

Role-Based Access Control

Second Edition

Recent Titles in the Artech House

Information Security and Privacy Series

Rolf Oppliger, Series Editor

Privacy Protection and Computer Forensics, Second Edition,

Michael A. Caloyannides

Demystifying the IPsec Puzzle, Sheila Frankel

Developing Secure Distributed Systems with CORBA, Ulrich Lang and

Rudolf Schreiner

Implementing Electronic Card Payment Systems, Cristian Radu

Implementing Security for ATM Networks, Thomas Tarman and Edward Witzke

Information Hiding Techniques for Steganography and Digital Watermarking,

Stefan Katzenbeisser and Fabien A. P. Petitcolas, editors

Internet and Intranet Security, Second Edition, Rolf Oppliger

Non-repudiation in Electronic Commerce, Jianying Zhou

Role-Based Access Control, Second Edition, David F. Ferraiolo, D. Richard Kuhn,

and Ramaswamy Chandramouli

Secure Messaging with PGP and S/MIME, Rolf Oppliger

Security Fundamentals for E-Commerce, Vesna Hassler

Security Technologies for the World Wide Web, Second Edition, Rolf Oppliger

Software Verification and Validation for Practitioners and Managers,

Second Edition, Steven R. Rakitin

For quite a long time, computer security was a rather narrow field of study that was

populated mainly by theoretical computer scientists, electrical engineers, and

applied mathematicians. With the proliferation of open systems in general, and of

the Internet and the World Wide Web (WWW) in particular, this situation has

changed fundamentally. Today, computer and network practitioners are equally

interested in computer security, since they require technologies and solutions that

can be used to secure applications related to electronic commerce. Against this back-

ground, the field of computer security has become very broad and includes many

topics of interest. The aim of this series is to publish state-of-the-art, high standard

technical books on topics related to computer security. Further information about

the series can be found on the WWW at the following URL:

http://www.esecurity.ch/serieseditor.html

Also, if you’d like to contribute to the series by writing a book about a topic

related to computer security, feel free to contact either the Commissioning Editor or

the Series Editor at Artech House.

Role-Based Access Control

Second Edition

David F. Ferraiolo

D. Richard Kuhn

Ramaswamy Chandramouli

a r tec hh ous e . co m

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library.

ISBN 13: 978-1-59693-113-8

Cover design by Yekaterina Ratner

© 2007 ARTECH HOUSE, INC.

685 Canton Street

Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or

utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any

information storage and retrieval system, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately

capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not

be regarded as affecting the validity of any trademark or service mark.

10 9 8 7 6 5 4 3 2 1

In memory of my late father,

and to my wife, Hildegard,

and my sons, Michael and Josef,

for the time I spent at my computer instead of with them

–DFF

To my parents, Richard and Jane Kuhn, and

my children, Gary, Christine, and Kevin, with love

–DRK

To my dear father, late mother, loving wife, Mira, and

dear daughters, Dipika and Divya

–RC

Contents

Preface xv

Acknowledgments xix

1 Introduction 1

1.1 The purpose and fundamentals of access control 2

1.1.1 Authorization versus authentication 3

1.1.2 Users, subjects, objects, operations, and permissions 4

1.1.3 Least privilege 5

1.2 A brief history of access control 6

1.2.1 Access control in the mainframe era 6

1.2.2 Department of Defense standards 8

1.2.3 Clark-Wilson model 9

1.2.4 Origins of RBAC 9

1.3 Comparing RBAC to DAC and MAC 17

1.4 RBAC and the enterprise 18

1.4.1 Economics of RBAC 19

1.4.2 Authorization management and resource provisioning 20

References 24

2 Access Control: Properties, Policies,
and Models 27

2.1 Access control: objectives and enforcement artifacts 27

2.2 Access control: core entities and principles 30

vii

2.2.1 Subjects and objects 30

2.2.2 Principles of secure design 31

2.3 Reference monitor and security kernel 33

2.3.1 Completeness 34

2.3.2 Isolation 35

2.3.3 Verifiability 36

2.3.4 The reference monitor—necessary, but not sufficient 37

2.4 Access control matrix 37

2.5 Access control data structures 42

2.5.1 Capability lists and access control lists (ACLs) 42

2.5.2 Protection bits 44

2.6 Discretionary access control (DAC) policies 44

2.7 MAC policies and models 45

2.7.1 Bell-LaPadula model 46

2.8 Biba’s integrity model 47

2.9 The Clark-Wilson model 48

2.10 The Chinese wall policy model 50

2.11 The Brewer-Nash model 51

2.12 Domain-type enforcement (DTE) model 52

References 54

3 Core RBAC Features 57

3.1 Roles versus ACL groups 59

3.2 Core RBAC 61

3.2.1 Administrative support 61

3.2.2 Permissions 62

3.2.3 Role activation 64

3.3 Mapping the enterprise view to the system view 65

3.3.1 Global users and roles and indirect role privileges 68

3.3.2 Mapping permissions into privileges 69

4 Role Hierarchies 73

4.1 Building role hierarchies from flat roles 74

4.2 Inheritance schemes 75

4.2.1 Direct privilege inheritance 75

4.2.2 Permission and user membership inheritance 76

viii Contents

4.2.3 User containment and indirect privilege inheritance 78

4.3 Hierarchy structures and inheritance forms 81

4.3.1 Connector roles 82

4.3.2 Organization chart hierarchies 85

4.3.3 Geographical regions 87

4.4 Accounting for role types 89

4.5 General and limited role hierarchies 90

4.6 Accounting for the Stanford model 93

References 95

5 SoD and Constraints in RBAC Systems . . 97

5.1 Types of SoD 100

5.1.1 Static SoD 100

5.1.2 Dynamic SoD 104

5.1.3 Operational SoD 105

5.1.4 History and object-based SoD 106

5.2 Using SoD in real systems 107

5.2.1 SoD in role hierarchies 108

5.2.2 Static and dynamic constraints 109

5.2.3 Mutual exclusion 110

5.2.4 Effects of privilege assignment 111

5.2.5 Assigning privileges to roles 113

5.2.6 Assigning roles to users 114

5.3 Temporal constraints in RBAC 118

5.3.1 Need for temporal constraints 118

5.3.2 Taxonomy of temporal constraints 119

5.3.3 Associated requirements for supporting temporal constraints 122

References 123

6 RBAC, MAC, and DAC 127

6.1 Enforcing DAC using RBAC 128

6.1.1 Configuring RBAC for DAC 129

6.1.2 DAC with grant-independent revocation 130

6.1.3 Additional considerations for grant-dependent revocation 131

6.2 Enforcing MAC on RBAC systems 131

6.2.1 Configuring RBAC for MAC using static constraints 132

Contents ix

6.2.2 Configuring RBAC for MAC using dynamic constraints 133

6.3 Implementing RBAC on MLS systems 136

6.3.1 Roles and privilege sets 138

6.3.2 Assignment of categories to privilege sets 139

6.3.3 Assignment of categories to roles 140

6.3.4 Example of MLS to RBAC mapping 141

6.4 Running RBAC and MAC simultaneously 143

References 144

7 Privacy and Regulatory Issues 147

7.1 Privacy requirements and access control framework 148

7.1.1 Incorporating privacy policies into the policy specification module 148

7.1.2 Enhance RBAC model with privacy-related entities and relationships 151

7.1.3 Justifications for additional entities in the RBAC model 151

7.1.4 Business purpose entity 153

7.1.5 Data usage entity 154

7.1.6 Privacy-aware RBAC model 155

7.2 Integrate privacy policy support in the role engineering process 155

7.2.1 Identifying business purposes and role-business purpose

relationship instances 157

7.2.2 Identifying business purpose–task relationship instances 157

7.2.3 Identifying data usage entities and data usage–data object

relationship instances 158

7.3 Authorization using privacy-RBAC-ACF 160

7.4 RBAC and regulatory compliance 162

7.4.1 Sarbanes-Oxley Act compliance 164

7.4.2 Gramm-Leach-Bliley Act and HIPAA compliance 166

7.4.3 Compliance and the RBAC model 166

7.4.4 Considerations in using RBAC in regulatory compliance 167

References 168

8 RBAC Standards and Profiles 171

8.1 The ANSI/INCITS RBAC standard 171

8.1.1 Overview 171

8.1.2 The RBAC reference model 172

8.1.3 Functional specification overview 173

8.1.4 Functional specification for core RBAC 174

x Contents

8.1.5 Functional specification for hierarchical RBAC 176

8.1.6 Functional specification for static separation of duty (SSD) relation 179

8.1.7 Functional specification for a DSD relation 180

8.1.8 Options and packaging 181

8.1.9 Other RBAC standards 183

8.2 XACML profile for role-based access control 185

References 186

9 Role-Based Administration of RBAC . . . 189

9.1 Background and terminology 189

9.2 URA02 and PRA02 192

9.3 Crampton-Loizou administrative model 196

9.3.1 Flexibility of administrative scope 197

9.3.2 Decentralization and autonomy 198

9.3.3 A family of models for hierarchical administration 198

9.4 Role control center 203

9.4.1 Inheritance and the role graph 204

9.4.2 Constraints 206

9.4.3 Role views 206

9.4.4 Delegation of administrative permissions 207

9.4.5 Decentralization and autonomy 210

References 212

10 Role Engineering 213

10.1 Scenario-driven role-engineering approach 215

10.1.1 Scenarios and roles 216

10.1.2 Steps in the scenario-driven process 217

10.2 Goal driven/hybrid role engineering approach 220

10.3 Tools for role discovery and role management 224

10.3.1 Sage DNA 226

10.3.2 Role Miner 227

10.3.3 SmartRoles 228

10.3.4 Contouring Engine 229

10.4 Example RBAC installations 229

10.5 Role engineering: health care example 232

10.5.1 Identify and model usage scenarios 232

Contents xi

10.5.2 Derive permissions from scenarios 234

10.5.3 Identify permission constraints 236

10.5.4 Refine scenario model 236

10.5.5 Additional process activities 237

References 237

11 Enterprise Access Control Frameworks
Using RBAC and XML Technologies 239

11.1 Conceptual view of EAFs 239

11.2 Enterprise Access Central Model Requirements 242

11.2.1 EAM’s multiple-policy support requirement 243

11.2.2 EAM’s ease of administration requirement 243

11.3 EAM specification and XML schemas 244

11.4 Specification of the ERBAC model in the XML schema 246

11.4.1 XML schema specifications for ERBAC model elements 247

11.4.2 XML schema specifications for ERBAC model relations 250

11.5 Encoding of enterprise access control data in XML 253

11.6 Verification of the ERBAC model and data specifications 257

11.7 Limitations of XML schemas for ERBAC model

constraint representation 258

11.8 Using XML-encoded enterprise access control data for

enterprisewide access control implementation 262

11.9 Conclusions 268

References 268

12 Integrating RBAC with Enterprise IT
Infrastructures 271

12.1 RBAC for WFMSs 272

12.1.1 Workflow concepts and WFMSs 272

12.1.2 WFMS components and access control requirements 273

12.1.3 Access control design requirements 274

12.1.4 RBAC model design and implementation requirements for WFMSs 276

12.1.5 RBAC for workflows—research prototypes 279

12.2 RBAC integration in Web environments 280

12.2.1 Implementing RBAC entirely on the Web server 281

xii Contents

12.2.2 Implementing RBAC for Web server access using cookies 282

12.2.3 RBAC on the Web using attribute certificates 284

12.3 RBAC for UNIX environments 291

12.3.1 RBAC for UNIX administration 291

12.3.2 RBAC implementation within the NFS 296

12.4 RBAC in Java 299

12.4.1 Evolution of Java security models 300

12.4.2 JDK 1.2 security model and enhancement 301

12.4.3 Incorporating RBAC into JDK 1.2 security model with JAAS 304

12.5 RBAC for FDBSs 306

12.5.1 IRO-DB architecture 307

12.5.2 RBAC model implementation in IRO-DB 308

12.6 RBAC in autonomous security service modules 309

12.7 Conclusions 311

References 311

13 Migrating to RBAC—Case Study:
Multiline Insurance Company 315

13.1 Background 316

13.2 Benefits of using RBAC to manage extranet users 316

13.2.1 Simplifying systems administration and maintenance 318

13.2.2 Enhancing organizational productivity 319

13.3 Benefits of using RBAC to manage employees (intranet users) 319

13.3.1 Reduction in new employee downtime 319

13.3.2 Simplified systems administration and maintenance 320

13.4 RBAC implementation costs 320

13.4.1 Software and hardware expenses 321

13.4.2 Systems administrators’ labor expenses 321

13.4.3 Role engineering expenses 321

13.5 Time series of benefits and costs 322

Reference 324

14 RBAC Features in Commercial Products . 325

14.1 RBAC in relational DBMS products 326

14.1.1 Informix Dynamic Server version 9.3 (IBM) 327

14.1.2 Oracle Database 10g Release (10.2) (Oracle Corporation) 329

Contents xiii

14.1.3 Sybase Adaptive Server Enterprise 15.0 (Sybase) 333

14.2 RBAC in enterprise security administration software 340

14.2.1 CONTROL-SA (BMC software) 342

14.2.2 DirX Identity V7.0 (Siemens) 346

14.2.3 SAM Jupiter (Beta Systems) 351

14.2.4 Tivoli Identity Manager version 1.1 (IBM) 356

14.3 Conclusions 359

References 360

Appendix A: XML Schema for the RBAC Model 361

Appendix B: XML-Encoded Data for
RBAC Model 365

About the Authors 369

Index 371

xiv Contents

Preface

Role-based access control (RBAC) is a technology that is attracting a great

deal of attention, particularly for commercial applications, because of its

potential for reducing the complexity and cost of security administration in

large networked applications. Under RBAC, security administration is greatly

simplified by using roles, hierarchies, and constraints to organize privileges.

RBAC reduces costs within an organization, because it takes into account that

employees change much more frequently than the duties within positions.

Under RBAC, if, for example, an employee moves within an organization,

only his or her role assignment is changed. Accordingly, it is unnecessary to

revoke his or her existing privileges and assign a completely new set of privi-

leges. RBAC can be configured to support a wide variety of access control poli-

cies, including traditional discretionary access control (DAC) and mandatory

access control (MAC), as well as organization-specific policies. Recently,

RBAC has also been found to be a natural access control facility for workflow

management systems. The concept and design of RBAC make it perfectly

suited to a wide variety of application and system software environments, for

both stand-alone and distributed deployments. It provides a safe and effective

way to manage access to an organization’s information, while reducing

administration costs and minimizing errors.

Over the past decade, interest in RBAC has increased dramatically, with

most major information technology (IT) vendors offering a product that

incorporates some form of role-based access. The profusion of new RBAC

products offers many advantages for security administrators and software

developers, but sorting out the capabilities of different products can be chal-

lenging. Until now, RBAC research has been documented in hundreds of

research papers, but not consolidated in book form. This book explains

RBAC and its administrative and cost advantages and implementation issues

and the migration from conventional access control methods to RBAC.

xv

Specialized topics—including role hierarchies, separation of duties, combin-

ing RBAC with military security models, and recent efforts toward standard-

ization—are detailed. To enable system integrators to integrate RBAC into

the various IT infrastructures found in an enterprise-like Web applications,

such as Java and Federated Database Systems, the book provides an analysis

of research ideas and prototypes built so far. The book also describes RBAC

implementations in various commercial products and includes a case study

documenting a large organization’s migration to a role-based security

architecture.

The second edition has added new materials and has revised some exist-

ing chapters to reflect developments in role engineering, standards, prod-

ucts, and regulatory issues.

The two new chapters added to the book are:

◗ Privacy and Regulatory Issues (Chapter 7)

◗ Role Engineering (Chapter 10)

The following chapters have undergone major revision:

◗ Access Control: Properties, Policies, and Models (Chapter 2, renamed)

◗ RBAC Standards and Profiles (Chapter 8)

◗ RBAC Features in Commercial Products (Chapter 14)

Privacy protection has become an important element of information

management due to regulatory requirements. Hence, we have added a new

chapter that presents some ideas on how to enhance RBAC models to

support privacy policies, and covers the impact of various privacy regula-

tions on RBAC modeling aspects. Role engineering, the process of defining

and structuring roles, is often regarded as the missing link in implementing

RBAC, but new methodoligies and tools make the job easier. RBAC’s impor-

tance in industry has led to standards that contribute to lower costs and

greater interoperability. RBAC models implemented in the latest versions

of Database Management products and Enterprise Security Administration

products (now relabeled as Identity Management products) are certainly

more sophisticated than those in earlier versions; descriptions of these

RBAC implementations have been added as well.

xvi Preface

Intended audience

This book is designed to be useful to three groups of readers: (1) security

professionals, technology managers, and users in industry, government,

and military organizations, including system administrators responsible for

security, policy officials, and technology officers; (2) software developers

for database systems, enterprise management, security, and cryptographic

products; and (3) computer science and IT students and instructors. The

treatment is not excessively formal; mathematical descriptions of RBAC

properties are included as sidebars, but the text is understandable without

reference to them. Because computer security is such a rapidly changing

field, we have included a discussion of research and commercial product

documentation through this year.

Intended audience xvii

Acknowledgments

First of all, we want to thank Tim Grance of the National Institute of Stan-

dards and Technology (NIST). Much of NIST’s contribution to RBAC

research can be traced to Tim’s early persistent and continuing support, lead-

ership, and counsel. We would also like to thank Andrew Marshall of TD

Bank in Canada for his detailed review of material in Chapters 3 and 4 and his

great insight regarding the application of role hierarchies to commercial busi-

ness structures, and Leann Micheals for advice and counsel regarding medical

applications, functions, and roles that were applied throughout this book. The

authors also thank Dr. Martin Kuhlmann and Axel Kern of Beta Systems,

Wiley Vasquez and Gary Holland of BMC Software, and Harald Kopper and

Rudolf Wildgruber of Siemens AG, Thomas Raeuchle of Prodigen, Ed Zou of

Bridgestream, and Ron Rymon of Eurekify for providing technical documen-

tation pertaining to product offerings from their respective organizations. We

are grateful to Michael Gallaher, Alan O’Connor, and Brian Kropp of the

Research Triangle Institute and Greg Tassey of NIST for their excellent analy-

sis of the economic impact of RBAC.

We also thank the many contributors to the RBAC field from the public,

academic, and private sectors, such as Gail-Joon Ahn, Vijay Atluri, Elena

Ferrari, Arif Ghafoor, James Joshi, Trent Jaeger, Serban Gavrila, Virgil

Gligor, Bill Majurski, Tony Cincotta, Wayne Jansen, Janet Cugini, Elisa

Bertino, Konstantin Beznosov, Ed Coyne, Mike Davis, Anne Anderson,

Richard Fernandez, Ninghui Li, Jonathan Moffett, Jason Crampton,

Andreas Schaad, Luigi Giuri, and Pietro Iglio.

Finally, we give special thanks to Ravi Sandhu and Sylvia Osborn for

their early (through contemporary) efforts that have advanced the theory

and practice of role-based access control.

xix

Introduction

Access control—or authorization, in its broadest sense—has

existed as a concept for as long as humans have had assets

worth protecting. Guards, gates, and locks have been used since

ancient times to limit individuals’ access to valuables. A need for

access control in fact prompted the invention of what can be

regarded as the world’s first secure computing system. In 1879, a

Dayton, Ohio, saloonkeeper named James Ritty invented the

“incorruptible cashier,” which later became known as the cash

register. Ritty’s invention reduced the common problem of

employee pilfering by permitting access to the cash drawer only

when a sale was rung up by entering the amount of the sale in

full view of the customer. By recording the amount of sales and

keeping a running total, the register made it possible for

storeowners to ensure that the cash drawer contents matched

the total sales made during the day.

In today’s information technology, authorization is con-

cerned with the ways in which users can access resources in

the computer system, or informally speaking, with “who can

do what.” Access control is arguably the most fundamental and

most pervasive security mechanism in use today. Access con-

trol shows up in virtually all systems and imposes great archi-

tectural and administrative challenges at all levels of enterprise

computing. From a business perspective, access control has the

potential to promote the optimal sharing and exchange of

resources, but it also has the potential to frustrate users, impose

large administrative costs, and cause the unauthorized disclo-

sure or corruption of valuable information.

1

1
Contents

1.1 The purpose and
fundamentals of access
control

1.2 A brief history of access
control

1.3 Comparing RBAC to DAC
and MAC

1.4 RBAC and the enterprise

C H A P T E R

Access control can take many forms. In addition to determining whether

a user has rights to use a resource, the access control system may constrain

when and how the resource may be used. For example, a user may have

access to a network only during working hours. Some organizations may

establish more complex controls, such as requiring that two staff members

conduct certain high-risk operations such as opening a vault or launching a

missile. The definition and modeling of access control stem from seminal

papers of the early 1970s, the early standardization efforts of the 1980s, and

the emergence of RBAC that began in the early 1990s, and it continues to

this day. This chapter introduces the origins, history, and central concepts of

access control, reviews popular forms of access controls in use today, and

introduces the basic concepts of RBAC and its advantages for system, appli-

cation, and network security.

1.1 The purpose and fundamentals of access control

Access control is only one aspect of a comprehensive computer security

solution, but it is one of the most visible. Every time a user logs on to a

multiuser computer system, access control is enforced. To gain a better

understanding of the purpose of access control, it is worth reviewing the

risks to information systems. Information security risks can be broadly cate-

gorized into the following three types, confidentiality, integrity, and availabil-

ity, which can be remembered with the convenient mnemonic “CIA.” These

categories are described as follows:

◗ Confidentiality refers to the need to keep information secure and pri-

vate. This category may include anything from state secrets to confi-

dential memoranda, financial information, and security information

such as passwords.

◗ Integrity refers to the concept of protecting information from being

improperly altered or modified by unauthorized users. For example,

most users want to ensure that bank account numbers used by financial

software cannot be changed by anyone else and that only the user or an

authorized security administrator can change passwords.

◗ Availability refers to the notion that information is available for

use when needed. Attacks that attempt to overload corporate

Web servers, widely reported in the popular press, are attacks on

availability.

2 Introduction

Access control is critical to preserving the confidentiality and integrity of

information. The condition of confidentiality requires that only authorized

users can read information, and the condition of integrity requires that only

authorized users can alter information in authorized ways. Access control is

less obviously central to preserving availability, but it clearly has an impor-

tant role: An attacker who gains unauthorized access to a system is likely to

have little trouble bringing it down.

1.1.1 Authorization versus authentication

Authorization and authentication are fundamental to access control. They

are distinct concepts but often confused. Part of the confusion stems from

the close relationship between the two; proper authorization in fact is

dependent on authentication.

Authentication is the process of determining that a user’s claimed iden-

tity is legitimate. Every computer user is familiar with passwords, the most

common form of authentication. If Alice logs in as alice46 and then provides

the correct password for user identification (ID) alice46, she has authenti-

cated herself to the system. Less common forms of authentication include

biometrics (e.g., fingerprint readers) and smart cards. Authentication is

based on one or more of the following factors:

◗ Something you know, such as the password, personal identification

number (PIN), or lock combination;

◗ Something you have, such as a smart card, automatic teller machine

(ATM) card, or key;

◗ Something you are, or a physical characteristic, such as a fingerprint

or retinal pattern, or a facial characteristic.

Clearly, authentication is normally stronger if two or more factors are

used. A password can be guessed; a key can be lost; and face-recognition

systems have a significant false positive rate, so using only one of these

authentication methods may not provide an acceptable level of security.

This is why banks require both cards and PINs to access ATMs rather than

only a password, or only a key or card. If the card were lost, a thief would

have to guess the PIN in only three tries to beat the authentication system.

While authentication is a process of determining who you are, authori-

zation determines what you are allowed to do. Authorization refers to a yes

or no decision as to whether a user is granted access to a system resource.

An information system must maintain some relationship between user IDs

1.1 The purpose and fundamentals of access control 3

and system resources, possibly by attaching a list of authorized users to

resources, or by storing a list of accessible resources with each user ID. Note

that authorization necessarily depends on proper authentication. If the sys-

tem cannot be certain of a user’s identity, there is no valid way of determin-

ing if the user should be granted access.

1.1.2 Users, subjects, objects, operations, and permissions

A reasonably consistent terminology has developed over the past 3 decades

for describing access control models and systems. Almost any access control

model can be stated formally using the notions of users, subjects, objects, opera-

tions, and permissions, and the relationships between these entities. It is

important to understand these terms, because the reader will encounter

them not only in this book but also in most of the literature on access con-

trol and computer security.

The term user refers to people who interface with the computer system.

In many designs, it is possible for a single user to have multiple login

IDs, and these IDs may be simultaneously active. Authentication mecha-

nisms make it possible to match the multiple IDs to a single human user,

however.

An instance of a user’s dialog with a system is called a session.

A computer process acting on behalf of a user is referred to as a subject.

Note that in reality, all of a user’s actions on a computer system are per-

formed through some program running on the computer. A user may have

multiple subjects in operation, even if the user has only one login and one

session. For example, an e-mail system may be operating in the background,

fetching e-mail from a server periodically, while the user operates a Web

browser. Each of the user’s programs is a subject, and each program’s

accesses will be checked to ensure that they are permitted for the user who

invoked the program.

An object can be any resource accessible on a computer system, including

files, peripherals such as printers, databases, and fine-grained entities such

as individual fields in database records. Objects are traditionally viewed as

passive entities that contain or receive information, although even early

access control models included the possibility of treating programs, printers,

or other active entities as objects [1].

An operation is an active process invoked by a subject. Early access con-

trol models that were concerned strictly with information flow (i.e.,

read-and-write access) applied the term subject to all active processes, but

RBAC models require a distinction between subject and operation. For

example, when an ATM user enters a card and correct PIN, the control

4 Introduction

program operating on the user’s behalf is a subject, but the subject can

initiate more than one operation—deposit, withdrawal, balance inquiry, or

others.

Permissions (or privileges) are authorizations to perform some action on

the system. As used in this book, and in most computer security literature,

the term permission refers to some combination of object and operation. A

particular operation used on two different objects represents two distinct

permissions, and similarly, two different operations applied to a single

object represent two distinct permissions. For example, a bank teller may

have permissions to execute debit and credit operations on customer

records, through transactions, while an accountant may execute debit and

credit operations on the general ledger, which consolidates the bank’s

accounting data.

1.1.3 Least privilege

Least privilege is the time-honored administrative practice of selectively

assigning permission to users such that the user is given no more permission

than is necessary to perform his or her job function. The principle of least

privilege avoids the problem of an individual having the ability to perform

unnecessary and potentially harmful actions merely as a side effect of grant-

ing the ability to perform desired functions. The question then becomes

how to assign the set of system permissions to the aggregate of functions or

duties that correspond to a role of a user or subject acting on behalf of the

user. Least privilege provides a rationale for where to install the separation

boundaries that are to be provided by the access control mechanism. Ensur-

ing adherence to the principle of least privilege is largely an administrative

challenge that requires the identification of job functions, the specification

of the set of permissions required to perform each function, and the restric-

tion of the user to a domain with those privileges and nothing more.

Strict adherence to least privilege requires an individual to have different

levels of permission at different times, depending on the task or function

being performed. It must be recognized that in some environments and

with some permissions, restricting permission because it is nominally

unnecessary may inconvenience the user or place an additional burden on

administrators. However, granting of excess privilege that potentially can

be exploited to circumvent protection, whether for integrity or confidential-

ity, should be avoided whenever possible. It is also important that permis-

sions not persist beyond the time that they are required for performance of

duties.

1.1 The purpose and fundamentals of access control 5

1.2 A brief history of access control

Although security issues had been addressed in some early time-sharing

computer systems from the 1960s, the discipline of computer security began

to progress rapidly in the early 1970s. At this time large resource-sharing

systems were becoming commonplace in government, military, and large

commercial organizations. The field developed both in government and mil-

itary systems, and in the commercial arena where applications such as

ATMs required strong security.

1.2.1 Access control in the mainframe era

The growth in multiuser computer systems and the increased dependence of

defense systems on computers led to efforts by the U.S. Defense Science

Board to investigate the vulnerability of government systems in the late

1960s. University researchers also considered the problem. The earliest

work in defining a formal, mathematical description of access control is that

of Lampson [2], who introduced the formal notions of subject and object and

an access matrix that mediated the access of subjects to objects. An access

matrix is a simple conceptual representation in which the (i,j) entry in the

matrix specifies the rights that subject i has to object j. An example is shown

in Figure 1.1. Subjects (processes invoked by users) are allowed to access

objects such as files or peripherals according to the rights specified in the

matrix. For example, user Bob is allowed read and write access to the pay-

roll file, and read access to the accounts receivable and accounts payable file.

A RAND Corporation report from 1970 [3] provided a comprehensive

analysis of security for DoD computer systems. Included in the report was

the definition of a method to implement multilevel—relating to documents

classified by a security level, such as confidential, secret, or top-secret—

access control on a resource-sharing system, with separate considerations

for local access and remote access where password-based authorization

would be required. This document also discussed the basic requirements for

6 Introduction

R

R

R

R

R

RR

R,W

R,W

Charles

Bob

Alice

Accounts
payable

Accounts
receivable

Payroll
General
ledger

Figure 1.1 Access matrix.

controlling access to information based on a user’s clearance level and the

classification level of files stored on the system. Proposals for a multi-

level secure system were extended in a U.S. Air Force report [4] that

included engineering development plans for such a system along with

communications.

Bell and LaPadula [5] formalized military access control rules into a

mathematical model suitable for defining and evaluating computer security

systems. As formulated in this model, multilevel secure systems implement

the familiar government document classification rule: Users are only

allowed to access information that is classified at or below their own clear-

ance level. Conceptually, this is a very simple policy, readily understood and

followed by humans. However, as with much in information technology,

implementing this seemingly simple policy on a computer system can be

tricky. Unexpected loopholes and nonobvious interactions between differ-

ent components of the system can leave a computer security system vulner-

able. The Bell-LaPadula model was significant because it provided a formal

(i.e., mathematical) model of the multilevel security policy, making it possi-

ble to analyze properties of the model in detail.

Two basic rules are required in the formal model: the simple security

rule and the *-property, commonly known as “no read up” and “no write

down.” The simple security rule is obvious: A user with a particular clear-

ance level cannot be allowed to read information above that level (e.g., a

user with secret clearance cannot read top-secret documents). The *-prop-

erty, which is essentially the reverse of the simple security rule, is required

to maintain system security: A user operating at a particular clearance level

can write information only at that level or above. For example, if a user is

logged in at secret level, programs or processes operated by that user are not

permitted to write information at the confidential level, although it could be

written to a higher level, such as top-secret. (Note that this rule makes sense

where we are concerned with processes operating on a computer. Obvi-

ously, a human being could log in at a high level, then print out or memo-

rize information and re-enter it after logging in at a lower level.) Also

included in the Bell-LaPadula model was the notion of categories, which

refers to a vertical breakdown of security compartments across levels. In

addition to having the proper clearance level, a user is required to be cleared

for all of the categories attached to a classified document. For example, a

document might be classified [Secret, nuclear, NATO]. To access the docu-

ment, a user would need a clearance of secret or above and must also be

cleared for the two categories—nuclear and NATO. (Chapter 2 provides a

more detailed discussion of these rules.) This policy ensures that

1.2 A brief history of access control 7

information cannot be downgraded either through unintentional or

malicious actions of a process.

A 1976 paper by Harrison, Ruzzo, and Ullman showed that safety is

inherently undecidable in a conventional access matrix view of security [6].

In other words, it is impossible to know whether a given configuration con-

sidered “safe” with respect to some security requirement would remain safe.

If the system is started with a set of access rights to objects, it is impossible to

know that the system will not eventually grant access rights that are not in

the original matrix. Although the proof of this result is somewhat technical,

the underlying reason for the undecidability is that users can give away

access rights. If the system has no control over what rights are passed from

one user to another, there is no way to be sure that an unauthorized user

will not eventually receive rights improperly, through some chain of rights

delegation.

1.2.2 Department of Defense standards

Codification of access control models in standards took a significant step for-

ward in 1983, when the U.S. Department of Defense (DoD) published its

Trusted Computer System Evaluation Criteria (TCSEC) [1], commonly known as

the “Orange Book,” for its orange cover. This standard defined in detail two

important access control modes for military systems: discretionary access

control (DAC) and mandatory access control (MAC). As the name suggests,

DAC is a mode in which the creators or owners of files assign access rights,

and a subject with discretionary access to information can pass that infor-

mation on to another subject.

By itself, DAC is insufficient for implementing the document classifica-

tion scheme used by the military. Since users in the DAC model of security

can give away rights to access objects, the Harrison, Ruzzo, Ullman

undecidability result applies to DAC. To provide a truly secure scheme in

which a system is guaranteed to remain secure, MAC is required.

As usually implemented, MAC controls provide the multilevel security

policy as formalized by the Bell-LaPadula model described in Section 1.2.1.

(Chapter 2 provides a more detailed treatment of DAC and MAC policies.)

The key feature of MAC is that, as its name implies, it is required for the

mediation of all accesses of objects on the system. Since the access control

system mediates all access to objects using rules imposed externally, users

cannot give away permissions for object access. Since users are limited in

the actions they can take, the access controls can ensure that the system will

remain in a secure state regardless of user actions.

8 Introduction

1.2.3 Clark-Wilson model

One goal of the TCSEC was to encourage a market for secure operating sys-

tems and computer security products. Many writers argued that systems

meeting the lower levels of TCSEC requirements would be sufficient for

commercial use. The hope was that a uniform market for security products

would develop, with the TCSEC providing guidance for both commercial

and military security.

Despite efforts to promote TCSEC-compliant systems as commercial

security solutions, most commercial firms recognized that DAC and MAC

were not sufficient for their needs. TCSEC-oriented systems are focused on

the information flow and confidentiality of information. In a widely refer-

enced 1987 paper, Clark and Wilson [7] argued that while confidentiality

was important to commercial users, their primary concern pertains to integ-

rity (i.e., ensuring that information is modified only in appropriate ways by

authorized users).

When Clark and Wilson formalized business security practices into a

security model, the result was quite different from the military security

model formalized by Bell and LaPadula. The two central concepts in the

Clark-Wilson model are the well-formed transaction and separation of duty

(SoD). Well-formed transactions constrain the user to change data only in

authorized ways. For example, a bank teller cannot modify an arbitrary part

of a customer record, only those data fields that are incorporated into the

particular transaction being run, such as a savings deposit or withdrawal.

Complementing the well-formed transaction is the ancient principle of SoD,

which ensures the consistency of changes made to critical data. A division

manager, for example, can request an expenditure, but another person

must approve it, and a third audits the completed transaction to ensure that

fraud has not occurred. Implementing these rules in a computer system has

been found to be as challenging as implementing information flow policies.

One of the motivations of RBAC was to make commercial security policies

easier to manage.

1.2.4 Origins of RBAC

Like the multilevel security policy formalized by Bell and LaPadula, RBAC

has its roots in historical practices that predate the formal model, except that

RBAC’s features stem primarily from the commercial world. Also like multi-

level security, RBAC is conceptually simple: Access to computer system

objects is based on a user’s role in an organization. Roles with different priv-

ileges and responsibilities have long been recognized in business

1.2 A brief history of access control 9

organizations, and commercial computer applications dating back to at least

the 1970s implemented limited forms of access constraints based on the

user’s role within the organization. For example, on-line banking applica-

tions in that period included both teller and teller supervisor roles that could

execute different sets of transactions, while simultaneously users at ATMs

were able to execute another set of transactions against the same databases.

In the late 1980s and early 1990s researchers began recognizing the vir-

tues of roles as an abstraction for managing privileges within applications

and database management systems. A role was seen as a job or position

within an organization. A role exists as a structure separate from that of the

users who were assigned to the roles. Dobson and McDermid [8] used the

term functional roles. Baldwin [9] called these structures named protection

domains (NPDs) and stated that they could be related and organized into

hierarchies based on NPD permission subsets. Also recognized was the use

of roles in support of the principle of least privilege in which a role is created

with minimum permissions in specification of duty requirements [10]. The

Brewer and Nash model [11] presented a basic theory for use in implement-

ing dynamically changing access permissions. The model is described in

terms of a particular commercial security policy, known as the Chinese wall.

The model is developed by first defining what a Chinese wall means and

then defining a set of rules (SoD requirements) such that no user can ever

access data from the wrong side of the wall. Nash and Poland [12] discussed

the application of role-based security to cryptographic authentication

devices commonly used in the banking industry.

These role-based systems were relatively simple and application-specific.

That is, there was no general-purpose model defining how access control

could be based on roles, and little formal analysis of the security of these

systems. The systems were developed by a variety of organizations, with no

commonly agreed upon definition or recognition in formal standards.

In 1992, NIST initiated a study [13] of both commercial and government

organizations, and found that access control needs were not being met by

products on the market at the time, many of which implemented only

TCSEC-style discretionary controls, considered by many organizations as

the “standard of due care.” In many enterprises within industry and civilian

government, end users do not “own” the information for which they are

allowed access as assumed by DAC. For these organizations, the corporation

or agency is the actual “owner” of system objects, and discretionary control

on the part of the users may not be appropriate. Conventional MAC,

focused on preserving confidentiality, is also inadequate for these organiza-

tions. Although enforcing a need-to-know policy is important where classi-

fied information is of concern, there existed a general need to support

10 Introduction

subject-based security policies, such as access based on competency, the

enforcement of conflict-of-interest rules, or access based on a strict concept

of least privilege. Supporting such policies requires the ability to restrict

access based on a user function or role within the enterprise.

A solution to meet these needs was proposed in 1992 by Ferraiolo and

Kuhn [14], integrating features of existing application-specific approaches

into a generalized RBAC model. This paper described, in a simple formal

manner, the sets, relations, and mappings used in defining roles and role

hierarchies, subject-role activation, and subject-object mediation, as well as

the constraints on user-role membership and role-set activation. Three basic

rules were required:

1. Role assignment: A subject can execute a transaction only if the subject

has selected, or been assigned to, a role. The identification and

authentication process (e.g., login) is not considered a transaction.

All other user activities on the system are conducted through trans-

actions. Thus, all active users are required to have some active role.

2. Role authorization: A subject’s active role must be authorized for the

subject. With rule 1, this rule ensures that users can take on only

roles for which they are authorized.

3. Transaction authorization: A subject can execute a transaction only if

the transaction is authorized for the subject’s active role. In concert

with rules 1 and 2, this rule ensures that users can execute only

transactions for which they are authorized.

The formal description of the model is given in Figure 1.2. A key feature

of this model is that all access is through roles. A role is essentially a collec-

tion of permissions, and all users receive permissions only through the roles

to which they are assigned, as shown in Figure 1.3. Within an organization,

roles are relatively stable, while users and permissions are both numerous

and may change rapidly. Controlling all access through roles therefore sim-

plifies the management and review of access controls.

The most common method of implementing access control in a com-

puter system is through access control lists (ACLs). All system resources,

such as files, printers, and terminals, have a list of authorized users attached.

