

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic

SELinux
By Bill McCarty

Publisher : O'Reilly
Pub Date : October 2004

ISBN : 0-596-00716-7
Pages : 254

This small but information-packed book covers the wide range of knowledge
needed to secure your system using this respected extension to Linux.
SELinux discusses critical topics, such as SELinux concepts and its security
model; installation instructions; system and user administration;
understanding, implementing, and developing your own SELinux security
policies. With SELinux, a high-security computer is within reach of any system
administrator, and this book provides the means.

http://www.oreilly.com/catalog/selinux/reviews.html
http://www.oreilly.com/cgi-bin/reviews?bookident%3Dselinux
http://www.oreilly.com/catalog/selinux/errata/
http://academic.oreilly.com

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic

SELinux
By Bill McCarty

Publisher : O'Reilly
Pub Date : October 2004

ISBN : 0-596-00716-7
Pages : 254

 Copyright
 Preface
 Organization of This Book
 Conventions Used in This Book
 Using Code Examples
 How to Contact Us
 Acknowledgments
 Chapter 1. Introducing SELinux
 Section 1.1. Software Threats and the Internet
 Section 1.2. SELinux Features
 Section 1.3. Applications of SELinux
 Section 1.4. SELinux History
 Section 1.5. Web and FTP Sites
 Chapter 2. Overview of the SELinux Security Model
 Section 2.1. Subjects and Objects
 Section 2.2. Security Contexts
 Section 2.3. Transient and Persistent Objects
 Section 2.4. Access Decisions
 Section 2.5. Transition Decisions
 Section 2.6. SELinux Architecture
 Chapter 3. Installing and Initially Configuring SELinux
 Section 3.1. SELinux Versions
 Section 3.2. Installing SELinux
 Section 3.3. Linux Distributions Supporting SELinux
 Section 3.4. Installation Overview

http://www.oreilly.com/catalog/selinux/reviews.html
http://www.oreilly.com/cgi-bin/reviews?bookident%3Dselinux
http://www.oreilly.com/catalog/selinux/errata/
http://academic.oreilly.com

 Section 3.5. Installing SELinux from Binary or Source Packages
 Section 3.6. Installing from Source
 Chapter 4. Using and Administering SELinux
 Section 4.1. System Modes and SELinux Tuning
 Section 4.2. Controlling SELinux
 Section 4.3. Routine SELinux System Use and Administration
 Section 4.4. Monitoring SELinux
 Section 4.5. Troubleshooting SELinux
 Chapter 5. SELinux Policy and Policy Language Overview
 Section 5.1. The SELinux Policy
 Section 5.2. Two Forms of an SELinux Policy
 Section 5.3. Anatomy of a Simple SELinux Policy Domain
 Section 5.4. SELinux Policy Structure
 Chapter 6. Role-Based Access Control
 Section 6.1. The SELinux Role-Based Access Control Model
 Section 6.2. Railroad Diagrams
 Section 6.3. SELinux Policy Syntax
 Section 6.4. User Declarations
 Section 6.5. Role-Based Access Control Declarations
 Chapter 7. Type Enforcement
 Section 7.1. The SELinux Type-Enforcement Model
 Section 7.2. Review of SELinux Policy Syntax
 Section 7.3. Type-Enforcement Declarations
 Section 7.4. Examining a Sample Policy
 Chapter 8. Ancillary Policy Statements
 Section 8.1. Constraint Declarations
 Section 8.2. Other Context-Related Declarations
 Section 8.3. Flask-Related Declarations
 Chapter 9. Customizing SELinux Policies
 Section 9.1. The SELinux Policy Source Tree
 Section 9.2. On the Topics of Difficulty and Discretion
 Section 9.3. Using the SELinux Makefile
 Section 9.4. Creating an SELinux User
 Section 9.5. Customizing Roles
 Section 9.6. Adding Permissions
 Section 9.7. Allowing a User Access to an Existing Domain
 Section 9.8. Creating a New Domain
 Section 9.9. Using Audit2allow
 Section 9.10. Policy Management Tools
 Section 9.11. The Road Ahead
 Appendix A. Security Object Classes
 Appendix B. SELinux Operations
 Appendix C. SELinux Macros Defined in src/policy/macros
 Appendix D. SELinux General Types
 Appendix E. SELinux Type Attributes
 Colophon
 Index

Copyright © 2005 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are
registered trademarks of O'Reilly Media, Inc. The Linux series designations,
SELinux: NSA's Open Source Security Enhanced Linux, images of the
American West, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in
this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps. The use of NSA's
SELinux in this book does not constitute implied or expressed endorsement of
the book by National Security Agency (NSA) or any of its agents

. While every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

http://safari.oreilly.com
mailto:corporate%40oreilly.com

Preface
As a security researcher and author of computer books, I work hard to stay
abreast of the latest technological developments. So, I'd been tracking
Security Enhanced Linux (SELinux) on my technology radar for several years.
But, frankly, it didn't seem to me easy enough, or robust enough, for
dependable use by Linux system administrators.

About one year ago, SELinux seemed to grow up suddenly. I now believe that
SELinux is the most important computing technology for Linux users that I've
seen in the last several years. Obviously, others agree that SELinux is
important and useful: SELinux has been incorporated into Fedora Core,
Gentoo, and SUSE Linux. And by the time this book is in print, it's expected to
be part of Red Hat Enterprise Linux.

Why the sudden popularity? In a nutshell, SELinux promises to change the
way Linux users practice computer security from a reactive posture, based on
applying patches intended to close published vulnerabilities, to a proactive
posture that seeks to prevent even unpublished vulnerabilities from
compromising systems. Properly configured and administered Linux systems
already hold a well-deserved reputation for resistance to attack. SELinux
significantly ups the ante on attackers and intruders by providing Linux system
administrators with access to sophisticated security technology of a sort
previously available only to administrators of high-security systems running
expensive, military-grade operating systems.

Of course, as a good friend of minewho happens to be an economist is fond of
saying, "There's no such thing as a free lunch." Like other security
technologies, SELinux must be properly installed, configured, and maintained
if it is to be effective. This book will help you understand and intelligently use
SELinux. Whether you prefer to use the sample SELinux security policies
delivered as part of a Linux distribution or to implement your own customized
policies, this book will show you the way.

One thing SELinux: NSA's Open Source Security Enhanced Linux doesn't do is
explain how to write programs that use the SELinux API. I anticipate that this
book will be useful to those who want to write such programs. But SELinux is
designed for system administrators, not programmers, and therefore doesn't
assume programming skills or expertise. Consequently, those interested in
using the SELinux API will have to supplement the material presented in this
book with information obtained from SELinux documentation and other
sources.

Organization of This Book

This book is divided into nine chapters and five appendixes. Here is a brief
summary of each chapter's focus:

Chapter 1, Introducing SELinux, explains why SELinux is valuable and which
common security flaws it addresses, including the concept of the 0-day
vulnerability.

Chapter 2, Overview of the SELinux Security Model, explains such basic
concepts as roles, domains, and transitions. It prepares the reader for SELinux
installation.

Chapter 3, Installing and Initially Configuring SELinux, lays out the current
state of SELinux support in several GNU/Linux distributions and provides
guidance for installation.

Chapter 4, Using and Administering SELinux, is a basic SELinux system guide
for system administrators, covering such techniques as user administration.

Chapter 5, SELinux Policy and Policy Language Overview, prepares the reader
to write or revise policies, which is necessary when new software is installed
on an SELinux system or when policies need to be adjusted to current system
use. This chapter discusses the build process, the layout of policy-related files,
and general issues such as macros.

Chapter 6, Role-Based Access Control, introduces the syntax of policy files and
describes the directives that relate to user roles.

Chapter 7, Type Enforcement, discusses the next major aspect of SELinux
policies, type-enforcement files.

Chapter 8, Ancillary Policy Statements, finishes the explanation of policy
statements with a description of constraints and other miscellaneous
directives.

Chapter 9, Customizing SELinux Policies, pulls together all the material from
the book, provides concrete examples of how to adjust SELinux systems to
users' needs, and introduces tools that help monitor the system and view
policies.

Five appendixes list the classes, operations, macros, types, and attributes
defined by SELinux policy files.

Conventions Used in This Book

This book uses the following typographical conventions:

Italic

Used for commands, programs, and options. Italic also indicates new
terms, URLs, filenames and file extensions, and directories.

Constant Width

Used to show the contents of files or the output from commands. Constant
width is also used to indicate domains, types, roles, macros, processes,
policy elements, aliases, rules, and operations.

Constant Width Bold

Used in examples and tables to show commands or other text that should
be typed literally by the user.

Constant Width Italic

Used in examples and tables to show text that should be replaced with
user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon signifies a warning or caution.

A final word about syntax: in many cases, the space between an option and its
argument can be omitted. In other cases, the spacing (or lack of spacing) must
be followed strictly. For example, -wn (no intervening space) might be
interpreted differently from -w n. It's important to notice the spacing used in
option syntax.

Keyboard Accelerators

In a keyboard accelerator (such as Ctrl-Alt-Del), a dash indicates that the keys
should be held down simultaneously, whereas a space means that the keys
should be pressed sequentially. For example, Ctrl-Esc indicates that the
Control and Escape keys should be held down simultaneously, whereas Ctrl Esc
means that the Control and Escape keys should be pressed sequentially.

IF a keyboard accelerator contains an uppercase letter, you should not type
the Shift key unless it's given explicitly. For example, Ctrl-C indicates that you
should press the Control and C keys; Ctrl-Shift-C indicates that you should
press the Control, Shift, and C keys.

Using Code Examples

This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need to
contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question
by citing this book and quoting example code does not require permission.
Incorporating a significant amount of example code from this book into your
product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: "SELinux: NSA's Open
Source Security Enhanced Linux, by Bill McCarty. Copyright 2004 O'Reilly
Media, Inc., 0-596-00716-7."

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

mailto:permissions%40oreilly.com

How to Contact Us

Please address any comments or questions concerning this book to the
publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. The site also includes a link to a forum where you can
discuss the book with the author and other readers. You can access this page
at:

http://www.oreilly.com/catalog/selinux

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, software, Resource Centers,
and the O'Reilly Network, see our web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/selinux
mailto:bookquestions%40oreilly.com
http://www.oreilly.com

Acknowledgments

Thanks to my editor, Andy Oram, who struggled alongside me through some
difficult challenges of structure and design. This book wouldn't have been
nearly as clear and readable without Andy's insights and patient influence.

Thanks also to Margot Maley of Waterside Productions, Inc., who brought this
authorship opportunity to my attention.

Several reviewers, some working for O'Reilly Media and some working
elsewhere, commented on the manuscript and suggested helpful corrections
and improvements. In particular, I'd like to thank the following people for
taking time to review this book: Dr. Steve Beatty, Joshua Brindle, David
Castro, and George Chamales. I greatly appreciate their assistance and readily
confess that any errors in the manuscript were added by me after their
reviews, and so are entirely my responsibility.

My family Jennifer, Patrick, and Saraprovided their customary compassion and
assistance during this latest authorship experience. Thanks, guys!

I also acknowledge the faithfulness of my savior, Jesus Christ. His perfect love
is entirely undeserved.

Chapter 1. Introducing SELinux
This chapter explains the what and why of SELinux. It begins by describing the
threat environment and why the prevalent model of security patching against
known vulnerabilitiesis inadequate. The chapter goes on to describe several
security mechanisms designed to protect against both known and unknown
vulnerabilities. The chapter then presents an overview of SELinux, describing
its main features, capabilities, and history. The chapter concludes with a
survey of resources helpful to SELinux users.

1.1 Software Threats and the Internet

Because you're reading this book, it's likely that you're responsible for the
management of one or more sensitive hosts. If that's the case, you're aware
that the threat level for Internet-based attacks has increased rapidly over the
last several years and continues to do so. One authoritative barometer of this
trend is the number of incident reports logged by the Computer Emergency
Response Team Coordination Center (CERT/CC) of Carnegie Mellon
University's Software Engineering Institute. Table 1-1 shows the number of
incident reports for 2000 through 2003. During this four-year period, incident
reports increased at an average annual rate of almost 85 percent. That is, the
number of incidents has roughly doubled each year. If this rapid rate of
increase continues, the year 2010 will see over 10 million incident reports.

Table 1-1. CERT/CC incident reports[1]

Year Reports

2000 21,756

2001 52,658

2002 82,094

2003 137,529

[1] Source: http://www.cert.org/stats/cert_stats.html.

Of course, the number of incident reports is an indirect rather than direct
measure of the threat level. So some might argue that the threat level is
unchanged, and the increase in incident reports is due to system
administrators reporting a greater proportion of incidents.

http://www.cert.org/stats/cert_stats.html

Insider Threats

Not all threats arise from software or the Internet. So-called insider threats, which come from local-
area networks or proprietary wide-area networks, can present even more serious risks. Insiders
often attack systems by means other than software vulnerabilities. For instance, employees in two
work groups may collude to falsify database records to steal from their employer. Such threats
generally cannot be prevented by purely technical means. Gartner research has estimated that 70
percent of security incident costs are related to breaches committed by insiders. Securing the
Enterprise: The Latest Strategies and Technologies for Building a Safe Architecture (Gartner,
2003), available at http://www4.gartner.com/5_about/news/sec_sample.pdf.

While available evidence does suggest that system administrators have
historically been reluctant to report incidents and have become less reluctant
lately, evidence also indicates that the threat level is substantial and is rising
rapidly. As an information assurance researcher, I monitor several class-C
networks for familiar and novel attacks. My data shows that a typical host on
these networks is subject to attack every few seconds. An unprotected host
can succumb to attack in less time than it takes to install a typical operating
system or software patch. Therefore, those for whom the confidentiality,
integrity, and availability of information are important must invest significant
effort to protect their hosts, especially those that connect to the Internet.

To effectively protect hosts against threats, it's important to understand the
nature of the threats and why they are increasing. Three of the most
significant factors that have led to the increased level of software threats are
software complexity, network connectivity, and active content and mobile
code.

1.1.1 Software complexity

Because the human intellect is finite, software developers commit errors and
leave omissions during the implementation of software systems. The defects
resulting from their errors and omissions cause software systems to behave in
unwanted or unanticipated ways when executed in untested or unanticipated
ways. Attackers can often exploit such misbehaviors to compromise systems.
As a general principle, the more complex a system, the greater the intellectual
demands its implementation imposes upon its developers. Hence, complex
systems tend to have relatively large numbers of defects and be relatively
more vulnerable to attacks than smaller, simpler systems. Modern software
systems, such as operating systems and standard applications, are large and
complex. The Linux operating system, for instance, contains over 30 million

http://www4.gartner.com/5_about/news/sec_sample.pdf

source lines of code. And Red Hat Linux 7.1 was 60 percent larger than Red
Hat Linux 6.2, which was released about one year earlier.[2] Therefore,
contemporary systems are generally vulnerable to a variety of attacks and
attack types, as explained in the following sections of this chapter.

[2] Source: http://www.dwheeler.com/sloc/.

1.1.1.1 Network connectivity

A second factor contributing to increased software threats is increased network
connectivity and, in particular, the Internet itself. Connectivity provides a
vector whereby attacks successfully launched against one networked host can
be launched against others. The Internet, which interconnects the majority of
networks in existence, is the ultimate attack vector. The recent popularity of
consumer access to the Internet compounds the threat, since the computers of
most consumers are not hardened to resist attack. Unsecured hosts easily fall
prey to viruses and worms, many of which install backdoors or Trojan horses
that enable compromised systems to be remotely accessed and controlled.
Attackers can launch attacks by using these compromised hosts, thereby
hiding their identity from the victims of their attacks and law enforcement.
Many attackers attack from across international borders, which complicates the
work of law enforcement. Because law enforcement generally has been
ineffective in identifying and apprehending all but a handful of notorious
computer criminals, attackers have believed themselves to be beyond the
reach of prosecution and have acted out their whims and criminal urges with
impunity. The recent advent of wireless connectivity exacerbates the risks, as
several of the security facilities commonly used on wireless networks
implementing the IEEE 802.11 standard (such as Wireless Encryption
Equivalent Privacy (WEP)) have turned out to be flawed, and therefore
vulnerable to attack.

Active content and mobile code

A third factor contributing to increased software threats is the use of active
content and mobile code. Active content refers to documents that have the
capability of triggering actions automatically without the intervention, or
possibly even the awareness, of their user. Ordinary, ASCII-encoded
documents are not active in this sense. However, a variety of modern

http://www.dwheeler.com/sloc/

document types can include active content such as Abobe PDF documents, MS
Office documents, Java applets, and web pages containing JavaScript code or
using browser plug-ins. Even PostScript documents, which are widely thought
to be safe, can contain active content. The danger of active content is that
users generally perceive documents as benign, passive entities. However,
malicious active content can compromise a user's computer as easily as any
other form of malicious code. Opening, or even merely selecting and
previewing, a document containing malicious active content may enable the
malicious code to compromise a user's computer.

Cybercriminals Think Themselves Safe

One of my research projects involves the use of honeypots to study computer attacks and
attackers. A honeypot is a specially instrumented system that is left open to attack. You can learn
more about them at http://www.honeynet.org.

In 2003, I monitored intruders on one of my honeypots, who were discussing the likelihood of their
apprehension and prosecution. In response to concerns expressed by one attacker, anotherwhom
I'll call Peer responded as follows:

Peer: well.... didn't give a***. I'm not in US

Peer: and frankly my country doesn't have a cyberlaw :P

The final two characters in Peer's response, :P, are an Internet Relay Chat (IRC) device intended to
represent the appearance of sticking out one's tongue, a common gesture of disdain.

Mobile code is code designed to be transported across a network for execution
on remote hosts. Mobile code is often designed to extend the capabilities of
software programs and, because of users' desires for flexible and convenient
software, has become ubiquitous. Email clients and web browsers, for example,
accept and process a wide variety of mobile code types, including Java and
JavaScript programs, Microsoft ActiveX controls, and others.

Unfortunately, active content and mobile code provide more than flexibility
and convenience to users: they provide attackers with a flexible and
convenient attack vector. Many Internet attacks take the form of active
content or mobile code delivered via email. When a user views an email
message containing malicious code, the malicious code may seize control of
the user's computer. Especially sophisticated malicious code may not even
require user action. Such code may be capable of compromising a vulnerable
computer in a fraction of a second, without presenting the computer's user
with an opportunity to refuse the code permission to execute or even receive
notification of the event.

For more information on malicious mobile code in the context of Microsoft Windows, see
Malicious Mobile Code (O'Reilly).

1.1.2 Privilege Escalation

http://www.honeynet.org

Most common operating systems, including Microsoft Windows and Unix/Linux,
provide multiple levels of authorization, thereby restricting the operations that
some programs or users are permitted to perform. Multiple levels of
authorization act as bulwarks against the damage done when a program is
compromised. Many common operating systems have two primary levels of
authorization one for ordinary users and one for the system administrator. A
handful of operating systems, such as those used on PDAs and small
computing devices, do not impose any such restrictions.

Restricting programs to the few functions they need to perform is called the
principle of least privilege. Operating systems that lack multiple levels of
authorization cannot implement the principle of least privilege and are
therefore inherently quite insecure. When an attacker compromises a program
running under a single-level operating system, the attacker gains the ability to
perform any operation of which the system is capable. However, an attacker
who compromises a program on a system that has multiple levels of
authorization obtains only the privilege to perform those operations for which
the program is authorized. If the program performs tasks related to system
administration, the attacker may gain wide-ranging privileges. However, if the
program performs relatively mundane tasks, the attacker may achieve
relatively little beyond gaining the ability to disrupt operation of the
compromised program. Nevertheless, an attacker who compromises even a
program that confers few privileges may achieve a significant victory, because
the attacker can use the privileges conferred by the program as a beachhead
from which to attack programs conferring additional or greater privileges.
Alternatively, the attacker may intentionally disrupt operation of the
compromised program in what is called a denial of service.

The Apache OpenSSL Attack

A popular Internet attack during 2002 and 2003 was the Apache OpenSSL attack, directed against
the Apache web server. Most users configure Apache to run as an ordinary user, rather than as the
system administrator. So, attackers who successfully exploited a web server using the Apache
OpenSSL attack generally obtained only limited privileges. However, at the time of the attack's
popularity, Linux systems were vulnerable to a second attack, one targeting the ptrace facility used
to trace and debug processes. Unlike the Apache web service, which is available to remote users, the
ptrace facility is available only to local users. Successful compromise of an Apache web server enabled
attackers to access the ptrace facility and exploit a ptrace defect that conferred full system
administration privileges.

1.1.3 The Patch Cycle and the 0-Day Problem

When a software vendor learns that one of its products is vulnerable to attack,
the vendor will generally issue a patch. Users can install the patch, which
modifies the vulnerable product in a way intended to eliminate or at least
mitigate the vulnerability. Occasionally, a patch alleged to eliminate a
vulnerability will fail to actually do so. Worse yet, occasionally a patch will
introduce one or more new vulnerabilities. So patches are sometimes less than
ideal solutions. But, as a means of defending against software attacks, patches
suffer from a more fundamental flaw.

The essential problem with patches is that they are a reactive, rather than
proactive, response. Patching is thus a continual process consisting of the
following steps, known as the patch cycle:

1. A vulnerability in a software product is discovered.

2. The product's vendor prepares and publishes a patch for the vulnerability.

3. Users acquire, authenticate, test, and install the patch.

It may seem odd that security researchers publish vulnerabilities rather than
privately inform vendors of them, because publication of a vulnerability may
help attackers discover a way to exploit it. Indeed, most security researchers
do prefer to inform vendors of vulnerabilities privately rather than publicly.
But many vendors consistently fail to release patches in a timely manner. And
some vendors fail even to acknowledge in a timely manner vulnerability
reports submitted privately by researchers. So, many security researchers
believe that it's necessary to force vendors to fix their products and therefore

elect to publish vulnerabilities. In an effort to avoid giving attackers
opportunity to exploit vulnerabilities, some researchers publish them only
after first privately notifying the vendor and providing an opportunity to
publish a patch before publication of the vulnerability.

Vendors can supply patches only for known vulnerabilities, so a fully patched
computer remains vulnerable to attacks that are unknown to the vendor.
Moreover, vendors require time to produce patches even for known
vulnerabilities. So fully patched computers also remain vulnerable to known
attacks for which vendors have not yet released patches. The interval between
publication of a vulnerability and availability of a related patch is a time of
especially high vulnerability. During the interval, vendors race to produce
effective patches, while attackers race to produce effective exploits. This race
generally favors the attackers, who do not have to test and analyze their
exploits the same way that vendors must test and analyze their patches. So
publication of a vulnerability amounts to initiation of a countdown to the
widespread availability and use of exploits targeting the vulnerability.

Moreover, vulnerabilities are sometimes privately known and exploited well in
advance of their publication. Vulnerabilities for which no patch is yet available
are known as 0-day vulnerabilities or simply 0-days ("oh days"). The same
term is often used to refer to attacks that target 0-day vulnerabilities. Attacks
that target 0-days are a particularly potent form of attack, because even
systems whose administrators have assiduously kept current with all vendor
patches are vulnerable to them. Fortunately, most attacks do not target 0-
days. The National Institute of Standards cites CERT data indicating that 95
percent of attempted network intrusions target vulnerabilities for which
patches are available.[3] However, patching is ineffective against the
remaining 5 percent of network attacks, which target 0-day vulnerabilities.

[3] Procedures for Handling Security Patches, NIST Special Publication 800-40, p. 2, available at
http://csrc.nist.gov/publications/nistpubs/800-40/sp800-40.pdf.

1.1.4 Protecting Against 0-Days

Ordinary computer users may be content merely to patch their computers
regularly, a practice that can protect them against 95 percent of attempted
network intrusions. However, administrators of sensitive systems generally
cannot afford to allow their systems to remain vulnerable to the 5 percent of
attempted intrusions that target 0-day vulnerabilities. Although patching is, by
definition, an ineffective defense against attacks targeting 0-day
vulnerabilities, several types of defenses are more or less effective in

http://csrc.nist.gov/publications/nistpubs/800-40/sp800-40.pdf

protecting against them.

Defense by Layers

No software is known to be free of defects, and no means of producing defect-free software is
known. Thus, no means of network or host defense that depends on the correct operation of
software can be fully reliable. Hence, practical defense consists of implementing multiple defensive
measures in hopes that if one defensive measure fails, one or more other measures will prove
effective. This principle is known as defense by layers.

A corollary principle holds that imperfections in a defense mechanism do not preclude its use, since
all defense mechanisms are considered to be imperfect. Instead, rational decisions concerning which
defense mechanisms an organization should deploy are based on risk assessment and cost-benefit
analysis.

1.1.5 Network and Host Defenses

Because hosts are generally subject to a variety of vulnerabilities for which no
patch exists or has been installed, hosts must be protected against attack. Two
basic sorts of defenses are employed:

Network defenses

A defensive facility that protects an entire network

Host defenses

A defensive facility that protects a single host

1.1.5.1 Network defenses

Network defenses are often more convenient to deploy than host defenses,
because a single network defense facility defends all hosts on a network. Host
defenses, in contrast, must be implemented on each host to be protected. The
two most widely used network defenses are firewalls and network intrusion
detection systems. Neither is generally effective in protecting against 0-day
attacks.

Network firewalls

Firewalls restrict the traffic flowing into and out of a network. The most basic
sort of firewall restricts traffic by IP address. More sophisticated firewalls allow
only designated application-layer protocols or requests having a specified form.
For instance, some firewalls can block web client access to malformed URLs of
the sort often associated with attacks. However, most currently deployed
firewalls do not examine the application layer of traffic. Such firewalls are
generally ineffective in protecting against 0-day attacks launched against ports
to which the firewall is configured to allow access.

Network intrusion detection and prevention
systems

Intrusion detection systems don't prevent attacks from succeeding; they
merely detect them. To do so, they monitor network traffic and generate an
alert if they recognize an attack. They typically use a database of signatures or
rules to recognize the attacks. Thus, an intrusion detection system may not
generate an alert for a particular 0-day attack, since the attack may not match
any rule or signature within the system's database. Some intrusion detection
systems do not rely on a database of signatures or rules. Instead they alert
the user to unusual traffic. However, anomaly-based intrusion detection
systems are not yet in widespread use.

An intrusion prevention system attempts to detect and prevent attacks.
However, like anomaly-based intrusion detection systems, intrusion prevention
systems are not yet in widespread use.

1.1.5.2 Host defenses

Host defenses may be more effective than network defenses in detecting or
preventing 0-day attacks. Host defenses are more varied than network
defenses. Some popular host defenses are:

Host firewalls

Host intrusion detection systems

Logging and auditing

Memory protection

Sandboxes

Access control lists

Host firewalls and intrusion detection systems

Firewalls and intrusion detection systems can be deployed on individual hosts
as well as at the network level. Because host-based firewalls operate similarly
to network-based firewalls, they are seldom more effective than network-
based firewalls in protecting against 0-day attacks. Host-based intrusion
detection systems are sometimes more effective in recognizing novel attacks
than their network-based cousins. However, like their cousins, they detect
rather than prevent attacks, so they are not an adequate solution to the 0-day
problem.

Logging and auditing

Logs and other audit trails can provide indications or clues that an attack has
succeeded. However, properly monitoring logs requires considerable effort, and
many system administrators fail to take the time to regularly review logs. But
even when logs are regularly monitored, they merely detect rather than
prevent attacks.

Memory protection

One technique that is often effective in protecting against 0-day attacks is
memory protection. Here are some of the most popular memory protection
schemes:

Stack canaries

Based on a concept originated by Crispin Cowan, a stack canary is a
memory word containing a designated value, pushed onto the stack when
a routine is called. When control returns to the calling routine, it verifies
that the value of the stack canary has not been modified. Buffer overflow
attacks that target the stack are likely to modify the value of the stack
canary and therefore may be detected.

Nonexecutable stack

Buffer overflow attacks that target the stack generally inject code into the
stack and compromise the target host by executing the injected code.
Since most programs don't require that stack contents be executable,
buffer overflow attacks can be complicated or even thwarted by preventing
execution of code residing on the stack. Many common
microprocessorsincluding those having the Intel x86 architecturecan be
configured to prohibit execution of stack contents.

Random assignment of memory

Many exploits depend on knowledge of the specific memory locations
occupied by the components of vulnerable programs. Specially modified
compilers or loaders can randomize the addresses of memory into which
program components are loaded, thereby breaking exploits that depend on
fixed memory assignments.

Well-designed and well-implemented memory protection schemes tend to be
effective even against attacks on 0-day vulnerabilities. However, some specific
implementations of memory protection schemes can be circumvented
relatively easily. In other cases, such as that of Microsoft's "security error
handler" function added to its C++ compiler, the scheme itself is the source of
vulnerabilities.[4]

[4] See "Microsoft Compiler Flaw Technical Note," by Chris Ren, Michael Weber, and Gary McGraw,
and "Cigital Warns of Security Flaw in Microsoft .NET Compiler," both available at
http://www.cigital.com/news/index.php?pg=art&artid=70.

SELinux does not incorporate memory protection facilities. However, SELinux

http://www.cigital.com/news/index.php?pg%3Dart%26artid%3D70

consistently interoperates well with such facilities. Therefore, SELinux users
can generally employ memory protection features when their operating system
provides them.

Sandboxes

Yet another approach to defending hosts against 0-day attacks is running
programs, especially services, within contexts called sandboxes that limit their
capabilities. Sandboxing is common for programs running under Unix and
Unix-like operating systems such as Linux, which includes the chroot command
that creates such a sandbox. Sandboxing is also used for Java programs
running within popular web browsers.

Sandboxing generally doesn't prevent the exploitation of an 0-day
vulnerability. But, the attacker who successfully exploits an 0-day vulnerability
in a sandboxed program gains access to only the capabilities afforded by the
sandbox. Therefore, the sandbox limits the damage resulting from a successful
attack.

However, sandboxes are software entities and thus are equally as imperfect:
an attacker who gains access to a sandbox may be able to attack and escape it.
In general, under Unix and Unix-like operating systems, it's possible for
attackers to escape chroot sandboxes that contain programs running as the
root user. However, sandboxes that contain programs running as a non-root
user are less vulnerable. SELinux provides a special sort of sandbox, known as
a domain, that is very difficult for attackers to escapeeven if the domain
contains programs running as the root user.

Access-control lists

An especially flexible form of sandbox is provided by mechanisms known as
access-control mechanisms. In their simplest form, access-control mechanisms
are found in every multiuser operating system that protects the files and
resources owned by one user from unauthorized access by other users.

Access-control mechanisms are implemented by associating access-control lists
(ACLs) with objects (e.g., files and directories), thereby limiting access to the
protected objects. Essentially, the most familiar form of an ACL consists of
three elements:

A list of operations

A list of subjects (users)

A mapping that specifies which subjects (users) are authorized to perform
which operations on the protected object

By associating an ACL with a file, for example, you can specify the users
permitted to access the file. The familiar Unix chmod command accomplishes
exactly this result. Representing many sorts of system objects, such as devices
and FIFOs, this simple mechanism enables system administrators and users to
limit access to most system objects. ACLs can also specify access by subjects
other than users, such as programs. Although several commercial operating
systems based on Unix include ACLs, Linux does not. SELinux, on the other
hand, goes beyond ACLs in providing a special type of access control known as
mandatory access control (MAC). The following section explains MAC and
contrasts it with the type of access control commonly used by Linux.

1.1.6 Discretionary and Mandatory Access Control

Most operating systems have a built-in security mechanism known as access
control. Two main types of access control are commonly used:

Discretionary Access Control (DAC)

Discretionary access controls are specified by the owner of an object, who
can apply, modify, or remove them at will.

Mandatory Access Control (MAC)

Mandatory access controls are specified by the system. They cannot be
applied, modified, or removedexcept perhaps by means of a privileged
operation.

1.1.6.1 Discretionary access control

Linux employs discretionary access control. Under discretionary access control,
a program runs with the permissions of the user executing it. For instance, if I
log in as the user mccartyb and execute the program mutt to read my email,
the program executes under my user ID and is capable of performing any
operation that I'm permitted to perform. In particular, it can read and write
files in my home directory and its subdirectories, such as the sensitive files
holding SSH information. Of course, mutt doesn't need to access such files and
generally wouldn't do so. But, by exploiting a vulnerability in mutt, an attacker
may coerce mutt to access or modify sensitive files, thereby compromising the
security of my user account.

Obviously, mutt doesn't need to be able to perform every operation that I'm
permitted to perform. It has a well-defined purpose that requires only a
handful of permissions, mostly related to network access. Granting mutt a
broad array of permissions is inconsistent with the principle of least privilege.
From the standpoint of the principle of least privilege, giving a program all the
privileges of the user running the program is wretchedly excessive and highly
risky.

Under discretionary access control, a compromised program jeopardizes every
object to which the executing user has access. The risk is particularly great for
programs that run as the root user, because the root user has unrestricted
access to system files and objects. If an attacker can compromise a program
running as the root user, the attacker can often manage to subvert the entire
system.

Therefore, discretionary access control provides a rather brittle sort of
security. When subjected to a sufficiently potent attack, discretionary access
control shatters, giving the attacker a virtually free hand.

1.1.6.2 Mandatory access control

SELinux supplements the discretionary access control mechanism of Linux with
mandatory access control. Under mandatory access control, each program runs
within a sandbox that limits its permissions. A compromised program
jeopardizes only the permissions available to the program. These are generally
a small subset of all the permissions afforded the user executing the program.

Generally speaking, mandatory access controls are much more effective than
Unix-style discretionary access controls, for the following principal reasons:

Mandatory access controls are often applied to agents other than users,
such as programs, whereas Unix-style discretionary access controls are
generally applied only to users.

Mandatory access controls cannot be overridden by the owner of the object
to which they apply.

Mandatory access controls may be applied to objects not protected by
ordinary Unix-style discretionary access controls, such as network sockets
and processes.

Thus, the mandatory access control facilities of SELinux provide stronger
security than the discretionary access control facilities of Linux. Under
SELinux, programs are generally assigned privileges according to the principle
of least privilege; that is, they're generally granted permission to perform only
a limited set of necessary operations. Therefore, an attacker who compromises
a program running as the root user on an SELinux system does not generally
gain an effective beachhead from which to successfully attack the entire
system. Instead, the attacker gains control of only the compromised program
and a handful of related operations.

1.2 SELinux Features

SELinux is a software product that includes several mechanisms that protect
against attacks exploiting software vulnerabilities, including attacks on 0-day
vulnerabilities. In particular, SELinux implements role-based access control
and sandboxing.

SELinux also provides a logging and audit facility that records attempts to
exceed specified permissions. By monitoring the system log, the administrator
of an SELinux system can often discover attempts to escalate privileges and
take action to prevent an intruder or insider from interfering with operation of
the system.

SELinux is designed to protect against misuse and unauthorized use such as:

Unauthorized reading of data and programs

Unauthorized modification of data and programs

Bypassing application security mechanisms

Interfering with other processes

Privilege escalation

Information security breaches

1.2.1 How SELinux Works

Figure 1-1 depicts the operation of SELinux in a highly simplified fashion.
SELinux works by associating each program or process with a sandbox known
as a domain. Each domain is assigned a set of permissions sufficient to enable
it to function properly but do nothing else. For instance, a domain is limited in
the files it can access and the types of operations it can perform on those files.
To enable specification of such permissions, each file is labeled with
information called a security context. The definition of a domain spells out
what operations it can perform on files having specific security contexts. A
domain cannot access files having security contexts other than those for which
it is explicitly granted access.

Figure 1-1. The operation of SELinux

Under specified conditions, a process that executes a program leaves its
current domain and transitions to a new domain. Typically, transitions occur
upon executing a program designated as an entry point to the new domain.
The new domain may have more or fewer privileges than the original domain.
Thus, programs can initiate other programs having more or fewer privileges
than themselves.

An SELinux facility known as type enforcement (TE) ensures that the rules
governing domains are always observed. SELinux also has a secondary facility
known as role-based access control (RBAC). RBAC limits user access to
domains. For instance, some domains are defined to be accessible only to the
system administrator, whereas other domains are defined to be publicly
available to any user.

An exciting aspect of SELinux is that the definitions of domains, security
contexts, and transitions appear in files called policy files that can be modified
by the SELinux system administrator. Thus, SELinux security policies are
extremely flexible and can support a wide range of security needs. For
instance, suppose that you want to install a program that neither you nor
anyone you know has previously run under SELinux. Therefore, no policy
specifying the operations that the program should and should not be allowed
to perform exists. Nevertheless, you can create such a policy and enjoy the
benefits of running the program in a manner consistent with the principle of
least privilege.

1.2.2 SELinux Components and Linux Security Modules
(LSM)

SELinux was originally implemented as a set of Linux kernel modules that
worked with the Linux 2.2 kernel. SELinux has since been updated to work
with Linux 2.4. SELinux can also work with the Linux Security Modules (LSM)

feature of the Linux 2.6 kernel.

LSM consists of a set of hooks inserted into the Linux kernel. These hooks
provide the means to notify a software unit, such as SELinux, whenever a
process attempts to perform an operation on an object, such as opening a file
for read access or deleting a file. LSM also provides a means whereby the
software unit can prohibit the attempted access, making it straightforward for
software developers to implement a security engine that oversees access to
files and other objects, such as that used in SELinux.

In addition to kernel modules, SELinux includes a set of system administration
programs that have been modified to be aware of the SELinux environment,
and a set of programs used to administer SELinux itself. SELinux also includes
a policy, implemented as a set of files, that defines users and roles and their
permissions.

SELinux and User-Mode Linux (UML)

User-Mode Linux is an open source product that enables a single host to run multiple, sandboxed
instances of the Linux kernel, referred to as virtual machines. UML's function is roughly comparable
to that of commercial virtualization products, such as VMware and Microsoft's Virtual PC. However,
UML supports only Linux, whereas VMware and Virtual PC support a variety of operating systems.
Each virtual machine running under UML can run programs and applications, maintain a distinct
filesystem separate from that of other virtual machines, and access the network. So if a program or
an entire instance of a running kernel is compromised, the other programs and kernel instances may
not be affected.

SELinux includes a set of policies that are intended to strengthen the UML sandbox and thereby
improve system security and integrity. Using SELinux, you can make it less likely that a wayward
application or a successful attack compromising one virtual machine will lead to the subversion or
failure of other virtual machines. You can learn more about User-Mode Linux at http://user-mode-
linux.sourceforge.net.

http://user-mode-linux.sourceforge.net

Alternatives to SELinux

An alternative product providing functions generally similar to those of SELinux is GRSecurity,
described at http://grsecurity.org. Like SELinux, GR Security is supported only for Linux 2.x.

Developers of open source operating systems other than Linux are implementing products similar to
SELinux. For example, the BSD community is creating TrustedBSD. To learn more about
TrustedBSD, see its web site, http://www.trustedbsd.org.

http://grsecurity.org
http://www.trustedbsd.org

1.3 Applications of SELinux

To understand the value of SELinux, let's revisit the Apache and ptrace
vulnerability mentioned earlier in the sidebar "The Apache OpenSSL Attack."
Unknown to the administrator of the server, the version of Apache being run
contains a vulnerability for which no patch is yet available. An attacker
exploits this vulnerability to remotely compromise Apache, thereby gaining the
privileges extended to the apache user account. Because the system's security
is based on discretionary access control, these privileges are relatively
extensive. In particular, they're sufficient to allow the attacker to execute the
ptrace program, which also contains a vulnerability. Moreover, the ptrace
program is a setsuid program that always runs as the root user regardless of
the identity of the user who launches it. Thus, when the attacker compromises
ptrace, he gains access to the root account and has unrestricted access to all
system files and resources. The attacker establishes a backdoor by which to
conveniently reenter the system at will, cleans the system logs to cover all
traces of his intrusion, and adds the system to his list of owned hosts.

If the web server had been running on an SELinux host with properly
configured policies, the scenario would have proceeded differently. As before,
the attacker would have been able to compromise Apache by using his 0-day
attack. But, having done so, the attacker would gain only those permissions
afforded the domain under which Apache was run. These would not permit the
attacker to run the ptrace program, and so he would be prevented from using
the ptrace vulnerability to seize control of the system. The domain associated
with Apache would not provide the attacker with write access to the HTML files
making up the web site. Thus the attacker would be prevented from defacing
it. Unless the attack terminated the Apache process, the attack might not even
interrupt the availability of web services. Under SELinux, the effects of the
attack might be largely mitigated.

1.4 SELinux History

SELinux, though only recently released to the public as a software product,
has a substantial heritage. SELinux descends from work that began several
decades ago. In 1973, computer scientists David Bell and Leonard LaPadula
defined the concept of a secure system state and published a formal model
describing a multilevel security system.

Later, in the 1980s, the work of Bell and LaPadula strongly influenced the U.S.
government's development of the Trusted Computer System Evaluation
Criteria (TCSEC, popularly known as the Orange Book). The TCSEC defined six
evaluation classes with progressively more stringent security requirements:
C1, C2, B1, B2, B3, and A1. Class C1 and C2 systems, like Linux, depended
upon discretionary access controls. Class B1 systems and systems of higher
classes had to, like SELinux, implement mandatory access controls.

During the 1990s, researchers at the U.S. National Security Agency (NSA)
worked with Secure Computing Corporation (SCC) to develop a strong and
flexible mandatory access control architecture. Initially, their work focused on
theoretical proofs of the properties and characteristics of the architecture.
Eventually, working with a research team at the University of Utah, they
developed a working prototype of the architecture called Flask within Fluke, a
research operating system.

Later, NSA researchers worked with Network Associates and the R&D firm
MITRE to implement the architecture within the open source Linux operating
system. Their work was released to the public in December 2000, as an open
source product.

Subsequently, Linux 2.5 was modified to incorporate LSMs, a kernel feature
intended to simplify integration among SELinux, similar products, and the
Linux operating system. This modification was carried forward to Linux 2.6
when development of Linux 2.5 was deemed complete.

More recently, several Linux distributors have announced plans to support
SELinux within their Linux distributions. Among these are Red Hat, distributor
of the commercial Linux distribution with the largest market share in the U.S.
and worldwide, and SUSE, distributor of Europe's leading Linux distribution.
SELinux is already a standard component of Fedora Core, the noncommercial
Linux distribution whose development is sponsored by Red Hat, and several
other noncommercial Linux distributions, including Debian GNU/Linux and
Gentoo Linux.

Several Linux distributions augment SELinux with other security mechanisms.
For instance, Gentoo Linux can be configured to compile the Linux kernel and
applications to work with either of two mechanisms:

PaX

Provides a variety of protections against attacks, including Address Space
Layout Randomization (ASLR). See http://pax.grsecurity.net/docs/pax.txt.

Propolice

Provides protection against stack-smashing attacks. See
http://www.research.ibm.com/trl/projects/security/ssp.

Clearly, SELinux originally a product of the highly secretive NSA is becoming a
mainstream technology.

http://pax.grsecurity.net/docs/pax.txt
http://www.research.ibm.com/trl/projects/security/ssp

Demo Systems

One of the best ways to observe the high level of security possible by using SELinux is to visit one
of the SELinux demonstration systems provided for public use. Using an SSH client, you can
remotely log into a demonstration system as the root user and try to hack your way to escalated
privileges. Most likely, you'll completely fail.

One such system is the demonstration system hosted by Gentoo's Hardened Project, described at
http://selinux.dev.gentoo.org. Another demonstration system, a Fedora Core system administered
by Russell Coker, is described at http://www.coker.com.au/selinux/play.html. Finally, a
demonstration system running Debian is described at http://selinux.simplyaquatics.com.

http://selinux.dev.gentoo.org
http://www.coker.com.au/selinux/play.html
http://selinux.simplyaquatics.com

1.5 Web and FTP Sites

The main web site for SELinux is provided by the NSA:

The NSA's SELinux

http://www.nsa.gov/selinux

The web site includes a FAQ, available at
http://www.nsa.gov/selinux/info/faq.cfm.

In addition, various Linux distributors and interested parties provide SELinux-
related web pages and FTP sites. Among the most popular and useful are:

Kerry Thompson's SELinux

http://www.crypt.gen.nz/selinux

Network Associates SELinux

http://opensource.nailabs.com/selinux

Russell Coker's SELinux

http://www.coker.com.au/selinux

SELinux for Debian

http://www.microcomaustralia.com.au/debian

SELinux for Distributions

http://selinux.sourceforge.net

http://www.nsa.gov/selinux
http://www.nsa.gov/selinux/info/faq.cfm
http://www.crypt.gen.nz/selinux
http://opensource.nailabs.com/selinux
http://www.coker.com.au/selinux
http://www.microcomaustralia.com.au/debian
http://selinux.sourceforge.net

SELinux for Fedora Core

http://fedora.redhat.com/projects/selinux

SELinux for Gentoo Linux

http://www.gentoo.org/proj/en/hardened

SELinux for Red Hat Enterprise Linux

http://www.redhat.com/

ftp://people.redhat.com/dwalsh/SELinux

SELinux for SUSE

http://leapster.org/linux/selinux/suse

SELinux Wiki (German and English)

http://www.securityenhancedlinux.de

Sourceforge SELinux

http://sourceforge.net/projects/selinux

Tresys Technology SELinux

http://www.tresys.com/selinux

1.5.1 Mailing Lists

http://fedora.redhat.com/projects/selinux
http://www.gentoo.org/proj/en/hardened
http://www.redhat.com/
ftp://people.redhat.com/dwalsh/SELinux
http://leapster.org/linux/selinux/suse
http://www.securityenhancedlinux.de
http://sourceforge.net/projects/selinux
http://www.tresys.com/selinux

Several mailing lists address issues related to SELinux. Among these are:

The NSA's SELinux mailing list

http://www.nsa.gov/selinux/info/list.cfm?MenuID=41.1.1.9

The Red Hat Fedora SELinux mailing list

http://www.redhat.com/mailman/listinfo/fedora-selinux-list

The Gentoo Hardened mailing list

http://www.gentoo.org/proj/en/hardened

You can use these lists to learn more about SELinux, get help in installing and
using SELinux, and participate in the development of SELinux and related
products.

http://www.nsa.gov/selinux/info/list.cfm?MenuID%3D41.1.1.9
http://www.redhat.com/mailman/listinfo/fedora-selinux-list
http://www.gentoo.org/proj/en/hardened

Chapter 2. Overview of the SELinux Security Model
The main purpose of this chapter is to introduce you to SELinux terms and
concepts helpful in the installation and initial configuration of SELinux, which
is covered in Chapter 3. This chapter presents an overview of the security
model implemented by SELinux, which is based on the Flask architecture
designed by the NSA. (SELinux is ultimately grounded on principles that have
guided the design and administration of highly secure military systems for
decades, such as those described in the so-called "Orange Book."[1]) Because
of this chapter's practical aim, its emphasis is on basic Flask and SELinux
concepts and terms. Chapter 5 explains the SELinux security model in greater
detail. In addition to providing an overview of SELinux functions, Chapter 5
provides an overview of SELinux architecture, describing each major SELinux
component.

[1] DoD Trusted Computer System Evaluation Criteria (DoD 5200.28-STD), available from the U.S.
National Institute of Standards, http://csrc.nist.gov/secpubs/rainbow/nsaorder.txt.

http://csrc.nist.gov/secpubs/rainbow/nsaorder.txt

2.1 Subjects and Objects

Like other onetime elementary and secondary students, you've probably
endured many school lectures on the subject of English grammar. If you're old
enough, you may even have endured that most feared exercise of secondary
education (which is now largely extinct): the sentence diagram, like that
shown in Figure 2-1.

Figure 2-1. A simple sentence diagram

At the time of your elementary and secondary studies, the various parts of
speech nouns, verbs, adjectives, adverbs, and so on and components of
sentence structure subjects, actions, direct and indirect objects, and so on may
not have seemed to you and your fellow students to be the most fascinating of
topics. And, unless in adult life you've worked as a writer or editor, your
aversion may seem to have been well-founded: many adults seem to get
through life quite well with only a very fragmentary understanding of English
grammar.

If I claimed that knowledge of English grammar would help you better secure
your computer systems, would that influence your estimate of the value of its
study? Perhaps not. But my claim would nevertheless be true. The security
model that underlies SELinux is based on simple grammatical concepts
common to English and most other human languages, as well as artificial
languages such as computer programming languages. Some scientists believe
that an understanding of these concepts is more or less intrinsic to
humankindencoded in the structure of the human mind itselfand quietly
shapes the way we view and understand reality. Of course, if grammar is truly
innate, one may well wonder why it's necessary to teach it to students. But
rather than get sidetracked by a debate over psycholinguistics (as the study of
the grammatical mind is called), let's explore the relationship between
grammar, SELinux, and computer security.

At its root, the SELinux security model encompasses three elements:

Subjects

Objects

Actions

Subjects are the actors within a computer system. You might initially think
that users would be the subjects of the SELinux security model, especially if
your experience with computer systems has been primarily with desktoprather
than server systems. However, users don't crawl inside their computers and act
directly on the bits and bytes that compose computer systems. Instead,
processes are the true actors. However, processes often act as surrogates for
human users. So subjects and users are closely associated, even though
processesnot usersare the true actors.

Processes and Programs

If you're not a programmer, the distinction between processes and programs may not be obvious.
Or even if you are a programmer, you may be confident that you understand the distinction, but be
unable to readily articulate it.

Simply put, a program is an executable file, whereas a process is a program that has been read into
memory and has commenced execution. For instance, if you start two identical terminal windows on
your graphical desktop, you have started two processes that run the same program. Unlike a
program, a process has state information. The state information associated with a process records
the identity of the user account running the process, the instruction pointer (which indicates the
next instruction to be executed), the value of every active program variable, and a variety of other
information. Because processes and programs are closely related, some folks like to think of
processes as programs in motion.

