
SELinux by Example: Using Security Enhanced
Linux
By Frank Mayer,, Karl MacMillan,, David Caplan
...
Publisher: Prentice Hall
Pub Date: July 27, 2006
Print ISBN-10: 0-131-96369-4
Print ISBN-13: 978-0-13-196369-6
Pages: 456

Table of Contents | Index

SELinux: Bring World-Class Security to Any Linux Environment!

SELinux offers Linux/UNIX integrators, administrators, and developers a state-of-the-art platform for building
and maintaining highly secure solutions. Now that SELinux is included in the Linux 2.6 kerneland delivered by
default in Fedora Core, Red Hat Enterprise Linux, and other major distributionsit's easier than ever to take
advantage of its benefits.

SELinux by Example is the first complete, hands-on guide to using SELinux in production environments.
Authored by three leading SELinux researchers and developers, it illuminates every facet of working with
SELinux, from its architecture and security object model to its policy language. The book thoroughly explains
SELinux sample policies including the powerful new Reference Policyshowing how to quickly adapt them to your
unique environment. It also contains a comprehensive SELinux policy language reference and covers exciting
new features in Fedora Core 5 and the upcoming Red Hat Enterprise Linux version 5.

• Thoroughly understand SELinux's access control and security mechanisms

• Use SELinux to construct secure systems from the ground up

• Gain fine-grained control over kernel resources

• Write policy statements for type enforcement, roles, users, and constraints

• Use optional multilevel security to enforce information classification and manage users with diverse clearances

• Create conditional policies that can be changed on-the-fly

• Define, manage, and maintain SELinux security policies

• Develop and write new SELinux security policy modules

• Leverage emerging SELinux technologies to gain even greater flexibility

• Effectively administer any SELinux system

SELinux by Example: Using Security Enhanced
Linux
By Frank Mayer,, Karl MacMillan,, David Caplan
...
Publisher: Prentice Hall
Pub Date: July 27, 2006
Print ISBN-10: 0-131-96369-4
Print ISBN-13: 978-0-13-196369-6
Pages: 456

Table of Contents | Index

 Copyright
 Prentice Hall Open Source Software Development Series
 Acknowledgments
 About the Authors
 Preface
 Part I: SELinux Overview
 Chapter 1. Background
 Section 1.1. The Inevitability of Software Failure
 Section 1.2. The Evolution of Access Control Security in Operating Systems
 Section 1.3. Summary
 Exercises
 Chapter 2. Concepts
 Section 2.1. Security Contexts for Type Enforcement
 Section 2.2. Type Enforcement Access Control
 Section 2.3. The Role of Roles
 Section 2.4. Multilevel Security in SELinux
 Section 2.5. SELinux Features Familiarization
 Section 2.6. Summary
 Exercises
 Chapter 3. Architecture
 Section 3.1. The Kernel Architecture
 Section 3.2. Userspace Object Managers
 Section 3.3. SELinux Policy Language
 Section 3.4. Summary
 Exercises
 Part II: SELinux Policy Language
 Chapter 4. Object Classes and Permissions
 Section 4.1. Purpose of Object Classes in SELinux
 Section 4.2. Defining Object Classes in SELinux Policy

 Section 4.3. Available Object Classes
 Section 4.4. Object Class Permission Examples
 Section 4.5. Exploring Object Classes with Apol
 Section 4.6. Summary
 Exercises
 Chapter 5. Type Enforcement
 Section 5.1. Type Enforcement
 Section 5.2. Types, Attributes, and Aliases
 Section 5.3. Access Vector Rules
 Section 5.4. Type Rules
 Section 5.5. Exploring Type Enforcement Rules with Apol
 Section 5.6. Summary
 Exercises
 Chapter 6. Roles and Users
 Section 6.1. Role-Based Access Control in SELinux
 Section 6.2. Roles and Role Statements
 Section 6.3. Users and User Statements
 Section 6.4. Exploring Roles and Users with Apol
 Section 6.5. Summary
 Exercises
 Chapter 7. Constraints
 Section 7.1. A Closer Look at the Access Decision Algorithm
 Section 7.2. Constrain Statement
 Section 7.3. Label Transition Constraints
 Section 7.4. Summary
 Exercises
 Chapter 8. Multilevel Security
 Section 8.1. Multilevel Security Constraints
 Section 8.2. Security Contexts with MLS
 Section 8.3. MLS Constraints
 Section 8.4. Other Impacts of MLS
 Section 8.5. Summary
 Exercises
 Chapter 9. Conditional Policies
 Section 9.1. Overview of Conditional Policies
 Section 9.2. Boolean Variables
 Section 9.3. Conditional Statements
 Section 9.4. Examining Booleans and Conditional Policies with Apol
 Section 9.5. Summary
 Exercises
 Chapter 10. Object Labeling
 Section 10.1. Introduction to Object Labeling
 Section 10.2. File-Related Object Labeling
 Section 10.3. Network and Socket Object Labeling
 Section 10.4. System V IPC

 Section 10.5. Miscellaneous Object Labeling
 Section 10.6. Initial Security Identifiers
 Section 10.7. Exploring Object Labeling with Apol
 Section 10.8. Summary
 Exercises
 Part III: Creating and Writing SELinux Security Policies
 Chapter 11. Original Example Policy
 Section 11.1. Methods for Managing the Build Process
 Section 11.2. Strict Example Policy
 Section 11.3. Targeted Example Policy
 Section 11.4. Summary
 Exercises
 Chapter 12. Reference Policy
 Section 12.1. Goals of the Reference Policy
 Section 12.2. Overview of Policy Source File Structure
 Section 12.3. Design Principles
 Section 12.4. Examining a Reference Policy Module
 Section 12.5. Build Options for Reference Policy
 Section 12.6. Summary
 Exercises
 Chapter 13. Managing an SELinux System
 Section 13.1. SELinux Configuration and Policy Management Files
 Section 13.2. Impact of SELinux on System Administration
 Section 13.3. Summary
 Exercises
 Chapter 14. Writing Policy Modules
 Section 14.1. Overview of Writing a Policy Module
 Section 14.2. Preparation and Planning
 Section 14.3. Creating an Initial Policy Module
 Section 14.4. Testing and Analyzing the Policy
 Section 14.5. Emerging Policy Development Tools
 Section 14.6. Complete IRC Daemon Module Listings
 Section 14.7. Summary
 Appendix A. Obtaining SELinux Sample Policies
 Section A.1. Example Policy
 Section A.2. Reference Policy
 Appendix B. Participation and Further Information
 Section B.1. The SELinux Mail List
 Section B.2. The Annual SELinux Symposium
 Section B.3. The NSA The
 Section B.4. Tresys Technology
 Section B.5. Open Source Projects
 Section B.6. The SELinux IRC Channel
 Section B.7. The Fedora Core Site
 Section B.8. Hardened Gentoo

 Section B.9. Other Related Security Information
 Appendix C. Object Classes and Permissions
 Section C.1. Common Permission Sets
 Section C.2. Object Classes and Defined Permission Sets
 Appendix D. SELinux Commands and Utilities
 Section D.1. System Utilities
 Section D.2. SETools Suite
 Section D.3. Other SELinux Tools
 Index

Copyright
Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in
this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

Much of the structure and organization, and portions of the detailed content,
of this book are based on material from Tresys Technology, LLC, their training
courses, and their open source tools. Used with permission. The authors and
publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for
errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions
and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419 corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

 International Sales
 international@pearsoned.com

Library of Congress Cataloging-in-Publication Data

Mayer, Frank, 1961-
 SELinux by Example : Understanding Security Enhanced Linux / Frank Mayer, Karl MacMillan, David Caplan.
 p. cm.
Includes bibliographical references and index.
 ISBN 0-13-196369-
4 (pbk. : alk. paper) 1. Linux. 2. Operating systems (Computers) 3. Computer networks
--
Security measures. I. MacMillan, Karl, 1975- II. Caplan, David, 1963- III. Title.
 QA76.76.O63M3738 2006

mailto:corpsales%40pearsontechgroup.com
mailto:international%40pearsoned.com

 005.8--dc22
 2006012657

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions,
write to:

 Pearson Education, Inc.
 Rights and Contracts Department
 One Lake Street
 Upper Saddle River, NJ 07458
 Fax: (201) 236-3290

Text printed in the United States on recycled paper at R.R. Donnelley & Sons
in Crawfordsville, Indiana First printing, August 2007

Dedication

To our wives Barbara, Sawyer, and Kimberly

Prentice Hall Open Source Software Development
Series
Arnold Robbins, Series Editor

"Real world code from real world applications"

Open Source technology has revolutionized the computing world. Many large-
scale projects are in production use worldwide, such as Apache, MySQL, and
Postgres, with programmers writing applications in a variety of languages
including Perl, Python, and PHP. These technologies are in use on many
different systems, ranging from proprietary systems, to Linux systems, to
traditional UNIX systems, to mainframes.

The Prentice Hall Open Source Software Development Series is designed
to bring you the best of these Open Source technologies. Not only will you
learn how to use them for your projects, but you will learn from them. By
seeing real code from real applications, you will learn the best practices of
Open Source developers the world over.

Titles currently in the series include:

Linux® Debugging and Performance Tuning: Tips and Techniques
Steve Best
0131492470, Paper, ©2006

Understanding AJAX: Using JavaScript to Create Rich Internet Applications
Joshua Eichorn
0132216353, Paper, ©2007

Embedded Linux Primer
Christopher Hallinan
0131679848, Paper, ©2007

SELinux by Example
Frank Mayer, David Caplan, Karl MacMillan
0131963694, Paper, ©2007

UNIX to Linux® Porting
Alfredo Mendoza, Chakarat Skawratananond, Artis Walker
0131871099, Paper, ©2006

Linux Programming by Example: The Fundamentals
Arnold Robbins
0131429647, Paper, ©2004

The Linux® Kernel Primer: A Top-
Down Approach for x86 and PowerPC Architectures
Claudia Salzberg, Gordon Fischer, Steven Smolski
0131181637, Paper, ©2006

Acknowledgments
Everyone who ever wrote a book says it was a lot of work, but as we
discovered, you really do not understand how much work until you try. Even
with three authors, we could never have finished this book without help from
many people. Tresys Technology gave us great latitude to work on this book
even to the occasional determent of our "real work." Tresys also generously
allowed us to use its training materials as the basis for most of this book.

Although we (the authors) are actively involved in the development of
SELinux, it is truly a community effort. Many, many people contributed to this
book indirectly through their active involvement in the SELinux open source
community. Chief among this community is Stephen "Smoogle" Smalley, who
is truly an amazing engineer. Not only is he the heart of the SELinux
development community, he finds a way (and time!) to be highly active in all
aspects of the constantly expanding SELinux development projects. Our most
common way to understand some "subtle nuance in SELinux" was to "ask
Steve."

Stephen, along with two colleagues from Tresys, Christopher Pebenito and
Joshua Brindle, provided invaluable insights through their detailed reviews of
our manuscript. We would also like to thank Arnold Robbins, the series editor
for this book, for his insightful comments from an engineer not immersed in
the SELinux community. Much of this book is based on various training
materials we've developed at Tresys over the years. Contributors to these
materials include James Athey, Chad Sellers, Spencer Shimko, Christopher
Pebenito, and Joshua Brindle. We would also like to thank all the engineers
who sat through any of these training seminars for their useful feedback.

We would especially like to thank Catherine Nolan, our editor at Pearson
Education, who enthusiastically started this project and remained committed
through our many outline and schedule changes. Denise Mickelsen, editorial
assistant, also did a great job helping us through the final stages of
publication. We would also like to thank the rest of the team at Pearson
Education including Suzette Ciancio and Heather Fox (marketing team), Gina
Kanouse (Production supervisor), and Alan Clements (cover design).

Finally, we would especially recognize our loving families, our wives Barbara,
Sawyer, and Kimberly, and our children Alexandra, Jessica, Samuel, and
Rachel. We love you all for the support and encouragement you gave us (and
the missing nights and weekends you allowed us).

About the Authors
Frank Mayer is cofounder and Chief Technology Officer of Tresys Technology,
and has 23 years of experience in the design, development, and analysis of
secure operating systems. He has been an active contributor to SELinux for six
years, and has initiated and participated in the development of many new
SELinux innovations and tools. He also chairs the annual SELinux Symposium.
Frank has published many papers on secure and trustworthy operating
systems, and has also explored security in parallel computing, networks, and
enterprise applications.

Karl MacMillan is an active contributor in the SELinux community and has led
the development of many important SELinux features. He is also a sought
after speaker and consultant, and has helped many individuals and
organizations understand and apply strong computer security with SELinux.
Previous to his work on SELinux, Karl made important contributions in the
fields of pattern recognition and evolutionary computing as applied to
document and audio recognition, where he has numerous published papers.

David Caplan is a senior security engineer at Tresys Technology with over 20
years of experience in computer security and a wide range of other
programming- and software-related areas. He has worked with SELinux for six
years as a contributor to many of the SELinux-related open source projects
and has led multiple efforts in analyzing and constructing SELinux policy for a
variety of systems.

Preface
This book is based on our many years of working with, deploying, and helping
evolve Security Enhanced Linux (SELinux). We have also created technical
courses on SELinux, and in our teaching experience we have found that it is
difficult to introduce entirely new and foreign notions of computer security to a
new audience. In this book, we think we achieved a good balance between
conceptual overview versus concrete, hands-on examples.

Another challenge with this book is that SELinux is a new technology;
although it has been incorporated into mainstream Linux distributions, it is still
evolving. We and others have many innovative ongoing research and
development projects to enhance SELinux in many ways. In this book, we face
the challenge of describing a moving target. Fortunately, the core concepts of
SELinux are fairly well established, and at least the kernel portion of the
security enhancements are changing at a manageable pace. For the newer
work, we describe the emerging technologies we believe are most important.

Audience

This book is primarily aimed at the person who most needs to make use of the
security enhancements that SELinux brings to Linux. As you will see, this
person is primarily interested in understanding, writing, modifying, and/or
managing SELinux policies. You are such a person if you want to use SELinux
to enhance the security of your application, system, or network.

To make effective use of this book, you should have a good understanding of
Linux/UNIX systems. The more familiar you are with the interworkings of the
Linux kernel and key services, the easier it will be for you to understand the
security object model that SELinux uses. However, as long as you have good
working knowledge of Linux, its conventions, and filesystem layout, and/or its
programming paradigms, you should have no problem with the material of this
book.

Users of systems that include SELinux (for example, Red Hat Enterprise Linux,
Fedora Core, Gentoo, and Debian) will also find this book helpful. Although
most users and system administrators will not likely write SELinux policy,
understanding the SELinux policy language and security model will give you
greater insights into the power of SELinux to afford you greater security.

What You Will Learn

This book is all about writing SELinux security policies to make effective use of
the security enhancements SELinux brings to Linux. That sounds simple, but in
reality, you have to learn new ideas and understand the SELinux policy
language before you can help you understand how to effectively use these
enhancements.

We divide the book into three parts around the learning steps you, as a
student of SELinux, will traverse. The specific topics are as follows:

Part I

Overview of mandatory access control

Type enforcement concepts and applications

SELinux architecture and mechanisms

Part II

Details of the SELinux native policy language syntax and semantics

Object labeling in SELinux

Part III

Two primary methods developed to build SELinux policies: the example
policy and the reference policy

Impacts of SELinux on system administration

How to write policy modules for SELinux

Our goal is to help you understand the details involved in SELinux so that you
can create secure systems. Given the young nature of SELinux, we necessarily
provide you with all the gory details of the low-level policy language.
Remember, however, that much work is ongoing to make it easier to build
secure systems without knowing all the low-level details. Where appropriate,
we discuss this evolving work and help you understand how to write secure
policies that can pass the scrutiny of independent review.

Each chapter concludes with a summary of the key points we discuss in the
chapter and exercises to reinforce your understanding of these points.
Exercises range from thought experiments, to hands-on exploration, to
modification of real security policies. They all will help enhance your

understanding of SELinux.

Summary of Chapters

We divided this book into three parts, each of which contains several chapters:

Part I, "SELinux Overview." This part provides the background of SELinux
evolution and an overview of its security concepts and architecture.

Chapter 1, "Background." In this chapter, we discuss the evolution of
access control in operating systems, kinds of access control mechanisms,
their strengths and weaknesses, and the kind of access control SELinux
brings to Linux.

Chapter 2, "Concepts." In this chapter, we provide a conceptual overview
of SELinux security mechanisms in the form of a detailed tutorial. This
chapter is a good, concise discussion of the security enhancements
SELinux brings to Linux.

Chapter 3, "Architecture." In this chapter, we provide an overview of the
SELinux architecture and implementation and an overview of the policy
language architecture.

Part II, "SELinux Policy Language." This part contains a detailed description of
the entire SELinux policy language syntax and semantics. Each chapter
addresses a portion of the language. This part of the book can be viewed as a
policy language reference.

Chapter 4, "Object Classes and Permissions." In this chapter, we describe
how SELinux controls kernel resources using object classes and defines
fine-grained permissions to those object classes.

Chapter 5, "Type Enforcement Policy." In this chapter, we describe all the
core policy language rules and statements that enable us to write a type
enforcement policy. Type enforcement is the central access control
feature of SELinux.

Chapter 6, "Roles and Users." In this chapter, we discuss the SELinux
role-based access control mechanism and how roles and users in the
policy language support the type enforcement policy.

Chapter 7, "Constraints." In this chapter, we discuss the constraint
feature of the SELinux policy language, which is a means to provide

restrictions within the policy that support the type of enforcement policy.

Chapter 8, "Multilevel Security." In this chapter, we describe the policy
language features that allow for optional multilevel security access
controls in addition to the core type of enforcement access controls.

Chapter 9, "Conditional Policies." In this chapter, we discuss an
enhancement to the policy language that enables us to make portions of
the type enforcement policy conditional on Boolean expressions whose
values can be changed during the course of operation on a production
system.

Chapter 10, "Object Labeling." In this chapter, we finish our discussion of
the policy language by examining how objects are labeled and how we
manage those labels in support of SELinux-enhanced access control.

Part III, "Creating and Writing SELinux Security Policies." In this final part, we
show you how to make use of the policy language, discussing methods for
building security policies and insights into administering an SELinux system
and writing and debugging SELinux policy modules.

Chapter 11, "Original Example Policy." In this chapter, we discuss the
example policy, which is a method (source files, build tools and
conventions, and so on) for building an SELinux policy that has evolved
over the years from the original example policy released with SELinux by
the National Security Agency. Fedora Core 4 and Red Hat Enterprise
Linux come standard with policies based on the example policy.

Chapter 12, "Reference Policy." In this chapter, we discuss a new method
for building an SELinux policy that provides all the features of the
example policy along with support for emerging SELinux technology. The
more recent Fedora Core 5 uses reference policy as its policy foundation.

Chapter 13, "Managing an SELinux System." In this chapter, we discuss
how SELinux impacts the administration of a Linux system.

Chapter 14, "Writing Policy Modules." In this final chapter, we bring all
that you have learned throughout the book into a guided tour on writing
a policy module for both the example and reference policies.

Appendixes. We have included several appendixes with additional reference
material:

Appendix A, "Obtaining SELinux Sample Policies." This appendix provides
instructions on how to obtain the sample policy source files we discuss in
this book.

Appendix B, "Participation and Further Information." This chapter lists
sources of additional information on SELinux and describes how you can
further participate in the development of SELinux.

Appendix C, "Object Class Reference." This chapter provides a detailed
dictionary of all SELinux kernel object classes and associated
permissions.

Appendix D, "SELinux Commands and Utilities." This chapter provides a
summary of utilities and third-party tools available to help with
developing SELinux policies and managing SELinux systems.

How to Use This Book

Rarely does one read a technical book cover to cover. Most people want to
understand a particular item or begin exploring the technology as soon as
possible. Although reading the book cover to cover is certainly an option, we
also recommend an alternative strategy.

Thoroughly read and understand Part I (Chapters 13); this part provides you
with the necessary background and conceptual insights to understand SELinux.
In particular, carefully read and study Chapter 2. You may want to skim Part II
(Chapters 410) to get a sense of the content of these chapters. These chapters
are loaded with the details of the SELinux policy language. For most people,
there are too many details to absorb as part of a strategy to first learn about
SELinux. As a strategy, you might want to carefully read Chapter 5 and skim
Chapters 4 and 10. These chapters cover the SELinux policy language
elements that are most used by policy writers. Finally, read the chapters of
Part III (Chapters 1114) that address the issues in which you are interested.
Use Part II as a reference as you read these chapters.

Sidebars, Notes, Warnings, and Tips

We make extensive use of sidebars and notes throughout this book to provide
additional information or emphasis on certain items. We also include a number
of warnings and tips. Following are the conventional purposes for each of these
within this book:

Sidebars. We use sidebars primarily for two purposes. First, we use them
for additional information that is not directly covered within the main text
of the chapter. For example, we use sidebars to highlight differences
between various versions of SELinux or to discuss in detail a particular
concept that might be of interest to the reader. We also use sidebars to
document the complete syntax of all SELinux policy language statements
throughout Part II. These syntax sidebars provide a quick reference for the
various policy language elements.

Notes. We use notes to provide additional emphasis on certain points.
Usually notes are short items of additional clarification or detail.

Warnings. Warnings are used much like notes except that they
emphasize something that requires additional caution or strong emphasis.

Tips. Tips provide quick hints and suggestions about how to perform a
given function or make something easier.

Typographical Conventions

All technical books must use some form of typographical convention to better
communicate with the reader. This is especially true due to heavy overloading
of terminology, and SELinux is no different. In general, we use italics to
introduce a key concept at the point where we define the concept (usually first
use or near the first use). We also use italics for emphasis. For a particularly
strong point of emphasis, we use a bold font.

Throughout this book, we use a fixed-width font for any SELinux policy
language element (allow), user commands (ps, ls), or anything you would type or
see on the computer.

For longer listings that show commands and their output, we use the Bourne
shell standard prompts of # (for root shells) and $ (for ordinary user shells).
User input (that is, something that you type) is also in bold and fix-width fonts
in listings. For example:

ls -lZ /etc/selinux/
-rw-r--r-- root root system_u:object_r:selinux_config_t config
drwxr-xr-x root root system_u:object_r:selinux_config_t strict
drwxr-xr-x root root system_u:object_r:selinux_config_t targeted

When referring to library functions or system calls, we use the convention of
including empty parentheses, such as execve(). We also use this convention for
policy macros that take arguments, such as domain_auto_trans(). When referring you
to the Linux manual page for additional information on a command or function,
we use the convention of italics for the command or function and enclose the
manual section within parentheses; for example, make (1), execve (2).

Where to Get SELinux

SELinux is supported in several Linux distributions, including Red Hat
Enterprise Linux, Red Hat Fedora Core, Gentoo, and Debian. Fedora Core has
been the central platform around which the SELinux community has tested
and integrated most of its innovations. Red Hat Enterprise Linux, version 4
(RHEL4), is the first large commercial distribution to fully support a version of
SELinux. Nearly everything we discuss in this book is relevant to RHEL4 and
other Linux distributions.

We chose to base this book on Fedora Core 4 (FC4), which is a version of
Fedora Core released after RHEL4. Everything we discuss should work on an
FC4 system. During the eight months it took us to write this book, FC4
evolved, was tested, and released. As we finish this book, Fedora Core 5 (FC5)
was just released. FC5 incorporates many new SELinux innovations, many of
which the authors had a principle role in developing. The new FC5 features are
probably a good indicator of what is likely to show up in RHEL5. As much as
practical, throughout this book we note new features and capabilities available
in FC5 and not in FC4. Also, where applicable, we note features in FC4 that
are not supported in the older RHEL4.

If you are an enterprise user or developer, you are likely using RHEL4 or
planning to use RHEL5. We currently use RHEL4 for our enterprise
developments and products. If you are an SELinux developer or early adopter,
you are probably using a version of Fedora Core or some other distribution. In
all cases, this book should provide you extensive information about how to use
SELinux and develop SELinux policies.

How to Get the Book's Sample Policies

Throughout this book, we give example pieces of SELinux policies. These
examples are based on the strict Fedora Core 4 policy as distributed by Red
Hat. We discuss this policy in more detail in Chapter 11. FC4 comes standard
with a targeted (and not strict) policy, so you must go through additional steps
to get the policy upon which our examples are based. In Part III, we broaden

our perspective on sample policies to include other types of policies. We
provide instructions in Appendix A on how to get the sources for all the various
sample policies we discuss in this book.

Part I: SELinux Overview

 Chapter 1 Background page 3

 Chapter 2 Concepts page 15

 Chapter 3 Architecture page 39

Chapter 1. Background
In this chapter

1.1 The Inevitability of Software Failure

1.2 The Evolution of Access Control
Security in Operating Systems

1.3 Summary

Exercises

page 4

page 5

page 13

page 13

Security Enhanced Linux (SELinux) is an exciting new technology for securing
our computer networks and systems. In a real sense, it represents the
culmination of nearly 40 years of operating system security research. For the
first time, we have a powerful, flexible, mandatory access control mechanism
incorporated into a mainstream, widely distributed operating system. In this
chapter, we provide a brief overview of the history of secure operating system
research as a means to motivate and set into perspective the value that
SELinux brings to today's computer security challenges.

1.1. The Inevitability of Software Failure

Appropriately enough, we derive the title of this first section of a book on
SELinux from a paper [1]that the principal creators of SELinux coauthored
before the SELinux project was even started. The authors of that paper
pointed out that software is flawed, and that too much of the software being
developed assumes that applications can enforce security without the support
of the underlying operating systems. As they note:

[1] P. Loscocco, S. Smalley, P. Muckelbauer, R. Taylor, S. Turner, J. Farrell. The Inevitability of Failure: The Flawed
Assumption of Security in Modern Computing Environments. In Proceedings of the 21st National Information
Systems Security Conference, pp. 303314, October 1998, available at www.nsa.gov/selinux/papers/inevit-abs.cfm.

The necessity of operating system security to overall system security is
undeniable … If it fails to meet this responsibility, system-wide vulnerabilities
will result.

A design that tries to create security without the support of the underlying
operating system is a "fortress built upon sand" [2] with no secure foundation
upon which to sit.

[2] D. Baker. Fortresses Built Upon Sand. In Proceedings of the New Security Paradigms Workshop, pp. 148153,
1996.

In the years since that paper was published in 1998, the problem of flawed
application software has become practically an everyday news headline. Rarely
does a week go by that some new virus, computer theft, or system
vulnerability is not announced. The fact of life in the computer era is that
application software is flawed and will remain flawed. We certainly applaud the
efforts to make software better and more reliable, but flaws will undoubtedly
remain an ongoing problem for the foreseeable future. Some people will
always try to exploit these flaws. Our challenge as a community is to find ways
to have secure systems knowing that flawed application software will always
exists. We cannot meet this challenge successfully without first finding firm
ground upon which to build (that is, the operating system).

Thus we find the goal of SELinux: specifically, to promulgate a better form of
operating system security. As we discuss in this book, the state of the art in
operating system security is inadequate. We as a computer security
community have known this for nearly 40 years. We have conducted much
research but have had limited success improving this situation for mainstream
operating systems. Finally, with SELinux, we believe real progress has been
made in a way that we will prove lasting. SELinux is indeed a security

http://www.nsa.gov/selinux/papers/inevit-abs.cfm

enhancement to the Linux operating system. This enhancement can effectively
mitigate the problem of flawed application software, including those flaws not
yet discovered or created. This same enhancement can also enforce many
security goals, ranging from data confidentiality to application integrity to
improved robustness.

With SELinux, we have made a great stride toward moving our "fortress" off
the shifting sands on which it currently sits.

1.2. The Evolution of Access Control Security in Operating
Systems

Early operating systems had little or no security; a user could access any file
or resource just by knowing how to name the resource. Fortunately, it was not
long before access control mechanisms began to emerge to provide some
sense of security. The predominant type of access control we have today is
called discretionary access control (DAC). The primary feature of DAC is that
individual users, often a resource "owner," can specify who may or may not
access the resource. As you will see, DAC has some fundamental security
weaknesses that are intrinsic to its nature. To overcome these weaknesses,
the computer security community has been trying to develop useful mandatory
access control (MAC) mechanisms. MAC is intended to avoid the weaknesses of
DAC while providing the security required. Unfortunately, creating a useful
MAC mechanism that is secure yet flexible enough to address a wide range of
problems has proven difficult. The primary value that SELinux brings to Linux
is a flexible, configurable MAC mechanism. In the remainder of this section, we
explore the strengths and weaknesses of various DAC and MAC mechanisms,
as a means to provide a context for understanding the true value that SELinux
provides.

1.2.1. The Reference Monitor Concept

To understand access control, you must have an appreciation for the reference
monitor concept. The U.S. Department of Defense led the early research into
operating system security in the 1970s and 1980s. A key early report from
that work, the so-called Anderson Report, [3] defined for the first time this
fundamental model-for characterizing access control in operating systems (see
Figure 1-1).

[3] Anderson, James P. Computer Security Technology Planning Study, Volume II, ESD-TR-73-51, Vol. II, Electronic
Systems Division, Air Force Systems Command, Hanscom Field, Bedford, MA 01730 (Oct. 1972), available at
http://csrc.nist.gov/publications/history/ande72.pdf.

Figure 1-1. The reference monitor concept

http://csrc.nist.gov/publications/history/ande72.pdf

In a reference monitor, the operating system isolates passive resources into
distinct objects such as files and active entities such as running programs into
subjects. The reference monitor mechanism (called a reference validation
mechanism) would then validate access between subjects and objects by
applying a security policy as embodied in a set of access control rules. In this
manner, program access to system resources such as files can be limited to
those accesses that accord with the security policy. Access control decisions
are based on security attributes associated with each subject and object that
represents the subject's/object's security-related characteristics. For example,
in standard Linux, subjects (that is, processes) have real and effective user
identifiers, and objects (for example, files) have access permission modes that
are used to determine whether a process may open a file.

Other than implementing the security policy, the fundamental design goals of
an implementation of the reference monitor concept are that it be:

Tamper-proof (cannot be maliciously changed or modified)

Nonbypassable (subjects cannot avoid the access control decisions)

Verifiable (it is correct and implementation of the security policy can be
demonstrated)

Nearly all operating systems implement some form of a reference monitor and
can be characterized in terms of subjects, objects, and security policy rules. In
standard Linux, subjects are generally processes, and objects are the various
system resource used for information sharing, storage, and communication
(files, directories, sockets, shared memory, and so on). In Linux, as in most
other popular operating systems, the security policy rules enforced by the

reference monitor (that is, the kernel) are fixed and hard-coded, whereas the
security attributes that these rules use for validation (for example, access
modes) can be changed and assigned. Standard Linux security is a form of DAC
security.

1.2.2. The Problem with Discretionary Access Control

As noted, DAC is a form of access control that usually allows authorized users
(via their programs such as a shell) to change the access control attributes of
objects, thereby specifying whether other users have access to the object. A
simple form of DAC might be file passwords, where access to a file requires the
knowledge of a password created by the file owner (and distributed by word of
mouth to other users authorized to view the file). Most DAC mechanisms are
based on user-identity access control attributes. Nearly all modern operating
systems have some form of user-identity-based DAC. In Linux, the owner-
group-world permission mode mechanism is prevalent and well known.
Likewise, a more general access control list mechanism is also common.

All DAC mechanisms have a basic weakness in that they fail to recognize a
fundamental difference between human users and computer programs. DAC
typically tries to emulate an ownership concept where; for example, file
owners have the right to specify access to files and only give access to other
users they trust to access the file.[4] Assuming that you can trust the human
user (arguably an invalid proposition in general), the way computers work
does not directly model the real world. Simply put, users rely on software, not
of their own creation, to perform functions on the computer. So, we are not
really giving users the ability to grant and use access. Instead, we are giving
software programs this capability. As has become obvious in the age of the
Internet, programs are often full of flaws or are downright malicious. This is
the problem with Trojan horses, first recognized in the 1970s, of which today's
modern viruses, worms, and spyware are just variants. In short, if a user is
authorized access, that really means programs are authorized that access, and
if programs are authorized that access, malicious programs will have that
same access.

[4] This is where the word discretion comes from. Owners use their discretion to grant or not grant access.

DAC assumes a benign environment where all programs are trustworthy and
without flaws. Although the early computer research community, which largely
lived in an academic world and from which so much of our current technology
evolved, might have wished for such an environment; in reality, however, we

know of no such benign computer environment in the entire history of
computer science. Human nature will always have those who exploit weakness
in flawed software.

1.2.3. The Origins of Mandatory Access Control

Throughout the 1970s and 1980s, significant energy was exerted to address
the problem of malicious and flawed software. The goal was to achieve MAC,
where the basis of access control decisions was not at the discretion of
individual users or even system administrators. We wanted to implement an
organizational security policy to control access to objects that could not be
affected by the actions of individual programs. The military funded most of this
work, which focused on protecting the confidentiality of classified government
data. In particular, the most common MAC mechanisms implemented to date
address the problem of multilevel security, a simplified form of which is shown
in Figure 1-2.

Figure 1-2. Multilevel security model

Multilevel security (MLS) is typically based on a formal model called the Bell-
LaPadula model. [5] In the MLS model, all subjects and objects are labeled with
a security level. In our example, we have a PUBLIC and a SECRET sensitivity
level. The levels represent the relative sensitivity of the data and the
clearance of the user on whose behalf the subjects are operating (SECRET
being data of "higher" sensitivity than PUBLIC). In MLS, subjects can always
read and write objects at the same sensitivity. In addition, subjects can read

lower-level objects ("read down") and write higher-level objects ("write up").
However, a subject may never read higher-level objects ("no read up") nor
write lower-level objects ("no write down"). The idea being that information
can flow from lower levels to higher levels, but not the reverse, thereby
protecting the confidentiality of the higher-level data.

[5] This model is actually captured in a set of three papers written in 1973 and an interpretation of these papers for
the Multics operating system written in 1976. The Multics interpretation paper is the easiest to read of the set. See
David E. Bell and Leonard J. LaPadula, Secure Computer System: Unified Exposition and MULTICS Interpretation,
MTR-2997 Rev. 1, The MITRE Corporation, Bedford, MA 01730 (Mar. 1976); also ESD-TR-75-306, rev. 1, Electronic
Systems Division, Air Force Systems Command, Hanscom Field, Bedford, MA 01731, available at
http://csrc.nist.gov/publications/history/bell76.pdf.

MLS was a radical change in the way we thought about access control. No
longer are data owners arbitrarily determining who may access objects.
Further, we could now have strong security assuming most software was
untrusted, because the information flow rules prevent inappropriate data
access. In MLS, the organization decides via fixed rules how data may be
shared regardless of the desires of individual users (and more important, the
programs they run). MLS is by far the most implemented MAC mechanism to
date and is still prevalent in several niche operating systems. MAC
mechanisms similar to MLS have also been contemplated and built, all of which
share a common theme of implementing a small number of fixed security
properties.

The primary weakness of MLS is the fact that it implements a single security
goal (that is, protecting the confidentiality of sensitive data using the model of
government classified documents) in a strict, inflexible manner. Not all
operating system security concerns are related to data confidentiality, and of
those that are, most are not amenable to the rigid and simple model of
classified government documents (including many, if not most, government
systems dealing with classified data). To expand upon this goal in MLS (and
similar MAC mechanisms), subjects must be given privilege to work outside the
security policy (that is, violating the principle of nonbypassability) and trusted
not to violate the intent of the policy. This inflexibility and narrow focus has
kept MLS and similar MAC mechanisms from achieving broad appeal.

1.2.4. A Better Form of Mandatory Access Control

SELinux implements a flexible MAC mechanism called type enforcement (TE).
As you will see, type enforcement provides strong mandatory security in a
form that is adaptable to a large variety of security goals, concurrently. Type
enforcement provides a means to control access down to the individual

http://csrc.nist.gov/publications/history/bell76.pdf

program level, in a manner that allows an organization to define a security
policy appropriate for their systems. In type enforcement, all subjects and
objects have a type identifier associated with them. To access an object, the
subject's type must be authorized for the object's type, regardless of the user
identity of the subject.

What makes the SELinux approach superior to a straight MLS solution is that
the rules governing type-based access control are not predefined nor hard-
coded in the kernel. By default, SELinux allows no access. An organization can
develop any number of rules specifying what is allowed, making SELinux
adaptable to a wide variety of security policies.

The collection of rules that determine allowed access for a system is called an
SELinux policy. Physically, an SELinux policy is a special file that contains all
the rules that the SELinux kernel will enforce. The policy file is compiled from
a set of source files. As you will see, SELinux policies can vary from system to
system. During the boot process, the policy is loaded into the kernel, where it
is then used as the basis for access control decisions.

Note

The term policy is greatly overloaded in the computer security field.
Throughout this chapter, we use the term to refer to general
definitions of an organization security goals and objectives.
However, SELinux also uses policy to refer to the set of rules (and
the file that contains them) that are loaded into the kernel for
access enforcement. We try to avoid confusion by limiting the
overloading use of this word (although we cannot completely avoid
this problem). Where its use is ambiguous, we explicitly write
SELinux policy to avoid confusion.

SELinux brings flexible type enforcement along with a form of role-based
access control and the optional addition of traditional MLS to Linux. This
flexible and adaptable MAC security, built in to the mainstream Linux
operating system, is what makes SELinux such a promising technology for
improved security.

1.2.5. The Evolution of SELinux

SELinux has its origins in high-assurance operating system security and
microkernel research from the 1980s. These two research threads came
together in a project called Distribute Trusted Mach (DTMach), which merged
the experiences of earlier research projects (LOCK, which involved a form of
type enforcement in a high-assurance security kernel; and Trusted Mach,
which incorporated multilevel security controls into the Mach microkernel).
The U.S. National Security Agency's research organization participated in the
DTMach effort and continued its participation through a number of subsequent
secure microkernel projects. This work eventually resulted in a new security
architecture, called Flask, that supported a more flexible and dynamic type of
enforcement mechanism.[6]

[6] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, and J. Lepreau. "The Flask Security Architecture:
System Support for Diverse Security Policies." In Proceedings of the Eighth USENIX Security Symposium, pp.
123139, August 1999.

The various platforms upon which this work was performed were research
microkernels not in wide market use. The NSA recognized a need to expose
this technology to a broader community in hopes of demonstrating its viability
and gaining broader support for its use. In the summer of 1999, the NSA
began to implement the Flask security architecture in the Linux kernel. In
December 2000, the NSA made its first public release of this work, called
Security Enhanced Linux. Being implemented in a popular mainstream
operating system, SELinux started to attract the attention of the Linux
community. SELinux was originally released as a collection of kernel patches
for the 2.2.x kernel.

Following the 2001 Linux Kernel Summit in Ottawa, Canada, the Linux
Security Module (LSM) [7] project was started to create a flexible framework
for the Linux kernel that allowed different security extensions to be added to
Linux. The NSA and the SELinux community were major contributors to this
effort, with SELinux helping to drive many of the requirements for LSM.
Concurrent with the LSM effort, NSA started to adapt SELinux to use the LSM
framework. The core LSM features were integrated into the mainline Linux
kernel starting in August 2002, and were incorporated into the Linux 2.6
kernel. By August 2003, the NSA, with growing open source community help,
had completed its migration of SELinux to the LSM framework, resulting in the
inclusion of SELinux in the main Linux 2.6 kernel. SELinux had become a fully
functional LSM module included in the core Linux code set.

[7] See http://lsm.immunix.org.

Several Linux distributions began using the SELinux features in the 2.6 kernel

http://lsm.immunix.org

to various degrees, but the primary effort to make SELinux ready for the
enterprise was via the Red Hat-sponsored Fedora Core project. The NSA and
Red Hat started a joint effort to integrate SELinux as part of the mainstream
Fedora Core Linux distribution. Prior to Red Hat's interest, SELinux was always
an add-on set of packages that required significant expertise to integrate. Red
Had took the initiative (and business risks) to make SELinux a part of a
mainstream distribution, complete with modified user-space tools and services
and enhanced security enabled by default. Starting with Fedora Core 2 and
continuing with Fedora Core 3, SELinux and its supporting infrastructure and
tools were improved for mainstream use. In early 2005, Red Hat released its
Enterprise Linux version 4 (REL4) with SELinux as a fully enabled by default
security enhancement. SELinux and mandatory access control had reached the
mainstream operating system market at last.

SELinux is still a relatively new and complex technology, and significant
research and development is continuing to improve its utility. We discuss much
of these emerging developments throughout this book.

1.3. Summary

Application software is flawed and will remain flawed for the foreseeable
future. Nonetheless, we must find ways to create secure systems despite
these inevitable flaws. Real security cannot be achieved without better
underlying operating system security. The goal of SELinux is to provide
this improved security in a mainstream operating system (that is, Linux).

The reference monitor concept is a common means of describing access
control in operating systems. In a reference monitor, resources are
encapsulated into distinct objects, and accesses between subjects (that is,
processes) and objects are mediated by the reference validation
mechanism according to the system security policy.

Operating systems have two forms of access control: discretionary access
control (DAC) and mandatory access control (MAC). Standard Linux
security is a form of DAC. SELinux adds a flexible, configurable MAC to
Linux.

DAC has a fundamental weakness in that it is subject to a variety of
malicious software attacks. MAC is a way to avoid these weaknesses. Most
MAC features implemented so far are a form of multilevel security modeled
after governmental classification controls.

SELinux implements a more flexible form of MAC called type enforcement
and an optional form of multilevel security.

Exercises

1. Set up an SELinux system and install the strict example policy using the instructions in Appendix A,
"Obtaining SELinux Sample Policies."

Chapter 2. Concepts
In this chapter

2.1 Security Contexts for Type
Enforcement

2.2 Type Enforcement Access Control

2.3 The Role of Roles

2.4 Multilevel Security in SELinux

2.5 SELinux Features Familiarization

2.6 Summary

Exercises

page 16

page 19

page 29

page 31

page 32

page 36

page 37

The details of the SELinux access control mechanism and policy language are
extensive and fully described in later chapters. However, the basic concepts
and goals of SELinux are fairly simple. In this chapter, we examine the
security concepts of SELinux and the motivations behind these concepts.
Gaining a conceptual understanding is necessary to effectively use and apply
SELinux access controls. This chapter focuses on the primary access control
feature of SELinux, type enforcement (TE), although we also briefly discuss
the optional multilevel security mechanism.

2.1. Security Contexts for Type Enforcement

All operating system access control is based on some type of access control
attribute associated with objects and subjects. In SELinux, the access control
attribute is called a security context. All objects (files, interprocess
communication channels, sockets, network hosts, and so on) and subjects
(processes) have a single security context associated with them. A security
context has three elements: user, role, and type identifiers. The usual format
for specifying or displaying a security context is as follows:

 user:role:type

The string identifiers for each element are defined in the SELinux policy
language, which we discuss in greater detail later. For now, just understand
that a valid security context must have one valid user, role, and type
identifier, and that the identifiers are defined by the policy writer. The
namespaces for each identifier are orthogonal. (So, for example, it is possible,
but not usually advisable, to have the same string identifier for a user, a role,
and a type.)

Examining Security Contexts

SELinux modifies many system commands by adding the -Z option to display the security contexts
of objects and subjects. For example, ls -Z shows the security contexts of file system objects and ps -
Z shows the security contexts of processes. Another useful command is id, which shows the security
context of your shell (that is, your current user, role, and type). The following, for example, shows
the security context of a shell on a running SELinux system:

$ id -Z
joe:user_r:user_t

You can use these commands to explore your own SELinux system as we walk through the
examples in this chapter.

2.1.1. Comparing SELinux with Standard Linux

At this point, it is useful to compare the access control attributes on standard
Linux with those of SELinux. For simplicity, we stick to common filesystem
objects such as files and directories. In standard Linux, the access control
attributes of subjects are the real and effective user and group IDs associated
with all processes via the process structure in the kernel. These attributes are
protected by the kernel and set via a number of controlled means, including
the login process and setuid programs. For objects (for example, files), the
inode of the file contains a set of access mode bits and file user and group IDs.
The former controls access based on three sets of read/write/execute bits, one
each for file owner, file group, and everyone else. The latter determines the
file owner and group to decide which set of bits to use on a given access
attempt.

As noted, in SELinux, the access control attributes are always the security
context triple. All objects and subjects have an associated security context.
Where standard Linux uses the process user/group IDs, the file's access mode,
and the file user/group IDs to grant or deny access, SELinux uses the security
contexts of a process and the object the process accesses. More specifically,
because the primary access control feature of SELinux is type enforcement,
the type identifier from the security context is used to determine access.

Note

SELinux adds type enforcement to standard Linux. This means that

both the standard Linux and enhanced SELinux access controls
must be satisfied to access an object. So, for example, if we have
SELinux write access to a file but we do not have w permission on
the file, we cannot write the file.

Table 2-1 summarizes the comparison of standard Linux and the added
SELinux security attributes and access control.

Table 2-1. Comparison of Standard Linux and Security-
Enhanced Linux Access Control

 Standard Linux SELinux Added

Process security
attributes

Real and effective
user and group IDs Security context

Object security attributes
Access modes and
file user and group
IDs

Security context

Basis for access control
Process user/group
ID and file's access
modes based on
file's user/ group ID

Permissions allowed
between process
type and file type

2.1.2. More on Security Contexts

The security context is a simple, consistent access control attribute. In
SELinux, the type identifier is the primary part of the security context that
determines access. For historical reasons, the type of a process is often called
a domain. The use of "domain" and "domain type" to mean the type of a
process is so common and pervasive that we do not attempt to avoid using the
term domain. In general, consider domain, domain type, subject type, and
process type to be synonymous.

The user and role identifiers in a security context have little impact in the
access control policy for type enforcement except for constraint enforcement,
which we discuss in Chapter 7, "Constraints." For processes, user and role

identifiers are more interesting because they are used to control the
association of types with user identifiers and thus with Linux user accounts
(more on this later). For objects, however, user and role identifiers have
nearly no use. As a convention, the role of an object is usually object_r, and the
user of an object is usually the user identifier of the process that created the
object. They have no effect on access control.

Finally, be aware of the differences between the user ID in standard Linux
security and the user identifier in a security context. Technically, these are
completely orthogonal identifiers, used separately by the standard and
security-enhanced access control mechanisms, respectively. Any relationship
between these two is strictly provided via the login process according to
conventions not directly enforced by the SELinux policy.

2.2. Type Enforcement Access Control

In SELinux, all access must be explicitly granted. SELinux allows no access by
default, regardless of the Linux user/group IDs. Yes, this means that there is
no default superuser in SELinux, unlike root in standard Linux. The way access
is granted is by specifying access from a subject type (that is, a domain) and
an object type using an allow rule. An allow rule has four elements:

Source type(s) Usually the domain type of a process attempting access

Target type(s) The type of an object being accessed by the process

Object class(es) The class of object that the specified access is permitted

Permission(s) The kind of access that the source type is allowed to the
target type for the indicated object classes

As an example, take the following rule:

allow user_t bin_t : file {read execute getattr};

This example shows the basic syntax of a TE allow rule. This rule has two type
identifiers: the source (or subject or domain) type, user_t; and the target (or
object) type, bin_t. The identifier file is the name of an object class defined in the
policy (in this case, representing an ordinary file). The permissions contained
within the braces are a subset of the permissions valid for an instance of the
file object class. The translation of this rule would be as follows:

A process with a domain type of user_t can read, execute, or get attributes
for a file object with a type of bin_t.

As we discuss later, permissions in SELinux are substantially more granular
than in standard Linux, where there are only three (rwx). In this case, read and
execute are fairly conventional; getattr is less obvious. Essentially, getattr permission
to a file allows a caller to view (not change) attributes such as date, time, and
discretionary access control (DAC) access modes. In a standard Linux system, a
caller may view such information on a file with only search permission to the
file's directory even if the caller does not have read access to the file.

Assuming that user_t is the domain type of an ordinary, unprivileged user
process such as a login shell process, and bin_t is the type associated with
executable files that users run with the typical security privileges (for
example, /bin/bash), the rule might be in a policy to allow users to execute shell
programs such as the bash shell.

Note

There is no significance to the _t in the type identifier name. This is
just a naming convention used in most SELinux policies; a policy
writer can define a type identifier using any convenient convention
allowed by the policy language syntax.

Throughout this chapter, we often depict allowed access using symbols: circles
for processes, boxes for objects, and arrows representing allowed access. For
example, Figure 2-1 depicts the access allowed by the previous allow rule.

Figure 2-1. A depiction of an allow rule

2.2.1. Type Enforcement by Example

SELinux allow rules such as the preceding example are really all there is to
granting access in SELinux. The challenge is determining the many thousands
of accesses one must create to permit the system to work while ensuring that
only the necessary permissions are granted, to make it as secure as possible.

To further explore type enforcement, let's use the example of the password
management program (that is, passwd). In Linux, the password program is
trusted to read and modify the shadow password file (/etc/shadow) where
encrypted passwords are stored. The password program implements its own
internal security policy that allows ordinary users to change only their own
password while allowing root to change any password. To perform this trusted
job, the password program needs the ability to move and re-create the shadow
file. In standard Linux, it has this privilege because the password program
executable file has the setuid bit set so that when it is executed by anyone, it
runs as root user (which has all access to all files). However, many, many
programs can run as root (in reality, all programs can potentially run as root).
This means, any program (when running as root) has the potential to modify
the shadow password file. What type enforcement enables us to do is to ensure
that only the password program (or similar trusted programs) can access the
shadow file, regardless of the user running the program.

Figure 2-2 depicts how the password program might work in an SELinux
system using type enforcement.

Figure 2-2. Type enforcement example: passwd program

In this example, we defined two types. The passwd_t type is a domain type
intended for use by the password program. The shadow_t type is the type for the
shadow password file. If we examine such a file on disk, we would see
something like this:

ls -Z /etc/shadow

-r---- root root system_u:object_r:shadow_t shadow

Likewise, examining a process running the password program under this policy
would yield this:

ps -aZ
joe:user_r:passwd_t 16532 pts/0 00:00:00 passwd

For now, you can ignore the user and role elements of the security context
and just note the types.

Examine the allow rule in Figure 2-2 The purpose of this rule is to give the passwd

process' domain type (passwd_t) the access to the shadow's file type (shadow_t)
needed to allow the process to move and create a new shadow password file.
So, in reexamining Figure 2-2, we see that the depicted process running the
password program (passwd) can successfully manage the shadow password file
because it has an effective user ID of root (standard Linux access control) and
because a TE allow rule permits it adequate access to the shadow password file's
type (SELinux access control). Both are necessary, neither is sufficient.

2.2.2. The Problem of Domain Transitions

If all we had to do was provide allowed access for processes to objects such as
files, writing a TE policy would be straightforward. However, we have to figure
out a way to securely run the right programs in a process with the right
domain type. For example, we do not want programs not trusted to access the
shadow file to somehow execute in a process with the passwd_t domain type. This
could be disastrous. This problem brings us to the issue of domain transitions.

To illustrate, examine Figure 2-3, in which we expand upon the previous
password program example. In a typical system, a user (say Joe) logs in, and
through the magic of the login process, a shell process is created (for example,
running bash). In standard Linux security, the real and effective user IDs (that
is, joe) are the same. [1] In our example SELinux policy, we see that the
process type is user_t, which is intended to be the domain type of ordinary,
untrusted user processes. As Joe's shell runs other programs, the type of the
new processes created on Joe's behalf will keep the user_t domain type unless
some other action is taken. So how does Joe change passwords?

[1] To be precise, Joe would not be a user ID. Rather, the string joe is used to determine the user ID (which is an
integer number) from the password file (/etc/passwd). For ease of explanation, we skip that intermediate step and
just use the string identifiers in our examples.

Figure 2-3. The problem of domain transitions

[View full size image]

We would not want Joe's untrusted domain type user_t to have the capability to
read and write the shadow password file directly because this would allow any
program (including Joe's shell) to see and change the contents of this critical
file. As discussed previously, we want only the password program to have this
access, and then only when running with the passwd_t domain type. So, the
question is how to provide a safe, secure, and unobtrusive method for
transitioning from Joe's shell running with the user_t type to a process running
the password program with the passwd_t type.

2.2.3. Review of SetUID Programs in Standard Linux
Security

Before we discuss how to deal with the problem of domain transitions, let's
first review how a similar problem is handled in standard Linux where the
same problem of providing Joe a means to securely change his password
exists. The way Linux solves this problem is by making passwd a setuid to the root

program. If you list the password program file on a typical Linux system, you
see something like this:

ls -l /usr/bin/passwd
-r-sxx 1 root root 19336 Sep 7 04:11 /usr/bin/passwd

Notice two things about this listing. First the s in the x spot for the owner
permission. This is the so-called setuid bit and means that for any process that
executes this file, its effective UID (that is, the user ID used for access control
decisions) will be changed to that of the file owner. In this case, root is the file
owner, and therefore when executed the password program will always run
with the effective user ID of root. Figure 2-4 shows these steps.

Figure 2-4. Password program security in standard Linux
(setuid)

[View full size image]

What actually happens when Joe runs the password program is that his shell
will make a fork() system call to create a near duplicate of itself. This duplicate
process still has the same real and effective user IDs (joe) and is still running
the shell program (bash). However, immediately after forking, the new process
will make an execve() system call to execute the password program. Standard
Linux security requires that the calling user ID (still joe) have x access, which in
this case is true because of the x access to everyone. Two key things happen
as a result of the successful execve() call. First, the shell program running in the
new process is replaced by the password program (passwd). Second, because the
setuid bit is set for owner, the effective user ID is changed from the process'
original ID to the file owner ID (root in this case). Because root can access all
files, the password program can now access the shadow password file and

handle the request from Joe to change his password.

Use of the setuid bit is well established in UNIX-like operating systems and is a
simple and powerful feature. However, it also illustrates the primary weakness
of standard Linux security. The password program needs to run as root to
access the shadow file. However, when running as root, the password program
can effectively access any system resource. This is a violation of the central
security engineering principal of least privilege. As a result, we must trust the
password program to be benign with respect to all other possible actions on
the system. For truly secure applications, the password program requires an
extensive code audit to ensure it does not abuse its extra privilege. Further,
when the inevitable unforeseen error makes its way into the password
program, it presents a possible opportunity to introduce vulnerabilities beyond
accessing the shadow password file. Although the password program is fairly
simple and highly trusted, think of the other programs (including login shells)
that may and do run as root with that power.

What we would really like is a way to ensure least privilege for the password
program and any other program that must have some privilege. In simple
terms, we want the password program to be able to access only the shadow
and other password-related files plus those bare-minimum system resources
necessary to run; and we would like to ensure that no other program but the
password (and similar) programs can access the shadow password file. In this
way, we need only evaluate the password (and similar) programs with respect
to its role in managing user accounts and need not concern ourselves with
other programs when evaluating security concerns for user account
management.

This is where type enforcement comes in.

2.2.4. Domain Transitions

As previously shown in Figure 2-2, the allow rule that would ensure that passwd

process domain type (passwd_t) can access the shadow password file. However,
we still have the problem of domain transitions described earlier. Providing for
secure domain transition is analogous to the concept of setuid programs, but
with the strength of type enforcement. To illustrate, let's take the setuid
example and add type enforcement (see Figure 2-5).

Figure 2-5. Passwd program security in SELinux (domain
transitions)

[View full size image]

Now our example is more complicated. Let's examine this figure in detail. First
notice that we have added the three types we showed previously, namely Joe's
shell domain (user_t), the password program's domain type (passwd_t), and the
shadow password file type (shadow_t). In addition, we have added the file type for
the passwd executable file (passwd_exec_t). For example, listing the security context
for the password program on-disk executable would yield a result something
like this:

ls -Z /usr/bin/passwd
-r-sxx root root system_u:object_r:passwd_exec_t /usr/bin/passwd

Now we have enough information to create the TE policy rules that allow the
password program (and presumably only the password program) to run with
the passwd_t domain type. Let's look at the rules from Figure 2-5. The first rule is
as follows:

allow user_t passwd_exec_t : file {getattr execute};

What this rule does is allow Joe's shell (user_t) to initiate an execve() system call
on the passwd executable file (passwd_exec_t). The SELinux execute file permission is
essentially the same permission as x access for files in standard Linux. (The
shell "stats" the file before trying to execute, hence the need for getattr

permission, too.) Recall our description of how a shell program actually works.
First it forks a copy of itself, including identical security attributes. This copy
still retains Joe's shell original domain type (user_t). Therefore, the execute
permission must be for the original domain (that is, the shell's domain type).
That is why user_t is the source type for this rule.

Let's now look at the next allow rules from Figure 2-5:

allow passwd_t passwd_exec_t : file entrypoint;

This rule provides entrypoint access to the passwd_t domain. The entrypoint

permission is a rather valuable permission in SELinux. What this permission
does is define which executable files (and therefore which programs) may
"enter" a domain. For a domain transition, the new or "to-be-entered" domain
(in this case, passwd_t) must have entrypoint access to the executable file used to
transition to the new domain type. In this case, assuming that only the passwd

executable file is labeled with passwd_exec_t, and that only type passwd_t has entrypoint

permission to passwd_exec_t, we have the situation that only the password
program can run in the passwd_t domain type. This is a powerful security control.

Warning

The concept of entrypoint permission is extremely important. If you did
not fully understand the preceding example, please re-read it again
before proceeding.

Let's now look at the final rule:

allow user_t passwd_t : process transition;

This is the first allow rule we have seen that did not provide access to file
objects. In this case, the object class is process, meaning the object class
representing processes. Recall that all system resources are encapsulated in
an object class. This concept holds for processes, too. In this final rule, the
permission is TRansition access. This permission is needed to allow the type of a
process' security context to change. The original type (user_t) must have TRansition

permission to the new type (passwd_t) for the domain transition to be allowed.

These three rules together provide the necessary access for a domain
transition to occur. For a domain transition to succeed, all three rules are
necessary; alone, none is sufficient. Therefore, a domain transition is allowed
only when the following three conditions are true:

1. 1. The process' new domain type has enTRypoint access to an executable file
type.

2. 2. The process' current (or old) domain type has execute access to the entry
point file type.

3. 3. The process' current domain type has transition access to the new domain
type.

When all three of these permissions are permitted in a TE policy, a domain
transition may occur. Further, with the use of the entrypoint permission on
executable files, we have the power to strictly control which programs can run
with a given domain type. The execve() system call is the only way to change a
domain type, [2] giving the policy writer great control over an individual
program's access to privilege, regardless of the user who may be invoking the
program.

[2] To be precise, a recent change to SELinux provides a means for a process, with necessary privilege, to change
its security context without an execve() call. In general, without strong justification, this mechanism, described in
Chapter 5, "Type Enforcement," should not be used because it greatly weakens the strength of type enforcement.

Now the issue is how does Joe indicate that he wants a domain transition to
occur. The above rules allow only the domain transition; they do not require it.
There are ways that a programmer or user can explicitly request a domain
transition (if allowed), but in general we do not want users to have to make
these requests explicitly. All Joe wants to do is run the password program, and
he expects the system to ensure that he can. We need a way to have the
system initiate a domain transition by default.

2.2.5. Default Domain Transitions: type_transition
Statement

To support domain transitions occurring by default (as we want in the case of
the password program), we need to introduce a new rule, the type transition
rule (type_transition). This rule provides a means for the SELinux policy to specify

default transitions that should be attempted if an explicit transition was not
requested. Let's add the following type transition rule to the allow rules:

type_transition user_t passwd_exec_t : process passwd_t;

The syntax of this rule differs from the allow rule. There are still source and
target types (user_t and passwd_exec_t, respectively) and an object class (process).
However, instead of permissions, we have a third type, the default type
(passwd_t).

Type_transition rules are used for multiple different purposes relating to default
type changes. For now, we are concerned with a type_transition rule that has process

as its object class. Such rules cause a default domain transition to be
attempted. The type_transition rule indicates that, by default on an execve() system
call, if the calling process' domain type is user_t and the executable file's type is
passwd_exec_t (as is the case in our example in Figure 2-5), a domain transition to
a new domain type (passwd_t) will be attempted.

The type_transition rule allows the policy writer to cause default domain transitions
to be initiated without explicit user input. This makes type enforcement less
obtrusive to the user. In our example, Joe does not want to know anything
about access control or types; he wants only to change his password. The
system and policy designer can use type_transition rules to make these transitions
transparent to the user.

Note

Remember that a type_transition rule causes a domain transition to be
attempted by default, but it does not allow it. You must still provide
the three types of access required for a domain transition to
successfully occur, whether it was initiated by default or as a result
of the user's explicit request.

2.3. The Role of Roles

SELinux also provides a form of role-based access control (RBAC). The RBAC
feature of SELinux is built upon type enforcement; access control in SELinux is
primarily via type enforcement. Roles limit the types to which a process may
transition based on the role identifier in the process' security context. In this
manner, a policy writer can create a role that is allowed to transition into a set
of domain types (assuming the type enforcement rules allow the transition),
thereby defining the limits of the role. Take our password program example in
Figure 2-5. Although according to the type enforcement rules, the password
program can be executed by the user_t domain type to enter the new passwd_t

domain, Joe's role must also be allowed to be associated with the new domain
type for the transition to occur. To illustrate, we extend the password program
example in Figure 2-6.

Figure 2-6. Roles in domain transitions

[View full size image]

We have added the role portion (user_r) of the security contexts for the
processes depicted. We also added a new rule, specifically the role statement:

role user_r type passwd_t;

The role statement declares role identifiers and associates types with the
declared role. The previous statement declares the role user_r (if it has not
already been declared in the policy) and associates the type passwd_t with the
role. What this association means is that the passwd_t type is allowed to coexist
in a security context with the role user_r. Without this role statement, the new
context joe:user_r:passwd_t could not be created, and the execve() system call would
fail, even though the TE policy allows Joe's type (user_t) all the necessary
access.

A policy writer can define roles that are further constrained and then associate
these roles to specific users. For example, imagine that in our policy we also
create a role called restricted_user_r, identical to user_r in all regards except that it is
not associated with the passwd_t type. Thus, if Joe's role is restricted_user_r instead of
user_r, Joe would not be authorized to run the password program even though
the TE rules would allow his domain type the access.

Chapter 6, "Roles and Users," discusses in detail the purposes of roles in
SELinux and in particular how they are created and associated with users.

2.4. Multilevel Security in SELinux

Type enforcement is far and away the most important mandatory access
control (MAC) mechanism that SELinux introduces. However, in some
situations, primarily for a subset of classified government applications,
traditional multilevel security (MLS) MAC coupled with type enforcement is
valuable. In recognition of these situations, SELinux has always had some
form of MLS capability included. The MLS features are optional and generally
the less important of the two MAC mechanisms in SELinux. For the vast
majority of security applications, including many if not most classified data
applications, type enforcement is the best-suited mechanism for enhanced
security. Nonetheless, the addition of MLS enhances security for some
applications.

The basic concept of MLS was introduced in Chapter 1, "Background;" actual
implementations of MLS are more involved. The security level used by MLS
systems is a combination of a hierarchical sensitivity and a set (including the
null set) of nonhierarchical categories. These sensitivities and categories are
used to reflect real information confidentiality or user clearances. In most
SELinux policies, the sensitivities (s0, s1, ...) and categories (c0, c1, ...) are given
generic names, leaving it to userspace programs and libraries to assign user-
meaningful names. (For example, s0 might be associated with UNCLASSIFIED
and s1 with SECRET.)

To support MLS, the security context is extended to include security levels as
such these:

user:role:type:sensitivity[:category,...][-sensitivity[:category,...]]

Notice that the MLS security context must have at least one security level
(which is composed of a single sensitivity and zero or more categories), but
can include two security levels. These two security levels are called low (or
current for processes) and high (or clearance for processes), respectively. If
the high security level is missing, it is considered to be the same value as the
low (the most common situation). In practice, the low and high security levels
are usually the same for most objects and processes. A range of levels is
typically used for processes that are considered trusted subjects (that is, a
process trusted with the ability to downgrade information) or multilevel objects
such as directories that might contain objects of differing security levels. For
purposes of this overview, assume that all processes and objects have a single
security level.

The MLS rules for accessing objects are much the same as discussed in
Chapter 1, except that security levels are not hierarchical but rather governed
by a dominance relationship. Unlike equality where a level is either higher
than, equal to, or lower than another level, in a dominance relationship, there
is a fourth state called incomparable (also known as noncomparable; see the
definition of incomp in the following list). What causes security levels to be
related via dominance rather than equality are the categories, which have no
hierarchical relationship to one another. As a result, the four dominance
operators that can relate two MLS security levels are as follows:

dom:

(dominates) SL1 dom SL2 if the sensitivity of
SL1 is higher or equal to the sensitivity of SL2,
and the categories of SL1 are a superset of the
categories of SL2.

domby:

(dominated by) SL1 domby SL2 if the sensitivity
of SL1 is lower than or equal to the sensitivity of
SL2, and the categories of SL1 are a subset of
the categories of SL2.

eq:
(equals) SL1 eq SL2 if the sensitivity of SL1 and
SL2 are equal, and the categories of SL1 and
SL2 are the same set.

incomp:

(incomparable or noncomparable) SL1 incomp
SL2 if the categories of SL1 and SL2 cannot be
compared (that is, neither is a subset of the
other).

Given the domain relationship, a variation of the Bell-La Padula model is
implemented in SELinux where a process can "read" an object if its current
security level dominates the security level of the object, and "write" an object
if its current security level is dominated by the security level of the object (and
therefore read and write the object only if the two security levels are equal).

The MLS constraints in SELinux are in addition to the TE rules. If MLS is
enabled, both checks must pass (in addition to standard Linux access control)
for access to be granted. Chapter 8, "Multilevel Security," discusses the
SELinux optional MLS features.

2.5. SELinux Features Familiarization

At this time, it is worthwhile to play with an SELinux system a little. For our
examples, we use a Fedora Core 4 (FC4) distribution with the strict policy.
Most of these examples should also work on Red Hat Enterprise Linux version 4
(RHEL4) or Fedora Core 5 (FC5). You might also be able to work with other
distributions, although there may be differences. Appendix A, "Obtaining
SELinux Sample Policies," describes how to obtain the policy files and other
materials we use as examples throughout this book and how to configure your
system accordingly.

Running in Permissive Mode

SELinux can run in permissive mode, where the access checks occur; but instead of denying
unallowed access, it simply audits them. This mode is useful when first learning about SELinux, and
you may want to start exploring the system in this mode. Of course, permissive mode should not
be used in operational systems if you want the enhanced access security of SELinux. Note that
some utilities are found in /usr/sbin, which is not normally in a regular user's path.

The simplest way to check the current mode of SELinux is to run the getenforce command. To set the
system in permissive mode, run the command setenforce 0. (You must be logged in as root in the sysadm_t
domain to change the system to permissive mode.) To return it to enforcing mode, run the
command setenforce 1. (Because you are in permissive mode, you just need to be logged in as root to
change the system to enforcing mode.)

We have already mentioned the -Z option added to some system commands. Commands such as ls
and ps display the security contexts of files and processes. As an exercise, run the commands ps xZ
and ls -Z /bin and examine the various security contexts for running processes and executable files.

2.5.1. Revisiting the Passwd Example

Throughout this chapter, we used the example of the shadow password file and
the password program. If you examine the security context of these two files,
their types should be shadow_t and passwd_exec_t, respectively. As discussed
previously, passwd_exec_t is the entrypoint type for the passwd_t domain. To witness
how the process of domain transitions work, walk through the following set of
commands. You need two terminal windows or virtual consoles to do this
walkthrough.

In the first window, run the passwd command:

$ passwd
Changing password for user joe.
Changing password for joe
(current) UNIX password:

This starts the password program and prompts for the user's current password.
Do not enter the password, but instead switch to the second terminal. In the
second terminal, su to root and then run the ps command:

$ su
Password:

Your default context is root:sysadm_r:sysadm_t.

Do you want to choose a different one? [n]
ps axZ|grep passwd
user_u:user_r:passwd_t 4299 pts/1 S+ 0:00 passwd

As you can see, the type of the running password program is passwd_t, as we
would expect given the rules described in the examples earlier in this chapter.

Note

In a strict policy such as the one we use for our examples, a normal
user (that is, a user running a shell in the user_t domain) does not
have permission to read many /proc/pid entries, and as such the passwd

process would not show up in the ps axZ output. That is why you need
to su to root first.

2.5.2. Perusing the Policy File

In FC4 systems, the binary file containing the kernel policy is located in the
well-known directory /etc/selinux/. The configuration file (config) in that directory
indicates the policy to be used and loaded on boot. You can also configure the
system to boot in permissive mode in this file. For our exercises, we are using
FC4's strict policy, which (if installed according to Appendix A) should be here:

/etc/selinux/strict/policy/policy.[ver]

The version of the policy reflects the version of the SELinux policy compiler
(checkpolicy). In our example, the version is 19. Configuring an SELinux system
and creating a kernel policy file from policy sources are discussed in greater
detail in Part III, "Creating and Writing SELinux Security Policies." For now, we
want to look around inside the policy to see what is there.

A useful tool for examining the contents of a policy is the policy analysis tool

apol created by Tresys Technology and distributed in a package of SELinux
tools called SeTools (see Appendix D, "SELinux Commands and Utilities"). The
SeTools package is included on most SELinux distributions. Run the command
apol to determine whether the tool is present on your system. If not, Appendix
D provides information on how to obtain the SeTools package.

The apol (for "analyze policy") tool is a sophisticated SELinux policy analysis tool
that we use throughout the book to examine SELinux policies. For now, we
want to use some of its basic features to examine aspects of the policy file.
Run apol and open the strict policy file. Under the menu Query > Policy
Summary, you can view a summary of the policy statistics (see Figure 2-7).

Figure 2-7. Policy summary using apol

[View full size image]

Apol has a series of major tabs (Policy Components, Policy Rules, Analysis, and
so on) that enable you to search and analyze a policy in various ways. Take
some time to explore the Policy Components and Policy Rules tabs and become
familiar with both portions of the policy we discussed in this chapter and the
apol tool itself. You will find it useful throughout Part II, "SELinux Policy
Language," to use apol to examine your policy and follow along with the
examples.

2.6. Summary

SELinux access control is based on a security context associated with all
system resources including processes. The security context contains three
elements: user, role, and type identifiers. The type identifier is the
primary basis for access control.

In SELinux, type enforcement is the primary access control feature. Access
is granted between subjects (that is, processes) and objects by specifying
allow rules that have the subject's type (also called a domain type) as the
source and the object's type as the target. Access is granted for specified
object classes using a fine-grained set of permissions defined for each
object class.

One of the key benefits of type enforcement is the ability to control which
programs may run with a given domain type, thereby allowing access
control down to individual programs (rather than the less-secure level of a
user). The capability for a program to enter into a domain (that is, run
with a given process type) is called domain transition and is tightly
controlled by SELinux allow rules. SELinux also allows domain transitions to
occur automatically through the type_transition rule.

SELinux does not directly use the role identifiers in a security context for
access control. Instead, all access is controlled based on types. Roles are
used to associate the allowed domain types into which a process running
on behalf of a user may transition. This allows sets of type enforcement
allowed capabilities to be grouped together and authorized for a user as a
role.

SELinux provides an optional MLS access control mechanism that provides
further access restrictions for a certain class of data sensitivity
applications. The MLS features are built upon the TE mechanism. MLS also
extends the security context to include a current (or low) security level
and an optional high (or clearance) security level.

Exercises

1. What is a "domain" and how is it related to or different from a type?

2. What are the access control attributes used by SELinux type enforcement security to control access?
What portion of the attribute is used by type enforcement for access control?

3.

Let's assume that we have a file named datafile with the following security attributes:

-r-xr-xr-x root root system_u:object_r:data_t datafile

Let's also assume that your shell process type is user_t and that type has all access permissions for file
objects of type data_t. Can you read and/or write this file? Why or why not?

4.
For SELinux to allow a domain transition, a number of access permissions must be allowed among three
types. What are the access permissions required and between what types? What do the types
represent?

5. In answering Question 4, was a type_transition rule required? Why or why not?

6. In SELinux, a role is not used as a basis for access control, but it can prevent a domain transition from
succeeding. How and why?

Extra credit: Examine the SELinux configuration file /etc/selinux/config. What are the
possible states in which SELinux can run and what do each mean? How do the
settings in this file differ from using the setenforce command?

Chapter 3. Architecture
In this chapter

3.1 The Kernel Architecture

3.2 Userspace Object Managers

3.3 SELinux Policy Language

3.4 Summary

Exercises

page 40

page 43

page 47

page 53

page 54

This chapter provides an overview of the SELinux design and its policy
language. The SELinux architecture reflects its origins in secure microkernel
research. It integrates itself into the kernel using the Linux Security Module
(LSM) framework. This architecture is also extensible into user-space servers.
The SELinux policy language is flexible, allowing an organization to implement
a variety of security goals via mandatory access controls.

3.1. The Kernel Architecture

SELinux provides enhanced access control over all kernel resources. In its
current form, SELinux is incorporated into the kernel via the LSM framework.

3.1.1. LSM Framework

The idea behind the LSM framework is to allow security modules to plug into
the kernel that can further restrict the default Linux identity-based
discretionary access control (DAC) security. LSM provides a set of hooks in the
kernel system call logic. These hooks are usually placed after the standard
Linux access checks but before the actual resource is accessed by the kernel
on behalf of the caller. Figure 3-1 illustrates the basic LSM framework.