This makes it easy and quick to answer the per object review question:

“What users have access to object X?” Much more difficult is the per subject

review question: “What objects can user X access?” Answering this question

requires scanning all objects on the computer system, which may number in

the millions; recording their access control lists; and finally reporting on user

1.2 A brief history of access control 11

X. Measurements of real systems have shown that this process can take

more than a day. A side effect of this scheme is that ACLs make it easy to

add permissions to an object but hard to revoke all of a particular user’s

12 Introduction

Original formal description of RBAC

For each subject, the active role is the one that the subject is currently using:

AR(s : subject) = {the active role for subject s}

Each subject may be authorized to perform one or more roles:

RA(s : subject) = {authorized roles for subject s}

Each role may be authorized to perform one or more transactions:

TA(r : role) = {transactions authorized for role r}

Subjects may execute transactions. The predicate exec(s,t) is true if and only if

subject s can execute transaction t at the current time; otherwise it is false:

exec(s:subject,t:tran) = {true iff subject s can execute transaction t}

1. Role assignment: A subject can execute a transaction only if the subject has

selected or been assigned a role:

∀ s : subject, t : tran ⋅ exec(s,t) ⇒ AR(s) ≠ ∅
2. Role authorization: A subject’s active role must be authorized for the subject:

∀ s : subject ⋅ AR(s) ⊆ RA(s)

3. Transaction authorization: A subject can execute a transaction only if the

transaction is authorized for the subject’s active role:

∀ s : subject,t : tran ⋅ exec(s,t) ⇒ t ∈ TA(AR(s))

Note that because the conditional in rule 3 is “only if,” this rule allows for the

possibility that additional restrictions may be placed on transaction execution.

That is, the rule does not gurantee a transaction to be executable just because it is

in TA[AR(s)]. The set of transactions potentially executable by the subject’s active

role. For example, a trainee for a supervisory role may be assigned the role of

supervisor but may have restrictions applied to his or her role that limit accesible

transactions to a subset of those normally allowed for the supervisor role.

Figure 1.2 Formal description of RBAC from Ferraiolo and Kuhn [14].

Roles PermissionsUsers

Figure 1.3 RBAC relationships.

permissions. In many systems, users are combined into groups, which are

then used as entries in ACLs.

Readers familiar with conventional group mechanisms will recognize a

superficial similarity between RBAC and groups. As normally implemented,

a group is a collection of users, rather than a collection of permissions, and

permissions can be associated with both users and the groups to which they

belong, as shown in Figure 1.4. Because users may access objects based on

either their user or group ID, it is possible for users to retain access permis-

sions that should be revoked when group permission is removed from the

object. The permission based on the individual user ID is in effect a loophole

in the enforcement of the security policy. The RBAC requirement that all

access be through roles helps to strengthen security significantly in real

applications by eliminating this loophole.

A second important feature of the Ferraiolo-Kuhn model is that roles are

hierarchical—roles can inherit permissions from other roles (Figure 1.5)

—while groups are normally treated as flat collections of users. Also

included in this model was a provision for constraints on role membership,

although specific types of constraints were not proposed.

1.2 A brief history of access control 13

Users PermissionsGroups

Figure 1.4 Group access control relationships.

Cardiologist Oncologist

Physician

Resident

Figure 1.5 Example of a functional role hierarchy.

The 1992 paper showed that this model subsumes the Clark-Wilson

model (i.e., the Clark-Wilson model is included as a special case). A subse-

quent NIST publication [15] investigated RBAC in more detail, proposing

additional functions beyond those included in the 1992 model, and in-

cluded specific forms for constraints to implement separation-of-duty

requirements.

George Mason University Professor Ravi Sandhu, a well-known and

influential security expert, described the Ferraiolo-Kuhn RBAC model as

“an important innovation, which makes RBAC a service to be used by appli-

cation…. Instead of scattering security in application code, RBAC will con-

solidate security in a unified service which can be better managed while

providing the flexibility and customization required by individual applica-

tions” [16]. Dr. Sandhu went on to conduct extensive research and publish

numerous papers in the area of RBAC. Several of his students have joined

him in this research, and some have produced doctoral theses in areas

related to RBAC.

In 1994, Nyanchama and Osborn [17] proposed a very generalized form

of role organization called a role graph model. The authors showed that

roles could be organized based on three role relationships: partial, shared,

and augmented privileges. The role graph model is particularly useful in

analyzing privilege sharing, which is critical in detecting and preventing

conflict of interest relationships between roles. Gligor introduced the notion

of “role types,” which allow role administration to be simplified with

parameterized types that are instantiated to produce roles. This work

became the subject of the first U.S. patent in the area of RBAC [18].

In 1996, Sandhu and colleagues [19] introduced a framework of RBAC

models, RBAC96, breaking down RBAC into four conceptual models. Shown

in Figure 1.6, this framework specified a base model, RBAC0, that contains

the minimal features of a system implementing RBAC. Two advanced mod-

els, RBAC1 and RBAC2, include RBAC0, but add (respectively) support for

hierarchies and for constraints such as SoD. A fourth component, RBAC3,

includes all aspects of the lower-level models. The Sandhu et al. RBAC96

framework established a modular structure for RBAC systems, providing for

simplified commercial implementations that could offer basic RBAC0 func-

tionality, or more advanced features as required by customers.

Largely due to a series of conferences sponsored by the Association for

Computing Machinery (ACM), founded by Professor Sandhu and David

Ferraiolo of NIST, a robust RBAC research community had developed, and

today commercial implementations are providing ever more sophisticated

RBAC systems. RBAC began to see application in a wide variety of areas.

Early work by Barkley [20] showed that RBAC has a natural application in

14 Introduction

health care. Workflow management, an economically important field that

deals with the automation of business processes, is another area where

RBAC seems to be ideally suited to not only provide security, but serve as a

framework for workflows as well. Barkley and Cincotta [21] and Bertino,

Ferrari, and Atluri [22] introduced RBAC-based workflow systems.

In 2000, NIST initiated an effort to establish an international consensus

standard for RBAC, publishing a proposal [23] in the ACM RBAC workshop.

The proposed standard follows the RBAC96 structure and incorporates

features developed out of subsequent discussions and formal comments

received from the research and commercial vendor communities. In 2004,

the standard was approved as INCITS 359-2004 by the InterNational Com-

mittee for Information Technology standards, which is accredited by the

American National Standards Institute to develop industry consensus stan-

dards for IT. Following INCITS 359-2004, a variety of RBAC standards have

been completed or initiated, including the OASIS XACML Profile for RBAC,

which is helping to bring role-based access to Web services. See Chapter 8

for more on these and other standards.

What is most striking about RBAC’s history is its rapid evolution from a

concept to its commercial implementation and deployment. Although this

success can be attributed to a variety of factors, recognition of RBAC’s dual

policy and productivity advantages have undoubtedly contributed to its

present stature. In this respect, RBAC differs from many other security con-

cepts, in that its costs of deployment need not be justified based solely on

perceived threats and system vulnerabilities. Although RBAC allows for the

enforcement of a wide variety of important access control policies that are

either impractical or even impossible to enforce in its absence, RBAC’s

1.2 A brief history of access control 15

RBAC4
(union of 0,1,2)

RBAC2
(adds constraints)

RBAC1
(adds hierarchies)

RBAC0
(basic RBAC)

Figure 1.6 Sandhu et al. RBAC96 framework.

productivity advantages alone are often sufficient in justifying its deploy-

ment. When taken together, these dual motivators can lead to a strong busi-

ness justification. To improve the efficiency of heath care systems, the U.S.

Health Insurance Portability and Accountability Act of 1996 (HIPAA)

explicitly calls out RBAC requirements [24], and the U.S. Federal Aviation

Administration cites RBAC in its specifications for National Airspace System

security [25]. RBAC is now being prescribed as a generalized approach to

access control. For instance, RBAC was found to be “the most attractive

solution for providing security features in multidomain digital government

infrastructure” [26] and has shown its great relevance in meeting the

complex security needs of Web-based applications [27]. New regulations,

including Sarbanes-Oxley and Gramm-Leach-Bailey, are increasingly being

addressed using RBAC.

Although RBAC can be justified squarely on economics, something

else was going on over the last decade. During this period, hundreds of

papers were published on topics revolving on the theme of RBAC. As we

have discussed, RBAC is a packaging of closely related and dependent

access control and management features and ideas. Although the focus of

RBAC is clearly on access control, in many respects RBAC can be viewed

as a model for regulation and management of user actions and activities

within IT environments. Furthermore, these activities have been encapsu-

lated into highly intuitive role structures that appear naturally within

most business environments. As it turns out, role structures not only

apply to resource provisioning systems and access control and policy

management systems, they also fit naturally into workflow, process man-

agement, collaborative, and virtual enterprise environments. When

RBAC models first appeared, these enterprise applications were not

envisioned. However, once published, and thoroughly examined, other

researchers quickly began expanding and elaborating on RBAC concepts

and structures.

The pervasiveness of RBAC’s application within modern day IT infra-

structures is significant. Today, RBAC features are included at all levels of

enterprise computing, including operating system, database management

system, network, and enterprise management levels. RBAC is being incor-

porated and integrated within infrastructure technologies such as public key

infrastructure (PKI), workflow management systems, and directory and

Web services. In addition, RBAC is being proposed as an enabling technol-

ogy in formulating metapolicies within collaborative and virtual enterprise

systems.

16 Introduction

1.3 Comparing RBAC to DAC and MAC

The principle motivations behind RBAC are the ability to specify and

enforce enterprise-specific access control policies and to streamline the typi-

cally burdensome process of authorization management. RBAC represents a

major advancement in flexibility and detail of control from the existing

standards of DAC and MAC.

As defined in the TCSEC and commonly implemented, DAC is an access

control policy and mechanism that permits system users to allow or disallow

other users access to the objects under their control. The TCSEC DAC policy

is defined as follows [1]:

A means of restricting access to objects based on the identity of subjects or

groups, or both, to which they belong. The controls are discretionary in the

sense that a subject with a certain access permission is capable of passing that

permission (perhaps indirectly) on to any other subject (unless restricted by

MAC).

DAC, as the name implies, permits the granting and revocation of access

permissions to be left to the discretion of the individual users. A DAC mech-

anism allows users to grant or revoke access to any of the objects under

their control without the intercession of a system administrator.

For many enterprises within industry and civilian government, end

users do not “own” the information to which they are allowed access as

is assumed by DAC policies. For these organizations, the corporation or

agency is the actual “owner” of system objects, and it may not be appropri-

ate to allow users to give away access rights to the objects. With RBAC,

access decisions are based on the roles individual users have as part of an

organization. This includes the specification of duties, responsibilities, and

qualifications. For example, the roles an individual associated with a hospi-

tal can assume include doctor, nurse, clinician, and pharmacist. Roles in a

bank include teller, loan officer, and accountant. Roles can also apply to

military systems; for example, target analyst, situation analyst, and traffic

analyst are common roles in tactical systems. An RBAC policy is based on

the functions or the actions that a user is allowed to perform within the

context of an organization (referred to as either privileges or permissions).

The users cannot normally pass their permissions on to other users at

their discretion. For example, a doctor who may posses the permission to

prescribe medication should not be able to pass that permission onto a

clinician.

1.3 Comparing RBAC to DAC and MAC 17

Security policy often supports higher level organizational objectives,

such as maintaining and enforcing ethics pertaining to a judge’s chambers,

or the laws and respect for privacy associated with the diagnosis of ailments,

treatment of disease, and the administering of medication within a hospital.

To support such policies, a capability to centrally control and maintain

access rights is required. The security administrator, not the users for which

the policies apply, must diligently represent the organization in specifying

the access policy over organizational resources.

As such, RBAC is sometimes described as a form of MAC in the sense

that users are unavoidably constrained by and have no influence over the

enforcement of the organization’s protection policies. However, RBAC is

different from TCSEC MAC. MAC is defined in the TCSEC as follows [1]:

A means of restricting access to objects based on the sensitivity (as represented

by a label) of the information contained in the objects and the formal authori-

zation (i.e., clearance) of subjects to information of such sensitivity.

As rationalized in the TCSEC, MAC supports DoD requirements and reg-

ulations pertaining to unauthorized access to classified information, and in

particular to the protection of the confidentiality (reading or observing) of

sensitive information. Systems that support MAC policies are concerned

with the unlawful flow of information from a high level to a low level. As

such, policy support is with respect to controlling reading and writing. How-

ever, control over write operations is only concerned with preventing the

indirect unlawful observation of sensitive information, and not with its

integrity (unauthorized modification or destruction).

With regard to RBAC controls, policies may pertain to issues of confiden-

tiality or integrity, or both: “Who can perform what actions?”

To distinguish RBAC from the policy specifics of MAC, RBAC is often

characterized as nondiscretionary access control. RBAC allows for the

nondiscretionary enforcement of a variety of protection policies that can be

tailored on an enterprise-by-enterprise basis. The policies enforced within a

stand-alone or distributed system are the net result of the administrative

configuration of various components of RBAC.

1.4 RBAC and the enterprise

RBAC has emerged as the primary alternative to MAC and DAC because it is

much better suited to the needs of commercial users than these earlier mod-

els. This section introduces a simple economic model that demonstrates

18 Introduction

RBAC’s cost effectiveness and then discusses how RBAC fits into a large

organization.

1.4.1 Economics of RBAC

From a business perspective RBAC has the potential to offer several bene-

fits. This includes greater administrative productivity in performing com-

mon authorization management functions. These administrative functions

pertain to assigning permissions for new user access to resources (both new

users and new resources), reviewing and selectively removing accesses that

are no longer necessary (and potentially harmful) with respect to a user’s

change of job assignment, and the completeness and immediacy of the

removal of permissions in the event of a user’s separation from the enter-

prise. These same features have demonstrated their ability to increase user

productivity by reducing the downtime between administrative events,

where the enterprise would be deprived of productivity during the period

when the user is unable to access system resources. There is usually a direct

relationship between the cost of administration and the number of associa-

tions that must be managed in order to administer an access control policy:

The larger the number of associations, the costlier and more error-prone

access control administration. In most organizations, the use of RBAC

reduces the number of associations that must be managed.

A simple economic model can be used to approximate the savings that

results from using a role-based approach [28]. Job positions typically are

occupied by more than one individual, and most positions require more

than one permission in order for an individual in a job position to carry out

the responsibilities of that position. One can describe the associations autho-

rizing permissions to individuals who perform the responsibilities of a job

position as an ordered pair consisting of a set of individuals and a set of per-

missions (U, P) where:

U = the set of individuals in a job position;

P = the set of permissions required to perform that job position.

The number of associations required to directly relate the individuals to

those permissions is U P⋅ , where

U = the number of individuals in the set U;

P = the number of permissions in the set P.

In other words, for each individual in U, there is an association for each

permission in P.

1.4 RBAC and the enterprise 19

A role can be described as a set of permissions. Thus, the set P can refer

to a role, or a job position whose user-role and role-permission associations

are represented by the ordered pair (U, P). The number of user-role and

role-permission associations required to authorize each user in the set U for

each of the permissions in the set P where P represents a role is U P+ (i.e.,

an association with the role P for each individual in U and an association

with the role P for each permission in P).

For a job position, if U P U P+ < ⋅ , then the administrative advantage of

RBAC over relating users directly with permissions is realized for that job

position. A sufficient condition for U P U P+ < ⋅ is U P, > 2, which is typi-

cally the case for most job positions in most organizations.

If n is the number of job positions within an organization, then the

administrative advantage of RBAC is realized organizationwide when

() ()U P U P
i ii

n

i ii

n+ < ⋅
= =∑ ∑1 1

(Note that this is only an approximation, as users may frequently fill

more than one role in an organization, and roles may be hierarchically

related.)

In addition to cost savings due to greater administrative and user pro-

ductivity, RBAC has the advantage of avoiding future expenses incurred

through breaches of security or privacy policies. Because RBAC can map

naturally to organizational and business structures, is more configurable

then conventional identity-based access control mechanisms, and can be

managed at an abstraction above and across the systems and applications for

which it controls access, RBAC can enforce a greater number and type of

access control policies. Depending on the type of RBAC deployment these

policies can include the enforcement of least privilege (the time-honored

administrative practice of assigning privileges to users’ that are minimally

necessary for the performance of duty), and separation-of-duty policies

(thus avoiding situations that can lead to a conflict of interest). RBAC can

also increase user productivity by allowing users greater access to more

resources and the ability to better delegate administrative responsibility to

customers and partners where possible.

1.4.2 Authorization management and resource provisioning

At the lowest level, administrators control user access rights through the

creation and maintenance of ACLs on a system-by-system basis. ACLs spec-

ify, for each protected resource, a list of individual users, or groups com-

posed of individual users, with their respective modes of access (e.g., read or

20 Introduction

write) to the resource. This use of ACLs has proved problematic for a variety

of reasons. ACLs are tied to particular resources. ACLs further complicate

matters because they are managed on a system-by-system basis. A large

number of users, each with many privileges, imply a very large number of

user-privilege associations that are spread over potentially large numbers of

independently managed platforms and applications. Thus, when a user

takes on different responsibilities within the enterprise, administering these

changes entails a thorough review, resulting in the selective addition or

deletion of the user’s privileges, typically within numerous systems. Autho-

rization management and resource provisioning tools, which typically

incorporate RBAC, have been developed to assist administrators in dealing

with these challenges.

Security administrators who manage users, resources, and privileges on

more than one platform must perform many similar tasks on different sys-

tems. Because each system has its own proprietary administrative interface,

even routine tasks require security administrators to have detailed knowl-

edge of each type of security system. They spend valuable time logging on

and off different security systems while performing each task locally.

As organizations grow, users typically require access to more and more

systems, including one or more applications that the user interacts with on a

daily basis, an e-mail server, systems used for occasional transactions such

as entering travel reimbursements or managing retirement accounts, and

possibly print servers, Web sites, and a host of other systems that require

authorization. All of these systems require some form of authentication and

access control, and they may be changed and updated independently of one

another, making it difficult for users to keep their passwords consistent

across all systems. Some organizations may explicitly require that users not

use the same passwords for different systems, particularly if the systems

vary in sensitivity. Managing authentication and access control across mul-

tiple systems is the key problem in authorization management.

Maintaining user IDs, role memberships, permissions, and the associa-

tions between roles and permissions are all tasks included in authorization

management. In most cases, system administrators must deal with these

problems on a daily basis, as organizations gain and lose employees, and

jobs and permissions change within the organization. Managing permis-

sions for a large number of applications is thus not only a problem for

users; it represents an enormous challenge for enterprise system

administrators.

Although there are many authorization management solutions to this

challenge, they all provide a means of centralizing authorization informa-

tion on a server. Broadly speaking, there are two common ways of dealing

1.4 RBAC and the enterprise 21

with the problem of centralizing authorization, as shown in Figures 1.7

and 1.8.

In the first approach, which has been termed user pull [29], the user is

authenticated by the authorization server, obtains some sort of credential to

access applications, and then presents the credentials as authorization to the

applications. The second approach, termed server pull [29], requires applica-

tions to authenticate users, but centralizes information about user privileges

on an authorization server. When a user attempts to invoke an application,

the application queries the authorization server to determine the user’s per-

missions.

22 Introduction

Application 1

Application 2

Authorization
server

Application n

User

Figure 1.7 User-pull authorization architecture.

User Application 2

Application n

Application 1

Authorization
server

Figure 1.8 Server-pull authorization architecture.

Before users can begin accessing the applications they need to do their

jobs, the organization must set up access permissions for them throughout

the network. This is the problem of resource provisioning. In addition to thou-

sands of employees, the company may need to establish permissions for

contractors, business partners, and customers who access corporate data on

the Internet. Equally important is the task of decommissioning permissions

held by employees leaving the company. Surveys of corporations have

found that current and prior employees are the top two sources of security

breaches. Past employees are cited as a security problem nearly as often as

current employees, because of the problem of deleting permissions after

employees leave [30]. Creating and maintaining proper access permissions

in a fast-changing business environment is a complex problem, which

has led to the development of sophisticated tools typically costing from

$600,000 to $800,000 [31]. Resource provisioning typically requires coop-

eration among computer systems from the corporate human resources,

information systems, and a broad collection of other corporate departments

depending on the user’s job. If “Bob Smith” is hired, he must be given per-

missions for all the resources needed in his job. With conventional access

control systems, this would mean assigning his user ID to every resource he

will access. The direct linking of user with permission is not only time-con-

suming; it invariably leads to errors as user assignments change, resulting in

users having permissions they should not have.

RBAC does not permit users to be directly associated with permissions.

With RBAC, permissions are authorized for roles, and roles are authorized

for users. The permissions that are authorized for a role may span multiple

platforms and applications. Thus, when administering RBAC two different

types of associations must be managed (i.e., associations between users and

roles and associations between roles and permissions). When a user’s job

position changes, only the user-role associations change. If the job position

is represented by a single role, then when a user’s job position changes,

there are only two user-role associations to change: To implement these

changes, it is necessary to remove the association between the user and the

user’s current role and to add an association between the user and the user’s

new role. Complexities introduced by organizational hierarchies and con-

straints such as separation-of-duty requirements are hidden by the access

control software. This conceptually simple approach is what gives RBAC its

power and flexibility.

1.4 RBAC and the enterprise 23

References

[1] DoD, Trusted Computer System Evaluation Criteria (TCSEC), DoD 5200.28-STD.

[2] Lampson, B. W., “Dynamic Protection Structures,” AFIPS Conference Proceedings,

35, 1969, pp. 27–38.

[3] Ware, W. H., Security Controls for Computer Systems (U): Report of Defense Science

Board Task Force on Computer Security, Santa Monica, CA: The RAND

Corporation, February 1970.

[4] Anderson, J. P., Computer Security Technology Planning Study Volume II,

ESD-TR-73-51, Electronic Systems Division, Air Force Systems Command,

Hanscom Field, Bedford, MA, October 1972.

[5] Bell, D. E., and L. J. LaPadula, Secure Computer Systems: Mathematical Foundations

and Model, Bedford, MA: The Mitre Corporation, 1973. See also D. E. Bell and

L. J. LaPadula, Secure Computer System: Unified Exposition and MULTICS

Interpretation, MTR-2997 Rev. 1, Bedford, MA: The MITRE Corporation,

March 1976, and ESD-TR-75-306, rev. 1, Electronic Systems Division, Air

Force Systems Command, Hanscom Field, Bedford, MA.

[6] Harrison, M., W. Ruzzo, and J. Ullman, Protection in Operating Systems, CACM

19, No. 8, August 1976, pp. 461–471.

[7] Clark, D. D., and D. R. Wilson, “A Comparison of Commercial and Military

Computer Security Policies,” IEEE Symposium of Security and Privacy, 1987,

pp. 184–194.

[8] Dobson, J. E., and J. A. McDermid, “Security Models and Enterprise Models,”

in Database Security, II: Status and Prospects, C. E. Landwehr, (ed.), New York:

North Holland, 1989, pp. 1–39.

[9] Baldwin, R. W., “Naming and Grouping Privileges to Simplify Security

Management in Large Database,” Proceedings IEEE Computer Society Symposium

on Research in Security and Privacy, April 1990, pp. 184–194.

[10] Thomsen, D. J., “Role-Based Application Design and Enforcement,” in

Database Security, IV: Status and Prospects, S. Jajodia and C. E. Landwehr, (eds.),

New York: North Holland, 1991, pp. 151–168.

[11] Brewer, D. F. C., and M. J. Nash, “The Chinese Wall Security Policy,”

Proceedings IEEE Computer Society Symposium on Research in Security and Privacy,

April 1989, pp. 215–228.

[12] Nash, M., and K. Poland, “Some Conundrums Concerning Separation of

Duty,” IEEE Symposium on Security and Privacy, Oakland, CA, 1990.

[13] Ferraiolo, D., D. Gilbert, and N. Lynch, “An Examination of Federal and

Commercial Access Control Policy Needs,” Proceedings of the NIST-NSA National

(USA) Computer Security Conference, 1993, pp. 107–116.

[14] Ferraiolo, D., and D. R. Kuhn, “Role-Based Access Control,” Proceedings of the

NIST-NSA National (USA) Computer Security Conference, 1992, pp. 554–563.

24 Introduction

[15] Ferraiolo, D. F., J. Cugini, and D. R. Kuhn, “Role-Based Access Control

(RBAC): Features and Motivations,” Proceedings of the 11th Annual Computer

Security Application Conference, New Orleans, LA, December 11–15, 1995,

pp. 241–248.

[16] Sandhu, R. S., et al., “Role-Based Access Control: A Multidimensional View,”

Proceedings of the 10th Annual Computer Security Applications Conference, December

1994, pp. 54–62.

[17] Nyanchama, M., and S. L. Osborn, “Access Rights Administration in

Role-Based Security Systems,” Proceedings of the IFIP WG11.3 Working Conference

on Database Security, 1994. See also M. Nyanchama and S. L. Osborn, “The Role

Graph Model and Conflict of Interest,” ACM Transactions on Information and

System Security (TISSEC), Vol. 2, No. 1, February 1999, pp. 3–33.

[18] Deinhart, K., et al., “Method and System for Advanced Role-Based Access

Control in Distributed and Centralized Computer Systems,” U.S. Patent

5,911,143, June 8, 1999.

[19] Sandhu, R., et. al., “Role-Based Access Control Models,” IEEE Computer, Vol.

29, No. 2, February 1996.

[20] Barkley, J. F., “Application Engineering in Health Care,” Second Annual CHIN

Summit, June 9, 1995.

[21] Barkley, J. F., and A. V. Cincotta, “Implementation of Role/Group Permission

Association Using Object Access Type,” U.S. Patent 6,202,066, 2002.

[22] Bertino, E., E. Ferrari, and V. Atluri, “A Flexible Model for the Specification

and Enforcement of Authorizations in Workflow Management Systems,” 2nd

ACM Workshop on Role-Based Access Control, November 1997.

[23] Sandhu, R., D. Ferraiolo, and R. Kuhn, “The NIST Model for Role-Based

Access Control: Towards a Unified Standard,” Proc. 5th ACM Workshop on

Role-Based Access Control, July 26–27, 2000.

[24] U.S. Health Insurance Portability and Accountability Act of 1996 (HIPAA),

http://cms.hhs.gov/hipaa.

[25] Federal Aviation Administration, National Airspace System (NAS) Protection

Profile Template Supplement, Version 1.0, http://www.faa.gov/aio/common/

documents/NAS_PP_Supp_v1.pdf.

[26] Joshi, J., et al., “Digital Government Security Infrastructure Design

Challenges,” IEEE Computer, Vol. 33, No. 2, February 2001, pp. 66–72.

[27] Joshi, J. B. D., et al., “Security Models for Web-Based Applications,”

Communications of the ACM, Vol. 44, No. 2, February 2001, pp. 38–44.

[28] Ferraiolo, D. F., J. F. Barkley , and D. R. Kuhn, “A Role-Based Access Control

Model and Reference Implementation Within a Corporate Intranet,” ACM

Transactions on Information and System Security (TISSEC), Vol. 2, No. 1, February

1999, pp. 34–64.

1.4 RBAC and the enterprise 25

[29] Park, J. S., and R. Sandhu, “RBAC on the Web by Smart Certificates,” Proc.

ACM Workshop on Role-Based Access Control 1999: 1–9, New York: ACM Press,

1999.

[30] Daniels, J., “This Is Not a Game: The Weakest Link,” SANS Institute, August 9,

2001.

[31] Messmer, E., “Role-Based Access Control on a Roll,” Network World, July 30,

2001, http://www.nwfusion.com/news/2001/0727burton.html.

26 Introduction

Access Control: Properties,
Policies, and Models

A knowledge of access control properties, policies, models,

and mechanisms is essential in understanding how RBAC

fits into the field of computer security. This chapter introduces

these important concepts [1–15].

2.1 Access control: objectives and
enforcement artifacts

While authentication mechanisms ensure that system users are

who they claim to be, these mechanisms say nothing about

what operations users should or should not perform within the

system. To afford protection to that effect, it is necessary to use

access control.

Access control is concerned with determining the allowed

activities of legitimate users, mediating every attempt by a user

to access a resource in the system. A given IT infrastructure can

implement access control systems in many places and at differ-

ent levels. Operating systems use access control to protect files

and directories. Database management systems (DBMSs) apply

access control to regulate access to tables and views. Most com-

mercially available application systems implement access con-

trol, often independent of the operating system or DBMS, or

both, on which they may be installed.

The objectives of an access control system are often

described in terms of protecting system resources against

27

2
Contents

2.1 Access control: objectives
and enforcement artifacts

2.2 Access control: core
entities and principles

2.3 Reference monitor and
security kernel

2.4 Access control matrix

2.5 Access control data
structures

2.6 Discretionary access
control (DAC) policies

2.7 MAC policies and models

2.8 Biba’s integrity model

2.9 The Clark-Wilson model

2.10 The Chinese wall policy
model

2.11 The Brewer-Nash model

2.12 Domain-type enforcement
(DTE) model

C H A P T E R

inappropriate or undesired user access. From a business perspective, this

objective could just as well be described in terms of the optimal sharing of

information. After all, the greater objective of IT is to make information

available to users and applications. A greater degree of sharing gives rise to

increased productivity. Although on the surface, access control appears to

gets in the way of this objective, in reality, a well-managed and effective

access control system actually facilitates sharing. A sufficiently fine-grained

access control mechanism can enable selective sharing of information where

in its absence, sharing may be considered too risky altogether.

When considering any access control system one considers three abstrac-

tions of control: access control policies, access control models, and access

control mechanisms. Policies are high-level requirements that specify how

access is managed and who, under what circumstances, may access what

information. While access control policies may be application-specific and

thus taken into consideration by the application vendor, policies are just as

likely to pertain to user actions within the context of an organizational unit

or across organizational boundaries. For instance, specific policies may per-

tain to the resources that can be accessed by consultancies or other business

partners. Such policies may span multiple computing platforms and applica-

tions. Policies may pertain to resource usage within or across organizational

units or may be based on need-to-know, competence, authority, obligation,

or conflict-of-interest factors. Although there are several well-known access

control policies, generating such a list is of limited value, since business

objectives, tolerance for risk, corporate culture, and the regulatory responsi-

bilities that influence policy differ from enterprise to enterprise, and even

from organizational unit to organizational unit. The access control policies

within a hospital may pertain to privacy and competency (e.g., only doctors

and nurse practitioners may prescribe medication), and hospital policies will

differ greatly from those of a military system or a financial institution. Even

within a specific business domain, policy will differ from institution to insti-

tution. Furthermore, access control policies are dynamic in nature, in that

they are likely to change over time in reflection of ever-evolving business

factors, government regulations, and environmental conditions. However,

because policy requirements can rarely be completely determined in

advance, access control systems are best designed to flexibly accommodate a

wide variety of changing policies.

At a high level, access control policies are enforced through a mecha-

nism that translates a user’s access request often in terms of a simple table

lookup—to grant or deny access. Access control mechanisms come in a wide

variety of forms, each with distinct policy advantages and disadvantages.

Although no well-accepted standard yet exists for determining their policy

28 Access Control: Properties, Policies, and Models

support, access control mechanisms can be characterized in a number of dif-

ferent ways, each bearing policy implications. In general, access control

mechanisms require that security attributes be kept about users and

resources. User security attributes consist of things like user identifiers,

groups, and roles to which users belong, or they can include security labels

reflecting the level of trust bestowed on the user. Resource attributes can

take on a wide variety of forms. For example, they can consist of sensitivity

labels, types, or access lists. In determining the user’s ability to perform

operations on resources, access control mechanisms compare the user’s

security attributes to those of the resource. Access control checks can be

determined (evaluated) based on a previously determined set of rules. For

example, the security label of the user must be greater than or equal to the

security label of the resource for the user to read the contents of the

resource. Access control checks can also be determined based on an attrib-

ute-matching algorithm. The user may perform a read operation on a

resource if the user’s identity, and read operation pair is included in the

access control list of the resource. Other characteristics of access control

mechanisms include attribute review and management capabilities. For

example, can the access control system determine the permissions that are

associated with a user or the users that can access a resource, or better

yet both? Who can specify permissions? Can permission specification be

delegated, and if so, does delegation allow further delegation?

From a consumer’s perspective, determining the policy implications of a

given access control mechanism is a formidable task. The fact that most

enterprises need to deal with a wide variety of access control mechanisms

only compounds this problem.

To provide greater policy support and control, a number of enterprise

management and resource-provisioning vendors offer administrative capa-

bilities over the native access control mechanisms of file management, data-

base management, applications, and host and network operating systems.

The result is an access control management system, on top of an access con-

trol management system, on top of potentially still another access control

system. What are the policy implications of this arrangement?

Rather than attempting to evaluate and analyze access control systems

exclusively at the mechanism level, security models are usually written to

describe the security properties of an access control system. Access control

models are written at a level of abstraction to accommodate a wide variety

of implementation choices and computing environments, while providing a

conceptual framework for reasoning about the policies they support. Access

control models are of general interest to both users and vendors. They

bridge the rather wide gap in abstraction between policy and mechanism.

2.1 Access control: objectives and enforcement artifacts 29

Models can be promoted for their support of policy, and mechanisms can be

designed for their adherence to the properties of the model. Users see an

access control model as an unambiguous and precise expression of require-

ments. Vendors and system developers see access control models as design

and implementation requirements.

Access control models and mechanisms are often characterized in terms

of their policy support. On one extreme an access control model may be

rigid in its implementation of a single policy. On the other extreme, a secu-

rity model will allow for the expression and enforcement of a wide variety

of policies and policy classes. From the 1990s to the present, security

researchers have sought to develop access control mechanisms and models

that are largely independent of the policy for which they can be used. This is

generally considered to be a desirable objective in that it allows the use of a

common mechanism for a wide variety of purposes.

2.2 Access control: core entities and principles

2.2.1 Subjects and objects

There are many access control models and mechanisms, most of which are

defined in terms of subjects and objects. A subject is a computer system

entity that can initiate requests to perform an operation or series of opera-

tions on objects. The subjects may be users, processes, or domains: A

domain is a protection environment in which a process executes. At some

level of discourse, a subject is considered to be a process or task that operates

on behalf of the user within a computing environment. An object is a sys-

tem entity on which an operation can be performed. Within the context of

an operating system, an object might represent a file, while within the con-

text of a DBMS, an object might represent a table or a view. An executable

image of a program residing in memory or stored on disk is considered to be

an object; however, during its execution it becomes part of a process and, as

such, is treated as part of the subject. Access to an object usually implies

access to the information it contains, but it may pertain to an exhaustible

system resource, such as a device, or to a physical container, such as a door

to a protected area or a lock on a cabinet containing physical evidence for a

trial. Other examples of objects include buffers, registers, blocks, pages, seg-

ments, file directories, programs, processes, and printers. The selection of

entities included in the set of objects is a matter of choice determined by the

protection requirements of the system or the security objectives of a model.

Processes are normally modeled as subjects because processes are active

30 Access Control: Properties, Policies, and Models

computing entities. However processes must be protected from unautho-

rized access and as such must be protected. For this reason, processes and

subjects in general are often viewed as objects.

An object is an abstract concept that is useful for purposes of generically

modeling access control approaches and describing access control mecha-

nisms. However, from an enterprise’s perspective, there are two types of

objects: resource objects and system objects. Resource objects are the objects of

general interest to the system’s users and as such justify the very existence

of the system. System objects are those objects that serve the system and

that are merely necessary for its correct operation. It is because of the sensi-

tivity of resource objects that system objects are sensitive and need to be

protected.

In many situations a subject can be thought of as a user, but within a

computer system, a subject is more precisely defined as a process or a collec-

tion of processes that act on a user’s behalf. Although users can typically be

considered human beings, users can also represent other requesting entities

such as machines or devices. It is imperative that all subjects have unique

identifiers. For instance, subjects acting on behalf of human users may

inherit the user’s ID obtained through the identification and authentication

process. However, a user may sign onto the system as different subjects

depending on which resources and applications the user wishes to access.

For instance, a user may have a need to invoke multiple applications. Under

these circumstances, two or more subjects would correspond to the same

user. Because a subject can invoke or create other subjects, subjects can be

represented as objects where the child subjects may be executed across

platforms or applications, or both.

Essential properties of subjects are that they have exclusive access to

their own memory and none to any others, they have potentially different

access to objects than other subjects, and that they are semiautonomous.

The first two properties are essential for subject isolation, and the latter

presents a vulnerability. In addition to issuing user requests, a subject may

maliciously (through a Trojan horse), or by system error, issue requests that

are independent of, and perhaps unknown to its user.

2.2.2 Principles of secure design

Salzer and Schroeder identified several design principles pertaining to pro-

tection mechanisms [15]. Although first proposed in 1975, before the rise of

networking and the Internet, these design principles continue to hold today.

(Some of the principles in fact can be traced to the rules for military ciphers

2.2 Access control: core entities and principles 31

proposed by Auguste Kerchoffs in the nineteenth century.) They promote

simplicity, isolation, confinement, and ease of use:

1. Least privilege: Every user and process should have the least set of per-

missions or privileges necessary in conducting the task at hand. The

implementation of this principle has the effect of limiting damage

that can result from system error or malicious events. When consid-

ering a user, permissions should be carefully assigned and

periodically reviewed to ensure they minimally fit the user’s func-

tional needs. When considering a process, a minimum subset of the

evoking user’s security attributes with associated permissions should

be activated during the course of a session.

2. Economy of mechanism: The design should be sufficiently small and

simple so that it can be evaluated and shown to be correct. Simple

means that less can go wrong and when errors do occur, they are eas-

ier to identify and fix. The application of this principle usually entails

implementing the protection mechanism at the lowest and most

protected levels of the system possible, where the higher levels (e.g.,

applications) are controlled by the lower levels.

3. Fail-safe defaults: Access decisions should be based on inclusion rather

than on exclusion. The default should be lack of access. If the protec-

tion mechanism should fail, then legitimate access is denied, but

illegitimate access is also denied. Note that there may be a trade-off

between this rule and the security goal of availability.

4. Complete mediation: Every request for access by a subject should be

checked for authorization. If permissions change, different results

are computed. Any caching of results should not be permitted.

5. Open design (Kerckhoffs’ law): The premise of security should not

depend on the design being secret. If the design is sound the system

should be secure. The more eyes the greater the likelihood of success.

This principle has traditionally been applied to cryptographic system

where the algorithms are subject to public scrutiny.

6. Separation of privilege: Where possible, a protection mechanism

should depend on multiple conditions being satisfied, such as requir-

ing cooperation from two independent entities, or requiring

cosigners.

32 Access Control: Properties, Policies, and Models

7. Least common mechanism: Minimize the sharing of mechanisms by

multiple users. The implementation of this principle includes isola-

tion through physically separate systems (sandboxes) or though

logically through virtual machines.

8. Psychological acceptability: The protection system interface should be

easy to use so that users accept the protection mechanism correctly.

The complexity of the protection system should be transparent to the

user. The user should not have to logoff and back on in performing

normal tasks.

2.3 Reference monitor and security kernel

Since its introduction in the Anderson report [1], the reference monitor

concept has served the security community in two ways. First, it provides an

abstract model of the necessary properties in achieving a high-assurance

access control mechanism. Second, it has been used as guidance in the

design, development, and implementation and subsequent analyses of

secure IT systems.

The reference monitor (see Figure 2.1) is an abstract concept, whereby

all accesses that subjects make to objects are authorized based on the infor-

mation contained in an access control database. Conceptually, the reference

monitor represents the hardware and software portion of an operating sys-

tem that is responsible for the enforcement of the security policy of the sys-

tem. The access control database is the embodiment of this policy in terms of

subject and object attributes and access rights. When a subject attempts to

perform an operation (e.g., read or write) on an object, the reference moni-

tor must perform a check, comparing the attributes of the subject with that

of the object. In addition, the reference monitor, with respect to some secu-

rity policy, must control the specific checks that are made and all

modifications to the access control database.

As an abstraction, the reference monitor does not dictate any specific

policy to be enforced by the system, nor does it address any particular

implementation. Rather, the reference monitor defines an assurance frame-

work that has been used for over three decades in the design, development,

and implementation of highly secure IT systems, and it has served as the

foundation in evaluation of the relative degrees of trust that can be assigned

to a multiuser computing system.

The abstract requirements of a reference monitor are comprised of three

fundamental implementation principles, described as follows:

2.3 Reference monitor and security kernel 33

◗ Completeness: It must be always invoked and impossible to bypass.