In grammar, subjects operate on objects. The same is true in the SELinux
security model, where subjects (processes) also operate on objects. As
summarized in Appendix A, SELinux defines several dozen security classes (or,
more simply, classes) of objects, including such workhorses as:

Directories

File descriptors

Files

Filesystems

Links

Processes

Special files of various types (block device, character device, socket, FIFO,
and so on)

Notice that processes can serve as both subjects and objects of actions.

In Linux, many kinds of entities are represented as files. In particular,
directories, devices, and memory can all be accessed as files. So the most
common class of SELinux object that subjects act upon is a file. Table 2-1
describes the object security classes defined by SELinux.

Table 2-1. SELinux object security classes
Class Description

File classes

blk_file
Block device file

chr_file
Character device file

dir
Directory

fd
File descriptor

fifo_file
FIFO file

file
File

filesystem
Formatted filesystem residing on disk partition

lnk_file
Hard or symbolic link

Interprocess communication classes

ipc
(Obsolete)

msg
Interprocess communication message within queue

msgq
Interprocess communication queue

sem
Interprocess communication semaphore

shm Interprocess communication shared memory

Network classes

key_socket
IPSec socket

netif
Network interface

netlink_socket
Socket used to communicate with kernel via the netlink syscall

node
TCP/IP network host, as represented by IP address

packet_socket
Obsolete object type used by Linux 2.0 programs invoking the socket syscall

rawip_socket
Raw IP socket

sock_file
Network socket file

socket
Generic socket

tcp_socket
TCP socket

udp_socket
UDP socket

unix_dgram_socket
Unix-domain datagram socket

unix_stream_socket
Unix-domain stream socket

Object class

passwd Linux password file

System classes

capability
SELinux capability

process
Process

Security
Security-related objects, such as the SELinux policy

System
Kernel and system objects

The actions that SELinux subjects perform upon objects vary with the type of
object. For instance, a subject can perform such operations as these on file
objects:

Append

Create

Execute

Get attribute

I/O control

Link

Lock

Read

Rename

Unlink

Write

The preceding list of actions is not comprehensive. As explained in Chapter 5, SELinux
recognizes over one dozen actions that can be performed on files. And, as mentioned in
the preceding text, other object classes exist. These classes have many related actions.

Using this simple framework subjects, actions, and objectswe can identify the
fundamental operation performed by the SELinux security server: determining
whether a given subject is permitted to perform a given action on a given
object. For instance, SELinux decides questions such as: Is process 24691
permitted to read the file known as /etc/shadow? To make such decisions, the
SELinux security server consults its policy database. By basing security
decisions on policies stored in a database, SELinux achieves a high degree of
flexibility. Figure 2-2 illustrates this sample decision.

Figure 2-2. A typical SELinux decision

Linux and SELinux: Dueling Security Mechanisms?

As explained in the preceding chapter, Linux has its own system of discretionary access control
(DAC). How does Linux DAC interoperate with the mandatory access control (MAC) provided by
SELinux? Do we end up with dueling security mechanisms?

Fortunately, Linux DAC and SELinux MAC play well together. When making security decisions,
SELinux first hands off the decision to Linux DAC. If DAC forbids an action, the action is not
permitted. If, on the other hand, DAC permits an action, then SELinux performs its own
authorization check, based on MAC. A requested action is allowed to occur only if both the Linux
DAC and SELinux MAC authorizations are approved.

2.2 Security Contexts

The discussion in the preceding section might lead you to believe that SELinux
makes security decisions based on the identity of individual subjects and
objects. In principle, such a system could be made to work. But the system
would be unnecessarily unwieldy. Because processes related to a single
program can generally be treated the same, it's more convenient to make
security decisions based on sets or classes of subjects and objects rather than
on individual objects. For example, every instance of the SSH server should
generally be given the same permissions, including read access to
/etc/ssh/sshd_config. Similarly, all the files within a given directory often can
be manipulated by the same subject. For example, the DHCP service should be
permitted to manipulate any of the files in /var/state/dhcp. To simplify
decision making, similar subjects can be grouped and similar objects can be
grouped.

SELinux associates information called security attributes with subjects and
objects and bases its security decisions on the values of these attributes. Three
security attributes are used:

User identity

The user identity indicates the SELinux user account associated with a
subject or object. In the case of a subject, the user identity gives the
SELinux user account under which the process is running. In the case of
an object, the user identity gives the user account that owns the object.

In tracking user identities, SELinux does not use the list of user accounts maintained by
Linux in /etc/passwd. Instead, it uses its own database and a mapping that associates
SELinux users with Linux users. This approach is consistent with the philosophy that Linux
access controls and SELinux access controls should be completely separate, so that
changes to one don't affect the other. One important benefit of keeping separate user
account databases is that changes to /etc/passwd don't invalidate the SELinux security
attributes of subjects and objects. Keeping separate user databases is not as
cumbersome as it may seem, because most systems can be configured to use only a
handful of SELinux user accounts. That is, many Linux user accounts can often be mapped
to a single SELinux user account.

Role

Under SELinux, users are authorized to enter one or more roles, each of
which defines a set of permissions a user can be granted. At a given time,
a user can reside in only a single role. A user can transition from one
authorized role to another by using the special command newrole. This
command changes the user's SELinux role similar to the way the Linux su
command changes a user's Linux identity. SELinux establishes a special
role, sysadm_r, used for administering SELinux facilities.

Type

Types, which are also known as domains, divide subjects and objects into
related groups. Types are the primary security attribute SELinux uses in
making authorization decisions. They establish the sandboxes that
constrain processes and prevent privilege escalation. Therefore, you can
think of a type as naming a related sandbox.

In SELinux whitepapers, such as those available at the NSA web site and elsewhere, you
may read that type and domain are distinct concepts that must never be confused. The
original Flask modeland other computer security models do carefully distinguish these
terms. However, in SELinux the terms are synonymous, notwithstanding claims to the
contrary.

Types are the workhorse security attribute: an SELinux policy typically defines
only a handful of users and roles, but dozens or even hundreds of types.

Conventions help in distinguishing names that represent users, roles, and
types. Table 2-2 summarizes the conventions.

Table 2-2. Naming conventions for security attributes
Security attribute Standard name suffix Example name

User (None)
root

Role
_r sysadm_r

Type
_t sysadm_t

The three SELinux security attributesuser identity, role, and type together
make up what's called a security context. For convenience and efficiency,
SELinux stores security contexts in a table. A security identifier (SID) identifies
each table entry. Earlier, I implied that SELinux bases security decisions on
security contexts. This is approximately correct. But, more precisely, SELinux
makes security decisions based on SIDs rather than security contexts, thereby
gaining some efficiency since SIDs are represented as integers and are
therefore efficiently manipulated by the CPU.

Sometimes, a security context is loosely referred to as an SID. Because there is a one-to-
one correspondence between security contexts and SIDs, such references are not too
harmful or confusing.

During system initialization, the security context table is preloaded with a
small number of SID values. These values are called initial SIDs.

Because subjects are active, they often can take on a variety of roles. Objects,
on the other hand, are passive and seldom have need of roles. However, every
subject or object must possess all three security attributes (user, role, and
type). Objects that have no other need of a role are assigned the dummy role
object_r.

2.3 Transient and Persistent Objects

Two kinds of objects exist within a Linux system: transient objects and
persistent objects. A transient object has a quite limited lifetime, often existing
merely as a data structure within kernel space. A process is the most common
kind of transient object. SELinux can directly associate an SID with a transient
object by keeping a memory-resident table that maps transient object
identities to SIDs and thence to security contexts.

In contrast to transient objects, a persistent object has an indefinite lifetime.
The most common persistent objects are files and directories. Because
persistent objects, once created, generally exist until they're destroyed, a
persistent object may exist across several system startups. Thus, a memory-
resident table can't be used to associate persistent objects with their SIDs,
because the contents of memory-resident tables are lost at system startup.
Therefore, associating a persistent object with its security context is somewhat
complicated.

In general, persistent objects are associated with Linux filesystems, which can
be used to store their security contexts. Several Linux filesystem types,
including the standard ext2 and ext3 filesystem types, provide an extended
attribute feature that can be enabled during compilation of a Linux kernel.
SELinux uses the extended attribute to store persistent security identifiers
(PSIDs) on the filesystem. SELinux uses memory-resident tables to map PSIDs
to SIDs, and thence to security contexts.

An important operation performed when initially installing SELinux involves creating the
PSIDs for persistent objects, a process known as file labeling, or merely labeling. A special
utility named setfiles is used to perform the labeling, which is guided by a database called
the file context. The file context identifies the initial security context that should be
associated with specific files, and a default context that should be associated with files not
explicitly identified in the file context. Once file labeling is complete, the file context is not
needed except under extraordinary circumstances, such as recovery from filesystem
damage.

2.4 Access Decisions

The SELinux security server makes two basic kinds of decisions:

Access decisions

Access decisions determine whether a given subject is allowed to perform a
given operation on a given object.

Transition decisions

Transition decisions, also called labeling decisions, determine the types
assigned to newly created objects, particularly processes and files.

This section explains access decisionsthe more frequently made and important
of the two kinds of decisionsand the following section explains transition
decisions.

Conceptually, each object class has an associated bitmap called an access
vector, containing one bit for each action defined for the class. Figure 2-3
shows a simplified bitmap for the file class. An actual bitmap for the file class
would include each of the more than one dozen actions defined for the file
class, rather than merely the common actions shown in the figure.

Figure 2-3. A simplified access vector for the file
class

As explained earlier in this chapter, the SELinux security server makes access
decisions by considering the security context of the subject and object of the

action, the security class of the object, and the action requested. When the
security server has made the access decision, it returns an access vector that
indicates the allowed actions. More precisely, if the security server finds one or
more policy rules matching the request, it returns three related access vectors,
as shown in Figure 2-4. In the figure, the server has granted the subject
permission to append to the object or create the object.

Figure 2-4. A simplified access vector resulting
from an access decision

The three access vectors have the following functions:

Allow

The allow access vector identifies operations that the subject is permitted
to perform on the object. No log entry is made of the operation.

Auditallow

The auditallow access vector causes a log entry to be made when the
indicated operation is performed. Despite its name, it doesn't allow any
operation; only the Allow vector does so.

Dontaudit

The dontaudit access vector identifies operations that the subject is not

permitted to perform on the object, but that don't cause the denial to be
logged.

Three rules govern access to objects:

A requested action is denied unless the security server returns allow.
Therefore, requests that have no matching policy rule are denied.

If an action is denied, a log entry is made unless the security server
returns dontaudit.

If the security server returns auditallow, a log entry is made.

Table 2-3 summarizes the rules governing access to objects.

Table 2-3. Access to objects
Result Access permitted Result logged

No matching policy rule No Yes

allow
Yes No, unless auditallow also specified

auditallow
No, unless allow also specified Yes

dontaudit
No No

To improve the efficiency of its operation, the security server caches access vectors in a
data structure called the access vector cache (AVC).

2.5 Transition Decisions

Access decisions are one of the two basic kinds of decisions made by the
SELinux security server. Transition decisionswhich are sometimes called
labeling decisionsare the second.

Since every object has a security context, newly created objects must be
labeled with some security context. A transition decision decides what security
context is chosen. Transition decisions come up in two common contexts:

Process (subject) creation

The new process may run in the same domain as its parent or in another
authorized domain. If the process runs in another domain, a domain
transition is said to have occurred.

File (object) creation

The new file (or file-like object, such as a directory) may be labeled with
the security context of the directory containing it or with another
authorized domain. If the file's security context pertains to a domain other
than that of the directory that contains it, a file-type transition or, more
simply, a type transition is said to have occurred.

In SELinux, the terms domain and type are synonymous. The term domain is more often
used in reference to processes, while type is more often used in reference to passive
objects such as files.

Let's first consider process creation. Given permission, a running processcalled
a parent processmay invoke the exec syscall, creating a new processcalled a
child processby executing a specified program file. Generally, the child process
runs in the same SELinux domain as the parent process and receives the same
SID and security context. However, some programs are defined in the SELinux
policy as entry points to domains. When such a program is executed, the child
process is given a new security context having another domain. The process is
said to have transitioned to a new domain.

Domain transitions occur only subject to policy restrictions. A process cannot transition to
a domain other than one for which it has been authorized.

Processes can also transition to new domains by using the SELinux application
programming interface (API). Programs that need to make special transitions (for example,
the login and SSH daemons) have been modified to use the special SELinux APIs that
accomplish them. In order that they not compromise system security, such programs
permit their programmed transitions only under carefully regulated conditions.

Figure 2-5 illustrates process creation with and without a domain transition. In
the left half of the figure, a user runs the vi editor in a domain named vi_t.
When the user executes the ls command from within vi, both vi and the ls
command run in the vi_t domain; no transition occurs. In the right half of the
figure, the Init process is running in the initrc_t domain. When Init starts the
SSH service daemon, a domain transition occurs, so that the SSH service
daemon runs in its own domain, the sshd_t domain.

Figure 2-5. Process creation and domain
transition

Recall that access decisions are generally based on the domain of the subject
and object, along with the class of the object and the requested action. When a
process transitions to a new domain, its permissions become those associated
with the new domain. Thus, the permissions of processes can be specified with
high granularity and flexibility.

Transition decisions related to file creation work similarly. By default, a newly

created file or file-like object receives the security context of the directory that
contains it. However, an SELinux policy rule can specify that files created by a
process running in a particular domain are specially labeled. Figure 2-6
illustrates the default situation and a situation influenced by a policy rule.

Figure 2-6. File creation and transition decisions

In the upper half of Figure 2-6, the sort utility runs in the sort_t domain. The
utility creates a temporary file, /tmp/sorted_result, which receives the same
file type as that of its parent directory, /tmp; namely, tmp_t. This
demonstrates automatic inheritance of file type. In the lower half of the figure,
an SELinux policy rule causes explicit assignment of a special file type. There,
the /tmp/log.tmp file created by the Syslog process receives the file type
syslog_tmp_t rather than the file type of its parent directory.

Just as the SELinux API can override process transition decisions, it can override file
creation transition decisions. But only specially designed and modified programs actually do
so.

2.6 SELinux Architecture

The preceding sections of this chapter have provided an overview of the
functions that underlie SELinux. This section provides an overview of the
architecture of SELinux. SELinux consists of the following major components:

Kernel-level code

The SELinux shared library

A security policy

Tools

Labeled SELinux filesystems (optional)

2.6.1 Kernel-Level Code

When active, the SELinux kernel code monitors system activity and ensures
that requested operations are authorized under the currently configured
SELinux policy, disallowing any operations not expressly authorized. It also
generates system log entries for certain allowed and denied operations,
consistent with policy specifications.

Originally, the SELinux kernel-level code was implemented as a patch to the
Linux 2.2 kernel, and later the Linux 2.4 kernel. More recently, much of the
SELinux kernel-level code has been integrated within the Linux 2.6 kernel.
The Linux Security Modules (LSM) feature of Linux 2.6 was expressly designed
to support SELinux and other potential security servers.

The principal SELinux facility omitted from Linux 2.6 concerns the labeling of network
objects and the security decisions pertaining to them. Some Linux distributors have plans
to make the missing SELinux capabilities available as one or more kernel patches, or
otherwise.

Despite the integration of SELinux with the Linux 2.6 kernel, a given
operational Linux 2.6 kernel may or may not support SELinux. Like many

kernel features, the level of SELinux support can be configured when the
kernel is built. SELinux can be:

Incorporated directly within the kernel

Entirely omitted from the kernel

Therefore, before attempting to configure SELinux on a system, you should
determine whether any of the available kernels supports SELinux and, if not,
obtain an appropriate kernel. Chapter 3 explains how to build a Linux 2.4 or
Linux 2.6 kernel that supports SELinux.

2.6.2 The SELinux Shared Library

Most non-kernel SELinux components are linked against an SELinux shared
library, currently named libselinux1.so. This library makes available the
functions associated with the SELinux application programming interface (API).
This library must be installed and available or programs linked against it will
fail.

It might seem that the absence of the SELinux shared library would be a relatively minor
matter inhibiting the full and correct functioning of SELinux. However, as explained
subsequently in this chapter, implementation of SELinux entails installation of modified
versions of several critical system executables, which are linked against the SELinux shared
library. Generally, if the SELinux shared library is not available, the system will be crippled.
Recovery procedures will be necessary to restore proper system operation.

2.6.3 The SELinux Security Policy

As explained, the SELinux security server bases its decisions on a policy file
that can be configured by the administrator. The policy file provides flexibility,
enabling SELinux administrators to implement customized security policies
that suit local needs, rather than one-size-fits-all boilerplate policies provided
by a Linux distribution.

When an SELinux system starts up, it loads the local security policy from a
binary policy file, which typically resides in /etc/security/selinux; however, a

Linux distributor may choose to place the file in another location.

The SELinux binary policy file is generated by a Makefile, which resides in the
SELinux source directory, typically /etc/security/selinux/src/policy or
/etc/selinux. Some Linux distributions, such as Fedora, do not install the
SELinux source directory by default, so the directory and the Makefile may be
absent from your system. The Makefile concatenates a variety of source files,
expands the M4 macros they contain, and places the result in a file named
policy.conf, which resides in the SELinux source directory. It then compiles the
resulting SELinux policy statements within policy.conf into binary form. Figure
2-7 illustrates this process.

Figure 2-7. Creating and loading the SELinux
binary policy file

make is a Linux/Unix application that compiles source codesuch as the Linux kerneland
performs other useful operations, under control of a configuration file called a Makefile.
You don't need a detailed understanding of make to work with SELinux.

M4 is a macro processor commonly used in support of Linux applications, such as
Sendmail. M4 is explained more fully in Chapter 5.

Roughly speaking, the SELinux source files are of four major types:

Standard source files that are seldom modified by the SELinux administrator

These files include such files as the SELinux Makefile, files defining
standard M4 macros, and files that contain boilerplate policy language.
Administrators may find it necessary to modify these files to support
special, unusual policy requirements. These files typically reside in the
SELinux source directory and a variety of subdirectories, including
domains, file_contexts, flask, macros, and types.

Source files that are typically modified by the SELinux administrator during
initial configuration of SELinux

These include such files as those defining the authorized SELinux users
and their associated roles. They are few in number, relatively short, and
easy to modify and maintain. The source files most likely to be modified
reside in the SELinux source directory and its types subdirectory.

Type-Enforcement (TE) source files

Each TE file contains most of the policy language statements related to a
particular domain. The package maintenance utilities of some Linux
distributions have been modified to install automatically the TE file related
to a package at package installation time. SELinux administrators may find
it necessary to create TE files for programs lacking them, or to modify
existing TE files to meet special policy requirements. These files typically
reside in the domains/programs subdirectory of the SELinux source
directory and have the file extension .te.

SELinux administrators may also find it necessary to modify TE files to resolve problems
arising from SELinux policy bugs. Unfortunately, SELinux policies are relatively large,
typically consisting of over 10,000 source lines. Consequently, the typical SELinux policy
contains a significant number of bugs, some of which an SELinux administrator may be
compelled to fix in order to achieve satisfactory system operation. As SELinux matures, we
can expect that the incidence of such problems will decrease significantly and that many
SELinux users will be satisfied with default SELinux policies.

File Context (FC) source files

Each FC file contains specifications for labeling (that is, assigning types to)
a related set of files and directories. The FC files are used to initially label
filesystems and may be used to relabel all or part of a filesystem at special
times, such as installation of a software package that creates new files or
directories. The FC files typically reside in the file_contexts/programs
subdirectory of the SELinux source directory and have the file extension
.fc.

2.6.4 SELinux Tools

SELinux includes three main categories of tools:

Special commands used to administer and use SELinux

Modified versions of standard Linux commands and programs

Supplementary SELinux tools, used for purposes such as policy analysis
and development

The following sections describe these tool categories.

2.6.4.1 SELinux commands

SELinux includes a variety of tools for its administration and use. Chapter 4
describes these tools in detail. Among the principal tools are these:

chcon

Labels a specified file, or set of files, with a specified security context.

checkpolicy

Performs a variety of policy-related actions, including compiling policy
sources to binary and loading a binary policy into a kernel. The command
is typically invoked via the SELinux Makefile rather than directly.

getenforce

Displays a message indicating whether SELinux is currently in permissive
mode or enforcing mode. Useful only for kernels compiled with support for
permissive mode.

newrole

Enables a user to transition from one authorized role to another.

run_init

Used to start, stop, or otherwise control a service. Ensures that the
operation is executed in the same context used when services are
automatically started, stopped, or controlled by Init.

setenforce

If given the argument 0, places SELinux in permissive mode; if given the
argument 1, places SELinux in enforcing mode.

setfiles

Sets file labels for a specified directory and its subdirectories, based on the
specifications provided in FC files. The command is typically invoked via
the SELinux Makefile rather than directly, and is generally used only
during initial SELinux configuration.

Older versions of SELinux included the following commands, which have been
retained in the current version for the convenience of users familiar with

them:

avc_enforcing

Equivalent to getenforce.

avc_toggle

Switches the system from enforcing to permissive mode, or vice versa.

2.6.4.2 Modified Linux commands and programs

In addition to special commands related to SELinux, an SELinux
implementation typically includes modified versions of several Linux
commands. Among these are the following commands:

cp, mv, install, and other basic commands

Modified to label the new file with the security context of the source.

id

Modified to include an option for displaying the user's current security
context.

ls

Modified to include an option for displaying a file's current security
context.

ps

Modified to include an option for displaying a process's current security

Modified to include an option for displaying a process's current security
context.

Several common programs are generally modified to support SELinux,
including:

cron

Modified to set a standard security context for all cron jobs.

login

Modified to set the initial security context of a user when the user logs in.

logrotate

Modified to preserve the security context of log files being rotated.

pam

Modified to set the initial security context of a user and to use the SELinux
API to obtain privileged access to password information.

ssh

Modified to set the initial security context of a user when the user logs in.

various programs that modify /etc/passwd or /etc/shadow

Modified to preserve the security context of the modified file.

2.6.4.3 Supplementary SELinux tools

A variety of supplementary SELinux tools is available, and others are under
development. Among the most noteworthy are the tools provided by Tresys
(http://www.tresys.com) and distributed under the GNU General Public
License. These tools include:

Apol

A tool for analyzing the SELinux policy.conf file. Figure 2-8 shows a typical
Apol screen.

SeAudit

A graphical user interface (GUI) tool for analyzing SELinux log entries.

SeCmds

A set of non-GUI tools for analyzing the SELinux policy.conf file.

SePCuT

A GUI tool for browsing and editing SELinux policy files.

SeUser

A pair of GUI and non-GUI tools for managing Linux and SELinux user
accounts.

Figure 2-8. The Apol policy analysis tool by Tresys

http://www.tresys.com

2.6.5 References

To learn more about the SELinux security model, you can read Chapter 5 of
this book. The description of the SELinux security model presented in this book
is based primarily on the paper "Configuring the SELinux Policy," by Stephen
Smalley. It is available on the NSA's SELinux web site,
http://www.nsa.gov/selinux/index.cfm. The paper is somewhat out of date
because SELinux has been developed further since its publication. However,
for the most part, the information presented in the paper remains accurate,
even if somewhat incomplete.

http://www.nsa.gov/selinux/index.cfm

Chapter 3. Installing and Initially Configuring
SELinux
This chapter presents step-by-step procedures for installing and initially
configuring SELinux on several popular Linux distributions. At the time of
writing, only two popular Linux distributions officially support SELinux: Fedora
Core and Gentoo. However, SELinux is also available for Debian GNU/Linux
and SUSE, thanks to the unofficial work of independent software developers.
In addition, Red Hat has announced that Red Hat Enterprise Linux 4 will
support SELinux. So those who are looking to install SELinux can choose from
a variety of Linux distributions. You may also be able to download and apply
the SELinux source release to a Linux distribution other than those mentioned.
The final section of this chapter provides an overview of this process.

This chapter contains step-by-step instructions for installing and initially configuring
SELinux on several Linux distributions. I exercised care in writing and testing these
instructions, which were also reviewed and tested by others. However, I can't promise that
they'll work in every situation or in your particular situation. And directions such as these
tend to become outdated quickly. So don't become alarmed if your system responds
differently than expected. You'll likely find the instructions more useful as a rough guide
than as a detailed road map.

3.1 SELinux Versions

Every implementation of SELinux is based on one of the official NSA versions.
The NSA has published four major versions of SELinux:

Original (Pre-LSM) SELinux

The original version of SELinux, which supported Linux 2.2 and Linux 2.4.

LSM-Based SELinux

A version of SELinux that worked with the Linux Security Modules (LSM)
patch to Linux 2.4 and 2.5.

SELinux for Linux 2.4

A version of SELinux that also worked with the LSM patch to Linux 2.4, but
additionally required the extended attribute (EA) patch. Apart from
differences in kernel support, this version is architecturally similar to
SELinux for Linux 2.6 but is no longer under active development.

SELinux for Linux 2.6

The current version of SELinux, which works with standard Linux 2.6
kernels. The Linux 2.6 kernel natively supports SELinux and therefore
does not have to be patched.

The application programming interface of the original and LSM-based versions
of SELinux differs from that of current version. Therefore, although the older
versions can still be downloaded from the NSA's web site, I don't recommend
that the older versionsor third-party packages or source code based on the
older versionsbe used.

Similarly, although the Linux 2.4 version of SELinux is architecturally similar
to the current Linux 2.6-based SELinux release, it is not under active
development and therefore lacks useful functions present in the current
release. At the time of writing, implementations of SELinux for Linux

distributions not integrally supporting SELinux tend to be based on SELinux for
Linux 2.4 and are therefore somewhat out of date. Consequently, my own
preference and recommendation is that you install one of the following
SELinux implementations:

Red Hat Enterprise Linux 4 (when available)

Fedora Core 2

Nevertheless, in the following sections I give procedures and suggestions for
installing SELinux for Debian GNU/Linux owing to its high popularity and ready
availability and Gentoo Linux. Although Gentoo Linux does not support SELinux
integrally, Gentoo's Hardened Project does officially support Gentoo's
implementation of SELinux.

3.2 Installing SELinux

SELinux can be installed in three fundamental ways:

As an integral component of a Linux distribution, installed at the same
time as the distribution

By using binary or source packages, such as the .deb packages used by
Debian GNU/Linux; the ebuilds used by Gentoo Linux; or the RPM
packages used by Fedora Core, Red Hat Enterprise Linux, and SUSE Linux

By downloading, compiling, and installing the sources provided by the NSA

At the time of writing, only Fedora Core and Gentoo contain SELinux as a fully
supported, native facility. So unless you choose one of those distributions, you
must install SELinux yourself. If you install SELinux yourself, it's generally
much more convenient to do so using packages. However, prebuilt packages
are not available for every Linux distribution. Those who are unable or
unwilling to use a distribution for which packages are available must compile
the sources provided by the NSA. In many cases, the sources must be modified
in order to work properly with the distinctive characteristics of a specific Linux
distribution.

The following sections explain how to install and initially configure SELinux for
several popular Linux distributions. The final section of this chapter explains
how to install SELinux using the source code provided by the NSA.

Using X with SELinux

Coaxing SELinux into working with X has proven to be somewhat difficult. Recent releases of
SELinux perform much better in this regard than older releases. But they still fall short of perfection.
It's common for SELinux users to find that the login screen doesn't appear or that they can't log in.

The KDE Desktop has so far proven more resistant to interoperation with SELinux than its rival
desktop, GNOME. The central problem is that various KDE programs run as identically named
processes. Thus, SELinux cannot assign these KDE processes to distinct domains. One result of
this inability is that KDE's temporary files sometimes cannot be labeled with appropriate domains.
Thus, with respect to KDE, SELinux policies tend either to be too restrictive or too lax. We can hope
that a future release of KDE or SELinux will somehow address this problem. In the meantime, for
those using SELinux, GNOME is generally a better desktop choice than KDE.

If you find yourself unable to log into X, try returning to a text-mode console by pressing Ctrl-Alt-
F1. Then log in and reboot the system in non-SELinux mode, as explained in Chapter 4.

3.3 Linux Distributions Supporting SELinux

Currently only Fedora Core supports SELinux by providing it as an integral
component that is installed without special effort on the part of the installing
user. However, Red Hat has announced that Red Hat Enterprise Linux 4 (RHEL
4) will support SELinux. The RHEL 4 implementation of SELinux is expected to
closely resemble the one in Fedora Core 2.

3.3.1 Fedora Core 2

Fedora Core is a Linux distribution sponsoredbut not supportedby Red Hat that
uses the distribution as a test bed for new technologies being considered for
incorporation in Red Hat's supported distributions, such as Red Hat Enterprise
Linux. Fedora Core is freely available at http://fedora.redhat.com. Unlike Red
Hat Enterprise Linux, which contains proprietary components, Fedora Core is
fully redistributable under the terms of the GNU GPL.

Fedora Core 2 presents the most convenient implementation of SELinux
available to date. To install SELinux, you must respond selinux to the boot
prompt that appears after booting from the installation media.[1] During the
installation procedure, the Firewalls screen (see Figure 3-1) provides the user
with the opportunity to choose from three levels of SELinux support:

[1] Fedora Core 2 test versions do not require you to use this special boot option.

Disabled

Disables SELinux.

Warn

Enables SELinux to log, but not prevent, attempted violations of the
SELinux policy.

Active

Enables SELinux to fully enforce its policy.

http://fedora.redhat.com

Enables SELinux to fully enforce its policy.

Figure 3-1. The Fedora Core firewalls screen

When the system boots after installation, SELinux immediately assumes the
mode specified during installation no further configuration is necessary. Of
course, the system administrator can reconfigure the system to operate in a
different SELinux mode by modifying the boot configuration
(/boot/grub/grub.conf) or the SELinux configuration (/etc/sysconfig/selinux),
either manually or by using the GUI Security Level tool.

Moreover, the RPM package manager included in Fedora Core is SELinux-
aware. It automatically labels files and directories when new packages are
installed. Thus, running SELinux under Fedora Core may involve relatively
little ongoing administration.

The default SELinux policy implemented by Fedora Core is termed a "relaxed
policy," meaning that it seeks to protect potentially vulnerable services and
daemons without strictly imposing the principle of least privilege on every user
action. Thus, the policy represents a compromise between ease of use and
security that is appropriate for many users. The system administrator, of
course, is free to tailor the SELinux policy to better suit local needs. In
particular, the system administrator may find it necessary to do so if the
system hosts binaries other than those distributed as part of Fedora Core, or if

the system administrator wants to restrict the privileges available to scripts
such as cron jobs. Chapter 5 and Chapter 8 of this book explain the procedures
for doing so.

3.4 Installation Overview

The procedure for installing SELinux varies according to the target Linux
distribution. However, it generally includes the following operations:

Configuration, compilation, and installation of a kernel supporting SELinux

Modification of the bootloader configuration to include the new, SELinux-
capable kernel

Installation and configuration of SELinux-related userland libraries,
utilities, and commands

Compilation and installation of an SELinux policy

Labeling of the filesystems

The operations can be performed in any of a variety of sequences. A few of
these operations can be entirely omitted if precompiled packages are used.
And additional operations are generally required, as explained in the following
sections.

3.5 Installing SELinux from Binary or Source Packages

Unless you choose a Linux distribution that includes built-in support for
SELinux, you'll have to install and configure SELinux yourself. It's generally
easier to do so using binary or source packages than using the source code
tarballs released by the NSA. This section explains how to install and initially
configure SELinux on:

Debian GNU/Linux

Gentoo Linux

SUSE Linux 8.2

In addition, the section gives advice on installing and configuring SELinux to
work with Red Hat Enterprise Linux 3. As explained earlier, the forthcoming
Red Hat Enterprise Linux 4 is planned to integrally support SELinux.

3.5.1 Debian GNU/Linux

At the time of writing, two releases of Debian GNU/Linux are currently in use,
and a third is under development. The two commonly used releases are:

Debian GNU/Linux 3.0 stable, known as Woody

Debian GNU/Linux 3.0 unstable, known as Sid

As the release names indicate, Woody is considered the more reliable release;
its component packages have been subject to more extensive, and more
thorough, testing and use than those of Sid. However, the C compiler and
libraries and other components of Woody are too old to work well with
SELinux. Consequently, this section presents an SELinux installation procedure
appropriate for Sid.

If you're interested in using SELinux with Woody, you can use special
packages created by Brian May, available at
http://www.microcomaustralia.com.au/debian. You can find brief instructions
for using them at http://www.coker.com.au/selinux. Because these packages
are subject to change, I don't present step-by-step instructions for installing

http://www.microcomaustralia.com.au/debian
http://www.coker.com.au/selinux

and configuring SELinux under Woody. If you plan to install SELinux under
Woody, you can request assistance by posting to the SELinux mailing list, to
which you can subscribe using the web page identified in Chapter 1.

To install SELinux under Sid, perform the following steps. Since I presume you
know how to install Debian Sid, the steps include only general explanations of
the associated operations. If you're unfamiliar with the installation procedure
for Debian, please see the installation manual available at
http://www.debian.org/releases/stable/i386/install.

1. Obtain bootable media for Debian Sid and boot the system using them. I
recommend the media available at
http://people.debian.org/~dwhedon/boot-floppies, especially bf2.4-3.0.23-
netinst.iso because of its relatively small size (10 MB). If you like, you can
choose from other media available at http://www.debian.org/CD/netinst.

2. Burn the ISO image to a CD-RW or CD-R and boot the system using it.
Choose the language to be used during installation and your keyboard
type.

3. Partition the target system's primary hard disk and create Linux
filesystems as usual. The simplest installation consists of three partitions:
a boot partition (/boot), a root partition (/), and a swap partition. The swap
partition should have partition type 82, whereas the other two partitions
should have type 83.

The installer encourages you to choose the ext2 filesystem type for the
boot and root partitions. I suggest that you ignore the default and choose
ext3 as the filesystem type for the root filesystem, because the journaling
provided by ext3 will improve the reliability of your filesystem. You can
choose either ext2 or ext3 as the filesystem type of the boot partition. I
myself prefer to choose ext3 for consistency.

4. Install a kernel and any drivers necessary for devices you plan to use
during, and immediately after, installation. In general, you should ensure
that a driver is available for your system's network interface. The
installation program may automatically recognize your system's devices, in
which case you don't need to explicitly load any drivers.

5. Set up networking by specifying a hostname, domain name, and network
configuration. If a DHCP or BOOTP server is available, you can request
automatic network configuration, which identifies the system IP address,
network mask, gateway IP address, and DNS server IP address for you;
otherwise, you must specify these yourself.

http://www.debian.org/releases/stable/i386/install
http://people.debian.org/%7Edwhedon/boot-floppies
http://www.debian.org/CD/netinst

6. Install the bootloader. Generally, you should install LILO, the default
Debian bootloader, to the MBR (master boot record) of the primary hard
drive. If your system is configured to boot multiple operating systems,
special considerations are necessary. Consult the Debian installation
manual for details.

7. Reboot the system. When the system configuration screen appears, specify
configuration options, including the time zone, MD5 passwords (which
should generally be enabled), a shadow password file, a root password,
and a non-root user.

8. When prompted to run apt, decline to do so by pressing Cancel. Likewise,
decline to run tasksel. When dselect runs, allow it to continue and also
allow it to delete any previously downloaded .deb files that are no longer
needed.

If you allow apt to run, it may install updated packages that
conflict with SELinux packages to be installed later in this
procedure. Declining to run apt avoids this problem.

9. Respond to the installation program prompts that lead you through the
configuration of installed packages such as mail.

10. When configuration is complete, log in as the root user. Use a text editor
to create the file /etc/apt/apt_preferences, specifying the following
contents:

Package: *

Pin: release o=etbe

Pin-Priority: 1100

11. This configuration file will prevent critical SELinux packages from being
overwritten by updated non-SELinux packages.

12. Use a text editor to modify the file /etc/apt/sources.list, deleting any
existing entries and specifying the following contents:

deb http://www.coker.com.au/newselinux/ ./

deb ftp://ftp.us.debian.org/debian/ sid main

13. The web site www.coker.com is a repository of Debian SELinux packages,
maintained by Russell Coker.

14. Issue the command:

apt-get update

15. to update the list of available packages.

16. Use apt-get to install the libselinux1 package. Then install the following
packages:

checkpolicy
coreutils
cron
dpkg
fileutils
initscripts
libpam0g
libpam0g-dev
libpam-cracklib
libpam-doc
libpam-modules
libpam-runtime
libselinux1
logrotate
policycoreutils
procps
selinux-doc
selinux-policy-default
selinux-utils
shellutils
strace
sysvinit
sysv-rc
textutils

17. These packages contain versions of standard utilities that have been
modified to work with SELinux, SELinux-specific utilities, the SELinux
policy, and SELinux documentation.

You may be prompted to update Glibc, which you should approve. You will
then be prompted to accept a series of files contained in the selinux-policy-
default package; you may accept all such files.

18. Launch dselect, and use it to install any available updates to Sid. If dselect
does not propose installation of a Linux 2.6 kernel, manually select an
appropriate kernel-image package for installation. In any case, manually
select a kernel-source package corresponding to the kernel that dselect
automatically selected or that you manually selected. Finally, be sure that
the ncurses-dev package is selected for installation. Allow dselect to install
the selected packages.

19. Now, you're ready to build an SELinux kernel. Move to the directory
/usr/src, unpack the kernel sources, and set up a symbolic link named
linux, pointing to the directory containing the unpacked sources. If you're
unfamiliar with the procedure for manually configuring, compiling, and
installing a Linux kernel, consult the Debian installation guide.

20. Enter the directory containing the kernel sources. Using a text editor, open
the Makefile and change the EXTRAVERSION variable to a distinct value. This
value is used to name and identify the directory containing loadable kernel
modules that work with your kernel.

21. Choose an installed /boot/config* file and copy it to the current directory,
naming it .config. Doing so will conveniently set default values for many
configuration options.

22. Issue the command:

make menuconfig

23. Choose kernel configuration options appropriate to your system, overriding
default values as necessary. I personally like to omit support for devices
and filesystems that I don't use and specify that support for needed
devices and filesystems should be compiled integrally in the kernel, rather
than as modules. But, other preferences are acceptable.

Also specify the following SELinux-related options. Under Code Maturity,
specify:

Prompt for development and/or incomplete code/drivers

Under Device Drivers Character Devices, specify:

Unix98 PTY

No Legacy (BSD) PTY support

Under File systems, specify:

Second extended fs support

Ext2 extended attributes

Ext2 security labels

Ext3 journalling file system support

Ext3 extended attributes

Ext3 security labels

Do not specify POSIX access control lists for either ext2 or ext3.

Under Pseudo filesystems, specify:

/dev/pts Extended Attributes

/dev/pts Security labels

Do not specify:

/dev file system support

Finally, under Security options, specify:

Enable different security models

Socket and networking security hooks

Default Linux capabilities

NSA SELinux

NSA SELinux boot parameter

NSA SELinux Development support

24. Compile and install the kernel, by issuing the commands:

make clean

make install modules modules_install

If you compiled all features integrally within the kernel, omitting support
for modules, use the following command instead:

make clean && make install

25. Modify the /etc/lilo.conf bootloader configuration to boot the new kernel in
SELinux mode, by adding the following LILO option to the stanza
pertaining to the new kernel:

append="selinux=1 enforcing=0"

Issue the /sbin/lilo command to update the boot record.

26. Create the special directory used by the SELinux kernel during system
startup:

mkdir /selinux

27. Add the following line at the end of the /etc/fstab configuration file:

none /selinux selinuxfs defaults 0 0

28. Modify the PAM configuration by adding the following line at the end of the
files /etc/pam.d/login and /etc/pam.d/ssh:

session required pam_selinux.so

29. Compile the SELinux policy and label the filesystem:

cd /etc/selinux

make policy

make relabel

Labeling the filesystem associates a security context with each existing
file. As explained in Chapter 5, a file's security context identifies the
SELinux user, role, and type of the file. The SELinux policy specifies the
label to apply to each file.

Unfortunately, it's not unusual for errors to appear during
compilation of the SELinux policy. These are generally
typographical errors or other gross errors in policy files
specifying domains, such as domain/programs/*.te. To work
around such errors, create the directory
/etc/selinux/domain/programs/error, move any defective
files to this directory, and remake the policy file. You may
need to read material in the following several chapters of
this book to successfully complete this process. You can also
post a request for help on the SELinux mailing list,
identified near the end of Chapter 1.

30. Reboot your system. When the system starts up, relabel the filesystem a
second time so that any files creating during the reboot are properly
labeled:

cd /etc/selinux

make relabel

31. Your Debian SELinux system should now be ready for use. The information
in the following chapters will help you better understand how to use,
maintain, and improve it.

The Debian developers do not officially support SELinux.
However, they tend to be both technologically keen and
helpful in responding to questions that interest them.
Understandably, the developers are sometimes
nonresponsive to questions posed by users who seem to
them to be lazy or unskilled. In a few cases, they may even
seem to respond contemptuously or with hostility. To make
good use of their time and avoid taxing their patience, be
sure to put forth a good-faith effort to troubleshoot and
resolve problems before posting questions to the Debian
mailing lists, such as debian-security.

3.5.2 Gentoo Linux

Unlike Debian GNU/Linux, Gentoo Linux specifically supports SELinux.
However, SELinux has not been integrated into the standard Gentoo release.
This section explains how to install SELinux under Gentoo to a fresh or bare-
metal system. The following section explains how to install SELinux to a
preexisting Gentoo Linux system.

At the time of writing, Gentoo supports SELinux only on servers, not workstations, due
primarily to interoperability problems between SELinux and X. However, the Gentoo
developers suggest that SELinux workstation may be available in a future Gentoo release.

3.5.2.1 Installing SELinux to a fresh Gentoo
system

The "Gentoo x86 SELinux Installation Guide," available at
http://www.gentoo.org/, gives the official Gentoo instructions for installing
Gentoo SELinux. The online instructions are likely to be more up to date than
the following procedure; however, you may find the following procedure
helpful in explaining how the Gentoo procedure works. Ideally, when installing
SELinux under Gentoo, you should consult both the online instructions and
this book.

To install SELinux under Gentoo, perform the following steps:

1. Obtain a current Gentoo LiveCD image, available from a Gentoo mirror site
listed at http://www.gentoo.org/main/en/mirrors.xml. Burn the image to
CD-R or CD-RW and boot your system from it. Choose a kernel from those
listed as available. For installation, you don't need to choose an SELinux
kernel; a standard Gentoo kernel such as gentoo or nousb is satisfactory.

2. After booting, the system automatically logs you in as the root user. The
system probably loaded appropriate kernel drivers for your system's
devices automatically. But, if not, you can manually load a driver by
issuing the modprobe command. Use the lsmod command to verify that the
driver appropriate for your network interface was loaded. If it was not
loaded, manually load a driver from /lib/modules*/kernel/drivers/net. If a
required SCSI driver was not loaded, manually load one in the same
manner.

3. Issue the /sbin/ifconfig command to verify that networking has been
configured. If networking has been configured, verify that it's working by
pinging your DNS server or accessing a web site. The lynx, ping, scp, ssh,
wget, and other network commands are available and should work. If
networking is not properly operational, consult the Gentoo installation
guide for troubleshooting and problem resolution hints.

4. Use the date command to set your system's date and time. For instance,
you can set the date and time to 2:27 a.m. on July 1, 2004, by issuing the
command:

http://www.gentoo.org/

022707012004

5. Use fdisk to establish appropriate partitions on your system's primary hard
drive.

6. Use mkswap to prepare a swap partition for use and use mke2fs to prepare
ext3 (preferred) or ext2 filesystems on the non-swap partitions. Activate
the swap partition and mount the filesystems. For instance:

mkswap /dev/hda2 # prepare swap partition

mke2fs -j /dev/hda1 # make /boot filesystem

mke2fs -j /dev/hda3 # make / filesystem

swapon /dev/hda2 # activate swap partition

mount /dev/hda3 /mnt/gentoo # mount / partition

mkdir /mnt/gentoo/boot # create mount point

mount /dev/hda1 /mnt/gentoo/boot # mount /boot

7. Download the installation tarball, stage1-x86-1.4_rc4.tar.bz2, using the
lynx or wget command, from a Gentoo mirror such as
http://gentoo.oregonstate.edu/experimental/x86/stages, and place the
tarball in the /mnt/gentoo directory. Extract the tarball contents, enter the
chrooted filesystem just created, and update your shell context:

tar jxvpf stage1-*.tar.bz2

mount -t proc proc /mnt/gentoo/proc

mount -t selinuxfs none /mnt/gentoo/selinux

cp /etc/resolv.conf /mnt/gentoo/etc/resolv.conf

chroot /mnt/gentoo /bin/bash

env-update

http://gentoo.oregonstate.edu/experimental/x86/stages

source /etc/profile

8. Update the portage tree:

emerge sync

9. Use a text editor, such as Nano, to customize the build settings, if desired.
The settings reside in the file /etc/make.conf, which is heavily commented
and therefore largely self-explanatory. Generally, the default values are
acceptable. But, you should check the values of CHOST, CFLAG, and
CXXFLAGS to ensure they're consistent with the processor type of your
system.

Detailed information on the configuration options provided
by the make.conf file is available at http://www.gentoo.org
and http://www.gentoo.org/dyn/use-index.xml.

10. Initiate the bootstrap process, which builds the GNU C library, the C
compiler, and other fundamental programs:

export PORTAGE_TMPDIR=/var/tmp

cd /usr/portage

scripts/bootstrap.sh

The bootstrap process is relatively time-consuming, as you might suspect.
You can specify a directory other than /var/tmp, if you prefer. The
directory should provide several hundred megabytes of free space.

11. Build the non-bootstrapped programs:

emerge system

http://www.gentoo.org
http://www.gentoo.org/dyn/use-index.xml

This process generally takes even longer than the bootstrap process.

12. Set the time zone:

ln -sf /usr/share/zoneinfo/
path
/etc/localtime

where path denotes the subpath corresponding to your time zone. For
instance, /usr/share/zoneinfo/America/Los_Angeles denotes the U.S.
Pacific time zone.

13. Install a kernel by issuing any one of the following commands:

emerge sys-kernel/selinux-sources

emerge sys-kernel/hardened-sources

emerge sys-kernel/gentoo-dev-sources

emerge sys-kernel/devlopment-sources

emerge sys-kernel/mm-sources

Issue only one of the preceding commands; don't issue all
of them.

14. Now, you're ready to build an SELinux kernel. To begin doing so, issue the
following commands:

cd /usr/src/linux

zcat /proc/config.gz > .config

make menuconfig

Specify the following SELinux-related options. Under Code Maturity,
specify:

Prompt for development and/or incomplete code/drivers

Under Device Drivers Character Devices, specify:

Unix98 PTY

No Legacy (BSD) PTY support

Under File systems, specify:

Second extended fs support

Ext2 extended attributes

Ext2 security labels

Ext3 journalling file system support

Ext3 extended attributes

Ext3 security labels

Do not specify POSIX access control lists for either ext2 or ext3.

Under Pseudo filesystems, specify:

/dev/pts Extended Attributes

/dev/pts Security labels

Do not specify:

/dev file system support

Finally, under Security options, specify:

Enable different security models

Default Linux capabilities

NSA SELinux

NSA SELinux boot parameter

NSA SELinux Development support

Do not specify:

Socket and networking security hooks

NSA SELinux MLS policy

15. If needed, configure kernel support for PPPoE and IDE CD burning. Be sure
the kernel includes support for your system's Ethernet card. See the
Installation Guide for details.

16. Compile and install the kernel:

make dep

make clean bzImage modules modules_install

cp /usr/src/linux/arch/i386/boot/bzImage /boot

17. Install any kernel-related software needed by your system. For instance,
you might issue one or more of the following commands:

emerge e100 # Intel e100 NIC

emerge e1000 # Intel e1000 NIC

emerge emu10k1 # Creative SBLive!

18. Install a system logging service. Under Gentoo, you can choose any one of
four logging services. I prefer the Unix de facto standard, Syslog. To install
Syslog, issue the following commands:

emerge -k app-admin/sysklogd

rc-update add sysklogd default

If you prefer to configure a logging service other than
Syslog, see the Installation Guide.

19. Install the cron service:

emerge -k sys-apps/vixie-cron

rc-update add vixie-cron default

20. First, use nano (or another editor of your choice) to create an /etc/fstab
file that mounts your Linux ext2 and ext3, swap, proc, tmpfs, and cdrom
filesystems. A typical file looks like this:

/dev/hda1 /boot ext3 ro,noatime 1 1

/dev/hda2 / ext3 noatime 0 0

/dev/hda4 /space ext3 noatime 0 0

/dev/hda3 none swap sw 0 0

none /proc proc defaults 0 0

none /dev/shm tmpfs defaults 0 0

/dev/cdroms/cdrom0 /mnt/cdrom iso9660 noauto,ro 0 0

Then, add the following two SELinux-related lines to the file:

none /selinux selinuxfs defaults 0 0

none /dev/pts devpts defaults 0 0

The first line causes the system to automatically mount the SELinux
pseudofilesystem during system startup. The second line causes the
system to automatically mount the devpts pseudofilesystem. This is
needed because the current release of Gentoo SELinux uses devpts rather
than the Gentoo-default devfs pseudofilesystem.

21. Set the password for the root user, by issuing the passwd command. You
should also create one or more non-root users, by issuing the adduser
command. You should also set a password for each non-root user you
create.

passwd

New UNIX password: (password not echoed)

Retype new UNIX password: (password not echoed)

adduser staff

passwd staff

New UNIX password: (password not echoed)

Retype new UNIX password: (password not echoed)

22. Specify the host and domain names. To set the host name, issue the
command:

echo

hname
 > /etc/hostname

where hname is the host name. To set the domain name, issue the
command:

echo
dname
 > /etc/dnsdomainname

where dname is the domain name. If your system is to be part of an NIS
domain, also set the name of the NIS domain:

echo
nisname
 > /etc/nisdomainname

where nisname is the NIS domain name.