Figure 3-1. LSM hook architecture[1]

[1] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman. "Linux Security Modules: General Security

Support for the Linux Kernel," in proceedings of the 11th USENIX Security Symposium, August 2002, available at
http://lsm.immunix.org/lsm_doc.html.

SELinux is loaded into the kernel as an LSM module and is consulted for
additional access validation before the access attempt is allowed.

One of the ramifications of the LSM framework is that SELinux is consulted
only if standard Linux access checks succeed. In practice, this has no negative
affect on the access control policy because SELinux access control can be more
restrictive than standard Linux DAC and not override the DAC decision.
However, the LSM framework can affect the audit data collected by SELinux.
For example, if you want to use the SELinux audit data to observe all access
denials, be aware that in most cases SELinux will not be consulted, and
therefore cannot audit, if the denial is a result of standard Linux security.

The LSM framework is comprehensive, and the hooks are scattered throughout
the kernel. Each LSM hook translates into one or more access permissions for
one or more object classes. Understanding object access permissions in
SELinux is in large part related to understanding the LSM hooks. Chapter 4,
"Object Classes and Permissions," discusses object classes and permissions in
detail.

3.1.2. SELinux LSM Module

The SELinux kernel architecture reflects the Flask architecture, which was
designed for a microkernel environment. The Flask architecture has three
primary components, as illustrated in Figure 3-2: security server, object
managers, and the access vector cache.

Figure 3-2. SELinux LSM module architecture

[View full size image]

http://lsm.immunix.org/lsm_doc.html

The Flask design makes a strong distinction between security policy decision
making and enforcement functions. Policy decision making is the job of the
security server. The name security server reflects SELinux's micorkenel roots,
where the policy decision role was encapsulated in a userspace server. In
Linux, the security server for kernel objects is located in the SELinux LSM
module. The policy used for the security server is embodied in a set of rules
that is loaded via the policy management interface. These rules can differ from
system to system, making SELinux highly adaptable to various organizational
security goals. The architecture is designed such that the security server could
be completely replaced with logic that implements an entirely new access
control policy without changing the rest of the architecture. In practice, new
security servers are not needed because type enforcement provides sufficient
flexibility for almost any access control security policy.

Object managers are responsible for enforcing the policy decisions of the
security server for the set of resources they manage. For the kernel, you can
think of object managers as kernel subsystems that create and manage
kernel-level objects. Examples of kernel object managers include the
filesystem, process management, and System V interprocess communication
(IPC). In the LSM architecture, the object managers are represented by the
LSM hooks; these hooks are scattered throughout the kernel subsystems and
call the SELinux LSM module for access decisions. The LSM hooks then enforce
those decisions by allowing or denying access to the kernel resource.

The third component of the SELinux architecture is the access vector cache
(AVC). The AVC caches decisions made by the security server for subsequent

access checks and thus provides significant performance improvements for
access validation. The AVC also provides the SELinux interfaces for the LSM
hooks and hence with the kernel object managers.

The AVC is invalidated when a policy is loaded, thereby keeping the cache
coherent. However, SELinux does not fully implement access revocation on
policy change. This is no worse than standard Linux, which does not access
revocation at all. In standard Linux, if you have a file descriptor, you can use it
regardless of the change in file access mode. In SELinux, for objects such as
files where access is validated on all attempts to use (for example, every read
system call is checked against the policy and not just open calls), access
revocation works fine. Just having a file descriptor does not mean access to
the file will be granted. For some resources, however, such as memory
mapped-files and connection-oriented sockets, access is validated only when
the resource is initially accessed and not on subsequent use. In these cases,
existing access is not revoked. We expect that there will be further research to
improve access revocation in SELinux.

3.2. Userspace Object Managers

One of the powerful features of the SELinux architecture is that it can be
applied to userspace resources and to kernel resources. Indeed, its origins
were in microkernel research where most resource management was
performed by userspace servers. Examples of userspace servers in Linux that
can be enhanced to enforce access control over their resources include the X
server and database services. Each of these servers provides abstract
resources (windows, tables, and so on) over which mandatory security could
be provided. This section examines two ways that the SELinux architecture
supports userspace servers.

3.2.1. Kernel Support for Userspace Object Managers

A simple way SELinux supports userspace objects is directly via the kernel
security server, as depicted in Figure 3-3.

Figure 3-3. Userspace object managers using kernel security
server

[View full size image]

In this method, the userspace object manager behaves much like the kernel
object managers. The kernel security server contains the entire security
policy, and the userspace object manager must query the kernel for access
control decisions. The primary difference is that userspace object managers
cannot use the kernel AVC. Each server must have its own, separate AVC that
stores the past decisions it has requested from the kernel. The AVC
functionality for userspace servers is contained in the library libselinux.

Another difference is that userspace object managers do not have LSM hooks,
which are a kernel-space concept. Instead, the object manager has internal
interfaces with its AVC inside libselinux. The AVC handles cache misses and
queries the kernel on behalf of the object manager.

Although straightforward, this method for supporting userspace object
managers has a number of weaknesses. First, to use type enforcement, object
managers must define object classes that represent their resources. For
example, a database server might define object classes that include database,
table, schema, entry, and so on. For kernel resources, object classes are fixed
and correspond to hard-coded class offsets defined in SELinux LSM module
header files. The relationship of class definitions in the policy and with those in
the kernel code results in an unfortunate dependency between the userspace
policy and the code. Specifically, two userspace servers must be careful not to
both use the same object class offset in the kernel. The kernel provides no way
to manage this possible conflict.

The second weakness with this approach is that kernel security server is
managing policy for object classes for object managers that are not in the
kernel. This increases storage cost within the kernel for abstraction not related
to the kernel and can negatively impact the cost of kernel policy validation for
AVC misses.

3.2.2. Policy Server Architecture

To address the weaknesses of using the kernel security server for userspace
object managers and to enhance the security capabilities of SELinux, an effort
is ongoing to build userspace support for userspace object managers. This
project has two primary goals and a number of secondary goals. The primary
goals are as follows:

Provide better support for user-space object managers by providing a user-
space security server that makes access decisions for the user portion of

the policy

Provide fine-grained access control for the policy itself by building a policy
management server that is a userspace object manager whose object
classes represent portions of the policy

Collectively, these two servers are referred to as the policy server. Figure 3-4
depicts the architecture of the policy server.

Figure 3-4. SELinux policy server architecture

[View full size image]

In the policy server architecture, all manipulation and management of the
overall system policy is controlled through the policy management server
(PMS). The PMS is itself a userspace object manager in that it creates object
classes representing policy resources and enforces a fine-grained access
control policy over those resources. This feature alone provides significant
security enhancement for SELinux. Previously, access control to the policy was
an all-or-nothing proposition; you either could write the policy file or not. With
the PMS, you can now allow access to portions of the policy and limit access to
others. For example, the SELinux policy can allow user management tools to
add users and make role assignments, but not change type enforcement allow

rules. Better yet, you can authorize a database server to change type
enforcement (TE) rules relating to its object classes and types, but not those of

the kernel. Internally, the PMS is designed to use another recent new feature
of SELinux, loadable policy modules, which we describe later in this chapter.

The second major function of the PMS is to split the system policy into kernel
and user portions and load them respectively into the kernel security server
and userspace security server (USSS). In this way, the kernel is not made
aware of rules and object classes of concern only to userspace object
managers. Userspace object managers query the USSS and not the kernel.
AVCs in various userspace object managers register with the USSS (and not
the kernel) for policy update and cache coherency functions.

The policy server architecture has a number of strengths in addition to the
removal of the kernel's responsibility for userspace resources and the fine-
grained access for policy management. Because the PMS is a running server,
we can extend its interface to allow remote network access for distributed
policy management. The PMS and USSS are designed to allow for runtime
registration of object classes, breaking the code dependency for userspace
object managers that exists in the kernel. The difference between the two
approaches is masked by libselinux providing backward compatibility with existing
work. Finally, the PMS and USSS are designed as separate services to allow for
one or both to be used without the other. For example, in a system where
fine-grained policy access control is unnecessary, the USSS could be used
alone to support other userspace object servers.

At the time of this writing, the policy server work is under development and
not fully integrated into any distributions. You can check the status of this
work at http://sepolicy-server.sourceforge.net.

http://sepolicy-server.sourceforge.net

3.3. SELinux Policy Language

Chapter 2, "Concepts," presented an overview of the SELinux security concepts
and introduced some of the policy language concepts. In the previous section,
you saw how the policy is used in the SELinux architecture. For kernel
resources, the policy is loaded into the SELinux LSM module security server
and used to make access control decisions. One strength of SELinux is that its
policy rules are not static. Rather, someone (or many ones) must write the
policy and ensure that it reflects the desired security goals. Fundamentally,
this book is all about how to write SELinux policies (and how to make sure
they are good policies). Using and applying SELinux is all about writing and
understanding policies.

In Part II of this book, we take you through each major portion of the policy
and discuss the policy language syntax and semantics in detail. In this section,
we provide an overview of how a policy is constructed and compiled and show
you how to build a policy from the strict policy we use as an example
throughout this book.

3.3.1. The Native SELinux Policy Language Compiler

The primary way to construct a policy file for the kernel is to compile it from a
source policy file using the checkpolicy program. This source file, which itself is
constructed in several steps, is typically named policy.conf. Checkpolicy checks the
source policy file for syntax and semantic correctness and writes the results in
a form (called a binary policy file) that is readable by the kernel policy loader
(load_policy). The language syntax supported by checkpolicy is the native, primitive
language supported by SELinux. You can think of the checkpolicy language as
analogous to assembly language. Higher-level languages and other more
abstract ways to create policies are being developed, and some of these are
discussed later in this book. For now, we focus on the native policy language
and construction of policy for enforcement by the kernel.

Figure 3-5 illustrates the primary sections of a policy source file expected by
checkpolicy.

Figure 3-5. Organization of policy source file (policy.conf)

The first section of a policy source file defines the object classes to the security
server. This section also defines the permissions for each object class. For the
kernel, these classes are directly related to kernel source files. In general, as
an SELinux policy writer you would never change or modify the object class
and permission definitions. We discuss the specific object classes and their
associated permissions in Chapter 4.

The next section contains the type enforcement statements, which is by far the
largest portion of an SELinux policy. This is the section that policy writers
spend most of their time writing. It contains all the type declarations and all
the TE rules (including all allow, type_transition, and other TE rules). We discuss types
and the core TE rules in detail in Chapter 5, "Type Enforcement." The TE
section often contains thousands of type declarations and tens of thousands of
TE rules. This section also contains rules and declarations for roles and users
in the policy. Roles and users, which are supporting concepts to type
enforcement, are discussed further in Chapter 6, "Roles and Users." Some
recent enhancements to the TE policy section, specifically conditional policies,

are discussed in Chapter 9. "Conditional Policies."

The next section of a policy source file contains the constraints. Constraints
provide a means of further limiting the TE policy beyond what the TE rules
permit. The multilevel security (MLS) policy, for example, is implemented as a
set of constraints. We discuss constraints in Chapter 7, "Constraints," and MLS
in Chapter 8, "Multilevel Security."

The last section of a policy file contains labeling specifications. All objects must
be labeled with a security context for SELinux to enforce access control. This
section tells SELinux how to treat filesystems for the purpose of labeling and
contains the rules for labeling transient objects that are created at runtime. A
separate related mechanism, called a file contexts file, is used to initialize the
security context labeling of files, directories, and other objects on permanent
filesystems. These and other topics relating to object labeling are discussed in
Chapter 10, "Object Labeling."

Examining the policy.conf File

As with the binary policy file created by checkpolicy (policy.[ver]), you can use the Tresys apol tool to view,
search, and analyze the contents of the policy.conf file. The policy.conf file is more abstract than the binary
file format, which often makes it an easier target for policy analysis and debugging. Also, the policy.conf
file is closest in form to the original source modules and therefore the best form for tracking back
bugs to the original source file. In any case, both are equivalent and should reflect the same security
policy.

3.3.2. Source Policy Modules in a Monolithic Policy

A common type of SELinux policy today is a monolithic policy. This is a policy
that is constructed as a single binary policy file by checkpolicy that is directly
loaded into the kernel. Because SELinux policies are usually quite large and
complex, like software, they are constructed in terms of smaller units called
modules. There are a couple of different means to make a policy modular. The
original and still widely used method, called source modules, supports the
development of a monolithic policy. Source modules are combined as text files
through a combination of shell scripts, m4 macros, and Makefiles that together
create a crude higher-level language. The policy modules are essentially
concatenated together into a single large source file (that is, policy.conf) that is
then compiled by checkpolicy into a binary file readable by the kernel.

3.3.3. Loadable Policy Modules

A new method for creating a modular policy is called loadable modules, which
uses recent extensions to checkpolicy and a module compiler (checkmodule) to
construct loadable policy modules compiled independently of each other.
Loadable modules are also the basis for the policy server discussed earlier in
this chapter. In the loadable module case, there is no longer a monolithic
binary policy constructed; instead, a (expectedly smaller) core subset of the
policy is constructed called the base module. You create the base module much
like you create the monolithic policy. With loadable modules, however, you can
streamline the base module, including only rules relating to the core operating
system. The rest of the policy is created as separate loadable modules. You can
add all other policy rules in a modular fashion when you install their
associated software package.

Loadable modules introduce policy syntax changes that are designed to ease

the division of the policy into separate, individually distributable policy
modules. These changes differ for base and nonbase modules. The base
module uses the same policy language as monolithic policies with minor
additions. Nonbase (that is, loadable) modules use a subset of the standard
policy language with several additional language features. The subset of the
policy language includes most of the type enforcement, role, and user
statements. The additional language features are used to manage
dependencies between modules. We discuss the languages changes resulting
form loadable modules in detail using sidebars throughout Part II.

Fedora Core 5 (FC5) has adopted the loadable module infrastructure for future
versions. In this book, we primarily discuss the monolithic policy approach and
language, but we do use sidebars to discuss the newer loadable modules
features.

3.3.4. Building and Installing Monolithic Policies

As you read through the remainder of this book, you will likely want to
experiment with SELinux policy writing. You will need to compile your
modifications into a complete policy file and experiment with your
modifications by loading the new policy into the kernel and experiencing the
resulting changes in the kernel's access control enforcement. Before you can
complete these actions, we must introduce the basic means of building and
installing kernel security policies.

Tip

Remember that if you install your policy, the kernel will
immediately begin to enforce access based on the rules in the
policy. While you are learning about SELinux and experimenting
with the language, you may end up causing programs to crash due
to lack of access. We suggest you experiment with policy writing
with the system in permissive mode (setenforce 0) until you become
more familiar with the policy language and its ramifications. Of
course, you should always run production systems in enforcing
mode (setenforce 1).

The example policy build method (see Chapter 11, "Original Example Policy")

is a typical way that a policy is constructed. Figure 3-6 shows this type of
construction.

Figure 3-6. Build and load process for SELinux policy using
source modules

[View full size image]

Starting from the left side of this figure, you have the source files for the
policy broken down into many tens of individual source modules. Later in the
book, we talk about various conventions for organizing these modules in the
example policy. For now, just understand that these files are combined
through a combination of scripts and macro processors into the single policy.conf

file, which is a complete and syntactically correct statement of a SELinux
source policy. You then compile the source policy using checkpolicy into a binary
policy file (assuming no errors!) appropriate for the kernel. The load_policy

program is then used to load the binary policy file into the kernel, which then
enforces access control based on the policy rules.

At this point in this book, you might find this process overwhelming and
confusing, especially in light of our discussion of means to construct a policy
other than source modules to build policy. Don't panic; we just want you to get
a sense of the overall process. Policy source directories usually have a Makefile

that automates this process for you. In the policy we use in Part II, which if
installed correctly should be in /etc/selinux/strict/src/policy/, the interesting make
targets are as follows:

policy Make policy.conf and policy.[ver] locally to test the
compilation and check for error.

install

Do everything that make policy does plus install the
binary policy file such that it will be loaded into
the kernel at boot time and the policy
configuration files.

load

Do everything that make policy does plus
immediately load the binary policy file into the
kernel as the active access control policy and
install the file_contexts file.

So, for example, make policy will perform all the steps in Figure 3-6 except the last
step (install the binary policy and load it into the kernel).

Feel free to experiment with the various make targets in our example policy;
just be careful about doing a make install or make load because this will change the
access control enforcement on your system.

3.4. Summary

SELinux is implemented as an LSM module in the kernel. SELinux uses
LSM hooks throughout the kernel to control access to kernel resources.
Access decisions are made by the SELinux security server, which is part of
the SELinux LSM module. The security policy enforced by the security
server is loaded into the kernel via a privileged userspace interface. The
AVC provides performance improvement for access validation.

The SELinux framework also supports userspace object managers through
the libselinux library. In its basic form, the kernel security server directly
provides access validation, whereas the library contains a per-process AVC.
This approach requires the kernel to hold the policy for all userspace
managers and to be aware of all userspace object classes.

The emerging policy server architecture enhances support for userspace
object managers by providing a userspace security server that will enforce
all portions of the policy relating to userspace objects, thereby relieving
the kernel of its need to know of userspace object classes and policy rules.
The policy server will also provide fine-grained access control to the policy
itself, allowing greater distribution of policy management authority.

SELinux policies tend to be large and complex, necessitating the need for
them to be constructed as a collection of modules. A common method is to
use source modules, where all modules are built as part of a single,
monolithic module. This is the method used in Red Hat Enterprise Linux 4
and Fedora Core 4, and the one we assume in Part II.

A second modularity approach provides for loadable modules, where policy
pieces can be constructed largely independent of other modules, and
combined at install time on a running system. In the case of loadable
modules, a base module is created in a manner similar to a monolithic
policy, but with the expectation that the base module can be smaller and
focused on the core operating system. Additional software packages will
have their portion of the policy installed as separate loadable modules.
This is the method being adopted by FC5.

Checkpolicy is the policy compiler that takes a complete policy source file
(policy.conf) and validates the syntax and semantics of the file and creates a
binary policy file. In the case of loadable modules, checkpolicy compiles the
base policy module, and the program checkmodule compiles the individual
loadable modules.

Exercises

1. In the LSM framework, which check usually occurs first, the standard Linux access checks or the SELinux
checks? Why?

2. In the kernel, how do SELinux object managers and LSM hooks relate?

3. When a new policy is loaded into the kernel, the access vector cache (AVC) is invalidated. Why do you
think that is necessary?

4.
Although SELinux does not fully implement access revocation on policy change, for objects such as
regular files it does. Standard Linux access control does not implement access revocation for regular
files. Explain the reasons for this difference.

5. Why do you think userspace object managers cannot use the kernel access validation cache like they do
the kernel security server?

6. In the policy server architecture, would it ever make sense to have a userspace object manager without
the policy management server? Why or why not?

Extra credit: Go to the example policy source directory and make policy to create
the policy.conf (source) and policy.[ver] (binary) policy files. Use apol to examine the
number of allow rules in each file and notice the large difference. Any ideas what
might be the cause of that difference?

Part II: SELinux Policy Language

 Chapter 4 Object Classes and Permissions page 59

 Chapter 5 Type Enforcement page 89

 Chapter 6 Roles and Users page 129

 Chapter 7 Constraints page 149

 Chapter 8 Multilevel Security page 163

 Chapter 9 Conditional Policies page 183

 Chapter 10 Object Labeling page 205

Chapter 4. Object Classes and Permissions
In this chapter

4.1 Purpose of Object Classes in
SELinux

4.2 Defining Object Classes in SELinux
Policy

4.3 Available Object Classes

4.4 Object Class Permission Examples

4.5 Exploring Object Classes with Apol

4.6 Summary

Exercises

page 60

page 61

page 67

page 73

page 84

page 86

page 87

This chapter covers object classes and permissions defined in SELinux. We
discuss the policy language statements that define object classes and
permissions the kernel supports and provide an overview of the kernel object
classes standard in a SELinux system. Appendix C, "Object Classes and
Permissions," includes a detailed listing of each standard SELinux object class
and its associated permissions.

4.1. Purpose of Object Classes in SELinux

Object classes and their associated permissions are the basis for access control
in SELinux. Object classes represent categories of resources such as files and
sockets, and permissions represent accesses to those resources such as
reading or sending. Understanding object classes and permissions is a difficult
aspect of SELinux because it requires both SELinux and Linux knowledge.

An object class represents all resources of a certain kind (for example, files or
sockets). An instance of an object class (for example, a specific file or socket)
is simply called an object. Often the terms object class and object are used
interchangeably, but it is important to understand the difference. Object class
refers to the entire category of resources (files); object refers to a specific
instance of the object class (/etc/passwd).

As discussed in Chapter 2, "Concepts," access to objects is expressed in the
policy through permissions to object classes that have a specified type(s). To
illustrate, let's consider an allow rule from Chapter 2:

allow user_t bin_t : file {read execute getattr};

In this rule, processes with the type user_t (that is, the source or subject) are
allowed to read, execute, and get attributes for all objects of class file that have
the target type (bin_t) in their security context. The object class file specifies the
category of resource, and bin_t specifies which instances of that category of
resources to which this rule applies (that is, those file objects that have the
type bin_t). It does not apply to objects that have bin_t type that are not of file
class nor to file objects that do not have bin_t as their type.

The permissions in this ruleread, execute, and getattrdefine the access allowed to
those objects by subjects (implicitly process objects) that have the type user_t.
Each of these permissions, which must be valid for the file object class,
represent some form of access to the objects. (For example, the read permission
is required to use the open(2) system call to open a file for reading, use the read(2)

system call on an opened file, and so on.) The set of permissions defined for an
object class (also called an access vector) represents all the possible access
that can be allowed to the resources represented by that object class.

The set of object classes available depends on the version of SELinux and its
Linux kernel. Over time, new and different object classes have evolved to
address new and changed features of the kernel. For example, newer versions

of the Linux kernel have introduced a new Netlink-specific socket for
controlling the audit framework. [1]. For those kernels that support the Netlink
socket, there is an SELinux object class with appropriate permissions defined.

[1] Information about and source code for the Linux audit framework and tools is available at
http://people.redhat.com/sgrubb/audit/

http://people.redhat.com/sgrubb/audit/

4.2. Defining Object Classes in SELinux Policy

A policy must include declarations for all object classes and permissions
supported by the SELinux kernel and other object managers. In general, we,
as policy writers, are not concerned with creating new objects classes;
however, we need to understand the object classes that are defined to write
effective SELinux policies. It is useful to understand the object class and
permission declaration syntax because it allows us to understand the
supported object classes and permissions in the policy version we are using.

Adding New Object Classes and Permissions

Adding new object classes and changing the permissions on existing object classes are complex
tasks that should normally be undertaken only when changing the actual system code itself. Unlike
other aspects of the SELinux policy language, object classes and permissions are closely tied to the
implementation details of Linux, particularly the kernel. In fact, object classes and permissions are
designed to represent as accurately as possible the resources implemented by the system. For this
reason, it makes sense to change the object classes or permissions that match a corresponding
change in the system.

An example of the type of change that would warrant a change in the object classes and
permissions is the addition of a new form of interprocess communication (IPC) to the kernel. In this
case, an entirely new category of resource is being added, likely with new or expanded system calls,
and a new object class would likely be required to accurately represent the semantics of this
resource.

Adding or changing object classes or permissions requires changes both to the policy and to the
system code that will enforce access control based on the new object classes or permissions. Simply
adding an object class or permission to the policy without changing the code will likely have no effect
other than wasting kernel memory.

Basically, for the target audience of this book (SELinux policy writers and administrators), you
should never change the object class and permission definitions.

4.2.1. Declaring Object Classes

Object classes are declared using the class declaration statement. The class
declaration statement simply declares an object class name and nothing else.
For example, we declare an object class for directories (named dir) with the
following statement:

class dir

The class declaration statement consists of the keyword class followed by the
class name. Notice that the class declaration statement does not end in a
semicolon like many other policy statements. You can see the full syntax for
the class statement in the sidebar on page 63.

Object class names have a separate namespace. It is possible, but generally
poor policy writing practice, to have object classes, permissions, types, and so
on all have the same name.

Class Declaration Statement Syntax

The class declaration statement allows you to declare object class names. The full syntax of the
class declaration statement is as follows:

class class_name

class_name
An identifier for the object class. The identifier
can be any length and can contain ASCII letters
or numbers.

Class declarations are valid only in monolithic policies and base loadable modules. They are not valid
in conditional statements and non-base loadable modules.

4.2.2. Declaring and Associating Object Class Permissions

There are two methods of declaring permissions. The first is called common
permissions and allows us to create permissions that we associate with an
object class as a group. Common permissions are useful when similar object
classes (for example, files and symbolic links) share a set of access
permissions. The second method is called class-specific permissions and allows
us to declare permissions specific to that object class alone. As you will see,
some object classes have only class-specific permissions, some have only
common permissions, and some have both.

4.2.2.1. Common Permissions

The common permission statement allows the creation of sets of permissions
that we associate as a group with two or more object classes. The full syntax of
the common permission statement is shown in the sidebar on page 64. For
example, the UNIX philosophy of "everything is a file" means that many file-
related object classes have a common set of permissions. A common
permission statement to declare these file-related permissions in SELinux is as
follows:

common file
{

 ioctl
 read
 write
 create
 getattr
 setattr
 lock

 relabelfrom
 relabelto
 append
 unlink
 link
 rename
 execute
 swapon
 quotaon
 mounton
}

This statement declares a common permission set called file and defines it as a
set of permissions called ioctl, read, write, create, and so on. A common permission
statement by itself has no effect; it is only when we associate a set of common
permissions with an object class that they are useful.

As with object classes, common permission names are declared in their own
namespace. This can lead to some confusion if we are not careful. For
example, as illustrated in the preceding examples, we have both an object
class and a common permission named file. Although the names are the same,
they are in fact two distinct and very different components of the policy.

Common Permission Statement Syntax

The common permission statement allows you to declare a common permission name that has a set
of permissions that can be associated with an object class as a group. Common permissions can be
associated with multiple object classes. The full syntax for the common permission statement is as
follows:

common common_name { perm_set }

common_name

An identifier for the common permissions. The
identifier can be any length and can contain
ASCII letters, numbers, a dash (-), or a period
(.).

perm_set

One or more permission identifiers in a space-
separated list. The identifiers can be any length
and contain ASCII letters, numbers, a dash (-),
or a period (.).

A common permission set is associated with an object class using the access vector statement.

Common permission statements are valid only in monolithic policies and base loadable modules.
They are not valid in conditional statements and non-base loadable modules.

4.2.2.2. Associating Permissions with Object Classes

We associate permissions with an object class using the access vector
statement. The full syntax for the access vector statement is shown in the
sidebar on page 66. We use the access vector statement to associate common
and class-specific permissions. For example, the following statement associates
a single class-specific permission with the object class dir:

class dir { search }

As this example shows, the access vector statement looks similar to the class
declaration statement (a similarity attributable to the reuse of the keyword
class). The class declaration and access vector statements are distinct despite
beginning with the same keyword. The access vector statement must provide a
previously declared object class name (dir) and then provide one or more

permissions. In this partial example, we define a single, class-specific
permission (search). Notice that this statement also does not end in a semicolon.

The previous access vector statement would result in the dir object class having
one class-specific permission: search. In general, you would see multiple
permissions for an object class, as follows:

class dir { search add_name remove_name }

This example associates three class-specific permissions with the object class
dir. We can also associate common permissions using the optional inherits keyword
in the access vector statement. For example, the dir object class is one of
several object classes that are "file-like" and share common permissions with
other file-like classes. The following access vector statement is a complete
access vector statement for dir associating the common permission file, shown
previously, along with several class-specific permissions unique to directories:

class dir
inherits file
{

 add_name
 remove_name
 reparent
 search
 rmdir
}

As this example illustrates, we use the keyword inherits followed by the name of
a previously declared common permission set (file) to associate all the common
file permissions with dir. The result of this statement is that the valid
permissions for the object class dir are all those defined earlier for the common
permission file and the five permissions specific to dir.

It is possible to have an object class that has only common permissions. For
example, the access vector statement for the object class for symbolic link files
(lnk_file) is this:

class lnk_file inherits file

This statement results in the class lnk_file having only those permissions defined
in the common permission file and no others.

Likewise, it is possible to have object classes with only class-specific
permissions (that is, no common permissions). For example, the access vector
statement for the object class representing file descriptors (fd) has a single
class-specific permission allowing use of a file descriptor:

class fd { use }

Access Vector Statement Syntax

The access vector statement associates permissions with a previously declared object class. The full
syntax for the access vector statement is as follows:

class class_name [inherits common] [{ perm_set }]

class_name A previously declared object class name.

common A previously declared common permission set
name.

perm_set

One or more permission identifiers in a space-
separated list. The identifiers can be any length
and contain ASCII letters, numbers, or a period
(.).

At a minimum, either one common or a perm_set must be specified, but both can be provided. The
resulting permissions for the object class are the union of the common permissions and the perm_set.

Access vector statements are valid only in monolithic policies and base loadable modules. They are
not valid in conditional statements and non-base loadable modules.

4.3. Available Object Classes

This chapter provides an overview of the kernel object classes available in
Fedora Core 4 (FC4). Our goal is to describe the object classes and how the
system resources are mapped to those object classes. Appendix C provides a
reference for all object classes and their associated permissions. The most
difficult part of writing good policy is understanding the semantics of the object
classes and permissions and the implications of those semantics in the context
of an application policy on a particular system.

An FC4 system has more than 40 kernel object classes representing all the
resources provided by the kernel. The number of object classes illustrates a
basic philosophy in SELinux to represent the kernel resources as completely
and accurately as possible. The richness and complexity of Linux means that
this accurate representation is necessarily rich and complex itself. This
complexity may seem daunting, but it is necessary to give SELinux the
flexibility to fully address the security challenges facing Linux. Tools and
technology are emerging that use the richness of SELinux to provide
sophisticated security without the user needing to be aware of the underlying
complexity.

To ease understanding, we divide the kernel object classes into four
categories: file-related, network-related, System V IPC, and miscellaneous.

4.3.1. File-Related Object Classes

The first category of object classes are those related to files and other
resources stored in filesystems. These are often the most familiar object
classes to most users. Included in this category are all the object classes that
can be associated with persistent, on-disk filesystems and with in-memory
filesystems, such as proc or sysfs.

In UNIX-like systems, an underlying concept is that "everything is a file." This
is in many ways true, but it obscures the fact that not all "files" are the same.
In reality, a modern UNIX-like system such as Linux has special files for
devices, and IPC, in addition to standard files used for the storage of data.
SELinux accurately represents this more detailed view of the kernel. Table 4-1
summarizes the file-related object classes.

Table 4-1. File-Related Object Classes

Object Class Description

blk_file Block files

chr_file Character files

dir Directories

fd File descriptors

fifo_file Named pipes

file Ordinary files

filesystem Filesystem (for example, an actual partition)

lnk_file Symbolic links

sock_file UNIX domain sockets

The object classes file and dir represent ordinary files and directories,
respectively. Ordinary files are those files that store data; they are the most
familar objects on most systems. Directories, which are a special file in Linux,
are unique because they can contain other objects.

The lnk_file object class represents symbolic links. It is important in many
situations to distinguish between regular files and symbolic links to prevent
common attacks. Malicious processes and users can create symbolic links that
cause a process to access or modify files other than those intended. The
separate lnk_file object class allows policies to be written that prevent these types
of attacks.

The object classes fifo_file and sock_file represent special files used for IPC. The fifo_file

object class represents fifo files, also called named pipes. The sock_file object
class controls the ability to create, access, and so on the file-related object
associated with a UNIX domain socket. We discuss the UNIX domain socket
object classes and their relationships to socket files in the next section.

In Linux, devices are accessed through special files that are commonly found
in the /dev/ directory. These files represent, through major and minor device
numbers, block and character devices. Character devices are those devices

that programs read or write data to or from as a stream of bytes. Block devices
are those devices that require data to be passed in larger blocks. The chr_file and
blk_file object classes represent character and block devices, respectively.

The final two object classes in this category, filesystems and file descriptors,
are not typically considered objects in Linux. The filesystem object class
represents a mounted filesystem. This object class controls global operations
such as mounting or querying quotas. For example, using the filesystem object
class, we can allow only mounting of filesystems that support the storage of
security contexts. All filesystems of a particular type (for example, ext3) get a
default label defined in the policy with the fs_use statement, which is described
in Chapter 10, "Object Labeling." That default type may be overridden when
the partition is mounted with the context mount option, also described in Chapter
10.

File descriptors are handles, representing opened file-related objects, stored
within processes. Although distinct from the file-related objects they represent
in kernel data structures, it is common to think of file descriptors as the
underlying file-related object. Indeed, standard Linux access control does not
provide access control over file descriptors separately from that of the
underlying object. This strategy ignores the fact that file descriptors are
distinct resources that can be passed between processes, most commonly when
a child inherits the file descriptors from its parent. This inheritance is not
always desirable, and admonishments to reduce file descriptor inheritance
appear in many Linux programming guides, particularly for daemons. To
address this and other issues, we have the fd object class, which represents file
descriptors in SELinux. Using this object class it is possible to prevent the
usage of file descriptors passed or inherited between processes. It is important
to note, however, that the permission to use a file descriptor is not sufficient
to access the underlying file-related object; the process must also have the
associated permission on the underlying object.

4.3.2. Network-Related Object Classes

The network-related object classes represent network resource such as
network interfaces, various types of sockets, and hosts. The current object
classes are sufficient to allow comprehensive control over networking on a
single system. Further enhancements in this area, such as labeled network
packets, are likely in the future. [2] Table 4-2 summarizes the network- and
socket-related object classes.

[2] Morris, James. Directions in SELinux Networking. Presentation at the Linux Kernel Networking Summit, 2005.

Slides available at http://people.redhat.com/jmorris/slides/ns2005.pdf.

Table 4-2. Network-Related Object Classes

Object Class Description

association IPsec security association

key_socket Sockets that are of protocol family PF_KEY, used
for key management in IPsec

netif Network interface (for example, eth0)

netlink_audit_socket Netlink socket for controlling auditing

netlink_dnrt_socket Netlink socket for controlling DECnet routing

netlink_firewall_socket Netlink socket for creating user space firewall
filters

netlink_ip6fw_socket Netlink socket for creating user space firewall
filters

netlink_kobject_uevent_socket Netlink socket for receiving kernel event
notifications in user space

netlink_nflog_socket Netlink socket for receiving Netfilter logging
messages

netlink_route_socket
Netlink socket for controlling and managing
network resources such as the routing table and
IP address

netlink_selinux_socket Netlink socket for receiving notices of policy load,
enforcement mode toggle, and AVC cache flush

netlink_tcpdiag_socket Netlink socket for monitoring TCP connections

netlink_socket All other Netlink sockets

netlink_xfrm_socket Netlink socket for getting, maintaining, and
setting IPsec parameters

node Host represented by an IP address or range of
addresses

packet_socket Raw sockets where the protocol is implemented
in userspace

http://people.redhat.com/jmorris/slides/ns2005.pdf

rawip_socket
IP sockets that are neither TCP or UDP

socket All other sockets

tcp_socket TCP sockets

udp_socket UDP sockets

unix_dgram_socket IPC datagram sockets on a local machine (UNIX
domain)

unix_stream_socket IPC stream sockets on a local machine (UNIX
domain)

The node, netif, packet_socket, rawip_socket, tcp_socket, udp_socket, and socket object classes
control typical access to the network. The netif object class represents network
interfaces. Each named network interface (for example, eth0, eth1, and so on) is
represented by an instance of the netif object class. Remote hosts on the
network, identified by IP address or range, are represented by the node object
classes. Using the node object class, we can limit the hosts (via IP address) to
which a process may interact over the network. The various socket object
classes listed previously represent the kinds of socket by protocol. Successfully
sending or receiving network data requires permissions on all the relevant netif,
node, and socket object class instances.

The standard networking sockets are divided by protocol (as determined on
creation by the socket(2) system call). The different socket object classes allow us
to limit the type of packets an application can send or receive. This is
particularly helpful in limiting the capability of applications to send raw
packets. The object classes tcp_socket and udp_socket represent sockets for TCP and
UDP, respectively. The rawip_socket object class represents sockets for sending raw
IP packets and the packet_socket object class represents sockets for sending any
other type of raw packet. All other sockets are represented by the socket object
class.

Communication using IP Security (IPsec) has additional resources represented
by the object classes association and key_socket. An IPsec security association is a
connection that affords security services to the traffic that it carries. The
association object class repesents IPsec associations. IPsec requires the
management of keys through a key management (PF_KEY) socket, which is
represented by the key_socket object class.

Local communications on Linux boxes can be accomplished using UNIX domain
sockets (PF_UNIX). These sockets are commonly used for local IPCs. Connection-
oriented sockets, also called stream sockets, are represented by the
unix_stream_socket object class; datagram sockets are represented by the
unix_dgram_socket object class. UNIX domain sockets can be associated with a
special file in a filesystem to allow other applications to easily connect to the
socket. This file is represented by the sock_file object class, a file-related object
class described earlier.

The final group of sockets in SELinux are the Netlink sockets. These sockets
were originally developed to provide a standard means of configuring
networking in Linux. [3]. They are now used to communicate a variety of
information between kernel and userspaces. There are several object classes
representing Netlink sockets based on protocol type, and the generic netlink_socket

for any remaining protocols without a specific object class.

[3] Horman, Neil. Understanding and Programming with Netlink Sockets.
http://people.redhat.com/nhorman/papers/netlink.pdf.

4.3.3. System V IPC Object Classes

The IPC-related object classes represent System V IPC resources (see Table 4-
3). The msgq and msg object classes represent message queues and the
messages in a message queue. The sem object class represents semaphores.
The shm object class represents shared memory segments. Note that access to
global system information about all System V IPC resources is controlled by a
permission on the system class.

Table 4-3. IPC-Related Object Classes

Object Class Description

ipc Deprecated; no longer used

msg Messages within a message queue

msgq Message queues

sem Semaphores

shm Shared memory segment

http://people.redhat.com/nhorman/papers/netlink.pdf

4.3.4. Miscellaneous Object Classes

Table 4-4 lists a number of remaining object classes that do not easily fit into
one of the other categories.

The capability object class represents process capabilities in the standard Linux
access control model. This object class allows SELinux to control the
capabilities granted to "root" processes. Examples of these capabilities include
the ability to override the discretionary access controls (permissions modes)
and send raw network packets. This object class and its permissions allow
control over whether a process may use a capability it already has been
granted by standard Linux.

The remaining two object classes, security and system, represent access to special
resources of the SELinux security server and the system, respectively. They
are unique in that there is only ever one instance of each of these object
classes, reflecting that there is ever only one security server and system.

Table 4-4. Miscellaneous Object Classes

Object Class Description

capability Privileges that are implemented as capabilities in
Linux

process Processes which are also objects in SELinux

security SELinux security server in the kernel

system System as a whole

4.4. Object Class Permission Examples

To provide a greater understanding of how permissions control access to
system resources, let's further discuss the permissions for two object classes:
file and process. We provide a detailed description of all permissions for each
object class in Appendix C.

Access Revocation

The revocation of previously granted access is an important part of creating a flexible and dynamic
security mechanism. Revocation is needed either when the policy changes or when the security
context of an object is changed. For example, if the security context of a file is changed, processes
that have that file open may no longer be allowed the same access to the file by the new policy.
Mechanically, the system would have to revoke any existing access to the file if that access is not
consistent with the change. Ensuring access revocation in all circumstances is a difficult task for any
complex operating system.

SELinux supports revocation in many circumstances and provides much more access revocation
support than standard Linux. For example, file access is checked on every read and write to a file;
so if the security context of the file changes, the access is revoked on the next read or write
attempt.

There are circumstances where access is not revoked (for example, with memory-mapped file access
and outstanding asynchronous I/O requests). It is likely that revocation support will increase in
SELinux, but it is unlikely that full coverage can be achieved. This is partly due to the nature of the
UNIX application programming interfaces (APIs), partly due to community resistance to invasive
changes to certain kernel subsystems, and partly due to the inherent complexity of the task.

In general, you can avoid most revocation issues by designing systems that do not relabel objects.
SELinux provides permissions (relabelfrom and relabelto) to restrict this ability.

4.4.1. File Object Class Permissions

Table 4-5 lists the permissions for the file object class. Most of the permissions
are common to all file-related object classes; only execute_no_trans, entrypoint, and
execmod are specific to the file object class (these are marked with a an asterisk,
*).

There are three categories of permissions for the file object class: permissions
that map directly to standard Linux access control permissions, extensions of
the standard Linux permissions, and SELinux-specific permissions.

Table 4-5. File Object Class Permissions

Permission Description

append Append to file contents (that is, opened with O_APPEND
flag).

create Create new file.

entrypoint* File can be used as the entry point of the new domain
via a domain transition.

execmod*
Make executable a file mapping that has been modified
(implied by a copy-on-write).

execute Execute; corresponds to x access in standard Linux.

execute_no_trans* Execute file in the caller's domain (that is, without a
domain transition).

getattr Get attributes for file, such as access mode (for
example, stat, some ioctls).

ioctl ioctl(2) system call requests not addressed by other
permissions.

link Create hard link to file.

lock Set and unset file locks.

mounton Use as mount point.

quotaon Allow file to be used as a quota database.

read Read file contents; corresponds to r access in standard
Linux.

relabelfrom Change the security context from the existing type.

relabelto Change the security context to the new type.

rename Rename a hard link.

setattr Change attributes for file such as access mode (for
example, chmod, some ioctls).

swapon Deprecated; was used to allow file to be used for
paging/swapping space.

unlink Remove hard link (delete).

write Write file contents; corresponds to w access in standard
Linux.

4.4.1.1. Standard Linux Permissions

The permissions read, write, and execute correspond loosely to the standard Linux
permissions read, write, and execute (that is, r, w, and x). There are some
differences from the standard permission checks. In standard Linux, access is
usually checked only when the file is opened. In SELinux, access is checked on
every use when feasible. The read and write permissions are checked both at file
open and on each subsequent read or write operation. The read permission
covers the ability to read a file in its entirety. It includes the permissions to
access the file in a random access manner. The write permission includes the
permission to write to a file, including appending. Like read permission, write

permission covers random access writing. The read and write permissions are also
checked when a file is memory mapped, for example, mmap(2) system call, or the
protections on an existing mapping are changed with mprotect(2) system call.

The execute permission controls the ability to execute the file using the execve(2)

system call. It is required regardless of whether there is a domain transition
(see exec_no_trans below). The execute permission is also required to successfully use
a file as a shared library.

4.4.1.2. Extensions to the Standard Linux Access Control

One of the benefits of SELinux is that it provides additional permissions that
give a finer granularity of control than what is available with standard Linux.

In standard Linux, the ability to create a file is governed by the ability to write
to the containing directory. In SELinux, the create permission directly controls
the ability to create a file of a specific SELinux type. Using this permission, we
can allow a domain type to create files of type etc_t, but not of type shadow_t. Like
many permissions in SELinux, the file create permission is necessary but not
sufficient. For example, the creating domain type must also have permission to
create objects in the containing dir object and the permissions to create

permission the file object. We likely require write permission for the object class
to which we give create permission for any practical application.

The ability to view or modify file attributes, including permission modes and
ownership information, is controlled separately with the getattr and setattr

permissions. The getattr permission controls the reading of file attributes (for
example, using the stat(2) system call). The setattr permission controls the writing
of file attributes (for example, using the chmod(2) system call).

Locking files, either via the flock(2) or fnctl(2) system calls, is controlled by the lock

permission. No other permissions are required to obtain the lock, though
practically you are required to have read, write, or append permission to obtain a file

descriptor to pass to the relevant locking system call.

It is often useful to allow append-only access to a file. For example, it is
important that log files can never be overwritten to prevent attackers from
erasing evidence. SELinux provides the separate append permission, which
strongly enforces the O_APPEND mode for open. Allowing a domain type append

permissions without write permissions means that process with that domain type
can only add data to a file.

Just as creation is controlled separately with the create permission, creating and
removing hard links to a file is controlled with the link and unlink permissions. In
Linux, files can be referenced by one or more names, called hard links. There
is no "real" name for a file; all hard links are equally valid names for a file.
There are many security implications to this semantic of Linux filesystems.
Unlinking a file, which is controlled by the unlink permission, is essentially
deleting a file (although if there are multiple hard links that file will in fact not
be deleted, just that name). Likewise, linking a file, controlled by the link

permission, is really creating a new name for a file. The ability to change the
name of a hard link, using the rename(2) system call, is controlled by a third
permission, rename. All three hard link-related permissions require additional
permissions on the effected directories to successfully complete.

The final extended permissions for files are mounton, quotaon, and swapon. The mounton

permission controls the ability to mount (mount(2) system call) using the file as a
mount point. It is more common to use directories as a mount point; when
performing bind mounts (MS_BIND), however, it is possible to use a file as a
mount point. The quotaon permission controls the use of a file to store quota
information. When turning quotas on using the quotactl(2) system call (Q_QUOTAON),
the path of the file used to store the quota information is provided. The calling
process domain type must have quotaon permission to that file to successfully
complete the system call.

4.4.1.3. SELinux Specific Permissions

There are five SELinux specific permissions for files: relabelfrom, relabelto,
execute_no_trans, enTRypoint, and execmod.

The relabelfrom and relabelto permissions control the capability of a domain type to
change the type of a file from one type to another type, respectively. To
successfully relabel a file, a domain type must have relabelfrom permission for file
objects of the current type and relabelto permission for file objects of the new type.
Notice that these permissions do not allow control over the exact pairs of

permissions; a domain can relabel from any type for which it has relabelfrom

permission to any type for which it has relabelto permission. It is possible to add
contraints on relabeling, as you will see with the validatetrans rule in Chapter 7,
"Constraints." Relabeling objects is a potentially dangerous operation to the
security of the system and should be tightly controlled.

The execute_no_trans permission allows a domain to execute a file without a domain
transition. This permission is not sufficient to execute a file; the execute

permission is also required. Without the execute_no_trans permission, a process may
execute only the file with a domain transition. We want to exclude execute_no_trans

permission if we want to ensure that an execution will always cause a domain
transition (or fail). For example, when the login process executes a shell for a
user login, we always want the shell process to transition from the privileged
login domain type.

The entrypoint permission, which we discussed in the description of domain
transitions in Chapter 2, controls the ability to use the executable file to allow
a domain type transition. The execute, execute_no_trans, and entrypoint permissions allow
fine-grained control over what code can execute with what domain type.
SELinux's capability to control the domain type of individual programs is a
primary reason for its capability to provide strong yet flexible security.

The execmod permission controls the ability to execute memory-mapped files that
have been modified in the process memory. This is most useful in preventing
shared libraries from being modified within a process. Without this permission,
if a memory mapped file is modified in memory, the process will no longer be
able to execute the file.

4.4.2. Process Object Class Permissions

Table 4-6 list the process object class permissions. Unlike the file permissions,
many of the process permissions do not directly correspond to standard Linux
access controls as Linux does not traditionally treat processes as formal
objects.

Table 4-6. Process Object Class Permissions

Permissions Description

dyntransition Allow a process to dynamically transition to a new context.

execheap Make the heap executable.

execmem Make executable an anonymous mapping or private file
mapping that is writable.

execstack Make the process stack executable.

fork Fork into two processes.

getattr Get attributes of a process through the /proc/[pid]/attr/
directory.

getcap Get Linux capabilities allowed for this process.

getpgid Get group process ID of process.

getsched Get priority of process.

getsession Get session ID of process.

noatsecure Disable secure mode environment cleansing. Allows process
to disable secure mode feature of glibc on execve(2).

ptrace Trace program execution of parent or child.

rlimitnh Inherit process resource limits on execve(2).

setcap Set Linux capabilities allowed for this process.

setcurrent
Set the current process context. This is the first capability
checked when a process tries to perform a dynamic domain
transition.

setexec Override the default context for the next execve(2).

setfscreate Allow a process to set the context of an object created by
the process to something other than the default context.

setpgid Set group process ID of process.

setrlimit Change process hard resource limits.

setsched Set priority of process.

share Allow state sharing with cloned or forked process.

siginh Inherit signal state on execve(2).

sigkill Send SIGKILL signal.

sigchld Send SIGCHLD signal.

signal Send a signal other than SIGKILL, SIGSTOP, or SIGCHLD.

signull Test for existence of another process without sending a
signal.

sigstop Send SIGSTOP signal.

TRansition Transition to a new context on execve(2).

4.4.2.1. Process Creation

The fork permission controls the ability of a process to use the fork(2) system call.
This system call creates a copy of the process that differs only in its process
identifier and resource utilization data. The security context of a process does
not change as the result of forking. Forking is usually the first step in
executing a new program. Controlling the ability of a process to fork limits its
ability to use system resources and can potentially prevent certain types of
denial-of-service attacks.

Three additional permissions control the sharing of state on process transition.
The share permission controls sharing of process state, such as file descriptors
and memory address space, on a execve(2) system call. The siginh permission
controls the inheritance of signal state, including any pending signals. Finally,
the rlimitnh permission controls the inheritance of resource limits from the parent
process.

4.4.2.2. Process Domain Type Transition

As described for domain transitions in Chapter 2, the transition permission
controls the ability of a process in one domain to transition into another via
the execve(2) system call. A domain transition can occur, if allowed, automatically
as a result of a type_transition rule or when explicitly requested. The ability to
request an explicit transition is controlled by the setexec permission.
Programmatically, this request is made by writing to a special file in the proc

filesystem. This procedure is abstracted in the setexeccon(3) library function. The
ability to see the currently requested transition for the next call to execve(2)

system call is controlled by the getattr permission.

The noatsecure permission causes the kernel to not set the secure mode of glibc on
a domain transition. In secure mode, glibc cleanses the process environment,
including powerful environment variables such as LD_PRELOAD. Without cleansing
the environment the source domain can potentially control critical aspects of
the target domain. Allowing the noatsecure permission is especially dangerous
when the domain transition is into a more privileged domain.

The dyntransition permission is similar to the transition permission but controls the
ability to change the domain type on a process at any time, [4] not just when
executing an application. This permission is much more dangerous than the
transition permission because it allows the starting domain to always execute
arbitrary code in the new domain. For this reason, the dyntransition permission can
safely be used only to transition to a domain with a strict subset of the access
of the starting domain. Otherwise, the perceived protection of the domain
change is false, and any access granted to the target domain must be assumed
to be accessible to the starting domain.

[4] The only limitation to when dynamic context transitions can occur is that they cannot occur while a process has
more than one thread running. This is to prevent a multithreaded process from having a different security context for
each thread, which is an even weaker domain separation than offered by the current dynamic context transition.
You can find the discussion of dynamic context transitions that occurred when it was introduced into SELinux at
www.nsa.gov/selinux/list-archive/0411/9364.cfm. Included is information about multithreaded applications and
dynamic context transitions.

Warning

The ability to change the process domain type arbitrarily using the
dyntransition permission for process object class breaks the important
property of label tranquility. In SELinux, label tranquality simply
means that in a running system, after an object is created, its type
will not change. Although there always exists a need for trusted
operating system components to occasionally change types of
objects, SELinux has traditionally tightly controlled type changes
for processes with the domain transition concept. The introduction
of dyntransition permission breaks this property, which greatly
complicates any security analysis of the policy. We highly
recommend that you never use this permission unless you are
writing userspace object managers or other SELinux extensions.

http://www.nsa.gov/selinux/list-archive/0411/9364.cfm

The setcurrent permission for the dyntransition permission is analogous to the setexec

permission for the transition permission. It controls the ability to request the
change of the process domain type. Successfully changing the domain type
requires the dyntransition permission in addition to the setcurrent permission. Like
setexec, the request is made by writing to a special file in the proc filesystem.
This procedure is abstracted in the setcon(3) library function.

4.4.2.3. File Creation

Like domain transitions, the setting of the security context of file-related
objects created by a process can either be automatic, through inheritance or
type_transition rules, or explicit. A program explicitly sets the context for file-
related objects by writing to special files in the proc filesystem. This procedure
is abstracted in the setfscreatecon(3) library call. The setfscreate permission controls
the ability to make this explicit request. Like setexeccon, the ability to see the
current state of the filesystem object context request is controlled by the gettattr

permission.

4.4.2.4. Process Signaling

The ability to signal processes can be powerful because it potentially allows for
the termination or stopping of processes. In addition, signaling can be used to
transfer information between two processes. The sigchld, sigkill, and sigstop

permissions control the ability to send the SIGCHLD, SIGKILL, and SIGSTOP signals,
respectively. The signull permission controls the ability to send a null signal, for
example, by passing 0 as the signal argument for the kill(2) system call. Finally,
the signal permission controls the ability to send all other signals.

There are a couple reasons why some signals have an explicit permission
defined and the rest are grouped under the general signal permission. Two
signal, SIGKILL and SIGSTOP, were given an explicit permission because they
cannot be blocked by a process. The SIGCHLD signal has its own permission
primarily because it is used pervasively (for example, often from every process
to init). The rest have the same security properties, so they were grouped under
the signal permission.

4.4.2.5. Process Attributes

The ability to query or set the scheduling priority and policy for a process is
controlled by the getsched and setsched permissions. Setting scheduling priority and
policy, particularly setting the SCHED_FIFO policy, with the sched_setscheduler(2) system
call can allow a process to take up possibly unlimited amounts of CPU time.
This can be used to for denial-of-service attacks.

The process group and session identifiers control many aspects of a process'
interaction with its environment, including terminal handling and signal
delivery. The getpgid and setpgid permissions control the querying and setting of
the process group identifier for the process. The getsession permission controls
querying of the session identifier.

The getcap and setcap permissions control querying and setting Linux capabilities
for the process. To successfully set a capability, the capability must also be
allowed for the capability object class labeled with the domain type of the process.

Resource limits, such as the maximum core dump size or CPU time, are set
using the setrlimit(2) system call. The setrlimit permission controls the ability to set
hard resource limits.

4.4.2.6. Executing Writable Memory

As mentioned during the discussion of the execmod permission of the file object
class, the ability to execute writable segments of memory is a source of many
security concerns. To help address these concerns the execmem, execstack, and
execheap permissions were created. They control the creation of executable
anonymous mappings, stacks, and heaps, respectively. The enforcement of the
permissions relies on additional software, such as ExecShield, [5] hardware
features, such as NX. [6]

[5] ExecShield is a Red Hat-developed kernel patch to control memory execution and add other security features. It
is included in all Fedora releases and Red Hat Enterprise Linux since version 3. See
www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf for a description.

[6] NX is a hardware feature that accomplishes many of the same goals as ExecShield. A description is available at
http://en.wikipedia.org/wiki/NX_bit.

http://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
http://en.wikipedia.org/wiki/NX_bit

4.5. Exploring Object Classes with Apol

Apol offers a variety of features for browsing and querying object classes and
permissions. Under the Policy Components tab is the Classes/Perms tab, which
allows browsing and searching all object classes, common permissions, and
unique permissions. Figure 4-1, shows apol with this tab displayed. On the left
are all the object classes, common permissions, and permissions. On the right
is an interface that enables you to search for object classes or permissions.

Figure 4-1. Apol displaying object classes, common
permissions, and permissions

[View full size image]

Double-clicking a policy component in the lists on the left displays detailed
information about the component. For example, double-clicking an object class
displays its access vector; double-clicking a permission displays all the object
classes with which it is associated.

The search interface enables you to search for object classes or permissions
using regular expressions. For example, in Figure 4-1, we performed a search
for all object classes that contain "file" as part of their name. We did not set
options to include the class-specific permissions or to expand common
permissions in the result. As you can see in the Search Results window, apol is

showing the object class file including the class-specific permissions and the
expanded common permissions. This is a convenient method to obtain a full
list of the permissions associated with an object class.

Most other features in apol that interact with object classes, including the rule
searching and automated analyses features, which allow filtering of results
based on object classes and permissions. For example, Figure 4-2 shows a
search for rules referring to the object class file.

Figure 4-2. Apol displaying a search for rules with the object
class file

[View full size image]

4.6. Summary

Object classes and permissions are the basis for access control in SELinux,
both as part of the policy language and for the access enforcement
mechanism in the kernel.

Object classes represent system resources such as files, process,
directories, and sockets. There is a corresponding object class for every
kind of system resource.

Permissions represent access to system resources. Each object class has a
defined set of permissions called an access vector.

Object classes are declared using the class declaration statement (class).

Permissions are associated with object classes using the access vector
statement (also class).

Two types of permissions are defined in SELinux: common permissions and
class-specific permissions.

Common permissions are a set of permissions shared by more than one
object class. They are associated with the object classes as a group using
the access vector statement.

SELinux provides object classes and permissions to accurately and
comprehensively cover all system resources. In FC4, this results in more
than 40 object classes, reflecting the richness and complexity of Linux.

Understanding all the object classes and permissions requires a detailed
understanding of both SELinux and Linux.

Allowing access to accomplish many tasks in Linux requires multiple
permissions on one or more object classes.

Appendix C has a complete reference of all object classes and permissions.

Exercises

1. Create a common permission set named socket with the permissions read, write, bind, connect, and listen.

2. Associate the common permissions socket and the class-specific permissions connecto and acceptfrom with the
object class declared in Question 2.

3. Write an allow rule that allows the domain httpd_t to append to a file of type httpd_log_t, but not write.

4.
Write the necessary allow rules to allow the domain httpd_t to execute files of type bin_t. Include the ability
to request an explicit domain transition but not the ability to execute without transition. Assume that
the appropriate rules giving transition and entrypoint are already present in the policy.

Chapter 5. Type Enforcement
In this chapter

5.1 Type Enforcement

5.2 Types, Attributes, and Aliases

5.3 Access Vector Rules

5.4 Type Rules

5.5 Exploring Type Enforcement Rules
with Apol

5.6 Summary

Exercises

page 90

page 91

page 100

page 115

page 122

page 127

page 128

The majority of a SELinux policy is made up of several rules that together we
call the type enforcement rules. These rules control allowed access, many
aspects of default transition labeling, auditing, and invariant assertion
checking. In this chapter, we examine the type enforcement rules in detail
along with the statements to define and declare the types used by these rules.

5.1. Type Enforcement

The majority of a SELinux policy is a set of statements and rules that
collectively define the type enforcement (TE) policy. A well-defined, strict TE
policy can contain tens of thousands of TE rules. The large number of TE rules
is not surprising because they express all the allowed access to resources
exposed by the Linux kernel. This means, for example, that every access
attempt by every process to every file succeeds only if there is at least one TE
rule allowing that access. If we think about the number of processes and
resources on a modern Linux system, we will understand why TE rules can be
numerous. When we add the audit configuration and labeling controlled by TE
rules, it is not uncommon for a highly restrictive SELinux policy to contain tens
of thousands of rules, although smaller policies are also common. In Part III,
we discuss methods for managing and building this large set of rules; for now
let's understand how the TE rules work.

The sheer number of TE rules can make understanding SELinux policies
challenging, but the rules themselves are not complex. There are a relatively
few varieties, and they all fall into two basic categories: access vector (AV)
and type rules. We use AV rules to allow or audit access between two types.
We use the type rules to control default labeling decisions under certain
circumstances.

As their name implies, TE rules operate on types, which are associated with all
resources via a security context. The policy language includes additional
statements that allow us to define types and related policy components.

An important concept of SELinux is that TE rules associate privileges and
accesses with programs, not users. All the SELinux policy language features
we discuss in this chapter deal with the access of subjects (normally running
programs) to objects (files, dir, sockets, and so on). This focus on programs for
access control decisions is important and one of the primary benefits of
SELinux. It allows the SELinux policy author to make decisions about access
based on the function and security properties of programs in addition to the
total access that a user needs to accomplish tasks. A program can be restricted
to the minimum access permissions required to function properly, so that even
if it malfunctions or has been exploited, the security of the system as a whole
is not necessarily compromised. For example, if the policy for a Web server
prevents it from modifying the files it displays, then even if the server is
exploited, the TE policy can prevent the exploited server from changing those
files. This limits the threat of defacing a Web site through a vulnerability in the
Web server. The security of the system in this example is largely maintained
even in the face of an exploited application. Only the exploited application is

affected, and it is limited to the access we defined in the policy.

Users are not entirely ignored by SELinux. It is possible for the policy to
specify multiple domain types (and thus differing sets of privilege) for the
same program based on the user who runs the program. This allows for the
concept of roles, which we discuss further in Chapter 6, "Roles and Users."
Nonetheless, the level of access control is still based on the program's domain
type and not the user's privileges.

The implications of the shift of focus from users to programs can hardly be
understated; it allows us to address some of the fundamental challenges in
computer security. The benefits are clear, but it does require thinking about
access control in a way that is new to many people. As you read this chapter,
it will help if you keep the focus on program access in mind. Additionally, if
you are uncertain about the basic concepts of type enforcement, you should
review Chapter 2, "Concepts," before continuing. In this chapter, we provide
the details necessary to enable you to write TE rules; we assume that you
understand the basic concepts of SELinux and type enforcement as discussed
in Chapter 2.

5.2. Types, Attributes, and Aliases

Types, as you might guess from the term type enforcement, are the basic
building blocks for TE rules. SELinux primarily uses types to determine what
access is allowed. Attributes and aliases are policy features that ease the
management and use of types. We use attributes to refer to a group of types
with a single identifier. For the most part, the policy language allows us to use
attributes in place of types in TE rules. Aliases are a convenience mechanism
that allows us to define alternate names for a type. The alias identifier and the
type identifier are treated identically as far as the policy is concerned.

5.2.1. Declaring Types

We must explicitly declare a type identifier using the type statement before
using it. SELinux has no predefined types; we must explicitly declare them all.
For example, suppose we want to declare a type (httpd_t) we intend to use as
the domain type for a Web server and another type (http_user_content_t) we intend
to apply to user data files that the Web server needs to access to display their
content. We make these declarations using the type statement. For example:

type httpd_t;
type http_user_content;

Once declared, we can use types in security contexts, TE rules, and other
policy statements where required. You can see the full syntax for the type
statement in the sidebar on page 92.

Type Statement Syntax

You use the type statement to declare types and optionally, associated alias names and attributes
with the type. The full syntax for a type declaration is as follows:

type type_name [alias alias_set] [, attribute_set] ;

type_name
An identifier for the type. The identifier can be
any length and can contain ASCII characters,
numbers, an underscore (_), or a period (.).

alias_set

One or more alias identifiers. Alias identifiers
have the same naming restrictions as type
identifiers. If more than one alias identifier is
specified, a space-separated list enclosed in
braces ({ }) is used (for example, alias { aliasa_t aliasb_t
}).

attribute_set

One or more previously declared attribute
identifiers. If more than one attribute is
specified, a comma-separated list is used (for
example, type bin_t, file_type, exec_type;).

Type statements are valid in monolithic policies, base loadable modules, and nonbase loadable
modules. They are not valid in conditional statements.

5.2.2. Types and Attributes

As you might imagine, a large, complex policy may have many hundreds or
thousands of types to represent all of the different resources on a system. The
Fedora Core 4 (FC4) targeted policy, for example, which is deliberately
relatively small, declares more than 800 types. Combine this with the fact that
all access is denied unless explicitly allowed means that directly expressing all
the allowed access between types would be verbose. This is where attributes
help in the policy language. Attributes can be thought of in two ways: 1) as a
property or characteristic of a type, or 2) as a group of types. In either case,
the mechanism is the same.

Suppose we want to allow a backup application to have read access to all files.
We start by creating a domain type of the backup application (backup_t) and

giving that type allowed access to every type associated with any file:

type backup_t;

allow backup_t httpd_user_content_t : file read;
allow backup_t shadow_t : file read;
additional rules granting read access to every other type used with file objects

Here we give the domain type backup_t access to two file types: our
httpd_user_content_t example from earlier; and the type shadow_t, which we expect to
be the type of the /etc/shadow file. Both are on-disk files that a backup application
must read.

To complete this example, we would have to write a rule for every other type
used for any file. Depending on how many of the hundreds of declared types
are ever used with a file object, we would need hundreds of allow rules to give
the backup application the necessary access (one for each type). Further,
every time we add a file type to the policy, we would have to remember to add
an allow rule for backup_t. This is a tedious and error-prone process. Attributes
makes this kind of "group access" easier to specify. By defining an attribute
that we associate with all the file types and then granting access to that
attribute (rather than the individual types), we can give backup_t the necessary
access with a single rule.

We declare attributes with the attribute statement, as follows:

attribute file_type;

This statement declares an attribute called file_type. Types and attributes share
the same namespace, so it is not possible to have a type and an attribute with
the same name. Assuming that we associated the attribute file_type with all
appropriate types, we can then allow backup_t read access to both of these files
with a single allow rule:

allow backup_t file_type : file read;

Note

Whereas it is common to append a _t to all type names, the common
convention for attributes is to have no additional suffix added to the
name. Because types and attributes share the same name space,
this makes it easier to recognize a type from an attribute when
writing and examining TE rules.

Now instead of hundreds of allow rules, we have a single rule that grants the
same access. When this policy is compiled, this rule will automatically be
expanded to the hundred of rules necessary to control access based on the
various file types. More important, when we define a new type for files, all we
have to do is associate the new type with the file_type attribute and the domain
type backup_t will automatically be given read access.

The full syntax for the attribute statement can be seen in the following
sidebar.

Attribute Statement Syntax

You use the attribute statement to declare attributes. The full syntax of the attribute statement is as
follows:

attribute attribute_name;

attribute_name

An identifier for the attribute. The identifier can
be any length and can contain ASCII characters,
numbers, an underscore (_), or a period (.) .
Attributes are in the same namespace as types
and aliases and therefore cannot have the same
name as another type or alias.

Attribute statements are valid in monolithic policies, base loadable modules, and non-base loadable
modules. They are not valid in conditional statements.

5.2.3. Associating Types and Attributes

So far, we discussed how to define types and attributes but not how to
associate the two. Types are most commonly associated with attributes when
the types are declared using the type statement. For example, we can associate
the attribute file_type with the type httpd_user_content_t by changing the type
declaration to the following:

type httpd_user_content_t, file_type;

The common way to describe this declaration is that the type httpd_user_content_t

has the file_type attribute. Mechanically, this statement adds the type
httpd_user_content_t to the group of types that "have" the file_type attribute, but
conceptually it also changes the nature of the httpd_user_content_t type such that it
now "has" access permissions based on an attribute, and not just on
permissions granted to the type itself.

Just as httpd_user_content_t comes to represent files served by the Web server
through use, attributes gain meaning through consistent use. In this example,

we are creating an attribute, file_type, which means all file types used on
permanent storage. Thus, we as policy writers can write rules for access to "all
files" without having to explicitly address each and every file type.

Types are not limited to one attribute, and in normal use it is common for a
type to have several associated attributes. For example, we can create the
attribute httpdcontent for all files intended to be available through the Web server.
The types that have the httpdcontent attribute would likely be a subset of the types
with the file_type attribute. To extend our earlier example, let's look at the
following statements:

type httpd_user_content_t, file_type, httpdcontent;
type shadow_t, file_type;

allow backup_t file_type : file read;
allow httpd_t httpdcontent : file read;

We have now added two attributes to the http_user_content_t type, file_type (indicating
this is a type of an on-disk file) and httpdcontent (indicating that this type is to be
read by the Web server). For the more privileged type shadow_t, we associated
only the attribute file_type (because allowing the Web server to display the
shadow password file does not seem like a good idea!). We also have two allow

rules giving the Web server and the backup program the access they need for
the types associated with each attribute. The result is that the Web server
(httpd_t) can read all files with the httpdcontent attribute but not other files such as
shadow_t. On the other hand, the backup application (backup_t) can read all files
that have the file_type attribute.

No practical limit applies to the number of attributes that a type can have and,
just as with types, we can define as many or as few attributes as we want
within reason.

Note

At the time of this writing, the coded limit to the number of types
and attributes we may define is 232 identifiers. This is the size limit
supported by the version of SELinux released with Red Hat
Enterprise Linux, version 4 (RHEL4). By the time this book is
published, that size will likely be changed to 216 identifiers (due to
a significant optimization of SELinux memory usage). However, in
practical terms, the number of types we can define is probably at

most a few thousand (because the number of associated TE rules
would likely become unwieldy). So, even the most complicated
policy we have seen has had fewer than two thousand types and
attributes declared.

In addition to associating attributes with types using the type statements, we
can associate attributes to types using the typeattribute statement. This statement
allows us to associate attributes to types separately from their declaration,
potentially in another part of the policy that is in a separate file. For example,
take our type statement for http_user_content_t from above:

type httpd_user_content_t, file_type, httpdcontent;

The following type and typeattribute statements are equivalent to the single type

statement:

The following two statements...
type httpd_user_content_t;
typeattribute httpd_user_content_t file_type, httpdcontent;

are equivalent to the following single statement.
type httpd_user_content_t, file_type, httpdcontent;

Tip

For the first time, we used a comment in our policy statement. For
the policy compiler, the pound symbol (#) indicates a comment. All
text following the pound symbol to the end of the line is ignored by
the compiler.

It may not be clear from this example why the typeattribute statement is needed,
but as you read in later chapters, the flexibility given by this statement will

become clear. Basically, this statement allows us define a type in one place
and associate attributes in another, increasing the language flexibility and
allowing stronger modularity in the design of policy source files.

The full syntax for the typeattribute statement can be seen on page 97.

Warning

Attributes are a convenient feature of the policy language, but they
can be dangerous. Associating an attribute with a type can
potentially allow a large amount of access to that type. This access
may or may not be appropriate; it depends on our security goals.
For example, associating a domain type with an attribute will likely
give that type a large amount of access, the impact of which you
may not fully understand. This is often similar to granting a process
a powerful privilege. You should be certain that the access for the
attribute is warranted for the associated type and be careful about
the impacts of future TE rules that reference that attribute.

Typeattribute Statement Syntax

The typeattribute statement allows you to associate previously declared type and attributes. You can
use this statement to associate an attribute with a type when the association is not done as part of
the type declaration. The full syntax for the typeattribute statement is as follows:

typeattribute type_name attrib_names;

type_name

The name of the type to which to add the
attributes. The type must be declared separately
using a type statement and only one type may
be specified.

attrib_names

One or more previously declared attribute
identifiers. If more than one attribute is
specified, a comma-separated list is used (for
example, typeattribute bin_t file_type, exec_type;).

Typeattribute statements are valid in monolithic policies, base loadable modules, and non-base loadable
modules. They are not valid in conditional statements.

5.2.4. Aliases

Aliases are alternate names used to refer to a type. We can use an alias
anywhere that we would use a type name, including TE rules, security
contexts, and labeling statements. Aliases are typically used for compatibility
when making policy changes. For example, an older policy might refer to the
type netscape_t. An updated policy might switch to the type name to mozilla_t, but
provide netscape_t as an alias to allow older modules to correctly compile.

We declare aliases in one of two ways. The first method is as part of the type
declaration using the type statement. We can declare the type mozilla_t with the
alias netscape_t by using the alias keyword in the type statement, as follows:

type mozilla_t alias netscape_t, domain;

Notice that the alias declaration comes before the attributes for the type.

We can also declare aliases separately from the type declaration using the
typealias statement. The following statements are equivalent to the single type

statement above:

These two statements are equivalent...
type mozilla_t, domain;
typealias mozilla_t alias netscape_t;

to the following single statement.
type mozilla_t alias netscape_t, domain;

The typealias statement is useful when the structure of the policy makes it
difficult to declare the alias as part of the type declaration. We can see the full
syntax for aliases as part of type statements in the sidebar on page 92 and the
full syntax for typealias in the sidebar on page 98.

Typealias Statement Syntax

The typealias statement allows you define an alias name for a type. This is an alternative method to
defining the alias as part of the type declaration using the type statement. The full syntax for the
typealias statement is as follows:

typealias type_name alias alias_names;

type_name

The name of the type to which to add the
aliases. Types must be declared separately using
the type statement, and only one type may be
specified.

alias_names

One or more alias identifiers. Alias identifiers
have the same naming restrictions as type
identifiers. If more than one alias identifier is
specified, a space-separated list enclosed in
braces ({ }) is used (for example, { aliasa_t aliasb_t }).

Typealias statements are valid in monolithic policies, base loadable modules, and non-base loadable
modules. They are not valid in conditional statements.

Domain Types and Other Kinds of Types

In Chapter 2, you learned that types used on processes are sometimes called "domain types."
Throughout this book, we also often use other adjectives in front of the word type, such as "file
type" and "directory type." All these adjectives simply refer to the way that the types are used and
do not reflect any special treatment of the type in the policy language. A file type, for example, is
simply a way to refer to a type used as part of the security context for files. In reality, the type
could be used for other object classes, too; there is nothing intrinsic to the language that makes a
type a file type or a domain type. All the types in SELinux are exactly the same and can be used to
label any object class instance if the appropriate access is present.

This means, for example, that a domain type such as httpd_t could be used on both a process and
a file with the addition of a few rules. Traditionally, this dual use has been avoided in SELinux
policies, mainly for clarity. But, in some circumstances, we have used a type as both a domain type
and a file type. The distinction is completely up to the policy writer.