◗ Isolation: It must be tamperproof.

◗ Verifiability: It must be shown to be properly implemented.

These principles provide architectural guidance pertaining to the design and

development process of an access control system. The degree to which a

system complies with these design principles has served as a metric for

measuring the level of confidence in the correctness of the system’s security

controls.

2.3.1 Completeness

The completeness principle requires that a subject can reference an object

only by invoking the reference monitor. Although this principle may seem

34 Access Control: Properties, Policies, and Models

Audit
file

Subjects Objects
Reference
monitor

Access
control
database

Figure 2.1 Reference monitor: All attempts by a subject to access an object are

controlled by the reference monitor in accordance with a security policy embodied

in the access control database. Security-relevant events are stored in the audit file.

intuitive—and although it might be expected that any reasonable operating

system would meet this requirement—few if any mainstream operating sys-

tems completely adhere to this principle. The difficulty in meeting the abso-

lute meaning of this principle stems from two issues. The first issue is what is

considered to be the objects in the system. In general, objects are interpreted

to be any system entity that can store information. Obvious places where

information may be stored include files, directories, memory, and buffers.

Most operating systems make reasonable attempts at controlling access to

these resources. However, there are a wide variety of not-so-obvious places

where information may be stored such as file names, segments, processors,

and status and error messages and registers. The completeness principle

requires that all objects must be protected—not just the obvious ones.

The second architectural challenge pertaining to the completeness prin-

ciple is the prevention of access to objects through methods (documented or

otherwise) other than through the invocation of the policy-preserving

access checker. For example, a subject could bypass a file system and issue a

read request directly to the physical location of a file on disk. Access control

is a basic function of not only operating systems; it is included within

DBMSs and other large application programs. How does the DBMS prevent

its objects (e.g., table and views) from being accessed through the underly-

ing operating system? How do operating systems prevent objects that are

under the control of the file management system from being accessed

through lower-level kernel functions?

2.3.2 Isolation

The isolation principle states that the access mediation function is

tamperproof. It must be impossible for a penetrator to attack the access

mediation mechanism in a manner that affects the proper performance of

access checks. Even though most resource management systems are

designed to protect themselves against accidental and overt break-in

attempts, meeting the absolute requirements of the isolation principle of the

reference monitor usually requires a security architecture consisting of both

hardware and software features.

The implementation of a security kernel (Figure 2.2) is one way to

achieve this isolation. The security kernel is a minimal implementation of

the security-relevant features of the system. The security kernel is imple-

mented as a primitive operating system function responsible for the

enforcement of security policy. It is implemented on top of the hardware

base and beneath nonsecurity-relevant operating system functions in a

domain of its own execution. System managers typically achieve this

2.3 Reference monitor and security kernel 35

isolation using the same hardware features that are commonly used to pre-

vent user programs from corrupting operating system code and data. The

security kernel runs in the most privileged domain and has access to all

memory and instructions, while the less privileged domains have access to

only a portion of memory and a subset of system instructions. The impor-

tant security feature is that the kernel executes in the most privileged

domain and is thus protected from the code that is executed in the outer

two rings. Although a process may run in any one of these domains at any

moment in time, when the process is running in a given domain, that

process is protected from corruption by other processes through process

isolation mechanisms.

Since human programmers create process isolation features as well as all

other security-relevant software, kernel code is subject to flaws and thus

must be verified to be correct. This brings us to the third principle of the ref-

erence monitor.

2.3.3 Verifiability

The principle of verifiability is met through software engineering practices

and design criteria. The idea is that the security kernel is made as small and

simple as possible, by excluding any functionality for which the security of

the system is not dependent, and by reducing the kernel to a small set of

clean kernel interfaces. This is made possible through the use of sound soft-

ware engineering practices. For instance, the security kernel should make

use of modularity, abstract specification, and information hiding. Since the

ultimate goal is to demonstrate the correctness of the kernel, thorough code

inspections and positive and negative testing are critical. In extreme cases,

formal mathematical modeling, formal specification, and verification

36 Access Control: Properties, Policies, and Models

Hardware

Security
kernel

Operating
system

Figure 2.2 Multidomain architecture: The security kernel is an interface layer on

top of hardware and controls operating system and user code and date.

techniques are applied in an attempt to prove the correctness of the kernel’s

implementation.

2.3.4 The reference monitor—necessary, but not sufficient

As an abstraction, the reference monitor concept does not charge a system

with enforcing any particular access control policy. It is the job of enter-

prises to articulate these requirements for their computer systems. From an

assurance perspective, the design principles of the reference monitor should

be viewed as a necessary prelude to assurance, but the reference monitor is

not sufficient. Even if all vendors were to rigorously adhere to the design

principles of the reference monitor, most enterprises have little control over

what policies are supported by the products they buy. Essentially, consum-

ers are forced to make do with the policy and access control management

decisions of their vendors. This book introduces three additional design

principles that are viewed by its authors as critical components of any access

control system. These principles are described as follows:

◗ Flexibility: The system should be able to enforce the access control pol-

icies of the host enterprise.

◗ Manageability: The system should be intuitive and easy to manage.

◗ Scalability: The system’s management and enforcement functions

should scale to the number of users and the number of resources that

are scattered across the computing platforms of the host enterprise.

By inserting these additional principles, we acknowledge that an access con-

trol system consists of more than a robust access mediation function, and

includes the properties of policy configuration, ease of use, and, to some

extent, interoperability.

2.4 Access control matrix

The access matrix has provided a framework for analyzing protection prop-

erties for over 30 years.

The state of an access control system is defined by a triple (S, O, A),

where S is the set of subjects, O is the set of objects, and A is an access

matrix, with rows corresponding to subjects and columns corresponding to

objects. An entry A[s, o] is a set of rights. Early models were developed by

researchers in support of operating system [2] and database management

system [3] protection requirements.

2.4 Access control matrix 37

Harrison, Ruzzo, and Ullman later [4] developed a more rigorous and

primitive version of an access matrix model to serve as a basis for specifying

and proving properties of protection systems in general. Under their model

subjects are processes and objects include both files and subjects. This access

matrix can be visualized by Figure 2.3 [4]. In general an access matrix is a

representation of permissions. An individual permission is a triple of the

form (s, r, o) where s and o are subjects and objects and r is a right belonging

to the protected system’s set of rights R. Typical rights may include read,

write, execute, and own.

Also included in the Harrison, Ruzzo, and Ullman model are both states

and state transitions where a state is defined by the current configuration of

the access matrix and state transitions are described by commands. Com-

mands are specified as a sequence of primitive operations that have the

effect of altering the access matrix. Harrison, Ruzzo, and Ullman defined six

primitive operations. The effects of these primitive operations are defined by

Table 2.1. Let op be a primitive operation, and let Q be a system state where

Q = (S, O, A). As such, by executing any op on A has the effect of changing

the state from Q = (S, O, A) to Q’ = (S’, O’, A’).

Associated with each primitive operation is a set of conditions. For

example, enter r into A[s, o], and enter r into the matrix at position A[s, o] if

s and o currently exist.

38 Access Control: Properties, Policies, and Models

o

s

Subjects

Subjects

Objects

Rights

Figure 2.3 An access matrix: Rows represent subjects and columns represent

objects, which include subjects. The A[s, o] entry are the rights subject s may

exercise on object o.

Primitive operations alone have limited power in expressing and manag-

ing access control policy as discrete, atomic “rights.” To apply primitive

operations in the creation and management of access control policies Harri-

son, Ruzzo, and Ullman defined the concept of a command. Commands

consisting of zero or more conditions and one or more primitive operations,

of the form:

c(
1
, ,

k
)

1
in [

s1
,

o1
] and

2
in [

s2
,

o2
] and

.

.

.

2.4 Access control matrix 39

Table 2.1 Primitive Operations

Operation Conditions New State

enter r into A[s, o] s∈ S

o∈ O

S’=S

O’=O

A’[s, o]=A[s, o] ∪ {r}

A’[s
1
, o

1
]=A[s, o], where (s

1
, o

1
) ≠ (s, o)

delete r from A[s, o] s∈ S

o∈ O

S’=S

O’=O

A’[s, o]=A[s, o] −{r}

A’[s
1
, o

1
]=A[s, o], where (s

1
, o

1
)≠ (s, o)

create subject s’ s∉ O S’=S∪ {s’}

O’=O∪ {s’}

A’[s, o]=A[s, o], where s∈ S, o∈ O

A’[s’, o]=∅ , where o∈ O’

A’[s, s’]=∅ , where s∈ O’

create object o’ o∉ O S’=S

O’=O∪ {o’}

A’[s, o]=A[s, o], where s∈ S, o∈ O

A’[s, o’]=∅ , where s∈ S’

destroy subject s’ s’∈ S S’=S−{s’}

O’=O−{s’}

A’[s, o]=A[s, o], where s∈ S’, o∈ O’

destroy object o’ o’∈ O

o’∉ S

S’=S

O’=O−{o’}

A’[s, o]=A[s, o], where s∈ S’, o∈ O’

m
in [

sm
,

om
]

then

1

2

.

.

.

n

where r
1
, …, r

m
are rights, s

1
, …, s

m
and o

1
, …, o

m
are integers representing

subjects and objects.

Regarding a command, if the conditions are met the sequence of primi-

tive operations is executed, resulting in changes to the matrix. The parame-

ters of the command indicate which aspects of the matrix are to be changed,

and how. Let c(a
1
, …, a

k
) be a command with k actual parameters, and let Q

= (S, O, A) be a state of the protection system. Then Q transitions to state Q’

under c, which can be written as:

Q + c(a
1
, …, a

k
) Q’

Example

We now present a simple example that is similar to that which was pre-

sented in [4]. We assume subjects to be processes and the objects other than

subjects are files, where each file is “owned” by a process. Under this exam-

ple, the ownership of a file indicates the ability of the subject to grant or

revoke access rights to that file to/from other subjects. This concept is com-

mon in modern-day operating systems and is modeled by specifying that the

owner of a file has the right own to that file. Ownership is established

through creation of an object. Other rights in our example include read and

write.

Create a new file. The subject that creates a file gains ownership of the file

and read and write access to the file by the following command:

create object (,)

into [,]

into A[,]

into A[,]

Note that the parameters of a command are specified formally. At execu-

tion time these parameters are replaced by actual parameters that are object

40 Access Control: Properties, Policies, and Models

names. The above command has two parameters s and o, four primitive

operations, create object o, enter own into A[s, o], enter read into A[s, o],

and enter write into A[s, o], where s is the subject that created o and o is the

object being created. Note that this command has no conditions. However,

per Table 2.1, the conditions for the primitive operation enter r into A[s, o]

specifies that that both s and o must exist prior to entering own, read, or write

into the matrix at position A[s, o], and primitive operation create object o

specifies that object o must not exist prior to its creation. Note that the order

in the execution of primitive operations is sometimes important. If create

object o was not executed first the conditions for enter r into A[s, o] would

fail.

Grant rights. Once object o is created, subject s may grant other subjects

access to object o by executing the following two commands:

grant-read(, 1,)

in [,]

into [1,]

grant-write(, 1,)

in [,]

into [1,]

Both of these commands have one condition; that is, prior to s granting

read or write to s1, the own right must be included in A[s, o]. To abide by the

principle of attenuation of privilege, which states that a subject can never

transfer rights to another subject that it does not posses, we modify the two

grant commands by inserting a new condition:

grant-read(, 1,)

in [,],

in [,]

into [1,]

grant-write(, 1,)

in [,]

in [,]

into [1,]

Revoke rights. Under certain circumstances a subject may wish to revoke

access rights. In modeling this concept we assume that the owner of an object

may revoke a subject’s access rights to that object. Commands for revoking

2.4 Access control matrix 41

access rights are similar to commands for granting access rights; for example,

subject s may revoke read access from subject s
1
with the following command:

revoke-read(, 1,)

in [,]

from [1,]

2.5 Access control data structures

2.5.1 Capability lists and access control lists (ACLs)

Although an access control matrix is an interesting construct from a theoret-

ical perspective, for a system with a large number of users and objects, the

matrix will become very large and will be sparsely populated. As such, an

access control system is rarely implemented as a matrix but is almost always

implemented as a representation of the matrix. There are two primary rep-

resentations of the access control matrix as implemented in computer sys-

tems today: capability lists and ACLs.

Table 2.2 illustrates a simple access control matrix. The entries in the

matrix specify the operations of, or the type of access that each user has to,

each object. The basic function of an access control system is to ensure that

only the operations specified by the matrix can be executed.

In a capability system, access to an object is allowed if the subject that is

requesting access possesses a capability for the object. A capability is a pro-

tected identifier that both identifies the object and an operation to be

allowed to the subject that possesses the capability. This approach corre-

sponds to storing the matrix by rows. Table 2.3 presents the capability lists

corresponding to the access control matrix. Each subject is associated with a

capability list, which stores its approved operations to all concerned objects.

A subject possessing a capability is proof of the subject having the access

privileges. The principle advantage of capabilities is that it is easy to review

42 Access Control: Properties, Policies, and Models

Table 2.2 Example Access Control Matrix

Subject/

Object File_1 File_2 File_3 Process_1

Chris Read, write — Write —

Janet — Execute — Suspend

Barbara — Read Read —

Frank Read — — —

all accesses that are authorized for a given subject. On the other hand, it is

difficult to review the subjects that can access a particular object. To do so

would entail an examination of each and every capability list. It is also diffi-

cult to revoke access to an object given the need for a similar examination.

ACLs implement the access control matrix by representing the columns

as lists of users attached to a protected object. Each object is associated with

an ACL that stores the subjects and the subject’s approved operations for the

object. The list is checked by the access control system to determine if access

is granted or denied. Table 2.4 presents the ACLs corresponding to the

access control matrix in Table 2.2.

The principle advantage of ACLs is that they make it easy to review the

users that have access to an object as well as the operations that users can

apply to the object. In addition, it is easy to revoke access to an object by

simply deleting an ACL entry. These advantages make ACLs ideal for imple-

menting policies that are object-oriented, such as the policy of discretionary

access control (see Section 2.6 for a detailed description of the discretionary

access control policy). Another advantage is that the lists need not be exces-

sively long, if groups of users with common accesses to the object are

attached to the object instead of the group’s individual members. Although

the use of groups adds the need for additional administrative functions for

managing membership within groups, the availability of groups generally

makes the administration of ACLs more efficient. Generally speaking, the

creation and management of groups should be strictly controlled, since

becoming a member of a group can change the objects accessible to any

member.

2.5 Access control data structures 43

Table 2.4 ACL

Object

File_1 Chris: Read, write Frank: Read

File_2 Janet: Execute Barbara: Read

File_3 Chris: Write Barbara: Read

Process_1 Janet: Suspend

Table 2.3 Capability List

Subject

Chris File_1: Read, Write File_3: Write

Janet File_2: Execute Process_1: Suspend

Barbara File_2: Read File_3: Read

Frank File_1: Read

2.5.2 Protection bits

A mechanism familiar to most users is the implementation of protection bits

that are commonly included in UNIX operating systems. Protection bit

mechanisms are similar to ACLs; however, instead of associating users and

operation entries, bits are associated with an object. Protection bits divide

users into three categories, described as follows:

◗ Self: The owner of a file;

◗ Group: A collection of users sharing common access to a file;

◗ Other: Everyone else besides the owner or the group members.

The access control system regulates access to a file by associating read (r),

write (w), or execute (x) operations with each of these categories of users.

For example, assume that a file has the following protection bits:

(r w x) (r – x) (– – x)

This string of bits indicates that self (the owner) has read, write, and execute

permission to the file; the members of the group that is associated with the

object have read and execute permission to the file; and all other system

users have execute permission to the file. Note that the “–” marking indi-

cates that the corresponding operation indicator is not present, thereby

effectively denying the associated categories of users that particular

operation on the file.

The user who created the file, by default, becomes the owner of the file.

The owner of the file is typically the only one besides the superuser who can

modify the protection bits.

Also note that there is only one group that is available for each file. The

system administrator controls group memberships, so that as membership

within these groups changes so will the capabilities of users to access files.

One problem with the protection bits method is that it is an access con-

trol mechanism that does not completely correspond to the access control

matrix—thus, the system cannot accurately grant access to an object on an

individual basis. For this reason many newer versions of UNIX and

UNIX-like operating systems include ACL mechanisms.

2.6 Discretionary access control (DAC) policies

DAC is a means of restricting access to objects based on the identity of users or

the groups to which they belong, or both. The controls are discretionary in

44 Access Control: Properties, Policies, and Models

the sense that a user or subject given discretionary access to a resource is

capable of passing that information along to another subject. To provide this

discretionary control, DAC mechanisms usually include a concept of object

ownership, where the object’s “owner” has control permission to grant access

permission to the object for other subjects. This definition of DAC has its ori-

gins with the Trusted Computer Security Evaluation Criteria (TCSEC) [5] and

is rationalized based on the U.S. Department of Defense’s (DoD) regulatory

requirements for need-to-know access to classified or sensitive information:

“… no person may have access to classified information unless …access is

necessary for the performance of official duties.” By far the most common

mechanism for implementing DAC policies is through the use of ACLs.

DAC mechanisms tend to be very flexible and are widely used in com-

mercial and government sectors. Throughout the mid-1980s and 1990s,

many organizations considered DAC mechanisms to be the standard of due

care. During this period virtually every computer vendor demonstrated

DAC compliance by undergoing a C2 TCSEC (discretionary protection)

evaluation.

Even though DAC mechanisms are in wide commercial use today, they

are known to be inherently weak for two reasons: First, granting read access

is transitive. For example, when Chris grants Frank read access to a file,

nothing stops Frank from copying the contents of Chris’s file to an object

that Frank controls. Frank may now grant any other user access to the copy

of Chris’s file unbeknownst to Chris. Second, DAC mechanisms are vulnera-

ble to Trojan horse attacks. Because programs inherit the identity of the

invoking user, Frank may, for example, write a program for Chris that, on

the surface, performs some useful function, while at the same time reads the

contents of Chris’s files and writes the contents of the files to a location that

is accessible by both Chris and Frank. Frank may then move the contents of

the files to a location not accessible to Chris. Note that Frank’s Trojan horse

program could have destroyed the contents of Chris’s files. When investigat-

ing the problem, the audit files would indicate that Chris destroyed his own

files. What a dope!

2.7 MAC policies and models

In addition to DAC policies, the TCSEC defines MAC policies that are known

to prevent the Trojan horse problem. With regard to this policy, security lev-

els are assigned to users, with subjects acting on behalf of users and objects.

Security levels have a hierarchical and a nonhierarchical component. For

instance the hierarchical components might include “unclassified” (U),

2.7 MAC policies and models 45

“confidential” (C), “secret” (S), and “top-secret” (TS) while the

nonhierarchical components may include “NATO” and “NUCLEAR”. The

security levels are partially ordered under a dominance relation, often writ-

ten as “≥”. For example, TS ≥ S ≥ C ≥ U and S (NATO, NUCLEAR) ≥ S

(NUCLEAR) ≥ S. The security level of the user, often referred to as the

user’s clearance level, reflects the level of trust bestowed to the user and

must always dominate the security levels that are assigned to the user’s sub-

jects. For example, Chris, who is cleared to the S (NUCLEAR) level may ini-

tiate sessions at the S (NUCLEAR), S, C, or U levels.

The security levels that are assigned to objects, often referred to as the

object’s classification level, reflect the sensitivity of the contents of the

objects.

2.7.1 Bell-LaPadula model

With respect to the security level of a subject and the security level of an

object, the Bell-LaPadula model [6] defines access control decisions in accor-

dance with two properties:

◗ Simple security property: A subject is permitted read access to an object if

the subject’s security level dominates the security level of the object.

◗ Star property: A subject is permitted write access to an object if the

object’s security level dominates the security level of the subject.

Satisfaction of these properties prevents users from being able to read

information that dominates (i.e., is above) their clearance level. The simple

security property directly supports this policy, never allowing a subject to

read information that dominates the invoking user’s clearance level. The

star property supports the MAC policy indirectly, by disallowing subjects

from writing information of level x into a container (contents of an object)

that could be subsequently read by a subject with a security level that is

dominated by x. Intuitively, the star property prevents high information

from ending up in a low container where a low user could read it.

With respect to the Bell-LaPadula model it is important to distinguish a

user from her or his subjects. To illustrate this point consider a user Ralph,

who is cleared to the top-secret level. Ralph’s range of capabilities includes the

ability to read and write all objects.that his clearance level dominates

Ralph’s subjects, on the other hand, do not enjoy this same freedom.

Although we can trust Ralph not to leak top-secret information, we are not

able to levy such trust on Ralph’s subjects because subjects are typically

computer programs, which may be compromised. Therefore, for Ralph to

46 Access Control: Properties, Policies, and Models

successfully write to an object at, for example, the secret level, Ralph must

adjust his session to a level that is dominated by the secret security level of

the object (see Figure 2.4).

Now consider the case where Frank, who is cleared at the confidential

level, wishes to steal secret nuclear instructions using the same Trojan horse

program that he used to steal Chris’s files under the DAC policy. Frank once

again tricks Chris [who is cleared S, (NUCLEAR)], into invoking his mali-

cious software, this time while invoking a S, (NUCLEAR) session.

Although Frank’s Trojan horse will be able to successfully read the S,

(NUCLEAR) instructions, under the simple security property, the Trojan

horse will fail in its attempt to write the instructions to a location that is

accessible to Frank. Note, however, that Frank’s malicious program may still

destroy any of Chris’s files that are labeled at Chris’s session level or above.

If Chris invokes Frank’s software during an unclassified session, Frank, or

more accurately speaking, Frank’s program, is able to destroy all of Chris’s

files. The following model will deal with the problem of Frank’s program

being able to destroy Chris’s files.

2.8 Biba’s integrity model

Even though the Bell-LaPadula security model controls the writing of infor-

mation, its policy is to protect confidentiality (read protection). The multi-

level security policy does nothing to prevent unauthorized modification of

information. Soon after the Bell-LaPadula security model was introduced,

users quickly recognized that there was a need for a model with a property

similar to the star property to prevent a process at a higher security level

from reading lower-level objects without being negatively affected by

information at the lower security level.

The Biba integrity model [7] was introduced in 1977 not as an alterna-

tive but as an adjunct to the Bell-LaPadula model. As the Bell-LaPadula

2.8 Biba’s integrity model 47

UserTS

r, w

TS

S

C

U
r, w

r, w

r, w

SubjectT

r, w

r

r

r

Figure 2.4 User’s range of capabilities versus subject’s permitted accesses.

model pertains exclusively to confidentiality issues while ignoring integrity

issues, the Biba model (a dual of the Bell-LaPadula model) addresses integ-

rity issues while sacrificing confidentiality. Under Biba, read-and-write

restrictions are based on integrity levels (consisting of a higher hierarchical

and categorical component) assigned to subjects and objects. The integrity

level associated with a user indicates the user’s level of trust regarding mod-

ification of information at that level, and the integrity level associated with

an object reflects the object’s sensitivity regarding its modification. For

example, these may include “critical” (C), “important” (I), and “ordinary.”

The properties of the Biba model are similar to the Bell-LaPadula model

except that the dominance relations controlling read-and-write are

reversed. These relations are described as follows:

◗ Simple integrity property: A subject is permitted read access to an object

if the object’s security level dominates the security level of the subject.

◗ Integrity star property: A subject is permitted write access to an object if

the subject’s security level dominates the security level of the object.

In compliance with the properties of this model, writes from lower levels are

prohibited, as are reads from higher levels to lower levels.

2.9 The Clark-Wilson model

While the TCSEC did a great deal to spur research and development of com-

puter security products, most of the commercial world recognized that it

was of limited benefit for their operations. Clark and Wilson documented

the differences between commercial and military security requirements in

detail in 1987 [8], arguing that the primary concern for most commercial

applications is integrity, rather than secrecy. For example, the 600-year-old

principle of double-entry bookkeeping helps to ensure the accuracy and

integrity of accounts by requiring that every credit entry be matched by a

debit entry to ensure a balance between the source and destination of funds.

Integrity in the computer security context refers to the accuracy and

authenticity of information, as well as the need to ensure that objects are

modified only in authorized ways by authorized personnel.

Clark and Wilson documented a generalized view of commercial security

policies, showing how they differed from the military-oriented policies that

are the focus of the TCSEC. They proposed two principles as most important

in ensuring information integrity: well-formed transactions and SoD.

Well-formed transactions constrain the ways in which users can modify

48 Access Control: Properties, Policies, and Models

data, thus ensuring that all data that starts in a valid state will remain so

after the execution of a transaction. The basic unit of access control in the

Clark-Wilson model is the “access control triple,” composed of user, transfor-

mation procedure, and constrained data item (see Figure 2.5).

A transformation procedure (TP) is a transaction, and a constrained data

item (CDI) is one for which integrity must be preserved. Unconstrained data

items (UDIs) are those that are not protected by the integrity model. Integ-

rity verification procedures (IVPs) ensure that a data item is in a valid state.

Clark and Wilson proposed nine rules to ensure the integrity of data. They

are described as follows:

1. For any CDI, there must also be an IVP that ensures that the data

item is in a valid state.

2. Every TP that modifies a CDI must be certified to modify CDIs only in

valid ways.

3. A CDI can only be modified by a certified TP.

4. Every TP must be certified to log its changes to CDIs.

5. Any TP that takes a UDI as input must be certified to perform only

valid transformations, or else no transformations, for any possible

value of the UDI. The transformation should take the input from a

UDI to a CDI, or the UDI is rejected.

6. Only certified TPs can modify CDIs.

7. A user can access CDIs only through TPs for which the user is

authorized.

8. Every user must be authenticated by the system before executing a

TP.

9. Only a security administrator can authorize users for TPs.

Unlike the Bell-LaPadula security model, which relies on access media-

tion in the operating system kernel, Clark and Wilson’s approach relies on

application-level controls. This difference in design results from the goals of

the two models. The military multilevel security model seeks to control

2.9 The Clark-Wilson model 49

User Operation Object

Figure 2.5 Clark-Wilson access control triple.

information flow, which can be defined in terms of low-level

read-and-write operations. The commercial integrity model, as defined by

Clark and Wilson, must ensure that information is modified only in autho-

rized ways by authorized people, a requirement that is impossible to meet

using only control over kernel-level operations. The importance of control

over transactions, as opposed to simple read-and-write access, can be seen

by considering typical banking transactions. Tellers may execute a savings

deposit transaction, requiring read-and-write access to specific fields within

a savings file and a transaction log file. An accounting supervisor may be

able to execute correction transactions, requiring exactly the same

read-and-write access to the same files as the teller. The difference is the

process executed and the values written to the transaction log file.

SoD is another major component of the Clark and Wilson model that

contributes to integrity, preventing authorized users from making improper

modifications. This goal is achieved indirectly by separating all operations

into multiple subparts and requiring that a different person perform each

subpart. The process of purchasing and paying for some item, for example,

might involve authorizing a purchase order, recording the arrival of the

item, recording the arrival of the invoice, and authorizing payment. The last

step should not be performed unless the previous three have occurred. If a

different person performs each step, improper modification should be

detected and reported, unless some of these people conspire. If one person

can execute all of these steps, then fraud is possible—an order is placed and

payment made to a fictitious company without any actual delivery of an

item. In such a case, the books appear to balance; the error is in the

correspondence between real and recorded inventory.

2.10 The Chinese wall policy model

The Chinese wall policy is simple and easy to describe; however, as we will

see, its implementation and deployment are less straightforward. Brewer

and Nash [9] identified the policy to address conflict-of-interest issues

related to consulting activities within banking and other financial disci-

plines. Like Clark-Wilson, the Chinese wall policy is application-specific in

that it applies to a narrow set of activities that are tied to specific business

transactions. The stated objective of the Chinese wall policy is to prevent

illicit flows of information that can result in a conflict of interest. Consul-

tants naturally are given access to proprietary information to provide a

service for their clients. When a consultant gains access, for example,

to the competitive practices of two banks, the consultant gains

50 Access Control: Properties, Policies, and Models

knowledge—amounting to insider information—that can undermine the

completive advantage of one or both institutions or that can be used for per-

sonal profit. The objective of the Chinese wall policy is to identify and

prevent the flow of information that can give rise to such conflicts.

As an example, company-sensitive information is categorized into mutu-

ally disjoint conflict-of-interest categories (COIs). Each company belongs to

only one COI, and each COI has two or more member companies. The

membership within a COI includes like companies, whereby a consultant

obtaining sensitive information regarding one company would risk a con-

flict of interest if he or she were to obtain sensitive information in regard to

another. Several COIs may coexist. For example, COI
1
may pertain to banks,

while COI
2

may pertain to energy companies. The Chinese wall policy aims

to prevent a consultant from reading information for more than one com-

pany in any given COI.

There are several observations that we can make regarding this policy

with respect to read operations: First, as long as a consultant has not read

information belonging to any institution, the consultant is not yet bound by

the policy and is free to read any sensitive information of any institution.

Note that although a consultant may be free to read sensitive information

under the Chinese wall policy, she or he may be restricted from reading sen-

sitive information with respect to another policy—say a DAC policy. Sec-

ond, once a consultant has read sensitive information of say, bank A, the

consultant is prohibited from reading sensitive information belonging to any

other bank included in the COI of which bank A is a member. Third, all con-

sultants are free to read all the public information of all institutions.

As is evident, the Chinese wall policy is relatively straightforward

regarding read operations. We now consider the implications of write opera-

tions with respect to this policy as defined in the Brewer-Nash model.

2.11 The Brewer-Nash model

The Brewer-Nash model views data as objects, each belonging to a company

dataset. The company datasets are further categorized into COIs.

Similar to Bell-LaPadula, Brewer-Nash defines two rules, one for reading

and one for writing. Under the read rule, subject S can read object O only if

one of the following is true:

◗ O is in the same company dataset as some object previously read by S.

◗ O belongs to a COI class for which S has yet to read an object.

2.11 The Brewer-Nash model 51

Under the write rule, subject S can write object O only if the following

are true:

◗ S can read O under the read rule.

◗ No object can be read within a different company dataset than the

one for which write access is requested.

Note that the Brewer-Nash rules do not make a distinction between

users and subjects, as does the Bell-LaPadula model, but instead recognizes

subjects to include both users and the processes that are acting on behalf of

the user. However, similar to Bell-LaPadula, the Brewer-Nash rule for writ-

ing takes into consideration the possibility of a Trojan horse.

In illustrating the need for the write rule, consider the case in which

Chris has read access to energy company A objects and read-and-write

access to bank B objects, and Frank has read access to energy company A

and bank B objects. A Trojan horse program running with Chris’s privileges

may read bank A objects and write to energy company B objects, giving

Frank read access to both bank A and bank B objects.

It is also interesting to note the temporal differences between these two

models. With respect to Bell-LaPadula, the policies regarding reading and

writing are applied within the life span of a subject-user session. With

respect to the Brewer-Nash model, the policy regarding reading applies for

the life of the user. Once a user reads an object from a company data set, the

user is forever precluded from reading an object from the data set of another

company belonging to the same COI.

2.12 Domain-type enforcement (DTE) model

The domain-type enforcement (DTE) model is an abstraction of the con-

cepts involved in the DTE mechanism. The DTE mechanism [10], in turn, is

an enhanced type enforcement (TE) mechanism, which is a table-oriented

access control mechanism developed by Boebert and Kain in the 1980s [11]

in support of the Bell-LaPadula MAC model. In particular the DTE mecha-

nism has been used in firewalls [12] and operating systems [13] and has

been shown to support a variety of security policies expressible through

RBAC models [14].

The DTE model, like many other access control models, divides the com-

puterized system into two logical entities: subjects and objects. Subjects are

active entities (usually processes). Objects are passive entities (e.g., files,

directories, devices, and memory segments). A domain is associated with a

52 Access Control: Properties, Policies, and Models

subject. A type is associated with an object. The assignment of a “domain”

label for a subject generally depends upon its function (e.g., a business pro-

cess transaction). An object is assigned a type based on its integrity require-

ments. Access control permissions are associated with both domains and

types. This gives rise to two groups of permissions: domain-domain permis-

sions and domain-type permissions. Each of these two groups of permis-

sions is represented using corresponding table types. The domain-domain

access control table (DDAT) is a two-dimensional table with an entry for

each ordered pair of domains. Similarly, the domain-type access control

table (DTAT) is a two-dimensional table with an entry for each (domain,

type) pair. Since there can be more than one permission associated with a

domain-domain pair or domain-type pair, each entry in these tables is a

subset of the permissions. All the entries in these two types of tables

together constitute the DTE database for an environment.

Examples of domain-domain permissions (in the context of a UNIX

operating system) are create (C) and kill (K). Examples of domain-type per-

missions are read (R), write (W), execute (E), and browse directory (T). The

semantics of domain-type permissions should be self-evident. The

domain-domain permissions are created to express allowed interactions

between subjects. For example, a subject A (process A) can create an

instance of another process (process B) only if there exists a create entry

between subject A’s domain and subject B’s domain.

The DDAT and DTAT tables in DTE are conceptually similar to the access

control matrix. However, DTE considerably reduces table entries by group-

ing subjects into domains and objects into types before specifying access

control permissions.

Several comparisons can be made between the concepts of the DTE

model and the RBAC model. RBAC ties users to roles and describes how a

role limits the operations available to a user. DTE ties subjects to domains

and describes how a domain limits the operations available to a subject. It is

these similarities in concepts that have been utilized by Hoffman [14] to

implement RBAC-expressible policies in the DTE-based secure operating

system LOCK. Specifically RBAC model entities have been mapped to DTE

model entities and the underlying DTE mechanism then facilitates imple-

mentation of the RBAC policy. Hoffman’s implementation takes a set of

roles, a set of users, and user-role assignments and links them to DTE model

entities like as subjects and domains. Each subject is assigned a role, and

users are associated with a subject. For every subject, the role of the subject

must be an authorized role for the subject’s user. Similarly, a set of domains

is associated with a role. Since a subject is already associated with a role, the

domain of a subject should be in the set of domains authorized for the role.

2.12 Domain-type enforcement (DTE) model 53

Thus, by constraining subject-role association and user-subject association

using the user-role assignments of the RBAC model and by constraining the

subject-domain association using the role-domain assignment, a DTE model

can be made to implement the policies represented by a simple RBAC

model. Furthermore, the abstract set of permissions associated with a role

takes a concrete form when roles are assigned to domains, since the

domains in a DTE model encapsulate the processes relevant to a platform

(e.g., daemons, file systems, and system utilities in an operating system).

Since domains are associated with other domains and object types through

DDAT and DTAT table entries, the specification of permissions associated

with a role becomes complete.

References

[1] Anderson, J. P., Computer Security Technology Planning Study Volume II,

ESD-TR-73-51, Electronic Systems Division, Air Force Systems Command,

Hanscom Field, Bedford, MA, October 1972.

[2] Lampson, B., “Protection,” Proc. 5th Princeton Symp. of Info. Sci. and Syst., March

1971, pp. 437–443.

[3] Conway, R. W., W. L. Maxwell, and H. L. Morgan, “On the Implementation of

Security Measures in Information Systems,” Comm. ACM, Vol. 15, No. 4, April

1972, pp. 211–220.

[4] Harrison, M. A., W. L. Ruzzo, and J. D. Ullman, “Protection in Operating

Systems, “ Comm. ACM, Vol. 19, No. 8, August 1976, pp. 461–471.

[5] DoD National Computer Security Center, Department of Defense Trusted Computer

Systems Evaluation Criteria, December 1985, DoD 5200.28-STD.

[6] Bell, D. E., and L. J. LaPadula, Secure Computer Systems: Mathematical Foundations

and Model, Bedford, MA: The Mitre Corporation, 1973. See also D. E. Bell and

L. J. LaPadula, Secure Computer System: Unified Exposition and MULTICS

Interpretation, MTR-2997 Rev. 1, Bedford, MA: The MITRE Corporation, March

1976; also ESD-TR-75-306, rev. 1, Electronic Systems Division, Air Force

Systems Command, Hanscom Field, Bedford, MA.

[7] Biba, K. J., Integrity Considerations for Secure Computer Systems, Bedford, MA: The

MITRE Corporation, 1977.

[8] Clark, D. D., and D. R. Wilson, “A Comparison of Commercial and Military

Computer Security Policies,” IEEE Symposium of Security and Privacy, 1987, pp.

184–194.

[9] “The Chinese Wall Security Policy,” Proc. IEEE Computer Society Symposium on

Research in Security and Privacy, April 1989, pp. 215–228.

54 Access Control: Properties, Policies, and Models

[10] Badger, L., et al., “A Domain and Type Enforcement Prototype,” Usenix

Computing Systems Volume 9, Cambridge, MA, 1996.

[11] Boebert, W., and R. Kain, “A Practical Alternative to Hierarchical Integrity

Policies,” Proc. of 8th National Computer Security Conference, October 1985.

[12] Ostendorp, K. A., et al., “Domain and Type Enforcement Firewalls,” DARPA

Information Survivability Conference and Exposition, 2000, DISCEX ‘00, Vol. 1,

1999, pp. 351–361.

[13] Tidswell, J., and J. Potter, An Approach to Dynamic Domain and Type Enforcement,

Microsoft Research Institute, Department of Computing, Macquarie

University, NSW, Australia, 2000.

[14] Hoffman, J., “Implementing RBAC on a Type-Enforced System,” Proc. of 13th

Annual Computer Security Applications Conference, December 1997.

[15] Saltzer, J. H., and M. D. Schroeder, “The Protection of Information in

Computer Systems,” Proc. IEEE, Vol. 63, No. 9, September 1975, pp.

1278–1308.

2.12 Domain-type enforcement (DTE) model 55

Core RBAC Features

The RBAC security model is both abstract and general. It is

abstract, because properties that are not relevant to security

are not included, and it is general because many designs could be

considered valid interpretations of the model. Thus, the model is

usable as a basis for the design of a variety of IT systems.

The RBAC model described here and in the next two chap-

ters is sufficient to support a variety of security policies. In par-

ticular, an argument is made for least privilege and SoD. Least

privilege is the time-honored administrative practice of selec-

tively assigning privileges to users such that the user is given

no more privilege than is necessary to perform his or her job

function. The principle of least privilege avoids the problem of

an individual having the ability to perform unnecessary and

potentially harmful actions merely as a side effect of gaining

the ability to perform desired functions. Permissions (or privi-

leges) are rights granted to an individual, or subject acting on

behalf of a user, that enable the holder of those rights to act in

the system within the bounds of those rights. The question

then becomes how to assign the set of system privileges to the

aggregates of functions or duties that correspond to a role of a

user. Least privilege provides a rationale for installing the sepa-

ration boundaries that are to be provided by RBAC protection

and management mechanisms. Ensuring adherence to the

principle of least privilege is largely an administrative challenge

that requires the identification of job functions, the specifica-

tion of the set of privileges required to perform each function,

57

3
Contents

3.1 Roles versus ACL groups

3.2 Core RBAC

3.3 Mapping the enterprise
view to the system view

C H A P T E R

and the restriction of the user to a domain with those privileges and

nothing more.

SoD refers to the partitioning of tasks and associated privileges among

different roles associated with a single user to prevent users from colluding

with one another. These separation concepts include multiplexing shared

resources, naming distinctive sets of permissions to include functional

decomposition, categorically classifying users, and granting hierarchical

decomposition privileges.