Also, modify the /etc/hosts file to include a line such as the following:

xxx.xxx.xxx.xxx

hname.dname hname

where xxx.xxx.xxx.xxx is the primary IP address of your system, hname is its
host name, and dname is its domain name.

If your system receives its network configuration
dynamically, via DHCP or BOOTP, you may omit this step.

23. Specify the kernel modules that should be loaded at system startup. To do

so, add their names (and any desired options) to /etc/modules.autoload.

If the driver for your system's network adapter was
compiled as a module, it's especially important that the
corresponding module is specified in /etc/modules.autoload.
You can determine the name of the module by inspecting
the names of the driver files located in /lib/modules/
`uname -r`/kernel/drivers/net.

24. Configure your system's IP address, network mask, and other TCP/IP
parameters in /etc/conf.d/net. Then set networking to start at the default
run level:

rc-update add net.eth0 default

If your system has multiple network adapters or a PCMCIA
network adapter, consult the Installation Guide for the
proper configuration procedure.

25. Set system preferences in /etc/rc.conf. Comments in the file explain the
functions of the configuration options. In particular, be sure the CLOCK
setting has the correct value (UTC or local).

26. Compile, install, and configure the GRUB bootloader.

If your system uses hardware RAID, your system is
configured for multiple boot, your kernel is configured to
use framebuffer video, or if you prefer to configure the LILO
bootloader rather than GRUB, see the Installation Guide for
further instructions.

To compile GRUB, issue the command:

emerge grub

To install GRUB, enter its command-line environment and issue the GRUB
root and setup commands:

grub

grub> root (hd0,0)

grub> setup (hd0)

grub> quit

The GRUB root command shown is appropriate only if your
/boot partition is the first partition on the primary hard
drive, the most common case. If the /boot partition is the
second partition, use the command:

grub> root(hd0,1)

To configure GRUB, use an editor to create the /boot/boot/grub.conf file. A
typical file might resemble the following:

default 0

timeout 30

splashimage=(hd0,0)/boot/grub/splash.xpm.gz

title=Gentoo SELinux

root (hd0,0)

kernel (hd0,0)/boot/bzImage root=/dev/hda3 gentoo=nodevfs

This configuration file assumes that the boot partition is
/dev/hda1 and the Linux root partition is /dev/hda3. It
won't work if your hard drive is differently configured. In
that case, you must adjust the configuration parameters. If
you're unfamiliar with the contents of GRUB's configuration
file, or uncertain what values to specify, see the Installation
Guide.

If your system fails to boot, it's handy to have available a
GRUB boot disk. To create one, put a blank floppy in the
drive and issue the following commands:

cd /usr/share/grub/i386-pc/

cat stage1 stage2 > /dev/fd0

27. Update any out-of-date configuration files, by issuing the command:

etc-update

28. Compile the SELinux policy and label the filesystem, by issuing the
following commands:

cd /etc/security/selinux/src/policy/

make install

make chroot_relabel

Labeling the filesystem associates a security context with each existing
file. As explained in Chapter 5, a file's security context identifies the

SELinux user, role, and type of the file. The SELinux policy specifies the
label to apply to each file.

Unfortunately, it's not unusual for errors to appear during
compilation of the SELinux policy. These are generally
typographical errors or other gross errors in policy files
specifying domains, such as domain/programs/*.te. To work
around such errors, create the directory
/etc/selinux/domain/programs/error, move any defective
files to this directory, and remake the policy file. You may
need to read material in the following several chapters of
this book to successfully complete this process. You can also
post a request for help on the SELinux mailing list
mentioned near the end of Chapter 1.

29. Exit the chrooted shell, and reboot the system:

exit

cd /

umount /mnt/gentoo/boot

umount /mnt/gentoo/proc

umount /mnt/gentoo/selinux

umount /mnt/gentoo

reboot

30. When the system has booted, relabel the filesystem for the second time,
so that files created during rebooting will be properly labeled:

cd /etc/security/selinux/src/policy

make relabel

Your Gentoo SELinux system should now be ready for use. The information
in the following chapters will help you better understand how to use,
maintain, and improve it.

3.5.2.2 Installing SELinux to an existing Gentoo
Linux system

The preceding section explains how to install a Gentoo SELinux system onto a
bare-metal system. It's also possible to install SELinux to a working Gentoo
Linux system. This section explains how to do so. The "Gentoo Linux SELinux
Quick Start Guide," available at http://www.gentoo.org/, gives the official
Gentoo instructions for installing Gentoo SELinux to an existing Gentoo Linux
system. The online instructions are likely to be more up to date than the
following procedure; however, you may find the following procedure helpful in
explaining how the Gentoo procedure works. Ideally, when installing SELinux
under Gentoo, you should consult both the online instructions and this book.

1. First, check whether your system is compatible with Gentoo SELinux. Your
system should be a server, not a workstation. And, it should use the Linux
ext2 or ext3 filesystem rather than a more exotic filesystem such as
ReiserFS.

Gentoo SELinux also supports the XFS filesystem. However,
this book does not explain how to configure SELinux to
work with that filesystem. See the Quick Start Guide for
instructions on doing so.

2. Issue the following instructions to switch to the SELinux profile:

rm -f /etc/make.profile

ln -sf /usr/portage/profiles/selinux-x86-1.4 \
/etc/make.profile

http://www.gentoo.org/

3. Check whether any USE flags need to be reenabled in /etc/make.conf:

emerge info

Edit /etc/make.conf as appropriate, based on any messages you see.

You may see the message "!!! SELinux module not found.
Please verify that it was installed," which you may safely
ignore. The cause of this message will be fixed by a
subsequent step of this procedure.

4. Check that the C headers are sufficiently up to date:

emerge -s linux-headers

If the version of the headers is older than 2.4.20, merge new headers by
issuing the command:

emerge \>=sys-kernel/linux-headers-2.4.20

5. Next, recompile the C library, by issuing the command:

emerge glibc

This step generally takes a significant amount of time to complete.

6. Merge an appropriate Linux 2.4 or Linux 2.6 kernel, by issuing any one of
the following commands:

emerge sys-kernel/selinux-sources

emerge sys-kernel/hardened-sources

emerge sys-kernel/gentoo-dev-sources

emerge sys-kernel/devlopment-sources

emerge sys-kernel/mm-sources

Issue only one of the preceding commands; don't issue all
of them.

7. Now, you're ready to build an SELinux kernel. To begin doing so, issue the
following commands:

cd /usr/src/linux

make menuconfig

Specify any options needed to support devices or facilities installed on your
system. Also, specify the following SELinux-related options. Under Code
Maturity, specify:

Prompt for development and/or incomplete code/drivers

Under Device Drivers Character Devices, specify:

Unix98 PTY

No Legacy (BSD) PTY support

Under File systems, specify:

Second extended fs support

Ext2 extended attributes

Ext2 security labels

Ext3 journalling file system support

Ext3 extended attributes

Ext3 security labels

Do not specify POSIX access control lists for either ext2 or ext3.

Under Pseudo filesystems, specify:

/dev/pts Extended Attributes

/dev/pts Security labels

Do not specify:

/dev file system support

Finally, under Security options, specify:

Enable different security models

Default Linux capabilities

NSA SELinux

NSA SELinux boot parameter

NSA SELinux Development support

Do not specify:

Socket and networking security hooks

NSA SELinux MLS policy

8. Compile and install the kernel:

make dep

make clean bzImage modules modules_install

cp /usr/src/linux/arch/i386/boot/bzImage /boot

9. Add the following lines to /etc/fstab:

none /selinux selinuxfs gid=5,mode=620 0 0

none /dev/pts devpts defaults 0 0

The first line causes the system to automatically mount the SELinux
pseudofilesystem during system startup. The second line causes the
system to automatically mount the devpts pseudofilesystem. This is
needed because the current release of Gentoo SELinux uses devpts rather
than the Gentoo-default devfs pseudofilesystem.

10. Edit /boot/grub/grub.conf, adding gentoo=nodevfs to the kernel line; for
instance:

kernel /bzImage root=/dev/hda3 gentoo=nodevfs

If your system boots using LILO rather than GRUB, add
append="Gentoo=nodevfs" to the proper stanza within
/etc/lilo.conf.

11. Make two directories needed by SELinux:

mkdir /selinux

mkdir /sys

12. Reboot the system.

13. Merge packages required by SELinux:

emerge libselinux checkpolicy policycoreutils

emerge selinux-base-policy

14. Load the precompiled SELinux policy:

cd /etc/security/selinux/src/policy

make load

15. Merge packages modified to work with SELinux:

emerge baselayout coreutils findutils openssh \
pam pam-login procps psmisc python-selinux shadow \
util-linux

16. Merge any of the following packages that are already installed:

emerge app-admin/logrotate

emerge sys-apps/vixie-cron

emerge sys-libs/pwdb

vixie-cron is the only cron package compatible with
SELinux. If you have another cron package installed, you

should remove it and, optionally, replace it with vixie-cron.

17. Remove the following packages:

emerge -C fileutils sh-utils textutils

18. Compile and install the SELinux policy, and label the files:

cd /etc/security/selinux/src/policy

make install

make relabel

Labeling the filesystem associates a security context with each existing
file. As explained in Chapter 5, a file's security context identifies the
SELinux user, role, and type of the file. The SELinux policy specifies the
label to apply to each file.

Unfortunately, it's not unusual for errors to appear during
compilation of the SELinux policy. These are generally
typographical errors or other gross errors in policy files
specifying domains, such as domain/programs/*.te. To work
around such errors, create the directory
/etc/selinux/domain/programs/error, move any defective
files to this directory, and remake the policy file. You may
need to read material in the following several chapters of
this book to successfully complete this process. You can also
post a request for help on the SELinux mailing list,
identified near the end of Chapter 1.

19. If using GRUB, reinstall GRUB to the MBR:

grub

grub> root (hd0,0)

grub> setup (hd0)

grub> quit

If GRUB is installed to a location other than the MBR, or
your system's /boot filesystem resides on a partition other
than the first partition of the primary hard drive, see the
Quick Start Guide for instructions.

20. Reboot the system.

21. Relabel the files again, to ensure that files created during rebooting are
properly labeled:

cd /etc/security/selinux/src/policy

make relabel

Your Gentoo SELinux system should now be ready for use. The information
in the following chapters will help you better understand how to use,
maintain, and improve it.

3.5.3 RPM-Based Distributions

Installing SELinux using RPM packages is fast and convenient. And assuming
that the packages are fully compatible with the target system, it's also
effective. SELinux RPM packages are available for two Linux releases: Red Hat
Enterprise Linux and SUSE Linux.

3.5.3.1 Red Hat Enterprise Linux

At one time, Red Hat engineer Dan Walsh, who's a member of the team
responsible for implementation of SELinux under Fedora Core 2, made
available SELinux binary and source RPM packages for RHEL3, on his FTP site,
ftp://people.redhat.com/. However, the packages available there at the time of
writing are not fully compatible with RHEL3; they have have dependencies
unsatisfied by packages available from the site or the RHEL3 release.

Those who are handy with source RPMs can likely hack the packages available
at ftp://people.redhat.com/dwalsh/SELinux/srpms/ to work with RHEL3, by
tweaking them a bit and by installing updated versions of Autoconf, Automake,
and other source code tools available under Fedora Core 2. Alternatively, it's
possible to install Fedora Core 2 binary packages that satisfy the
dependencies. I have installed SELinux on RHEL3 using both approaches.
Nevertheless, I do not include instructions here for doing so, for two reasons:

At the time of writing, the packages are being regularly updated due to
ongoing work for Fedora Core 2. Therefore, it's not possible to provide
step-by-step instructions that can be expected to be accurate at the time
of this book's publication.

Notwithstanding that the SELinux packages for RHEL3 were made by a Red
Hat engineer, Red Hat does not support SELinux under RHEL3. Therefore,
installation by a user of SELinux under RHEL3 would likely void the user's
support agreement with Red Hat.

Those who want to use SELinux with RHEL are likely better served by
installing a beta or production release of RHEL4, which should be available by
the time of publication of this book.

3.5.3.2 SUSE Linux

The latest SUSE Professional Linux release available at the time of writing,
SUSE Professional Linux 9.1, includes an SELinux-capable Linux kernel and
SELinux-patched utilities. However, the distribution reportedly does not
include the SELinux tools and includes a very old version of the SELinux
sample policy. Consistent with that report, searching the SUSE web site for the
word SELinux did not return any information about SELinux and SUSE 9.1.
And a web search failed to turn up information about using SELinux with SUSE
9.1. However, a Novell representative has announced that a forthcoming SUSE
Linux release will include a fully supported implementation of SELinux.

ftp://people.redhat.com/
ftp://people.redhat.com/dwalsh/SELinux/srpms/

SELinux RPM packages for SUSE 8.2 have been independently released by
Paul Dwerryhouse, a system and network engineer employed at the time of
this writing by Versatel b.v., in Amsterdam, Netherlands. His work is available
at http://leapster.org/linux/selinux/suse.

To install SELinux under SUSE 8.2 using Paul's packages, you must download
and install:

His modified kernel (or download his kernel patches and apply them
against Linux 2.4).

His modified initrd.

His userspace RPM packages, of which there are currently 27. These are
available individually, or combined within a single 78 MB tarball.

Paul provides special instructions for installing his kernel. He also cautions not
to use his kernel on production hosts, sinceas Paul himself explains it he
"cheated in a couple of places when porting the SELinux patch to [the Linux
2.4] kernel," by removing the variable HZ feature and taking other shortcuts.

SELinux for SUSE 8.2 is not officially supported by SUSE. Users who install SELinux under
SUSE 8.2 may void any support agreement with SUSE.

Those interested in using SELinux with SUSE may find helpful information on the SELinux
Wiki and file repository maintained by Tom Vogt and others. The Wiki is available at
http://www.securityenhancedlinux.de, and the file repository is available at
http://selinux.lemuria.org. Much of the information in the Wiki is in German, the native
language of many SUSE users and developers.

http://leapster.org/linux/selinux/suse
http://www.securityenhancedlinux.de
http://selinux.lemuria.org

3.6 Installing from Source

If you want to install SELinux on a system running a Linux distribution other
than one for which SELinux support is available, you may be able to do so by
using the NSA's SELinux release, available at
http://www.nsa.gov/selinux/code. However, the release is not a generic, cross-
platform release. Instead, the current release is designed to work with Fedora
Core 2.

The NSA's SELinux release has the following components:

Kernel patch

SELinux shared library

SELinux utilities for managing policies and users

SELinux reference policy

Modified Linux programs, including SysVinit (modified to load SELinux
policy during boot), PAM, Linux utilities (vipw, chsh, chfn, passwd),
OpenSSH, vixie cron, Shadow utilities (programs that modify /etc/passwd
and /etc/shadow), GNU core utilities, procps (modified to display process
context information), and star (backup and recovery utility)

SELinux documentation

To adapt the NSA's release to a new platform generally requires modifications
to build files and may require modificationspotentially significantly difficult
modificationsto userland and kernel source code. Therefore, it's not
recommended that those other than skilled programmers attempt to
implement SELinux on an unsupported platform.

http://www.nsa.gov/selinux/code

Chapter 4. Using and Administering SELinux
At this point we'll assume your SELinux system has been installed and that
you are ready to log in. This chapter lays out the first administrative tasks you
need to do and some ongoing administrative tools you'll want to know about as
you continue to add software and users to your system.

As with any multiuser system, you have to create accounts for users and
assign them the proper privileges. In SELinux these tasks are not much more
complicated than in other systems, although you'll have to learn some new
commands to carry them out. And in the future, after SELinux has become
widely adopted, the wrinkles have been ironed out, and thoroughly tested
policy files are available, these typical sysadmin tasks may be all that's
involved for most people running SELinux.

But unfortunately, we are not yet at that stage of maturity. As explained in
earlier chapters, each release of SELinux on each distribution has its own
rough spots. These will be manifested in various hard-to-diagnose ways,
including:

Users being unable to log in

Users logging in but having their X desktops or particular applications
freeze

Applications failing (silently or with obnoxious complaints) because they
cannot access files or other necessary resources

Thus, basic sysadmin tasks for SELinux include checking log files and tracing
what has happened to users and applications. This chapter contains a
substantial section to help you understand SELinux logging and make use of
that information to change permissions on users and files.

Furthermore, SELinux has a built-in troubleshooting method known as
permissive mode to help you figure out what changes to make. In permissive
mode, SELinux does not actually stop anybody from doing anything. In other
words, you do not actually have a secure SELinux system. (Traditional Unix
security is still operational, though.) You should learn how to switch to and
from permissive mode on a non-production system in a safe environment, of
course in order to find out what changes you need to make in order to let users
and applications run on your system.

When you make changes to your system, you may have to rebuild the policy
files SELinux uses to control access or relabel files. Sometimes you can install
software seamlessly, and SELinux automatically does the right thing. But in
other cases, the policies or labels become out of sync with the system.

The topics in this chapter include:

Permissive mode

Rebuilding policies

Labeling files

Routine system administration (changing roles, adding users, and checking
file contexts)

Monitoring SELinux through log files

Miscellaneous troubleshooting

Some administrative tasks go beyond the use of SELinux commands and
require you to actually change SELinux policy files. These will be the subjects
of several later chapters.

4.1 System Modes and SELinux Tuning

As mentioned, SELinux provides a special mode called permissive mode that's
useful for policy troubleshooting and system maintenance. SELinux's other
operating mode is called enforcing mode (sometimes called enforcement
mode). Enforcing mode is the normal mode of SELinux operation. Under
enforcing mode, operations that violate the SELinux security policy are
prevented. Generally, when an operation is prevented, an entry is also written
to the system log so that a system administrator can learn what operations
have been prevented and why. Some operations may be prevented due to an
incorrect or incomplete SELinux security policy, whereas others may be
prevented due to an attempted system compromise. The system log provides
administrators with data useful in determining the reason operations were
prevented so that appropriate action can be taken. The section of this chapter
titled "Monitoring SELinux" explains the format of the log entries made by
SELinux.

Permissive mode is available only if your system's kernel was compiled with
the option NSA SELinux Development support. Generally, Linux vendors
compile their standard kernels with this option. However, if you compiled your
own kernel, you may have omitted the option, in which case permissive mode
won't be available.

If you're especially concerned about the security of your system, you may
prefer to compile a kernel without the NSA SELinux Development support
option. Doing so ensures that the system always operates in enforcing mode.
However if you do so, you may find it cumbersome to administer the system.
For instance, you may install a new software package and find that the
associated policy file isn't quite accurate or complete, causing the application
to operate imperfectly. Without the ability to enter permissive mode, it may be
difficult to troubleshoot and correct the problems with the policy file.

Permissive mode is used when configuring, testing, and troubleshooting
SELinux and the SELinux security policy. Under permissive mode, SELinux
permits all operations, even those that violate the SELinux security policy.
Nevertheless, SELinux writes log entries that would have been written had the
system been in enforcing mode. Permissive mode enables a system
administrator to observe the effects of experimental SELinux security policies
without affecting the operation of the system. SELinux includes a special
utility, Audit2allow, that can recommend SELinux policy changes based on log
entries; the section of this chapter titled "Monitoring SELinux" explains this
utility and how to use it to revise the SELinux security policy.

Because an SELinux system operating in permissive mode does not prevent operations
that violate its security policy, you generally should not put an SELinux system that
resides in a hostile environment into permissive mode. Before putting the system into
permissive mode, you should relocate it to a protected network, shut down vulnerable
services, restrict remote logins, or otherwise secure the system.

4.2 Controlling SELinux

Controlling SELinux entails three primary operations:

Switching the SELinux mode

Loading a security policy

Labeling files

The following subsections explain how to perform these operations.

The available commands and the associated command options provided by a given
implementation of SELinux may differ a bit from those described in the following
subsections. When you encounter such differences, you should check your system man
pages and other available documentation to understand the operation of your system.

4.2.1 Switching Modes

If your Linux kernel was compiled with the NSA SELinux Development support
option, you can specify the SELinux operating mode that should be entered
when your SELinux system is booted. And, unless the SELinux security policy
specifies otherwise, you can dynamically change the operating mode of a
running SELinux system. Additionally, if your Linux kernel was compiled with
the NSA SELinux boot parameter option, you can entirely disable SELinux via
a boot parameter. The following subsections explain how to do so.

4.2.1.1 Setting the initial operating mode

The initial operating mode of an SELinux system can be set via the boot
parameter enforcing. To boot the system into enforcing mode, assign this boot
parameter the value 1; to boot the system into permissive mode, assign this
boot parameter the value 0.

If you use GRUB to boot your system and want the system to automatically

boot into enforcing mode, you might specify a kernel directive such as the
following in your GRUB configuration file (generally, /boot/grub/grub.conf):

kernel /vmlinuz-2.6.4-1.305 ro root=LABEL=/ enforcing=1

If you use LILO to boot your system and want the system to automatically
enter permissive mode after booting, you might specify an append directive
such as the following in your LILO configuration file (generally, /etc/lilo.conf):

append="enforcing=0"

Whether you use GRUB or LILO, you may find it convenient to configure two
boot configurations: one booting into enforcing mode and another booting into
permissive mode. Doing so makes it easy to interactively choose the SELinux
mode each time the system is booted.

GRUB optionally supports interactive editing of boot configurations. If you use
GRUB, you may find it convenient to specify only an enforcing-mode boot
configuration. When you want to boot the system into permissive mode, you
can interactively edit the kernel directive to specify the value 0 for the enforcing
option.

If you specify multiple boot configurations, and your system resides in a hostile
environment, be sure to configure the boot manager to load the enforcing-mode
configuration by default; otherwise, if someone untrained in SELinux or too much in a
hurry reboots your system, it will enter permissive mode when booted and may be
compromised.

To ameliorate the difficulty of troubleshooting an inaccurate or incomplete TE
file in enforcing mode, you can install two kernels on your system: one
compiled without the NSA SELinux Development support option and one
compiled with the option. To help ensure that the system remains secure
under normal circumstances, specify the configuration without the NSA
SELinux Development support option as the default boot configuration. When
you need to troubleshoot the system, you can reboot the system using the
alternate kernel compiled with the NSA SELinux Development support option.

If you're especially concerned about security, you may feel that including a
kernel capable of permissive mode in your system's boot configuration is too
risky. In that case, you can prepare a boot disk or boot CD containing a
permissive kernel and boot the system from your external media when
troubleshooting is necessary.

You may find it impractical to reboot your system to perform troubleshooting.
Indeed, a popular Linux mantra has it that "rebooting is only for installing new
hardware." In this case, you may find it necessary to maintain a clone of your
production system, so that you can verify that activities such as installation of
a new software package will work correctly and not interfere with system
operation.

4.2.1.2 Dynamically setting the operating mode

Unless your SELinux security policy or the absence of the NSA SELinux
Development support option dictate otherwise, you can set the operating mode
of a running SELinux system dynamically. To ensure system integrity, the
SELinux security policy prohibits nonprivileged users from dynamically setting
the SELinux operating mode. Even the root user cannot do so unless operating
within the sysadm_r role. The section of this chapter titled "Changing Roles"
explains user roles and how to enter the sysadm_r role. If you possess the
necessary privileges, you can dynamically set the SELinux operating mode
either by manipulating a file within the /selinux filesystem or by issuing a
special command.

The /selinux filesystem is a virtual filesystem resembling the familiar /proc or
/sys filesystem. That is, it looks just like a filesystem but doesn't reside on a
hard drive or other physical media. Instead, it's automatically generated by
the kernel. The file /selinux/enforce indicates the current SELinux mode.
Manipulating the file changes the current SELinux mode.

You can determine the current SELinux mode by issuing the command:

cat /selinux/enforce

The value that is displayed indicates the current mode: the value 0 indicates
permissive mode and 1 indicates enforcing mode.

To enter enforcing mode, issue the command:

echo "1" > /selinux/enforce

Similarly, to enter permissive mode, issue the command:

echo "0" > /selinux/enforce

Many users find it inconvenient to directly access or modify the contents of the
/selinux/enforce file. SELinux implementations provide commands that enable
a properly privileged user to determine, or set, the current SELinux mode. In
earlier SELinux releases, the command used to determine the current SELinux
mode was avc_enforcing. Issuing this command printed the value "permissive"
or "enforcing" according to the current SELinux mode. And, generally, the
command avc_toggle was available to toggle the current SELinux mode,
changing from permissive to enforcement or vice versa.

Under the current SELinux release, which breaks with tradition, the command
getenforce reports the current SELinux mode as "permissive" or "enforcing."
The setenforce command changes the current SELinux mode. However, unlike
the avc_toggle command, the setenforce command does not toggle the current
mode. Instead, the setenforce command takes an argument that specifies the
desired SELinux mode: 0 for permissive mode and 1 for enforcing mode. For
instance, to enter permissive mode under Fedora Core 2, you issue the
command:

setenforce 0

4.2.1.3 Disabling SELinux at boot time

If a Linux kernel was compiled with the NSA SELinux boot parameter option,
it's possible to completely disable SELinux at boot time. To do so, specify the
boot parameter and value selinux=0 in the boot configuration, or interactively
specify this parameter-value pair in response to a boot prompt or menu.

By disabling SELinux, you preclude it from prohibiting actions based on its
security policy and from generating log entries. You also avoid the overhead

entailed by SELinux itself, which some estimate consumes roughly seven
percent of CPU resources. In essence, your system operates as though it were
using a non-SELinux kernel.

You may find it convenient to disable SELinux when SELinux is operating
improperly or entirely failing to operate. Booting in disabled mode may enable
you to troubleshoot and repair the problem.

However, when SELinux is disabled, it's not available to write appropriate file
labels for newly created files, including files replaced after editing.
Consequently, your system almost certainly will not operate correctly if you
subsequently boot with SELinux enabled. To avoid this problem, you must
relabel the filesystemsor at least all new filesbefore booting the system with
SELinux enabled. The section of this chapter titled "Labeling Files" explains
how to do so.

4.2.2 Loading the SELinux Security Policy

If you configure your system to boot into enforcing mode, it will automatically
load the SELinux security policy at boot time. However, you may find it
necessary or convenient to load the SELinux security policy at another time.
For instance, you may modify the security policy and desire to replace the
current security policy with the modified policy. This section explains how to
load the security policy and perform several related operations.

4.2.2.1 The SELinux Makefile

As explained in Chapter 5, the /etc/security/selinux/src/policy directory
contains a Makefile and related files that enable a system administrator to
manipulate the security policy. SELinux prevents ordinary users from
manipulating the security policy; only the root user in the sysadm_r role can
manipulate the policy.

If your system does not include the src/policy directory and the Makefile that resides
there, it's likely that you've installed SELinux only partially. For instance, under Fedora Core
2, it's likely that you haven't installed the checkpolicy and policy-sources RPM packages.

You may choose to delete the policy source files from your system. Doing so may
complicate the work of an intruder seeking a way to circumvent the SELinux security policy.

The Makefile supports five operations related to the security policy. In addition,
it supports one operation related to file labeling, which is explained in the
following section. Table 4-1 summarizes the operations supported by the
Makefile, which are known as targets.

Table 4-1. Policy Makefile targets
Make target Compiles the policy from source? Installs the policy? Loads or reloads the policy?

policy
Yes No No

install
Yes Yes No

load
Yes Yes Yes

reload
Yes Yes Yes

relabel
No No No

If you're not familiar with Makefiles and their use, I suggest that you consult Managing
Projects with Make (O'Reilly).

The three steps that can be performed through the Makefile are:

Compiles the policy from source

Checks the syntax of the policy source files and verifies that no policy
constraints are violated.

Installs the policy

Creates the binary SELinux policy.

Loads or reloads the policy

Currently, the load and reload targets work the same way. Each loads the
binary SELinux policy into the running kernel and begins using it to make
security decisions.

To use the Makefile to perform a supported operation, follow this procedure:

1. Be sure your current role is sysadm_r. The section "Routine SELinux
System Use and Administration" of this chapter explains how to do so:

id -Z

root:staff_r:staff_t# newrole -r sysadm_r

Authenticating root.

Password:

id -Z

root:sysadm_r:sysadm_t

If you're not logged in as the root user, issue the su command to become
the root user:

su -

Fedora Core automatically transitions you to the sysadm_r role when you
issue the su command. If you're not using Fedora Core, you must explicitly
transition to the sysadm_r role:

newrole -r sysadm_r

2. Change the current working directory to /etc/security/selinux/src/policy:

cd /etc/security/selinux/src/policy

3. Invoke the desired operation:

make target

where target is the desired operation. For instance, to reload the security
policy, issue the command:

make reload

4. Observe any error messages that appear on the console and take
appropriate action.

Depending on the target you specify, the Makefile invokes one or both of the
following SELinux utilities:

checkpolicy

The SELinux policy compiler

load_policy

A utility that loads the SELinux binary policy into the running kernel

It's generally best to use the Makefile to perform policy-related operations.
But, you may find it useful or necessary to understand how the Makefile does
its work. The following sections explain the main utilities invoked by the
Makefile: checkpolicy and load_policy.

4.2.2.2 The SELinux policy compiler (checkpolicy)

The SELinux policy compiler checkpolicy reads an SELinux policy source file
and creates a binary policy file. In preparation for policy compilation, the
SELinux Makefile provides the compiler with a single policy source file that
includes all the installed TE files and other policy source files. The Makefile also
expands M4 macros contained in those files.

The SELinux policy compiler has the following syntax:

checkpolicy [-b] [-c policyvers] [-d] [-o output_file] \

 [input_file]

The -b option instructs the policy compiler to read a binary policy file
(contained in a file named policy) rather than a source policy file. This flag is
rarely used.

The -c flag specifies the policy version number. If the flag is omitted, the latest
policy version is assumed.

The -d option instructs the policy compiler to enter debug mode after it loads
the policy.

The -o option specifies the name of the binary policy file that the compiler will
write.

The input_file argument specifies the name of the policy source file that the
compiler will process. If the argument is omitted, the compiler reads the
policy.conf file (unless the -b option appears, in which case the compiler reads
the binary policy file named policy).

For more information on the policy compiler and the compilation process, see
the paper "Configuring the SELinux Policy," by Stephen Smalley, available at
http://www.nsa.gov/selinux/info/docs.cfm.

4.2.2.3 The load_policy utility

The load_policy utility reads a binary policy file, the name of which is specified
as a command argument, and loads the policy into the running kernel. The
utility provides no other arguments or options.

http://www.nsa.gov/selinux/info/docs.cfm

4.2.3 Labeling Filesystems and Files

As explained in Chapter 3, SELinux requires that files be labeled with extended
attributes indicating their security context. Available filesystems are typically
labeled when SELinux is installed.

It's not routinely necessary to relabel filesystems and files after installation.
However, it sometimes is necessary to do so. For instance, installation of a
new filesystem may require the filesystem to be labeled. Or booting a system
from a non-SELinux kernel may result in the creation of unlabeled files or the
removal of labels from labeled files. Under such circumstances, you can use
the Makefile in /etc/security/selinux/src/policy to label or relabel all available
filesystems. Alternatively, you can use any of several commands to label or
relabel just the filesystems or files that lack proper labels. This section
explains how to perform these operations.

Some filesystem types do not support the extended attributes used to store file context
labels. The src/policy/genfs_contexts file provides default contexts for files residing in such
filesystems.

Depending on the size of the system's hard drives and the number of files they
store, the relabeling operation may require many minutes, perhaps more than
an hour. When only a few files require relabeling, it's inefficient to relabel by
using the Makefile. In such cases, it's better to perform the relabeling by using
an SELinux utility. The next section explains how to do so.

4.2.3.1 Using the Makefile to label or relabel
filesystems

To relabel all available filesystems by using the src/policy Makefile, follow this
procedure:

1. Be sure your current role is sysadm_r. The section "Routine SELinux
System Use and Administration" of this chapter explains how to do so:

id -Z

root:staff_r:staff_t

newrole -r sysadm_r

Authenticating root.

Password:

id -Z

root:sysadm_r:sysadm_t

1. If you're not logged in as the root user, issue the su command to become

the root user:

su -

1. Fedora Core automatically transitions you to the sysadm_r role when you

issue the su command. If you're not using Fedora Core, you must explicitly
transition to the sysadm_r role:

newrole -r sysadm_r

1. Change the current working directory to /etc/security/selinux/src/policy:

cd /etc/security/selinux/src/policy

1. Invoke the relabel operation:

make relabel

1. Observe any error messages that appear on the console and take

appropriate action.

4.2.3.2 Using commands to label or relabel files
or filesystems

SELinux provides several utilities that report or manipulate file labels. The
utilities differ primarily in whether they operate on files or filesystems and
whether they label by using a fixed, specified context or by using a
specification file. One or another of the utilities is apt to be more convenient in
any particular situation. The available utilities include:

/usr/bin/chcon

Labels one or more files with a specified security context

/sbin/fixfiles

Labels all available filesystems according to the contents of the standard
specification file, src/policy/file_contexts/file_contexts

/sbin/restorecon

Labels one or more files according to the contents of the standard
specification file, src/policy/file_contexts/file_contexts

/usr/sbin/setfiles

Labels one or more files or filesystems according to the contents of a
specification file

The following subsections explain each utility in more detail.

4.2.3.2.1 The chcon utility

The chcon utility labels one or more filesystems with a security context. The

command has two forms. The first form is used to label a file with a specified
security context. The second form is used to label a file with the security
context associated with a specified reference file.

The first form has this syntax:

chcon [options] context path...

For the moment, please ignore the command options. The remaining
arguments represent a security context and one or more paths to be labeled or
relabeled. For example, to set the security context of the files /etc/hosts and
/etc/hosts.allow to system_u:object_r:etc_t, issue the command:

chcon system_u:object_r:etc_t /etc/hosts /etc/hosts.allow

The second form has this syntax:

chcon [options] --reference=rfile path...

The security context associated with the reference file, rfile, is used to label or
relabel the specified paths. For example, to set the security context of the files
/etc/hosts.allow and /etc/hosts.deny to the current security context of the file
/etc/hosts, issue the command:

chcon --reference=/etc/hosts /etc/hosts.allow /etc/hosts.deny

In addition, the chcon utility supports several options:

-c, changes

Print a message for each change made.

-h, no-dereference

Operate on symbolic links instead of files they reference.

-f, silent, quiet

Suppress noncritical error messages.

-R, recursive

Change files and directories recursively.

-r, role ROLE

Set role ROLE in the target security context.

-t, type TYPE

Set type TYPE in the target security context.

-u, user USER

Set user USER in the target security context.

-v, verbose

Print a message for each file processed.

help

Print a help message and then exit.

version

Print version information and then exit.

4.2.3.2.2 The fixfiles utility

The fixfiles utility labels all available filesystems according to the contents of
the standard specification file, src/policy/file_contexts/file_contexts. The form
of the command is:

fixfiles [check | restore | relabel]

That is, exactly one of the following arguments must appear:

check

Show any incorrect file labels, but do not change any file labels.

restore

Change the labels of any incorrectly labeled files.

relabel

Relabel all available filesystems.

For example, to check the file labels on all mounted filesystems, issue the
command:

fixfiles check

4.2.3.2.3 The restorecon utility

The restorecon utility labels one or more files according to the contents of the
standard specification file, src/policy/file_contexts/file_contexts. The command
has the following form:

restorecon [-n] [-v] path...

One or more path names must be specified as arguments. For example, to
label the file /etc/hosts according to the standard specification file, issue the
command:

restorecon /etc/hosts

The command options have the following meanings:

-n

Do not change any file labels; merely print the changes that would be
made.

-v

Show changes to file labels.

4.2.3.2.4 The setfiles utility

Whereas the fixfiles utility labels all available filesystems, the setfiles utility
labels one or more specified filesystems. The command has the following form:

setfiles [options] spec_file path...

The spec_file argument specifies the file containing the specifications used to
determine file labels. It has the same form as the FC files, which will be
described in Chapter 5. The path argument specifies the files to be labeled. For

example, to label the /etc/hosts file using the specifications contained in the
file src/policy/file_contexts/file_contexts, issue the command:

setfiles src/policy/file_contexts/file_contexts /etc/hosts

The available command options include:

-d

Show the specification that matched each file.

-n

Don't change any file labels.

-q

Suppress noncritical messages.

-s

Take a list of files from standard input rather than use a pathname on the
command line.

-v

Show changes in file labels if type or role is changed.

-vv

Show changes in file labels if type, role, or user is changed.

-W

Print warnings about specification entries that have no matching files.

4.2.4 Tuning Fedora Core 2 SELinux

Because of the SELinux policy language and Flask architecture, SELinux is
highly flexible. A system administrator can tailor or entirely replace the
standard SELinux security policy with a customized policy that better suits the
local environment. However, some implementations of SELinux provide very
simple means for tailoring policy operation. In particular, the Fedora Core 2
implementation of SELinux provides two convenient ways of tailoring SELinux
operation:

Macros

Policy Booleans

The following subsections describe these means. If you're using an SELinux
implementation other than that associated with Fedora Core 2, you may find
that your implementation provides similar features, though perhaps in a
different way. And even if your SELinux implementation entirely lacks features
like those described in the upcoming sections, the sections may suggest useful
ways in which to modify your SELinux security policy. So you're likely to find it
worthwhile to read the sections, even though they deal specifically with the
Fedora Core 2 SELinux implementation.

4.2.4.1 Tuning via macros

The file src/policy/tunable.te defines two to three dozen M4 macros that you
can use to tailor the operation of SELinux. Doing so is simple: you merely
comment or uncomment a macro definition.

M4 does not use the hash mark (#) to denote comments, as many other Linux
programs do. Instead, M4 prefixes comments with the characters dnl ("do not
list"), followed by a space. If you've configured Sendmail, which uses M4,
you're familiar with M4's rather odd convention.

Table 4-2 summarizes the macros defined in tunable.te.

Table 4-2. Policy macros

Policy macro
Active

by
default?

Description

allow_user_direct_mouse
Yes Allow regular users direct access to the mouse device file (otherwise allow only

the X server to do so).

allow_user_dmesg
Yes Allow users to run the dmesg command

allow_user_tcp_server
Yes

Allow users to run TCP servers (bind to ports and accept connection from the
same domain and outside users). Disabling this Boolean forces FTP passive
mode and may affect other protocols (including IRC if single_userdomain is
defined).

allow_xserver_home_fonts
Yes Allow X server to check for fonts in ~/.gnome or ~/.kde.

allow_ypbind
Yes Allow ypbind to run with NIS.

direct_sysadm_daemon
Yes Allow sysadm_t to start daemons directly.

ftp_home_dir
No Allow FTP to read/write files in user home directories.

ftpd_is_daemon
Yes Allow FTP to run from inetd instead of as a stand-alone daemon.

hide_broken_symptoms
No Adds dontaudit rules for broken polices that are not security risks.

nfs_export_all_ro
No Allow reading on any filesystem.

nfs_export_all_rw
Yes Allow read/write/create on any filesystem.

nfs_home_dirs
Yes Allow NFS home directories.

 nscd_all_connect
Yes Allow all domains to access NSCD.

read_default_t
Yes Allow ordinary users to read any file having type default_t.

readhome
Yes Allow Mozilla to read files in the user home directory.

run_ssh_inetd
No Allow SSH to run from inetd instead of as a daemon.

secure_levels
No Allow only administrator to log in at the console and forbid direct access to disk

devices.

single_userdomain
No Make processes other than newrole and su run by a user domain stay in the

same user domain.

ssh_sysadm_login
Yes Allow SSH logins to the sysadm_r:sysadm_t security context; otherwise, remote

SSH users cannot enter this context.

staff_read_sysadm_file
No Allow staff_r users to search the system administrator's home directory

(generally /root) and read its files.

unlimitedServices
Yes Allow processes under initrc and xinetd to run with all privileges.

unlimitedUsers
No Allow users to have full access.

unrestricted_admin
Yes Allow sysadm_t to do almost everything.

use_games
Yes Allow users to run games.

user_can_mount
Yes Allow users to execute mount command.

user_canbe_sysadm
Yes Allow normal users to enter sysadm_r role.

user_net_control
Yes Allow users to control network interfaces (also needs USERCTL=true).

user_rw_noexattrfile
Yes Allow users to read/write noextattrfile (FAT, CDROM, FLOPPY).

writehome
Yes Allow Mozilla to write files in the user home directory.

xdm_sysadm_login
Yes Allow xdm logins as sysadm_r:sysadm_t.

The description of tunable.te macros given in Table 4-2 is based on the Test 2 release of
Fedora Core 2. It's possibleeven likelythat the contents of the file will differ in subsequent
releases.

To tailor the security policy using tunable.te, follow this procedure:

1. Make the current working directory /etc/security/selinux/src/policy.

2. Using a text editor, comment or uncomment macros in tunable.te, by
adding or deleting the dnl token.

3. Compile the policy sources and load a revised binary policy by issuing the
command make reload.

4.2.4.2 Tuning via policy Booleans

Fedora Core 2 introduces Policy Booleans (generally referred to as simply
Booleans), a new SELinux feature that enables modification of a running
SELinux security policy. Booleans are true-false values that can be tested by
security policy rules. The unique aspect of Booleans is that special commands
can query and change their values at any time. The commands, of course, are
available only to system administrators.

At the time of writing, the Fedora Core 2 security policy defines only one
Boolean: user_ping. The value of the user_ping Boolean specifies whether

ordinary users are permitted to use the ping command. Admittedly, this
Boolean enables a rather trivial policy tweak. However, it's likely that
subsequent releases of Fedora Core 2 and releases of other SELinux
implementations will include additional Booleans.

Two commands are used in working with Booleans:

change_bool

Changes the value of a Boolean.

show_bools

Prints all available Booleans and their values.

The change_bool command has the following form:

change_bool boolean [0|1]

where boolean is the name of the Boolean whose value is being set. The value
0 stands for false and 1 stands for true. For example, to set the value of the
user_ping Boolean to false, issue the command:

change_bool user_ping 0

The show_bools command, which reports the value of available Booleans,
requires no options or arguments. Typical output of show_bools follows:

show_bools

user_ping --> active: 0 pending: 0

Notice that the output of the show_bools command distinguishes two values
for each listed Boolean: the active value and the pending value. When setting
Boolean values via change_bool, this distinction is not important. Internally,

SELinux allows revised Boolean values to be designated in a way that enables
the system administrator to cause the changes to several different values to
take effect simultaneously. However, the change_bool command immediately
commits changes to Booleans. Therefore, when using the change_bool
command to set Boolean values, the active and pending values should always
be the same.

4.2.4.2.1 Setting Booleans via the /selinux
filesystem

Rather than use the change_bool command to set the value of a Boolean, you
can manipulate nodes within the /selinux/boolean directory of the /selinux
filesystem. The names of those nodes are identical to the names of the
corresponding Booleans. For example, to set the value of the user_ping Boolean
to false, issue the command:

echo 0 > /selinux/booleans/user_ping

Unlike changes made via the change_bool command, changes made via the
/selinux filesystem do not immediately take effect. To commit the changes,
issue the command:

echo 1 > /selinux/commit_pending_bools

All pending changes take effect immediately upon issuance of this command.

The sestatus Command

The Gentoo and Fedora Core 2 implementations of SELinux include a useful new command:
sestatus. As the name of the sestatus command suggests, the command lets you view SELinux
status information. Here's a typical example:

sestatus

SELinux status: enabled

SELinuxfs mount: /selinux

Current mode: enforcing

Policy version: 17

Policy booleans:

user_ping inactive

As you can see, the command reports the SELinux status and mode, the mount point of the
selinuxfs filesystem, and the policy version. The command also reports the value of any policy
Booleans. Policy Booleans are an SELinux feature introduced in Fedora Core 2, and are described in
the "Tuning SELinux" section of this chapter.

The sestatus command can be issued with a -v option, which instructs the command to issue more
verbose output that includes information concerning process and file contexts. An example follows:

sestatus -v

SELinux status: enabled

SELinuxfs mount: /selinux

Current mode: enforcing

Policy version: 17

Policy booleans:

user_ping inactive

Process contexts:

Current context: root:sysadm_r:sysadm_t

Init context: system_u:system_r:init_t

/sbin/mingetty system_u:system_r:getty_t

/usr/sbin/sshd root:system_r:sshd_t

File contexts:

Controlling term: root:object_r:sysadm_devpts_t

/etc/passwd system_u:object_r:etc_t

/etc/shadow system_u:object_r:shadow_t

/bin/bash system_u:object_r:shell_exec_t

/bin/login system_u:object_r:login_exec_t

/bin/sh system_u:object_r:bin_t -> system_u:object_r:shell_exec_t

/sbin/agetty system_u:object_r:getty_exec_t

/sbin/init system_u:object_r:init_exec_t

/sbin/mingetty system_u:object_r:getty_exec_t

/usr/sbin/sshd system_u:object_r:sshd_exec_t

/lib/libc.so.6 system_u:object_r:lib_t -> system_u:object_r:shlib_t

/lib/ld-linux.so.2

system_u:object_r:lib_t -> system_u:object_r:ld_so_t

4.3 Routine SELinux System Use and Administration

SELinux is largely transparent to ordinary system users and presents system
administrators with few complications. This section describes the handful of
issues that users and administrators need to be aware of when using and
administering an SELinux system. The issues fall into the following broad
categories:

Entering a role

Viewing security contexts

Adding users and groups

Starting and controlling daemons

Tuning SELinux

4.3.1 Entering a Role

Recall that, as explained in Chapter 2, SELinux users have one or more
associated roles and, at any time, are bound to exactly one of these. Users are
initially bound to a role at login time. Thereafter, a user can issue a special
command to replace this binding with a binding to any role for which the user
is authorized. System administrators may use this command to transition back
and forth between the staff_r and sysadm_r roles. Otherwise, role transitions
are relatively rare.

The standard SELinux security policy defines four roles:

staff_r

Used for users permitted to enter the sysadm_r role

sysadm_r

Used for the system administrator

system_r

Used for system processes and objects

user_r

Used for ordinary users

The flexibility of SELinux makes it possible for SELinux administrators to define additional
roles. However, few administrators find any need to do so. The four canonical roles are the
only roles found on most SELinux systems.

When a user logs into an SELinux system, the system will either:

Automatically assign a default role.

Present a convenient menu that enables the user to choose from the roles
the user is authorized to enter.

If the user is authorized to enter only one role, no menu is presented. Instead,
the user is automatically placed in the role. Since the su - command initiates a
login shell, the menu may also appear when that command is issued. Fedora
Core works this way, but other SELinux implementations may not.

Here's a typical example of the menu:

$ su -

Password:

Your default context is root:sysadm_r:sysadm_t.

Do you want to choose a different one? [n]y

[1] root:staff_r:staff_t

Enter number of choice: 1

When the menu appears, it displays the default context and asks the user
whether another context is preferred. If the user responds affirmatively, the
menu lists the contexts for which the user is authorized, associating a number
with each context. By typing the number associated with a listed context, the
user can enter that context.

4.3.1.1 Changing roles

After login, a user may wish to enter a role other than the one assigned at
login. For instance, a user who is authorized to enter the sysadm_r role may
wish to do so in order to issue one or more commands that are restricted to
system administrators.

To enter a new role, a user issues the newrole command. The simplest and
most common form of the newrole command has this syntax:

newrole -r role

where role identifies the role to be entered. If the user is not authorized to
enter the role, the command fails. Otherwise, the command creates a new
shell in a context labeled with the user's identity, the new role, and a default
type derived from the new role. However, before the shell is instantiated, the
user is prompted to confirm her identity by entering her Linux password.

Please bear in mind that only users who are associated with the staff_r role can transition to
the sysadm_r role by issuing the newrole command. Your SELinux user configuration
determines whether a user is associated with the staff_r or user_r role. Also, if you're using
Fedora Core, recall that its su command has been modified to automatically transition to
the sysadm_r role when you become the root user. Other implementations of SELinux do
not currently share this characteristic.

Here's a typical usage of the newrole command. Suppose you are a system
administrator currently logged in to the staff_r:staff_t security context rather
than the sysadm_r:sysadm_r security context. You need to add a new user, a
task that requires you to enter the sysadm_r:sysadm_t security context. Here's
how you might do so:

id -Z

root:staff_r:staff_t

newrole -r sysadm_r

Authenticating root.

Password:

id -Z

root:sysadm_r:sysadm_t

The id -Z command, explained in the following section, reports the user's
security context. You don't need to issue the id command when you change
roles, but doing so makes it possible to verify that you have indeed left your
original role and entered the desired one. As you can see in the example, the
newrole command changed the role from staff_r to sysadm_r.

The full form of the newrole command is:

newrole [[-r|--role] ROLE] [[-t|--type] TYPE] [-- [ARGS]...]

The -t option, which can also be specified as type, enables a type to be
explicitly specified rather than inferred from the role. The option also enables
transitioning to a new type without changing role, though this is seldom done.
The ARGS arguments let the user specify arguments to be passed to the new
shell.

4.3.2 Viewing Security Contexts

SELinux provides modified versions of several familiar commands, extending
them with the capability of reporting security contexts. The commands include:

id

View the user context.

ls

View a file context.

ps

View a process context.

The following subsections explain how to use the modified commands.

4.3.2.1 Viewing the user security context

Under Linux, the id command reports real and effective user IDs and group
IDs. Under SELinux, the id command has been modified to also report the
security context of the current user:

id

uid=0(root) gid=0(root)
groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel)

context=root:sysadm_r:sysadm_t

The command has also been modified to include a special -Z option that causes
the command's output to include the security context of the current user:

id -Z

root:sysadm_r:sysadm_t

Although the id command continues to support an argument specifying the
name of the user to be reported, the security context is printed only when this
argument is omitted. The command is capable of reporting the security context
of only the current user. For instance, suppose you issue the following
command:

id bill

uid=1001(bill) gid=100(users) groups=100(users),10(wheel)

The command doesn't report the security context associated with the user bill.