In the case of domain types, however, there are some technical reasons to not use these types for
files and directories. In Linux, every process has files and directories automatically created in /proc/ by
the kernel. These objects are used to get and set properties about these processes. In SELinux,
the type of the process is automatically used for these files and directories. That would mean that
for a process with type httpd_t, if the process ID (PID) of the process were 1000, the directory
/proc/1000/ and all of its files and directories would also have the type httpd_t. If the type httpd_t was also
used for regular files, that would mean that granting access for other domain types to regular files
of type httpd_t would also grant access to the files and directories in /proc/, with potentially unwanted
side effects.

5.3. Access Vector Rules

AV rules are those rules that specify their meaning in terms of access
permissions[1] for object classes. The SELinux policy language currently
supports four types of AV rules:

[1] In the code, the set of permissions for an object class are represented by a bit mask called an access vector,
hence the term access vector rule.

allow Specifies access allowed between two types

dontaudit Specifies access denial messages to not record

auditallow Specified access allowed events to record

neverallow Specifies access permissions that may never be
granted by any allow rule

We examine each of these rules, their common and unique syntax and
semantics, and examples of their usage in the remainder of this section. The
common syntax for all AV rules is shown in the sidebar on page 107.

5.3.1. Common AV Rule Syntax

Although each of these AV rules has a different purpose, they all have the
same basic syntax. Each rule contains five elements:

• Rule name allow, dontaudit, auditallow, or neverallow

• Source type(s) The type(s) being granted access, usually the
domain type of a process attempting access

•Target type(s) The type(s) of an object to which the source is
being granted access

•Object class(es) The class(es) of object(s) that the specified
access is permitted

• Permission(s)
The specific access permissions that the source
is allowed to the target type for the indicated
object classes (also called the access vector)

A simple AV rule has one source type, target type, object class, and
permission. We have seen many examples of such AV rules in our earlier allow

rule examples, such as the following:

allow user_t bin_t : file execute;

This allow rule has the source type user_t, target type bin_t, object class file, and
permission execute. This rule is commonly read as "allow user_t to execute files
of type bin_t."

All four AV rules have exactly the same syntax with a different rule name
keyword. For example, we could convert the previous example into an auditallow

rule by simply replacing the rule name:

auditallow user_t bin_t : file execute;

We will discuss the meaning of this rule later; what is important at the
moment is to understand that the syntax is exactly the same.

5.3.1.1. AV Rule Keys

Within the kernel, all the AV rules are uniquely identified by a triplet of source
type, target type, and object class. This triplet is called a key for its use as a
hash table and cache key within the policy data structures. Recall from
Chapter 3, "Architecture," that rules are stored and looked up by this key.
When a process makes an access attempt, the SELinux LSM module is queried
for the allowed access based on this key.

So, what happens when there is more than one AV rule with the same key
(that is, same source type, target type, and object class)? For example,
consider a policy with the following rules:

allow user_t bin_t : file execute;
allow user_t bin_t : file read;

Are processes of type user_t allowed read or execute access to files of type bin_t? The
answer is both; all rules with the same key are combined by checkpolicy. The
compiled policy will contain a single rule with both the execute and read

permissions, and both will be allowed by the security server. All the AV rules
are additive in this way.

Warning

Each subsequent AV rule in a policy that has the same keys as a
previous AV rule adds permissions to the ultimate rule compiled into
the policy. There is no concept of removing permissions granted by
another rule. So be careful; although you might have written a nice
tight rule in one part of the policy, another rule elsewhere in a
policy (possibly for an attribute that is associated with your type)
might grant additional permissions.

5.3.1.2. Using Attributes in AV Rules

Although the AV rules that we have seen so far have been simple, the syntax
supports many ways to list types, object classes, and permissions, giving us
flexibility and often making the rule statements more concise.

In the simple form of the rules in the previous examples, the rules have
referred directly to the source type (user_t) and the target type (bin_t). It is often
convenient, however, to refer to multiple types in the source or target of the
rules. One way to refer to multiple types is to use attributes. We can use an
attribute anywhere we can use a type in AV rules.

For example, suppose we defined an attribute (exec_type) that we plan to
associate with all file types that an ordinary user program (indicated by the
domain type user_t) may execute. Now we can change our above example to
refer to the attribute exec_type rather than an explicit type such as bin_t, as shown
here:

allow user_t exec_type : file execute;

Unlike the previous example, this rule does not directly reflect what will be
enforced by the kernel. Rules that include attributes will be expanded within
the kernel into a separate key for each type associated with the attribute. If
there were 20 file types associated with the attribute exec_type, for example, the
kernel AVC may end up with 20 keys and associated rules, each one granting
execute access for file object class to the type user_t for each of the 20 file types
associated with the attribute exec_type.

We can also use attributes as the source of an AV rule, or for both the source
and target of the rule. For example, suppose we also created an attribute
(domain) that we associated with all domain types (including user_t), and that we
want to allow all domain types the ability to execute file types that have the
attribute file_type. We can achieve this goal with a single rule:

allow domain exec_type : file execute;

To better illustrate the rule expansion concept, suppose that our policy
associated the domain attribute with the types user_t and staff_t, and the exec_type

attribute with the file types bin_t, local_bin_t, and sbin_t. Thus, the single rule above
would be the equivalent to the following explicit rules:

allow user_t bin_t : file execute;
allow user_t local_bin_t : file execute;
allow user_t sbin_t : file execute;
allow staff_t bin_t : file execute;
allow staff_t local_bin_t : file execute;
allow staff_t sbin_t : file execute;

5.3.1.3. Multiple Types and Attributes in AV Rules

We are not limited to a single type or attribute for the source and target fields.
Rather, we can also list multiple types or attributes as source and target.
When there is more than one type or attribute, a space-separated list enclosed
in braces is used, as follows:

allow user_t { bin_t sbin_t } : file execute;

In this rule, the target is both bin_t and sbin_t. Rules with multiple types or
attributes in the source or target are expanded in the same ways as single
attributes. In the previous example, the kernel policy would contain two keys,
one each for the type target types.

We can mix types and attributes for either source or target fields, or both. For
example, the following rule is perfectly legal:

allow {user_t domain} {bin_t file_type sbin_t} : file execute ;

It is fine if we explicitly list a type and an attribute that the type has. In this
case, we have essentially listed the type twice. The kernel will resolve the
redundancy and include only one instance of the rule for each combination of
source and target types.

5.3.1.4. The Special Type self

The policy language has a reserved word self that acts like a type when used in
the target field of an AV rule. For example, the following two rules are
equivalent:

These two rules are equivalent to each other
allow user_t user_t : process signal;
allow user_t self : process signal;

The keyword self simply means to instantiate a rule for each source type, so
that the source and target are the same. In the preceding example, the second
rule just creates a key with the source and target both user_t.

Let's look at a slightly more complicated example:

allow {user_t staff_t} self : process signal;

In this example, the rule creates two rules, one each for each source type.
This rule is exactly equivalent to the following two rules:

These two rules...
allow user_t user_t : process signal;
allow staff_t staff_t : process signal;

are equivalent to the following single rule.
allow {user_t staff_t} self : process signal;

Notice that when using self, the equivalent rules are created only for each
source type and themselves. In particular, user_t is given no access to staff_t and
vice versa.

Note

You may use only the special type self in the target field of AV rules.
In particular, you cannot use self as the source of an AV rule or in a
type rule. Further, you cannot declare a type or attribute with self as
its identifier.

The use of self is particularly valuable when using attributes or large lists of
types and attributes as the source of an AV rule. For example, suppose we
want every domain to be able to signal itself. We might want to write a rule
such as this:

allow domain domain : process signal; # Not what we really want

Although this rule provides the desired access (every domain type would be
able to signal itself), it would also allow every domain type to signal every
other domain type. This unintended effect could be a security disaster. By
using the self keyword, we can ensure that each domain type only gets access
to itself, as follows:

allow domain self : process signal; # This is what we intended

5.3.1.5. The Negation Special Operator

The final syntax for types in AV rules is type negation. This syntax is useful for
removing a type from a list of types and is most commonly used to remove a
type from an attribute in a given rule. This is done by prepending the negation
operator, -, to the beginning of the type name. For example, we could allow all
domain types to execute all file types with the exec_type attribute except for sbin_t

with the following rule:

allow domain { exec_type -sbin_t } : file execute;

This rule would expand as if the exec_type attribute did not contain the type sbin_t

for this one rule.

Type negation is not order dependent; if a type is subtracted, it will not be
expanded even if it comes before the attribute was listed. The following, for
example, is semantically equivalent to the preceding example:

allow domain { -sbin_t exec_type } : file execute;

5.3.1.6. Specifying Object Classes and Permissions in AV Rules

AV rules can also contain lists of object classes and permissions. The syntax is,
as with types, a space-separated list enclosed in braces, as follows:

allow user_t bin_t : { file dir } { read getattr };

This rule would result in two keys, one for each object class, just as with
source or target types. This preceding rule is exactly equivalent to the
following two rules:

These two rules...
allow user_t bin_t : file { read getattr };

allow user_t bin_t : dir { read getattr };

are equivalent to the following single rule.
allow user_t bin_t : { file dir } { read getattr };

Notice that the object classes are expanded, but each rule has the same list of
permissions. This means that all the listed permissions must be valid for all the
object classes. We will sometimes have to create two distinct rules with the
same source and target types but different object classes because the
permission lists are not valid for all classes. For example, if we look at the
permissions for file and dir object class, we will notice that many of them are the
same, but some are not. (The permissions valid for both are a result of the use
of common permissions, as discussed in Chapter 4, "Object Classes and
Permissions.")

Suppose, for example, we want to write a rule to give a form of "read" access
for both object classes. The following rule is not valid:

An invalid rule because search is not valid for the object class file
allow user_t bin_t : { file dir } { read getattr search };

Although read and getattr are common permissions for both dir and file object
classes, the search permission is valid only for dir object class. Because checkpolicy

cannot create a key that gives file class an invalid permission (search), we would
get an error when trying to compile a policy with this rule. Our only recourse
in this case is to create two rules, such as these:

Two rules are needed when permissions are not valid for
both object classes
allow user_t bin_t : file { read getattr };
allow user_t bin_t : dir { read getattr search } ;

5.3.1.7. Special Permission Operators for AV Rules

We can use two special operators for listing permissions in AV rules. The first
special operator is a wildcard operator (*). The wildcard operator includes all

permissions for an object class:

allow user_t bin_t : { file dir } *;

This rule will expand into all of the permissions for file and dir.

The wildcard operator syntax differs subtly from explicitly listing all the
permissions for the object classes. With the wildcard operator, all permissions
are included for each object class individually, regardless of whether they are
valid for all the object classes. This makes it possible to use the wildcard
operator in rules with multiple object classes, even if those object classes have
different permissions. So, for example, the above rule would safely handle the
permissions that are only valid for dir object class and not file class, unlike the
earlier example.

The second special operator makes it possible to include all the permissions
not listed using the complement operator (~):

allow user_t bin_t : file ~{ write setattr ioctl };

When compiled, this rule allows all the permissions for the file object class except

write, setattr, and ioctl. Similar to the wildcard operator, complement expands the
permission lists individually for each listed object class.

Warning

Be advised that the proper and allowed use of all three special
operators (negation, wildcard, and complement) has evolved and
changed over the past few years. Many recent versions of checkpolicy

will allow these operators to be used in places other than those
listed here. For example, checkpolicy versions, including that released
with RHEL4, allow the wildcard operator (*) to be used for types.

Recent improvements to the compiler have tightened the allowed
use for these operators to be consistent with the rules previously
discussed. The primary exception is that the wildcard operator may
be used for types in neverallow rules, but no other TE rule. In general,
if you use these operators as discussed herein, you will be safe.

Common Access Vector Rule Syntax

The full common syntax for AV rules is as follows:

rule_name type_set type_set : class_set perm_set ;

rule_name
The name of the access vector rule. Valid rule
names are allow, auditallow, auditdeny, dontaudit, or
neverallow.

type_set

One or more types and/or attributes. There is a
separate type_set for the source and target types
of the rules. Multiple types and attributes are
specified using a space-separated list enclosed in
braces ({ })for example, { bin_t sbin_t }. Types can be
excluded from the list by prepending - to the
type name (for example, { exec_type -sbin_t }). The
keyword self can be used in the target type field
either alone or as part of a list of types and
attributes. Self cannot be used in the source type
field. Neverallow rules also support the wildcard
operator (*) to include all types and the
complement operator (~) to include all types
except those explicitly listed.

class_set
One or more object classes. Multiple object
classes must be enclosed in braces ({ })for
example, { file lnk_file }.

perm_set

One or more permission. All permissions must be
valid for all object classes in the class_set. Multiple
permissions must be enclosed in braces ({ })for
example, {read create}. The wildcard operator (*) is
used to specify all permissions for all object
classes. The complement operator (~) is used to
specify all permissions except those explicitly
listed.

All AV rules are valid in monolithic policies, base loadable modules, and nonbase loadable modules.
All AV rules except auditdeny and neverallow rules are valid in conditional statements.

5.3.2. Allow Rules

By now you have seen many examples of allow rules in this and previous

chapters. The allow rule is the most common rule in a policy and implements the
primary purpose of an SELinux policy (that is, to allow access).

As discussed, we use allow rules to specify all permissions that will be granted at
runtime. They are the only means to allow permissions in an SELinux policy.
Remember, no access is allowed by default. We specify access between two
lists of types, the source and target, in terms of permissions for the listed
object classes, as follows:

allow user_t bin_t : file { read execute };

This rule allows any process whose security context has the type user_t to have
read and execute permissions to any ordinary file whose security context has the
type bin_t. Allow rules share all of the common AV rules syntax and do not have
any additional syntax.

If this example were the only allow rule in our policy with this source type,
target type, and object class, no other access would be granted to files with
the type of bin_t. For example, user_t would not be able to write files of type bin_t.

Allow rules, like all AV rules, are cumulative and the actual access allowed for a
given subject-target-class key is the union of all the allow rules that refer to that
key. For example, these two sets of rules are equivalent:

These two rules...
allow user_t bin_t : file read;
allow user_t bin_t : file write;
are equivalent to (and redundant with) this single rule.
allow user_t bin_t : file { read write);

5.3.3. Audit Rules

SELinux has extensive facilities for logging, or auditing, access attempts that
are either allowed or denied by the policy. The audit messages, often called
"AVC messages," give detailed information about an access attempt, including
whether it was allowed or denied, the security context of the source and
target, and other details about the resources involved in the access attempt.
The messages, which are similar to other kernel messages and are usually

stored in log files under /var/log, are an indispensable tool for policy
development, system administration, and system monitoring. In this chapter,
we examine the policy features that enable us to configure which access
attempts will generate audit messages. Part III provides more information
about how to use audit messages to debug and understand policies.

By default, SELinux does not record any access checks that are allowed but
records all access checks that are denied. These defaults are not surprising; on
most systems, thousands of accesses per second are allowed, but few accesses
are denied. The allowed accesses are, by the fact that they were allowed,
expected and usually do not require auditing. The denied accesses are usually,
but not always, unexpected, and auditing them helps an administrator to
monitor for policy bugs and/or possible intrusion attempts. The policy language
allows us to override portions of these defaults to suppress audit messages for
expected access denials and to generate audit messages for access attempts
that were allowed.

SELinux provides two AV rules that allow us to control which access attempts
are audited: dontaudit and auditallow. These two rules are the policy mechanism that
enable us to change these auditing defaults. The dontaudit rule is the most
commonly used. It specifies which access denials should not be audited,
overriding the SELinux default behavior to audit all access denials.

Warning

Access denials are audited only if the denial was made by SELinux.
Recall from Chapter 3 that LSM module hook functions are usually
called only if the access passes the standard Linux discretionary
access control checks. This means that if an access was denied
because of the standard Linux access checks, SELinux is not even
aware of the access attempt and cannot generate an audit message.
If you need to audit all denied accesses regardless of why the
access is denied, you must directly use the kernel audit system
included in the 2.6.x series of kernels. See the man pages for
auditd(8) and auditctl(8).

For example, consider this:

dontaudit httpd_t etc_t : dir search;

This rule specifies that when processes of type httpd_t are denied search

permission on directories of type etc_t, the denial should not be audited,
overriding the default behavior. We might write this rule if processes with type
httpd_t attempt to search directories of type etc_t (presumably /etc/) but function
properly when this access is not granted. You will find Linux/UNIX applications
often exhibit this type of behavior; that is, they attempt access they do not
need yet work fine when the access is denied.

The dontaudit rule is useful when we want to mask audit denial messages that are
expected, usually due to expected behavior of an application. The dontaudit rule
allows us to avoid granting unnecessary access (because the application works
without the access, it is unnecessary by any definition) without a large number
of expected audit messages filling the system logs. As we said, this type of
behavior is all too common.

Auditdeny Rule

Earlier versions of SELinux supported an auditdeny rule. These rules were used for a similar purpose to
the dontaudit rules. Although still supported by the policy language, an auditdeny rule is seldom, if
ever, seen in policies. The rule is deprecated, and we suggest you do not attempt to use it. The
dontaudit rule, coupled with the default behavior of recording all access denials, is the desired method
for controlling access denial auditing.

The other audit rule, auditallow, allows us to control the auditing of allowed access
attempts. Unlike denied access, allowed access is not recorded by default. For
example, let's look at the following rule:

auditallow domain shadow_t : file write;

This rules specifies that when a process with a type that has the domain attribute
successfully obtains write access to files of type shadow_t, the allowed access is
audited. The auditallow rule is useful to audit accesses that are an important
security event. Examples of access that are likely to have an auditallow rule
include writing to the shadow password file (as the above rule does) or
reloading a new policy into the kernel.

Remember, audit rules let us override the default auditing settings. The allow

rule specifies which access is allowed. The auditallow rule does not allow access; it
enables only auditing of allowed permissions.

Note

Auditing is different in permissive and enforcing modes. When
running in enforcing mode, audit messages are generated every
time there is an allowed or denied access that the policy states
should be audited up to a rate limit (this can be set with
auditctl(8)). In permissive mode, only the first access attempt is
logged until the next policy load or toggle of the enforcing mode.
Permissive mode is most often used for policy development, and
this auditing mode helps reduce the size of the log.

5.3.4. Neverallow Rules

The final AV rule is the neverallow rule. We use this rule to state invariant
properties specifying certain accesses that may never be permitted by an allow

rule. You might wonder why this rule exists, because access is denied by
default. The reason is to aid policy writing by noting certain undesired
permissions, thereby preventing the accidental inclusion of these permissions
in our policy. Recall that an SELinux policy is likely to contain tens of
thousands of rules. It is quite possible to accidentally grant an access we did
not want to grant. The neverallow rule helps prevent this situation. For example,
consider this rule:

neverallow user_t shadow_t : file write;

This neverallow rule would prevent us from adding a rule to the policy that allows
user_t to write to files of type shadow_t by generating a compile error. This rule
does not remove access, it just generates compile errors. The neverallow rule is to
state important properties about our policy before we start writing allow rules.
The neverallow rules prevent us from inadvertently including permissions that we
did not intend.

The neverallow rule supports some additional syntax that the other AV rules do
not. In particular, the source and target type lists in neverallow rules can contain
the wildcard (*) and complement (~) operators. These operators work just as
they do for permission lists in the rest of the AV rules (see the section "Special
Permission Operators for AV Rules," earlier in this chapter).

For example, look at the following rule:

neverallow * domain : dir ~{ read getattr };

This rule states that no allow rule may grant any type any access except read and
getattr access (that is, "read access") to directories labeled with one of the types
associated with the domain attributes. The wildcard operator in this rule means
all types. A neverallow rule similar to this is commonly found in policies and is
used to prevent inappropriate access to directories in /proc/ that store process
information (which will be labeled with the same type as processes).

We can see from the preceding example that the wildcard operator is needed

in the source type lists for neverallow rules because we are referring to any and all
types, including those not yet created. The wildcard operator allows us to
prevent future mistakes.

Another common neverallow rule is this:

neverallow domain ~domain : process transition;

This neverallow rule reinforces the concept of the domain attribute described earlier
in this chapter. This rule states that a process cannot transition to a type that
does not have the domain attribute. This makes it impossible to create a valid
policy with a type intended for a process that does not have the domain attribute.

Loadable Module Dependency Handling

Loadable policy modules, which are a new feature in Fedora Core 5 (FC5), contain language features
for handling dependencies between modules. The dependency handling features ensure that the
policy components (that is, identifiers) a module expects are present at module installation time. See
Chapter 13, "Managing an SELinux System," for more information about how loadable policy
modules are installed and managed. Possible policy component dependencies include object classes,
permissions, users, roles, types or aliases, attributes, and Boolean identifiers.

The require statement states the policy components required for a loadable module. All policy
components that are not declared in the module must be required in some form. For example,
consider the following require statement:

require { type etc_t; }

The example above states that the loadable module in which it appears requires the type etc_t to be
declared elsewhere in the policy (that is, in the base module or other loadable modules). This require
statement allows the type etc_t to appear in policy rules within the module without being explicitly
declared. Following is a more complete example showing a more require statement, type declaration,
and an example allow rule:

require {
 attribute domain;
 type etc_t;
 class file { read getattr };
}
type httpd_t, domain;
allow httpd_t etc_t : file { read getattr };

As you can see, every policy component used in the example allow rule was either declared or
required before it was used. For example, the domain attribute was required before it was used in the
httpd_t type declaration. Obviously, many require statements would be needed for a loadable module of
any complexity. In Chapter 12, "Reference Policy," we discuss how the reference policy automates
the generation of require statements.

We use the require statement to state unconditional requirements that must be present in the policy
for the loadable module to be installed. The optional statement is used to state requirements that may
or may not be present. This allows the policy author to add rules based on whether policy
components are present. For example, consider the following optional statement:

optional {
 require { type user_home_t; }
 allow httpd_t user_home_t : file read;
}

This statement allows processes with the type httpd_t to read files with the type user_home_t if that type
is present. As you can see, the optional statement wraps standard policy statements, including require
statements. Whenever modules are added or removed from the system, all the optional
dependencies are checked and enabled or disabled as appropriate.

The full syntax of the require statement is as follows:

require { require_list }

require_list

One or more semicolon-separated require
declarations. A require declaration consists of an
identifier for the variety of policy component
followed by the name of the policy component.
Valid policy component variety identifiers are class,
user, role, type, attribute, and bool. For users, roles,
types, attributes, and Booleans, only a single
name may be listed (for example, type httpd_t;). For
object classes, both the object classes and one
or more permissions is listed (for example, class file
{ read write };).

Require statements not a part of an optional statement are valid only in nonbase loadable modules.
They are not valid in a base module or in any conditional statements.

The full syntax for the optional statement is as follows:

optional { rule_list }

rule_list

One or more policy statements that are enabled
if all the required statements in the optional
statement are satisfied. Valid policy statements
are user, role, type, attribute, and alias declarations and
TE and RBAC rules (including conditional
statements).

Optional statements are valid only in base and non-base loadable policy modules. They are not valid in
conditional statements.

5.4. Type Rules

Type rules specify default types for objects created or relabeled at runtime. We
have already seen one example of this in Chapter 2 in the form of default
domain transitions using the type_transition rule. There are two type rules defined
in the policy language:

type_transition Specifies default type labeling behavior for
domain transition and object creation

type_change Specifies default types for relabeling performed
by SELinux-aware applications

We call these rules "type rules" because they are similar to AV rules except
that the last field in the rule is a type name rather than a list of permissions.

5.4.1. Common Type Rule Syntax

As with AV rules, each of the type rules has a different purpose and semantics,
but they all share common syntax. Each type rule has five elements:

• Rule name type_transition or type_change

• Source
type(s) The type(s) of the creating or owning process

• Target
type(s)

The type(s) of the object containing the new or
relabeled object

• Object
class(es)

The class(es) of object(s) being created or
relabeled

• Default
type

The single default type for the new or relabeled
object

The full syntax for the type rules is in the sidebar on page 117.

Much of the type rule syntax is similar to AV rules, but there are important
differences. First, there are no permissions. Unlike AV rules, type rules do not
specify access or auditing, so there is no need for permissions. The second
major difference is that the object class is not associated with the target types.
Instead, the object class refers to the objects that will be labeled with the
default type.

The simplest form of a type rule has one source, target, and default types, and
one object class, as follows:

type_transition user_t passwd_exec_t : process passwd_t;

This rule, which you saw in Chapter 2, specifies that when a process of type
user_t executes a file of type passwd_exec_t, the process type will attempt to
transition, by default, to passwd_t unless otherwise requested. The target type is
implicitly associated with the file object class when the stated object class is
process. The stated object class (process) is associated with the source and default
types. This subtle and implicit association is easy to overlook, even after you
become an experienced policy writer.

As with AV rules, we can specify more than one object class by using a space-
separated list enclosed in braces. Likewise, we can use attributes, and lists of
types and attributes in type rules, as follows:

type_transition { user_t sysadm_t } passwd_exec_t : process passwd_t;

This type_transition rule includes two types, user_t and sysadm_t, in the source list. As
with AV rules, this rule would be expanded into two rules. The preceding rule
has the exact same meaning as the following two rules:

These two rules...
type_transition user_t passwd_exec_t : process passwd_t;
type_transition sysadm_t passwd_exec_t : process passwd_t;

are equivalent to this single rule.
type_transition { user_t sysadm_t } passwd_exec_t : process passwd_t;

The use of attributes also works the same as in AV rules.

Unlike source and target type fields, attributes and/or multiple types cannot be
used for the default type. The reason for this restriction is clear when you
understand the purpose of this rule (that is, to specify a single default type). If
we could list more than one default type, the rule would be ambiguous and it
would be impossible for the kernel to determine which default type to use.

The restriction for a single default type also means that we cannot have two
separate type rules that have the same source, target, and object class, as this
would be semantically equivalent to two default types. For example, the
following two rules would conflict:

These two rules conflict and will cause a compile-time problem
type_transition user_t passwd_exec_t : process passwd_t;
type_transition user_t passwd_exec_t : process user_passwd_t;

The policy compiler generates an error if both of these rules are present in a
policy. These conflicting type_transition rules also make the reason for the
restriction clear. If both rules were present, which type, passwd_t or user_passwd_t,
would be used for the default type?

Common Type Rule Syntax

The full common syntax for type rules is as follows:

rule_name type_set type_set : class_set default_type;

rule_name The name of the type rule. Valid rule names are
type_transition, type_change, and type_member.

type_set

One or more types or attributes. There is a
separate type_set for each of the source and
target types of the rules. Multiple types and
attributes are specified using a space-separated
list enclosed in braces ({ })for example, { bin_t sbin_t
}. Types can be excluded from the list by
prepending - to the type name (for example, {
exec_type -sbin_t }).

class_set
One or more object classes. Multiple object
classes must be enclosed in braces ({ })for
example, { file lnk_file }.

default_type
A single type that is the default for the newly
created or relabeled object. Attributes or multiple
types cannot be used.

All type rules are valid in monolithic policies, base loadable modules, non-base loadable modules, and
conditional statements.

5.4.2. Type Transition Rules

We use type_transition rules to specify default type labeling rules for certain events.
Currently, there are two forms of the type_transition rule. The first supports default
domain transition events, which is the form of type_transition rule introduced in
Chapter 2. The second form of this rule supports object transitions, which allow
us to specify default object labeling.

Both forms of the type_transition rule help make the enhanced security of SELinux
transparent to the Linux user. In SELinux, by default, newly created objects
receive the type of their containing object (for example, directory), and

processes inherit the type of their parent process. The type_transition rule enables
us to override these defaults. This is useful, for example, to ensure that when
the password program creates a file in the /tmp/ directory, that its file is given a
different type than those of ordinary users.

The type_transition rule does not allow access; it provides only a new type labeling
default. A successful type transition always requires the associated set of allow
rules that permit the process type the ability to create the object and label the
object as specified. In addition, the default labeling specified in type_transition rules
takes effect only if the creating process does not explicitly override the default
labeling behavior.

5.4.2.1. Default Domain Transitions

Let's examine the domain transition form of this rule in more detail. Domain
transitions change the type of a process when executing a file. For example,
look at this rule:

type_transition init_t apache_exec_t : process apache_t;

This type_transition rule states that when processes of type init_t execute a file of
type apache_exec_t the process type should be changed to apache_t. The object class
process is the only indication that this is a domain transition form of the rule.
Figure 5-1 shows a domain transition. Domain transitions actually change the
type of an existing process instead of labeling a newly created process. This is
because in Linux a new process is created by first making a copy of an existing
process using the fork() system call. If the process type were changed on fork, it
would allow the calling domain to execute arbitrary code in the new domain. It
is much safer for the domain transition to happen when executing a new
program via the execve() system call.

Figure 5-1. A depiction of a default domain transition

Warning

Recent versions of SELinux introduced the process object class
permission dyntransition. This permission, which was added primarily for
compatibility with other systems, allows a process to change its
domain type at request instead of just on execute. This type of
process transition is not safe because it allows the calling domain to
execute arbitrary code in the new domain, destroying the
separation between the two domains. In addition, the same
functionality can often be achieved using other, safer mechanisms.
We recommend that you never use this permission in your policies
unless you are building a userspace object manager or if you are
absolutely sure it is required.

As mentioned previously, a type transition can occur only if the policy allows
the associated access. For a domain transition to succeed, the policy must
allow at least three accesses:

execute The source type (init_t) must have execute permission for files with the
target type (apache_exec_t).

transition The source domain (init_t) must have TRansition permission to the
default type (apache_t).

entrypoint The new (default) type (apache_t) must have entrypoint permission to
files with the target type (apache_exec_t).

The domain transition above would require at least the following allow rules to
succeed:

This domain transition rule...
type_transition init_t apache_exec_t : process apache_t;

would require at least the following 3 allow rules to succeed
allow init_t apache_exec_t : file execute;
allow init_t apache_t : process transition;
allow apache_t apache_exec_t : file entrypoint;

In practice, we will likely want to allow additional access beside the above
minimum. For example, it is common to allow the default type to signal the
source type upon exit (that is, sigchld permission), inherit file descriptors, and
communicate using pipes.

The key concept with domain transitions is that there is a clearly defined entry
pointthat is, the file labeled with the type (apache_exec_t) for which the new
(default) type (apache_exec_t) has enTRypoint permission. The entry point file allows
us to strictly control which programs may execute in which domains (arguably
the security trait that makes type enforcement so strong). We know that the
only program that can be used to enter a given domain is that program whose
executable file is labeled with a type to which the domain has entrypoint access.
Thus we can know and control which programs have which privileges.

5.4.2.2. Default Object Transitions

Object transition rules specify a default type for newly created objects. In
practice, we commonly use this form of the type_transition rule primarily for
filesystem-related objects (for example, file, dir, lnk_file). Like domain transitions,
these rules cause only a default object labeling to be attempted; the attempt
can succeed only if the policy allows the associated access.

Object transition rules are identified by object class, as follows:

type_transition passwd_t tmp_t : file passwd_tmp_t;

This type_transition rule states that when a process of type passwd_t creates an

ordinary file (file object class) in a directory of type tmp_t the file, by default,
should have the type passwd_tmp_t if allowed by the policy. Notice that the object
class refers not to the target type (tmp_t) but to the default type (passwd_tmp_t). In
this example, tmp_t is implicitly associated with the dir object class because that
is the only object class that can contain files. Also, as before, the policy must
allow the access for the default labeling to occur. Access required for the
preceding example includes add_name, write, and search for directories of type tmp_t,
and write and create for files of type passwd_tmp_t.

This example is typical and shows one technique for solving the security
problems inherent in a directory shared by many applications such as a
temporary directory. Object transition rules are useful for any objects that will
be created at runtime and need to have types other than that of the
containing object.

Some circumstances cannot be handled with object transition rules. Whenever
a process needs to create objects with multiple different types in the same
container object, a type_transition rule is not sufficient. For example, consider a
process that creates two UNIX domain sockets in /tmp/ that will be used by
other domains for communication. If we want to give each sock file a different
type, object transition rules would not suffice. We would end up with two rules
with the same source, target, and object class and a different default type,
which would result in a compiler error. The possible solutions to this problem
are to create the sock files at installation time and explicitly label them, place
the sock files in separate directories with different directory types, or have the
process explicitly request types on creation.

5.4.3. Type Change Rules

We use a type_change rule to specify default types for relabeling performed by
SELinux-aware applications. Like type_transition rules, type_change rules specify
labeling defaults but do not allow access. Unlike type_transition rules, the effects of
type_change rules are not implemented in the kernel but rely on userspace
applications, such as login or sshd, to relabel objects based on the policy. For
example, consider this rule:

type_change sysadm_t tty_device_t : chr_file sysadm_tty_device_t;

This type_change rule states that when relabeling a character file of type tty_device_t

on behalf of sysadm_t, the type sysadm_tty_device_t should be used.

This rule is an example of the most common use for type_change rulesthat is,
relabeling a terminal device on user login. The login program would query the
policy via a kernel interface to the SELinux module, passing in the types
sysadm_t and tty_device_t and receiving the type sysadm_tty_device_t as the type to use for
the relabel change. This mechanism allows the login process to label the tty
device on behalf of the user during a new login session while leaving the
specifics of the types encapsulated in the policy instead of hard-coded in the
application.

We will probably seldom, if ever, write type_change rules because they are usually
used only by core operating system services.

type_member Rule

The policy compiler also supports a third type rule, type_member. Currently, this rule has no semantic
meaning and if used will have no effect. We mention it here because at the time of writing, work is
ongoing that would create a need for it. A type_member rule is intended to support specifying the type
for members of a polyinstantiated object. The type_member rule will be enabled with meaningful
semantics. The syntax of this rule is the same as the other two type rules.

5.5. Exploring Type Enforcement Rules with Apol

We have already seen that examining a policy to understand all the type
enforcement declarations and rules is difficult. Determining all the types that
are part of an attribute, for example, requires examining all the type and
typeattribute statements in a policy. In a large policy, that could be thousands of
statements spread across dozens of files. This is a daunting task. Automating
this kind of policy analysis was one of the primary motivations for creating the
policy analysis and debug tool apol. Let's examine some of the ways we can use
apol to explore a type enforcement policy.

When we first start apol and load a policy, as you can see in Figure 5-2, the
Policy Component tab is visible with the Types tab selected. All the types and
attributes are listed on the left and a search window is on the right. Selecting
a type and clicking Show Type Info brings up a window that shows all the
attributes and aliases for that type. Similarly, selecting an attribute and
clicking Show Attribute Info brings up a window that shows all the types that
are part of that attribute. Figure 5-3 shows the detailed information about the
domain attribute for this policy. This is one of the simplest but most valuable
functions of apol.

Figure 5-2. Examining types and attributes using apol

[View full size image]

Figure 5-3. Detailed information about the domain attribute

In addition to showing information about types and attributes, apol enables us
to search for types or attributes using regular expressions. Figure 5-4 shows a
search for all types that contain the substring httpd_ with the attributes and
aliases for those types displayed.

Figure 5-4. A regular expression search for types

[View full size image]

Apol also enables us to search for policy rules, including searching for rules that
indirectly include types via attributes. The rule searching functionality of apol is
powerful, but we want to mention only some of that power here. Figure 5-5
shows a rule search for allow rules that contain shadow_t as the target type.
Notice that the "Include indirect matches" button is selected, which means that
rules that reference shadow_t indirectly through an attribute are included.
Manually searching for rules and resolving attributes is an almost impossible
task.

Figure 5-5. A rule search for allow rules with shadow_t as the
target type

[View full size image]

Apol is a valuable tool to use as you read through this book and try to
understand an SELinux policy. It enables you to explore the content of a
policy, perform sophisticated searches, and browse policy components such as
types and object classes. In particular, you will find the TE Rules under the
Policy Rules tab to be extremely valuable to answer the ubiquitous question,
"What's going on with this type?" As you get familiar with the tool and with
SELinux policy, you should explore the tools under the Analysis tab. These
tools perform complex analyses of the policy.

5.6. Summary

Types are the primary basis for access control in SELinux. They serve as
access control attributes for all objects (process, file, dir, socket, and so
on). Types are declared using the type statement.

Attributes are groups of types. We can use them in place of types in most
policy statements. We must declare attributes before using them. We can
add types to attributes as part of a type declaration or using the typeattribute

statement.

Aliases are alternate names for types, most often used to provide
backward compatibility when renaming types. We declare aliases as part of
a type declaration or using the typealias statement.

There are four AV rules that share common syntax: allow, neverallow, auditallow,
and dontaudit.

We use an allow rule to specify what access a domain type may have to an
object type. We specify access in terms of object classes and permissions.

Audit messages are, by default, not generated when access is allowed, but
are generated when access is denied. We use dontaudit rules to specify denied
accesses that should not generate an audit message. We use auditallow rules
to specify allowed accesses that should generate an audit message.

AV rules (for example, allow) are cumulative, and the access that will be
allowed or audited at runtime for a given source type, target type, and
object class key is the union of all the rules that refer to that key.

We use neverallow rules to state invariant properties about access that should
never be allowed by an allow rule. If an allow rule violates an invariant, the
checkpolicy compiler will generate a compile error.

Two type rules share a common syntax: type_transition and type_change. Type rules
do not allow access; instead, they specify desired default labeling policy for
object creation and relabel events.

We use type_transition rules to label new objects upon creation (object
transition) or to change process types on execution of new applications

(domain transition).

We use type_change rules to specify default types for relabeling objects. They
are used by SELinux aware software such as login or sshd.

The policy analysis tool apol is valuable for understanding and analyzing
complex SELinux policies.

Exercises

1. Declare a type named samba_t with the attribute domain and the alias smbd_t.

2. Create an allow rule that gives a process with the type samba_t read, write, and getattr access to files of type
user_home_t.

3.

Convert these allow rules into as few rules as possible:

allow samba_t self : process *;
allow samba_t user_homedir_t : dir { read getattr search };
allow samba_t user_homedir_t : dir { write add_name };
allow samba_t user_homedir_t : file { read getattr };
allow samba_t user_home_t : file { write };

4. Write an access vector rule that will cause an audit message to be generated whenever a user's SSH key
file, represented by the type user_ssh_key_t, is written.

5. Write a type_transition rule that will cause files of type sysadm_tmp_t to be created by default when processes of
type sysadm_t create files in directories of type tmp_t.

6. Write a type_transition rule that will cause a domain transition to games_t to occur when processes of type user_t
execute files of type games_exec_t.

7. Write the minimum allow rules required that will allow the type_transition rule from Exercise 6 to succeed.

Chapter 6. Roles and Users
In this chapter

6.1 Role-Based Access Control in
SELinux

6.2 Roles and Role Statements

6.3 Users and User Statements

6.4 Exploring Roles and Users with Apol

6.5 Summary

Exercises

page 130

page 135

page 140

page 144

page 146

page 147

SELinux provides a form of role-based access control (RBAC) that builds upon
type enforcement (TE). Roles are used to group domain types and to restrict
relationships between domain types and users. Users in SELinux associate one
or more roles with a Linux user. Using roles and users, the RBAC features
allow for the efficient definition and management of the privileges ultimately
granted to Linux users.

6.1. Role-Based Access Control in SELinux

Roles and users exist in SELinux as the basis for its RBAC feature. It may be
surprising that we have not discussed roles or users in any significant way
until this point. The security features of most other mainstream operating
systems are mostly centered on granting access to users, either directly or
through some form of group or role mechanism. This is not the case in
SELinux, where access is not granted directly to users or roles. Instead, as
discussed in Chapter 5, "Type Enforcement," access is granted to types via TE
allow rules. Roles act as a supporting feature to type enforcement, and together
with users provide a means to bind type-based access control with Linux users
and the programs they are allowed to run. RBAC in SELinux further constrains
type enforcement by defining the relationship between domain types and users
to control Linux users' privileges and access permissions. RBAC does not allow
access. As always in SELinux, allowed access is the providence of type
enforcement.

Warning

The fact that Linux and SELinux have distinct user identifiers (that
are sometimes related) can be confusing. To help avoid this
confusion, we write "Linux user" when meaning the user account as
defined in /etc/passwd. Anytime we discuss "user" or "user identifier"
without a qualifier, we mean the user identifier in security contexts
as defined in the SELinux policy.

6.1.1. Overview of RBAC in SELinux

As stated, in SELinux, RBAC features build upon and support the TE features.
We grant privileges to a user indirectly by associating domain types with one
or more roles. The RBAC policy statements do not grant access. Instead, RBAC
further constrains the TE policy by controlling the associations of domain
types, roles, and users in a security context. In this way, the domain
transitions available to a user's domain type are restricted based on the user's
role, ultimately restricting the total privileges of the user.

To illustrate, consider the example from Chapter 2, "Concepts," which we
elaborate further in Figure 6-1. This example illustrates a domain transition
from a bash shell process with the domain type user_t to a process running the
password program with the domain type passwd_t. Notice that we added the user
and role portions of the security contexts for the process security contexts
(joe:user_r:user_t and joe:user_r:passwd_t). Let's also assume that the policy includes the
necessary TE rules to permit the domain transition (which are not shown).

Figure 6-1. Relationship of users, roles, and types, and the
SELinux RBAC statements

[View full size image]

This example demonstrates two kinds of RBAC policy statements: a user
declaration statement (user) and two role declaration statements (role). These
statements create associations between the user, role, and type identifiers in
the policy. You will see the full syntax of these statements later in the chapter.
For now, understand their effect on domain transitions.

The user statement shown in Figure 6-1 associates the SELinux user joe with the
role user_r. This statement tells SELinux that the user joe and the role user_r are
allowed to coexists in a security context. Without this statement, the user joe

and role user_r process security contexts in Figure 6-1 would be invalid and
SELinux would refuse to create them, resulting in a denial of the domain

transition attempt.

The two role statements associate the role user_r with the domain types user_t and
passwd_t. Like the user statement, the role statements are required for the process
security contexts to be valid. In particular, without the role statement
associating the type passwd_t, this domain transition would fail even though the
TE policy allows it. If we did not want the user_r role to run the password
program, we could simply remove this role statement and the security context
would never be created by the kernel, even if the TE rules allowed the access.

6.1.2. Managing User Privileges with Roles

As the example in Figure 6-1 illustrates, we do not directly associate domain
types with users. Instead, we associate roles with domain types, which are in
turn associated with SELinux users. This additional layer of indirection serves
two purposes. First, it makes the management of the overall policy less
complex. A system may only have three or four roles, but could have many
hundreds of users and domain types. Directly associating domain types with
users would be difficult to manage. Assigning the domain types to a handful of
roles that characterize the privileges of the set of types (for example, ordinary
user domain types) and then assigning those roles to users is more
manageable.

Roles in SELinux also allow us to limit the access of users based on their
current privileges and responsibilities as represented by the active role. For
any given process, one role is "active" at a time (that is, the role in the
process security context) and, because the domain types are associated with
roles, the available domain transitions are limited to those domain types
associated with the active role.

Limiting domain transitions to only the currently active role allows a user to be
associated with more than one role without gaining the union of the access
rights for all the roles. For example, we could associate a user with both a
system administration role and a more restrictive ordinary user role, the latter
being used for normal interactive, nonadministrative activities. In this
scenario, the more restrictive ordinary user role would be active during normal
use, preventing access to powerful administrative domain types. The system
administrator would "activate" (that is, change via a domain transition) the
more privileged administrative role only when necessary to perform system
administrative duties. This is similar to, but more fine-grained than, the
common best practice for standard Linux of only switching to the root account
for system administration and using a normal user account for all other

activities.

The key point to remember about roles is that they are only a collection of
domain types, which can be conveniently associated with a user. They are not
a separate access control mechanism in SELinux.

Tip

A number of utilities such as newrole and a modified su command
provide a means by which a user (or user process) changes the
current (that is, active) role by creating a new shell process with a
different security context via a domain transition (see Chapter 13,
"Managing an SELinux System"). (Fedora Core 5 [FC5] removes the
ability for su to change roles, instead requiring the use of newrole.)
Changing roles is controlled by the associations of users and roles
(that is, the user statement) and role allow rules (allow), which we
discuss later in the chapter.

Roles Versus User Domain Types

To date, most SELinux policies use roles only in limited ways. This is partly in recognition of the
secondary purpose of roles with respect to type enforcement. The typical situation today is that one
of the associated domain types for each role is a "user domain type," which is the type that shell
processes for users of that role are assigned at initial login. For example, the ordinary, unprivileged
user domain type user_t is associated with the role user_r. Likewise, the privileged user's untrusted
domain type is staff_t, which is associated with the role staff_r.

These initial user domain types, and all the domain types to which they may transition, are truly
what define the roles "user" and "staff." For example, the primary difference between these two
"roles" is the ability of the staff role (and hence the staff_t domain type) to transition into the
privileged administrator roles and user domain type (sysadm_t, which has an associated sysadm_r role).

One ramification of the practice of having one initial user domain type per role is that we tend to
have derived domain types for some programs. For example, to keep downloaded data, including
programs, separated by role (reducing the chance of co-opting administrative users), we could run a
Web browser in different domain types for each role. To accomplish this goal, we would create
different domain transition rules for the associated user domain types (user_t and staff_t). Upon
executing the Web browser executable file, each user domain type would transition into separate
domain types (that is, user_mozilla_t and staff_mozilla_t), rather than the same type (that is, mozilla_t) as we
had with passwd_t. In this way, ordinary users (user_t) and administrative users (staff_t) would have
domains for Web browsing protected from each other. We would associate each role only with the
appropriate types. (For example, user_mozilla_t would be associated only with user_r.) To complete the
separation, we would create separate file types for each Web browser domain and only allow the
domains types "write" access to their respective file types. The result would be that the Web
browser runs in a different domain depending on the role of the user and the downloaded data is
separated based on the role.

6.1.3. Users and Roles in Object Security Contexts

In our password policy example (see Figure 6-1), we did not include the full
security context for the file objects shown (that is, the executable file
/usr/bin/passwd and the shadow password file /etc/shadow). This absence reflects the
relatively low importance of the user and role portion of the security context
for objects. Although objects must still have a full security context, the user
field at most supports auditing, and roles have no purpose at all. If we
examine the objects in Figure 6-1 on our example system, we see the
following complete security contexts:

ls --scontext /usr/bin/passwd /etc/shadow
system_u:object_r:shadow_t /etc/shadow
system_u:object_r:passwd_exec_t /usr/bin/passwd

As you can see, both objects have the special role object_r, which is typically the
role for all objects. This role is hard-coded into SELinux, does not need to be
declared, and is implicitly allowed for all types. You should never try to declare
the role object_r.

The user portion of the security context for objects is usually set to the user
portion of the creating process security context. This feature has some
potential utility to track which user created the object but in general has no
security enforcement purpose (other than possibly constraints, which we
discuss in Chapter 9, "Conditional Policies"). In the preceding case, the user
for both objects is system_u, which is a special user found in many policies
representing system resources and processes.

6.2. Roles and Role Statements

SELinux does not have any built-in roles with the exception of object_r. Roles,
like types, are declared in the policy and given meaning through consistent
use. Four policy statements relate to roles: role declaration statements, role
allow rules, role transition rules, and role dominance statements.

6.2.1. Role Declaration Statement

The role declaration statement (role) declares a role identifier, if it has not
already been declared, and associates types with the role. The example in
Figure 6-1 contains the following role statements:

role user_r types user_t;
role user_r types passwd_t;

These statements associate the domain types user_t and passwd_t with the role
user_r. As you can see, role statements can be repeated for the same role
identifier. The first role statement for a given role identifier will declare the role
in addition to associating the listed types. All the subsequent role statements
associate additional types. Multiple role statements for a single role are
commonly used to place the role statements close to the declaration of the
types with which they are associated (that is, in the same policy source
module). The full syntax for the role declaration statement is provided in the
sidebar on page 136.

Role Declaration Statement Syntax

Role declaration statements declare role identifiers and associate types with the role. A type must be
associated with a role to coexist in a security context with the role. The special role object_r is
predefined and is implicitly associated with all types and used in the security context of all objects.
There can be multiple role statements for the same role identifier. The first statement declares the
role and associates one or more types; the subsequent statements only associate types. The full
syntax for the role statement is as follows:

role role_name [types type_set];

role_name

An identifier for the role. If this is
the first role statement for this
identifier, the role is declared. The
identifier can be any length and
can contain ASCII characters,
numbers, periods, and
underscores (_). A period has a
special meaning when used in a
role identifier. A period is used to
indicate restrictions on the set of
types that may be assigned to a
role. For example, the set of types
for a role called apache.cgi must be a
subset of the type set of a role
called apache.

type_set

One or more type or attribute
identifiers. Multiple identifiers are
specified using a space-separated
list enclosed in braces ({ })for
example, {user_t passwd_t }. Types
can be excluded from the list by
prepending - to the type name (for
example, { exec_type -sbin_t }). If
type_set is omitted (along with the
types keyword), the role is declared
without any type associations.

Role declarations are valid in monolithic policies, base loadable modules, and non-base loadable
modules. They are not valid in conditional statements.

6.2.2. Role Allow Rules

SELinux provides a means to change roles during program execution via the

execve() system call. This feature is similar in nature to domain transitions,
which result in the domain type changing. Role allow rules (allow) control role
changes that can occur on program execution by specifying which roles are
allowed to change to other roles. Successful role changes require that a user
be authorized for the new role, a corresponding role allow rule permitting the
transition from the old role to the new role, and the new role must be
authorized for the new domain type. For example, consider the following role
allow rule:

allow staff_r sysadm_r;

This example role allow rule allows a process with the role staff_r to change to the
role sysadm_r during a domain transition. This change allows only transition from
staff_r to sysadm_r; another role allow rule would be required to transition back from
sysadm_r to staff_r. The full syntax for role allow rules is found in the sidebar on page
137.

Warning

Notice that the role allow rule and the vastly more common TE allow

rule discussed in Chapter 5 both have the same keyword (that is,
allow). Be careful not to confuse the two rules, whose syntax and
semantics differ entirely. In general, when we refer to an "allow rule,"
we mean the access vector (AV) allow rule discussed in Chapter 5. We
endeavor to always write "role allow rule" when we mean the role
variety of this keyword.

Role Allow Rule Syntax

Role allow rules authorize role changes on program execution. The full syntax for the role allow rule is
as follows:

allow role_set role_set;

role_set

One or more role identifiers.
Multiple identifiers are specified
using a space-separated list
enclosed in braces ({ })for example,

{ staff_r sysadm_r }

Role allow rules are valid in monolithic policies, base loadable modules, and non-base loadable
modules. They are not valid in conditional statements.

6.2.3. Role Transition Rules

Because roles can change on program execution in a manner similar to types,
we need a means to automate this transition within the policy language. For
types, we used the type_transition rule to specify automatic, default type
transitions. For roles, we have the role transition rule (role_transition). This rule is
similar in purpose and syntax to the type_transition rule except that it specifies a
default role change to occur when executing a file. For example, consider this
rule:

role_transition sysadm_r http_exec_t system_r;

This rule states that, unless otherwise requested, when a process with the role
sysadm_r executes a file with the type http_exec_t, SELinux should attempt to
change the role to system_r. The full syntax for role transition rules is found on
page 139.

As with type_transition rules, role_transition rules do not allow the access necessary to
permit the role change. In this case, role allow rules must also be present for the
role change to succeed. Role transition rules are commonly used to change the
role of system daemons when directly executed by a system administrator
rather than the initialization process (init). If role transition rules were not used
in this situation, daemons would have a different role depending on how they
were started. Other than this type of situation, we do not expect roles to
change implicitly; instead, we expect users to explicitly change their role when
necessary using programs designed for that purpose (for example, the newrole

command).

6.2.4. Role Dominance Statement

A role dominance statement (dominance) declares a role in terms of other roles.
We can use this statement to create a hierarchical relationship among roles. In
this case, the "dominant role" would automatically inherit all the type
associations of the roles it dominates. For example, consider the following
statement:

dominance { role super_r {role sysadm_r; role secadm_r; }

This role dominance statement declares the role super_r, if it has not already been
declared, and makes it dominate the roles sysadm_r and secadm_r. The role super_r

will have all of the type associations of the roles sysadm_r and secadm_r. If the
associations change for either of these "dominated roles," the association will
change for super_r, too. Note that any types added to the dominated role after a
dominance statement are not inherited by dominant role through the dominance

statement. So, in the preceding example, if a type were added to the secadm_r

role after the dominance statement, the super_r role would not inherit the new type.
The role dominance statement has not yet been widely used in existing policies.
The full syntax for the role dominance statement is in the sidebar on page
140.

Role Transition Rule Syntax

Role transition rules specify a default role change to occur when executing a file of a given type. Role
transition rules do not allow access. Role allow rules must also be present for the role change to
succeed. The full syntax for role transition rules is as follows:

role_transition role_set type_set role;

role_set

One or more role identifiers.
Multiple identifiers are specified
using a space-separated list
enclosed in braces ({})for example,
{ staff_r sysadm_r }.

type_set

One or more type or attribute
identifiers. Multiple identifiers are
specified using a space-separated
list enclosed in braces ({ })for
example, { user_t passwd_t }. Types can
be excluded from the list by
prepending - to the type name (for
example, {exec_type -sbin_t }).

role The new role for the security
context after the role transition.

Role transition rules are valid in monolithic policies, base loadable modules, and non-base loadable
modules. They are not valid in conditional statements.

Role Dominance Statement Syntax

The role dominance statement specifies a hierarchical relationship among roles. Roles inherit all the
type associations of the roles they dominate. The basic syntax of the role dominance statement is
as follows:

dominance { role role_name { role_set} }

role_name
An identifier for the role. The identifier can be
any length and can contain ASCII characters,
numbers, period, and underscore (_).

role_set

One or more roles specified in the form role
role_name;. Multiple roles are specified using a
space-separated list (for example, { role staff_r; role
sysadm_r; }).

The policy language does support a much more complicated syntax where the role_set can contain
embedded dominance relationship definitions that are indicated with braces. For example:

dominance { role a_r { role b_r; role c_r { role d_r; } } }

In this example, the roles would be defined as follows:

d_r Only its own types

c_r Its types and those of d_r

b_r Only its own types

a_r Its own types and all types in b_r, c_r, and d_r

Role dominance statements are valid in monolithic policies, base loadable modules, and non-base
loadable modules. They are not valid in conditional statements.

6.3. Users and User Statements

Linux and SELinux user identifiers are distinct and are often unrelated. In
SELinux, it is possible for the Linux user identifier and the SELinux user
identifier of a given process to differ (for example, see the discussion of user_u

that follows). The design decision for SELinux to have a distinct user identifier
(rather than share that of Linux) is motivated by the desire to create an
immutable SELinux user identifier. In standard Linux, the user identifier
changes to reflect changes in privilege (for example, changing to root). In
many cases, both the real and effective user identifiers change. This makes it
difficult to track which user logged in for auditing, authentication, and other
uses. Separating the Linux and SELinux user identifiers allows the Linux user
identifier to change as needed without affecting SELinux.

Note

Many SELinux systems, including Red Hat Enterprise Linux version
4 (RHEL4) and Fedora Core 4 (FC4), can actually change the
SELinux user identifier during a login session. In particular, the su
program was modified to set the Linux and SELinux user identifier.
This departure from the original design goal of an immutable
SELinux user identifier was motivated by usability; it was thought
that not changing the SELinux user identifier would confuse users
and create a much more complicated process for adding user
accounts. In addition, the Linux audit framework stores an
immutable login user identifier for auditing purposes, somewhat
reducing the need for the SELinux user identifier to remain
constant. Fedora Core 5 (FC5) reverts to the original behavior of
not allowing SELinux user identifiers to change.

6.3.1. Declaring Users and Associating Roles

The user declaration statement (user) declares a user identifier in the policy and
associates it with one or more roles. The user statement is the only policy
statement relating to SELinux users. The example in Figure 6-1 includes the
follow user declaration:

user joe roles { user_r };

This statement declares the user joe, if it has not already been declared in the
policy, and associates the role user_r with the user. Unlike role statements that
may be mixed among the TE statements, user statements must come after all
the type and role statements and before constraints (see Figure 3-5 in Chapter
3, "Architecture").

Similar to the association between roles and types, the user association allows
a role to be present in a security context with a specified user. The full syntax
for the user statement is in the sidebar on page 142.

Note that there is no user transition or user allow rule. This reflects the initial
design goal of immutable users. Changes to the user identifier are controlled
only by constraints, which we discuss in Chapter 9.

User Declaration Statement Syntax

The user declaration statement declares a user identifier, if it has not already been declared, and
associates it with one or more roles. The full syntax for the statement is as follows:

user user_name roles role_set;

user_name

The identifier for the user. If this is the first user
statement for this identifier, the user identifier is
declared. The identifier can be any length and
can contain ASCII characters, numbers, period,
and underscore (_).

role_set

One or more role identifiers that must be
previously defined in the policy. Multiple
identifiers are specified using a space-separated
list enclosed in braces ({})for example, { staff_r
sysadm_r }.

User declarations are valid in monolithic policies, base loadable modules, and non-base loadable
modules. They are not valid in conditional statements.

6.3.2. Mapping Linux Users to SELinux Users

The login programs (for example, login, sshd) are responsible for mapping Linux
users to SELinux users. On login, if there is an SELinux user identifier that is
exactly the same as the Linux user identifier, the matching SELinux user
identifier becomes the user identifier in the security context for the initial shell
process. In this way, if a Linux user identifier also exists as a user identifier in
the SELinux policy, all login processes will set the initial shell process security
context user identifier to that matching Linux identity.

In many cases, especially general-purpose configurations such the default
policies in RHEL4 and FC4, it is not desirable to have to define each ordinary
user in the policy. Ordinary users typically have the same privileges with
respect to SELinux (that is, the user_r role and the user_t initial user domain
type). To address this issue, SELinux has a special user identity, user_u, called
the generic user. If the generic user user_u is defined in the policy, all Linux
users will be mapped to it if they do not have a matching SELinux user in the

policy.

For example, suppose we have the following user statement in our policy:

user user_u roles { user_r };

This statement defines the generic user user_u and authorizes it for the role user_r

just as we did for joe earlier. The difference is that if user_u is defined in the
policy, all Linux users that are not explicitly defined in the policy are mapped
to user_u. So, for example, if jane is a Linux user identifier but there is no user jane

defined in the SELinux policy, when the Linux user jane logs in, the user
identifier in the initial shell process security context will be user_u. Because joe is
defined in the policy, the initial SELinux user identifier for that user will be joe,
even though user_u is also defined in the policy.

If the generic user user_u is not defined in the policy, any Linux user identifier
not explicitly defined in the SELinux policy will be unable to log in, even in
permissive mode. The reason for this is that on login the initial shell process
must have a valid security context, including a user identifier. If neither user_u

nor the Linux user identifier is defined in the policy, the login process cannot
create a valid security context (because there is no user identifier for it to
use). Therefore, if you do not include user_u in your policy (which for many
configurations makes sense), you must explicitly add all Linux users to the
SELinux policy.

Note

In FC5, the user-mapping mechanism is greatly enhanced to allow
the explicit mapping of Linux users to SELinux users through a
configuration file. This allows the creation of more than one generic
user (for example, staff_u in addition to user_u). The existing mapping
rules are retained as a fallback for backward compatibility. Chapter
13 includes additional information about new tools that can manage
user mappings.

SELinux has a second special user, the system user system_u, which is typically
used for all system processes such as init, and daemons started by init.
Technically, the user system_u has no special meaning and is not treated

exceptionally in any way within the policy language. However, most existing
policies include this user, and systems are generally configured expecting that
this SELinux user exists for system resources. It is generally a good idea to
always include system_u in your policy.

Warning

Never create a Linux user account with the identifier system_u. If you
do, that Linux user will be able to log in with the system user
identifier, which is usually highly privileged (though still much less
privileged than root on an ordinary Linux system).

6.4. Exploring Roles and Users with Apol

Apol has features for searching and displaying roles and users. The Roles tab on
the Policy Components tab, shown in Figure 6-2, displays all the roles and
provides searching functions. In this example, we search for roles associated
with the type user_ssh_t. The search results show that the role user_r is associated
with this type. Because we have chosen to show all information about the roles
in the search results, all the types associated with the matching roles are
shown. As previously discussed, it is common for role declaration statements,
which associate roles and types, to be distributed throughout the policy source.
This feature of apol makes it easy to find the relationships between roles and
type.

Figure 6-2. Apol displaying the types associated with the role
user_r

[View full size image]

The Users tab of the Policy Components tab offers similar features for users.
Figure 6-3 shows all the SELinux users in this policy and the associated roles.
Searching for SELinux users by associated roles is also possible.

Figure 6-3. Apol displaying all the SELinux users and the

associated roles

[View full size image]

In addition to displaying roles and users, apol enables us to search for role allow

and transition rules. This feature, which is located on the RBAC Rules tab of
the Policy Rules tab, is similar to TE rule searching feature. Figure 6-4 shows a
search for all the role allow and transition rules that have the role sysadm_r in the
source field.

Figure 6-4. Apol displaying all the role allow and transition
rules with the role sysadm_r as the source

[View full size image]

6.5. Summary

Within SELinux, roles and users provide for an RBAC feature. Unlike
traditional RBAC mechanisms, in SELinux roles and users build upon the
power of type enforcement rather than being an additional type of access
control.

Roles are a means of associating sets of domain types into a collection that
represents "privileges" that we then assign to a user. Roles control domain
transitions because SELinux will create a security context only if the new
type is authorized for the role in the security context.

The role declaration statement (role) defines a role identifier and associates
it with one or more types. Multiple role statements for the same role can
exist within a given policy; the definition of the role is cumulative. Roles
can also be declared via the much less used role dominance statement
(dominance).

Role allow rules (allow) control whether the role in a security context may
change on an execve() system call. The role transition statement (role_transition)
causes a role change to occur by default depending on the role of the
calling process and the type of the file executed.

SELinux users and Linux users are distinct identifiers. Any association
between the two is the result of login process conventions. The general
behavior is if the Linux and SELinux user identifier match, the initial user
process security context will have the matching user identifier. Otherwise,
if the special user user_u is defined in the policy, all nonmatching Linux
users will have user_u as the user in their initial process security context. If
there is no matching user and user_u is not defined, the user account cannot
log in, even in permissive mode.

In SELinux, users provide the means to associate a Linux user with an
SELinux role (and by extension with the set of domain types authorized for
that role). The user declaration statement (user) specifies this association.
SELinux will not create a security context unless the role is associated with
the user via a user statement.

Exercises

1. Declare an SELinux user with the name tom associated with the roles staff_r and sysadm_r.

2. Associate the role sysadm_r with the type sysadm_mozilla_t.

3. Write a role transition statement that causes a change to the role system_r when a process with the role
sysadm_r executes a file with the type initrc_exec_t.

Chapter 7. Constraints
In this chapter

7.1 Closer Look at the Access Decision
Algorithm

7.2 Constrain Statement

7.3 Label Transition Constraints

7.4 Summary

7.5 Exercises

page 150

page 152

page 157

page 160

page 161

SELinux provides a constraint mechanism to further restrict the access allowed
by the policy regardless of the policy allow rules. In this chapter, we explore the
constraint feature in SELinux.

7.1. A Closer Look at the Access Decision Algorithm

To understand the purpose of constraints, let's revisit the SELinux Linux
Security Module (LSM). Recall the SELinux kernel architecture discussed in
Chapter 3, "Architecture," the salient portion of which is depicted again in
Figure 7-1.

Figure 7-1. Review of the SELinux LSM module

[View full size image]

We want to take a closer look at how the access decision logic works within the
security server. The access vector cache (AVC)[1] is keyed by a triple of source
security identifier (SID), target SID, and object class. SIDs are internal
references to security contexts (see the sidebar on page 151).

[1] See linux-2.6/security/selinux/avc.c.

Security Contexts and SIDs

SELinux implements the Flask security architecture, which provides a framework for implementing
enhanced access control but remains security policy neutral. This means that the AVC and its
interfaces with the LSM hooks are not specifically tied to type enforcement (TE) and the other
security policies SELinux implements. As far as the AVC is concerned, a security identifier is an
opaque unique reference to a set of security credentials. The AVC caches access decision results
indexed by source and target SIDs as well as object class identifier.

The SELinux security server applies semantic meaning to SIDs by internally associating security
contexts with SIDs. Thus, SELinux can use SIDs to find type, user, and role identifiers while the
AVC and the LSM hook interfaces can remain ignorant of these details.

In the source code, you can see the policy-neutral portions of the SELinux LSM
module, including the AVC, in linux-2.6/security/selinux/*.c and the policy-specific
portions (that is, the security server) in linux-2.6/security/selinux/ss/*.

When the SELinux LSM hooks [2] ask for an access decision, they provide the
SIDs of the subject (source) and object (target) and the object class. The AVC
uses the SID-SID-class triple to look up allowed access, which is stored as a bit
mask.

[2] See linux-2.6/security/selinux/hooks.c.

When a cache miss occurs, the AVC calls the security server function
security_compute_av()[3] to determine allowed access. This function has two basic
steps in its access decision logic: 1) create a mask representing the object
permissions allowed according to the TE allow rules for the type-type-class
triple, and 2) remove from the allowed mask those permissions disallowed by
any constraint. This second step allows a constraint to be a means to restrict
permissions that otherwise would be allowed by the policy.

[3] See linux-2.6/security/selinux/ss/services.c.

The primary purpose of constraints is to enforce global restrictions for certain
permissions regardless of the allow rules in the policy. All constraints are
checked each time the security_compute_av() function is called before returning the
allowed access mask to the AVC. So, as you can see, constraints further limit
the access allowed in an SELinux policy.

SELinux has two types of constraints. The constrain statement is the most
common constraint and enables you to further restrict access based on the
user, role, and/or type of the source and target security contexts. The validatetrans

statement is a more recent addition to SELinux and enables you to further
restrict access for security context change events based on the old, new, and
process security context.

Note

At the time of this writing, the apol tool does not support constraints.
Therefore, you cannot view these statements with that tool.
Support for constraints is planned and should be available in the
future.

7.2. Constrain Statement

The constrain statement has three elements: a set of object classes to which the
constraint applies, a set of permissions for those classes that are being
constrained, and a Boolean expression of the constraint. Constraints are
organized and stored within the policy by object class. You can see the full
syntax for the constrain statement in the sidebar on page 152.

Constrain Statement Syntax

The constrain statement enables you to restrict specified permissions for specified object classes by
defining constraints based on relationships between source and target security contexts. The full
syntax for the constrain statement is as follows:

 constrain class_set perm_set expression ;

class_set

One or more object classes. Multiple object
classes must be separated by spaces and
enclosed in braces ({ })for example, {file lnk_file}. The
special operators *, ~, and - are not allowed in
class sets for this statement.

perm_set

One or more permissions. All permissions must
be valid for all object classes in the class_set.
Multiple permissions must be separated by
spaces and enclosed in braces ({ })for example,
{read create}. The special operators *, ~, and - are
not allowed in permission sets for this
statement.

expression A Boolean expression of the constraint.

The Boolean expression syntax supports the following keywords:

t1, r1, u1 Source type, role, and user, respectively

t2, r2, u2 Target type, role, and user, respectively

Constraint expression syntax also support the following operators:

== Set member of or equivalent

!= Set not member of or not equivalent

eq (Roles keyword only) equivalent

dom (Roles keyword only) dominates

domby (Role keyword only) dominated by

incomp (Role keyword only) incomparable

The complete semantic meaning and allowed parameters for each operator is described in Table 7-1.

Constrain statements are valid only in monolithic policies and base loadable modules. They are not valid
in conditional statements or non-base loadable modules.

The constrain statement lets you express constraints on any combination of the
three elements of a security context (user, role, and type). Constraint
expressions compare the contexts of the source (subject) process and the
target (object) with each other and/or with explicit names (such as type or
role identifiers).

Constraint expressions can be complex, but in practice are usually small and
specifically targeted. Here is an example constraint:

constrain process transition (u1 == u2) ;

Let's take a closer look at this constraint. First, note that it applies to the process

object class only, and only constrains the transition permission for processes.
Recall that the transition permission is required to allow a domain transition; in
effect, this constraint further restricts domain transitions.

Now let's look at the constraint expression (u1 == u2). The keywords u1 and u2

indicate, respectively, the source and target user identifiers for the security
contexts. So, this expression resolves to true when the source and target user
identifiers are the same. In the case of domain transitions, the source is the
"current" security context, and the target is the "new" security context for the
process.

Looking at the preceding constraint in its entirety, we see that it requires that
the source and target user identifiers remain the same for all domain
transitions. How? Recall the description of the access algorithm earlier. When
a process requests transition permission, and the AVC calls the security server
to determine allowed access for the triple source-target-class, the preceding
constraint would become effective (for the process object class) and would check

the user identifier in the source and target security contexts. If the user
identifiers are not the same, the bit in the mask indicating transition
permission is removed before the granted access mask is returned to the AVC.

Let's look at another example:

constrain process transition (r1 == r2) ;

This constraint is similar to the previous statement except that it constrains
role identifiers rather than user identifiers. The keywords r1 and r2 indicate
source and target role identifiers, respectively. This constraint requires that
role identifiers not change on a domain transition in much the same way that
the previous constraint requires user identifiers not to change.

Because these two constraints relate to the same object class and permission,
the constrain expression syntax allows us to combine them into a single Boolean
expression:

constrain process transition (u1 == u2 and r1 == r2) ;

This single statement is equivalent to the two previous statements. Either form
will have the same effect of restricting user and role identifier changes relating
to domain transitions.

Let's take our example a little further. In some situations, we want to allow
the user and/or role identifier to change on a domain transition. For example,
the login process needs to change the user and role identifiers to those of the
user logging in. Another example is a program that allows you to change your
role, which must be able to change the role identifier during a domain
transition. In general, such programs are trusted processes, and we need a
way to allow them to change user/role identifiers while ensuring that the
constraint is active for all other programs.

To achieve this goal, let's first define a way to recognize those domain types
that are trusted to change user and role identifiers. We do this via a type
attribute. In particular, let's assume that there are two attributes defined in
the policy: privuser and privrole. The former is associated with all types allowed to
change user identifiers, and the latter with those allowed to change role
identifiers. With these attributes, we can change our constraint as follows:

constrain process transition (u1 == u2 or t1 == privuser) ;
constrain process transition (r1 == r2 or t1 == privrole) ;

In both statements, t1 refers to the source type (just as t2, if used, refers to the
target type). The first statement allows the user identifier to be changed in a
domain transition only if the source type has the privuser attribute. Likewise, the
role can be changed if the source type has the privrole attribute.

Let's make sure you understand how attributes affect these constraints. Recall
that the kernel expands attributes into the list of types that contain the
attribute. So, to the kernel, the constraint really is a list of types rather than a
single attribute. In the case of a list of types (or an attribute) on the right side
of the operator, the == operator really means "is a member of" the set of types
listed. Likewise the != means "is not a member of" the set of types. So, in our
preceding example, the partial statement t1 == privuser really means "if the source
type is in the list of types that have the privuser attribute."

Note

For constraint expressions, the left side of all operators must be
one of the allowed keywords (for example, u1 or u2) and may
never be a type, attribute, role, or user identifier (or list of
identifiers). The right side of an operator may be a key word or one
or more identifier names.

If the left and right sides of the operator are the role keywords r1 and r2, you
have a few more role operators to choose from; specifically eq, dom, domby, and
incomp, although these are rarely used. Table 7-1 summarizes the operators
allowed for expressions in constrain statements.

Table 7-1. Allowed Arguments and Semantic Meaning for
Constrain Expressions

Operator Left Side Right Side Semantic Meaning

t1 t2
Source type equals target
type.

type and/or Source (target) type is a

==

t1 (t2) attribute
name(s)

member of the set of types
indicated by names.

r1 r2
Source role equals target
role.

r1 (r2) role name(s)
Source (target) role is a
member of the set of roles
indicated by names.

u1 u2
Source user equals target
user.

u1 (u2) user name(s)
Source (target) user is a
member of the set of users
indicated by names.

!=

t1 t2
Source type does not equal
target type.

t1 (t2)
type and/or
attribute
name(s)

Source (target) type is not
a member of the set of
types indicated by names.

r1 r2
Source role does not equal
target role.

r1 (r2) role name(s)
Source (target) role is not a
member of the set of roles
indicated by names.

u1 u2
Source user does not equal
target user.

u1 (u2) user name(s)
Source (target) user is not
a member of the set of
users indicated by names.

eq r1 r2
Source role equals target
role (exactly same
semantics as r1 == r2).

dom r1 r2
Source role was defined to
dominate target role using
role dominates statement.

domby r1 r2
Target role was defined to
dominate source role using
role dominates statement.

incomp r1 r2
Neither source nor target
role dominates the other.

7.3. Label Transition Constraints

SELinux supports a second constraint statement, validatetrans. This statement was
added as part of the modified multilevel security features we discuss in the
next chapter. With the validatetrans statement, we can further control the ability to
change the security context of supported objects. As of this writing, the only
supported objects for this constraint are the filesystem objects (file, directory,
device files, and so on).