The major purpose of RBAC is to facilitate authorization management

and review. Administration RBAC features range from the simple to the

complex. Because of the wide range of possible RBAC deployments, differ-

ent RBAC features apply to different environments based on their scope of

control and risk profile. Even identifying the bounds of RBAC is a point of

dispute. Research continues to this day to extend the RBAC model in

attempts to increase its functionality in support of new policies and to inte-

grate RBAC into a greater range of IT infrastructures and enterprise pro-

cesses. For instance, work is being conducted to include RBAC as a core

technology within workflow management systems (see Section 12.1) and to

extend RBAC policy to include temporal issues (see Section 5.3). However,

there are several basic RBAC features that are well accepted and that are

being widely implemented as a major component of government and com-

mercial IT infrastructures. To avoid diluting RBAC’s essential features and

motivations and distorting its basic properties, a taxonomy has been devel-

oped to distinguish the features incorporated in several RBAC models

proposed in the literature.

The RBAC model taxonomy consists of four models—core RBAC, hierar-

chical RBAC, static constrained RBAC, and dynamic constrained RBAC. This

chapter discusses the concepts of the core RBAC model as well as

approaches used for mapping the abstract concepts of core RBAC onto the

concrete structures of host operating systems and applications. Core RBAC

covers the basic set of features that are included in all RBAC systems. It is

the inclusion of this set of features that distinguishes RBAC from other

forms of authorization management systems. Chapter 4 details hierarchical

RBAC. Hierarchical RBAC adds the concept of a role hierarchy, defined as a

partial ordering on roles, using an inheritance relation. Chapter 5 covers

constrained RBAC in terms of the static and dynamic SoD properties. Stati-

cally constrained RBAC adds constraint relations imposed on role assign-

ment relations. Dynamic constrained RBAC imposes constraints on the

activation of sets of roles that may be included as an attribute of a user’s

subjects.

58 Core RBAC Features

Before reviewing the core RBAC model’s features, we first describe the

similarities and differences between roles and groups.

3.1 Roles versus ACL groups

An ACL is a lower-level mechanism that contains the names of subjects that

are authorized to access the object to which it refers, as well as specific per-

missions that are granted to each authorized subject. Thus, when a subject

wants to access an object, the system searches for an entry of the subject in

the appropriate ACL. If an entry exists, and if the requested operation is part

of that entry, then the system permits access. The privilege to create and

modify ACLs is restricted to the owners of the objects for which the ACLs

protect. To support discretionary policies, ownership or control typically

resides with the creators of the objects. In an attempt to support

nondiscretionary policies, which are typical of many organizations, owner-

ship is assumed by the enterprise, with security administrators centrally

controlling ACL entries on behalf of the enterprise. For administrative effi-

ciency reasons, a group is often used as an entry on the ACL as a shorthand

notation for describing a collection of individual subjects. For purposes of

access control calculations, the subject’s identity is compared to the identi-

ties maintained in the group. If a match is found, the subject is allowed to

perform the operation corresponding to the group entry.

At a basic level, roles can be considered to be equivalent to groups. A

role can represent a collection of users, and a user can be a member of mul-

tiple roles. Similarly, a single privilege can be associated with one or more

groups or roles and a single group or role with one or more privileges. As

such, assigning a user to a group or role provides the user with the ability to

execute those privileges that are associated with the group or role. At this

level of discourse a role is not unlike that of a group within the context of an

ACL. However, roles and groups have different semantics in access control

models and different usage in their implementation.

Groups are implementation-specific. Therefore, the characteristics of a

group may change from one implementation to another. For example,

within some UNIX environments, only one group can be associated with a

particular file; other operating system environments allow multiple groups

to coexist among the access control entries of a file, while still other access

control systems prevent a user from being a member of more than one

group at a time. Commensurate with restrictions on group membership, or

group usage, are restrictions on administrators or object owners’ specificity

and granularity of control.

3.1 Roles versus ACL groups 59

As a central element of the RBAC model, a role is defined in terms of a

set of properties (with fixed characteristics). Regardless of its implementa-

tion, a role will always exhibit the properties defined by the RBAC model. A

group may or may not exhibit these properties. For example, the properties

of an RBAC role allow for the naming of many-to-many relations among

users and permissions. For a group to meet this same property, the group

structure as implemented must not place any practical restrictions on the

number of the following:

◗ Groups that could be created;

◗ Users that could become a member of any group;

◗ Groups to which a user can have simultaneous membership;

◗ Individual groups that can be included within access control entries of

a single access control list.

Many, but not all, application and operating system group or ACL mech-

anisms meet this requirement and thus may be considered equivalent to a

role according to the RBAC model. Because of their compliance to the

RBAC model they are known to provide the administrative benefits associ-

ated with a simple RBAC role within their scope of control.

Because RBAC is a model and not a mechanism, it may be implemented

within many types of systems to include network and enterprise manage-

ment systems with a scope of control that is far more expansive than a sin-

gle operating system or application. Regardless of its embodiment, users and

roles are treated as global entities under the RBAC model. By implementing

RBAC within an enterprise management system, the system administrator

treats and manages the users and roles as abstractions of system- and

application-specific permission. For instance, assigning a user to a role may

grant the user a set of permissions within and across multiple operat-

ing systems and applications. From the enterprise perspective, it may be

far more efficient to manage user permissions through global roles than

through the individual groups of potentially many operating systems and

applications.

Central to RBAC is the concept of role relations. By taking advantage of

the fixed properties of a role, RBAC serves as a semantic construct around

which an access control policy is formulated. In addition to user and permis-

sion assignment relations, the RBAC model includes user and permission

inheritance relations and a variety of static and dynamic constraint rela-

tions. Although it is plausible that a group structure could be extended to

provide a semantically equivalent set of relations, in general, groups are

60 Core RBAC Features

product-specific with differing characteristics and therefore are better

viewed as serving rather then competing with the RBAC model roles.

3.2 Core RBAC

Core RBAC recognizes five administrative elements: (1) users, (2) roles, and

(3) permissions, where permissions are composed of (4) operations applied

to (5) objects. Central to RBAC is the concept of role, where a role is a

semantic construct around which access policy is formulated. The most basic

of these relations are user and permission assignments. In RBAC, permis-

sions are associated with roles, and users are made members of roles,

thereby acquiring the roles’ permissions. Figure 3.1 shows the relationship

between users, roles, and permissions. Figure 3.1’s use of double-headed

arrows indicates a many-to-many relationship. For example, a single user

can be associated with one or more roles, and a single role can have one or

more user members.

This arrangement provides great flexibility and granularity of assignment

of permissions to roles and users to roles. Any increase in flexibility in con-

trolling access to resources also strengthens the application of the principle

of least privilege.

3.2.1 Administrative support

One of RBAC’s greatest virtues is the administrative capability that it sup-

ports. The administration of authorization data is widely acknowledged as

an onerous process with a large and recurring expense. Under the core

RBAC model, users are assigned to roles based on their competencies,

authority, and responsibilities. User assignments can be easily revoked, and

new assignments established as job assignments dictate. With RBAC, users

are not granted permissions to perform operations on an individual basis;

instead, permissions are assigned to their roles. Role associations with new

permissions can be established, while old permissions can be deleted as

3.2 Core RBAC 61

Users Roles Permissions

Figure 3.1 User, role, and permission relationships.

organizational functions change and evolve. This basic concept has the

advantage of simplifying the understanding and management of permis-

sions: System administrators can update roles without updating the permis-

sions for every user on an individual basis.

As an alternative to providing these conveniences, it is often the practice

to establish user permissions based on a concept of “cloning.” Cloning is the

practice of assigning permissions to a user based on the duplication of per-

missions of a second user who performs a similar function to that of the first

user. Cloning is usually performed without regard to the details of the per-

missions that are assigned to users. Although cloning may be a quick and

efficient method for the establishment of permissions, due to the coarse

nature of permission assignment, cloning is generally considered to be a

dangerous practice.

Another advantage of RBAC is that system administrators specify access

requirements to resources at the same level of abstration as typical business

processes in an enterprise. Under the RBAC model, system managers

administratively create roles for various job positions in the organization.

For example, a role can include teller or loan officer in a bank, or doctor,

nurse, or clinician in a hospital. The permissions that are assigned to a role

constrain members of the role to a specific set of actions. For example,

within a hospital system, the role of a doctor can include permissions to per-

form diagnosis, prescribe medication, and order laboratory tests; the role of

researcher can be limited to gathering anonymous clinical information for

studies; the role of social worker may be reviewing patient profiles to flag

possible suicidal patients or to determine possible abuse cases.

3.2.2 Permissions

In modeling an access control system, system administrators may treat

permission as an abstract concept that refers to the arbitrary binding of com-

puter operations and resource objects, and, in the case of a transac-

tion-based system, the system administrator may take processes and values

into consideration. Because of this implied action, one can consider permis-

sions to represent an atomic unit of work exercised within a computing

environment. The collection of permissions assigned to a role confers the

potential to perform duties, tasks, functions, or any other abstraction of a

work-related activity. Assigning a user to a role gives the user the ability to

perform these activities.

Permissions that are assigned to roles reflect policy decisions on the part

of the host organization. These permission assignments can be detailed

in terms of both granularity of method and granularity of access. To

62 Core RBAC Features

understand the importance of granularity of method, consider the differ-

ences between the access needs of a teller and an accounting supervisor in a

bank. An enterprise defines a teller role as being able to perform a savings

deposit operation. This requires read and write access to specific fields

within a savings file. An enterprise may also define an accounting supervi-

sor role that is allowed to perform correction operations. These operations

require read and write access to the same fields of the savings file as the

teller needs. However, the accounting supervisor may not be allowed to ini-

tiate deposits or withdrawals but only perform corrections after the fact.

Likewise, the teller is not allowed to perform any corrections once the trans-

action has been completed. These two roles are distinguished by the opera-

tions that can be executed and the values that are written to the transaction

log file.

To understand the importance of the granularity of access, consider the

needs of a pharmacist to access a patient’s record to check for interactions

between medications and to add notes to the medication section of the

patient record. Although such operations may be necessary, the pharmacist

should not be able to read or alter other parts of the patient record.

The assignment of permissions to roles can comply with rules that are

self-imposed. For example, a health care provider may decide to constrain

the role of clinician to posting only the results of certain tests, rather than

distributing them where routing and human errors can result in a violation

of a patient’s right to privacy. Permission assignments may pertain to the

enforcement of laws or regulations. For example, a system could constrain a

nurse to adding a new entry to a patient’s history of treatments, rather than

being able to generally modify a patent record. A pharmacist can be pro-

vided with permissions to dispense, but not prescribe, medication.

The type of operations and the objects that RBAC controls are dependent

on the type of system in which it will be implemented. For example, within

an operating system, operations might include read, write, and execute;

within a DBMS, operations might include insert, delete, append, and

update; and within a transaction management system, operations would

take on the form of and exhibit all the properties of a transaction. The set of

objects covered by the RBAC system includes all of the objects accessible by

the RBAC operations. However, system objects need not be included in an

RBAC scheme. For instance, access to system-level objects such as synchro-

nization objects (e.g., semaphores, pipes, and message segments) and tem-

porary objects (e.g., temporary files and buffers) may not necessarily be

controlled within the RBAC protection set. It is the job of the resource man-

agement system of the underlying operating system to protect these objects

to support process isolation and to prevent security bypass attacks, as

3.2 Core RBAC 63

pointed out in Section 2.3. RBAC objects need not be limited to information

containers. RBAC objects can represent exhaustible system resources, such

as printers, disk space, and CPU cycles.

As an illustration of the relations described earlier, Figure 3.2 shows a

pair of binary relations: one between operation and object, referred to as a

permission, and the other between role and permission.

3.2.3 Role activation

Consistent with many other types of models, RBAC includes the concepts of

subjects and objects. In general, the properties and mappings defined by the

RBAC model can be divided into two separate but dependent static and

dynamic components. The static component that has been discussed thus far

is defined in terms of RBAC relations that do not involve the notion of a

subject (in practical terms of ten equivalent to session). In applying a

dynamic security policy to a computing system, we speak of subjects, which

are active entities whose access to roles, operations, and objects must be

controlled. A subject acting on the user’s behalf carries out all the requests

of a user. Each subject is uniquely referenced by an identifier, which is used

to determine whether the subject is authorized for a role and can become

active in the role. A user may be associated with multiple subjects at any

moment in time. Each subject may have a different combination of active

roles. This feature supports the principle of least privilege in that a user that

is assigned to multiple roles may activate any subset of these roles to suit his

or her tasks. Limiting the roles that can be activated by a subject restricts the

subject to the space of accesses that are defined by the permissions that are

assigned to the roles in activation. Chapter 5 defines constraint relations

that can be applied to role activation in support of SoD policies and

enhanced least privilege features.

The dynamic component of core RBAC includes role activation and sub-

ject access. Properties of core RBAC ensure that the active roles of a subject

are a subset of the roles that are assigned to the subject’s user and that the

active roles of a subject are applied in the performance of object access

checks. In addition to these properties, the dynamic component of the core

64 Core RBAC Features

Users Roles
OperationsOperations

Permissions

Objects

Figure 3.2 Core RBAC static element.

RBAC model defines two mapping functions. The first maps a subject back

to a single user, and the second maps each subject to an active role set. Defi-

nition 3.1 formally defines core RBAC.

Figure 3.3 illustrates the set of dynamic mappings and static relations

that are necessary for a user to access an object. The dotted arrows depict

dynamic mappings, and the solid arrows depict static relations.

3.3 Mapping the enterprise view to the system view

In our terminology, privileges are system-specific, and permissions are

mapped into privileges. Each system supports its own class of operations and

has its own class of resources. The scope of a role pertains to the class of privi-

leges that can be expressed by the operations and resources of the systems

for which RBAC controls access. Although privileges are system-specific,

users and roles can take on a common meaning across multiple systems.

3.3 Mapping the enterprise view to the system view 65

u1

u2

s1

s2

r1 r2

Roles

Users Subjects

op1 o1
p1

op2 o2
p2

Permissions

subject-user

subject-roles

assigned-permissions

assigned-users

Figure 3.3 User u
1

can perform operation op
2

on object o
2

because

p
2
∈ assigned_permissions(r

2
) ∧ u

1
assigned_users(r

2
) ∧ u

1
subject_user(s

2
) ∧

r
2

subject_roles(s
2
).

66 Core RBAC Features

Definition 3.1 The Core RBAC model is defined as follows:

◗ USERS, ROLES, OPS, and OBS (users, roles, operations, and objects,

repectively).

◗ UA ⊆ USERS × ROLES, a many-to-many mapping between users and roles

(user-to-role assignment relation).

◗ assigned_users: (r:ROLES) → 2
USERS

, the mapping of role r onto a set of

users. Formally: assigned_users(r) = {u ∈ USERS | (u,r) ∈ UA}

◗ PRMS = 2
(OPS × OBS)

, the set of permissions.

◗ PA ⊆ PRMS × ROLES, a many-to-many mapping between permissions

and roles (role-permission assignment relation).

◗ assigned_permissions(r: ROLES) → 2
PRMS

, the mapping of role r onto a set of

permissions. Formally: assigned_permissions(r) = {p ∈ PRMS|(p,r) ∈ PA}.

◗ SUBJECTS, the set of subjects.

◗ subject_user(s: SUBJECTS) → USERS, the mapping of subject s onto the

subject’s associated user.

◗ subject_roles(s:SUBJECTS) → 2
ROLES

, the mapping of subject s onto a set of

roles. Formally: subject_roles(s
i
) ⊆ {r ∈ ROLES|(subject_user(s

i
),r) ∈ UA}

Property 3.1 Role authorization. A subject can never have an active role

that is not authorized for its user.

∀ s:SUBJECTS, u : USERS, r :ROLES

r subject_roles(s) ^ u subject_user(s) u assigned_users(r)

◗ access: SUBJECTS × OPS × OBS → BOOLEAN;

◗ access(s, op, o) = 1 if subject s can access object o using operation op,

0 otherwise.

Property 3.2 Object access authorization. A subject s can perform an

operation op on object o only if there exists a role r that is included in the

subject’s active role set and there exists an permission that is assigned to r

such that the permission authorizes the performance of op on o.

s:SUBJECTS, op:OPS, o:OBS

access(s, op, o) ⇒
r: ROLES, p:PRMS r ∈ subject_role ^ p assigned_permissions(r)

^ (op, o) ∈ p

User “John Smith” may possess a number of system accounts and may be

able to access resources within a variety of systems. Similarly, the role

“accounts receivable clerk” may be assigned privileges that span a number

of different systems and applications. In general, users, roles, and permis-

sions can be treated as global entities, while privileges that are ultimately

assigned to a role are specific to local computing environments.

In Figure 3.4, Tom and John are loan officers. They use their role per-

missions to read account data, write loan data, and execute transactions A,

B, and C. The role permissions authorize the users assigned to the role to

access the protected resources to perform their work. To put the role per-

missions into effect, access rights must be set up in the servers and applica-

tions affected—in other words, the permissions must be mapped into

system-specific privileges.

The question remains, how are these role permissions reflected in real

systems? This depends greatly on the type of environment and the scope of

control for which RBAC is implemented. For example, when system admin-

istrators implement RBAC within an operating system, DBMS, or applica-

tion environment, RBAC can be directly designed into the native resource

management and access control system. In these environments, the RBAC

system could directly manage the users, roles, operations, and resources

that are included within these environments. With respect to a distributed

heterogeneous computing environment, no single or overarching resource

management or access control system exists. To further complicate the

issue, the privilege names and semantics vary from system to system. For

example, the read operation to access a protected file is called “r” within

most UNIX systems or “READ” in RACF. A write operation could include a

3.3 Mapping the enterprise view to the system view 67

Users

Teller

Roles Permissions

A
B

C

Accounts

Loans

Read

Write

Execute

Loan officer

Transactions

ManagerJohn

Pam

Tom

Figure 3.4 User-roles and role-privilege associations.

read operation in some systems but not in others. To deal with system-

dependent permissions, a number of different approaches have been

proposed and, in fact, are being implemented within enterprise manage-

ment and resource-provisioning systems.

Regardless of the approach, to deliver the prescribed benefits of RBAC,

core RBAC requires vendors to provide a method for mapping and main-

taining role-permission relations. It is important to emphasize that the

RBAC model does not dictate how these mappings are to be implemented

but rather specifies that user-role and role-permission relations must be in

place.

Because the RBAC model does not specify requirements for techniques

in mapping an enterprise view of RBAC to the system level view, IT con-

sumers must evaluate and compare competing products with respect to

their specific needs and applications. The following sections discuss two

generic approaches to providing this mapping. See Section 14.2 for RBAC

model concepts implemented in commercially available enterprise security

software.

3.3.1 Global users and roles and indirect role privileges

The first approach to mapping an enterprise-level RBAC view onto a sys-

tem-level view involves creating and maintaining direct associations

between RBAC users and local user IDs and between RBAC roles and local

groups. The local administrative interface can then be used to protect local

resources in terms of the RBAC system’s created user IDs and groups.

Under this approach, the RBAC system links the user IDs of user

accounts on various systems to one user at the enterprise level. This makes

it possible to manage all the user IDs of one user (person) from a single

point. User IDs on a particular system are often organized into user groups.

Accordingly, a security administrator can authorize a group to access a

resource instead of having to authorize each individual user. Groups and

user IDs are central to mapping RBAC entities on the enterprise level to

privileges at the system level.

At the enterprise level, users are organized into roles based on their role

assignments. A role is responsible for the execution of a portion of the over-

all work performed by the enterprise. The work is performed through the

invocation of permissions that are assigned to roles. To create a mapping of

an enterprise view onto a system-level group, the RBAC system populates

the group with the users who are assigned to its corresponding role. For the

RBAC system to grant a user membership into a local group, the user must

possess an account on the system. As a consequence, for each user who is

68 Core RBAC Features

included within any group on the local system, the RBAC system must first

create a local user account. The RBAC system may perform this user and

role-to-user ID and group mapping over any number of local systems where

there exists a single user and single role that would be mapped onto multi-

ple systems. Thus, deleting a user’s role assignment at the enterprise level

would result in the deletion of the user’s membership within multiple

groups in multiple systems. Assigning a user to a role at the enterprise level

would result in the creation of user IDs and the granting of group member-

ships within any system for which the role has been previously mapped.

Using this scheme, the RBAC system can manage user IDs and groups across

its scope of control through manipulating user-role assignments at the

enterprise level. The mapping relations could be stored in any central data-

base or directory for convenient access and retrieval.

Once the RBAC system has created the user IDs, groups, and group

memberships at the system level, local administrators are free to protect

local resources by employing user IDs and groups in expressions of local

privileges. For example, a native ACL mechanism can be used in this

expression of privilege. Once these local privileges are established, the users

assigned to those roles mapped to those groups used as an expression of

privilege in protecting a resource on a local system can log on to that system

and access the resource.

In Figure 3.5, the users Tom and John are assigned to the role loan offi-

cer at the enterprise level. Tom and John’s role is mapped onto system 1 at

the system level by creating corresponding user IDs and a corresponding

group that includes Tom and John as group members. At the system level, a

local administrative interface is used to create an ACL that gives the group

loan officer read access to the files contained in the loan_data directory.

3.3.2 Mapping permissions into privileges

To allow for the definition of system-independent permissions, the RBAC

system provides abstract operations and abstract resources at the enterprise

level. Each abstract operation may map one-to-many onto the real opera-

tions of real systems at the system level. Through this mapping process, sys-

tem-specific interpretations of the generic operations are resolved by the

creation of equivalent but system-specific operations. Similarly, abstract

resources can be mapped one-to-many onto real resources on real systems.

The RBAC administrator may centrally grant role permissions in terms of

these abstract operations and abstract resources, resulting in the creation of

ACLs (i.e., privileges) on real resources across one or more systems. Once

mappings are established, any changes to permissions would result in

3.3 Mapping the enterprise view to the system view 69

corresponding changes to these ACLs (privileges). In Figure 3.6, because

loan officers are assigned the permission to perform write operations on

loans, wherever the abstract loans resource is instantiated (mapped), there

would result the automatic formulation of an ACL in terms of the local

system’s interpretation of the abstract operation “write.” In Figure 3.6, the

abstract resource “loans” is mapped to the real resource “loan_data” on

system 1 and to two other real resources on other systems at the system

level. The abstract operation “write” corresponds to the “w” operation on

system 1.

70 Core RBAC Features

John

Pam

Tom

Users

Teller

Roles

Loan officer

Manager

John’s user ID

Tom’s user ID
Pam’s user ID

User accounts

System 1
System 2

System n System n

System 1
System 2

Loan officer

Groups

System 1
System 2

System n

ACLs

(LoanOfficer,
read)

loan_data

…
(LoanOfficer,
write)

file_xyz

System level

Enterprise level

RBAC System Created Local Admin. Created

Figure 3.5 Mapping global users and roles to local user accounts, groups, and

privileges.

3.3 Mapping the enterprise view to the system view 71

John

Pam

Tom

Users

Teller

Roles

Loan officer

Manager

John’s user ID

Tom’s user ID
Pam’s user ID

User accounts

System 1
System 2

System n System n

System 1
System 2

Loan officer

Groups

System 1
System 2

System n

ACLs

loan_data(LoanOfficer, w)

…

System level

Enterprise level

RBAC system created

Permissions
(abstract privileges)

B
C

Read

Write

Execute

Accounts

Loans

Figure 3.6 Mapping abstract permissions assigned to the role loan officer at the

enterprise level to real ACLs at the system level.

Role Hierarchies

As a major component of an RBAC system, role hierar-

chies go beyond the basic core RBAC structures described

in Chapter 3 in their ability to depict and manage user privileges.

These enhanced capabilities are a consequence of the inheri-

tance or containment relationships that are used to define role

hierarchies. Simply by virtue of a role’s relative position in a

role hierarchy, the permissions that are assigned to the role

are known to contain, or be contained by, other roles in the

hierarchy.

In addition to the user and permission role assignments that

are characteristic of flat role structures, the role inheritance

relation creates a third kind of authorization in addition to

user-role and role-permission authorizations. If a role A inher-

its role B, it means that all of B’s permissions are available via

role A. In other words, B’s permissions are a proper subset of

the permissions of A. System, organizational, and enterprise

role hierarchies are created through the strategic establishment

of role inheritance relationships that exist among roles.

Through the creation of relations, administrators are better

able to formulate access policies in terms of organization-spe-

cific functions and business structures. For instance the permis-

sions that are authorized for a role can be decomposed into

lower-level roles representing the functions, duties, and tasks

that comprise the role. Once these lower-level roles are cre-

ated, they may be reused in the creation of higher-level roles.

Although the required effort involved in the planning and

construction of a role hierarchy is no doubt significant, the

benefits of such an effort are immediate and long-lasting. These

73

4
Contents

4.1 Building role hierarchies
from flat roles

4.2 Inheritance schemes

4.3 Hierarchy structures and
inheritance forms

4.4 Accounting for role types

4.5 General and limited role
hierarchies

4.6 Accounting for the
Stanford model

C H A P T E R

benefits include increased administrative productivity in the distribution,

review, and revocation of permissions as well as the ability to better specify

and analyze access control policies.

This chapter investigates the technical aspects of role hierarchies that

have been included within various RBAC models [1–3], permission man-

agement schemes [4, 5], and product offerings. In addition, we discuss the

practical uses of role inheritance relations in building organizational func-

tions and business structures [6] for the formulation and management of

privilege distribution policies.

4.1 Building role hierarchies from flat roles

The motivation for role hierarchies is the observation that individual roles

within an organization often have overlapping functions; that is, users

belonging to different roles may be authorized for common permissions. In

extreme circumstances, there are general functions performed by all or most

users within a department or enterprise. For example, general permissions

may relate to the ability to download e-mail, access an internal Web site, or

fill out and submit a travel voucher. In the absence of role hierarchies, it is

inefficient and administratively cumbersome to specify these general per-

missions repeatedly for a large number of roles, or to assign large numbers

of users to general roles. In the presence of a role hierarchy, the collection of

permissions that comprise a job function can be defined by multiple subor-

dinate roles, each of which may be reused in the sharing of common per-

missions and formulation of other roles.

To illustrate the potential for overlapping permissions and functions con-

sider five typical roles within a hospital—resident, physician, cardiologist,

oncologist, and accounts receivable clerk. Because the cardiologist and

oncologist are both physicians, it is reasonable to assume that all of the per-

missions that are assigned to the physician would also be assigned to the

cardiologist and oncologist roles. From an authorization management per-

spective, each permission assigned to the physician role would also have to

be assigned to the cardiologist and oncologist roles. In addition, because a

resident performs many of the duties of a physician, the permissions that are

assigned to the resident role would also need to be assigned to the physician

role, while the physician role may be assigned additional permissions that

are not assigned to the resident role. Although the cardiologist and

oncologist roles may be assigned a common set of permissions, each of these

roles would also include a unique and disjoint set of permissions for the

respective specialty. Finally, because the duties that pertain to the accounts

74 Role Hierarchies

receivable clerk would be completely disjointed from those of any of the

other roles, it is reasonable to expect that there would be no permission

overlap with respect to the permissions that are assigned to the accounts

receivable clerk role and the permissions that are assigned to any of the

other four roles of this example.

Now consider the role graph of Figure 4.1, which illustrates the five roles

and the overlapping permission relations described above. In this example,

the roles cardiologist and oncologist inherit the roles physician and resident.

Since the inheritance of permissions and role memberships is reflexive and

transitive, for the example in Figure 4.1, any user that is assigned to the car-

diologist role is authorized for the permissions that are assigned to the role

cardiologist and authorized for the permissions that are assigned to the roles

physician and resident. Not all roles have to be hierarchically related. The

roles cardiologist, oncologist, and accounts receivable clerk are not hierar-

chically related, but they can inherit some or all of the same roles, as is the

case of cardiologist and oncologist.

4.2 Inheritance schemes

Researchers have proposed several inheritance schemes. Although all role

hierarchy schemes are similar in their support of a basic inheritance relation

to characterize permission set inclusion among roles, the specific role defini-

tions and supporting authorization structures that define these schemes can

differ considerably.

4.2.1 Direct privilege inheritance

Some role inheritance schemes use the term role to refer simply to a named

collection of privileges. Under this approach, role inheritance refers to

4.2 Inheritance schemes 75

Cardiologist Oncologist

Physician

Resident

Accounts receivable clerk

Figure 4.1 Example of the functional role hierarchy.

permission subsetting [3, 4] (i.e., r
1

“inherits” role r
2

if all permissions of r
2

are also permissions of r
1
). Note that a role exists as an entity separate from

and independent of the role holder. As such, users and groups of users are

free to be administered separately. Assigning users or groups to roles grants

the users or members of the groups authorization to the permissions defined

by the role. For example, Baldwin’s approach [4] makes use of a permission

graph (Figure 4.2) that includes function, role, and user-group nodes. Any

path from a user-group node to a functional node implies that the user is

authorized to perform the privileges encapsulated by the functional node.

Because users must be assigned to groups, the user-group node in Figure 4.2

includes the subnodes user and group, where users may be assigned

to groups, or users may be assigned directly to roles. Although roles may

be globally defined within an enterprise or organization, permissions are

system-specific. For this reason, direct permission inheritance schemes are

often implemented as part of a closed management system such as that of a

DBMS. Within these systems, the resources and operations that are used in

the formulation of permissions and assigned to roles all belong to a single

class of operations and resources.

4.2.2 Permission and user membership inheritance

Another inheritance scheme uses the term role to refer to a structure that

includes both users and permissions [5]. Under this scheme, a role in the

role hierarchy serves both as a collection of permissions on one side and a

collection of users on the other side (Figure 4.3). The roles toward the top of

the hierarchy or role graph represent the more powerful roles (i.e., those

76 Role Hierarchies

GroupsUsers

User/groups Roles Functions

Figure 4.2 Baldwin’s privilege graph.

roles containing a greater number of authorized permissions and fewer

authorized users), and the roles toward the bottom of the graph represent

the more general roles (i.e., those roles containing fewer authorized permis-

sions and a greater number of authorized users). Assigning a user to a role

has the effect of authorizing the user for the permissions assigned to the role

and to all the permissions that are assigned to the roles inherited by that

role. For example, the authorized permissions for U3, U4, and U5 that are

assigned to R1 include P4 and P5 by permission assignment, and P8, P9, P10,

P1, P2, and P3 by inheritance. Similarly, assigning a permission to a role has

the effect of authorizing the permission to the users who are assigned to the

role and to all users who are assigned to the roles that inherit that role.

Notice that under Baldwin’s permission graph, greater opportunities for

the redundant authorization of permissions to a user exist, because a user

may be assigned directly to a role, or to one or more groups, or both.

Because these groups are administered separately from the role hierarchy,

the system has no way to determine the users that are actually being

assigned to its roles via the role hierarchy. This is an important distinction

between the permission graph approach and more recent role-based secu-

rity models. Determining the users who are assigned to a role and their

membership relation with respect to other roles for which the role has an

inheritance relation is a natural consequence of the scheme depicted in

Figure 4.3.

4.2 Inheritance schemes 77

P1

P2

P3

U1

U2

U6

P6

P7

P4

P5

P8

P9

P10

U3

U4

U5

U7

U8

R1 R2

R3

R4

U
se

r
m

e
m

b
e

rs
h

ip

P
ri

v
il

e
g

e
s

Figure 4.3 Combined user and privilege inheritance.

4.2.3 User containment and indirect privilege inheritance

For some distributed RBAC implementations, role permission assignments

are not managed directly, while role hierarchies are. Under this scheme,

permissions are assigned to groups, and groups are mapped to roles that are

organized into a role hierarchy. For these systems, role hierarchies are man-

aged in terms of user containment relations: Role r
1

“contains” role r
2

if all

users authorized for r
1

are also authorized for r
2
. Assigning a user to a role r

in a user containment hierarchy assigns the user to the groups that are

mapped to r, and to the groups that are mapped to the roles that are con-

tained by r. Note, that user containment implies that a user assigned to r
1

has (at least) all the permissions of a second role r
2
that is contained by r

1
,

while the permission inheritance for r
1
and r

2
does not imply anything about

user assignment.

Role hierarchies are intended to help administrators to set up access con-

trol information based on a user’s function in an enterprise. The permissions

that make up these functions may be scattered across numerous platforms

and applications. To manage access to these permissions, a role hierarchy

uses the notions of abstract users, roles, and permissions that are global to

the enterprise. However, many operating systems and applications do not

recognize roles; they perform access checks by using actual user accounts,

groups, and ACLs on target systems. User containment hierarchies can be

used to create and automatically maintain a mapping between roles, users,

and abstract privileges on one hand, and groups, user accounts and actual

privileges on the target systems it controls, on the other hand (Figure 4.4).

Because the permissions defined within a specific target system may not

apply to all roles within the hierarchy, mapping users, roles, and role mem-

berships to user accounts and groups on a target system must be based on

the concept of a subgraph within the RBAC model graph. For example, a

subgraph maybe defined by one or more base role(s) within the role hierar-

chy and all the roles and users that inherit or contain the base role(s). For

example, a subgraph may define all the users and roles within the payroll

department. The mapping process is straightforward, with the only rule

being that the entire subgraph has to be mapped onto the target system.

Each user in the subgraph is mapped to a user account on the target system.

For each role in the subgraph, a group of the same name is created on the

target system and is populated with user accounts according to the role

membership defined by the inheritance relations (user containment) of the

subgraph.

For example, the subgraph defined by R4 of Figure 4.4 is mapped onto

target system 1. Mapping the subgraph onto target system 1 creates corre-

sponding user accounts u1, u2, u3, and u4 for the abstract users U1, U2, U3,

78 Role Hierarchies

and U4 of the subgraph. Groups gr1, gr2, gr3, and gr4 corresponding to roles

R1, R2, R3, and R4 are also created on target system 1 and are populated as

follows:

◗ gr1 has u1 and u2 as members;

◗ gr2 has u2 as a member;

◗ gr3 and gr4 has u1, u2, u3, and u4 as members.

By selecting an appropriate subgraph an administrator of a target system

may automatically create a mapping of users, roles, and role relations onto

local groups and user accounts. Subsequent changes to the portion of the

role hierarchy that corresponds to the mapped subgraph results in corre-

sponding changes to groups and user accounts. For example, deleting user

U1’s assignment to role R1 will automatically delete the user’s correspond-

ing assignment to user account u1 and delete the user’s membership within

groups g1, g3, and g4 on target system 1. Because user U1 is also included

within a subgraph (R1) that has been mapped onto target system n, the

4.2 Inheritance schemes 79

…

Target system 1, Subgraph R4 Target system n, Subgraph R1

Obj1:gr1:r,w, u3: r

Obj2:gr2:r,w; gr3:r

Obj3:u1:r,w; gr4:r

u1 u2 u3 u4

Target system 2, Subgraph R2

Obj3:gr2:r,w, u3:r
Obj4:gr2:r,w

…

Obj5:gr2:r,w

u3

Obj6:gr1:r,w,
Obj7:u2:r,w; gr1:r

Obj8:u1:r,w; gr1:r

u1 u2

R1

U1 U2 U3

U4

R2

R3

R4

gr1 gr2 gr3 gr4 gr2 gr1

Figure 4.4 User containment hierarchy.

deletion of U1’s assignment to R1 will also result in the deletion of U1’s

account and U1’s membership within group gr1 on target system n.

Taking advantage of the intermediate mappings of users and roles onto

local user accounts and groups, role/permission management is provided

through the use of these user accounts and groups as expressions of permis-

sion within the local target system. As illustrated in Figure 4.4, these per-

missions may be in the form of ACL entries. Here it is the specification of a

role, or more accurately speaking, a group corresponding to a role in the

role hierarchy, in conjunction with an operation that comprises an indirect

role-permission relationship.

As illustrated in Tables 4.1 and 4.2, although a user containment

hierarchy does not directly support permission inheritance, effectively it is

equivalent to the permission and user membership inheritance of

Section 4.2.2.

80 Role Hierarchies

Table 4.1 Role Assignments and Authorizations

R1 R2 R3 R4

Assigned users U1, U2 U3 U4

Authorized

users

U1, U2 U3 U1, U2, U3, U4 U1, U2, U3, U4

Assigned

privileges

r,w, (obj1), r,w (obj6),

r(obj7), r(obj8)

r,w(obj2), r,w(obj3),

r,w(obj4), r,w(obj5)

r(obj2) r,w(obj3)

Authorized

privileges

r,w, (obj1), r,w (obj6),

r(obj7), r(obj8),

r(obj2), r,w(obj3)

r,w(obj2), r,w(obj3),

r,w(obj4), r,w(obj5),

r(obj2)

r(obj2), r,w(obj3) r,w(obj3)

Table 4.2 User Assignments and Authorizations

U1 U2 U3 U4

Role

assignments

R1 R1 R2 R3

Authorized

roles

R1, R3, R4 R1, R3, R4 R2, R3, R4 R3

Assigned

privileges

r,w(obj3), r,w(obj8) r,w(obj7) r(obj1), r(obj3)

Authorized

privileges

r,w(obj3), r,w(obj8),

r,w, (obj1), r,w (obj6),

r(obj7), r(obj8),

r(obj2)

r,w(obj7), r,w, (obj1),

r,w (obj6), r(obj7),

r(obj8), r(obj2),

r,w(obj3)

r(obj1), r(obj3),

r,w(obj2), r,w(obj3),

r,w(obj4), r,w(obj5),

r(obj2)

r,w(obj3), r(obj2)

4.3 Hierarchy structures and inheritance forms

Regardless of the scheme, role hierarchies can be used to support several

organizational structures such as line of authority, functional delinea-

tion, and geographic responsibilities. Before discussing role hierarchical

representations of these business structures, we first describe inheritance

properties.

A binary relation between roles, called immediate inheritance, defines a

role hierarchy. The reflexive-transitive closure (i.e., both immediate and

indirect inheritance) of the immediate inheritance is called simply inheri-

tance. Intuitively, a first role inherits a second role if all permissions of the

second role are also permissions of the first role and all users of the first role

are also users of the second role. Accordingly, the role hierarchy helps

define new roles in terms of existing roles, providing the advantage of being

able to visualize and reason about the distribution of permissions while

avoiding role permission and membership redundancy.

The inheritance relation, shown as →, defines both permission inheri-

tance and user membership inheritance. Because we represent the graph

with the arcs corresponding to the inheritance relation oriented top-down,

we say that role membership is inherited top-down and that role permissions

are inherited bottom-up. Under this scheme, the roles toward the top of the

hierarchy represent more powerful roles while roles toward the bottom rep-

resent the more general roles.

Given that user and role permissions can be highly diverse and

fine-grained, role hierarchies offer a means of visualizing and managing the

distribution of permissions. User access rights can be managed as a result of

creating or revoking a user-role assignment, creating or revoking a role-per-

mission assignment or by creating or deleting a role inheritance relation.

Since inheritance properties dictate that higher-order roles can execute the

permissions of lower-order roles within a role hierarchy, we can minimize

the role-permission assignments required to facilitate a desirable distribu-

tion by assigning permission at the lowest point in a role hierarchy where it

is appropriate. Similarly, we assign users to one or more roles in the hierar-

chy to allow authorization to the greatest set of permissions that is mini-

mally necessary for the performance of duties. Role hierarchies also offer

increased administrative efficiency. Assigning a user to the cardiologist role

of Figure 4.1 has the effect of authorizing the user to the permissions that

are assigned to the cardiologist role and—by virtue of inheritance—to the

permissions that are assigned to the physician and resident roles.

