encourage use of a simpler, easier tool instead? I
might, but that's why I'm not a big commercial UNIX vendor.

Many open-source Unix-like operating systems do include sudo

in their base system. Some, such as Ubuntu and OS X, completely
disable the root account and only permit privileged access via sudo.
This is a lurch in the right direction, but most people who have
sudo use it incorrectly.

What's the wrong way to use sudo? Sudo is not a replacement
for su. Sudo is not a way to completely avoid requiring
authentication for privileged access. Sudo is not a tool to force
someone to make you a sandwich. A proper sudo setup simplifies
system management. An improper sudo setup lets intruders and
unauthorized users corrupt or destroy your system faster and
easier.

"Proper use of sudo" doesn't mean complicated, or even
extensive policies. I've seen system administrators spend hours
writing complicated sudo policies, only to watch users waltz right
past their restrictions. Sometimes the users didn't even realize that
the restrictions were in place. Sudo has limits. Once you
understand those limits, you can make realistic decisions about

how and where your organization deploys sudo.
The problem I see most often with sudo has nothing to do with

the software itself. A proper sudo deployment in a complicated
organization requires the system administration team to agree who
is responsible for what. Sudo enforces job duties and
responsibilities in a configuration file. The configuration file is
flexible, but people cannot exceed the privileges specified therein.

What are the boundaries of your responsibilities? What
permissions do you need to do your real job, and which tasks
should someone else do? Being forced to sit down and think about
these things can be uncomfortable, and can temporarily increase
conflicts within an organization. Once the arguments settle,
however, conflicts decrease. There's no bickering over who did
what, when, or how. Everybody knows that the database team can't
format filesystems, the web team can't restart the database, and the
sudo logs clearly show who took any privileged actions. And
having an audit trail improves system stability. When people know

that the system logs their privileged actions, and that they can and
will be held responsible for breaking things, they stop breaking
things so often. Weird.

Who Does Sudo Protect You From?
Sudo protects the system from harm by intruders or systems
administrators, and it protects systems administrators from many
management problems.

Giving a user access to only a limited set of privileged
commands limits the damage that user can inflict on the system.
The user who only has access to manage the web server or database
cannot mangle disk partitions. If an intruder compromises that
user's account, the intruder is likewise slowed or contained.

Similarly, lack of access protects the system administrator when
something goes wrong. Even without sudo logs, a user with limited
administrative access can say "Hey, I didn't reconfigure the web
server. I don't have that access, remember?" Accountability works
both ways. Use it to your advantage.

Sudo Support
Sudo is freely-available open source software. You are welcome to
download it from the main web site (http://sudo.ws) or a mirror
and use it throughout your organization at no charge. The license
permits you to use sudo as the basis of your own products, resell it
to clients, or incorporate it into software you then redistribute or
resell. You can use sudo for anything you like.

What you don't get is sophisticated support.
Sudo is not created by a commercial company. It's developed

and supported by the users who need it, and coordinated for the last
several years by Todd Miller. You can contribute to sudo by
submitting patches and bug reports. You can find people and
companies who will support your sudo install, and who will even
write custom code for you. But there's nobody for you to yell at if
your sudo install doesn't work the way you expect. There's no toll-
free number, no minimum-wage support minion with a
questionable grasp of your language waiting to take abuse and

invective in exchange for cash.
Having said that, the people on the sudo mailing lists are both

extremely helpful and very interested in real problem reports. They
respond well to requests for help and poorly to demands. If you
want to demand help – if you want to scream and rant and rave and
turn blue in the face until your problem goes away – any number of
companies will sell you that.

The software is free. Sudo's "official support" is a gift that
evaporates as soon as you stop treating it like one.

Who Should Read This Book?
Everyone who works on a Unix-like system should understand
sudo.

If you are a system administrator responsible for maintaining a
complicated system, you probably want to assign your application
administrators exactly the privileges needed to do their jobs, no
more and no less. Correct sudo configuration frees up your time
and protects the system from well-intentioned disasters.

If you are an application administrator, you need to do your job.
This means you need the access to perform privileged tasks.
Working via sudo means changing your processes slightly – not in
any major way, but you can go completely bonkers trying to figure
out why sudo cd doesn't work until you understand what's really
happening. An understanding of sudo lets you draft the sudo rules
you need and give them to the system administrator. Even if the
system administrator disagrees, negotiating in sudo policy
language means that you both understand exactly what you're

requesting. You can have specific discussions about who is
responsible for what. No system administrator will tell an
application administrator that he doesn't need the access to manage
his application – she certainly doesn't want that job! The only
question is: how can that access be best accomplished?

If a disagreement between teams is broad enough, this is where
you invoke management to make a very specific decision and set
clear lines of authority and responsibility. In some environments,
getting that manager to take that step is a miracle in itself. But a
mandate to implement sudo lets you corner him. And if you have a
cranky system administrator who claims that granting you
necessary access without giving you root is impossible, this book
will let you categorically refute that. Which, admittedly, is its own
vindictive pleasure.

If you maintain only your personal system, why would you care
about sudo? Even on a personal laptop, some commands merit
more thought and consideration than others. I can understand

wanting to trivially reconfigure the laptop's network, tweak
removable media, or kill that berserk web browser. You probably
do these tasks so often that you understand them well – my fingers
can configure a network card without disturbing my brain. But
tasks you perform less often, such as installing software or
formatting disks, require a little more attention. It makes sense to
permit sudo to run routine tasks without a password, but to require
authentication before upgrading.

Server Prerequisites
This book assumes you're running sudo on a Unix-like operating
system. Sudo is available for BSD and Solaris derivatives, Linux,
and every commercial UNIX. While my reference platform is
FreeBSD, sudo works on all of these systems and more.

My reference implementation is sudo 1.8.8. If you're running an
older version, some features might be absent. A surprising number
of operating system vendors include wildly obsolete sudo
packages. Check the version of sudo on your system by running
sudo –V. If your version is much older than 1.8.8, upgrade. You can
always get the latest source code and a selection of precompiled
packages at the main sudo web site, http:// sudo.ws.

The sudo documentation and this book assume that your
operating system conforms fairly closely to the traditional
filesystem layout. The examples in this book show commands in
standard directories such as /bin, /usr/bin, /sbin, and so on. If your
operating system uses its own directory layout, you'll need to

adjust the examples to match.

Sysadmin Background
Where many important programs require an extensive background
in related software before you can use them, sudo is nice in that it's
fairly self-contained. You can master sudo without understanding
all the programs that users can access through sudo. Sudo is a
system management tool, however; the more you understand your
system, the better you can leverage sudo and the more confidence
you'll have in your configuration. I assume you can install sudo,
either from an operating system package or from source code.

Configuring sudo requires root access on a Unix-like system
and familiarity with a terminal-mode text editor. Sudo defaults to
using vi, but you can use Emacs or any other editor.

That's everything. Really. All the other knowledge you'll pick
up as we go.

Learning Sudo
The goal of this book is to let you replace access to privileged
commands via the su command and the root password with the sudo

command and the user's personal authentication credentials. Once
you're comfortable with sudo, you can use the system's
authentication mechanism to eliminate a user's ability to become
root via su. The root password will become something only used in
a disaster, or perhaps when you're at the physical console.
Eliminating root's generic authentication improves systems
administrator accountability within an organization. But one of the
best ways to make this project fail is to deploy sudo too quickly.

Configuring sudo has its own pitfalls. You'll need to learn how
sudo fits into your environment. Nothing causes quite as much
agonized, frustrated self-recrimination as locking yourself out of
your own server. Don't be too quick to disable root access via su, as
you can use that access to repair a broken sudo configuration. Yes,
sudo has features and tools to verify that your sudo policy is

syntactically correct. A sudo policy that says "nobody can do
anything" is syntactically correct, however. Leave your old root
access in place until you're absolutely confident in the new sudo
arrangements, or become comfortable with booting your system
into single-user mode to repair either su or sudo. A virtual machine
or jail can be a useful tool for destructive learning.

Some operating systems (notably Ubuntu and OS X) provide
root access with sudo rather than su. If you're experimenting with
sudo, and sudo is your main method of accessing privileged
commands, you're in a risky situation. Before mucking with sudo,
enable root access and put a root password on your learning
machine. Make sure it works and that you can get root access
without sudo. You can then freely explore sudo without blocking
privileged access. Once you're comfortable with sudo, you can
fully deploy it without worry.

The official sudo documentation describes various sudo features
in Extended Backus-Naur Form (EBNF), a formal grammar for

program configuration. While familiarity with EBNF is a useful
skill for any sysadmin, I'm choosing to not take you through the
formal definitions. Instead, this book demonstrates the most
important sudo features through snippets of actual configuration
policies.

Also note that this book does not cover all possible sudo
configurations, nor does it cover every available sudo feature. I
cover what the vast majority of systems administrators need, but if
you're running an older operating system, using an old version of
sudo, or administer a Unix-like system that veers wildly from the
common standards, you'll need to dive into the documentation to
identify the sharp edges of your situation. But after reading this
book you'll have a solid grounding in sudo techniques and a good
idea of exactly what information you're looking for and how to use
it.

Avoiding sudo
Many system administrators configure their systems to require
root privileges for routine tasks when they should use the group
privileges supported by the base operating system. We tend to look
at permissions for the user and others, but pay less attention to
group permissions. Before running to sudo to solve an access
problem, see if you can solve your problem with groups instead.
Requiring root privileges to permit access to files or programs is
like requiring use of a sledgehammer to hang a picture.

Use group permissions for programs or files that need to be
accessed by several people, and only those people. As a trivial
example, assume several people maintain the files for a Web site.
You can create a group called, say, webadmins, and assign that group
as the owner of the web site directory and all files in it. Take a look
at our web site's top-level directory.
ls -l
total 94
drwxrwxr-x 2 mike webadmins 512 Jul 12 2013 content

-rw-rw-r-- 1 thea webadmins 16584 Oct 20 2013 logo.jpg
-rw-rw-r-- 1 pete webadmins 767 Oct 20 2013 errata.html
-rw-rw-r-- 1 mike webadmins 2736 Jul 12 2013 index.html
-rw-rw-r-- 1 pete webadmins 167 Jul 12 2011 index2.html
-rw-rw-r-- 1 thea webadmins 66959 Oct 20 2006 banner.jpg

The individual files are owned by a single person – mike, thea, or
pete. But the files are also readable and writable by the group
webadmins. Anyone in this group can read and edit these files, and
anything in the directory beneath this one.

The specifics of adding groups varies among operating systems.
I would tell you to edit /etc/groups, but some operating systems have
special tools specifically for overcomplicating – er, managing –
groups. Use the tool recommended in your operating system
manual.

What Groups am I In?

To identify which groups you are a member of, run id(1).
id
uid=1001(mike) gid=1001(mike) groups=1001(mike),10020(webadmins)

My user account is in the groups mike and webadmins. I could edit
the files in the example above based on my group membership. I
could also edit a couple of those files because I own them and the
permissions let the owner edit the files.

Programs versus Groups

Group permissions won't solve all access problems for programs.
Some programs perform privileged functions, and letting a group
run the program won't give the program the rights to perform the
task. Remember, a program runs with the privileges of the person
running the program.

To continue the saga of our web management team, web servers
run on TCP ports 80 and/or 443. Only root can attach to network
ports below 1024. If a user runs the web server program without
any extra privileges, the program will run as that user account. It
won't have the necessary privileges to attach to those network
ports, and so the web server cannot start properly. Setting the

program permissions so that a user can run the program doesn't
mean that the program will work. If you want your webadmins group
to get root privileges specifically for starting, stopping, and
otherwise managing the web server software, you need to give the
users in that group root privileges. That's where sudo comes in –
you can assign the members of the web management team control
of the web server without giving them anything else.

Book Overview
Sudo is a suite of interrelated programs. You'll get better results
configuring sudo if you understand how these different parts fit
together.

Traditional sudo has two components: the sudo program and the
sudoers policy engine. Chapter 2 gives you an elementary
grounding in both.

The sudoers policy file can only be edited with root privileges.
An error in the sudoers file prevents anyone from getting root
privileges with sudo. If you've disabled root access through other
means, a sudoers error locks you out of the system. The sudo suite
includes a special tool, visudo, just for editing and validating the
sudoers file. Using visudo reduces the odds you'll get really angry
with yourself. I cover visudo in Chapter 3.

Sudo policies quickly become very complicated. Reduce this
complexity through using lists and aliases, as discussed in Chapter
4.

You cannot adjust all parts of sudo's behavior through policy
rules, however. The sudoers policy engine also includes various
default settings and options to change them, which I detail in
Chapter 5.

Some programs offer ways to break out of sudo's restrictions
through shell escapes – not because they were written deliberately
to avoid sudo, but because of their very nature. Chapter 6 covers
ways to prevent getting an unrestricted root shell from text editors
and similar programs.

Most of this book is about the sudoers security policy engine,
but the sudo program itself can also be tweaked. Chapter 7
discusses sudo.conf.

A user's environment can cause all kinds of trouble when used
by privileged programs. Chapter 8 covers cleaning the shell
environment and either blocking or permitting environment
variables in a sudo context.

Sudo can perform basic integrity checking on programs before

running them. You'll see how in Chapter 9.
Rather than maintaining a separate security policy on each of

dozens or hundreds of machines, you can use one central policy
and push it out to all your hosts. Chapter 10 covers realisticly using
a single policy across your network.

Sudo can also get its security policy from your LDAP
authentication server, rather than through the sudoers file. I cover
LDAP and sudo in Chapter 11.

Once you control a user's access to privileged commands, the
next question becomes "what did the user do?" Sudo includes three
different logging systems, each with a different use case. Chapter
12 discusses all three.

Finally, sudo can treat user credentials in a variety of ways, and
if you want to adjust how your sudo install handles passwords and
other authentication data, you will want to read chapter 13.

But before we get to that advanced stuff, let's start with the
basics about sudo.

Chapter 2: sudo and sudoers
The two key components of the sudo suite are the sudo program
and /etc/sudoers. Use the sudo command to run a program with
escalated privilege. The sudoers file defines the policy telling sudo
which commands a user can run, and with which privileges.

sudo 101
You want to run a command under sudo? Run sudo followed by the
command. Here I ask for an NFS mount.
$ sudo mount fileserver:/home/mike /mnt
Password:
mount_nfs: fileserver: hostname nor servname provided, or not known
$

Sudo asks for a password. This is my password, not the root
password. If I enter my password correctly, and if I have
permission to run this command via sudo, I'll get the program's
normal output. And about now is when I remember that the office
support team renamed that machine.

The good news is, sudo remembers that I authenticated, and
won't ask for my password for the next five minutes. Some
operating systems change this time, so you'll want to check the
sudo man page for details. (You can change this time, or use
entirely different authentication, as discussed in Chapter 13.) If
you make a mistake, you can reenter a corrected command

immediately afterwards and not have to retype the password.
The first time you run sudo on any system, sudo prints a few

lines about the importance of thinking before you run privileged
commands. Take this lecture to heart. Privileged commands are
privileged because they can reconfigure, deconfigure, damage,
demolish, or destroy a system.

Running Commands as Another User

Running commands as root isn't always desirable. Some software,
notably databases and application servers, might have a dedicated
user just for themselves. The application expects to run as that
user, and that user's environment is configured to manage the
application. Applications ranging from big Java programs to tiny

tools such as Ansible
[1]

 use this model. You can run a command as
a specific user by adding the –u flag.
sudo –u oracle sqlplus

This starts up the target user's environment and runs the

specified command, much like su -.

Running Commands as Another Group

Every user has a primary group, listed with their account in
/etc/passwd or its equivalent. Groups from additional sources, such as
/etc/group, are considered secondary groups. Some programs only
work if the user's primary group is its preferred group. This gets
really, really annoying, as you would probably prefer to use groups
for their intended purpose rather than babysitting one piece of
picky software. Depending on how your operating system handles
groups and how your software is installed, you might need to
change your primary group to run a command. Use the –g flag and
a group name.
sudo –g operator stupidpickycommand

Sudo lies to the program and tells it that your primary group is
operator.

You could also use a group ID number, by putting a hash mark
before the GID. Your shell might demand you escape the hash

mark on the command line. We tcsh users don't have that
requirement.
sudo –g #100 stupidpickycommand

Sudo runs the command as if your primary group ID is 100.
This is as much as 90% of users know about sudo. Everything

else you learn will make you more of an expert.

sudoers 101
If running sudo seems simple, it's because the real work takes
place in the sudoers file, often called just "sudoers." The sudoers
file contains the rules defining which users can run which
privileged commands. My examples assume that sudoers is
/etc/sudoers, but wherever your package puts it is fine. Never edit the
sudoers file by hand; always use visudo as covered in Chapter 3.

Some operating system packages include OS-specific examples
in their sudoers file for special features that the operating system
supports. Before making any changes to the default sudoers file,
copy the original to a safe location so you can refer to it later.

The sudoers file contains a series of rules, one rule per line.
Every rule uses this general format. Most of the rest of our
discussion on sudoers covers extending, stretching, and generally
abusing this format.
username host = command

Username is the username that this rule applies to. The

username might also be a system group, or an alias defined within
sudoers.

Host is the hostname of the system this rule applies to. We will
share /etc/sudoers across multiple systems in Chapter 10.

The equal sign separates the machine from commands.
Finally, command lists the full path to each command this rule

applies to. Sudo configuration requires full paths to commands.
The sudoers file recognizes a variety of special keywords. One

of the most commonly seen is ALL, which matches every possible
option. To allow all users to run any command on every host, you
could write a sudoers file like this:
ALL ALL=ALL

This is roughly equivalent to giving everyone root access, but
using their own password instead of the root password. Don't do
this. At a minimum, restrict access by username.
mike ALL=ALL

The user mike can run any command on all servers.
You can also restrict sudo access by host. Most commonly

you'll see the server limitation as ALL because most systems
administrators configure sudo on a per-host basis. If you separately
manage every server, defining the server as ALL really means "this
server." As a best practice, however, put the server name here.
(Run hostname to get the server's name.) Chapter 10 covers in detail
assigning sudo privileges by host.
mike www=ALL

The user mike can run any command on the host www.
To restrict a user to running a single command, give the full

path to the command in the last field.
mike www=/sbin/reboot

The user mike can run the command /sbin/reboot on the server www.
Easy enough, right? Now let's complicate it.

Multiple Entries

Each unique combination of access rules needs its own line in
sudoers. It's perfectly legal to use multiple entries like this:
mike www=/sbin/reboot

mike www=/sbin/dump

This quickly gets cumbersome, though. If you have multiple
similar rules, separate individual parts with commas.
mike,pete www=/sbin/reboot, /sbin/dump

The users mike and pete can run the reboot and dump commands on
the host www.

While you can list multiple commands and users in a single
rule, you must use different rules for different access levels.
thea ALL=ALL
mike,pete www=/sbin/reboot, /sbin/dump

The first rule declares that system owner thea can run any
command on any host. She has graciously allowed minions mike

and pete to run two commands on the host www.

Permitting Commands as Other Users

Some applications, usually databases or commercial Java
programs, must be run by specific users to work correctly. Sudo
lets you run commands as a user other than root, if the sudoers

policy permits it. List the user name in parentheses before the
command.
kate beefy = (oracle) ALL

The user kate can run any commands on the server beefy, but only
as the user oracle. She can fully manage the database, but has no
special privileges otherwise.

Users with access to specific user accounts can also have
separate access to root-level privileges.
mike beefy = (oracle) ALL
mike beefy = /sbin/mount, /sbin/umount

mike can mount and unmount disks, as well as manage the Oracle
database.

Long Rules

Once you list multiple commands by full path, multiple users, and
multiple machines in a single rule, individual sudoers lines can get
really long. End a line with a backslash to indicate that the rule
continues on the next line.

kent,mike,pete beefy,www,dns,mail = /sbin/mount, /sbin/umount, \
/sbin/reboot, /sbin/fsck

Whitespace and additional lines make rules easier to manage.
Use them liberally.