Unlike the constrain statement, the validatetrans statement allows you to relate the
new and old security context of an object with each other and/or with a third
security context, that of the process attempting to relabel the object. Thus,
new keywords are added for this statement, specifically t3, r3, and u3,
respectively representing the type, role, and user of the process security
context. The *1 keywords represent the old security context, and the *2

keywords represent the new security context. The full syntax for this
statement is available in the sidebar on page 157.

Warning

Be careful not to confuse the keyword associations between the
constrain and validatetrans statements. For the constrain statement, t1
represents the source (or calling process) type, and t2 represents
the target (object) type. However, in the validatetrans statement, t3 is
now the source process type, t1 is the "old" type, and t2 is the "new"
type.

Validatetrans Statement Syntax

The validatetrans statement restricts the ability to change the security context of specified supported
objects by defining constraints-based relationships with old and new security contexts and the
security context of the process. The full syntax for the validatetrans statement is as follows:

validatetrans class_set expression ;

class_set

One or more supported object classes. Multiple
object classes must be enclosed in braces ({ })for
example, {file lnk_file}. Currently, only filesystem
object classes are supported.

expression A Boolean expression of the constraint.

The Boolean express syntax supports the following keywords:

t1, r1, u1 Old type, role, and user respectively

t2, r2, u2 New type, role, and user respectively

t3, r3, u3 Process type, role, and user respectively

Constraint expression syntax also supports the following operators:

== Set member of or equivalent

!= Set not member of or not equivalent

eq (Roles keyword only) equivalent

dom (Roles keyword only) dominates

domby (Role keyword only) not dominated by

incomp (Role keyword only) incomparable

The complete semantic meaning and allowed parameters for each operator is described in Table 7-2.

Validatetrans statements are valid only in monolithic policies and base loadable
modules. They are not valid in conditional statements and non-base loadable
modules.

To date, we have seen no example use of the validatetrans constraint. This
statement was added as the cousin to the multilevel security (MLS) variant
described in Chapter 8, "Multilevel Security," on the future possibility of it
being useful. To help understand how one might use this statement, let's look
at example. The key feature of the validatetrans statement is that it enables us to
associate old and new security contexts on a label change for file objects.

Suppose that we have a type user_tmp_t that in our policy we use as the type for
ordinary untrusted user programs' temporary files. We might, for example,
want to ensure that a domain with privilege to change all file labels (for
example, a label maintenance program an administrator might run) does not
accidentally relabel a file with user_tmp_t as its type to certain highly critical types
(say shadow_t type, which is the type of the /etc/shadow file). Here's our constraint
that would provide this restriction:

validatetrans {file lnk_file} (t2 != shadow_t or t1 != user_tmp_t);

Notice several features of this constraint. First, notice that we included both
ordinary files and symbolic links (lnk_file) because we do not want someone to
use a link in place of a file. Now examine the constraint expressions. In simple
language, the constraint says that for a security context change to be allowed
for file and symbolic link objects, the new type may only be shadow_t if the old
type is not user_tmp_t. In other words, no domain type may be authorized to
relabel a user temporary file into the type of the shadow password file.

To expand this example, assume there are a subset of domain types that we
do want to allow to relabel user_tmp_t to shadow_t. (It is hard to imagine a situation
where this would be advisable, but you never know.) So, now we create an
attribute relabel_any and assign it to those domain types we want to grant this
privilege. We then expand this constraint as follows:

validatetrans {file lnk_file}
 ((t3 == relabel_any) or
 (t2 != shadow_t or t1 != user_tmp_t));

Now we have a set of domain types (those with the relabel_any attribute) that this
constraint will not restrict in any way.

Table 7-2. Allowed Arguments and Semantic Meaning for
Validatetrans Expressions

Operator Left Side Right Side Semantic Meaning

==

t1 t2 Old type equals new type.

t1 (t2)
type and/or
attribute
name(s)

Old (new) type is a member of
the set of types indicated by
names.

t3
type and/or
attribute
name(s)

Process type is a member of
the set of types indicated by
names.

r1 r2 Old role equals new role.

r1 (r2) role name(s)
Old (new) role is a member of
the set of roles indicated by
names.

r3 role name(s)
Process role is a member of
the set of roles indicated by
names.

u1 u2 Old user equals new user.

u1 (u2) user name(s)
Old (new) user is a member of
the set of users indicated by
names.

u3 user name(s)
Process user is a member of
the set of users indicated by
names.

t1 t2 Old type does not equal new
type.

t1 (t2)

type and/or
attribute

Old (new) type is not a
member of the set of types

!=

name(s) indicated by names.

t3
type and/or
attribute
name(s)

Process type is not a member
of the set of types indicated by
names.

r1 r2 Old role does not equal new
role.

r1 (r2) role name(s)
Old (new) role is not a member
of the set of roles indicated by
names.

r3 role name(s)
Process role is not a member
of the set of roles indicated by
names.

u1 u2 Old user does not equal new
user.

u1 (u2) user name(s)
Old (new) user is not a
member of the set of users
indicated by names.

u3 user name(s)
Process user is not a member
of the set of users indicated by
name.

eq

r1 r2
Exactly the same semantics as
==.

r1 (r2) role name(s) Exactly the same semantics as
==.

dom r1 r2
Source role was defined to
dominate target role using role
dominates statement.

domby r1 r2
Target role was defined to
dominate source role using role
dominates statement.

incomp r1 r2 Neither source nor target role
dominates the other.

7.4. Summary

Constraints provide global restrictions for certain permissions regardless of
the allow rules contained in the policy.

The constrain statement enables us to restrict permissions granted based on
relationships between source and target types, roles, and user identifiers.

The validatetrans statement enables us to restrict the ability to change object
security contexts based on relationships between the old, new, and process
type, role, and user identifiers. This statement is supported only for
filesystem objects.

Exercises

1. Take the two constraints listed together on page 96 and write them as a single constraint statement.

2.

A common neverallow invariant rule is this:

neverallow domain ~domain : process transition ;

Write a constraint that is as close as possible to the equivalent meaning of this invariant.

3.

Recall the example validatetrans statement from page 93:

validatetrans {file lnk_file}

((t3 == relabel_any) or

 (t2 != shadow_t or t1 != user_tmp_t));

Let's suppose that you want to add a number of other types to the list of those you do not to be
relabeled from user_tmp_t. How would you change this constraint to achieve this goal?

Chapter 8. Multilevel Security
In this chapter

8.1 Multilevel Security Constraints

8.2 Security Contexts with MLS

8.3 MLS Constraints

8.4 Other Impacts of MLS

8.5 Summary

Exercises

page 164

page 165

page 170

page 179

page 180

page 181

In recent enhancements to SELinux, the constraint feature has been extended
to implement an optional multilevel security (MLS) policy. MLS is another form
of mandatory access control, which is built upon type enforcement (TE). In this
chapter, we explore the optional MLS policy features.

8.1. Multilevel Security Constraints

MLS is another form of mandatory access control that is applicable to some
security problems, especially those associated with government-classified data
control. Much of the early computer security research was driven by the goal
of implementing MLS access controls within operating systems. SELinux
provides optional support for MLS. Although type enforcement remains the
fundamental access control mechanism of SELinux, we can also enable the
optional MLS features to provide additional MLS-style mandatory access
controls. In SELinux, MLS is an optional extension to type enforcement; you
cannot have MLS features without it.

Note

Fedora Core 5 (FC5) enabled the optional MLS features by default.
In FC5, the MLS features are used to implement so-called
multicategory security (MCS) policy rather than a traditional MLS
policy modeled after government-classified systems. These two uses
of the MLS features alone show the flexibility of SELinux. In any
case, all uses of MLS are built upon the underlying TE security.

We enable MLS in SELinux by creating a binary kernel policy file that indicates
that it is an MLS policy. The primary method to create such a kernel policy is
to compile the policy using the -M option to the checkpolicy program. With this
option, checkpolicy will create an MLS-enabled kernel policy, and when loaded into
the kernel, the kernel will enforce additional MLS constraints. You will find
available policy source build trees (for example and reference policies, see
Chapters 11, "Original Example Policy," and 12, "Reference Policy") manage
whether the optional MLS features are available via a Makefile or configuration
file.

Note

As this book was preparing to be published, Tresys released a new
version of the apol tool (SeTools, release 2.4) that now supports
examining MLS security contexts and rules. We do not describe
those features in this chapter, but they are simple to use after you
become familiar with apol.

8.2. Security Contexts with MLS

As discussed in Chapter 2 "Concepts," when MLS is enabled, the security
context is extended with two additional fields: a low and high security level. A
security level itself has two fields: a sensitivity and a set of categories.
Sensitivities are strictly hierarchical reflecting an ordered data sensitivity
model, such as Top Secret, Secret, and Unclassified in government
classification controls. Categories are unordered, reflecting the need for data
compartmentalization. The basic idea is that you need both a high enough
sensitivity clearance and the right categories to access data.

Warning

Do not confuse security level with sensitivity. A security level is a
combination of a single sensitivity and a set (zero or more) of
categories. Sensitivities are strictly hierarchical and can be
compared using equivalence relationships (<, =, >). Security levels
are not hierarchical and are compared using a dominance
relationship (dom, domby, eq, incomp), which we briefly discuss in Chapter
2.

8.2.1. Defining Security Levels

In an SELinux policy, you define sensitivities using the sensitivity statement, as
follows:

sensitivity s0;
sensitivity s1;
sensitivity s2;
sensitivity s3;

These statements define four sensitivities called s0, s1, s2, and s3. These names
are a typical generic sensitivity naming convention in SELinux. We could use
any name you want here. The sensitivity statement also supports the ability to

associate additional alias names with a sensitivity that will be treated the same
as the core sensitivity name. For example:

sensitivity s1 alias unclassified;

Note

Recent improvement to SELinux, included in FC5, has added the
utility semanage, which among other features enables you to assign
human-readable (and printable) names to the policy sensitivities
and categories. These human-readable names are translated by an
SELinux library and are not part of the kernel policy enforcement
language. The file that contains the printable mappings is
/etc/selinux/[policy]/setrans.conf, where [policy] is an installed policy.

Because sensitivities must be hierarchically related, we must specify in the
policy the hierarchy of sensitivities using the dominance statement, as follows:

dominance { s0 s1 s2 s3 } # s0 is "low" and s3 "high"

The dominance statement lists the sensitivity names in order from lower to
highest. Thus, in our example, s0 is lower than s1, which is lower than s2, and so
forth.

Warning

The absence of an ending semicolon in the dominance statement is the
correct syntax (even though most other policy statements end with
a semicolon). In this case, the closing curly brace unambiguously
denotes the end of the statement. It is one of those legacy-
language design decisions that you have to keep in mind.

Categories are defined in a similar manner as sensitivities using the category

statement. As with sensitivities, categories may also have alias names. Unlike
sensitivities, categories are not hierarchically related (or related at all). So,
there is no need to define any explicit relationship between categories. The
following statements are examples of the category statement:

category c0 alias blue;
category c1 alias red;
category c2 alias green;
category c3 alias orange;
category c4 alias white;

The final step in defining security levels in the policy language is to define
allowed security level combinations using the level statement. The level statement
dictates how you may associate categories with sensitivities. Remember that a
combination of a single sensitivity and a set of categories constitute a security
level. Here are some examples of the level statement:

level s0:c0.c4;
level s1:c0.c4;
level s2:c0.c4;
level s3:c0.c4;

These statements enable you to combine any of the defined categories with all
the defined sensitivities from our earlier examples. You would generally have a
single level statement for each defined sensitivity that identifies the categories
that may be associated with each sensitivity in a valid security level.

In the preceding example, we associated all five defined categories (c0.c4) with
all four defined sensitivities. You can be more restrictive in this association:

level s0:c0.c2;
level s1:c0.c2,c4;

In this example, s0 may be associated only with categories c0, c1, and c2; and s1
with categories c0, c1, c2 and c4 (but not c3). By now, you should have noticed
that a dot (.) indicates an inclusive range of categories, and a comma (,)
indicates a noncontiguous list of categories.

Warning

Just because ranges of categories are specified using the range
operator (.), this does not mean that categories are hierarchically
related. Instead, the range operator is just a convenient way to
refer to a set of categories. The ordering of the categories for the
range operator is just the order in which they are declared and has
nothing to do with any intrinsic ordering implied by their names.

So, for example, if you declare that categories in the order c1, c0, and c2, the
expressions c0.c2 would mean c0 and c2, and not c1.

The level statement defines what combinations of sensitivities and categories
constitute an acceptable security level for the MLS portion of the SELinux
policy.

Security Level Statements Syntaxes

There are four statements that together enable you to define security levels in an SELinux policy.
The full syntax of each are listed in this sidebar.

Sensitivity statement

This statement defines the policy sensitivity identifiers and optional alias identifiers.

sensitivity identifier [alias alias_id [alias_id(s)]] ;

identifier String identifier for sensitivity.

alias_id One or more additional string identifiers for
sensitivity aliases.

The sensitivity identifier and associated alias identifiers can be used interchangeably within the policy.

Dominance statement

This statement defines the hierarchical relationship between all defined sensitivities:

dominance { identifier identifier ... identifier }

identifier A sensitivity identifier defined by a sensitivity
statement.

The ordering of sensitivities is from lower to highest. All defined sensitivities must be contained
within the dominance statement in order to define the complete sensitivity hierarchy.

Category statement

This statement defines the policy category identifiers and optional alias identifiers:

category identifier [alias alias_id [alias_id(s)]] ;

identifier String identifier for category.

alias_id One or more additional string identifiers for
category aliases.

The category identifier and associated alias identifiers can be used interchangeably within the policy.

Level statement

This statement defines the allowed combinations of sensitivity and category sets:

level sensitivity[:category_set] ;

sensitivity One of the defined sensitivity identifiers.

category_set

A set of defined category identifiers. Categories
can be listed as comma-separated lists and/or
ranges of categories using the . range operator.
For example, the category set c0.c3,c5 means all
defined categories from c0 to c3 inclusively, plus
c5. Note that there is no implicit ordering of
categories according to name (for example,
alphanumeric ordering); instead, the range
operator uses the order in which the category
identifiers are defined.

You may use only one level statement for each defined sensitivity. The category set is optional; an
unspecified category set means the "empty" category set. (That is, that sensitivity may have no
categories associated with it.) A valid security context may associate only a sensitivity with the
categories defined in the level statement for that sensitivity.

Security level statements are valid only in monolithic policies and base loadable modules. They are not
valid in conditional statements and non-base loadable modules.

8.2.2. MLS Extensions to Security Contexts

For MLS SELinux systems, the security context is extended to include two
security levels: a low or current security level and a high or clearance security
level. In general, the low level reflects the current security level of a process
or the sensitivity of data contained within an object. The high level reflects the
clearance level of the user identifier in the context (thereby determining the
highest possible security level allowed for the current level of any security
context) or the maximum range of data allowed for some so-called multilevel
objects. When MLS is enabled, the extended security context has the following
format:

user:role:type:sensitivity[:category,...][-sensitivity[:category,...]]

Notice that the security levels require a single sensitivity and zero or more
categories (that is, categories are optional). In addition, when you specify a
security context you need not specify the high level. If unspecified, the high
level will be equal to the low level, which is a common case for objects.

For a security context to be valid, the high level must always dominate[1] the
low level. In addition, the categories associated with the sensitivities must be
valid per the level statements in the policy. So, for example, if we have the
previous level statements:

[1] Recall from Chapter 2 that security levels are related using the "dominance" relationship. We discuss this
relationship later in this chapter.

level s0:c0.c2;
level s1:c0.c2,c4;

and user_u, user_r, and user_t are valid user, role, and type identifiers, the following
security contexts are invalid:

user_u:user_r:user_t:s0-s0:c2,c4 (c4 is invalid for s0)
user_u:user_r:user_t:s0:c0-s0:c2 (high does not dominate the low)

8.3. MLS Constraints

SELinux supports two MLS constraint statements, mlsconstrain and mlsvalidatetrans,
which together enable us to specify the optional MLS access enforcement
rules. These two statements are identical to their non-MLS counterparts except
that they allow you to also express constraints based on the security levels of
a security context. You may only use the MLS constraints in policies that have
the optional MLS features enabled. You may use the non-MLS constraint
statements from Chapter 7, "Constraints," in either type of policy.

8.3.1. mlsconstrain Statement

The mlsconstrain statement is based on the constrain statement. We can use any of
the syntax discussed for the constrain statement in Chapter 7. The mlsconstrain

statement adds new keywords for stating constraints based on the low and
high security levels of the source (l1 and h1) and target (l2 and H2). The sidebar
on page 171 contains the full syntax for the mlsconstrain statement.

mlsconstrain Statement Syntax

The mlsconstrain statement allows you to restrict specified permissions for specified object classes by
defining constraints based on relationships between source and target security contexts that include
the optional MLS features (that is, high and low security levels). The full syntax for the mlsconstrain
statement is as follows:

mlsconstrain class_set perm_set expression ;

class_set

One or more object classes. Multiple object
classes must be separated by spaces and
enclosed in braces ({ })for example, {file lnk_file}. The
special operators *, ~, and - are not allowed in
class sets for this statement.

perm_set

One or more permissions. All permissions must
be valid for all object classes in the class_set.
Multiple permissions must be separated by
spaces and enclosed in braces ({ })for example,
{read create}. The special operators *, ~, and - are
not allowed in class sets for this statement.

expression A Boolean expression of the constraint.

The Boolean expression syntax supports the following keywords:

t1, r1, u1, l1, h1
Source type, role, user, low level, and high level,
respectively

t2, r2, u2, l2, H2
Target type, role, user, low level, and high level,
respectively

Constraint expression syntax also supports the following operators:

== Set member of or equivalent.

!= Set not member of or not equivalent.

eq (Roles and security level keywords only)
equivalent.

dom (Roles and security level keywords only)
dominates.

domby (Role and security level keywords only) not
dominated by.

incomp (Role and security level keywords only)
incomparable.

The complete semantic meaning and allowed parameters for each operator is described in Table 8-
1along with those defined for the constrain statementChapter 7 (Table 7-1).

The mlsconstrain statement is supported only for optional MLS policies.

The mlsconstrain statement is valid only in monolithic policies and base loadable modules. It is not valid
in conditional statements and non-base loadable modules.

To illustrate the mlsconstrain statement, let's look at applying MLS to ordinary
filesystem objects. As a simple constraint suppose that we want to ensure that
file objects may have only a single level. (That is, the high and low levels must
be the same.) We can accomplish this restriction with a constraint such as
this:

mlsconstrain file { create relabelto }
 (l2 eq h2);

Assuming that create and relabelto are the file permissions required to set the
security level of a file object, this constraint is sufficient to require that all files
have high and low security levels that are the same.

Let's now look at more central MLS policy restrictions. Recall the basic premise
of MLS from Chapter 2, namely to prevent information from flowing
"downward" from higher security levels to lower or incomparable security
levels. We do this by enforcing the "no read up, no write down" rules on all
objects. In SELinux, the low security level generally represents the current
security level of processes and objects. Thus, we have the following MLS
constraint for files:

mlsconstrain file write (l1 domby l2);

In this statement we constrain write permissions for the file object class requiring
the source security level (l1) to be dominated by ("lower than") the object
security level (l2). In other words, a process can write files only at or "above"
its current security level ("no write down").

This constraint is unfortunately too simple to ensure that MLS policy is
enforced for file objects. First, let's consider file object class permissions. Many
permissions other than write allow a process to "write" information to a file. For
example, the append permission also allows information to flow from the process
to the file. Likewise, less obvious permissions, such as rename, also allow some
form of information to flow to the file (in this case, the name of the file). To be
comprehensive, we need to expand our constraint to cover all "write-capable"
file permissions:

mlsconstrain file { write create setattr relabelfrom append
 unlink link rename mounton }
 (l1 domby l2);

We now include a list of several permissions besides the standard write

permission, all of which allow some form of information to flow from the source
to the object. The constraint expression remains the same.

This constraint is still too simple. We need to address the situation where we
have a trusted domain type that we need to give special permission to violate
the "no write down" rule. Although you should avoid such trusted domains,
nearly all applications of MLS systems have had a need for them. To
accommodate this concept, we need to expand the constraint to allow for these
trusted domains.

To implement trusted downgrading domains, we can create a type attribute,
say mlsfilewritedown, which identifies any such trusted domain. So now our
constraint is this:

mlsconstrain file { write create setattr relabelfrom append
 unlink link rename mounton }
 ((l1 domby l2) or
 (t1 == mlsfilewritedown));

Now the constraint allows an exception for any source domain (t1) that has the
mlsfilewritedown attribute (that is, trusted domains).

For a complete MLS policy, we also need to also restrict read access (that is,
"no read up"). As with write access, a number of permissions allow "read"
access besides the read permission. For example execute permissions essentially
allows a process to "read" the contents of an executable file. Here is a possible
MLS read constraint for file objects:

mlsconstrain file { read getattr execute }
 ((l1 dom l2) or
 (t1 == mlsfilewritedown));

As with the write restriction we have an attribute, mlsfilereadup, that allows for
"read up" privilege for those few privileged domain types that have the
attribute.

In writing a complete MLS policy, you need to examine all object classes and
their associated permissions to ensure read and write restrictions are properly
constrained. For example, in the preceding "read" constraint, we might want to
address all filesystem objects in a single statement, as follows:

mlsconstrain { dir file lnk_file chr_file blk_file sock_file fifo_file }
 { read getattr execute }
 ((l1 dom l2) or
 (t1 == mlsfilereadup));

You will typically find the MLS constraints for a given SELinux policy stated in
a single source policy file, typically called mls. We do not extensively cover MLS
features of SELinux outside of this chapter; if you are interested in additional
information, find this file and examine it.

Table 8-1. Allowed Arguments and Semantic Meaning for
Mlsconstrain Expressions (Plus Those Defined for the

Contrain Statement in Table 7-1 [Chapter 7])

Operator Left Side Right Side Semantic Meaning

==

l1 l2,H1,H2

Source's low (current) security
level equals the target's low
(l2), source's high (h1), or
target's high (H2) security level.

l2 h2

Target's low (current) security
level equals the target's high

security level.

h1 l2,h2

Source's high (clearance)
security level equals the
target's low (l2) or high (h2)
security level.

!=

l1 l2, h1, H2

Source's low (current) security
level does not equal the
target's low (l2), source's high
(H1), or target's high (h2)
security level.

l2 H2
Target's low (current) security
level does not equal the
target's high security level.

h1 l2,h2

Source's high (clearance)
security level does not equal
the target's low (l2) or high (h2)
security level.

eq

l1 l2, H1, H2
Exactly the same semantics as
==.

l2 h2 Exactly the same semantics as
==.

H1 l2, h2
Exactly the same semantics as
==.

dom

l1 l2, H1, H2

Source's low (current) security
level dominates the target's
low (l2), source's high (H1), or
target's high (H2) security level.

l2 H2
Target's low (current) security
level dominates the target's
high security level.

H1 l2, h2

Source's high (clearance)
security level dominates the
target's low (l2) or high (h2)
security level.

domby

l1 l2, H1, h2

Source's low (current) security
level is dominated by the
target's low (l2), source's high
(H1), or target's high (h2)
security level.

l2 h2
Target's low (current) security
level is dominated by the

target's high security level.

h1 l2, H2

Source's high (clearance)
security level is dominated by
the target's low (l2) or high (h2)
security level.

incomp

l1 l2, h1, h2

Neither the source's low
(current) security level nor the
target's low (l2), source's high
(h1), or target's high (h2)
security level dominate the
other.

l2 H2

Neither the target's low
(current) security level nor the
target's high security level
dominate the other.

H1 l2, h2

Neither the source's high
(clearance) security level nor
the target's low (l2) or high (H2)
security level dominate the
other.

8.3.2. mlsvalidatetrans Statement

We have one more MLS constraint we need to examine, the MLS variant of the
validatetrans constraint discussed in Chapter 7, namely mlsvalidatetrans. This statement
is similar to the validatetrans statement except that it introduces the six keywords
l1 and h1, l2 and h2, and l3 and h3, meaning old low and high security levels, new
low and high security levels, and the source process low and high security
levels, respectively. The other difference between the two statements is that
the mlsvalidatetrans statement is more commonly used to support an MLS policy
than the validatetrans statement is in a typical TE policy. The full syntax of the
mlsvalidatetrans statement is in the sidebar on page 176.

mlsvalidatetrans Statement Syntax

The mlsvalidatetrans statement restricts the ability to change the security context of specified supported
objects by defining constraints-based relationships with old and new security contexts and the
security context of the source process. The full syntax for the mlsvalidatetrans statement is as follows:

mlsvalidatetrans class_set expression ;

class_set

One or more object supported classes. Multiple
object classes must be enclosed in braces ({ })for
example, {file lnk_file}. Currently, only permanent
filesystem object classes are supported.

expression A Boolean expression of the constraint.

The Boolean expression syntax supports the following keywords:

t1, r1, u1, l1, h1
Old type, role, user, low level, and high level,
respectively

t2, r2, u2, l2, h2
New type, role, and user, low level, and high
level, respectively

t3, r3, u3, l3, h3
Process type, role, user, low level, and high level,
respectively

The constraint expression syntax also supports the following operators:

== Set member of or equivalent

!= Set not member of or not equivalent

eq (Roles and security level keywords only)
equivalent

dom (Roles and security level keywords only)
dominates

domby (Role and security level keywords only) not
dominated by

incomp (Role and security level keywords only)
incomparable

The complete semantic meaning and allowed parameters for each operator is described in Table 8-2
in addition to those defined for the validatetrans statement in Chapter 7 (Table 7-2).

The mlsvalidatetrans statement is supported only for optional MLS policies.

The mlsvalidatetrans statement are valid only in monolithic policies and base loadable modules. They are
not valid in conditional statements and non-base loadable modules.

As an example, for MLS we generally do not want file security levels to
change; over the years of experimentation with operational MLS systems,
however, we have learned that some MLS applications have evolved the need
for a trustworthy application to change the security levels of existing objects
such as files. So, to enforce this restriction while allowing for those trusted
applications, we can use the mlsvalidatetrans constraint:

mlsvalidatetrans file
 ((l1 eq l2) or
 ((t3 == mlsfileupgrade) and (l1 domby l2)) or
 ((t3 == mlsfiledowngrade) and (l1 dom l2 or l1 incomp l2)));

This constraint has a number of features. First, it has the basic requirement
that when a file object security context changes, its current (low) security
level must be the same (l1 eq l2). However, it provides for upgrading (mlsfileupgrade

attribute) and downgrading (mlsfiledowngrade attribute) privileges. Upgrading (that
is, the old level l1 is dominated by the new level l2) is allowed if the process
domain type has the mlsfileupgrade attribute. Likewise, downgrading (that is, the
old level dominates or is incomparable to the new level) is allowed if the
process domain type has the mlsfiledowngrade attribute.

Table 8-2. Allowed Arguments and Semantic Meaning for
Mlsvalidatetrans Expressions (Plus Those Defined for the

Validatetrans Statement in Table 7-2 [Chapter 7])

Operator Left Side Right Side Semantic Meaning

l1 l2, h1,H2

Old low (current) security level
equals the new low (l2), old
high (h1), or new high (h2)

==

security level.

l2 h2
New low (current) security level
equals the new high security
level.

h1 l2, H2
Old high (clearance) security
level equals the new low (l2) or
new high (H2) security level.

!= l1 l2, H1, H2

Old low (current) security level
does not equal the new low
(l2), old high (H1), or new high
(h2) security level.

!=

l2 H2
New the old low (current)
security level does not equal
the new high security level.

H1 l2, H2

Old high (clearance) security
level does not equal the new
low (l2) or new high (h2)
security level.

eq

l1 l2, h1, H2
Exactly the same semantics as
==.

l2 h2 Exactly the same semantics as
==.

h1 l2, H2
Exactly the same semantics as
==.

dom

l1 l2, H1, h2

Old low (current) security level
dominates the new low (l2), old
high (H1), or new high (h2)
security level.

l2 h2
New low (current) security level
dominates the new high
security level.

h1 l2, H2
Old high (clearance) security
level dominates the new low (l2)
or new high (H2) security level.

l1 l2, H1, H2

Old low (current) security level
is dominated by the new low
(l2), old high (h1), or new high
(h2) security level.

The new low (current) security

domby l2 h2 level is dominated by the new
high security level.

h1 l2, h2

The old high (clearance)
security level is dominated by
the new low (l2) or new high
(H2) security level.

incomp

l1 l2, H1, h2

Neither the old low (current)
security level nor the new low
(l2), old high (H1), or new high
(h2) security level dominate the
other.

l2 h2

Neither the new low (current)
security level nor the new high
security level dominate the
other.

h1 l2, h2

Neither the old high (clearance)
security level nor the new low
(l2) or new high (h2) security
level dominate the other.

Note

Remember that, as of this writing, validatetrans and mlsvalidatetrans

constraint statements support only filesystem objects, specifically,
dir, file, lnk_file, chr_file, blk_file, sock_file, and fifo_file object classes.

8.4. Other Impacts of MLS

This chapter describes the basic mechanisms that enable you to define an MLS
policy in SELinux; however, it does not describe a full policy for MLS. Unlike
type enforcement, which is flexible and adaptable, MLS is intended to strictly
and inflexibly enforce a single security invariant ("no write down, no read
up"). This singular, inflexible focus is important for the protection of strictly
hierarchically related sensitive data (such as national secrets). However, it
presents many challenges that you must address as a secure system designer
that are beyond the scope of this book.[2]

[2] For additional information on the challenges of building MLS trusted systems, see Building a Secure Computer
System by Morrie Gasser and Van Nostran Reinhold, New York, 1988, which is out of print but freely available at
http://nucia.ist.unomaha.edu/library/gasserbook.pdf.

Because in SELinux the MLS feature extends the security context, everywhere
you specify a security context you must now include security level information.
One statement this impacts is the user statement described in Chapter 6. For
MLS systems, all users must have a defined clearance security level, which
represents the highest-level process users may run on their behalf. For MLS,
the syntax of the user statement changes to this:

user username roles role_set level default_level range allowed_range ;

The username and role_set arguments are the same as before. However, we add two
new keywords that define the user's default login security level (level) and the
range of security levels that a user is allowed to run processes or log in (range).
The default level is a single valid security level, and the allowed range is a
range of security levels from low to high. For example:

user joe roles user_r level s0 range s0 - s3:c0.c4;

This statement assigns the user joe with the default login level of s0 (the lowest
sensitivity we defined earlier, with no categories) and allows the user to log in
at any level ranging from s0 with no categories to s3 with all the categories we
defined earlier (c0.c4). For example, the user is allowed to log in with a security
level of s1:c1.c2 but would not be allowed to log in with a security level s4:c0

because this latter level is not in the user's allowed range.

http://nucia.ist.unomaha.edu/library/gasserbook.pdf

The other major area of impact of MLS is everywhere you label an object with
a security context. In Chapter 10, "Object Labeling," we discuss object labeling
in more detail for non-MLS systems. Just remember that in an MLS system you
must extend the object security context to include low and high security levels
according to the syntax listed on page 105. You will find that the real
challenge with MLS systems is determining the appropriate security level to
assign to each object.

8.5. Summary

The SELinux policy language provides optional support for MLS through
the use of additional constraint statements and extensions to the security
context.

For an MLS policy, you must define hierarchical sensitivities and
nonhierarchical categories. A valid security level is a combination of a
single sensitivity and a set of categories (including the empty set).

For MLS, the security context is extended with a low (current) and high
(clearance) security levels. A hard-coded invariant requires that the high
security levels always dominate the low.

The primary purpose of an MLS policy is to implement the "no read down,
no write up" invariant for all objects. We can implement this invariant
using the mlsconstrain statement, which is exactly like the constrain statement
except that it allows restrictions to also be based on relationships between
the source and target security levels.

The mlsvalidatetrans statement is exactly the same as the validatetrans statement
except that it also allows us to restrict security context changes based on
the old, new, and process security levels. This allows us to control the
ability to change filesystem object security levels.

For a complete MLS security policy, you must implement MLS constraints
on all relevant object class permissions and extend the security context
labeling everywhere a security context is applied to an object.

Exercises

1.

Assume the following sensitivity and category definitions:

sensitivity s0;
sensitivity s1;
sensitivity s2;

category c0;
category c1;
category c2;
category c3;
category c4;

level s0;
level s1:c0.c2;
level s2:c0.c4;

Also assume user_u, user_r, and user_t are valid user, role, and type identifiers. Determine which of the
following security contexts are valid and explain why or why not:

1. user_u:user_r:user_t:s0-s0:c0

2. user_u:user_r:user_t:s0-s1

3. user_u:user_r:user_t:s0-s1:c0.c4

4. user_u:user_r:user_t:s1:c0.c2-s2:c0.c1

5. user_u:user_r:user_t:s1-s2:c0,c4

2.

Look again at the following MLS constraint:

mlsconstrain file { write create setattr relabelfrom append
 unlink link rename mounton }
 ((l1 domby l2) or
 (t1 == mlsfilewritedown));

This constraint restricts the ability to "write down," but allows any domain to "write up." Indeed, there is
no MLS-related reason to restrict "write up" because it does not constitute a downgrading of
information, and there are valid uses of this capability to build MLS-aware security applications.
Nonetheless, some MLS system developers like to provide a privilege to control "write up" just like "write
down." As an exercise, change the preceding constraint to control writing up and down.

Chapter 9. Conditional Policies
In this chapter

9.1 Overview of Conditional Policies

9.2 Boolean Variables

9.3 Conditional Statements

9.4 Examining Booleans and Conditional
Policies with Apol

9.5 Summary

Exercises

page 184

page 185

page 191

page 198

page 202

page 203

In this chapter, we explore conditional policies, created via policy statements
and which enable us to define rules enabled or disabled based on
circumstances. In this chapter, we discuss the SELinux policy language
statements that support conditional policies and explore the use of conditional
policies.

9.1. Overview of Conditional Policies

Support for conditional policies was one of the first major functional
enhancements to the SELinux policy language after its initial release.
Conditional policy statements enable us to define sets of policy rules that are
enabled only under the circumstances defined by a conditional expression,
which is a logical expression constructed using defined variables and logical
operators.

Let's look at a contrived example. Suppose we have a mobile computer and
want to define policy rules that enable access for a particular program's
domain type (for example, myprog_t) such that it may access only the wired
Ethernet network interface when the computer is docked and the wireless
network interface when the computer is undocked. To achieve this goal, we
might write a conditional, such as this:

bool docked true;
if (docked) {
 # rules to allow my_prog_t access to wired Ethernet device
} else {
 # rules to allow my_prog_t access to wireless device
}

In this example, we first declare a single Boolean variable, docked. We use this
Boolean to indicate to SELinux whether the device is docked. As part of the
declaration, we give the Boolean docked a default value of "true." We then
create a conditional statement (if), which includes a conditional expression
(docked) and a true and optional false list of rules. This statement allows us to
write the allow rules for each case (that is, when the device is docked and when
it is not docked). All we have to do is change the value of the Boolean when
we dock/undock the device (for example, a running service might monitor this
state and set the Boolean accordingly) to enable the appropriate set of policy
rules.

This simple example illustrates the main features of conditional policies. In the
rest of this section, we discuss how to define and change Boolean variables,
list the syntax of conditional statements, and show example uses of conditional
policies.

9.2. Boolean Variables

What makes conditional policies "conditional" is the effect of conditional
expressions. Conditional expressions are formed by using one or more Boolean
variables in conjunction with logical operators and then changing the Boolean
values to effect the value of the conditional expression, thereby changing
which set of rules in the conditional statement are in effect. Therefore, the
first step in writing conditional policies is creating the Boolean variables.

9.2.1. Defining Boolean Variables

We use the bool statement to define Boolean variables. For example, suppose
we want to configure the policy such that the ability for ordinary users to use
the ping program can be turned on and off. For this example, we need to
define a Boolean variable, say user_ping, that we will use in a conditional
expression. To define this variable, we write the following statement:

bool user_ping false; # controls whether users may use ping program

The bool statement has two arguments, the name of the Boolean (user_ping) and
its default value, which can be true or false. In this case, the default value
(false) means that ordinary users, by default, cannot use ping (assuming our
conditional statement is written correctly). You can see the full syntax for the
bool statement in the sidebar on page 186.

Bool Statement Syntax

The bool statement defines conditional booleans and their default value. The full syntax for the bool
statement is as follows:

bool bool_name default_value;

bool_name
An identifier for the Boolean variable. The identifier can be
any length and can contain ASCII characters, numbers, or
an underscore (_). It must begin with an ASCII character.

default_value The default Boolean value of the variable, either TRue or false.

The bool statement is valid in monolithic policies, base loadable modules, and non-base loadable
modules. It is not valid in conditional statements.

9.2.2. Managing Booleans in a Running System

The ability to change Boolean variable values in a running system is what
enables us to vary the value of conditional expressions, and hence gives us
conditional policies. Therefore, it is necessary for the SELinux kernel to make
Boolean variables available to running processes for changes. This is different
from any other component of the policy, which once loaded into the kernel is
static until a new entire policy is loaded. Booleans are individually accessible
and changeable on the running system.

The kernel exposes the Booleans via the selinux pseudo filesystem. This pseudo
filesystem is the primary interface between user space and the SELinux Linux
Security Module (LSM) in the kernel. The filesystem is typically mounted on
/selinux/. All Boolean variables defined in the current policy will show up as files
in the booleans directory of this pseudo filesystem. So, for example, you would be
able to see the Boolean defined above as a file with a path name of
/selinux/booleans/user_ping.

We use the Boolean files in the selinux filesystem to query and set the current
values of Boolean variables. If you view the contents of a Boolean file, you will
always see a pair of numbers (either 0 or 1 for false or true), as follows:

cat /selinux/booleans/user_ping
1 1

This first number indicates the current value of the Boolean variable; in this
case, 1 for true. The second number represents the pending value of the
Boolean variable. The current value is the actual value being used by the
kernel for the Boolean and for determining the value of conditional
expressions. The pending is the value to which the Boolean's current value will
be changed when Booleans changes are committed.

We change the current value of a Boolean by changing the Boolean's pending
value and then committing the changes to the kernel. We change the pending
value by writing a 1 or 0 to the Boolean file, as follows:

cat /selinux/booleans/user_ping # current & pending values same (1)
1 1
echo 0 > /selinux/booleans/user_ping # write a '0' to the file
cat /selinux/booleans/user_ping # pending value is changed (0)
1 0

As you can see, the pending value has now changed to 0, meaning false. The
current value remains the same. This means that the value of the Boolean
user_ping is still true (1) even though you changed its pending value to false (0).
The reason is that changing Booleans requires a two-step commit process.
First, you change the pending value for those Booleans you want to change
(the default pending value is always the current value), and then you commit
the pending values to the current value. This allows you to change more than
one Boolean and then commit all changes in one step.

The file /selinux/commit_pending_bools is the interface for committing the pending values
of all Booleans as the current values. You cause the commit to occur by writing
a 1 to this file, as follows:

echo 1 > /selinux/commit_pending_bools # commit all pending values
cat /selinux/booleans/user_ping
0 0

The first command writes the commit_pending_bools file, which causes the kernel to

change the current value for all Booleans to their pending value. As you can
see by examining the user_ping Boolean, the change we made earlier is now
committed. The current value of this Boolean is now false (0) as is the pending
value. (Recall that the default pending value is always the current value.)

To reset the Boolean back to true, we just do the reverse:

echo 1 > /selinux/booleans/user_ping # set pending value true
cat /selinux/booleans/user_ping # see pending value changed
0 1
echo 1 > /selinux/commit_pending_bools # commit pending value
cat /selinux/booleans/user_ping # see current value changed
1 1

SELinux provides convenient commands for querying and changing Booleans
without having to remember their file locations. The getsebool command displays
the state of a Boolean as active (TRue) or inactive (false). For example:

getsebool user_ping
user_ping > active

Note

Recent improvements in SELinux, available in Fedora Core 5 (FC5),
have changed the displayed values from the command getsebool to the
more intuitive on and off rather than active and inactive.

To see all Booleans defined in the running system and their state, you would
use the -a option, as follows:

getsebool -a
docked > inactive
user_ping > active
...

We can also change the value of Booleans using the setsebool command:

getsebool user_ping # show current state
user_ping > active
setsebool user_ping false # change and commit current state
getsebool user_ping # show changed stated
user_ping > inactive

Notice that the setsebool command changes both the pending state and commits
the change as the current state. We do not need to run the two separate
commands as you saw earlier when using the setsebool command, nor do we need
to know the full path name of the Boolean file.

We can also use the setsebool command to change multiple Booleans in a single
transaction using an alternative format for the arguments, such as this:

getsebool user_ping docked # show current state
user_ping > active
docked > inactive
setsebool user_ping=0 docked=1 # change state of both
getsebool user_ping docked # show current state
user_ping > inactive
docked > active

Warning

The Booleans defined on your system depend on the policy loaded
into the running kernel. You will likely see different Booleans than
those used here in our contrived examples. Do not be confused by
this. If you want, add these Booleans as an exercise, or play with
the Booleans defined in your policy.

9.2.3. Persistent Changes to Boolean Values

As previously discussed, Boolean variables are defined in the policy file along
with their default state. After the inclusion of Booleans into the SELinux policy
language, a problem arose of how to change the default state of a Boolean
without having to re-create the policy. (The policy once written should be a
fairly static entity.) Thus the idea of a persistent value was introduced. A
standard library used by SELinux utilities provides a means for making
persistent changes to Booleans by maintaining a file with Boolean persistent
values. The init process uses this file to override the policy defaults during
system initialization. In this way, we can make changes to the current values
of Booleans that persist across a reboot, without having to modify the static
SELinux policy.

In Fedora Core 4 (FC4) and Red Hat Enterprise Linux version 4 (RHEL4)
systems, loadable SELinux policies are conventionally stored in the directory
/etc/selinux/[pol_name/], where pol_name is a the name of a subdirectory containing an
SELinux policy and related files. In RHEL4, the file in a policy subdirectory we
want to discuss here is named booleans. This file contains names of Booleans and
their default override values. The init process reads this file for the active policy
after loading the policy into the kernel and then changes the current value for
all Booleans listed in the file. If we look inside this file, we would see contents
something such as the following, depending on the associated policy:

cat booleans # run in policy subdir, for example, /etc/selinux/strict/
ftpd_is_daemon=1
ftp_home_dir=1
ssh_sysadm_login=1
staff_read_sysadm_file=1
user_ping=1

We can see our user_ping Boolean here and other Booleans that require
examining the policy to understand their intended use. Therefore, to make a
change to a Boolean current value consistent, we would change the current
value as previously discussed and edit the booleans file for the active policy.
Doing so will ensure that the change to the current value will persist across a
reboot, if that is the desired effect.

Note

When the policy is reloaded on a running system, the currently
active state of the Booleans is maintained instead of being reset to
the default or persistent state. This ensures that nonpersistent

Boolean changes are preserved while a system is running.

In FC4, a new file was introduced named booleans.local, which is used in the same
way as the booleans file is used on RHEL4. The booleans file remains, but its purpose
was changed to store distribution-defined default Boolean values defined as
part of the policy package. The booleans.local file contains locally defined override
values for Booleans that take precedence over the booleans file. This change
allows the default state in the booleans file to be easily changed when upgrading
the policy without impacting local customizations.

FC5 includes the loadable module infrastructure, which no longer has user-
editable files for storing persistent Boolean values. The tools for managing the
policy, including the persistent mode of setsebool (discussed below), interact
directly with the module infrastructure to store the persistent Boolean values.
Therefore, in FC5, you should always use the setsebool or other system command
to change Boolean values.

The setsebool command provides a convenient option, -P, to make Boolean
changes persistent. This option works across RHEL4, FC4, and FC5. When this
option is used with setsebool, all changes are reflected in the active policy as a
local override of the policy default values. (Otherwise, the change affects only
the running policy and will be reset to the default value at the next boot.) For
example, on an RHEL4 system, we have the following:

getsebool user_ping # show current running state
user_ping > active
cat booleans | grep user_ping # and persistent state
user_ping=1
setsebool user_ping false # change current state
getsebool user_ping # current stated changed
user_ping > inactive
cat booleans | grep user_ping # but persistent state did not
user_ping=1
setsebool -P user_ping false # persistent change with -P
getsebool user_ping # current state still false
user_ping > inactive
cat booleans | grep user_ping # now persistent changed too
user_ping=0

Note

You do not necessarily want to make a change to a Boolean current
value persistent. It all depends on your use of the Boolean. In some
cases, you want to change, or toggle, the Boolean, perhaps several
times, on a running system but reset to its default value on a
reboot. In this case, you do not want to make the change
persistent.

9.3. Conditional Statements

The reason we have Boolean variables in an SELinux policy is to allow us to
write rules that are conditionally enabled using the conditional statement (if).
The conditional statement has a conditional expression that is formed using
Booleans and a true and optional false list of rules. If the conditional
expression resolves to true, the true list of rules is enabled, and the false list
of rules is disabled. If the conditional expression resolves to false, the opposite
case prevails. We can change the value of a conditional expression on a
running system by changing the current values of the Boolean variables the
expression uses.

9.3.1. Conditional Expressions and Rule Lists

The simplest and most common form of a conditional statement has a single
Boolean variable as its conditional expression and a true list (but no false list)
of rules. For example, continuing with our ping example, we can write rules
that allow user domains to use ping when the Boolean user_ping is enabled with a
conditional statement similar to the following:

Example: controlling user ping via a Boolean
Assumptions (defined elsewhere in policy):
unpriv_userdomain: attribute for all ordinary user domains
ping_t: domain type for the ping process (which has necessary
network interface access for ping to work)
ping_exec_t: entrypoint file type of the ping executable

if (user_ping) {
 # domain transition access to allow user access
 allow unpriv_userdomain ping_t : process transition;
 allow unpriv_userdomain ping_exec_t : file { read getattr execute };
 # entrypoint might be redundant since ping_t should already have it
 # but adding it again is not harmful
 allow ping_t ping_exec_t : file entrypoint;

 # cause the transition to happen by default
 type_transition unpriv_userdomain ping_exec_t: process ping_t;
}

In this example, we see that all we have to do to enable access is give all
ordinary user domain types (all of which are assumed to be associated with the
unpriv_userdomain attribute elsewhere in the policy) domain transition access to the
ping program domain type (ping_t). Elsewhere in the policy, we would write the
rules that provide the ping domain type the network access necessary for ping
to work. In the conditional policy, all we have to do is control the ability of
user domain type to transition to ping_t. We also need to ensure that the user's
role is also authorized for the ping_t domain type (see Chapter 6, "Roles and
Users"). In this case, it is typical to unconditionally authorized the ping_t domain
type for the intended user role, and control whether this authorization can be
utilized via type transition permission as we illustrated previously.

Conditional (if) Statement Syntax

The conditional statement (if) specifies policy statements that are enabled/disabled (that is, enforced
or not enforced by the kernel) depending on the value of a conditional expression. The full syntax of
the conditional statement is as follows:

if (cond_expression) { true_list } [else { false_list }]

cond_expression

A conditional expression made up of one or
more Boolean variables with logical operators.
Supported logical operators are listed in Table 9-
1. Boolean variables must be defined using the
bool statement.

TRue_list, false_list

A list of rules that are conditionally enabled or
disabled depending on the value of the
conditional expression. When the conditional list
is true, the true list of rules is enabled (and the
false disabled). When false, the opposite is the
case. The false list is optional. The kernel will
enforce only conditional rules that are enabled.
The supported rules for these lists are allow,
auditallow, dontaudit, type_transition, and type_change.

The conditional statement is valid in monolithic policies, base loadable modules, and non-base
loadable modules.

At the time of this writing, conditional expressions may not be nested.

Let's look at another example that uses both the true and false list of rules.
Suppose that we want to control the ping_t domain such that the docked Boolean
introduced earlier determines what access the ping program has (that is,
access to wireless Ethernet devices only when "not docked"). The following
policy statements are a partial solution to this objective:

Example: restricting ping's access based on docked state
Assumptions (defined elsewhere in policy):
docked: Boolean indicating docked state
ping_t: domain type for the ping process
wired_netif: attrib for all wired netif types
wireless_netif: attrib for all wireless netif types

Allowed wired access when docked, wireless otherwise

if (docked) {
 allow ping_t wired_netif:netif { tcp_send tcp_recv udp_send
 udp_recv rawip_send rawip_recv };
} else {
 allow ping_t wireless_netif:netif { tcp_send tcp_recv udp_send
 udp_recv rawip_send rawip_recv };
}

Remaining network and other access needed regardless of interface
allow ping_t self:capability { net_raw setuid };

etc., remaining rules not listed for simplicity

In this example, we control access to the two kinds of network interfaces,
including raw access (rawip_send and rawip_recv), using the conditional statement. We
provide other access needed by ping regardless of network interface using
unconditional rules (that is, rules not within a conditional statement, which are
always enabled regardless of the value of any Boolean).

Warning

In SELinux, type enforcement (TE) rules are always additive; that
is, they always add permissions for a source-target-class triple.
There is no way to remove permissions from a policy using
conditional statements. Because no permissions are allowed by
default, this means that you must be careful when writing allow rules
not to add a permission in one place in the policy and then try to
make it conditional in another. The unconditional rules (that is,
those not within a conditional statement) will always take
precedence. Therefore, if you try to control a permission in a
conditional rule that is already allowed by an unconditional rule,
the conditional rule will have no effect. Whereas the conditional
rule will be enabled/disabled according to the conditional
expressions, the nonconditional rule will always allow the
permission.

Finally, let's examine one additional example where we use a more complex

conditional expression. Suppose we want to expand the notion of user_ping above
to control whether ping is allowed for any user domain and not just for
ordinary user domains. So, instead of a Boolean named user_ping, we will use a
Boolean named allow_ping to better represent our intent. Further, we want ping
accessible only when the computer is docked. Therefore, we create the
following partial solution:

Example: restricting ping based on docked state and allow Boolean
Assumptions (defined elsewhere in policy):
docked: Boolean indicating docked state
allow_ping: Boolean indicating whether ping is allowed
ping_t: domain type for the ping process
ping_exec_t: entrypoint file type of the ping executable
wired_netif: attrib for all wired netif types
userdomain: attrib for all user domains (priv & unpriv)

Allowed wired access when docked if allowed
if (allow_ping && docked) {
 # domain transition permission
 allow userdomain ping_t : process transition;
 allow userdomain ping_exec_t : file { read getattr execute };
 allow ping_t ping_exec_t : file entrypoint;
 type_transition userdomain ping_exec_t: process ping_t;

 # wired netif access for ping
 allow ping_t wired_netif:netif { tcp_send tcp_recv udp_send
 udp_recv rawip_send rawip_recv };
}

This example shows the use of a two Booleans and a logical operator (&&) in a
conditional expression. In this case, the values of both Booleans control
whether this condition is true and the associated allow rules are enabled.
Conditional expressions support a common set of C-like logical operators and
typical parentheses rules for precedence. The logical operators supported for
conditional expressions are listed in Table 9-1.

Table 9-1. Supported Operators for Conditional
Expressions

Operator Syntax Semantic

&& bool_1 && bool_2 Logical and

|| bool_1 || bool_2 Logical or

^ bool_1 ^ bool_2 Logical exclusive or

! !bool_1 Logical not

== bool_1 == bool_2 Are equivalent

!= bool_1 != bool_2 Are not equivalent

9.3.2. Conditional Statement Limitations

The conditional policy language extensions have several significant limitations
that were known at the time the extensions were developed. In reality, these
limitations have not, as yet, resulted in any practical limitations. Nonetheless,
you should be aware of the limitations. Some of these limitations will likely be
removed or improved as greater use of conditional policy comes into being.

9.3.2.1. Supported Statements

As of now, the only policy statements allowed within a true or false list of a
conditional are the following:

allow (type allow rules, and not role allow rules)

auditallow
dontaudit
type_transition
type_change

These are the TE policy rule statements. The reason for this limitation is that
conditional policies were really developed to support conditional TE policies.
Therefore, the TE rules were supported. This makes sense because what we
are talking about is enabling and disabling rules that allow access, audit
access, and setup access defaults.

In particular, we do not allow you to define types or other policy identifiers
within a conditional expression. It is difficult to imagine good policy design
where policy components are defined based on runtime conditions (as
controlled by Booleans). Instead, policy component identifiers such as types
are either defined or not in a given policy. They are not "conditional." This
reasoning also explains why user and role declarations, and indeed Boolean
declarations, are not supported within conditional statements.

Some unsupported statements would be valuable within conditional
statements. For example, we are finding that the typeattribute statement, which
associates a previously defined attribute with a previously defined type, is a
useful statement to allow within conditional true/false list. Because adding an
attribute to a type is essentially adding rules that allow access to/from that
type, it makes sense that one might want to include this in a runtime
conditional. The reason why the typeattribute statement was not supported in the
initial conditional policy implementation is simply that the typeattribute statement
itself was not supported in the policy language at the time. We expect this and
other statements will eventually be supported by the policy compiler.

Warning

Do not confuse policy build-time options with runtime conditionals.
It is common to use a scripting/macro language (for example, m4) to
provide build-time options (see Chapters 11, "Original Example
Policy," and 12, "Reference Policy"). For example, you can control
whether certain domain types and their associated rules are
included in a given policy (for example, because our intended
system does not use the programs for which those domain types
were designed). In this case, we would exclude all the rules and the
associated type declarations from the compiled policy. This is a
compile-time customization, which is entirely different from a
runtime conditional. In the latter case, we include all the rules and
types we want, but allow some rules (but not types) to be toggled
on/off based on conditions as controlled by Booleans.

9.3.2.2. Nesting Conditional Statements

Currently, the conditional statement syntax does not support nesting. So, for

example, the following policy statements would cause a compiler error:

These statements would currently fail due to nonsupport for nesting
if (docked) {
 # docked statements
 if (allow_ping) {
 # docked and allow statements
 }
} else {
 # undocked statements
}

Instead, we would have to write this as more verbose separate statements,
such as the following:

This workaround with no nesting works!
if (docked && allow_ping) {
 # docked and allow statements
}

if (docked) {
 # docked statements
} else {
 # undocked statements
}

We expect support for nesting conditional statements to be added to the
language soon, possibly by the time this book is published.

9.4. Examining Booleans and Conditional Policies with Apol

We can use apol to more easily examine conditional policy statements and the
associated Booleans. Apol proves particularly useful when trying to understand
the effects of conditional policy statements and when the same condition is
repeated several places within the policy.

Figure 9-1, we show how to use apol to examine defined Booleans within a
policy. The Booleans tab under the Policy Components tab shows all Booleans
and their default and current values. Apol also enables you to change the
current value of a Boolean, which proves useful when exploring conditional
policy rules, as you will see shortly.

Figure 9-1. Examining Boolean variables using apol

[View full size image]

More interesting is when you are searching the policy rules. In the TE Rules
tab under the Policy Rules tab, you can configure apol to show all rules, whether
enabled or disabled, and show their current state, as shown in Figure 9-2.
Most rules are not in conditional statements and will not show a current state.
However, those that are in conditional statements will have their current state

(enabled/disabled) so indicated, as shown in Figure 9-2.

Figure 9-2. Viewing disabled conditional rules in apol

[View full size image]

You can use the Booleans tab to change the current value of a Boolean to
experiment with the effects within apol. For example, in Figure 9-3, we changed
the current value of user_ping from its default value of false to a current value of
true. This will then effect what rules are enabled or disabled, as shown in
Figure 9-4, where rules that were previously disabled now become enabled.

Figure 9-3. Changing current state of Boolean value in apol

[View full size image]

Figure 9-4. Changing current Boolean values in apol changes
the enabled/disabled state of rules

[View full size image]

Finally, by using the Conditional Expression tab under the Policy Rules tab,
you can search for entire conditional statements by searching for Booleans, as
illustrated in Figure 9-5. Apol will show you all conditional expressions that use
the provided Boolean variable and their true and false list of rules. Further,
the tool will collapse like conditionals (for example, if there are five
conditionals all with the same conditional expression, apol will show them as
one combined conditional), making it easier to understand the entire set of
related conditional rules. As with the rule search shown in Figure 9-4, the

current state of the Boolean variables will affect the result of this search.

Figure 9-5. Searching conditional expressions by Boolean
name within apol

[View full size image]

9.5. Summary

Conditional statements allow you to create policy rules that can be enabled
or disabled by changing Boolean variable values on a running system.
Rules that are not within a conditional statement (typically the vast
majority of rules in a system) are unconditional and always enabled.

Boolean variables are defined in the policy using the bool statement, along
with the default value for each Boolean.

All defined Booleans in the running policy also have filenames in the selinux

filesystem, usually mounted at /selinux/booleans/. These files indicate the
current and pending value for each Boolean. To change the current value
of a Boolean, you would write the new value (1 or 0) into this file and then
make the change effective by writing a 1 to the file /selinux/commit_pending_bools.
The commands getsebool and setsebool provide a convenient and stable way for
changing these values without remembering the various filenames.

Booleans support a persistent value that will override the default value in
the policy on a reboot. The persistent value allows you to change the
effective default value without having to modifying the policy itself. The
easiest way to make a persistent change to a Boolean value is to use the
setsebool -P command.

The conditional statement (if) allows you to express a logical conditional
expression using a defined Boolean variable and a true and optional false
list of rules. These rules will be enabled/disabled by the kernel depending
on the value of the conditional expression, which in turn depends on the
current values of the Booleans the expression contains.

The only statements currently supported in a conditional statement
true/false list are allow, auditallow, dontaudit, type_transition, and type_change.

At present, you cannot nest conditional statements. This limitation is likely
to change in the near future.

Exercises

1. Explain the differences between the default, current, pending, and persistent values of a Boolean
variable.

2.

Suppose that our policy has three Booleans defined: bool1, bool2, and bool3. Now take a look at the following
commands:

cd /selinux/booleans
cat bool1
0 1
cat bool2
1 1
cat bool3
1 0

What are the current values of all three Booleans?

3.

Take the set of comments from the previous question, and add the following command:

echo 1 > /selinux/commit_pending_bools

Now what are the current values of the three Booleans?

4.

One use of conditional policies is to control the level of auditing performed by SELinux by enabling and
disabling packages of audit rules. Suppose we want to create a Boolean (enhanced_audit) to control auditing
of access attempts (success and denial events). Further, suppose that there are two kinds of events,
among others, we want to capture for enhanced auditing: transitions into any domain type and any use
of the ping program to access the network. Write a partial policy to achieve these goals. Assume that
there are two attributes in your policy: domain, which is associated with all domain types; and netif_type,
which is associated with all the types used for network interface objects.

Chapter 10. Object Labeling
In this chapter

10.1 Introduction to Object Labeling

10.2 File-Related Object Labeling

10.3 Network and Socket Object
Labeling

10.4 System V IPC

10.5 Miscellaneous Object Labeling

10.6 Initial Security Identifiers

10.7 Exploring Object Labeling with
Apol

10.8 Summary

Exercises

page 206

page 208

page 221

page 228

page 228

page 230

page 233

page 235

page 236

For the SELinux policy to work, all object instances must be labeled with a
security context. In this chapter, we discuss the various means of applying

security contexts to object instances, including how security contexts are
assigned when objects are created and the later modification of those labels
(called relabeling).

10.1. Introduction to Object Labeling

All objects in SELinux have an associated security context from the time they
are created until they are destroyed. This property is central to the ability of
SELinux to enforce access control. For example, let's look at the security
context of a file we first discussed in Chapter 2, "Concepts:"

ls -Z /etc/shadow
-r------- root root system_u:object_r:shadow_t shadow

This example demonstrates the program ls displaying the security context for
the file /etc/shadow. The security context associated with an object, in this case
system_u:object_r:shadow_t, is the only attribute SELinux uses in access control
decisions. Therefore, it is fundamentally important that this and all objects
have the correct security context assigned to them.

Until this point, we have generally discussed objects with the assumption that
they have a security context, with little or no mention of how that security
context was determined and applied. This reflects the goal that labeling should
not be a normal concern when using an SELinux system. Users and
administrators can use SELinux systems in much the same way they use
standard Linux systems without having to be concerned with security contexts.
In addition, this goal allows nearly all programs to run unmodified on SELinux.

The SELinux policy language includes features, such as type_transition rules for file
and domain transitions, that make labeling decisions automatic and largely
transparent. However, sometimes, like during system administration, policy
development, and system installation, labeling becomes an issue with which
we need to concern ourselves. As policy writers, we must carefully craft
labeling policy statements to ease label management at runtime.

An object is labeled on an SELinux system in four basic ways:

Policy statements The SELinux policy language includes features, such
as type_transition rules, that specify behavior for object labeling decisions.

Hard-coded defaults Most object classes have some type of default
labeling behavior encoded within the object managers. For example, by
default when a process creates a new socket, the new socket has the same
security context as its creating process.

Program-requested labeling For some object classes, SELinux provides
a variety of application programming interfaces (APIs) that allow programs
to explicitly request a label, both for new and existing object instances. For
file-related objects that are stored on filesystems that support labeling,
these APIs are used by SELinux utilities that initialize and repair file labels
(for example, by the rpm package manager when installing the system).

Initial SIDs SELinux has a set of initial security identifiers (initial SIDs)
used to label a few objects and as a failsafe label when an object would
otherwise have a missing or invalid label.

For many objects, a combination of all these behavior types may be used to
determine the label of a new object. Labeling decisions also use information
from the execution environment (for example, the security context for the
process and related object instances) to compute a security context for new
objects. In all cases, the policy must allow the appropriate access for the
labeling to occur. Object labeling behavior usually controls only how object
labeling is attempted and not whether it is allowed.

We have already discussed some of the policy rules (that is, type and role
transition rules) that support labeling decisions in Chapter 2, Chapter 5, "Type
Enforcement," and Chapter 6, "Roles and Users." In this chapter, we discuss
additional policy statements for labeling network-related object classes. As you
will see, these statements are object class-specific and do not apply to all
object classes.

The default labeling behaviors for each object class are hard-coded into the
object managers that implement the classes. These defaults are used in the
absence of relevant policy labeling rules and for those object classes that have
no associated policy labeling rules. The default for most object classes is to
inherit the security context of the creating process and/or containing object.
For example, file-related objects inherit the type of the containing directory, a
hard-coded role (object_r), and the SELinux user of the creating process.

In the remainder of this chapter, we discuss the many ways that a policy
writer must address object labeling.

10.2. File-Related Object Labeling

In SELinux, labeling most often refers to the labeling of file-related objects
because this is the only form of label management that a normal user or
administrator is likely to encounter. Much of the challenge with file labeling
comes from the sheer number of files present on a normal system combined
with the customization of how those files will be stored in the directory
structure. The variety of filesystems available for Linux also contributes to the
complexity. Common filesystems include traditional, native filesystems
intended to store data on hard disks and removable media (for example, ext3

and XFS); non-native filesystems present for compatibility with other systems
(for example, iso9660 and vfat); and in-memory, pseudo filesystems used for
communication between the kernel and userspace (for example, proc and sysfs).

How file-related objects are labeled varies according to the intended purpose
of the filesystem and the specific semantics of how the objects are created,
stored, and used. For example, files stored persistently to hard disk using the
ext3 filesystem are labeled when created and the security context stored with
the file. In contrast, files in the proc filesystem exist only at runtime and must
have their labels generated at runtime instead of stored persistently.

SELinux Mount Options

The context mount option (filesystems mounted with this option are often referred to in
documentation as "mountpoint labeled") overrides the labeling behavior of any filesystem and applies
a single security context to all of the file-related objects it contains. For example, consider the
following mount command:

mount -t nfs -o context=user_u:object_r:user_home_t
 gotham:/shares/homes/ /home/

In this example, the mount option context= user_u:object_r:user_home_t instructs SELinux to apply the
specified security context to all file-related objects in the nfs filesystem mounted on the /home/
directory. The security context specified in the option, user_u:object_r:user_home_t in this example, will be
applied to both existing and new files.

The context mount option works for all filesystems regardless of what labeling behavior they
support or is specified in the policy. For example, filesystems that would normally use extended
attribute labeling, such as ext3, can be mounted using the context option. (Although when mounted
with the context option, new inodes do not receive any SELinux attributes on disk and existing on-
disk inodes are not changed.) This is useful for removable media transferred from non-SELinux
systems.

There are two related filesystem mount options, fscontext and defcontext, that may be used together or
separately instead of the context option. The fscontext option is used to set or override the filesystem
object instance security context (for example, to set the filesystem security context for an ext3
filesystem to something other than the default set for ext3 filesystems in the policy). The defcontext
option is used to override the default file security context for a given filesystem. (The default file
security context for filesystems is normally the file initial SID, which is explained later in this
chapter.)

The standard nosuid mount option, besides negating standard Linux setuid/setgid behavior, also changes
the behavior of SELinux for files on a filesystem. The nosuid option disables SELinux security context
transitions for files labeled with enTRypoint types on the filesystem. It is possible to use the context
mount option to achieve the same effect (that is, force all files to be labeled with an untrusted type),
but the nosuid option is another good choice.

SELinux supports four kinds of labeling for file-related objects to address the
various types of filesystems: extended attribute, task-based, transition-based,
and generalized security contexts. The primary difference between these
mechanisms is how SELinux determines the initial label of inodes for the
filesystem. Security-extended attribute labeling also stores security contexts
persistently to disk. Table 10-1 lists the filesystem labeling mechanisms and
the filesystems that use each labeling mechanism on a Fedora Core 4 (FC4)
system.

Table 10-1. Kinds of Filesystem Labeling Mechanisms and
Associated Filesystems

Labeling
Mechanism Filesystems

Extended
attributes ext2, ext3, xfs, jfs, reiserfs

Task-based pipefs, sockfs

Transition-
based devpts, tmpfs, shm, mqueue

Generalized

proc, rootfs, sysfs, selinuxfs, autofs, automount, usbdevfs, iso9660, udf,
romfs, cramfs, ramfs, vfat, msdos, fat, ntfs, cifs, smbfs, nfs, nfs4, afs,
debugfs, inotifyfs, hugetlbfs, capifs, eventpollfs, futexfs, bdev, usbfs, nfsd,
rpc_pipefs, binfmt_misc

The kind of labeling is specified per filesystem in the policy using either the
filesystem use statements or the generalized filesystem labeling support
statement, normally called the genfscon statement. The SELinux policy
language supports three filesystem use statements: fs_use_xattr, fs_use_task, and
fs_use_trans, which specify extended attribute, task-based, and transition-based
labeling behaviors, respectively.

The syntax for the all three filesystem use statements is identical (see the
sidebar on page 211). As an example, consider the following fs_use_xattr

statement:

fs_use_xattr ext3 system_u:object_r:fs_t;

This statement indicates that the ext3 filesystem (that is, all instances of ext3 on
the system) will be labeled using security-extended attributes, and the
filesystem object instance associated with all ext3 filesystems will be labeled
with the security context system_u:object_r:fs_t. The filesystem name, ext3 in this
example, is the same as that understood by the kernel and the mount(8)

command. These names are listed in the file /proc/filesystems.

The generalized filesystem labeling support statement (genfscon) specifies both
that the filesystem will use generalized filesystem security context labeling
and how the individual file-related objects in that filesystem are labeled. The
genfscon syntax is more complicated; we describe it later in this section.

Filesystem Use Statements Syntax

The filesystem use statements specify the labeling mechanism to be used for a kind of filesystem.
The filesystem use statements begin with one of three keywords, which are marked in brackets.
There can be only one filesystem use statement for each filesystem. The full syntax of the
statements are as follows:

[fs_use_xattr | fs_use_task | fs_use_trans] fs_name fs_context

fs_name

The name of the filesystem that will use the
specified labeling mechanism (for example, ext3).
The filesystem names are the same as those
understood by the kernel and mount(8) command
and are listed in /proc/filesystems.

fs_context The security context for the filesystem object
instance associated with this filesystem.

The fs_use_xattr statement indicates that the filesystem will provide security context information
(through its getxattr(2) method) using extended attributes. The fs_use_task statement indicates that the
filesystem will use task-based labeling behavior, and the fs_use_trans statement indicates that the
filesystem will use transition-based labeling behavior. The filesystem implementation must support
the labeling behavior when using fs_use_xattr. (In the other cases, SELinux handles the labeling.)

The filesystem use statements are valid only in monolithic policies and base loadable modules. They
are not valid in conditional statements or non-base loadable modules.

10.2.1. Extended Attribute Filesystems (fs_use_xattr)

Most native, disk-based Linux filesystems use extended attribute labeling. This
labeling mechanism extends the standard extended attribute mechanisms to
support setting, retrieving, and storing the security contexts associated with
all file-related objects. (See the sidebar on page 212 for more details.)
Filesystems that use this labeling mechanism support program-requested
labeling and, when stored to persistent media, preserve the security contexts
across reboots.

More on Security Contexts Using Extended Attributes

File-related resources stored in native Linux filesystems typically have important information about
the resource, such as ownership and access mode, stored in a special data structure called an inode.
In recent versions of Linux, additional information is associated with inodes in the form of extended
attributes. Extended attributes, which store the additional information as name/value pairs, are used
for storing system information, such as access control lists (ACLs), or other data required by some
application or service. SELinux uses extended attributes to store the security context of all file-
related objects.

The name portion of extended attributes is divided into multiple namespaces to allow different kinds
of data to easily coexist. SELinux uses the security namespace, denoted by the prefix security., to
store security contexts. This namespace is intended to be shared by all Linux Security Module (LSM)
modules, so SELinux uses the name selinux to store the security contexts in the security namespace.
To illustrate, let's directly examine the extended attributes of a file on SELinux:

getfattr -n security.selinux /etc/shadow
file: etc/shadow
security.selinux="system_u:object_r:shadow_t\000"

As you can see, the security context is stored directly as a string. Indeed, examining the extended
attribute is how the ls -Z command displays security contexts for file-related objects. We recommend
always using the libselinux API (for example, getfilecon(3)) instead of using the extended attribute API
directly because the storage of the security context may change over time.

10.2.1.1. Labeling Behavior for Extended Attribute Filesystems

Labeling decisions for extended attribute filesystems use a combination of
policy rules and security context inheritance. By default, all new file-related
objects inherit the type of the containing directory and the user of the creating
process. The role is always set to the special object role object_r. If a type_transition

rule matches the type of the creating process and the type of the directory
that will contain the new object, the default type specified in that rule will be
used for the type of the new file-related object. The rest of the security
context is set in the same way as if there were no type_transition rule.

Program-requested labeling allows processes to request a specific security
context for a new file using the setfscreatecon(3) library call. In this situation, the
object will be created with the requested security context unless the process
lacks the required access. Normally, only applications that extend SELinux or
are an SELinux utility (that is, so-called SELinux-aware applications) use this
feature; files created by standard applications receive the correct security
context through the automatic labeling decision described previously.

In addition to setting security contexts on creation, file-related objects can be
relabeled for extended attribute labeled filesystems. This is done with the
setfilecon(3), lsetfilecon(3), and fsetfilecon(3) library calls. Explicitly changing the label of an
object requires appropriate relabelfrom and relabelto permissions, which should be
tightly controlled by the policy. (See the sidebar on page 213 for more
information.)

Policy Control of Object Labeling

The ability to change the security context of an object is a powerful privilege. Recall from Chapter 4,
"Object Classes and Permissions," that the policy controls changing of types on file-related objects
with relabelfrom and relabelto permissions for most object classes. The relabelfrom permission controls the
starting type for the object, and the relabelto permission controls the resulting type; a domain must
have both permissions to successfully relabel an object. For example, consider the following allow
rules:

allow user_t user_home_t : file { relabelfrom };
allow user_t httpd_user_content_t : file { relabelto };

These allow rules state that a process with the type user_t is allowed to relabel files from the type
user_home_t to the type httpd_user_content_t.

The relabelto and relabelfrom permissions control only changes to the type of the object. We saw in
Chapter 7, "Constraints," that changing the user and role portions of security contexts can be
controlled by constraints. For example, consider the following constraint:

constrain file { create relabelto relabelfrom }
(u1 == u2 or t1 == privowner);

This constraint states that when a process requests create relabelto, or relabelfrom permission on a file, the
user portion of the security context must match that of the process or the process type must have
the privowner attribute.

10.2.1.2. Managing Security Contexts in Extended Attribute Filesystems
(File Contexts)

The labeling of file-related objects using extended attributes differs from the
other filesystem and most other nonfile object classes. The security contexts
using extended attributes are initialized, normally during installation with a
package manager such as rpm, using runtime labeling requests. The runtime
labeling requests are directed by one or more configuration files, called file
context files, which list paths, or partial paths, and security contexts. The file
context files are not included directly within the policy but are stored with it on
the filesystem in a standard location (see Chapter 13, "Managing an SELinux
System"). By using the appropriate file context files for a policy, the file-
related object security contexts can be correctly initialized based on path
name. Initialization puts the system in a known, secure state. After
initialization, the automatic labeling decisions take over and ensure that any
files created subsequently are correctly labeled and a secure state is always

maintained.

This label management strategy is used to separate the policy, which deals
primarily with types and security contexts, from path names and filenames.
This strategy has several advantages. First, the layout of filesystems can vary
greatly because of differences between distributions or user customization. By
removing this aspect of variability from the policy, a single policy can be more
easily adapted to multiple systems.