4.3 Hierarchy structures and inheritance forms 81

4.3.1 Connector roles

Although organizing flat roles into a role hierarchy offers increased visual-

ization and administrative efficiency, by including connector roles within the

hierarchy we can further enhance these advantages. Intuitively, connector

roles exist within a role hierarchy for the convenience of defining collec-

tions of permissions to be inherited by higher-order roles within the hierar-

chy. Generally speaking it would not be meaningful for users to be directly

assigned to a connector role, so connector roles would not exist in the

absence of a role hierarchy. In Figure 4.5, specialist and general hospital are

connector roles: Specialist captures the commonality between cardiologist

and oncologist as well as any other specialist role that may be created; while

general hospital captures the commonality among all roles within the hospi-

tal. Regarding specialist, permissions can be assigned that are not appropri-

ate for a physician but that are shared by all roles that inherit specialist.

Regarding general hospital, permissions can be assigned to include access to

a hospital-wide calendar application or an internal Web site. Although the

use of connector roles will obviously lead to an increased number of roles

that need to be managed, the number of role-permission assignments will

be further minimized. For most applications this is a positive trade-off.

In general, connector roles can encapsulate arbitrary collections of per-

missions as an abstraction of, for example, functions, duties, tasks, or

82 Role Hierarchies

Cardiologist Oncologist

Physician

Physician resident Accounts receivable clerk

Specialist

General Hospital

Figure 4.5 Example functional role hierarchy with connector roles.

4.3 Hierarchy structures and inheritance forms 83

Formal definitions: Formally we define the set of all roles by ROLE, the immedi-

ate inheritance relation by →. The pair (Role, →) is a directed acyclic graph, whose

nodes represent the roles, and whose arcs represent the relationships q r. Usually

we draw the graph with the arcs oriented in the general direction top-to-bottom.

In this way we say that q is an immediate ascendant of r and that r is an immediate

descendant of q, if and only if q r.

The inheritance relation → defines both the permission inheritance and user

membership inheritance (i.e., r
1

→ r
2
) if and only if all permissions of r

2
are also

permissions of r
1
, and all users of r

1
are also users of r

2
. We denote by →*

the

reflexive-transitive closure of the inheritance relation (i.e., r
1

→*
r

2
iff r

1
= q

1
…q

n

= r
2
) where n ≥ 1. Note that this definition allows for r

1
and r

2
to coincide. Also,

the same relation can be used to denote the user assignment to roles, as well as

permission inheritance from a role to its assigned users. Regarding the terminol-

ogy, a user u is said to be assigned to role r if u → r, while u is said to be autho-

rized for role r if u →+
r, where →+

is the transitive closure of the → relation.

Other properties of the inheritance relation include reflexivity and

antisymmetry. Given roles r
1

and r
2
, we have r

1
→ r

1
(reflexivity) since

assigned_permissions(r
1
) ⊆ assigned_permissions(r

1
) and assigned_users(r

1
)

⊆ assigned_u sers(r
1
). Also, r

1
→ r

2
∧ r

2
→ r

1
⇒ r

1
= r

2
.

From the ordering, we define a chain of authorizations that are linear orders

of roles according to increased authority, connected by the inheritance relation

→. In the graph thus defined, r
x
f_ r

y
if and only if there is a directed path

(sequence of arrows) from r
x

to r
y
. Also, there are no (directed) cycles in the

graph since the order relation is antisymmetric and transitive.

We can now formally define general hierarchies.

Definition 4.1 General role hierarchies:

◗ RH ⊆ ROLES × ROLES is a partial order on ROLES called the inheritance rela-

tion, written as _f, where r
1
f_ r

2
only if all permissions of r

2
are also permis-

sions of r
1
, and all users of r

1
are also users of r

2
. Formally: r

1
f_ r

2

⇒ authorized_permissions(r
2
) ⊆ authorized_permissions(r

1
) ^ authorized_users(r

1
) ⊆

authorized_users(r
2
).

◗ authorized_users(r: ROLES)→2
USERS

, the mapping of role r onto a set of users in the

presence of a role hierarchy. Formally, authorized_users(r) = {u USERS | r‘ f_ r, ^

(u, r‘) ∈ UA}.

◗ authorized_permissions(r: ROLES)→2PRMS, the mapping of role r onto a set of per-

missions in the presence of a role hierarchy. Formally, authorized_permissions(r)

= {p PRMS | r‘ f_ r, (p, r‘) ∈ PA}.

activities. In doing so, system administrators are free to use and reuse these

abstractions in the formulation of any other higher-order role, to include

other connector roles.

It is important to note that in the absence of a role hierarchy, each role

would be forced to completely encapsulate, as a single collection of permis-

sions, all lower-level permission abstractions. Also, note that although

higher-order permission abstractions are composed from lower-level

abstractions, there are no hard and fast rules that dictate any sequence of

composition with respect to these levels of abstraction. For example, a role

that is assigned to a user may be composed of a collection of duties, and

these duties may bypass tasks and activities and be defined directly as collec-

tions of permissions. In this same respect, although users are typically not

directly assigned to connector roles, there are no hard rules that would pre-

vent such an assignment if it were deemed appropriate.

In addition to adding structure and providing convenience in grouping

permissions, a connector role can be used for limiting permission inheritance

within a role hierarchy. It is often the case that a role may merely share a

large subset of permissions with a second role, where the total inheritance

of permission by the first role would be inappropriate. For example,

although a cardiologist may be trained and well-qualified to perform the

functions of a general physician, there are still certain functions that are

performed on a routine basis by the general physician that the specialist

could not appropriately perform. In situations such as these, the cardiologist

may retain the permissions of the general physician but not participate in

situations where these functions would be performed. In other situations,

there might be a large portion of permissions common between roles, but

nevertheless, regulatory or institutional requirements would forbid a com-

plete inheritance of permission. Such a relationship may exist between a

teller in a bank, and the teller supervisor. In situations such as these, con-

nector roles may be used to limit some portion of permission inheritance

within the hierarchy while retaining the convenience of inheriting the com-

plement of permissions, as illustrated in Figure 4.6. While both the teller

and teller supervisor inherit select common permissions from the teller

functions role, both the teller and teller supervisor roles retain permissions

that are unique to their specific functions. As is the case of using connector

roles for other structural situations, the added burden of role proliferation

84 Role Hierarchies

Teller

Teller functions

Teller supervisor

Figure 4.6 Connector role used as a means of blocking permission inheritance.

may be justified by the reduction in the number of redundant role

permission assignments.

For example, if there is an 80% or greater permission overlap between

roles, an organization may choose to create a connector role as a means of

expressing and managing the permissions that correspond to the overlap-

ping functions. Keeping in mind that roles can be thought of as an abstract

collection of functions and permissions, the addition of connector roles

within a role hierarchy may help make it easier to visualize the distribution

of permissions among roles.

So far this chapter has discussed functional roles and their inheritance

relations. However, role hierarchies can be used to capture other organiza-

tion structure characteristics. Sections 4.3.2 and 4.3.3 explore organiza-

tional units and geographic locations as a means of contributing to the

structure of role hierarchies.

4.3.2 Organization chart hierarchies

Most enterprises are structured and managed along organizational bound-

aries such as departments, divisions, groups, and teams. Although the nam-

ing convention used to describe these OUs may differ from enterprise to

enterprise, the concept of OUs in one form or another exists across almost

all enterprises as a means of delineating lines of authority, resource owner-

ship, and areas of responsibility.

With respect to authority and responsibility, OUs are often used to

describe an enterprise hierarchy where one OU is managed or subsumed by

another. Hierarchical relations are often depicted in the form of an organi-

zational chart, where each named OU includes an individual responsible for

4.3 Hierarchy structures and inheritance forms 85

Formal definitions: Connector roles define a form of relationship between two

roles where there is a form of permission sharing in which the roles have a

nonempty intersection of their permission sets but where neither of the permis-

sion sets are a subset nor superset of the other. If there exists a role whose autho-

rized permission set is some or all of this intersection, then we say such a role is a

connector role.

Definition 4.2 Connector roles: ∀ r, r
1
, r

2
: ROLES, r is a connector role of r

1
and r

2

if r r r r1 2f f_ _∧ ∧ authorized_permissions(r) ⊆ (authorized_permissions(r
1
) ∩ autho-

rized_permissions(r
2
))

where r
1
≠r and r

2
≠r.

its management. Figure 4.7 depicts a portion of a sample organizational

chart detailing the organizational structure of a hospital that includes a chief

operations officer, four divisions, and the financial, administrative, legal,

medicine, and admissions departments. Each organizational unit (OU) per-

tains to a set of functions that are performed within the enterprise. The

managing authority of each OU may be given a budget for maintaining a

professional staff, performing IT functions, and purchasing equipment and

other supplies by a higher authority. In each case, the OU is responsible for

running the organization in an efficient manner while providing a core set

of functions and services. During periods of reduced revenue the managing

authority may be asked to provide the same functions and services with a

reduced budget. To be accountable for these budgetary and functional

responsibilities, a managing authority must assume ownership and manag-

ing authority over the OU. To meet regulatory requirements, share the bur-

den of managing the OU, or introduce base competencies, an OU is

organized into subfunctional disciplines. For example, Figure 4.7 shows the

finance department broken into accounting and forecasting departments.

The specialties department is organized using professional

activities—neurology, cardiology, and anesthesiology.

Clearly, organizational charts alone are not intended to define complete

sets of job positions or roles within an OU, nor do they prescribe privilege

inheritance relations within or among the OUs. The chief operations officer

position within the organizational chart of Figure 4.7, for example, is not

86 Role Hierarchies

General Hospital
COO, Dr. Callahan

Cardiology dept.
Dr. Buholzer

Neurology dept.
Dr. McCarthy

Anesthesiology dept.
Dr. Michaels

Finance div.
Mr. Hu

Forecasting dept.
Mr. Gavrila

Accounting dept.
Mr. Mell

Specialties div.
Dr. Frank

Legal div.
Dr. Michael

Informatics div.
Mr. Grants

Accounts receivable
Ms. Zimmie

Accounts payable
Mr. Thomas

. . .

Figure 4.7 Example organizational chart.

meant to infer the ability to perform all enterprise functions and access to all

enterprise resources [6]. However, OUs can assist in defining roles and rep-

resent collections of functions and users; as such, they are valuable struc-

tures in contributing to the overall strategy of distributing and managing of

privileges within the enterprise. For instance, OUs often assume ownership

of resources to include servers, databases, and devices. Most users within an

enterprise belong to or are guests within a specific OU and as such are selec-

tively given access to the resources that are owned by the unit. It is the local

administrators—closer to the day-to-day operations of an OU—who are best

suited for making these access control decisions.

Furthermore, OUs help in defining the business processes and work

flows that RBAC helps in creating. For instance, travel orders that are

requested within an OU may need to be approved by the managing author-

ity within the business unit. A purchase request under $2,500 may be

approved by a department manager, while requests for purchases at or over

$2,500 may need approval at the division level.

OUs can be viewed as containers of users, roles, and resources. Thus,

they can be used for defining specific roles or role types within the context

of the OU. The cardiology department may include a number of cardiology

specialists including physicians, cardiologists, and various types of nurses.

When these functional roles are placed within the cardiology department

they gain access to the resources that are owned and managed by the

department. Their specific accesses are governed and are often regulated by

the competencies and duties that are inferred from the roles. For example, a

nurse practitioner (NP) may have the capability to perform a diagnosis and

prescribe medicine as a consequence of being an NP; an NP within the cardi-

ology department may be provided the additional capability to access

patient records and add entries to the treatment history of patents that are

being treated within the department.

Systems administrators can also create specific types of security adminis-

trative roles. For example, a security administrative role may be created and

given permission to assign users to the collection of roles that are contained

within the cardiology department. Application or system administrators

may assign privileges to the cardiology department roles by selectively speci-

fying access rights to the resources that they are responsible for managing.

4.3.3 Geographical regions

Many enterprises are organized and locally managed with respect to geo-

graphical regions. While they are usually required to adhere to specific stan-

dards, in many cases, a regional operation can be independently responsible

4.3 Hierarchy structures and inheritance forms 87

for such functions as manufacturing, help desk operation, quality assurance,

marketing, sales, and profit. However, in almost all cases, regional opera-

tions must report to a central authority and in many cases benefit from glob-

alized activities such as research and development or product marketing.

From a resource access perspective, regional operations will have a signifi-

cant impact on the structure of a role hierarchy.

Let us return to our hospital example, where the hospital offers pediatric

and chemotherapy services at two regional clinics, along with core health

care operations at its downtown hospital. Each clinic requires access to the

hospital patient records while maintaining local records pertaining to

patient treatment, accounts receivable, and cashier functions. Figure 4.8

illustrates the roles pertaining to clinics respectively offering pediatric and

chemotherapy services.

88 Role Hierarchies

Oncologist

Oncology nurse practitioner

Register nurse

New City Clinic

(a)

Accounting

Accounts receivable clerk
Cashier clerk

(b)

Pediatrician

Pediatric nurse practitioner

Register nurse

Melborn Clinic

Accounting

Accounts receivable clerk
Cashier clerk

Figure 4.8 (a) New City Clinic roles, and (b) Melborn Clinic roles.

4.4 Accounting for role types

For many distributed enterprises each location or OU may have employees

whose roles are identical, but the resources that each employee accesses

pertain at least in part to the location. Examples include tellers, supervisors,

and financial advisors across branches of a bank, or secretaries across

departments. For these roles, there may be hardware resources like file serv-

ers or printers, or customer records tied to a specific office location for which

employees in the office should have access. When a generic role (common

across locations) is incorporated within a specific location, the result is what

is often referred to as a role type.

To avoid having many separate and unrelated role permissions for tell-

ers, for example, roles can include qualifiers. Common qualifiers are the

location, the name of a branch, the OU, or the region where the particular

functions of the role are fulfilled. This mechanism provides a way of cus-

tomizing the permissions assigned to a role so that they are specific to some

characteristic of the user. It should be noted that this mechanism need only

apply to some permissions assigned to the roles, since there may also be

enterprisewide permissions that apply to all roles of a specific type.

Figure 4.9 shows three types of loan officer roles—northeast, southeast,

and west. For each role type, permissions are uniquely assigned depending

on the region qualifier. Tom and John are assigned to the role loan officer

east, have the permissions to read northeast accounts and execute northeast

transactions A, B, and C. All users that are assigned to a loan officer role,

regardless of its type, have the permission to write to national loans. When

assigning permissions to role types only those permissions that are unique

to the role type (defined by the qualifier) need to be assigned. Permissions

that are generic to all role types can be assigned directly to the generic role.

Although the concept of a role type can be implemented using role qual-

ifiers as illustrated in Figure 4.9, in reality, a role type is a simple form of role

4.4 Accounting for role types 89

Privileges

A

NE accounts

National
loans

Read

Write

Execute

NE
transactions

John

Pam

Tom

Users

Loan officer
southeast

Loan officer
northeast

Loan officer
west

Roles

Loan officer
<region>

Northeast

Southeast

West

C
B

Figure 4.9 Roles and role qualifiers.

hierarchy. Figure 4.10 is a role hierarchy equivalent to that of Figure 4.9.

The generic permission to write to national loans could be assigned to the

national loan officers’ role, and the specialized (local) permission to read

northeast accounts and execute northeast transactions A, B, and C could be

assigned to the northeast loan officer functions role. Assigning Tom and

John to loan officer northeast achieves the same access control policy as that

depicted in Figure 4.9.

4.5 General and limited role hierarchies

In practice, role hierarchies are of two types—general role hierarchies and

limited role hierarchies. General role hierarchies provide support for an

arbitrary partial order to serve as the role hierarchy to include the concept

of multiple inheritances of permissions and user membership among roles.

General role hierarchies allow a role to have more than one immediate

ascendant (potentially inheriting user membership from multiple sources)

and at the same time one or more immediate descendents (potentially

inheriting permissions from multiple sources). Limited role hierarchies

90 Role Hierarchies

Formal Definitions: We represent r
1
as an immediate descendent of r

2
by r

1
r

2
, if

r r1 2f_ , but no role in the role hierarchy lies between r
1
and r

2
. That is, there exists no

role r
3
in the role hierarchy such that r r r1 3 2f f_ _ , where r

1
≠ r

2
and r

2
≠ r

3
.

We now define limited role hierarchies as a restriction on the immediate

descendents of the general role hierarchy.

Definition 4.3 Limited role hierarchies:

Definition 4.1 with the following limitation:

∀ ∈ → ∧ → ⇒ =r r r ROLES r r r r r r, , ,1 2 1 2 1 2

Loan officer

Northeast
loan officer functions

Southeast
loan officer functions

Western region
loan officer functions

Figure 4.10 A role hierarchy that is equivalent to a role type using location as a

qualifier.

impose restrictions resulting in a simpler tree structure (e.g., a role may

have one or more immediate ascendants but is restricted to a single immedi-

ate descendent, or vice versa).

Roles in a limited role hierarchy are restricted to a single immediate

descendent. Although limited role hierarchies do not support multiple inheri-

tances, they nonetheless provide clear administrative advantages over flat

role structures.

Thus far in this chapter our examples and role graphs have been

restricted to simple tree structures. The functional, organizational, and geo-

graphical graphs described above are characterized as limited inheritance

role hierarchies. Each graph includes a common root node with two or

more subnodes accurately depicting the union of user membership. In the

case of OUs, illustrated as an organization chart, permission containment

with respect to the definition of role inheritance could not be justified,

although it is accurate with respect to resource ownership and lines of

authority.

To date, the implementation of limited role hierarchies remains the

norm within most popular commercial authorization management prod-

ucts, although general role hierarchies offer greater flexibility in defining

the complex role structures that are common to many user enterprises. This

state of commercial implementation is due to a variety of circumstances.

Traditionally, commercially available products lag behind the research

community. It is always easier to create a new security model or write a

paper than to implement and market a new feature. This situation has been

especially true with respect to new security features because security fea-

tures are typically considered by vendors to diminish performance and

detract from other high value services. Also, as suggested earlier, the current

state of authorization management is so dismal that any technological

advancement has the potential to be successfully marketed and would be

welcomed by the user community. Finally, tree structures have become the

industry norm for visualizing and managing system resources. Vast numbers

of users have become accustomed to the use of trees to perform mundane

tasks such as managing directories, files, and domains, and even the more

recently available directory storage structures are organized according to

tree structures. General hierarchies, therefore, represent a departure from

the past and thus will require some adjustment on the part of users. How-

ever, any fear that users will reject general hierarchies is probably

unfounded. This is because general hierarchies are, in reality, just as intu-

itive, more natural, and more powerful in articulating enterprise structures

than the simple tree structures to which we have all become accustomed.

Figure 4.11 shows an example of a general role hierarchy.

4.5 General and limited role hierarchies 91

Figure 4.11 combines organizational and functional roles into one role

inheritance graph. General role hierarchies support the concept of multiple

inheritance, which provides the ability to inherit permissions from two or

more role sources and to inherit user membership from two or more role

sources. Multiple inheritances provide the ability to compose a role from

multiple subordinate roles (with fewer permissions) in defining roles and

relations that are characteristic of the organizational and business struc-

tures, which these roles are intended to represent. Because general hierar-

chies place no restrictions on the number of immediate role inheritance

relations, the cardiologist role is able to inherit permissions from the func-

tional role specialist and the organizational role cardiology department.

Head cardiologist Dr. McCarthy is assigned to the cardiologist role and

accordingly is authorized for the privileges that are assigned to the cardiolo-

gist role. Definition 4.1 also authorizes Dr. McCarthy for the permissions

that are assigned to any role that is inherited by the cardiologist role.

Because the graph that is depicted in Figure 4.11 represents a general role

hierarchy, any node in the graph may inherit permissions from multiple

role sources. Thus, the cardiologist role is able to inherit permissions from

92 Role Hierarchies

Cardiologist

Specialist Cardiology department

Cardiology nurse practitioner

Physician Medicine

Dr. McCarthy (head cardiologist)

Administration

Cardiologist nurse specialist

Nurse practitioner

Ms. Michaels

Figure 4.11 General hierarchy with functional and organizational roles.

Formal definitions: Combiner roles define a form of relationship in which a role

inherits permissions from disjointed immediate descendent roles, combining their

authorized permissions into a single, higher-level role. Notice that the definition of

combiner roles is the dual of that for connector roles.

Definition 4.4 Combiner roles: ∀ r, r
1
, r

2
: ROLES, r is a combiner of roles r

1
and r

2
if

r r r r1 2p p_ _∧ ^ authorized_permissions(r’) ⊇ (authorized_permissions(r
1
) ∪ autho-

rized_permissions(r
2
)), where r

1
≠ r and r

2
≠ r

both the specialist role and the cardiology department role, and by virtue of

transitivity, the permissions that are assigned to the physician and medicine

roles. As such, the cardiologist role is neither a functional nor an organiza-

tional role, but rather a hybrid. Similarly, cardiologist NP is also a hybrid

role, and by virtue of role inheritance, so is cardiologist nurse specialist. The

cardiologist role is referred to as a combiner role, since it combines the

authorized permissions of the roles that it inherits.

Another interesting characteristic of multiple inheritance is the ability to

accurately represent users and their role assignments within the role hierar-

chy through the uniform treatment of user/role assignments and the imme-

diate role inheritance relations. By virtue of role assignment, the user is

authorized for the permissions that are assigned to the user or inherited by

the role, and the user’s membership is inherited by the role and any other

role that is inherited by the role.

Although within a limited role hierarchy, a single user assignment may

also be represented through the immediate role inheritance relation, a user

can be assigned to multiple roles. Therefore, representing all of a user’s role

assignments would require multiple user instances.

Within a general hierarchy, all user role assignments can be represented

as a single user instance. Dr. McCarthy’s role assignments in Figure 4.11 are

represented as two immediate inheritance relations. Deleting Dr. McCarthy

from the role graph has the effect of deleting all of Dr. McCarthy’s permis-

sions that are managed by RBAC. This is the behavior that would be

expected intuitively.

4.6 Accounting for the Stanford model

General hierarchies also allow for an object-oriented approach to managing

an enterprise’s distribution of permissions, consistent with that prescribed

by the Stanford model [7]. The Stanford model (see Figure 4.12) recognizes

several layers of abstractions at the enterprise level. Under this model,

permissions are recorded as nonsystem-specific entitlements, which can be

grouped together into tasks, and then further managed as groups of tasks

that describe job functions. Finally, job functions can be assigned to organiza-

tional roles rather than to individuals to facilitate the assignment of author-

ity as people move in and out of a specific role. Although the Stanford

model does not directly recognize permissions, entitlements are mapped

one-to-many onto permissions that may exist across systems. Also, the

Stanford model allows a user to be assigned to more than one role.

4.6 Accounting for the Stanford model 93

Although RBAC does not specifically call out the various abstractions

defined in the Stanford model, these same abstractions could be constructed

using general hierarchies. Under the RBAC model, a user can be assigned to

one or more roles, and one or more permissions can be assigned to a role.

However, in the context of a role hierarchy, neither users nor permissions

need to be directly assigned to a role (see Figure 4.13). Therefore, roles are

free to be created to represent functions and tasks where the functions are

exclusively inherited by roles, and tasks are exclusively inherited by func-

tions. Also, under the RBAC model, roles can be created to represent

entitlements so that each of the roles is exclusively inherited by roles that

represent tasks and is composed of a collection of permissions that spans one

or more systems.

Although the Stanford model does not stipulate multiple inheritance

relations between adjacent abstractions, Figure 4.12 clearly illustrates such a

relationship. As such in order for a system to meet these requirements

would require the use of a general role hierarchy.

94 Role Hierarchies

Directory:
-Proxy updates
-Dept updates

Calender:
-Reserve

Entitlements

Enroll
students

Order
books

Schedule
classes

Directory
upd

Purchasing

Schedule
meetings

Tasks

Instruction
support

Office
admin

Functions

Faculty
support

Senior
admin

Roles

Internal / system viewBusiness view

Student:
-Class update
-Time schedule
-Waitlist

Financial:
-Purchase orders.
-Receiving
-Vendors

Facilities:
-Reserve

NSI

Axess2k

ReptMart

Registry

CoreFin

Resource25

MfgMaker

Systems

Departments Authority

Figure 4.12 Stanford model enterprise and system abstractions.

References

[1] Ferraiolo, D., and R. Kuhn, “Role-Based Access Control,” Proc. of the NIST-NSA

Nat. (USA) Comp. Security Conf., 1992, pp. 554–563.

[2] Ferraiolo, D., J. Cugini, and R. Kuhn, “Role-Based Access Control: Features

and Motivations,” Proc. of the Annual Computer Security Applications Conf., New

Orleans, LA, 1995.

[3] Sandhu, R., et al., “Role-Based Access Control Models,” IEEE Computer, Vol.

29, No. 2, February 1996.

[4] Baldwin, R. W., “Naming and Grouping Privileges to Simplify Security

Management in Large Databases,” Proc. of IEEE Computer Society Symposium on

Research in Security and Privacy, April 1990, pp. 184–194.

[5] Nyanchama, M., and S. L. Osborn, “Access Rights Administration in

Role-Based Security Systems,” Proceedings of the IFIP WG11.3 Working Conference

on Database Security, 1994. See also Nyanchama, M., and S. L. Osborn, “The

4.6 Accounting for the Stanford model 95

R1 R2 Rr...
Stanford roles

F1 F2 Ff...
Functions

T1 T2 Tt
Tasks

...

Entitlements
E1 E2

Ee
...

System 1 System 2 … System n Privileges

User 1 User 2 User n… Users

Enterprise view

System view

Figure 4.13 Representing the Stanford model’s abstractions using roles and

inheritance relations.

Role Graph Model and Conflict of Interest,” ACM Transactions on Information

and System Security (TISSEC), Vol. 2, No. 1, February 1999, pp. 3–33.

[6] Moffett, J. D., and E. C. Lupu, “The Uses of Role Hierarchies in Access

Control,” Proc. of 4th ACM Workshop on Role-Based Access Control, 1999,

pp. 153–160.

[7] McRae, R., The Stanford Model for Access Control Administration, Stanford

University, 2000 (unpublished).

96 Role Hierarchies

SoD and Constraints in RBAC
Systems

SoD is a fundamental principle in security systems, both auto-

mated and manual. Although there are many variations,

SoD is fundamentally a requirement that critical operations are

divided among two or more people, so that no single individual can com-

promise security. Banks require that two employees be present

when opening and processing deposits from an ATM or night

deposit box. In the military, SoD is known as the “two-man rule”

and is required for operations involving nuclear weapons. In

both cases, the goal is the same: to ensure that no one person has

the ability to control all the steps involved in a high-risk opera-

tion. When SoD rules are properly implemented, collusion of

two or more employees is required to commit a damaging

action; the risk of damage to the organization is therefore

reduced. In addition to reducing the risk of fraud, SoD increases

the opportunity for detecting errors, since two or more parties

are involved in completing a transaction.

Accounting and financial management offices often have

particularly elaborate SoD requirements to deter fraud. Figure

5.1 shows a section of an accounting manual detailing the

requirements for disbursement and deposit of funds. When

humans perform the tasks involved, complex requirements

like those in Figure 5.1 are not difficult to implement. How-

ever, most computer security mechanisms do not easily accom-

modate SoD rules. One banking industry analyst notes that

“the use of technology has eroded many traditional SoD con-

trols and has provided individual employees access to greater

97

5
Contents

5.1 Types of SoD

5.2 Using SoD in real systems

5.3 Temporal constraints in
RBAC

C H A P T E R

amounts of money in a single transaction” [1]. Part of the problem today is

that traditional computer security software makes it difficult to build SoD

constraints into computerized operations.

98 SoD and Constraints in RBAC Systems

SoD definitions:

American National Standards Institute: “Dividing responsibility for sensitive

information so that no individual acting alone can compromise the security of the

data processing system.” (Telecom Glossary 2000, American National Standard for

Telecommunications, American National Standards Institute)

The U.S. Office of Management and Budget’s Circular A-123 (revised June

21, 1995): “Key duties and responsibilities in authorizing, processing, recording,

and reviewing official agency transactions should be separated among

individuals.”

Separation of Duties

I. Disbursement of Funds

The following minimum separation of duties applies to individuals in
departments and accounting offices who are responsible for the
disbursement of funds.

The following duties shall be performed by different individuals:

1. Check request reviewer—evaluates requests with respect to business purpose,
applicable policy, backup documentation, and authorized signature.

2. Check preparer—prepares checks and ledger entries.
3. Check issuer— has checks signed and approves ledger entry.
4. Check deliverer—distributes checks or sends to payees.
5. Ledger reviewer—reconciles bank statement with general ledger cash account.

II. Depository Funds

The following minimum separation of duties applies to individuals in
departments and accounting offices who are responsible for depository
funds.

The following duties shall be performed by different individuals:

1. Mail handler—opens mail, reviews, and endorses checks.
2. Cashier—processes cash, determines account coding, and deposits in bank

account or delivers to another cashier.
3. Auditor—ensures that all checks received are deposited and accounts coded

correctly; also receives checks returned to the office.
4. Ledger reviewer—reconciles department accounting records with accounting

office records.

Figure 5.1 Example accounting system SoDs.

When controls are not implemented properly, automated systems make

it easy for large amounts of money to be lost in a short time. A spectacular

example of this occurred in 1995 when one of Britain’s oldest merchant

banks collapsed as a result of high-risk trading. The bank’s Singapore office

chief, Nicholas Leeson, was allowed to run both the financial derivatives

trading operation in Singapore as well as back-office functions where trades

were settled. This is a mix of roles that can be—and in this case was—disas-

trous. An SoD between making and settling trades would have prevented

this disaster.

Two 1999 cases described by the inspector general of the U.S. Depart-

ment of Veterans Affairs (VA) illustrate how vulnerable automated systems

can be with inadequate SoD controls. In one case, a supervisor at a VA

regional office stole $615,451 in less than 2 years by establishing a fraudu-

lent disability award for her fiancé, a Gulf War veteran. A second embezzle-

ment scheme had been going on for 12 years when it was discovered in

1999. In this case, a former VA employee had created a fraudulent disability

award for himself using another person’s social security number, which

made it possible to avoid detection by computer-matching DoD and Social

Security Administration records. The VA inspector general testified that

“SoD controls intended to prevent fraud had been abandoned or circum-

vented” [2]. Management officials had abandoned SoD requirements in

order to speed up processing [2]:

At some VBA
1
regions, employees were authorized for duplicative computer

command authorities, in violation of VA policy, apparently to increase over-

all production capability. This gave the employees the ability to circumvent

SoD controls and computer edits to create a benefit account and approve

payment, without the need to refer the case to another employee for autho-

rization. Employees with these extraordinary authorities could also create a

fictitious benefit payment account and generate payments, or fraudulently

upgrade the benefit payments of otherwise entitled beneficiaries, without

the knowledge of other VBA employees. We also found other significant

computer access vulnerabilities that could be exploited to perpetrate a fraud,

such as by acquiring and using the computer access authorities of others to

conceal the perpetrator’s involvement.

The VA experience illustrates both the difficulty of implementing SoD

controls in computer systems and the potential for loss when they are not

present. Inevitably, when computer security controls are cumbersome and

99

1. Veterans Benefits Administration.

inefficient, users circumvent or disable them. One of RBAC’s great advan-

tages is that SoD rules can be implemented in a natural and efficient way. In

fact, SoD has been studied more in the context of RBAC than in any other

field of computer security.

5.1 Types of SoD

Researchers have proposed a great variety of SoD models, only some of

which are implemented in real products. This section focuses on the most

significant categories of SoD that are likely to be important in practice. A

comprehensive survey by Simon and Zurko [3] found two broad categories

of SoD methods: static and dynamic. A simple way to distinguish between

these two forms is to consider the time at which the role constraints are

applied. Static SoD places constraints on roles at the time users are autho-

rized for roles. For example, a policy may require that if a user is authorized

for role A, then the same user cannot be authorized for role B. In dynamic

SoD (DSD), constraints are invoked when users are actively using the sys-

tem. This is a weaker form of SoD, since, for example, it may allow a user to

be authorized for both roles A and B, but not allow the user to hold these

roles simultaneously in a single session. Depending on an organization’s

security needs and resources, either static or dynamic rules may be appro-

priate.

5.1.1 Static SoD

SoD relations are often used to enforce conflict-of-interest policies, which

should be analyzed organizationwide, across distributed systems [4]. Con-

flict of interest in a role-based system may arise as a result of a user gaining

authorization for permissions associated with conflicting roles. One means

of preventing this form of conflict of interest is though static SoD—that is, to

enforce constraints on the assignment of users to roles. This means that if a

user is assigned to one role, the user is prohibited from being a member of a

second role. For example, Figure 5.2 shows a role hierarchy with SoD con-

straints.

A user who is assigned to the role billing clerk may not be assigned to the

role accounts receivable clerk. That is, the role billing clerk and accounts

receivable clerk are mutually exclusive. A static SoD policy can be centrally

specified and then uniformly imposed on specific roles. From a policy per-

spective, static constraint relations provide a powerful means of enforcing

conflict-of-interest and other separation rules over sets of RBAC elements.

100 SoD and Constraints in RBAC Systems

The static SoD policy can be centrally specified and then uniformly

imposed on specific roles. Because of the potential for inconsistencies

between static SoD relations and inheritance relations of a role hierarchy,

we define static SoD requirements both in the presence and absence of role

hierarchies:

◗ Static SoD: Static SoD relations place constraints on the assignments of

users to roles. Membership in one role may prevent the user from

being a member of one or more other roles, depending on the static

SoD rules enforced.

◗ Static SoD in the presence of a hierarchy: This type of static SoD relation

works in the same way as basic static SoD except that both inherited

roles as well as directly assigned roles are considered when enforcing

the constraints.

Figure 5.3 illustrates how static SoD fits into the RBAC framework. With

respect to the constraints placed on the user-role assignments for defined

sets of roles, we can define static SoD as a pair (role set, n) where no user is

5.1 Types of SoD 101

Accounts
receivable
supervisor

Billing
supervisor

Cashier
supervisor

Accounts
receivable
clerk

Billing
clerk

Cashier

Accounts
receivable

Accounting

ContainsStatic
separation
of duty

Figure 5.2 Static SoD in a hierarchy.

assigned to n or more roles from the role set (in most real applications, n =

2). Thus, we recognize a variety of static SoD policies. For example, a user

may not be assignable to every role in a specified role set, while a strong

deployment of the same feature may restrict a user from being assigned to

any combination of two or more roles in the role set.

Static constraints can take on a wide variety of forms. A common exam-

ple is mutually disjoint user assignments with respect to sets of roles [5, 6].

However, static constraints have been shown to be a powerful means of

implementing a number of other important SoD policies. For example,

Simon and Zurko [3], Gligor et al. [7], and Ahn and Sandhu [8] have identi-

fied static SoD relations to include constraints on users, operations, and

objects as well as combinations thereof. Some authors [8–12] have studied

other forms of constraints recently, but so far consensus has not been

developed.

Although static SoD appears to be overly restrictive and may not work

for smaller organizations, it is often used in practice because it is easy to

implement and simple to verify. Unless an organization is very small, the job

titles involved in requesting or approving an expenditure (e.g., a manager),

recording the expenditure (e.g., account clerk), and releasing funds (e.g.,

cashier) are likely to be mutually exclusive. This form of SoD policy arises

naturally in organizations and is highly effective.

Static SoD is also particularly easy to implement with RBAC. Consider

this discussion of SoD rules in a case study used by the American Institute of

102 SoD and Constraints in RBAC Systems

Role hierarchy

Users Roles

Subjects

OPS OBS

PRMS

Permission
assignment

User
assignment

SSD

subject_user

subject_roles

Figure 5.3 Static SoD.

Certified Public Accountants describing a database application that processes

payroll [13]:

For example, a payroll clerk who has been granted “update” and “add” privi-

leges to the payroll register table should not be able to generate paychecks. If

this were to happen, the payroll clerk could then produce erroneous pay-

checks (e.g., by modifying his or her hours worked, adding a new timecard

for a friend, or adding a fictitious employee with a post office box address to

which the payroll clerk possesses the key). This type of security represents a

logical SoD. Manual SoD is also important; it includes restricting the payroll

clerk from possessing blank payroll checks.

A conventional ACL approach is described in this case study. The clerk’s

user ID is attached to the ACL for the payroll register table, with “add” and

“update” privileges. An audit program must then be used to ensure that the

clerk’s user ID is not also attached to the paycheck-generating application.

Additional reviews must be made to ensure that this particular clerk does

not have another user ID that violates these constraints. When an enterprise

employs thousands of people, privilege audits such as these become extraor-

dinarily complex and time-consuming.

In an RBAC system, the SoD requirements for this example can be han-

dled by assigning the ability to update the payroll register to one role and

the ability to generate payroll checks to another role. These roles are then

made mutually exclusive; from this point on, the RBAC system will ensure

that no individual can be assigned to both roles.

5.1 Types of SoD 103

Formal definition: Static SoD If static separation is required for any pair of roles r
1

and r
2
, then r

1
and r

2
can have no common assigned users.

SSD ⊆ (2
ROLES × N) is collection of pairs (rs, n) in static SoD, where each rs is a

role set and n is a natural number ≥2, with the property that no user is assigned

to n or more roles from the set rs in each

(rs, n)∈ SSD

Formally:

∀ ∈ ∀ ⊆ ≥ ⇒ = ∅
∈

(,) , : _ ()rs n SSD s rs s n assigned users r
r s
I

Static SoD in the presence of a hierarchy: In the presence of a role hierarchy

static SoD is redefined based on authorized users rather than assigned users as

follows:

∀ ∈ ∀ ⊆ ≥ ⇒ = ∅
∈

(,) , : _ ()rs n SSD s rs s n authorized users r
r s
I

5.1.2 Dynamic SoD

Dynamic SoD (DSD) (Figure 5.4) is the second broad category of SoD. With

dynamic separation, users may be authorized for roles that may conflict, but

limitations are imposed while the user is actively logged onto the system.

For example, consider the problem of processing expenditures in a small

business. With limited personnel, it is not possible to have each of the tasks

shown in Figure 5.1 performed by separate individuals. An alternative is to

require that no person can be active in both roles at the same time. All

employees in the firm may have privileges to request expenditures or

approve them, but a DSD rule prevents them from applying both privileges

to expenditures in the same session. Note the hidden assumption that a user

does not terminate a session and log in with the other role. Auditing or

some other mechanism is required to ensure that this loophole is not

exploited when DSD is used.

Dynamic SoD relations, like static SoD relations, limit the permissions

that are available to a user. However DSD relations differ from static SoD

relations by the context in which these limitations are imposed. DSD

requirements limit the availability of the permissions by placing constraints

on the roles that can be activated within or across a user’s sessions.

Similar to static SoD relations, DSD relations define constraints as a pair

(role set, n) where n is a natural number ≥ 2, with the property that no user

session may simultaneously activate n or more roles from the role set.

DSD properties provide extended support for the principle of least privi-

lege in that each user has different levels of permission at different times,

depending on the task being performed. This ensures that permissions do

104 SoD and Constraints in RBAC Systems

Role hierarchy

USERS ROLES

SUBJECTS

OPS OBS

PRMS

Permission

assignment

User
assignment

subject_user
subject_roles

DSD

Figure 5.4 DSD.

not persist beyond the time that they are required for performance of duty.

This aspect of least privilege is often referred to as timely revocation of trust.

Dynamic revocation of permissions can be a complex issue without the facil-

ities of dynamic SoD and thus has been generally ignored in the past for rea-

sons of expediency.

Static SoD relations provide the capability to address potential conflict-

of-interest issues at the time a user is assigned to a role. DSD allows a user to

be authorized for two or more roles that do not create a conflict of interest

when acted in independently but produce policy concerns when activated

simultaneously. For example, a user may be authorized for both the roles of

cashier and cashier supervisor, where the supervisor is allowed to acknowl-

edge corrections to a cashier’s open cash drawer. If the individual acting in

the role cashier attempted to switch to the role cashier supervisor, RBAC

would require the user to drop the cashier role, and thereby force the

closure of the cash drawer before assuming the role cashier supervisor. As

long as the same user is not allowed to assume both of these roles at the

same time, a conflict of interest situation will not arise. Although this effect

could be achieved through the establishment of a static SoD relationship,

DSD relations generally provide the enterprise with greater operational

flexibility.