Edges

Here are a couple last points about sudoers.
Sudo processes rules in order, and the last matching rule wins.

If two rules conflict, the last matching rule wins. We'll see how
this comes into play as we build complex sudoers rules.

The exclamation point (!) is the negation operator. It's used to
exclude one item from a list. You could say that a rule applies to
everything except a specific user, host, or command. It also turns
off options. Remember that the exclamation point means "not."
The rest of this book has many examples.

Finally, a sudoers file must always end in a blank line. If visudo
indicates an error on the last line, but the syntax all looks correct,
verify that you have a blank line at the end of your policy.

Now that you have a basic grasp of sudo and sudoers, let's create
our own sudoers file and test it with sudo.

Chapter 3: Editing and Testing Sudoers
If sudo cannot parse /etc/sudoers, it will not run. If you rely on sudo
to get root privileges on your server and you break sudo, you lock
yourself out of the server's privileged commands. Fixing sudoers is
a privileged command. This is a bad situation. Don't put yourself
here. Sudoers must contain valid syntax. Sudo includes a tool
specifically for editing sudoers, visudo.

Visudo protects you from obvious sudoers problems. It locks
/etc/sudoers so that only one person at a time can edit it. It opens a
copy of the file in your text editor. When you save the file, visudo
parses it and checks the sudo grammar. If your new sudoers file is
syntactically valid, visudo copies the new file to /etc/sudoers.

Remember that "syntactically valid" is not the same as "does
what you want."

Visudo defaults to using the vi editor. While all sysadmins must

have a passing familiarity with vi
[2]

, that doesn't mean you need to

do everything with it. Visudo respects the $EDITOR environment
variable, so you can use your preferred text editor.

Set your preferred editor, and we'll go on to editing sudoers.

Creating /etc/sudoers
While most operating systems include a sample or default sudoers
file with lots of examples, you're here to learn. Learning means
making your sudoers policy from scratch, just like a cake but not
as delicious. Move the default sudoers file somewhere so you can
use it as a reference. When you run visudo, it creates a new file.
visudo

Create a very simple sudoers file, giving your account full
privileges to the server. Here Thea gives herself unlimited access
via sudo.
thea ALL = ALL

Save the file and exit. With a simple rule like this, permitting
one user full access to the machine, your text editor should exit
cleanly and visudo should install the rules.

Now, as a learning exercise, break sudoers. (Ubuntu and Apple
users, you do have a root password, right?) Run visudo and pound
keys to create a line of garbage on the bottom of the file. Save and

exit. You'll see:
visudo
>>> /usr/local/etc/sudoers: syntax error near line 3 <<<
What now?

If you press e, visudo returns you to the text editor to fix your
problem. Go to the line specified and see what's going on. Remove
the garbage, and visudo will let you exit the text editor and install
the policy.

To throw away your changes and retain the old sudoers policy,
press x. An old working sudoers is better than the new broken one.
I did this more than once while learning sudo, so don't let it worry
you at this stage.

If you press Q, you install the broken file as /etc/sudoers. When
sudo cannot parse /etc/sudoers, it immediately exits. Pressing Q tells
visudo to break sudo until you log in as root and fix it. Do not press
this button. You won't like it.

If you forget these keys, entering a question mark prompts
visudo to print out your options.

Remember that a valid sudoers file is not the same as a useful
sudoers file. A blank sudoers, denying all privileges to everyone, is
perfectly valid and very quick to parse. Visudo also accepts a
sudoers file where every rule specifies users and commands not on
the system, or a server other than the local system.

When you're creating the sudoers file for your network, I
strongly recommend that the last rule gives your account the right
to run visudo. If everything else fails, you can fix the rules.
thea ALL = /usr/sbin/visudo

Remember that sudo processes rules in order, and the last
matching rule wins. Put your emergency rescue rule at the very end
of the file.

Testing sudoers
You've written your first sudoers security policy. At the moment,
you can read it pretty easily – it only has two lines: your full access
entry and your emergency visudo entry. But when your policy gets
more complicated, how can you tell what a user can access?

Users can use sudo's –l flag to list their privileges.
$ sudo -l
Password:
User thea may run the following commands on this host:

(root) ALL
(root) /usr/sbin/visudo

$

When Thea enters her password, she sees what commands she
can run. This output might look a little odd, but it should also look
a little familiar. It's a pretty standard sudoers entry, with the user
and host removed. Remember, if you don't specify a user in
sudoers, sudo runs the command as root. This might be a little more
obvious with a slightly more complicated example:
$ sudo -l

User thea may run the following commands on this host:
(root) ALL
(oracle) ALL
(root) /usr/sbin/visudo

Thea can run all commands as root, all commands as the user
oracle, and visudo as root.

That's fine for a user to check their privileges, but what about
the system administrator? How can you be sure that your sudoers
policy works the way you think it should? Use the –U flag along
with –l to specify a user.
sudo -U mike -l
User mike is not allowed to run sudo on www.

Only root and users that can run ALL commands on the current
host can use –U. With my unprivileged user account, I can only
check my own access. Sudo sees that Thea has the magic ALL
attached to her security policy, so she can view my access.
Otherwise she'd have to run sudo –u mike sudo -l, which is kind of daft.

We'll use sudo –l throughout this book to see how complicated
sudoers policies expand into user-visible rules. I recommend using

-U after a change to verify the user's access before telling him that
the access he requested is available.

Chapter 4: Lists and Aliases
Writing a sudoers policy is simple. You just write down who can
run what on which machine. What could be easier? Now repeat that
for five hundred users. Make sure users with a common function
have identical security rules. And those Oracle database
administrators? You must include every single command each
administrator needs to run as a separate user for each and every
one of them.

If you had to write all this out in sudoers, you'd just spray-paint
the root password on the wall of the break room instead.

To make things more complicated, Unix-like systems get
information from a whole bunch of sources. Some of them aren't
even vaguely Unixy. If a server is attached to an Active Directory
or NIS domain, you might need to use that information in your
security policy. Perhaps you want a rule that "all users in the
Domain Admins group can mount CIFS shares." You need to know

how to draw this information into your sudoers policy.
Sudoers offers aliases to condense and simplify security

policies. An alias is a predefined list of items that you can use in
sudoers rules. You can use aliases anywhere you use a username,
host, or command. Changing an alias is a simple, effective, and
guaranteed consistent way to make changes in complex sudoers
files.

But before we get into any of that, let's look at wildcards.

Wildcards
A wildcard is a special symbol that can match different types of
characters. Sudoers lets you use wildcards to match hosts,
filesystem paths, and command-line arguments. Sudoers wildcards
look a lot like shell or Perl regular expressions, but aren't.
Wildcards are built on the operating system's glob and fnmatch

functions. If your operating system's glob and fnmatch functions
support character classes, you can use classes in wildcards. If you
don't know what character classes are, don't worry about it.

Matching Numbers and Characters

Suppose your network has several Domain Name Service servers,
all with hostnames like dns1, dns2, dns3, and so on. You probably
wouldn't give a non-DNS server a name starting with those
characters. Your DNS administrator needs full access to these
servers, so you could use a wildcard in the host definition.
fred dns? = ALL

The question mark (?) matches any single character. This
sudoers rule applies to any host dns0 through dns9. It also matches
dnsA through dnsz. Maybe you only have DNS servers 1 through 4,
don't foresee any expansion, and don't want to automatically give
privileged access to your regular DNS admins on any new DNS
servers that appear.
fred dns[1-4] = ALL

By specifying a range of characters in brackets, you restrict the
match.

You can use a range of letters in brackets.
pete www[a-z] = ALL

Pete can run any command on the servers wwwa through wwwz.
Not many people use letters this way, but it's an option. You can
also use capital letters, and the range A-z matches all capital and
lower case letters.
pete www[A-z] = ALL

If you want to match multiple characters of a type, append an
asterisk.

fred dns[0-9]* = ALL

If you eventually have the server dns9183, Fred can manage it. He
will be very tired by then, I'm sure, so hopefully you'll use a user
alias to get him some help.

Matching Everything

The asterisk character, more generally, matches any number of
characters or none at all. It matches everything, with some
deliberate exceptions. If Thea needs Pete to manage a server's core
functions, she could give him a rule like this:
pete ALL = /sbin/*, /usr/sbin/*, /usr/local/sbin/*

Pete can run any command in any of the common sbin
directories. Visudo is probably in one of those directories, so Pete
can change his own privileges. Thea needs to learn the fine points
of access control, or maybe move visudo to a private directory.

When used for commands, the asterisk does not match the slash
character used to separate directories. If you want a user to have
access to all the programs in a subdirectory, you must explicitly

specify that subdirectory.
pete ALL = /usr/bin/*, /usr/bin/X11/*

When used for command-line arguments, however, the asterisk
does match the slash. Commands might include slashes in
arguments, after all. They might include whitespace, any text

strings, or who knows what.
[3]

This means sysadmins need to take care using wildcards for
command-line arguments. It's hard to beat the textbook example of
a dangerous wildcard rule:
pete ALL = /bin/cat /var/log/messages*

Pete can see the contents of /var/log/messages, as well as the rotated
logs such as /var/log/messages.1. That seems harmless enough. But
wildcards match any number of characters, so Pete could run a
command like this:
$ sudo cat /var/log/messages /etc/shadow

This surely isn't what the system owner meant.
It's pretty easy to work around this. The question mark matches

a single character.
pete ALL = /bin/cat /var/log/messages, \

/bin/cat /var/log/messages??

Or Thea could use a range of numbers.
pete ALL = /bin/cat /var/log/messages, \

/bin/cat /var/log/messages.[0-9]

Narrower number ranges work, of course.

Matching Specific Characters

Sometimes you must match select characters, rather than a range.
You might need to match any of the characters A, c, or q. There's no
way to express these as a range, but you can match specific
characters in square brackets.
pete ALL = /opt/bin/program –[Acq]

This pattern matches a single character specified within the
brackets, allowing you to safely permit a user access to specific
command-line arguments.

The characters *, ?, [, and] have specific meanings in sudoers. If
you need to match one of these characters, put a backslash before

it. Here we allow the arguments [and].
carl ALL = /opt/bin/program –[\[\]]

You can now permit any combination of arguments you desire.

Blocking Everything

Maybe you specifically want to forbid using any arguments at all.
Two double quotes with no space between them tell sudoers to only
match the empty string.
dirk ALL = /opt/program ""

Dirk can run the program specified only if he doesn't give any
arguments.

Wildcards are especially useful combined with aliases.

Aliases
An alias is a named list of similar items. You can use aliases to
refer to the user running the command, the hosts sudo is run on, the
user the command is run as, or the commands being run. As a
simple example, let's make an alias that includes the commands for
backing up and restoring Unix-like systems using traditional dump.
Cmnd_Alias BACKUP = /sbin/dump, /sbin/restore, /usr/bin/mt

A user who can run these commands can create and deploy
backups. Who has this thankless job?
mike ALL = BACKUP

Lucky me.
For one user, an alias might not seem like much of an

advantage. If you have several backup operators, however, you can
create a alias for their usernames. Here I create the
TAPEMONKEYS alias for the people who manage backups.
User_Alias TAPEMONKEYS = mike, pete, hank

When you combine these aliases, you can write a sudoers rule
like this:

TAPEMONKEYS ALL = BACKUP

Two alias declarations and one rule replace a much longer rule.
You could write the exact same rule without aliases.
mike,pete,hank ALL = /sbin/dump, /sbin/restore, /usr/bin/mt

This is longer and more difficult to read. When you add
commands or users, it grows longer still. And successful tape
monkeys will pick up more duties, lengthening the command list.

Using aliases makes personnel and task changes instantly
percolate throughout sudoers. There's no risk of dozens of cut-and-
paste changes numbing your brain.

Alias names can only include capital letters, numbers, and
underscores. The name must begin with a capital letter.
CUSTOMERS is a valid alias name, but _CUSTOMERS and
2CUSTOMERS are not. You must define aliases before using
them, so people normally put all aliases at the top of sudoers.

Now let's look at the four types of data found in sudoers, how to
extend them, and how to use them in aliases.

User Lists and Aliases
Remember in Chapter 1 when I told you that every sudoers rule
started with a username? Yeah, well… that's not exactly correct.
Strictly speaking, each rule starts with a list of users. A username
is the most common type of entry on this list, but there are more.
There are many more.

The usernames sudoers recognizes aren't necessarily usernames
from /etc/passwd. My organization manages user accounts via LDAP,
and sudoers recognizes LDAP usernames exactly like local
usernames. But my particular LDAP configuration restricts
usernames so they look like local ones. You might need to pull in
information from Microsoft Active Directory, or /etc/group, or a user
alias, or some obtuse directory system only used by three New
Guinea tribesmen and your cutting-edge organization.

Sudoers recognizes seven types of user lists.

Operating System Groups

Sudoers accepts groups from the operating system. Give the group
name with a percent sign (%) in front of it. I could create the
/etc/groups entry dba, add my database administrators to it, and
reference it in sudoers.
%dba db1 = (oracle) /opt/oracle/bin/*

Everyone in the dba group can run all the commands in the
directory /opt/oracle/bin, as oracle, on the server db1.

Some operating systems have a system group for users who can
become root (admin on Ubuntu) or who may use the root password
(wheel on BSD-based systems). The default sudoers policy has an
example of giving these users unlimited system access.
%wheel ALL = (ALL) ALL

The people in this group don't get any additional access through
this rule – members of wheel can already use su to become root. But
this lets people acclimate to using sudo in their day-to-day work.

Remember, use the id command to see which groups your
account is a member of.

User ID

You can use user ID numbers in sudoers by putting a hash mark (#)
before them.
#10000 ALL = /sbin/reboot

Any account with the UID 10000 can reboot any machine via
sudo. I don't know why you would want this user to run around
rebooting everything, but I've seen configurations more bizarre
than this.

If you have multiple user accounts with identical user IDs, this
rule applies to all of those user accounts.

Group ID

If you don't want to use group names, use group ID numbers
prefaced by %#. On a traditional BSD system, wheel is group 0.
%#0 ALL = ALL

If your user name service is flaky, you might want to go this
route. I recommend you fix the name service instead, but you
might not control that.

As with user IDs, if you have multiple groups with the same
GID, this rule applies to both equally.

Netgroup

If you're managing your systems via NIS, your next step should be
to stop using NIS. But until you get to that point, you can reference
netgroups in sudoers rules by starting them with a plus sign (+).
+webmasters ALL = /opt/apache22/bin/*, /opt/apache22/sbin/*

Your webmaster team can run any of the programs in the two
specified Apache directories.

Non-Unix group

If your version of sudo has the necessary plugins or additional code
to support checking groups against information sources beyond the
norms of Unix-like systems, you can reference those in sudoers.
Preface them with %:.
%:Admins ALL = ALL

Many non-Unix directory services use spaces or non-ASCII

characters in group names. These characters must be escaped
somehow. Escaping special characters is a pain, so enclose the
entire group name (including the leading %:) in double quotes.
"%:Domain Admins" ALL = ALL

When in doubt about non-Unix groups, use double quotes.
When you run id to see which groups your account belongs to,

non-Unix groups appear in the output after the standard Unix
groups.

Non-Unix Group ID

So you've attached your system to a non-Unix directory and you
want to use the number of those foreign groups rather than the
names? No problem. Put %:# before the group number. Yes, that's a
percent sign, a colon, and a hash mark.
%:#87119301 ALL = ALL

If you find yourself needing to do this, however, I suggest that
you step back and reconsider how you're using your directory
service.

User Aliases

Your list of usernames can include a user alias, so we'd better
discuss those. A user alias is a list of system users. All user alias
definitions start with the string User_Alias.
User_Alias SYSADMINS = thea
User_Alias MINIONS = mike, pete, hank, dirk

Here, the user alias SYSADMINS contains one user, thea. In the
event that the organization gets another full systems administrator,
adding their username to the alias will give the new person the
same rights as Thea.

The user alias MINIONS contains four users. When Thea uses
this alias in a sudoers rule, it affects all four minions identically.
Other rules might alter an individual minion's access, of course.

You can use any type of usernames in a user alias.
User_Alias WHINERS = "%:Domain Users", %operator, MINIONS

Remember, alias names can only have capital letters, numbers,
and underscores. The alias name must start with a capital letter.

Host Lists and Aliases
The hosts entries in sudoers accepts values other than pure host
names. But let's talk about those pure host names first.

Sudo determines the name of the local host by running hostname.
It does not rely on DNS, /etc/hosts, LDAP, or any other name
directory. The traditional host name localhost doesn't work in a rule
unless that's what hostname returns. (You can change this behavior
with the fqdn option, which we'll examine in Chapter 10.) This
means that your hostnames in sudoers must match the hostname
set on the local machine. Change the hostname and sudo breaks. If
hostname returns a fully qualified domain name (e.g.,
www.michaelwlucas.com instead of www), then sudoers only needs the
machine name, not the full domain name.

In addition to using the local host name, sudoers can accept a
variety of IP addresses and netgroups.

IP Addresses

Sudo can differentiate between host names and IP addresses, so
you don't need to put any special markers in front of an IP address.
mike 192.0.2.1 = ALL

Sudo checks all of the machine's real network interfaces for IP
addresses. It also checks interfaces attached to real interfaces, such
as VLAN interfaces and bridges. It ignores logical interfaces such
as the loopback.

You can also use networks in sudoers, specifying netmasks
either in dotted-quad (192.0.2.0/255.255.255.128) or Classless
Inter-Domain Routing (CIDR) format (192.0.2.0/24). If any
interface on the machine is in that network, the sudoers rule
applies.
pete 192.0.2.0/24 = ALL
mike 198.51.100.0/255.255.255.0 = /etc/rc.d/named *

For machines with multiple interfaces on different networks,
remember that sudo uses the last matching rule. If the rules for two
networks conflict, the last rule wins.

Netgroups

YP/NIS sites can refer to netgroups in sudoers by putting a + in
front of the name.
carl +db = ALL

For most of us, however, the way to refer to groups of hosts will
be with host aliases.

Host Aliases

A host alias is a named list of hosts. Indicate a host alias with the
string Host_Alias. A host alias can include any variation of
hostname recognized by sudo.
Host_Alias WWW = www[1-3]

You can include one host alias in another.
Host_Alias DMZ = 192.0.2.0/24, 198.51.100.0/255.255.255.0, WWW

Like user aliases, host alias names must contain only capital
letters, numbers, and underscores, and must start with a capital
letter. You can then use this alias in a sudoers rule.
mike DMZ = all

Now I have full privileges on the hosts in the DMZ group.

RunAs Lists and Aliases
You can grant a user permission to run a command as another user
by putting the target username in parentheses before the command.
We saw how to do this earlier:
chris beefy = (oracle) ALL

Chris can run any commands on the host beefy as the user oracle.
These are called RunAs privileges.

RunAs Lists

Like usernames, RunAs users are lists. Suppose you have multiple
database platforms – Oracle, MySQL, and Postgres. Your database
team needs access to run commands on any host as the database
user. Any type of username that's valid in a list of users is valid in
a RunAs statement.
carl ALL = (oracle, postgres, mysql) ALL

Database administrator Carl can run any command on any
server, so long as he runs it as one of the database user programs.

If you have non-Unix-style users who can run commands, you

can write sudoers rules that include them.
pete ALL = ("%:Domain Users", %operator, lpd) ALL

You can also let a user run a command as a member of a group,
rather than as a specific user. Standard Unix convention is to
specify file ownership with a username, a colon, and a group name.
To write a rule that permits running a command as a group
member, skip the username. You might have log files that are only
visible to members of the group staff.
%helpdesk ALL = (:staff) cat /var/log/secure

Helpdesk staff can run this command as if they were in the
group staff.