More important, in native Linux filesystems, file-related objects are not
uniquely identified by a single path name. Hard links, chroot environments,
and per-process filesystem namespaces all mean that a single file-related
object could be identified by several path names. If the policy were enforced
within the kernel using path names directly, there would be no way to
determine which of these names was the correct one to use, possibly leading
to a process having different access to the same object depending on how the
access was attempted. For this reason, SELinux associates the security context
directly with the object and uses only paths to initialize the security context.
Only if initialization occurs when the system is in a protected, known-secure
state (for example, during installation) is it safe from this ambiguity.

The format of a line in the file context files is a regular expression
representing one or more file-related object paths, an optional object class
specification, and a security context. For example, consider the following
portion of a file context file:

1 /bin(/.*)? system_u:object_r:bin_t
2 /bin/tcsh -- system_u:object_r:shell_exec_t
3 /bin/bash -- system_u:object_r:shell_exec_t
4 /bin/bash2 -- system_u:object_r:shell_exec_t
5 /bin/sash -- system_u:object_r:shell_exec_t
6 /bin/d?ash -- system_u:object_r:shell_exec_t
7 /bin/zsh.* -- system_u:object_r:shell_exec_t
8 /usr/sbin/sesh -- system_u:object_r:shell_exec_t
9 /bin/ls -- system_u:object_r:ls_exec_t
10 /boot(/.*)? system_u:object_r:boot_t
11 /boot/System\.map(-.*)? system_u:object_r:system_map_t
12 /dev(/.*)? system_u:object_r:device_t
13 /dev/pts(/.*)? <<none>>
14 /dev/cpu/.* -c system_u:object_r:cpu_device_t
15 /dev/microcode -c system_u:object_r:cpu_device_t
16 /dev/MAKEDEV -- system_u:object_r:sbin_t
17 /dev/null -c system_u:object_r:null_device_t
18 /dev/full -c system_u:object_r:null_device_t

19 /dev/zero -c system_u:object_r:zero_device_t

This example specifies how the files in the /bin/, /boot/, and part of /dev/ directories
should be labeled. For example, line 3 is a simple entry that matches the
filename /bin/bash and specifies that it should be labeled with the security context
system_u:object_r:shell_exec_t. The object class specification is in this case, which means
a regular file. The object class specifications are the same as those understood
by the command find(1).

When processes query the file contexts, files using the matchpathcon(3) library call
to match the name of a file-related object, the most specific entry is always
used. For example, line 1 has a regular expression that will match all files in
the /bin/ directory. If there is no object class specifier, as is the case in line 1, it
will match all file-related objects. Lines 2 through 9, however, have regular
expressions that are more specific and will match some files in the /bin/

directory. When the match for /bin/bash is requested, line 3 will match because it
is an exact match. The file /bin/dd, however, has no more specific match than
line 1.

Line 13 uses the special <<none>> syntax to specify that file-related objects that
match this entry should not be labeled. This is used for files that must be
labeled at runtime. Entries with <<none>> are used to prevent other, more
general regular expressions from matching and causing the file-related objects
to be labeled.

Many different utilities and applications use file contexts files, often during
policy development and system administration. Chapter 13 describes these
tools and their intended use.

10.2.2. Task-Based Filesystems (fs_use_task)

With task-based labeling, new file-related objects inherit their security context
from the creating process. Filesystems that use task-based labeling do not
support program-requested labeling. This type of labeling behavior is useful for
simple pseudo filesystems that are not truly intended to store user data but
rather are designed to support certain kinds of kernel resources such as
unnamed pipes. For example, consider the following fs_use_task statement:

fs_use_task pipefs system_u:object_r:fs_t;

This statement specifies that the pipefs filesystem uses task-based labeling and
that the security context for the filesystem object for pipfs is system_u:object_r:fs_t.

The pipefs filesystem is a good example of a filesystem that uses task-based
labeling. This filesystem is a pseudo filesystem used to implement unnamed
pipes. Unnamed pipes, created with the pipe(2) system call, are by their very
nature not associated with a file in a user-space visible filesystem. Despite
this, communications over pipes is done using standard read and write system
calls on file descriptors. The Linux implementation, therefore, uses a special-
purpose filesystem called pipefs that is not visible to userspace. The filesystem is
mounted and used by the kernel internally and labeled using task labeling.

10.2.3. Transition-Based Filesystems (fs_use_trans)

Transition-based filesystem labeling is similar to task-based labeling. Both are
normally used for simple pseudo filesystems. However, instead of using the
security context from the creating process, transition-based labeling sets the
security context of file-related objects based on type transition (type_transition)
rules.

Type transition rules for transition-based labeling are subtly different from
those for the more common extended attribute mechanism. On extended
attribute labeled filesystems, labeling decisions use the security context of the
creating process and the containing directory. For transition-based labeled
filesystems, the type_transition rules use the security context of the creating
process and the security context of the associated filesystem object instance for
the filesystem. No provision exists for basing the security context of a new
object on the context of the containing directory; the security context is
always based on the type of the associated filesystem object. If there is not a
relevant type_transition rule, the security context defaults to that of the filesystem

object.

Consider the following filesystem use statement:

fs_use_trans devpts system_u:object_r:devpts_t;

This statement specifies that the devpts filesystem uses transition-based
labeling. The security context for the devpts filesystem object is specified as

system_u:object_r:devpts_t.

As mentioned previously, transition-based labeled filesystems use type_transition

rules to derive the type for file-related objects. For example, consider the
following type transition rule:

type_transition sysadm_t devpts_t : chr_file sysadm_devpts_t;

This rule states that when processes with the type sysadm_t create objects of
chr_file class in filesystems labeled devpts_t, the resulting object should be labeled
sysadm_devpts_t. The implied object class for the target of this type transition is
filesystem rather than dir because this type transition will apply to the creation of
objects in a transition-based filesystem regardless of the directory type. If
there is no appropriate type_transition rule, any objects created on this filesystem
will have the filesystem security context.

10.2.4. Generalized Security Context Labeling (genfscon)

The generalized security context statement (genfscon) is used for runtime
labeling of pseudo filesystems, such as proc or sysfs, and legacy filesystems that
do not support extended attributes. Unlike the other filesystem labeling
mechanisms discussed so far, which require modification of the kernel
filesystem code, genfscon labeling, at least in a limited form, can be used with
unmodified filesystems.

The genfscon statement specifies both the labeling mechanism for the filesystem
and the labeling for the file-related objects stored in the filesystem. There are
two forms of genfscon statements: a full form that specifies fine-grained labeling
for file-related objects and a limited form useful for legacy filesystems.

10.2.4.1. Fine-Grained Labeling with genfscon Statement

Consider the following example of the full-feature genfscon statements for the proc

filesystem:

1 genfscon proc / system_u:object_r:proc_t
2 genfscon proc /kmsg system_u:object_r:proc_kmsg_t
3 genfscon proc /kcore system_u:object_r:proc_kcore_t
4 genfscon proc /mdstat system_u:object_r:proc_mdstat_t

5 genfscon proc /mtrr system_u:object_r:mtrr_device_t
6 genfscon proc /net system_u:object_r:proc_net_t
7 genfscon proc /sysvipc system_u:object_r:proc_t
8 genfscon proc /sys system_u:object_r:sysctl_t
9 genfscon proc /sys/kernel system_u:object_r:sysctl_kernel_t
10 genfscon proc /sys/net system_u:object_r:sysctl_net_t
11 genfscon proc /sys/vm system_u:object_r:sysctl_vm_t
12 genfscon proc /sys/dev system_u:object_r:sysctl_dev_t
13 genfscon proc /net/rpc system_u:object_r:sysctl_rpc_t
14 genfscon proc /irq system_u:object_r:sysctl_irq_t

As these example statements show, the genfscon statement syntax requires the
name of the filesystem, a full or partial path name (relative to the root of the
filesystem), and a security context. The full syntax for the genfscon statement
can be found on page 220.

These example genfscon statements show that there can be multiple genfscon

statements for the same filesystem. For filesystems that support this full form
of the genfscon statement, the multiple statements are used to specify fine-
grained labels for file-related objects. When multiple genfscon statements are
present, the security context for file-related objects is determined by matching
the genfscon statement with the most specific partial path name and using the
security context from that statement.

For example, assume that the proc filesystem is mounted at /proc (the standard
location). Using these example genfscon statements, the file /proc/filesystems would
match the statement on line 1 and receive the security context
system_u:object_r:proc_t. Similarly, the directory /proc/sys/kernel/ would match the genfscon

statement on line 9 (with the partial path /sys/kernel) and be labeled
system_u:object_r:sysctl_kernel_t.

All filesystems that use genfscon labeling include at least one genfscon statement
with / as the partial path. The security context in this genfscon statement is used
to label the filesystem object associated with the filesystem in addition to
being the default security context for all file-related objects stored in the
filesystem. In the preceding example, the filesystem object for proc would
receive the security context system_u:object_r:proc_t.

Labeling PID Files in Proc

The proc filesystem contains files and directories representing every active process on the system.
These files and directories, which are contained in a directory named with the process ID (PID) of
the process, can be used to get or set properties of the process preferably through libselinux calls (for
example, getcon(3), setcon(3)). The PID directory and all the files and directories that it contains receive
the same security context as the process that they represent.

For this reason, it is not uncommon to see rules such as the following:

allow apache_t self : dir { read getattr search };
allow apache_t self : file { read getattr write };

Rules such as these allow a domain, apache_t in this example, access to the files and directories
representing it.

10.2.4.2. Legacy Filesystem Labeling with the genfscon Statement

As mentioned previously, genfscon can be used in two ways. Before examining
the more limited form of this statement intended for legacy filesystems, let's
examine some properties of the proc filesystem that make it work well with the
full genfscon statement. This will help you understand why other filesystems
cannot use the features. These properties concern how file-related object
naming is handled on a Linux system.

First, the names of all the files and directories that can appear in the proc

filesystem are well known and consistent across systems, with the exception of
the files and directories representing active processes. For example,
/proc/sys/kernel/hostname is always a file that is used to get or set the host name.
Although the location of important files is often known for other filesystems
(for example, /etc/shadow), the location is seldom known relative to the filesystem
mount point and, more important, it is seldom the case that the security
properties of all of the file-related objects can be determined by the path.

Second, file-related objects are uniquely identified by path name in the proc

filesystem, and the kernel can easily determine this absolute path in all
circumstances. The proc filesystem does not support the concept of hard links.
This means, for example, the object identified by the path /proc/sys/kernel/hostname is
never identified by any other path.

Together these properties make the proc filesystem suitable for labeling based
on path name, as is done by genfscon labeling. Very few filesystems exhibit these

properties, making labeling by path name not only difficult but potentially
dangerous, as discussed previously.

We use the limited form of genfscon for labeling many legacy filesystems,
including many that do not exhibit the same properties as proc. To handle
filesystems that cannot be safely labeled by path name, we set a default label
using the genfscon statement for the filesystem and all the file-related objects in
that filesystem. We do this with a single genfscon statement for the entire
filesystem. For example, consider the following genfscon statements:

genfscon vfat / system_u:object_r:dosfs_t
genfscon msdos / system_u:object_r:dosfs_t
genfscon fat / system_u:object_r:dosfs_t
genfscon ntfs / system_u:object_r:dosfs_t

These genfscon statements for the vfat, msdos, fat, and ntfs filesystems set the
security context for the associated filesystem objects and all the file-related
objects stored in the filesystems to system_u:object_r:dosfs_t.

Generalized Security Context Statement (genfscon)

The generalized security context statement (genfscon) specifies the labeling mechanism to be used for
a filesystem and the labeling for file-related objects stored in the filesystem. There can be multiple
genfscon statements for each filesystem. The full syntax of the statement is as follows:

genfscon fs_name partial_path context;

fs_name

The name of the filesystem that will use genfscon
labeling (for example, proc). The filesystem names
are the same as those understood by the kernel
and mount(8) command and are listed in
/proc/filesystems.

partial_path

A partial path relative to the mount point of the
filesystem. (For example, for a filesystem
mounted at /proc, the partial path / TRanslates to
/proc at runtime.) If multiple genfscon statements
are specified for a filesystem, file-related objects
are labeled using the security context from the
statement that includes the partial path that
most closely matches the path to the file-related
object.

context

A security context used to label file-related
objects that most closely match this genfscon
statement. For genfscon statements with the
partial path of /, this security context is also
used to label the filesystem object associated
with the filesystem.

The genfscon statement is valid only in monolithic policies and base loadable modules. They are not
valid in conditional statements and non-base loadable modules.

10.3. Network and Socket Object Labeling

Network and socket objects are labeled using policy statements and initial
SIDs; there is no mechanism for program-requested labeling. We use several
policy labeling statements to label network and socket objects. Table 10-2 lists
all the network and socket-specific labeling statements and the relevant object
classes.

Table 10-2. Network and Socket-Related Object
Labeling Mechanisms

SELinux
Policy
Statement

Linux Resources and SELinux Object Classes

netifcon Network interfaces: netif

nodecon IP addresses representing network hosts: node

portcon
Network sockets: tcp_socket (name_bind, recv_msg, and send_msg
only), udp_socket (name_bind, recv_msg, and send_msg only), and
rawip_socket (recv_msg and send_msg only)

10.3.1. Network Interface Labeling (netifcon)

Network interfaces are labeled with the network interface security context
statement (netifcon) or with the netif initial SID. For example, consider the
following statement:

netifcon eth0 system_u:object_r:netif_t
 system_u:object_r:packet_t

This statement provides the security context for the network device eth0 as
system_u:object_r:netif_t (that is, the first security context) and the default label for
packets received on this interface as system_u:object_r:packet_t (that is, the second
security context). The default packet label is not currently used and is awaiting
support for per-packet labeling. The full syntax for the netifcon statement is

shown in the sidebar on page 146. The network interface name, eth0 in this
example, is the same interface as understood by the ifconfig(8) command.

Note

Per-packet labeling, which allows finer-grained control over
networking, was part of the initial implementation of SELinux but
was not included when SELinux was merged into the Linux kernel
as an LSM module. There was concern over the invasiveness and
performance impact of many of the fine-grained network controls,
particularly those that would result in additional access checks on
the processing of every packet. As a result, some SELinux network
controls, such as per-packet labeling, were not included. Work is
ongoing to re-create these features in a way acceptable to the
Linux kernel community leveraging other technologies such as
Netfilter and IPsec.

Any network interface that is not labeled with a netifcon statement is labeled with
the netif initial SID security context.

Network Interface Security Context (netifcon) Statement

The network interface security context statement is used to label netif object instances. The full
syntax for the statement is as follows:

netifcon interface if_context packet_context

interface
The name of the network interface to label (for
example, eth0). The interface names are the same
as those understood by the ifconfig(8) command.

if_context The security context for the netif object instance
associated with the specified network interface.

packet_context
The default security context for packets received
on the specified network interface. This is
currently unused.

The netifcon statement is valid only in monolithic policies and base loadable modules. They are not valid
in conditional statements and non-base loadable modules.

10.3.2. Network Node Labeling (nodecon)

Node objects are labeled with the node security context statement (nodecon) or
the node initial SID. The nodecon statement labels node objects by subnet and
network mask. Recall from Chapter 4 that the node object class represents
network nodes by IP address. For example, consider the following statement:

nodecon 127.0.0.1 255.255.255.255 system_u:object_r:node_lo_t

This statement indicates that all nodes with the IPv4 address 127.0.0.1 and the
subnet mask 255.255.255.255 (that is, exactly one host, 127.0.0.1 or localhost) are labeled
with the security context system_u:object_r:node_lo_t. The full syntax for the nodecon

statement can be seen in the sidebar on page 148.

The nodecon statement supports IPv4 addresses, like the example above, and

IPv6 addresses. For example, consider the following statement:

nodecon ::1 ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff system_u:object_r:node_lo_t

This nodecon statement is the IPv6 equivalent of the previous IPv4 example for
specifying localhost.

The nodecon statement supports inexact matches in addition to exact matches.
For example, the following statement matches an entire subnet:

nodecon 192.168.0.0 255.255.255.0 system_u:object_r:node_intranet_t

The example statement above would match all hosts on the 192.168.0.0 subnet for
a Class C network.

Node security context statements are automatically ordered by the policy
compiler so that more specific statements are matched first, similarly to how
genfscon statements work. This convention allows the policy to contain nodecon

statements with overlapping IP address ranges and resolve the conflicts
naturally. For example, consider a policy with the following statements:

nodecon 192.168.0.0 255.255.0.0 system_u:object_r:node_intranet_t
nodecon 192.168.1.0 255.255.255.0 system_u:object_r:node_webserver_t

In this example, the nodecon statement with the partial IP address 192.168.0.0 is
more general than a statement with the partial IP address 192.168.1.0. The
automatic node security context statement ordering ensures that all addresses
in the 192.168.1.0 subnet (for example, 192.168.1.100) will match the second
statement and receive the type webserver_t while all other addresses in the
192.168.0.0 subnet (for example, 192.168.2.1) will match the first statement.

The currently available policies do not make extensive use of node labeling,
generally labeling only localhost and all other nodes. For example, these
statements are representative of the IPv4 nodecon statements for most general-
purpose policies:

nodecon 127.0.0.1 255.255.255.255 system_u:object_r:node_lo_t
nodecon 0.0.0.0 255.255.255.255 system_u:object_r:node_inaddr_any_t

This strategy is used to remove the need for customizing the policy based on
local network settings. Many custom-built policies for specific applications tend
to reengineer the network policy to afford better control of the network.

All nodes without a matching nodecon statement are labeled with the node initial
SID security context.

Node Security Context Statement (nodecon)

The node security context (nodecon) statement labels node object instances. The full syntax for the
statement is as follows:

nodecon subnet netmask context

subnet An IP address or subnet (for example, 127.0.0.1 or
192.168.0.0). This can be an IPV4 or IPv6 address.

netmask
The network mask for the subnet. The network
mask must match the protocol version of the
subnet.

context
The security context for the node object
instance that represents the specified subnet
and netmask.

The nodecon statement is valid only in monolithic policies and base loadable modules. They are not
valid in conditional statements and non-base loadable modules.

10.3.3. Network Port Labeling (portcon)

Socket objects representing ports are labeled with the port security context
statement (portcon) or the port initial SID. The portcon statement labels ports based
on protocol and port number or range. For example, consider the following
statement:

portcon tcp 80 system_u:object_r:http_port_t

This statement shows that the portcon statement syntax requires the protocol (tcp

or upd), the port number or range, and a security context. Notice that the
statement does not end in a semicolon. The full syntax for the port security
context statement is in the sidebar on page 150. The above statement labels
the TCP port 80 with the security context system_u:object_r:http_port_t.

It is common for portcon statements to overlap when using port ranges. For
example, consider the following statements:

portcon tcp 80 system_u:object_r:http_port_t
portcon tcp 1-1023 system_u:object_:reserved_port_t

Both of these portcon statements match TCP port 80. In the case of overlap, the
first matching statement is used. In this example, TCP socket objects
associated with network port 80 would receive the security context
system_u:object_r:http_port_t, whereas any other port between 1 and 1023 would
receive the security context system_u:object_:reserved_port_t. This method of resolution
makes policy maintenance simpler by allowing the insertion of a broad labeling
statement that can be overridden over time by inserting more specific
statements. When a new, specific statement is inserted the original initial
statement does not need to be changed.

Unlike the nodecon statements, which are ordered by specificity, the portcon

statements are matched in the order specified in the policy. This means that it
is possible to order portcon statements in a way that a statement would never be
matched. In this case, the policy compiler issues a warning.

Network ports that do not match any portcon statements are labeled with the port

initial SID.

What may not be clear from our discussion of the portcon statement so far is
what objects are actually being labeled. You might have noticed from Chapter
4 that there is no object class specifically for ports. Permissions relating to
ports are access checks against socket objects labeled with the port type. The
socket object instance used to check port permissions is distinct from the
socket object instance used for communication by the process, which is labeled
with the type of the creating process.

For example, assume that TCP port 80, which is normally used for HTTP traffic,
is labeled http_port_t. Allowing a process of type httpd_t to receive TCP data on this
port would require permission on a TCP socket labeled with the process type
and permission on a TCP socket with the type http_port_t. To illustrate, the rules
to allow only the receipt of the TCP data (via the recv_msg permission on the
tcp_socket object class), would look like the following:

allow httpd_t self : tcp_socket recv_msg;
allow httpd_t http_port_t : tcp_socket recv_msg;

These rules clearly show the two tcp_socket object instances. Table 10-2 shows
which permissions on which socket object classes are checked on objects
labeled with the port type.

Port Security Context Statement (portcon) Syntax

The port security context statement (portcon) labels network ports based on protocol and port
number or range. The full syntax for the statement is as follows:

portcon protocol port_num context

protocol The network protocol (tcp or udp).

port_num
A port number or range (for example, 80 or
11023). If multiple statements overlap, the first
matching statement is used to label the port.

context The security context for the socket object
instances associated with the port.

The portcon statement is valid only in monolithic policies and base loadable modules. They are not valid
in conditional statements and nonbase loadable modules.

10.3.4. Socket Labeling

Sockets created by processes using the socket(2) system call inherit their security
context from the creating process. Sockets used to check the permissions
associated with ports are discussed above with the portcon statement.

For example, a process with the security context system_u:system_r:httpd_t would
create sockets with the same security context. This means that to allow this
domain type to send and receive using a TCP socket, an allow rule similar to the
following would be required:

allow httpd_t self : tcp_socket { read write send_msg recv_msg };

This example illustrates how the TCP socket object is labeled; additional
permissions are required for realistic usage of sockets. The labeling of all
socket objects created by userspace processes, including local sockets such as

Netlink and UNIX domain sockets, are labeled in this way. Sockets created by
the kernel are labeled with the security context of the kernel initial SID.

10.4. System V IPC

The System V interprocess communication (IPC) objects are, with the
exception of the msg objects, labeled with the security context of the creating
process. For example, if a process with the security context
user_u:object_r:user_xserver_t creates a shared memory segment, the associated shm

object would have the same security context, user_u:object_r:user_xserver_t. This
labeling behavior is the same for the shm, sem, and msgq object classes.

The msg objects are labeled using type_transition rules (see Chapter 5). The rule
uses the type of the sending process and the type of the message queue. For
example, the type of the messages sent on that message queue could be
specified with a type_transition rule, as follows:

type_transition user_t user_xserver_t : msg user_msg_t;

This type_transition rule states that when processes with the type user_t send
messages on a message queue of type user_xserver_t, the message type should be
user_msg_t. Unlike other type_transition rules previously discussed, no provision exists
for a process to explicitly request the type of the message and override the
rule. If there is no matching type_transition rule, the message receives the same
type as the sending process.

Regardless of whether the message receives the type through inheritance or a
type_transition rule, the process must have permission to send messages of that
type. For example, the following allow rule would be required for the example
type_transition rule above:

allow user_t user_msg_t : msg send;

This allow rule states that processes of type user_t are allowed to send messages of
type user_msg_t. Notice that there is no access needed to label the message, only
the ability to send the message. There is no provision for creating messages
without sending. These conditions are all based on the implementation of
System V messages and message queues.

10.5. Miscellaneous Object Labeling

The labeling mechanisms for the remaining object classes (capability, process, security,
and system) are listed in Table 10-3.

Table 10-3. Miscellaneous Object Classes Associated
Labeling Mechanisms

Object Class Labeling Mechanism(s)

capability Inherited from the associated process object

process Inherited from parent process, or set by domain
transition, or dynamic context transition

security SECURITY initial SID

system SYSTEM initial SID

10.5.1. Capability Object Labeling

The capability object class is closely related to the process object class. Not
surprisingly, capability objects have the same security context as the process
with which they are associated. For example, consider the following rule:

allow user_t self : capability dac_override;

This allow rule states that processes of type user_t are allowed to retain the
dac_override capability. The type of the capability object is, by virtue of the self

keyword, the same as the process. There is no policy statement or mechanism
for setting or changing the security context of capability objects.

10.5.2. Process Object Labeling

The labeling of process objects is central to SELinux, because it is the
mechanism for associating the correct access with an application. Chapter 2

contains a lengthy description of the mechanics and concepts of domain
transitions, which are the most important aspect of process labeling. Here we
discuss the other aspects of process labeling.

In Linux, process objects are not created when applications are executed with
the execve(2) system call. Instead, new processes are created by copying another
process using fork(2) or clone(2). New process objects, therefore, inherit the
security context of the creating process to reflect that they have the same
security properties. There is no provision for overriding this labeling decision;
both domain transitions and dynamic security context transitions, which are
the only means to change the security context of a process, can change only
the security context of an existing process.

A domain transition is a change of the process security context on an execve(2)

system call. The security context change can happen automatically as the
result of a type_transition rule or program request through the use of the setexeccon(3)

library call. As always, a change of the security context for a process must be
explicitly allowed by the policy.

We normally focus on changing the process type during domain transition via
the execve(2) system call, but it is also possible to change the user or the role.
Role changes can be automatic, through role transition statements, and both
user and role changes can be program requested explicitly through setexeccon(3).
Changing the user or role of a process is controlled by constraints and role
allow rules, which are covered in Chapters 6 and 7.

A dynamic security context transition is program requested labeling that
changes the security context of an existing process. The change, which is
accomplished with the setcon(3) library call, must be allowed by the policy
through the dyntransition permission. Chapter 5 has more information on dynamic
security context transition, including a discussion of its dangers and our advice
not to use it.

10.5.3. System and Security Object Labeling

The system and security object classes are unique in that there is only ever one
instance for each. The kernel and security initial SIDs are used to label the system and
security object instances, respectively. There is no mechanism for changing the
security context of these objects.

10.6. Initial Security Identifiers

A special kind of default labeling behavior is provided by initial SIDs. Initial
SIDs are used in two circumstances: early in system initialization before the
policy is loaded, and when an object would otherwise have an invalid or
missing security context (that is, as a failsafe label).

Chapter 7 introduced SIDs, which are opaque references to security contexts
used internally by SELinux. Initial SIDs are a set of reserved SIDs used during
system initialization or for predefined objects. Unlike most SIDs, which are
created on demand at runtime when a security context is used for the first
time, initial SIDs are always present in the system. (That is, they are hard-
coded in the SELinux LSM module.) Table 10-4 lists the initial SIDs used in a
FC4 system.

Table 10-4. Example Initial SIDs in FC4

Initial
SID Description

kernel

Applied to all objects created by the kernel (for example,
threads and sockets created by the kernel), the system
object instance, and is used as a default for kernel
resources.

security Applied to the security object instance.

unlabeled Applied to all objects with an invalid security context.

file

Default security context for file-related objects that do not
otherwise have a security context. This is for file-related
objects without security contexts; file-related objects with
invalid security contexts receive the unlabeled SID.

port
Default security context for socket objects associated with
ports that do not have a matching port security context
statement.

netif
Default security context for netif objects associated with
network interfaces that do not have a matching network
interface security context statement.

node
Default security context for node objects associated with
nodes that do not have a matching node security context
statement.

Default security context for proc filesystem system objects.

sysctl These objects are normally labeled via generalized
filesystem security context statements rather than via this
initial SID.

Some objects are labeled via an initial SID early in system initialization, even
before the policy is loaded. This labeling behavior is needed, for example, to
label objects such as the kernel security server and the root filesystem, which
are present in the system before the first policy load. When the policy is
eventually loaded, the initial SIDs are then associated with the appropriate
security context.

Initial SIDs are also used to prevent objects from having a missing or invalid
security context, which would make it impossible for SELinux to correctly
enforce access. Instead, SELinux associates these objects with the special
unlabeled initial SID. The unlabeled initial SID should have a security context that
allows only limited access, thereby preventing inappropriate access until the
objects can be relabeled by the administrator or destroyed.

Invalid security contexts most commonly result from loading a new policy that
removes users, roles, or types, or changes role or type authorizations. In this
situation, the SIDs representing security contexts that use these invalid names
or associations will become invalid and are mapped to the unlabeled SID at policy
load. Invalid security contexts can also arise when transferring object
instances between systems (for example, using removable media). Further, if
the objects are created on a non-SELinux system, they will have no associated
security context. Regardless of whether the security context is invalid or
missing, SELinux will use the unlabeled initial SID on first access to the object as
the security context.

Like object classes, initial SIDs are defined by the kernel and other object
managers in addition to being declared in the policy. The initial SID declaration
statement declares an initial SID for use in the policy. We will not normally
change initial SID statements as a part of policy writing. To illustrate the
syntax, consider the following statement:

sid kernel

This statement declares the initial SID kernel. This statement does nothing more
than reserve the name. Initial SID names are in their own namespace and can
overlap with type, object class, or other policy component names. The full

syntax for the initial SID statement is in the sidebar on page 232.

Initial SID Declaration Statement Syntax (sid)

The initial SID statement (sid) reserves a name for an initial SID. Initial SIDs are defined by the kernel
and other object managers; this statement makes them available to the policy. The full syntax is as
follows:

sid sid_name

sid_name The name of the initial SID. The name may
contain letters or numbers.

The initial SID declaration statement is valid only in monolithic policies and base loadable modules.
They are not valid in conditional statements and nonbase loadable modules.

The initial SID security context statement associates a security context with a
previously declared initial SID. For example, consider the following statement:

sid kernel system_u:system_r:kernel_t

The statement above states that the security context for the initial SID kernel is
system_u:system_r:kernel_t. As you can see, both statements have the same keyword
name (sid), so be careful with the differing syntax. The effect of the initial SID
security context statement is to associate the security context
system_u:system_r:kernel_t with the initial SID kernel, which must be previously declared
with the initial SID declaration statement. The full syntax for the initial SID
security context statement is in the sidebar on page 233.

Initial SID Security Context Statement Syntax (sid)

The initial SID security context statement (sid) associates a security context with a previously
declared initial SID. The full syntax is as follows:

sid sid_name context;

sid_name The name of a previously declared initial SID.

context The security context to associate with this initial
SID.

The initial SID security context statement is valid only in monolithic policies and base loadable
modules. They are not valid in conditional statements and nonbase loadable modules.

10.7. Exploring Object Labeling with Apol

Apol currently has two primary features for understanding object labeling: rule
searching and file security context indexing and searching. We have explored
rule searching in Chapters 5 and 6. Figure 10-1 shows the File Contexts tab of
apol, which is used to create and search indexes of the security contexts for file-
related objects. This allows us to examine how the file-related objects on a
system are actually labeled as opposed to examining the file contexts
specifications, which show how the file-related objects should be labeled. When
trying to understand how a policy will be enforced on a particular system,
information about how file-related objects are actually labeled is essential.

Figure 10-1. File context indexing and searching

[View full size image]

A file contexts index is a snapshot of the security contexts of all of the file-
related objects on a system. This index can be created from apol, using the
Create and Load button, or with the indexcon command (included in the Setools
package). Both tools recursively walk all mounted filesystems, recording the
name, object class, and security context of all file-related objects. After the
index is created (the data is stored in a file), it can be searched using apol or
the searchcon command (also in Setools). The index is stored so that it can be

searched efficiently, unlike searching the actual filesystem. For example,
Figure 10-1 shows the result of searching for all file-related objects with the
type user_home_t. Searching the file context index to find all files with this type
was fast, whereas searching the filesystem would have taken several minutes.
In addition, searching the file context index can be done on a different system
than the one on which it was created.

Searches can be performed on any combination of name, user, object class, or
type. Searching based on role is not supported because all file-related objects
will normally have the special object_r role.

10.8. Summary

An object is labeled in one of four ways: policy statements (for example,
type transition rules), hard-coded object manager defaults, program-
requested labeling, and initial SIDs.

The policy must always contain the appropriate access in addition to any
relevant labeling statements for an object to be successfully labeled.

Labeling decisions often use information from the execution environment
(for example, security context for the process and related object
instances).

File-related labeling behavior is specified per-filesystem using the
filesystem use statements or the generalized security context statement.

Extended attribute labeling is used for most native Linux filesystems and
supports program-requested labeling and persistent storage of security
contexts.

Labels on extended attribute labeled filesystems are managed using file
context files and utilities that read those files.

Task-based and transition-based labeling are used primarily for pseudo
filesystems.

Generalized security context labeling is used primarily for labeling proc and
legacy filesystems.

Network interfaces are labeled by interface name (for example, eth0) using
the netifcon statement.

Network nodes are labeled by IP address and netmask using the nodecon

statement.

Ports are labeled by number using the portcon statement.

Successfully sending or receiving network data often requires permissions
on several socket objects in addition to permission on the relevant node and
netif objects.

System V IPC objects, with the exception of msg objects, receive the
security context of the creating process. Msg objects are labeled based on
type_transition rules or the security context of the creating process.

Processes receive the same security context as their parent. This security
context can be changed through a domain or dynamic context transition.

The capability object has the same security context as the associated
process.

The security and system objects receive the security context of the kernel and
security initial SIDs, respectively.

Initial SIDs are used to label some objects and are a failsafe default to
prevent objects from having a missing or invalid security context.

Exercises

1.

Given a file context file with the following entries, what security context would the files /etc/passwd,
/etc/shadow, and /etc/mtab receive?

/etc(/.*)? system_u:object_r:etc_t
/var/db/.*\.db -- system_u:object_r:etc_t
/etc/\.pwd\.lock -- system_u:object_r:shadow_t
/etc/passwd\.lock -- system_u:object_r:shadow_t
/etc/group\.lock -- system_u:object_r:shadow_t
/etc/shadow.* -- system_u:object_r:shadow_t
/etc/gshadow.* -- system_u:object_r:shadow_t
/var/db/shadow.* -- system_u:object_r:shadow_t
/etc/blkid\.tab.* -- system_u:object_r:etc_runtime_t
/etc/fstab\.REVOKE -- system_u:object_r:etc_runtime_t
/etc/\.fstab\.hal\..+ -- system_u:object_r:etc_runtime_t
/etc/HOSTNAME -- system_u:object_r:etc_runtime_t
/etc/ioctl\.save -- system_u:object_r:etc_runtime_t
/etc/mtab -- system_u:object_r:etc_runtime_t
/etc/motd -- system_u:object_r:etc_runtime_t

2. What is unique about file-related object labeling on filesystems that use extended attribute labeling?

3. Write a portcon statement that would label port 22 with the security context system_u:object_r:sshd_t for TCP.
What is the object class that is labeled by this statement?

4. Write a nodecon statement that would label the system 192.168.1.128 with the security context
system_u:object_r:webserver_t. What object class is labeled by this statement?

Part III: Creating and Writing SELinux Security Policies

 Chapter 11 Original Example Policy page 239

 Chapter 12 Reference Policy page 265

 Chapter 13 Managing a SELinux System page 295

 Chapter 14 Writing Policy Modules page 325

Chapter 11. Original Example Policy
In this chapter

11.1 Methods for Managing the Build
Process

11.2 Strict Example Policy

11.3 Targeted Example Policy

11.4 Summary

Exercises

page 240

page 242

page 261

page 262

page 263

The job of taking all the elements of an SELinux policy and composing a
complete and comprehensive security policy that meets all your security goals
can be difficult if you work with just the raw policy language described in Part
II. In this chapter, we discuss one of the two principal methods (derived from
the original National Security Agency [NSA] example policy) that have evolved
the past several years to allow policy developers to manage the policy build
process.

11.1. Methods for Managing the Build Process

If you have read through Part II, by now you might have concerns about the
practicality of building a complete, comprehensive, and secure SELinux policy.
Certainly an SELinux policy is rich and complex; necessarily so because
SELinux provides fine-grained access control for the rich and complex Linux
kernel and its interactions with the multitude of userspace applications.[1] Fear
not. In this chapter, we discuss ways to manage the entire policy build process,
and methods that the SELinux community has evolved to aide in this process.

[1] When you hear criticism that SELinux is complex, you should view this comment with skepticism. Those who
make this remark are usually implying that Linux is fine, but SELinux adds too much complexity. The reality is that
SELinux simply exposes the complexity that is inherent to Linux. It does not add any. If you truly want to have
comprehensive, strong security for Linux, there is no better option than SELinux. If you are content with partial
solutions that provide incomplete (but simple) security solutions for this complex operating system, perhaps
SELinux may not be to your taste. In any case, as we discuss later in this book, tools and methods are being
developed to manage the complexities of Linux that SELinux exposes, so that you can have comprehensive
security with increasing ease of use.

The methods for building policies are changing and evolving at a rapid pace. In
this chapter, we overview one prevalent means of building policies using the
basic policy language tools and compilers. This kind of low-level policy
development is currently the predominant method for creating and modifying
SELinux policies. Higher-level development methods are being developed, but
none are in practice yet.

The method for building policies we discuss in this chapter, the example policy,
is based on the original example policy released by NSA with the original
SELinux. We discuss another method called the reference policy in Chapter 12,
"Reference Policy." Both of these methods have common low-level
characteristics (for example, a tree of source modules), an organization and
build process, and macros used to provide basic abstractions over the core
language.

The example policy has been evolved through years of community
development far beyond what was originally released by NSA. One of the
principal enhancements has the ability to build both strict and targeted policies
with two different variations of the policy source tree. Both of these example
policy variations share common characteristics and are related to each other.
The strict policy is based on an example policy that is most directly descended
from the original NSA example policy. As its name implies, the strict policy
attempts to provide a domain type for every program that reasonably requires
a private domain. The strict policy has evolved through years of open source
community development and reflects the most extensive collective knowledge

of policy statements.

A challenge with the strict policy is that by trying to be strict, it inevitably
causes breakage with existing Linux applications, which expect looser security
controls. For many users, these annoying application breakages are an
unacceptable tradeoff for increased security. To address this concern, the
concept of a targeted policy was created. A version of a targeted policy is the
default policy released with Red Hat Enterprise Linux version 4 (RHEL4) and
Fedora Core (FC) systems. The purpose of the targeted policy is to allow most
programs to run as if they were not running on an SELinux system. These
programs are called unconfined, and the concept is achieved by creating an
unconfined domain that essentially has access to all types in the SELinux
policy.

In the targeted policy, the more confining rules are focused on a small set of
critical, likely-to-be-attacked programs such as network-facing daemons.
These programs run in restricted domains as in the strict policy. In this way,
the targeted policy has less chance of causing problems with legacy
applications by having fewer programs that have tighter security. With
targeted policy, we do a have less strict security enhancements; for many
system solutions, however, the targeted policy is adequate and a great
improvement over current security practice. The targeted policy is also a nice
way to start using the features of SELinux without having to immediately use
them everywhere.

In the remainder of this chapter, we provide an overview of the key features
and capabilities of the strict and targeted example policy source trees.

Warning

The one area where change is rapid is policies. All the policy build
methods we discuss (strict and targeted example policies in this
chapter and the reference policy equivalents in Chapter 12) are
constantly under development and change. Be aware that the
specific conventions and organization of a policy source tree may
have changed since the time of this book's writing.

11.2. Strict Example Policy

The strict example policy is the longest-lived version of the example policy. It
is largely maintained and updated via the NSA and FC mail lists, but with
contributions from other distributions, too. Both NSA and Red Hat maintain
versions of the strict example policy, which are essentially the same source
tree. You can obtain a version of this policy both from the NSA SELinux project
page (http://selinux.sourceforge.net) or from Red Hat for FC. If your system
has strict example policy sources installed (see Appendix A, "Obtaining
SELinux Sample Policies"), you should be able to see the sources in
/etc/selinux/strict/src/policy/. The examples from earlier in this book are from a version
of the strict example policy. Our overview is based on the FC4 version of the
strict example policy; we encourage you to download the latest versions and
use that as a baseline if you choose to use this policy version.

The strict example policy builds a complete policy source file (policy.conf) using
the source module method described in Chapter 3, "Architecture." Recall that
source modules use a combination of scripts and macros to create higher-level
constructs and produces a single, monolithic policy file (see Figure 11-1).
Source modules make extensive use of macros using m4, which is a flexible and
powerful macro tool.

Figure 11-1. Build and load process for SELinux policy using
the example policy

[View full size image]

http://selinux.sourceforge.net

The strict policy Makefile supports a number of build targets. The command make

policy compiles the entire policy and builds a binary policy file (for example,
./policy.19). This target is useful for building a policy for testing or for installation
on another system. The command make policy.conf constructs a complete policy
source file (./policy.conf) but will not compile the policy source. This is useful if we
want to construct a complete policy source for analysis (for example, using
apol). The command make install builds the binary policy and installs it and all
supporting policy management files. In the case of strict policy, the default
installation directory is in /etc/selinux/strict/. This command installs the new policy
but does not load it into the kernel. You would need to reboot the machine or
use the make load command.

Finally, the make relabel command applies the security contexts to all files in the
system. In general, we would relabel only the entire system during initial
install and/or after we load an entirely new policy.

Note

The primary method for relabeling an entire filesystem is no longer
using make relabel from the policy source tree. Instead, the current
methods of relabeling the entire system are to use either the fixfiles

relabel command or the touch /.autorelabel command and reboot the
systems. These two methods can be done with only the file contexts
configuration installed and not the entire policy source.

11.2.1. Overview of Policy Source File Structure

For this chapter, we examine the strict example policy sources from FC4;
depending on the version of the system you are using, there may be some
differences. All filenames are from the policy source root directory (for
example, /etc/selinux/strict/src/policy). You will find various levels of comments within
each file and the ./README file at the top-level for additional information. In this
section, we give you a guided tour of the key files and directories, along with
insights to their purposes and uses. Our goal is to give you a head start in
understanding the file structure; only experience will allow you to fully
understand them.

11.2.1.1. Object Class and Permission Definitions

As discussed in Chapter 4, "Object Classes and Permissions," object classes and
their associated permission sets are defined in the policy language. For the
example policy, the directory ./flask/ contains these definitions. The Flask
definitions are essentially static for all policies and should not be changed.
Kernel source header files are automatically generated from these files,
because the kernel and the policy must both agree on the set of object classes
and associated permissions. The principal files in this directory are as follows:

./flask/security_classes Declarations of object classes. See Chapter 4.

./flask/access_vectors

Declarations of common permissions, and
association of common and unique permissions
with each object class. See Chapter 4 and
Appendix C, "Object Classes and Permissions."

./flask/initial_sids

Declarations of initial SID identifiers, which are
used to manage default security context labeling.
See ./initial_sid_contexts and Chapter 10, "Object
Labeling."

In addition, this directory also contains several shell scripts that are used to
construct the kernel header files.

Warning

In general, you would not edit any of the files in the ./flask/ directory.
These files must correspond with kernel header files. Unless you
are positive you know what you are doing, which would imply
familiarity with the kernel SELinux Linux Security Module (LSM)
source code, leave this directory alone.

11.2.1.2. Domain Types and Policy Rules

The primary policy modules for an example policy are kept in the ./domains/

directory. There are two files and two subdirectories in this directory:

./domains/admin.te

./domains/user.te

These two files (the .te is for type enforcement) define domain types of user
login sessions. These "user domains" are unlike most other domain types in
that they are not associated with a specific program, but rather are the default
domain types for classes of users. The file admin.te defines the domain type
sysadm_t, which is the most powerful user domain type. Although sysadm_t has
nowhere near the level of privilege, this domain type is the SELinux analogue
to root. The file user.te defines less-privileged user domain types, user_t and staff_t.
Both of these types have limited privileges and are intended for "ordinary
users." The primary difference between the two is that staff_t is able to
transition its role and domain type to the more privileged sysadm_t.

These files also define a number of Booleans that are used to provide runtime
policy configuration options.

./domains/program/

./domains/misc/

These two directories contain the policy source modules for the strict example

policy. The program/ directory is where most of the modules are located, typically
one file per domain type (or set of related domain types). Each policy module
is contained in a .te file. Each module has a separate file contexts file that
identifies how file-related objects should be labeled with security context for
those objects associated with the module's types. We discuss file contexts later
in this chapter.

The misc/ directory contains a small number of modules that are not the typical
domain types (for example, the type for the kernel: kernel_t) and do not have
related .fc (file context) files. There is little difference between the two
directories in terms of functionality; in general, you should add any new
module to the program/ directory.

The ./domains/ directory is organized to support a coarse level of policy
customization. Both policy module directories have an unused/ directory (for
example, ./domains/program/unused for the primary module directory). The .te module
files in those unused directories will not be included in the policy build, nor will
the associated file contexts. Therefore, we can exclude unneeded policy
statements from the policy we build by moving unnecessary policy modules to
the unused/ directory. We examine a policy module later in this chapter.

Warning

Dependencies are not well managed in the example policy.
Therefore, as you move policy modules in and out of the unused
directory, you might find other policy modules that depend upon
the newly used/unused module resulting in build errors.

11.2.1.3. Unaffiliated Resource Types

Besides the policy modules described previously, most of the rest of the type
declarations for a strict example policy are contained in the ./types/ directory.
The files in this directory generally (but not always) just define types and not
rules to access the types. These types are primarily passive objects of the
kernel and key userspace services and are not active domain types. You may
need to change these files, especially if you want to change the policy
associated with certain kernel resources (for example, networking). The files in
this directory are as follows:

[Pages 247 - 248]

./types/device.te

This file defines types for many device special
files, including the default device file type device_t.
Many of the types applied to objects in the /dev/
directory are defined in this file.

./types/devpts.te
This file defines the types for the devpts
filesystem and its root directory (that is, the
filesystem for pseudo terminal devices in Linux).

./types/file.te

This file defines general file-related types,
including unlabeled_t, which is used when the type
of a file-related object is invalid for the loaded
policy and file_t, which is the type used for a file-
related object that has no associated context.
(Both situations indicate a problem with the
policy and/or filesystem labeling.) This file
declares other standard filesystem types, such
as the default types for the /etc/ (etc_t) and /tmp/
(tmp_t) directories.

./types/network.te

This file defines the types for all the network-
related objects (node, network interfaces, ports,
and so on). Many of the reserved network ports
have their own type (ssh_port_t, dns_port_t, smtp_port_t,
and so on). However, in general, you will find the
network policy architecture for the strict example
policy (and most other generic policies) is
designed to allow either most or all networking,
or no networking at all for a given domain type.
You might need to rework this file if you want to
provide greater control of the network (for
example, have types for ranges of nodes and
control access based on IP ranges) or if you
want a multi-interface network configuration (for
example, a router).

./types/nfs.te

Network File System (NFS) is not well supported
in SELinux yet. For example, network contexts
are not passed between SELinux kernels for
NFS-mounted filesystems. This file defines basic
NFS support by defining the nfs_t type, which is
used for all NFS files. In general, NFS does not
currently provide proper support of types and
type enforcement (TE).

./types/procfs.te
This file provides the types for the proc
filesystem (/proc/) including the default type proc_t
and many special purpose proc_*_t types.

./types/security.te

This file defines various types relating to SELinux
and its policy files. The type security_t is the type of
the security object class. Several other types are
defined that are used to protect installed policy

files, and related configuration and source files.

11.2.1.4. Miscellaneous Top-level Files and Directories

At the top-level directory, a number of files capture some of the less-
frequently changed and used policy components. Here we list these files and
the conventions expected for each file:

./assert.te

This file is where all neverallow rules (that is,
invariant assertions) are located for the policy.
See Chapter 5, "Type Enforcement," for more on
assertions.

./attrib.te

This file is where almost all attributes are
declared. Associating attributes with types
happens throughout the policy files, but the
convention is that all attributes are first declared
in this file using the attribute statement. All
attributes should be declared in this file, with
appropriate comments explaining their purposes.
Throughout the rest of the policy files, these
attributes are associated with types and used in
policy rules. See Chapter 5 for more about
attributes.

./constraints
This file is where all non-multilevel-security
(MLS) constraints are defined. See Chapter 7,
"Constraints," on policy constraints.

./macros/

This directory contains a number of files that
have the m4 macros used throughout the policy
modules. These macros provide a level of
abstraction for writing policies. Just about every
policy module uses and calls several of these
macros.

./mls

This file is where all MLS constraints are defined
for a traditional MLS policy and all declaration of
MLS sensitivities, categories, and levels. This file
is included only if you decide to build the optional
MLS features into your policy. See Chapter 8,
"Multilevel Security," for more on the optional
MLS features.

./mcs

This file is an alternative MLS configuration that
primarily uses just the categories, and not the
sensitivities. This file, like the standard MLS
configuration (./mls), is optionally built in to a

policy. As with the MLS configurations, see
Chapter 8 for more information.

./rbac

This file originally contained all role allow rules.
Over time, these rules have migrated throughout
the other policy files. There are usually few such
rules in most policies to date. See Chapter 6,
"Roles and Users," on role declarations and
rules.

./users

This file contains all policy-wide user declarations
for the policy. These are generic user
declarations that are always expected in the
policy. Typically, this file will declare the special
users, system_u and user_u, and root and possibly
other system default users. See Chapter 6 for
more information on users in the policy.

./local.users

This file is a recent enhancement to SELinux
policy management that enables system
administrators to add local users to the policy
without having the policy source files available.
This file will be installed in
/etc/selinux/strict/users/local.users. You can hand-edit the
installed version of this file, and every time the
policy is reloaded, the local user definitions will be
added to the kernel policy.

These files are fairly simple and straightforward in their purpose. You will find
that you will likely change them little if you are just trying to use and adapt
the policy for your application.

11.2.1.5. Security Context Labeling

One of the great challenges with using SELinux, besides writing a good TE
policy, is ensuring that all the various object instances (files, directories, ports,
network interfaces, and so on) are labeled with the correct type for the current
policy. After you have a properly compiled TE policy, many of your debugging
problems will be related to improperly labeled objects. We discussed the
mechanisms and issues for object labeling in Chapter 10. Next we discuss how
object labeling is managed in the strict example policy source files.

Several files in the policy source root directory address some of the security
context labeling for a system, in particular those context labeling statements
that are part of the policy language proper:

./initial_sid_contexts

As discussed previously, initial SIDs are defined
as part of the flask definitions in the ./flask/initial_sids
file. That file simply declares the initial SIDs
available in the policy (which generally you should
not change). The initial_sid_contexts file assigns a
security context to each initial SID. For example,
the initial SID security is used to assign a security
context to the single instance of the security
object class (the type of which should be
security_t). Most of the initial SIDs define default
cases in case there is no explicit labeling
statement. For example, the initial SID port
assigns the default context for port objects (for
example, with the type port_t by default) for those
ports that do not have an explicit portcon
statement in the policy. See Chapter 10 for more
information on initial SIDs.

You could edit this file to change the security
contexts associated with each initial SID.
However, more likely you would enhance other
parts of the policy to have explicit statements to
address your need (for example, by adding more
portcon statements to label additional ports).

./net_contexts

This file contains all the network-related security
context statements (for example, portcon and
nodecon). For example, we saw that the file
./types/network.te declared various types for specific
reserved ports. This file is where you would
assign these types to the ports (for example,
associating a security context with the type
ssh_port_t to TCP port 22).

./genfs_contexts

This file contains all the genfscon statements for
the policy (that is, all the security context
labeling for filesystems that do not support
extended attributes such as proc). For example,
this file would contain the genfscon statement that
labels the procfs filesystem root directory with a
security context containing the type proc_t defined
in the ./types/procfs.te file.

./fs_use
This file contains the various fs_use_* statements
that define how object labeling is handled for
each filesystem type (see Chapter 10).

These files address all object labeling concerns except the most complex issue
(that is, labeling of all the file-related objects for the various disk-based
filesystems). Disk-based object labeling is called file context labeling, as we
discussed in Chapter 10.

To create an initial file context labeling policy, we have the directory

./file_contexts/. This directory contains a number of files that together with the files
in ./file_contexts/misc/ are used to create a complete file contexts file useable to label
and relabel all disk-based filesystems. One directory, ./file_contexts/program/, is
directly related to the similarly named module directory in the ./domains/program/

directory. This directory contains .fc files (fc for file contexts) that have the file
context statements associated with the like named module file from the
./domains/program/ directory. When building a complete file contexts file, only those
.fc files whose associated policy module .te file are currently "used" (that is, not
in the unused directory under ./domains/program/) are included. In this way, you can
manage both the TE file (.te) and the associated security context file (.fc) using
the same method.

The file ./file_contexts/types.fc defines labeling statements not specific to a program
module (for example, how to label file in /etc/). This file is always included in a
strict example policy build. The file ./file_contexts/distro.fc is similar to types.fc except
that it contains configuration options specific to a particular distribution.

The file ./file_contexts/home_dir_template contains file labeling instructions for files and
directories in a user home directory. This file is a template so that users' home
directories can be labeled depending on users' roles. This file is also installed
and used when managing the policy in an operational system (see Chapter 13,
"Managing an SELinux System"). These files, along with the "used" .fc files, are
concatenated during the build process to make a single file_contexts file. This file is
what the setfiles program (and other related programs that use the matchpathcon(3)

library) uses to set and fix disk-based object labels as discussed in Chapter 10.

11.2.1.6. Application Configuration Files

The directory ./appconfig/ contains a set of files that specify security context
information that various services and applications use in running systems.
These files are installed in the operational policy directory (for example,
/etc/selinux/strict/contexts). We discuss the purpose of these files in Chapter 13.

11.2.2. Examining an Example Policy Module

To help understand the strict example policy and how it manages the process
of building a policy, let's examine an example policy module. In particular, let's
look at the policy module for the ping program. A partial listing of this module is
shown in Listing 11-1. You should find a similar module in ./domains/program/ping.te or
./domains/program/unused/ping.te.

Listing 11-1. Policy Module for Ping from the Strict Example
Policy (ping.te)

1 type ping_t, domain, privlog, nscd_client_domain;
2 role sysadm_r types ping_t;
3 role system_r types ping_t;
4 in_user_role(ping_t)
5 type ping_exec_t, file_type, sysadmfile, exec_type;
6
7 # Transition into this domain when you run this program.
8 domain_auto_trans(sysadm_t, ping_exec_t, ping_t)
9 domain_auto_trans(initrc_t, ping_exec_t, ping_t)
10 bool user_ping false;
11 if (user_ping) {
12 domain_auto_trans(unpriv_userdomain, ping_exec_t, ping_t)
13 # allow access to the terminal
14 allow ping_t { ttyfile ptyfile }:chr_file rw_file_perms;
15 ifdef(`gnome-pty-helper.te', `allow ping_t gphdomain:fd use;')
16 }
17
18 uses_shlib(ping_t)
19 can_network_client(ping_t)
20 can_resolve(ping_t)
21 allow ping_t dns_port_t:tcp_socket name_connect;
22 can_ypbind(ping_t)
23 allow ping_t etc_t:file { getattr read };
24 allow ping_t self:unix_stream_socket create_socket_perms;
25
26 # Let ping create raw ICMP packets.
27 allow ping_t self:rawip_socket {create ioctl read write bind getopt
setopt };
28
29 # Use capabilities.
30 allow ping_t self:capability { net_raw setuid };
31
32 # Access the terminal.
33 allow ping_t admin_tty_type:chr_file rw_file_perms;
34 allow ping_t privfd:fd use;
35 dontaudit ping_t fs_t:filesystem getattr;
36
37 # it tries to access /var/run
38 dontaudit ping_t var_t:dir search;
39 ifdef(`hide_broken_symptoms', `
40 dontaudit ping_t init_t:fd use;
41 ')

Notice that lines 4, 8 and 9, 12, 18 through 20, and 22 contain macros rather
than policy language statements. Macros using the m4 macro processor are
common in example policy source files. These macros, some of which we
examine in this chapter, cause several lines of policy language to be included
into the module source file during the policy compile process.

11.2.2.1. Defining Types for a Domain

Lines 1 and 5 define two types, ping_t and ping_exec_t. The type ping_t is the domain
type for the ping program, and the type ping_exec_t is the type associated with the
ping executable file on disk. Having a domain type and associated file executable
type appended with _exec_t is a common convention. As you can see, several
attributes are associated with each type. For example, the attribute domain is
associated with the type ping_t; all domain types have this attribute in the strict
example policy.

Lines 2 and 3 associate the ping domain type with two roles: sysadm_r, which is
the privileged user role; and system_r, which is the role for system processes.
Line 4 also associates the ping domain type with a role, but this time using a
macro in_user_role(). We can find this macro defined in ./macros/user_macros.te, as in the
following:

define(`in_user_role', `
role user_r types $1;
role staff_r types $1;
')

As you can see, this macro associates the domain type with two additional
roles: user_r, which is the role for ordinary users; and staff_r, which is the
unprivileged role for users authorized to change roles to the privileged sysadm_r

role.

Note

M4 macros use string substitution for argument. So, for example, $1

in the macro definition refers to the first supplied argument, $2 to
the second, and so on. As we see in line 4 of the ping module, the
in_user_role macro is invoked with this line:

in_user_role(ping_t)

This invocation provides a single argument ping_t, which is
substituted for $1.

User Roles and Domain Type

In the strict example policy, the three standard user roles (sysadm_r, staff_r, and user_r) have an
associated domain type that defines the privileges of programs that are executed without a domain
transition (which would mean they would continue with the security context and therefore the
domain type of the calling user process). For example, the standard domain type of the role user_r is
user_t. Likewise, for the privileged domain sysadm_r, there is a domain type sysadm_t, which is a fairly
powerful domain type (although nowhere near the power of root in a standard Linux system).

You can examine the policy rules for the unprivileged user domain types (user_t and staff_t) in
./domains/user.te and for the privileged user domain type (sysadm_t) in ./domains/admin.te.

11.2.2.2. Specifying Domain Transition Rules

Now look at lines 8 and 9, where we have two invocations of the domain_auto_trans()

macro. This macro is probably the most common macro in the strict example
policy as it defines the standard rules to allow a domain transition as we
discussed in Chapter 2, "Concepts." You can find the definition of this macro in
./macros/core_macros.te. The actual macro is quite short as it calls another macro,
domain_trans(), which is defined in the same file:

$1 is original domain, $2 is executable file type, $3 is new domain
define(`domain_auto_trans',`
domain_trans($1,$2,$3)
type_transition $1 $2:process $3;
')

The domain_auto_trans() macro grants the necessary permissions to allow a domain
transition (by calling the domain_trans() macro) and makes the transition happen
automatically by default via a type_transition rule.

If we further examine the domain_trans() macro, we see many more rules that
mostly address permissions necessary for interprocess communication (IPC)
between the parent and child process types that results from a domain
transition. However, this macro also contains the three minimally required allow

rules required for a domain transition as discussed in Chapter 2, specifically
the following:

key rules from domain_trans macro
$1 is original domain, $2 is executable file type, $3 is new domain

define(`domain_trans',`
allow $1 $3:process transition; # old domain can trans to new domain
allow $1 $2:file { read x_file_perms }; # # old domain execute file type
allow $3 $2:file entrypoint; # new domain can be entered from file type

remaining domain_trans rules not shown...
')

Notice that the second rule has read and x_file_perms in the permission field.
Although read is a permission for the file object class, x_file_perms is not. Instead, it
is a another type of m4 macro that is replaced with a set of permissions that
generally represent "file execute" permissions. We find this macro defined in
./macros/core_macros.te as follows:

define(`x_file_perms', `{ getattr execute }')

So looking back at lines 8 and 9 from the ping module, we see that the
privileged administrator domain type sysadm_t and the init process script domain
initrc_t both are given access to transition into the ping_t domain, which in effect
means they can run the ping program. These two macros each result in many
policy statements via macro processing as we have illustrated.

11.2.2.3. Conditional Policy Example

Starting on line 10, we see an example of a conditional policy block. Line 10
defines the Boolean user_ping, and lines 11 through 16 contain the conditional
clause that uses this Boolean. In this case, the conditional policy statements
use a Boolean variable to control whether unprivileged user domains are
allowed to use the ping program. This is accomplished primarily via the
conditional call to the domain_auto_trans() macro on line 12. Notice that the
originating domain for the transition is an attribute (unpriv_userdomain) rather than
a type as in lines 8 and 9. This means that all types with that attribute are
given the set of permissions that grant a domain transition into ping_t. There is
no easy way to determine what those types are in the policy source files;
generally, we are expected to know what that attribute represents and expect
that none of the policy source files violate this expectation. The only practical
way to determine the types associated with an attribute is to use the apol tool
discussed earlier in this book.

11.2.2.4. Network and Other Access for Ping

Looking again at the ping module, line 18 invokes a macro that grants the ping_t

domain permissions needed to use and link with shared libraries. Lines 19
through 24 provide various other access the ping domain will need to network
and system resources. Many of these lines invoke macros that you should
explore further at your leisure. For example, take a closer look at line 19 and
the can_network_client() macro, which is defined in ./macros/network_macros.te. Notice that
this macro gives nearly all access to do most types of client networking over
all available network interfaces. This is a coarse level of permission, and
SELinux will allow you to be much more explicit in network control. However,
this type of macro is common in general-purpose policies such as the example
policy (although later versions of the example policy have attempted to
improve this). As you can see lines 20 through 22 and line 27 provide
additional network access over and above what can_network_client() provides. Take
some time to further explore all of these macros.

Tip

To examine what a macro does, you must first find it. The easiest
way to do this is to use grep from the policy macro directory ./macros.
For example, to find the definition of the uses_shlib macro from line 18
of the ping module, do the following:

cd /etc/selinux/strict/src/policy/macros
grep -r uses_shlib * | grep define
global_macros.te:define('uses_shlib','

Let's look at line 30 of the ping module. Here we see the ping_t domain type is
given access to itself using the self keyword for the capability object class. This
object class controls the Linux capabilities; it only ever makes sense to give
domains permissions to itself for this object class. In this case, we are giving
ping_t permission to use the privileged capabilities necessary to perform raw
networking and to use the setuid kernel call to change user IDs (that is, in this
case to change to root).

The remaining allow rules in lines 33 and 34 give the ping_t domain permission to

interact with terminal devices for display of output. Neglecting to provide
access for terminal devices is a common mistake.

11.2.2.5. Audit Rules

Finally, we have a couple examples of dontaudit rules. These rules are used to
mask out access denials we expect that do not prevent ping from functioning. It
is not uncommon for Linux applications to attempt to use more permission
than they need. Rather than grant them this excessive access, it is better to
let the access denial occur, but filter out the resulting audit message using
dontaudit rules so that the audit log is not polluted.

11.2.2.6. File Security Contexts Labeling

The final component of the ping module is the file context statements used to
correctly label the ping-related files and directories. You can find the ping file
contexts in ./policy/file_contexts/program/ping.fc. For example:

/bin/ping.* -- system_u:object_r:ping_exec_t

This file contexts specification causes the setfiles utility to label any file in /bin/

that starts with ping (on our system that includes ping and ping6, both versions of
the standard ping program) with the specified security context which includes
the file executable type ping_exec_t.

11.2.3. Build Options for Strict Example Policy

The strict example policy source tree provides a few basic configuration options
that enable us to control the contents of the kernel policy. These configuration
options allow some control over the content of the resulting policy without
having to write policy statements.

11.2.3.1. Configuring Policy Modules

We can control which policy modules are included in the policy by using the
unused/ directories discussed previously. So, for example, if we did not want the

ping policy module included in our policy, we would move the file ping.te from
./domains/program/ to ./domains/program/unused/. This will prevent ping.te (and the associated
ping.fc) file from being included in the policy build.

You may find yourself removing many modules to customize the policy for
your particular installation. Although extraneous policy modules (that is, for
programs that are not installed) will generally not impact the operation of the
system, it will add memory usage inside the kernel. In some cases (for
example, a Web browser), the absence of a policy is less desirable because the
application would run in the user's domain with more access than it would in a
more restrictive browser domain.

Including unwanted policy modules also creates the risk that software may
accidentally be installed and then have the privilege to run. For example,
suppose we did not want any user to run the ping program, so we did not install
the software, but we forgot to remove the ping policy module. If, at some later
date, we installed a software package that installed its own version of ping

(because it needed it and its installation script saw that it was not installed),
all of a sudden our users have access to ping! If we had removed the ping policy
module in our original policy, when the software package installed its ping

program, users would not be able to use the program because there would be
no domain ping_t defined. (That is, it would likely get a common utility label like
bin_t that would allow users to execute it in their domain, but not in the more
privileged ping_t domain.)

11.2.3.2. Enabling Optional MLS Features

We have mentioned throughout this book the optional capabilities for MLS
policies and the related multicategory security (MCS) configuration that uses
the MLS optional features. By default, the strict example policy configuration
does not enable either of these configurations for the MLS features. To use the
MLS features, the policy must be compiled with a special option to tell the
kernel that MLS is being used. More important, all security contexts must be
extended with the required MLS sensitivities, as discussed in Chapter 8.

The strict example policy Makefile has configuration options to automate these
steps. If you look near the top of the Makefile (./Makefile), you will see the following:

Set to y if MLS is enabled in the policy.
MLS=n
Set to y if MCS is enabled in the policy
MCS=n

Setting either of these flags tells the checkpolicy compiler to build a policy that has
the optional MLS features enabled. When this policy is loaded into the kernel,
this will in turn tell the kernel to use the optional MLS features for access
enforcement. You should not enable both of these options as they are mutually
exclusive.

Enabling either the MLS or the MCS option only builds a policy file that has
MLS enabled. It will not ensure that all the various security context
specifications are extended to include the extended MLS security context
information. The strict example policy comes with make targets that perform a
basic reconfiguration of all security contexts: make mlsconvert and make mcsconvert.
These targets will change all security contexts throughout the policy; however,
the MLS portion of the security context will generally be inadequate for a real
MLS system. More than likely, you will have to build your own file contexts
that label all files, directories, ports, network interfaces, and so on as
appropriate for your MLS applications. For example, make mls will change ping.te to
this:

/bin/ping.* -- system_u:object_r:ping_exec_t:s0

See Chapter 8 for more information on MLS security contexts.

Warning

Using either make mlsconvert or make mcsconvert will permanently change the
security context specifications throughout the example policy
source files. There is no mechanism for returning to the original
state. Therefore, you are advised to make a copy of the source tree
before trying this feature.

Both of these configuration options will set the corresponding MLS=y

or MCS=y option in the Makefile. You do not need to manually set these
options if you use these make targets.

11.2.3.3. Build-Time Tunables

In the directory ./tunables/ are two files, distro.tun and tunable.tun, that allow us to
enable/disable configuration options that are built in to the various policy
modules of the strict example policy. The distro.tun file is used for distribution-
specific configuration options. For example, on our FC4 system, the file
contains the following:

define('distro_redhat')
dnl define('distro_suse')
dnl define('distro_gentoo')
dnl define('distro_debian')

This file indicates that the distro_redhat options are enabled and not the various
other distributions. (dnl is a m4 command meaning "discard up to newline.") The
tunables.tun file has similar options that we can configure to be on or off
controlling more general (that is, nondistribution specific) options.

Throughout the policy modules, statements are included within m4 ifdef clauses
that will or will not be included in the policy depending on whether a tunable is
enabled or disabled. For example, in lines 39 through 41 of the ping module in
Listing 11-1, we have a dontaudit rule included within ifdef('hide_broken_symptoms'), which
is an m4 ifdef statement. If you look in ./tunables/tunable.tun, you see will see this
option and whether it is enabled.

11.3. Targeted Example Policy

The target example policy is derived from the strict example policy, and its
structure and organization are nearly identical. Whereas the strict policy
attempts to make maximum use of all the SELinux power to provide strong
security for most programs, the targeted policy has a goal to isolate high-risk
programs and otherwise make SELinux neutral. The benefit of the targeted
policy is that significant security can be added to a Linux system while
reducing the risk of causing problems with existing user programs. The
targeted policy primarily focuses on network-facing system services (that is,
those components most likely to be attacked by outsiders) and generally
enforces no additional restrictions on local programs and ordinary users. The
targeted policy is the standard policy for RHEL and FC systems because it
strikes a good balance between enhanced security while reducing the risk of
excessive application breakage.

If installed (see Appendix A), we should be able to see the targeted example
policy sources in /etc/selinux/targeted/src/policy/. In most respects, the targeted example
policy source looks exactly like the strict example policy sources so we do not
provide a detailed overview of the targeted file structure. We instead highlight
the differences.

The primary difference between strict and targeted example policies is the use
of the unconfined domain type (unconfined_t) and removal of any other user
domain type (for example, sysadm_t, user_t). This also means the basic role
structure of the strict example policy is removed (all users run as system_r) and
that nearly all user-run programs execute with the unconfined_t domain type.

We can find the unconfined domain defined in ./domain/unconfined.te. Notice that in
the targeted example policy, the strict policy files admin.te and user.te are no
longer present in ./domains/. These files define the various user domains for the
strict example policy, each of which has limited privilege. In targeted example
policy, all programs run with unconfined_t domain type unless they are specifically
"targeted" (hence the name). The unconfined domain essentially has access to
all SELinux types, making it largely exempt from the SELinux security controls
(hence "unconfined").

This leads to the next major difference between strict and targeted policies
(that is, the targets themselves). In the strict example policy, ./domains/program/

contains many policy modules, each of which represents one or more domain
types and associated types and rules for specific programs. In the targeted
example policy, this directory contains a smaller set of files; these are the
targets.

The target example policy modules are similar to the policy modules in strict
policy. For example, we should find the strict ping module and the targeted ping

module to be identical. However some of the targeted modules simply define
types but then make the domain unconfined (rather than targeted). For
example, if we look at the targeted policy for crond (crond.te), we will find the line
unconfined_domain(crond_t). This macro, which is defined in ./policy/macros/global_macros.te for
the targeted example policy, effectively gives the crond domain type all SELinux
access, making it unconfined. If we compare this with the strict version of the
crond module (/etc/selinux/strict/src/policy/domains/program/crond.te), we will see a significant
difference. In targeted policy, crond is considered an unconfined domain,
whereas ping remains a strict domain in both policies.

The remaining differences between strict and targeted example polices are
subtle and outside the scope of this book. You will find that the make targets
and build options are all similar to strict.

11.4. Summary

The goal of strict policy is to make maximum use of SELinux to provide
separate domain types for each program that reasonably needs one. The
strict example policy is most directly reflective of the original NSA example
policy that has evolved through many years of community development.

Targeted example policy is derived from the strict example policy. The goal
of the targeted policy is to use SELinux to isolate high-risk system services
from the rest of the system. Targeted policy runs most programs in an
unconfined domain that essentially neutralizes the enhanced security of
SELinux. Only the targeted services have enhanced restrictions.

Both strict and targeted example policy source trees are similar in nature.
They have evolved over time, and contain a large set of files and
directories.

The build conventions for strict example policy use a loose modular
construct that allows the policy source file to be structured on a per-
domain basis. In this way, we can decide which program domains we want
to include and which we do not. The m4 macro processor is used to provide
abstract concepts in the policy sources.

The primary difference between the strict and targeted policies is that the
targeted policy limits the permission sets of a few outwardly vulnerable
services while providing no extra limits for local users and programs;
whereas the strict policy defines permission sets for all users and most
applications and services.

FC4 and RHEL4 systems use the targeted example policy as their default
supported policy.

Exercises

1. Describe the differences and uses between a policy binary file (for example, policy.19) and a complete policy
source file (policy.conf).

2. Describe the primary differences between a strict and targeted policy.

3. Describe the difference between the policy source modules in ./domains/program/ and the file context modules
in ./file_contexts/program/. What is in each and why?

4. In the policy module for ping shown in Listing 11-1, examine the statements at lines 11 and 39. What is
the difference between these two forms of "if"?

5. Examine lines 19 and 20 in Listing 11-1. Locate where both of these macros are defined.

6. Examine lines 19 and 20 in Listing 11-1. Locate where both of these macros are defined.

7.

Examine the usage and implementation of two network macros from Question 5. Notice that the
implementation of the can_resolve macro that we use in line 20 calls the can_network_client macro. In line 19, we
also separately invoke the can_network_client macro. Now examine the implementations of both of these
macros. Is the invocation of can_network_client on line 19 redundant given that the can_resolve macros also
invokes it? Explain your conclusion.

Chapter 12. Reference Policy
In this chapter

12.1 Goals of the Reference Policy

12.2 Overview of Policy Source File
Structure

12.3 Design Principles

12.4 Examining a Reference Policy
Module

12.5 Build Options for Reference Policy

12.6 Summary

Exercises

page 266

page 268

page 271

page 281

page 287

page 291

page 292

The reference policy is a newer method for building SELinux policies with the
goal of making the policy easier to understand, modify, maintain, and validate.
These goals are largely achieved through greater application of modern
software engineering principles, such as modularity and encapsulation. The
reference policy also allows strict and targeted policy variants to be built from
the same source tree and incorporates support for emerging SELinux
technologies, such as loadable modules.

12.1. Goals of the Reference Policy

The reference policy project is an effort to reengineer the existing policies
derived from the National Security Agency (NSA) example policy into an easier
to use, understand, and maintain policy. The primary goals are to create a
strong design philosophy in policy development by applying well-understood
software design principles, while retaining the years of experience learned by
community effort in developing the existing policies. In other words, keep the
good and fix the bad.

Chief among the "bad" with the existing example policy is its lack of strong
modularity and the tight coupling of the policy source modules that results.
Although macros add abstraction to the example policy, all policy identifiers
(types, roles, attributes, and so on) are, in reality, global. Editing one policy
module might require knowledge of many others and interdependency among
modules is pervasive and poorly documented. Likewise, creating a new policy
module requires detailed understanding of the implementation details of other
policy modules.

Some of the key characteristics of the reference policy that make policy
development easier and more understandable are as follows:

A single source tree that supports (without destructive modification) strict
and targeted policies, optional multilevel security/multicategory security
(MLS/MCS) extensions, a single kernel policy file (called a monolithic
policy), and the new loadable module infrastructure.