4.3.2.2 Viewing a file security context

Under Linux, the ls command lists directory contents. Under SELinux, the ls
command has been modified to also report the security context of directory
contents. This behavior is triggered by including one of the following options:

context

Prints a partial file context designed to generally fit on a single line.

lcontext

Prints the full file context.

scontext

Prints only the file context.

-Z

Same result as context.

Sample output of the ls command follows:

ls -l /etc/hosts

-rw-r--r-- 2 root root 191 Apr 18 20:09 /etc/hosts

ls --context /etc/hosts

-rw-r--r--+ root root system_u:object_r:etc_t /etc/hosts

ls --lcontext /etc/hosts

-rw-r--r-- 2 system_u:object_r:etc_t root root 191 Apr 18 20:09 /etc/hosts

ls --scontext /etc/hosts

system_u:object_r:etc_t /etc/hosts

ls -Z /etc/hosts

-rw-r--r--+ root root system_u:object_r:etc_t /etc/hosts

4.3.2.3 Viewing a process security context

Under Linux, the ps command gives a snapshot of the current process or a
specified process or processes. Under SELinux, the ps command has been
modified to also report the security context of processes. This behavior is
specified by use of the -Z option or context option:

ps

 PID TTY TIME CMD

 8433 pts/1 00:00:00 su

 8436 pts/1 00:00:00 bash

 8800 pts/1 00:00:00 ps

ps -Z

 PID CONTEXT COMMAND

 8433 bill:sysadm_r:sysadm_su_t su -

 8436 root:sysadm_r:sysadm_t -bash

 8801 root:sysadm_r:sysadm_t ps -Z

ps --context

 PID CONTEXT COMMAND

 8433 bill:sysadm_r:sysadm_su_t su -

 8436 root:sysadm_r:sysadm_t -bash

 8803 root:sysadm_r:sysadm_t ps --context

As you can see, either option has the same result.

You can use the modified ps command to snapshot processes other than the
current process, and can use any of the options or arguments supported by the
standard Linux ps command. For instance:

ps -Z 1

 PID CONTEXT COMMAND

 1 system_u:system_r:init_t init [2]

4.3.3 Adding Users

Under SELinux, users' home directories are labeled with the special security
context user_home_dir_t . When you create a new user account by using the
useradd command, SELinux automatically labels the user's home directory
with the proper security context. However, before creating a new user
account, you should first enter the sysadm_r role so that you have the
permissions necessary to set the security context.

Here's an example showing how a user account is added, and the security
context assigned to the new user's home directory:

id -Z

root:staff_r:staff_t

newrole -r sysadm_r

Authenticating root.

Password:

id -Z

root:sysadm_r:sysadm_t

useradd -c "test user" -m -d /home/testuser -g users -s /bin/bash testuser

finger testuser

Login: testuser Name: test user

Directory: /home/testuser Shell: /bin/bash

Never logged in.

No mail.

No Plan.

ls -ld -Z /home/testuser/

drwx------+ testuser users root:object_r:user_home_dir_t

 /home/testuser/

4.3.3.1 Associating a user with a nondefault role

By default, users are associated with the SELinux role user_r, which is
appropriate for users who are not authorized to enter the sysadm_r role. If you
wish to authorize the user to enter the sysadm_r role, you must:

1. Edit the src/policy/users file.

2. Recompile the security policy.

3. Load the generated binary policy file into the kernel.

You can edit the src/policy/users file with your preferred text editor, such as vi.
Add a line having the following form to the file:

user username roles { staff_r sysadm_r };

where username is the name of the user account that you want to authorize to
enter the sysadm_r role.

To recompile and load the security policy, make /etc/security/selinux/src/policy
the current working directory and issue the following command:

make reload

4.3.3.2 How default roles are assigned

As explained in Chapter 5, the src/policy/appconfig/default_contexts file
specifies default roles for user logins, SSH sessions, and cron jobs. The file is a
simple text file consisting of two columns. The first column specifies a partial
context (the role and domain) for the system process (login, sshd, or crond). For
instance, the fourth line, which refers to the sshd_t domain, pertains to the
sshd process. The second column specifies one or more security contexts, each

of the form user:role:type. A typical default_contexts file follows:

system_r:sulogin_t sysadm_r:sysadm_t

system_r:local_login_t staff_r:staff_t user_r:user_t sysadm_r:sysadm_t

system_r:remote_login_t user_r:user_t staff_r:staff_t

system_r:sshd_t user_r:user_t staff_r:staff_t sysadm_r:sysadm_t

system_r:crond_t user_r:user_crond_t staff_r:staff_crond_t

sysadm_r:sysadm_crond_t system_r:system_crond_t mailman_r:user_crond_t

system_r:xdm_t staff_r:staff_t user_r:user_t sysadm_r:sysadm_t

staff_r:staff_su_t staff_r:staff_t user_r:user_t sysadm_r:sysadm_t

sysadm_r:sysadm_su_t staff_r:staff_t user_r:user_t sysadm_r:sysadm_t

user_r:user_su_t staff_r:staff_t user_r:user_t sysadm_r:sysadm_t

sysadm_r:sudo_t sysadm_r:sysadm_t

staff_r:sudo_t sysadm_r:sysadm_t staff_r:staff_t

user_r:sudo_t sysadm_r:sysadm_t user_r:user_t

When SELinux must determine the default role for a login, session, or job, it
consults the default_contexts file and selects the first line matching the partial
context of the system process. SELinux then assigns the first security context
that the user is permitted to enter; or, in the case of an interactive shell,
SELinux may present a menu prompting the user to choose from among the
available contexts. For instance, during a local login, SELinux consults the
line:

system_r:local_login_t staff_r:staff_t user_r:user_t sysadm_r:sysadm_t

This line tells SELinux to present a menu enabling the user to select from
among the following security contexts:

staff_r:staff_t

user_r:user_t

sysadm_r:sysadm_t

However, SELinux won't present a given menu item unless the user is
authorized to enter the related security context. An ordinary user can enter
only the user_r:user_t context and thus no menu is presented.

If, as an ordinary user, you find that the default roles provided by the default_contexts file
fail to meet your needs, you can create your own default_contexts file, ~/default_contexts.
However, the file merely specifies your preferences; it does not permit you to enter
security contexts other than those authorized by the system administrator.

4.3.3.3 Setting user passwords

When setting user passwords, it's generally convenient to use the standard
Linux passwd command. Under SELinux, this command has been modified to
preserve the security contexts associated with the /etc/shadow file.

If you use vipw, vi, or some other means to modify /etc/passwd, /etc/group, or
/etc/shadow, you'll likely remove the security context labeling the file, which
will make the file inaccessible. If you discover that you've disrupted the file
label, you can repair the damage by using the restorecon command, described
earlier in this chapter. For instance, to repair the file label associated with the
/etc/shadow file, issue the command:

restorecon /etc/shadow

If the restorecon command is not available in your SELinux implementation, you can use
the setfiles command or one of the other file labeling commands explained earlier in this
chapter.

4.3.4 Starting and Controlling Daemons

The init process generally starts several daemons when the system is booted or
the current runlevel is changed. To do so, init uses init scripts that reside in the
/etc/init.d directory. The init process ensures that such scripts are started in a
proper security context by referring to the src/policy/appconfig/initrc_context
file.

When the system administrator manually starts an init script, the script must
similarly be started in a proper security context. Establishing a proper security
context is simplified by the run_init command, which runs an init script or
program in the proper context.

The run_init command has this form:

run_init script [[arg]...]

where script is a path associated with the init script to be started and arg (which
can be multiple arguments) optionally provides the init script with run
arguments. For example, to start the NTP daemon via its init script,
/etc/init.d/ntpd, issue the command:

run_init /etc/init.d/ntpd start

Daemons started without using the run_init command are likely to be run in
an incorrect security context and therefore fail.

By default, Fedora Core 2 allows a role transition from sysadm_r to system_r, the role used
by init. Therefore, unless you've specially configured Fedora Core 2 to disable this
transition, it's not necessary to invoke the run_init command explicitly.

4.3.4.1 Starting non-init daemons and programs

Just as an init script may fail when started in an inappropriate security context,
other programs may require that they be started in a specific context. To
facilitate starting such programs, SELinux provides the run_con command,
which lets you specify the security context in which a program runs.

The run_con command has the following form:

runcon [-t TYPE] [-u USER] [-r ROLE] COMMAND [ARGS...]

where TYPE, USER, and ROLE specify the security context under which the
program should run, and COMMAND and ARGS specify the program to be run
and its arguments.

For example, suppose the cron daemon has died and you want to restart it.
The easiest way to do so is by using the run_init command or, on Fedora Core,
the service command. But, suppose you tried to start the daemon like this:

/usr/sbin/crond

The result will not be felicitous because the cron daemon will execute in the
security context root:system_r:system_t, whereas it should execute in the
security context system_u:system_r:crond_t. As a result, if you check your log
files, you'll find that the cron daemon is unable to properly start cron jobs.

The run_con command enables you to start cron in the proper context. To do
so, simply issue the command:

runcon -u system_u -r system_r -t crond_t /usr/sbin/crond

An alternative form of the command is convenient when all the components of
the security context are specified, as in the example:

runcon CONTEXT COMMAND [args...]

The CONTEXT argument consists of a security context that includes a user
identity, role, and type, specified in that order for example,
system_u:system_r:crond_t.

To use this form of the run_con command to run the command run_con in the
security context system_u:system_r:crond_t, issue the command:

runcon system_u:system_r:crond_t /usr/sbin/crond

4.4 Monitoring SELinux

SELinux writes log entries that enable system administrators to monitor its
operation. The following subsections explain the format of SELinux log
messages, some logging subtleties, and how to use the Audit2allow utility to
automatically generate rules to allow operations logged as denied.

4.4.1 SELinux Log Message Format

When a program attempts an operation that is checked by the SELinux
security engine, SELinux may make a log entry. As more fully explained in
Chapter 2, operations that are denied generally cause a log entry to be made,
whereas permitted operations generally do not. However, SELinux policy rules
can override this principle.

Apart from the timestamp and other information that accompanies every
system log message, SELinux log messages have the following general format:

avc: result { operation } for pid=pid exe=exe path=opath dev=devno:ptno ino=node
scontext=source tcontext=target tclass=class

A given SELinux log message may omit one or more of the attribute-value pairs given in
the general format. Log messages include only the applicable attribute-value pairs.

The variable fields within the log message have the following meanings:

result

The value granted or denied, indicating whether SELinux permitted or
prohibited the operation.

operation

The operation that was attempted, such as read or write. SELinux defines

The operation that was attempted, such as read or write. SELinux defines
about 150 operations. Appendix B summarizes the SELinux operations that
can appear in log messages.

pid

The process ID of the process that attempted the operation.

exe

The absolute path of the text file (executable) associated with the process
that attempted the operation.

path

The absolute path of the object on which the operation was attempted.

devno

The block device number associated with the object on which the operation
was attempted.

ptno

The partition number associated with the object on which the operation
was attempted.

node

The inode number of the object on which the operation was attempted.

source

The security context of the process that attempted the operation.

The security context of the process that attempted the operation.

target

The security context of the target object.

class

The type of the target object, such as file. Appendix A summarizes the
SELinux object classes.

Let's parse a typical log message, which follows:

avc: denied { write } for pid=10400 exe=/usr/bin/nmap lport=255

scontext=root:staff_r:nmap_t tcontext=root:staff_r:nmap_t tclass=rawip_socket

This message indicates that a write operation was denied. The process that
attempted the operation, /usr/bin/nmap, had process ID 10400. The security
context of the process was root:staff_r:nmap_t and the security context of the
object was root:staff_r:nmap_t. The target object class was rawip_socket. In
addition, the message indicates the logical (source) port which was requested,
255. So, the messages tells us that the security engine has prevented Nmap
from writing to a socket.

Let's now parse a log message that presents a common complication:

avc: denied { read } for pid=12999 exe=/usr/bin/slocate name=slocate.db dev=03:02

ino=391745 scontext=bill:staff_r:staff_t tcontext=system_u:object_r:var_lib_t tclass=file

This message indicates that a read operation was denied. The process that
attempted the operation, /usr/bin/slocate, had process ID 12999.

When the object path appears in the log message, we immediately know the
identity of the object. However, SELinux often does not include the object
path. In such cases, we must determine the object's identity from the

information that is available. In this example, we have the device, partition,
and inode numbers. We'll identify the object by using these.

The log entry shows that the process attempted to access partition 2 of block
device 3. If Linux kernel sources are installed, we can determine the identity
of this device by searching the file /usr/src/linux/Documentation/devices.txt,
which indicates that block device 3 is associated with /dev/hda. We can verify
this result by issuing the ls command:

ls -l /dev/hda

brw-rw---- 1 root disk 3, 0 Oct 4 2003 /dev/hda

If the devices.txt file is not available, we can search the /dev directory for a
device having the indicated device number.

To determine the partition related to the log message, we can use the df
command:

df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/hda1 102454 13311 83853 14% /boot

/dev/hda2 3854576 2930172 728600 81% /

/dev/hda4 73854600 65026572 5076380 93% /space

none 63272 0 63272 0% /dev/shm

From the command output, we learn that partition 2, /dev/hda2, is associated
with the root filesystem, /.

Skipping several intervening attribute-value pairs to which we'll return in a
moment, we learn from the tclass attribute that the object in question has type
file. To determine the path associated with the file object, we can use the -inum
option of the find command, which searches for a node having the specified
inode number. The following command searches the filesystem mounted at /
for a node having inode number 391745:

find / -inum 391745

/var/lib/slocate/slocate.db

The file object is identified as the file /var/lib/slocate/slocate.db, which is not
surprising in view of /usr/bin/slocate being the process that attempted the read
operation.

Inodes can be deleted and reused. So, if enough system activity has occurred between
generation of a log entry and an attempt to identify the referenced object by its inode
number, the attempt is likely to fail or turn up an incorrect path.

Returning now to the attribute-value pairs we skipped, scontext and tcontext, we
can infer the reason that led to denial of the operation. As indicated by the
value of the scontext attribute, the slocate process was running in the security
context bill:staff_r:staff_t. Apparently, this context is not permitted to perform
the read operation on file objects having the type indicated by the value of the
tcontext attribute, system_u:object_r:var_lib_t. The most likely cause is that the
slocate process should have been run in some other context, such as sysadm_t.

4.4.2 SELinux Logging Subtleties

To avoid excessive overhead, SELinux attempts to curtail unnecessary logging.
To do so, it uses separate strategies for permissive and enforcing mode.

In permissive mode, SELinux attempts to log each denial only once, avoiding a
flood of identical and therefore redundant messages. To do so, SELinux
maintains a cache of log entries. Before making a log entry, SELinux checks
whether the entry resides in the cache. If so, SELinux suppresses the log
entry.

Under some circumstances, this caching behavior may become confusing to a
system administrator, who wonders why a denied operation is not
accompanied by a log entry. This is particularly likely if a long interval passes
between the original denial that resulted in a cache entry and subsequent
denials. If you suspect that you're confronted with such a situation, you can
prompt SELinux to clear its cache of log entries. You can do so either of two

ways:

Change to the policy source directory and reload the security policy:

cd /etc/security/selinux/src/policy

make reload

Toggle between modes. For instance, in Fedora Core, you can issue the
commands:

setenforce 1

setenforce 0

In enforcing mode (1), SELinux limits the rate at which log entries are made.
This is necessary because some programs don't properly check error return
codes. So, when SELinux prohibits an operation, these programs could cause
large numbers of repeated log entries if SELinux didn't have limits on logging.

When rate limiting is occurring, log entries are lost. Obviously, this can
complicate diagnosis and troubleshooting. Unfortunately, SELinux does not
provide system administrators with a means of controlling its rate-limiting
functionality. Nor does SELinux provide a log entry informing a system
administrator that a rate limit has been initiated or terminated. Consequently,
system administrators should bear in mind the possibility that SELinux log
entries may be missing during intervals of high activity. Eventually, SELinux
developers hope to stop depending on the system logging facility by
implementing a separate logging facility designed expressly for SELinux.

Occasionally, you may find that your console is being flooded by log messages from
SELinux or another facility. When this occurs, you can regain control of the console by
turning off the logging of kernel messages to the console. To do so, issue the command:

dmesg -n 1

4.4.3 The Audit2allow Utility

SELinux includes a special utility, Audit2allow, that scans the system log,
looking for entries pertaining to denied operations and generating a file of
allow rules that if added to the security policy would prevent those operations
from being denied. Using the utility is a nontrivial matter, because the rules it
generates are not always optimal. To ensure proper security, it's often
necessary to define new domains or make other structural changes rather than
blindly add the generated rules to the security policy. Chapter 9 gives tips and
procedures for using the Audit2allow utility.

4.5 Troubleshooting SELinux

SELinux is generally stable and free of trouble. But sometimes, particularly
during the initial period when a system administrator is unfamiliar with
SELinux, problems crop up. The following five subsections provide
troubleshooting tips that address the most common problems encountered.
These problems are classified into the following five categories:

Boot problems

Local login problems

Program execution problems

Daemon problems

X problems

4.5.1 Boot Problems

It's relatively common to misconfigure or otherwise break an SELinux system
in a way that prevents it from booting. If you find that you've done so, try to
boot into permissive mode (enforcing=0) or with SELinux disabled (selinux=0). If
your kernel does not support these options, boot the system using a non-
SELinux kernel, such as one residing on rescue media. Generally, you can
then troubleshoot and repair the problem.

If you boot with SELinux disabled or by using a non-SELinux kernel, the system will likely
create unlabeled files or disturb existing file labels during your session. To repair the
damage, you should reboot into permissive mode, relabel the filesystems, reboot, and
relabel the filesystems once again.

4.5.2 Local Login Problems

Another relatively common problem is inability to log into the system. A likely

cause is that the user's home directory is not labeled or is labeled with an
incorrect security context. You can fix this problem by using the fixfiles utility:

fixfiles restore

Alternatively, if you're confident that only one user's home directory is badly
labeled, you can fix the problem by using the setfiles utility:

cd /etc/security/selinux/src/policy

setfiles file_contexts/file_contexts /home/bill

4.5.3 Program Execution Problems

If an application program fails to work properly, the program is likely
attempting to violate the security policy. To troubleshoot the problem, inspect
the system log for SELinux denial messages related to the application. If the
system is running in enforcing mode but temporarily running the system in
permissive mode would not pose an unacceptable risk, you may find it
convenient to switch modes. Doing so should enable the program to execute
properly and should provide log messages that point out the problem.

To avoid the problem, you may simply need to start the program in an
appropriate security context. Alternatively, you may need to modify the
security policy. Chapter 5-Chapter 9 provide you with the information and
techniques for doing so.

4.5.4 Daemon Problems

Problems with daemons, particularly crond and SSHd are also relatively
common. cron jobs often fail to start because the associated scripts are not
properly labeled. You can relabel the troublesome scripts by issuing the fixfiles
command:

fixfiles restore

or by issuing the setfiles command:

cd /etc/security/selinux/src/policy

setfiles file_contexts/file_contexts cron_files

where cron_files is the path of the script or scripts to be relabeled.

If you can't log in via SSH, consider the following possibilities:

The user account may not be properly configured.

Verify that you can log into the user account from the console.

The user account is not associated with staff_r or user_r.

If the user account is associated only with the sysadm_r role, the user won't
be able to log in via SSH.

The SSH daemon is not running in the proper context.

SSH should run in the security context root:system_r:sshd_t. Use ps -Z to
determine the context actually used. If the context is not correct, restart
the process using the correct context. For instance, issue the command:

run_init /etc/init.d/sshd restart

More generally, programs started by init scripts may fail to operate correctly.
This problem is generally due to improper labeling of one or more init scripts.
You can relabel the scripts by issuing the fixfiles command:

fixfiles restore

or by issuing the setfiles command:

cd /etc/security/selinux/src/policy

setfiles file_contexts/file_contexts /etc/init.d/*

4.5.5 X Problems

Most SELinux users run servers, not desktops. So, the community has less
collective experience running the X server under SELinux than other
serverstoo little, it seems, to ensure trouble-free operation. So, you may find
it prudent to avoid using X and SELinux together. However, SELinux is
achieving a new level of popularity with the release of Fedora Core 2, and
many Fedora Core 2 users operate desktops. Moreover, an experimental
branch of Xorg improves integration between X and SELinux by implementing
policy restrictions on X objects such as windows, frames, and so on. We can
reasonably expect that the quality of the X-SELinux experience will soon
improve. In the meantime, I can offer some tips based on my experience and
that of others.

If you're running X as the root user, you may find that the system hangs.
However, you shouldn't run X as the root user whether your system runs
SELinux or not. So, to avoid such system hangs, log in as a user other than
the root user. Alternatively, if you insist on running X as the root user,
transitioning to the sysadm_r:sysadm_t role before starting X may avoid the
system hangs.

When using KDE, you may find that several graphical applications or features
don't work properly. This occurs because KDE starts a variety of executables
with the same process name, kdeinit. No simple fix exists for such problems,
since a simple fix would entail loosening security to an unacceptable extent.
You may find it more convenient to use a desktop other than KDE such as
GNOME when running SELinux.

A workaround is to log out of KDE and remove all KDE-related temporary files
from /var/tmp. Then log into KDE and see if the problems persist.

Chapter 5. SELinux Policy and Policy Language
Overview
Chapter 2 examined the SELinux security model from a bird's-eye perspective.
The purpose of that chapter was to acquaint you with SELinux just enough to
enable you to understand the procedure for installing and initially configuring
SELinux. In the long run, you're likely to need to know significantly more
about the SELinux security model. So this chapter picks up where Chapter 2
left off, explaining the SELinux security model and SELinux policies in greater
detail and laying the groundwork for the following chapters, which explain the
SELinux policy language in detail.

For convenience, this chapter recapitulates some of the key concepts and terms introduced
in Chapter 2. However, I assume that you're generally familiar with and able to recall the
material from that chapter. If you find this chapter difficult to follow, I suggest that you
revisit Chapter 2 and then return to this chapter. I anticipate that you'll find this chapter
much clearer when the material from Chapter 2 is fresh in your mind.

5.1 The SELinux Policy

General systems theory arose in the middle of the last century, as systems
analysts discovered that systems of a variety of types share common
characteristics. One such characteristic is that systems can often be
understood at any of several levels, sometimes referred to as levels of
abstraction. For example, scientists tell us that interactions among atoms and
molecules are governed by the quantum mechanical properties of elementary
particles. But much of chemistry can be understood without reference to these
fundamental structures. Indeed, chemistry arose and prospered as a discipline
before the discovery of quantum mechanics and elementary particles.

To understand SELinux, it's important that its internal mechanismssuch as
access vectorsbe understood, because these govern the security decisions
SELinux makes. Yet because SELinux is highly configurable, the runtime
behavior of an SELinux system can be viewed as effectively determined by the
system's SELinux policy, which operates at a higher level of abstraction than
low-level mechanisms such as access vectors.

The high flexibility of SELinux is due to the configurability of its policy. Hence
the SELinux policy of any given systemthough likely to be more or less based
on the SELinux sample policy distributed with the NSA's SELinux release is
unlikely to exactly match the sample policy. Moreover, the SELinux sample
policy is itself a living document. At the time of writing, work is underway to
polish the SELinux implementation to be released as part of Fedora Core 2,
and the policy is being updated regularly, even daily.

The configurability of policy and the high frequency of policy change
complicate explication of the policy in two ways. First, they raise the question:
what version of the policy is being explained? And second, they imply that any
explanation is likely to be quickly outdated.

Fortunately, this analysis overstates the degree of difficulty. Over an extended
period of time, the main features of the SELinux sample policy have remained
relatively constant. And, as mentioned, most actual SELinux policies are based
on the NSA's sample policy. So although policies vary and are subject to
change, they remain more alike than different.

In this chapter, I explain a generic SELinux policy based on the SELinux policy
associated with Fedora Core 2. The policy is hypothetical in the sense that it's
not identical to any actual policy at any actual time. But that's not to say that
it's irrelevant or even artificial. Instead, it's intended to be representative of a
cross-section of actual SELinux policies and therefore serve as a baseline for

understanding other, more highly customized or developed policies. You'll find
the generic SELinux policy described in this chapter a useful point of reference
in understanding the behavior of typical SELinux systems. However, please
bear in mind that the policy of your own SELinux system is unlikely to match
precisely the one described in this chapter.

More particularly, this chapter explains:

The two forms (source and binary) of an SELinux policy

The component files associated with a typical SELinux policy domain

The structure of the directory tree that contains the SELinux source policy
and the contents of each component directory

5.2 Two Forms of an SELinux Policy

If you're familiar with a programming language, such as C, you'll find that
working with an SELinux policy resembles working with a program. Programs
generally have two forms: a source form and an object form. Programmers
work with the source form of a program, which resides in one or more ordinary
text files. These files can be created and changed using a text editor or
interactive development environment (IDE). However, you can't load and run
the source form of a program. Instead, you must use a compiler to translate
the source form into object form. The file that contains the object form of a
program is a binary file that cannot be viewed or changed using a text editor.
Figure 5-1 shows the process that transforms a program from source to object
form.

Figure 5-1. Transforming a program from source
to object form

Figure 5-2 shows the process that transforms an SELinux policy from source to
binary (object) form. The checkpolicy command is analogous to the compiler
that converts a program from source to object form. Sometimes, therefore, the
checkpolicy command is referred to as the SELinux policy compiler.

Unlike a typical compiler used to translate computer programs, the checkpolicy
command can take input from only one source file. So, all SELinux policy
source files are concatenated and written to the policy.conf file. The
checkpolicy command reads the policy.conf file and writes a policy.?? file
containing a binary policy. The replaceable part of the binary policy filename
indicates the version number of the SELinux policy language that was used to
create the binary policy. For instance, a binary policy having filename
policy.17 would relate to Version 17 of the SELinux policy language.

The binary form of an SELinux policy can be loaded into a running Linux
kernel by issuing a load_policy command specifying the binary policy filename
as an argument. However, as explained in Chapter 4, the system administrator
generally uses the SELinux Makefile to load a policy. The make install, make
load, and make reload commands cause the SELinux Makefile to issue the
load_policy command.

Figure 5-2. Transforming an SELinux policy from
source to binary form

Because the SELinux policy compiler can read only one file, it may seem odd
that an SELinux policy is organized as a set of files. Indeed, it would be
possible for the policy to reside only in policy.conf. However, a typical SELinux
policy contains almost 250,000 lines of code. Editing such a large file would be
quite cumbersome. So the SELinux policy is distributed throughout a directory
tree, typically rooted at /etc/security/selinux/src/policy. The principal
subdirectories of this directory tree include:

appconfig

Defines default types and security contexts for several special
circumstances.

domains

Defines the type-enforcement domains.

file_contexts

Defines the security contexts of persistent files.

flask

Defines symbols used by the SELinux-capable kernel.

macros

Defines M4 macros used in policy source files.

tmp

Concatenates policy source files during policy compilation.

The tmp directory is merely a working directory used during SELinux Makefile operations
and therefore has no permanent contents. It is not further explained in this chapter.

types

Defines several general typesthat is, types not associated with particular
domains.

Because the contents of the SELinux policy files are concatenated and written
to policy.conf before being compiled, the SELinux policy compiler isn't aware

which SELinux policy file contains the policy statements it compiles. But
humans find it convenient to place related policy statements in a single file.
Doing so makes it easier to understand the policy, which can be studied a file
or two at a time, rather than all at once. And distributing statements among a
set of files makes it easier to locate a statement of interest, because you can
often deduce which files are most likely to contain it. So when creating or
revising an SELinux policy, it's important to observe the conventions used by
the original developers of the policy. These conventions are described more
fully in the section of this chapter titled "SELinux Policy Structure."

5.3 Anatomy of a Simple SELinux Policy Domain

Let's switch our view of the SELinux policy from wide-angle to close-up and
examine a simple component of an SELinux policy, to better understand how
an SELinux policy operates. Recall that the SELinux type enforcement
mechanism is based on domains. At any given time, a running process is
associated with a domain that determines its permissions. The SELinux policy
statements that establish a domain are generally grouped as two files:

FC file

The file context (FC) file, which has the filename extension .fc, resides in
the file_contexts/program subdirectory of the policy source directory. The
file specifies the security contexts of directories and files associated with
the domain.

TE file

The type enforcement (TE) file, which has the filename extension .te,
resides in the domains/program subdirectory of the policy source directory.
The file specifies the access vector rules and transitions associated with
the domain.

An SELinux policy contains many files other than FC and TE files. However,
most of the work you do with an SELinux policy will involve the FC and TE
files. Because FC and TE files are central to SELinux, understanding the
function of these files takes you a long way toward understanding SELinux
policies. So in this section, we'll overview the FC and TE files. The following
chapters will explain more fully the FC and TE files as well as the other files
that comprise an SELinux policy.

The FC and TE files that establish a domain generally carry the name of the
principal program associated with the domain. For instance, the files
associated with the domain that regulates the behavior of the Snort intrusion
detection application are named snort.fc and snort.te. Let's begin by examining
the snort.fc file.

5.3.1 The snort.fc File

The snort.fc file specifies security contexts for directories and files related to
Snort:

SNORT

/usr/sbin/snort -- system_u:object_r:snort_exec_t

/usr/local/bin/snort -- system_u:object_r:snort_exec_t

/etc/snort(/.*)? system_u:object_r:snort_etc_t

/var/log/snort(/.*)? system_u:object_r:snort_log_t

The first line in the file is a comment, as indicated by the hash mark (#)
appearing in the first column. The remaining four lines have a simple structure
consisting of three columns:

Regular expression

Directories and files having a path matching the regular expression are
labeled according to the specifications in columns two and three.

Flags

The flags specify whether the regular expression matches directories, files,
or either directories or files. The paired dashes specify that the regular
expression can match only ordinary files.

Security context

The security context specifies the SELinux user, role, and type with which
the directory or file is to be labeled.

For instance, the Snort executable resides in the file /usr/sbin/snort, a path
matching the regular expression appearing in the second line of the FC file.
When the make relabel command is executed in the policy source directory,
the file /usr/sbin/snort will be labeled with the security context

system_u:object_r:snort_exec_t.

The regular expression appearing in the fourth line of the file includes several
metacharacters:

/etc/snort(/.*)? system_u:object_r:snort_etc_t

The metacharacters have the same meaning they take on in the vi editor and
other Linux programs that use regular expressions. In particular, the
parentheses indicate grouping, and the question mark (?) indicates that the
preceding item or group is optional. The dot (.) can be replaced by any single
character, and the asterisk (*) indicates that the preceding item or group can
be repeated indefinitely. The slash (/) is not a metacharacter; it matches the
slashes that separate the parts of a directory pathname. Therefore, the regular
expression matches the path /etc/snort and the path of any file or directory
contained in /etc/snort. Matching files and directories will be labeled with the
security context system_u:object_r:snort_etc_t.

5.3.2 The snort.te File

Now, let's examine the TE file:

#DESC Snort - Network sniffer

#

Author: Shaun Savage <savages@pcez.com>

Modified by Russell Coker <russell@coker.com.au>

X-Debian-Packages: snort-common

#

daemon_domain(snort)

log_domain(snort)

can_network(snort_t)

type snort_etc_t, file_type, sysadmfile;

Create temporary files.

tmp_domain(snort)

use iptable netlink

allow snort_t self:netlink_socket create_socket_perms;

allow snort_t self:packet_socket create_socket_perms;

allow snort_t self:capability { setgid setuid net_admin net_raw };

r_dir_file(snort_t, snort_etc_t)

allow snort_t etc_t:file { getattr read };

allow snort_t etc_t:lnk_file read;

allow snort_t self:unix_dgram_socket create_socket_perms;

allow snort_t self:unix_stream_socket create_socket_perms;

for start script

allow initrc_t snort_etc_t:file read;

As you can see, the TE file is somewhat more complex than the FC file. In
particular, whereas the FC file contains only one sort of noncomment line, this
TE file contains several:

Type line

Defines a type.

Allow lines

Define an access vector rule.

Other lines

Lines beginning with other identifiers, such as daemon_domain and
can_network, are macro invocations.

5.3.2.1 The type line

The line:

type snort_etc_t, file_type, sysadmfile;

defines snort_etc_t as a type. The attributes file_type and sysadmfile mark this
type as pertaining to file objects that can be accessed and modified by users
associated with the sysadm_r (system administrator) role. Many such attributes
are defined in the attrib.te file. If you look back to the FC file, you'll see that
the /etc/snort directory and its contents are labeled with the type snort_etc_t.

5.3.2.2 The allow lines

Lines beginning with the keyword allow specify access vector rules authorizing

operations on various object types. For instance, the line:

allow snort_t etc_t:file { getattr read };

specifies that processes running in the snort_t domain can read and get the
attributes of files labeled with the etc_t type. Notice the use of curly braces, {
and }, to enclose the list.

Similarly, the line:

allow initrc_t snort_etc_t:file read;

specifies that processes running in the initrc_t domain can read files labeled
with the snort_etc_t type. As it happens, the init process, which controls SysV
daemons, runs in the initirc_t domain. Thus, the init process can read the
contents of the /etc/snort directory tree, which contains the Snort
configuration files init must consult to start Snort with the user-specified
options.

Notice that allow lines are the most common sort of line in the TE file. Recall
that SELinux prohibits all operations not explicitly authorized. So, a typical
domain contains several perhaps many allow lines that specify operations for
which the domain is authorized.

Not all access vector rules specify authorized access. For instance, as explained in Chapter
7, auditdeny and dontaudit rules specify prohibited operations. However, the snort.te file
includes only allow rules.

5.3.2.3 Macro invocations

In addition to type and allow lines, the TE file contains a variety of other
noncomment lines. These are macro invocationsstatements that are expanded
by the M4 macro processor into zero or more SELinux policy statements. If you
administer a system running Sendmail, you're likely already familiar with M4,

because Sendmail uses it to establish its configuration in much the same way
as SELinux does. If you aren't familiar with macro definitions and invocations,
you can think of a macro definition as a script and a macro invocation as a
command invoking the script. Let's consider a simple example.

The file macros/global_macros.te defines many SELinux macros. Among them
is the definition of the can_network macro, which is invoked on line 11 of the
snort.te file (comment lines omitted for simplicity):

define(`can_network',`

allow $1 self:udp_socket create_socket_perms;

allow $1 self:tcp_socket create_stream_socket_perms;

allow $1 netif_type:netif { tcp_send udp_send rawip_send };

allow $1 netif_type:netif { tcp_recv udp_recv rawip_recv };

allow $1 node_type:node { tcp_send udp_send rawip_send };

allow $1 node_type:node { tcp_recv udp_recv rawip_recv };

allow $1 port_type:{ tcp_socket udp_socket } { send_msg recv_msg };

allow $1 mount_t:udp_socket rw_socket_perms;

allow $1 node_type: { tcp_socket udp_socket } node_bind;

allow $1 net_conf_t:file r_file_perms;

')dnl end can_network definition

When a macro is invoked, the invocation can supply the macro with
arguments. Consider line 11 of snort.te:

can_network(snort_t)

This invocation of the can_network macro supplies the argument snort_t. When
the macro is interpreted, its invocation is replaced with the lines from its

definition. However, the symbol $1 appearing within the definition is replaced
by the first supplied argument, the symbol $2 is replaced by the second
supplied argument, and so on. In the macro invocation, notice that the left
parenthesis immediately follows can_network, the name of the macro. M4
requires that no space appear between the name of a macro and the
parenthesis that begins the macro's argument list.

In the case of the snort.te file, the invocation of can_network provides one
argument, snort_t. This argument replaces the symbol $1 appearing in the
macro definition. The result is that the following lines replace the macro
invocation within the snort.te file:

allow snort_t self:udp_socket create_socket_perms;

allow snort_t self:tcp_socket create_stream_socket_perms;

allow snort_t netif_type:netif { tcp_send udp_send rawip_send };

allow snort_t netif_type:netif { tcp_recv udp_recv rawip_recv };

allow snort_t node_type:node { tcp_send udp_send rawip_send };

allow snort_t node_type:node { tcp_recv udp_recv rawip_recv };

allow snort_t port_type:{ tcp_socket udp_socket } { send_msg recv_msg };

allow snort_t mount_t:udp_socket rw_socket_perms;

allow snort_t node_type: { tcp_socket udp_socket } node_bind;

allow snort_t net_conf_t:file r_file_perms;

These allow lines authorize a variety of network-related operations.

The point of using macros is that they make policies more concise and
therefore easier to read and understand. They also help prevent
inconsistencies that may lead to policy errors. The section of this chapter titled
"The macros Subdirectory" summarizes many of the standard macros defined
for use in SELinux policies.

As shown in Figure 5-3, the M4 macro processor is invoked prior to the
creation of the policy.conf file, so that file contains no macro invocations. Thus,

the SELinux policy compiler does not actually process any macro invocations.

Figure 5-3. Transforming an SELinux policy,
including M4 macro expansion

5.4 SELinux Policy Structure

Now that we've completed our close-up view of an SELinux policy component,
let's return to a wide-angle view. This section explains the conventions
observed by SELinux policy developers in choosing where to place policy
statements of various types. The explanation is organized around the structure
of the SELinux source directory tree, which is typically
/etc/security/selinux/src/policy. In good computer science fashion, we'll first
visit the leaf nodes (that is, the subdirectories of the tree) and ultimately visit
the root node (that is, the policy directory itself). However, we'll depart from
computer science conventions in one key respect: rather than visit the nodes
in lexicographic (alphabetical) order, we'll visit them in an order in which
several nodes having fundamental content are visited first, to facilitate the
exposition.

5.4.1 The flask Subdirectory

The flask directory, as implied by being the first subdirectory visited in our
traversal of the policy source directory tree, is the most fundamental of the
subdirectories. It contains three important files:

initial_sids

security_classes

access_vectors

Like other policy source files, these files are read and processed during policy
compilation. In addition, these files are used to generate C header files that
are used during compilation of an SELinux-capable Linux kernel. In that
context, the files specify symbol definitions for access vectors (that is,
permissions), initial SIDs, and security classes. Because of their relationship to
the kernel, changes to the contents of these files may require recompilation of
the kernel. Therefore, in comparison to other policy source files, these files are
relatively static.

Although several policy source files are used in the compilation of the kernel, you don't
need to have SELinux policy sources available during kernel compilation. The kernel sources
include copies of the necessary SELinux policy source files.

The following subsections explain the purpose and contents of these files. The
most interesting of the files is the access_vectors file, which is explained in the
last of the three subsections.

5.4.1.1 The flask/initial_sids file

The flask/initial_sids file specifies about two dozen initial SID values. The
values are used to label transient objects and objects used during system
bootup. The file is also used to generate a C header file, flask.h, used during
kernel compilation. System administrators do not generally need to modify the
initial_sids file, nor should they do so.

5.4.1.2 The flask/security_classes file

The flask/security_classes file defines thirty security object classes, which are
shown in Appendix A. The classes file and dir are among the most commonly
used security classes. Like the initial_sids file, the file is used to create the C
header file flask.h, which is used during kernel compilation. System
administrators do not generally need to modify the security_classes file, nor
should they do so.

5.4.1.3 The flask/access_vectors file

As explained in Chapter 2, access vectors specify the operations that can be
performed by subjects upon objects. In other words, they specify permissions.
The flask/access_vectors file defines the range of operations associated with
each object class. In all, about 150 different operations are specified on the
thirty defined classes of SELinux security objects. Among the most commonly
used operations are read, which denotes reading a file or file-like object, and
write, which denotes writing a file or file-like object. Appendix B summarizes
the operations defined in the file. The access_vectors file generates a C header
file, av_permissions.h, used during kernel compilation. System administrators
do not generally need to modify the access_vectors file, nor should they do so.

You may find the large amount of detail appearing in Appendix B somewhat
overwhelming. You certainly don't need to memorize the table in order to
effectively use SELinux. But you will likely have to refer to it from time to
time. You may do so, for example:

To understand the log message generated when SELinux denies a
requested operation. In this case, Appendix B will help you understand
what the requesting program was attempting to do.

To find the SELinux name of an operation so that you can create a policy
rule that allows or denies it under particular circumstances.

The policy configuration provides the ability to specify some operations that
are nonsensical, such as associating swap space with a socket file. Valid, real-
world policies don't actually authorize such operations, even though it's
possible to do so.

The descriptions of SELinux operations provided in Appendix B are
approximate. The actual meaning of an operation is determined by the system
calls that are enabled or disabled by the permissions corresponding to the
operation. Precisely understanding or defining an operation therefore requires
a detailed understanding of the related system calls and is beyond the scope of
this book.

5.4.2 The macros Subdirectory

The macros directory contains several files that define M4 macros used
primarily in the TE files that define domains. The files are:

admin_macros.te

Defines the admin_domain macro.

base_user_macros.te

Defines the base_user_domain macro.

core_macros.te

Defines about five dozen fundamental macros, primarily defining sets of
permissions and simple access vector rules.

global_macros.te

Defines about three dozen fundamental macros, primarily defining domain
properties.

mini_user_macros.te

Defines the mini_user_domain macro.

user_macros.te

Defines the user_domain, full_user_role, and in_user_role macros.

Appendix C summarizes the macros defined in the macros subdirectory. A
typical example of a macro is r_file_perms, which expands to the permissions
needed to read files and file attributes, namely:

{ read getattr lock ioctl }

I suggest that you browse Appendix C at this point. However, unless you have
photographic recall, don't attempt to commit it to memory. You'll primarily use
the table just as you use the tables presented earlier in this chapter: to
understand log messages and to find SELinux names when coding your own
policy rules. Please note that the descriptions given in are approximate. In
drafting them, I emphasized conciseness over completeness. Once you more
fully understand the SELinux policy language, you'll be able to develop your
own, more sophisticated understanding of these macros.

In addition to the files defining macros, the macros directory also contains a subdirectory
named program. This subdirectory contains about three dozen files that define M4 macros
used in defining user domains. Their function is closely related to that of the TE files that
define user domains, so they are not explained separately in this chapter.

5.4.3 The file_contexts Subdirectory

The file_contexts directory tree contains files, known as file context files, that
specify the security context of persistent files. The setfiles program consults
the file context files when labeling a filesystem.

The file_contexts directory contains two subdirectories:

program

Contains specifications of the security contexts of files that are part of
installed packages or programs.

misc

Contains miscellaneous specifications.

Some implementations of SELinux are distributed with an empty misc directory. The
absence of files is not a cause for concern.

In addition, the file_contexts directory contains two files:

file_contexts

This file is automatically created when a policy is compiled. It aggregates
the contents of all the file context files residing in the misc and program
subdirectories.

types.fc

This file contains security contexts for general system files and user home
directories.

Security contexts are specified in .fc (file context) files, which have a simple
syntax:

regex [-type] (context | <<none>>)

That is, each line begins with a regular expression (regex), which is optionally
followed by a token representing a type (type). Each line ends with a token
representing a context (context) or the special token <<none>>.

A file-context file may also contain comments. Any line beginning with a hash mark (#) is
considered a comment and ignored by the setfiles program.

When files are being labeled, the path of each file is compared with the regular
expressions of each successive file-context line. If a regular expression
matches the path, the file is relabeled according to the specified security
context; otherwise no action is performed. If multiple regular expressions
match the path, the last matching regular expression determines the security
context with which the file is labeled. The special token <<none>> specifies
that files matching the associated regular expression should not be relabeled.

The file context specifications generally have the form /path/.* (or its equivalent), which
matches any path beginning with /path. The associated security context, which is generally
system_u:object_r:default_t, is used to label files not matching other regular expressions.
Thus in practice, all files are labeled (unless the <<none>> token is used to direct
otherwise).

For example, here's a typical file context specification:

/home/[^/]+/.+ system_u:object_r:user_home_t

This specification matches files in users' home directories and indicates they

should be labeled with the security context system_u:object_r:user_home_t.

The optional token representing a type takes one of the following values:

Matches only regular files.

-b

Matches only block device files.

-c

Matches only character device files.

-d

Matches only directories.

-s

Matches only socket files.

If the type token does not appear in a line, the line matches directories and
files of all types, including device files and other nonregular files.

The regular expressions appearing in file context specifications are implicitly
anchored. That is, they behave as though ^ (the regular expression
metacharacter matching the beginning of a string) appears as their first
character and $ (the regular expression metacharacter matching the end of a
string) appears as their last character. Thus, the regular expression given
earlier for users' home directories does not match the path
/root/home/homedir/roots-file.txt, because the path does not begin with
/home. Because of the implicit anchoring, it's important to use absolute, rather
than relative, paths in file context specifications.

If you're unfamiliar with regular expressions or rusty in working with themI suggest that
you consult Mastering Regular Expressions (O'Reilly).

5.4.4 The types Subdirectory

The types directory contains files that define general types and a few rules
that govern their use. General types are types that are not associated with a
particular domain. In all, over 150 general types are defined in 7 files:

device.te

Defines over two dozen types related to devices and device files. See Table
D-1.

devpts.te

Defines two types related to the /dev/pts filesystem: ptmx_t, the type of
the pty master multiplexor, and devpts_t, the type of the devpts filesystem
and its root directory.

file.te

Defines almost six dozen types related to files. See Table D-2.

network.te

Defines about three dozen types related to networks. See Table D-3.

nfs.te

Defines the type nfs_t, the type used for NFS filesystems and the files they

contain.

procfs.te

Defines over one dozen types related to the /proc filesystem, especially
the sysctl parameters in /proc/sys. See Table D-4.

security.te

Defines six types related to SELinux itself. See Table D-5.

5.4.5 The domains Subdirectory

The domains subdirectory contains two files and two subdirectories. The files
are:

admin.te

Defines the sysadm_t general type, which is used by system administrators,
and specifies several rules defining related permissions. Also defines
several types related to the sysadm_t type.

user.te

Defines several general types used by ordinary users and specifies several
rules defining related permissions.

The system administrator does not generally need to modify the admin.te or
user.te file.

Recall that a general type is one not related to a specific domain.

Like the domains directory, its subdirectories contain TE files defining domains.
The subdirectories are:

misc

Defines several miscellaneous domainsthat is, domains not related to
specific programs. The particular domains vary across different SELinux
policies and policy versions. However, the directory is likely to define the
following domains:

auth-net

Policy for PAM LDAP authentication

fcron

Policy for the crond_t domain, associated with cron

kernel

Policy for the kernel_t domain, associated with the Linux kernel

startx

Policy for running X

The system administrator does not generally need to modify the files
defining these domains.

program

Defines ordinary domains related to specific programs. A typical
installation may contain over 100 TE files defining domains. The TE files
are generally given names resembling those of the related package or

program. For example, the TE file defining domains related to the Apache
web server is commonly named apache.te.

Along with the file_contexts/program subdirectory and the policy sources
directory itself, the domains/program subdirectory is one of the SELinux
directories most important to the system administrator. Most SELinux
directories contain static files that the system administrator need not or must
not change. However, the system administrator often finds it necessary to
modify or supplement the files contained in the domains/program subdirectory.

Most Linux distributions feature package managers that assist in the
installation of software products. Generally, when SELinux is implemented for
a particular distribution, the distribution's package manager is modified to
interoperate with SELinux by automatically installing the TE and FC files
related to a package when the package is installed.

However, system administrators often install programs for which their Linux
distribution offers no officially supported package. In such a case and in any
case in which the package manager is unable to automatically install the FC
and TE files related to a packagethe system administrator must manually
install the FC and TE files. In some cases, prebuilt FC and TE files may not
exist; then the system administrator must create and install appropriate FC
and TE files before the installed program will operate properly under SELinux.
Chapter 9 explains how to do so.

A one-to-one relationship exists between files in the file_contexts/program and
domains/program directories. The SELinux Makefile enforces this correspondence and
refuses to build a binary policy if the correspondence is violated. So if you create a TE file in
domains/program, you must create a corresponding FC file in file_contexts/program, and
vice versa.

5.4.6 The appconfig Subdirectory

The appconfig subdirectory stores configuration information used by security-
aware programs modified to work with SELinux. The configuration information
consists of default contexts and types assigned to objects by security-aware
programs. Typically, the subdirectory contains five files:

default_contexts

Used by login, sshd, and crond to determine the legal security contexts for
a given user that are reachable from the security context of the current
process

default_type

Used by login to determine the default type (domain) for each role

failsafe_context

Used in X failsafe operation

initrc_context

Used by the run_init program to determine the security context for
running /etc/rc.d scripts

root_default_contexts

Used by login to determine the security contexts available to the root user

The system administrator does not generally need to modify these files, with
one exception: the root_default_contexts file contains a commented line that
can be uncommented to cause the root user to automatically log into the
sysadm_r role. However, doing so may make you system somewhat less secure
and is not a generally recommended practice.

5.4.7 The Policy Source Directory

In addition to its various subdirectories, the policy source directory contains
several files, a few of which are important to the system administrator. Here
are the most important files, i.e. those which often must be modified:

tunable.te

Contains various definitions that the system administrator can enable or
disable to customize the SELinux security policy. This file is distribution-
specific and may not exist on your SELinux system.

users

Defines the SELinux users. Described further in Chapter 6, this file
generally must be modified to include the Linux user names of users who
can act as system administrators. Optionally, the file can be modified to
include the Linux user names of other users.

The other files within the policy source directory include:

assert.te

Defines assertions that safeguard the integrity of the SELinux security
policy. Assertions are more fully explained in Chapter 7. Essentially, an
assertion states a condition that must not be violated by the SELinux
security policy. When a policy is compiled, assertions are checked;
violation of an assertion terminates the compilation and suppresses binary
policy generation. Assertions protect against unwise or incorrect policy
revisions that might compromise the integrity of SELinux or the security
policy.

attrib.te

Defines about six dozen type attributes. As more fully explained in Chapter
7, type attributes define sets of types and domains having common
permissions.

constraints

Defines several constraints on M4 macro invocations. Like SELinux policy
assertions, the constraints safeguard the integrity of the SELinux policy.

fs_use

Specifies how various filesystem types are labeled by SELinux.

genfs_contexts

Specifies how SELinux handles filesystem types that do not support
extended attributes or an SELinux-supported fixed-labeling scheme.

initial_sid_contexts

Specifes the security context of several initial security context IDs (SIDs).