RunAs Aliases

You're probably getting the hang of this by now, but to be complete
let's talk about RunAs Aliases. A RunAs alias lets you group users
needed to run commands. The name of a RunAs alias can only
include capital letters, numbers, and underscores, and must begin
with a capital letter.

Runas_Alias DB_USERS = oracle, postgres, mysql

You can use the string DB_USERS anywhere you'd want to use
a list of usernames.
carl DB = (DB_USERS) ALL

We now have a single, readable rule that lets Carl run anything
as a database user, on any server in the DB alias. If Carl gets any
help in database administration, the system owner can replace
Carl's name with, say, a DB_ADMINS alias.

Command Lists and Aliases
In some ways, lists of commands are the simplest lists. A
command can either be a path with a wildcard (/sbin/*) or a full
command name (/sbin/dump). You can put these commands in lists,
as we've already seen.
mike ALL = /sbin/dump, /sbin/restore, /usr/bin/mt

There's no way to pull in non-Unix commands. What's on the
filesystem is what you have to work with.

Command Aliases

Command aliases are lists of commands assigned a name, labeled
with Cmnd_Alias. The rules for command alias names are exactly
the same as other aliases. Command aliases can include other
command aliases.
Cmnd_Alias HELPDESK = /usr/bin/passwd, BACKUP

You can use a command alias anywhere you'd use a command.

Command Tags

You can use tags before a command list or command alias. A tag is
a flag that changes how the command runs. I'll show exactly what
the ten tags do in more appropriate sections of the book, but you
should recognize a tag when you see it. A tag appears before the
command list, separated from the commands by a colon.
mike ALL = NOEXEC: ALL

Tag names are all capitals, without any numbers or symbols. A
tag affects all the commands in the list following the tag. We'll use
the NOEXEC tag in Chapter 6, so don't worry about what it means
right now.

Excess Rules
Some rules are more generous than they need to be. Let's
reconsider Carl's database access.
carl ALL = (oracle, postgres, mysql) ALL

Carl can run commands as the three database users on all
computers in the organization. He doesn't need this access on all
the machines, however. Most machines have only one database
server or client installed on them. You see very few systems
running both MySQL and Postgres.

In many environments, this extra access probably doesn't
matter.

If Carl tries to run a command as oracle on a system running
PostgreSQL, the command will fail.
$ sudo -u oracle sqlplus
sudo: unknown user: oracle
sudo: unable to initialize policy plugin

If the user exists, thanks to the wonders of LDAP, but there's no
software, the command will fail. If the software exists, but isn't

configured, the command will fail. If the software is configured
and the command fails, the database probably isn't running. And if
Carl tries to configure Oracle on the PostgreSQL server, senior
sysadmin Thea needs to have sharp words with him. Probably
involving a tire iron.

When you write complicated policies, you will need to decide
how much work you're willing to do to eliminate this excess
access. Is Carl's ability to configure PostgreSQL on the Oracle
server a risk? If it is, eliminate it.

Negation in Lists
Remember the ! character I brought up back in Chapter 2? We can
use the negation character to exclude items from a list.
User_Alias NOTSCUM = %wheel, !mike
NOTSCUM ALL = ALL

The members of group wheel, with one exception, get full
access to the system. Thea says that when I tell her what I did with

her comfy chair, I might get my access back.
[4]

Negation is very powerful for host, user, and Run As aliases. It
is not only not useful for command aliases, it is actively harmful.
Lists of commands include either the full path to specific
commands, or a directory with a wildcard.

You'd think negation would be effective for command lists. But
users can copy files. They can create links to files. They can find a
way to access a file through a variety of paths. To see why this is a
problem, here's an alias for the commands useful to become root.
Cmnd_Alias BECOME_ROOT = /bin/sh, /bin/bash, /bin/tcsh, /usr/bin/su

Here's a sudoers rule that excludes those commands.
%wheel ALL = ALL, !BECOME_ROOT

This seems to work. If I try to run a forbidden command, sudo
tells me I'm not allowed and logs the error. Being an annoyingly
clever user, though, I try the following:
$ cp /bin/sh /tmp/mycommand
$ sudo /tmp/mycommand
id
uid=0(root) gid=0(wheel) groups=0(wheel),5(operator)

Oops. The sysadmin excluded /bin/sh, but not the copy of /bin/sh

installed as /tmp/mycommand. And certainly not the copy of zsh that I
compiled myself and installed in my home directory.

You cannot use exclusions to remove commands from a list.
There is no way to exclude commands securely or safely. The sudo
authors have documented this extensively, have begged people not
to do it, and still sysadmins all over the world insist on doing this.
Nothing screams "I don't read the instructions!" like using
exclusions in sudoer command lists. Exclude users. Exclude

machines. Even exclude Run As aliases. But don't exclude
commands.

Aliases in Sudo
A user who checks his privileges with sudo –l will see the expanded
aliases, not the aliase names or their definitions.
$ sudo -l
Password:
User mike may run the following commands on this host:

(root) ALL, !/bin/sh, /bin/bash, /bin/tcsh, /usr/bin/su

I don't see the BECOME_ROOT alias, so I don't know how Thea
wrote this policy. I do see how to get root on this machine, without
Thea being any wiser. Because a sysadmin who doesn't configure
sudo correctly certainly isn't reviewing the logs either (see Chapter
12).

Aliases are a simple way to rationalize and simplify your sudoer
policy. Now let's see how to change the core of how sudo behaves
through options and defaults.

Chapter 5: Options and Defaults
Sudo's standard behaviors accommodate the most common use
cases. The interesting thing about the most common use case,
however, is how uncommon it is. You can change most of sudo's
core behavior by setting various options in sudoers. These options
can be set as global defaults or attached to specific rules, hosts,
users, or commands.

Set defaults with Defaults statements. A sudoers policy can have
multiple Defaults statements. If multiple Defaults statements conflict,
the last matching one applies. We'll see lots of sample Defaults

statements throughout this chapter.
Most options that affect specific sudo functions have their own

chapter, and are discussed in that chapter. That is, we cover
environment-affecting options in Chapter 8 and logging options in
Chapter 12. This chapter covers how to use options in general, both
for specific groups and as defaults. We'll start by using options in

Defaults statements.

Option Types
Options can be either boolean, integers, integers or lists usable in
boolean context, or strings.

Boolean Options

Some options affect sudo with their mere presence. They're toggle
switches, turning behaviors on and off. Some boolean options are
on by default, even when they don't appear in sudoers. Deactivate
them by putting an exclamation point before them.

For many years, when a user typed the wrong password, sudo
responded by insulting them. The sudo developers changed this a
while back, apparently in an effort to make sudo seem more
professional or enterprise-friendly. Insulting users is a sysadmin's
prerogative, however, and automating insults demonstrates
sysadmin competence. Put the insults option in sudoers to make sudo
insult users who can't type their password.
Defaults insults

When the user types the wrong password, he'll receive
motivational commentary in addition to a password prompt.
$ sudo -l
Password:
Sorry about this, I know it's a bit silly.
Password:
stty: unknown mode: doofus
Password:
Harm can come to a young lad like that!
sudo: 3 incorrect password attempts

If your sudo installation insults users by default, you can disable
the insults by disabling the option.
Defaults !insults

Users now get the boring "Sorry, try again" message.
Some operating system packagers deliberately remove this

option from their version of sudo. If yours does this, I recommend
complaining bitterly until they see the error of their ways.

Integer Options

Some options take a number as an argument. Use an equal sign to

separate the argument from the option name. These options set a
limit for this sudo option.

Common wisdom on passwords is that they should include
mixed-case letters, numbers, and assorted symbols. Oh, and they
should be long. This combines to make them hard to type,
especially when the password isn't visible as you type it. Your
users might need more than three tries to type their password
correctly. Here, Thea lets users try to type their password five
times before kicking them out of sudo and logging an error.
Defaults insults, passwd_tries=5

Here we combine two options in one Defaults statement,
separated by a comma. You can use as many options on a line as
you want, but I recommend grouping them by function.

Integers usable in Boolean Context

If an integer option sets a limit on sudo's behavior, these options
let you disable a feature by setting the limit to zero. Do you
remember that sudo caches the fact that you have authenticated for

five minutes? You can change the number of minutes it
remembers.
Defaults insults, timestamp_timeout=10

The longer sudo caches the authentication, however, the greater
the risk that the user will walk away from a privileged terminal
session. Many users don't lock their workstations when they leave
their desk. Using a longer timeout increases the odds of a security
problem.

The way around this, of course, is to completely disable the
authentication timeout. Require the user to enter a password every
time they run sudo. By setting the timeout to zero, you entirely
disable authentication caching.
Defaults insults, timestamp_timeout = 0

Depending on your environment, and what commands people
use for sudo, disabling the authentication timer might be too harsh.
But this makes sense if you're using strong authentication methods,
as we'll see in Chapter 13.

String Options

Some options need arguments like text or a path to a file.
When a user mistypes his password, there's a middle ground

between insulting the user and offering a bland "Sorry, try again."
You can use a custom message by setting the badpass_message
option.
Defaults badpass_message="Wrong password. I have noted your incompetence. Try
again!"

When the user mistypes his password, sudo displays the custom
message. I put the message in quotes because it has special
characters, like spaces and the exclamation point. Options that take
a file path as an argument don't need the quotes.

Setting Options for Specific Uses
Options aren't just global defaults. You can set options on an
individual basis, so that they only affect certain users, commands,
or specific machines.

Per-User Defaults

Certain users should get different default settings than others.
Perhaps you need to set different authentication timeouts for some
users, or a different password prompt, or some whiner complained
that the system insulted him. You can change the defaults for
specific users. Use the keyword Defaults, a colon, the user or a list of
users, and the option.

The first time you run sudo on any machine, it prints a short
lecture reminding you to be careful. Most users need the reminder.
But system administrators are continuously mindful of their
responsibilities and are painfully aware of the damage they can do

with a misplaced keystroke.
[5]

 They don't need reminding, and

once you've seen the lecture hundreds of times, it only annoys you.
Here Thea disables the lecture option for herself.
Defaults:thea !lecture

She could also disable the lecture for everyone allowed to use
the root password.
Defaults:%wheel !lecture

The people who have root privileges will now be very slightly
less annoyed. Which can only be good.

Per-Host Defaults

To override sudoers defaults on a per-host basis, use Defaults, an at
symbol (@), the list of hosts or host alias, then the option.
Anything that can be in a hosts alias can appear here.
Defaults lecture
Defaults@TESTHOSTS !lecture
Defaults@PRODUCTION lecture=always

Here we have two host aliases. In the test environment, users are
not lectured. In production, however, every time sudo asks for their
password it also lectures them. I recommend reserving this last

feature for truly troublesome users.

Per-Command Defaults

To set per-command or command alias defaults, use Defaults and an
exclamation point.

Perhaps some users can be trusted, most of the time. But maybe
a specific user has difficulty with a certain command. Or maybe a
certain problem has happened once too often.
Defaults !lecture
Defaults!/sbin/fdisk lecture=always, \

lecture_file=/etc/disklabel-lecture

The lecture_file option lets the sysadmin write a custom lecture
message. In this case, /etc/ disklabel-lecture contains a text message to
replace the standard lecture.
If you relabel a vital disk again, Thea will
leave the tatters of your still-living body
in the break room as a warning to others.

The lecture appears only if the user must enter their password,
but that's better than nothing. To make the lecture appear every

time he uses this command, require the user to enter a password
every time.
Defaults!/sbin/fdisk lecture=always, \

lecture_file=/etc/disklabel-lecture, \
timestamp_timeout=0

By setting timestamp_timeout to zero for this specific
command, Thea removes the timeout on authentication. Whenever
a user runs fdisk, sudo displays the threat – er, lecture – and
demands a password.

Tags can be defaults.
Defaults!ALL noexec

This default sets the NOEXEC tag set on all commands.

Per Run As Defaults

Lastly, to set a default for a Run As rule, use a right angle bracket
between Defaults and the user list.
Defaults>operator lecture

Anyone who runs commands as operator (normally, the backup
team) gets lectured.

Conflicting Defaults

Consider the following sudoers policy.
Defaults:mike insults
Defaults!/usr/bin/su !insults
mike ALL = /usr/bin/su

The first line says to insult me whenever I run sudo. The second
line says that whenever someone runs su via sudo, don't insult
them. The third line gives me the right to run su. The defaults
conflict. What happens?
$ sudo su
Password:
Sorry, try again.

Sudo does not insult me.
Remember, sudoers policies work on a last match basis. The last

matching Default statement says "don't insult su users." To insult
me, reverse the order of the two Defaults statements.

Now that you know how to use options, we'll see them in play
through the rest of this book.

Chapter 6: Shell Escapes, Editors, and
Sudoers Policies
Unix-like operating systems and their software grow new features
like moss grows on the Oregon Coast. They're everywhere. Many
older but popular programs, such as the pagers more and less and the
editor vi, let users run shell commands from within them. Try it
yourself – view a file with more. While you're still looking at the
file, enter an exclamation point and then a shell command such as
ls or ifconfig. The command will run. You'll see the output, then more

returns to the text it originally displayed.
Systems administrators who worked on dumb terminals or over

SLIP connections desperately needed the ability to escape to a
shell. You didn't want to leave a file just to verify if the IP address
on your machine matched something in the file. Now that we can
have umpteen SSH sessions open to a single machine, shell escapes
aren't used so much.

Unless you use sudo. Then shell escapes become really
awesome, in a bad way. Consider the following sudoers policy:
mike ALL = /usr/bin/more

I can use more to view files on any system. That's cool. I can
look at, say, /var/log/auth.log to see why a user's SSH connections fail.
But I'm running more as root. That means any commands that I can
get more to run, will run with root privileges. I run sudo more on a
file, then enter:
!visudo

I'm in visudo, the sudoers editor! I can edit the policy to add a
rule permitting me to run all commands on all machines, save, and
exit. Then I quit more and check my privileges.
$ sudo -l
User mike may run the following commands on this host:

(root) /usr/bin/more
(root) ALL

If the senior sysadmin discovers this, she'll have my head on a
platter. Again.

If a user has access to a limited subset of privileged commands,

you must ensure that he cannot bootstrap himself into greater
access. Do this either through restricting the commands, or by
prohibiting commands from running other commands.

Command Restrictions
One way to eliminate shell escapes is to verify that no permitted
program includes shell escapes. This is hard – many programs have
shell escapes, not just pagers and text editors. You could eliminate
the pager issue by only allowing the users privileged access to
cat(1), requiring them to dump the output to a pager.
$ sudo cat auth.log | less

This eliminates only shell escapes from pagers, however. To
follow this method, you must carefully check the documentation of
every permitted command for shell escapes. And not all
documentation is complete.

Forbidding Commands from Executing Commands
Shell escapes aren't the only way to break out of a program. Many
programs run other programs. We've already looked at visudo,
which runs a text editor for you. On modern Unix-like operating
systems, sudo can stop programs from executing other programs.
Sudo uses the LD_LIBRARY_PRELOAD environment variable to
disable program execution. Every modern BSD, Linux, and Unix-
like operating system supports this variable, but check your
system's documentation if you're uncertain.

The EXEC and NOEXEC tags control whether a command may
execute further commands. EXEC, the unwritten default, permits
execution of commands by other commands. NOEXEC forbids
execution. Put the tag before the command in your sudoers rule.
mike ALL = NOEXEC: ALL

What does this do? Use sudo more to examine a file, and try a
shell escape into visudo. Instead of getting into the visudo editor,
more just prints a message like "done" or "exec failed." Why is it

done? It tried to run the command and failed.
The NOEXEC tag even disables running visudo via sudo.

$ sudo visudo
visudo: unable to run /usr/bin/vi: Permission denied
visudo: /usr/local/etc/sudoers.tmp unchanged

The visudo command tries to run a text editor. Visudo cannot
run additional commands, so it fails.

A global NOEXEC tag is kind of harsh, though. Some
commands legitimately spawn other processes to do tasks for
them. For example, the newaliases command legitimately runs
sendmail. I recommend using a global block, and then whitelisting
specific commands.
mike ALL = NOEXEC: ALL, EXEC: /usr/bin/newaliases

The newaliases command is permitted to spawn new processes. A
very savvy intruder could perhaps get newaliases to spawn a
privileged shell, but that attack considerably raises the skill needed
to penetrate your system.

A whitelist of permitted commands is a perfect application for a

command alias.
Defaults!ALL noexec
Cmnd_Alias MAYEXEC = /usr/bin/newaliases,/usr/local/sbin/visudo
mike ALL = ALL, EXEC: MAYEXEC

A user could run sudo /bin/sh, but that new shell won't be able to

execute any commands other than those built into the shell.
[6]

 The
user could still damage the system, but doing so demands greater
expertise. Many third-party sudo tutorials suggest specifically
forbidding specific programs from executing other programs,
much as they suggest excluding commands from a permitted list.
Both solutions have the same problem. The only way to have true
security through sudo is to explicitly enumerate the commands
users may use.

Editing Files
Many editors offer shell escapes. But you need access to an editor
to change certain critical files. You might try a sudoers policy like
this.
mike ALL = NOEXEC: /usr/bin/vi /etc/ssh/sshd.conf

Would this give the ability to change the file, without shell
escapes? Yes. But it has more general problems. First off, I am not
using old-fashioned vi for day-to-day work. I prefer either Emacs
or ed (if I must use a primitive editor, I want one that demonstrates
that I'm an alpha geek). And I might have a legitimate need for an
unprivileged shell escape while editing the file.

That's where sudoedit comes in. Sudoedit lets a user edit a
privileged file without running an editor as root. When you run
sudoedit on a file, sudo copies the target file to a temporary file, sets
the permissions on the temporary file so you can edit it, and runs
your editor on it. You edit the file with a normal, unprivileged text
editor. When you exit the editor, sudoedit inspects the temporary

file. If the file has changed, it copies the temporary file to the
target file.

Configuring Sudoedit

To configure editing permissions, use the sudoedit keyword and the
full path to the target file.
%wheel ALL = sudoedit /etc/ssh/sshd_config

Users in the wheel group can edit the SSH server configuration
file through sudo.

Using sudoedit

To edit a file, use the sudoedit command and the filename.
$ cd /etc/ssh
$ sudoedit sshd_config

A text editor opens. The user can make changes, save, and exit.
Sudoedit puts their edited file in place of the original.

What editor does the user get? That depends on the user's
environment. If the editor has a $SUDO_EDITOR environment

variable, that's used. Otherwise, sudoedit looks for $VISUAL or
$EDITOR variables. If those don't exist, sudoedit looks for an
editor option in sudoers. Sudoedit uses vi as a last resort. I
encourage you to set an editor in sudoers, as vi is kind of boring.
Defaults editor=/bin/ed

Give the full path to the default editor. If a user can't use your
editor and can't set his own, he shouldn't be editing the sudoers
policy.

Writing Sudoers Policies
You now have all the pieces that make up a sudo policy.
Everything else builds on what you've already learned. Let's
discuss how to using these tools to build a sudoers policy.

In Chapter 4 I demonstrated how excluding commands from
ALL lets people run arbitrary commands as root. In this chapter,
I've demonstrated how shell escapes give people root access. While
sudo logs all commands by default, it doesn't automatically log
everything that happens. Programs like sudoreplay give more detailed
logs but need special configuration (Chapter 12.) The natural
question is: what good are the sudo tools if a user can avoid
restrictions so easily?

If your users can run arbitrary commands as root, it's not the
fault of the tool. The problem is that you've written your sudoers
policy badly. Don't be too embarrassed – most people write poor
sudoers policies. Many operating systems ship with a sudoers
policy that permits all users in an administrative group unlimited

access. This policy means that your administrators can do anything
without even being logged. A malicious intruder or administrator
can hide an awful lot of damage behind a shell escape.