Application of strong design principles, chiefly in the area of loosely
coupled modules, with well-defined interfaces and no global use of type
and other identifiers. (So, for example, all changes relating to a type are
made entirely within a single module.)

Integrated documentation support, capturing descriptions of module
interfaces so that, for example, a policy module developer can use an
interface without having to understand how the interface is implemented
in the module.

Simplify and standardize policy configuration and build options, so in
general policy module writing and customization is easier and requires less
expertise.

Besides making policy development easier, the reference policy also intends to
make verifying the security properties of a policy easier to achieve (for
example, for security certifications) and to increase support for high-level
developments tools, such as graphical integrated development environments
and sophisticated policy debuggers.

The reference policy is new, but we expect it to gain popularity as the
definitive "reference" for building SELinux systems. At the time of this writing,
Fedora Core 5 (FC5) has changed its supported policy from the older targeted
example policy to a targeted policy based on the reference policy.

Warning

The reference policy is new at the time of this writing, with its
initial development just nearing completion. Therefore, it is likely
that some details of the reference policy have changed since this
book was published.

For more information on the reference policy project and the latest policy
sources, see the project's Web site at http://serefpolicy.sourceforge.net. If you
are using an FC5 system, your default targeted policy is likely based on a
reference policy build. If you have a reference policy installed on your system
according to our instructions in Appendix A, "Obtaining SELinux Sample
Policies," you can find the reference policy source files in /etc/selinux/refpolicy/src/policy.
If you obtained a reference policy source tree from your distribution, the
source files may be in a different directory under the /etc/selinux/ directory. (FC5
installs its version of the targeted reference policy in /etc/selinux/targeted/.) All path
names we use in this chapter are relative to the policy source root directory.

http://serefpolicy.sourceforge.net

12.2. Overview of Policy Source File Structure

The file structure for the reference policy differs from the example policy.
Before we describe the key implementation details of the reference policy, let's
overview the layout of the reference policy source files to familiarize ourselves
with its file structure.

12.2.1. Build and Support Files

The following files and directories are used for building or otherwise supporting
the building of a reference policy:

build.conf

This file defines the set of build options that we
can change and set to control the build process.
This file is included within the Makefile during the
make process. We will discuss some of these build
options later in this chapter.

Rules.modular

This file contains the make rules for building a
policy that supports loadable modules (see
Chapter 3, "Architecture"). It supports building
both the base policy module and loadable policy
modules. Which modules are built as part of the
base module, and which are built as loadable
modules, is defined in policy/modules.conf (see below).
The build option MONOLITHIC in build.conf controls
whether a modular or monolithic policy is built.

Rules.monolithic

If a monolithic policy is being built, this file
(rather than Rules.modular) is included in the Makefile
to define the rules for building a monolithic
policy.

config/

This directory contains subdirectories for the
application configuration files for every variety of
policy that can be built with the reference policy.
These configuration files are exactly the same as
the files in the appconfig/ directory for the example
policy. These are files installed in the operational
policy directory (for example, /etc/selinux/refpolicy) to
support various services and applications (see
Chapter 13, "Managing an SELinux System").

doc/

This directory contains files that support
integrated documentation generation that is part
of the reference policy. To see the resulting
documentation generation, view the reference
policy Web site
(http://serefpolicy.sourceforge.net/) or run the

http://serefpolicy.sourceforge.net/

command make html and look in the doc/html/
directory.

support/ This directory contains source code and scripts
for the tools used to support the build process.

12.2.2. Core Policy Files

In the reference policy, the primary files used to create a policy (or loadable
modules) are contained in the policy/ directory. These are the files that we, as
policy writers, will most commonly modify and examine:

policy/constraints

This file is where all non-MLS constraints are
defined. It is essentially identical to the same file
in the example policy. See Chapter 7,
"Constraints," for more on policy constraints.

policy/flask/

This directory contains the Flask definitions
identical with the example policy. See the
description for the example policy in Chapter 11,
"Original Example Policy," for this directory and
its files.

policy/mls and policy/mcs

These two files define two configurations for the
optional MLS features in SELinux. They are
identical in intent to the same files in the
example policy; see the description in Chapter
11.

policy/global_booleans and
policy/global_tunables

These two files currently store defined Booleans
and their default values. They are combined and
installed in /etc/selinux/refpolicy/booleans and enable an
administrator to change the default values of
Booleans as we discussed in Chapter 9,
"Conditional Policies." The reason for two files is
one of a philosophy that may eventually lead to a
difference in implementation. The global_booleans file
contains Booleans intended to support truly
conditional policies that an administrator may
want to toggle on and off in a production
system. The global_tunables contains Booleans that
are build/runtime configuration options that are
likely changed once during installation and never
changed again. Some of these latter Booleans
(that is, the tunables) may be implemented using
features of loadable modules in the future.

policy/modules.conf

This file configures which modules are to be
included in a build process and in what form. A
module can be built in to a monolithic policy or
the base module for a loadable policy, built as a
loadable module, or not built at all. The modules.conf
file is created with the make conf command. We
discuss module configuration options later in this
chapter.

policy/modules/

This directory contains all the policy modules
divided into subdirectories by layer. Most of the
files that we would examine, edit, and change will
be in this directory. We discuss modules and
layers in the next section.

policy/support/

This directory contains macros used throughout
the policy modules to aide in policy writing. For
example, the file policy/support/obj_perm_sets.spt defines
macros that define sets of permissions. We use
these macros to simplify some of the policy
writing steps and to create easier to read policy.

policy/users

This file is the same as the users file in the
example policy though it uses an interface (that
is, a macro), gen_user(), to create the user
statements; see the description in Chapter 11.

12.3. Design Principles

The reference policy is structured around several design principles. These
principles are focused on achieving the goals of the project. Currently, most of
these principles are enforced only through convention; as high-level
development environments and tools evolve on top of the reference policy, we
expect to see these principles start to be more strictly enforced by the build
tools themselves.

12.3.1. Layering

As discussed in the next section, the reference project achieves most of its
design goals through strong modularity. A weak, although still important,
design principle of the reference policy is the layering of its modules. The
layers provide a loose organizational structure for the modules that reflects
the overall system architecture. Figure 12-1 depicts the layers currently
defined for reference policy.

Figure 12-1. Reference policy layers and sample modules
within a layer

[View full size image]

In general, the reference policy tries to keep dependencies between modules
within a layer or to a layer "below" the module's layer. We can find the layer
directories, which contain the modules for each layer, in policy/modules/. The
reference policy currently defines the following layers:

Kernel This layer contains policy modules that directly relate to the Linux
kernel. This is the lowest layer of modules. Modules at this layer include
policy statements for the kernel, devices, filesystems, and basic
networking. Most of these modules will always be included in any type of
policy.

System These are policy modules that are also usually included in a policy
but do not directly support the kernel. Modules at this layer include policy
for common libraries, login processes, and network management.

Services This layer contains policy modules for all services and daemons
not part of the system layer. These modules range from cron, to sshd, to
apache.

Admin This layer contains policy modules for administrative tools and
commands that have their own domain type.

Apps This layer contains policy modules for all other programs that have
their own domain type and policy module.

Again, the layering is not strictly enforced and is primarily useful as a way to
organize the collection of modules. As you can see from Figure 12-1, some of
the layers are really peer groupings rather than "layered" (that is, services,
admin, and apps).

12.3.2. Modularity

Modularity is the strongest design principle of the reference policy. Although
the example policy discussed in Chapter 11 has a notion of modules, these
modules have loose conventions resulting in tightly coupled modules (primarily
due to the use of global type and attribute names). In the reference policy,
modules are required to be loosely coupled. This loose coupling is achieved
through the enforcement of two strong design conventions: encapsulation and

abstraction.

12.3.2.1. Encapsulation

Encapsulation is a reference policy modularity convention that requires that
type and attribute names may only be used within a single module. In effect,
type and attribute names may not be used as global names. Only the module
that defines the type/attribute may reference the name directly. Any other
module that would require the use of the type/attribute must do so through
well-defined interfaces that the owning module defines.

For example, in the example policy, all types that are domain types are given
the domain attribute. Every policy module simply has this knowledge built in and
explicitly adds domain to the list of attributes for all domain types they define. If
we decided to change how the concept of a domain was implemented in the
policy (say by granting each type explicit rules or even by renaming the
attribute), we would have to change every module that defines a domain type.

In the reference policy, a module called "domain" in the kernel layer defines
the concept of a domain. It just so happens that this concept is implemented
using the domain attribute as with the example policy. However, this
implementation detail is private to the domain module and could be changed
(for example, renamed) without impacting any other module source. Any
module that wants to make one of its types a domain type would call an
interface defined in the domain module:

domain_type(my_type) # interface to make a type a domain type

The domain module interfaces in policy/modules/kernel/domain.if; we discuss this
interface in more detail later in this chapter.

Encapsulation enables us to make the reference policy modules'
implementation details private to the module resulting in loosely coupled
modules.

12.3.2.2. Abstraction

Abstraction is a design goal where interfaces describe what abstract access
they provide and not how they do it. The intent of reference policy interfaces

is to describe what abstract access is given or system capability is being
enabled with the interface. The policy statements required to enable that
access should not be a concern of the interface caller. For example, the macro
we discussed previously to make a type a domain type is called domain_type() and
not add_domain_attribute(). The intent of the interface is to make a type a domain
type; doing this by adding the domain attribute is just the private
implementation detail of the domain_type() interface. This interface could have
instead simply added explicit rules for each individual type provided with the
interface, and we can still change that implementation if we choose without
impacting other modules that use this interface.

As another example, to allow a directory to be used as a mount point we would
call the file_mountpoint() macro in the "files" module. We do not need to know that
the implementation of this interface applies the attribute mountpoint to all
directory types called with this interface and then defines rules for the
attribute to allow the type to be used as a mount point. As a policy writer, all
we need to know is that the file_mountpoint() interface is how we allow a directory
type to be a mount point.

Currently, the reference policy has a low-level of interfaces implemented
within each module. Eventually higher-level abstractions will be developed
through additional interfaces that combine the lower-level interfaces.

12.3.2.3. Module Files

As discussed earlier, within the reference policy source tree all modules are
kept in policy/modules/[layer]/ where the layer is a directory whose name coincides
with one of the layers discussed previously. Each module must consist of three
related files, all of which have the same root name (that is, module name):

Private policy file (.te) This file contains the module private declarations
and rules. In general, all module type and attribute declarations are
contained in the .te file and the rules that give these types and attributes
their core access.

External interface file (.if) This file contains the module interfaces. These
interfaces are the means by which other modules access the types and
attributes of this module.

Labeling policy file (.fc) This file contains the file context labeling
statements relating to this module (see Chapter 10, "Object Labeling").

Because a strong requirement is that no type or attribute be global, only the .te
and .if file for a given module may use the module's type/attribute names
explicitly. All other references to a module's types and attributes must be via
the module's interfaces.

12.3.2.4. Interfaces

As discussed previously, one of the most significant improvements
implemented in the reference policy is the use of interface macros for gaining
access to a type outside of the module in which the type is defined. Interfaces
provide access to a module's policy resources (for example, to its privately
declared types and attributes). All other modules needing a particular access
use the same interface; therefore, the policy rules required for the access will
be consistent across all users of the interface. Therefore, policy changes for
access to a type require only a change in one place, rather than requiring
changes to all the modules that use the type as is common in the example
policy.

As noted above, interfaces are kept in a module's .if file and are implemented
as macros. Currently, reference policy supports two kinds of interfaces: access
interfaces and template interfaces.

The name we give each interface follows the convention of modname_purpose. So,
for example, we can tell that the domain_type() interface is defined in the "domain"
module and its purpose is to make a provided type a domain type. (We avoid
the verbose name such as domain_domain_type() when the module name is also part
of the purpose.)

12.3.2.4.1. Access Interfaces

The most common kind of interface is called an access interface. As its name
implies, the purpose of an access interface is to provide some type of access
that requires use of the module's private types and attributes. Access
interfaces are implemented using the interface() macro. The domain_type() interface is
an example of an access interface. Let's examine this interface more closely
(see Listing 12-1).

Listing 12-1. Partial Interface Listing for domain_type Access
Interface (domain.if)

1 ##
2 ## <summary>
3 ## Make the specified type usable as a domain.
4 ## </summary>
5 ## <param name="type">
6 ## Type to be used as a domain type.
7 ## </param>
8 interface('domain_type','
9 domain_base_type($1)
10
11 # Use trusted objects in /dev
12 dev_rw_null_dev($1)
13 dev_rw_zero_dev($1)
14 term_use_controlling_term($1)
15
16 # read the root directory
17 files_list_root($1)
18
19 # send init a sigchld and signull
20 init_sigchld($1)
21 init_signull($1)
22
23 ifdef('targeted_policy','
24 unconfined_use_fd($1)
25 unconfined_sigchld($1)
26 ')
27
28 tunable_policy('allow_ptrace','
29 userdom_sigchld_sysadm($1)
30 ')
31
32 # allow any domain to connect to the LDAP server
33 optional_policy('ldap','
34 ldap_use($1)
35 ')
36 ')

In line 8 of Listing 12-1, we see the interface() macro, which is implemented as an
m4 macro, as are all macros in reference policy. The interface() macro is what we
use to define an access interface. This and other macros that support the
conventions and build process of reference policy (collectively called support
macros) are located in one of the files in policy/support/ directory. The interface()

macro handles the details of defining an interface and a central spot where
debugging and other build information can be inserted into the results.
Therefore, we must always use the interface() macro to define an access interface.

The purpose of the domain_type() interface is to allow the provided type (the only
argument for this macro, $1) to be used as a domain type in the policy. We see
a description of the interface and its arguments in lines 1 through 7. Reference
policy uses XML to capture information about interfaces and other aspects of
the policy for generation of documentation. In this case, we have a summary

of the interface purpose and a list of its parameters, all of which will be
included in a list of interfaces when the documentation is generated.

Lines 9, 12 through 14, 17, 20, and 21 are all calls to other interfaces. The
name of an interface give us a hint of the module where the interface is
defined. As noted, by convention, the first component of all interface names is
the name (or partial name) of the module in which the interface is defined. For
example, the interfaces dev_rw_null_dev() and dev_rw_zero_dev() are defined in the
"devices" module (policy/modules/kernel/devices.if) and the interface files_list_root() in the
"files" modules (policy/modules/kernel/files.if). We can examine each of these interfaces
to see how they are implemented or we can examine the interface
documentation if all we want is a description of each interface.

Note

The command make html creates the reference policy documentation
including the interface descriptions; open doc/html/index.html with a
browser to see the documentation.

Lines 23 through 26 show a use of the m4 ifdef statement. Although ifdef was
commonly used in the example policy, for reference policy the use of ifdef is
greatly limited by convention (see the sidebar on page 184 for more
information). In this case, we call additional interfaces (from the targeted
policy-specific "unconfined" module) if we are building a targeted policy. The
symbol targeted_policy is defined as part of the build process based on the options
in build.conf, which we discuss later in this chapter.

Lines 28 through 30 show another support macro, tunable_policy(). The purpose of
this macro is to allow conditional behavior based on the value of a defined
tunable. As noted previously, tunables, which are intended as build/install time
policy options, are defined in policy/global_tunables. Currently, tunables are
implemented using Booleans, but eventually with loadable modules we expect
the implementation of tunables to differ from conditional policy Booleans. In
this case, we have a tunable allow_ptrace, which when true allows the
administrative user domain(s) to debug any other user domain type.

Finally, let's examine lines 33 through 35 of Listing 12-1, where we have an
example of the optional_policy() support macro. This macro enables us to optionally
call an interface depending on whether a module is included in the policy. This
support macro implements this capability differently depending on whether a

monolithic policy, base module, or loadable module is being built. Nonetheless,
the concept from a policy writer's perspective is the same. If the module is
being included in the build process (in this case, the ldap module), the interface
ldap_use() is also called.

Allowed Uses of ifdef

In the reference policy, the m4 ifdef statement may only be used, by convention, for a limited set of
defined conditions. These become hard-coded implementation variations within the policy build
process. All other forms of policy options must use either the native conditional policy statements
(if) based on Booleans defined in policy/global_booleans or one of the reference policy support macros such
as tunable_policy() for tunables defined in policy/global_tunables or optional_policy() for optional policy statements
based on the name of a module. These support macros allow us to change the implementation of
these concepts to better support the build process and development tools in the future.

The only allowed use of ifdef in reference policy is with the following defines:

targeted_policy This is defined when a targeted policy is being
built.

strict_policy This is defined when a strict policy is being built.

enable_mls This is defined when the optional MLS policy is
being built.

enable_mcs This is defined when the optional MLS features
are being used to build an MCS policy.

hide_broken_symptoms

This is used to control dontaudit rules; we place all
such rules that mask expected denial audit
messages (that is, due to access we intentionally
did not allow but we expect the program to
attempt even though it is not needed). These
dontaudit rules help remove benign "false positive"
audit messages we expect to see during normal
operation.

direct_sysadm_daemon

This enables us to determine whether the policy
permits the system administrator user domains
to directly control daemons that otherwise are
started and controlled by init. Note that if this is
disabled, the administrator may still control
daemons with the run_init tool.

distro_tunable

One of several distribution tunables can be set
for policy variations specific to a particular
distribution of Linux. For example, redhat is the
tunable for Fedora Core (FC) and Red Hat
Enterprise Linux (RHEL) systems, and gentoo is
the tunable for Gentoo systems.

12.3.2.4.2. Template Interfaces

The second type of interface is a template interface, which is far less common
than an access interface. A template interface is necessary when two modules
share responsibility for one or more types. We call this kind of a type a derived
type. A derived type name is derived from the calling module's type. From a
logical perspective, the derived type is considered a private type of the calling
module. However, the definition of the derived type and the core set of rules
that define access for that type are implemented in a template interface in
another module (that is, the called module). This is necessary because the
called module is creating access rules for policy permissions only it
understands, but on behalf of the calling module. In all cases, the derived type
name is partly based on a name provided by the calling module and a name
provided by the called module. Neither fully knows the name; this keeps our
abstraction intact and allows us to change the template interface without
impacting the calling module.

An example of a derived type and a template interface can be found in the ssh
module, which implements the client and server policy rules for the Secure
Shell service (sshd). We should find this module in policy/modules/services/ssh.*. In
particular, we want to examine the template interface ssh_per_userdomain_template(), a
partial listing of which is shown in Listing 12-2.

Listing 12-2. Partial Interface Listing for
ssh_per_userdomain_template Interface (ssh.if)

 1 #######################################
 2 ## <summary>
 3 ## The per user domain template for the ssh module.
 4 ## </summary>
 5 ## <desc>
 6 ## <p>
 7 ## This template creates a derived domains which are used
 8 ## for ssh client sessions and user ssh agents. A derived
 9 ## type is also created to protect the user ssh keys.
10 ## </p>
11 ## <p>
12 ## This template is invoked automatically for each user and
13 ## generally does not need to be invoked directly
14 ## by policy writers.
15 ## </p>
16 ## </desc>
17 ## <param name="userdomain_prefix">
18 ## The prefix of the user domain (for example, user
19 ## is the prefix for user_t).
20 ## </param>
21 ## <param name="user_domain">

22 ## The type of the user domain.
23 ## </param>
24 ## <param name="user_role">
25 ## The role associated with the user domain.
26 ## </param>
27 template('ssh_per_userdomain_template','
28 ##############################
29 # Declarations
30
31 type $1_home_ssh_t;
32 userdom_home_file($1,$1_home_ssh_t)
33 role $3 types $1_ssh_t;
34
35 type $1_ssh_t;
36 domain_type($1_ssh_t)
37 domain_entry_file($1_ssh_t,ssh_exec_t)
38
39 type $1_ssh_agent_t;
40 domain_type($1_ssh_agent_t)
41 domain_entry_file($1_ssh_agent_t,ssh_agent_exec_t)
42 role $3 types $1_ssh_agent_t;
43
44 type $1_ssh_keysign_t; #, nscd_client_domain;
45 domain_type($1_ssh_keysign_t)
46 domain_entry_file($1_ssh_keysign_t,ssh_keysign_exec_t)
47 role $3 types $1_ssh_keysign_t;
48
49 # Private policy for each derived types not shown
50 # see policy/modules/ssh.if
51
52 # remainder not shown...
53 ')

The ssh_per_userdomain_template() interface creates a per-domain set of derived types
that allow each domain to have private types for their ssh sessions and
cryptographic keys. Because the ssh module cannot (and should not for
modularity reasons) know all the possible domain types that need a per-
domain ssh type, it cannot possible directly create the rules necessary in its .te
file. Likewise, any given module that wants an ssh private type for its domains
cannot (and again should not) possibly know how to implement ssh private
session and key types. Thus the need for a template interface.

As you can see from Listing 12-2, this interface takes three arguments: the
base type name prefix (for example, for the domain type user_t we would
provide the prefix user), the user domain type (for example, user_t), and the
primary role associated with the user domain. A template interface has two
primary sections. The first section is where the derived types are created
(using the provided type name prefix). We can see these declarations in lines
31 through 47 of Listing 12-2. For example, line 35 defines the main derived
domain type. If the prefix were user, the derived domain type would be user_ssh_t

and that would be the domain type for the ssh client when the domain user_t runs

it (as implemented by this interface). As you can see, three other derived
types are also created for various aspects of an ssh session.

The second part of a template interface is the private rules for the derived
type. This is where rules are defined for all derived types of this kind, and it is
the one place we need to change them. We do not examine these rules in this
book, but you are encouraged to do so on your own. Although template
interfaces are uncommon, they are valuable to simplify certain types of policy
writing.

12.4. Examining a Reference Policy Module

To help further understand how the reference policy works, let's examine all
aspects of the policy for the ping program as we did with the example policy.
Whereas in the example policy the ping program had its own module, in the
reference policy ping is included in a module that addresses all administrative
network utilities (netutils). We can find this module in policy/modules/admin/netutils.*.

Note

In the reference policy, we try to package policy pieces in ways that
make sense for installation with software packages. Reference
policy is mostly influenced by the packaging conventions for FC.
This allows us to define modules that can be built as loadable
modules and installed as part of the package installation (the real
benefit of loadable modules). This is the reason that ping is coupled
with a number of other network utilities; these utilities are all part
of the same software package in FC (specifically the iputils package).

Listing 12-3 shows a partial listing of the netutils.te module file, focusing on those
components related to ping. Recall that the .te file is the file that contains the
module's private declarations and rules. This is the file in which we would
generally expect to find type and attribute declarations. First notice the use of the
policy_module() support macro on line 1. All modules must use the policy_module() as
their first line in their .te file. This macro requires two arguments: the name of
the module and the version of the module. Currently, the policy_module() support
macro effects only the build process when the module is being built as a
loadable module. Nonetheless, its use is mandatory for all modules, and its
function will likely evolve over time (for example, better debugging support).

Listing 12-3. Partial Listing for netutils (ping) Private Module
File (netutils.te)

 1 policy_module(netutils,1.0)
 2 ##
 3 # Declarations
 4 type ping_t;

 5 type ping_exec_t;
 6 init_system_domain(ping_t,ping_exec_t)
 7 role system_r types ping_t;
 8
 9 ##
10 # Ping local policy
11 allow ping_t self:capability { setuid net_raw };
12 dontaudit ping_t self:capability sys_tty_config;
13
14 allow ping_t self:tcp_socket create_socket_perms;
15 allow ping_t self:udp_socket create_socket_perms;
16 allow ping_t self:rawip_socket { create ioctl read write bind
 getopt setopt };
17
18 corenet_tcp_sendrecv_all_if(ping_t)
19 corenet_udp_sendrecv_all_if(ping_t)
20 corenet_raw_sendrecv_all_if(ping_t)
21 corenet_raw_sendrecv_all_nodes(ping_t)
22 corenet_tcp_sendrecv_all_nodes(ping_t)
23 corenet_udp_sendrecv_all_nodes(ping_t)
24 corenet_tcp_sendrecv_all_ports(ping_t)
25 corenet_udp_sendrecv_all_ports(ping_t)
26 corenet_udp_bind_all_nodes(ping_t)
27 corenet_tcp_bind_all_nodes(ping_t)
28
29 fs_dontaudit_getattr_xattr_fs(ping_t)
30
31 domain_use_wide_inherit_fd(ping_t)
32
33 files_read_etc_files(ping_t)
34 files_dontaudit_search_var(ping_t)
35
36 libs_use_ld_so(ping_t)
37 libs_use_shared_libs(ping_t)
38
39 sysnet_read_config(ping_t)
40 sysnet_dns_name_resolve(ping_t)
41
42 logging_send_syslog_msg(ping_t)
43
44 ifdef('hide_broken_symptoms','
45 init_dontaudit_use_fd(ping_t)
46 ')
47
48 ifdef('targeted_policy','
49 term_use_unallocated_tty(ping_t)
50 term_use_generic_pty(ping_t)
51 term_use_all_user_ttys(ping_t)
52 term_use_all_user_ptys(ping_t)
53 ','
54 tunable_policy('user_ping','
55 term_use_all_user_ttys(ping_t)
56 term_use_all_user_ptys(ping_t)
57 ')
58 ')

On lines 4 through 7, we define our domain type (ping_t) and entrypoint type

(ping_exec_t). These two types serve exactly the same purpose as with the
example policy. Indeed, the goal of the reference policy implementation of the
ping domain type is to be the functional equivalent to the policy rules in the
example policy (but implemented in an entirely different manner). Notice on
line 6 that we call an interface from the init module that allows the ping domain
to be used in system initialization scripts. As a point of comparison, this
interface performs nearly the exact same purpose as the macro called on line
9 of the example policy ping module in Listing 11-1.

All the remaining lines in Listing 12-3 implement the rules that allow the ping

domain type access necessary to perform its function. For example, the
interface calls in lines 18 through 27 provide the necessary network access by
using interfaces from the core network (corenetwork) module. Much of the access
is provided via interfaces; this is the expected form of a module
implementation so that access is defined only in one place and interfaces are
called elsewhere to use that access. Again, we can examine the purpose of
each of these interfaces by examining their implementation or more easily by
reading through the interface documentation that is generated. As you read
through this listing, you will also notice uses of the target_policy conditional on line
48 to define targeted-only policy rules.

Now let's look at the interfaces for ping, which will be defined in the netutils

interface file (netutils.if), a partial list of which is shown in Listing 12-4. In
addition to defining the interfaces themselves, the .if file also contains the XML
statements that are used to generate documentation. As you see on line 1 in
Listing 12-4, all module interface files must start with a summary statement
that provides a concise statement of the module's purpose. Because ping is part
of a larger network utilities module, we see a statement that summarizes the
whole purpose of the module (although in Listing 12-4 we show only those
parts of the module that relate to ping).

Listing 12-4. Partial Listing for netutils (ping) Interface
Module File (netutils.if)

 1 ## <summary>Network analysis utilities</summary>
 2
 3 ##
 4 ## <summary>
 5 ## Execute ping in the ping domain.
 6 ## </summary>
 7 ## <param name="domain">
 8 ## The type of the process performing this action.
 9 ## </param>
10 interface('netutils_domtrans_ping','

11 gen_require('
12 type ping_t, ping_exec_t;
13 class process sigchld;
14 class fd use;
15 class fifo_file rw_file_perms;
16 ')
17
18 domain_auto_trans($1,ping_exec_t,ping_t)
19
20 allow $1 ping_t:fd use;
21 allow ping_t $1:fd use;
22 allow ping_t $1:fifo_file rw_file_perms;
23 allow ping_t $1:process sigchld;
24 ')
25
26 ##
27 ## <summary>
28 ## Execute ping in the ping domain, and
29 ## allow the specified role the ping domain.
30 ## </summary>
31 ## <param name="domain">
32 ## The type of the process performing this action.
33 ## </param>
34 ## <param name="role">
35 ## The role to be allowed the ping domain.
36 ## </param>
37 ## <param name="terminal">
38 ## The type of the terminal allow the ping domain to use.
39 ## </param>
40 interface('netutils_run_ping','
41 gen_require('
42 type ping_t;
43 ')
44
45 netutils_domtrans_ping($1)
46 role $2 types ping_t;
47 allow ping_t $3:chr_file rw_term_perms;
48 ')
49
50 ##
51 ## <summary>
52 ## Conditionally execute ping in the ping domain, and
53 ## allow the specified role the ping domain.
54 ## </summary>
55 ## <param name="domain">
56 ## The type of the process performing this action.
57 ## </param>
58 ## <param name="role">
59 ## The role to be allowed the ping domain.
60 ## </param>
61 ## <param name="terminal">
62 ## The type of the terminal allow the ping domain to use.
63 ## </param>
64 interface('netutils_run_ping_cond','
65 gen_require('
66 type ping_t;
67 bool user_ping;
68 ')
69
70 role $2 types ping_t;
71

72 if (user_ping) {
73 netutils_domtrans_ping($1)
74 allow ping_t $3:chr_file rw_term_perms;
75 }
76 ')
77
78 ##
79 ## <summary>
80 ## Execute ping in the caller domain.
81 ## </summary>
82 ## <param name="domain">
83 ## The type of the process performing this action.
84 ## </param>
85 interface('netutils_exec_ping','
86 gen_require('
87 type ping_exec_t;
88 ')
89
90 can_exec($1,ping_exec_t)
91 ')

In lines 11 through 16, 41 and 43, 65 through 68, and 86 through 88, we see
the use of another support macro, gen_require(). This macro is key to supporting
the loadable module infrastructure and eventually for supporting development
tools that need module and interface dependency information. Each module
interface file must have a gen_require() macro that lists the policy identifiers
(names of types, attributes, roles, Booleans, and so on) that this interface
uses. For types and attributes, these identifiers must be types and attributes
private to the module (because only private types and attributes may be
explicitly named within a module). The gen_require() macro will generate the
appropriate dependency information to support various types of policy builds.
This allows, for example, the ability to link a loadable module without the
entire policy source being available.

The rest of the partial .if file in Listing 12-4 defines four ping-related interfaces
in much the same way we already discussed. All these interfaces are access
interfaces using the interface() macro. The first interface, netutils_domtrans_ping(), which
is defined in lines 3 through 24, supplies all the rules to allow a provided
domain type permission to cause a domain transition into the ping domain type.
The two interfaces, netutils_run_ping(), defined in lines 26 through 48, and
netutils_run_ping_cond(), defined in lines 50 through 76, call the netutils_domtrans_ping()

interface but also require a role to ensure that the role is authorized for the
ping domain. The latter of these two interfaces support the use of a conditional
expression based on the user_ping Boolean (lines 72 through 75) much as we
discussed for the example policy in Chapter 11.

The final interface, netutils_exec_ping(), defined in lines 78 through 91, simply allows

the provided domain type the ability to execute the ping program without a
domain transition. In this case, the provided domain type must have the
necessary network access itself, which is the case of some system utilities and
daemons.

Finally, let's look at the file labeling policy, which we can find in the netutils.fc file.
In that file, there should be a line such as this

/bin/ping.* -- gen_context(system_u:object_r:ping_exec_t,s0)

This line is similar to ping's file context file we saw in the example policy with
one significant difference: The file context is provided within another support
macro, gen_context(). This macro contains a full security context, including any
optional MLS portion. The gen_context() macro generates security contexts with or
without the MLS portion based on the build type. In this way, we can write a
policy with or without the optional MLS features without having to change the
contents of the file or cause irreversible changes to the sources as with the
example policy.

12.5. Build Options for Reference Policy

The reference policy was designed to be customizable without having to
understand all the details of the policy. The primary build targets for reference
policy are all identical in name and function to the example policy. For
example, the Makefile targets, policy, policy.conf, relabel, and load all produce the same
results as we discussed in Chapter 11 for the example policy.

Two policy build configuration files that are unique to reference policy are the
build.conf and the modules.conf.

12.5.1. The build.conf File

We discussed some of the options controlled by the build.conf earlier in this
chapter. The first option we want to discuss in this file is the policy type. One
of the goals of the reference policy is the ability to create differing types of
policies from the same source tree. This build option controls what type of
policy is built. It is specified with the TYPE option in build.conf. As noted throughout
this chapter, we can build either a targeted or a strict policy. For example, if
we wanted to build a strict policy, we would use the following value for this
option:

TYPE = strict

For a targeted policy, we would set the option to targeted instead. In addition, we
can enable the optional MLS features in one of two ways, as a typical MLS
policy (strict-mls or targeted-mls) or as the MCS configuration (strict-mcs or targeted-mcs).
These six values (strict, targeted, strict-mls, targeted-mls, strict-mcs, and targeted-mcs) are the
only currently supported policy types for reference policy.

Another option in build.conf is the policy name, which is specified with the NAME

option. This is a nice feature in reference policy that allows us to name the
policy something other than its policy type. The name is used to determine the
install directory for the policy in /etc/selinux/. For example, take the policy name
as provided by default from the reference policy project:

NAME = refpolicy

In this case, when we install the policy, the install directory for the policy is
/etc/selinux/refpolicy/. If no value is provided, the policy type name will be used. For
example, assume our build.conf file has these two lines:

TYPE = targeted
NAME =

Our install directory would then be /etc/selinux/targeted/. This is fine if you want to
use the reference policy in place of your default targeted policy. If you are
trying to experiment with the reference policy, however, you do not
necessarily want to overwrite your current, system-provided targeted policy.

Another option of interest is the distribution tunable, DISTRO. As discussed in
the sidebar on page 184, the reference policy supports a distribution-specific
tunable for distribution-specific policy variations. For example, for FC and
RHEL systems, this option would currently be set as follows:

DISTRO = redhat

The final build.conf option we want to discuss is whether the policy is a monolithic
policy. This option is controlled by the MONOLITHIC option. If we are building a
monolithic policy (that is, one entire kernel binary policy as is common today),
we would set this option as follows:

MONOLITHIC=y

Otherwise, we would set this option like this:

MONOLITHIC=n

An n indicates that we want to support loadable modules and will be building
both the base module and the loadable modules. Which modules are part of
the base module, and which are loadable, is controlled by the modules.conf, which
we discuss next.

12.5.2. The modules.conf File

The modules.conf file controls which modules we include in our policy build and in
what form. We can find this file in policy/modules.conf. If the file is not present, you
can create it with the make conf command from the policy root directory. This
command creates a modules.conf file with an entry for all modules in the policy/modules/

directory. If the modules.conf file already exists, make conf appends any new modules
to the files (that is, those not already included in the file) without changing
any settings for the existing modules. Thus, when we add new modules, we
run make conf and then modify the settings for the new modules in modules.conf.

An entry in modules.conf looks like this:

Layer: admin1
Module: netutils
#
Network analysis utilities
#
netutils = module

This is the entry that is generated from the netutils module discussed previously.
The comment lines (proceeded by #) are generated from the module for
informational purposes. The layer comment comes from the name of the
directory where the module files are located, the module name comment
comes from the root names of the module files, and the description comment
comes from the module summary description in the top of the module .if file.

The only effective line is the netutils = module line, which tells the policy build tools
how to treat this module during the build process. A module can be set to one
of three values. Depending on the type of build (monolithic or loadable
module), these values determine how and if the module is built. Possible
values for a module are as follows:

base

For a monolithic policy build, all modules marked
as base will be included in the policy. For loadable
module policy build, all modules marked as base
will be included in the base module.

module

For a monolithic policy build, all modules marked
as module will be treated the same as base and will
be included in the policy. For a loadable module

policy build, all modules marked as module will be
built as loadable modules.

off
For both monolithic and loadable module builds,
all modules marked as off will not be built in any
fashion.

All modules that are in the policy/module/ directory that are not listed in the
modules.conf file, or which are listed but do not have a value, will not be built in
any fashion (as if they were marked as off).

When creating or updating the modules.conf file with the make conf command, all
modules will be marked as module unless the module is marked as required
within the module interface (.if) file. For example, here is the header for the
kernel module .if file. The kernel module is always required:

<summary>
Policy for kernel threads, proc filesystem, and
unlabeled processes and objects.
</summary>
<required val="true">
This module has initial SIDs.
</required>

The block that starts with <required val="true"> indicates that this module is required
along with a comment explaining why. For all such modules, the default value
from modules.conf will be base, ensuring that the module is always included in a
monolithic policy or as part as the base module for a loadable module policy.
Thus, when we generate the modules.conf file, the kernel module block looks
something like this:

Layer: kernel
Module: kernel
Required in base
#
Policy for kernel threads, proc filesystem, and
unlabeled processes and objects.
#
kernel = base

As you can see, in addition to setting the default value to base, there is also an
extra comment ("Required in base") that notes for future reference that this
module should always be base.

12.6. Summary

The reference policy project was started to reengineer the example policy
derived from the original example policy for SELinux. The goals of this
reengineering include the inclusion of modern software engineering design
principles to make policy development and maintenance easier to perform,
and to support emerging technology, such as loadable modules and
sophisticated policy development tools.

Layering is a weak design principle of reference policy. The layers organize
policy modules in a manner that are generally reflective of our
understanding of how the policy modules relate.

Modularity is a strong design principle of reference policy. Although the
example policy had a form of modularity, it was weakly defined and did not
ensure that modules remained loosely coupled. Reference policy modules
hide implementation details from other modules allowing easier
maintenance of the overall policy and distributed policy development (that
is, the ability to develop a policy module without detailed knowledge of
other modules).

Two properties of modularity primarily ensure that reference policy
modules remain loosely coupled: encapsulation and abstraction.

Encapsulation ensures that implementation details of a module are only
required by the module itself. This goal is achieved primarily through
requiring that type and attribute names always remain local identifiers
that may only be explicitly used by the module that defines them. Other
modules use these types and attributes via well-defined interfaces of the
module.

Abstraction ensures that policy module writers can think about policy
development logically rather than focus on all the policy details. This is
accomplished via module interfaces. Interfaces are designed and named to
describe what the interface provides and not how it does it. The "how" can
change over time without impacting the "what."

A module consists of three files: the private policy file (.te), the external
interface file (.if), and the labeling policy file (.fc). All three files must be
present for each defined module even if empty.

A reference policy module may have two types of interfaces: access and
template. Access interfaces are by far the most common. These interfaces
provide access to the module's private types and attributes. Template
interfaces are less common and are used when we need to manage derived
types between two modules.

Reference policy introduces two configuration files that provide most of the
policy build options we need to control. The build.conf file controls global
policy build options, such as policy type and install location. The modules.conf

file controls which policy modules are built and in what form.

Currently, reference policy can build six types of policies from the same
source tree: strict, targeted, strict-mls, targeted-mls, strict-mcs, and targeted-mcs.

Two types of builds are supported by the reference policy. A monolithic
build creates a single kernel binary policy. Monolithic policies are the only
type of policy in general use at the time of this writing and are the type of
policy we mostly discuss in this book. A loadable module build creates a
base module and a number of loadable modules that make use of the new
loadable module infrastructure. We expect loadable modules to become
more common going forward.

Exercises

1. Describe some of the key benefits of the reference policy over the example policy.

2. What is the primary goal of encapsulation within reference policy and how is it generally achieved?

3. What is the difference between a module's .if and .te files? How are they similar?

4. Which of the three kinds of module files are required or optional for a reference policy module?

5. Explain when you might need to use a template interface rather than the much more common access
interface.

6. Assume the following is a modules.conf file. Describe how each module is built for both a monolithic policy
and a loadable module policy.

 kernel = base
 files = base
 rpm = module
 tftp = off
 rpc = module
 corenetwork = base
 init = module

Chapter 13. Managing an SELinux System
In this chapter

13.1 SELinux Configuration and Policy
Management Files

13.2 Impact of SELinux on System
Administration

13.3 Summary

Exercises

page 296

page 306

page 323

page 324

An SELinux system looks and feels like any other Linux system in many ways.
Indeed, Red Hat Enterprise Linux (RHEL) is an SELinux system whether you
know it or not. However, with the enhanced security, "something" can break or
not work for more reasons than before. Fixing problems may require additional
administration procedures, and normal operations may now require additional
steps. In this chapter, we discuss the way in which SELinux affects a Linux
administrator and how to accomplish the most common important tasks.

13.1. SELinux Configuration and Policy Management Files

SELinux includes files that allow the management of SELinux specific
additions, including the policy. This includes setting which policy to use when
multiple policies are installed, label management files, and configuration files
for SELinux applications and utilities.

Note

The files we describe in this chapter are based on a Fedora Core 4
(FC4) system. There are subtle differences with a RHEL4 and more
significant improvements in an FC5 system. We highlight these
differences as appropriate throughout this chapter.

13.1.1. The SELinux Configuration File (/etc/selinux/config)

The SELinux configuration file, /etc/selinux/config, controls which policy will be
loaded during the next system boot, and in what mode the system will run. We
can determine the current SELinux system state using the sestatus command.
Listing 13-1 shows an example of the config file.

Listing 13-1. Listing of /etc/selinux/conf File

1 # This file controls the state of SELinux on the system.
2 # SELINUX= can take one of these three values:
3 # enforcing - SELinux security policy is enforced.
4 # permissive - SELinux prints warnings instead of
 enforcing.
5 # disabled - SELinux is fully disabled.
6 SELINUX=enforcing
7 # SELINUXTYPE= type of policy in use. Possible values are:
8 # targeted - Only targeted network daemons are
 protected.
9 # strict - Full SELinux protection.
10 SELINUXTYPE=strict

This file controls two configuration settings: the SELinux mode and the active
policy. The SELinux mode (determined by the SELINUX option on line 6) can be
set to enforcing, permissive, or disabled. In enforcing mode, the policy is fully enforced.
This is the primary mode of SELinux and should be used in all operational
systems that require the enhanced security of SELinux. In permissive mode,
the policy rules are not enforced. Instead, denials are audited, and otherwise
SELinux generally does not impact the security of the system. This mode is
useful for debugging and testing a policy.

In disabled mode, the SELinux kernel mechanism is completely turned off. A
system may only be put into disabled mode when booting before the policy is
loaded. This mode differs from permissive mode which has the SELinux kernel
features operating but not denying any access (just auditing). In disabled
mode, SELinux will not perform any action. This mode is only necessary in
extreme circumstances (for example, when a policy error prevents you from
even logging in, which can occur even in permissive mode) or if we truly do
not want SELinux to operate.

Warning

Be careful about switching between enforcing and permissive
modes, or disabling and enabling SELinux (something you might
commonly do in a development or test machine). Quite often, you
can cause file labeling inconsistencies when you go back to
enforcing mode. (Not to mention that you will have turned off your
system's main security enhancement feature!) We discuss how to
fix file labeling problems later in this chapter.

The mode set in the SELinux configuration file is used by init to configure
SELinux before it loads the initial policy as part of the boot process.

The SELINUXTYPE option in the SELinux configuration file tells init which policy to
load during system initialization. The string used for the setting must match
the directory name where the binary version of the policy you want to use is
stored. For example, throughout this book, we use a strict policy as an
example. So, we set the option as SELINUXTYPE=strict and make sure that the policy
we want the kernel to use is in /etc/selinux/strict/policy/. If we had created our own
custom policy, called custom_policy, we would set the option as
SELINUXTYPE=custom_policy and make sure that our compiled policy is in
/etc/selinux/custom_policy/policy/.

FC and RHEL systems provide a graphical tool (system-config-securitylevel) that enables
us to set the options in the SELinux configuration file without having to edit
the file directly (see Figure 13-1). The first two check boxes in this tool set the
SELINUX option for us. The Policy Type drop-down box allows us to choose an
active policy from the installed policies.

Figure 13-1. Red Hat security level configuration tool

[View full size image]

13.1.2. The Policy Directories

As of FC3 (and RHEL4), every policy installed on a system has its own
subdirectory under the /etc/selinux/ directory. The subdirectory name corresponds
to the name of the policy (for example, strict, targeted, refpolicy, and so on) and is
used in the SELinux configuration file to tell the kernel which policy to load on
boot. All path references in this section are relative to a policy directory path
(that is, /etc/selinux/[policy]/). Here is a sample directory listing for /etc/selinux/ from an
FC4 machine:

ls -lZ /etc/selinux
-rw-r--r-- root root system_u:object_r:selinux_config_t config
drwxr-xr-x root root system_u:object_r:selinux_config_t strict
drwxr-xr-x root root system_u:object_r:selinux_config_t targeted

As you can see, two policy directories are installed on our system: strict and
targeted. Notice that the directory and the policy subdirectories are labeled with
the type selinux_config_t. This is the type traditionally applied to binary policies and
related support files. You can use apol to examine the rules for this type and get
an idea of what programs and utilities may change policy files.

Policy Directories in FC5

The layout of the policy subdirectories has changed significantly in FC5 with the introduction of the
loadable policy module infrastructure (see Chapter 3, "Architecture"). The primary change is the
introduction of libraries and tools to manage many of the policy files in a standardize way. This
change make the installation and removal of loadable policy modules better and eases the
management of many aspects of the policy. In general, it is not necessary to directly edit files in the
policy subdirectories on an FC5 or other system that incorporates the loadable modules
enhancements.

The commands semodule and semanage manage many aspects of the policy. The semodule command
manages the installation, upgrading, and removing of loadable policy modules. It works on loadable
policy packages, which include a loadable policy module and file context information. The semanage tool
manages the addition, modification, and removal of users, roles, file contexts, multilevel security /
multicategory security (MLS/MCS) translations, port labels, and interface labels. More information
on these tools is available in their respective man pages.

Each policy subdirectory must follow a convention in the files they contain and
how the files are labeled. This convention is used by various system utilities to
help manage the policy. Generally, any well designed policy source tree will
install the policy files correctly (as will properly constructed package
installation scripts). Following is a listing of our strict policy directory, which is
typical of any installed policy:

ls -lZ /etc/selinux/strict
-rw------- root root system_u:object_r:selinux_config_t booleans
-rw------- root root root:object_r:selinux_config_t booleans.local
drwxr-xr-x root root system_u:object_r:default_context_t contexts
drwxr-xr-x root root system_u:object_r:policy_config_t policy
drwx------ root root system_u:object_r:policy_src_t src
drwxr-xr-x root root system_u:object_r:selinux_config_t users

The src/ directory is not required for a running system. It optionally contains
the installed policy source tree (either the example policy or the reference
policy source tree we discussed in Chapters 11, "Original Example Policy," and
12, "Reference Policy"). The actual monolithic binary policy file is stored in the
.policy/ directory, in a file named policy.[ver], where [ver] is the version of the policy
binary (for example, policy.19). This is the file that is loaded into the kernel
during system boot.

We discuss the remaining files and directories in the following sections.

13.1.2.1. Installed Booleans Files

Chapter 9, "Conditional Policies," discussed how Booleans are managed in an
SELinux system. An SELinux policy defines default values for all Booleans. The
booleans file provides the distribution the ability to set persistent changes to
these default values. The values in booleans override the policy defaults when the
policy is loaded or the system is booted. The booleans.local file provides additional
persistent values that override both the policy default values and the
distribution persistent values. You should review Chapter 9 for how to set and
control Boolean values. There is also a manual page, man 8 booleans, that provides
a quick summary on the use of Booleans for FC and RHEL systems.

In FC5, where the booleans file is no longer present but the booleans.local file remains
for local changes (although changes are made through semanage/libsemanage and not
from directly changing the file), distribution defaults are now managed in the
policy itself. Red Hat sets their defaults in the policy sources, thereby
removing the need to have a separate distribution file to override the policy
defaults.

Note

In RHEL4 systems, the booleans.local file does not exist. Rather, the only
ability to override policy default values (other than changing the
policy itself) is the booleans file in the policy directory. The problem
with a single file is that Red Hat uses this file to set distribution
defaults, and utilities such as rpm may overwrite it destroying any
local changes. In FC4, the booleans.local file was added to allow local
changes that will not be effected by package managers.

In Fedora Core 5, where the booleans file is no longer present but the
booleans.local file remains for local changes (though changes are made
through semanage/libsemanage and not from directly changing the file).
Distribution defaults are now managed in the policy itself; Red Hat
sets their defaults in the policy sources thereby removing the need
to have a separate distribution file to override the policy defaults.

The system-config-securitylevel utility (see Figure 13-1) provides a graphical interface to
change the local persistent values (that is, the booleans.local file). The items in the
Modify SELinux Policy list box of this tool correspond to defined policy

Booleans. The Boolean values can also be changed with the command-line tool
setsebool and viewed with the setatus and getsebool commands (see Appendix D,
"SELinux Commands and Utilities").

13.1.2.2. Application and File Security Contexts

The contexts/ subdirectory, in an installed policy directory, contains various files
that help system services and utilities manage file security context labeling.
They also contain default security contexts for login processes. In general,
these files would only be changed by a policy developer, but occasionally an
administrator may have need to modify one of them. Here we summarize the
purpose of some of these files:

contexts/customizable_types

Contains a list of types that by convention will
not be relabeled when using the restorecon or setfiles
utilities to fix file labeling issues (see later in this
chapter). This feature is useful to help protect
some file labels that change in intended ways
from their installed defaults. Use the SELinux
application programming interface (API) to
check on whether or not a context is
customizable is is_context_customizable(3).

contexts/default_contexts

During initial login, a user may be authorized for
more than one role/type pair for their login
session (for example, an administrator who can
log in as both an unprivileged user and a
privileged user). This file provides the means by
which a login process (login, sshd, and so on)
determines the default role/type pair to use for
initial login.

Each line in this file contains a role/type pair representing the security context
of the login process followed by one or more role/type pairs that represent the
default security context for the user's initial login process. For example, here
are two typical lines for an SELinux system:

system_r:local_login_t staff_r:staff_t user_r:user_t sysadm_r:sysadm_t
system_r:sshd_t user_r:user_t sysadm_r:sysadm_t

The first line represents the local login process (login via its type login_t), and

the second a Secure Shell login (ssh via its type sshd_t). The login process is
determined by the first role/type pair on a line. For example, the assumption
in this file is that the login process (for local logins) runs with a security
context that has system_r as its role and local_login_t as its type. In that case, the
subsequent list of role/type pairs on the same line will be used as the default
security contexts (minus the user identifier) for a user login.

The first role/type pair in the list of default security context that is authorized
for the user in the policy is used as the default security context. This file does
not authorize a user for a role or a type; only the policy may do that (see
Chapter 6, "Roles and Users"). So, for example, in the local login case for our
example default_contexts file, if administrators log in locally (administrators are
generally users authorized for both staff_r:staff_t and sysadm_r:sysadm_t), their default
security context will be staff_r:staff_t even though they are authorized for
sysadm_r:system_t. An administrator could later change their security context (for
example, using the newrole command) because they are authorized for both, but
the default is the "staff" set of privileges. Notice for an ssh login, the default is
the "sysadm" set of privileges.

Note that these defaults may be overridden for a specific user if there is a
contexts/users/[USER] file (see the following).

[Pages 304 - 305]

contexts/users/[USER]

This file is exactly the same format as the
default_contexts file except that it is for a particular
user. If a file exists for a given user, default
role/type pairs for that user are determined first
from this file and then from the default_contexts file.

contexts/failsafe_context

If a login process cannot determine a default
security context for a user, the user will not be
able to log in to the system. This is most likely
to be the case if the default_contexts file is corrupted
or changed. This file provides a reasonable safe
failsafe security context that allows at least the
administrator to log in. It provides the last
default security context that a login process
attempts before failing the login attempt. It
typically has a line like this:

sysadm_r:sysadm_t

This would at least allow administrator users to
login (for example, to fix the corrupted

default_contexts file).

contexts/default_type

This file contains a list of role/type pairs that are
used by utilities, such as newrole. For example, if
we use newrole to change our role but did not
specify a type, the utility would consult this file
to determine the default type for the role. For
example, if we run the command newrole -r sysadm_r,
and this file had a line such as sysadm_r:sysadm_t, the
command would attempt to use sysadm_t as our
default user domain type.

contexts/files/file_contexts

This file contains the file-related security context
labeling information built as part of the policy
build process and used to initialize the security
context for file-related objects. It is installed
here to help utilities that fix file label problems
(see below).

contexts/files/file_
contexts.home_dirs

This file is automatically generated using the
/usr/sbin/genhomedircon script. Its format is the same
as the file_contexts file, but it is specifically used to
label user home directories.

contexts/files/homedir_template

This file contains a template that the
/usr/sbin/genhomedircon script uses to generate blocks
of label specifications in the file_contexts.home_dirs file
discussed previously.

contexts/files/media
This file contains security contexts for storage
devices mounted under the /media/ directory. It is
used by the libselinux matchmediacon(3) API.

contexts/initrc_context

This file contains the role/type pair that is used
for the security context for run_init (that is, the
program that an administrator runs to start
system services in the same manner that init
would) so that it can execute a script in /etc/rc.d/ in
a security context the same as if the script were
started by init. This role/type pair is typically the
same as init uses to start these services.

contexts/removable_context

This file contains the default security context for
removable media devices. This security context is
used for devices not addressed by the media
context file.

13.1.2.3. SELinux User Definitions

The two files in the user/ directory were added to support better user
management in an SELinux system without having to change the policy. Both
files have the same format. Specifically, they list policy user statements as
discussed in Chapter 6.

users/system.users

This file provides the distribution provider with
the ability to change role associations for users
explicitly defined within the policy sources.
Package managers will overwrite this file, so no
local changes should be made in it. We should
use the local.user files for locally defined users.

users/local.users

This file is identical in function to system.users
except that it will not be changed by the
distributions. Thus, we can define local users in
this file that will be added to the policy.

The load_policy utility reads these files and changes the binary policy before
loading it into the kernel. (The change is only to the in-memory version of the
policy; the on-disk binary policy does not change.) In general, for either file, if
the user already exists in the policy file (that is, hard-coded in the original
policy sources), the role associations are changed. Otherwise, the user is
added to the policy before it is loaded into the kernel.

13.1.2.4. The SELinux Filesystem

The SELinux pseudo filesystem provides the primary control interface between
the SELinux kernel-space Linux Security Module (LSM) and userspace
programs (see Figure 3-2 in Chapter 3). This filesystem is usually mounted on
/selinux/. Many SELinux utilities and APIs (provided by the libselinux library) use the
SELinux filesystem to access the LSM module. In this section, we examine
some of the files that may be of interest to an administrator. Most of the files
in this filesystem exist to support APIs in libselinux and are not discussed here.
The recommended way to use these files is through the more stable libselinux APIs
and the tools that use that library, and not directly.

booleans/

This directory contains a file for every Boolean
defined in the policy. If the file is read, the
current value of the Boolean and a pending value
of the Boolean are returned. The pending value
is the value the Boolean will be changed to when
the Boolean values are committed (see

commit_pending_booleans). The files have the same
name as the Boolean names defined in the policy
(see Chapter 9).

commit_pending_bools

This file signals the kernel-space security server
that new policy Boolean values are ready to be
activated. This feature allows multiple policy
Boolean values to be changed in an atomic
fashion (see Chapter 9).

disable

This file is the interface init uses to disable
SELinux during initialization (see the SELinux
configuration file above). When the initial
SELinux policy is loaded or SELinux is disabled,
this interface is no longer effective. Therefore,
changes to the disable state always require a
reboot. In general, the only way to
enable/disable an SELinux system is to change
/etc/selinux/config as discussed previously (or use the
system-config-securitylevel shown in Figure 13-1) and
reboot the system. Only init can use the direct
interface via this file.

enforce

This file is the interface used to turn enforcing
mode on and off. This is the interface that init
uses during boot to set the mode to enforcing
mode based on the settings in /etc/selinux/config. We
can also directly use this interface to change
mode by writing a 1 (enforcing mode) or 0
(permissive mode) to this file. The change in
mode is effective immediately. The setenforce
command does exactly this for us and is an
easier way to change modes.

It is also possible (and often desirable) to write a
policy that does not allow any domain permission
to toggle the mode to permissive from enforcing
mode.

load This file is the interface used by the load_policy
program to load a new binary policy.

mls
This file is used by the kernel to indicate whether
or not MLS is activated on the system (see
Chapter 8, "Multilevel Security").

policyvers This file returns the maximum version of the
policy that the kernel supports.

13.2. Impact of SELinux on System Administration

As with any Linux system, an administrator needs to understand numerous
functions to manage an SELinux system. For the most part, SELinux is
managed like an ordinary non-SELinux system. However, SELinux introduces
additional requirements for several typical administrator actions. In this
section, we discuss some of the areas of administration that commonly cause
problems for administrators new to SELinux.

13.2.1. Managing Users

Adding, modifying, and deleting users has always been a challenge on SELinux
systems. If not done correctly, it may appear that a user was added, but the
user will not be able to log in (for example, due to problems with the
default_contexts file). The generic SELinux user (user_u) resolved many of the user
management difficulties for SELinux systems that do not require granular
control over all Linux users. For example, when a user is added in FC4, it is
automatically mapped to user_u simply because the new user was not defined in
the policy. See Chapter 6 for more on user_u.

Another challenge with users is how to label files in a user's home directory,
which raises several issues. One challenge is how to generalize labeling for
different types of user domain types (for example, sysadm_t vs. user_t). Another is
how to determine the proper labels for a user when they are added to an
existing system. If a user's home directory and files are not initially labeled
correctly the user may encounter a variety of problems, such as not being able
to log in or not being allowed to write files in their home directory. Fortunately
we have made significant progress in recent years in addressing user
management in SELinux with the ./contexts/files/file_contexts.home_dirs file discussed
earlier.

13.2.1.1. Adding an Ordinary Unprivileged User

With the inclusion of the generic user, user_u, it is fairly straightforward to add a
user to an SELinux system by just running useradd. For example, below we show
the process of adding a user jimmy on a typical FC4 system:

useradd jimmy
ssh jimmy@localhost

jimmy@localhost password:
$ id
uid=502(jimmy) gid=502(jimmy) groups=502(jimmy) context=user_u:user_r:user_t

Notice that the user identifier in the security context is the generic user user_u.
That is because we did not add jimmy as a specific SELinux user, so FC4 uses the
generic user by default.

The generic user is adequate for most systems that do not need to define a
large number of user roles. Most of the general purpose policies today have
just a couple of roles (system, administrator, and user) and all new users are
assigned to the user role (user_t domain type and user_r role) via the generic user
as with jimmy. To add an ordinary unprivileged user to an SELinux system where
user_u is defined, we do not have to do anything beyond the normal useradd

command.

User Management in FC5

In FC5, user management is improved by the introduction of the semanage tool. The semanage tool
manages both SELinux users, their role authorizations, and the mapping of Linux users to SELinux
users. (See Chapter 6 for more information on user mapping.) For instance, consider the following
example:

[View full width]
semanage user -a -R "sysadm_r user_r" staff_u
semanage user -l

 MLS/ MLS/
SELinux User MCS Level MCS Range SELinux Roles
root s0 SystemLow-SystemHigh sysadm_r user_r
system_r
staff_u s0 s0 sysadm_r user_r
system_u s0 SystemLow-SystemHigh system_r
user_u s0 SystemLow-SystemHigh sysadm_r user_r
system_r
semanage login -a -s staff_u joe
semanage login -l
Login Name SELinux User MLS/MCS Range
__default__ user_u s0
joe staff_u s0
root root

 SystemLow-SystemHigh

In this example, we add a new SELinux user named staff_u that is authorized for
the roles sysadm_r and user_r, list all the SELinux users, add a new user mapping
for the user joe to the SELinux user staff_u, and list all the user mappings.

Notice that because FC5 uses the optional MLS features by default (to
implement the MCS policy), MLS ranges are shown for users.

13.2.1.2. Adding a Privileged User Account

For administrators, a root user is typically defined in the SELinux policy that
corresponds to the root user account. The policy assigns this user a role
(sysadm_r) and user domain (sysadm_t) that has sufficient privilege to manage a
system. Although root in SELinux is not all-powerful as in a standard Linux
system, it does have the authority to run all the programs that have the
various privileges required. Users authorized to use the root user account (and
its associated privileged user domain types) are generally given a different
unprivileged user domain type (staff_t). This user domain type is exactly like the
unprivileged domain type of ordinary users (user_t) except that it may transition

into the privileged user domain type (sysadm_t).

To add a privileged user, we run the useradd command as we did with an
ordinary user account. However, we also need to edit the active policy's local.users

file discussed previously. In this file, we define the user to the policy. For
example, if we want to create a Linux user called "admin" that has
administrator privileges, we would do the following:

useradd admin # create ordinary user
vi /etc/selinux/strict/users/local.users # add admin as privileged
load_policy /etc/selinux/strict/policy/policy.19 # reload policy
genhomedircon # fix homedir template
restorecon -R /home/admin # fix admin's homedir

We used the same useradd command to create the account and home directory.
However, this time we need to tell SELinux about the new user so that it does
not treat it as a generic user. We do this by editing the local.users file and adding
the following line:

user admin roles { staff_r sysadm_r };

This line lets the SELinux policy know of the user and defines the authorized
roles for the user. To make this change effective, we need to run load_policy to
reload the policy into the kernel. At this point, the user is defined in both the
system and the SELinux policy. However, the user home directories are still
labeled as if admin were a generic user. (This is the behavior of useradd.) So, next
we need to run the genhomedircon utility that updates the home directory file
security context file (./contexts/files/file_contexts.home_dirs) with the new user. We then
use the restorecon program to update the new user's home directory based on its
current roles.

At this point, the user account is now created and authorized for both the
unprivileged administrator role (staff_r) and the privileged administrator role
(sysadm_r). The behavior of most login processes is such that the default security
context for a user authorized for both roles is staff_r so that an administrator
logs in as an unprivileged user by default. For example, let's log in as our new
administrator account:

ssh admin@localhost
admin@localhost's password:

$ id
uid=506(admin) gid=506(admin) groups=506(admin) context=admin:staff_r:staff_t

Notice that our role and user domain type are staff_r and staff_t, respectively. As
we said, these are the unprivileged role and type for administrative users. Choosing
staff over sysadm as the default login role/type is a function of the default
context for sshd as we discussed earlier. Processes with the staff_t domain type
have essentially no more privilege than any other ordinary user, other than it
is allowed to transition to the privileged domain type sysadm_t. For example, to
perform administrator functions we could then do the following:

$ su
Password:
Your default context is root:sysadm_r:sysadm_t.
Do you want to choose a different one? [n]
id
uid=0(root) gid=0(root)
groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel)
context=root:sysadm_r:sysadm_t

The su program (which also acts like a login program) has its default context
set up such that a user running with the staff role/type will default to the
sysadm role/type. Notice that the su program also asks whether you want to
provide a security context other than the defined default. You always have the
option of trying something other than the defined default (if the policy permits
it).

Note

In FC5, su does not change the security context. Instead, users must
use the newrole command. For example, the command newrole -r sysadm_r -t

sysadm_t makes the equivalent change to the security context as the
FC4/RHEL 4 example above.

Remember that the default contexts for the various login programs define only
defaults; they do not allow the necessary access. Only the policy may do that,

as we discuss in Part II of this book.

13.2.1.3. Changing a User Role

Changing the role of an existing user is similar to adding a new administrator
role. We just need to skip the useradd step because the user already exists. For
example, to change the admin user we just defined back to an ordinary user
we do the following:

vi /etc/selinux/strict/users/local.users
load_policy /etc/selinux/strict/policy/policy.19
genhomedircon
restorecon -R /home/admin
ssh admin@localhost
admin@localhost's password:
id
uid=506(admin) gid=506(admin) groups=506(admin) context=user_u:user_r:user_t

To remove the administrator privileges, we remove the user from the local.users

file, reload the policy, and fix the user home directory security contexts. As
you can see, when we log in as this user now, our role/type is user and our
user is now the generic user user_u.

13.2.2. Understanding Audit Messages

In Chapter 5, "Type Enforcement," we discuss the policy rules that control the
generation of audit messages from SELinux. Here we discuss the format of the
messages generated from these policy statements and how to examine and
manage the audit messages on a production system.

On systems that utilize the kernel audit framework (including FC4 and 5),
SELinux audit messages are stored in both the system log (that is, syslog) files
and the audit daemon log files. By default, the audit daemon log is stored in
/var/log/audit/audit.log, and the system log file is stored in /var/log/messages. The audit
daemon log contains all the audit messages created by the audit framework
including access vector cache (AVC) messages. AVC messages are the audit
messages generated by SELinux as a result of access denials and auditallow rules.
The system log contains more general SELinux audit messages.

Note

The original version and first update of RHEL4 did not use the audit
framework. This means that all SELinux audit message should be in
the system log, typically /var/log/messages. Beginning with RHEL4 update
2, the audit framework is used and it should work just like FC4.
Some SELinux messages are still sent to the system log because
they are generated as kernel messages rather than audit messages
(for example, policy load messages), and any SELinux audit
messages generated before the audit daemon is started are also
stored in the system log. In FC5, the audit daemon is optional,
meaning that SELinux messages will appear in either system log or
the audit log depending of the configuration of the system.

13.2.2.1. General SELinux Audit Messages

SELinux generates audit messages at system initialization, policy load, and
when Boolean states are changed. The policy does not control the generation
of these messages; they are hard-coded into SELinux. All the general SELinux
audit messages are currently stored in the system audit logs.

At system initialization, SELinux generates audit messages that give
information about the configuration of the SELinux LSM module. For example,
here are the first audit messages from SELinux after booting the system:

 1 Jul 22 11:44:25 milton kernel: Security Framework v1.0.0 initialized
 2 Jul 22 11:44:25 milton kernel: SELinux: Initializing.
 3 Jul 22 11:44:25 milton kernel: SELinux: Starting in permissive mode
 4 Jul 22 11:44:25 milton kernel: selinux_register_security: Registering
 secondary module capability
 5 Jul 22 11:44:25 milton kernel: Capability LSM initialized as secondary

The initialization of the LSM framework generates line 1, and the subsequent
initialization of SELinux generates line 2. This system was booted in
permissive mode, which is reflected on line 3. Lines 4 and 5 show that the
capability LSM module, which implements the standard Linux capability

semantics, was registered as a secondary LSM module to SELinux.

Later in system initialization, the policy is loaded for the first time, generating
audit messages similar to the following example:

[View full width]
 1 Jul 22 11:44:26 milton kernel: security: 3 users, 6 roles, 1341 types, 62 bools
 2 Jul 22 11:44:26 milton kernel: security: 55 classes, 345260 rules
 3 Jul 22 11:44:26 milton kernel: SELinux: Completing initialization.
 4 Jul 22 11:44:26 milton kernel: SELinux: Setting up existing superblocks.
 5 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev dm-0, type ext3), uses xattr
 6 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev tmpfs, type tmpfs), uses

 transition SIDs
 7 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev selinuxfs, type selinuxfs),

 uses genfs_contexts
 8 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev mqueue, type mqueue), not

 configured for labeling
 9 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev hugetlbfs, type hugetlbfs),

 not configured for labeling
10 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev devpts, type devpts), uses

 transition SIDs
11 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev eventpollfs, type eventpollfs)

, uses genfs_contexts
12 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev tmpfs, type tmpfs), uses

 transition SIDs
13 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev futexfs, type futexfs), uses

 genfs_contexts
14 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev pipefs, type pipefs), uses

 task SIDs
15 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev sockfs, type sockfs), uses

 task SIDs
16 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev proc, type proc), uses

genfs_contexts
17 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev bdev, type bdev), uses

 genfs_contexts
18 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev rootfs, type rootfs), uses

 genfs_contexts
19 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev sysfs, type sysfs), uses

 genfs_contexts
20 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev usbfs, type usbfs), uses

 genfs_contexts

The first two lines of this example show the audit message generated every
time a policy is loaded. As you can see, this message shows statistics about the
policy loaded. This example policy has 3 users, 6 roles, 1,341 types, 62
Booleans, 55 object classes, and 345,260 rules. Recall from Chapter 5 that
rules are expanded in the kernel binary policy format (for policies before
version 20). The number of rules shown in these audit messages are for the
expanded rule format, which will be significantly higher than the number of
rules present in the policy source files.

This example also shows the audit messages generated at the first policy load.
Lines 3 and 4 show the completion of SELinux initialization, including the
initialization of SELinux support for filesystem objects that were mounted
before the first policy load. Lines 5 through 20 show the initialization of each
filesystem object and the associated labeling behavior.

The final general SELinux audit message is generated when the state of
Booleans is committed. For example, consider the following two audit
messages:

Dec 2 14:07:41 book kernel: security: committed booleans { allow_write_xshm:1,
mozilla_read_content:0, mail_read_content:0, cdrecord_read_content:0,
allow_ptrace:0, read_untrusted_content:0, write_untrusted_content:0,
user_dmesg:0, use_nfs_home_dirs:0, allow_execmem:0, allow_execstack:0,
allow_execmod:0, use_samba_home_dirs:0, user_tcp_server:0, allow_ypbind:0,
allow_kerberos:1, user_rw_usb:1, user_net_control:0, user_direct_mouse:0,
user_rw_noexattrfile:1, read_default_t:1, staff_read_sysadm_file:1,
allow_httpd_user_script_anon_write:0, allow_httpd_staff_script_anon_write:0,
user_ttyfile_stat:0, httpd_unified:0, httpd_builtin_scripting:1,
httpd_enable_cgi:1, httpd_enable_homedirs:1, httpd_ssi_exec:1, httpd_tty_comm:0,
httpd_can_network_connect:0, allow_httpd_sys_script_anon_write:0,
allow_httpd_anon_write:0, httpd_suexec_disable_trans:0, comsat_disable_trans:0,
cron_can_relabel:0, cupsd_lpd_disable_trans:0, cvs_disable_trans:0,
dbskkd_disable_trans:0, disable_evolution_trans:0, ftpd_is_daemon:1, ftp_home_di
Dec 2 14:07:41 book kernel: :1, allow_ftpd_anon_write:0, disable_games_trans:0,
inetd_child_disable_trans:0, allow_java_execstack:0, ktalkd_disable_trans:0,
disable_mozilla_trans:0, allow_mplayer_execstack:0, allow_user_mysql_connect:0,
named_write_master_zones:0, secure_mode:0, user_ping:0,
allow_user_postgresql_connect:0, pppd_for_user:0, pppd_can_insmod:0,
rlogind_disable_trans:0, nfs_export_all_rw:0, nfs_export_all_ro:0,
allow_gssd_read_tmp:1, rsync_disable_trans:0, allow_rsync_anon_write:0,
allow_smbd_anon_write:0, samba_enable_home_dirs:0,
allow_saslauthd_read_shadow:0, spamassasin_can_network:0, squid_connect_any:0,
ssh_sysadm_login:1, allow_ssh_keysign:0, run_ssh_inetd:0,
stunnel_disable_trans:0, stunnel_is_daemon:0, swat_disable_trans:0,

telnetd_disable_trans:0, disable_thunderbird_trans:0, uucpd_disable_trans:0,
xdm_sysadm_login:0 }

Boolean commit messages show the current state of all Booleans in the current
policy. As the preceding example shows, this can result in long audit messages
that are split into two separate messages by the audit framework.

13.2.2.2. AVC Messages

AVC messages are the audit messages generated as a result of access denials
that were not suppressed by dontaudit messages or permitted access that matches
an auditallow rule. These messages contain valuable information that can be used
for system monitoring, administration, and policy development. Chapter 14,
"Writing Policy Modules," illustrates how these messages are used as part of
policy development.

AVC messages are stored in the audit daemon log. The following is a
representative example of an AVC message:

type=AVC msg=audit(1135098961.471:1770): avc: denied { read } for pid=19850
comm="cat" name="sysadm_tmp_file" dev=dm-0 ino=67482
scontext=kmacmillan:staff_r:staff_t tcontext=kmacmillan:object_r:sysadm_tmp_t
tclass=file

This AVC message shows that a process with the security context
kmacmillan:staff_r:staff_t was denied read access to a file with the security context of
object_r:sysadm_tmp_t. The process was executing the cat program on the file
/tmp/sysadm_tmp_file.

As you can see, almost all the fields in AVC messages are in the form of
name=value. For example, in the field pid=19850, the name of the field is pid, and
the value, which is formatted according to the information in the field, is 19850.

To understand the AVC messages, let's examine each of the fields. All AVC
messages have the following six fields:

Messages generated by the audit daemon can be
one of several types; the type of a message is

type identified by a prefix consisting of type= and the
message type. The prefix in this message, AVC,
identifies the message as an AVC message.
Other message types (which are not SELinux
specific) include USER_AUTH, LOGIN, SYSCALL, and PATH.

msg

The audit framework prepends a message
header to all audit messages that includes a
timestamp and serial number separated by
colon. The timestamp, 1135098961.471 in this
message, is the number of seconds and
nanoseconds since the Epoch (the standard
form for time on UNIX systems). The serial
number, 1770 in this message, is used to
identify multiple, related audit messages
generated by the same event. For example, a
single event might generate both a system call
and AVC audit message; both of these
messages would have the same serial number.

avc

This field, which is the only exception to the
name/value format, identifies whether the audit
message was generated from an allowed or
denied access, and the permissions that were
allowed or denied. There can be one or more
permissions, all from a single object class, which
is identified in a separate field. The keyword denied
indicates this message is from an access denial.
Allowed access is denoted by granted.

scontext The security context of the source, or subject.

tcontext The security context of the target, or object.

tclass

The object class of the target, or object. The
allowed or denied permissions are from the
access vector defined for this object class (see
Chapter 4, "Object Classes and Permissions").