Makefile

Controls the labeling of filesystems and the compilation and installation of
the SELinux security policy. Chapter 4 explains how to invoke the
operations supported by the Makefile.

mls

Specifies configuration options related to multilevel security (MLS). MLS is
not supported by the current release of SELinux.

net_contexts

Specifies the security contexts of ports, interfaces, and other network
objects.

policy.??

The binary security policy file; for instance, policy.17.

policy.conf

A temporary file used during policy compilation, used to aggregate the
source files involved in the compilation.

rbac

Defines legal role transitions. Currently, the only legal transition is from
sysadm_r to system_r, a transition needed by the run_init program.

serviceusers

Specifies roles accessible by users that exist only if related optional
packages are installed. For instance, the user cyrus is permitted to enter
the role cyrus_r, but only if the cyrus.te domain is defined.

In addition, the policy sources directory includes several files that have no
functional role but contain useful information for system administrators,
including:

COPYING

Contains the license, currently the GNU General Public License, under
which SELinux can be used.

ChangeLog

Summarizes changes made to SELinux versions.

policy.spec

The SPEC file associated with the source RPM containing the security
policy. SPEC files specify how the RPM program builds source and binary
RPM packages.

README

Provides a brief overview of the contents of the policy source directory
tree.

VERSION

States the SELinux version.

Chapter 6. Role-Based Access Control
Up to this point in the book, we've looked at the functions SELinux provides
and the configuration files that direct its operation. However, we've merely
glanced at the SELinux policy language that's used to specify the SELinux
security policy. Our situation is akin to that of a 15th or 16th century explorer
who has studied maps of the New World and dreamed of the exotic sights that
may be found there but has not yet ventured to sea. In this chapter, we at last
embark upon our sea voyage.

In this chapter and the following two chapters, you'll find a detailed
explanation of the SELinux policy language and several related languages,
such as those used to specify file and security contexts. This chapter explains
the SELinux role-based access control policies, Chapter 7 explains the SELinux
type-enforcement policies, and Chapter 8 explains other elements of the
SELinux policy. Of course, most likely your goal is not merely to understand
the SELinux policy language or SELinux security policies themselves, though
such skills are useful to the SELinux system administrator. Instead, it's more
likely that you want to be able to specify new and modified SELinux security
policies. If that is your goal, Chapter 6 through Chapter 8 won't quite take you
to the end of your voyage, though you'll make landfall near the end of Chapter
8. Then you'll be ready for Chapter 9, which explains how you can customize
existing SELinux policies and implement your own policies.

6.1 The SELinux Role-Based Access Control Model

As explained in previous chapters, the SELinux security model is based
primarily on a mechanism called type enforcement (TE). Type enforcement
assigns processes to domains and restricts the operations each domain is
permitted to perform. The SELinux policy, which can be customized by a
system administrator, specifies the available domains and the operations that
processes within them are authorized to perform. Chapter 7 explains the
SELinux type-enforcement model in detail.

SELinux also includes a second security model, called role-based access control
(RBAC). Role-based access control works alongside type enforcement:
intended operations are prohibited unless they're explicitly authorized by both
type enforcement and role-based access control. Of course, intended
operations must also satisfy any requirements imposed by ordinary Linux
discretionary access control mechanisms, such as file permissions.

Role-based access control works fairly simply and has three parts. First, each
user is authorized for a set of roles. A user cannot enter a role other than one
for which the user is authorized. Second, transitions between roles are
authorized. A process can transition to a new role only if transitions between
its current role and the new role are authorized. Finally, each role is
authorized for a set of domains. Any attempt to enter a nonauthorized role or
domain is prohibited by the SELinux security engine. Let's consider some
concrete examples.

Users are assigned roles by the user statement. For instance, the following
statement assigns the roles staff_r and sysadm_r to the user bill, permitting the
user to enter either role:

user bill roles { staff_r sysadm_r };

Transitions between roles are governed by allow statements. For instance, the
following allow statement authorizes processes running in the staff_r role to
transition to the sysadm_r role:

allow staff_r sysadm_r;

Roles are authorized to enter domains by the role statement. For instance, the

following statement authorizes the role sysadm_r to enter the ifconfig_t domain:

role sysadm_r types ifconfig_t;

A domain can include multiple role statements, each authorizing one or more
roles to enter the domain. Unless a role statement authorizes a particular role
to enter a domain, processes running in that role cannot enter the domain.

Both type enforcement and role-based access control work by inspecting
security contexts. Recall that SELinux assigns a security context to each
process, as well as to each instance of other objects, such as files. A security
context includes three elements:

A user

A role

A type (domain)

Thus, at any time, the security context of a process indicates its user identity
and role identity, the characteristics considered by role-based access control. A
process can change its user or role identity, but only if the current SELinux
policy enables the specific transition. For instance, SELinux policies typically
permit changing from the staff_r role to the sysadm_r role, but prohibit other
roles (such as user_r) from changing to sysadm_r.

Similarly, SELinux policies restrict access to domains, allowing only processes
running in specified roles to enter them. For instance, the ifconfig_t domain is
authorized to perform various operations that concern network interfaces,
which ordinary users should not generally be allowed to perform. Thus, entry
to the domain is restricted to processes running in the sysadm_r role, which
includes only users designated as system administrators.

Role-based access control governs processes rather than files or other objects.
So the security contexts of files and other objects are simplified. Although
these security contexts contain the three elements common to all security
contexts, the role associated with objects other than processes is object_r,
which is basically a mere placeholder.

The statements that express the SELinux role-based access control policy
provide more elaborate options than shown in the preceding examples. To fully

explain them, the following section introduces a visual representation of
syntax: the railroad diagram.

6.2 Railroad Diagrams

In the film Planes, Trains, and Automobiles, characters played by Steve Martin
and John Candy are faced with one improbable obstacle after another as they
struggle to arrive home in time for the Thanksgiving holiday. Having compared
this chapter with a sea voyage, it's reminiscent of that film to consider yet
another mode of transportation, railways, as a means of understanding the
SELinux policy language.

However, unlike many of the decisions of the film characters, my decision to
introduce railroad diagrams is not capricious. Such diagrams were used in the
1970s by famous computer scientist Niklaus Wirth to develop and explain
Pascal, one of the most successful programming languages. Since then,
they've been used to explain many other programming languages. Although
they can be cumbersome to create, they're quick to learn as well as easy to
read and understand, so they're just about ideal as a means of explanation.
Let's further mix our metaphors by diving into an exposition of railroad
diagrams.

6.2.1 What Railroad Diagrams Do

Railroad diagrams are also known as syntax diagrams or syntax charts. They
present the grammar of a formal language, such as one used for programming.
However, formal languages also underlie the files used to configure systems
and applications, such as the files that specify the SELinux security policy, so
these diagrams are well suited to our immediate purpose.

Railroad diagrams specify two kinds of symbols:

Literal

A literal is a symbol that consists of one or more specific characters.
Literals are generally punctuation marks, operators, or keywords of some
sort.

Replaceable text

Replaceable text consists of text that has variable content.

These definitions will become clearer in the context of several small examples
given in the following section.

6.2.2 How Railroad Diagrams Work

Figure 6-1 shows a railroad diagram that defines a literal representing the
letter "a."

Figure 6-1. The letter "a"

The diagram contains two parts:

Line

The line guides you in reading the railroad diagram. If you're disappointed
that the line doesn't more closely resemble a railroad track, I apologize.
But, it's customary to draw the line in the simple fashion shown in the
figure. You read the railroad diagram by following the line from left to
right.

Oval

The oval represents a literal that is, a specific character, namely the letter
"a."

Literal symbols (text that appears in the file exactly as shown in the diagram)
appear in lightly shaded boxes, while replaceable symbols (which should be
replaced with appropriate values by the administrator) appear in darkly shaded
boxes.

One way to use a railroad diagram is as a means of parsing sentences
following the grammar represented by the diagram. To do so, follow the line

from left to right and attempt to match each symbol you encounter with a
corresponding token in the sentence. If you can do so, the sentence is
grammatical; otherwise it's not.

The railroad diagram for the letter "a" is trivially simple, and therefore it is not
much fun or valuable for practice. So, let's consider Figure 6-2, which presents
a somewhat more sophisticated sentence, one that has the same form as an
SELinux security policy attribute declaration. This sentence consists of three
components that must appear in the indicated order:

A literal representing the keyword attribute

Replaceable text known as an id

A literal representing a semicolon

Figure 6-2. Attribute declaration

The railroad diagram merely referencesbut doesn't define the replaceable text
id, which would be defined by another diagram. I'll present a diagram defining
id shortly. For now, let's simply understand id as representing an identifier of
the sort used in many programming languages, consisting of a letter followed
by zero or more letters or digits.

Given our understanding of the replaceable text id, our railroad diagram tells
us that sentences such as the following are grammatical attribute declarations:

attribute x;

attribute xyz;

attribute xyz123;

Similarly, our railroad diagram tells us that sentences such as the following

are not grammatical attribute declarations:

attribute x # lacks final semicolon

attrib x; # abbreviates required literal "attribute"

attribute 123; # contains integer rather than id

Let's now consider a somewhat more complex railroad diagram, shown in
Figure 6-3, which represents a digit. Notice how multiple tracks branch off the
main line, so that you can completely traverse the railroad diagram by
matching any of the ten literals representing a digit.

Figure 6-3. Digit

If you're familiar with regular expressions, you may realize that the syntax
represented by Figure 6-3 could easily be represented by the regular
expression:

[0123456789]

or, more concisely:

[0-9]

Let's now consider a set of three railroad diagrams that, together with Figure
6-3, define the composition of a signed integer. Figure 6-4 tells us that a
signed integer consists of a sign, consisting of the literal + or -, followed by
replaceable text named Unsigned_Integer, which obviously represents an
unsigned integer.

Figure 6-4. Signed_Integer

Figure 6-5 defines Unsigned_integer in terms of Digit, the replaceable text
defined in Figure 6-3. In Figure 6-5, notice the track that leads from the right
side of the second instance of Digit to the left side of the same instance. This
track makes it possible to include multiple occurrences of the second instance
of Digit. The railroad diagram tells us that an unsigned integer consists of a
digit, followed by zero or more digits. Put more plainly, it tells us that an
unsigned integer consists of one or more digits.

Figure 6-5. Unsigned_Integer

You might represent the syntax shown in Figures Figure 6-4 and Figure 6-5 by
the regular expression:

[+-]\d\d*

or the equivalent:

[+-]\d+

Figure 6-6 puts together the definitions of Signed_Integer and Unsigned_Integer,
telling us that an Integer consists of either a Signed_Integer or an
Unsigned_Integer.

Figure 6-6. Integer

By now, you've seen everything necessary to understand the railroad diagrams
we'll use to describe the SELinux security policy language. But, let's consider a
couple additional railroad diagrams for good measure. Figure 6-7 shows
another way of defining an Integer, one that consists of only a single railroad
diagram. I suggest that you study the figure and convince yourself that the
definition it offers is indeed equivalent to the previous definition that required
three distinct railroad diagrams. Of course, like the three-diagram definition,
the newer one references the diagram defining a Digit. So, it's not fully self-
contained. But, including a definition of Digit rather than a reference to Digit in
the newer definition would hopelessly clutter the definition.

Figure 6-7. Another way of specifying an Integer

Finally, let's consider one more railroad diagram, given in Figure 6-8. This
railroad diagram defines the composition of an Identifier, which consists of a
letter, followed by zero or more digits, letters, or underscores, which can be
freely intermingled. I trust that it's evident that the railroad is much faster and
easier to read and understand than the equivalent English sentence.

Figure 6-8. Identifier

I also presume you noticed that the replaceable text Letter, which is used in
the railroad diagram, is defined neither by the diagram nor earlier in this
chapter. I could give a railroad diagram defining this replaceable text, but it
would be rather badly cluttered, since a letter can be any one of 52 literals:
the lowercase and uppercase letters of the Roman alphabet.

6.3 SELinux Policy Syntax

The railroad diagram in Figure 6-9 represents an overview of the syntax of an
SELinux policy.

Figure 6-9. The SELinux Policy

As the figure shows, an SELinux policy consists of 11 elements, several of
which are optional:

classes

Defines the security object classes recognized by SELinux.

initial_sids

Defines initial SIDs for important security objects.

access_vectors

Defines access vectors associated with each security object class.

mls

Defines MLS configuration (optional).

MLS is not currently implemented in sample SELinux policies and is not covered in this
book.

te_rbac

Defines type enforcement and role-based access control configuration.

users

Defines the user configuration.

constraints

Defines constraints that the security policy must observe (optional).

initial_sid_contexts

Defines the security contexts of important security objects.

fs_use

Defines the method of labeling of filesystem inodes.

genfs_contexts

Defines security contexts for filesystems lacking persistent labels
(optional).

net_contexts

Defines security contexts for network objects.

Defines security contexts for network objects.

The policy elements must appear in the order indicated by the railroad
diagram. However, you generally don't have to concern yourself with the order
of policy statements, because each type of statement resides in a designated
file or directory. As explained in Chapter 4, the SELinux policy Makefile
assembles these files into a single file before compiling the policy source
statements. The Makefile ensures that policy statements are presented to the
policy compiler in the proper order. Table 6-1 shows the correspondence
between the policy elements and files in the src/policy SELinux source tree.

Table 6-1. Policy elements and associated files
Element File or directory (relative to src/policy)

classes
flask/security_classes

initial_sids
initial_sid_contexts

access_vectors
flask/acess_vectors

opt_mls
mls

te_rbac

rbac

*.te

domains/*.te

domains/misc/*.te

domains/programs/*.te

macros/*.te

macros/program/*.te

types/*.te

users users

serviceusers (Fedora Core)

opt_constraints
constraints

initial_sid_contexts
flask/initial_sids

fs_uses
fs_use

opt_genfs_contexts
genfs_contexts

net_contexts
net_contexts

Table 6-1 shows files and directories used in the Fedora Core 2 SELinux implementation.
The files may have different contents or locations under other implementations of SELinux.

One of the most important policy elements, te_rbac, contains type enforcement
and role-based access control declarations. Along with the file context
configuration, the TE and RBAC configuration is the part of an SELinux policy
that is most often modified. Syntactically, the te_rbac element consists of a
series that freely intermingles two subelementste_decl and rbac_declas shown in
Figure 6-10.

Figure 6-10. TE and RBAC declarations (te_rbac)

6.3.1 Basic Policy Elements

Before presenting the syntax of the SELinux user and role-based access
control declarations, let's look at a few subelements that appear in a variety of
SELinux policy elements and at a few principles that govern their use. Figure
6-11 shows the syntax of a subelement known as identifier_list. As its name
suggests, the subelement represents a list of identifiers. An example of such a
list appears in the following declaration from the ping.te file:

allow ping_t self:rawip_socket { create ioctl read write bind

 getopt setopt };

The curly braces enclose an identifier list specifying the permissions related to
a raw IP socket: create, ioctl, read, write, bind, getopt, and setopt.

Figure 6-11. The identifier_list subelement

Notice that the identifiers are separated from one another by white space.
Another subelement, id_comma_list, specifies a comma-separated list of
identifiers. A railroad diagram for this subelement appears as Figure 6-12.

Figure 6-12. The id_comma_list subelement

Another statement of the ping.te file provides an example of this subelement:

type ping_exec_t, file_type, sysadmfile, exec_type;

In this statement, the identifiers ping_exec_t, file_type, sysadmfile, and exec_type
appear as an id_comma_list.

Let's now consider some fine points of railroad diagrams. Literals do not need
railroad diagrams to explain them, because they are labeled with the values
they match. Though literals sometimes appear in railroad diagrams in
uppercase form, the strings they represent can appear in the SELinux policy in
either uppercase or lowercase. So, with reference to Figure 6-11, you can
anticipate that most identifiers will appear in lowercase rather than uppercase.
That is, you should expect the following:

create, ioctl, read, write, bind, getopt, setopt

rather than:

CREATE, IOCTL, READ, WRITE, BIND, GETOPT, SETOPT

However, it's entirely permissible to specify uppercase identifiers. It's just that
SELinux policy developers generally prefer not to do so. What matters is
consistency. The identifiers create and CREATE are both legal but also entirely
distinct, because one uses lowercase letters whereas the other uses uppercase
letters.

Let's consider one more common policy subelement, known as names, which
appears in Figure 6-13. This element can represent such strings as:

A single identifier

A list of identifiers separated from one another by white space, enclosed
within curly braces

An asterisk (*)

An identifier preceded by a tilde (~)

A list of identifiers separated from one another by white space and
enclosed within curly braces, and preceded by a tilde (~)

Two identifiers separated by a hyphen (-)

Figure 6-13. The names subelement and related
subelements

Some rather bizarre extensions are also permissible. For instance, the
following is a valid nested_id_set subelement:

{ x -y { a b c } }

You may be curious about the meaning or use of this subelement. But, for the
moment, please focus merely on the syntax, not the meaning. The meaning of
the subelement emerges from the context in which it is used. So rather than
continue to examine subelementsa process that could be continued
indefinitely let's start looking at concrete examples by considering the users
element, which is used to describe user declarations.

6.4 User Declarations

User declarations associate roles with SELinux users. A user cannot enter a
role unless the role has been associated with the user's current identity.

Figure 6-14 shows the syntax of user declarations.

Figure 6-14. User declaration syntax

Here are typical user declarations found in the src/policy/users file:

user system_u roles system_r;

user user_u roles { user_r };

user root roles { staff_r };

In the Fedora Core 2 implementation of SELinux, the src/policy/users file
includes M4 macros that can differently define the roles associated with the
user_u and root users. If the user_canbe_sysadm symbol is defined, the user_u
user is instead defined as:

user user_u roles { user_r sysadm_r system_r };

And, if the direct_sysadm_daemon symbol is defined, the root user is instead
defined as:

user root roles { staff_r system_r };

Both the user_canbe_sysadm and direct_sysadm_daemon symbols are defined in

the tunable.te file. They can be undefined by prefixing the appropriate lines
with dnl, the M4 comment token.

If your system includes one or more user accounts other than root, you should
update the users file so that it associates each user account with either the
role user_r (for ordinary users) or staff_r (for user who administer the system).
For instance, you might add declarations such as these:

user ordinary roles user_r;

user admin roles staff_r;

6.5 Role-Based Access Control Declarations

As Figure 6-15 shows, there are four types of RBAC declarations:

role_type_def

Role type declarations

role_dominance

Role dominance declarations

roletrans_def

Role transition declarations

role_allow_def

Role allow declarations

Figure 6-15. RBAC declarations (rbac_decl)

6.5.1 Role Type Declarations

A role type declaration specifies the set of domains for which a role is
authorized. They have the form shown in Figure 6-16. The symbol identifier
specifies the role and the symbol names specifies the authorized domain or
domains.

Figure 6-16. Role type declaration
(role_type_def)

Role type declarations typically appear in type enforcement files, where they
specify the roles that are authorized to enter the domains defined by the TE
files. For instance, the ping.te file contains the following role-type
declarations:

role sysadm_r types ping_t;

role system_r types ping_t;

The first declaration authorizes the sysadm_r role to enter the ping_t domain.
The second declaration authorizes the system_r role to do likewise.

6.5.2 Role Dominance Declarations

Role dominance declarations can be used to specify a hierarchy among roles.
However, existing implementations of SELinux policies do not specify role
hierarchies.

6.5.3 Role Transition Declarations

At one time, role transition rules were used to specify the new role of a
process based on its current role and the type of executable being executed.
Role transition declarations were deprecated and dropped from SELinux, which

used domain transitions instead. However, the Fedora Core 2 implementation
of SELinux resumed use of role transitions. Fedora Core 2 provides a transition
from sysadm_r to system_r designed to avoid the need for the administrator to
execute run_init when invoking a SysV init script.

6.5.4 Role Allow Declarations

Role allow declarations specify authorized transitions between roles. A
transition refers to someone in a source role (an existing role) choosing to
enter a target role (a different role). Figure 6-17 shows their syntax. Two
instances of names appear; the first, designated source_names, specifies the
source role and the second, designated target_names, specifies the target role.

Figure 6-17. Role-allow declaration
(role_allow_def)

Role allow declarations appear in the rbac file and in TE files. However, if you
inspect the TE files in domains/program, you likely won't find many role allow
declarations. They're generally created indirectly, by invoking M4 macros such
as the base_user_domain in macros/base_user_macros.te.

As an example, the rbac file contains the following role allow declaration:

allow sysadm_r system_r;

This declaration allows transition from the sysadm_r role to the system_r role.

If you inspect the policy.conf file, you can view policies after M4 macro
expansion. There, you're likely to see role allow declarations such as these:

allow staff_r sysadm_r;

allow sysadm_r staff_r;

allow sysadm_r user_r;

allow system_r staff_r;

allow system_r sysadm_r;

allow system_r user_r;

allow user_r sysadm_r;

Chapter 7. Type Enforcement
The preceding chapter explained role-based access control in SELinux. Role-
based access control is a secondary access control model that supplements the
primary SELinux access control model, type enforcement. This chapter
explains the syntax and meaning of SELinux policy declarations related to type
enforcement. The chapter concludes with an analysis of a small but typical
domain policy: the Fedora Core 2 policy for the ping domain, which resides in
the file ping.te.

7.1 The SELinux Type-Enforcement Model

As explained in Chapter 2, the SELinux type-enforcement model associates
each process with a domain and each nonprocess object with a type.[1]

Permissions define the operations that can be performed upon objects. Thus,
you can think of a domain as a set of related processes that share the same
permissions. For instance, the Apache web server process runs within the
httpd_t domain and therefore possesses the permissions associated with that
domain. The SELinux policy grants permissions to domains and specifies rules
for transitioning between domains.

[1] Recall that, in the context of SELinux, the words domain and type are synonymous; however,
it's customary to use domain in reference to processes and type in reference to nonprocess
objects.

Permissions are encoded as access vectors, which specify the operations that a
domain is authorized to perform on objects of a given type, such as files. Thus,
you can think of an object's type as implicitly referring to the set of rulesthat
is, the access vector that specify the permissible operations on the object. For
instance, access vector rules enable processes within the httpd_t domain to
write to the web server log files.

Under Linux, processes fork new processes when they execute programs. The
new process is called a child process and the process that forked the child
process is called a parent process. The child process may run within the same
domain as the parent. Alternatively, the SELinux policy may specify a new
domain to enter when the process is forked. Programs that can enter new
domains upon execution are called domain entry points. For instance, the init
run-control processes are associated with the initrc_t domain. However, when
the init process starts the web server process, the web server process does not
run in this domain. Instead, the web server process automatically transitions
to the httpd_t domain, as specified by the SELinux policy.

7.2 Review of SELinux Policy Syntax

As explained in Chapter 6, an SELinux policy consists of 11 elements, several
of which are optional:

classes

Defines the security object classes recognized by SELinux.

initial_sids

Defines initial SIDs for important security objects.

access_vectors

Defines access vectors associated with each security object class.

mls

Defines MLS configuration (optional).

te_rbac

Defines type-enforcement and role-based access control configuration.

users

Defines the user configuration.

constraints

Defines constraints that the security policy must observe (optional).

initial_sid_contexts

Defines the security contexts of important security objects.

fs_use

Defines the method of labeling of filesystem inodes.

genfs_contexts

Defines security contexts for filesystems lacking persistent labels
(optional).

net_contexts

Defines security contexts for network objects.

The te_rbac element specifies both the role-based access control policies and
the type-enforcement policies. Within the element, role-based access control
and type-enforcement declarations can be freely intermingled. The following
section explains the SELinux type-enforcement declarations.

7.3 Type-Enforcement Declarations

Type-enforcement (TE) declarations are of seven types:

attribute_def

Attribute declarations

type_def

Type declarations

typealias_def

Type alias declarations

bool_def

Boolean declarations

transition_def

Transition declarations

te_avtab_def

TE access vector table declarations

cond_stmt_def

Conditional statement declarations

7.3.1 Type Declarations

The SELinux policy language requires that all type names be explicitly defined.
In the simplest possible form, a type declaration merely defines a name as a
type. For instance, the type declaration:

type ping_t;

would mark ping_t as the name of a type. Type declarations need not precede
all statements that refer to the types they define; you can place type
declarations any place within a TE file.

Optionally, a type declaration may define one or more aliases for the type
name. Any alias associated with a type can be freely used in place of the
primary name of the type. A type declaration can also optionally associate one
or more attributes with the type name.

Figure 7-1 shows the syntax of a type declaration. As an example, the ping.te
file contains two type declarations:

type ping_t, domain, privlog;

type ping_exec_t, file_type, sysadmfile, exec_type;

The first declaration identifies ping_t as a type name, and associates the
attributes domain and privlog with the type name, marking the type as a domain
that communicates with the system log process. The second declaration
identifies ping_exec_t as a type name, and associates the attributes file_type,
sysadmfile, and exec_type with the type name, marking the type as one used to
identify executable files accessible by system administrators.

Figure 7-1. Type declaration (type_def)

To better understand how type attributes work with types, consider the
definition of the syslogd domain, which contains the following declarations:

allow privlog devlog_t:sock_file { ioctl read getattr lock write append };

allow privlog syslogd_t:unix_dgram_socket sendto;

allow privlog syslogd_t:unix_stream_socket connectto;

allow privlog devlog_t:lnk_file read;

Notice how the type attribute privlog is used in these declarations in the same
way that an actual type name might be used. Type attributes differ from types
in that type attributes generally appear in multiple domains, whereas each
type generally appears only in a single domain. You can think of a type
attribute as simply an abbreviation standing for a set of access vector rules.
You can associate these access vector rules with a type simply by binding the
type attribute with the type, just as the domain and privlog type attributes are
bound to the ping_t type.

The four allow declarations given earlier specify the range of permissible
operations associated with the privlog type attribute, specifically:

Perform various read and write operations on socket files having type
devlog_t.

Send data to datagram and stream sockets having type syslogd_t.

Read files and symbolic links having type devlog_t.

As you'd likely guess, the types devlog_t and syslogd_t are used to label system
log files, system log FIFOs, and the sockets used to communicate with the
syslog process.

The meanings of type attributes such as domain and privlog are not hardcoded in SELinux.
Instead, the meaning of a type attribute is determined by policy statements. Consequently,
the administrator of an SELinux system can create new type attributes or modify the
meaning of type attributes that appear in sample policies. If the administrator of an

SELinux system has added or modified many type attributes, it may be difficult to
determine their meanings, as doing so would involve reading all the policy declarations
related to each customized type attribute.

Fortunately, the set of type attributes defined in sample policies is rich, and system
administrators generally do not need, or choose, to extend or modify it substantially. And
most domain attributes have names that suggest their meaning. Appendix E, explained in
the upcoming section titled "Attribute Declarations," summarizes the meanings of principal
SELinux type attributes.

7.3.2 Type-Alias Declarations

As explained in the preceding section, a type declaration can optionally bind
one or more aliases to a type name. However, it's more common to use a
special type-alias declaration to establish such a binding. Figure 7-2 shows the
syntax of type-alias declarations.

Figure 7-2. Type-alias declaration (typealias_def)

Many M4 macros generate type alias declarations. However, a few TE files
contain explicit type-alias declarations. For instance, the cups.te file contains
the follow type-alias declaration:

typealias cupsd_etc_t alias etc_cupsd_t;

This declaration defines etc_cupsd_t as an alias for the type name cupsd_etc_t,
allowing the two names to be used interchangeably.

7.3.3 Attribute Declarations

A type attribute is a name that is bound to one or more types and used to

define a set of types sharing some property. For instance, a type attribute can
be used to designate the types (domains) that are allowed to read the system
log file.

Because type attributes can appear in allow declarations just as though they
were types, permissions can be granted by referring either to types or type
attributes. An allow declaration containing a type attribute refers to all types
associated with the type attribute. Thus, type attributes make it convenient to
specify policies that apply to multiple types. The relationship between types
and attributes is a many-to-many relationship; an indefinite number of types
can be associated with an attribute, and an indefinite number of attributes can
be associated with a type.

Type attributes are defined in the file attrib.te. Appendix E summarizes the
type attributes defined in the Fedora Core 2 implementation of SELinux.

Figure 7-3 shows the syntax of an attribute declaration, the SELinux policy
statement that defines a type attribute. As you can see, the syntax is quite
simple. A typical declaration is:

attrib admin;

This declaration identifies admin as an attribute. Appendix E explains that this
attribute is used to identify administrator domain domains that should be
available only to system administrators.

Figure 7-3. Attribute declaration (attribute_def)

Recall that the term domain refers to a type associated with a process.

7.3.4 TE Access-Vector Declarations

The permissions enforced by the SELinux security engine are held in kernel
data space in an object known as the TE access matrix. As explained in
Chapter 2, the TE access matrix includes four distinct access components,
called vectors:

allow

Operations that are allowed but are not logged

auditallow

Operations that are allowed and are logged when they occur

auditdeny

Operations that are denied and are logged when they are attempted

dontaudit

Operations that are denied, but are not logged when they are attempted

Each TE access vector contains TE access-vector rules. A TE access-vector rule
specifies permissible operationsbased on a source type, a target type, and a
security object class. Whenever an operation is attempted, the SELinux
security engine searches the access vectors for a rule matching the source
type, target type, and object class of the operation. If a matching rule is found,
the access vector containing the rule determines the action taken by SELinux.
For instance, if the matching rule resides in the allow access vector, the
operation is allowed. However, if the matching rule resides in another access
vector, or no matching rule exists, the operation is denied.

Figure 7-4 shows the syntax of access-vector rules. Notice that the diagram
shows what seems to be a fifth type of access-vector rule, represented by the
neverallow rule type. The neverallow rule defines constraints that the SELinux

policy must observe. The policy compiler checks for violations of these
constraints, and if it finds any violations, it terminates without producing a
binary policy file. You can add or subtract neverallow rules from the SELinux
policy. However, they're intended as a safety feature that prevents you from
generating a grossly insecure policy, so it's generally best not to disturb them.

Figure 7-4. TE access vector rule declaration
(te_avtab_def)

Each of the five forms of access vector rules contains four terms:

The source type or types; this is generally the type associated with the
process attempting to perform an operation.

The target type or types; this is generally the type associated with the
object that the process is attempting to manipulate.

The object class or classes to which the rule applies.

The permissions that the rule establishes.

The syntax of each of these terms is represented by the replaceable text
names, which was explained in Chapter 6 and represented in Figure 6-13.

Here's a sample allow declaration associated with the ping_t domain:

allow ping_t ping_exec_t:file { read getattr lock execute ioctl };

The rule created by this declaration allows processes running in the ping_t

domain to perform any of five operations (read, getattr, lock, execute, and ioctl)
on files labeled as belonging to the ping_exec_t domain.

If you check the ping.te file, you won't find this declaration there. Many access-vector
declarations, including this one, are created by expansion of M4 macros, such as the
domain_auto_trans macro explained later in this section.

The standard SELinux security policy includes fewer than six auditallow
declarations. Here's a sample declaration:

auditallow kernel_t security_t:security load_policy;

Recall that auditallow rules don't actually enable any operations. Therefore, this
rule is supplemented by an allow rule such as:

allow kernel_t security_t:security load_policy;

The allow rule authorizes processes running in the kernel_t domain (that is,
kernel processes) to perform the load_policy operation on security objects
labeled with the security_t domain. More plainly, the allow rule allows the kernel
to load an SELinux policy. The auditallow rule causes every such operation to
be logged when it is performed. Thus, the system log contains a record of
these important events.

The standard SELinux security policy does not include even one instance of an
auditdeny rule. Since the default action of SELinux is to forbid unauthorized
operations and make a log entry documenting the action, auditdeny rules are
not generally needed. However, so that you can see how auditdeny rules work,
here's a hypothetical auditdeny rule declaration:

auditdeny user_t security_t:security load_policy;

The rule created by this declaration forbids processes running in the user_t
domain from performing the load_policy operation on security objects labeled

with the security_t domain.

Here's a sample declaration of a dontaudit rule:

dontaudit ping_t var_t:dir search;

The rule created by this declaration suppresses log entries when processes in
the ping_t domain attempt to search a directory labeled with the var_t domain,
and are prohibited by the SELinux security engine from doing so.

It's somewhat common for programs to attempt operations on security-sensitive objects,
even though they don't need to do so. The dontaudit rule enables you to suppress such
operations and avoid cluttering the log with a flood of routine entries associated with them.

As explained, the neverallow rule type enforces constraints on the SELinux
security policy itself. It helps ensure the integrity of the policy, which might be
inadvertently weakened by well-intentioned but erroneous changes.
Operations forbidden by a neverallow constraint are prohibited even if a
conflicting allow rule exists within the SELinux security policy.

Here's a hypothetical neverallow constraint declaration:

neverallow domain file_type:process transition;

The constraint created by this declaration would prevent a process having the
domain attribute from transitioning to a type having the file_type attribute. The
constraint would prevent an errant policy modification that allowed a process
to be treated as a file, which might compromise system security.

7.3.4.1 Special notations for types, classes, and
permissions

The hypothetical neverallow constraint just given is effective but incomplete.
Ideally, we'd prohibit transitions from a domain type to any non-domain type,

not just every type marked as a file_type. A special notation associated with the
replaceable text names enables us to do so:

neverallow domain ~domain:process transition;

The constraint associated with this declaration forbids a process having the
domain type attribute from transitioning to a type not having that attribute. For
instance, the constraint prevents a malicious user from causing a process to
transition to a file or another nondomain object.

Notice that the target type is specified as ~domain. This notation, known as
complementation, provides a convenient means of referring to types that do
not possess a specified attribute. In this case, the declaration refers to types
that do not have the domain attribute. If complementation were not available,
we'd find it cumbersome to write a constraint such as this, since the constraint
would have to refer explicitly to every type that is not a domain. Many such
types might exist. Moreover, having added a new nondomain type to the
policy, we might neglect to modify the constraint appropriately. So
complementation provides an important convenience.

Another convenient notation is known as subtraction. Here's an example of a
constraint declaration that employs subtraction:

neverallow { domain -admin -anaconda_t -firstboot_t -unconfined_t -kernel_t

-load_policy_t } security_t:security load_policy;

The constraint created by this declaration prevents any domain other than
those listed with minus signs (admin, anaconda, firstboot_t, unconfined_t, kernel_t,
and load_policy_t) from performing the load_policy operation on a security object
having type security_t.

Occasionally, it's necessary to refer to all types, classes, or permissions. The
asterisk (*) can be used to do so, as in the following constraint declaration:

neverallow domain file_type:process *;

The constraint created by this declaration prohibits any type having the domain

attribute from performing any operation on processes having the file_type
attribute.

Here's a somewhat more interesting example that includes two instances of
the asterisk operator:

neverallow ~{ domain unlabeled_t } *:process *;

The constraint created by this declaration prevents types other than those
having attributes domain or unlabeled_t from performing any operation on
processes having any type.

Another special notation enables us to create rules where the target type is
the same as the source type. Here's an example:

neverallow {domain -admin -insmod_t -kernel_t -anaconda_t -firstboot_t -unconfined_t }

self:capability sys_module;

The rule created by this declaration applies to domains other than six specific
domains (admin, anaconda, firstboot_t, unconfined_t, kernel_t, and load_policy_t). It
prohibits these domains from performing the sys_module operation on capability
objects labeled with domains other than the source domain.

These special notations can be used with allow rules as well as neverallow rules.
For instance, consider the following rule:

allow sysadm_t self:process ~{ ptrace setexec setfscreate setrlimit };

This rule lets processes within the sysadm_t domain perform any operation on
processes running within that domain, with the exception of the operations
listed: ptrace, setexec, setfscreate, and setrlimit.

Table 7-1 summarizes the special notations used to specify types, classes, and
permissions.

Table 7-1. Special notations for specification of types, classes, and
permissions

Notation Description

*
All members

~
Complementation

-
Subtraction

self
Target type same as source type

In addition to special notations, macros can be used to specify types, classes, or
permissions. Appendix C summarizes a set of such macros, defined in the file
macros/core_macros.te.

It's not necessary to specify all authorized permissions in a single access-vector rule.
SELinux combines permissions pertaining to the same source type, target type, and object
class into a single access-vector rule that authorizes all specified operations.

7.3.4.2 Macros that specify and authorize
transitions

Two main types of rules govern transitions:

Type-transition rules

Specify transitions that occur when a new object, such as a process or file,
is created.

Access-vector rules

Authorize transitions.

Type-transition rules do not authorize the transitions they specify. That is,
they specify the transition that would occur, but don't actually give permission
for the transition to occur. An access-vector rule must authorize the transition,
or it will not be allowed to occur. Therefore, type transition and access vector
rules both must be specified for most transitions. To avoid the associated
tedium, several M4 macros conveniently generate type transition and access
vector rule declarations from a single line of policy source code. Generally, the
most useful of these macros are:

domain_auto_trans

Specifies and authorizes a transition related to the execution of a program
defined as a domain entry point.

file_type_auto_trans

Specifies and authorizes a transition related to file creation.

For instance, the ping.te file of the Fedora Core 2 SELinux implementation
invokes the domain_auto_trans macro three times:

domain_auto_trans(unpriv_userdomain, ping_exec_t, ping_t)

domain_auto_trans(sysadm_t, ping_exec_t, ping_t)

domain_auto_trans(initrc_t, ping_exec_t, ping_t)

The first invocation is executed conditionally, as explained in the next section.
The second and third invocations are executed unconditionally. Each
invocation defines a transition from a domain (unpriv_userdomain, sysadm_t, or
initrc_t) to the ping_t domain when a ping_exec_t executable is loaded. The
transition is also authorized by an access vector rule. For instance, the third
invocation expands to the following policy declarations:

type_transition initrc_t ping_exec_t:process ping_t;

allow initrc_t ping_t:process transition;

Here's an example of a typical use of the file_type_auto_trans macro, occurring
in the ftpd.te file of the Fedora Core 2 SELinux implementation:

file_type_auto_trans(ftpd_t, var_log_t, xferlog_t, file)

This macro invocation expands to the following policy declarations:

type_transition ftpd_t var_log_t:file xferlog_t;

allow ftpd_t var_log_t:dir rw_dir_perms;

allow ftpd_t var_log_t:file create_file_perms;

The file_type_auto_trans macro simplifies definition of the ftpd_t domain, by
using a one-line macro invocation to specify that:

When an ftpd_t process creates a file in a directory having type var_log_t
(such as /var/log), the file should be given the type xferlog_t. Thus, the FTP
logs /var/log/xferlog and /var/log/xferreport will be properly labeled when
created.

Any ftpd_t process can read and write var_log_t directories (that is, perform
any of the following operations associated with rw_dir_perms: read, getattr,
lock, search, ioctl, add_name, remove_name, and write).

Any ftpd_t process can create files within var_log_t directories (that is,
perform any of the following operations associated with create_file_perms:
create, ioctl, read, getattr, lock, write, setattr, append, link, unlink, and rename).

Occasionally, it's convenient to specify, but not authorize, a transition because
the transition is already authorized elsewhere in the policy file or in another
policy file. The following macros do so:

domain_trans

Specifies, but does not authorize, a transition related to execution of a

Specifies, but does not authorize, a transition related to execution of a
program defined as a domain entry point.

file_type_trans

Specifies, but does not authorize, a transition related to file creation.

7.3.5 Transition Declarations

A transition rule specifies the new domains for a process or the security
contexts for a newly created object, such as a file. Each transition rule has two
types: a source type and a target type. For a process, the source type is the
current domain of the process, and the target type is the type of the
executable file. For an object, the source type is the domain of the process
creating the object, and the target type is the type of a related object. For
instance, if the object is a file, the target type is the type of the file's parent
directory.

Figure 7-5 shows the syntax of type transitions. The railroad diagram contains
three instances of replaceable text, each having the syntax of the now-familiar
replaceable text names, originally described in Chapter 6 and represented in
Figure 6-13:

The source type or types

The target type or types

The object class or classes to which the transition rule applies

The diagram also includes the replaceable text new_type, which has the syntax
of the familiar replaceable text identifier. The replaceable text new_type
specifies the new type of the process or object.

Figure 7-5. Transition declarations
(transition_def)

Here's a typical type transition rule pertaining to a process:

type_transition sysadm_t ping_exec_t:process ping_t;

This rule affects the behavior of processes in the sysadm_t domain that execute
a program having type ping_exec_t. Executing such a program causes the
process to attempt to transition to the ping_t domain. I write attempt to
because SELinux does not authorize operations, including transitions, by
default. So if the transition is to succeed, an access-vector rule must authorize
it; otherwise, unless SELinux is operating in permissive mode, the SELinux
security engine will prohibit the transition.

Here's a typical type-transition rule pertaining to a file:

type_transition httpd_t var_log_t:file httpd_log_t;

This rule affects the behavior of processes in the httpd_t domain that create a
file having a parent directory of the var_log_t type. Such files are created with
the httpd_log_t type, unless the appropriate access vector rule does not exist.

The replaceable text identifier is always associated with a single identifier,
whereas the replaceable text names can be associated with multiple identifiers,
as shown in Figure 6-13. Because the railroad diagram refers to three
instances of names and one instance of identifierrather than four instances of
identifiera transition declaration can refer to multiple source types, target
types, or classes. Here's a typical rule that does so:

type_transition httpd_t tmp_t:{ file lnk_file sock_file fifo_file } httpd_tmp_t;

Like the preceding rule, this rule also affects the behavior or processes in the
httpd_t domain. When such a process creates a file, lnk_file, sock_file, or fifo_file
object having a parent object of type tmp_t, the new object receives the type
http_tmp_t, unless the appropriate access vector rule does not exist.

Because several sets of class names are commonly used, the file macros/
core_macros.te defines eight convenient M4 macros, described in Table 7-2.
Using the appropriate macro, the preceding type transition rule could be
written more compactly as:

type_transition httpd_t tmp_t:notdevfile_class_set httpd_tmp_t;

Table 7-2. Class name M4 macros
Macro Definition Description

devfile_class_set { chr_file blk_file }
Device file classes

dgram_socket_class_set { udp_socket unix_dgram_socket }
Datagram socket classes

dir_file_class_set { dir file lnk_file sock_file fifo_file chr_file blk_file }
Directory and file classes

file_class_set { file lnk_file sock_file fifo_file chr_file blk_file }
File classes except dir

notdevfile_class_set { file lnk_file sock_file fifo_file } File classes except dir and
device files (chr_file, blk_file)

socket_class_set { tcp_socket udp_socket rawip_socket netlink_socket
packet_socket unix_stream_socket unix_dgram_socket } Socket classes

stream_socket_class_set { tcp_socket unix_stream_socket }
Stream socket classes

unpriv_socket_class_set { tcp_socket udp_socket unix_stream_socket unix_dgram_socket
} Unprivileged socket classes

except raw IP socket class

7.3.6 Boolean Declarations

The Fedora Core 2 implementation of SELinux introduced a new feature:
Boolean declarations. A Boolean is a true-false value that can be tested by
policy statements. As explained in Chapter 4, the setbool command can set the
value of a Boolean. Booleans make it possible to tailor dynamically the
behavior of an SELinux policy.

Figure 7-6 shows the syntax of a Boolean declaration. The Fedora Core 2
SELinux policy defines one Boolean, user_ping:

bool user_ping false;

This Boolean controls nonprivileged user access to the ping and traceroute
commands. This control is implemented by conditional declarations included in
the ping.te and traceroute.te files, as explained in the next section.

Figure 7-6. Boolean declaration (bool_def)

7.3.7 Conditional Declarations

The declarations explained so far in this chapter have been unconditional
declarations. Recent implementations of SELinux, such as that included in
Fedora Core 2, also support conditional declarations. A simple conditional
declaration has two parts:

A Boolean expression that is evaluated when the security engine makes
policy decisions.

A declaration that takes effect only if the Boolean expression evaluates
true. The declaration is referred to as a subdeclaration, because it occurs
inside the conditional declaration.

A more sophisticated conditional declaration includes a Boolean expression and
two alternative subdeclarations. Depending on the result of dynamically
evaluating the Boolean expression, the declaration has the force of either of
the two subdeclarations.

Figure 7-7 shows the syntax of a conditional declaration. As the figure shows,
the syntax of the associated conditional expression (cond_expr) is rich. The
subdeclaration or subdeclarations have a familiar form, that of either a type
transition or access-vector declaration of the following kinds:

allow

auditallow

auditdeny

dontaudit

Although the railroad diagram in Figure 7-7 indicates that a subdeclaration can be an
auditdeny declaration, SELinux does not support such subdeclarations at the time of
writing. However, you can express equivalent policies by using one or more other
declaration types rather than an auditdeny.

Figure 7-7. Conditional statement declaration
(cond_stmt_def)

The conditional expression within a conditional statement declaration can use
any of six relational operators, summarized in Table 7-3.

Table 7-3. Relational operators
Symbol Description

&&
Logical AND

==
Logical equality

! Logical negation

!=
Logical inequality

||
Logical OR

^
Logical exclusive OR

Here's a sample conditional statement declaration, taken from the ping.te file
associated with the Fedora Core 2 implementation of SELinux:

if (user_ping) {

 domain_auto_trans(unpriv_userdomain, ping_exec_t, ping_t)

 # allow access to the terminal

 allow ping_t { ttyfile ptyfile }:chr_file rw_file_perms;

 ifdef(`gnome-pty-helper.te', `allow ping_t gphdomain:fd use;')

}

The user_ping conditional expression refers to a policy Boolean that indicates
whether nonprivileged users are authorized to use the ping and traceroute
commands, as explained earlier in this chapter. Only if the Boolean has the
value true do the subdeclarations have effect. The subdeclarations:

Authorize an automatic transition from a domain marked as an
unpriv_userdomain to the ping_t domain upon execution of a ping_exec_t
program.

Authorize the ping_t domain to access the user's TTY or PTY.

Invoke an M4 macro, ifdef, that conditionally allows the ping_t domain to
use file descriptions passed by the Gnome PTY helper (gphdomain) domain.

7.4 Examining a Sample Policy

Seeing the syntax of individual policy declarations is not the same as seeing
how they work together to establish a useful policy. In this section, we'll look
at the policy that governs the ping_t domain, and the related domain
ping_exec_t, as implemented in Fedora Core 2. Like most policies, this policy
resides in two files:

file_contexts/program/ping.fc

Specifies security contexts for files related to the domains.

domains/program/ping.te

Specifies the RBAC declarations related to the domains.

The ping.fc file has these contents:

ping

/bin/ping.* -- system_u:object_r:ping_exec_t

/usr/sbin/hping2 -- system_u:object_r:ping_exec_t

When the filesystems are labeled, these specifications cause ordinary files
matching the first regular expression /bin/ping.* to be labeled with the
security context system_u:object_r:ping_exec_t. Ordinary files matching the
second regular expression /usr/sbin/hping2 are also labeled with that security
context. The ping.te file is considerably longer than the ping.fc file, so we'll
analyze it a few lines at a time. The first several lines are merely comments:

#DESC Ping - Send ICMP messages to network hosts

#

Author: David A. Wheeler <dwheeler@ida.org>

X-Debian-Packages: iputils-ping netkit-ping iputils-arping arping hping2

#

#################################

#

Rules for the ping_t domain.

#

ping_t is the domain for the ping program.

ping_exec_t is the type of the corresponding program.

#

The comments point out that the domain has two associated types, ping_t and
ping_exec_t. Most domains have at least two types such as these: a type
synonymous with the domain (ping_t) and another type used for programs that
serve as entry points to the domain (ping_exec_t).

The next line identifies ping_t as a type and gives it the domain and privlog
attributes, marking the type as a domain that is authorized to communicate
with the system log process.

type ping_t, domain, privlog;

The next two lines identify two roles, sysadm_r and system_r, authorized to
access the ping_t domain:

role sysadm_r types ping_t;

role system_r types ping_t;

The next line invokes an M4 macro:

in_user_role(ping_t)

The macro definition resides in macros/user_macros.te. Its expansion
generates the declarations:

role user_r types ping_t;

role staff_r types ping_t;

These declarations extend the list of roles privileged to access the ping_t
domain. However, as we will see, the role statement is not enough to ensure
that ordinary users can execute a ping. A transition must also be authorized.

The next line defines the ping_exec_t type, marking it as a file type rather than
a domain:

type ping_exec_t, file_type, sysadmfile, exec_type;

The declaration also marks the type as related to an executable file that is
accessible to the system administrator.

The next line initializes a policy Boolean with the value false:

bool user_ping false;

This Boolean controls whether ordinary users are permitted to use the ping
command and related commands.

The next several lines compose a conditional declaration that affects policy
only if the policy Boolean user_ping has the value true:

if (user_ping) {

 domain_auto_trans(unpriv_userdomain, ping_exec_t, ping_t)

 # allow access to the terminal

 allow ping_t { ttyfile ptyfile }:chr_file rw_file_perms;

 ifdef(`gnome-pty-helper.te', `allow ping_t gphdomain:fd use;')

}

The conditional declaration uses an M4 macro to generate declarations
authorizing processes in unprivileged domains to automatically enter the ping_t
domain via execution of a ping_exec_t executable file. It also authorizes access
to the TTY or PTY and authorizes use of a file descriptor marked with the
gphdomain (Gnome PTY helper) attribute.

Access to the TTY or PTY file is granted through the ttyfile and ptyfile type
attributes. These attributes, defined in the file attrib.te, are associated with
the three types used to label all TTYs and PTYs: sysadm_tty_device_t,
staff_tty_device_t, and user_tty_device_t. For instance, the
macros/admin_macros.te file contains macros that expand upon invocation to
the following declaration:

type sysadm_tty_device_t, file_type, sysadmfile, ttyfile;

The declaration binds the type attribute ttyfile to the type sysadm_tty_device_t.
Thus, the allow declaration within the ping_t domain permits processes within
that domain to permit read and write operations on device files labeled
sysadm_tty_device_t.