So, what to do?
The only way to write a secure sudoers policy is to deny

commands by default. Use of the ALL keyword in a command
gives people too many easy ways to gain unlimited privileged
access. Users will work furiously to get around restrictions that
they believe are in their way. Don't leave them a hole to squirm
through.

Consider your sudoers policy like a firewall. Back in the
10baseT era, people ran firewalls that permitted all access and then
blocked traffic to vulnerable services. On today's Internet, that's a
sign of incompetence. Treat your sudoers policies the same way.
Default permit sudoers rules make me proclaim "The 90s called,
they'd like their security policy back."

The mere presence of the word ALL in the command portion of

a sudoers rule means that the user can get unrestricted root access
regardless of any restrictions you might think you're placing on
him. You cannot realistically enumerate badness in a sudoers
policy any more than in a firewall; the only safe practice is to
permit known necessary activity.

You can safely use ALL for users, Run As, and server lists.
Unprivileged users can't change their username or a server's
hostname, but they can change the full path to commands without
trouble.

From this point on, I never use ALL in the command description
except for specific examples of poor practice. To do otherwise is to
invite abuse and intrusion. It's one thing to not be embarrassed by
errors when you're starting out, but now you know better.

Chapter 7: Configuring sudo
Wait just a cotton-pickin' minute… isn't this whole book about
configuring sudo? What have we been reading about, anyway?

We've been configuring sudo security policies in sudoers. The
configuration of the sudo program itself depends on how sudo was
built, and how the systems administrator changed the sudo client
configuration via sudo.conf.

Sudo's Default Configuration
The sudo software suite as downloaded from the master web site
ships with a default configuration, but your operating system
packager has probably changed some of those settings. You can
identify the actual defaults of your local install by running sudo –V.
$ sudo –V
Sudo version 1.8.7
Sudoers policy plugin version 1.8.7
Sudoers file grammar version 43
Sudoers I/O plugin version 1.8.7

Here a normal user has asked sudo for its configuration, and
gets sudo's version number and a few basic facts about the
configuration.

To really see what's inside your sudo install, use the –V flag as
root.
sudo -V
Sudo version 1.8.7
Configure options: --sysconfdir=/usr/local/etc --with-ignore-dot --with-tty-tickets --with-
env-editor --with-logincap

…
Sudoers policy plugin version 1.8.7
Sudoers file grammar version 43

Sudoers path: /etc/sudoers
nsswitch path: /etc/nsswitch.conf
Authentication methods: 'pam'
Syslog facility if syslog is being used for logging: local2
Syslog priority to use when user authenticates successfully: notice
…

This goes on for over a hundred lines. You'll see how this sudo
binary was configured to compile, where it looks for its files, how
it authenticates, which environment variables it automatically
purges and which it allows to pass unscathed, and more. Take a
look at this output on your own sudo installation.

You can change some of these settings with entries in sudo.conf.

sudo.conf
You can configure the sudo program itself in /etc/sudo.conf. Sudo
usually runs just fine without any configuration file, but if you
need to debug a problem or change basic behavior you need to
understand sudo.conf. The file has four valid configuration types:
Plugin, Path, Set, and Debug. Chapter 12 includes information on
debugging sudo, so look there for details on the Debug flag. For
each of the others I'll give one simple example of how sudo uses
that type of configuration, but I'll refer to these types of settings in
later chapters.

Plugins

A sudo plugin changes how sudo behaves at a fundamental level by
replacing either the policy engine or the input/output system. You
can use a plugin to replace /etc/sudoers with your own security policy
language – actually, sudo learns that sudoers exists because of the
sudoers plugin. If you want to build a special logging system, use

an I/O plugin. Plugins are a new feature as of sudo 1.8, so the only
free plugins that exist as I write this are the defaults. Commercial
firms such as Quest One (http://www.quest.com) have already
written sudoers and logging plugins, and others are sure to follow.

To use a plugin, give the Plugin keyword, the name of the
plugin, and the name of the shared library. Here I explicitly
configure the sudoers security policy and the sudo input/output
logging module (Chapter 12).
Plugin sudoers_policy sudoers.so
Plugin sudoers_io sudoers.so

Sudo's shared libraries install in /usr/local/libexec/sudo by default,
but you can put an explicit path in sudo.conf. If you build sudo with a
non-standard location, the build process sets the appropriate
default directory. If you have a custom-built sudo plugin or
something from a vendor, however, you might have to give the full
path.
Plugin sudoers_policy /opt/custom/moderninsults.so

You should only need to explicitly define the full path if you're

writing sudo code and want to point at your specially built library.
You can only have one sudo policy engine at a time. If you use

the Quest policy engine, you cannot also use sudoers. The point of
having an external policy engine is that it can do things that
sudoers can't. You can use multiple logging systems.

Paths

Sudo can use external programs and libraries for select functions.
I'm using the noexec tag as an example, but we'll refer to the Path
setting throughout this book as needed.

The NOEXEC tag uses a shared library to replace the system
calls that execute programs with system calls of the same name
that return errors. This tag relies on a shared library that includes
the dummy functions. You should never need to use any noexec
shared library other than the one included with sudo, but here's
how you would set it.
Path noexec /usr/local/libexec/sudo/sudo_noexec.so

You'll normally use a path to do things like call an external

password program (see Chapter 8).

Set

Sudo has a few features controlled through Set commands. These
are generally switches with predefined values such as true and
false. I'll use core dumps as an example.

Sudo handles sensitive security information. It normally keeps
that information in memory, and discards it as soon as possible. A
core dump file from a crashed sudo process would contain all of
that sensitive security information. Sudo therefore disables core
dumps by default. If you want to enable coredumps, set
disable_coredump to false.
Set disable_coredump false

This setting handles the sudo part of creating a core file, but
most operating systems don't let setuid programs dump core. On
FreeBSD, enable core dumps from setuid programs by setting the
sysctl kern.sugid_coredump to 1. On OpenBSD, set the sysctl
kern.nosuidcoredump to 0 to allow setuid programs to dump core. On

Linux, set the sysctls kern.suid_dumpable and fs.suid_dumpable to 2.
From here on out, I'll refer to making entries in sudo.conf and

expect you to understand.

Chapter 8: User Environments versus Sudo
A user's shell environment might not be conducive to good system
management. Environment variables exist to alter software
behavior. Software running with elevated privileges needs to
behave well, and environment variables which change that
behavior can threaten your system. For that reason, sudo defaults
to removing most of the user's environment before running any
command.

If you're not sure what's in your environment, run the command
env. You should see some familiar items in there, such as SHELL
and PATH, but you will also see a bunch of less well-known
variables like SHLVL or G_BROKEN_FILENAMES or EDOOFUS
or whatever. Some of these are probably important. Many of them
aren't. You might not even know how or where these variables get
set. Purging the environment helps ensure that privileged
commands run as they should.

Dangerous Environment Variables
How can environment variables be dangerous? Programs check
environment variables for their settings – for example, shells use
$HOME to identify the user's home directory. These environment
variables are part of what makes a system Unix-like.

On the other hand, some programs use the environment variable
LD_LIBRARY_PRELOAD to identify directories that contain
additional shared libraries. But that directory might contain a
version of libc that copies authentication credentials to a remote
server. And there's a whole family of LD_ variables used on
different operating systems. Shells like bash use $IFS to give the
character that separates command-line arguments. Changing IFS to
a carefully-chosen value can make processes do wildly unexpected
things. If you lose your term paper because an incorrect
environment variable made your text editor eat your files, that's
annoying. If you use that same environment with a privileged
command, you might lose more than your own files.

Programs can look for any environment variable. Commercial
software often uses hundreds of environment variables to store
arbitrary configuration data, much as Microsoft Windows uses the
Registry. There is no master list of dangerous environment
variables, as what is safe on one system can devastate another.

Sudo lets you carefully control your shell environment.

Execution Environment
Sudo doesn't just run a privileged command for you. It spins up an
instance of a shell, runs the command, exits the shell, and returns
control to the shell you ran sudo from. This is why commands like
sudo cd /opt/secret don't work the way you might expect. Say your
command prompt is in your home directory. You run the cd

command. Sudo starts up a shell and changes into the desired
directory. Then that shell exits. Your running shell instance is still
in your home directory, while the shell instance in the desired
directory no longer exists.

You want to see what's in that secret directory? Try sudo ls

/opt/secret. You want to run a more complicated series of shell
commands? Explicitly start a shell instance and write your
commands as a quoted string.
$ sudo sh –c "cd /home ; du –d0 | sort –rnk 6"

Here I start a shell instance, gather the total size of all the
directories in /home, and sort them by size, largest first. The exact

specifics of this shell command don't matter; the point is that I had
sudo run a list of shell commands via sh –c. You still need
privileges to run sh.

Sudo bases the initial environment of the new shell instance on
your environment, unless you tell it not to. You can tell sudo to
establish this environment in three different ways: take your
current environment and pass through selected environment
variables, take your environment and strip out select environment
variables, or abandon your environment and use the target user's
environment. We'll cover each separately.

Whitelisting Environment Variables

By default, sudo removes all environment variables except
$TERM, $PATH, $HOME, $MAIL, $SHELL, $LOGNAME,
$USER, and $USERNAME. This means sudo runs commands in
your preferred shell, with your regular path, and doesn't
automatically dump created files in root's home directory. Sudo

also automatically removes any environment variable that begins
with the characters (), as these can be interpreted as Bash functions.
All well and good… until you need some other environment
variable.

This is where the env_keep sudoers option comes in. env_keep lets
the system owner define a list of environment variables that sudo
should retain. For example, several environment variables control
language and character set display options. If you're a native
Russian speaker, you probably want commands that run under sudo
to use your preferred character set.
Defaults env_keep += "LANG LANGUAGE LINGUAS LC_* _XKB_CHARSET"

Note the += after the option name. This means "add the
following to any existing list." If you use a plain equal sign, the
option will overwrite the defaults. You'll get your character set, but
lose your path, shell, and home directory. You could also use -= to
subtract an environment variable from the list.

You can have as many env_keep statements as you need, and can

match them to specific user, machine, command, and RunAs lists.
Perhaps administrators can keep their SSH environment variables,
so they can copy privileged files across the network via SFTP.
Defaults:%wheel env_keep += "SSH_CLIENT SSH_CONNECTION \

SSH_TTY SSH_AUTH_SOCK"

Or maybe you're stuck behind a proxy server, and everybody
needs the proxy in their environment.
env_keep += "ftp_proxy FTP_PROXY http_proxy HTTP_PROXY"

You can pass any needed environment variable into the sudo
environment.

Blacklisting Environment Variables

Leaving the user environment intact except for environment
variables known to be dangerous is another example of
enumerating badness. If you intend to shoot yourself in the foot,
however, here's how to load the handgun.

The env_reset option tells sudo to remove all environment
variables except a trusted few. It's set by default. To turn this off,

explicitly disable it in sudoers.
Defaults !env_reset

Even if you want to pass most environment variables unscathed,
there's probably a few you need to strip from the environment. Use
the env_delete option to remove an environment variable.
Defaults env_delete += "LD_LIBRARY_PRELOAD"

Users retain their entire environment, except for
LD_LIBRARY_PRELOAD.

Running sudo sh would let the new shell instance read in a new
copy of these variables from a configuration file, and you can
certainly set them yourself inside the shell. But when you run an
individual command, sudo will strip these variables from the
environment.

Just like env_keep, env_delete lets you add environment variables to
the deletion list based on groups, commands, and so on.

Allowing User Overrides

Some users, running some commands, might need to customize

their environment in ways the security policy can't anticipate. An
application server might behave differently depending on the
presence or absence of environment variables, and if the software
changes quickly those values might need constant updating.
Sudoers lets you write a security policy that says "Here are the
standard environment settings, but let these specific users set their
own environment variables for these specific commands."

Use the SETENV and NOSETENV tags on commands to let the
user ask sudo to not alter his environment variables. The SETENV
tag permits users to keep their environment on request. Here, Pete
has a specific exception permitting him to control his environment
on certain commands.
pete dbtest1 = (oracle) SETENV: /opt/oracle/bin/*

On the machine dbtest1, Pete can use his own environment when
running Oracle commands as oracle. Oracle software is highly
sensitive to environment variables. Pete can explore arbitrary
configurations on the test server, and make a formal request for an

updated sudoers policy in production once he understands what he
needs.

Pete must specifically ask sudo to not change his environment
by using the –E flag.
$ sudo –E –u oracle /opt/oracle/bin/sqlplus

Without the –E flag, sudo will perform its standard environment
stripping despite the presence of NOSETENV in sudoers.

Use the tag NOSETENV to override a previous SETENV.
pete dbtest1 = (oracle) SETENV: /opt/oracle/bin/*
pete dbtest1 = (oracle) NOSETENV: /opt/oracle/bin/gennttab

Pete can control his environment for all Oracle commands,
except for gennttab. (Remember, sudo rules are last match.)

In addition to the SETENV tag, there's also a setenv option. Use it
just like any other option.
Defaults:thea setenv

Thea can override her environment anywhere, provided she uses
the –E flag with sudo. As the senior sysadmin she's already on the
hook for system damage, and she needs the flexibility to

troubleshoot any possible problem. Giving herself the ability to
override the environment on demand is a perfectly legitimate
exception, especially as it only works at those times she
specifically requests it.

Only give highly trusted users the ability to override
environment variables, and then only in test environments.
Remember, sudo policies aren't just to control users – they're also
for limiting the damage malicious intruders can inflict on the
system.

Target User Environment

I once sat in a meeting which boiled down to "The server runs fine
unless Dave restarts it." The administrative solution was to fire
Dave, but the technological solution was fixing how sudo managed
Dave's environment. (Fortunately for Dave, the technological
solution prevailed.)

In some cases you don't want to carry any environment

variables into your privileged environment. You don't even want
your shell or home directory – instead, you need to run the
command as the target user, in the target user's shell environment.
Sudo lets you do that with the –i option.

By using sudo –i you simulate a new login as the target user,
reading the target user's dotfiles such as .login and .profile, then
running the requested command. Your original user environment is
not retained in any way.
$ sudo –i /opt/apps/bin/start-server

In my experience having sudo initialize an environment as the
target user is the best way to manage application servers highly
dependent on their startup environment. Many Java server-side
applications take their configuration from environment variables,
and those variables might not be correct in your personal
environment. By configuring that environment in a single account,
you eliminate one threat to the application's stability.

Sudo Environment Defaults

Different releases of sudo might behave differently with regards to
environment variables. I don't expect any of the default pass
environment variables to change, but a future release of sudo might
add new ones.

To learn about the environment-handling defaults on your
version of sudo, run sudo –V as root. The output tells you how this
system's particular sudo binary was built and how it treats different
environment variables. You'll see three groups of variables:
variables to sanity-check, variables to remove, and variables to
preserve.

For sanity checking, sudo checks the listed variables for the
characters % and /, removing them if present. Some environment
variables affect your basic session – for example, a bad TERM
variable can scramble commands as you type them. It's better to
run a command without TERM set than run a command with a
garbage terminal.

You'll see a list of "environment variables to remove." Sudo

does exactly that. You cannot override this list with env_keep; if you
want these variables in the sudo environment, you must set them
within the target user's account.

The list of environment variables to preserve is in addition to
the list given earlier this chapter. You keep variables such as
HOME and PATH, but also those shown by your specific sudo
build.

Sudo-Specific Variables

A command run under sudo gets four sudo-specific environment
variables: SUDO_COMMAND, SUDO_USER, SUDO_UID, and
SUDO_GID. The SUDO_COMMAND variable is set to the exact
command you ran under sudo to start this session. SUDO_USER
gives your original username. SUDO_UID and SUDO_GID give
your original user ID and primary group ID.

A program or script can check for the presence of these
variables and behave differently if they're present or use them in

some way. You could use SUDO_USER in log messages, for
example. "Yes, I was run by root, but really, I was run by mike.
Blame him."

Environment Customization
A sudo policy can do more than just allow and disallow
environment variables; it can explicitly set variables. Sudoers
policies let you set the user's path, and you can also set arbitrary
environment variables if needed.

Managing $PATH

One environment variable is a little trickier than most. Many
intruders try to sabotage a user's $PATH, so that the user will run a
bogus version of commands rather than the proper one. If a
helpdesk flunky needs to reset a user's password, but he runs the
program /tmp/.1234/hacker/passwd rather than /usr/bin/passwd, bad things
will happen. Use the secure_path option to define your trusted path
for sudo commands.
Defaults secure_path="/bin /usr/bin /sbin /usr/sbin"

Sudo tries to run the command using the secure path. If the
command isn't in the secure path, it fails.

This affects commands run via sudo, but not shell instances
started via sudo. If you start a full interactive shell, the shell reads
the target user's .profile and other shell startup files as it initializes
the environment. Secure paths help when running sudo like this:
$ sudo passwd mike

In this use case, secure_path makes sure that the passwd command
being run is actually the system's passwd command and not an
intruder's customized copy. It doesn't verify that the sudo
command the user run is the proper one, however, so users still
need to take care of their $PATH.

Adding Environment Variables

Sometimes you want to specifically set environment variables for a
privileged user. Use the env_file option to give the full path to a file
containing the new environment variables. One common situation
is when you're behind a proxy server. You want users to always
access the internet via your proxy? Add the environment variables
to their environment.

Defaults env_file="/etc/sudoenv"

The environment file contains a standard list of variable
assignments, like so.
FTP_PROXY=http://proxyhost:8080
ftp_proxy=http://proxyhost:8080
HTTP_PROXY=http:// proxyhost:8080
http_proxy=http:// proxyhost:8080

Sudo adds these environment variables before stripping out the
environment, so list any added variables in an env_keep sudoers rule
as well. This also means you override the user's own environment
variables, so if a user has a different setting you've just replaced it.

Starting Shells with Sudo
Some people use sudo as a replacement for su. Essentially, they
become root without using a password.
$ sudo su

I don't encourage this. Sudo logs which commands people use,
but without additional configuration sudo doesn't log what happens
inside a shell session. (We'll cover sudo logging in Chapter 12.)
But since some of you do it anyway, let's discuss it.

The su command means "switch user." Running su – or su –l

initializes a new shell just like using sudo –i. You get the target
user's environment. Running plain su switches the user you're
running as but retains most of your environment.

If you want to completely replace su with sudo, you could
enable the shell_noargs option. With this option set, running sudo
with no arguments gives you a root prompt.
Defaults:thea shell_noargs

When Thea runs sudo without any command-line arguments,

she's root.
$ sudo
Password:
#

You can simulate shell_noargs on the command line by using the –s

flag.
$ sudo -s
Password:
#

If the user does not have permission to run root's shell, sudo
denies access even if shell_noargs is present.

Another popular use of sudo is to run a shell, but retain your
own environment.
$ sudo su –m
#

This leaves your shell unchanged and retains any environment
variables your sudoers policy passes.

Which should you use? Ideally: none. If you must let users
become another user via sudo, configure complete session logging

as per Chapter 12.

Sudo Without Terminals
Sometimes you want to run sudo without an attached terminal. You
might want a right-click menu in your desktop manager that runs a
program via sudo. This sudo program won't run in a terminal,
however, so sudo can't ask you for your password. You need a way
to get sudo your password.

Sudo can run an external program to prompt for the password.
Use the askpass path in sudo.conf to tell sudo where to find this
password program. The graphical password prompt software most
likely to be found on any desktop system with sudo is OpenSSH's
askpass, openssh-askpass.
Path askpass /usr/local/bin/openssh-askpass

When sudo needs a password and doesn't have a terminal to ask
for one, it uses the askpass setting from sudo.conf.

Requiring a Terminal
Sometimes a command runs without a full environment. Programs
that run as part of a CGI script or programs run by schedulers like
cron don't actually have a terminal to run in. Your average Unix-
like system doesn't fire up a shell session to run these commands,
but instead runs them as child processes. If you don't want
automated processes running arbitrary commands via sudo, look at
requiretty.