The rest of the fields in an AVC message provide additional detail about the
access that was allowed or denied. The details are often object-class specific.
For example, audit messages from file-related object classes often include the
inode number of the object, and audit messages from network-related objects
often include an IP address or port number. The preceding example has the
following fields, which are typical for file-related object classes:

pid

The identifier of the process that attempted the
access. This field is most useful to distinguish
between multiple invocations of the same
application or for servers that include multiple,

long-running processes (for example, apache).

comm
The name of the executable file associated with
the process. This field only includes the name of
the file without a full path specification.

dev and ino

The device (dev) and inode number (ino) of the
file-related object associated with the target.
Together these can be used to identify the
object if a full path is not available in the audit
message.

name
The name of the file-related object. This field
includes only the name of the file-related object
without a full path.

Note

Under the new Linux audit framework, every AVC message is
followed by a SYSCALL message with the same audit event ID. The
SYSCALL message has the correct and full exe and path fields
(corresponding to the comm and name fields, respectively) for the
associated AVC message. This was done to supply the information
that is not available at the time the AVC message is generated.

AVC messages generated as a result of allowed access are similar. Consider
the following example:

type=AVC msg=audit(1135098723.344:1742): avc: granted { load_policy } for
pid=19618 comm="load_policy" scontext=root:sysadm_r:load_policy_t
tcontext=system_u:object_r:security_t tclass=security

This example AVC message shows the successful loading of a policy. The auditallow

rule that caused the generation of this AVC message is commonly included in
policies because of the importance of loading a policy.

13.2.2.3. Using Seaudit to View Audit Logs

Seaudit, a tool included with the Setools package along with apol, parses and
displays SELinux audit messages. Figure 13-2 shows a typical seaudit session.

Figure 13-2. A typical seaudit session

[View full size image]

This tool parses the log file and displays a list of all the messages. Sixteen
customizable fields may be displayed for each message. The Modify view
button allows you to create custom filters so that only "interesting" data
displays. You may save the view as a report.

13.2.3. Fixing Problems: File-Related Object Labeling

During normal system use, file-related objects should not need labeling or
relabeling. All of the files that are part of the operating system should be given
a correct initial security context during installation, and the policy rules
relating to labeling ensure that newly created files have the correct security
context. However, during policy development, system setup, and system
administration, files may need to be relabeled.

Warning

Relabeling objects has security risks, including potential race

conditions, inconsistent access control being applied to objects,
malicious hard links, and the lack of full revocation support. For the
best security, relabeling should be avoided entirely on a production
system. When it is unavoidable, however, the system should be in a
known good state (for example, immediately after system
installation or after verifying that the integrity of the system has
not been compromised). For large labeling changes, such as would
result from a large policy change, it is better for the system to be
removed from production use.

13.2.3.1. File-Related Object Labeling Commands

Four main commands are used to relabel file-related objects: chcon(8),
restorecon(8),setfiles(8), and fixfiles(8). All these commands relabel files, but they each
have a specific use. Typically, chcon and restorecon are used for small labeling
changes, whereas setfiles and fixfiles are used for larger changes.

The chcon command sets the same security context, or a portion of a security
context, for one or more files based on user input. It is the most basic labeling
command and its use is analogous to chmod(1). For instance, consider the
following example:

$ mkdir public_html
$ ls -dZ public_html/
drwxrwxr-x joe joe joe:object_r:user_home_dir_t public_html/
$ chcon -t httpd_user_content_t public_html/
$ ls -dZ public_html/
drwxrwxr-x joe joe joe:object_r:httpd_user_content_t public_html/

In this example, we changed the security context of a newly created directory,
which was automatically assigned the security context joe:object_r:user_home_dir_t, to
joe:object_r:httpd_user_content_t. The -t option alone specifies that the type of file should
be changed while the rest of the security context is retained.

The restorecon command is similar to chcon but sets the security context of file-
related objects based on the default file context files for the current policy. The
user, therefore, does not specify a security context. Instead, restorecon matches

the filename with an entry in the file contexts files and applies the specified
security context. In some sense, it is restoring the correct security context. For
example, consider the following:

$ mkdir public_html
$ ls -Zd public_html/
drwxrwxr-x joe joe joe:object_r:user_home_dir_t public_html/
$ /sbin/restorecon public_html/
$ ls -Zd public_html/
drwxrwxr-x joe joe user_u:object_r:httpd_user_content_t public_html/

This example is functionally the same as the previous example using chcon but
only because the file context files for this policy has the following entry:

/home/[^/]*/public_html(/.+)? user_u:object_r:httpd_user_content_t

The file context entry specifies that directories in user home directories named
public_html/ should be labeled user_u:object_r:httpd_user_content_t.

We can also use the restorecon command to check whether the labels on file-
related objects match the specification in the file contexts files. For example:

$ mkdir public_html
$ /sbin/restorecon -nv public_html/
/sbin/restorecon reset /home/joe/public_html context
joe:object_r:user_home_dir_t->user_u:object_r:httpd_user_content_t

In this example, we specified the -n to prevent restorecon from actually performing
the relabeling and the -v option, which causes restorecon to print in labeling
changes performed. Together these options result in restorecon printing any
differences between the on-disk labeling and the file contexts files.

Finally, the restorecon command can be used to recursively relabel a large
number of files. The option -R directs restorecon to descend into directories,
relabeling all the contained files and directories. For example, consider the
following session:

$ mkdir public_html

$ scp -r gotham:public_html/*.html public_html/.
kmacmillan@gotham's password:
2005d10.html 100% 28KB 28.3KB/s 00:00
2005d11.html 100% 22KB 21.5KB/s 00:00
2005d12.html 100% 8575 8.4KB/s 00:00
2005d7.html 100% 15KB 14.9KB/s 00:00
calendar.html 100% 2839 2.8KB/s 00:00
coding_style.html 100% 1040 1.0KB/s 00:00
$ ls scontext public_html/*
joe:object_r:user_home_dir_t public_html/2005d10.html
joe:object_r:user_home_dir_t public_html/2005d11.html
joe:object_r:user_home_dir_t public_html/2005d12.html
joe:object_r:user_home_dir_t public_html/2005d7.html
joe:object_r:user_home_dir_t public_html/calendar.html
joe:object_r:user_home_dir_t public_html/coding_style.html
$ /sbin/restorecon -R public_html/
$ ls scontext public_html/*
user_u:object_r:httpd_user_content_t public_html/2005d10.html
user_u:object_r:httpd_user_content_t public_html/2005d11.html
user_u:object_r:httpd_user_content_t public_html/2005d12.html
user_u:object_r:httpd_user_content_t public_html/2005d7.html
user_u:object_r:httpd_user_content_t public_html/calendar.html
user_u:object_r:httpd_user_content_t public_html/coding_style.html

In this example, we copied several Web pages from another system, which all
automatically received the security context joe:object_r:user_home_dir_t. Running
restorecon recursively on the entire directory relabeled all the files to
user_u:object_r:httpd_user_content_t. Here all the files received the same security context
because they matched the same file context specification, but it is equally
possible that some files would have matched other specifications and received
different labels.

Despite its ability to recursively relabel files and directories, restorecon is not
normally used to make large labeling changes such as would result from
switching policies. For this, we should use the fixfiles command. The fixfiles

command is actually a shell script that uses either restorecon or setfiles depending
on the requested use. Like restorecon, fixfiles uses the file contexts files for the
current policy. Instead of requiring the user to specify which files or directories
to relabel or check, fixfiles works on all mounted filesystems that support
extended attribute labeling. The fixfiles command has three modes, one of which
must be specified when running the command:

check Show any file-related objects whose security context does not match
what is specified in the file context files.

restore Relabel any file-related objects whose security context does not
match what is specified in the file context files.

relabel Like restore, but also optionally removes any files in the /tmp directory
first.

For example, following is how to relabel all file-related objects on the system:

/sbin/fixfiles relabel

 Files in the /tmp directory may be labeled incorrectly, this command
 can remove all files in /tmp. If you choose to remove files from /tmp,
 a reboot will be required after completion.

 Do you wish to clean out the /tmp directory [N]? n

The final command, setfiles, requires that the user manually specify which file
contexts files to use and the starting directory. In addition, setfiles does not
traverse across mount points when descending into directories, meaning that it
must be run once for each mounted filesystem that uses extended attribute
labeling. It is more common to use fixfiles unless additional flexibility is needed.

13.2.3.2. Automatic Relabeling

In addition to using the file-related object labeling commands to relabel an
entire system, a system can be automatically relabeled during boot. This is
done by creating a file in the root of the filesystem called /.autorelabel. For
example:

touch /.autorelabel

If this file is present during boot, the entire system is relabeled and the file is
removed. The kernel may also be booted with the autorelabel argument that
causes a relabel upon boot without the /.autorelabel file. When an SELinux system

is booted with SELinux disabled, the /.autorelabel file is automatically created.

13.2.4. Managing Multiple Policies

In general, a production system should not maintain multiple policies and
switch between them. However, this is a common scenario for development
systems and may be an issue for some types of deployments and policy
updates.

The procedure for switching policies is as follows:

1.

Install the policy under its name in /etc/selinux/. (For example, for a policy
called mypol, install it in /etc/selinux/mypol/, the actual binary policy file should end
up in /etc/selinux/mypol/policy/policy.[ver]).

2.

Change the policy name in the SELinux configuration file (/etc/selinux/config).
This can be done with a text editor or using the system-config-securitylevel

command.

3.
Set the system to automatically relabel the entire system on the next
reboot by using the /.autorelabel file as discussed earlier.

4. Reboot the system.

On reboot, the system will load the new policy and relabel all of the file-
related objects.

13.3. Summary

The /etc/selinux/config file controls which policy is active (that is, will be loaded
during boot and used by system utilities). This file also controls the default
state of SELinux during boot: enforcing (normal), permissive, and disabled.

Installed policies and their support files are stored in /etc/selinux/[policyname]/. For
example, the default targeted policy in FC4 is stored in /etc/selinux/targeted/.
Besides the actual binary policy file, this directory contains a number of
files that are used by system utilities to manage portions of the policy (for
example, users) or object labeling decisions. If installed, this directory also
contains the policy sources.

SELinux provides userspace interfaces to the SELinux LSM modules as a
filesystem that is usually mounted on /selinux/. Most of the files in this
filesystem support APIs in the libselinux library.

The SELinux generic user, user_u, provides a means to add users to an
SELinux system without having to add them to the policy. user_u defines
permissions and role authorization for normal, unprivileged users. To add
a privileged administrator user, you must add it to the policy by editing the
active policy's local.users file and reloading the policy.

SELinux produces two types of audit messages: general and AVC. General
audit messages record events relating to system initialization, policy load,
and Boolean value changes. AVC messages (by far the most common)
record access denial and allowance events.

In general, file security context labels should not require maintenance on
a running production system. However, if the policy is updated or you are
using a development/experimental system, you may need to manually fix
or repair object labeling. SELinux provides four commands to aide in this
task: chcon(8), restorecon(8), setfiles(8), and fixfiles(8). (See Appendix D for a
description of these commands.)

Exercises

1. Explain the differences between enforcing, permissive, and disabled mode.

2. How would you temporarily switch between enforcing and permissive mode?

3. Why don't we need to add ordinary unprivileged users to the policy via the local.users files?

4. Change a Boolean value. Make sure the change will be preserved.

5. Create a new user account system administrator named joe that may su into the privileged root account
with administrator privilege.

6.

Given the following audit message, write a corresponding allow rule that would allow the denied access in
the future:

type=AVC msg=audit(1129843356.666:28947): avc: denied { read } for
pid=1730 comm="grep" name=ifcfg-lo dev=dm-0 ino=1243093 scontext
=system_u:system_r:udev_t tcontext=system_u:object_r:net_conf_t
tclass=file

7. Use restorecon to check the file labels for all files and directories in /etc/. How would you change the
command to restore any labels that do not match the file context files?

Chapter 14. Writing Policy Modules
In this chapter

14.1 Overview of Writing a Policy
Module

14.2 Preparation and Planning

14.3 Creating an Initial Policy Module

14.4 Testing and Analyzing the Policy

14.5 Emerging Policy Development
Tools

14.6 Complete IRC Daemon Module
Listings

14.7 Summary

page 326

page 327

page 332

page 349

page 355

page 355

page 366

This chapter brings together all we have learned throughout the book. It
presents a guided tour of writing a policy module for both the example and
reference policies.

14.1. Overview of Writing a Policy Module

In this chapter, we walk through the process of creating a policy module,
bringing together all we have learned throughout the book. We discuss all the
steps required to create a policy module for both the original example policy
(Chapter 11, "Original Example Policy") and the newer reference policy
(Chapter 12, "Reference Policy"). For most steps in the process, we present
the general idea of the step and then show examples of that step from both
kinds of policies. We think this "by example" procedure is the best way to
understand both policies.

Our presentation is only an introduction to this topic; the only way to learn
the techniques and strategies of an experienced policy writer is to attempt to
write modules. The outline we present provides a starting point for your own
policy development. The best guide in the future is the experience you gain
through applying SELinux to solve your own security challenges.

The policy module that we create in this chapter is for the IRC daemon
available as part of Fedora Core 4 (FC4). We chose this example because it is
a straightforward, yet representative example of a network-facing daemon.

In our experience, writing a policy module involves three basic steps:
preparation and planning, initial policy module creation, and testing and
analysis. In preparation and planning, we gather critical information, create a
test environment, and specify the security goals for the policy module. In the
initial policy creation step, we combine the gathered information and security
goals to create a first version of the policy module. In the testing and analysis
step, we determine the correctness of the policy module in terms of
functionality and security.

In the remainder of this chapter, we present these steps in an idealized, linear
fashion. In reality, policy writing is often an iterative process of writing,
testing, and research. In particular, the testing and analysis step usually
results in changes to the policy module.

14.2. Preparation and Planning

Before writing our policy module, we need to gather some information about
the applications, create a test configuration, and specify our security goals. We
also must choose our target platform and policies. For our example, we target
an FC4 system and create policy modules for the example strict policy (see
Chapter 11) and a strict reference policy (see Chapter 12).

14.2.1. Gathering Application Information

Like all policy modules, our IRC module is primarily about creating a domain
for the IRC daemon. Writing the policy module will require as much
information as possible about how this daemon is designed and functions. In
general, the better we understand the target application, the better the
security and functionality of the resulting policy. Of particular importance is
the application architecture (for example, number and purpose of processes
and resources), administration (for example, documentation of configuration
files), and existing security information. Existing information about the
security of the applications, including hardening guidelines, can prove helpful.
Be warned, however, that security guidelines often do not give the full picture
of the application security or necessarily meet your specific security needs.

Here is a sample of the information we collected about the Hybrid IRC daemon,
which is standard for FC4:

The daemon consists of a single process that listens for incoming IRC
connections on port 6667.

The IRC protocol (originally described in RFC 1459) is normally
implemented on top of TCP, and there is a single connection per client.

A number of configuration files are stored, by default, under /etc/ircd/.

By default, the IRC daemon has private log files stored under /var/log/ircd/.

The FC4 RPMs create a data directory for the IRC daemon under /var/lib/.

Like most daemons configured for FC, the IRC daemon creates files in

/var/run/ storing the PID of the active daemon process while running.

Other than the logs, PID, /var/lib/, and configuration files and directories, the
IRC daemon does not require any other significant filesystem access.

14.2.2. Creating a Test Environment

Writing policy modules requires testing and (in many cases) experimentation.
Therefore, we need a test installation of the service on a system configured for
policy development. Like all testing, it is important that the test environment
match the deployment environment as closely as possible. For our purposes,
we create a basic example IRC daemon installation on FC4. We also need a
test system with an IRC client on the same network.

We start with a basic workstation installation of FC4, to which we need to add
the example and reference policy source files and the IRC daemon. Appendix
A, "Obtaining SELinux Sample Policies," provides instructions on how to obtain
and install the required strict example policy and reference policy. The IRC
daemon is installed with the following yum command. (As root running with the
security root:sysadm_r:sysadm_t, for example, log in and su to root on a standard FC4
system.)

yum install ircd-hybrid

This installs the IRC daemon, startup scripts, and example configuration files.
We are now ready to edit the configuration file /etc/ircd/ircd.conf. We start with the
file simple.conf provided in the documentation (/usr/share/doc/ircd-hybrid-7.2.0/simple.conf) and
modify it slightly (the server info sid and the operator password options), as shown in
Listing 14-1 (changed options are bolded).

Listing 14-1. Modified IRC Daemon Configuration File
(ircd.conf)

1 # Hybrid 7 minimal example configuration file
2 #
3 # $Id: simple.conf 33 2005-10-02 20:50:00Z knight $
4 #
5 # This is a basic ircd.conf that will get your server running with
6 # little modification. See the example.conf for more specific
7 # information.

8 #
9 # The serverinfo block sets your server's name. Fields that may
10 # be set are the name, description, vhost, network_name,
11 # network_desc, and hub.
12
13 serverinfo {
14 name = "irc.example.com";
15 sid = "1se";
16 description = "Test IRC Server";
17 hub = no;
18 };
19
20 # The administrator block sets up the server administrator
21 # information, that is shown when a user issues the /ADMIN
22 # command. All three fields are required.
23
24 administrator {
25 description = "Example, Inc Test IRC Server";
26 name = "John Doe";
27 email = "jdoe@example.com";
28 };
29
30 # Class blocks define the "privileges" that clients and servers
31 # get when they connect. Ping timing, sendQ size, and user
32 # limits are all controlled by classes. See example.conf for
33 # more information
34
35 class {
36 name = "users";
37 ping_time = 90;
38 number_per_ip = 0;
39 max_number = 200;
40 sendq = 100000;
41 };
42
43 class {
44 name = "opers";
45 ping_time = 90;
46 number_per_ip = 0;
47 max_number = 10;
48 sendq = 500000;
49 };
50
51 # Auth blocks define who can connect and what class they
52 # are put into.
53
54 auth {
55 user = "*@*";
56 class = "users";
57 };
58
59 # Operator blocks define who is able to use the OPER command
60 # and become IRC operators. The necessary fields are the
61 # user@host, oper nick name, and the password, encrypted with
62 # the mkpasswd program provided.
63
64 operator {
65 name = "JohnDoe";
66 user = "*@*.example.com";
67 # MD5 encrypted password - "selinux"
68 password = "1gv.dyLcq$wr2F.9AqZ/2EKxcsCexKm1";

69 encrypted = yes;
70 class = "opers";
71 };
72
73 # Listen blocks define what ports your server will listen to
74 # client and server connections on. ip is an optional field
75 # (Essential for virtual hosted machines.)
76
77 listen {
78 port = 6667;
79 };
80
81 # Quarantine blocks deny certain nicknames from being used.
82
83 quarantine {
84 nick = "dcc-*";
85 reason = "DCC bots are not permitted on this server";
86 };
87
88 quarantine {
89 nick = "LamestBot";
90 reason = "You have to be kidding me!";
91 };
92
93 quarantine {
94 nick = "NickServ";
95 reason = "There are no Nick Services on this Network";
96 };
97
98 # The general block contains most of the configurable options
99 # that were once in config.h. The most important ones are below.
100 # For the rest, please see example.conf. Note that variables not
101 # mentioned here are set to the ircd defaults, which are listed in
102 # src/s_conf.c:set_default_conf.
103
104 general {
105 hide_spoof_ips = yes;
106 # Identd is commonly disabled on modern systems
107 disable_auth = yes;
108 # Control nick flooding
109 anti_nick_flood = yes;
110 max_nick_time = 20;
111 max_nick_changes = 5;
112
113 # Show extra warnings when servers connections cannot succeed
114 # because of no "N" line (a misconfigured connect block)
115 warn_no_nline = yes;
116 };

Tip

For policy development, it is important to understand all the files
and directories that are part of an application. The command rpm -ql

ircd-hybrid will list the files and directories installed as part of the IRC
daemon package.

The three changes that we make to this file are to change the unique identifier
of the server (line 15), the administrative password (line 68), and disable the
use of identd (line 107). After saving this file as /etc/ircd/ircd.conf, we start the server
(for now, on a permissive mode SELinux FC4 system) with the following
command:

setenforce 0
/etc/init.d/ircd start
Starting ircd: ircd: version hybrid-7.2.0
ircd: pid 9052
ircd: running in background mode from /usr/lib/ircd [OK]

These commands show the ircd service starting successfully. Once started, the
log file /var/log/ircd/ircd.log should contain the following entry (at or near the end):

[2006/2/3 04.25] Server Ready

Note that there may be some access vector cache (AVC) messages generated
because we have not yet installed a specific policy for the server. We can
ignore them for now.

14.2.3. Specifying Security Goals

The last preparation step is to specify the security goals for our IRC policy
module. Without understanding what security means for this application, we
have no basis for making security-critical decisions during the development of
our policy module proverb. This is our chance to think about the overall
security concerns before we become immersed in the many details of the
policy language. (Or in the words of the proverbial saying, let's examine the
"forest" before we are overwhelmed by the "trees.") We will revisit these
security goals after creating our policy module to determine whether we meet
our objectives (to determine whether our forest is what we expected after we
spend all our time planting trees).

How to correctly determine and specify security goals is a large topic itself,
beyond the scope of this book. It comes mostly with experience and the correct

mind set. Following are some security goals for a basic policy module for our
IRC daemon:

ircd service confinement Confine the ircd service to the minimum
amount of access required to function properly. This will prevent an
exploitable flaw in the service from being used to compromise the entire
system.

System protection Protect the system from the IRC service to prevent
privilege escalation through exploiting IRC.

Configuration file protection Protect the configuration files from
modification by nonadministrative domains (for example, domains other
than sysadm_t) and the service itself.

These security goals are just a starting point. Many other security goals are
possible for an IRC daemon or similar applications.

14.3. Creating an Initial Policy Module

In the next steps, we create an initial policy based on the information we
gathered and the security goals we specified. To create the most secure policy
module possible, we want to create a policy that grants only the access that we
expect the IRC daemon to require before testing begins.

14.3.1. Creating Policy Module Files

We begin our policy module development by creating all the policy module files
for both the example and reference policies.

14.3.1.1. Example Policy

As we discussed in Chapter 11, a policy module in the example policy consists
of two files: the policy rules file (.te) and the file context files (.fc). Therefore,
for the IRC daemon policy module we need to create the files domains/programs/ircd.te

and file_contexts/programs/ircd.fc. Initially, these files can be empty.

Note

All path names are relative to the root of the policy source
directory. For the example policy this is /etc/selinux/strict/src/policy, and for
the reference policy this is /etc/selinux/refpolicy/src/policy. We also refer to
just the filenames (for example ircd.te, meaning
/etc/selinux/strict/src/policy/domains/programs/ircd.te for the example policy).

14.3.1.2. Reference Policy

As discussed in Chapter 12, a reference policy module consists of three files:
the private policy file (.te), an external interface file (.if), and the labeling policy
file (.fc). Because the IRC daemon is a system service, we put its policy module
files in the services layer (that is, policy/modules/services/ircd.te, policy/modules/services/ircd.if,
and policy/modules/services/ircd.fc). The files ircd.if and ircd.fc can be empty initially, but the
file ircd.te must minimally declare the module as follows:

Ircd policy module declaration
policy_module(ircd, 1.0)

14.3.2. Declaring Types

The next step is to declare the appropriate domain and object types for our
policy module. Remember, access can be allowed only between types, so we
must identify and declare the correct set of types to represent our application
architecture. In many ways, this is the most important step in policy module
development. If we do not correctly identify the needed types, particularly
domain types, the rest of the policy cannot be correct.

Policy modules typically declare types for the following:

Domains One or more domain types for the application processes

Entrypoints At least one entrypoint executable file type for each of the
domains

Application resources One or more types for the resources controlled by
the application (for example, temporary files, configuration files, log files,
socket files, and so on)

The types we declare for our IRC daemon policy module closely match the
high-level architecture of target application. Our IRC types are as follows:

ircd_t Domain type for the IRC daemon process

ircd_exec_t Entrypoint type for the IRC daemon executable file

ircd_var_run_t File type for PID files stored in the directory /var/run

ircd_conf_t File type for the IRC daemon configuration files

ircd_log_t File type for the IRC daemon logs

ircd_var_lib_t File type for files stored in /var/lib/ircd

This is a representative set of types for a simple daemon such as IRC. Notice
that other than the first two types, which are the domain type and the
entrypoint type (ircd_t and ircd_exec_t), all these types are for application resources
controlled by ircd.

14.3.2.1. Example Policy

Recall that in the example policy, types are declared directly (including the list
of associated attributes) or through macros. Listing 14-2 shows our type
declarations for the example policy IRC daemon policy module. We have
directly declared all the types in our policy module instead of using macros to
make the policy module clearer. Notice that each of these types has a variety
of attributes. For example, the log file type ircd_log_t has the attributes file_type,
sysadmfile, and logfile. We determined the needed attributes based on the intended
use for each type (that is, ircd_log_t is intended as a type for a log file that can be
accessed by system administrators) and the available attributes.

Listing 14-2. Example Policy: IRC Daemon Type Declarations
(ircd.te)

1 ###
2 #
3 # Type declarations
4 #
5
6 # ircd domain
7 type ircd_t, domain;
8
9 # ircd entrypoint
10 type ircd_exec_t, file_type, exec_type;
11
12 # PID file /var/run/ircd.pid
13 type ircd_var_run_t, file_type;
14
15 # configuration files
16 type ircd_conf_t, file_type, sysadmfile;
17
18 # log files
19 type ircd_log_t, file_type, sysadmfile, logfile;
20
21 # files and directories under /var/lib/ircd
22 type ircd_var_lib_t, file_type, sysadmfile;

Tip

Recall that the file attrib.te in the root directory of the example policy
source contains all the attribute declarations and documentation
about their use.

14.3.2.2. Reference Policy

In the reference policy, types are always directly declared and do not include
attributes. Listing 14-3 shows our type declarations for the IRC reference
policy private policy module (ircd.te). Notice that each of the type declarations is
paired with an interface call (to another, existing policy module) that is
functionally equivalent to the attribute assignments in the example policy
module in Listing 14-2. For instance, line 24 declares the type ircd_conf_t, and
line 25 marks it as a configuration file by calling the interface files_config_file().
Determining which interface to call for each type declaration is similar to
determining which attributes are required, although the reference policy has
better documentation and is easier to understand and use.

Listing 14-3. Reference Policy: IRC Daemon Private Type
Declarations (ircd.te)

1 # Ircd policy module declaration
2 policy_module(ircd, 1.0)
3
4 ##
5 #
6 # Type declarations
7 #
8
9 # ircd domain
10 type ircd_t;
11
12 # ircd entrypoint
13 type ircd_exec_t;
14
15 # mark ircd_t as a domain and ircd_exec_t
16 # as an entrypoint into that domain
17 init_daemon_domain(ircd_t, ircd_exec_t)
18
19 # PID file /var/run/ircd.pid
20 type ircd_var_run_t;
21 files_pid_file(ircd_var_run_t)
22
23 # configuration files

24 type ircd_conf_t;
25 files_config_file(ircd_conf_t)
26
27 # log files
28 type ircd_log_t;
29 logging_log_file(ircd_log_t)
30
31 # files and directories under /var/lib/ircd
32 type ircd_var_lib_t;
33 files_type(ircd_var_lib_t)

Tip

Remember that the reference policy includes a significant amount
of documentation generated from the source. The documentation is
the best way to find appropriate interfaces like those used above in
the type declarations. You can view the documentation at the
reference policy Web site or locally after running the command make

html in the reference policy source directory. In FC5, the HTML
documentation is available under /usr/share/doc/selinux-policy-x.y.z/html/.

14.3.3. Allowing Initial Restrictive Access

The next step is to grant permissions based on our best understanding of the
initial, restrictive access needed for the IRC domain type (ircd_t). The access
allowed should reflect both our security goals and the functional needs of the
IRC daemon. In our experience, it is helpful to first plan the access required in
an abstract way because writing raw SELinux policy rules requires significant
attention to detail. By creating a higher-level plan first, it is easier to keep the
larger security goals in mind. For example, we expect the ircd_t domain to have
the following access consistent with our security goals:

Log files Create, read, and append (ircd_log_t)

Configuration files Read (ircd_conf_t)

PID files Create, read, and write (ircd_var_run_t)

var files Create, read, and write (ircd_var_lib_t)

Network access

Network interfaces. TCP send and receive on all

Nodes. TCP send and receive to all

Ports. TCP name_bind on IRC ports and send and receive to all others

Resolve DNS names

Use shared libraries

Read localization resources

Read directories and files commonly needed by network
applications include the device /dev/null and sysctl configuration data under
the /proc/ directory

Note

We have chosen to give fairly broad network access initially. We
are not, for example, restricting the network interfaces and hosts
with which the IRC daemon can communicate. This is a common
practice that removes the need to customize the policy based on
local network settings and topology. It is possible (and often
desirable), however, to add these restrictions if customizing the
policy for each server because local adjustments are feasible.

14.3.3.1. Example Policy

In the example policy, we allow access using a combination of direct allow rules
and example policy macros. For example, consider Listing 14-4. (This policy
section is added after the type declarations that were discussed in Listing 14-
2.)

Listing 14-4. Example Policy: IRC Daemon Initial Allowed
Access (ircd.te)

1 ###
2 #
3 # Ircd - core access
4 #
5
6 # Log files - create, read, and append
7 append_logdir_domain(ircd)
8
9 # Configuration files - read
10 allow ircd_t ircd_conf_t : dir r_dir_perms;
11 allow ircd_t ircd_conf_t : file r_file_perms;
12 allow ircd_t ircd_conf_t : lnk_file { getattr read };
13
14 # PID file - create, read, and write
15 file_type_auto_trans(ircd_t, var_run_t, ircd_var_run_t, file)
16 allow ircd_t var_t : dir search;
17
18 # /var/lib/ircd files/dirs - create, read, write
19 file_type_auto_trans(ircd_t, var_lib_t, ircd_var_lib_t, file)
20 allow ircd_t ircd_var_lib_t : dir rw_dir_perms;
21
22 # Network access - the ircd daemon is allowed to send
23 # and receive network data to all nodes and ports over
24 # all network interfaces (through the can_network_server
25 # macro). Additionally, it can name_bind to the ircd
26 # port (ircd_port_t).
27 allow ircd_t ircd_port_t:tcp_socket name_bind;
28 can_network_server(ircd_t)
29
30 # use shared libraries
31 uses_shlib(ircd_t)
32
33 # read localization data
34 read_locale(ircd_t)
35
36 # read common directories / files including
37 # * proc
38 # * /dev/null
39 # * system variables
40 allow ircd_t { self proc_t }:dir r_dir_perms;
41 allow ircd_t { self proc_t }:lnk_file { getattr read };
42 allow ircd_t null_device_t:chr_file rw_file_perms;
43 allow ircd_t sysctl_type:dir r_dir_perms;
44 allow ircd_t sysctl_type:file r_file_perms;
45 allow ircd_t sysctl_t:dir search;
46 allow ircd_t sysctl_kernel_t:dir search;
47 allow ircd_t sysctl_kernel_t:file { getattr read };

Notice that each commented block of rules corresponds to one of the items in
our list of initial accesses specified. To allow access between types declared in

our module, we primarily use allow rules directly. For example, lines 1012
permit the domain type ircd_t to read configuration files (that is, files and
directories with the type ircd_conf_t). There are exceptions, however, where policy
rules between our IRC types are added to our policy through macros. For
example, the file_type_auto_trans() macro on line 19 allows the domain type ircd_t to
create, read, and write files with the type ircd_var_run_t (that is, /var/run/ircd.pid).

Access to types declared outside of our policy module is also allowed using a
combination of direct allow rules and macros. For example, line 42 allows the
ircd_t domain to read and write character device files with the type null_device_t

(that is, /dev/null) using an allow rule that directly references both types. This is an
example of one of the example policy's biggest weakness of the example (that
is, closely coupled policy modules). Because our IRC module must have explicit
knowledge of types declared in other modules (null_device_t), the implementation
of the two modules are intertwined. By contrast, the access required to use
shared libraries is allowed entirely by the uses_shlib() macro, as shown on line 31.

In the example policy, the choice of whether to use direct access or macros is
primarily one of style and whether an appropriate macro is available. There
are no strong conventions as in the reference policy.

The network access for the IRC daemon is allowed through the can_network()

macro. Unfortunately, this macro allows more access than our (or nearly any)
application needs, although it has been improved from its original
implementation. In particular, it allows sending and receiving raw and UDP
packets in addition to TCP. We used the macro despite the additional access it
allows to reflect common practice for the example policy. There is no
convenient way, other than direct allow rules, to allow a smaller subset of
network access and most policy modules use the can_network() macro to allow
network access.

Tip

Most of the macros used in our policy module reflect common
practice for the example policy. Reading existing policy modules is
the best way to familiarize yourself with the common macros and
how they are used. Reading the macros in the macros/*.te files is also
helpful.

14.3.3.2. Reference Policy

Access in the reference policy is allowed by a combination of allow rules and call
to interfaces defined in other modules. Recall from Chapter 12 that access to
any type not declared in our policy module is allowed only through an
interface. So, unlike our example policy module, the IRC daemon private
policy file will never reference types from other modules directly. Listing 14-5
is the reference policy version of our initial restrictive access for the IRC
daemon (which would be in the ircd.te file following the rules in Listing 14-3).

Listing 14-5. Reference Policy: IRC Daemon Private Allowed
Access (ircd.te)

1 ##
2 #
3 # Ircd - core access
4 #
5
6 # Log files - create, read, and append
7 allow ircd_t ircd_log_t : dir ra_dir_perms;
8 allow ircd_t ircd_log_t : file { create ra_file_perms };
9 logging_filetrans_log(ircd_t, ircd_log_t, file)
10 logging_search_logs(ircd_t)
11
12 # Configuration files - read
13 allow ircd_t ircd_conf_t : dir r_dir_perms;
14 allow ircd_t ircd_conf_t : file r_file_perms;
15 allow ircd_t ircd_conf_t : lnk_file { getattr read };
16
17 # PID file - create, read, and write
18 allow ircd_t ircd_var_run_t : dir rw_dir_perms;
19 allow ircd_t ircd_var_run_t : file create_file_perms;
20 files_filetrans_pid(ircd_t, ircd_var_run_t, file)
21
22 # /var/lib/ircd files/dirs - create, read, write
23 allow ircd_t ircd_var_lib_t : dir create_dir_perms;
24 allow ircd_t ircd_var_lib_t : file create_file_perms;
25 files_filetrans_var_lib(ircd_t, ircd_var_lib_t, { file, dir })
26
27 # Network access - the ircd daemon is allowed to send
28 # and receive network data to all nodes and ports over
29 # all network interfaces. Additionally, it can name_bind
30 # to the ircd port (ircd_port_t)
31 allow ircd_t self : tcp_socket create_stream_socket_perms;
32 corenet_tcp_sendrecv_all_if(ircd_t)
33 corenet_tcp_sendrecv_all_nodes(ircd_t)
34 corenet_tcp_sendrecv_all_ports(ircd_t)
35 corenet_non_ipsec_sendrecv(ircd_t)
36 corenet_tcp_bind_all_nodes(ircd_t)
37 corenet_tcp_bind_ircd_port(ircd_t)
38 sysnet_dns_name_resolve(ircd_t)
39

40 # use shared libraries
41 libs_use_ld_so(ircd_t)
42 libs_use_shared_libs(ircd_t)
43
44 # read localization data
45 miscfiles_read_localization(ircd_t)
46
47 # read common directories / files including
48 # * /etc (search)
49 # * system variables
50 files_search_etc(ircd_t)
51 kernel_read_kernel_sysctl(ircd_t)
52 kernel_read_system_state(ircd_t)
53 kernel_read_all_sysctl(ircd_t)

Again, each commented block represents where we have allowed all of the
initial access listed. The choice of using direct allow rules versus interfaces in the
reference policy follows a strong convention. It is more straightforward than
the choice of using direct allow rules versus macros in the example policy
because of the clear encapsulation of types in the reference policy.

Notice that the interfaces used in the reference policy are clearer and more
explicit than the macros in the example policy. The explicit nature of interfaces
sometimes makes a reference policy module more verbose, as is the case in
allowing the use of shared libraries on lines 41 and 42. However, this
verbosity also allows for more choice and better granularity of access. For
example, the network access that we allow in the reference policy version of
our policy module exactly matches the initial restrictive access that we
intended. This is possible because the network access is broken down into
many interfaces, each allowing a small portion of the access, rather than one
broad macro in the example policy (that is, the can_network() macro).

14.3.4. Allowing Domain Transitions and Authorizing Roles

For our new domain to be effective, we must permit other domains to
transition to our new domain. To do this, we must create type_transition rules, allow
the domain transition, and authorize our domain type for the appropriate
roles.

As a general practice, the number of domains that may transition to a daemon
domain should be limited. The IRC daemon package that comes with FC4
includes init scripts to allow starting from init during boot or directly by the
system administrator. To permit both of these startup methods, we must
ensure our policy does the following:

Allow initrc_t to automatically transition to ircd_t tHRough ircd_exec_t (allow init to
start the daemon).

Allow sysadm_t to automatically transition to ircd_t through ircd_exec_t (allow
system administrator to start the daemon).

Authorize ircd_t for the system_r role (authorize for init's role).

Automatically role transition from sysadm_r to system_r on execution of ircd_exec_t

(authorize for system administrator's role).

Note

Using a role transition rule to run the IRC daemon in the system_r role
is not required. We could have authorized ircd_t for sysadm_r instead.
The use of the role transition is standard practice for system_r,
however, because it results in more similar security contexts
regardless of whether the daemon as started by init or the system
administrator. The tradeoff is that the user, presumably root, must
be authorized for both roles.

14.3.4.1. Example Policy

We accomplish the domain transitions and role authorizations in the example
policy as shown in Listing 14-6.

Listing 14-6. Example Policy: IRC Daemon Domain and Role
Authorizations (ircd.te)

1 ###
2 #
3 # Domain Transitions and Role Authorizations
4 #
5
6 role system_r types ircd_t;
7
8 # allow init to start ircd

9 domain_auto_trans(initrc_t, ircd_exec_t, ircd_t)
10
11 # allow sysadm_t to start ircd_t
12 domain_auto_trans(sysadm_t, ircd_exec_t, ircd_t)
13 role_transition sysadm_r ircd_exec_t system_r;

The domain_auto_trans() macro both allows the domain transition and adds the
necessary type transition rule required for an automatic domain transition.

14.3.4.2. Reference Policy

We have already accomplished this step in the reference policy by using the
interface init_daemon_domain() on line 17 in Listing 14-3. This interface allows all the
domain and role transitions described previously in a consistent, configurable
manner.

14.3.5. Integrating into the System Policy

Our initial restrictive access is primarily concerned with allowing the access
needed by the IRC daemon. We also have to allow other domain types access
to the resource types in our policy module. For example, log files are useful
only if an administrator tool can read them. This is what we mean by
integrating into the system policy.

Much of the more common additional access is handled automatically through
attributes in the example policy and interfaces in the reference policy. For
example, adding the file_type attribute (example policy) or calling the files_type()

interface (reference policy) allows a variety of domains, including sysadm_t, to
read files with the associated file type.

We often need to allow module-specific access for certain types of policy
resources that we can grant to other domains. To demonstrate, let's expand
our modules to allow other domains to read files with the type ircd_log_t.

14.3.5.1. Example Policy

There is no defined way to allow access from other policy modules in the
example policy. The rules can simply be placed either in our policy module or
in the other policy, with types from both policy modules being directly

referenced. For instance, the policy statements in Listing 14-7 allow logrotate_t to
read the IRC daemon log files. In an example policy, we could have just as
easily put these rules in the logrotate module.

Listing 14-7. Example Policy: IRC Daemon, Allowing Access
for logratate Domain (ircd.te)

1 ###
2 #
3 # Integrate Into System Policy
4 #
5
6 ifdef(`logrotate.te', `
7 allow logrotate_t ircd_log_t:dir search;
8 allow logrotate_t ircd_log_t:file { getattr read };
9 ')

Notice that we wrap these rules in an m4 ifdef statement that prevents the
inclusion of the rules if the logrotate policy module is not present during policy
compilation. The challenge with this approach of course, is that it is difficult to
know where all the rules for a given type are located in the policy. This is
another example of one of the motivations for the improvements in reference
policy (that is, strong modularity and encapsulation).

14.3.5.2. Reference Policy

Allowing access from other policy modules is more structured in the reference
policy through the use of interfaces. Listing 14-8 shows the external interface
file (ircd.if) for our IRC policy module that declares an interface for reading the
IRC daemon log files. As discussed in Chapter 12, in the reference policy, the
only way for other modules to access a private type is to use an interface.

Listing 14-8. Reference Policy: IRC Daemon External
Interface Example (ircd.if)

1 ## <summary>IRC daemon</summary>
2
3 ##
4 ## <summary>
5 ## Read IRC daemon log files.

6 ## </summary>
7 ## <param name="domain">
8 ## Domain allowed access.
9 ## </param>
10 #
11 interface(`irc_read_log',`
12 gen_require(`
13 type ircd_log_t;
14 ')
15
16 logging_search_logs($1)
17 allow $1 ircd_log_t:dir search_dir_perms;
18 allow $1 ircd_log_t:file r_file_perms;
19 ')

Allowing access by other domains is a simple matter of calling this interface in
the other policy modules. For example, to allow logrotate to read the IRC log files,
the following interface call would be added to the logrotate policy module:

irc_read_log(logrotate_t)

Note

Notice that the interface file also includes the module summary
documentation and summaries for each interface. This allows us to
generate detailed interface documentation from reference policy
source files.

14.3.6. Creating the Labeling Policy

The next step, which completes our initial policy module, is to create and apply
the labeling policy in the form of file contexts statements, as discussed in
Chapter 10, "Object Labeling." The labeling policy assigns the types intended
for filesystem objects to files and directories. We use the information we
gathered about the location of files and directories installed with the IRC
daemon to derive statements.

14.3.6.1. Example Policy

Listing 14-9 shows the file context file (ircd.fc) for the example policy. Notice
that this file is a straightforward, hard-coded listing of files and directories for
the IRC daemon in a syntax understandable by the setfiles program (see Chapter
10).

Listing 14-9. Example Policy: IRC Daemon File Contexts File
(ircd.fc)

1 # ircd labeling policy
2 # file: ircd.fc
3 /usr/bin/ircd -- system_u:object_r:ircd_exec_t
4 /etc/ircd(/.*)? system_u:object_r:ircd_conf_t
5 /var/log/ircd(/.*)? system_u:object_r:ircd_log_t
6 /var/lib/ircd(/.*)? system_u:object_r:ircd_var_lib_t
7 /var/run/ircd(/.*)? system_u:object_r:ircd_var_run_t

14.3.6.2. Reference Policy

Listing 14-10 shows the labeling policy file (ircd.fc) for our reference policy
module.

Listing 14-10. Reference Policy: IRC Daemon Labeling Policy
File (ircd.fc)

1 # ircd labeling policy
2 # file: ircd.fc
3 /usr/bin/ircd -- gen_context(system_u:object_r:ircd_exec_t, s0)
4 /etc/ircd(/.*)? gen_context(system_u:object_r:ircd_conf_t, s0)
5 /var/log/ircd(/.*)? gen_context(system_u:object_r:ircd_log_t, s0)
6 /var/lib/ircd(/.*)? gen_context(system_u:object_r:ircd_var_lib_t, s0)
7 /var/run/ircd(/.*)? gen_context(system_u:object_r:ircd_var_run_t, s0)

The reference policy ircd.fc is essentially identical to the equivalent file in the
example policy, except for the use of the gen_context() template interface macro.
This template interface allows the reference policy to transparently handle

multilevel security / multicategory security (MLS/MCS) and non-MLS/MCS
policies from the same policy source. All security contexts must be specified
using gen_context() in the reference policy.

14.3.7. Applying the Policy

The final step before testing is to compile, install, load, and apply the policy.
This is done in the same way for both the example and reference policies.
First, compile, install, and load the policy using the following commands:

make && make install && make load

If this is successful you should not see any errors and the build system will
show a successful policy load. For example, for the example policy, the end
output for a successful compile will be similar to the following. The reference
policy output will be different but equally obscure to the uninitiated.

Building file contexts f1iles...
/usr/bin/checkpolicy -o policy.20 policy.conf
/usr/bin/checkpolicy: loading policy configuration from policy.conf
/usr/bin/checkpolicy: policy configuration loaded
/usr/bin/checkpolicy: writing binary representation (version 20) to policy.20
Compiling policy ...
/usr/bin/checkpolicy -o /etc/selinux/strict/policy/policy.20 policy.conf
/usr/bin/checkpolicy: loading policy configuration from policy.conf
/usr/bin/checkpolicy: policy configuration loaded
/usr/bin/checkpolicy: writing binary representation (version 20) to
/etc/selinux/strict/policy/policy.20
/usr/bin/checkpolicy -c 19 -o /etc/selinux/strict/policy/policy.19 policy.conf
/usr/bin/checkpolicy: loading policy configuration from policy.conf
/usr/bin/checkpolicy: policy configuration loaded
/usr/bin/checkpolicy: writing binary representation (version 19) to
/etc/selinux/strict/policy/policy.19
install -m 644 tmp/system.users /etc/selinux/strict/users/system.users
install -m 644 tmp/customizable_types
/etc/selinux/strict/contexts/customizable_types
install -m 644 tmp/port_types /etc/selinux/strict/contexts/port_types
Installing file contexts files...
install -m 644 file_contexts/homedir_template
/etc/selinux/strict/contexts/files/homedir_template

install -m 644 file_contexts/file_contexts
/etc/selinux/strict/contexts/files/file_contexts
Loading Policy ...
/usr/sbin/load_policy /etc/selinux/strict/policy/policy.19
touch tmp/load

In addition, the policy load can be seen in the audit log. For example, here is
an audit message generated from a load policy event:

Feb 13 23:07:48 kernel: audit(1139890068.158:15709654): avc: granted {
load_policy } for pid=1173 comm="load_policy"
scontext=root:sysadm_r:load_policy_t tcontext=system_u:object_r:security_
t tclass=security

Building and Installing Policy Modules on FC5

Building and installing policy modules is greatly simplified in FC5 through the use of loadable policy
modules and the development environment installed with the policy rpm. To build our reference policy
IRC module as a loadable module, we need to 1) create a new directory, 2) copy our IRC source files
to the new directory (that is, ircd.te,ircd.fc, and ircd.if), and 3) copy the example loadable module Makefile
from /usr/share/selinux/devel/Makefile to the new directory. After these steps, we will have a directory that
looks like the following:

$ ls
ircd.fc ircd.if ircd.te Makefile

Running the make command should now build a loadable policy module package. For example:

[View full width]
$ make

Compiling targeted ircd module

/usr/bin/checkmodule: loading policy configuration from tmp/ircd.tmp

/usr/bin/checkmodule: policy configuration loaded

/usr/bin/checkmodule: writing binary representation (version 5)
 to tmp/ircd.mod

Creating targeted ircd.pp policy package

rm tmp/ircd.mod tmp/ircd.mod.fc

This creates the policy package ircd.pp. The example Makefile builds the policy against the current
active policy using the reference policy interfaces installed in /usr/share/selinux/devel/include. The policy
package can be installed with the following command (as the system administrator):

/usr/sbin/semodule -i ircd.pp

If there are no errors our loadable policy module is installed. The semodule command will show the
loadable modules installed with the following command:

/usr/sbin/semodule -l
ircd 1.0

As you can see, we have successfully installed our IRC policy package, and it is now active as part of
the running policy.

After the policy is successfully installed and loaded, we can relabel the
filesystem to ensure that our new file contexts file is effective. Again, this

procedure is the same for the example and reference policy. Below, we use the
restorecon command to relabel all the files and directories specified in the file
context file for our module:

restorecon /usr/bin/ircd
restorecon -R /etc/ircd/ /var/log/ircd/ /var/lib/ircd/

We can verify that the labeling occurred correctly using the ls command (note
you can also use ls -Z), as follows:

ls scontext /usr/bin/ircd /var/log/ircd/
system_u:object_r:ircd_exec_t /usr/bin/ircd

/var/log/ircd/:
system_u:object_r:ircd_log_t ircd.log

Tip

Labeling a filesystem with newly defined types can only occur after
loading the new policy because the kernel must be aware of the
new types.

After these steps, our initial policy module for the IRC daemon is now complete
and ready for testing.

14.4. Testing and Analyzing the Policy

In the testing and policy analysis step, we verify that our policy module is
functionally correct and meets our security goals.

14.4.1. Testing the Policy Module

Assuming that we were able to compile, install, and load our new policy, and
that we successfully labeled the filesystem, we are ready to begin functional
testing of the IRC daemon and policy module. We perform only basic functional
tests in this step. More extensive testing should be performed before using this
policy module in a production environment.

First, we verify that the system is in permissive mode and the daemon is
stopped. Running in permissive mode allows the IRC daemon to function
properly so that we can see all of the requested access that our policy module
did not allow. (Recall that in permissive mode, access denials are audited but
not enforced.) The commands to switch to permissive mode and stop the IRC
daemon are as follows:

setenforce 0
/etc/init.d/ircd stop
Stopping ircd: [OK]

Next, we need to use the seaudit utility from the setools package, which should
be installed on FC4 systems (see Appendix D, "SELinux Commands and
Utilities," for an overview of setools, the open source package which, among
other tools, includes apol). With seaudit, open the audit log and turn on monitoring
using the Toggle Monitor button, ensure the status is On on the status bar.
(see Figure 14-1). We use seaudit to view the audit log to determine whether the
IRC daemon requests additional access not allowed by our policy module. We
can also view the log files using the tail utility with the command tail -f

/var/log/audit/audit.log.

Figure 14-1. Seaudit displaying audit messages generated
while testing the IRC daemon

[View full size image]

After starting seaudit, we start the IRC daemon with the following command:

setenforce 0
/etc/init.d/ircd start
Starting ircd: ircd: version hybrid-7.2.0
ircd: pid 9052
ircd: running in background mode from /usr/lib/ircd [OK]

If everything is configured correctly, we should be able to display the IRC
daemon process with the correct type using the ps command, as follows:

ps axZ | grep ircd
root:system_r:ircd_t 1519 ? 00:00:00 ircd

We see that the IRC daemon is running with the correct security context.

Next, we connect to the IRC daemon using an IRC client. For example, Figure
14-2 shows the xchat client successfully connecting to the IRC daemon.

Figure 14-2. Connecting to the IRC daemon using xchat

[View full size image]

Tip

Make certain that the firewall settings for the test system allow IRC
traffic if you are using an IRC client on a separate machine.

14.4.1.1. Evaluating Audit Messages and Allowing Additional Access

After exercising the IRC daemon with simple tests, such as joining and talking
on a channel, we can examine the audit logs for denials related to our policy
module. Figure 14-1 shows the relevant audit messages generated during our
testing of the IRC daemon. These messages show the IRC daemon requesting
five additional accesses, which we did not allow in our initial policy:

Read configuration files in /etc/ (etc_t).

Fork another process.

Read and write to pseudo terminals owned by the system administrator

(sysadm_devpts_t).

Write access to the configuration file (ircd_conf_t).

We must consider each of the access requests to determine whether additional
access should be added to our policy module. It is important to not allow
additional access simply because the IRC daemon attempted the access. When
evaluating audit messages, the goal is not to just add allow rules until the denial
messages disappear. Instead, each requested access should be carefully
considered and, if it conflicts with our security goals, not permitted if the
application can continue to function properly.

For example, in the audit messages listed previously, we see that the IRC
daemon attempts to access its configuration file (ircd_conf_t) for writing. Allowing
this access violates our security goal to protect the configuration file. Also,
allowing the daemon to read and write system administrators' pseudo
terminals is unnecessary and opens a potential attack vector. The other access
requests appear to be appropriate, so we add allow rules to permit the access.
Instead of allowing write access to the configuration files and allowing read
and write to pseudo terminals owned by the system administrator, however,
we add dontaudit rules and test to determine whether the IRC daemon correctly
functions without this access.

Tip

Audit messages with unexpected types may signal a labeling
problem. For example, a denial message for sysadm_t accessing an
IRC daemon related type might be a sign that the entrypoint
(/usr/bin/ircd) is not labeled correctly (ircd_exec_t), preventing the domain
transition.

14.4.1.2. Adding Additional Access in the Example Policy

The additional access is allowed in the example policy with the following new
policy statements in the ircd.te file:

allow ircd_t self : process fork;
allow ircd_t etc_t : file r_file_perms;

Audit messages related to the access that we are not permitting are
suppressed with the following dontaudit rules:

dontaudit ircd_t ircd_conf_t : file write;
dontaudit ircd_t sysadm_devpts_t : chr_file { getattr read write };

14.4.1.3. Adding Additional Access in the Reference Policy

To add the other additional accesses, we add the following policy statements in
the ircd.te file:

allow ircd_t self : process fork;
files_read_etc_files(ircd_t)

As before, audit messages related to the access that we are not permitting are
suppressed with the following dontaudit rule and interface call:

dontaudit ircd_t ircd_conf_t : file write;
userdom_dontaudit_use_sysadm_ptys(ircd_t)

14.4.1.4. Testing the Additional Access

After compiling, installing, and reloading the modified policy, we must test the
IRC daemon again. This time we will test in enforcing mode. Enforcing mode
can be set and the IRC daemon restarted using the following commands:

setenforce 1
/etc/init.d/ircd restart
Stopping ircd: [OK]
Starting ircd: ircd: version hybrid-7.2.0
ircd: pid 2075
ircd: running in background mode from /usr/lib/ircd [OK]

Performing the same functional tests shows that the IRC daemon functions
correctly despite the denial of write access to the configuration file and
read/write access to system administrators' pseudo-terminals. Additional
testing is likely required, but otherwise we have demonstrated that our policy
module is functionally correct.

14.4.2. Policy Analysis

The final step in developing our policy module is to perform policy analysis to
verify that we met our security goals. Functional testing is not sufficient as our
goal is to add security, not functions. After all, we had a functioning IRC
daemon before creating our policy module. Policy analysis, particularly using
automated tools such as apol, enables us to verify that we added security with
our policy module.

For example, Figure 14-3 shows a search in apol for all access that ircd_t has to
ircd_conf_t, including indirect access through attributes. This allows us to verify
that the IRC daemon (ircd_t) does not have write access to its configuration files
(ircd_conf_t).

Figure 14-3. An apol rules search showing no write access by
ircd_t to ircd_conf_t

[View full size image]

14.5. Emerging Policy Development Tools

Many different development tools are emerging that simplify the policy module
development process. These range from integrated development environments
such as SLIDE (shown in Figure 14-4) to automated policy generation tools
such as Polgen. More information about these tools is provided in Appendix D.

Figure 14-4. SLIDE integrated policy development
environment

[View full size image]

14.6. Complete IRC Daemon Module Listings

For completeness, we conclude this chapter with complete listings of the IRC
daemon modules for both the example and reference policy.

Listing 14-11. Example Policy: IRC Daemon Policy Module File
(ircd.te)

1 ###
2 #
3 # ircd policy module
4 #
5 # file: ircd.te
6 #
7
8 ###
9 #
10 # Type declarations
11 #
12
13 # ircd domain
14 type ircd_t, domain;
15
16 # ircd entrypoint
17 type ircd_exec_t, file_type, exec_type;
18
19 # PID file /var/run/ircd.pid
20 type ircd_var_run_t, file_type;
21
22 # configuration files
23 type ircd_conf_t, file_type, sysadmfile;
24
25 # log files
26 type ircd_log_t, file_type, sysadmfile, logfile;
27
28 # files and directories under /var/lib/ircd
29 type ircd_var_lib_t, file_type, sysadmfile;
30
31 ###
32 #
33 # Ircd - core access
34 #
35
36 # allow ircd_t to fork copies of itself
37 allow ircd_t self : process fork;
38 # Log files - create, read, and append
39 allow ircd_t var_log_t : dir ra_dir_perms;
40 allow ircd_t ircd_log_t : dir ra_dir_perms;
41 allow ircd_t ircd_log_t : file { create ra_file_perms };
42 type_transition ircd_t var_log_t : { file dir } ircd_log_t;
43
44 # Configuration files - read
45 allow ircd_t ircd_conf_t : dir r_dir_perms;
46 allow ircd_t ircd_conf_t : file r_file_perms;

47 allow ircd_t ircd_conf_t : lnk_file { getattr read };
48 dontaudit ircd_t ircd_conf_t : file write;
49
50 # PID file - create, read, and write
51 file_type_auto_trans(ircd_t, var_run_t, ircd_var_run_t, file)
52 allow ircd_t var_t : dir search;
53
54 # /var/lib/ircd files/dirs - create, read, write
55 file_type_auto_trans(ircd_t, var_lib_t, ircd_var_lib_t, file)
56 allow ircd_t ircd_var_lib_t : dir rw_dir_perms;
57
58 # Network access - the ircd daemon is allowed to send
59 # and receive network data to all nodes and ports over
60 # all network interfaces (through the can_network_server
61 # macro). Additionally, it can name_bind to the ircd
62 # port (ircd_port_t).
63 allow ircd_t ircd_port_t:tcp_socket name_bind;
64 can_network_server(ircd_t)
65
66 # use shared libraries
67 uses_shlib(ircd_t)
68
69 # read localization data
70 read_locale(ircd_t)
71
72 # read common directories / files including
73 # * /etc/resolv.conf (etc_t)
74 # * proc
75 # * /dev/null
76 # * system variables
77 allow ircd_t etc_t : file r_file_perms;
78 allow ircd_t { self proc_t }:dir r_dir_perms;
79 allow ircd_t { self proc_t }:lnk_file { getattr read };
80 allow ircd_t null_device_t:chr_file rw_file_perms;
81 allow ircd_t sysctl_type:dir r_dir_perms;
82 allow ircd_t sysctl_type:file r_file_perms;
83 allow ircd_t sysctl_t:dir search;
84 allow ircd_t sysctl_kernel_t:dir search;
85 allow ircd_t sysctl_kernel_t:file { getattr read };
86
87 ###
88 #
89 # Domain Transitions and Role Authorizations
90 #
91
92 role system_r types ircd_t;
93
94 # allow init to start ircd
95 domain_auto_trans(initrc_t, ircd_exec_t, ircd_t)
96
97 # allow sysadm_t to start ircd_t
98 domain_auto_trans(sysadm_t, ircd_exec_t, ircd_t)
99 role_transition sysadm_r ircd_exec_t system_r;
100 # dontaudit use of the sysadm_r terminal
101 dontaudit ircd_t sysadm_devpts_t : chr_file { getattr read write };
102
103 ###
104 #
105 # Integrate Into System Policy
106 #
107

108 ifdef(`logrotate.te', `
109 allow logrotate_t ircd_var_run_t:dir search;
110 allow logrotate_t ircd_var_run_t:file { getattr read };
111 ')

Listing 14-12. Example Policy: IRC Daemon File Contexts File
(ircd.fc)

1 # ircd labeling policy
2 # file: ircd.fc
3 /usr/bin/ircd -- system_u:object_r:ircd_exec_t
4 /etc/ircd(/.*)? system_u:object_r:ircd_conf_t
5 /var/log/ircd(/.*)? system_u:object_r:ircd_log_t
6 /var/lib/ircd(/.*)? system_u:object_r:ircd_var_lib_t
7 /var/run/ircd(/.*)? system_u:object_r:ircd_var_run_t

Listing 14-13. Reference Policy: IRC Daemon Private Policy
File (ircd.te)

1 ##
2 #
3 # Reference Policy ircd policy module
4 #
5 # file: ircd.te
6 #
7
8 # Ircd policy module declaration
9 policy_module(ircd, 1.0)
10
11 ##
12 #
13 # Type declarations
14 #
15
16 # ircd domain
17 type ircd_t;
18
19 # ircd entrypoint
20 type ircd_exec_t;
21
22 # mark ircd_t as a domain and ircd_exec_t
23 # as an entrypoint into that domain
24 init_daemon_domain(ircd_t, ircd_exec_t)
25
26 # PID file /var/run/ircd.pid
27 type ircd_var_run_t;
28 files_pid_file(ircd_var_run_t)

29
30 # configuration files
31 type ircd_conf_t;
32 files_config_file(ircd_conf_t)
33
34 # log files
35 type ircd_log_t;
36 logging_log_file(ircd_log_t)
37
38 # files and directories under /var/lib/ircd
39 type ircd_var_lib_t;
40 files_type(ircd_var_lib_t)
41
42 ##
43 #
44 # Ircd - core access
45 #
46
47 # allow ircd_t to fork copies of itself
48 allow ircd_t self : process fork;
49
50 # Log files - create, read, and append
51 allow ircd_t ircd_log_t : dir ra_dir_perms;
52 allow ircd_t ircd_log_t : file { create ra_file_perms };
53 logging_log_filetrans(ircd_t, ircd_log_t, file)
54 logging_search_logs(ircd_t)
55
56 # Configuration files - read
57 allow ircd_t ircd_conf_t : dir r_dir_perms;
58 allow ircd_t ircd_conf_t : file r_file_perms;
59 allow ircd_t ircd_conf_t : lnk_file { getattr read };
60 dontaudit ircd_t ircd_conf_t : file write;
61
62 # PID file - create, read, and write
63 allow ircd_t ircd_var_run_t : dir rw_dir_perms;
64 allow ircd_t ircd_var_run_t : file create_file_perms;
65 files_pid_filetrans(ircd_t, ircd_var_run_t, file)
66
67 # /var/lib/ircd files/dirs - create, read, write
68 allow ircd_t ircd_var_lib_t : dir create_dir_perms;
69 allow ircd_t ircd_var_lib_t : file create_file_perms;
70 files_var_lib_filetrans(ircd_t, ircd_var_lib_t, { file dir })
71
72 # Network access - the ircd daemon is allowed to send
73 # and receive network data to all nodes and ports over
74 # all network interfaces. Additionally, it can name_bind
75 # to the ircd port (ircd_port_t)
76 allow ircd_t self : tcp_socket create_stream_socket_perms;
77 corenet_tcp_sendrecv_all_if(ircd_t)
78 corenet_tcp_sendrecv_all_nodes(ircd_t)
79 corenet_tcp_sendrecv_all_ports(ircd_t)
80 corenet_non_ipsec_sendrecv(ircd_t)
81 corenet_tcp_bind_all_nodes(ircd_t)
82 corenet_tcp_bind_ircd_port(ircd_t)
83 sysnet_dns_name_resolve(ircd_t)
84
85 # use shared libraries
86 libs_use_ld_so(ircd_t)
87 libs_use_shared_libs(ircd_t)
88
89 # read localization data

90 miscfiles_read_localization(ircd_t)
91
92 # dontaudit use of the sysadm_r terminal
93 userdom_dontaudit_use_sysadm_ptys(ircd_t)
94
95 # read common directories / files including
96 # * /etc (search and read)
97 # * system variables
98 files_search_etc(ircd_t)
99 files_read_etc_files(ircd_t)
100 kernel_read_kernel_sysctls(ircd_t)
101 kernel_read_system_state(ircd_t)
102 kernel_read_all_sysctls(ircd_t)

Listing 14-14. Reference Policy: IRC Daemon Labeling Policy
File (ircd.fc)

1 # ircd labeling policy
2 # file: ircd.fc
3 /usr/bin/ircd -- gen_context(system_u:object_r:ircd_exec_t, s0)
4 /etc/ircd(/.*)? gen_context(system_u:object_r:ircd_conf_t, s0)
5 /var/log/ircd(/.*)? gen_context(system_u:object_r:ircd_log_t, s0)
6 /var/lib/ircd(/.*)? gen_context(system_u:object_r:ircd_var_lib_t, s0)
7 /var/run/ircd(/.*)? gen_context(system_u:object_r:ircd_var_run_t, s0)

Listing 14-15. Reference Policy: IRC Daemon External
Interface File (ircd.if)

1 ## <summary>IRC daemon</summary>
2
3 ##
4 ## <summary>
5 ## Read IRC daemon log files.
6 ## </summary>
7 ## <param name="domain">
8 ## Domain allowed access.
9 ## </param>
10 #
11 interface(`irc_read_log',`
12 gen_require(`
13 type ircd_log_t;
14 ')
15
16 files_search_var($1)
17 logging_search_logs($1)
18 allow $1 ircd_log_t:dir search_dir_perms;
19 allow $1 ircd_log_t:file r_file_perms;

20 ')

14.7. Summary

As in all modern enterprises, writing policy modules is a skill best learned
through practice.

The basic steps for writing a new policy module, whether it be for the
example policy or the reference policy, are as follows:

1. Prepare and plan:

Gather information about the application.

Create a test configuration.

Specify security goals.

2. Create an initial policy module:

Create the basic module files.

Declare our module's types.

Allow initial restrictive access.

Allow domain transitions and role access.

Integrate into system policy.

Create labeling policy.

Apply the policy.

3. Test and analyze the policy:

Functional test the policy module.

Analyze the policy modules against our security goals.

In general, we iterate among the steps until we achieve the policy module
we desire.

Appendix A. Obtaining SELinux Sample Policies
In this chapter

A.1 Example Policy

A.2 Reference Policy
page 366

page 369

This appendix provides instructions about how to obtain the sample policy
source files discussed in this book. All the policies are freely available for use.
Community support is available from many places, but the easiest methods are
the SELinux mailing lists (see Appendix B, "Participation and Further
Information").

A.1. Example Policy

The example policy (both strict and targeted) we discuss in Chapter 11,
"Original Example Policy," is available from several sources. At the time of this
writing, a version of the example policy was still available from the upstream
SELinux source tree, but the National Security Agency (NSA) has announced it
is planning to drop support soon in favor of the reference policy. Red Hat
supports the example policy in both the Fedora Core 4 (FC4) and the Red Hat
Enterprise Linux version 4 (RHEL4). (Fedora Core 5 [FC5] is moving to the
reference policy.)

Note

The examples throughout the book are based on the Fedora Core
strict policy, specifically version 1.27.1-2.6. For the purposes of the
examples and exercises, however, any version of the FC4 strict
policy should work.

A.1.1. Example Policy from Upstream SELinux Sites

The NSA example policy is the ancestor of just about every policy that has
been developed. The Red Hat/Fedora policies and the reference policy all trace
their origins to the NSA policy. It was meant to provide an example of a full
system policy that developers could use as a starting point when writing their
own policies. NSA has recently stopped supporting the example policy on their
Web site (in favor of the reference policy). Historical versions are available at
the following site:

www.nsa.gov/selinux/code/download0.cfm

These historical policies most likely require some tweaking. We recommend
installing the packages for the specific Fedora or RHEL releases.

The NSA SELinux project tree, including the NSA example policy, are also
available via cvs from the SELinux open source site. To browse the tree or
download the package, access the following site:

http://selinux.sourceforge.net/

Several other Linux distributions support SELinux. At one time, they all had
policies based on the NSA example. They have been at least minimally
tweaked to conform to the specific distributions. The best place to find pointers
to different Linux distributions that support SELinux is at the SELinux open
source site previously mentioned.

A.1.2. Strict and Targeted Policies for Fedora Core 4

For most of this book, we used examples from the strict example policy for
FC4. However, the targeted policy is installed as the default policy for a FC4
system. Only the prebuilt policy (without the policy source) is installed in most
cases. The targeted policy is installed in /etc/selinux/targeted/. During installation if
you choose the "complete" install option when deciding on which packages to
install, both the strict and targeted policies are installed with their respective
policy source files.

If you install only the targeted policy, you have several simple options for
installing the targeted source and the strict policy and its source files. The
most straightforward way is to use the yum utility as the system administrator
as follows. First find out the exact package you have on your system and what
is available:

yum list | grep -i selinux-policy
selinux-policy-targeted.noarch 1.27.1-2.6 installed
selinux-policy-strict.noarch 1.27.1-2.16 updates-released
selinux-policy-strict-sources.noarch 1.27.1-2.16 updates-released
selinux-policy-targeted.noarch 1.27.1-2.16 updates-released
selinux-policy-targeted-sources.noarch 1.27.1-2.16 updates-released

On our system, we have the targeted policy installed without the source. To
install the source and the strict policy with source, we run the following:

yum install selinux-policy-targeted-sources

and

yum install selinux-policy-strict-sources

Note that when we installed the strict source files, the prebuilt policy was
installed, too, because yum recognizes that the sources package is dependent on
the policy package. All these policies are installed into the standard Fedora policy
location, /etc/selinux/. To switch over to the strict policy, you can use the
administrative tool mentioned in Chapter 13, "Managing an SELinux System,"
or you can perform the switch to the strict policy by hand if you change the
SELINUXTYPE line in /etc/selinux/config to strict and touch /.autorelabel. In either case, you must
then reboot the system to ensure all processes and files are labeled correctly.

You can also obtain and install the policy packages from the Fedora installation
CDs. Disc 1 contains the packages for the prebuilt policies (that is, all the
policy files except the policy source files) for both the targeted and strict
policies. If you put Disc 1 in your drive, you should see it under /media/cdrecorder or
/media/cdrom, or mount it as root with something like mount /dev/cdrom /media/cdrom

(depending on your hardware configuration). The package files are under the
following:

./Fedora/RPMS/
selinux-policy-strict-1.23.16-6.noarch.rpm
selinux-policy-targeted-1.23.16-6.noarch.rpm

The policy source RPMs are on Disc 4:

/Fedora/RPMS/
selinux-policy-strict-sources-1.23.16-6.noarch.rpm
selinux-policy-targeted-sources-1.23.16-6.noarch.rpm

You install them with the standard rpm command. (Remember, however, that
the sources packages depend on the policy packages, so you must install the
policy packages before you install the respective sources packages.) For
example, you can install the strict policy with source (rpm output removed for
brevity) as follows:

rpm -ivh selinux-policy-strict-1.23.16-6.noarch.rpm

rpm -ivh selinux-policy-targeted-sources-1.23.16-6.noarch.rpm

After you install the policies with rpm, if you want to switch to the strict policy,
you still need to "activate" it in the same way as described previously for yum.

A.1.3. Red Hat Enterprise Linux 4 (RHEL4)

The RHEL4 default policy, for all flavors (that is, AS, ES, and WS), is the
targeted policy based on the example policy. The strict policy is not included or
supported. The prebuilt targeted policy is on Disc 2 of the installation CDs. You
can find it by mounting Disc 2 under the following:

./RedHat/RPMS/selinux-policy-targeted-1.17.30-2.52.1.noarch.rpm

The source package for the targeted policy is on Disc 4:

./RedHat/RPMS/selinux-policy-targeted-sources-1.17.30-2.52.1.noarch.rpm

You can install the packages by using the rpm -ivh package-name.rpm command. You
can install the strict policy using the strict packages from Fedora Core (see
above). You switch the system over to the strict policy in the same manner as
described for FC4. Note that because the strict policy is not supported for
RHEL4, you might need to tweak the policy to get it to work properly in your
configuration. We recommend initially setting the SELINUX line to permissive in
/etc/selinux/config until you ensure a clean boot.

A.1.4. Fedora Core Experimental and Test Policies

You can find the most recently patched policies and test and other
experimental policies (for example, multilevel security [MLS] and multicategory
security [MCS]) at Dan Walsh's Red Hat site:

ftp://people.redhat.com/dwalsh/SELinux/

These tend to be new and minimally tested.

A.2. Reference Policy

Chapter 12, "Reference Policy," discussed the reference policy, which we
expect to be the primary policy source for the future. At the time of this
writing, Red Hat used reference policy for FC5. You can use the reference
policy to build strict or targeted policies, with or without the optional MLS
features. Reference policy supports RHEL4.

Instructions for installing and using reference policy on RHEL4 are complicated
because they involve upgrading several packages and libraries to support the
latest policy language. You can find instructions on how to do this and where
to find prebuilt RPMs for the required packages and libraries in the INSTALL file in
the top-level directory of the reference policy tree.

A.2.1. Primary Reference Policy

The reference policy is primarily developed by Tresys Technology as an open
source project. It is available via its open source project site:

http://serefpolicy.sourceforge.net/

The reference policy supports loadable modules and the traditional monolithic
policy build (all from the same source tree). At this time, loadable modules are
still in development, but you can find up-to-date information and instructions
on the policy server project open source site:

http://sepolicy-server.sourceforge.net/

A.2.2. Red Hat's Fedora Core 5 Reference Policy

Several versions of reference policy are available for FC5, including a targeted,
strict, and MLS policy package. All of these are based on the primary reference
policy tree. You can find the prebuilt policy RPMs at the following site:

http://download.fedora.redhat.com/pub/fedora/linux/core/5/i386/os/Fedora/RPMS/

At the time of this writing, the relevant files were called selinux-policy-*.

The previous RPMs install as policy modules. You will find the policy packages
(that is, the .pp files) under /usr/share/selinux/, in the associated policy directory
(targeted, strict, and so on).

There is no "sources" RPM (that is, a package that automatically installs the
policy source files), but you can find an src RPM (that is, a package that
contains the sources to build the policy but does not automatically install the
sources). You can find the src RPM at the following site:

http://download.fedora.redhat.com/pub/fedora/linux/core/5/source/SRPMS/

At the time of this writing, the package name was selinux-policy-2.2.23-15.src.rpm. The src
RPM contains a reference policy source tree and a patch file that Red Hat
provides for the current version of FC5.