5.1.3 Operational SoD

RBAC can be used to enforce a policy of operational SoD [14], defined as

follows: No single user can be allowed to perform all operations required to

perform a critical function. Implicit in this definition is a requirement that at

least two roles are required for any critical function. Therefore, the failure of

one role to perform as expected can be detected by the organization. In

RBAC terms, the operational SoD policy can be enforced when roles are

authorized for individual users and when operations are assigned to roles.

5.1 Types of SoD 105

Formal definition: DSD If dynamic separation is required for any pair of roles r
1

and r
2
, then r

1
and r

2
can have no common authorized users.

DSD ⊆ (2
ROLES × N) is collection of pairs (rs, n) in DSD, where each rs is a role

set and n is a natural number ≥ 2, with the property that no subject may activate

n or more roles from the set rs in each dsd ∈ DSD. Formally:

∀ rs 2
ROLES

, n N, (rs, n)∈ DSD ⇒ n ≥ 2 ^ |rs| ≥ n, and

s SUBJECTS, rs 2
ROLES

, role_subset ∈ 2
ROLES

, ∀ n N, (rs, n) ∈ DSD,

role_subset ⊆ rs, role_subset ⊆ subject_roles(s) ⇒ |role_subset| < n.

Note that this means that operational SoD can be implemented either as a

static or dynamic form of separation.

5.1.4 History and object-based SoD

One form of SoD discussed in research literature, although not widely

implemented, takes into account the history of access to system objects. For

example, it may be acceptable for one person to do both request and

approval of expenditures, provided no one individual can both request and

approve the same item. Small firms in particular may need this arrange-

ment. It may be too expensive to have a single person dedicated full-time to

order processing, or temporary absence may require one person to fill sev-

eral roles that would be mutually exclusive in a large organization.

An early model for a flexible form of SoD was offered by Sandhu [15],

who proposed the use of “transaction control expressions” that represent

the potential history of access to an object. SoD rules could be enforced by

maintaining a complete history on transient system objects, such as an

expenditure transaction, and an abbreviated history on persistent objects,

such as a general ledger. A commercial security product using

“object-based” separation was described by Nash and Poland [16], who also

showed that transaction control expressions could be used to define this

policy. This approach allowed a user to simultaneously be authorized for

mutually exclusive roles but not to act upon an object that she or he has

previously acted upon. For example, a user might both prepare checks and

cash them but could not cash a check that he or she had prepared. This

approach is simple, but it limits users to handling only one part of a business

process. If multiple steps are involved in a process, SoD could be maintained

when users handle more than one step, provided that no single individual

handles all steps.

A variety of recent proposals have highlighted history- and context-sen-

sitive controls, in which a user’s current task is included in the access con-

trol decision [17–19]. A recent example of such a policy, designated as

“history-based,” was proposed by Papenfus and Botha [20]. History-based

SoD can be thought of as a dynamic form of operational SoD policy. A user

can have all the privileges required for a critical task, but cannot perform all

the parts of a task on the same object.

Including history in SoD controls provides the most flexible approach,

but at the cost of greater complexity in the access control system. The sys-

tem must keep track of the ID of each user who processes objects in a busi-

ness process. This may be relatively efficient when all parts of a process are

managed by a single application. For example, a database system may

106 SoD and Constraints in RBAC Systems

contain all the records required in a payroll application and provide the

transactions needed to process payroll records. The DBMS transactions can

pass user ID information between transactions related to a particular payroll

record to provide the information needed to ensure that a single individual

does not handle all parts of the business process.

With larger, more complex processes, however, this may be more diffi-

cult. Records must be passed securely between multiple computer applica-

tions, with mechanisms to ensure that the records have not been tampered

with and that all records were properly originated. These requirements can

generally be handled in two ways: (1) by having the access control system

keep track of all objects and their current state, the users interacting with

them, and their progress through applications, and (2) by attaching infor-

mation to objects and records showing who has handled the object and

what applications have been used. Both approaches have their own sets of

advantages and problems.

History-based SoD mechanisms introduce considerable additional com-

plexity, because they require systems to keep records of all user actions on

system objects. This added complexity is one reason why general-purpose

commercial access control systems (such as for DBMSs) so far have not

implemented history-based approaches. Although a number of researchers

have proposed sophisticated history-based mechanisms, it will likely be

several years before this work makes its way from the laboratory to the

marketplace. This situation results in an ironic conundrum: History-based

approaches will most likely require special application development, but the

small businesses that require the flexibility of history-based mechanisms are

not likely to be able to afford customized software. Users, therefore, need

ways to obtain the flexibility of history-based mechanisms using only the

basic features that are common to most RBAC systems. Today, the most

practical approach is to use a conventional static SoD mechanism but to

allow overrides that can be audited to ensure compliance with SoD rules.

5.2 Using SoD in real systems

RBAC systems available on the market provide many sophisticated features,

including the ability to create complex role hierarchies, but very few have

strong support for SoD. Some provide mechanisms that can be used to

implement SoD constraints to a limited degree. Developers and system inte-

grators need to look closely at features provided by operating systems and

DBMSs that support RBAC, because SoD is the area in which features are

most often limited. This section discusses the current state of SoD features in

5.2 Using SoD in real systems 107

commercial systems, how these features affect the design of systems enforc-

ing SoD rules, and trade-offs that can be made in system design. In general,

automated role engineering tools will be needed to create and check SoD

rules in an RBAC system. This section aims to provide an understanding of

the important concepts that are implemented in role engineering tools.

5.2.1 SoD in role hierarchies

Most RBAC systems available today support role hierarchies in some form,

and SoD constraints have important implications for role hierarchies that

can affect the administration of SoD rules. When roles inherit other roles,

the system must ensure that the inheritance structure cannot result in a vio-

lation of separation constraints. The properties given below by Kuhn [5] are

important in understanding the interaction between SoD rules and role

inheritance. The first three properties are obvious from definitions:

◗ Property 1: Two roles R
i
and R

j
can be mutually exclusive only if neither

one inherits the other, either directly or indirectly. Clearly, if a user

inherits one of the roles, SoD is not maintained if he or she can also

invoke the other role. Role administration is affected by this rule. To

be useful, role management tools must alert the administrator to SoD

violations created by inheritance.

◗ Property 2: If there are two roles R
i
and R

j
that are mutually exclusive,

then there can be no third role that inherits both of them. As with prop-

erty 1, this property must be handled properly by role management

tools to allow administrators to set up role hierarchies that do not vio-

late SoD constraints.

◗ Property 3: If static SoD holds, then DSD is maintained. Clearly, if a user

is only authorized for one of two roles, then he or she can never be

active in both. The practical importance of this rule is that SoD policies

can be simplified if the organization has sufficient resources to perma-

nently limit the roles that a user may activate. In Figure 5.2, for exam-

ple, if a user in the role “accounts receivable clerk” will never need to

have access to the role “billing clerk,” static separation can be estab-

lished for these roles. Since the SoD constraint is established when roles

are authorized, the system never needs to check these constraints dur-

ing a user session, which will improve performance and reduce the risk

of vulnerabilities introduced by bugs in the software.

◗ Property 4: If there are any two roles R
i
and R

j
that are mutually exclu-

sive, then there can be no “root” or “superuser” (a role that has all

108 SoD and Constraints in RBAC Systems

system privileges) role active on the system. This occurs because no

role can inherit two others that are mutually exclusive, and a “root”

role would inherit all other roles. Note that this holds even if DSD is

used. Under DSD, a single user could be authorized for all roles, but

the roles could not be active simultaneously. However, because the

“root” role inherits all other roles, “root” could never be activated

with all its inherited roles.

Constraints, including SoD, are inherited in the opposite direction from

role membership. If the role hierarchy is represented as a tree with the most

general role at the root, then role membership is inherited “down.” For

example, consider the accounting department hierarchy in Figure 5.2,

which includes the membership chain Accts Receivable Supervisor > Accts

Receivable Clerk > Accounts Receivable > Accounting. An employee desig-

nated as “Accts Receivable Clerk” inherits membership down the tree, to

include accounts receivable and accounting.

Constraints are inherited in the opposite direction. In Figure 5.2, since

the roles accounts receivable clerk and billing clerk have a static SoD rela-

tionship, then accounts receivable supervisor also has a static SoD relation-

ship with billing clerk. Another way of thinking of this is that any instance

of accounts receivable supervisor can be treated as an instance of accounts

receivable clerk. Therefore, the static SoD constraint billing clerk has with

accounts receivable clerk must also apply to accounts receivable supervisor.

In other words, constraints are inherited in an “up” direction in the hierar-

chy, toward the more specialized roles.

5.2.2 Static and dynamic constraints

The simplest way to provide SoD is to give administrators the ability to spec-

ify two roles as mutually exclusive: A user authorized for one role may not

be authorized for the other role. This provides static SoD. DSD requires that

users not be active in two mutually exclusive roles at the same time,

although they may be authorized for both. Surprisingly, some commercial

systems provide support (in a sense) for DSD without providing static SoD.

Some systems allow a user to be active in only a single role at a time or give

the ability to restrict the number of roles that a user can activate simulta-

neously. An example of this functionality is the Informix DBMS system

[21], which allows the creation of roles and role hierarchies. Only one role

can be activated at a time. It is not possible to specify mutual exclusion or

other constraints on roles. Since only one role can be activated at a time,

Informix does provide a basic form of DSD. A byproduct of preventing a

5.2 Using SoD in real systems 109

user from activating more than one role at a time is thus a form of DSD.

Without the ability to establish constraints on role authorization, though,

these systems cannot ensure static SoD. In addition, DSD can only be

ensured through the careful administration of roles. An additional tool will

be needed to audit complex role sets to ensure that user-role assignments

meet policy constraints.

Full support for both static SoD and DSD is available in few products.

Sybase’s DBMS is one example of a product that features both static SoD

and DSD. Static SoD is provided by allowing administrators to specify two

roles as mutually exclusive. Mutual exclusion is a simple and effective way

to establish basic static and dynamic SoD. SoD policies that require keeping

track of an object’s history require more than the ability to set up roles as

mutually exclusive, but the Sybase feature provides the necessary basis to

build more sophisticated policies into applications.

5.2.3 Mutual exclusion

Existing systems, and those likely to be available in the near future, typically

rely on mutual exclusion of roles to enforce SoD policies. However, mutual

exclusion rules may be provided in more than one way, and the design of

this feature can affect ease of use significantly. Consider again the account-

ing rules shown in Figure 5.1. As indicated, different individuals must fill

the five different roles. How should this SoD policy be implemented? There

are a number of possibilities, depending on the features of the RBAC system

and on how strictly the policy is interpreted. The policy in Figure 5.1

requires that if an individual has one of the roles, she or he must be

excluded from all others. If the system provides the capability, this policy

might be implemented using mutual exclusion rules in one of two ways:

◗ Exclusion specified by sets: It may be possible to declare a set of roles that

are mutually exclusive (i.e., membership in any one role of the set

precludes membership in another). This feature is particularly desir-

able if the application requires elaborate SoD requirements such as in

Figure 5.1. A related design by Crampton and Loizou uses lattices to

provide greater flexibility in policy representation [22].

◗ Exclusion specified by role pairs: If the system provides only the capability

to specify pairs of roles that are mutually exclusive, the problem

becomes more complex. For n roles, the number of pairs is
n n()−1

2
. For

five roles, then, there are 10 mutual exclusion pairs that must be spec-

ified (see Figure 5.5). For the example application, this feature is

110 SoD and Constraints in RBAC Systems

clearly much less desirable than a system that provides the ability to

specify a set of roles as mutually exclusive.

If the system offers only the option of specifying pairs of mutually exclu-

sive roles, implementation of this policy will be cumbersome, since the

number of pairs increases quadratically with the number of mutually exclu-

sive roles. An alternative to specifying 10 pairs of mutually exclusive roles

would be to adopt a less strict policy that still meets the objectives of SoD. If

the objective is to ensure that no individual has access to all five roles, it is

sufficient to specify only one mutual-exclusion pair. For example, if “check

request reviewer” and “check preparer” are mutually exclusive, then any

user who is authorized for one will be excluded from the other, and thus

cannot have access to all five roles.

5.2.4 Effects of privilege assignment

The discussion so far has introduced concepts that seem natural and intu-

itive. In systems that are fully or partially manual, SoD is relatively easy to

implement. Even in elaborate accounting SoD systems, such as depicted in

Figure 5.1, it is easy to see that multiple individuals will be involved with

any transactions. However, fully automated systems make it much more

difficult to determine whether SoD is adequate. It is not enough to ensure

that people in different roles are involved with all transactions, because

5.2 Using SoD in real systems 111

R1

R2

R3
R4

R5

Figure 5.5 Mutual exclusion possibilities for five roles.

what are critical are the privileges available to a single individual. If all inter-

actions are through a computerized system, there may be little human over-

sight of activities. If a single individual has access to all privileges needed to

accomplish some critical function, then the system can be compromised

regardless of the role structure. In a manual, or even semiautomated sys-

tem, SoD mechanisms are easy to implement. However, there is a serious

potential for violation of SoD rules when roles and privileges are assigned in

a paperless office system. The assignment of privileges to roles is as critical as

the establishment of SoD relationships between roles.

Complications arise if privileges are made available to other roles that

may not be designated as mutually exclusive. Care must be taken to avoid a

situation in which some combination of roles would allow a user to have

access to privileges that should be mutually exclusive. For example, suppose

there are two roles, P and Q, that are mutually exclusive, and that role Q has

access to privileges b and c. Assume that role R has privilege b and that role S

has privilege c. Then, a user in role P could gain access to the same capability

provided by role Q through roles R and S.

For a more concrete example, consider the payroll example described in

Section 5.1.1, in which a payroll clerk who has been granted “update” and

“add” privileges to the payroll register table should not be able to generate

paychecks. A static SoD relationship is established between the role “payroll

clerk” and another role “payroll processor,” which has privileges to execute

the payroll program. If there is a third role, say “computer operator,” whose

privileges include executing the payroll program, then clearly anyone

authorized for “payroll clerk” must not also be authorized for “computer

operator.” This example illustrates a critical point: SoD policies must be ana-

lyzed by first considering what privileges are required by particular tasks

and then evaluating the distribution of privileges among roles.

As discussed in the introduction, the purpose of SoD rules is to prevent

one person from doing all parts of a task to reduce the risk of malicious

activity. The examples discussed above can accomplish this, but depending

on how privileges are assigned, the breakdown of roles between individuals

may be more restrictive than necessary, or errors may be made that allow

one person all privileges required for a task. The payroll clerk example

described above is an example of the latter problem. As an example of the

first problem, consider the distribution of roles in Figure 5.1. Clearly this

five-way separation of roles will accomplish SoD requirements, but it may

be more restrictive than necessary.

In automated systems, with large numbers of privileges spread among

many employees, relationships between privileges become difficult to

review and manage. To help in analyzing the assignment of privileges in

112 SoD and Constraints in RBAC Systems

automated systems, we can define a safety condition as the condition that

must be met to ensure that SoD requirements are not violated [5]. The

safety condition is simply a formal restatement of the goal of SoD: No single

individual will have the ability to execute a critical task.

If there are only two privileges needed for a task, then each privilege can

be assigned to separate roles, and the roles can be made mutually exclusive.

If more than two privileges are involved, then they can be split among two

or more roles. While intuitively simple, the assignment of privileges to roles

in a safe manner may be more difficult than it at first appears. Section 5.2.5

discusses some considerations regarding safe privilege assignments.

5.2.5 Assigning privileges to roles

Assignment of privileges to roles in a SoD environment can become com-

plex. To accomplish this task safely, an administrator must first ensure that

no single role has all privileges needed to accomplish a critical task and then

ensure that roles are assigned to individuals in such a way that no individual

will have all of these privileges through some combination of roles. Note

that inheritance of privileges and roles through hierarchies must be consid-

ered as well.

The first problem is the following: Given a set of tasks where each task T
i

requires a set of privileges P, assign privileges to roles such that no single

role has access to all privileges required by any task. This appears simple,

and in most cases it will be. However, in some cases it may not be possible.

Consider the following case: There are three critical tasks, T1, T2, and T3,

requiring combinations of privileges P1, P2, and P3, as shown in Table 5.1.

Suppose we want to allocate privileges to two roles R1 and R2, in such a

way that no task is compromised with respect to SoD requirements (i.e.,

neither role has all the privileges needed to perform one of the critical

tasks). Unfortunately, this is not possible for this example. To see this, note

5.2 Using SoD in real systems 113

Formal definition: Static SoD safety condition:

Given T = {critical tasks requiring SoD}

TP
i
= {privileges required for task i}

∀ ∈ ⊄u USERS TP
i

, U
r user role u

authorized permissions r
∈ _ *()

_ ()

Alternatively,

∀ ∈ ∃ ∈ ∈ ∧ ∉
∈

u USERS p PRMS p TP p authorize
i

r user role u
, ,

_ *()
U d permissions r_ ()

(An analogous definition for dynamic separation would use session privileges.)

that all privileges must be assigned to some role. If there are two roles, then

two or more privileges must be assigned to at least one of the roles. There

are
3

2
3

 = possible ways to choose two privileges out of three: {P1,P2},

{P1,P3}, and {P2,P3}. Because there are three tasks, each requiring a differ-

ent combination of two privileges, at least one task will be compromised.

The only way to ensure safe SoD in this example is to establish a third role

and to ensure that no individual has access to a combination of roles that

would compromise a task. In most applications this problem will not occur,

because tasks normally require several privileges, and privileges are allo-

cated among several roles. However, this example illustrates the important

point that it is sometimes necessary to create an additional role that was not

in the original organizational structure to ensure SoD.

5.2.6 Assigning roles to users

To maintain SoD, roles must be assigned to users in such a way that no user

can violate SoD rules through a combination of roles. This requires that no

single user possess all the privileges needed to accomplish a task that is con-

trolled under SoD. In the payroll clerk example of Section 5.1.1, we noted

that SoD requirements could be met by assigning the ability to update the

payroll register to one role and the ability to generate payroll checks to

another role (e.g., payroll clerk and payroll department computer operator).

These roles could be made mutually exclusive so that the RBAC system

could ensure that no individual could be assigned to both roles. There is, of

course, a hidden assumption in this example that if a user is assigned to

“payroll clerk,” the same user could not acquire the privileges needed to

generate payroll checks through a third role, even though “payroll clerk”

and “payroll department computer operator” are mutually exclusive.

Given a set of roles and mutual exclusion relationships, how many sepa-

rate users are required to ensure that roles can be assigned without violating

SoD requirements? Consider the example in Table 5.2, which depicts the

114 SoD and Constraints in RBAC Systems

Table 5.1 Mapping of Privileges

to Tasks

P1 P2 P3

T1 X X —

T2 — X X

T3 X — X

mutual exclusion relationship between five roles, R1 through R5. [An X in

cell i,j indicates that role R
i
is mutually exclusive to R

j
(e.g., that R1 and R2

are mutually exclusive).] It is not immediately obvious how to assign roles

to users to ensure that this mutual exclusion relationship is maintained. We

could, of course, assign one role to each of five users, but is it essential to

have five, or could fewer users suffice?

Using graph theory, there is an easy way to determine this number,

within at most one greater than the minimum [23]. The chromatic number,

χ()G , of a graph is the minimum number of colors that are required to color

vertices so that no two adjacent vertices are the same color. We can model

the mutual exclusion relationship with a graph, shown in Figure 5.6. The

graph is constructed directly from Table 5.2, so that two roles are connected

in the graph whenever they are designated as mutually exclusive.

Only three colors are needed to ensure that no edge in this graph con-

nects two vertices of the same color; therefore, SoD requirements can be

5.2 Using SoD in real systems 115

Table 5.2 Example of a Mutual Exclusion Relationship

R1 R2 R3 R4 R5

R1 — X X — —

R2 X — X — X

R3 X X — X —

R4 — — X — X

R5 — X X —

R1

R2

R3
R4

R5

Figure 5.6 Mutual exclusion relationships.

maintained by assigning roles R1 through R5 to three different users, corre-

sponding to the three colors. For example, if R1 = red, R2 = green, R3 = blue,

R4 = green, and R5 = red, χ()G = 3 for this graph. It is a theorem of graph the-

ory that the chromatic number of any graph G is equal to the largest com-

plete graph that is a subgraph of G. A complete graph is one in which every

node is connected to every other node. (See Figure 5.7.)

The graph in Figure 5.6 is not complete, but the five-node graph in

Figure 5.7 is. It is easy to recognize a complete subgraph using an adjacency

matrix like that above—a complete graph appears as a filled triangle of Xs,

as highlighted in Table 5.3.

To quickly determine the size of the largest complete subgraph, we can

use another theorem, which states that for any graph G, χ() ()G G≤ +∆ 1,

where ∆()G is the degree of the graph. The degree is simply the largest num-

ber of edges connected to any vertex, which can be determined by counting

the Xs in rows of the matrix (Table 5.3). In Table 5.3, no row has more than

three Xs, so we know that no more than four users are needed to maintain

the SoD relationship. If the graph is not completely connected, we can do

better using a result known as Brooks’ theorem, which states that

χ() ()G G≤ ∆ if G is not complete. Since our example graph is not complete, we

116 SoD and Constraints in RBAC Systems

Figure 5.7 The first fourz complete graphs.

Table 5.3 Complete Subgraph in Example from Table 5.2

R1 R2 R3 R4 R5

R1 — X X — —

R2 X — X — X

R3 X X — X —

R4 — — X — X

R5 — X — X —

can tell that no more than three users are needed simply by looking at the

number of Xs in each row of the mutual exclusion table.

To better understand the complexities involved in assigning privileges,

roles, and users in a SoD environment, we can consider the necessary

and sufficient conditions for safe privilege assignment. A necessary con-

dition, as the name implies, is a condition that is essential; without it, all

bets are off. A sufficient condition, on the other hand, is one that guarantees

the relationship we seek. It may be overkill, though, in that it may be

more than needed to ensure the relationship. In most cases, some condition

in between necessary and sufficient conditions will be established in real

systems. For SoD, necessary and sufficient conditions are described as

follows by Kuhn [5]:

◗ Necessary: For any pair of roles that are mutually exclusive, each role

must contain one privilege of a critical task not available to the other

role in the mutual exclusion relationship. To see why this is a neces-

sary condition, note that if it did not hold, then the privileges of one

role, R1, could be a subset of another, R2. Then mutual exclusion

between R1 and R2 would be irrelevant for a user with access to role

R2. Note that this condition is necessary, but not sufficient [i.e., main-

taining this condition does not ensure the safety of role assignments,

but if it is not maintained, then we cannot use mutual exclusion

(alone) to ensure that a role assignment is safe].

◗ Sufficient: For any role R1 in a mutual exclusion relationship, no privi-

leges in R1 are available to any other role R2. This condition is

fairly obvious; if two roles R1 and R2 each have a privilege that is

needed to accomplish a particular task, then making them mutually

exclusive guarantees that two individuals will be needed to accom-

plish the task, thus ensuring SoD. This condition, though sufficient, is

not necessary. In most cases it will be a stronger condition than needed

to ensure SoD.

These conditions underscore a fundamental point about SoD: If privi-

leges are accessible by more than one role, then we need to pay attention to

privilege assignment when setting up mutual exclusion rules for roles. Oth-

erwise, establishing mutual exclusion between roles may only appear to

ensure SoD, while leaving a loophole that makes a system vulnerable to

fraud.

5.2 Using SoD in real systems 117

5.3 Temporal constraints in RBAC

Sections 5.1 and 5.2 deal with the definition and specification of various

types of SoD constraints for the RBAC model and the issues involved

in their enforcement. This section examines another important class of con-

straints—the temporal constraints. The temporal (time-based) constraints

incorporate the notion of time in specifying access control requirements.

Unlike the SoD constraints, the issues relating to the support of temporal

constraints in RBAC have not been studied extensively.

The incorporation of time-dependent access control requirements into

the RBAC model (through specification of temporal constraints) was first

proposed by Bertino et al. [24]. The resultant RBAC model was called the

temporal RBAC (TRBAC) model. The TRBAC model was later extended by

Joshi et al. [25] into what they called the generalized TRBAC (GTRBAC)

model.

Our discussion of temporal constraints in RBAC is organized as follows:

First, we briefly look at the need for supporting temporal constraints in an

access control model. Next, we look at the taxonomy of the temporal con-

straints that it may be necessary to support in the RBAC model and illustrate

how they can be specified using the specification language of the GTRBAC

model. Finally, we discuss other constraint-related and implementation-

related features that are required in the RBAC model for supporting tempo-

ral constraints.

5.3.1 Need for temporal constraints

Temporal constraints are formal statements of access policies that involve

time-based restrictions on access to resources; they are required in several

application scenarios. In some applications, temporal constraints may be

required to limit resource use. In other types of applications, they may be

required for controlling time-sensitive activities such as those found in

workflow management systems (WFMSs). It is these time-based constraints

(in addition to other constraints like workflow precedence relationships)

that must be evaluated for generating dynamic authorizations during

workflow execution time (refer to Section 12.1.5). Temporal constraints are

also required in nonworkflow environments as well. For example, in a com-

mercial banking enterprise, a user should be able to assume the role of a

teller (to perform transactions on customer accounts) only during desig-

nated banking hours (say, 9 a.m. to 2 p.m., Monday through Friday, and 9

a.m. to 12 p.m. on Saturday). To meet this requirement, it is necessary to

118 SoD and Constraints in RBAC Systems

specify temporal constraints that limit role availability and activation capa-

bility only to those designated banking hours.

5.3.2 Taxonomy of temporal constraints

Depending upon the application needs, an RBAC model should be able to

support one or more of the following categories of temporal constraints:

◗ Temporal constraints on roles;

◗ Temporal constraints on user-role assignments;

◗ Temporal constraints on role-permission assignments.

Out of these three categories, the temporal constraints on user-role

assignments and role-permission assignments may need to be enforced

considerably less frequently than the temporal constraints on roles. What-

ever the category of temporal constraint, symbols are required for the repre-

sentation of time-related concepts, and a generic form is required for

representation of temporal constraints. Here, we discuss the symbols devel-

oped for representing time-related concepts and the generic constraint

form in the GTRBAC model. We then proceed to discuss the above three

categories of temporal constraints. We also provide examples of each these

categories of constraints as applicable to a specification of access control

requirements for a hospital database application.

Representation of time-related concepts The two time-related concepts

considered in the GTRBAC model are periodicity and duration. These two

concepts are used to represent periodicity-type temporal constraints and

duration-type temporal constraints, respectively. The symbols for representa-

tion of the periodicity and duration concepts are discussed as follows:

◗ Periodicity: A periodic time is represented by the pairs ([Begin,End],P),

where P is the periodic expression denoting a set (possibly infinite) of

periodic time instants, and [Begin,End] is a time interval denoting the

lower and upper bounds that are imposed on instants in P. For exam-

ple, the periodic time representation ([1/1/2002, 12/31/2002], Mon-

days) denotes all the Mondays of 2002.

◗ Duration: A duration is simply represented by a symbol D, which

stands for either an expression or a numeral.

5.3 Temporal constraints in RBAC 119

Generic form of temporal constraint Temporal constraints in GTRBAC

have the generic form (X, E) where X is either a periodic time or duration, and

E is an event expression. An example of an event expression is activate r (the

event that activates role r).

Temporal constraints on roles Temporal constraints on roles are specified in

GTRBAC by making a clear distinction between the concepts—role enabling

and role activation. A role is enabled if a user can acquire the permission

assigned to it. An enabled role is said to be activated when a user acquires the

permissions assigned to the role in a session. The distinction between role

enabling and role activation in turn leads to the notion of role states. A disabled

state of a role indicates that the role cannot be used in any user session (i.e., a

user cannot acquire the permissions associated with the role). A role in the

disabled state can be enabled. The enabled state indicates that users who are

authorized to use the role (because they have been assigned that role) at the

time of request may activate the role, but no one has yet done so. If a user

now activates that role, the state of the role becomes active. When a role is in

active state, it indicates that there is at least one user who has activated that

role. Once in the active state, upon subsequent activation by the same or

other users, the role remains in the active state. A role in the active state

can go back to the enabled state if all users deactivate that role. A role in either

the enabled or active state can transition to the disabled state if a disabling

event occurs.

The above discussion should give the reader an idea of the type of tem-

poral constraints that can be specified on roles: role-enabling and role-dis-

abling constraints and role-activation and role-deactivation constraints. A

brief discussion of these constraints follows.

Role-enabling and -disabling constraints These constraints allow one to

specify the time interval (periodicity) during which a role is enabled or dis-

abled. It is also possible to denote the length of time (duration) for which a

role can remain enabled or disabled. Thus, the role-enabling and role-dis-

abling constraints can be of either the periodicity type or the duration type.

For a duration-type constraint to become applicable, a role-enabling or -dis-

abling event should have taken place.

A representation of a periodicity-type constraint that states that the doc-

tor-on-call role can be enabled only between 10 P.M. and 6 A.M. during the

period November 1, 2002, to March 31, 2003, follows:

120 SoD and Constraints in RBAC Systems

The duration-type constraint that states that a NurseInTraining role can

remain enabled only for 3 hours follows:

This constraint can become applicable only when an event had already

enabled the NurseInTraining role.

Role-activation and role-deactivation constraints These constraints specify

how a user should be restricted in activating a role. There is no periodic-

ity-type restriction for a role-activation or role-deactivation constraint since a

role can be activated or deactivated at the discretion of the user. However a

duration-type restriction can be specified for a role-activation or role-deacti-

vation constraint.

Suppose a hospital periodically puts up special health reports (SHRs) on

some high-incidence diseases and that it allows public health workers to

download those reports by assuming the download-SHR role. To limit the

duration time for which a public health worker remains active in that role

(so as not to increase the load on the FTP server), a duration-type constraint

for role activation can be specified as follows:

Temporal constraints on user-role assignments These are constructs to

express either a specific interval or duration in which a user is assigned to a

role. Very often hospitals hire and make use of the services of outside doctors.

These doctors are given the consulting-physician role to enable them to access

certain patient-related information like clinical tests. A periodicity-type con-

straint that states that a specialist Dr. Ken is assigned the consulting-physician

role from November 1, 2002, to December 31, 2002, can be expressed as fol-

lows:

Temporal constraints on role-permission assignments These are constructs

to express either a specific interval or duration in which a permission is

assigned to a role. Suppose a hospital offers several health insurance plans for

its employees and that it provides a window of time at the close of the year for

employees to change their subscribed health insurance plan. The periodic-

ity-type constraint that states that the permission to change the health insur-

ance plan for an employee (accessing the system with an employee role) is only

5.3 Temporal constraints in RBAC 121

available between December 1, 2002, and December 31, 2002, is expressed as

follows:

5.3.3 Associated requirements for supporting temporal

constraints

In RBAC models, the constraint enforcement results in an event. Examples

of events include the enabling of a role and the activation of a role. In many

application domains, there is a requirement for some related events to occur

when an event occurs. For example, in the hospital environment, when an

attending-physician role is enabled, there is the requirement to enable a

nurse-on-duty role as well. In the GTRBAC model, the notion of a role trig-

ger is defined to support such event dependencies. An example of a role

trigger to support the dependencies we stated earlier follows:

In addition to the automatically enforced temporal constraints (which

cause events), there may be practical situations where a security administra-

tor may have to intervene and dynamically initiate certain events. For

example, a security administrator may need to enable or disable certain

roles and assign or de-assign users or permissions to roles at run time. The

GTRBAC model provides constructs to express these run-time requests. In

our hospital setting, an intern may be required to take care of some

post-surgical patient care tasks. The request to activate an intern role for a

specific intern by name Susan is expressed as:

In addition to supporting some related event requests (like role triggers

and run-time requests), a complete implementation of an RBAC model that

supports temporal constraints requires several supporting data stores and

functional modules. For example, data stores are required for storing role

triggers, occurred events, active roles, and pending actions. Functional mod-

ules (called action handlers) are required for executing various types of

actions that are a consequence of periodicity and duration constraints, role

triggers, and run-time requests. A detailed description of the architecture of

the GTRBAC model is given in [25].

122 SoD and Constraints in RBAC Systems

Supporting temporal constraints on the RBAC model affects the seman-

tics of the role hierarchies specified in the model. The default semantics of

the role hierarchy in the absence of temporal constraints (or for that matter

in the hierarchical RBAC model) is that since a senior role inherits the per-

missions of all its junior roles, activation of a senior role by a user allows that

user to acquire all the permissions of all of its junior roles. The presence of

various timing constraints relating to role-enabling or role-activation and

role-permission assignments results in dynamic hierarchies called temporal

hierarchies. These temporal hierarchies do not possess the complete permis-

sion inheritance properties found in the role hierarchies of RBAC models

without the associated temporal constraints. Readers interested in the anal-

ysis of the implication of temporal constraints on role hierarchies may refer

to [25].

References

[1] Proctor, K., “Why All Banks Should Practice Risk Management,” Hoosier

Banker, April 2001.

[2] Griffin, R. J., Statement of the Honorable Richard J. Griffin, Inspector General,

Department of Veterans Affairs, Before the United States House of Representatives

Committee on Veterans Affairs, Subcommittee on Oversight and Investigations Hearing

on Fraud and Mismanagement in VA, September 23, 1999.

[3] Simon, R. T., and M. E. Zurko, “Separation of Duty in Role Based

Environments,” Proc. Computer Security Foundations Workshop X, Rockport, MA,

June 1997.

[4] Moffett, J., and M. Sloman, “Policy Conflict Analysis in Distributed Systems

Management,” Journal of Organizational Computing, Vol. 4, No. 1, 1994,

pp. 1–22.

[5] Kuhn, D. R., “Mutual Exclusion of Roles as a Means of Implementing

Separation of Duty in Role-Based Access Control Systems,” Proc. 2nd ACM

Workshop on Role-Based Access Control, Fairfax, VA, 1997, pp. 23–30.

[6] Giuri, L., and P. Iglio, “A Formal Model for Role-Based Access Control with

Constraints,” Proc. of the Computer Security Foundations Workshop, Piscataway, NJ:

IEEE Press, 1996, pp. 136–145.

[7] Gligor, V., S. I. Gavrilla, and D. F. Ferraiolo, “On the Formal Definition of

Separation of Duty Policies and Their Composition,” Proc. IEEE Symposium on

Security and Privacy, May 1998, pp. 172–183.

[8] Ahn, G. J., and R. Sandhu, “The RSL99 Language for Role-Based Separation

of Duty Constraints,” Proc. of 4th ACM Workshop on Role-Based Access Control,

October 28–29, 1999, Fairfax, VA, pp. 43–54.

5.3 Temporal constraints in RBAC 123

[9] Ahn, G. J., and R. Sandhu, “Role-Based Authorization Constraints

Specification,” ACM Transactions on Information and System Security (TISSEC),

Vol. 3, No. 4, November 2000.

[10] Tidswell, J. E., and T. Jaeger, “Integrated Constraints and Inheritance in

DTAC,” Proc. of 5th ACM Workshop on Role-Based Access Control, Berlin, Germany,

July 26–28, 2000, pp. 93–102.

[11] Schaad, A., and J. D. Moffett, “The Incorporation of Control Policies into

Access Control Policies,” Policy 2001: Workshop on Policies for Distributed Systems

and Networks, Bristol, U.K., 2001.

[12] Botha, R. A., and J. H. P. Eloff, “Separation of Duties for Access Control

Enforcement in Workflow Environments,” IBM Systems Journal, Vol. 40, No. 3,

2001.

[13] Hunton, J. E., and T. L. Jones, “Recreation, Inc., An Information Technology

Risk Assessment Case Study of Enterprise Resource Planning (ERP) Systems,”

AICPA Case Development Program, Case No. 2000-02, American Institute of

Certified Public Accountants, 2000.

[14] Ferraiolo, D., J. Cugini, and R. Kuhn, “Role-Based Access Control: Features

and Motivations,” Proc. of the Annual Computer Security Applications Conf.,

Piscataway, NJ: IEEE Press, 1995.

[15] Sandhu, R., “Transaction Control Expressions for Separation of Duties,” Proc.

4th Aerospace Computer Security Applications Conference, Orlando, FL, December

1988, pp. 282–286.

[16] Nash, M. J., and K. R. Poland, “Some Conundrums Concerning Separation of

Duty,” Proc. 1990 IEEE Symposium on Security and Privacy, May 1990,

pp. 201–207.

[17] Cholewka, D. G., R. H. Botha, and J. H. P. Eloff, “A Context-Sensitive Access

Control Model and Prototype Implementation,” Proc. of IFIP TC11 15th

International Conference on Information Security, Beijing, China, 2000,

pp. 341–350.

[18] Georgiadis, C. K., et al., “Flexible Team-Based Access Control Using Contexts,”

Proceedings of ACM RBAC97, 1997.

[19] Kumar, A., N. Karnik, and G. Chafle, “Context Sensitivity in Role-Based

Access,” ACM SIGOPS Operating Systems Review, Vol. 36, Issue 3, July 2002,

pp. 53–66, http://portal.acm.org/citation.cfm?id=567331.567336&coll=portal&

dl=ACM&idx=J597&part=newsletter&WantType=Newsletters&title=Operating

%20Systems&CFID=5328156&CFTOKEN=18503687-FullText.

[20] Papenfus, C., and R. Botha, “An XML-Based Approach to Enforcing History

Based Separation of Duty Policies in Heterogeneous Workflow

Environments,” SACJ/SART, No. 26, 2000, pp. 60–68.

[21] Chandramouli, R., and R. Sandhu, “Role-Based Access Control Features in

Commercial Database Management Systems,” 21st National Information Systems

Security Conference, Crystal City, VA, October 6–9, 1998.

124 SoD and Constraints in RBAC Systems

[22] Crampton, J., and G. Loizou, “Authorization and Antichains,” Operating

Systems Review, Vol. 35, No. 3, 2001, pp. 6–15.

[23] Kuhn, D. R., “Role and Permission Assignment with Separation of Duty

Constraints,” unpublished memorandum, 2001.

[24] Bertino, E., A. Bonatti, and E. Ferrari, “TRBAC: A Temporal Role-Based

Access Control Model,” ACM Transactions on Information and System Security, Vol.

4, No. 4, September 2001, pp. 65–104.

[25] Joshi, J. B. D., A. Bertino, and A. Ghafoor, “Temporal Hierarchies and

Inheritance Semantics for GTRBAC,” 7th ACM Symposium on Access Control

Models and Technologies, Monterey, CA, 2002.

5.3 Temporal constraints in RBAC 125

RBAC, MAC, and DAC

Before RBAC, the most widely implemented forms of access

control were conventional DAC and MAC. The availability

of RBAC does not obviate the need for MAC and DAC policies,

however. Whenever secrecy and information flow are primary

concerns, these conventional access control systems may be

needed, particularly for military and government systems that

require multilevel secure (MLS) MAC controls for classified

information. Thus, it is important to understand the relationship

between RBAC, MAC, and DAC approaches to access control.

RBAC is more general than either MAC or DAC. Unlike

MAC, which was designed to prevent unauthorized informa-

tion flow, RBAC is policy-independent, meaning that it can

support a variety of policies. Accordingly, we would expect

RBAC to be able to implement an information flow policy in

addition to integrity-oriented constraints such as SoD. As it

turns out, this is indeed the case. Nyanchama and Osborn [1];

Sandhu [2]; Osborn, Sandhu, and Munawer [3]; and Ferraiolo

and Hu [4] presented methods for simulating lattice-based

MLS systems in RBAC. A simple construction allows RBAC to

be configured for MAC information flow policies. Similarly,

Sandhu and Munawer [5] have shown that DAC can be imple-

mented by the appropriate configuration of RBAC systems,

although it is much more complex to implement than MAC.