The requiretty option tells sudo to only work if the command is
run in a terminal. Enabling this option in sudoers means that
programs cannot run without a terminal. A user can't write a CGI
script that calls sudo – well, okay, they can write it, but the sudo
call won't work.

You can now manage the environment sudo creates, or whether
it needs an environment at all. Now let's see how sudo can protect
your users from a damaged system.

Chapter 9: Sudo for Intrusion Detection
One of the problems mentioned in the previous chapter is that of
tampering with the user's path. Sanitizing the path helps, but then
our intruder might replace the actual /usr/bin/passwd command with
his own treacherous version. Sudo 1.8.7 and later can verify the
cryptographic digest (or checksum, or hash) of a command before
running it, preventing these kinds of attacks.

Why is this useful? A cryptographic digest is a mathematical
transformation that creates a fixed-length string for any piece of
data, such as a file. Even minor changes in the source file
dramatically change the generated digest. If sudo knows that the
correct cryptographic digest for the legitimate passwd command is
X, but the passwd command on the disk has a digest of Y, sudo will
refuse to run the command. For more about cryptographic digests,
check out my book PGP & GPG (No Starch Press, 2006).

An intruder is not the only one who might alter the file

containing a command. If you have write access to the directory
containing the command, you might accidentally alter it yourself.
Similarly, digests can protect you from users who chafe at their

restrictions. "I know how to fix this, I just need root!"
[7]

Digest verification can prevent you from running a copy of dd

that someone accidently copied over the mv command. Would
running that hurt anything? Probably not, unless you intended to
move some very oddly named files. But such errors can be
catastrophic, and they're the first sign that this operating system
instance is badly damaged. You want as much early warning as
possible of system damage.

Using digests for command integrity verification has two
components: generating the digest, and writing a sudoers rule that
validates the digest.

Generating Digests
Different Unix-like operating systems have different commands
for computing cryptographic digests. (Because they can.) Rather
than suggesting the sha512 command only for you to discover that
you need sha512sum because you're using Linux, I recommend the
more generic openssl tool for generating checksums.

Sudo supports several different variants of the SHA digest
algorithm: SHA-224, SHA-256, SHA-384, and SHA-512. Higher
numbers mean that the digest is more difficult to reverse-engineer,
but creating and validating the digest also takes more computation
power. Also, digests get much longer as the strength increases.
SHA-224 provides sufficient protection against all realistic attacks

with today's hardware.
[8]

$ openssl dgst -sha224 /usr/bin/passwd
SHA224(/usr/bin/passwd)= c6eab09e527dc…

The 56-character string after the equal sign is the SHA-224
digest of the file /usr/bin/passwd. Most programs will have unique

digests. Some programs have multiple names – for example, the
sendmail command is also known as newaliases, mailq, hoststat, purgestat,
and probably a few other names. (I have my own preferred names
for sendmail, but children might stumble across this book.) You
can list all of those names in a sudoers alias. Which takes us to the
next topic.

Digests in Sudoers
Use a cryptographic digest much like other tags. After the equal
sign put the type of digest, a colon, and the digest itself, then the
command list. Unless you have multiple commands with identical
digests, you probably need one rule per permitted command. As
SHA-224 digests are 56 characters long, I've truncated the actual
digest in all of these examples.
mike ALL = sha224:d14a028c… /usr/bin/passwd

When I ask sudo to run passwd, sudo computes the SHA-224
digest for /usr/bin/passwd. If the generated digest matches the digest
in the sudoers rule, sudo will run the command. Otherwise, you'll
get the generic "not allowed" message. If sudo –l shows that you
have permission to run a command, but every attempt to run the
command gets the "not allowed" message, the checksum on the
command doesn't match the file's checksum in sudoers.

If multiple binaries have the same digest, you probably made a
mistake somewhere. Double-check your openssl command. If

multiple program files really do have the same digest, they might
be the same program in disguise – e.g., sendmail and its posse. You
can list commands with identical digests together like so:
Cmnd_Alias SENDMAIL = sha224:65f81… /usr/sbin/sendmail, \

/usr/bin/mailq, /usr/sbin/hoststat, /usr/bin/newaliases

If you want to compute the cryptographic digest of every
legitimate binary on your system, I recommend writing a script to
do so. If the script lets you predefine groups of commands for
command aliases, so much the better.

Digests and Multiple Operating Systems
Once you centralize your sudoers policy, you might find that you
need a policy that permits multiple digests for a single command.
The sendmail commands on Ubuntu will have different digests than
the sendmail commands on FreeBSD, and those on FreeBSD 9.2 will
differ from FreeBSD 9.3.

How can you cope with this? Use one command alias per
operating system.
Cmnd_Alias FB92_SENDMAIL = sha224:65f81… /usr/sbin/sendmail, \

/usr/bin/mailq, /usr/sbin/hoststat, /usr/bin/newaliases
Cmnd_Alias PRECISE_SENDMAIL = sha224:213ff… /usr/sbin/sendmail, \

/usr/bin/mailq, /usr/sbin/hoststat, /usr/bin/newaliases
Cmnd_Alias SENDMAIL = FB92_SENDMAIL, PRECISE_SENDMAIL

Did I mention using a script to generate digests for your
operating system?

You won't want to recompute this on every machine on your
network. It's much better to design this policy once and distribute
it to the rest of the network, as we discuss in the next chapter.

Chapter 10: Sudoers Distribution and
Complex Policies
Sudo is a lot of trouble for a single machine. If you run hundreds or
thousands of systems, however, sudo makes user privileges
manageable. Not easy or simple, but manageable. The best way to
have a consistent policy across your network is to write a single
sudoers file and replicate it to all machines on the network. While
it's fairly simple to do this, here are a few hints on writing and
deploying safe and secure policies.

Breaking Sudo
We've touched on how to escape sudo's restrictions earlier in this
book, but let's consider them all together. The following is a
"greatest hits" of how to write sudoers policies.

Do not exclude commands from an alias. Users can easily
bypass command lists like ALL, !/bin/sh. Using the ALL command
list gives people privileged access, no matter how the system
owner tries to restrict it.

Use the NOEXEC flag by default in your command lists.
Specifically enumerate commands that must run other commands.
You'll have a rough few days as users call to complain that they
can't run certain commands, but you'll quickly find the commands
that legitimately must run other commands. When you
automatically distributing a single sudoers file across the network,
those changes will quickly propagate to all hosts.

Use aliases for users, commands, hosts, and RunAs settings. Use
the alias rather than the command name in your rules. This

simplifies changes and helps ensure all your users have identical
access to others in their group.

Most ways to escape restrictions can be eliminated with proper
configuration. "Proper configuration" usually means "spell out
exactly the permitted access." Don't just give people unlimited
access to all commands; instead, sort out who should be doing
what and what access they need to do their real jobs. Yes, this
means spending time and energy having face-to-face conversations
with living human beings who have their own opinions and desires,
rather than doing the fun computing stuff.

Hesitate to give root-level privileges to shell scripts via sudo.
While sudo sanitizes the user's shell environment, a shell script can
put that scary stuff right back in. In too many cases, running a shell
script as root via sudo is equivalent to giving the user root. Even if
you use cryptographic digest verification to ensure that the script
runs unedited, shell scripts often pull often in other shell scripts.
Users and intruders can subvert any number of shell scripts with

environment variables. Don't think your users are different and
won't mess around with your carefully written shell scripts. They
aren't and they will.

On some hosts, a tight sudo configuration isn't realistic.
Desktop machines run lots of programs that run other programs. A
user who has physical access to the machine and needs to run a
graphic desktop can get root-level access on the machine without
much difficulty. Your best practice is to assume that desktop
machines are not trustworthy, and secure your servers against
rogue workstations as well as external intruders.

If you're not willing to do the work of creating a real sudoers
policy, then don't waste your time slapping together a half-cooked
sudoers policy that sort, of more or less, kind of, does what you
want, basically. Instead, give users unlimited access and deal with
the fallout. After enough unnecessary downtime, system damage,
and lost nights and weekends, you'll develop a willingness to write
a real sudoers policy. Logging user activity (see Chapter 12) can

help assess exactly what happened when things go wrong, and
might be a good replacement for your organization.

Hostnames and Sudoers
When managing sudoers individually on each machine, the
hostname part of the policy tends to disappear from the sysadmin's
view. It's still in the file, but your conscious mind no longer sees it.
It's just "that 'ALL =' thing" that must appear in the middle of
every rule. I haven't given it much attention so far, because we've
only considered single-system policies. When you want to use a
single sudoers file across your entire network, suddenly the
hostname field becomes much more important.

Sudo gets the name of the local machine by running hostname.
The hostname in your sudoers policy must exactly match whatever
hostname the local machine thinks it is. This can cause difficulty
in heterogenous networks. My Linux servers usually have a
hostname consisting of a single word, such as www8 or sip2. My
BSD machines have a hostname that includes the domain, such as
www.michaelwlucas.com. Before you start writing a centralized sudoers
policy, investigate your naming scheme as it is actually deployed

on the real servers. Are they consistent? If you're using centralized
server provisioning, you're probably okay. If you're still running
artisan-managed servers, or you install servers by hand, you have

inconsistencies.
[9]

 Address those inconsistencies before you build
your policy. Or use DNS or IP addresses.

DNS and Sudo

The Domain Name System maps hostnames to IP addresses. A
server might think its name is www8, but the DNS records it as
www8.michaelwlucas.com. DNS is centrally managed (mostly; more on
that later). Having sudo refer to DNS for machine names removes
any local host name inconsistency issues. It also adds a
dependency on DNS for machine management. If your DNS
servers fail, sudo will not work. If sudo won't run because DNS is
down, and you can't restart DNS because sudo is down,
congratulations! You failed to think through your failure modes.
Expect your local Thea to come for your carcass shortly.

Hosts might be configured to resolve IP addresses and
hostnames from a variety of information sources, such as YP or
LDAP. If the server prefers one of these information sources to
DNS, then you need to verify that your sudoers rules match the
hostname in that information source. The most common alternate
information source is the hosts file, /etc/hosts. Check to see if your
server prefers the hosts table to DNS, and confirm the server's
name in that file if so.

A machine can have multiple host names in both DNS and
hosts, but sudo only uses the primary host name. Sudo ignores all
aliases or additional records. If you're using the hosts file, only the
first host name in an entry is used. If you're using DNS, any
CNAME records are ignored. Sudo only uses the hostname as
shown in forward and reverse DNS.

To enable the use of DNS, use the fqdn option in sudoers.
Defaults fqdn

Sudo still checks the local host name, and if the sudoers rule

happens to match the local name, the rule matches. If the name
doesn't match, sudo uses DNS and compares each rule to the
server's fully qualified domain name. Rather than using the short
hostname www8, you'll need the full hostname.
%helpdesk www8.michaelwlucas.com \

/usr/bin/passwd [A-z]*, !/usr/bin/passwd root

The lines in your sudoers file will be much longer, but that's
okay. Also, your sudo commands will take a little longer as sudo
queries the DNS for the local host name.

The obvious way to break hostname-based protections, however,
is for the system administrator to change the local host's name. If
your sudoers policy permits an otherwise unprivileged user to
change the machine name, then he can change the policy applied to
the machine.

IP Addresses

I find that using IP addresses in my sudoers policies is more
reliable than using hostnames, at least in my environment. On a

large network, where machines exist on different segments and
have different network access rules, system administrators usually
have no access to the network equipment. A rogue sysadmin might
change the name of a web server to that of a host on the database
tier, but he cannot change the IP address of that server without
losing access to the machine.

Use host aliases to define these network subnets.
Host_Alias WEBSERVERS 192.0.2.0/24
Host_Alias DBSERVERS 203.0.113.0/24

Assign access rules to these host aliases, and the only way a
problematic user can get around the access controls is to move the
machine to another subnet. Ultimately, how you design your
sudoers policy to avoid these hostname changes depends on your
staff and users, your environment, and your risk tolerance.

Including Files in Sudoers
A sudoers policy can include other files by reference. This lets you
have a generalized sudoers policy for all your systems, and add
other files by machine role or functions. You can add specific files,
files by hostname, or files within a directory by using an #include

statement.
The file is inserted into the sudoers policy at the spot that you

use the include statement. If you include files at the top of sudoers,
your global rules override anything in the included policy. If your
include statement appears last in sudoers, then the included file
overrides the global policy. Why is this important? Think about an
included file with this line:
%wheel ALL = !ALL

The wheel group is traditionally those users permitted to use the
root password – also known as "the senior sysadmins." Depending
on your operating system, this might be the admin group or
something else. The included file forbids all users in wheel to run

any commands via sudo. If this rule appears last in the sudoers
policy, it removes the senior sysadmin's access to the servers. This
is probably not what you want.

Include Specific Files

Maybe you have a base template of a sudoers security policy that
you distribute to all systems, so that your senior systems
administrators can access all servers. Individual machines have
their own security policies tailored to the system's needs. In this
case, you would copy /etc/sudoers to all machines on the network, and
tell local users to put their own rules in a different file, such as
/etc/sudoers.local. Add an #include statement to your global sudoers.
#include /etc/sudoers.local

Set your local additions in that file.

Per-Host Include Files

Maybe you want to include a file based on the local host name.
You can use the %h escape character to use the local host name in a

file.
#include /etc/sudoers.%h

On the machine www8, sudo would look for a file called
/etc/sudoers.www8.

Including Directories

Including one file isn't enough for you? Sudo lets you include all
the files in a directory by using the #includedir statement.
#includedir /etc/sudoers.d

Many Linux distributions use this type of syntax. The idea is
that you can have a central, standard sudoers policy, and then copy
additional policies to a machine based on the machine's function.
The host is a webserver? Copy your standard file 001-sudoers.www to
the include directory. Database server? Copy the database file.
Both? Then copy both.

This is a perfectly valid way to manage a sudoers policy. By the
time your network grows this complex, however, you're much
better off investigating an LDAP-based security policy (Chapter

11) instead of managing sudo by local files.
Sudo reads and processes these files in lexical order. In lexical

order numbers always sort before upper case letters, and upper case
letters always sort before lower case letters. Lower case letters
come before accented characters. You've seen this kind of ordering
every time you run a plain ls in a directory. You'll see numbers sort
like 1, 11, 12, 2, and then 21. The word Rat comes before gerbil. The
easiest way to control sorting is to have all of your included files
start with numbers, and include the leading zeroes. That way,
policy file 001-sudoers.www will get processed before 100-

sudoers.database. File 2-sudoers.wordpress gets processed after both, so
include those leading zeroes.

Or use an LDAP-based policy to show a single consistent policy
to each machine. You'll be happier… eventually.

Errors in Include Files

If a file included in /etc/sudoers is syntactically invalid, sudo will not

run – precisely as if you had a syntax error in /etc/sudoers itself.
Visudo only checks the integrity of one file, not everything
included in the sudoers file. Use the –f flag to aim visudo at a
different file.
visudo –f /etc/sudoers.www8

Visudo will open a copy of this file, edit the copy, check the
file's syntax, and either replace the original file or tell you to fix
your errors, exactly as it does for /etc/sudoers.

Single Sudoers Across the Network
If you run hundreds of machines, you already have a way to
distribute files to all of them. Tools such as Puppet, Chef, Ansible,
or even rdist, make this almost easy. Configuring sudo on a central
machine and pushing the sudoers file out to all of the hosts in the
network does not prevent someone from editing a local machine's
sudoers file. But it improves detection of and recovery from such
changes. It's also easier than using an include directory – you can
put your various servers in groups and use those groups for rules.

If you're centrally managing sudo, I strongly recommend having
each local machine validate that it can parse the new sudoers file
before installing it as /etc/sudoers. If you install a sudoers file that
works on sudo 1.8.9 on a machine running sudo 1.8.7, you might
have included options or rules that the older sudo cannot parse. If
sudo cannot parse /etc/sudoers, sudo will not run. Validating the new
file with visudo –cf before copying it into place will save you a lot of
trouble. I strongly recommend reading Jan-Piet Mens' blog post

"Don't try this at home: /etc/sudoers"
(http://jpmens.net/2013/02/06/don-t-try-this-at-the-office-etc-
sudoers/) and the related posts for a very good description of
exactly how much pain a bad sudoers policy causes on a large
network. (It's amusing because it happened to someone else.) Mens
also has an Ansible playbook for safely distributing /etc/sudoers so
you can learn from his suffering.

While configuring your sudo policy in one location and pushing
it to all your hosts has distinct advantages over configuring it
separately on each host, better still is having sudo read its policy
from LDAP.

Chapter 11: Security Policies in LDAP
One problem with sudo is that it's normally configured on the local
machine. An intruder (or a clever but very naughty user) who
leverages his way into altering the sudoers file can alter his own
permissions. This is bad. The way to eliminate this risk is to
remove the sudoers policy from the machine.

The Lightweight Directory Access Protocol (LDAP) provides
common information across a network. While it usually stores
usernames and passwords, it can support any arbitrary directory-
style information. A sudo security policy fits well into LDAP.

The advantage of having your sudoers policy in LDAP is that a
user who compromises a machine cannot alter the sudoers policy.
Even gaining root on a server doesn't give him access to a read-
only LDAP server. Also, changes to an LDAP-based security
policy immediately propagate to all the machines on the network.

Typos cannot prevent sudo from running, as they can with

sudoers. An LDAP server will not accept improperly formatted
data. You can mistype machine and user names, but any sudo
configuration you stuff into your LDAP server is syntactically
valid.

The disadvantages of configuring sudo from LDAP? First, you
must have an LDAP server. When that LDAP server fails, your
authentication and sudo security both die with it, so you probably
want more than one. You must have a sudo install that supports
LDAP, which isn't usually in the default install but is easily
obtained.

Sudo includes very detailed documentation on using LDAP as a
security policy provider in the documents README.ldap and the
sudoers.ldap manual page. Read those documents before planning
your deployment. This book does not replace the official sudo
documentation, but provides context, guidance, and an overview
parallel to that documentation. I don't cover details like AIX using
/etc/netsvc.conf instead of /etc/nsswitch.conf; for that, you need your

operating system manual or the official sudo documentation.

Sudoers Policies versus LDAP Policies
Building a sudo security policy for LDAP is different than creating
an sudoers-based policy. First off, LDAP sudo policies do not
support aliases. The user aliases, command aliases, and soforth that
we spent a chapter on earlier in this book? Not applicable to
LDAP-based policies. Instead, use LDAP groups for users and
servers. This isn't necessarily an advantage or a disadvantage, but
you need to know about it. The design of LDAP means it's very
easy to add a new command, user, or host to a rule, however.

A sudoers-based policy works on a "last match" basis, so you
can put generic rules at the top of the policy and get more specific
further on. LDAP doesn't automatically deliver query results in a
deterministic order. You can order your individual sudo rules in
LDAP, placing one rule before another so that "last match" works,
but it's an extra step to remember. You cannot order attributes
within a single LDAP sudo rule.

Finally, LDAP-based policies don't use negations for hosts,

users, or RunAs. Negations on commands work exactly as well as
negations do in sudoers – poorly. Remember that you cannot order
attributes with a single sudo rule, so if there's a conflict, any
command negation takes precedence. Save yourself the
indigestion. Don't use negations with LDAP sudo policies.

Prerequisites
This is not a book on LDAP. If you don't know what a schema or an
LDIF is, this section will baffle, annoy, and possibly scare you.
That's because LDAP can baffle, annoy, and scare the uninitiated.
Skip ahead to Chapter 12. Logging sudo activity is much more
interesting and useful than it sounds, and you don't need any
external infrastructure to do it. This chapter focuses on LDAP-
based sudoers policies and attaching the sudo client to LDAP.

Site requirements vary too much for me to take you through a
"generic" LDAP configuration. As OpenLDAP is the server most
commonly used for sudo, I'll use it for specific detailed examples,
but I'll touch on other supported LDAP servers.