It takes some knowledge to extract the policy sources from an src RPM. You can
always use the primary reference policy (as described previously) rather than
the Red Hat packages. It will also install and build usable policies on FC5.

Appendix B. Participation and Further Information
In this chapter

B.1 The SELinux Mail List

B.2 The Annual SELinux Symposium

B.3 The NSA

B.4 Tresys Technology

B.5 Open Source Projects

B.6 The SELinux IRC Channel

B.7 The Fedora Core Site

B.8 Hardened Gentoo

B.9 Other Related Security Information

page 370

page 370

page 371

page 371

page 371

page 372

page 372

page 372

page 373

This appendix identifies where to look for past, current, and future information
and discusses how to participate in the development of SELinux and SELinux
policies. As with any current technology, SELinux is still evolving, and staying

abreast is important.

B.1. The SELinux Mail List

The best place to find out about SELinux development and to ask questions is
the SELinux mailing list. To subscribe to the SELinux mailing list, send a
message to the following address:

majordomo@tycho.nsa.gov.

Put subscribe selinux as the body of the message. You can find more
information about the mailing list on the National Security Agency (NSA) Web
site:

www.nsa.gov/selinux/

Note that although the site refers to it as a "Developers List," new people are
welcome, and the discussions extend to many SELinux subjects. There are
archives of the mailing list both at NSA's Web site and at the following site:

http://marc.theaimsgroup.com/?l=selinux&r=1

B.2. The Annual SELinux Symposium

Since 2004, an annual conference has been held as a platform for exchanging
ideas and presenting new developments and applications of SELinux. The
conference is held in the Baltimore, Maryland/Washington, D.C. area at the
end of February or the beginning of March. The Web site for the symposium is
at this address:

www.selinux-symposium.org/

The Web site contains information about the upcoming conference and
electronic versions of past presentations.

B.3. The NSA The

NSA Web site, www.nsa.gov/selinux/, is one of the best places to find
information. You can find many of the original architecture papers, some of
which have been updated, more current papers, and pointers to the upstream
versions of current packages and libraries. There are also pointers to the
SELinux mailing list, an FAQ, and other items of interest such as a list of major
features that need to be done.

http://www.nsa.gov/selinux/

B.4. Tresys Technology

The Tresys Technology Web site contains many useful and informative pages.
You can access the main page at this address:

www.tresys.com/selinux/

This page links to information on the SeTools package, information on the
Tresys SELinux policy course (including up-to-date versions of all the slides), a
current object class, and a permissions information page similar to Appendix C,
"Object Classes and Permissions." This site also include information about
Tresys' enhancements to SELinux, such as conditional policy, loadable
modules, reference policy, an SELinux policy development and integration IDE,
and the SELinux policy server.

B.5. Open Source Projects

The following are links to some SELinux-related projects. These open source
projects welcome and encourage community participation and contribution. Be
aware, however, that because of the nature of open source projects, they
might have moved by the time this book is published.

Main SELinuxhttp://sourceforge.net/projects/selinux

Reference policyhttp://serefpolicy.sourceforge.net

SELinux policy management infrastructure (SELinux policy server
and loadable modules)http://sepolicy-server.sourceforge.net/

http://sourceforge.net/projects/selinux
http://serefpolicy.sourceforge.net
http://sepolicy-server.sourceforge.net/

B.6. The SELinux IRC Channel

There is an SELinux IRC channel. Use your favorite IRC chat client, point to
irc.freenode.net, and join #selinux. It is a fairly active channel, and there is
usually a knowledgeable person around willing to answer any questions you
might have. Features, bug fixes, and enhancements are often discussed here
before they migrate to the mailing list.

http://irc.freenode.net

B.7. The Fedora Core Site

Red Hat maintains a large site where you can find everything from ISO images
of all the Fedora releases and RPM packages to loads of documentation on
Fedora and SELinux. The main site is here:

http://fedora.redhat.com/

This site is considering a switch to a new home:

http://fedoraproject.org/

The new site currently has a wiki site set up with lots of useful information.
Red Hat/Fedora also maintains several Fedora Core-specific mailing lists, a list
of which you can find here:

http://fedoraproject.org/wiki/Communicate

This list includes a Fedora SELinux mailing list that you can join from this
page:

www.redhat.com/mailman/listinfo/fedora-selinux-list

B.8. Hardened Gentoo

Hardened Gentoo was one of the first Linux distributions to include SELinux.
Hardened Gentoo has excellent documentation on SELinux and documentation
on how to integrate other security packages into an SELinux-Gentoo system.
The main Hardened Gentoo page is here:

www.gentoo.org/proj/en/hardened

A page on this site is specifically for SELinux.

B.9. Other Related Security Information

The following are resources that are not SELinux-specific but may be of
interest. The Linux Security Module (LSM) mailing list discusses kernel
developments related to the LSM. The LSM is how SELinux hooks into the
Linux kernel. You can join the LSM mailing list from this site:

http://mail.wirex.com/mailman/listinfo/linux-security-module

An audit framework was added in the Linux 2.6 kernel series that greatly
extends Linux audit capabilities. You can join the Linux audit discussion
mailing list here:

www.redhat.com/mailman/listinfo/linux-audit

Several SELinux/Linux Common Criteria evaluations are ongoing at the time
of this writing. For the current status of those evaluations, refer to the
following Web site:

http://niap.nist.gov/cc-scheme/

The page contains links to "Validated Products" that have passed evaluation
and "Products in Evaluation."

Appendix C. Object Classes and Permissions
In this chapter

C.1 Common Permission Sets

C.2 Object Classes and Defined
Permission Sets

page 376

page 379

This appendix provides a detailed summary and listing of all object classes and
permissions supported by the kernel at the time of this writing. Be aware that
object classes and permissions are occasionally changed and added. Some
object classes and permissions listed are no longer used. They remain defined
primarily for compatibility reasons. Their use in a policy would have no effect
on a system with an up-to-date kernel. You can find a maintained list of object
classes and permissions at www.tresys.com/selinux. You can also use the
National Security Agency (NSA) technical report "Implementing SELinux as a
LSM," available at www.nsa.gov/selinux/info/docs.cfm.

http://www.tresys.com/selinux
http://www.nsa.gov/selinux/info/docs.cfm

C.1. Common Permission Sets

Some object classes share sets of permissions. These permission sets are
defined as common permissions and are assigned a common permission
identifier in the policy. They are then "inherited" by kernel object classes when
the common permission identifier is assigned to the class. Thus, they are
"common permissions" defined for multiple class definitions. Allowing the same
permission sets for multiple object classes make using multiple object classes
in a single policy rule possible. See Chapter 4, "Object Classes and
Permissions," for more information on how object classes and permissions are
defined.

Note that it may be a bit confusing in that the identifiers used for common
permission sets are also the identifiers used to name some kernel object
classes. For example, there is a common set of permissions called "file," and
there is a kernel object class also called "file," which inherits the common "file"
permissions. The common permission and object class namespaces are
separate, and the common permission file and the object class file are distinct
entities; be careful not to confuse the two.

In the following tables, we list the three common permissions and their
permissions sets that are currently used by the kernel. The three common
permission sets are as follows:

• file

Common
permissions
used by
filesystem
object classes

• socket

Common
permissions
used by various
socket classes

• ipc

Common
permissions
used by
System V
interprocess
communication
(IPC) classes

Table C-1. Common Permissions File

Permission Description

append Append to object's contents (that is, opened with
O_APPEND flag).

create Create new object of this class.

execute Execute the object.

getattr Get attributes for object, such as access mode (for
example, stat, some ioctls).

ioctl ioctl(2) system call requests on the object not addressed
by other permissions.

link Create hard link to object.

lock Set and unset object's locks.

mounton Use object as a mount point; typically used for dir
object class.

quotaon Allow file to be used as a quota database.

read Read the object's contents.

relabelfrom Change the object's security context from the existing
type.

relabelto Change the object's security context to the new type.

rename Rename any hard links to the object.

setattr Change attributes for object such as access mode (for
example, chmod, some ioctls).

swapon Deprecated, allowed the object to be used for
paging/swapping space.

unlink Remove hard link (delete the file if no other hard links
are present).

write Write the object's contents.

Table C-2. Common Permissions socket

Permission Description

accept Accept a connection to the socket.

append Write or append socket file contents.

bind Bind name to the socket.

connect Initiate connection from the socket.

create Create new socket file.

getattr Get file attributes for socket file, such as access mode
(for example, stat, some ioctls).

getopt Get socket options.

ioctl I/O control system call requests on the socket not
addressed by other permissions.

listen Listen for connections to the socket.

lock Set and unset socket file locks.

name_bind

Use port or file; for AF_INET sockets, defines a
relationship between a socket object and its port
number; no longer applied to UNIX domain sockets
(post Linux Security Module [LSM]).

read Read data received from socket.

recv_mesg Permission required for a socket to receive a message
from a port.

recvfrom Currently unused (a legacy of older network checks).

relabelfrom Change the socket's security context from the existing
type.

relabelto Change the socket's security context to the new type.

send_msg Permission required to send a message from a socket
to a port.

sendto Send data to UNIX domain sockets.

setattr Change file attributes for socket file, such as access
mode (for example, chmod, some ioctls).

setopt Set socket options.

shutdown Shutdown connection.

write Write or append to the socket.

Table C-3. Common Permissions ipc

Permission Description

associate Get the ID of an IPC object.

create Create an IPC object.

destroy Destroy an IPC object.

getattr Get IPC object attributes.

read Read or receive data from an IPC object.

setattr Change IPC object attributes.

unix_read Read; required by IPC operations.

unix_write Write or change; required by IPC operations.

write Write, send message, or change the value of an IPC
object.

C.2. Object Classes and Defined Permission Sets

The following tables show all the kernel object classes and the permissions
defined for each object class. These permissions correspond to permissions
required by the kernel's LSM hooks and are used as the object
class/permission specifications in policy statements. Each object class's
permission table lists any inherited/common permissions first and then any
permissions that are unique to that class. The classes are grouped
alphabetically within the following four categories:

• File related Object classes relating to filesystem objects

•
Network/socket

Object classes associated with network access or
sockets

• IPC System V IPC object classes

• Miscellaneous Other object classes not in the previous three
categories

C.2.1. File-Related Object Classes

File-related object classes represent many of the system objects that are
familiar to a Linux user. Almost all of them inherit the common file permission
set. Some classes also have unique permissions that either relate specifically
to SELinux operations or are extensions that were added to the normal Linux
permissions (for example, a permission to add a file to a directory). The object
classes in this group are listed in Table C-4.

Table C-4. Summary of File-Related Object Classes

Object Class Description Permission
Definitions

blk_file Block files Table C-5

chr_file Character files Table C-6

dir Directories Table C-7

fd File descriptors Table C-8

fifo_file Named pipes Table C-9

file Ordinary files Table C-10

filesystem Filesystem (that is, an actual
partition) Table C-11

lnk_file Symbolic links Table C-12

sock_file UNIX domain sockets Table C-13

Table C-5. blk_file Permissions

Permissions Description

file common permissions See Table C-1.

Table C-6. chr_file Permissions

Permissions Description

file common permissions See Table C-1.

enTRypoint
Added only to make execmod permission
index map to the same index as the file
execmod permission (see execmod).

execmod
Added to allow certain applications to
make executable mappings of character
device memory.

execute_no_trans
Added only to make execmod permission
index map to the same index as the file
execmod permission (see execmod).

Table C-7. dir Permissions

Table C-7. dir Permissions

Permissions Description

file common permissions See Table C-1.

add_name
Add a hard link (name) to the directory
(for example, creating or moving a file
into a directory).

remove_name
Remove a hard link from the directory
(for example, remove or move a file from
a directory).

reparent Change directory's parent directory.

rmdir Remove the directory object.

search

Needed to find an object contained in the
directory or for a directory object in the
path to another object. Does not allow
directory listing, which is controlled by
read.

Table C-8. fd Permissions

Permissions Description

use

Permission to use the file descriptor (for
example, reading or writing to a file descriptor
inherited from another process). Appropriate
permissions on the underlying object are still
required. (For example, successfully reading
from a file using a file descriptor requires use
permission on the fd object and read permission
on the file object.)

Table C-9. fifo_file Permissions

Permissions Description

file common permissions See Table C-1.

Table C-10. file Permissions

Permissions Description

file common permissions See Table C-1.

enTRypoint File can be used as the entry point of a
domain via a domain transition.

execmod Make execute a file mapping that has
been modified by copy-on-write.

execute_no_trans
Execute the file in the calling process'
domain (that is, without a domain
transition).

Table C-11. filesystem Permissions

Permissions Description

associate Allow file-related object classes with given
types to be stored on the filesystem.

getattr Needed to statfs a filesystem.

mount Needed to mount the superblock of a
filesystem.

quotaget Get quota information.

quotamod Modify quota information.

relabelfrom Used to control context mounts.

relabelto Used to control context mounts.

remount Change filesystem mount flags.

transition Deprecated permission from pre-LSM
SELinux, not used.

unmount Unmount.

Table C-12. lnk_file Permissions

Permissions Description

file common permissions See Table C-1.

Table C-13. sock_file Permissions

Permissions Description

file common permissions See Table C-1.

C.2.2. Network and Socket Object Classes

Network and socket object classes represent network resources and sockets.
They include the classes for all types of network socket objects, from raw IP
sockets to specialized Netlink sockets. This group also includes the classes and
permissions for network interfaces and nodes. Almost all these object classes
inherit the common permission socket. The object classes in this group are listed
in Table C-14.

Table C-14. Summary of Network and Socket Object
Classes

Object Class Description Permission
Definitions

association Represents an IPSec
security association. Table C-15

key_socket

Sockets that are of
protocol family
PF_KEY, used for key
management in IPSec.
This class was created
to distinguish PF_KEY

Table C-16

sockets from general
sockets.

netif

A network interface. A
domain must have the
appropriate
permissions on a netif
object to send and/or
receive packets on an
interface. The domain
must also have the
same permissions for a
node object (see node
class), and if the
domain is using a UDP
or TCP socket, it must
also have the
corresponding
tcp_socket/udp_socket
permission (that is,
*_send_msg or
*_recv_msg) on the
TCP/UDP socket
object.

Table C-17

netlink_audit_socket

A netlink_audit_socket
object is a netlink
socket connection to
the audit service. The
socket is used to
list/add/delete filter
rules, get/set status,
and so on.

Table C-18

netlink_dnrt_socket
Netlink socket to
control DECnet
routing.

Table C-19

netlink_firewall_socket

Netlink socket to
create userspace
firewall filters; copy
packets from kernel,
send accept or reject
packet verdict to
kernel.

Table C-20

netlink_ ip6fw_socket
Netlink socket to
create IPv6 userspace
firewall filters.

Table C-21

netlink_kobject_uevent_socket

Netlink socket to send
kernel event
notifications to
userspace (for
example, processor
temperature
detection).

Table C-22

netlink_nflog_socket

Netlink socket to
receive Netfilter logging
messages in
userspace.

Table C-23

netlink_route_socket

Netlink socket to
control and mange
network resources
such as the routing
table and IP address
from userspace.

Table C-24

netlink_selinux_socket

Netlink socket that
receives userspace
notification messages
on SELinux events (for
example, policy load,
enforce mode toggle,
and Boolean change).

Table C-25

netlink_socket

Netlink socket to
control all Netlink
sockets for which there
is not yet a specific
SELinux class defined.

netlink_tcpdiag_socket
Netlink socket to
monitor TCP
connections.

Table C-27

netlink_xfrm_socket

Netlink socket to get,
maintain, set IPsec
parameters such as
security associations,
security policies, and
security parameter
indexes.

Table C-28

node

Represents a host IP
address or range of
addresses. A domain
must have send or
receive permission on a
node object to send or
receive data on a
particular IP address.
The domain must also
have send or receive
permission on the
network interface
object associated with
the address (see netif
class). If the domain
uses a UDP or TCP
socket, it must also
have the
corresponding
tcp_socket/udp_socket
permission (that is,

Table C-29

*_send_msg or
*_recv_msg) on the
socket object.

packet_socket

Raw sockets where the
protocol is
implemented in
userspace. The
packets for this type of
object are sent at OSI
Layer 2. A domain
must also have the
NET_RAW capability
permission to use a
packet_socket object.

Table C-30

rawip_socket IP sockets that are
neither TCP nor UDP. Table C-31

socket

Any socket type for
which there is no
specific class defined
for its protocol family.
SELinux, as of policy
version 19, defines
socket classes for the
following protocol
families: unix, inet,
inet6, netlink, packet,
and key.

Table C-32

tcp_socket

A TCP socket. A
domain also needs
tcp_recv and/or
tcp_send on both the
associated node and
netif objects to
receive/send packets
(in addition to the
recv_msg/send_msg
permission on the
tcp_socket object).

Table C-33

udp_socket

A UDP socket. A
domain also needs
udp_recv and/or
udp_send on both the
associated node and
netif objects to
receive/send packets
(in addition to the
recv_msg/send_msg
permission on the
udp_socket object).

Table C-34

IPC datagram sockets
on a local machine. The
socket allows for
passing credentials

unix_dgram_socket

(PID, UID, and GID) for
authentication. If any
of the credentials are
not the same as the
process,' the process
(that is, its domain)
must also have the
sys_admin, setuid,
and/or setgid
capability, respectively.

Table C-35

unix_stream_socket

IPC stream sockets on
a local machine. The
socket allows for
passing credentials
(PID, UID, and GID) for
authentication. If any
of the credentials are
not the same as the
process,' the process
(that is, its domain)
must also have the
sys_admin, setuid,
and/or setgid
capability, respectively.

Table C-36

Table C-15. association Permissions

Permissions Description

recvfrom Receive packets using an IPSec security
association.

sendto Send packets using an IPSec security
association.

Table C-16. key_socket Permissions

Permissions Description

socket common permissions See Tablte C-2.

Table C-17. netif Permissions

Permissions Description

rawip_recv Receive raw IP packet via the network
interface.

rawip_send Send raw IP packet via the network
interface.

tcp_receive Receive TCP packet via the network
interface.

tcp_send Send TCP packet via the network
interface.

udp_recv Receive UDP packet via the network
interface.

udp_send Send UDP packet via the network
interface.

Table C-18. netlink_audit_socket Permissions

Permissions Description

socket common permissions See Table C-2.

nlmsg_read Used to get the audit system status.

nlmsg_readpriv List all auditing rules.

nlmsg_relay Send userspace audit messages to the
kernel audit system.

nlmsg_write Used to set audit system parameters.

Table C-19. netlink_dnrt_socket Permissions

Permissions Description

socket common permissions See Table C-2.

Table C-20. netlink_firewall_socket Permissions

Permissions Description

socket common permissions See Table C-2.

nlmsg_read Not used.

nlmsg_write Write control message to firewall.

Table C-21. netlink_ip6fw_socket Permissions

Permissions Description

socket common permissions See Table C-2.

nlmsg_read Not used.

nlmsg_write Write control message to firewall.

Table C-22. netlink_kobject_uevent_socket Permissions

Permissions Description

socket common permissions See Table C-2.

Table C-23. netlink_nflog_socket Permissions

Permissions Description

socket common permissions See Table C-2.

Table C-24. netlink_route_socket Permissions

Permissions Description

socket common permissions See Table C-2.

nlmsg_read Read kernel routing table.

nlmsg_write Write routing information to routing
table.

Table C-25. netlink_selinux_socket Permissions

Permissions Description

socket common permissions See Table C-2.

Table C-26. netlink_socket Permissions

Permissions Description

socket common permissions See Table C-2.

Table C-27. netlink_tcpdiag_socket Permissions

Permissions Description

socket common permissions See Table C-2.

nlmsg_read Request kernel TCP parameters.

nlmsg_write Currently unused.

Table C-28. netlink_xfrm_socket Permissions

Permissions Description

socket common permissions See Table C-2.

nlmsg_read Request IPsec configuration data.

nlmsg_write Set IPsec configuration data.

Table C-29. node Permissions

Permissions Description

enforce_dest
This permission is deprecated. It was
used in an extended socket API in
previous versions of SELinux.

rawip_recv Receive raw IP packet from the node.

rawip_send Send raw IP packet to the node.

tcp_receive Receive TCP packet from the node.

tcp_send Send TCP packet to the node.

udp_recv Receive UDP packet from the node.

udp_send Send UDP packet to the node.

Table C-30. packet_socket Permission

Permissions Description

socket common permissions See Table C-2.

Table C-31. rawip_socket Permissions

Permissions Description

socket common permissions See Table C-2.

node_bind Ability to bind to a node.

Table C-32. socket Permissions

Common Permissions (socket) Description

socket common permissions See Table C-2.

Table C-33. tcp_socket Permissions

Permissions Description

socket common permissions See Table C-2.

acceptfrom Deprecated, not used.

connectto Deprecated, not used.

name_connect Connect to a specific port number.

newconn Deprecated, not used.

node_bind Ability to bind to a node.

Table C-34. udp_socket Permissions

Permissions Description

socket common permissions See Table C-2.

node_bind Ability to bind to a node.

Table C-35. unix_dgram_socket Permissions

Permissions Description

socket common permissions See Table C-2.

Table C-36. unix_stream_socket Permissions

Permissions Description

socket common permissions See Table C-2.

acceptfrom Deprecated, not used.

connectto Connect to server socket.

newconn Deprecated, not used.

C.2.3. System V IPC-Related Object Classes

System V IPC-related object classes are for those resources that support
System V IPC objects such as message queues, semaphores, and shared
memory. Most of these classes inherit the common permission ipc. The object
classes in this group are listed in Table C-37.

Table C-37. Summary of IPC-Related Object Classes

Object Class Description Permission
Definitions

ipc Deprecated; no longer used. Table C-38

msg Messages within a message queue. Table C-39

msgq Message queues. Table C-40

sem Semaphores. Table C-41

shm Shared memory segment. Table C-42

Table C-38. ipc Permissions

Permissions Description

ipc common permissions See Table C-3. (Note that ipc object class
is no longer used.)

Table C-39. msg Permissions

Permissions Description

receive Remove a message from a queue.

send Add a message to a queue.

Table C-40. msgq Permissions

Permissions Description

ipc common permissions See Table C-3.

enqueue Put a message onto a queue.

Table C-41. sem Permissions

Permissions Description

ipc common permissions See Table C-3.

Table C-42. shm Permissions

Permissions Description

ipc common permissions See Table C-3.

lock Lock/unlock page(s) in memory.

C.2.4. Miscellaneous Object Classes

The remaining object classes are primarily system control and management
object classes. Most of the permissions are usually those reserved for the root
user on a non-SELinux system and generally would be limited to selected
trusted domains in SELinux. Most object classes are one or a fixed number of
instances. (That is, you cannot create object instances of these classes like you
can with file or socket classes.) The object classes in this group are listed in Table
C-43.

Table C-43. Summary of Remaining Miscellaneous Object
Classes

Object Class Description Permission
Definitions

capability

Privileges that are implemented as
capabilities in Linux. These capabilities
represent the typical "root" privileges. In
SELinux, each process has a single
instance of this object class that has the
same type as the process itself. In
SELinux, to use a capability defined in the
kernel, the process domain type must be
allowed the associated permission for the
capability object class for the type of the
process.

Note that the capabilities grant privileges
with respect to standard Linux; the Linux
check (either for the capability or
superuser) and the SELinux check are
orthogonal. (That is, both are required;
neither is sufficient alone.)

Table C-44

A userspace class that represents the

passwd

password and shadow files. The
permission checks are enforced in the
passwd program (although the access
information is held in the kernel policy).

Table C-45

pax
Pax security objects. Pax is a separate
Linux security mechanism that may be
integrated with SELinux.

Table C-45

process

Each process itself is an object of class
process and must have permission to its
own type (or other process types) to
perform certain actions with regard to the
target process.

Table C-46

security The SELinux security server. There is only
one instance of this object class. Table C-47

system

The system. Any system-level privileged
functions not covered by the capability or
the security object classes are embodied
in the system object. There is only one
instance of this object class.

Table C-48

Table C-44. capability Permissions

Permissions Description

audit_control Allows the process to change auditing
rules. Set login UID.

audit_write Allows the process to send audit
messsages from userspace.

chown

Allows the process to change file
ownership on a system where users are
restricted to only changing group
ownership.

dac_override

Allows the process to ignore discretionary
access controls including access lists. The
capability does not include the access
covered by linux_immutable (see below).

dac_read_search

Allows the process read and search
permission on all files and directories
regardless of their DAC settings except
for access covered by linux_immutable (see
below) or where not permitted by
SELinux permissions.

fowner

Allows the process to access a file when
the file owner is not the same as the
process' user ID. Other security checks
(that is, DAC and MAC) are still in effect.

fsetid
Allows the process to set the group ID of
a file where the group ID does not match
that of the process.

ipc_lock
Allows the proceses the capability to lock
non-shared and shared memory
segments.

ipc_owner Allows the process to ignore IPC
ownership checks.

kill Allows the process to send a kill signal to
a process owned by a different user.

lease

Allows the process to take leases on a
file. A lease allows a process to be
notified when another process accesses
the file that a lease's file descriptor refers
to.

linux_immutable
Allows the process to change S_IMMUTABLE
and S_APPEND file attributes on supporting
filesystems.

mknod Allows the process to create character
and block device nodes.

net_admin

Allows the process a variety of trusted
network permissions such as configuring
network interfaces, firewall settings, and
routing tables. (See /usr/include/linux/capabilities.h
for full list). Appropriate SELinux
permissions remain in effect.

net_bind_service
Allows the process to bind TCP/UDP
sockets to ports below 1024 or bind to
ATM VCIs below 32.

net_broadcast
Allows the process to send network
broadcasts and listen to incoming
multicasts.

net_raw

Allows the process to create and use
non-TCP/UDP sockets. Appropriate
SELinux controls are still in effect. (That
is, the process must also have
appropriate permissions on a packet_socket
or rawip_socket).

setgid Allows a non-root process to set its
group IDs.

setpcap

Adds or removes the process' capability
from another process' capability set. Note
that the use of an added capability must
still be allowed in the policy.

setuid Allows a non-root process to set its real
and/or effective IDs.

sys_admin

This capability allows the process many
"standard" administrative functions.
Some of these are: configuring syslog,
setting the domain and host names,
turning swap on or off, accessing and
configuring of various devices (for
example, IDE, SCSI, and do on), and
setting the encryption key for a loopback
filesystem. See /usr/include/linux/capability.h for
the complete list.

sys_boot Allows the process to reboot the system.

sys_chroot Allows the process to use the chroot(2) call.

sys_module

Allows the process unrestricted kernel
modification capability including, but not
limited to, loading and removing kernel
modules. Allows modification of kernel's
bounding capability mask.

sys_nice

Allows the process to change priority of
other processes. Also allows the process
to change the scheduling algorithm used
by any process.

sys_pacct Allows the process to modify process
accounting.

sys_ptrace Allows the process to ptrace(2) another
process.

sys_rawio
Allows the process to use ioperm(2) and
iopl(2) as well as the capability to send
messages to USB devices via /proc/bus/usb.

sys_resource

Allows the process to change various
system resources: quota limits, reserved
ext2 filesystem space, ext3 journaling
mode, IPC message queue size
restrictions, control of interrupts from
real-time clock, change maximum number

of consoles, and change maximum
number of keymaps.

sys_time Allows the process to set system time
and to set the real-time clock.

sys_tty_config Allows the process to configure tty
devices. Allows vhangup(2) call on a tty.

Table C-45. passwd Permissions

Permissions Description

chfn

Change finger information for a different
user (that is, the string in the passwd file
for an account; commonly the user's real
name).

chsh Change login shell for a particular
account.

crontab
Permits a cron job to be run as a different
user than the user who submitted the
job.

passwd Update a different user's password.

rootok Allow update if the user is root and the
process has the rootok permission.

Table C-46. pax Permissions

Permissions Description

emutramp
Emulate gcc trampolines (a technique for
implementing nested functions) so that
they will work with pax.

mprotect Protects the modification of a task's
address space.

pageexec Paging-based, non-executable pages.

randexec Randomize the mappings of an
executable not built with relocatable code.

randmmap
Randomize mappings in a task's address
space for an executable with relocatable
code.

segmexec Segmentation-based, nonexecutable
pages.

Table C-47. process Permissions

Permissions Description

dyntransition

Allows a process to dynamically transition
to a new context. This capability is tied in
with the setcurrent capability; both are
required for a process domain transition.
The ability of a process to change from
one domain to another is extremely
dangerous because it violates the
principle of label tranquility for a process.
It creates a real potential for unintentional
granting of access.

execheap Make the heap executable.

execmem Make executable an anonymous mapping
or private file mapping that is writable.

execstack Make the process stack executable.

fork Fork into two processes.

getattr Get attributes of a process through the
/proc/[pid]/attr directory.

getcap Get Linux capabilities allowed for this
process.

getpgid Get Process Group ID of process.

getsched Get priority of process.

getsession Get session ID of process.

Disable secure mode environment

noatsecure cleansing. Allows process to disable
secure mode feature of glibc on execve(2).

ptrace Trace program execution of parent or
child.

rlimitnh Inherit process resource limits from
parent process.

setcap Set Linux capabilities allowed for this
process.

setcurrent

Set the current process context. This is
the first permission checked when a
process tries to perform a dynamic
domain transition. The dyntransition
capability is also required.

setexec

Override the default context for the next
execve(2). Allows a process to set the
context of a program it execs to
something other than the default
context. (The context must still be a valid
context for the domain of the new
process.).

setfscreate

Allows a process to set the context of an
object created by the process to
something other than the default
context.

setpgid Set Process Group ID of process.

setrlimit Change process hard resource limits.

setsched Set priority of process.

share Allow state sharing with cloned or forked
process.

sigchld Send SIGCHLD signal.

siginh Inherit signal state from parent process.

sigkill Send SIGKILL signal.

signal Send a signal other than SIGKILL, SIGSTOP, or
SIGCHLD.

signull Test for existence of another process
without sending a signal.

sigstop Send SIGSTOP signal.

transition Transition to a new context on execve(2).

Table C-48. security Permissions

Permissions Description

check_context
Allows a domain to check with the
security server to see whether a context
is valid within the current policy.

compute_av
Ask the security server to compute an
access vector given a source/target/class
using the selinuxfs interface.

compute_create Retrieve a labeling decision on a new
object.

compute_member
Ask the security server to compute a
polyinstantiation membership decision
through the selinuxfs interface.

compute_relabel Allows a domain to use the selinuxfs
interface to compute a relabeling decision.

compute_user
Allows domain to use the selinuxfs
interface to retrieve a user's reachable
SIDs.

load_policy

Load the security policy. This completely
changes the kernel policy being enforced,
and flushes the current access vector
cache (AVC) so that all future access
decisions are made against the new
policy.

setbool

Allows a domain to set policy Boolean
values. The domain also needs
permissions on the Boolean file (that is,
based on the label of the Boolean file).

setcheckreqprot

Set if SELinux will check original
protection mode or modified protection
mode (read-implies-exec) for
mmap/mprotect.

setenforce

Change the enforcement state of SELinux
to either permissive mode or enforcing
mode. The kernel may be built to not
allow this capability.

setsecparam Set kernel AVC tuning parameters.

compute_user
Allows domain to use the selinuxfs
interface to retrieve a user's reachable
SIDs.

compute_relabel Allows a domain to use the selinuxfs
interface to compute a relabeling decision.

compute_create Retrieve a labeling decision on a new
object.

compute_av
Ask the security server to compute an
access vector given a source/target/class
using the selinuxfs interface.

compute_member
Ask the security server to compute a
polyinstantiation membership decision
through the selinuxfs interface.

setenforce

Change the enforcement state of SELinux
to either permissive mode or enforcing
mode. The kernel may be built to not
allow this capability.

check_context
Allows a domain to check with the
security server to see whether a context
is valid within the current policy.

load_policy

Load the security policy. This completely
changes the kernel policy being enforced,
and flushes the current access vector
cache (AVC), so that all future access
decisions are made against the new
policy.

setbool

Allows a domain to set policy Boolean
values. The domain also needs
permissions on the Boolean file (that is,
based on the label of the Boolean file).

setsecparam Set kernel AVC tuning parameters.

setcheckreqprot

Set if SELinux will check original
protection mode or modified protection
mode (read-implies-exec) for
mmap/mprotect.

Table C-49. system Permissions

Permissions Description

avc_toggle No longer used (see setenforce permission in
the security object).

bdflush Deprecated, not used.

ichsid Deprecated, not used.

ipc_info Get info for IPC objects.

nfsd_control Deprecated, not used.

syslog_console

Allows domain to enable and disable
logging to the console and to set the
level of syslog messages sent to the
console.

syslog_mod
Perform syslog operation other than
those operations controlled by syslog_read
or syslog_console permissions.

syslog_read
Allows domain to retrieve the last kernel
messages sent to the log and the size of
the log buffer.

Appendix D. SELinux Commands and Utilities
In this chapter

D.1 System Utilities

D.2 SETools Suite

D.3 Other SELinux Tools

page 402

page 406

page 408

In this appendix we provide an introduction to some of the available SELinux
tools. These tools include utilities for policy analysis, policy writing, policy
generation, SELinux system management, and more. We indicate where to
find the tools and, in the case where a tool is not included with a distribution,
we provide the most current repository on the Internet.

D.1. System Utilities

Distributions that support SELinux include a number of core utilities and
programs that are usually present on any SELinux-enabled system. In this
section, we present the programs included with Fedora Core 4 (FC4). Red Hat
Enterprise Linux version 4 (RHEL4) and FC5 will have mostly the same core
system utilities. We have mentioned many of these utilities throughout this
book.

D.1.1. Policy Tools

The policy tools are directly related to the SELinux policy, and writing and
managing policies:

checkpolicy(8)

This is the SELinux policy compiler. It transforms
a complete SELinux policy into a binary version
that the kernel can load. It can also be used to
debug a policy in that it can mimic some of the
capabilities of the SELinux security server. No
special permissions are needed to run this
program if you are experimenting/debugging a
policy outside of the official policy directory (that
is, /etc/selinux/).

load_policy(8)

This utility loads a binary policy file into the
kernel. To successfully load a policy in enforcing
mode, the user must run the command in a
domain that has the load_policy permission. (See
the security object class in Appendix C, "Object
Classes and Permissions").

setsebool(8)

This command sets current and persistent
values for policy Boolean variables. See Chapter
9, "Conditional Policies." This command requires
setbool permission for the security class and
read/write permission to the Boolean files
themselves.

togglesebool(1)
This command toggles the current value of
SELinux Booleans. The same permissions as the
setsebool(8) command are required.

setenforce(8)

This command changes the mode of SELinux
between enforcing and permissive modes. The
domain in which the command is run must have
the setenforce permission for the security object
class.

audit2allow(1)

A command that takes access vector cache
(AVC) audit denial messages (usually from the
system log file) and outputs allow rules that, if
included into the policy, permit the actions that
were denied. This command is commonly used to
generate a rough first draft type of policy for an
application. The man page describes the
weaknesses of this approach and some of the
other problems with developing policy this way.

audit2why(1)

Attempts to provide a reason for AVC audit
denial messages by comparing them with the
rules in the policy. This is most useful for
identifying constraint violations.

ausearch(8)

Although not explicitly an SELinux command,
this command does some basic interpretation of
audit messages and can pull out just AVC
messages with the -m avc option. It is part of the
new Linux audit framework package and is
included in the updated audit RPM for FC4 4,
Update 2 for RHEL4, and FC5.

D.1.2. SELinux Status Information

These utilities return information about SELinux. They do not change or affect
the operation of SELinux in any way:

avcstat(8) Displays statistics and counters for various AVC
actions (for example, the number of cache hits).

getenforce(8) Returns a string indicating the current mode of
SELinux ("permissive" or "enforcing").

selinuxenabled(1)

Specifically designed for shell scripts to be able
to determine whether SELinux is enabled or
disabled (as opposed to permissive/enforcing
mode).

getsebool(8)
Returns the active value of one or more SELinux
Boolean values. It returns "active" if the Boolean
is true, and "inactive" if the Boolean is false.

sestatus(8)

A program that returns various status
information about SELinux, such as the
enforcing mode, the current policy version and
name, and the status of the Booleans.

D.1.3. Security Context Labeling

These programs relate to managing security context labeling for objects. They
are generally administrative commands that require enough privilege to
relabel file-related objects. Some systems have a specific SELinux policy for
the commands to ensure that only approved domains may run them with full
privileges. In most cases, the commands must be run in a domain with
relabelto/relabelfrom permissions on the source and target security contexts, and must
meet any relevant validatetrans constraints. The new security context must also be
a valid triplet (that is, user/role/type) for the currently loaded policy.

chcon(1)
Changes the security context, or part of the
security context, for file-related object classes
(for example, ordinary files and directories).

fixfiles(8)

A utility that relabels any number of filesystem
objects. Its default behavior is to relabel all
mounted filesystems that support SELinux
labeling unless they were mounted with the context
mount option. It automatically determines the file
security context specifications to use for the
labeling.

restorecon(8)
A labeling utility similar to fixfiles(8) except that it is
suited more for relabeling individual files or
directories.

setfiles(8)

The original system relabeling utility. It is similar
to fixfiles(8). The main difference is that it requires
a file context specification file as an argument
along with at least one path name.

genhomedircon(8) A script for generating the correct file context
specification files for users' home directories.

matchpathcon(8)
This command returns the default security
context for a path based on the active policy's
file context file.

D.1.4. Security Context Changing Utilities

These command are used to start new processes with specific SELinux security
contexts. The initiating domain type must have appropriate permission to allow
a domain transition to the new type:

newrole(1)

This command creates a new shell running with a
new security context. The user may specify a
new role and/or type. If the system is a
multilevel security (MLS) or multicategory
security (MCS) system, a security level may also
be specified. If only a role is specified then the
default type derived for that role is used. The
current user's password must be entered for the
command to succeed.

runcon(1)

Similar to newrole(1) except that it requests that a
specified command is run with a different
security context. A combination of
user/role/type/level may be requested instead of
a full security context.

run_init(8)

Runs an initrc script using the security context
found in the current policy's contexts/initrc_context file.
This command is usually used to restart system
services so that they end up in the intended
domain.

D.1.5. SELinux Modified Commands

The following commands are standard Linux commands that have been
modified for SELinux to provide additional SELinux-related features:

dir(1) Additional arguments that list security contexts
in various formats

find(1) Options to use security contexts as a search
criteria and an output format

install(1)
Options to preserve security contexts (when
copying) or use specified security contexts
(when creating)

killall(1) Adds an option to kill all processes with a
specified security context

ls(1) Additional arguments that list security contexts
in various formats

mkdir(1) Adds an option to specify the security context
for a new directory

ps(1) Adds an option to display the security contexts
of processes

pstree(1) Adds an option to display the security contexts
of processes

stat(1) Adds an option to display the security context

vdir(1) Additional arguments that list security contexts
in various formats

sudo/sudoedit(8) Adds options to specify a role and type to run
the command in

D.1.6. Policy Module Manual Pages

There are a series of manual pages written to help administrators with the
SELinux aspects of various "standard" Linux services and utilities. Usually the
manual pages describe the effects of the particular policy module on that
specific service. There is also a manual page describing SELinux in general and
the use of Booleans:

booleans(8) General information on how to use SELinux
Booleans

selinux(8) General information on SELinux

ftpd_selinux(8) Information on how SELinux affects the FTP
daemon

httpd_selinux(8) Information on how SELinux affects the Web
server

kerberos_selinux(8) Information on SELinux and Kerberos

named_selinux(8) Information on SELinux and the name daemon

nfs_selinux(8) Information on how to use NFS with SELinux

rsync_selinux(8) Information on SELinux and the rsync daemon

samba_selinux(8) Information on SELinux and resource sharing
with a Samba server

ypbind_selinux(8) Describes how to configure SELinux to permit
NIS its required network privileges

D.2. SETools Suite

Tresys Technology has a long standing suite of tools for analyzing and
debugging SELinux policies. These tools are open source and are usually
included in any Linux distribution that supports SELinux. The latest version of
the tool suite and its source code is available from www.tresys.com/selinux.

All the source packages contain help files explaining how to use the tools and
their features. All the tools are based on common policy library, libapol, also
included in the setools package.

apol

This is the SELinux policy analysis tool we use
throughout this book. It accepts either a policy.conf
file or a compiled binary policy file. It is able to
parse almost all versions of SELinux policy. Apol
allows complicated rule searches and has several
powerful automated analysis modules that
perform such things as information flow and
domain transition analyses.

sediff

A utility to semantically compare two policies. It
can compare source policies, binary policies, or a
combination of both. It can be run from the
command line or with a GUI front end. (Both
sediffx or sediff -X bring up the GUI.)

seaudit

A tool to browse and analyze SELinux audit
messages. The tool will operate directly on the
target system in real time or it can be used to
analyze off-loaded log files. It not only has
extended filtering capabilities, but it also
provides an analysis tie-in with the policy that
was on the source system. It can save filter
configurations or views and can generate both
text and HTML reports.

seaudit-report

A command-line tool that processes audit logs
and generates reports in HTML and plain text.
The reports are based on seaudit views (that is,
saved filter specifications).

sechecker

A command-line tool that performs various
quality checks on a policy file (binary or source).
It includes a template for generating custom
checks. The goal is to provide a tool that can
examine an SELinux policy for common problems
and weaknesses.

secmds
A collection of command-line tools that examine
various information on an SELinux policy. The
collection includes the following:

http://www.tresys.com/selinux

 seinfo Provides general information about a
given policy file (source or binary).

 sesearch Performs apol-like rule searches on a given
binary or source policy.

findcon
A command to search for files and directories
with a specific security context. The search can
be limited to a specific object class.

replcon
A command similar to findcon, but with the added
feature of allowing a partial or whole replacement
of the security context.

indexcon

Generates a database file of all of the labels of
files and directories on the system, or, if
specified, a directory. The database file can be
used with the file contexts analysis function of
apol or searchcon.

searchcon Searches through a file context database
generated by indexcon using user specified criteria.

D.3. Other SELinux Tools

A number of other tools are being developed by various organizations. These
tools are available as open source projects. They are in various levels of
development and primarily aimed at aiding in the development or generation
of SELinux policy.

Polgen/Slat

(www.mitre.org/tech/selinux/) Tools developed
by the MITRE Corporation. Polgen can be used to
automatically generate policy. Slat performs
information flow analysis between types.

SLIDE

(http://sourceforge.net/projects/selinux-ide) A
new open source project by Tresys Technology
to develop an integrated development
environment (IDE) that covers all aspects of
SELinux policy development. The goal is to
provide a single environment to develop, modify,
analyze, and test SELinux policies.

Virgil

(http://sourceforge.net/projects/sepolicy-virgil
A policy generation tool developed by IBM. It is a
utility that generates SELinux policy
automatically through a GUI. It is designed to
provide a quick and easy policy for services
where there is not yet a developed policy.

seedit

(http://sourceforge.net/projects/seedit) A policy
editor originally developed by Hitachi Software. It
provides a Web-based GUI for generating new
policy statements. It attempts to ease the
development of policy by generalizing some of
the policy details and providing a point-and-click
interface.

http://www.mitre.org/tech/selinux/
http://sourceforge.net/projects/selinux-ide
http://sourceforge.net/projects/sepolicy-virgil
http://sourceforge.net/projects/seedit

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

! operator, conditional expressions,
!= operator
 conditional expressions
 constrain statement
 misconstrain statement
 misvalidatetrans statement
 validatetrans statement
&& operator, conditional expressions,
* (wildcard operators), AV (access vector) syntax,
== operator
 conditional expressions
 constrain statement
 misconstrain statement
 misvalidatetrans statement
 validatetrans statement
^ operator, conditional expressions,
|| operator, conditional expressions,

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

abstraction, reference policy modularity,
accept permission,
access
 apol (policy analysis tool)
 conditional policies
 object classes
 object labeling
 TE (type enforcement)
 user roles
 constraints
 elements of constrain statement
 LSM (Linux Security Module)
 MLS (multilevel security)
 validatetrans statement
 control [See TE (type enforcement),, access control.]
 RBAC (role-based access control)
 basics
 object security contexts
 privilege management
 user identifiers
 declaring users
 mapping Linux users to SELinux users
 user roles
 role allow rule
 role declaration statement
 role dominance statement

 transition rules
access control
 evolution in operating systems
 DAC mechanism weaknesses
 MAC origins
 reference monitor
 SELinux evolution
 TE (type enforcement)
 security context
 basics
 SELinux versus standard Linux
 TE (type enforcement)
 domain transitions
 password management program example
 standard Linux SetUID programs
 type transition rule
access interfaces, reference policy modularity,
access revocation,
access vector (AV) rules,
 allow rules
 audit rules
 basic syntax 2nd
 attributes
 keys
 multiple types and attributes
 object classes and permissions
 self keyword
 special operators
 type negation
 neverallow rule
access vector cache (AVC), 2nd
access vector statements

 associating permissions with object class
 syntax
aliases, TE (type enforcement),
allow rules, 2nd 3rd 4th
allow statement, conditional statement,
analysis, policy modules,
Anderson Report,
APIs (application programming interfaces),
apol (policy analysis tool),
 conditional policies
 object classes
 object labeling
 TE (type enforcement)
append permission, 2nd
application programming interfaces (APIs),
architectures
 kernels
 Flask architecture
 LSM (Linux Security Module)
 userspace object managers
 policy languages
 checkpolicy program
 installing monolithic policies
 loadable modules
 monolithic policy
associate permission,
association object class,
association permissions,
attributes
 AC (access vector) syntax
 associating types
 AV (access vector) syntax
 processes

 statements
 TE (type enforcement)
audit messages
 evaluating
 system administration
 AVC messages
 general messages
 seaudit tool
audit rules, access vector rules,
audit2allow tool,
audit2why tool,
auditallow rule,
auditallow statement, conditional statement,
auditdeny rule,
ausearch tool,
automatic relabeling, file-related object labeling,
AV (access vector) rules,
 allow rules
 audit rules
 basic syntax 2nd
 attributes
 keys
 multiple types and attributes
 object classes and permissions
 self keyword
 special operators
 type negation
 neverallow rule
AVC (access vector cache), 2nd
AVC messages, 2nd
avcstat tool,

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

base modules,
binary policy files,
bind permission,
blk_file object class,
blk_file permissions,
bool statement, defining Boolean variable,
Boolean variables,
 apol
 conditional policies
 defining
 running system management
 value changes
build processes
 methods for managing
 strict example policy
 build options
 policy module
 source file structure
 targeted example policy
build-time options,
build.conf files, reference policy, 2nd
Building a Secure Computer System,

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

capability object class,
capability object labeling,
capability permissions,
categories, MLS (multilevel security),
category statement, defining security levels,
chcon tool,
checkpolicy programs,
chr_file object class,
chr_file permissions,
class declaration statements,
classes
 object
 apol
 AV (access vector) syntax
 changing
 defining
 file related
 IPC-related
 miscellaneous
 network-related
 permissions
 purpose
 permissions
clearance security levels,
commands
 file-related object labeling
 system utilities

common permissions sets,
common permissions,
 declaring
 syntax
comp (comparable) security level,
complement operators, AV (access vector) syntax,
conditional expressions,
conditional policies
 apol
 basics
 Boolean variables
 Defining
 running system management
 value changes
 conditional statement
 expressions
 limitations
 rule lists
conditional statements
 expressions
 limitations
 rule lists
conditional TE policies,
conferences, SELinux,
config file, reference policy,
configuration files, system management,
 etc/selinux/config file
 policy directories
connect permission,
constrain statement,
constraints,
 elements of constrain statement
 LSM (Liinux Security Module)

 MLS (multilevel security)
 misconstrain statement
 misvalidatetrans statement
 validatetrans statement
context mount option,
create permission, 2nd
current security levels,
current values, Boolean variable,

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

DAC (discretionary access control) 2nd
defined permissions sets,
 file-related object classes
 miscellaneous object classes
 network and socket object classes
 system V IPC-related object classes
destroy permission,
dir command,
dir object class,
dir permissions,
directories, policy,
 filesystem
 installed Boolean files
 security contexts
 user definitions
discretionary access control (DAC) 2nd
Distribute Trusted Mach (DTMach),
doc files, reference policy,
dom (dominates) security levels,
dom operator
 constrain statement
 misconstrain statement
 misvalidatetrans statement
 validatetrans statement
domain transitions
 defaults
 initial policy module

 example policy
 reference policy
 TE (type enforcement)
domain types
 basics
 roles versus user
 strict example policy 2nd
 transitions
domby (dominated by) security levels,
domby operator
 constrain statement
 misconstrain statement
 misvalidatetrans statement
 validatetrans statement
dominance relationships,
dominance statement, 2nd
dominated by (domby) security levels,
dominates (dom) security levels,
dontaudit rule, 2nd
dontaudit statement, conditional statement,
DTMach (Distribute Trusted Mach),
dyntransition permission, 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

emergency policy development tools,
encapsulation, reference policy modularity,
entrypoint (UL) permission,
entrypoint accesses,
entrypoint permission, 2nd
eq (equals) security levels,
eq operator
 constrain statement
 misconstrain statement
 misvalidatetrans statement
 validatetrans statement
equals (eq) security levels,
etc/selinux/config files, system management,
example policies
 adding additional access
 build processes methods
 creating labeling policy
 declaring types
 domain transitions
 initial policy module
 obtaining
 historical policies
 recent patches
 RHEL4 (Red Hat Enterprise Linux 4)
 strict example policy for FC4
 strict example policy
 build options

 policy module
 source file structure
 system policy integration with initial policy
 targeted example policy
examply policy, allowing initial restrictive access,
execheap permission,
execmem permission,
execmod* permission,
execstack permission,
execute permission, 2nd 3rd
execute_no_trans* permission,
expressions, conditional statement,
extended attribute mechanisms, file-related object labeling,
 labeling behavior
 managing security contexts

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

FC4 (Fedora Core 4)
 example policy support
 object classes
 apol
 file related
 IPC-related
 Miscellaneous
 network-related
 permissions
 strict example policies
FC5 (Fedora Core 5)
 MLS (multilevel security)
 policy directories
 reference policy
 Web site
fd object class,
fd permissions,
Fedora Core 4 (FC4)
 example policy support
 object classes
 apol
 file related
 IPC-related
 miscellaneous
 network-related
 permissions

 strict example policies
Fedora Core 5 (FC5)
 MLS (multilevel security)
 policy directories
 reference policy
 Web site
fifo_file object class,
fifo_file permissions,
file common permission sets,
file initial SIDs,
file object class, permissions, 2nd
 extension from standard Linux
 SELinux specific
 standard Linux permissions
file permissions,
file-related object classes, 2nd
file-related object labeling,
 extended attribute mechanisms
 labeling behavior
 managing security contexts
 generalized security context labeling
 fine-grained labeling with genfscon statement
 legacy filesystem labeling with genfscon statement
 system administration
 automatic relabeling
 commands
 task-based filesystems
 transition-based filesystems
files, policy modules,
filesystem object class,
filesystems
 permissions
 policy directories

 use statements
find command,
fixfiles tool,
Flask architectures, LSM (Linux Security Module),
Flask,
fork permission,
frameworks, LSM (Linux Security Module),

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

Gasser, Morrie, Building a Secure Computer System,
generalized filesystem labeling support statements,
generalized security context labeling,
 fine-grained labeling with genfscon statement
 legacy filesystem labeling with genfscon statement
genfscon statements,
 fine-grained labeling
 legacy filesystem labeling
genhomedircon tool,
getattr permission, 2nd 3rd
getcap permission,
getenforce tool,
getopt permission,
getpgid permission,
getsched permission,
getsebool command,
getsebool tool,
getsession ermission,

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

hard-coded defaults, object labeling,
Hardened Gentoo Web site,
high security levels,
historical policies,
history, operating system security
 access control evolution
 flawed software
hooks, LSM (Linux Security Module),

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

identifiers, users,
 declaring
 mapping Linux users to SELinux users
ifdef statement,
incomp (incomparable) security level,
incomp operator
 constrain statement
 misconstrain statement
 misvalidatetrans statement
 validatetrans statement
initial policy module, writing
 allowing initial restrictive access
 creating files
 creating labeling policy
 declaring types
 domain transitions
 integrating into system policy
 policy application
initial security identifiers, object labeling,
initial SIDs
 object labeling 2nd
 statements
install command,
interfaces, reference policy modularity,
 access interface
 template interface

interprocess communication (IPC), 2nd
ioctl permission, 2nd
IP Security (IPsec),
IPC (interprocess communication), 2nd
ipc common permission sets,
ipc object class,
ipc permissions,
IPC-related object classes,
Ipsec (IP Security),
IRC channel, SELinux,
IRC daemon modules, listings,

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

kernel initial SIDs,
kernels
 Flask architecture
 IPC-related
 Miscellaneous
 network-related
 permissions
 LSM (Linux Security Module)
 object classes
 apol
 file related
 policy language
 checkpolicy program
 installing monolithic policies
 loadable modules
 monolithic policy
 security servers, userspace object managers
 userspace object managers
 kernel security server
 policy server architecture
key_socket object class,
key_socket permissions,
keys, AC (access vector) syntax,
killall command,

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

labeling
 creating policy
 security context
 strict example policy 2nd
 system utility tools
labeling objects
 apol
 basics
 capability objects
 file related
 extended attribute mechanisms
 generalized security context labeling
 task-based filesystems
 transition-based filesystems
 initial SIDs
 network and socket objects
 process objects
 security objects
 system objects
 System V IPC
layering, reference policy design,
level statement, defining security levels,
link permission, 2nd
Linux Security Module (LSM) 2nd
 Constraints
 Flask architecture

 mailing list
listen permission,
listings
 Example Policy: IRC Daemon Domain and Role Authorizations
 Example Policy: IRC Daemon File Contexts File
 Example Policy: IRC Daemon Initial Allowed Access
 Example Policy: IRC Daemon Type Declarations
 Example Policy: IRC Daemon, Allowing Access for logratate Domain
 IRC daemon modules
 Partial Interface for domain_type Access Interface
 Partial Interface for ssh_per_userdomain_template Interface
 Partial Listing for netutils Interface Module File
 Partial Listing for netutils Private Module File
 Policy Module for Ping from Strict Example Policy
 Reference Policy: IRC Daemon External Interface Example
 Reference Policy: IRC Daemon Labeling Policy File
 Reference Policy: IRC Daemon Private Allowed Access
 Reference Policy: IRC Daemon Private Type Declarations
lnk_file object class,
lnk_file permissions,
load_policies,
loadable modules
 dependency handling
 policy language
loadable policy modules,
loadable policy packages,
lock permission, 2nd
low security levels,
ls command,
LSM (Linux Security Module) 2nd
 constraints
 Flask architecture
 mailing list

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

MAC (mandatory access control),
 origins
 TE (type enforcement)
mail lists
 LSM (Linux Security Module)
 SELinux
mandatory access control (MAC),
 origins
 TE (type enforcement)
manual pages, policy modules,
mapping, Linux users to SELinux users,
matchpathcon tool,
MCS (multicategory security),
methods
 policy build process
 strict example policy
 build options
 policy module
 source file structure
 targeted example policy
miscellaneous object classes, defined permissions sets,
miscontrain statement,
misvalidatetrans statement,
MITRE Corporation Web, site
mkdir command,
MLS (multilevel security) 2nd 3rd
 constraints

 misconstrain statement
 misvalidatetrans statement
 impacts
 restrictions
 security contexts
 defining security levels
 extensions
 TE (type enforcement)
modularity reference policy design,
 encapsulation
 interfaces
 module files
module files, reference policy modularity,
module manual pages,
modules, loadable dependency handling,
modules.conf files, reference policy,
monolithic policies,
mounton permission, 2nd
mountpoint labels,
msg object class,
msg permissions,
msgq object class,
msgq permissions,
multicategory security (MCS),
multilevel security [See MLS (multilevel security).]
multiple policies, management,
multiple types, AV (access vector) syntax,

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

name_bind permission,
National Security Agency (NSA),
 historical policies site
 Web site 2nd
nesting conditional statements,
netif object class,
netif permissions,
netifinitial SIDs,
netlink_audit_socket object class,
netlink_audit_socket permissions,
netlink_dnrt_socket object class,
netlink_dnrt_socket permissions,
netlink_firewall_socket object class,
netlink_firewall_socket permissions,
netlink_ip6fw_socket object class,
netlink_ip6fw_socket permissions,
netlink_kobject_uevent_socket object class,
netlink_kobject_uevent_socket permissions,
netlink_nflog_socket object class,
netlink_nflog_socket permissions,
netlink_route_socket object class,
netlink_route_socket permissions,
netlink_selinux_socket object class,
netlink_selinux_socket permissions,
netlink_socket object class,
netlink_tcpdiag_socket object class,
netlink_tcpdiag_socket permissions,
netlink_xfrm_socket object class,
netlink_xfrm_socket permissions,
network objects

 classes, defined permissions sets
 labeling
network-related object classes,
neverallow rules, 2nd
newrole command,
newrole tool,
no access by default,
noatsecure permission,
node initial SIDs,
node object class,
node permissions,
NSA (National Security Agency),
 historical policies site
 Web site 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

object classes,
 adding
 allow (UL) rule
 apol
 AV (access vector) syntax
 defining
 class declaration class
 permission declaration
 file related
 IPC-related
 Miscellaneous
 network-related
 permissions
 common permission sets
 defined permission sets
 file object class
 process object class
 purpose
 strict example policy
objects
 labeling
 apol
 basics
 capability objects
 file-related

 initial SIDs
 network and socket objects
 process objects
 security objects
 system objects
 System V IPC
 relabeling, validatetrans statement
 security context
 TE (type enforcement)
 transition default
open source projects,
operating systems, security history
 access control evolution
 flawed software
operators, AV (access vector) syntax,
optional statements,
organizational security policies,

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

packet_socket object class,
packet_socket permission,
passwd permissions,
password management program example,
pax permissions,
pending values, Boolean variable,
permissions
 allow (UL) rule
 AV (access vector) syntax
 changing
 class-specific
 common
 declaring
 syntax
 conditional statement
 declaring
 access vector statement
 common permissions
 object classes
 common permission sets
 defined permission sets
 file object class
 process object class
 strict example policy
permissive mode,
persistent values, Boolean variables,
PID (process ID),

planning, writing policy modules
 application information
 creating test environment
 security goal specification
PMS (policy management server),
Polgen tool,
policies,
 build process
 conditional
 apol
 basics
 Boolean variables
 conditional statement
 control, object labeling
 directories
 filesystem
 installed Boolean files
 security contexts
 user definitions
 language
 checkpolicy program
 installing monolithic policies
 loadable modules
 monolithic policy
 management files
 etc/selinux/config file
 policy directories
 module manual pages
 obtaining sample policies
 example policy
 reference policy
 rules, strict example policy

 servers, architecture
 statements, object labeling
 strict example policy
 build options
 policy module
 source file structure
 system utility tools
 targeted example policy
policy analysis tool (apol),
policy files,
policy management server (PMS),
policy modules, writing
 analysis
 basics
 emergency development tools
 initial policy module
 IRC daemon modules
 planning
 testing
policy.conf files,
policy/mls files, reference policy,
policy/modules files, reference policy,
policy/modules.conf files, reference policy,
policy/support files, reference policy,
policy/users files, reference policy,
port initial SIDs,
preparation, writing policy modules
 application information
 creating test environment
 security goal specification
privileges, user roles,
process ID (PID),
process object class,
 permissions

 attributes
 domain type transition
 executing writable memory
 file creation
 process creation
 signaling processes
process object labeling,
process permissions,
projects, open source,
ps command,
pstree commad,
ptrace permission,

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

quotaon permission, 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

rawip_socket object class,
rawip_socket permissions,
RBAC (role-based access control) 2nd
 basics
 privilege management
read permission, 2nd
recv_mesg permission,
recvfrom permission,
Red Hat Enterprise Linux 4 (RHEL4)
 example policy support
 target policy
Red Hat Fedora Core 5, reference policy,
Red Hat, Fedora Core Web site,
reference monitors, operating system access control,
reference policies
 adding additional access
 allowing initial restrictive access
 build options
 build.conf file
 modules.conf file
 creating labeling policy
 declaring types
 design principles
 layering
 modularity
 domain transitions
 file structure

 build and support files
 core policy files
 goals
 initial policy module
 module example
 obtaining
 Red Hat Fedora Core 5
 Tresys Technology open source project site
 system policy integration with initial policy
reference validation mechanisms,
Reinhold, Van Nostran, Building a Secure Computer System,
relabelfrom permission, 2nd
relabelto permission, 2nd
rename permission, 2nd
require statements,
resources
 Hardened Gentoo
 NSA (National Security Agency)
 open source projects
 Red Hat Fedora Core site
 related security information
 SELinux IRC channel
 SELinux mailing list
 SELinux symposium
 Tresys Technology
restorecon tool,
restrictions, MLS (multilevel security),
restrictive access, initial policy module,
 example policy
 reference policy
revocation, access,
RHEL4 (Red Hat Enterprise Linux 4)
 example policy support

 target policy
rlimitnh permission,
role allow rules, 2nd
role declaration statement, 2nd
role dominance statement,
role transition rules,
role-based access control (RBAC), 2nd
 basics
 privilege management
roles
 users
 apol
 identifiers
 RBAC (role-based access control)
 role allow rule
 role declaration statement
 role dominance statement
 transition rules
 versus user domain types
rule lists, conditional statement,
rules, TE (type enforcement)
 access vector rules
 aliases
 apol
 associating types and attributes
 attributes
 basics
 declaring types
 type rules
Rules.modular files, reference policy,
run_init tool,
runcon tool,
runtime conditionals,

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

sample policies, obtaining
 example policies
 reference policy
seaudit tool, audit messages,
security attributes,
security context,
 basics
 extended attributes
 labeling, strict example policy 2nd
 managing in extended attribute filesystems
 object labeling
 apol
 basics
 capability objects
 file-related
 initial SIDs
 network and socket objects
 process objects
 security object
 system objects
 System V IPC
 policy directories
 SELinux versus standard Linux
 system utility tools
 changing
 labeling

Security Enhanced Linux (SELinux),
 annual conference
 history
 IRC channel
 mail list
 open source site
security identifier (SID),
security initial SIDs,
security levels
 defining
 extensions
 MLS (multilevel security)
security object class,
security object labeling,
security permissions,
security servers,
sediff tool,
seedit tool,
self keyword, AV (access vector) syntax,
SELinux (Security Enhanced Linux),
 annual conference
 history
 IRC channel
 mail list
 open source site
selinuxenabled tool,
sem object class,
sem permissions,
send_msg permission,
sendto permission,
sensitivities, MLS (multilevel security),
sensitivity statement, defining security levels,
servers
 kernel security, userspace object managers

 policy architecture
sestatus tool,
setattr permission, 2nd
setcap permission,
setcurrent permission, 2nd
setenforce tool,
setexec permission,
setfiles tool,
setfscreate permission, 2nd
SETools package,
SETools Suite,
setopt permission,
setpgid permission,
setrlimit permission,
setsched permission,
setsebool command,
shadow password files,
share permission,
shm object class,
shm permissions,
shutdown permission,
SID (security identifier),
sigchld permission,
siginh permission,
sigkill permission,
signal permission,
signull permission,
sigstop permission,
Slat tool,
sock_file object class,
sock_file permissions,
socket common permission sets,
socket object classes, 2nd
socket objects, labeling,
socket permissions,
software, flawed security enforcement,
source files, strict example policy

 application configuration files
 domain types
 object class and permission definition
 policy rules
 security context labeling
 top-level files and directories
 unaffiliated types
source identifiers, allow (UL) rule,
source modules,
source policy files,
source types, allow (UL) rule,
stat command,
status information tools,
strict example policies,
 build options
 build-time tunables
 configuring policy modules
 enabling optional MLS features
 policy module
 audit rules
 conditional policy example
 defining domain types
 ping access
 security context labeling
 transition rules
 source file structure
 application configuration files
 domain types
 object class and permission definition
 policy rules
 security context labeling
 top-level files and directories

 unaffiliated types
su command,
sudo/sudoedit command,
support files, reference policy,
swapon permission, 2nd
symposiums, SELinux,
sysctl initial SIDs,
system administration, SELinux impact
 audit messages
 file-related object labeling
 multiple policy management
 user management
system managmenet
 configuration files
 etc/selinux/config file
 policy directories
 policy management files
 etc/selinux/config file
 policy directories
 system administration
 audit messages
 file-related object labeling
 managing users
 multiple policy management
system object class,
system object labeling,
system permissions,
system policies, 2nd
 example policy
 reference policy
system utilities
 modified SELinux commands
 policy module manual pages

 policy tools
 security context
 status information
System V IPC objects, 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

target identifiers, allow (UL) rule,
target SIDs,
target types, allow (UL) rule,
targeted example policies, 2nd
task-based filesystems, file related object labeling,
tcp_socket object class,
tcp_socket permissions,
TE (type enforcement), 2nd
 access control
 domain transitions
 password management program example
 standard Linux SetUID programs
 type transition rule
 access vector rules
 allow rules
 audit rules
 basic syntax 2nd
 neverallow rule
 aliases
 apol
 associating types and attributes
 attributes
 basics
 declaring types
 MLS (multilevel security)
 RBAC (role-based access control)
 security context

 basics
 SELinux versus standard Linux
 type rules
 common syntax
 transition rules
template interfaces, reference policy modularity,
testing
 environment, creating
 policy modules
 additional access testing
 evaluating audit messages
 example policy additional access
 reference policy additional access
togglesebool tool,
transition permission, 2nd
transition rules, user roles,
transition-based filesystems, file related object labeling,
transitions
 constraints, validatetrans statement
 strict example policy
 type rules
 domain defaults
 object default
 type change rules
Tresys Technology
 open source project site
 Web site
trusted subjects,
type enforcement (TE) 2nd
 access control
 domain transitions
 password management program example

 standard Linux SetUID programs
 type transition rule
 access vector rules
 allow rules
 audit rules
 basic syntax 2nd
 neverallow rule
 aliases
 apol
 associating types and attributes
 attributes
 basics
 declaring types
 MLS (multilevel security)
 RBAC (role-based access control)
type enforcement (TE)
 security context
type enforcement (TE)
 security context
 basics
 SELinux versus standard Linux
 type rules
 common syntax
 transition rules
type identifiers, TE (type enforcement),
type negation, AV (access vector) syntax,
type statement,
type transition rule, domain transitions,
type_change statement, conditional statement,
type_member rule,
type_transition statement, conditional statement,
typealias statements,
typeattribute statements,

types
 attributes
 AV (access vector) syntax
 change rule
 creating initial policy module
 example policy
 reference policy
 declaring
 domain 2nd
 rules
 common syntax
 transition rules
 TE (type enforcement)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

udp_socket object class,
udp_socket permissions,
unconfined domains,
unix_dgram_socket object class,
unix_dgram_socket permissions,
unix_read permission,
unix_stream_socket object class,
unix_stream_socket permissions,
unix_write permission,
unlabeled initial SIDs,
unlink permission, 2nd
user declaration statement, 2nd
user statement,
user-space security servers,
users
 apol
 definitions
 identifiers
 declaring users
 mapping Linux users to SELinux users
 RBAC (role-based access control)
 basics
 object security contexts
 privilege management
 role
 allow rule
 declaration statement
 dominance statement

 system administration
 changing user role
 ordinary unprivileged user
 privileged user
 transition rules
userspace object managers,
 kernel security server
 policy server architecture
userspace security server (USSS),
USSS (userspace security server),
utilities
 modified SELinux commands
 policy module manual pages
 policy tools
 security context
 status information

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

validatetrans statement,
vdir command,
Virgil tool,

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W]

Walsh, Dan, Red Hat site,
Web sites
 Hardened Gentoo
 MITRE Corporation
 National Security Agency (NSA)
 NSA (National Security Agency)
 Red Hat Fedora Core
 Tresys Technologies
 Tresys Technology
wildcard operators (*), AV (access vector) syntax,
write permission, 2nd

	SELinux by Example: Using Security Enhanced Linux
	Table of Contents
	Copyright
	Prentice Hall Open Source Software Development Series
	Acknowledgments
	About the Authors
	Preface

	Part I: SELinux Overview
	Chapter 1. Background
	Section 1.1. The Inevitability of Software Failure
	Section 1.2. The Evolution of Access Control Security in Operating Systems
	Section 1.3. Summary
	Exercises

	Chapter 2. Concepts
	Section 2.1. Security Contexts for Type Enforcement
	Section 2.2. Type Enforcement Access Control
	Section 2.3. The Role of Roles
	Section 2.4. Multilevel Security in SELinux
	Section 2.5. SELinux Features Familiarization
	Section 2.6. Summary
	Exercises

	Chapter 3. Architecture
	Section 3.1. The Kernel Architecture
	Section 3.2. Userspace Object Managers
	Section 3.3. SELinux Policy Language
	Section 3.4. Summary
	Exercises

	Part II: SELinux Policy Language
	Chapter 4. Object Classes and Permissions
	Section 4.1. Purpose of Object Classes in SELinux
	Section 4.2. Defining Object Classes in SELinux Policy
	Section 4.3. Available Object Classes
	Section 4.4. Object Class Permission Examples
	Section 4.5. Exploring Object Classes with Apol
	Section 4.6. Summary
	Exercises

	Chapter 5. Type Enforcement
	Section 5.1. Type Enforcement
	Section 5.2. Types, Attributes, and Aliases
	Section 5.3. Access Vector Rules
	Section 5.4. Type Rules
	Section 5.5. Exploring Type Enforcement Rules with Apol
	Section 5.6. Summary
	Exercises

	Chapter 6. Roles and Users
	Section 6.1. Role-Based Access Control in SELinux
	Section 6.2. Roles and Role Statements
	Section 6.3. Users and User Statements
	Section 6.4. Exploring Roles and Users with Apol
	Section 6.5. Summary
	Exercises

	Chapter 7. Constraints
	Section 7.1. A Closer Look at the Access Decision Algorithm
	Section 7.2. Constrain Statement
	Section 7.3. Label Transition Constraints
	Section 7.4. Summary
	Exercises

	Chapter 8. Multilevel Security
	Section 8.1. Multilevel Security Constraints
	Section 8.2. Security Contexts with MLS
	Section 8.3. MLS Constraints
	Section 8.4. Other Impacts of MLS
	Section 8.5. Summary
	Exercises

	Chapter 9. Conditional Policies
	Section 9.1. Overview of Conditional Policies
	Section 9.2. Boolean Variables
	Section 9.3. Conditional Statements
	Section 9.4. Examining Booleans and Conditional Policies with Apol
	Section 9.5. Summary
	Exercises

	Chapter 10. Object Labeling
	Section 10.1. Introduction to Object Labeling
	Section 10.2. File-Related Object Labeling
	Section 10.3. Network and Socket Object Labeling
	Section 10.4. System V IPC
	Section 10.5. Miscellaneous Object Labeling
	Section 10.6. Initial Security Identifiers
	Section 10.7. Exploring Object Labeling with Apol
	Section 10.8. Summary
	Exercises

	Part III: Creating and Writing SELinux Security Policies
	Chapter 11. Original Example Policy
	Section 11.1. Methods for Managing the Build Process
	Section 11.2. Strict Example Policy
	Section 11.3. Targeted Example Policy
	Section 11.4. Summary
	Exercises

	Chapter 12. Reference Policy
	Section 12.1. Goals of the Reference Policy
	Section 12.2. Overview of Policy Source File Structure
	Section 12.3. Design Principles
	Section 12.4. Examining a Reference Policy Module
	Section 12.5. Build Options for Reference Policy
	Section 12.6. Summary
	Exercises

	Chapter 13. Managing an SELinux System
	Section 13.1. SELinux Configuration and Policy Management Files
	Section 13.2. Impact of SELinux on System Administration
	Section 13.3. Summary
	Exercises

	Chapter 14. Writing Policy Modules
	Section 14.1. Overview of Writing a Policy Module
	Section 14.2. Preparation and Planning
	Section 14.3. Creating an Initial Policy Module
	Section 14.4. Testing and Analyzing the Policy
	Section 14.5. Emerging Policy Development Tools
	Section 14.6. Complete IRC Daemon Module Listings
	Section 14.7. Summary

	Appendix A. Obtaining SELinux Sample Policies
	Section A.1. Example Policy
	Section A.2. Reference Policy

	Appendix B. Participation and Further Information
	Section B.1. The SELinux Mail List
	Section B.2. The Annual SELinux Symposium
	Section B.3. The NSA The
	Section B.4. Tresys Technology
	Section B.5. Open Source Projects
	Section B.6. The SELinux IRC Channel
	Section B.7. The Fedora Core Site
	Section B.8. Hardened Gentoo
	Section B.9. Other Related Security Information

	Appendix C. Object Classes and Permissions
	Section C.1. Common Permission Sets
	Section C.2. Object Classes and Defined Permission Sets

	Appendix D. SELinux Commands and Utilities
	Section D.1. System Utilities
	Section D.2. SETools Suite
	Section D.3. Other SELinux Tools

	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