The next several lines cause an automatic transition to the ping_t domain when
a sysadm_t or initrc_t process loads a ping_exec_t executable:

Transition into this domain when you run this program.

domain_auto_trans(sysadm_t, ping_exec_t, ping_t)

domain_auto_trans(initrc_t, ping_exec_t, ping_t)

Because these declarations are specified unconditionally, system
administrators and processes running under init can always ping.

The next several lines invoke M4 macros that generate declarations enabling
access to shared libraries, network resources, and use Network Information
Service (NIS) (also known as yp):

uses_shlib(ping_t)

can_network(ping_t)

can_ypbind(ping_t)

Most of the remaining lines extend specific permissions to processes in the
ping_t domain. First, such processes are allowed to get the attributes of and
read etc_t files:

allow ping_t etc_t:file { getattr read };

Such processes are also allowed to create Unix stream sockets:

allow ping_t self:unix_stream_socket create_socket_perms;

Likewise, such processes can create and perform several other operations on
raw IP sockets:

Let ping create raw ICMP packets.

allow ping_t self:rawip_socket { create ioctl read write bind getopt setopt };

Processes in ping_t can send and receive raw IP packets using any interface
and node:

allow ping_t netif_type:netif { rawip_send rawip_recv };

allow ping_t node_type:node { rawip_send rawip_recv };

Likewise, they can use the net_raw and setuid capabilities.

Use capabilities.

allow ping_t self:capability { net_raw setuid };

Finally, they can access the terminal:

Access the terminal.

allow ping_t admin_tty_type:chr_file rw_file_perms;

ifdef(`gnome-pty-helper.te', `allow ping_t sysadm_gph_t:fd use;')

allow ping_t { userdomain privfd kernel_t }:fd use;

Two additional declarations avoid cluttering the system log with useless
chatter resulting from failed attempts to get filesystem attributes and search
var_t directories:

dontaudit ping_t fs_t:filesystem getattr;

dontaudit ping_t var_t:dir search;

Exactly why ping wants to perform these operations isn't clear; presumably
study of its source code would disclose the reason. But ping seems to work fine
even when it is prohibited from performing these operations, so, consistent
with the principle of least privilege, we choose not to enable them.

ping isn't alone in attempting unnecessary operations; quite a few programs do so. It's
best to determine experimentally whether failed operations are really needed, rather than
give a program free rein by enabling every operation it attempts.

The ping.te file, which contains 57 lines, is actually a bit longer than the
median TE file size of 54 lines. So if you understand it, you're likely to
experience no significant difficulty in understanding all but the most complex
TE files. In Chapter 9we move on to consider how to modify existing policies

and create policies of your own.

Chapter 8. Ancillary Policy Statements
The most important SELinux policy statement typesrole-based access control
and type enforcement statementswere explained in the two preceding
chapters. However, a typical SELinux policy contains several other statement
types that the administrator of an SELinux system may want to understand.
This chapter explains these statement types, including constraint declarations,
context-related declarations, and Flask-related declarations. Most
administrators will seldom need to refer to the material in this chapter, since
these statement types are primarily important to SELinux developers rather
than SELinux system administrators. However, occasionally a policy
modification will fail because it violates a policy constraint. At these times, an
understanding of policy constraint declarations is helpful.

8.1 Constraint Declarations

SELinux policy constraint declarations superficially resemble the constraints
implemented via neverallow rules. However, they support a richer language for
specifying constraints and, at the same time, have a narrower purpose:
constraint declarations restrict the permissions that can be granted by an
access-vector rule.

Figures Figure 8-1 through Figure 8-5 show the statement syntax, which is
relatively complex. Fortunately, it's unusual for a system administrator to
need to modify the constraint declarations supplied by a sample SELinux
policy.

Figure 8-1. Constraint declaration

Figure 8-2. Syntax of cexpr

Figure 8-3. Syntax of cexpr_prim

Figure 8-4. Syntax of user_names

Figure 8-5. Syntax of cnames

Constraint declarations impose restrictions on access-vector rules. Therefore,
constraint declarations and access-vector rules share some syntactic elements.
In particular, recall that access-vector rules involve two security contexts: a
source context and a target context. In constraint declarations, you can refer
to these contexts by using the special tokens summarized in Table 8-1.

Table 8-1. Special tokens used in constraint declarations
Token Description

u1
User given in source context

u2
User given in target context

r1
Role given in source context

r2
Role given in target context

t1
Type given in source context

t2
Type given in target context

Constraints declarations reside in the file constraints. Only a handful of
constraints appear within the sample SELinux policies distributed with

SELinux. For instance, the Fedora Core 2 implementation defines two
constraints that restrict the ability to transition between user and role
identities:

constrain process transition

 (u1 == u2

 or (t1 == privuser and t2 == userdomain)

 or (t1 == crond_t and t2 == user_crond_domain)

 or (t1 == userhelper_t)

 or (t1 == priv_system_role and u2 == system_u)

);

constrain process transition

 (r1 == r2

 or (t1 == privrole and t2 == userdomain)

 or (t1 == crond_t and t2 == user_crond_domain)

 or (t1 == userhelper_t)

 or (t1 == priv_system_role and r2 == system_r)

);

The first constraint allows these identity changes to occur only if one of the
following circumstances exists:

The user identity is unchanged.

The source type has the privuser attribute and the target type has the
userdomain attribute.

The source type is crond_t and the target type has the attribute
user_crond_domain (only the domains user_crond_t and sysadm_crond_t have
this attribute).

The source type is userhelper_t.

The source type has the priv_system_role attribute and the target user is
system_u.

The priv_system_role attribute indicates domains that change role from a
user role to system_r or change identity from a user identity to system_u.

The second constraint operates analogously but constrains changes of role
rather user identity. These constraints are intended to allow only safe
transitions between user identities and roles. Hence, with only the few
identified exceptions, only privileged users can transition to new identities or
roles.

The policy of Fedora Core 2 also defines two constraints that restrict the ability
to label objects with a user identity other than the current identity:

constrain { dir file lnk_file sock_file fifo_file chr_file blk_file }

{ create relabelto relabelfrom }

 (u1 == u2 or t1 == privowner);

constrain { tcp_socket udp_socket rawip_socket netlink_socket packet_socket

unix_stream_socket unix_dgram_socket }

{ create relabelto relabelfrom }

 (u1 == u2 or t1 == privowner);

The first constraint restricts create, relabelto, and relabelfrom permissions over
seven classes of file-like objects (dir, file, lnk_file, sock_file, fifo_file, chr_file, and
blk_file). The operations are permitted only if they do not alter the user

identity or the source type has the attribute privowner. The second constraint
operates similarly but restricts operations over seven classes of network-
related objects, rather than file-like objects.

Because constraints currently play a small role in typical SELinux policies, you likely don't
need to understand them in complete detail. It's enough that you understand their
function, which is to prevent certain changes to security contexts.

8.2 Other Context-Related Declarations

The SELinux policy language includes several declaration types that establish
contexts for various objects:

Objects having initial SIDs

Filesystems supporting persistent labels

Filesystems not supporting persistent labels

Network-related objects

Some filesystems, such as ext2 and ext3, provide space in which SELinux can
store persistent file labels. However, some filesystems do not have this
capability. So that even uncooperative filesystems can be used with SELinux,
SELinux lets you specify static labels that are applied to files within such
filesystems.

The following subsections describe these declarations.

8.2.1 Syntax of Initial SID Context Declarations

Figure 8-6 shows the syntax of initial SID context declarations, which are used
to specify the security context of objects having initial SIDs.

Figure 8-6. Initial SID context declaration

The example SELinux policy typically includes a bit more than two dozen initial
SID declarations. A typical declaration is:

sid kernel system_u:system_r:kernel_t

This declaration assigns the security context system_u:system_r:kernel_t to the
kernel object. In general, it's not possible to change or add an initial SID
declaration without making corresponding changes to SELinux itself, so
changes and additions are generally made only by SELinux developers rather
than system administrators.

8.2.2 Syntax of Filesystem Labeling Declarations

When an SELinux system mounts a filesystem, SELinux must determine
whether the filesystem supports persistent labels. If so, SELinux processes the
persistent labels according to the options specified in three types of
declaration:

fs_use_xattr

Specifies options for conventional filesystems.

fs_use_task

Specifies options for pseudofilesystems associated with pipe and socket
objects.

fs_use_trans

Specifies options for pseudofilesystems associated with RAM disk devices,
pseudoterminals, and shared memory objects.

Figure 8-7 shows the syntax for all three types of declarations.

Figure 8-7. Filesystem labeling declaration

The identifier appearing in the syntax diagram denotes the filesystem type.
Typical values include the following:

devpts

Pseudoterminal filesystem

ext2

Linux Ext2 filesystem

ext3

Linux Ext3 filesystem

pipefs

Pseudofilesystem associated with a pipe

shm

Pseudofilesystem associated with a shared memory object

sockfs

Pseudofilesystem associated with a socket

tmpfs

Pseudofilesystem associated with a memory-resident filesystem

xfs

Linux Xfs filesystem

Some typical filesystem labeling declarations appearing in sample policies
include:

fs_use_xattr ext2 system_u:object_r:fs_t;

fs_use_xattr ext3 system_u:object_r:fs_t;

fs_use_xattr xfs system_u:object_r:fs_t;

fs_use_task pipefs system_u:object_r:fs_t;

fs_use_task sockfs system_u:object_r:fs_t;

fs_use_trans devpts system_u:object_r:devpts_t;

fs_use_trans tmpfs system_u:object_r:tmpfs_t;

fs_use_trans shm system_u:object_r:tmpfs_t;

Thus, ext2, ext3, and xfs filesystems store file labels in their extended attribute
space (fs_use_xattr); pipefs and sockfs filesystems use the special facility for pipe
and socket pseudofilesystems (fs_use_task); and devpts, tmpfs, and shm
filesystems use the special facility for pseudoterminal, memory-resident, and
shared-memory filesystems (fs_use_trans).

8.2.3 Syntax of Genfs Declarations

For filesystems not supporting persistent labels, SELinux behavior can be
specified using Genfs declarations. Figure 8-8 shows the syntax of such

declarations, which resembles the syntax used in FC (file context) files, with
two differences:

The declaration begins with the keyword genfscon.

The genfscon keyword is followed by an identifier giving the filesystem type.

Figure 8-8. Genfs declaration

The replaceable text path gives the mount point of the filesystem. More
precisely, it gives a prefix for the mount point, since any directory below the
specified directory is considered to match the declaration. Specifying /nfs
matches any filesystem mounted at /nfs or any subdirectory of /nfs, and
specifying / matches any mounted filesystem. When multiple declarations
match an actual mount point, the longest matching declaration is used, and
the others are ignored.

The optional identifier, which is preceded by a hyphen (-), also can be used to
restrict the type of files to which the declaration applies. File types are
specified using the codes displayed by the ls command; for instance, use -c to
specify that the declaration applies only to character device files, or use -b to
specify that the declaration applies only to block device files .

Genfs declarations reside in the genfs_contexts file, which contains about three
dozen declarations in the example SELinux policy. These declarations assign
security contexts to filesystems having types such as the following:

autofs
bdev
cifs
cramfs
eventpollfs
fat
futexfs
iso9660

msdos
nfs
nfsd
ntfs
proc
ramfs
romfs
rootfs
rpc_pipefs
selinuxfs
smbfs
sysfs
usbdevfs
usbfs
vfat

For example, a typical declaration assigning a security context to files residing
on an nfs filesystem mounted somewhere below the root (/) directory is:

genfscon nfs / system_u:object_r:nfs_t

The related type nfs_t is defined in the file types/nfs.te. The proc filesystem
receives special attention in the genfs_contexts file. Over one dozen of the
entries in the file pertain to that filesystem.

8.2.4 Syntax of Network Declarations

Recent releases of SELinux support labeling of network objects, including
ports, network interfaces, hosts (nodes), and received packets. This is useful in
implementing the principle of least privilege, by restricting users and processes
from unnecessarily accessing network objects. The labeling is specified by
network declarations residing in the file net_contexts. Figure 8-9 shows the
related syntax, which includes three declaration types:

portcon

Specifies the security context of a port.

netifcon

Specifies the security context of a network interface and the security
context of packets it received.

nodecon

Specifies the security context of a host (node).

Figure 8-9. Network declaration

8.2.4.1 Portcon declarations

Portcon declarations specify security contexts of local ports. Here is a typical
portcon declaration:

portcon tcp 80 system_u:object_r:http_port_t

The declaration assigns the security context system_u:object_r:http_port_t to port
TCP/80. The related type http_port_t is defined in the file
domains/program/apache.te by the declaration

type http_port_t, port_type;

An access-vector rule such as the following can restrict access to the port:

allow httpd_t { http_port_t http_cache_port_t }:tcp_socket name_bind;

This rule allows only the httpd_t domain to perform the name_bind operation on
port TCP/80; thus, other domains are prohibited from binding to the port.

8.2.4.2 Netifcon declarations

Netifcon declarations specify security contexts of network interfaces. Here is a
typical netifcon declaration:

netifcon eth0 system_u:object_r:netif_eth0_t system_u:object_r:netmsg_eth0_t

Notice that the declaration specifies two security contexts. The first security
context pertains to the network interface itself, eth0. The second security
context pertains to packets received on the network interface.

An access vector rule such as the following can restrict access to the network
interface or packets received on it:

allow vmware_t netif_eth0_t:netif rawip_send;

This rule allows the vmware_t domain to send raw IP traffic with the eth0
interface.

8.2.4.3 Nodecon declarations

Nodecon declarations specify security contexts of hosts. Here is a typical
nodecon declaration:

nodecon 127.0.0.1 255.0.0.0 system_u:object_r:node_lo_t

This declaration binds the security context system_u:object_r:node_lo_t to hosts
having IP addresses 127.0.0.1 and netmask 255.0.0.0 that is, the local or
loopback host.

The sample policy related to nodecon declarations is relatively immature. For instance, the
policy distributed with Fedora Core 2 includes no access vector rules related to types
bound to hosts by nodecon declarations.

8.3 Flask-Related Declarations

The flask directory contains several files that are part of the SELinux policy:

security_classes

Specifies the SELinux security classes.

initial_sids

Specifies the initial SIDs.

access_vectors

Specifies the permissions includes in access vectors.

The following subsections explain the syntax of declarations residing in these
files. Generally, only SELinux developers should change these declarations.
However, administrators may find it helpful to understand these files and the
declarations they contain.

8.3.1 Syntax of security_classes

The flask/security_classes file specifies the security classes handled by
SELinux. Entries in the file have the syntax shown in Figure 8-10. A class
declaration contains only the keyword class and an identifier giving the class
name.

Figure 8-10. Flask class declaration

The example policy defines between two and three dozen classes. Here is a
typical class declaration:

class security

Appendix A summarizes the standard security object classes.

8.3.2 Syntax of initial_sids

The flask/initial_sids file specifies the symbols corresponding to initial SIDs.
Entries in the file have the syntax shown in Figure 8-11, consisting of the
keyword sid and an identifier naming the SID.

Figure 8-11. Flask initial SID declaration

The sample policy defines a few more than two dozen initial SIDs. A typical
SID declaration follows:

sid kernel

Don't confuse the flask/initial_sids file and its sid declarations with the sid declarations
residing in the initial_sid_contexts file. The former declarations include no security context,
whereas the latter declarations do.

8.3.3 Syntax of access_vectors

The flask/access_vectors file specifies the form of SELinux access vectors.

Declarations in the flask/access_vectors file have the forms given in Figure 8-
12 and 8-13. The common declaration, shown in Figure 8-12, is used to define
access vector components common to multiple classes. The sample policy
includes several such declarations. A typical common declaration is:

Figure 8-12. Common declaration

common file

{

 ioctl

 read

 write

 create

 getattr

 setattr

 lock

 relabelfrom

 relabelto

 append

 unlink

 link

 rename

 execute

 swapon

 quotaon

 mounton

}

This declaration specifies the permissions associated with file-like objects.

A second type of declaration, class, specifies the permissions associated with a
class. Figure 8-13 shows the related syntax. The sample policy specifies
between two and three dozen sets of permissions, one for each class.

Figure 8-13. Access vector declaration

Within a class declaration, permissions can be enumerated directly, inherited
from a common declaration, or both. For example, the class filesystem
enumerates its permissions:

class filesystem

{

 mount

 remount

 unmount

 getattr

 relabelfrom

 relabelto

 transition

 associate

 quotamod

 quotaget

}

The lnk_file class, on the other hand, inherits all its permissions from the
common declaration named file:

class lnk_file

inherits file

The dir class both enumerates and inherits permissions:

class dir

inherits file

{

 add_name

 remove_name

 reparent

 search

 rmdir

}

Appendix B summarizes the operations that appear in SELinux access vectors.

Chapter 9. Customizing SELinux Policies
Chapter 8 explained the syntax and operation of the statements that make up
the SELinux policy language. This chapter explains how to customize SELinux
policies. It begins by reviewing the structure of the SELinux policy source tree
and the Makefile that's used to compile, build, and load an SELinux policy. The
chapter then explains several typical policy customizations of the sort you're
most likely to perform. Most often, you'll use customizations recommended by
the Audit2allow program. However, you'll need to carefully review such
recommendations rather than blindly implement them. Otherwise, you may
extend an unnecessarily broad set of permissions, thereby compromising
system security. The chapter concludes with descriptions of some policy
management tools, along with hints and procedures for using them.

9.1 The SELinux Policy Source Tree

Chapter 5 explained the structure of the SELinux policy source tree. The
source tree typically resides in the directory /etc/security/selinux/src/policy;
however, your SELinux distribution may place it elsewhere. Table 9-1 recaps
the structure of the policy source tree. You'll likely find it convenient to refer
to this table as you read this chapter; it will help you locate the file that
contains a particular type of declaration, the file to which you should add a
particular type of declaration, or the directory in which you should create the
file to hold a particular type of declaration. In other words, it's your roadmap
to the policy source tree.

Table 9-1. The SELinux policy source tree
Directory/file Description

appconfig/* Defines contexts for special applications, such as init.

assert.te Defines TE assertions.

attrib.te Defines type attributes.

constraints Defines Boolean constraints on permissions.

domains/admin.te Defines administrative domains.

domains/misc/* Defines miscellaneous domains, such as the kernel_t domain.

domains/program/* Defines domains for specific programs.

domains/user.te Defines user domains.

file_contexts/misc Defines security contexts of miscellaneous domains.

file_contexts/program/* Defines security contexts for files related to specific programs.

file_contexts/types.fc Defines security contexts applied when the security policy is installed.

flask/*
Contains files such as security_classes, initial_sids, and access_vectorsthat define
basic Flask elements and their characteristics. Generally, only SELinux developers
modify the contents of this directory.

fs_use Defines the labeling behavior for specific filesystem types.

genfs_contexts Defines security contexts for filesystem types not supporting persistent labels or
that use a fixed labeling scheme.

initial_sid_contexts Defines the security context for each initial SID. Generally, only SELinux
developers modify the contents of this file.

macros/admin_macros.te Defines macros used in specifying administrative domains.

macros/base_user_macros.te Defines rules and types related to an ordinary user domain.

macros/core_macros.te Defines core TE macros.

macros/global_macros.te Defines macros used throughout the policy.

macros/mini_user_macros.te Defines macros used in specifying very simple user domains.

macros/program/* Defines macros used to specify derived domains that support policy separation
among multiple instances of a single program.

macros/user_macros.te Defines macros used in specifying user domains.

Makefile Supports common administrative operations, as explained in the section of this
chapter titled "Using the SELinux Makefile."

mls Defines the MLS configuration.

net_contexts Defines the security contexts of network objects.

policy.?? The policy binary file; for example, policy.17.

policy.conf The policy source file, assembled under control of the Makefile, from the
component sources.

rbac Defines the RBAC (Role-Based Access Control) configuration.

serviceusers Defines users related to specific services (Fedora Core).

tmp/* A working directory used during policy compilation. The Makefile assembles the
component files of the TE configuration into the file tmp/all.te.

tunable.te Provides tweakable macro definitions for tuning the policy (Fedora Core).

types/* Contains files defining general types types not associated with a particular
domain and related rules.

users Defines the users.

9.2 On the Topics of Difficulty and Discretion

The SELinux source policy is a sophisticated software system. It includes
dozens of object classes, scores of defined permissions, more than 1,000 type
transitions, thousands of object instances, and tens of thousands of access-
vector rules. You can think of the source policy as a computer program and the
security engine as a CPU that executes the translated binary form of this
program. So customizing the SELinux policy is akin to performing software
maintenance on a program consisting of tens of thousands of noncomment
source lines.

9.3 Using the SELinux Makefile

After you modify a policy source file, you must recompile the policy sources
and load the translated binary policy into the kernel. These and other common
administrative functions are performed by using the SELinux Makefile, which
typically resides in /etc/security/selinux/src/policy. Chapter 4 introduced the
SELinux Makefile. Table 9-2 recaps the six operations the Makefile provides.

Table 9-2. SELinux Makefile operations
Operation Description

policy
Compile the policy sources, but do not create a new policy binary.

install
Compile the policy sources and createbut do not load a new policy binary (default).

load
Compile, create, and load a new binary policy.

reload Compile and create a new binary policy if the policy sources have been recently modified; load the new
binary policy.

clean
Delete temporary files created during policy compilation.

relabel
Relabel filesystems.

To perform an operation using the Makefile, move to the directory containing
it. Then, issue the command:

make operation

where operation is one of the six operations described in Table 9-2. For
example, to compile, create, and load a new binary policy, issue the command:

make load

To reload the current policy, issue the command:

make reload

If the policy sources have been modified since the binary policy file was
created, invoking make will also compile the policy sources and create a new
binary policy file.

9.4 Creating an SELinux User

By default, only three SELinux users are defined:

root

Used by the system administrator

system_u

Used by system processes and objects

user_u

Used by generic users having no specific SELinux user identity

Unless your system has many users, you should generally create a specific
SELinux user identity for each human user who will log in and use your
SELinux system. To do so, modify the file users in the policy source directory.

9.4.1 Adding a System Administrator

It's important to add an SELinux user identity for each user who administers
the system; otherwise, the user will be unable to transition to the sysadm_r
role. To specify a user as a system administrator, add a declaration having the
following form:

user wheel roles staff_r sysadm_r;

where wheel is the name of the user account. For example, to declare the user
bill as an administrative user, add the following declaration:

user bill role staff_r sysadm_r;

The Fedora Core implementation of SELinux provides a feature that enables a
system administrator to launch daemons without using the run_init program.
As a result, user declarations under Fedora Core are slightly different, taking
the form:

user wheel roles { staff_r sysadm_r ifdef(`direct_sysadm_daemon', `system_r') };

The direct_sysadm_daemon M4 macro, which implements the feature, can be
enabled or disabled by tweaking the file tunable.te. The feature is enabled by
default. If the feature is enabled, the expanded macro gives the declaration
the following form:

user wheel roles {staff_r sysadm_r system_r};

which associates the user with the role system_r, as well as the two roles staff_r
and sysadm_r.

The convenience provided by the direct_sysadm_daemon macro comes at the price of
decreased system security. Unless you highly value the convenience provided by the
macro, you should disable it in the same way direct_sysadm_daemon can be disabled.

9.4.2 Adding an Ordinary User

If the user to be added is not a system administrator, add a declaration having
the following form:

user pleb roles user_r;

where pleb is the name of the user account. For example, to declare the user
patrick as an ordinary user, add the following declaration:

user patrick role user_r;

The Fedora Core implementation of SELinux provides a feature that enables
ordinary users to become system administrators. As a result, user declarations
under Fedora Core are slightly different, taking the form:

user pleb roles { user_r ifdef(`user_canbe_sysadm', `sysadm_r system_r') };

The user_canbe_sysadm M4 macro, which implements the feature, can be
enabled or disabled by tweaking the file tunable.te. By default, the feature is
enabled. If the feature is enabled, the expanded macro gives the declaration
the following form:

user pleb roles { user_r sysadm_r system_r };

which associates the user with the roles sysadm_r and system_r as well as the
role user_r.

Unless you highly value the convenience provided by the user_canbe_sysadm macro, you
should disable it, by prefixing the appropriate line in tunable.te with the M4 comment
token, dnl.

9.5 Customizing Roles

The SELinux RBAC associates roles with users and domains. A given user is
authorized only for specific roles, and a given role is authorized only for
specific domains. Thus, a user cannot enter a domain unless the user is
associated with a role authorized for the domain.

By default, the SELinux policy defines four roles:

staff_r

Used by users authorized to transition to the sysadm_r role

sysadm_r

Used by the system administrator

system_r

Used by system processes and objects

user_r

Used by ordinary users, who are not authorized to transition to the
sysadm_r role

The fact that many system processes and objects share the system_r role does not mean
that SELinux violates the principle of least privilege. Processes and objects generally have
discrete types that determine the operations that they can perform and that can be
performed on them. As commonly used, roles don't authorize operations; instead they
limit the types available to a process or object.

These roles are defined, and associated with users, by the user declarations
appearing in the users file.

The Fedora Core SELinux policy defines two additional roles:

cyrus_r

Used by the Cyrus IMAP daemon

mailman_r

Used by the GNU mailing list manager application, Mailman

A role is defined by a role declaration that associates it with a domain. If
multiple declarations associate a single role with multiple domains, the role is
authorized to enter each of the domains specified. By convention, role
declarations are not centralized in a single file; instead, the role declarations
for a given domain generally appear in the TE file associated with the domain.

It's generally not necessary to create a new SELinux role. However, it's often
necessary to authorize one of the predefined roles to enter a particular
domain, particularly a customized domain. To do so, add a role declaration to
the TE file associated with the domain. The declaration should have the form:

role role_name types domain_name;

where role_name is the name of the role, and domain_name is the name of the
domain the role is to be authorized to enter. As explained, you can specify any
number of role declarations for a given role.

9.6 Adding Permissions

At this point in the development of SELinux, it's common for policies to contain
small bugs that cause operations to fail when applications or programs are
used in unusual ways unanticipated by policy developers. As an SELinux
administrator, one of the most frequent SELinux policy customizations you're
likely to perform is adding permissions to coax the security engine into
accepting an operation. Let's consider an actual situation based on Fedora Core
2's SELinux implementation and see how it's resolved. The procedure we'll
follow isn't the only procedure or best procedure. Creating new policies
typically entails a generous dollop of troubleshooting, which tends to be
relatively unstructured. So rather than see our procedure as the universal
norm, you should see it as merely an illustrative example.

Though unfamiliar to many, the Nmap program is a popular tool among those
concerned with security that provides many useful functions. For instance,
using Nmap, you can determine the ports on which a network host is listening
and what service is running on each open port.

Suppose you install and run Nmap and obtain the following error message:

nmap -sT 127.0.0.1

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-06-01 17:23 UTC

Unable to find nmap-services! Resorting to /etc/services

It seems that Nmap is unable to read the nmap-services file. Checking the
system log, you find that SELinux recently logged eight denial messages:

avc: denied { read } for pid=8682 exe=/usr/bin/nmap name=urandom dev=dm-0

ino=306563 scontext=root:sysadm_r:traceroute_t
tcontext=system_u:object_r:urandom_

device_t tclass=chr_file

avc: denied { read } for pid=8682 exe=/usr/bin/nmap name=random dev=dm-0

ino=301298 scontext=root:sysadm_r:traceroute_t tcontext=system_u:object_r:random_

device_t tclass=chr_file

avc: denied { read } for pid=8682 exe=/usr/bin/nmap name=urandom dev=dm-0

ino=306563 scontext=root:sysadm_r:traceroute_t
tcontext=system_u:object_r:urandom_

device_t tclass=chr_file

avc: denied { read } for pid=8682 exe=/usr/bin/nmap name=random dev=dm-0

ino=301298 scontext=root:sysadm_r:traceroute_t tcontext=system_u:object_r:random_

device_t tclass=chr_file

avc: denied { read } for pid=8682 exe=/usr/bin/nmap name=localtime dev=dm-0

ino=32810 scontext=root:sysadm_r:traceroute_t tcontext=system_u:object_r:locale_t

tclass=file

avc: denied { search } for pid=8682 exe=/usr/bin/nmap name=root dev=dm-0

ino=262145 scontext=root:sysadm_r:traceroute_t
tcontext=root:object_r:staff_home_dir_

t tclass=dir

avc: denied { read } for pid=8682 exe=/usr/bin/nmap name=nmap-services dev=dm-4

ino=231156 scontext=root:sysadm_r:traceroute_t tcontext=system_u:object_r:usr_t

tclass=file

avc: denied { search } for pid=8682 exe=/usr/bin/nmap name=policy dev=dm-0

ino=49161 scontext=root:sysadm_r:traceroute_t
tcontext=system_u:object_r:policy_src_t

tclass=dir

Notice that Nmap runs in the domain traceroute_t; we'll use that information
later. For now, focus on the seventh message, which is next to last. This
message shows that the security engine denied read access to the nmap-
services file. However, the message gives only the base filename, not the full
path. You can find the location of the file by using the locate command:

locate nmap-services

/usr/share/nmap/nmap-services

Next, double check the security context of the file:

ls -Z /usr/share/nmap

-rw-r--r-- root root system_u:object_r:usr_t nmap-os-fingerprints

-rw-r--r-- root root system_u:object_r:usr_t nmap-protocols

-rw-r--r--+ root root system_u:object_r:usr_t nmap-rpc

-rw-r--r-- root root system_u:object_r:usr_t nmap-service-probes

-rw-r--r-- root root system_u:object_r:usr_t nmap-services

The security context, system_u:object_r:usr_t, agrees with that shown in the log
message. Apparently, the traceroute_t domain does not have permission to read
files in the security context system_u:object_r:usr_t, including the nmap-services
file.

Now that we understand the problem, let's fix it. We could give the traceroute_t
domain read access to the system_u:object_r:usr_t security context by adding the
following declaration to the SELinux policy:

allow traceroute_t usr_t:file { read };

However, adding this declaration would enable access to files other than

nmap-services and might compromise system security. We need a more
focused fix.

Let's examine the FC file for the traceroute_t domain,
file_contexts/program/traceroute.fc:

traceroute

/bin/traceroute.* -- system_u:object_r:traceroute_exec_t

/usr/(s)?bin/traceroute.* -- system_u:object_r:traceroute_exec_t

/usr/bin/lft -- system_u:object_r:traceroute_exec_t

/usr/bin/nmap -- system_u:object_r:traceroute_exec_t

Notice that the only security context referenced in the FC file is
system_u:object_r:traceroute_exec_t. This context is used to label the Nmap
executable and other executable files. So, it doesn't seem to be an appropriate
security context for the nmap-services file. However, it does seem appropriate
to label the file with a security context based on the domain type traceroute_t.
Let's add the following line to the FC file:

/usr/share/nmap.* system_u:object_r:traceroute_t

This line should cause the /usr/share/nmap directory and the files it contains
to be labeled with the security context system_u:object_r:traceroute_t. To relabel
the directory, issue the commands:

make load

setfiles file_contexts/file_contexts /usr/share/nmap

Next, double check the result of the relabeling, which turned out okay:

ls -Z /usr/share/nmap

-rw-r--r-- root root system_u:object_r:traceroute_t nmap-os-fingerprints

-rw-r--r-- root root system_u:object_r:traceroute_t nmap-protocols

-rw-r--r--+ root root system_u:object_r:traceroute_t nmap-rpc

-rw-r--r-- root root system_u:object_r:traceroute_t nmap-service-probes

-rw-r--r-- root root system_u:object_r:traceroute_t nmap-services

Now, retry the command:

nmap -sT 127.0.0.1

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-06-01 17:46 UTC

Unable to find nmap-services! Resorting to /etc/services

Again, the command fails. Checking the log, we find a relevant AVC message:

avc: denied { search } for pid=8753 exe=/usr/bin/nmap name=nmap dev=dm-4
ino=100533

scontext=root:sysadm_r:traceroute_t tcontext=system_u:object_r:traceroute_t
tclass=dir

We've made progress, but we haven't yet resolved the problem. Now, we've
run afoul of the traceroute_t domain, lacking permission to search the
/usr/share/nmap directory. Often it's convenient to avoid this sort of step-by-
step discovery of successive problems by running the system in permissive
mode. But since the system is attached to the Internet, we prefer to continue
running in enforcing mode. We could temporarily take the system offline, but
that could be inconvenient for some users. So we choose to continue as we've
begun.

Let's authorize the traceroute_t domain to search traceroute_t directories. To do
so, add the following line to the domains/program/traceroute.te file:

allow traceroute_t traceroute_t:dir { search };

After adding the line, load the revised policy and retry Nmap, which again
fails:

make load

nmap -sT 127.0.0.1

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-06-01 17:46 UTC

Unable to find nmap-services! Resorting to /etc/services

This time, the log shows that Nmap was again prohibited from reading the
nmap-services file but that the file is correctly labeled with the new security
context:

avc: denied { read } for pid=8822 exe=/usr/bin/nmap name=nmap-services dev=dm-4
ino=231156 scontext=root:sysadm_r:traceroute_t
tcontext=system_u:object_r:traceroute_t tclass=file

Apparently, the traceroute_t domain isn't authorized to read traceroute_t files. So
we must add another line to traceroute.te, one authorizing the traceroute_t
domain to read its own files:

allow traceroute_t traceroute_t:file { read };

Again, load the new policy and retry Nmap. This time, Nmap works as it
should:

nmap -sT 127.0.0.1

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-06-01 18:02 UTC

Interesting ports on bill-a31 (127.0.0.1):

(The 1658 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

22/tcp open ssh

Nmap run completed -- 1 IP address (1 host up) scanned in 0.467 seconds

This case study is typical of what you may encounter when running programs
with SELinux policies that are less than complete and error free.

9.7 Allowing a User Access to an Existing Domain

Let's continue the case study from the preceding section by observing that
users other than the system administrator can't use Nmap:

id -Z

root:staff_r:staff_t

nmap -sT 127.0.0.1

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-06-01 11:13 PDT

Unable to find nmap-services! Resorting to /etc/services

socket troubles in massping : Permission denied

The relevant AVC log message is:

avc: denied { create } for pid=8940 exe=/usr/bin/nmap scontext=root:staff_r:staff_t
tcontext=root:staff_r:staff_t tclass=rawip_socket

The message tells us that the staff_r role is not authorized to create a raw IP
socket. We could authorize the domain to do so. But this naive approach would
likely confer excessive permissions. Indeed, it's debatable whether we should
allow staff_r access to Nmap at all. But let's presume that we do want to
authorize access to Nmap without generally authorizing creation of raw IP
sockets.

Unless you have a good reason, I don't recommend that you authorize staff_r users to
access Nmap. Limiting the permissions available to staff_r users is consistent with the
principle of least privilege. If you do choose to authorize Nmap access, carefully consider
whether to do so by using the approach explained here, which authorizes access to the
entire traceroute_t domain, rather than only the Nmap program. The following section
shows a more focused alternative approach.

Apparently, the problem is that staff_r is not authorized to enter the
traceroute_t domain. Inspecting the traceroute.te file, we find the following two
role declarations:

role sysadm_r types traceroute_t;

role system_r types traceroute_t;

Add a third declaration having the same form:

role staff_r types traceroute_t;

To give effect to the change, load the revised policy. Then, retry Nmap:

make load

nmap -sT 127.0.0.1

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-06-01 11:43 PDT

Interesting ports on bill-a31 (127.0.0.1):

(The 1658 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

222/tcp open rsh-spx

Nmap run completed -- 1 IP address (1 host up) scanned in 0.469 seconds

This time, Nmap works as expected.

In general, one additional step is often needed to add a user to an existing
domain: a transition. In the case of the traceroute_t domain, a conditional
transition exists:

ifdef(`ping.te', `

if (user_ping) {

 domain_auto_trans(unpriv_userdomain, traceroute_exec_t, traceroute_t)

 # allow access to the terminal

 allow traceroute_t { ttyfile ptyfile }:chr_file rw_file_perms;

}

')

This transition authorizes ordinary programs (programs labeled with the type
unpriv_userdomain) to enter the traceroute_t domain by executing a program
labeled with the traceroute_exec_t type. The Nmap program, which performs
ping operations, benefits from this general-purpose transition. So we didn't
find it necessary to add a new transition. Otherwise, we might have added a
transition of the form:

domain_auto_trans(staff_t, traceroute_exec_t, traceroute_t)

The allow declaration in this conditional transition authorizes processes in the
traceroute_t domain to access the pseudoterminal device. This allows messages
to be written directly to the device, rather than writing them via the Unix
standard output or standard error devices as traceroute requires.

9.8 Creating a New Domain

In general, it's unwise to create overly large domains, especially domains that
include unrelated programs. The traceroute_t domain considered in the
preceding sections is perhaps such an overweight domain, since it relates to
both the traceroute and Nmap programs. These programs perform a few
somewhat similar operations, but they're not closely related. Because they're
part of a single domain, a vulnerability in either program could enable an
intruder to gain control of the entire domain. Let's presume that we prefer to
avoid that fate and see what's required to create a domain specific to the
Nmap program.

To do so, we'll follow a procedure that also works in most similar cases:

1. Determine what files are related to the domain.

2. Determine the security contexts of these files.

3. Decide what security contexts are appropriate for the new domain.

4. Create a basic TE file.

5. Create a basic FC file that specifies proper labels for files related to the
domain.

6. If necessary, delete conflicting specifications from other FC files.

7. Load the revised policy and label the domains.

8. Repeat the following steps as needed:

1. Test the program.

2. Tweak the TE or FC files as needed.

9.8.1 Determine What Files Are Related to the Domain

As the procedure directs, let's start by finding out what files are related to
Nmap:

rpm -ql nmap

/usr/bin/nmap

/usr/share/doc/nmap-3.50

/usr/share/doc/nmap-3.50/COPYING

/usr/share/doc/nmap-3.50/README

/usr/share/doc/nmap-3.50/copying.html

/usr/share/doc/nmap-3.50/nmap-fingerprinting-article.txt

/usr/share/doc/nmap-3.50/nmap.deprecated.txt

/usr/share/doc/nmap-3.50/nmap.usage.txt

/usr/share/doc/nmap-3.50/nmap_doc.html

/usr/share/doc/nmap-3.50/nmap_manpage.html

/usr/share/man/man1/nmap.1.gz

/usr/share/nmap

/usr/share/nmap/nmap-os-fingerprints

/usr/share/nmap/nmap-protocols

/usr/share/nmap/nmap-rpc

/usr/share/nmap/nmap-service-probes

/usr/share/nmap/nmap-services

We find four sorts of files:

The Nmap executable, /usr/bin/nmap

Nmap documentation files, which live in /usr/share/doc/nmap

The Nmap man page, /usr/share/man/man1/nmap.1.gz

Nmap data files, which live in /usr/share/nmap

9.8.2 Determine the Security Contexts of the Files

Next, let's see what security contexts are currently assigned:

ls -Z /usr/bin/nmap

-rwxr-xr-x+ root root system_u:object_r:traceroute_exec_t /usr/bin/nmap

ls -Z /usr/share/doc/nmap-3.50/

-rw-r--r--+ root root system_u:object_r:usr_t COPYING

-rw-r--r-- root root system_u:object_r:usr_t copying.html

-rw-r--r-- root root system_u:object_r:usr_t nmap.deprecated.txt

-rw-r--r-- root root system_u:object_r:usr_t nmap_doc.html

-rw-r--r-- root root system_u:object_r:usr_t nmap-fingerprinting- article.txt

-rw-r--r-- root root system_u:object_r:usr_t nmap_manpage.html

-rw-r--r-- root root system_u:object_r:usr_t nmap.usage.txt

-rw-r--r-- root root system_u:object_r:usr_t README

ls -Z /usr/share/man/man1/nmap.1.gz

-rw-r--r--+ root root system_u:object_r:man_t
/usr/share/man/man1/nmap.1.gz

ls -Z /usr/share/nmap/

-rw-r--r-- root root system_u:object_r:traceroute_t nmap-os-fingerprints

-rw-r--r-- root root system_u:object_r:traceroute_t nmap-protocols

-rw-r--r--+ root root system_u:object_r:traceroute_t nmap-rpc

-rw-r--r-- root root system_u:object_r:traceroute_t nmap-service-probes

-rw-r--r-- root root system_u:object_r:traceroute_t nmap-services

9.8.3 Decide on Appropriate Security Contexts for the New
Domain

Files having the usr_t and man_t types are readable by ordinary users, but
writable only by privileged users. So it appears that the documentation files
and the man page have reasonable security contexts.

Let's establish new contexts for the executable and data files. We'll use nmap_t
as the type of the data files and nmap_exec_t as the type of the executable.

9.8.4 Create a Basic TE File

To assign the proper security contexts, let's first create a simple TE file,
domains/program/nmap.te:

#################################

#

Rules for the nmap_t domain.

#

nmap_t is the domain for the nmap program.

nmap_exec_t is the type of the corresponding program.

#

type nmap_t, domain;

type nmap_exec_t, file_type, sysadmfile, exec_type;

Our TE file currently does nothing more than define the types we'll use to
properly label the files related to the domain. We'll add additional declarations
later. In particular, we'll add a declaration that allows processes executing
nmap_exec_t programs to transition to the nmap_t domain. We'll also add
declarations that specify the operations processes in the nmap_t domain are
authorized to perform and the operations that other domains can perform on
nmap_t objects. Like the nmap_t domain, most domains have at least two
associated types: one associated with the domain itself and one used as an
entry point to the domain. Many domains have additional types used to restrict
permissions further.

9.8.5 Create a Basic FC File

Next, let's create the FC file, file_contexts/program/nmap.fc:

nmap

/usr/bin/nmap -- system_u:object_r:nmap_exec_t

/usr/share/nmap.* system_u:object_r:nmap_t

When the filesystem is labeled, the FC file will cause the Nmap program and
its associated documentation files to be assigned the specified contexts.

9.8.6 Delete Conflicting Specifications from Other FC Files

Conflicting FC specifications could result in incorrectly labeled files. To avoid
conflicts, let's remove the following extraneous lines from the traceroute.fc
file:

/usr/bin/nmap -- system_u:object_r:traceroute_exec_t

/usr/share/nmap.* system_u:object_r:traceroute_t

9.8.7 Load the Revised Policy and Label the Domains

Now, let's install our new policy and relabel the related files:

make load

setfiles file_contexts/file_contexts /usr/bin/nmap

setfiles file_contexts/file_contexts /usr/share/nmap

ls -dZ /usr/bin/nmap /usr/share/nmap/

-rwxr-xr-x+ root root system_u:object_r:nmap_exec_t /usr/bin/nmap

drwxr-xr-x root root system_u:object_r:nmap_t /usr/share/nmap/

The output of the ls command verifies that the security contexts were correctly
revised.

9.8.8 Test and Revise the TE and FC Files as Needed

Now, let's try executing the Nmap command and see what sorts of errors
arise:

id -Z

root:sysadm_r:sysadm_t

nmap -sT 127.0.0.1

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-06-01 13:49 PDT

Interesting ports on bill-a31 (127.0.0.1):

(The 1658 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

22/tcp open ssh

Nmap run completed -- 1 IP address (1 host up) scanned in 0.510 seconds

When we run the program as system administrator, it appears to work fine.
However, let's see what happens when we run the program as a user other
than the administrator:

id -Z

root:staff_r:staff_t

nmap -sT 127.0.0.1

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-06-01 13:50 PDT

Unable to find nmap-services! Resorting to /etc/services

socket trobles in massping : Permission denied

As you might expect, the program fails. Indeed, we should hope that it does
so, because otherwise SELinux would not be properly enforcing its policies.
Let's discover what's necessary to coax our new nmap_t domain into working
for a nonadministrative user.

First, let's examine the system log for relevant AVC messages. We find a
message similar to the one we found in the situation described in the
preceding section:

avc: denied { create } for pid=9533 exe=/usr/bin/nmap scontext=root:staff_r:staff_t
tcontext=root:staff_r:staff_t tclass=rawip_socket

Resolve the problem as we did earlier, by authorizing users in the staff_r role
to access the domain.

role staff_r types nmap_t;

Also authorize an automatic type transition to nmap_t when the Nmap
executable is loaded:

domain_auto_trans(staff_t, nmap_exec_t, nmap_t)

Again, load the revised policy and test the program. This time, it segfaults:

nmap -sT 127.0.0.1

Segmentation fault

Inspecting the system log, we find the relevant AVC message:

avc: denied { use } for pid=9607 exe=/usr/bin/nmap path=/dev/pts/1 dev= ino=3
scontext=root:staff_r:nmap_t tcontext=root:system_r:sshd_t tclass=fd

This message indicates that the program was unable to access the
pseudoterminal device, /dev/pts/1. Recall that before moving Nmap to its own
domain, it executed from the traceroute_t domain without problems. So the
traceroute_t domain probably contains a declaration that authorizes access to
the pseudoterminal. By studying the TE file for the traceroute_t domain, we
discover the declaration needed in our new domain:

allow traceroute_t privfd:fd use;

Add the declaration, load the revised policy, and try again. The program
appears to suffer from the same problem. But inspecting the system log turns
up a new AVC message:

avc: denied { read write } for pid=9661 exe=/usr/bin/nmap path=/dev/pts/1 dev=
ino=3 scontext=root:staff_r:nmap_t tcontext=root:object_r:staff_devpts_t
tclass=chr_file

Now that Nmap can use the file descriptor, it needs read and write access to
the related device file. Again consulting the TE file for traceroute_t, we discover
and add a declaration authorizing read and write access to the terminal:

allow nmap_t { ttyfile ptyfile }:chr_file rw_file_perms;

This time, after loading the new policy, we obtain an unfamiliar error:

nmap -sT 127.0.0.1

nmap: error while loading shared libraries: libssl.so.4: cannot open shared object file:
Permission denied

This message indicates that our domain is unable to access shared libraries.
Let's add a macro invocation that authorizes such access:

uses_shlib(nmap_t)

After loading the new policy, we obtain a somewhat familiar error:

nmap -sT 127.0.0.1

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-06-01 21:21 UTC

Unable to find nmap-services! Resorting to /etc/services

Unable to open /etc/services for reading service information

QUITTING!

This resembles the error we encountered in the preceding section, when Nmap
was unable to read /usr/share/nmap/nmap-services. However, now Nmap also
seems unable to read /etc/services. Inspecting the system log uncovers related
log entries:

avc: denied { create } for pid=9821 exe=/usr/bin/nmap scontext=root:staff_r:nmap_t
tcontext=root:staff_r:nmap_t tclass=unix_stream_socket

avc: denied { read } for pid=9821 exe=/usr/bin/nmap name=localtime dev=dm-0
ino=32810 scontext=root:staff_r:nmap_t tcontext=system_u:object_r:locale_t tclass=file

avc: denied { create } for pid=9821 exe=/usr/bin/nmap scontext=root:staff_r:nmap_t
tcontext=root:staff_r:nmap_t tclass=unix_stream_socket

avc: denied { read } for pid=9821 exe=/usr/bin/nmap name=nsswitch.conf dev=dm-0
ino=32811 scontext=root:staff_r:nmap_t tcontext=system_u:object_r:etc_t tclass=file

avc: denied { read } for pid=9821 exe=/usr/bin/nmap name=passwd dev=dm-0
ino=34492 scontext=root:staff_r:nmap_t tcontext=system_u:object_r:etc_t tclass=file

avc: denied { search } for pid=9821 exe=/usr/bin/nmap name=nmap dev=dm-4
ino=100533 scontext=root:staff_r:nmap_t tcontext=system_u:object_r:nmap_t
tclass=dir

avc: denied { search } for pid=9821 exe=/usr/bin/nmap name=root dev=dm-0
ino=262145 scontext=root:staff_r:nmap_t tcontext=root:object_r:staff_home_dir_t
tclass=dir

avc: denied { read } for pid=9821 exe=/usr/bin/nmap name=services dev=dm-0
ino=32797 scontext=root:staff_r:nmap_t tcontext=system_u:object_r:etc_t tclass=file

Understanding how to resolve these errors might be overwhelming, were it not
for our strategy of studying the domain traceroute_t . After some consideration,
we settle on the following additional lines:

can_network(nmap_t)

allow nmap_t self:{ rawip_socket netlink_socket } create_socket_perms;

allow nmap_t self:unix_stream_socket create_socket_perms;

read_locale(nmap_t)

allow nmap_t etc_t:file { getattr read };

allow nmap_t nmap_t:dir { search };

allow nmap_t nmap_t:file { getattr read };

The first line invokes a macro that generates declarations authorizing network
access. The second and third lines authorize specific network
operationsnamely, creating raw and stream sockets. The fourth line authorizes
reading locale information, such as localtime. The fifth line authorizes access to
etc_t files, such as nsswitch.conf. Finally, the sixth and seventh lines authorize
access to nmap_t directories and files.

Unfortunately, after loading the new policy, we discover that our work is not
yet done:

nmap -sT 127.0.0.1

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-06-01 14:36 PDT

socket trobles in massping : Operation not permitted

At least Nmap now prints a different error message. That's some indication of
progress. Studying the system log turns up the following AVC messages:

avc: denied { search } for pid=9972 exe=/usr/bin/nmap name=root dev=dm-0
ino=262145 scontext=root:staff_r:nmap_t tcontext=root:object_r:staff_home_dir_t
tclass=dir

avc: denied { search } for pid=9972 exe=/usr/bin/nmap name=root dev=dm-0
ino=262145 scontext=root:staff_r:nmap_t tcontext=root:object_r:staff_home_dir_t
tclass=dir

avc: denied { search } for pid=9972 exe=/usr/bin/nmap dev= ino=1
scontext=root:staff_r:nmap_t tcontext=system_u:object_r:proc_t tclass=dir

avc: denied { net_raw } for pid=9972 exe=/usr/bin/nmap capability=13
scontext=root:staff_r:nmap_t tcontext=root:staff_r:nmap_t tclass=capability

Our problems now seem to relate to accessing our home directory, which has
type staff_home_dir_t; accessing /proc; and using special capabilities. Address
the home directory problem by adding

allow nmap_t staff_home_dir_t:dir {search };

To access the files within a directory, a process must be able to:

Search the directory.