I assume that you have LDAP-based authentication working,
that your setup is secure and stable, and you have both the ability
to import LDIF files and to make minor changes through an LDAP
browser. I assume that you're using the same LDAP servers for
sudo as for authentication. The sudoers policy in LDAP should not

be writable by the sudo clients it serves – otherwise, one
compromised machine can rewrite the sudoers policy for all the
systems on the network. Similarly, I don't let my LDAP client
servers have any write access to the LDAP server, requiring users
to go to a specific host or interface to change their passwords and
other account information.

I also assume that you have a sudoers-based policy to start with.
It doesn't need to be a big policy – even something simple like
"here are some defaults, and this group gets full access" will get
you rolling.

If you don't have LDAP-based authentication, stop trying to
stuff sudo into LDAP. You've gotten ahead of yourself. Get your
machines pulling their user and group information from and
authenticating against LDAP. Then return here and try again.

We'll start with your sudo client, and then proceed to the LDAP
server.

LDAP-Aware Sudo
An LDAP-aware sudo works without a sudo policy in LDAP, so
installing the LDAP-aware sudo is the sensible place to start. Most
operating systems have a package for sudo built with LDAP
support or allow you to easily enable it. Debian-based systems
have a sudo-ldap package. CentOS-style systems allow you to
enable LDAP for sudo in /etc/nsswitch.conf. On FreeBSD you must
build your own sudo package to enable LDAP, but the ports system
makes that pretty easy. Check your operating system
documentation, and follow the instructions to get an LDAP-capable
sudo installed on your system.

Then configure the LDAP server to serve and recognize sudo
data.

Add Sudo Schema to LDAP server
An LDAP server that supports sudo policies must understand the
syntax and structure of those policies. A schema defines a data
structure for an LDAP server. Each vendor's LDAP server product
has its own schema system that is (of course) subtly incompatible
with all the other LDAP servers. Sudo includes three LDAP
schemas for three LDAP servers in the files schema.OpenLDAP (for
OpenLDAP servers), schema.ActiveDirectory (for Microsoft servers),
and schema.iPlanet (for Netscape-derived servers). Some operating
system packagers include the sudo schema in their LDAP server,
so check for it before trying to install your own.

After you add the schema to any of these LDAP servers, index
the sudoUser attribute. This greatly accelerates sudo lookups.

Next, I'll briefly touch on adding the schemas to all three LDAP
servers.

Adding Sudo to OpenLDAP

To add the sudo schema to OpenLDAP, copy the schema to your
schema directory (usually /etc/openldap/schema/) as the file sudo.schema.
Then add the following lines to slapd.conf. You probably want to
place these statements near the other schema and index statements:
include /etc/openldap/schema/sudo.schema
index sudoUser eq

Restart slapd, and OpenLDAP will support sudo policies.

Adding Sudo to iPlanet

Copy the schema file to the server schema directory. This directory
varies by operating system, so check your server documentation.
Give it the name 99sudo.ldif. Restart the server.

Now use your LDAP browser to create a Service Search
Descriptor for sudoers.
serviceSearchDescriptor: sudoers: ou=sudoers,dc=example,dc=com

You're ready.

Adding Sudo to Active Directory

Copy the Active Directory schema file to a domain controller, and
run the following command.

C:> ldifde -i -f schema.ActiveDirectory -c dc=X

dc=example,dc=com

That's it.

Creating Sudo Policy in LDAP
The sudo policy needs a container and an initial policy. Here's how
to handle each.

Sudoers Container

Your sudo policy needs an LDAP container. Most LDAP
administrators have very definite ideas about where new containers
for add-on software belong. Obey her wishes in the matter – LDAP
causes her enough grief, she doesn't need any lip from you. For
reference, here are the default locations for each major server:

OpenLDAP: ou=SUDOers, dc=example, dc=com
Active Directory: cn=sudoers, cn=Configuration, dc=example,
dc=com
iPlanet: ou=sudoers, dc=example, dc=com
Despite calling the container "sudoers," remember that an

LDAP-based policy doesn't work quite like a sudoers file.
Here's an LDIF for a sudo container for the OpenLDAP server

for mwlucas.org. For other servers or other container locations,
change the Distinguished Name path.
dn: ou=SUDOers,dc=mwlucas,dc=org
objectClass: top
objectClass: organizationalUnit
ou: SUDOers

Import this into your server, either through the command line or
through your browser. Now you can create your initial LDAP
sudoers policy.

Converting /etc/sudoers to LDAP

The convenient thing about switching from an /etc/sudoers policy to
an LDAP-based policy is that you don't need to create the LDAP
entries from scratch. You can convert an existing sudoers file to an
LDAP-friendly LDIF file with the script sudoers2ldif, included in the
sudo suite. It's a Perl script, usually installed as part of an LDAP-
aware sudo package.

Before running sudoers2ldif, you need to set the SUDOERS_BASE

environment variable to the location of the sudo policy container.
The command uses this variable to put the created LDIF in the
correct part of the directory tree.
$ SUDOERS_BASE=ou=SUDOers,dc=mwlucas,dc=org
$ export SUDOERS_BASE

Now run sudoers2ldif, giving your sudoers file as an argument.
$ sudoers2ldif /etc/sudoers > /tmp/sudoers.ldif

This spits out an LDIF version of your sudoers policy. One nice
feature of sudoers2ldif is that it fills in the sudoOrder attribute,
ordering your rules so that the "last match" rules processing works.
See "Sudoers Policies versus LDAP Policies" earlier in this chapter
for details.

You could just import this file into your LDAP server and be
done with it, but that would leave you blindly trusting that the
script worked. Let's see what kind of entries your sudoers file
becomes.

Sudoers into LDIF

Let's start with a very simple /etc/sudoers.
Defaults env_keep += "HOME SSH_CLIENT SSH_CONNECTION \
 SSH_TTY SSH_AUTH_SOCK"
%wheel,%sysadmins ALL=(ALL) ALL

We retain several environment variables to allow SSH agent
forwarding, and then we allow anyone in the groups wheel and
sysadmins to run all commands via sudo. Essentially, this sudo
policy replaces su with sudo.

What does this become as an LDIF? We will go through
descriptions of all the various schema fields later, but the
generated LDIF is pretty easy to understand. We'll look at each
entry separately.
dn: cn=defaults,ou=SUDOERS,dc=mwlucas,dc=org
objectClass: top
objectClass: sudoRole
cn: defaults
description: Default sudoOption's go here
sudoOption: env_keep += "HOME SSH_CLIENT

SSH_CONNECTION SSH_TTY SSH_AUTH_SOCK"
sudoOrder: 1

This entry is named "defaults," according to the dn statement.
The objectClass statements attach this to the sudo policy. The
sudoOption statement gives the actual sudo rules. Finally,
sudoOrder puts this sudo rule first in the list of rules to process.

Here's the sudoers line giving two groups permission to run all
commands as root, written as an LDIF.
dn: cn=%wheel,ou=SUDOERS,dc=mwlucas,dc=org
objectClass: top
objectClass: sudoRole
cn: %wheel
sudoUser: %wheel
sudoUser: %sysadmins
sudoHost: ALL
sudoRunAsUser: ALL
sudoCommand: ALL
sudoOrder: 2

This rule has two sudoUser entries, one for each group the rule
applies to. There's a sudoHost entry to show this rule applies to all
hosts, and a sudoRunAsUser indicating that this rule lets these
users run commands as all other users. The sudoCommand entry

lists all the commands this rule covers.
Remember that entries appear within an item in no particular

order. This rule has two sudoUser entries, one for wheel and one for
sysadmins. The wheel group happens to appear first in this list, but in a
live query it might be reversed. If order is important, you need to
make a second rule and put it in order using the sudoOrder
attribute.

You can import this initial policy into your LDAP server, then
configure the sudo client to pull information from LDAP.

Activating Sudo Client LDAP
Your LDAP-aware sudo client has the ability to ask LDAP for
security policies, but it probably won't do that by default. You
must tell sudo where to find the LDAP-based policy, and then
configure sudo to use that policy.

Finding the LDAP Policy

I said earlier that I assume you have a working LDAP setup. This
means that your local machine can pull user and group information
and passwords from your LDAP directory. This simplifies sudo
configuration, because you only need to worry about the sudo
portion of LDAP.

Start by running sudo –V to ask your sudo install where it expects
to find its LDAP configuration file.
$ sudo -V | grep ldap
…
ldap.conf path: /etc/ldap.conf
ldap.secret path: /etc/ldap.secret

This particular sudo install expects to find ldap.conf and ldap.secret

in /etc, the default for this operating system.
Most operating systems can share a single ldap.conf between all

applications. This lets your sudo install piggyback on your working
LDAP configuration. Some operating systems use sudo-specific
LDAP configurations. For these operating systems, you can usually
copy the basic LDAP configuration from the main system file to
the sudo-specific file. Check your operating system manual if you

have any concerns.
[10]

Now add the sudo LDAP configuration to your sudo's ldap.conf.
Sudo accepts three different ldap.conf statements, but only
sudoers_base is mandatory.

sudoers_base: This is the mandatory location of the sudoers
policy. You can have multiple sudoers_base entries. Sudo will
query them in the order given in ldap.conf.

sudoers_search_filter: This is an optional LDAP search filter
to reduce the number of results returned by an LDAP query. Sudo

works fine without this filter.
sudoers_timed: This is a yes (or true, or on) or no (or false, or

off) setting to tell sudo to check to see if a sudoers rule has
expired. See "LDAP Policy Expiration" later in this chapter.

The standard ldap.conf entry for sudo on my network looks like
this:
sudoers_base ou=sudoers,dc=mwlucas,dc=org

Old documentation mentions setting sudoers_debug in ldap.conf.
This is deprecated, and the setting will be buried in an unmarked
grave before long, so don't start using it now. To log sudo's
interactions with LDAP, use the LDAP logging subsystem
described in Chapter 12.

Now that your LDAP clients can find the sudo policy, tell sudo
to look at LDAP.

Sudo and nsswitch.conf

Use /etc/nsswitch.conf to tell sudo to look at LDAP. The name service
switch configuration file usually tells programs where to look for

information such as hostnames and usernames. Sudo gets lumped
in with the rest of them. Use an entry like this to tell sudo to check
LDAP:
sudoers: ldap files

Sudo will check the information sources in the order listed here
– first LDAP, then /etc/sudoers. If your sudo install should never use
the local sudoers file, remove the files statement from this line.
You should also add the ignore_local_sudoers option to your LDAP
policy, as we'll see later.

Sudo Rules and Roles
A one-line sudo policy in /etc/sudoers becomes a single LDAP entry,
called a sudoRole. Both of the entries we looked at in the "Sudoers
into LDIF" section earlier are sudoRoles.

All sudo attributes have specific permitted values, most
commonly usernames, groups, or commands. You cannot enter an
invalid data type into an attribute – an attribute that expects a
username won't accept an IP address, and the LDAP server will
reject it if you try to set it incorrectly. Mind you, the LDAP server
can't know if mike is a hostname or username, so you must verify
that the syntactically-valid rule you just wrote is the rule you want
to write. The one special value is ALL, which matches all possible
entries for that attribute.

All sudoRoles have the Distinguished Names (DN) attribute, the
sudoRole objectClass attribute, and the Common Name (CN)
attribute. LDAP needs them, after all. But three additional
attributes must appear in every sudoRole, and a few optional

attributes can appear when useful. The three mandatory attributes
are sudoUser, sudoHost, and sudoCommand.

sudoUser

The sudoUser attribute is a user name, exactly like those used in a
sudoers policy. Remember, you cannot use aliases in a sudoUser
attribute. You can use operating system groups, group IDs, and
netgroups. If you want to use non-system groups in LDAP rules,
you must add a plugin for them to each local sudo install. Groups
stored in LDAP work fine, so use them rather than jumping
through these extra hoops. Each user name must appear in its own
sudoUser entry within a sudoRole.
sudoUser: %wheel
sudoUser: mike
sudoUser: kurt

sudoHost

This is a list of hosts, with the same syntax and restrictions as a

host entry in a sudoers rule. You can use host names, IP addresses
and networks, and netgroups. ALL matches all hosts.
sudoHost: 192.0.2.0/24
sudoHost: www.michaelwlucas.com
sudoHost: +dbservers

sudoCommand

This is the full path to a command, plus any command-line
arguments and wild cards. This is exactly like the command list in
sudoers, except that you cannot use aliases. ALL, just as in
sudoers, matches all commands.

You can use the word sudoedit followed by a file name or path to
permit use of sudoedit on those files. Similarly, putting a digest
algorithm and a digest before a command tells sudo to verify the
digest before running the command.
sudoCommand: sudoedit /etc/namedb/named.conf
sudoCommand: sha224:d14a028c… /usr/bin/passwd
sudoCommand: /sbin/dump
sudoCommand: /sbin/restore

In addition to the sudoRole's three mandatory attributes, LDAP-
based policies have four optional attributes that let them fully
emulate sudoers policies: sudoRunAsUser, sudoRunAsGroup,
sudoOptions, and sudoOrder.

sudoRunAsUser

The sudoRunAsUser attribute gives a list of target users that sudo
users can run commands as. This works exactly like the RunAs list
(see Chapter 4) for sudoers. The word ALL matches all users.
sudoRunAsUser also accepts user ID numbers, groups, or
netgroups. List each target in its own sudoRunAsUser entry.
sudoRunAsUser: oracle
sudoRunAsUser: postgres

sudoRunAsGroup

This attribute permits users to run commands as a member of a
group. The groups have the same valid names as groups within a
sudoers policy. List each target group on its own line.

sudoRunAsUser: operator

sudoOrder

This attribute assigns role number. Roles are processed in order,
from lowest to highest. SudoOrder lets you emulate the last
matching rule behavior from a sudoers policy. A sudoRole without
a sudoOrder has a sudoOrder of 0, and so is processed first. If you
have multiple sudoRoles without a sudoOrder, they are processed
in the order served up by LDAP – that is, randomly.

sudoRole Times
LDAP-based policies let you set activation and expiration dates
and times for a sudoRole, a feature you won't find in sudoers-based
policies. Sudo checks for activation and expiration timestamps
only if you have the sudoers_timed option in ldap.conf. Without this
option, sudo ignores times.

The sudoRole attributes sudoNotBefore and sudoNotAfter control
sudoRole timing. These attributes accept a value of a four-digit
year, followed by two digits each for month, day, hour, minute,
second, and a one-digit tenth of a second. Or, if you prefer,
YYYYMMDDHHMMSSZ. The date and time are in Coordinated
Universal Time (UTC), not your local time zone.
sudoNotBefore: 201401011300000
sudoNotAfter: 201401312200000

The sudoRole for the example above becomes valid on 1
January 2014 at 13:00, and expires on 31 January 2014 at 22:00.
These times look weird, but my site is five hours ahead of UTC.

The rule becomes valid at 8 AM local time, and expires at 5PM on
the last day.

This sudoRole is not valid until the date and time in the
sudoNotBefore attribute. It is no longer valid after the
sudoNotAfter attribute.

If you have multiple sudoNotBefore and sudoNotAfter
attributes, the most permissive entry is used – that is, the earliest
sudoNotBefore and the latest sudoNotAfter. If you try to put in two
separate time ranges, the sudoRole will permit access from the
earliest start time to the latest end time. If you put in a sudoRole
that says "This rule is valid for the first 10 days of September" and
another sudoRole that says "This rule is valid for the last ten days
of October," the user will get access from the first of September to
31 October. Remove obsolete sudoNotBefore and sudoNotAfter
attributes from your directory.

A role with useless dates never gets used.
objectClass: sudoRole
cn: mwlucas

sudoUser: mwlucas
sudoHost: ALL
sudoCommand: ALL
sudoNotBefore: 201402030000000
sudoNotAfter: 201402301200000

Here, Thea has granted me total access to all systems for twelve
hours. On the 30th of February.

Disabling sudoers
The point of putting security policies in LDAP is so that users who
finagle their way into editing /etc/sudoers cannot write rules that give
themselves more access. We configured sudo to look at LDAP first
for its policy, which is a good step. Now we need to decide if we
want to have a local sudoers file.

If we have a local sudoers policy file, users might figure out
how to edit it. If LDAP tells sudo to ignore the local sudoers policy,
it doesn't matter if users edit sudoers or not; they don't get extra
access. The risk you get is that when your LDAP systems fail,
you'll lose sudo access on your LDAP clients. See "LDAP Caching"
later this chapter for possible solutions.

Tell sudo to completely ignore /etc/sudoers. with the
ignore_local_sudoers option in LDAP. Add ignore_local_sudoers to your
default policy. The standard location for this policy on the
OpenLDAP server for a domain would be at the Distinguished
Name cn=defaults,ou=sudoers, dc=example,dc=org

dn: cn=defaults,ou=SUDOERS,dc=example,dc=org
objectClass: top
objectClass: sudoRole
cn: defaults
description: Default sudoOption's go here
sudoOption: env_keep += "HOME SSH_CLIENT

SSH_CONNECTION SSH_TTY SSH_AUTH_SOCK",
ignore_local_sudoers

sudoOrder: 1

When sudo sees this option in LDAP, it stops looking at the
local sudoers file.

Do you want to disable local sudoers policies? Probably. An
LDAP client without LDAP won't function properly anyway, so
you'll many more problems. The option is yours, however.

Learning sudoRole policies
If managing LDAP isn't your main job, but you want to support
sudo policies via LDAP, you get to learn a new skill. Once you
understand writing sudoers security policies, expressing the same
thing in LDAP isn't that much harder.

If you get confused, sudoers2ldif is your new friend. You want to
know how to write an LDIF version of a particular sudoers rule?
Write a one-line sudoers file that contains only your desired rule,
then run sudoers2ldif to see the result. Modifying an example LDIF is
much easier than writing one from scratch. Soon, you'll be writing
and editing sudoRole LDIFs effortlessly. Don't tell the LDAP
administrator you can write LDIFs, however, or she might try to
suck you into writing more of them for other people.

I know people who use LDAP to distribute their sudo policies
but actually write the policies in sudoers format and then use
sudoers2ldif to generate the LDAP configuration. This
automatically handles rule ordering with sudoOrder. This is a

perfectly acceptable solution, and if you're not comfortable with
LDAP it might even be advisable.

LDAP Caching
The big risk when using LDAP for authentication and policy
distribution is that your network becomes dependent on the LDAP
servers. Hopefully you have at least two LDAP servers, distributed
in such a way that they resist most failure scenarios. And hopefully
you have enough LDAP servers that a failure of a substantial
fraction of them won't overload the survivors.

You can choose to cache LDAP information locally on each
machine, to tide the servers through a brief outage. The System
Security Services Daemon (SSSD) provides caching services.
SSSD is a fairly new program created as part of the Fedora project,
and its support for non-Linux systems is mixed but improving.

As of sudo 1.8.4, you can build sudo with SSSD support. Sudo-
sssd lets you add SSSD as an additional information source via
/etc/nsswitch.conf. This lets sudo reference the cached security policy
even if the LDAP servers are down. You can configure SSSD to
proactively download the sudo policy from the LDAP server so it's

prepared for an LDAP failure.
Most operating systems don't have a package for sudo with

SSSD support. If you're using SSSD, consider using it for sudo as
well. Given SSSD's mixed support on every operating system
except Linux, I'm not going to cover it in detail here. If SSSD
supports your operating system, you can find a useful tutorial on
using sudo with SSSD at http://jhrozek.livejournal.com/2065.html.

Now let's look at sudo logging. It's more useful than you think.

Chapter 12: Sudo Logging & Debugging
You can now control what access people have to privileged
commands. Everything's good, right? Certainly... until the day you
walk in and find half your servers hanging because their /usr

filesystems have fled for parts unknown. Everybody will want to
know who the idiot was. Sudo has three different logging
mechanisms: a simple "what sudo did" log via syslogd, a debugging
log, and a full session capture log. Sudo can also notify the system
owner when users succeed or fail to run commands.