Surprisingly, given RBAC’s greater generality, it is also possible

to configure a MAC-based system to support most of the RBAC

model. A construction due to Kuhn [6] makes it possible to

implement RBAC by configuring security categories on an MLS

system, with the restriction that the RBAC system supports

127

6
Contents

6.1 Enforcing DAC using RBAC

6.2 Enforcing MAC on RBAC
systems

6.3 Implementing RBAC on
MLS systems

6.4 Running RBAC and MAC
simultaneously

C H A P T E R

only a tree hierarchy, rather than a fully general partial order structure for

roles. Since nearly all RBAC systems implement only simple tree hierar-

chies, this may not be a serious restriction in practice. This chapter reviews

these methods for implementing traditional MAC and DAC policies on

RBAC, or RBAC policies on MAC, and then discusses considerations for

operating RBAC and multilevel secure MAC systems simultaneously.

6.1 Enforcing DAC using RBAC

Although RBAC is nondiscretionary in nature, Sandhu and Munawer [5]

have shown that it is possible to implement DAC in RBAC by using roles

associated with each object. Several variations of DAC can be supported in

RBAC using this method. The approach is more of a theoretical than a prac-

tical interest, because it consumes an enormous number of resources. How-

ever, it could be used to provide DAC within RBAC on small collections of

objects rather than across the RBAC system. This result also confirms that

RBAC is policy neutral and more general than DAC because, while RBAC

can simulate DAC, the reverse is not true.

DAC provides for owner-controlled administration of access rights to

objects (i.e., access is granted at the owner’s discretion). Researchers have

proposed an extensive variety of DAC models, including the following:

1. Strict DAC, in which only the owner has the authority to grant access

to an object. Ownership cannot be transferred to another user.

2. Liberal DAC, which allows the owner to delegate authority to grant

access to other users. Subcategories of liberal DAC are defined by the

extent to which access authority can be delegated:

◗ One-level grant: The owner can give access granting authority to

another user, but the authority cannot be passed on.

◗ Two-level grant: A user who has received access granting authority

from the object owner can give access granting authority to a third

user, but the authority cannot be passed on by that third user.

◗ Multilevel grant: As its name implies, any user who has received

access-granting authority can pass it on with no restrictions on

further grants.

3. DAC with change of ownership, which allows the object owner to pass

on ownership to another user.

128 RBAC, MAC, and DAC

In addition to access-granting authority, we must consider the revoca-

tion of access rights in any definition of DAC. Two types of revocation are

important:

1. Grant-dependent revocation, which is the more intuitive form, allows

only the party who originally granted access to revoke the access

rights of another user.

2. Grant-independent revocation, which allows a third party, rather than

the original granter, to revoke access rights.

6.1.1 Configuring RBAC for DAC

The Sandhu-Munawer construction can be used to simulate the variations

of DAC described above and has enough flexibility to implement more spe-

cialized forms of DAC. The method requires, for each object in the system,

the creation of four roles and eight permissions. The roles required are listed

as follows:

◗ Three administrative roles: OWN_O, PARENT_O, and

PARENTwithGRANT_O;

◗ One ordinary role: READ_O.

Table 6.1 lists the permissions and the roles to which they are assigned.

Table 6.1 Permission Assignments

Permission Role Assigned to Function

CanRead_O READ_O Authorizes read operation on

object O

DestroyObject_O OWN_O Authorizes deletion of the

object

AddReadUser_O PARENT_O Adds users to role READ_O

DeleteReadUser_O PARENT_O Removes users from role

READ_O

AddParent_O PARENTwithGRANT_O Adds users to role PARENT_O

DeleteParent_O PARENTwithGRANT_O Deletes users from role

PARENT_O

AddParentWithGrant_O OWN_O Adds users to role PARENT_O

DeleteParentWithGrant_O OWN_O Deletes users from role

PARENT_O

6.1 Enforcing DAC using RBAC 129

Object deletion is handled by removing the roles OWN_O, PARENT_O,

PARENTwithGRANT_O, and READ_O, along with the eight permissions in

Table 6.1. As shown in Table 6.1, only the owner can delete objects, through

the DestroyObject_O permission.

6.1.2 DAC with grant-independent revocation

With this set of roles and permissions, it is possible to simulate the varieties

of DAC described earlier by changing cardinality constraints on the special-

ized roles OWN_O, PARENT_O, and PARENTwithGRANT_O and then

allowing authorized users to assign other users to READ_O as appropriate.

The configurations described in the following sections support grant-inde-

pendent revocation. Grant-dependent revocation is more complex, as will be

explained in Section 6.1.3.

Strict DAC Because OWN_O has a cardinality constraint of 1, only the

owner can grant or revoke read access to objects:

Role Constraint

OWN_O cardinality = 1

PARENT_O cardinality = 0

PARENTwithGRANT_O cardinality = 0

Liberal DAC—one-level grant In this variety of DAC, the owner can assign

any number of users to PARENT_O, who can in turn assign other users

to READ_O, enabling others to have read access to the object, but the

constraint on PARENTwithGRANT_O prevents this authority from being

passed on:

Role Constraint

OWN_O cardinality = 1

PARENT_O none

PARENTwithGRANT_O cardinality = 0

Liberal DAC—two-level grant For two-level grant, the constraint on

PARENTwithGRANT_O is removed, allowing authorized users to assign other

users to PARENT_O:

130 RBAC, MAC, and DAC

Role Constraint

OWN_O cardinality = 1

PARENT_O none

PARENTwithGRANT_O none

Liberal DAC—multilevel grant To support multilevel grants, we add per-

mission to the role PARENTwithGRANT_O to assign others to the

PARENTwithGRANT_O role. The additional permission,

AddParentWithGrant_O, is added when the object is created, along with the

DeleteParentWithGrant_O permission. An alternative for this configuration

is to keep DeleteParentWithGrant_O only in the OWN_O role:

Role Constraint Additional Permissions

OWN_O cardinality = 1 —

PARENT_O none —

PARENTwithGRANT_O none AddParentWithGrant_O,

DeleteParentWithGrant_O

6.1.3 Additional considerations for grant-dependent

revocation

To simulate grant-dependent revocation, it is necessary to follow the proce-

dures for grant-independent revocation, with the added complication that

additional roles must be established for every user authorized to do a grant

by the object owner. Specifically, the roles OWN_O, PARENT_O, and

PARENTwithGRANT_O are replaced by roles U
i
OWN_O, U

i
PARENT_O, and

U
i
PARENTwithGRANT_O for every user U

i
authorized to do a grant. These

roles must be created by the system whenever an object owner authorizes

user U
i.
In addition to new per-user roles, user-specific administrative per-

missions must also be created at the same time. For example, in simulating

one-level grant, permissions addU
i
_ReadUser_O and deleteU

i
_ReadUser_O

are assigned to U
i
PARENT_O, to permit adding users to U

i
_ReadUser_O and

deleting users from U
i
_ReadUser_O. Other roles must be similarly estab-

lished for each user.

6.2 Enforcing MAC on RBAC systems

Simulating DAC on RBAC is not a straightforward process, despite DAC’s

apparent simplicity. Part of the difficulty is that RBAC is by nature a

6.2 Enforcing MAC on RBAC systems 131

nondiscretionary approach to access control. Perhaps because of its

nondiscretionary nature, RBAC can be configured to implement MAC much

more easily than DAC. This problem has been studied by a number of

authors, including Nyanchama and Osborn [1], Sandhu [2], and Osborn [7].

A compilation of results by Osborn, Sandhu, and Munawer [3] shows how

to configure RBAC to support lattice-based access control policies, including

several varieties of MAC.

As with DAC, a number of different rules have been proposed for MAC.

These rules have been introduced in Chapters 1 and 3, but are reviewed

here. Recall that a security label combines both a level (e.g., secret,

top-secret) and a set of security categories. One rule common to all multi-

level secure MAC systems is the simple security property, for subjects and

objects with security levels given by L(s) and L(o), respectively.

Simple security property A subject s can read an object o only if L(s) ≥ L(o).

The simple security property is the familiar “no read up” property introduced

in Chapter 1. It prevents users from reading information for which they are

not cleared. Rules for writing information can vary, depending on the organi-

zation’s requirements. The most important forms of write rules are the liberal

and strict *-property rules, which enforce a “no write down” policy.

Liberal *-property A subject s can write object o only if L(s)≤ L(o). Because

this rule could allow malicious users (or, more likely, a compromised user ses-

sion) to overwrite and destroy information above their clearance level, a sec-

ond form of *-property is defined in the following.

Strict *-property A subject s can write object o only if L(s) = L(o). The strict

*-property enforces a “write equal” policy, which, of course, implies “no write

down” as well.

6.2.1 Configuring RBAC for MAC using static constraints

Unlike DAC, MAC rules are relatively easy to enforce on an RBAC system. A

construction developed by Sandhu [2] shows that by appropriately combin-

ing role hierarchies and constraints, a variety of policies can be imple-

mented. This section explains MAC for liberal and strict *-properties. This

discussion presumes a set of security labels {L
1
, L

2
, … L

n
} that combine clear-

ance level and categories.

Liberal *-property For each security label, read (L
i
R) and write (L

i
W) roles

are defined:

132 RBAC, MAC, and DAC

1. Two disjoint role hierarchies are used, one for read and the other for

write. The basic idea is to place high security levels on the top of

the read hierarchy and at the bottom of the write hierarchy (see

Figure 6.1). This allows users to read objects at or below their level

and write objects at or above their level, exactly as required by the

liberal *-property.

2. Permissions (o, r) and (o, w) are established for each object o in the

system.

3. Each user is assigned roles xR and LW, where x is the user’s security

label and LW is the write role for the lowermost security level.

4. Each user session has two roles, yR and yW.

5. Permissions are assigned to roles as follows:

◗ (o, r) is assigned to xR if and only if (o, w) is assigned to xW.

◗ (o, r) is assigned to exactly one role xR, where x is the label of o.

Strict *-property This construction uses the same rules as those for liberal

*-property, with the exception that no hierarchical relationship is established

for the write roles (see Figure 6.2). In this way, users are prevented from writ-

ing above their levels.

6.2.2 Configuring RBAC for MAC using dynamic constraints

It is also possible to use dynamic constraints, in particular dynamic SoD (see

Chapter 5), to implement multilevel security on an RBAC system [4]. To

implement the multilevel secure MLS policy in RBAC, assume that we have

users cleared to the levels of high (H), medium (M), and low (L) and objects

6.2 Enforcing MAC on RBAC systems 133

HR

M1R

LR

M2R M1W M2W

HW

LW

Figure 6.1 Configuration of RBAC for liberal *-property.

that are classified at the high, medium, and low levels. We are able to define

the range of capabilities for H, M, and L users using a role hierarchy, an

object hierarchy where object sets (OS) are organized by a containment rela-

tion, and where roles are assigned to operation sets and operation sets are

assigned to object sets as depicted in Figure 6.3. Regarding the object hierar-

chy, if an object is assigned to an object set than the object is contained in

that object set and all junior object sets. For example, if an object were to be

assigned to the object set L in Figure 6.3, than the object would be contained

in L, LM, and LMH. Under this scheme users are either assigned to L, M, or H

depending on their clearance level and objects are assigned to L, M, or H

134 RBAC, MAC, and DAC

HR

M2R

LR

M1R M2WM1WLWHW

Figure 6.2 Configuration of RBAC for strict *-property.

MH

L

M

LMH

M

L

H

{r}
{r}

{r}

{w}

{w}

H

LM

{w}

Figure 6.3 H, M, L user’s range of capabilities. On the left side of the graph are

roles organized as a role hierarchy, and on the right side of the graph are object

sets (OS) organized under a containment relation.

depending on the object’s classification level. Note that by considering the

permission inheritance properties of the role hierarchy, the access control

policy defined thus far preserves the simple security property but is in viola-

tion of the *-property (e.g., the subject of a user that is assigned to H could

active H, M, and L roles). Table 6.2 is an access matrix presentation of the

range of accesses that are depicted in Figure 6.3.

To accommodate the *-property, we impose the following dynamic con-

straints on the active user sets of all subjects: dsd(H, H
C
) , dsd(M, M

C
), dsd(L,

L
C
)∈ DSD, where H

C
, M

C
, and L

C
, are the complements of H, M, and L, respec-

tively. As such the subjects of H users will be constrained to activation, H, M,

or L role sets, and M users will be constrained to the activation of M or L role

sets. Because L users are only authorized for L role sets, their subjects are by

default restricted to the activation of only the L role set. All subjects are

restricted to the activation of H, M, or L role sets.

As a consequence of the permission relations depicted in Figure 6.3 and

the dynamic separation of duty relation relations defined above, results in

the access policy depicted by the access matrix of Table 6.2. The access

matrix of Table 6.2 defines the set of subject and object set accesses with

respect to the H, M, and L active role set (ARS) subject attributes. Note that

the policy depicted in Table 6.2 preserves both the simple security and

*-property of the multilevel security model.

The constructions shown in Table 6.2 offer new opportunities to devel-

opers of RBAC systems, because they allow the same trusted computing sys-

tem to address the needs of both commercial (primarily RBAC) and MLS

users with the same product. One of the primary reasons for RBAC’s success

is its ability to address the needs of the commercial marketplace. Developers

of MLS systems had long hoped that MLS systems providing MAC and DAC

would be sufficient for commercial users. An early view of computer secu-

rity was that commercial users needed the same type of security as military

users, only less of it. Had this vision been correct, MLS systems would have

found a much broader market, making it possible to reduce their cost. How-

ever, the inability of MLS systems to meet the needs of most commercial

6.2 Enforcing MAC on RBAC systems 135

Table 6.2 The Effective Access Matrix for Subjects (ARS) Constrained Under

DSD Relations

subject(ARS)\os H M L LMH LM MH

subject(H) r, w r r r r —

subject(M) w r, w r — r w

subject(L) w w r, w w w w

users led to the recognition of a need for a different approach to security,

embodied by RBAC and related designs. Yet there is still a need for MLS sys-

tems within some organizations. The methods described in this section

allow these organizations to take advantage of RBAC’s flexibility while pro-

viding traditional MAC rules. However, government policies may require

that the system provide MLS controls at the kernel level, rather than lay-

ered on top of an RBAC system. Section 6.3 shows that it is possible to take

the opposite approach to combining RBAC and MLS controls by layering

RBAC on a traditional MLS platform.

6.3 Implementing RBAC on MLS systems

Sections 6.1 and 6.2 demonstrate that RBAC can be used to implement the

traditional DAC and MAC rules. This section does the reverse, configuring a

system that supports MAC to implement RBAC. A construction defined by

Kuhn [6] allows RBAC to be implemented directly on MLS systems that

support the traditional lattice-based controls. This is significant because it

means that the enormous investment in MLS systems can be applied to

implementing RBAC systems. In addition, this method allows simultaneous

support of RBAC and MLS access rules, with MLS controls remaining at the

kernel level.

A role can be thought of as a set of permissions or privileges. RBAC can

then be implemented on an MLS system by establishing a relationship

between privilege sets within the RBAC system and category sets within the

MLS system. To implement RBAC, a trusted interface function is developed

to ensure that the assignment of levels and categories to users is controlled

according to the RBAC rules. No modifications to the MLS system are neces-

sary. Roles and their associated privilege sets must be mapped by the inter-

face function to sets of categories. Each time a user establishes a session, the

interface presents the user’s role options and then checks to ensure that

the user is authorized for the requested role. The trusted interface then sets

the subject’s categories according to a mapping function that determines a

unique combination of categories based on the privileges associated with

requsted role (see Figure 6.4).

A problem arises in the choice of the mapping function. One possibility is

the one-to-one assignment of MLS categories to RBAC privileges. This

approach is used in the Data General DG/UX B2 secure system [8], for

example. For small numbers of privileges, this is an efficient solution.

DG/UX supports up to 128 separate roles. Users can be assigned a set of

136 RBAC, MAC, and DAC

categories that correspond to the privileges of their roles; then, access is

handled by the MLS system.

Unfortunately, most MLS systems support a relatively small number of

categories and levels, typically 64 to 128 of each. Obviously, if the MLS sys-

tem were testing that L(s) ≥ L(o) and C(o) = C(s), rather than L(s) ≥ L(o) and

C(o) ⊆ C(s), then we could simply use subsets of categories to map to privi-

leges, giving a total of 2
c
mappings. However, since we want to be able to

control access to RBAC privileges simultaneously with MLS access control

without changing the MLS system, we need a method that can uniquely

represent a large number of privileges using MLS categories and levels.

One alternative is to establish a mapping between RBAC privileges and

pairs of MLS categories. This approach would support a total of ()n n2 2−
privilege mappings. If 64 categories are available on the MLS system, then

2,016 privileges could be mapped to MLS categories. This is a more reason-

able number, but large organizations may require many more individual

privileges to be controlled. Also, in some applications only a very small

number of categories may be available (for example, if there is a need to

6.3 Implementing RBAC on MLS systems 137

Subject

RBAC
trusted
interface

MLS
system

O1 O2 On…

RBAC to MLS
mapping function

Role request

{Categories}

Figure 6.4 RBAC/MLS interface.

reserve a large number of categories for MAC use). If only 10 categories

were available, then only 45 privileges could be controlled in this manner. A

more generalized approach is to use combinations of categories.

This section describes a method of implementing RBAC by mapping

from roles to categories at system initialization time. Only category sets are

used; security levels are not needed to control access to RBAC-protected

objects. This makes it possible to use RBAC simultaneously with the MAC

policies supported on MLS systems. One possible limitation of this construc-

tion is that the role to category mapping must be regenerated if changes are

made in the role structure. In practice, however, role structures change rela-

tively slowly, and the mapping can be regenerated automatically without

impacting users. Another potential problem is that the hierarchy created

by the algorithm must be a tree, rather than a lattice or partial order. Fortu-

nately, this should not be a serious limitation, because existing role-based

systems use tree hierarchies.

Note that the data objects controlled by MAC rules can still be organized

into a lattice. The MAC system will use both levels and categories, while the

RBAC system uses only a set of categories with all processes labeled at sys-

tem-low (if appropriate). This architecture may be particularly advanta-

geous in a military system that must support both roles and MAC security.

For example, a system for satellite photo analysts could provide a role struc-

ture to control access to photos that are classified into different clearance

levels and categories. Because the Kuhn construction is limited to tree hier-

archies, it does not invalidate the claim that RBAC is more general than

MLS MAC, since this method does not allow simulation of the full RBAC

model on an MLS system. (Please note that the construction described

in this section is the subject of a patent owned by the U.S. government.

Licensing requirements, if any, are established by the U.S. Department of

Commerce.)

6.3.1 Roles and privilege sets

Let R be a tree of roles and associated privileges, where the root R
0

repre-

sents one or more privileges that are available to all roles in the system.

Child nodes represent more specialized privilege sets. A child node R
j
can

access all privileges associated with role R
j
and any associated with roles R

i
,

where R
i
are any ancestor nodes of R

j
. The privilege sets are assumed to be

disjoint. If roles exist with overlapping privilege sets, then new roles can be

created with the common privileges, and existing roles can inherit from

them. For example, if R
i
and R

j
have privilege sets P(R

i
) and P(R

j
) that over-

lap, then the following steps are necessary:

138 RBAC, MAC, and DAC

1. Create a new role R
k
with privilege set P R P R

i j
() ()I ;

2. Remove privileges in P R P R
i j

() ()I from R
i
and R

j
;

3. Modify the role hierarchy so that role R
i
and R

j
inherit from R

k
, and R

k

inherits from the role that R
i
and R

j
previously inherited from.

Let

C = total number of categories on the MLS system to be used to imple-

ment RBAC;

d = maximum depth of child nodes from the root, where the root is

level 0. This is equivalent to the maximum level of the leaf nodes.

The categories from C will be assigned to roles and privilege sets. If the

tree is relatively balanced, then C/d categories are available at each level for

representing privilege sets. To distinguish between privilege sets, combina-

tions of categories are used. At each level in the tree, where n is the number

of categories available for representing roles at that level, the number of

privilege sets that can be distinguished is
n

n 2

 . Using C/d categories at each

of d levels, the total number of privilege sets in the tree is therefore

(depending on how well balanced the tree is) approximately
C d

C d

d

2

6.3.2 Assignment of categories to privilege sets

Privilege sets are associated with categories as follows:

1. A role at the root of the tree, with privileges available to all users, is

associated with a randomly selected category. This category is

removed from the set of categories available to designate roles.

2. Roles at level l of the tree, where N
l
indicates the number of nodes at

level l, are associated with unique sets of categories drawn from the

set of remaining categories.

The number of categories needed for level l is the smallest number c

such that N
c

c
l

≤

2
. Choose c categories from the remaining set of

categories. Remove these c categories from the set of categories avail-

able to designate roles.

6.3 Implementing RBAC on MLS systems 139

3. From the set of c categories chosen in step 2, assign a unique set of

categories to each privilege set at level l. Step 2 ensures that there are

enough categories to make all the sets different.

One way of implementing this step is to generate a list L
1
of num-

bers from 1 to 2
c

– 1, then extract from this list a second list L
2

containing all numbers whose binary representation contains c/2

bits. Each bit is associated with a category. Assign to each privilege

set at level l a different number from L
2
. Then label each privilege in a

privilege set with category i if and only if bit i in the binary represen-

tation is a 1. For example, the mapping from bits to categories in

Table 6.3 shows how the procedure works for c = 3 categories. Ex-

tracting all sets of two categories from the list gives {c
2
, c

1
}, {c

3
, c

1
}, {c

3
,

c
2
}. (These are highlighted with brackets in Table 6.3. It would also be

possible to have three distinct sets of one category each; two are used

simply to demonstrate the procedure.) Because all of the numbers

associated with privilege sets have c/2 bits, each privilege set will be

labeled with a different set of categories.

4. Repeat steps 2 and 3 until all privilege sets have been assigned a set of

categories.

6.3.3 Assignment of categories to roles

Each role must be able to access all privileges associated with its privilege set

and all privilege sets associated with roles that it inherits (i.e., roles that are

represented by ancestor nodes in the role hierarchy). Categories are

assigned to roles as follows:

140 RBAC, MAC, and DAC

Table 6.3 Mapping of Privileges

to Categories

L
1

L
2
:binary

x
3
x

2
x

1

Categories

Cp =
=

U
j xj jc1

1

2

3

4

5

6

7

001

010

{011}

100

{101}

{110}

111

c
1

c
2

{c
2
, c

1
}

c
3

{c
3
, c

1
}

{c
3
, c

2
}

c
3
, c

2,
c

1

1. Assign to role R
i
the set of categories assigned to its privilege set.

2. For each ancestor role R
j
from which role R

i
inherits privileges, add to

the labels for role R
i
the categories associated with the privilege set

for R
j
.

6.3.4 Example of MLS to RBAC mapping

Figure 6.5 shows an example of category labeling for a hierarchical privilege

set defining 36 roles. The tree has a depth of 2 and a maximum branching

factor of 6. A total of nine categories is needed. The privilege sets assigned to

a role are those labeling the role’s node in the tree, plus the labels of any

ancestor nodes. For example, role R
33

has categories a, b, d, g, and i. Consider

roles R
0
, R

1
, and R

20
. Privileges authorized for role R

0
are assigned category a.

Privileges authorized for role R
1
are assigned categories a, b, and c (a from

role R
0

and b and c from role R
1
). Privileges authorized for role R

20
are

assigned categories a, b, c, g, and h (a from role R
0
; b and c from role R

1
and g

and h from role R
20
). A user who establishes a session at role R

1
will be

assigned categories a, b, and c. Note that this user can access the privileges

assigned to role R
0
, because the user has category a. A user who establishes a

session at role R
20

will be assigned categories a, b, c, g, and h. This user can

access all inherited privileges, but not any other privilege sets because all

others have at least one category not assigned to role R
20
. Figure 6.6 shows a

6.3 Implementing RBAC on MLS systems 141

R0 a

R1 bc R2 bd R3 cd R4 be R6 deR5 ce

R15 fh

R32 gi

R7 fg

R20 gh

R26 fi

R33 gi

R8 fg

R16 fh

R21 gh

R27fi

R34 gi

R9 fg

R17 fh

R22 gh

R28 fi

R35 gi

R10 fg

R18 fh

R23 gh

R29 fi

R36 gi

R11 fg

R19 fh

R24 gh

R30 fi

R25 fg

R31 fh

R13 gh

R14 fi

R12 hi

Figure 6.5 Example of hierarchical privilege mapping.

portion of Figure 6.5 with privilege sets associated with various roles. Each

of the privileges, P
1
and P

2
, associated with role R

0
is labeled with category a.

Therefore, any user authorized for role R
0
, or any role that inherits privileges

from R
0
(e.g., R

1
and R

7
) can access privileges P

1
or P

2
. Note that a user autho-

rized only for R
0
cannot access privileges such as P

5
; P

6
; P

7
, because these are

labeled with categories a, b, and c, but R
0

has only category a. A user autho-

rized for role R
1
, or any role that inherits from R

1
can access P

5
; P

6
; P

7
,

because R
1

has categories a, b, and c.

The construction described in this section provides an alternative

approach to implementing RBAC jointly with MLS. It presents a number of

advantages. Many firms have spent millions of dollars building, testing, and

maintaining MLS systems. By implementing RBAC using a single trusted

process, this investment can be leveraged to produce new systems that have

great commercial value without requiring a similarly large investment to

build entirely new RBAC systems. In addition to the initial design cost, the

assurance process for trusted systems is lengthy and expensive. By confining

RBAC to a single trusted process that sits above the MLS kernel, the assur-

ance process should be much less expensive than that required for an

entirely new system. Since RBAC is implemented through configuration

142 RBAC, MAC, and DAC

R0 a

R1 abc R2 abd

P5, P6, P7
abc

P11, P12, P15
abcgh

R15 abcfh

R20 abcgh

Privilege sets

R7 abcfg

R26 abcfi

R26 abcfi

a
P1, P2

Figure 6.6 Roles and privilege sets with category labels.

options, a system can provide RBAC while retaining the same high

assurance level.

6.4 Running RBAC and MAC simultaneously

Sections 6.1 to 6.3 have shown ways to use conventional systems and RBAC

to implement each other, but there are important considerations when

operating RBAC simultaneously with a MLS system. RBAC’s utility has

made it attractive not only for commercial systems, but for a wide variety of

systems that process classified information (see, for example, [9, 10]). The

U.S. DoD’s Global Command and Control System incorporates RBAC [11],

as do some cryptographic key management systems. These systems, and

many others, may have requirements to incorporate MAC rules in a

role-based security environment.

Researchers have investigated the interrelationship between multilevel

security and RBAC. Osborn [7] showed that significant constraints exist on

the ability to assign roles to subjects without violating MAC rules. To ana-

lyze the assignment of roles, it is necessary to consider all objects that can be

read or written by users with a role. The collection of read-and-write privi-

leges for a particular role, termed the modified privilege set, is the set of pairs

(object, operation) that are accessible to the role either directly or indirectly,

where operation is either read or write. Then the r-level is defined as the maxi-

mum security level of any object for which (o, read) is in the modified privi-

lege set of the role. Similarly, the w-level is the minimum security level of any

object for which (o, write) is in the modified privilege set of the role.

Once r-level(R) and w-level(R) for a role R have been determined, it is

possible to analyze the assignment of users to the role. Clearly, users

must not be allowed to read objects above their clearance levels. This

requirement leads us to the first constraint, which ensures the “no read up”

property:

◗ Constraint 1: Any subject s assigned to a role R must have L(s) ≥
r-level(R). The “no write down” property must also be maintained, so

for the liberal *-property we also have the following.

◗ Constraint 2: Any subject s assigned to a role R must have L(s) ≤
w−level(R). Combining these two constraints, we can see that the third

property, termed the “role lemma” [7], must hold for any role.

◗ Constraint 3: w−level(R) ≥ r−level(R). For the strict *-property, the con-

straints become even tighter. This version of the *-property requires

6.4 Running RBAC and MAC simultaneously 143

that L(s) = w−level(R), so every object that can be written to by a user

in role R must be at the same security level.

Since a role might require read and write access to objects at a broad

range of security levels, these constraints could theoretically present a prob-

lem in implementing RBAC with MAC. However, practical applications pro-

vide a way around this limitation. In practice, the traditional *-property may

be relaxed to allow write access if the data written does not depend on the

data read, reducing constraints on role assignment depending on the degree

to which there is independence between read-and-write data in “typical’’

applications. Of course, the constraints above must hold for any data where

there are dependencies between read-and-write operations.

To date, systems supporting both MAC and RBAC have not been pro-

duced, but the approaches discussed in this chapter show that such a system

is possible. Deciding whether to use a MAC on RBAC (Section 6.2) or RBAC

on MAC approach (Section 6.3), or some hybrid design, will depend on

organizational requirements and available resources. In either case, the con-

straints described above must be observed.

References

[1] Nyanchama, M., and S. L. Osborn, “Information Flow Analysis in Role-Based

Systems,” Journal of Computing and Information, Vol. 1, No. 1, May 1994,

Special Issue: Proc. of the 6th International Conference on Computing and

Information (ICCI), Peterborough, Ontario, Canada.

[2] Sandhu, R., “Role Hierarchies and Constraints for Lattice-Based Access

Controls,” Proc. of 4th European Symposium on Research in Computer Security,

Rome, Italy, September 25–27, 1996.

[3] Osborn, S., R. Sandhu, and Q. Munawer, “Configuring Role-Based Access

Control to Enforce Mandatory and Discretionary Access Control Policies,”

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2002,

pp. 85–106.

[4] Ferraiolo, D. F., and V. Hu, The Policy Machine: A Policy Engine and Language for

Generalized Attribute-Based Access Control, (unpublished) 2002.

[5] Sandhu, R., and Q. Munawer, “How to Do Discretionary Access Control Using

Roles,” Proc. of 3rd ACM Workshop on Role-Based Access Control (RBAC-98), Fairfax,

VA, October 1998.

[6] Kuhn, D. R., “Role-Based Access Control on MLS Systems Without Kernel

Changes,” Proc. ACM Workshop on Role-Based Access Control, 1998, pp. 25–32.

144 RBAC, MAC, and DAC

[7] Osborn, S. L., “Mandatory Access Control and Role-Based Access Control

Revisited,” Proc. of 2nd ACM Workshop on Role-Based Access Control, November

1997.

[8] Meyers, W. J., “RBAC Emulation on Trusted DG/UX,” Proc. 2nd ACM Workshop

on Role-Based Access Control, 1997.

[9] Phillips, Jr., C. E., S. A. Demurjian, and T. C. Ting, “Towards Information

Assurance for Dynamic Coalitions,” Proc. 2002 IEEE Workshop in Information

Assurance, United States Military Academy, West Point, New York, June 2002.

[10] Khair M., I. Mavridis, and G. Pangalos, “Design of Secure Distributed Medical

Database System,” Database and Expert Systems Applications (DEXA ’98), August

1998.

[11] Phillips, Jr., C. E., T. C. Ting, and S. A. Demurjian, “Mobile and Cooperative

Systems: Information Sharing and Security in Dynamic Coalitions,” 7th ACM

Symposium on Access Control Models and Technologies, June 2002. Also Information

Sharing and Security in Dynamic Coalitions, University of Connecticut, Technical

Report CSE-TR-02-1, 2002.

6.4 Running RBAC and MAC simultaneously 145

Privacy and Regulatory Issues

Privacy requirements impact several data flow and data

accessibility issues. These issues are anonymity,

Pseudoanonymity, unlinkability, unobservability, and protec-

tion of personally identifiable information (PII). Since the focus

of any access control framework is information and resource

protection, incorporating protection requirements driven by

privacy principles for this particular class of information (i.e.,

PII) becomes a natural fit into this framework. Hence among all

privacy requirements, the discussion in this book is limited to

privacy requirements relating to protection of PII.

The information content in PII relates to an identifiable

individual, for whom unrestricted disclosure and inappropriate

use of that content might be detrimental to the privacy and

safety of that individual. Thus there are public regulations at

the local, state, and national levels that prescribe the set of pro-

cedures and restrictions governing all life-cycle activities asso-

ciated with that class of information (collection, storage, usage

and destruction). Examples of such regulations in the United

States are the Health Insurance Portability and Accountability

Act (HIPAA) governing healthcare information, the Gramm

Leach Bliley Act (GLBA) for financial information, and a vari-

ety of state laws and regulations.

Incorporating privacy requirements for protection of PII has

an impact on every stage of the access control framework

development life cycle. These stages include policy specifica-

tion, model definition, requirements engineering, and authori-

zation engine design.

147

7
Contents

7.1 Privacy requirements
and access control
framework

7.2 Integrate privacy
policy support in the role
engineering process

7.3 Authorization using
privacy-RBAC-ACF

7.4 RBAC and regulatory
compliance

C H A P T E R

7.1 Privacy requirements and access control
framework

Although in some cases privacy and access control goals may conflict, shar-

ing the common goal of information protection (in the context of PII) can

help privacy requirements enforcement processes integrate into an access

control framework. Hence this is the most common approach adopted by

the research community and industry for privacy requirements enforce-

ment. Developing an access control framework for an enterprise or applica-

tion typically consists of the following generic tasks (the specific tasks in the

context of RBAC are given in parenthesis):

◗ Development of access control policy specification module;

◗ Choosing an access control model (RBAC with all required entities and

relationships);

◗ Analyzing business processes and access control policies to create the

deployment data for the access control model (role engineer-

ing—defining entity and relationship instances);

◗ Designing access decision module or authorization engine.

To incorporate privacy requirements into the access control framework

development process, the following steps are adopted in literature:

◗ Incorporate privacy policies into access control policy specification

module;

◗ Enhance RBAC model with privacy-related entities and relationships;

◗ Integrate privacy policy support in the role engineering process;

◗ Integrate privacy rules evaluation logic into access decision module

(authorization engine).

Let us now see in detail each of the above steps whose final output is a

privacy-supporting RBAC-based access control framework. We will call this

privacy-RBAC-ACF.

7.1.1 Incorporating privacy policies into the policy

specification module

Access control policies are often expressed through policy specification lan-

guages, each of which may have different syntaxes. However, the funda-

mental building blocks of any access control policy (also called policy

elements) are subject, object, operation, and condition (please refer to

148 Privacy and Regulatory Issues

Chapter 2 for a detailed discussion of the first three policy elements) These

elements form the core elements in a privacy policy specification as well.

However, the characteristics of these policy elements (granularity, relation-

ship to other elements, and so forth.) in privacy policies differ from those in

access control policies as described next.

Subject: In privacy policy specifications, there are multiple subjects and a

privacy policy assertion may involve reference to the relationship between

the subjects. In most access control policy specifications, there is only one sub-

ject—the user requesting access to data—although in certain contexts such as

DBMS, there is the concept of data owner. In privacy policies, in addition to

data access requestor and data owner, there are additional subject types such

as the data subject and the data custodian. The data subject is the individual

who the data is about (e.g., John Smith’s electronic patient record) and the

data custodian is the entity that collects and maintains the data and is trusted

to protect the privacy of the data (e.g., Holy Cross Hospital). Depending upon

the local privacy laws, either the data subject or the data custodian is also des-

ignated as the data owner. Access restriction to a particular data object may

therefore be dictated by the relationships between these subject entities

involved. (In certain situations, there might secondary recipients of

data—subjects with whom the data requestor may legitimately share infor-

mation. This makes the relationship even more complex.) Further, these rela-

tionships may be dynamic (e.g., a hospital’s patient and the attending

physician).

Object: Privacy policies refer to data objects at a coarser level of granularity

than access control policies. They often refer to a class of information (e.g.,

patient personal information) rather than individual record types such as

patient demographic information, or patient insurance information.Hence a

mapping taxonomy needs to be developed and maintained to translate the

higher-level information referred to in the policies to lower-level objects on

which access protection in IT systems are enforced.

Operation: Very often, privacy policies specify the set of allowed opera-

tions on classes of information guided by a policy element called “purpose”

(the different types of purposes are discussed below) and generally these

operations are encapsulated within an atomic task (called a transaction) that

involves accessing several objects. Contrast this with a typical access control

policy specification where operations are specified in term of rudimentary

access modes such as “write” or “read” on elemental data items or records. For

example, for the “purpose” of prescribing a medication or treatment regimen

7.1 Privacy requirements and access control framework 149

for a patient, the attending physician performs a task or transaction that

involves (1) reading several medical history records of the patient such as pre-

vious instances of medication and reactions, (2) reading about reported aller-

gies, and (3) prescribing drugs that did not produce adverse reactions or

allergies in the past.

Condition: This describes the qualifications or additional restrictions that

must be evaluated to grant access to a particular subject for a particular data

object. These conditions or access control rules (also called permission con-

straints) could theoretically involve any piece of context/content information

and hence the usage of this policy element in a privacy policy is no different

than in an access control policy.

In addition to the above four common policy elements, privacy policies

may require two additional elements as described next.

Purpose: Privacy requirements refer to two types of purposes—business

purpose and data purpose. Business purpose captures the intention for per-

forming a business task that involves some type of access to privacy-protected

information. Data purpose captures the data usage parameters consented to

by the data subject or data owner (called privacy preferences) and recorded by

the data collector. Examples of privacy preferences are opt-in, opt-out

choices, retention periods, and so forth. The purpose-binding principle of pri-

vacy stipulates that the business task using a data object is allowed to be per-

formed only if there is logical binding of the business purpose associated with

task with the data purpose for the data object involved in the task. For exam-

ple, a business task that generates e-mail promotions using customer contact

information can only be performed if the data purpose “direct marketing” or

“e-mail promotion” is associated with customer contact information (or a

higher-level data object).

Obligation: This policy element specifies additional protection measures

for PII. For example, hospitals should archive patient data medical records

securely and filter those medical records of individually identifiable informa-

tion prior to sending it to clinical researchers.

The generic syntax for a privacy rule involving the policy elements dis-

cussed above is given here [1]:

ALLOW [Data User/Role/Subject]

to perform [Operation] on [Data Type/Object]

for [Business Purpose] provided [Condition].

Carry out [Obligation].

150 Privacy and Regulatory Issues

7.1.2 Enhance RBAC model with privacy-related entities and

relationships

When an RBAC-based access control system is designed for an application

system that carries privacy-impacting information, privacy policies will nat-

urally form an integral part of the policy specification framework. Based on

the discussion in the previous section, the reader can see that the incorpora-

tion of privacy policies is a nontrivial exercise given the presence of two

additional policy elements (i.e., purpose and obligation), the granularity of

operations, and various subject relationships. In spite of this, the incorpora-

tion of privacy rules into a policy specification module is relatively easier

compared to the analysis required to determine the artifacts needed to sup-

port these privacy rules within the overall access control framework. The

second or both of the following two types of artifacts are needed.

◗ Additional entities to the access control model such that these entity

instances could serve as value bindings of a privacy rule evaluation

instance during an access decision. Examples of these additional enti-

ties are: “business purpose” and “data usage” entities that are used in

purpose-binding evaluation.

◗ Additional context-based and content-based constraints that are

mappings from privacy rules. An example of context-based mapping

is: A doctor can review the electronic patient record of only patients

currently assigned to his or her duty ward.

The rationale for creating the above artifacts for processing the privacy

rules is explained in the following sections.