Get the attributes of, and read, the files contained in the directory.

So, to fix the problem accessing /proc, add:

allow nmap_t proc_t:dir search;

allow nmap_t proc_t:file { getattr read };

However, it's not necessary to be prescient. If we failed to authorize the getattr
and read operations, Nmap would fail with an AVC message that would prompt
us to authorize them.

Finally, to authorize use of special capabilities, add:

allow nmap_t nmap_t:capability { net_raw };

After compiling and loading the revised policy and testing Nmap, we find a new
error message:

nmap -sT 127.0.0.1

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-06-01 14:47 PDT

pcap_open_live: socket: Permission denied

There are several possible reasons for this, depending on your operating system:

LINUX: If you are getting Socket type not supported, try modprobe af_packet or
recompile

your kernel with SOCK_PACKET enabled.

*BSD: If you are getting device not configured, you need to recompile your kernel with

Berkeley Packet Filter support. If you are getting No such file or directory, try

creating the device (eg cd /dev; MAKEDEV <device>; or use mknod).

SOLARIS: If you are trying to scan localhost and getting '/dev/lo0: No such file or

directory', complain to Sun. I don't think Solaris can support advanced localhost scans.

You can probably use "-P0 -sT localhost" though.

QUITTING!

It appears that our new domain lacks the ability to create sockets. A glance at
the log confirms this hypothesis. Add a declaration authorizing the creation of
sockets:

allow nmap_t self:packet_socket create_socket_perms;

After compiling and loading the policy, we find that Nmap now works correctly:

nmap -sT 127.0.0.1

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-06-01 14:49 PDT

Interesting ports on bill-a31 (127.0.0.1):

(The 1658 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

22/tcp open ssh

Nmap run completed -- 1 IP address (1 host up) scanned in 0.473 seconds

Because we implemented our domain iteratively, it may be hard to grasp the
big picture. So that you can review the result of our effort, here's the complete
TE file for the nmap_t domain:

#################################

#

Rules for the nmap_t domain.

#

nmap_t is the domain for the nmap program.

nmap_exec_t is the type of the corresponding program.

#

type nmap_t, domain;

type nmap_exec_t, file_type, sysadmfile, exec_type;

role staff_r types nmap_t;

domain_auto_trans(staff_t, nmap_exec_t, nmap_t)

allow nmap_t privfd:fd use;

allow nmap_t { ttyfile ptyfile }:chr_file rw_file_perms;

uses_shlib(nmap_t)

can_network(nmap_t)

allow nmap_t self:{ rawip_socket netlink_socket } create_socket_perms;

allow nmap_t self:unix_stream_socket create_socket_perms;

read_locale(nmap_t)

allow nmap_t etc_t:file { getattr read };

allow nmap_t nmap_t:dir { search };

allow nmap_t nmap_t:file { getattr read };

allow nmap_t staff_home_dir_t:dir {search };

allow nmap_t proc_t:dir search;

allow nmap_t proc_t:file { getattr read };

allow nmap_t nmap_t:capability { net_raw };

allow nmap_t self:packet_socket create_socket_perms;

However, unless we're very lucky, we're not yet done. It's likely that additional
testing will disclose other permissions that must be added to the TE file. You
can now see why many SELinux policies work less than perfectly. Like almost
all computer software, they're generally developed using a write-test-revise
process that doesn't differ much from cut-and-try. Unusual inputs or
circumstances can reveal the need for permissions that haven't been
anticipated or provided.

9.9 Using Audit2allow

Most implementations of SELinux include Audit2allow, a tool that can help you
create or customize a domain. Some fledgling SELinux administrators use
Audit2allow indiscriminately, rendering their system less secure. One technical
reviewer of this book terms Audit2allow "evil," not so much because of
problems with the tool itself as because of the way it's often misused. In this
section, I'll explain how to use Audit2allow more carefully, so that you can
avoid this pitfall.

Audit2allow is a Perl script that processes recent AVC messages. It analyzes
the messages it finds and prints allow rules that if added to the current
policy would authorize the denied operations. Hence, you can go badly wrong
by blindly accepting its recommendations. For instance, perhaps someone has
attempted a prohibited operation. Adding the rules generated by Audit2allow
will authorize the prohibited operation, but may also compromise system
security. Another more subtle source of problems is that Audit2allow takes the
current type architecture and file labels as given. Often it's appropriate or even
necessary to create a new domain that encapsulates a program or operation, as
I did in the preceding section. But Audit2allow provides no help in doing so.

Audit2allow is less than perfect in other ways. For instance, it is sometimes
blind to prohibited operations. This can occur if the operation is covered by a
dontaudit rule. It can also occur if AVC message caching has caused one or
more messages to be suppressed.

A related weakness of Audit2allow is that it's not aware of the M4 macros used
in implementing policies. So rules recommended by Audit2allow tend to be
quite wordy and can result in cluttered policy files that are hard to understand.

However, despite its weaknesses, Audit2allow is a very useful tool when
properly used.

The Audit2allow command has the following form:

audit2allow [-d] [-v] [-l] [-i inputfile] [-o outputfile]

The command takes the following options:

-d

Read input from the dmesg command, rather than a log file.

-v

Print verbose output.

-l

Ignore input preceding the most recent loading of the SELinux policy.

-i inputfile

Read input from inputfile.

-o outputfile

Append output to outputfile.

Typically use of Audit2allow takes the form:

make reload

test program or operation here

audit2allow -l -i /var/log/kernel

By reloading the SELinux policy, you define a starting point before which
Audit2allow, when run with the -l option, will ignore log entries. You then test
the subject program or operation, generating AVC messages. Finally,
Audit2allow analyzes these messages and prints recommended rules. You can
capture these rules by redirecting Audit2allow's output to a file:

audit2allow -l -i /var/log/kernel > /tmp/audit2allow

You may be tempted to incorporate the rules generated by Audit2allow into your SELinux
policy just to see what happens. Stifle this urge: it's likely that the generated rules include
several that will weaken the security of your system.

It's often useful to set permissive mode before using Audit2allow. Doing so
may avoid early termination of the test program. In general, it's best if the
program runs to completion, since this generates more AVC messages than
otherwise. However, setting permissive mode may compromise system
security.

Let's consider the same case study in the preceding section, the Nmap
program. But this time, let's use Audit2allow to help us create the nmap_t
domain.

Let's begin, as before, with an FC file that refers to the nmap_t and nmap_exec_t
domains:

nmap

/usr/bin/nmap -- system_u:object_r:nmap_exec_t

/usr/share/nmap.* system_u:object_r:nmap_t

And let's create a basic TE file that defines these domains. This time, we'll also
include a role declaration and a domain_auto_trans macro invocation. We'll need
these because Audit2allow generates only AVC declarations. In particular,
without the domain_auto_trans macro, Audit2allow will recommend authorizing
the staff_t domain or another general-purpose domain to perform operations
that we prefer to authorize only for the nmap_t domain. Here's our primitive TE
file:

#################################

#

Rules for the nmap_t domain.

#

nmap_t is the domain for the nmap program.

nmap_exec_t is the type of the corresponding program.

#

type nmap_t, domain;

type nmap_exec_t, file_type, sysadmfile, exec_type;

role staff_r types nmap_t;

domain_auto_trans(staff_t, nmap_exec_t, nmap_t)

Let's now load the revised policy, set permissive mode, test Nmap, and
examine the recommendations provided by Audit2allow:

make load

setenforce 0

nmap -sT 127.0.0.1

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-06-01 14:52 PDT

Interesting ports on bill-a31 (127.0.0.1):

(The 1658 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

22/tcp open ssh

Nmap run completed -- 1 IP address (1 host up) scanned in 0.475 seconds

setenforce 1

audit2allow -l -i /var/log/kernel

allow nmap_t amandaidx_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t amidxtape_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t biff_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t device_t:dir { search };

allow nmap_t dict_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t dns_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t etc_t:dir { search };

allow nmap_t etc_t:file { getattr read };

allow nmap_t fingerd_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t ftp_data_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t ftp_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t http_cache_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t http_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t inetd_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t innd_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t ipp_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t ircd_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t ld_so_cache_t:file { getattr read };

allow nmap_t ld_so_t:file { read };

allow nmap_t ldap_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t lib_t:dir { search };

allow nmap_t lib_t:lnk_file { read };

allow nmap_t locale_t:file { getattr read };

allow nmap_t monopd_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t net_conf_t:file { getattr read };

allow nmap_t netif_lo_t:netif { rawip_send tcp_recv tcp_send };

allow nmap_t nmap_t:capability { net_raw };

allow nmap_t nmap_t:dir { search };

allow nmap_t nmap_t:file { getattr read };

allow nmap_t nmap_t:packet_socket { bind create getopt ioctl read setopt };

allow nmap_t nmap_t:rawip_socket { create setopt write };

allow nmap_t nmap_t:tcp_socket { connect create getopt setopt };

allow nmap_t nmap_t:udp_socket { create ioctl };

allow nmap_t nmap_t:unix_stream_socket { connect create };

allow nmap_t node_lo_t:node { rawip_send tcp_recv tcp_send };

allow nmap_t pop_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t port_t:tcp_socket { recv_msg send_msg };

allow nmap_t portmap_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t postgresql_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t printer_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t proc_t:dir { search };

allow nmap_t proc_t:file { getattr read };

allow nmap_t rlogin_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t rndc_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t root_t:dir { search };

allow nmap_t rsh_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t shlib_t:file { execute getattr read };

allow nmap_t smbd_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t smtp_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t snmp_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t soundd_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t spamd_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t ssh_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t sshd_t:fd { use };

allow nmap_t staff_devpts_t:chr_file { getattr read write };

allow nmap_t staff_home_dir_t:dir { search };

allow nmap_t telnet_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t transproxy_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t urandom_device_t:chr_file { getattr ioctl read };

allow nmap_t usr_t:dir { search };

allow nmap_t vnc_port_t:tcp_socket { recv_msg send_msg };

allow nmap_t xserver_port_t:tcp_socket { recv_msg send_msg };

Audit2allow produces many recommended rules. But notice that most of them
have the same form:

allow nmap_t port:tcp_socket { recv_msg send_msg };

where port refers to some TCP port. As it happens, these rules would work fine
if added to the domain. But they're wordy and complicated because they don't
take advantage of available M4 macros.

Using our knowledge of the macros available, which we can deepen by
studying TE files distributed with SELinux, let's start over with a revised
primitive TE file. Our revised TE file features a macro invocation, can_network,
that authorizes network access:

#################################

#

Rules for the nmap_t domain.

#

nmap_t is the domain for the nmap program.

nmap_exec_t is the type of the corresponding program.

#

type nmap_t, domain;

type nmap_exec_t, file_type, sysadmfile, exec_type;

role staff_r types nmap_t;

domain_auto_trans(staff_t, nmap_exec_t, nmap_t)

can_network(nmap_t)

After loading the new policy, testing Nmap, and running Audit2allow, we
obtain the following set of recommended rules:

allow nmap_t device_t:dir { search };

allow nmap_t etc_t:dir { search };

allow nmap_t etc_t:file { getattr read };

allow nmap_t ld_so_cache_t:file { getattr read };

allow nmap_t ld_so_t:file { read };

allow nmap_t lib_t:dir { search };

allow nmap_t lib_t:lnk_file { read };

allow nmap_t locale_t:file { getattr read };

allow nmap_t nmap_t:capability { net_raw };

allow nmap_t nmap_t:dir { search };

allow nmap_t nmap_t:file { getattr read };

allow nmap_t nmap_t:packet_socket { bind create getopt ioctl read setopt };

allow nmap_t nmap_t:rawip_socket { create setopt write };

allow nmap_t nmap_t:unix_stream_socket { connect create };

allow nmap_t proc_t:dir { search };

allow nmap_t proc_t:file { getattr read };

allow nmap_t root_t:dir { search };

allow nmap_t shlib_t:file { execute getattr read };

allow nmap_t sshd_t:fd { use };

allow nmap_t staff_devpts_t:chr_file { getattr read write };

allow nmap_t staff_home_dir_t:dir { search };

allow nmap_t urandom_device_t:chr_file { getattr ioctl read };

allow nmap_t usr_t:dir { search };

This set of recommended rules is substantially smaller than the original set,
consisting of between one-third and one-half the number of lines.

Our next step is to review the recommendations to ensure that none is overly
broad. We notice that all the rules pertain to the nmap_t domain. This is
encouraging, since we were trying to ensure that we authorize only that
domain for the special operations performed by Nmap. Ultimately, after careful
study, we convince ourselves that the recommendations are appropriate and
safe and add them to the nmap.te file, completing our task.

As you see, Audit2allow is no substitute for a solid understanding of the
SELinux policy language, since intelligent use of Audit2allow requires such an
understanding. But used judiciously, Audit2allow expedites and facilitates
creation and customization of policies.

When customizing an existing policy, it's often helpful to avoid modifying the associated TE
file. Otherwise, installing an updated policy may overwrite changes you've painstakingly
devised. To avoid this problem, consider placing your changes in a file named
domains/program/local.te. Be sure to create the corresponding FC file,
file_contexts/program/local.fc; otherwise, policy compilation may fail. Either file can be
empty or contain only comments if no related specifications or declarations are needed.

9.10 Policy Management Tools

Tresys Technology, a network services company, has published a set of open
source GUI tools for SELinux policy management. Most releases of SELinux
include at least one of the Tresys tools, which are:

Apol

Supports analysis of the SELinux policy.conf file.

Seaudit

Supports searching, sorting, and viewing AVC log messages.

Sepcut

Supports browsing and editing of SELinux policy components.

Seuserx

Supports adding, changing, and removing Linux and SELinux users.

The following subsections briefly describe these tools. My intention is not to
show you how to use the tools but to help you understand what they do, so
that you can decide when to use them and which tool to use. Because the tools
are regularly improved, I advise you to refer to the tools' help files for
information on operating them. If your SELinux release does not include the
Tresys tools, you can obtain them at http://www.tresys.com/.

9.10.1 Apol

The Apol tool enables you to analyze an SELinux policy. It does not work with
the component files that compose the policy, but only with policy.conf. So you
should compile the SELinux policy before using Apol. You can do so by issuing
the command:

http://www.tresys.com/

make load

from within the SELinux src/policy directory. Figure 9-1 shows Apol's main
window after using its File menu to open the policy.conf file.

Figure 9-1. Apol's main window

Apol's main window contains four primary tabs:

Policy Components

Supports searching and viewing policy components: types, type attributes,
type aliases, object classes, object permissions, roles, users, initial SIDs,
and SElinux Booleans.

Policy Rules

Supports working with policy rules: allow, neverallow, auditallow, dontaudit,

type_transition, and type_change declarations.

Analysis

Supports several analysis operations, including forward and reverse
domain transition analyses, direct information flow analysis, and indirect
(transitive) information flow analysis.

policy.conf

Enables you to view the policy.conf file.

The following subsections describe the operations associated with Apol's first
three tabs. You can learn more about Apol by studying its help file, available
via the Help menu.

9.10.1.1 Policy components

As shown in Figure 9-1, the Policy Components tab contains six secondary tabs
related to the policy component types:

Types

Lets you search types, type attributes, and aliases by specifying a regular
expression. Double-clicking a type, attribute, or alias provides a summary
description. The Search Results window displays policy.conf lines related to
types and attributes having names matching the regular expression.

Classes/Perms

Lets you search object classes, common permissions, and permissions by
specifying a regular expression. The Search Results window displays
policy.conf lines related to object classes having names matching the
regular expression. Double-clicking a class, common permission, or
permission provides a summary description. Figure 9-2 shows a sample

query and its result.

Roles

Lets you search roles and their attributes by specifying regular expressions
for role or type. The tab makes it simple to identify all roles that include a
specified type. Double-clicking a role provides a summary description.
Figure 9-3 shows the result of a query requesting all roles.

Users

Lets you search SELinux user identities and their associated roles. Figure
9-4 shows the result of a query requesting all users.

Initial SIDs

Lets you search initial SIDs and their associated security contexts. Figure
9-5 shows the result of a query requesting all initial SIDs.

Booleans

Lets you search SELinux Booleans. Figure 9-6 shows the result of a query
requesting all Booleans.

Figure 9-2. Apol's Classes/Perms tab

Figure 9-3. Apol's Roles tab

Figure 9-4. Apol's Users tab

Figure 9-5. Apol's Initial SIDs tab

Figure 9-6. Apol's Booleans tab

Figure 9-7. Apol's Policy Rules tab

9.10.1.2 Policy rules

Figure 9-7 shows Apol's Policy Rules tab, which contains three secondary tabs:

TE Rules

This tab lets you search type-enforcement rules. The tab supports several
search criteria:

Rule Selection

Lets you narrow the scope of a search to include only specified rules.

Type/Attributes

Lets you search by types and type attributes used as source, target, or
default types in rules.

Classes/Permissions

Lets you search by object classes and permissions, returning only rules
that reference the specified classes and permissions.

The results window displays all rules matching the specified search criteria.
Each displayed rule includes a hyperlink that points to the rule's place in the
policy.conf file.

RBAC Rules

Figure 9-8 shows the RBAC tab, which lets you search role-based access
control rules in much the same way as the TE tab lets you search type
enforcement rules.

Conditional Expressions

Figure 9-9 shows the Conditional Expressions tab, which lets you search
conditional expressions for the following rule types:

audit rules

allow rules

transition rules

You can search by specifying a regular expression that matches the name of a
Boolean appearing within a conditional expression. Each rule displayed in the
results window include a hyperlink that points to the rule's location within the
policy.conf file.

Figure 9-8. Apol's RBAC Rules tab

Figure 9-9. Apol's Conditional Expressions tab

9.10.1.3 Analysis

The Analysis tab is perhaps the most interesting and useful of Apol's tabs. It
enables you to perform three types of analysis:

Domain transition analysis

We generally think of a domain transition as a single step involving two
domains: the source (beginning) domain and the target (ending) domain.
But suppose your SELinux policy permits domain A to transition to domain
B and also permits domain B to transition to domain C. There's no single-
step path between domains A and C. Nevertheless, by executing two
transitions a process can move from domain A to domain C.

A forward domain analysis shows the domains that can be reached in one
or more transition steps from a given domain. To perform a forward
domain transition analysis, you first specify a source domain. Apol then
presents a tree identifying the target domains that can be reached directly
from the specified source domain. Using a mouse or other pointing device,
you can walk the tree, inspecting the rules that authorize each transition.
Figure 9-10 shows the result of a simple forward domain analysis.

Figure 9-10. A forward domain analysis

A reverse domain analysis simply goes in the opposite direction. You specify a
target domain, and Apol identifies the source domains that can reach the
specified source domain in one or more transition steps.

Direct information flow analysis

Direct information flow analysis generalizes the domain analysis operation
in two respects. First, it lets you specify the direction of the relationship
between domains as IN, OUT, EITHER, or BOTH. Second, the relationship
extends beyond domain transitions to include information flows. Roughly
speaking, an information flow exists between two domains if one member
of the pair can read or write objects having the type of the other member
of the pair. For a more precise explanation of information flows, see the
white paper titled An Overview of Information Flow Analysis, available on
the Tresys web site.

Indirect (transitive) information flow analysis

Indirect information flow analysis generalizes direct information flow
analysis by showing relationships along indirect paths between pairs of
domains. For instance, suppose that no information flow exists between

domains A and C. If an information flow exists between domains A and B,
and another exists between domains B and C, an indirect information flow
may exist between domains A and C. Informally, indirect information flow
analysis shows which domains interact with other domains. See the Apol
help file for more information on indirect information flow analysis.

9.10.2 Seaudit

Figure 9-11 shows the main window of Seaudit, a GUI tool for viewing AVC
messages within system logs. Seaudit can display results in real or nonreal
time. Menu items let you specify the columns to be displayed, and search
buttons let you construct, save, and run queries that select only a subset of
log messages. You can also query the SELinux policy based on information
contained within a log entry.

Figure 9-11. The Seaudit main window

9.10.3 Sepcut

Sepcut helps you browse and edit policy component files. Figure 9-12 shows

Sepcut's main window. The window includes three main tabs:

Figure 9-12. Sepcut's main window

Browse Policy

Lets you view and modify policy component files.

Policy Modules

Lets you view or edit policy modules and individually enable or disable
them. The term policy module refers to a pair of files consisting of an FC
file and a TE file.

Test Policy

Lets you compile and load a policy.

9.10.4 Seuserx

Seuserx lets you add, change, and delete Linux and SELinux users. Its main
window, shown in Figure 9-13, includes five buttons, as well as an Exit button:

Figure 9-13. Seuserx's main window

Add

Lets you add a new user.

View/Change

Lets you view and change user characteristics.

Delete

Lets you delete a user.

Lets you delete a user.

Advanced

Lets you configure characteristics of generic usersusers who don't have
specific SELinux identities and are therefore associated with the user_u
SELinux identity.

Update Policy

When you exit Suserx, it automatically loads a new security policy
reflecting any changes you've made. However, you can use the Update
Policy button to manually load a new policy whenever you like

9.11 The Road Ahead

Having completed this chapter, you know quite a bit about SELinux and typical
SELinux policies. If you're content to run only relatively popular applications
and prefer to rely on others for assistance in troubleshooting and fixing the
occasional problems that you're likely to run into when using SELinux, you'll
know pretty much all you need to know.

But typical Linux users are seldom so complacent. Those that desire even
greater control over their computing affairs have merely begun to learn what
they need to know about SELinux. This book has covered the fundamentals.
But the SELinux policy is a sophisticated software unit whose mastery
demands significant study and experimentation. Moreover, SELinux is still a
relatively new software product and is constantly undergoing change. So in
working with SELinux, you should anticipate that you will encounter many
interesting puzzles and challenges. If you resemble the typical Linux user,
you'll enjoy tackling and overcoming these. You should also anticipate that
your growing SELinux expertise will enable you to better secure your systems
and applications, which should help you and your management sleep more
soundly.

SELinux and the SELinux sample policy are powerful tools for securing
systems. But like other security tools, their proper installation and ongoing use
demand significant expertise. From this book, you can learn how SELinux
works and the syntax and semantics of the SELinux policy language. But
mastery of SELinux demands thorough understanding of the policy domains
associated with principal programs and applications installed on your systems.
And since SELinux and its policies are regularly updated and improved,
understanding arises only from an ongoing process of study and learning.

Here are some tips for developing a progressively greater understanding of
SELinux:

Maintain at least one system dedicated for testing new and revised
SELinux policies and releases.

Begin a study of the TE files associated with important programs and
applications.

Regularly review postings to relevant e-mail lists such as fedora-selinux-
list@redhat.com and SELinux@tycho.nsa.gov.

mailto:fedora-selinux-list%40redhat.com
mailto:SELinux%40tycho.nsa.gov

Experiment by creating new policies and observing the results.

May all your policies build correctly the first time and authorize neither too
few nor too many permissions!

Appendix A. Security Object Classes
Table 2-1 has been reproduced here as Table A-1 for convenient reference.
Table A-1 summarizes the object classes defined by the current release of
SELinux. The table is organized by object class within object class type.
SELinux developers may change the roster of object classes in future releases
of SELinux.

Table A-1. Security object classes
Class Description

File classes

blk_file
Block device file

chr_file
Character device file

dir
Directory

fd
File descriptor

fifo_file
FIFO file

file
File

filesystem
Formatted filesystem residing on disk partition

lnk_file
Hard or symbolic link

sock_file
Network socket file

Interprocess communication classes

ipc (Obsolete)

msg
Interprocess communication message within queue

msgq
Interprocess communication queue

sem
Interprocess communication semaphore

shm
Interprocess communication shared memory

Network classes

key_socket
IPSec socket

netif
Network interface

netlink_socket
Socket used to communicate with kernel via the netlink syscall

node
TCP/IP network host, as represented by IP address

packet_socket
Obsolete object type used by Linux 2.0 programs invoking the socket syscall

rawip_socket
Raw IP socket

socket
Generic socket

tcp_socket
TCP socket

udp_socket
UDP socket

unix_dgram_socket

Unix-domain datagram socket

unix_stream_socket
Unix-domain stream socket

Object class

passwd
Linux password file

System classes

capability
SELinux capability

process
Process

security
Security-related objects, such as the SELinux policy

system
Kernel and system objects

Appendix B. SELinux Operations
Table B-1 summarizes SELinux operations, identifying their related object
classes and giving an approximate description of them. In future SELinux
releases, SELinux developers may change the roster of operations, associate
operations with object classes differently, or modify the function performed by
an operation. The table is sorted alphabetically by the name of the operation.
The SELinux file src/policy/flask/access_vectors shows the relationship
between object classes and operations and is sorted by object class.

Table B-1. SELinux operations
Operation Object classes Description

accept key_socket, netlink_socket, packet_socket, raw_ipsocket, socket,
tcp_socket, udp_socket, unix_dgram_socket, unix_stream_socket Accept a connection.

acceptfrom tcp_socket, unix_stream_socket Accept connection from client
socket.

add_name dir Add a name.

append
blk_file, chr_file, dir, fifo_file, file, key_socket, lnk_file, netlink_socket,
packet_socket, rawip_socket, sock_file, socket, tcp_socket, udp_socket,
unix_dgram_socket, unix_stream_socket

Write or append file or socket
contents.

associate filesystem, ipc, msgq, sem, shm
Associate a file or key with a
filesystem, queue, semaphore
set, or memory segment.

avc_toggle system Toggle between permissive and
enforcing modes.

bdflush system Control the buffer-dirty-flush
daemon.

bind key_socket, netlink_socket, packet_socket, rawip_socket, socket,
tcp_socket, udp_socket, unix_dgram_socket, unix_stream_socket Bind name to socket.

change_sid security Determine the SID of an object
during relabeling.

check_context security Write context in selinuxfs
filesystem.

Change user account
information (real name, work

chfn passwd room and phone, and home
phone).

chown capability Change file ownership and
group ownership.

chsh passwd Change login shell.

compute_av security
Compute an access vector
given a source, target, and
class.

compute_create security Set create information in
selinuxfs filesystem.

compute_member security Set member information in
selinuxfs filesystem.

compute_relabel security Set relabel information in
selinuxfs filesystem.

compute_user security Set user information in selinuxfs
filesystem.

connect key_socket, netlink_socket, packet_socket, rawip_socket, socket,
tcp_socket, udp_socket, unix_dgram_socket, unix_stream_socket Initiate connection.

connectto tcp_socket, unix_stream_socket Connect to server socket.

context_to_sid security Convert a context to an SID.

create

blk_file, chr_file, dir, fifo_file, file, ipc, key_socket, lnk_file, msgq,
netlink_socket, packet_socket, rawip_socket, sem, shm, sock_file,
socket, tcp_socket, udp_socket, unix_dgram_socket,
unix_stream_socket

Create new file, IPC object,
queue, semaphore set, or
shared memory segment.

dac_override capability
Override discretionary access
control except
LINUX_IMMUTABLE.

dac_read_search capability Overrides all discretionary
access control.

destroy ipc, msgq, sem, shm
Destroy IPC object, message
queue, semaphore set, or
shared memory segment.

enforce_dest node
Destination node can enforce
restrictions on the destination
socket.

enqueue msgq Message may reside on queue.

entrypoint file Enter a new domain via this
program.

execute blk_file, chr_file, dir, fifo_file, file, lnk_file, sock_file Execute.

execute_no_trans file Execute file without a domain
transition.

fork process Fork into two processes.

fowner capability Grant file operations otherwise
restricted due to ownership.

fsetid capability
overrides effective user ID
checks for set user ID and set
group ID files

get_sids,
get_user_sids security Get the list of active SIDs.

getattr

blk_file, chr_file, dir, fifo_file, file, filesystem, ipc, key_socket, lnk_file,
msgq, netlink_socket, packet_socket, process, rawip_socket, sem, shm,
sock_file, socket, tcp_socket, udp_socket, unix_dgram_socket,
unix_stream_socket

Get file, process, message
queue, or shared memory
segment attributes.

getcap process Get process capabilities.

getopt key_socket, netlink_socket, packet_socket, rawip_socket, socket,
tcp_socket, udp_socket, unix_dgram_socket, unix_stream_socket Get socket options.

getpgid process Get process group ID.

getsched process Get process priority.

getsession process Get session ID.

ioctl
blk_file, chr_file, dir, fifo_file, file, key_socket, lnk_file, netlink_socket,
packet_socket, rawip_socket, sock_file, socket, tcp_socket, udp_socket,
unix_dgram_socket, unix_stream_socket

I/O control system call
requests not addressed by
other permissions.

ipc_info system Get information for an IPC
socket.

ipc_lock capability Lock nonshared and shared
memory segments.

ipc_owner capability Ignore IPC ownership checks.

kill capability Raise signal any process.

lease capability Take fcntl() leases on a file.

link blk_file, chr_file, dir, fifo_file, file, lnk_file, sock_file Create hard link to file.

linux_immutable capability
Modify S_IMMUTABLE and
S_APPEND file attributes on
supporting filesystems.

listen key_socket, netlink_socket, packet_socket, rawip_socket, socket,
tcp_socket, udp_socket, unix_dgram_socket, unix_stream_socket Listen for connections.

load_policy security Load the security policy.

lock
blk_file, chr_file, dir, fifo_file, file, key_socket, lnk_file, netlink_socket,
packet_socket, rawip_socket, sh, sock_file, socket, tcp_socket,
udp_socket, unix_dgram_socket, unix_stream_socket

Set and unset file or memory
page locks.

member_sid security
Determine SID to use when
selecting a member of a
polyinstantiated object .

mknod capability Create character or block
device nodes.

mount filesystem Mount a filesystem.

mounton blk_file, chr_file, dir, fifo_file, file, lnk_file, sock_file Use as filesystem mount point.

name_bind key_socket, netlink_socket, packet_socket, rawip_socket, socket,
tcp_socket, udp_socket, unix_dgram_socket, unix_stream_socket

Bind port to IP or file to Unix
socket.

net_admin capability Network configuration changes.

net_bind_service capability Bind to privileged port.

net_raw capability Open raw socket or packet
socket.

netbroadcast capability Send network broadcast or
listen to incoming multicasts.

newconn tcp_socket, unix_stream_socket Create new socket for
connection.

nfsd_control system Control the NFS server.

noatsecure process Allow GLibc secure mode.

node_bind rawip_socket, tcp_socket, udp_socket Bind socket.

passwd passwd Change user password.

ptrace process Trace program execution of
parent or child.

quotaget filesystem Get quota information.

quotamod filesystem Modify quota information.

quotaon blk_file, chr_file, dir, fifo_file, file, lnk_file, sock_file Enable quotas.

rawip_recv netif, node Receive raw IP packet.

rawip_send netif, node Send raw IP packet.

read

blk_file, chr_file, dir, fifo_file, file, ipc, key_socket, lnk_file, msgq,
netlink_socket, packet_socket, rawip_socket, sem, shm, sock_file,
socket, tcp_socket, udp_socket, unix_dgram_socket,
unix_stream_socket

Read file, IPC, message queue,
or shared memory segment
contents.

receive msg Remove message from a
queue.

recv_msg key_socket, netlink_socket, packet_socket, rawip_socket, socket,
tcp_socket, udp_socket, unix_dgram_socket, unix_stream_socket

Receive datagram message
having SID unequal to socket.

recvfrom key_socket, netlink_socket, packet_socket, rawip-socket, socket,
tcp_socket, udp-socket, unix_dgram_socket, unix_stream_socket

Receive datagrams from
socket.

relabelfrom
blk_file, chr_file, dir, fifo_file, file, filesystem, key_socket, lnk_file,
netlink_socket, packet_socket, rawip_socket, sock_file, socket,
tcp_socket, udp_socket, unix_dgram_socket, unix_stream_socket

Change the security context
based on existing type.

relabelto
blk_file, chr_file, dir, fifo_file, file, filesystem, key_socket, lnk_file,
netlink_socket, packet_socket, rawip_socket, sock_file, socket,
tcp_socket, udp_socket, unix_dgram_socket, unix_stream_socket

Change the security context
based on the new type.

remount filesystem Change mounted filesystem
options.

remove_name dir Remove a name.

rename blk_file, chr_file, dir, fifo_file, lnk_file, sock_file Rename a hard link.

reparent dir Change parent directory.

rlimitinh process Inherit resource limits from old
SID.

rmdir dir Remove directory.

rootok passwd
Update password if the user is
root and the process has the
rootok permission.

search dir Search directory.

send msg Add message to a queue.

send_msg key_socket, netlink_socket, packet_socket, rawip_socket, socket,
tcp_socket, udp_socket, unix_dgram_socket, unix_stream_socket

Send datagram message
having SID unequal to that of
sending socket.

sendto key_socket, netlink_socket, packet_socket, rawip_socket, socket,
tcp_socket, udp_socket, unix_dgram_socket, unix_stream_socket Send datagrams to socket.

setattr

blk_file, chr_file, dir, fifo_file, file, ipc, key_socket, lnk_file, msgq,
netlink_socket, packet_socket, rawip_socket, sem, shm, sock_file,
socket, tcp_socket, udp_socket, unix_dgram_socket,
unix_stream_socket

Change attributes of file,
shared memory segment, or
message queue.

setbool security Set a boolean value.

setcap process Set process capabilities.

setenforce security Change the SELinux
enforcement mode.

setfscreate process Set fscreate context.

setgid capability
Allow setgid() calls, and fake
group IDs on credentials
passed over a socket.

setopt key_socket, netlink_socket, packet_socket, rawip_socket, socket,
tcp_socket, udp_socket, unix_dgram_socket, unix_stream_socket

Set IPSec or socket options
socket.

setpcap capability Transfer process capability
map.

setpgid process Set process group ID.

setrlimit process Change process hard limits.

setsched process Set process priority.

setuid capability
Allow setsuid() and fake UIDs on
credentials passed over a
socket.

share process Allow state sharing with cloned
or forked process.

shutdown key_socket, netlink_socket, packet_socket, rawip_socket, socket,
tcp_socket, udp_socket, unix_dgram_socket, unix_stream_socket Shutdown connection.

sid_to_context security Convert a SID to a context.

sigchld process Send SIGCHLD signal.

siginh process Inherit signal state from old
SID.

sigkill process Send SIGKILL signal.

signal process Send a signal other than
SIGKILL, SIGSTOP, or SIGCHLD.

signull process
Test for existence of another
process without sending a
signal.

sigstop process Send SIGSTOP signal.

swapon blk_file, chr_file, dir, fifo_file, lnk_file, sock_file Allow file to be used for swap
space.

sys_admin capability Various system capabilities (see
/usr/include/linux/capability.h).

sys_boot capability Reboot the system.

sys_chroot capability Use chroot().

sys_module capability
Load and remove kernel
modules and otherwise modify
kernel.

sys_nice capability Change process priority and
scheduling options.

sys_pacct capability
Change process accounting
state.

sys_ptrace capability Trace any process.

sys_rawio capability Perform raw I/O.

sys_resource capability Various capabilities (see
/usr/include/linux/capability.h).

sys_time capability Set system time and real-time
clock.

sys_tty_config capability Configure tty devices.

syslog_console system Log to syslog console.

syslog_mod system
Perform syslog operation other
than reading syslog or logging
to console.

syslog_read system Read syslog

tcp_recv netif, node Receive TCP packet.

tcp_send netif, node Send TCP packet.

transition filesystem, process Transition to a new SID.

transition_sid security Determine SID for a new
object.

udp_recv netif, node Receive UDP packet.

udp_send netif, node Send UDP packet.

unix_read ipc, msgq, sem, shm Perform IPC read.

unix_write ipc, msgq, sem, shm Perform IPC write or append.

unlink blk_file, chr_file, dir, fifo_file, file, lnk_file, sock_file Remove (delete) hard link.

unmount filesystem Unmount filesystem.

use fd Use an inherited file descriptor.

write

blk_file, chr_file, dir, fifo_file, file, ipc, key_socket, lnk_file, msgq,
netlink_socket, packet_socket, rawip_socket, sem, shm, sock_file,
socket, tcp_socket, udp_socket, unix_dgram_socket,
unix_stream_socket

Write or append file or IPC
object contents.

Appendix C. SELinux Macros Defined in
src/policy/macros
Table C-1 describes principal macros defined in the src/policy/macros
subdirectory. The macros included in the table are those present in the Fedora
Core 2 implementation of SELinux. Other implementations may define
different macros or alter the operation of macros appearing in the table.

Table C-1. SELinux macros defined in the macros subdirectory
Macro Description

admin_domain
Defines a domain for an administrative user.

append_logdir_domain Authorizes a specified domain to create, read, and append to logfiles within its own
specially labeled logging directory.

append_log_domain
Authorizes a specified domain to read and append to its own specially labeled logfiles.

application_domain
Authorizes a specified domain to perform operations common to simple applications.

base_file_read_access
Authorizes a specified domain to read and search several system file types.

base_pty_perms Authorizes a specified domain to access the pty master multiplexer domain and to
search /dev/pts.

base_user_domain
Defines a domain for a nonadministrative user.

can_create_other_pty
Authorizes a specified domain to create new ptys for another specified domain.

can_create_pty
Authorizes a specified domain to create new ptys.

can_exec Authorizes a specified domain to execute files having a specified type (domain) without
transitioning to a new domain.

can_exec_any

Authorizes a specified domain to execute a variety of executable types.

can_getcon
Authorizes a specified domain to obtain its execution context.

can_getsecurity
Authorizes a specified domain to query the security server.

can_loadpol
Authorizes a specified domain to load a policy.

can_network
Authorizes a specified domain to access the network.

can_ps Authorizes a process in a specified domain to see /proc entries for processes in
another specified domain.

can_ptrace Authorizes a specified domain to trace processes executing in another specified
domain.

can_setbool
Authorizes a specified domain to set a policy Boolean.

can_setenforce
Authorizes a specified domain to set the SELinux enforcement mode.

can_setexec
Authorizes a specified domain to set its exec context.

can_setfscreate
Authorizes a domain to set its fscreate context.

can_sysctl
Authorizes a specified domain to modify sysctl parameters.

can_tcp_connect Authorizes a specified domain to establish a TCP connection with another specified
domain.

can_udp_send
Authorizes a specified domain to send UDP datagrams to another specified domain.

can_unix_connect
Authorizes two specified domains to establish a Unix stream connection.

can_unix_send Authorizes a specified domain to send Unix datagrams to another specified domain.

create_append_log_file Authorizes a domain to read, write, and add names to directories and create and
append to files.

create_dir_file
Authorizes a specified domain to create and use directories and files.

create_dir_notdevfile
Defines access-vector rules for creating and using directories and nondevice files.

create_dir_perms
Defines permissions needed to create and use directories.

create_file_perms
Defines permissions needed to create and use files.

create_msgq_perms Defines permissions needed to create message queues and read and write message
queues and their attributes.

create_sem_perms Defines permissions needed to create semaphores and read and write semaphores
and their attributes.

create_shm_perms Defines permissions needed to create shared memory segments and read and write
shared memory segments and their attributes.

create_socket_perms
Defines permissions needed to create, read, write, and otherwise use sockets.

create_stream_socket_perms
Defines permissions needed to create, read, write, and otherwise use stream sockets.

daemon_base_domain Authorizes a specified domain to perform a variety of operations useful to daemons,
including those authorized by daemon_core_rules.

daemon_core_rules
Authorizes a specified domain to access a variety of types useful to daemons.

daemon_domain
Authorizes a specified domain to use PID files.

daemon_sub_domain
Defines a child domain of a specified domain.

devfile_class_set
Defines a class that includes all device file classes.

dgram_socket_class_set
Defines a class that includes all datagram socket classes.

dir_file_class_set
Defines a class that includes all directory and file classes.

domain_auto_trans
Authorizes a specified domain to automatically transition to another specified domain.

domain_trans
Authorizes a specified domain to transition to another specified domain.

etcdir_domain Authorizes a specified domain to read files within its own specially labeled configuration
subdirectory of directories labeled etc_t.

etc_domain Authorizes a specified domain to read its own specially labeled configuration files
residing in directories labeled etc_t.

file_class_set
Defines a class including all nondirectory file classes.

file_type_auto_trans Authorizes a specified domain to automatically label with a specified type files created
within directories having another specified type.

file_type_trans Authorizes a specified domain to label with a specified type files created within
directories having another specified type.

full_user_role
Defines a role for a user who logs in to the system and has full user status.

general_domain_access Authorizes a specified domain to access processes, PID files, file descriptors, pipes,
Unix sockets, and IPC objects belonging to the domain.

general_proc_read_access
Authorizes a specified domain to access most nodes in the /proc filesystem.

init_service_domain Authorizes a specified domain to perform operations useful to programs that are run
from init.

in_user_role Defines a type as accessible to the user_r and staff_r roles.

link_file_perms
Defines permissions needed to link, unlink, and rename files.

lock_domain Authorizes a specified domain to use its own specially labeled lock files within
directories labeled var_lock_t.

logdir_domain
Authorizes a specified domain to create private logfiles.

log_domain
Authorizes a specified domain to use files having type var_log_t.

mini_user_domain
Defines a simple domain for a nonadministrative user having minimal privileges.

mount_fs_perms
Defines permissions needed to mount and unmount filesystems.

notdevfile_class_set
Defines a class including all nondevice file classes.

packet_perms
Defines permissions needed to send and receive network packets.

pty_slave_label
Authorizes a specified domain to access a slave pty, but not to create new ptys.

r_dir_file
Authorizes a specified domain to read directories and files.

r_dir_perms
Defines permissions needed to read directories and directory attributes.

r_file_perms
Defines permissions needed to read files and file attributes.

r_msgq_perms
Defines permissions needed to read message queues and message queue attributes.

r_sem_perms
Defines permissions needed to read semaphores and semaphore attributes.

r_shm_perms Defines permissions needed to read shared memory segments and shared memory
segment attributes.

ra_dir_create_file Defines access-vector rules for reading directories and files, creating and appending to
files, and adding names to directories.

ra_dir_file Defines access vector rules for reading directories and files, appending to files, and
adding names to directories.

ra_dir_perms
Defines permissions needed to read directories and add names to directories.

ra_file_perms
Defines permissions needed to read and append to files.

read_locale Authorizes a specified domain to read the locale data, /etc/localtime, and the file to
which it links.

read_sysctl
Authorizes a specified domain to read sysctl variables.

rw_dir_create_file
Authorizes a specified domain to read and write directories and create and use files.

rw_dir_file
Defines access vector rules for reading and writing files and directories.

rw_dir_perms
Defines permissions needed to read and write directories and directory attributes.

rw_file_perms
Defines permissions needed to read and write files and file attributes.

rw_msgq_perms
Defines permissions needed to read and write message queues and their attributes.

rw_sem_perms
Defines permissions needed to read and write semaphores and their attributes.

rw_shm_perms Defines permissions needed to read and write shared memory segments and their
attributes.

rw_socket_perms
Defines permissions needed to read, write, and otherwise use (but not create)
sockets.

rw_stream_socket_perms Defines permissions needed to read, write, and otherwise use (but not create) stream
sockets.

rx_file_perms
Defines permissions needed to read and execute files.

signal_perms
Defines permissions needed to send signals to processes.

socket_class_set
Defines a class including all socket classes.

stat_file_perms
Defines permissions needed to get file attributes.

stream_socket_class_set
Defines a class including all stream socket classes.

system_domain Authorizes a specified domain to use shared libraries, the system log, access system
administration files, and perform other operations common to system processes.

tmp_domain
Authorizes a specified domain to create and use files having type tmp_t.

tmpfs_domain
Authorizes a specified domain to create and use files having type tmpfs_t.

unconfined_domain Authorize a domain to perform any operation permitted by Linux DAC, effectively
bypassing all SELinux policy checks.

unpriv_socket_class_set Defines a class including all nonprivileged socket classes (excludes rawip-, netlink-, and
packet-related classes).

user_application_domain Authorizes a specified domain to perform operations common to simple applications
and defines the domain as a user domain.

user_domain
Defines a domain for a nonadministrative user.

uses_authbind
Authorizes a specified domain to use services provided by the authbind_t domain.

uses_shlib Authorizes a specified domain to use shared libraries.

var_lib_domain
Authorizes a specified domain to use files having type var_lib_t.

var_run_domain Authorizes a specified domain to create files in /var/run files and other directories
created for the domain.

x_file_perms
Defines permissions needed to execute files.

Appendix D. SELinux General Types
This appendix includes several tables describing SELinux general types: types
that tend to be referenced by multiple domains. The types shown in Tables 1
through 5 are those present in the Fedora Core 2 implementation of SELinux.
SELinux developers may introduce new types or delete existing types in other
SELinux releases.

Table D-1. Device-related types
Type Description

agp_device_t
AGP video device: /dev/agpgart

apm_bios_t
APM BIOS

clock_device_t
Hardware clock device: /dev/rtc

console_device_t
Console device: /dev/console

cpu_device_t
CPU device: /dev/cpu/*

devfs_control_t
Devfs filesystem.

device_t
Device

devtty_t
tty device

dri_device_t
DRI device: /dev/dri, /dev/dri/.*

event_device_t
Event device: /dev/input/event.*

fixed_disk_device_t
Fixed disk drive

framebuf_device_t
Framebuffer device: /dev/fb[0-9]*

memory_device_t
Memory device: /dev/kmem, /dev/mem, /dev/port, /dev/nvram

misc_device_t
Miscellaneous device (for instance, /dev/sequencer)

mouse_device_t
Mouse

mtrr_device_t
Memory type range register device: /dev/cpu/mtrr

null_device_t
/dev/null

ppp_device_t
/dev/ppp, /dev/pppox, /dev/ippp

random_device_t
Entropy generator: /dev/random

removable_device_t
Device having removable media (for instance, a CD-ROM device)

scanner_device_t
Scanner

scsi_generic_device_t
Generic SCSI device: /dev/sg[0-9]+

sound_device_t
Sound device

tape_device_t
Magnetic tape device

tty_device_t
tty device

tun_tap_device_t Network tunnel or tap device: /dev/net/tun/*, /dev/net/tap/*

urandom_device_t
Entropy generator: /dev/urandom

v4l_device_t
Radio or tuner device

zero_device_t
/dev/zero

Table D-2. File-related types
Type Description

at_spool_t
At-related files in /var/spool/at

bdev_t
Bdev filesystem

bin_t
Binary executables in /bin

boot_runtime_t
Boot configuration files, such as grub.conf

boot_t
Bootable kernel and RAM disk files such as /vmlinuz

catman_t
Man page catalog files

cifs_t
Alias for sambafs_t

cron_spool_t
cron files

default_t
A default file context

dosfs_t
MSDOS, FAT, VFAT, or NTFS filesystem

etc_aliases_t
/etc/aliases and related files

etc_runtime_t
Volatile files in /etc and subdirectories

etc_t
Nonvolatile files in /etc and subdirectories

eventpollfs_t
Event-poll filesystem

faillog_t
/var/log/faillog and related login failure log files

file_t
Default type of unlabeled file

fonts_t
Font file

fs_t
Default type for filesystems

futexfs_t
Futex filesystem

home_root_t
Type for directory containing user home directories

iso9660_t
ISO9660 filesystem

krb5_conf_t
/etc/krb5.conf and related Kerberos files

lastlog_t
/var/log/lastlog and related login log files

ld_so_cache_t /etc/ld.so.cache and related shared library cache files

ld_so_t
/etc/ld.so.conf and related shared library configuration files

lib_t
Modules, libraries, and related files in /lib

locale_t
/usr/share/locale, /usr/share/zoneinfo and localization files

lost_found_t
Lost and found directories and the files they contain

ls_exec_t
/bin/ls

mail_spool_t
/var/mail, /var/spool/mail, and related files

man_t
/usr/man, /usr/share/man, and related files

mnt_t
/mnt and related files

mqueue_spool_t
/var/spool/mqueue and related files.

net_conf_t
Network configuration files, such as /etc/resolv.conf

nfsd_fs_t
NFSD filesystem

poly_t
Polyinstantiated directory (defined, but not used, in sample policy)

print_spool_t
/var/spool/lpd, /var/spool/cups, and related files

ramfs_t
RAMFS filesystem

readable_t Files and directories readable by ordinary users

resolv_conf_t
Alias for net_conf_t

romfs_t
ROMFS or CRAMFS filesystem

root_t
Root filesystem

rpc_pipefs_t
RPC pipe filesystem

sambafs_t
Samba (CIFS) filesystem

sbin_t
/sbin, /usr/sbin, and related files

shadow_t
/etc/shadow and related files

shell_exec_t
Executable shell, such as /bin/bash

shlib_t
Shared libraries in /lib, /usr/lib, and elsewhere

src_t
/usr/local/src and related files

swapfile_t
Swap file

sysfs_t
SYS filesystem

system_map_t
/boot/System.map and related files

test_file_t
(Defined, but not used, in sample policy)

tetex_data_t
Texmf-related files in /var/spool/texmf, /var/lib/texmf, and elsewhere

tmpfs_t
TMPFS filesystem

tmp_t
User-created files in /tmp and elsewhere

udev_runtime_t
UDEV table file

unlabeled_t
Unlabeled file

usbdevfs_t
USB DEV filesystem

usbfs_t
USB filesystem

usr_t
/usr, /opt and related files

var_lib_nfs_t
/var/lib/nfs and related files

var_lib_t
/var/lib and related files

var_lock_t
/var/lock and related files

var_log_ksyms_t
/var/log/ksyms and related files

var_log_t
/var/log/dmesg, /var/log/syslog, and related files

var_run_t
/var/run and related files

var_spool_t /var/spool and related files

var_t
/var and related files

var_yp_t
/var/yp and related files

wtmp_t
/var/log/wtmp and related files

The descriptions given in Table D-2 are abbreviated. The types listed in the table are often
used to label a variety of files beyond those identified in the concise descriptions given in
the table.