Sudo and Syslogd
Sudo logs user activity through the standard syslog protocol. On
your average Unix-like system, sudo logs show up in a file like
/var/log/messages or /var/log/syslog. Here's a typical sudo log message:
Aug 27 23:34:44 www9 sudo: mike: TTY=pts/1 ; PWD=/home/mike ; USER=root ;
COMMAND=/usr/bin/passwd carl

We have the date and time someone ran sudo, and the machine
name (www9). Then we have the user who ran sudo (mike), the
terminal he was on (pts/1), the directory he was in (/home/mike), who
he ran the command as (root), and the command he ran

(/usr/bin/passwd carl).
[11]

Sudo also logs when a user can't run a command.
Aug 27 23:35:25 pestilence sudo: mike : command not allowed ; TTY=pts/1 ;
PWD=/home/mike ; USER=root ; COMMAND=/usr/bin/passwd root

Note the string command not allowed. Looks like someone's trying to
escape the cage in his cubicle. Again. The boss needs to have a
word with him. Again.

Customizing Sudo Syslog

The default configuration has some weaknesses, though: the log
file's location on the local system, and the logs even existing on the
local system at all.

On most Unix-like systems, sudo logs get dumped into the main
system log, along with the logs from all the other programs
running on the machine. This makes the logs more complicated to
search than they need to be. Also, successes and failures are logged
together. You need both sorts of log messages, but you don't want
them simultaneously. Creating one log for successes and one for
failures will simplify troubleshooting.

Sudo uses the LOCAL2 log facility by default. Successful sudo
runs get priority notice, while unsuccessful ones get the higher
priority alert. This means you can easily split the two types of sudo
responses into separate log files. Here's how you would do this on a
system running traditional syslogd.
local2.=notice /var/log/sudo

local2.=alert /var/log/sudofail

Touch the two files and restart syslogd. Logs of successful sudo
use go to /var/log/sudo, while unsuccessful sudo attempts go to
/var/log/sudofail.

You can change the log's facility and the priorities using the
options syslog, syslog_badpri, and syslog_goodpri. This lets you avoid
conflicts with other software that uses sudo's default priorities and
adjust the priorities to accommodate any log monitoring software
you might have. Here's a sudoers policy for custom logging.
Defaults syslog=local6, syslog_badpri=crit, \

syslog_goodpri=info

Most syslogd implementations let you split out logs by program
name as well.

Separating out the sudo log opens up some interesting customer
service possibilities. Repeated sudo failures are evidence of a
problem. Either a user is testing their limits, or they're trying to do
their job but failing, or they're flailing around helplessly. Now you
can have a helpdesk flunky pick up the phone and say "Hey, we see

you're having trouble." The end user will either feel like you are
watching out for them, or you're watching them very closely.
Either way, a little bit of omniscience never hurts your reputation.

Syslog Security Problems

Almost all syslog implementations write logs to the local machine
by default. This is a problem for sudo, because a user might alter
the log files. If a sysadmin wants to see what her users do on her
machines, she need to automatically log to remote machines. This
copy must happen in real time. Have syslog send all log messages
to a central logging host. This syslog.conf entry for standard syslogd

sends all messages to a host called loghost.
. @loghost

If you can't send all the system logs, at least send the sudo logs.
local2.=notice /var/log/sudo,@loghost
local2.=alert /var/log/sudofail,@loghost

Finally, use a syslog daemon that securely transmits messages
to your logging host. Programs such as syslog-ng and rsyslog let

you transmit logs encrypted via SSL and/or transport the logs via
TCP.

Sudo and Email
Sudo normally sends email to the system's root account whenever a
user tries to use sudo but fails. You can adjust when sudo notifies
you of events, or whether it notifies you at all, with the options
mail_always, mail_badpass, mail_no_host, mail_no_perms, and mail_no_user.
These notifications can quickly alert when a user is having trouble
with sudo. They can also help find intruders – after all, if your web
server user starts trying to use sudo, you want to know as soon as
possible!

A standard sudo install emails root whenever a user has a
problem with sudo permissions, either trying to run a command
they don't have rights to or if they don't appear in the security
policy. If nobody reads emails addressed to root on the local
system, those emails will pile up and eventually fill your hard disk.
Either forward sudo emails to an account where someone will read
them, or disable email notifications.

The mail_no_user flag tells sudo to send an email notification

whenever a user who doesn't appear in the sudo policy attempts to
run sudo. Sudo normally enables this option by default, and you've
probably seen this email before.

The mail_no_perms option sends a notification whenever a user
tries to run a command that they aren't permitted access to. I find
this notification useful to quickly find users who are struggling to
perform routine tasks with sudo.

Do you want to know when users have password trouble? Use
the mail_badpass option to send email whenever a user enters an
incorrect password. I find this generates too many messages that
don't require any action.

Maybe a user is listed in the sudoers file, but doesn't have
access to sudo on this particular host. The mail_no_host option tells
sudo to send an email whenever a user tries to use sudo but doesn't
have sudo access on that host.

The mail_always option sends an email any time anyone uses sudo,
successfully or not. You might want this for testing, but certainly

not in production.

Sudo Debugging
Sometimes sudo can drive you to the brink of madness. Writing a
policy is simple enough. Running the sudo command is pretty easy.
But things don't always work as you expect. While it's conceivable
that you've discovered a legitimate sudo bug, the truth is that you
probably don't really understand how sudo interprets your policy.

Debugging lets you watch sudo as it processes your policy. You
can see exactly how sudo makes decisions and adjust your sudoers
policy to work the way you desire. Configure sudo logging in
/etc/sudo.conf.

Sudo Subsystems and Levels

If you've configured syslog, sudo logging should look very
familiar. Log messages are divided into levels and subsystems.

A level is a measure of severity or priority. The lowest level,
debug, includes every trivial bit of crud that passes through sudo.
The highest level, crit, only includes problems that keep sudo from

running correctly. In order from least to most severe, the levels
are: debug, trace, info, diag, notice, warn, err, and crit. Which
level do you need? That depends on how much detail you want. I
find that notice level is enough to identify most problems. The
debug and trace levels produce hundreds of lines of output even for
simple commands like sudo –l, but are very useful when reporting
sudo problems to the mailing list. Like syslog, setting a sudo debug
level will log everything of the stated priority or higher. If you
choose to log notice level events, you get notice, warn, err, and crit
levels.

In addition to severity levels, sudo logs via subsystems. You can
log activity from each subsystem separately. If you have a problem
with sudoedit, you can specifically log only sudoedit events. If
sudo seems to match the wrong per-host rules, you can log network
interface handling in both sudo and the sudoers policy.

The sudo command logs from the following subsystems:
args – command argument processing

conv – user conversation
edit – sudoedit
exec – command execution
main – sudo main function
pcomm – communication with the plugin
plugin – plugin configuration
selinux – SELinux-specific events
utmp – utmp handling
Sudoers policy processing has the following subsystems:
alias – processing for all aliases
audit – BSM and Linux audit code
auth – user authentication
defaults – sudoers Defaults settings
env – environment handling
ldap – LDAP handling
logging – logging events
match – matching users, groups, hosts, and netgroups

nss – network service switch handling
parser – sudoers file parsing
perms – permissions processing
plugin – plugin main function
rbtree – redblack tree internals
Both sudo and the sudo policy plugin share these following

subsystems:
All – log everything from everywhere
netif – network interface handling
pty – pseudo-tty related events
util – utility functions
Not sure what subsystem to log? Start with All and trim down

from there.

Configuring Debug Logging

Configure logging in sudo.conf. The entry needs four parts: the
Debug statement, the program or plugin to be debugged, the log

file location, and the subsystems and levels to be logged.
Debug sudo /var/log/sudo_debug all@notice

The Debug sudo statement applies to both the sudo program and
the sudoers policy. This example logs to the file /var/log/sudo_debug.
We specifically log all subsystems, at notice level and above.

You can log different subsystems at different levels. If you are
experimenting with sudo's authentication system, you might want
to crank up authentication logging.
Debug sudo /var/log/sudo_debug all@notice, auth@debug

You can only have one Debug statement per program or plugin.
This means you only get one log file for standard sudo debugging,
as the sudo program and the sudoers policy share the sudo Debug
statement. If you are using a different policy plugin, it can have its
own Debug statement.

Debugging LDAP

One of the common uses of the debugging log is to figure out how
sudo is interacting with LDAP (see Chapter 11). Originally you

configured LDAP debugging in ldap.conf, but that put the debugging
output in the user's window whenever they ran sudo. That was
scary. It's now part of the sudo logging system.

To log basic LDAP interactions, log the ldap subsystem. Basic
debugging is available at info level, while detailed logging lives at
debug.
Debug sudo /var/log/sudo_debug all@notice,ldap@info

Sudo will now record its LDAP-related activity in the debug
log.

Debug Usefulness

Sudo has a lot of subsystems. Some of them, like LDAP and
environment purging, produce very useful logs for systems
administrators trying to understand what sudo is doing. Others, like
the main routine, produce output meaningful only to people who
program sudo. If you're trying to understand a weird sudo behavior
and you can't see anything useful in the log, increase the number of
subsystems you're logging and/or the log level. Worst case,

logging everything at the debug level will get you all the
information sudo produces. After that, you'll have to fall back to
programs like truss or strace and the sudo-users mailing list.

Sudoreplay
Sudo uses syslog to record user activity. We can debug sudo and
create a sudo program log file. But what about detail on what people
did within complicated privileged sessions? What if they fired up
an interactive system administration tool like sadm or plain old
/bin/sh? Enter sudoreplay.

The sudo process is the parent of any command run under sudo.
This means that the sudo process can see any input or output of
that command. Sudo can log the input and output, give it a
timestamp, and display it exactly as it happened.

Enable output logging with the log_output option. Do not log the
output from sudoreplay itself, as you'll quickly fill your disk with
log messages. And logging output from the reboot and shutdown

commands can delay the system's shutdown and recovery, as
sudoreplay tries to log any shutdown messages on disk that's just
been unmounted as part of the reboot process.
Defaults log_output

Defaults!/usr/bin/sudoreplay !log_output
Defaults!/sbin/reboot !log_output

The default directory for sudo logging is /var/log/sudo-io, but you
can change this with the iolog option.

You can also enable input logging with the log_input option. This
is more problematic as input might contain passwords or other
sensitive information. The log_input option only logs what's echoed
back to the user, but some programs print sensitive information. If
the user's input does not appear in the terminal window, then sudo's
input log won't store it.
Defaults log_input

Most of the time, output logging suffices to see exactly what a
user did. If you need input logging, it's available.

You can enable and disable input and output logging on a per-
command basis with the LOG_INPUT, NOLOG_INPUT,
LOG_OUTPUT, AND NOLOG_OUTPUT tags. If you want to log
how users apply certain commands, use these tags in the
command-specific rules.

Listing Logged Sudo Sessions

Enable I/O logging on your test machine and run a few commands
under sudo to create some logs. Use the sudoreplay list mode (–l) as
root to view the list of logged sessions.
sudoreplay -l
Sep 1 19:53:42 2013 : mike : TTY=/dev/pts/1 ; CWD=/usr/home/thea ; USER=root ;
TSID=000001 ; COMMAND=/usr/bin/passwd
Sep 1 20:04:42 2013 : thea : TTY=/dev/pts/2 ; CWD=/usr/home/thea ; USER=root ;
TSID=000002 ; COMMAND=/usr/local/bin/emacs /etc/rc.conf
…

Each log entry includes several fields, delimited by either
colons or semicolons. We start with the full date, in local time. Our
first log entry was recorded at 19:53:42, or 7:53 PM, on 1
September 2013.

The next field is the user who ran the command – in the first
entry mike, and in the second, thea.

Then there's the terminal. Sudo runs logged sessions in a new
pseudoterminal, so it can capture all input and/or output.

The working directory is next. Editing the copy of /etc/fstab in
your home directory is very different from editing the actual
/etc/fstab, and this field lets you differentiate between those.

The USER field gives the user the command was run as. Here,
both Thea and I ran a command as root.

The TSID is the name of sudo's log entry. If you want to view
the actual session, you'll need this number. When sudo I/O logging
is enabled, sudo also adds the TSID to the syslog message.

Finally, the COMMAND is the actual command run. For the
first command, I ran passwd, while in the second Thea edited
/etc/rc.conf. Sudo logs the full path to all commands it runs.

Viewing Sessions

To view an actual session, give sudoreplay the TSID of the session in
question. In that first session, did I really run passwd to change the
root password?
sudoreplay 000001
Replaying sudo session: /usr/bin/passwd

Changing local password for root
New Password:
Retype New Password:
#

Yep, I changed the root password.
Sudoreplay shows sessions in real time, exactly as they

happened. If I waited a few seconds to type a password, the replay
session pauses exactly there. The replay also appears to pause
while I typed the password – there's no visible change because the
terminal didn't display any output as I typed the new password.

Altering Playback

The ability to play back sessions is useful, but sometimes a session
runs too quickly to make sense or too slowly to watch comfortably.

To interactively change the replay speed on longer sessions, you
might want to suspend, slow down, or accelerate playback speed.
Use the space bar to pause a replay, and any key to resume. A less
than symbol (<) reduces replay speed by half, while a greater than

symbol (>) doubles it.
If you know before starting the replay that you want to adjust

the replay speed, preemptively adjust the replay speed with the –m

and –s command-line arguments.
The –m flag sets a maximum number of seconds to pause

between changes, either key presses or screen output. Maybe
you've logged the output of a complicated install process that took
a long time to run, and you want to review it with two seconds
between each screen update. Or maybe Thea knew from the first
time she saw the replay that I spent a lot of time sitting at the
password prompt when I changed the root password without
authorization, and she wants to speed up the display during yet

another Human Resources
[12]

 meeting.
$ sudoreplay –m 1

Use the –s flag to change the speed of the entire replay. The
replay speed is divided by whatever value you give. If you use -s 4,
the replay runs four times as fast. If you use –s 0.25, the replay runs

at one-quarter speed.
$ sudoreplay –s 2

Between –s and -m, and with the interactive controls, you can
adjust the replay speed as needed for any situation.

Searching Sudoreplay Logs

Traditionally, you figured out who did what by using grep on the
default system log. Sudoreplay's list mode also lets you search by
command, user, RunAs, terminal, and more.

The command keyword searches for a command that matches your
search term. If your operating system supports POSIX regular
expressions, your search term is treated as a regular expression.
Otherwise, it's a substring match. Here I search for the passwd

command in the sudoreplay logs:
sudoreplay -l command passwd

The cwd keyword tells sudoreplay to look for commands run in
the given directory. Here I search for all sudo runs in the /etc

directory:

sudoreplay -l cwd /etc

Don't include a trailing slash on the directory name. Also, the
directory name must match exactly –searching for /etc will not
match /etc/ssh. Remember that users don't have to run commands
from a directory to affect files in that directory – you can run vi

/var/log/messages from their home directory rather than going into the
/var/log/ directory and running vi messages.

To search for all sudo sessions run by a specific user, use the
account name and the user keyword.
sudoreplay –l user mike

The group keyword searches for commands run as a particular
group. The user must have explicitly requested to run a command
as this group (i.e., with sudo –g) for this filter to match.
sudoreplay –l group operator

To search for commands run as a specific user, use the runas

keyword. Sudo runs commands as root by default, so searching for
root would probably get you a lot of results.
sudoreplay –l runas postgres

You can even search by terminal device name with the tty
keyword. Want to know who ran sudo on the console? Use the tty
keyword, but don't use /dev/ in front of the device name.
sudoreplay –l tty console

One popular way to search logs is by date and time. Sudoreplay
has many ways to filter log searches by time, and I cover the most
commonly used here. If you're interested in the full details, check
the sudoreplay manual page, but any program that lets you search
by fortnight contains more search options than any sane person
needs. It supports many vernacular time expressions such as "last
week," "today," "4 hours ago," as well as dates and times.

To search for all sudo usage on or after a given date, use the
fromdate keyword.
sudoreplay -l fromdate "last week"

You must quote multi-word date search terms.
To view all sudo usage before but not including a given date,

use the todate keyword.
sudoreplay –l todate today

For search words like today, last week, a fortnight ago, and so
on, sudoreplay assumes that the day starts at midnight.

Other popular time formats include exact dates and times with
AM or PM. Here we search for what happened between 8PM and
11:59 PM on the first of September, 2013.
sudoreplay -l fromdate "8pm 1 Sep 2013" todate "11:59pm 1 sep 2013"

When you use words for months, the day and month can appear
in any order. If you use numerical months, the month must appear
first. If you drop the year, sudoreplay assumes that it's the current
year. This next example searches for any entries after 4 September.
sudoreplay -l fromdate "9/4"

Use "4/9" instead, and you'll get matches from 9 April. I avoid
confusion by naming months.

You can combine search keywords beyond just dates. The
example below searches for my account running sudo after the first
of September.
sudoreplay -l fromdate "9/1" user mike

Combine searches with the or operator.

sudoreplay -l command /bin/sh or command /bin/bash

If you need to group different search terms, parentheses can
help.
sudoreplay –l (command /bin/sh or command /bin/bash) user mike

Fortunately I use tcsh, so this won't catch me.
This should get you well on your way to searching your I/O

logs. I recommend not drinking anything when you first peruse
what your users actually run through sudo, as a spit-take wastes
good caffeine.

Sudoreplay Risks

Sudoreplay is a powerful addition to a system administrator's
toolkit, but it does have problems. If you log session input, you
might capture sensitive data such as passwords in the sudo logs.
Those logs are unencrypted, and a troublesome user who can
weasel himself into root-level access could find that information.

The sudoreplay logs themselves are stored on the local system.
An unauthorized user could damage, alter, or delete those logs. As

I write this sudo cannot store its I/O logs on a remote system, but
session logging is a fairly new feature. I expect that someone will
create a solution for off-server session log storage before long. The
good news is that sudoreplay logs are much harder to edit than a
text log file. While the I/O log certainly isn't tamper-proof,
unskilled tampering will be quite obvious.

Chapter 13: Authentication
Sudo's authentication system looks pretty straightforward: enter
your password and run a privileged command. But sudo will let
you change how it handles your password, how often you must
enter your password, and if it takes a password at all. You can tell
sudo to demand stronger authentication than a password by
requiring, say, an SSH agent or a hardware token or some other
authentication method I've never even heard of, and how it handles
to authentication methods.

We'll start with the simplest case, password management.

Sudo Password Configuration
You can control how sudo requests passwords, how many times
sudo lets the user try to enter a password, and how sudo shares
authentication between terminal sessions.

Password Attempts and Timeouts

Sudo gives users three chances to enter their password. Maybe
your users can't successfully type their passwords on the first,
second, or third try. Use the password_tries option to give them a few
extra attempts.

Sudo gives a user five minutes to type their password before
timing them out. I, for one, find this excessive. If a user can't type
their password in sixty seconds, I don't want them on my server.
Sadly, Thea is a more accommodating soul than myself. Use the
passwd_timeout option to set a timeout in minutes.
Defaults passwd_tries=5, passwd_timeout=2

Users have five tries to enter their password, but their password

prompt times out in two minutes.
Sudo normally doesn’t give any feedback when a user enters a

password. If you want the user to see something when they type,
use the pwfeedback option.
$ sudo -l
Password:*********

Most security people discourage using the pwfeedback option.
Anyone watching the user type learns the length of the user's
password.

Target Password

One of sudo's features is that it demands the user's password to
perform privileged actions, rather than the root password. In
certain environments the system owner might want the user to
enter the target user's password rather than their own – usually for
audit compliance reasons, in my experience. Use the rootpw, targetpw,
and runaspw options for this.

The rootpw option tells sudo to require the root password rather

than the user's password. Here, users in the wheel group must use
the root password for sudo.
Defaults:%wheel rootpw

The targetpw option tells sudo to require the target user's
password rather than the user's password. If the user uses the –u

command-line argument to run a command as another user, he
needs to enter that user's password.
Defaults targetpw

Finally, the runaspw option tells sudo to require the password of
the default RunAs user instead of the user's password. You might
want users who run any programs in the Oracle directory to use the
oracle account's password rather than their own.
Defaults>oracle runaspw

Between all of these, you can customize the necessary password
however you want. You do risk confusing the user, however. If
only there was some way to tell the user which password they
needed to enter…

Customizing the Password Prompt

Sudo's password prompt is kind of boring. Password: does the job,
but the passprompt option lets you do more interesting things.
Defaults passprompt "Your wussy password is:"

This is mildly amusing at best. But using escape characters in
the password prompt string makes the custom prompt useful.

To use the machine's hostname in the password prompt, use %H

or %h. %h is the short hostname, while %H is the fully qualified
hostname. Sudo can only get the fully qualified hostname if the
fqdn option is set or the hostname command returns the fully qualified
hostname.
Defaults passprompt="Your password on %h is:"

To name the user whose password sudo expects, use %p. This
reminds users what password to enter when you're using the rootpw,
runaspw, and targetpw options.
Defaults passprompt="Enter %p's password:"

To name the user who the command will run as, use %U. If your
users frequently run commands as users other than root, this can

help them keep things straight. Heck, it helps me keep things
straight.
Defaults passprompt="Enter %p's password to run command as %U:"

To name the user running sudo, use %u. If you have multiple
user accounts, this might also help you keep them straight.
Defaults passprompt="%u: enter %p's password to run command as %U:"

If you need a percent sign in your prompt, use two consecutive
percent signs (%%).

The passprompt option expects that the system's authentication
system (PAM or similar) uses a password prompt of Password:. If
your system uses something else as a password prompt, use the
option passprompt_override to stop that check and insist that sudo use
your custom prompt.

Authentication Caching and Timeout

Sudo doesn't cache your password or other authentication
credentials. It does remember the date and time that you last
successfully authenticated in a given terminal session, however.

This lets you run sudo again within the next few minutes without
using a password. You can control how sudo treats this cache and
how long sudo will run commands for you without re-entering your
password. If you run sudo –V as root and search for the string
timestamp, you'll see sudo's authentication timing settings.
sudo -V | grep timestamp
Authentication timestamp timeout: 5.0 minutes
Path to authentication timestamp dir: /var/db/sudo

Once you enter your password, you won't need to enter it again
for five minutes in that terminal window. Change this with the
timestamp_timeout option and a number of minutes for the timeout.
Use a 0 to disable the timestamp.
Defaults timestamp_timeout=0

If you use a negative value, the timestamp will never expire.
Don't do that.

According to sudo –V, the timestamps are in the /var/db/sudo

directory. Change the directory with the timestamp_dir option. While
root normally owns the directory and the timestamps in it, you

could change this with the timestamp_owner option. I strongly
recommend that you leave these settings at your operating system
defaults unless your operating system vendor or the sudo
developers tell you to change them.

User Updating Authentication Timeouts

Users can interact with the authentication cache by either updating
the time they last authenticated or by eradicating the cached
credentials.

If you want to authenticate to sudo without running any
commands, run sudo –v. Sudo will prompt you for your password,
verify it, and update the timestamp. Use this when you're about to
run a whole bunch of commands via sudo and don't want to get
stopped by a password prompt halfway through.

If you want sudo to ignore your authentication timestamp cache
for this terminal window, use the –k option. Used on its own, it
invalidates the authentication timestamp. If you specifically want

sudo to request authentication the next time you run a command,
add –k to the command line.
sudo –k ifconfig

Even if you have time left in your authentication timestamp,
sudo will now ask you to authenticate.

To totally remove the authentication timestamp from all of your
sudo sessions, run sudo –K. This entirely removes your timestamps,
or if it can't remove them, resets them to 31 December 1969. Use
sudo –K before walking away from your computer, even if you run a
screen locking program. Remember, a system administrator can
overcome most screen locks. You don't want a cretin like me
unlocking your workstation and using your sudo access.

Disabling Authentication
Sometimes you want a user to have the ability to run a command
without entering a password. If you're always reconfiguring your
laptop to connect to different networks, it might make sense to not
bother with a password for dhclient, ifconfig, and related commands.
You might even want the ability to always run sudo without a
password on your desktop. And running sudo without a password is
very reasonable for automated tasks.

Broadly disabling authentication for sudo is unwise. Yes, it's
most convenient. Also, any application that gains control of your
user session will have total access to all of your sudo privileges. If
you're running an operating system like Ubuntu, which gives the
initial user full root access via sudo, then the rogue process will
completely own your machine. Disabling sudo authentication is
equivalent to deliberately implementing the Windows 95 security

system.
[13]

 If you don't want to bother entering a password when

you need sudo, look at an alternate authentication mechanism such
as an SSH agent (see Sudo and PAM later this chapter).

My examples assume you selectively disable authentication.
You can extrapolate them to globally disable authentication or look
in the default sudoers file shipped with most operating systems.

The authenticate Option

One way to control authentication is the authenticate option on
Defaults statements. The authenticate option doesn't appear in
most sudoers files, because it's an invisible global default. Negate
it to disable authentication. Here I disable authentication for ifconfig

and dhclient:
Defaults!/sbin/ifconfig,/sbin/dhclient !authenticate

I can now set up my laptop at the coffee shop without bothering
with my password.

Authentication Tags

If you want to very precisely control authentication in your sudoers

policy, use the tags PASSWD and NOPASSWD on specific sudoers
rules. you rarely see the PASSWD tag, as it's the default. Use
NOPASSWD to turn off the password requirement.
pete dbtest1 = (oracle) NOPASSWD: /opt/oracle/bin/*

Pete may use sudo to run any Oracle command as the user oracle

on the host dbtest1 without entering a password.

Sharing Authentication Between Sessions

Sudo normally includes the terminal device in the authentication
timestamp. That is, sudo not only uses the username but also the
terminal device (or TTY) to identify a user session's sudo
authentication.

Assume I SSH into a server twice, and my sessions use virtual
terminals /dev/vty2 and /dev/vty3. If I use sudo in the vty2 terminal
window, and want to use it again in the vty3 window, I must
authenticate in the vty3 window.

Some operating systems include a sudo package configured to
permit sharing sudo authentications between terminal sessions. If

you open two SSH sessions to a server and authenticate via sudo in
one session, the other session can use that same authentication
timestamp.

This seems strange to many people – it certainly struck me as
odd. But it's really hard to isolate the two processes from each
other when they're both owned by the same user. Users have
complete control over their own processses, after all. This means
that if a skilled intruder penetrates a user account while the user is
active in another session, the intruder can use tools like ptrace and
gdb to run commands via sudo as long as any terminal session has a
valid timestamp. Still, requiring separate authentication for each
terminal window does increase the skill an attacker needs to
further penetrate the system – your average script kiddie won't
have the expertise needed to hijack another terminal's sudo session.

You can control per-terminal authentication with the ttytickets

option. Negating this option lets multiple terminals share a single
timestamp for authentication. Unless you have very specific

reasons for disabling per-terminal timestamps, however, I strongly
encourage you to leave it on.

Querying Sudo
Sudo has two user functions that don't run commands. The –l flag
tells sudo to print out the user's sudo policy, so the user can see
what they have access to. The –v flag updates the user's
authentication timeout. Users must enter their password to use
these functions, but you can change these features to only require a
password under certain conditions.

The listpw option controls whether user must enter his password
to list his access, while the verifypw option controls whether a user
must enter his password to update his authentication timestamp.
Each of these options can have one of four values: any, always, all,
and never.

The default, any, means that if any of the user's sudoers rules
have NOPASSWD or !authenticate set, the user doesn't need to enter a
password to use the function. Turning off password authentication
for one command means enabling passwordless use of sudo's –l and
–v flags.

If these options are set to always, the user must enter a password
every time they want to use these functions. Even if the user's
authentication timestamp has not expired, the user must always
enter a password to use –l or –v. always means "always."

If you set these options to all, -l and –v will request a password
unless the user has passwordless access to all of their permitted
commands on this host. They don't need passwordless access to all
possible commands, mind you, only passwordless access to all of
the commands that they can run.

The never setting means that users are never asked for a
password to use –l or –v.

Here sudoers tells sudo –l to demand a password for every user
except Thea. We also disable asking for a password to update the
authentication timestamp on the host www.
Defaults listpw=always
Defaults:thea listpw=never
Defaults@www verifypw=never

Changing the listpw and verifypw options for commands or RunAs

doesn't make much sense, but you can sensibly change them for
hosts and users.

Lecture
I used the sudo lecture for many examples in Chapter 5, but let's
give it more concentrated treatment. The "lecture" is the message
displayed when you first authenticate to sudo.
We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these three things:

#1) Respect the privacy of others.
#2) Think before you type.
#3) With great power comes great responsibility.

You then get a chance to enter your password. This is a nice
general warning, but the lecture and lecture_file options give you a
chance to give more specific lectures as the situation demands.

The lecture option accepts three values. The default, once, tells
sudo to give each user the lecture once and never again. Using
always tells sudo to always lecture the user, while using never or
!lecture disables the lecture entirely.

Use the lecture_file option to give a file containing your own

lecture. You can set the lecture based on any default setting. So
Thea might set this configuration:
Defaults:mike lecture=always,

lecture_file=/etc/sudo/mike-lecture

The mike-lecture file might contain something like this.
Everything you do is logged.

And Thea studies the logs.

I'm on to you, mister.

Apparently someone thinks I'm trouble.

Sudo and PAM
Passwords aren't very strong authentication tokens. Most users
create terrible passwords, and a sufficiently persistent intruder can
eventually guess even decent passwords. Adding another layer of
authentication to your privileged processes, or eliminating
passwords altogether, can improve your security.

Pluggable Authentication Modules, or PAM, permit system
administrators to attach new authentication systems to programs.
Each authentication system comes in a PAM module, containing
the code needed to use the authentication system. In addition to the
usual password, Unix, Kerberos, and LDAP modules found on
Unix-like systems, you can install PAM modules that implement
Google Authentication, RSA tokens, Windows SMB
authentication, and many more. Not all operating systems support
PAM, but if yours does, you can leverage PAM to authenticate
sudo.

Just as this is not a book on LDAP, this is not a book on PAM.

This section probably contains enough knowledge to get my
example PAM module working on your system with sudo, but it
won't make you into a PAM wizard. And don't forget that many
vendors have their own PAM system, while the open source world
has two similar but not identical implementations. If you want an
advanced PAM configuration, check your operating system's
documentation to see what you have and what it can do.

Lots of the PAM modules aren't suitable for my environment,
however. Using Google Authenticator not only removes the source
of trust from my network, it means that if my external network
connection fails I cannot authenticate. I will not authenticate
against a Windows domain or deploy RSA tokens in this company.
The SSH agent authentication module, however, is interesting.

An SSH agent runs on the user's desktop computer. It holds a
user's decrypted SSH authentication keys in memory. If the SSH
client or session needs to validate posession of the keys, it asks the
desktop agent to perform the validation. This is stronger than

password authentication, as the user must have both the key and
the passphrase for the key. Of course, you shouldn't allow all SSH
servers access to your agent, but that's pretty easily configured. If
this paragraph made no sense to you, permit me to recommend my
book SSH Mastery (Tilted Windmill Press, 2012).

The PAM module pam_ssh_agent_auth
(http://pamsshagentauth.sourceforge.net/) permits processes to
authenticate against your SSH agent. I'll use this module as an
example of adding security systems to sudo.

Prerequisites

Before configuring sudo to use SSH agent authentication, check
that you have all the prerequisites.

You must have user authorized_keys files on the local machine.
This means that if you're using an SSH server that gets its keys
from LDAP or another external source, you cannot use
pam_ssh_agent_auth.

Your SSH client must forward your desktop SSH agent to the
server, and the server must accept the agent forwarding. To see if
this works in your SSH session, check for the environment variable
SSH_AUTH_SOCK.
$ echo $SSH_AUTH_SOCK
/tmp/ssh-u2ThOMa9py/agent.24047

If this variable contains a path, either your agent forwarding
works or you have a truly bizarre problem. If this variable doesn't
exist, check your SSH client and server settings.

Now install pam_ssh_agent_auth. Unlike much modern
software, pam_ssh_agent_auth doesn't have all kinds of fancy
configuration options. If your operating system has a packaged
version – and it probably does – use it.

SSH agent authentication needs the environment variable
SSH_AUTH_SOCK, which SSH automatically sets to point to a
local socket connect to your SSH agent. You need to permit this
environment variable in your sudoers policy. I recommend also
passing SSH_CLIENT, SSH_TTY, and SSH_CONNECTION so

that programs like sftp work.
Sudo defaults to setting the authentication timestamp when you

authenticate. This behavior will drive you buggy when trying to
deploy a new authentication system. Disable the timestamp by
setting the option timestamp_timeout to 0.
Defaults env_keep += "SSH_CLIENT SSH_CONNECTION SSH_TTY
SSH_AUTH_SOCK",

timestamp_timeout=0

Once these prerequisites work you can proceed to configuring
the PAM module.

Configuring PAM

PAM keeps authentication configurations in system directories
such as /etc/pam.d or /usr/local/etc/pam.d. A PAM-aware program
searches for its PAM in these directories. Check these directories
for a file named sudo.

PAM policies include four different types of rules: auth,
account, session, and password. Changing authentication methods

requires changing the auth rules. Not all PAM policies have all rule
types – many policies don't have password rules. Each rule calls a
PAM module such as pam_unix, pam_ldap, pam_mkhomedir, and so on.

The PAM module pam_unix handles traditional password
authentication. Find an authentication rule in sudo's PAM
configuration somewhat like this one.
auth required pam_unix.so no_warn try_first_pass nullok

This rule tells sudo to use passwords for authentication. To use
SSH agent authentication instead of passwords, replace the
password rule with your own.

auth sufficient pam_ssh_agent_auth.so file=~/.ssh/authorized_keys

What does this mean? Authenticating with the method in the
shared library pam_ssh_agent_auth.so is sufficient to log on to the
system. The file= text gives the path to the user's authorized_keys file,
which is commonly in $HOME/.ssh/authorized_keys. You might need to
give the full path to pam_ssh_agent_auth.so, depending on how your
operating system installs new PAM libraries and how your PAM
implementation finds them.

Save your changes to the sudo PAM policy. You should now be
able to authenticate to sudo with your SSH agent. Flush your
authentication timestamp (if any) and try it.
$ sudo –K
$ sudo touch /tmp/test

While my PAM rule works for the most common case, a server
can store its authorized_keys files in several ways. The
pam_ssh_agent_auth library must know where the keys are and the
acceptable permissions on the key files.

authorized_keys Permissions

In the simplest case, a user owns their own authorized_keys file. Some
environments don't let users change their own authorized_keys,
however. Instead, key file updates go through a central
management system which copies them to the target host. In such
an environment, a compromised user cannot change the key files
on the server. The question becomes: who owns the key files?

The allow_user_owned_authorized_keys_file option tells

pam_ssh_agent_auth that the user can own the authorized_keys file.
This option activates automatically when the key file is in the
user's home directory.

Without this option set, and if the authorized_keys file is not in the
user's home directory, pam_ssh_agent_auth expects root to own the
key file. If the file is not owned by root, authentication fails.

authorized_keys Location

While most tutorials tell you to put authorized_keys in the user's
$HOME/.ssh directory, many organizations use other standards. You
must tell pam_ssh_agent_auth where to find the files. The module
includes several escape characters for this purpose.

The tilde (~) and %h characters represent the user's home
directory.

%H represents the short hostname (without the domain name),
while %f means the fully qualified hostname.

Finally, %u represents the username.

Suppose you stored your keys in /etc/sshkeys/, where each user has
a file named after their username. These key files are owned by
root.

auth sufficient pam_ssh_agent_auth.so file=/etc/sshkeys/%u

If users can write their own key files in this directory, you must
add the allow_user_owned_authorized_keys_file option at the end of the
PAM rule.

Debugging pam_ssh_agent_auth

If sudo prompts you for a password and waits for you to do so, you
haven't removed the password policy. If sudo prompts you for a
password three times in a row without waiting for you to enter the
password, and then displays a failure message, sudo is using the
PAM module but cannot connect to your SSH agent. Check your
agent forwarding. If you still have problems, configure logging in
sudo.conf to see where things break.

 Once you get pam_ssh_agent_auth working with sudo, you can
further expand authentication requirements. You want to require an

SSH agent, a password, and Google Authentication? You can do it.
It's kind of daft, but you can do it.

And given this, you can now make sudo do anything you want.

Afterword
You should now know more about sudo than the vast majority of
people who didn't write it. Congratulations! But there's more to
learn. If you have a weird sudo problem, check the sudo web site at
http://sudo.ws, the sudo man pages, and the archives of the sudo-
users mailing list. Sudo has been successfully deployed on millions
of very different systems, and it can work for you too.

Always be aware that sudo might not fit your organization,
however. Some applications expect to own the server, and trying to
restrict those applications is futile at best. If you manage your
organization by running shell scripts as root, running those same
shell scripts with sudo will leave lots of ways for unauthorized
users to escalate their privileges. Sudo is useful, but a sysadmin
who understands when a specific tool won't solve his problem is
more useful.

And the next time someone tells you that "Sudo is how you get

root," treat them to a short sharp visit from the Slap Fairy.

[1]
 If you haven't played with Ansible (http://ansible.cc), you really should.

[2]
 I have very few unbreakable rules for being a "real" sysadmin. One of them is, real

sysadmins can use vi. Vi and ed are the two editors you can be confident of finding on
any Unix-like system. "Can't use vi" means "not a sysadmin."
[3]

 I recently learned that the ipset command uses -! as a common argument.
Presumably the developers were out of letters and numbers, and when they run out of
symbols they'll proceed to blood samples.
[4]

 But if I tell her what happened to her comfy chair, I'll never get access to anything
ever again.
[5]

 I said that with a straight face? Wow.
[6]

 Running a shell that can't execute commands is an education. Try it sometime.
[7]

 This is also known as "Management won't let me do my job" Syndrome, which is
not improved by developing "I gave them an excuse to fire me" Disorder.
[8]

 If an Evil Secret Agency with access to Super Top Secret Digest Cracking

Hardware™ wants to compromise your computer, he won't bother replacing binaries
with treacherous versions carefully engineered to have the same checksum. He'll use
your kneecaps. And a hammer.
[9]

 I know you have a procedure for installing servers. After years in this business, I am
firmly convinced that no human being is capable of installing two servers identically.
[10]

 A couple distributions once required blood sacrifices at the second dark of the
moon in a month to make sudo read a policy from LDAP, but I'm assured that this
behavior was corrected after enough users filed sufficiently detailed bug reports.
[11]

 When Carl wants to know who changed his password, the boss can tell him. And
I'll be in trouble again.
[12]

 I'd probably be in my own meeting with HR a little after, if I wasn't the owner's
brother-in-law.
[13]

 For those readers too young to remember: Windows 95 had no security system.

	Chapter 1: Introducing sudo
	Chapter 2: sudo and sudoers
	Chapter 3: Editing and Testing Sudoers
	Chapter 4: Lists and Aliases
	Chapter 5: Options and Defaults
	Chapter 6: Shell Escapes, Editors, and Sudoers Policies
	Chapter 7: Configuring sudo
	Chapter 8: User Environments versus Sudo
	Chapter 9: Sudo for Intrusion Detection
	Chapter 10: Sudoers Distribution and Complex Policies
	Chapter 11: Security Policies in LDAP
	Chapter 12: Sudo Logging & Debugging
	Chapter 13: Authentication
	Afterword