Table D-3. Types related to networking
Type Description

any_socket_t
Obsolete type used to refer to UDP or raw IP socket

icmp_socket_t
Socket used to send ICMP messages

igmp_packet_t
IGMP packet

netif_eth0_t
Network interface eth0

netif_eth1_t
Network interface eth1

netif_eth2_t
Network interface eth2

netif_ippp0_t Network interface ippp0

netif_ipsec0_t
Network interface ipsec0

netif_ipsec1_t
Network interface ipsec1

netif_ipsec2_t
Network interface ipsec2

netif_lo_t
Network interface lo

netif_t
A network interface

netmsg_eth0_t
Network message arriving on interface eth0

netmsg_eth1_t
Network message arriving on interface eth1

netmsg_eth2_t
Network message arriving on interface eth2

netmsg_ippp0_t
Network message arriving on interface ippp0

netmsg_ipsec0_t
Network message arriving on interface ipsec0

netmsg_ipsec1_t
Network message arriving on interface ipsec1

netmsg_ipsec2_t
Network message arriving on interface ipsec2

netmsg_lo_t
Network message arriving on interface lo

netmsg_t
Network message arriving on any interface

node_compat_ipv4_t IP address of IPv4-compatible host

node_inaddr_any_t
IP address of any host

node_internal_t
IP address of LAN host

node_link_local_t
IP address of LAN host

node_lo_t
IP address of loopback interface

node_mapped_ipv4_t
IP address of host having a mapped IPv4 address

node_multicast_t
IP address of host having a multicast address

node_site_local_t
IP address of host associated with local site

node_t
Default type of network node

node_unspec_t
Network node of unspecified type

pop_port_t
Post Office Protocol port

port_t
TCP/IP port

scmp_packet_t
SCMP (ST Control Message Protocol) packet

tcp_socket_t
Socket used to send TCP data

xserver_port_t

X server port

Table D-4. Types related to /proc
Type Description

proc_kcore_t
/proc/kcore and related files

proc_kmsg_t
/proc/kmsg and related files

proc_t
/proc filesystem and related files

sysctl_dev_t
/proc/sys/dev and related files

sysctl_fs_t
/proc/sys/fs and related files

sysctl_hotplug_t
/proc/sys/kernel/hotplug and related files

sysctl_irq_t
/proc/irq and related procfs files

sysctl_kernel_t
/proc/sys/kernel and related files

sysctl_modprobe_t
/proc/sys/kernel/modprobe and related files

sysctl_net_t
/proc/sys/net and related files

sysctl_net_unix_t
/proc/sys/net/unix and related files

sysctl_rpc_t
/proc/net/rpc and related files

sysctl_t
/proc/sys and related files

sysctl_vm_t
/proc/sys/vm and related files

Table D-5. Types related to SELinux
Type Description

default_context_t
Type of /etc/security/default_contexts file

file_labels_t
Type of the persistent label mapping stored in a filesystem

no_access_t
Type of objects that should be accessed only administratively

policy_config_t
Type of /etc/security/selinux/*

policy_src_t
Type of the policy source files

security_t Target type used when checking permissions in the security class; also the type of selinuxfs i-
nodes

Appendix E. SELinux Type Attributes
Table E-1 summarizes the SELinux type attributes appearing in the Fedora
Core 2 implementation of SELinux. Other implementations may define
different type attributes or assign different meaning to attributes shown in the
table.

Table E-1. SELinux type attributes
Type attribute Description

admin
Administrator domain, such as sysadm_t

auth
Domain that can read /etc/shadow

auth_chkpwd
Domain that can authenticate users by running unix_chkpwd

auth_write
Domain that can write or relabel /etc/shadow

dbus_client_domain
Domain of dbus client

device_type
Type assigned to device nodes

domain
Type that can be assigned to a process

etc_writer
Domain that can write to etc_t

exec_type
Type assigned to executables that are domain entry points

file_type
Type assigned to files in persistent filesystems

fs_domain
Domain that can directly access a fixed disk

fs_type
Type assigned to filesystems, including nonpersistent filesystems

gphdomain
Domain derived from gnome-pty-helper

home_dir_type
Type assigned to the parent directory holding user home directories

home_type
Type assigned to home directories

homedirfile
Type of special file in home directory, used to associate mount points with home directories

lockfile
Type assigned to lock files or directories

logfile
Type assigned to log files or directories

login_contexts
Type assigned to files used to define default contexts for login type

mail_server_domain
Domain that can accept inbound TCP port 25 connection

mail_server_sender
Domain that can make outbound TCP port 25 connection

mini_pty_type
pty used for a user_mini_domain

mlstrustedobject
Type that can be accessed irrespective of MLS restrictions (not used)

mlstrustedreader
Domain that can override MLS restrictions on reading (not used)

mlstrustedwriter
Domain that can override MLS restrictions on writing (not used)

mta_delivery_agent
Mail server domain that can deliver messages

mta_user_agent
Mail server domain that can read user files and FIFOs and inherit file handles for mail spool

netif_type
Type assigned to network interfaces

netmsg_type
Type assigned to packets received on network interfaces

node_type
Type assigned to network nodes (hosts)

noexattrfile
Type of filesystem not supporting extended attributes

pidfile
Type assigned to PID files

port_type
Type assigned to TCP/IP port numbers

priv_system_role Domain that can change role from a user role to a system_r role, and user from a user identity
to system_u

privfd
Domain whose file handles can be widely inherited

privhome
Domain that can act on behalf of a user by creating files under the user's home directory

privlog
Domain that can communicate with the system logger daemon via its Unix domain socket

privmail
Domain that can transition to system_mail_t

privmem
Domain that can access kernel memory

privmodule
Domain that can run modprobe

privowner Domain that can assign a nondefault SELinux user identity to a file, or create a file having an
SELinux user identity other than that of the current process

privrole
Domain that can change the SELinux role identity

privuser
Domain that can change the SELinux user identity

ptyfile
Type assigned to ptys

root_dir_type
Type assigned to filesystem root directories, including those of nonpersistent filesystems

server_pty
Type of pty created by a server, such as sshd

socket_type Type assigned to kernel-created sockets (ordinary sockets are labeled with the type of the
creating process)

sysadmfile
Type assigned to files fully controlled by administrators

sysctl_kernel_writer
Domain (other than admin Domain) that can write to sysctl_kernel_t

sysctl_net_writer
Domain that can write to sysctl_net_t

sysctl_type
Type assigned to a sysctl entry; that is, a configuration item appearing in /proc/sys

tmpfile
Type assigned to temporary files

tmpfsfile
Type defined for tmpfs type translations

ttyfile
Type assigned to ttys

unpriv_userdomain
Type of nonadministrative users, such as user_t

user_crond_domain Type of user crond domain, such as user_crond_t and system_crond_t

user_home_dir_type
Type of user home directory of unpriv_userdomain user

user_home_type
Type of nonadministrator home directory

user_mail_domain
Domain used by sendmail -t

user_mini_domain
Small Domain used for newrole

user_tmpfile
Type assigned to temporary files of unpriv_userdomain domain

usercanread
Type of files that user can read

userdomain
User domain, such as user_t and sysadm_t

userpty_type
Type of nonadministrative pty (devpts)

web_client_domain
Domain of web client, such as Netscape and Squid

xserver_tmpfile
Type assigned to temporary files of user_xserver_t domain

Colophon
Our look is the result of reader comments, our own experimentation, and
feedback from distribution channels. Distinctive covers complement our
distinctive approach to technical topics, breathing personality and life into
potentially dry subjects.

The image on the cover of SELinux: NSA's Open Source Security Enhanced
Linux depicts surveying soldiers. During the second half of the nineteenth
century, following the Civil War, the U.S. military dispatched troops to the
American West to subdue hostilities between Native Americans and settlers.
These intrepid soldiers braved a chaotic environment; they were frequently
confronted with shoot-outs, ambushes, and snipers in their struggle to bring
order to the American frontier. Among these troops were the Buffalo soldiers,
the first peacetime regiments of African-American cavalry in the military.
Despite being stationed in extremely dangerous terrain with inferior supplies,
the Buffalo soldiers became one of the most distinguished military units in the
Old West. To future generations of soldiers, they were models of courage and
dedication in the face of adversity.

Sanders Kleinfeld was the production editor and copyeditor for SELinux: NSA's
Open Source Security Enhanced Linux. Jamie Peppard was the proofreader.
Mary Anne Weeks Mayo and Claire Cloutier provided quality control. Caitrin
McCullough provided production assistance. Judy Hoer wrote the index.

Emma Colby designed the cover of this book, based on a series design by
Hanna Dyer and Edie Freedman. The cover image is a 19th-century engraving
from the Dover Pictorial Archive. Clay Fernald produced the cover layout with
QuarkXPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David
Futato. The chapter opening images are from the Dover Pictorial Archive,
Marvels of the New West: A Vivid Portrayal of the Stupendous Marvels in the
Vast Wonderland West of the Missouri River, by William Thayer (The Henry Bill
Publishing Co., 1888);and The Pioneer History of America: A Popular Account
of the Heroes and Adventures, by Augustus Lynch Mason, A.M. (The Jones
Brothers Publishing Company, 1884). This book was converted by Julie Hawks
to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason
McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The
text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and
the code font is LucasFont's TheSans Mono Condensed. The illustrations that
appear in the book were produced by Robert Romano and Jessamyn Read
using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning
icons were drawn by Christopher Bing. This colophon was written by Sanders

Kleinfeld.

The online edition of this book was created by the Safari production group
(John Chodacki, Ken Douglass, and Ellie Cutler) using a set of Frame-to-XML
conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, Ellie Cutler, and Jeff Liggett.

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

! (logical negation), used in conditional expressions
 != (logical inequality), used in conditional expressions
 && (logical AND), used in conditional expressions
 <Emphasis>Malicious Mobile Code<Default Para Font>
 * (asterisk), special notation for specifying types/classes/permissions
 - (minus sign), special notation for specifying types/classes/permissions
 == (logical equality), used in conditional expressions
 ̂ (logical exclusive OR), used in conditional expressions
 || (logical OR), used in conditional expressions
 ~ (tilde), special notation for specifying types/classes/permissions
 0-day vulnerabilities and patch cycles

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

accept operation
 acceptfrom operation
 access controls, discretionary/mandatory
 access decisions
 access vector cache (AVC)
 access vectors
 TE access-vector declarations
 access-control lists (ACLs), protecting memory with
 access-vector rules
 authorizing transitions with
 restrictions imposed on, by constraint declarations
 syntax of
 access_vectors file in flask subdirectory 2nd
 access_vectors policy element 2nd
 ACLs (access-control lists), protecting memory with
 actions performed by subjects
 active content, contributing to software threats
 Add button (Seuserx window)
 add_name operation
 adding user accounts 2nd
 Address Space Layout Randomization (ASLR)
 adduser command
 admin type attribute
 admin.te file 2nd
 admin_domain macro
 admin_macros.te file 2nd
 Advanced button (Seuserx window)
 agp_device_t type
 aliases for type names, defining with type declarations 2nd
 allow access vector 2nd
 conditional declarations and 2nd
 sample declaration
 allow lines in snort.te file
 allow statements, governing role transitions 2nd
 allow_user_direct_mouse macro
 allow_user_dmesg macro

 allow_user_tcp_server macro
 allow_xserver_home_fonts macro
 allow_ypbind macro
 alternatives to SELinux
 Analysis tab (Apol window) 2nd
 any_socket_t type
 Apache OpenSSL attack 2nd
 apm_bios_t type
 Apol tool 2nd
 appconfig subdirectory 2nd
 files in
 append directive
 append operation
 append_log_domain macro
 append_logdir_domain macro
 application_domain macro
 applications of SELinux
 apt-get command
 architecture of SELinux
 ASLR (Address Space Layout Randomization)
 assert.te file 2nd
 associate operation
 at_spool_t type
 attrib.te file 2nd
 type attributes defined in
 attribute declarations (attribute_def)
 audit trails, monitoring attacks with
 Audit2allow utility 2nd
 auditallow access vector 2nd
 conditional declarations and
 sample declaration
 auditdeny access vector
 conditional declarations and
 sample declaration
 auth type attribute
 auth-net domain (domains/misc subdirectory)
 auth_chkpwd type attribute
 auth_write type attribute
 av_permissions.h file
 AVC (access vector cache)

 avc_enforcing command 2nd
 avc_toggle command 2nd 3rd

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

base_file_read_access macro
 base_pty_perms macro
 base_user_domain macro
 base_user_macros.te file 2nd
 bdev_t type
 bdflush operation
 Bell, David
 bin_t type
 binary policy files, creating with checkpolicy command 2nd
 bind operation
 blk_file (object security class) 2nd
 Boolean declarations (bool_def)
 Booleans
 setting via SELinux filesystem
 tuning SELinux via
 Booleans tab (Apol window)
 boot parameters and setting initial operating mode
 boot problems, troubleshooting
 boot time, disabling SELinux at
 boot_runtime_t type
 boot_t type
 Browse Policy tab (Sepcut window)
 buffer overflow attacks, detecting with stack canaries

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

cache of log entries in SELinux
 can_create_other_pty macro
 can_create_pty macro
 can_exec macro
 can_exec_any macro
 can_getcon macro
 can_getsecurity macro
 can_loadpol macro
 can_network macro 2nd 3rd
 Audit2allow utility and
 can_ps macro
 can_ptrace macro
 can_setbool macro
 can_setenforce macro
 can_setexec macro
 can_setfscreate macro
 can_sysctl macro
 can_tcp_connect macro
 can_udp_send macro
 can_unix_connect macro
 can_unix_send macro
 can_ypbind macro
 capability (object security class) 2nd
 catman_t type
 CERT/CC (Computer Emergency Response Team Coordination Center)
 change_bool command
 change_sid operation
 ChangeLog file
 chcon utility
 labeling/relabeling filesystems
 check_context operation
 checkpolicy command 2nd 3rd
 chfn operation
 child and parent processes 2nd
 chmod command
 chown operation
 chr_file (object security class) 2nd
 chroot command

 chsh operation
 cifs_t type
 class name M4 macros
 classes of objects 2nd
 classes policy element 2nd
 classes, special notations for
 Classes/Perms tab (Apol window)
 clean Makefile target
 clock_device_t type
 Coker, Russell 2nd
 comments, prefixing with dnl (do not list) 2nd 3rd 4th
 common declaration
 complementation (special notation)
 compute_av operation
 compute_create operation
 compute_member operation
 compute_relabel operation
 compute_user operation
 Computer Emergency Response Team Coordination Center (CERT/CC)
 conditional declarations (cond_stmt_def)
 Conditional Expressions tab (Apol window)
 connect operation
 connectto operation
 console_device_t type
 constraint declarations
 special tokens used in
 constraints file 2nd
 constraint declarations in
 constraints policy element 2nd
 context tokens in regular expressions
 context-related declarations
 syntax of
 filesystem labeling declarations
 genfs declarations
 initial SID context declarations
 network declarations
 context_to_sid operation
 COPYING file
 core_macros.te file 2nd 3rd
 class name M4 macros

 Cowan, Crispin
 cp command
 cpu_device_t type
 create operation
 create_append_log_file macro
 create_dir_file macro
 create_dir_notdevfile macro
 create_dir_perms macro
 create_file_perms macro
 create_msgq_perms macro
 create_sem_perms macro
 create_shm_perms macro
 create_socket_perms macro
 create_stream_socket_perms macro
 cron program
 troubleshooting
 cron_spool_t type
 customizing roles
 cybercriminals
 Cyrus IMAP daemon, role used by
 cyrus_r role

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

DAC (discretionary access control)
 vs. SELinux MAC
 dac_override operation
 dac_read_search operation
 daemon_base_domain macro
 daemon_core_rules macro
 daemon_domain macro
 daemon_sub_domain macro
 daemons
 starting with run_con command
 starting/controlling
 troubleshooting problems with
 date command
 dbus_client_domain type attribute
 Debian GNU/Linux
 demonstration system
 installing SELinux on
 Debian Sid
 Debian Woody
 decisions made by SELinux security servers
 default roles, assigning
 default_context_t type
 default_contexts file 2nd
 default_t type
 default_type file
 defense by layers principle
 defenses
 for hosts
 for networks
 Delete button (Seuserx window)
 demo systems for SELinux
 denial-of-service attacks
 destroy operation
 detecting intrusions
 devfile_class_set macro 2nd

 devfs_control_t type
 device-related types
 device.te file
 device_t type
 device_type type attribute
 devlog_t type
 devpts (pseudoterminal filesystem)
 devpts.te file
 devtty_t type
 dgram_socket_class_set macro 2nd
 dir (object security class) 2nd
 dir_file_class_set macro 2nd
 direct information flow analysis
 direct_sysadm_daemon macro 2nd 3rd
 directory tree for SELinux policy 2nd
 disabling SELinux at boot time
 discretionary access control (DAC)
 vs. SELinux MAC
 dmesg command
 dnl (do not list) prefix for comments 2nd 3rd 4th
 domain entry points
 domain transition analysis
 domain transitions
 domain type attribute
 domain_auto_trans macro 2nd 3rd
 Audit2allow utility and
 creating new domain
 domain_trans macro 2nd
 domains
 allowing access to existing domains
 creating new
 entering, using role statement
 protecting memory with
 role type declarations and
 security attributes
 transitioning to 2nd
 what files are related
 domains subdirectory 2nd

 files/subdirectories in
 dontaudit access vector 2nd
 conditional declarations and
 sample declaration
 dosfs_t type
 dri_device_t type
 Dwerryhouse, Paul

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

enforce_dest operation
 enforcing mode
 booting system into
 curtailing unnecessary logging
 dynamically setting operating mode
 enqueue operation
 entrypoint operation
 escalating privileges
 /etc/init.d directory
 /etc/passwd program
 setting user passwords
 /etc/shadow program
 setting user passwords
 etc_aliases_t type
 etc_domain macro
 etc_runtime_t type
 etc_t type
 etc_writer type attribute
 etcdir_domain macro
 event_device_t type
 eventpollfs_t type
 exec_type type attribute
 execute operation
 execute_no_trans operation
 ext2/ext3 (Linux Ext2/Ext3 filesystems)

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

faillog_t type
 failsafe_context file
 FC (file context) files
 adding permissions to
 creating
 deleting conflicting specifications
 manual installation by system administrators
 testing/revising
 understanding how SELinux policy operates
 fcron domain (domains/misc subdirectory)
 fd (object security class) 2nd
 fdisk command
 features of SELinux
 Fedora Core
 demonstration system
 Fedora Core 2
 automatic transition to sysadm_r role
 Boolean declarations
 policy elements and associated files in
 role transition allowed for system administrators 2nd
 sestatus command
 supporting SELinux
 tuning SELinux
 via macros
 via policy Booleans
 type attributes in SELinux 2nd
 fifo_file (object security class) 2nd
 file (object security class) 2nd
 file context database
 file context files files) [See FC (file context]
 file creation and transition decisions
 file labeling

 file labels
 boot problems and relabeling filesystems
 repairing, using restorecon utility
 file security context, viewing
 file-related types
 file-type transitions
 file.te file
 file_class_set macro 2nd
 file_contexts file
 file_contexts subdirectory
 files/subdirectories in
 file_labels_t type
 file_t type
 file_type type attribute
 file_type_auto_trans macro 2nd
 file_type_trans macro 2nd
 filesystem (object security class) 2nd
 filesystem labeling declarations
 firewalls
 for hosts
 for networks
 Firewalls screen of Fedora Core 2
 fixed memory assignments, preventing attacks based on
 fixed_disk_device_t type
 fixfiles utility
 labeling/relabeling filesystems
 relabeling problem scripts with
 troubleshooting login problems with
 flask subdirectory 2nd
 files in
 flask-related declarations
 syntax of
 access_vectors file
 initial_sids file
 security_classes file
 fonts_t type
 fork operation

 forward domain analysis
 fowner operation
 framebuf_device_t type
 fs_domain type attribute
 fs_t type
 fs_type type attribute
 fs_use file 2nd
 fs_use policy element 2nd
 fs_use_task declaration
 fs_use_trans declaration
 fs_use_xattr declaration
 fsetid operation
 FTP sites for SELinux
 ftp_home_dir macro
 ftpd_is_daemon macro
 full_user_role macro
 futexfs_t type

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Gartner research on insider threats
 general_domain_access macro
 general_proc_read_access macro
 Genfs declarations
 genfs_contexts file 2nd 3rd
 genfs_contexts policy element 2nd
 genfscon keyword
 Gentoo Linux
 Hardened Project demo system
 installing SELinux on
 existing systems
 fresh systems
 sestatus command
 get_sids operation
 get_user_sids operation
 getattr operation
 getcap operation
 getenforce command 2nd
 getopt operation
 getpgid operation
 getsched operation
 getsession operation
 global_macros.te file 2nd 3rd
 GNOME desktop
 troubleshooting problems with
 using with SELinux
 GNU mailing list manager application, role used by
 gphdomain type attribute 2nd
 GRSecurity
 GRUB bootloader 2nd
 configuring
 setting initial operating mode

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Hardened Project (Gentoo) demonstration system
 hide_broken_symptoms macro
 history of SELinux
 home directories of users
 home_dir_type type attribute
 home_root_t type
 home_type type attribute
 homedirfile type attribute
 honeypots
 hosts, defenses for

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

icmp_socket_t type
 id -Z command 2nd
 id command 2nd
 id_comma_list policy subelement
 identifier_list policy subelement
 identifiers, lowercase vs. uppercase
 igmp_packet_t type
 in_user_role macro
 incident reports
 indirect information flow analysis
 init scripts
 relabeling, using fixfiles command
 starting/controlling daemons
 init_service_domain macro
 initial operating mode of SELinux system, setting
 initial SID context declarations
 initial SIDs (security identifiers)
 Initial SIDs tab (Apol window)
 initial_sid_contexts file 2nd
 initial_sid_contexts policy element 2nd
 initial_sids file in flask subdirectory 2nd
 initial_sids policy element 2nd
 initrc_context file
 initrc_t domain
 insider threats
 install command
 install Makefile target 2nd
 installing SELinux
 from binary or source packages
 on Debian GNU/Linux
 Fedora Core 2
 on Gentoo Linux
 existing systems
 fresh systems
 from NSA source

 overview
 on RHEL using RPM packages
 on SUSE Linux using RPM packages
 Internet and software threats
 intrusion detection systems 2nd
 intrusion prevention systems
 invoking macros
 in ping.te file
 in snort.te file
 ioctl operation
 ipc (object security class) 2nd
 ipc_info operation
 ipc_lock operation
 ipc_owner operation
 iso9660_t type

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

KDE Desktop, troubleshooting problems with 2nd
 kernel directive
 kernel domain (domains/misc subdirectory)
 kernel modules in SELinux
 kernel-image package
 kernel-level code
 kernel-source package
 kernels
 building
 Debian GNU/Linux
 Gentoo Linux 2nd
 compiling/installing
 Debian GNU/Linux
 Gentoo Linux 2nd
 installing SELinux under Gentoo
 key_socket (object security class) 2nd
 kill operation
 krb5_conf_t type

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

labeling decisions 2nd
 labeling files/filesystems
 using chcon utility
 using fixfiles utility
 using Makefile
 using restorecon utility
 using setfiles utility 2nd 3rd
 LaPadula, Leonard
 lastlog_t type
 ld_so_cache_t type
 ld_so_t type
 lease operation
 lib_t type
 LILO bootloader
 configuring instead of GRUB
 installing
 modifying
 setting initial operating mode
 lines in railroad diagrams
 link operation
 link_file_perms macro
 Linux 2.4/2.6 versions of SELinux 2nd
 Linux Security Modules (LSM) feature and SELinux 2nd
 linux_immutable operation
 listen operation
 literal symbols in railroad diagrams
 lnk_file (object security class) 2nd
 load Makefile target 2nd
 load_policy utility 2nd
 loading SELinux security policy
 local login problems, troubleshooting
 locale_t type
 lock operation
 lock_domain macro
 lockfile type attribute

 log messages
 format of
 turning off messages to console
 log_domain macro
 logdir_domain macro
 logfile type attribute
 login program
 login_contexts type attribute
 logrotate program
 logs
 Audit2allow and
 format of entries
 limiting rate of entries
 monitoring for attacks
 troubleshooting problems with
 lost_found_t type
 lowercase vs. uppercase identifiers
 ls command 2nd
 ls_exec_t type
 LSM (Linux Security Modules) feature and SELinux 2nd
 LSM-based SELinux
 lsmod command
 lynx command

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

M4 macros
 authorizing access to files and network operations
 for classes
 creating role allow declarations
 defining roles associated with users
 dnl (do not list) comment prefix 2nd 3rd
 macro invocations
 in ping.te file
 in snort.te file
 macros subdirectory 2nd
 tuning SELinux via
 type alias declarations, generating
 MAC (mandatory access control)
 vs. Linux DAC
 macros subdirectory
 files in
 macros defined in
 mail_server_domain type attribute
 mail_server_sender type attribute
 mail_spool_t type
 mailing lists related to SELinux
 mailman_r role
 make install command
 make load command
 make reload command
 Makefile
 labeling/relabeling filesystems
 loading SELinux security policy
 in policy source directory 2nd
 SELinux binary policy file generated by
 targets (operations) supported by 2nd

 man_t type
 mandatory access control (MAC)
 vs. Linux DAC
 May, Brian
 MBR (master boot record) 2nd
 McGraw, Gary
 member_sid operation
 memory protection schemes
 memory-resident tables
 memory_device_t type
 mini_pty_type type attribute
 mini_user_domain macro
 mini_user_macros.te file 2nd
 misc subdirectory
 domains directory 2nd
 file_contexts directory 2nd
 misc_device_t type
 MITRE Corporation
 mknod operation
 mkswap command
 mls file 2nd
 mls policy element 2nd
 mlstrustedobject type attribute
 mlstrustedreader type attribute
 mlstrustedwriter type attribute
 mnt_t type
 mobile code, contributing to software threats
 modes
 enforcing vs. permissive
 switching
 troubleshooting program execution problems
 modprobe command
 monitoring SELinux
 mount operation
 mount_fs_perms macro
 mounton operation
 mouse_device_t type
 mqueue_spool_t type
 msg (object security class) 2nd
 msgq (object security class) 2nd

 mta_delivery_agent type attribute
 mta_user_agent type attribute
 mtrr_device_t type
 mv command

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

name_bind operation
 names policy subelement
 naming conventions for security attributes
 National Security Agency [See NSA]
 ncurses-dev package
 nested_id_set policy subelement
 net_admin operation
 net_bind_service operation
 net_conf_t type
 net_contexts file 2nd
 net_contexts policy element 2nd
 net_raw operation 2nd
 netbroadcast operation
 netif (object security class) 2nd
 netif_eth0_t type
 netif_eth1_t type
 netif_eth2_t type
 netif_ippp0_t type
 netif_ipsec0_t type
 netif_ipsec1_t type
 netif_ipsec2_t type
 netif_lo_t type
 netif_t type
 netif_type type attribute
 netifcon declarations
 netlink_socket (object security class) 2nd
 netmsg_eth0_t type
 netmsg_eth1_t type
 netmsg_eth2_t type
 netmsg_ippp0_t type
 netmsg_ipsec0_t type
 netmsg_ipsec1_t type
 netmsg_ipsec2_t type
 netmsg_lo_t type
 netmsg_t type
 netmsg_type type attribute
 Network Associates
 network declarations

 network.te file
 networks
 connectivity issues, contributing to software threats
 defenses for
 intrusion detection systems
 types related to
 neverallow rule type
 sample declaration
 newconn operation
 newrole command 2nd
 nfs.te file
 nfs_export_all_ro macro
 nfs_export_all_rw macro
 nfs_home_dirs macro
 nfsd_control operation
 nfsd_fs_t type
 Nmap program
 adding permissions to
 allowing access to existing domains
 Audit2allow utility and
 nmap-services file, read access denied to
 no_access_t type
 noatsecure operation
 node (object security class) 2nd
 node_bind operation
 node_compat_ipv4_t type
 node_inaddr_any_t type
 node_internal_t type
 node_link_local_t type
 node_lo_t type
 node_mapped_ipv4_t type
 node_multicast_t type
 node_site_local_t type
 node_t type
 node_type type attribute
 node_unspec_t type
 nodecon declarations
 noexattrfile type attribute
 nonexecutable stacks

 notdevfile_class_set macro 2nd
 NSA (National Security Agency)
 installing SELinux on unsupported platforms
 mailing list for SELinux
 versions of SELinux
 web site for SELinux
 NSA SELinux boot parameter option
 disabling SELinux at boot time
 NSA SELinux Development support option
 setting initial operating mode
 nscd_all_connect macro
 null_device_t type

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

object_r (dummy role)
 objects
 access to, decisions regarding
 parsing log messages
 persistent
 restricting ability to relabel objects
 rules governing access to
 security classes of 2nd
 transient
 operating mode of SELinux system, dynamically setting
 Orange Book 2nd
 ovals in railroad diagrams
 overview of
 installation process
 SELinux security model

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

packages, installing
 packet_perms macro
 packet_socket (object security class) 2nd
 pam program
 parent and child processes 2nd
 parsing log messages
 passwd (object security class) 2nd
 passwd command 2nd 3rd
 passwords
 setting for users
 patch cycles and 0-day vulnerabilities
 PaX project
 permissions
 adding
 associated with classes
 associated with file-like objects
 extending to processes in domain
 restricting, with constraint declarations
 special notations for
 permissive mode
 booting system into
 curtailing unnecessary logging
 dynamically setting operating mode
 setting, before using Audit2allow
 persistent labels
 filesystems not supporting
 filesystems supporting
 persistent objects
 persistent security identifiers (PSIDs), storing on filesystems
 pidfile type attribute
 ping command, controlling access to
 ping.fc file, examining sample policy
 ping.te file

 basic policy elements
 conditional statement declaration in
 domain_auto_trans macro, invoked in
 examining sample policy
 role type declarations in
 pipefs (pseudofilesystem with pipe)
 policy Booleans
 initializing in ping.te file
 setting via SELinux filesystem
 tuning SELinux via
 Policy Components tab (Apol window) 2nd
 policy constraint declarations
 policy database of SELinux security server
 policy elements
 and associated files
 list of 2nd
 subelements appearing in
 policy files 2nd [See also SELinux policy]
 browsing/editing with SePCuT
 checkpolicy command 2nd
 choosing to delete
 compiling
 compiling from source
 creating/loading
 policy Makefile target 2nd
 policy management tools
 Policy Modules tab (Sepcut window)
 Policy Rules tab (Apol window) 2nd
 policy source directory files
 policy source tree 2nd
 policy structure of SELinux
 policy.<Emphasis>??<Default Para Font> file 2nd
 policy.conf file 2nd
 analyzing, with Apol tool
 checkpolicy command and

 policy.conf tab (Apol window)
 policy.spec file
 policy_config_t type
 policy_src_t type
 poly_t type
 pop_port_t type
 port_t type
 port_type type attribute
 portcon declarations
 ppp_device_t type
 principle of least privilege
 authorizing Nmap access and
 Fedora Core SELinux implementation and
 mandatory access control
 network declarations and
 print_spool_t type
 priv_system_role type attribute
 privfd type attribute
 privhome type attribute
 privileges, escalating
 privlog type attribute 2nd
 privmail type attribute
 privmem type attribute
 privmodule type attribute
 privowner type attribute
 privrole type attribute
 privuser type attribute
 /proc, types related to
 proc_kcore_t type
 proc_kmsg_t type
 proc_t type
 process (object security class) 2nd
 processes
 child/parent 2nd
 choosing security contexts
 creating
 and programs, distinctions between
 RBAC (role-based access control)
 reporting security context of

 security context of
 procfs.te file
 program execution problems, troubleshooting
 program subdirectory
 domains directory 2nd
 file_contexts directory 2nd
 macros directory 2nd
 Propolice project
 protecting memory from 0-day attacks
 ps command 2nd 3rd
 pseudofilesystems, mounting 2nd
 pseudoterminal filesystem (devpts)
 PSIDs (persistent security identifiers), storing on filesystems
 ptrace facility
 exploited during Apache OpenSSL attack 2nd 3rd
 pty_slave_label macro
 ptyfile type attribute 2nd

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

quotaget operation
 quotamod operation
 quotaon operation

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

r_dir_file macro
 r_dir_perms macro
 r_file_perms macro
 r_msgq_perms macro
 r_sem_perms macro
 r_shm_perms macro
 ra_dir_create_file macro
 ra_dir_file macro
 ra_dir_perms macro
 ra_file_perms macro
 railroad diagrams
 fine points of
 how they work
 SELinux policy syntax
 symbols specified by
 what they do
 ramfs_t type
 random assignment of memory
 random_device_t type
 raw IP packets, sending/receiving
 raw IP sockets, creating/modifying
 rawip_recv operation
 rawip_send operation
 rawip_socket (object security class) 2nd
 RBAC (role-based access control) 2nd
 declarations
 te_rbac policy element
 types of
 rbac file 2nd
 RBAC Rules tab (Apol window)
 rbac_decl (RBAC declarations)
 read operation
 read_default_t macro
 read_locale macro
 read_sysctl macro

 readable_t type
 readhome macro
 README file
 receive operation
 recv_msg operation
 recvfrom operation
 Red Hat
 Red Hat Enterprise Linux [See RHEL]
 regular expressions
 in file-context specifications
 in railroad diagrams
 in snort.fc file
 relabel Makefile target 2nd
 relabelfrom operation
 relabeling filesystems
 using chcon utility
 using fixfiles utility
 using Makefile
 using restorecon utility
 using setfiles utility 2nd 3rd
 relabelto operation
 relational operators used in conditional expressions
 reload Makefile target 2nd
 remount operation
 removable_device_t type
 remove_name operation
 Ren, Chris
 rename operation
 reparent operation
 replaceable text
 in railroad diagrams 2nd
 special notation for types/classes/permissions
 resolv_conf_t type
 restorecon utility
 labeling/relabeling filesystems
 repairing file labels

 reverse domain analysis
 RHEL (Red Hat Enterprise Linux)
 installing SELinux using RPM packages
 SELinux support
 rlimitinh operation
 rmdir operation
 role statements, authorizing roles to enter domains
 role-based access control [See RBAC]
 role_allow_def declaration
 role_dominance declaration
 role_type_def declaration
 roles in SELinux 2nd
 assigning default roles
 assigning, with user statement
 associating users with nondefault roles
 associating, with user declarations
 authorizing access to domain
 constraining changes between identities and
 customizing
 entering a different role
 newrole command
 transitions between, using allow statements 2nd
 Roles tab (Apol window)
 roletrans_def declaration
 romfs_t type
 root user
 root_default_contexts file
 root_dir_type type attribute
 root_t type
 rootok operation
 rpc_pipefs_t type
 RPM packages
 in Fedora Core 2
 installing SELinux using
 run_con command, starting non-init daemons with
 run_init command

 run_init command, starting daemons with
 run_ssh_inetd macro
 rw_dir_create_file macro
 rw_dir_file macro
 rw_dir_perms macro
 rw_file_perms macro
 rw_msgq_perms macro
 rw_sem_perms macro
 rw_shm_perms macro
 rw_socket_perms macro
 rw_stream_socket_perms macro
 rx_file_perms macro

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

sambafs_t type
 sample policy, examining
 sandboxes
 protecting memory with
 sbin_t type
 scanner_device_t type
 SCC (Secure Computing Corporation)
 scmp_packet_t type
 scsi_generic_device_t type
 search operation
 Seaudit tool 2nd 3rd
 SeCmds tool
 Secure Computing Corporation (SCC)
 secure_levels macro
 security (object security class) 2nd
 security attributes
 associated with subjects/objects
 naming conventions for
 security contexts 2nd
 assigned to filesystems by Genfs declarations
 assigning to new users
 changing permissions, to prevent denial messages
 elements of
 of files, determining
 for new domain
 of hosts, specifying
 of local ports, specifying
 of network interfaces, specifying
 of objects having initial SIDs
 specifying, when starting programs
 starting init scripts in correct
 viewing

 for Snort-related directories/files
 security identifiers (SIDs)
 flask/initial_sids file
 security model for SELinux, overview of
 security object classes 2nd
 security policy for SELinux
 associating users with nondefault roles
 enforcing mode vs. permissive mode
 loading
 roles defined by
 rules for dynamically setting operating mode
 security.te file
 security_classes file in flask subdirectory 2nd
 security_t type
 SELinux
 applications of
 architecture of
 commands
 for administration/use
 modified Linux commands
 supplementary
 Fedora Core 2 support of
 FTP sites for
 history of
 installing [See installing SELinux]
 kernel-level code
 limiting rate of log entries
 Linux 2.4/2.6 versions of 2nd
 log message format
 LSM (Linux Security Modules) feature and 2nd
 LSM-based version of
 monitoring
 operations

 overview of security model
 policy structure
 roles
 entering a different role
 newrole command
 security policy [See security policy for SELinux]
 source files
 switching modes
 tools in
 troubleshooting
 types related to
 User-Mode Linux (UML) and
 versions of
 web sites for
 using X with
 /selinux filesystem
 SELinux policy 2nd [See also entries under policy]
 examining sample policy
 FC (file context) files
 source tree
 syntax of
 TE (type enforcement) files
 two forms of
 SELinux policy compiler 2nd
 selinux-policy-default package
 sem (object security class) 2nd
 send operation
 send_msg operation
 sendto operation
 Sepcut tool 2nd 3rd
 server_pty type attribute
 serviceusers file 2nd
 sestatus command
 setattr operation

 setbool command 2nd
 setcap operation
 setenforce command 2nd 3rd
 setfiles command
 setfiles utility
 labeling/relabeling filesystems 2nd 3rd
 relabeling problem scripts with
 repairing file labels
 troubleshooting login problems with
 setfscreate operation
 setgid operation
 setopt operation
 setpcap operation
 setpgid operation
 setrlimit operation
 setsched operation
 setuid operation 2nd
 Seuserx tool 2nd 3rd
 shadow_t type
 share operation
 shared library in SELinux
 shell_exec_t type
 shlib_t type
 shm (object security class) 2nd
 shm (pseudofilesystem with shared memory object)
 show_bools command
 shutdown operation
 Sid (Debian GNU/Linux 3.0 unstable)
 sid_to_context operation
 SIDs (security identifiers)
 flask/initial_sids file
 sigchld operation
 siginh operation
 sigkill operation
 signal operation
 signal_perms macro
 signull operation
 sigstop operation
 single_userdomain macro
 Smalley, Stephen 2nd
 snapshots of current processes

 Snort intrusion detection application, files associated with
 snort.fc file
 snort.te file
 sock_file (object security class) 2nd
 socket (object security class) 2nd
 socket_class_set macro 2nd
 socket_type type attribute
 sockfs (pseudofilesystem with socket)
 software complexity, contributing to software threats
 software threats and the Internet
 sound_device_t type
 source files for SELinux
 checkpolicy command and 2nd
 SPEC file
 special notations for types/classes/permissions
 special tokens in regular expressions
 src_t type
 ssh program
 ssh_sysadm_login macro
 SSHd program, troubleshooting
 sshd_t domain
 stack canaries
 stacks, nonexecutable
 staff_r role 2nd
 authorizing users to access domain
 limiting permissions available to users
 staff_read_sysadm_file macro
 startx domain (domains/misc subdirectory)
 stat_file_perms macro
 status information, viewing with sestatus command
 stream_socket_class_set macro 2nd
 subjects
 subtraction (special notation)
 SUSE Linux
 installing SELinux using RPM packages
 swapfile_t type
 swapon operation
 switching SELinux modes
 troubleshooting program execution programs
 syntax diagrams
 sys_admin operation

 sys_boot operation
 sys_chroot operation
 sys_module operation
 sys_nice operation
 sys_pacct operation
 sys_ptrace operation
 sys_rawio operation
 sys_resource operation
 sys_time operation
 sys_tty_config operation
 sysadm_r role
 changing user_r role to
 customizing
 transitioning to
 sysadmfile type attribute
 sysctl_dev_t type
 sysctl_fs_t type
 sysctl_hotplug_t type
 sysctl_irq_t type
 sysctl_kernel_t type
 sysctl_kernel_writer type attribute
 sysctl_modprobe_t type
 sysctl_net_t type
 sysctl_net_unix_t type
 sysctl_net_writer type attribute
 sysctl_rpc_t type
 sysctl_t type
 sysctl_type type attribute
 sysctl_vm_t type
 sysfs_t type
 syslog_console operation
 syslog_mod operation
 syslog_read operation
 syslogd domain definition
 syslogd_t type
 system (object security class) 2nd
 system administrators, adding
 system_domain macro
 system_map_t type
 system_r role 2nd

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

tape_device_t type
 targets (operations) supported by Makefile 2nd
 tcp_recv operation
 tcp_send operation
 tcp_socket (object security class) 2nd
 tcp_socket_t type
 TCSEC (Trusted Computer System Evaluation Criteria)
 TE (type enforcement) declarations
 te_rbac policy element
 TE (type enforcement) files
 avoiding modification of existing files
 creating 2nd
 manual installation by system administrators
 role type declarations and
 testing/revising
 troubleshooting
 understanding how SELinux policy operates
 TE (type enforcement) model 2nd
 TE access-vector declarations (te_avtab_def)
 TE Rules tab (Apol window)
 te_rbac policy element 2nd
 TE and RBAC declarations
 Test Policy tab (Sepcut window)
 test_file_t type
 tetex_data_t type
 Thompson, Kerry
 threats to the Internet
 active content contributing to
 mobile code contributing to
 network connectivity contributing to
 software complexity contributing to
 tmp subdirectory 2nd
 tmp_domain macro
 tmp_t type

 tmpfile type attribute
 tmpfs (pseudofilesystem with memory-resident filesystem)
 tmpfs_domain macro
 tmpfs_t type
 tmpfsfile type attribute
 tokens in regular expressions
 tools in SELinux
 traceroute command, controlling access to
 traceroute_t domain
 authorizing access
 to entire domain
 to pseudoterminals
 using macros
 examining FC file for
 transient objects
 transition decisions 2nd
 transition declarations (transition_def)
 transition operation
 transition_sid operation
 transitioning to new domains 2nd
 transitions
 authorizing, with access-vector rules
 between roles, governed by allow statements 2nd
 specifying, with type-transition rules
 transitive information flow analysis
 Tresys Technology
 Apol tool
 policy management tools
 Seaudit tool
 Sepcut tool
 Seuserx tool
 tools provided by
 troubleshooting SELinux
 boot problems 2nd
 daemon problems
 local login problems

 program execution problems
 X problems
 Trusted Computer System Evaluation Criteria (TCSEC)
 TrustedBSD
 tty_device_t type
 ttyfile type attribute 2nd
 tun_tap_device_t type
 tunable.te file 2nd
 enabling/disabling direct_sysadm_daemon macro
 enabling/disabling user_canbe_sysadm macro
 macros defined in
 tuning
 Fedora Core 2 SELinux
 via macros
 via policy Booleans
 type attributes
 creating/modifying 2nd
 in Fedora Core 2 SELinux 2nd
 type declarations (type_def)
 type enforcement (TE) declarations
 te_rbac policy element
 type enforcement (TE) model 2nd
 type enforcement files files [See TE (type enforcement]
 type line in snort.te file
 type tokens in regular expressions
 type transitions
 authorizing automatic
 rules for specifying transitions
 syntax of
 type-alias declarations (typealias_def)
 types in SELinux 2nd
 device-related
 file-related
 networking
 /proc-related

 types subdirectory 2nd
 files in
 Types tab (Apol window)
 types, special notations for
 types.fc file 2nd

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

udev_runtime_t type
 udp_recv operation
 udp_send operation
 udp_socket (object security class) 2nd
 UML (User-Mode Linux) and SELinux
 unconfined_domain macro
 Unix stream sockets, creating
 unix_dgram_socket (object security class) 2nd
 unix_read operation
 unix_stream_socket (object security class) 2nd
 unix_write operation
 unlabeled_t type
 unlimitedServices macro
 unlimitedUsers macro
 unlink operation
 unmount operation
 unpriv_socket_class_set macro 2nd
 unpriv_userdomain type attribute
 unrestricted_admin macro
 unsupported platforms, installing SELinux on
 Update Policy button (Seuserx window)
 uppercase vs. lowercase identifiers
 urandom_device_t type
 usbdevfs_t type
 usbfs_t type
 use operation
 use_games macro
 user account databases, keeping Linux separate from SELinux
 user accounts, adding 2nd
 user declarations, syntax of
 user identities in SELinux
 adding ordinary users
 adding system administrators
 constraint declarations and
 user passwords, setting
 user security context, viewing
 user statements, assigning roles to users
 User-Mode Linux (UML) and SELinux

 user.te file 2nd
 user_application_domain macro
 user_can_mount macro
 user_canbe_sysadm macro 2nd 3rd
 user_crond_domain type attribute
 user_domain macro
 user_home_dir_t security context
 user_home_dir_type type attribute
 user_home_type type attribute
 user_macros.te file 2nd 3rd
 user_mail_domain type attribute
 user_mini_domain type attribute
 user_net_control macro
 user_ping Boolean
 user_ping Boolean declaration 2nd
 user_r role 2nd
 changing to sysadm_r role
 user_rw_noexattrfile macro
 user_tmpfile type attribute
 useradd command
 usercanread type attribute
 userdomain type attribute
 userpty_type type attribute
 users file 2nd
 creating user identities
 defining roles and associating with users
 users policy element 2nd
 Users tab (Apol window)
 uses_authbind macro
 uses_shlib macro 2nd
 usr_t type

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

v4l_device_t type
 var_lib_domain macro
 var_lib_nfs_t type
 var_lib_t type
 var_lock_t type
 var_log_ksyms_t type
 var_log_t type
 var_run_domain macro
 var_run_t type
 var_spool_t type
 var_t type
 var_yp_t type
 VERSION file
 versions of SELinux
 vi_t domain
 View/Change button (Seuserx window)
 virtual filesystems
 virtual machines and User-Mode Linux (UML)
 vixie-cron package
 Vogt, Tom
 vulnerabilities, 0-day

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Walsh, Dan
 web sites for SELinux
 web_client_domain type attribute
 Weber, Michael
 wget command
 Wiki, SELinux
 Wirth, Niklaus
 Woody (Debian GNU/Linux 3.0 stable)
 write operation
 writehome macro
 wtmp_t type

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

X window systems
 troubleshooting problems with
 using SELinux with
 x_file_perms macro
 xdm_sysadm_login macro
 xfs (Linux Xfs filesystem)
 xserver_port_t type
 xserver_tmpfile type attribute

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N]
[O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

zero_device_t type

	SELinux
	Table of Contents
	Copyright
	Preface
	Organization of This Book
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Acknowledgments

	Chapter 1. Introducing SELinux
	1.1 Software Threats and the Internet
	1.2 SELinux Features
	1.3 Applications of SELinux
	1.4 SELinux History
	1.5 Web and FTP Sites

	Chapter 2. Overview of the SELinux Security Model
	2.1 Subjects and Objects
	2.2 Security Contexts
	2.3 Transient and Persistent Objects
	2.4 Access Decisions
	2.5 Transition Decisions
	2.6 SELinux Architecture

	Chapter 3. Installing and Initially Configuring SELinux
	3.1 SELinux Versions
	3.2 Installing SELinux
	3.3 Linux Distributions Supporting SELinux
	3.4 Installation Overview
	3.5 Installing SELinux from Binary or Source Packages
	3.6 Installing from Source

	Chapter 4. Using and Administering SELinux
	4.1 System Modes and SELinux Tuning
	4.2 Controlling SELinux
	4.3 Routine SELinux System Use and Administration
	4.4 Monitoring SELinux
	4.5 Troubleshooting SELinux

	Chapter 5. SELinux Policy and Policy Language Overview
	5.1 The SELinux Policy
	5.2 Two Forms of an SELinux Policy
	5.3 Anatomy of a Simple SELinux Policy Domain
	5.4 SELinux Policy Structure

	Chapter 6. Role-Based Access Control
	6.1 The SELinux Role-Based Access Control Model
	6.2 Railroad Diagrams
	6.3 SELinux Policy Syntax
	6.4 User Declarations
	6.5 Role-Based Access Control Declarations

	Chapter 7. Type Enforcement
	7.1 The SELinux Type-Enforcement Model
	7.2 Review of SELinux Policy Syntax
	7.3 Type-Enforcement Declarations
	7.4 Examining a Sample Policy

	Chapter 8. Ancillary Policy Statements
	8.1 Constraint Declarations
	8.2 Other Context-Related Declarations
	8.3 Flask-Related Declarations

	Chapter 9. Customizing SELinux Policies
	9.1 The SELinux Policy Source Tree
	9.2 On the Topics of Difficulty and Discretion
	9.3 Using the SELinux Makefile
	9.4 Creating an SELinux User
	9.5 Customizing Roles
	9.6 Adding Permissions
	9.7 Allowing a User Access to an Existing Domain
	9.8 Creating a New Domain
	9.9 Using Audit2allow
	9.10 Policy Management Tools
	9.11 The Road Ahead

	Appendix A. Security Object Classes
	Appendix B. SELinux Operations
	Appendix C. SELinux Macros Defined in src/policy/macros
	Appendix D. SELinux General Types
	Appendix E. SELinux Type Attributes
	Colophon
	Index
	index_SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X
	index_Z