7.1.3 Justifications for additional entities in the RBAC model

Let us now examine closely the two additional policy elements needed for

supporting privacy policies—purpose and obligation. Out of the two types of

purposes in the “purpose” policy element, the business purpose is associated

with task instances while data purpose is associated with data object

instances. Although the “task” entity is not usually part of the standard

RBAC model, RBAC-based authorization frameworks proposed for many

application domains have always included task as one of the RBAC entities.

The same observation applies to the data object entity also, since in the stan-

dard RBAC model, the data object entity is one of the components of the

“permission” entity represented as <Object, Operation> tuple. However, in

our discussion in this chapter, the RBAC model we are going to consider is

7.1 Privacy requirements and access control framework 151

one proposed in the DAFMAT framework [2] together with additional enti-

ties proposed in [3] to make it privacy-aware. The schematic diagram of a

privacy-aware RBAC model is shown in Figure 7.1.

Continuing our discussion of the “purpose” policy element, since each

business purpose instance is associated with one or more task instances, it

needs to be captured through a new RBAC model entity called “business

purpose” and its relationship with the task entity established through

task-business purpose relationship instances. Similarly, since a data purpose

is associated with an instance of data object or a particular class of data

objects, it needs to be captured through a data usage entity and its relation-

ship with data object entity established through data object-data usage

relationship instances.

In regard to the “obligation” policy element, obligation refers to a set of

mandated tasks that need to be carried out on a data object or a class of data

objects that are subject to privacy protection. The mandated task may be a

function that needs to be performed as soon as any access takes place on the

data object or it may be a periodical or event triggered function. Whatever

the nature of the task, since an obligation always relates to a data object or a

152 Privacy and Regulatory Issues

Access
modes D-T pair

Users Roles
Domain

Object-type

Business
purpose

Task

Subject
Data
object

Data usage

M:N N:1

M: N

M:N

N: 1

1: 1

1: 1

M:N

M: N
N: 1

N: 1

Figure 7.1 Privacy-aware RBAC model.

data class, it can also be captured in the data usage entity that is already

associated with data object instances.

Summarizing the above discussions, the following two entities and asso-

ciated relationships need to be added to the RBAC model to support privacy

rules:

◗ An entity called “business purpose” to carry information about the

business purpose. This entity needs to be associated with role and task

entities through the role-business purpose relationship and the busi-

ness purpose–task relationship.

◗ An entity called “data usage” to carry information about the purpose

associated with a data object or a class of data objects. This entity

needs to be associated with data object entity through the data

object–data usage relationship.

A detailed discussion of the nature of the privacy-specific entities and rela-

tionships with some examples is given in the next two sections.

7.1.4 Business purpose entity

Business purpose entity carries the purpose information associated with a

task or business process. For example the “accounts receivable clerk” role in

an enterprise may have the task “access customer contact information”

assigned to it. Since many roles may have this task assigned to it, the pur-

pose for which this task is invoked is different for different roles. The

role-task relationship instances do not capture this purpose. Hence we need

a new construct to record this information that needs to be carried to the

authorization engine when purpose-binding needs to be performed for pri-

vacy rule evaluation. Coming back to our example, an accounts receivable

clerk may be accessing customer contact information for the purpose of

sending an invoice to that customer and hence the purpose is “invoicing.”

The same task could also be used for the purpose of “payment confirma-

tion.” Since these two purposes can be generalized as “billing,” it is possible

to build a purpose hierarchy similar to a role hierarchy for the “purpose”

entity.

An example of the purpose hierarchy related to task “access customer

contract information” is given in Figure 7.2.

7.1 Privacy requirements and access control framework 153

7.1.5 Data usage entity

This modeling entity carries the data purpose information as well as cus-

tomer’s preferences (e.g., opt-in/opt-out choices). Generally, at the policy

level, both the data purpose and the data object may be specified at a coarser

level of granularity compared to the business purpose and the data objects

found in the access control model. If the data purpose is at a coarser level of

granularity, its binding with a business purpose can be easily established

using the purpose hierarchy described above. However, a higher-level data

object stated in the privacy policy may have to be broken into its constituent

subobjects found in the access control model and the data purpose has to be

stated for each of those subobjects in order to create data usage entity and

data object—data usage relationship instances at the correct level of granu-

larity in the access control model. An example instance of data usage entity

is “Customer John Smith wants his contact information to be used only for

invoicing and for direct marketing through postal promotions but not

through e-mail promotions.” The data purposes carried in this example are

invoicing and direct marketing, the opt-in choice is “postal promotion” and

opt-out choice is “e-mail promotion.”

As discussed in Section 7.1.3, the data usage entity also carries informa-

tion on the two types of obligation tasks. An example of a function that

needs to be performed as soon as any access takes place on the customer

contact information data object is “it must be logged.” An example of a peri-

odical or event-triggered function is “Customer’s banking information (such

154 Privacy and Regulatory Issues

Customer contact

Direct marketing Billing

E-mail
promotions

Postal
promotions

Invoicing Payment
confirmation

Figure 7.2 Purpose hierarchy related to task “access customer contact

information.”

as the account number and routing number) should be deleted if no

invoices have been sent in the last 12 months.”

7.1.6 Privacy-aware RBAC model

The RBAC model can be extended with additional entities and relationships

to become a privacy-aware RBAC model. This model can has the capability

to support evaluation of privacy policies for practical application domains.

7.2 Integrate privacy policy support in the role
engineering process

To deploy an RBAC-based access control framework for an enterprise or

application, the various entity instances and relationship instances of the

chosen RBAC model must be established. This process is called role engi-

neering. Role engineering generally involves defining roles, permissions,

role hierarchies, and conditions/constraints associated with exercise of those

permissions by the various roles. However, privacy requirements are not

generally addressed in role engineering due to the following reasons:

◗ Privacy rule processing is not a design requirement for the access deci-

sion module since the policy specification module does not include

privacy policies;

◗ The RBAC model does not have constructs/entities that capture pri-

vacy policy elements.

Let us therefore assume that the prerequisites for addressing privacy

requirements within role engineering exist. In particular, we will assume

that the privacy-aware RBAC model like the one proposed in [3] and shown

in Figure 7.1 exists and that our access decision module has to process pri-

vacy rules. Hence in addition to the list cited above (role instances, role-per-

mission instances, and so forth), our role engineering process should

determine the following entity and relationship instances:

◗ Business purpose entity instances;

◗ Role-business purpose relationship instances;

◗ Business purpose-task relationship instances;

◗ Data usage entity instances;

◗ Data usage-data object relationship instances.

7.2 Integrate privacy policy support in the role engineering process 155

There are several role engineering approaches proposed by the research

community. Some examples are: scenario-driven approach [4], analytical

role modeling [5], UML-based approach [6] and goal-driven approach [7].

A hybrid role engineering approach that uses a combination of goals and

scenarios has been proposed by Qingfeng He and Annie Anton [8] that

incorporates support for capturing privacy requirements. Specifically, this

approach outlines the steps required to determine the instances of addi-

tional entities and relationships listed above, required by a privacy-aware

RBAC model, in addition to those of core entities and relationships (roles,

role-task relationship, and so forth) found in the basic RBAC model. Here

we briefly outline these ideas. Interested readers can refer to the paper for a

comprehensive understanding of the complete role engineering

methodology.

To determine the additional entity and relationship instances, He and

Anton’s methodology [8] uses a data model consisting of three entities: role,

permissions, and objects. Please note that these entities are part of the role

engineering data model and have nothing to do with our privacy-aware

RBAC model, which is our end goal. A schematic diagram of this role engi-

neering data model is given in Figure 7.3.

156 Privacy and Regulatory Issues

Role.ID
Role.Name
Role.Context.Purpose

Permission.ID
Permission.Operation
Permission.Object
Permission.Context
Permission.Constraints
Permission.Obligations

Object.ID
Object.Type
Object.Context.Purpose
Object.Context.Recipient
Object.Context.Retention
Object.Context.Service.Opt-in
Object.Context.Service.Opt-out

Figure 7.3 Role engineering data model.

7.2.1 Identifying business purposes and role-business

purpose relationship instances

In Figure 7.3, the role entity has an attribute called “Role.Context.Purpose.”

The value for this attribute for any role instance is determined by identifying

the business purpose in the role definition process of role engineering. For

example, the role of an accounts receivable clerk could have the business

purpose “billing” associated. Note that business purpose is at a fairly high

level (it is not technology or system-specific) and there will not be any gran-

ularity mismatch in associating it with a role since the latter is also the direct

result of business process analysis. A purpose could also have subpurposes

associated with it. In our example, the “billing” purpose could have “invoic-

ing” and “payment confirmation” as subpurposes, thus creating a purpose

hierarchy. The semantic of a parent purpose is that it includes all tasks asso-

ciated with subpurposes. Hence if a role is associated with a business (par-

ent) purpose, it is automatically associated with all its subpurposes. Thus in

our example, the accounts receivable clerk role by virtue of being associated

with billing purpose is also associated with invoicing and payment confir-

mation since the latter two are subpurposes of the billing purpose. Hence

the following role-business purpose relationship instances hold in our

scenario:

1. Accounts receivable clerk—billing;

2. Accounts receivable clerk—invoicing;

3. Accounts receivable clerk—payment confirmation.

7.2.2 Identifying business purpose–task relationship

instances

To fulfill a purpose, multiple business tasks may have to be performed. For

example, the invoicing purpose could typically require the following tasks

(let us call this list ARC-Tasks):

◗ Access shipping notices;

◗ Access customer contact information (since a customer’s billing address

could be different from a shipping address);

◗ Access pricing information for the products shipped;

◗ Generate an invoice record for the shipping instance.

7.2 Integrate privacy policy support in the role engineering process 157

The entity and relationship instances determined so far are shown here.

(the role engineering data model entity attributes from which they are

mapped are shown in parenthesis in italics).

Entities:

1. Role(s)—accounts receivable clerk;

2. Business purpose(s)—billing, invoicing, payment confirmation.

Relationships:

1. Role-business purpose relationship instances = {Accounts Receiv-

able Clerk – Billing} (from Role.Context.Purpose = Billing for Role.Name =

Accounts Receivable Clerk)

2. Business-purpose-task relationship instances = {Invoicing—tasks

in the list “ARC-Tasks” with one of them being Access Customer

Contact Information} (from Permission.Operation = Read for Permis-

sion.Object = Customer Contact Information and Permission.Obligation

=Real Time Logging)

7.2.3 Identifying data usage entities and data usage–data

object relationship instances

Now the only instances to be determined are for data usage entity and data

usage–data object relationship. Data usage entity is to be used as a place-

holder for data purposes and privacy preferences (such as opt-in and

opt-out) and hence it is naturally an attribute of the objects. This is the

design driver behind the creation of object attributes such as Object.Con-

text.Purpose, Object.Context.Service.Opt-in, and so on in the role engineer-

ing data model (Figure 7.3).

Coming back to our example, when we start following the task-subject,

subject-domain, domain-dt pair, dt-pair–object type and object-type–data

object relationship instance threads in the privacy-aware RBAC model (Fig-

ure 7.1), we arrive at the following data object instances:

◗ Customer contact information;

◗ Shipment information;

◗ Product pricing information.

Now out of these three data objects identified, the customer contact

information is the only one that comes under the classification of personally

158 Privacy and Regulatory Issues

identifiable information (PII) subject to privacy protection, and hence comes

under the scope of a privacy policy. Hence data usage entity instances would

only be associated with customer contact information instances. As already

stated, the privacy policy that carries the data purpose/privacy preference

designations may refer to data objects at a coarser level of granularity than

the data objects found in the access control model. In our case the privacy

policy could refer to the customer information data type. This data type is an

aggregate type consisting of subtypes such as customer contact information,

customer banking information, and so on. Based on the semantics that a

privacy policy applicable for an aggregate data type is applicable to each of

the subtypes, we could capture this data purpose information specified for

customer information under the data usage entity instances associated with

customer contact information, as well as customer banking information. In

our example, one customer would have specified that his or her information

be used only for billing and direct marketing through postal promotions

while another customer would have specified that the information be used

for billing and direct marketing through both postal and e-mail promotions.

As an outcome of the above discussion, examples of the remaining

instances of privacy-related entity and relationship instances arrived at

using the role engineering process are given here. As before, the role engi-

neering data model entity attributes from which they are mapped are

shown in parenthesis in italics):

◗ Data usage entity instance = {Customer Contact Information

(CCI-DU; this should not be confused with a “data object” entity

instance with the same name (i.e., Customer Contact Information);

we call this “Customer Contact Information–Data Usage” with the

abbreviation CCI-DU};

◗ Data object—data usage relationship instances = {customer contact

information – CCI-DU with (data purpose = billing and direct market-

ing), (preferences = opt-in = postal promotion, opt-out = e-mail pro-

motion) (from Object.Purpose = Billing and Direct Marketing,

Object.Context.Service.Opt-in = Postal Promotion, Object.Context.Service.

Opt-out= E-mail Promotion for Object.Type = Customer Contact Information).

We have provided an overview of the role engineering process that will

help derive entity and relationship instances for the additional entities and

relationships incorporated into a privacy-aware RBAC model. Now the only

step remaining to complete the development of a privacy-supporting

RBAC-based access control framework is the integration of privacy rules

evaluation logic into the access decision module. This process is

7.2 Integrate privacy policy support in the role engineering process 159

conceptually no different than integrating an access control rule into the

access decision engine and hence requires no further elaboration.

In the next section, we illustrate a complete authorization process using

an RBAC-based access control framework that provides support for privacy

policies.

7.3 Authorization using privacy-RBAC-ACF

Let us now see the authorization process in a privacy-supporting

RBAC-based access control framework (privacy-RBAC-ACF) that uses a pri-

vacy-aware RBAC model, when an access request involves a privacy-pro-

tected data. The authorization process in this type of access request context

has two subprocesses. They are:

◗ Access control rules evaluation process;

◗ Privacy rules evaluation process.

Since the access control rule evaluation process is covered extensively in the

literature, we will just illustrate the privacy rule evaluation process. Let us

now restate the generic format of our privacy rule for the purpose of starting

the discussion thread:

ALLOW [Data User/Role]

to perform [Operation] on [Data Type]

for [Business Purpose] provided [Data Purpose

and/or Condition].

Carry out [Obligation].

The data access request context is as follows. A user assigned the role of

“accounts receivable clerk” uses the “invoice application” (subject) to

invoke the task “access customer contact information.” Using the task-pur-

pose relationship instances, the purposes for which this task is invoked can

be determined. At this stage the privacy rules evaluation process has the fol-

lowing partial bindings generated for the privacy rule (the binding data val-

ues are shown in bold) evaluation:

ALLOW []

To perform [] on []

For [] provided [Data Purpose

and/or Condition].

Carry out [Obligation].

160 Privacy and Regulatory Issues

Note that in the above policy rule-binding instance, the business purpose

binding “Invoicing” is obtained directly from role-task and business pur-

pose-task relationship instances. The binding “Billing” is obtained from the

fact that Billing is the parent purpose (i.e., Invoicing is a child purpose) of

the Invoicing purpose in the purpose hierarchy (Figure 7.2). The parent

purpose needs to be used in privacy rule binding due to the fact that the

data purpose is typically either at the same level of granularity as a business

purpose or at a coarser level (because of the common-sense driven design

decision to associate a task that is part of an application program with a pur-

pose that is at the lowest possible level in the purpose hierarchy due to the

granularity of a task within most practical business application systems).

Let us now see the rest of the steps involved in the privacy rule-binding

process. Using the subject-domain, domain-D-T Pair, D-T Pair–Object-Type

and Object-Type–Data Object relationship instances in the privacy-aware

RBAC model (Figure 7.1), we can now determine the set of data objects to

be accessed. However, since our goal is privacy rule evaluation, we are only

interested in the subset of data objects whose access have privacy impact

and in our scenario the only such data object is the customer contact infor-

mation. The access decision module then does a lookup in the data usage

entity instances associated with customer contact information. If an entity

instance with a data purpose equal to “Invoicing” is found, then we have

found a data purpose that matches with the business purpose and the pur-

pose-binding process is then complete. However, if an entity instance whose

data purpose value does not exactly match the business purpose is found,

we have to traverse the purpose hierarchy tree to see whether any of the

subprocesses under the retrieved data purpose match with the business pro-

cess. If such a match is found, then the purpose-binding process is also

deemed complete. Such a purpose-binding will occur in our example if we

find a data usage entity associated with customer contact information that

has the value “Billing” for data purpose. Since accessing customer contact

information task has associated with it invoicing as the business purpose

and billing is the parent of this invoicing purpose in the purpose hierarchy,

the purpose-binding principle holds.

The obligation function specified in a data usage entity instance is not

really involved in value binding for the purpose of policy rule evaluation.

Once a binding data usage entity is found, its obligation value is simply

extracted for the system or transaction to carry out that function. As we

already stated, let the obligation associated with customer contact informa-

tion be immediate logging and deletion of banking information for inactive

customers.

A complete binding for our example privacy rule is given here:

7.3 Authorization using privacy-RBAC-ACF 161

ALLOW []

To perform [] on []

For [] provided [Billing or Invoicing is

the Data Purpose for Customer Contact Information].

Carry out [immediate logging of access and deleting

of banking information from customer information

for customers with no billing activity for the

last 12 months].

Since the above represents a consistent set of binding, the privacy rule eval-

uates to TRUE and hence access is granted.

7.4 RBAC and regulatory compliance

Can privacy and regulatory requirements be addressed entirely through

administrative means? This is a critical question for many organizations.

Some commentators have suggested that administrative changes are suffi-

cient for compliance, and while this is technically correct, it fails to take

advantage of the built-in capacity of access control systems, particularly

RBAC, to make regulatory compliance easier and ultimately less expensive.

Even in the best-managed organizations, employees eventually make mis-

takes that may violate administrative guidelines for compliance, or worse,

malicious employees may take advantage of the lack of automated controls

to commit fraud. RBAC features provide tight controls over all actions, espe-

cially complex requirements such as separation of duty. Most important, an

RBAC system can document all controlled actions, providing strong evi-

dence that management has implemented “due diligence” for regulatory

compliance.

While at one time most audits required some input from a firm’s data

processing department, and in some cases audits covered IT operations as

well, today information security is central to nearly all compliance issues.

Many of the new requirements can be traced to three extensive regulatory

statutes passed by the U.S. Congress in the 1990s: the Gramm-Leach-Bliley

act, for financial services, the Health Information Portability and Account-

ability Act, for health care, and the Sarbanes Oxley Act, which covers pub-

licly traded firms to give investors confidence that business operations are

legitimate.

Together, these statutes imply:

◗ A much greater need for IT involvement in regulatory compliance;

162 Privacy and Regulatory Issues

◗ Need for an ongoing program encompassing all parts of the organiza-

tion, not just a project effort;

◗ A single individual may be responsible for regulatory compliance: the

SEC requires a chief compliance officer for SOX, HIPAA requires a chief

privacy officer and a chief security officer:

◗ Most critical, a need for more preventive controls and ways to avoid

excess access privileges. For example, SOX requires separation of duty

to reduce the risk that a single individual can put the enterprise in

jeopardy.

Many similarities and overlaps exist among regulations. Although the stat-

utes are enforced by a variety of agencies, the U.S. government makes it

clear in the Federal Register [9] that “the Agencies will expect an institution

to coordinate all the elements of its information security program.” In addi-

tion to meeting the regulatory need for a coordinated approach to informa-

tion security, a unified approach can reduce costs. Many argue that

compliance with SOX alone costs many firms more than they spend on

product development, and average compliance cost is estimated at $4.36

million per large company. The total cost to the U.S. economy, including

opportunity costs, is estimated at $1.4 trillion [10]. Although regulatory

compliance can be expensive, careful planning can not only reduce costs of

initial implementation, but allow audits to go more efficiently in the future

by automating much of the compliance process. The key to cost reduction is

establishment of the proper controls.

IT controls can be divided into three categories:

1. Preventive: reduce the risk of fraud or other violations; access control

and authorization. Preventive controls are especially important

since they may be the only controls that will catch fraud or other vio-

lations before damage is done. Separation of duty for financial

reporting purposes may only ensure that violations are eventually

caught.

2. Analytical: monitoring activity to ensure that preventive controls are

functioning correctly: auditing accesses, reviewing permissions and

changes to role/permission assignments. Analytical controls are

especially important when role/permission assignments are

changed because careless changes can result in a role structure that

allows users to violate separation of duty requirements. See Chapter

5 for detailed consideration of SoD rules.

7.4 RBAC and regulatory compliance 163

3. Corrective: to restore systems to compliance with policy. Corrective

controls are implemented administratively, and may involve re-

structuring the role hierarchy, changing permission assignments,

and new user/role assignments.

This section focuses on preventive and analytical controls, which can be

built in to most RBAC systems. In particular, we show how the RBAC con-

figuration and access reports can be used to document compliance.

7.4.1 Sarbanes-Oxley Act compliance

The Sarbanes-Oxley Act establishes a set of requirements for financial sys-

tems, to deter fraud and increase corporate accountability with the objective

of ensuring that investors and regulators have an accurate and complete

picture of the firm’s financial position. For information technology systems,

regulators may need to know who used a system, when they logged in and

out, what accesses or modifications were made to what files, and what

authorizations were in effect. IT vendors responding to Sarbanes-Oxley

requirements have adopted RBAC as central to compliance solutions

because RBAC was originally designed to ensure that “data and processes

[can] be modified only in authorized was by authorized users” [11]. SOX

rules can be very costly to implement, but they also present an opportunity

for firms to achieve better control over internal processes.

A review of SOX requirements helps in understanding where RBAC fits

in a comprehensive approach for compliance. SOX requires that manage-

ment certify the effectiveness of internal controls and procedures that are

used in producing financial reports. In IT terms, this means rigorous security

controls over the software systems that the firm depends on for all financial

data. This includes not only accounting software, but order information,

personnel records, inventory, physical assets, and all other data that will be

eventually reflected in financial statements. Controls must be in place to

ensure that changes can only be made in appropriate ways by authorized

personnel, which is precisely what RBAC was designed to accomplish. More

and more access is being automated through Web sites and touch-tone

phones, so controls need to cover both employees and automated processes

to prevent unauthorized release of customer information.

Sarbanes-Oxley is a large, complex statute, but three sections in particu-

lar are relevant for information technology:

◗ Section 302 requires that corporate executives certify the complete-

ness and accuracy of the firm’s financial reporting.

164 Privacy and Regulatory Issues

◗ Section 404 says that firms must maintain “adequate internal control

structure and procedures for financial reporting,” and file reports on

their internal controls with the Securities and Exchange Commission.

Criminal penalties are established for executives who certify nonexis-

tent or ineffective controls. External auditors must review internal con-

trols, with tests to ensure their effectiveness, documentation of the

controls in place, and reports on insufficient controls.

◗ Section 409 requires timely reporting to investors and regulators of

any information regarding material changes in the firm’s financial

condition or operations.

Most of the effort and expense of SOX compliance for IT systems goes

into meeting Section 404 requirements. Although the statute does not spec-

ify what are considered “adequate” internal controls, a number of best prac-

tices cite capabilities, including the following:

◗ Strong control over user IDs and permissions linked to IDs;

◗ Rigorous monitoring of user privilege assignments, updates, or revoca-

tion of privileges, including complete audit trails;

◗ Separation of duties for access to, or modifications of, financial

information;

◗ Control of updates and strong audit trails showing who made updates,

when, and through what means;

◗ Tracking and strong controls over software updates and changes;

◗ Comprehensive documentation of software configurations and

maintenance;

◗ Timely implementation of security patches and updates for software,

with audit trails;

◗ Full documentation of internal control deficiencies that reduce the

firm’s ability to meet the above objectives.

RBAC has advantages in meeting all of these requirements, and is partic-

ularly effective for more complex and expensive controls such as separation

of duty. As important as implementing controls, though, is the ability to

document their existence and effectiveness. The Section 404 report on

internal controls is a product of a full audit by external auditors, but care-

fully designed access control structures can make compliance quicker and

much less expensive.

7.4 RBAC and regulatory compliance 165

7.4.2 Gramm-Leach-Bliley Act and HIPAA compliance

In 1999, the U.S. Congress passed the Gramm-Leach-Bliley Financial Ser-

vices Modernization Act (GLB), which substantially expanded the range of

businesses that can be operated by banks, investment firms, and insurance

companies. Part of the act specifies mandatory privacy rules designed to

ensure the confidentiality and integrity of customer information, and pro-

tect against unauthorized disclosure. Compliance is required from all finan-

cial services firms that offer financial services or products to consumers. The

scope of the act is broad—in addition to banks, brokerages, and insurance

companies, GLB regulations also affect real estate settlement firms, tax pre-

parers, financial advisors, and debt collectors. A survey of Internet privacy

policies for financial institutions found the fundamental concept of

role-based access to be central in policies; despite different wording, most

contained some form of the requirement “provide access to CI (Customer

Information) to authorized personnel with authorized roles” [12].

The Health Insurance Portability and Accountability Act of 1996

(HIPAA, Title II) established comprehensive requirements for safeguarding

the privacy of medical records and health care information. In addition to

consumer privacy, HIPAA includes provisions for electronic patient infor-

mation, and complex standards for communicating information between

organizations. Fortunately, RBAC is well suited to meeting HIPAA require-

ments, so much so that HIPAA regulations specifically include RBAC as an

approved means of HIPAA compliance. The impact of GLB and HIPAA in an

RBAC environment is primarily in configuration of privacy rules, discussed

in Section 7.3.

7.4.3 Compliance and the RBAC model

Drawing on the discussion from the previous section and the RBAC model

specified in Chapters 2 through 5, we can develop an approach to defining

and documenting the access control aspects of internal controls. As will be

seen below, a properly configured RBAC system will naturally provide the

controls and reporting that are needed for most regulatory compliance. Doc-

umenting compliance can be addressed by tracing from regulatory rules to

RBAC structures and audit reports.

Basic factors for control and audit trail. These represent the who, what,

when, and where questions of data modification:

◗ User ID, roles selected, and IP address of workstation;

◗ Applications and transactions executed;

166 Privacy and Regulatory Issues

◗ Date and time of transactions;

◗ Multiple role uses per user;

◗ Separation of duty violations or exceptions.

7.4.4 Considerations in using RBAC in regulatory compliance

The basic strategy in demonstrating regulatory compliance with an RBAC

system is to map information called out in regulations to data items in the

enterprise information system. This structure is depicted in Figure 7.4.

1. Determine all data that must be covered under all regulations and

map the specified data to data record types and fields in the organiza-

tion’s database. Items such as customer SSN will be obvious. Others

may have multiple names across applications, but must be mapped

to a common term for control and reporting. For example, customer

limits on sharing information with other firms may be represented in

a variety of ways in different e-commerce applications.

2. A subset of the data from step 1 will require separation of duty for

some operations. Establish separation of duty rules (Chapter 5)

based on the employee roles that have access to the data (e.g., pur-

chase request in excess of some amount may not be written and

approved by the same role). Flexibility may require a modified rule

in which the order may be written and approved by the same role

but must be flagged as an exception for later review, and more

importantly, for regulatory reports. For example, in a small firm the

7.4 RBAC and regulatory compliance 167

Name, address,
and so forth

Personal data (financial,
medical, and so forth)

Protected
data specification

Identifying
information

2 Mapping 3 Mapping

1 Controlled by
privacy/regulatory
policy rules

4 Controlled by
access control
policy rules

Figure 7.4 Mapping of regulatory information to IT system data items.

same individual may sometimes need to activate roles that the RBAC

system treats as mutually exclusive, because the firm does not have

enough personnel to have one person devoted to reviewing pur-

chase requests. In this case, configuring the system to flag the SoD

violations as exceptions, rather than denying access, may provide

full documentation that can be used in demonstrating compliance.

3. Evaluate the applications that collect the data items identified in step

1. In many organizations, this can be more than one of those listed

above, or additional regulations unique to a particular industry.

Determine the set of transactions that read, write, or modify any of

the relevant data records determined above.

4. Evaluate privacy notices to determine what data items are controlled

under privacy rules; for example, customer name, social security

number, or account balance. Privacy notices explain the ways that

customer data will be used, and customers must agree to such use.

Data can be used only in ways that are explained in the privacy no-

tice and agreed to by the customer. Customers may agree to only a

subset of the conditions laid out in the privacy notice. For example,

many Web sites provide one or more checkboxes to allow users to in-

dicate if their information may be shared with advertisers or other

third parties. Determine the set of transactions that read, write, or

modify any of these data records.

With the mappings documented as discussed above, determine the roles

that have access to the sets of transactions collected in previous steps. If

RBAC is being enforced, then only the users with authorization for these

roles will have access to the regulated data. An audit of users who have

authorization for roles in this set provides a bound on the number and job

assignment of users who can access privacy or regulatory sensitive informa-

tion. A complete picture of who does what in the organization is provided

by reporting role activations, transactions executed in each role, exceptions

or access denials, and changes in user-role or role-permission assignments.

References

[1] Powers, C., P. Ashley, and M. Schunter, “Privacy Promises, Access Control

and Privacy Management,” Proc. of the 3rd International Symposium on Electronic

Commerce (ISEC’02), 2002.

168 Privacy and Regulatory Issues

[2] Chandramouli, R., “A Framework for Multiple Authorization Types in a

Healthcare Application System,” Proc. of the 17th Annual Computer Security

Applications Conference (ACSAC 2001), 2001, pp. 137–148.

[3] He, Q., Privacy Enforcement with an Extended Role-Based Access Control Model,

NCSU Computer Science Technical Report, TR-2003-09, 2003.

[4] Neumann, G., and M. Strembeck, “A Scenario-Driven Role Engineering

Process for Functional RBAC Roles,” Proc. of 7th ACM Symposium on Access

Control Models and Technologies (SACMAT’02), 2002, pp. 33–42.

[5] Crooke, R., D. Ince, and B. Nuseibeh, “Towards an Analytical Role Modeling

Framework for Security Requirements,” Proc. of the 8th International Workshop

on Requirements Engineering: Foundation for Software Quality (REFSQ’02), Essen,

Germany, 2002.

[6] Epstein, P., and R. Sandhu, “Towards a UML Based Approach to Role

Engineering,” Proc. of 4th ACM Workshop on Role-Based Access Control (RBAC’99),

1999, pp. 135–143.

[7] Anton, A. I., “Goal-Based Requirements Analysis,” Proc. of 2nd International

Workshop on Requirements Engineering (RE’96), April 1996, pp. 136–144.

[8] He, Q., and A. I. Anton, “A Framework for Modeling Privacy Requirements in

Role Engineering,” Proc. of the 9th International Workshop on Requirements

Engineering: Foundation for Software Quality (REFSQ’03), Klagenfurt/Velden,

Austria, June 16–17, 2003.

[9] “Rules and Regulations,” Federal Register, Vol. 66, No. 22, Thursday, February

1, 2001.

[10] Zhang, I. X., “Economic Consequences of the Sarbanes-Oxley Act of 2002,”

University of Rochester, February 2005.

[11] Ferraiolo, D., and D. R. Kuhn, “Role-Based Access Control,” Proceedings of the

NIST-NSA National (USA) Computer Security Conference, 1992, pp. 554–563.

[12] Anton, A. I., et al., “The Lack of Clarity in Financial Privacy Policies and the

Need for Standardization,” IEEE Security & Privacy, Vol. 2, No. 2, 2004, pp.

36–45 (also available as NCSU CSC Technical Report #Tr-2003-14).

Selected Bibliography

D’Aquila, J. M., “Tallying the Cost of the Sarbanes-Oxley Act,” The CPA Journal,

http://www.nysscpa.org/cpajournal/2004/1104/perspectives/p6.htm.

Federal Trade Commission, Facts for Business, “In Brief: The Financial Privacy

Requirements of the Gramm-Leach-Bliley Act,”

http://www.ftc.gov/bcp/conline/pubs/buspubs/glbshort.htm.

Gallegos, F., “Sarbanes-Oxley Act of 2002 and Impact on the IT Auditor,” IS Control

Journal, Vol. 4, 2002, p. 17.

Ramos, M., “Section 404 Compliance in the Annual Report,” American Institute of

Certified Public Accountants, http://www.aicpa.org/pubs/jofa/oct2004/ramos.htm.

7.4 RBAC and regulatory compliance 169

RBAC Standards and Profiles

8.1 The ANSI/INCITS RBAC standard

In 2000, NIST called for a unified standard for RBAC [1], com-

bining the Ferraiolo-Kuhn 1992 model with the RBAC frame-

work introduced by Sandhu et al. in 1996 (see Chapter 1).

Following debate and comment within the RBAC and security

communities, NIST made revisions and proposed a U.S.

national standard for RBAC [2] through the International

Committee for Information Technology Standards (INCITS),

the primary U.S. body for developing standards in information

and communications technology. INCITS is also the American

National Standards Institute’s (ANSI) Technical Advisory

Group for ISO/IEC Joint Technical Committee 1, which is

responsible for IT standardization at the international level. In

2004, the standard received ballot approval and was adopted as

INCITS 359-2004 [3].

This chapter provides an overview of the structure and con-

tents of the standard. All the terms and features of the standard

will be familiar to those who have read the body of this book,

but it is important to understand which RBAC features have

been included in the standard. The chapter also summarizes

the major components of application program interfaces (APIs)

for RBAC systems that implement the standard.

8.1.1 Overview

Standardization over a stable set of RBAC features provides a

number of benefits. These benefits include a common set of

171

8
Contents

8.1 The ANSI/INCITS RBAC
standard

8.2 XACML profile for
role-based access control

C H A P T E R

benchmarks for vendors, which are already developing RBAC mechanisms,

to use in their product specifications. In addition, it gives IT consumers, who

constitute the principle beneficiary of RBAC technology, a basis for the cre-

ation of uniform acquisition specifications. Moreover, an RBAC standard

allows for the subsequent development of a standard RBAC API that would

in turn promote the development of innovative authorization management

tools by guaranteeing interoperability and portability.

Large organizations are beginning to expect RBAC, and the number of

vendors that offer RBAC features is growing rapidly. Prior to the standard,

this development occurred without general agreement on RBAC features.

The standard is designed to provide an authoritative definition of

well-accepted RBAC features for use in authorization management systems,

and software providers have begun to offer RBAC products that conform to

various model components in INCITS 359-2004. RBAC features included in

the standard represent a stable and well-accepted set of features and are

known to be included within a wide range of commercial products and ref-

erence implementations, so many products met RBAC core requirements

very quickly. More recently, some vendors have offered products that meet

the more advanced requirements in INCITS 359 components 2 through 4

(see Chapter 11 for some examples).

INCITS 359 RBAC standard structure

The INCITS 359 standard is in two parts, described as follows:

◗ A reference model, defined as a collection of four model components:

core RBAC, hierarchical RBAC, static SoD relations, and DSD rela-

tions. The model components exist to provide a standard vocabulary

of relevant terms for defining a broad range of RBAC features. To pro-

vide a rigorous definition, the reference model is formally specified as

mathematical functions, relations, and sets, making it possible to

implement the model from this specification.

◗ A functional specification that casts the reference model into a congru-

ent set of functional components, where each component defines spe-

cific requirements for administrative operations to create and

maintain RBAC sets and relations, review functions, and system fea-

tures pertaining to the corresponding model component.

8.1.2 The RBAC reference model

The INCITS 359 RBAC model is defined in terms of four model components:

core RBAC, hierarchical RBAC, static SoD relations, and dynamic SoD

172 RBAC Standards and Profiles

relations. Core RBAC defines a minimum collection of RBAC elements, ele-

ment sets, and relations to completely achieve a RBAC system. This includes

user-role assignment and permission-role assignment relations, considered

fundamental in any RBAC system. In addition, core RBAC introduces the

concept of role activation as part of a user’s session within a computer sys-

tem. Core RBAC is required in any RBAC system, but the other components

are independent of each other and may be implemented separately.

The hierarchical RBAC component adds relations for supporting role

hierarchies. Hierarchical RBAC goes beyond simple user and permission role

assignment by introducing the concept of inheriting a role’s set of autho-

rized users and authorized permissions from other roles. A third model com-

ponent, static SoD relations, adds exclusivity relations among roles with

respect to user assignments. Because of the potential for inconsistencies due

to the interaction of static SoD relations and the inheritance relations of a

role hierarchy, the SSD relations model component defines relations in both

the presence and absence of role hierarchies. The fourth model component,

dynamic SoD relations, defines exclusivity relations with respect to roles

that are activated as part of a user’s session.

Each model component is defined by the following subcomponents:

◗ A set of basic element sets;

◗ A set of RBAC relations involving those element sets (containing sub-

sets of Cartesian products denoting valid combinations);

◗ A set of mapping functions that yield instances of members from one

element set for a given instance from another element set.

It is important to note that the RBAC reference model defines a taxon-

omy of RBAC features that can be composed into a number of feature pack-

ages. Rather then attempting to define a complete set of RBAC features, this

model focuses on providing a standard set of terms for defining the most

salient features as represented in existing models and implemented in

commercial products.

8.1.3 Functional specification overview

This section provides an overview of the functionality involved in meeting

the requirements for each of the components defined in Section 8.1.2. Sec-

tion 8.1.2 defined RBAC as four model components in terms of an abstract

set of element sets, relations, and administrative queries. This section casts

the abstract model concepts into functional requirements for administrative

operations, session management, and administrative review. The RBAC

8.1 The ANSI/INCITS RBAC standard 173

functional specification outlines the semantics of the various functions that

are required for the creation and maintenance of the RBAC model compo-

nents (element sets and relations), as well as supporting system functions.

The three categories of functions in the RBAC functional specification

and their purpose are described as follows:

◗ Administrative functions: Creation and maintenance of element sets and

relations for building the various RBAC model components;

◗ Supporting system functions: Functions that are required by the RBAC

implementation to support the RBAC model constructs (e.g., RBAC

session attributes and access decision logic) during user interaction

with an IT system;

◗ Review functions: Functions that review the results of the actions cre-

ated by the administrative functions.

Appendix A of the standard provides a complete specification of these

functions using the Z notation. The functional descriptions in Appendix A

are intended to provide a level of detail sufficient for evaluating RBAC

implementations for conformance with the RBAC reference model.

8.1.4 Functional specification for core RBAC

Administrative functions

The administrative functions are described as follows:

◗ Creation and maintenance of element sets: The basic element sets in core

RBAC are USERS, ROLES, OPS, and OBS. Of these element sets, OPS

and OBS are considered predefined by the underlying information

system for which RBAC is deployed. For example, a banking system

may have predefined transactions (OPS) for savings deposits, for

example, and predefined data sets (OBS) such as savings files and

address files. Administrators create and delete USERS and ROLES and

establish relationships between roles and existing operations and

objects. Required administrative functions for USERS are AddUser

and DeleteUser and for ROLES, AddRole and DeleteRole.

◗ Creation and maintenance of relations: The two main relations of core

RBAC are (1) user-to-role assignment (UA) relation and (2) permis-

sion-to-role assignment (PA) relation. Functions to create and delete

instances of UA relations are AssignUser and DeassignUser. For PA,

the required functions are GrantPermission and RevokePermission.

174 RBAC Standards and Profiles

Supporting system functions

Supporting system functions are required for session management and for

making access control decisions. An active role is necessary for regulating

access control for a user in a session. The function that creates a session

establishes a default set of active roles for the user at the start of the session.

The user can then alter the composition of this default set during the session

by adding or deleting roles. Functions relating to the addition and dropping

of active roles and other auxiliary functions are listed as follows:

◗ CreateSession: Creates a user session and provides the user with a

default set of active roles;

◗ AddActiveRole: Adds a role as an active role for the current session;

◗ DropActiveRole: Deletes a role from the active role set for the current

session;

◗ CheckAccess: Determines if the session subject has permission to per-

form the requested operation on an object.

Review functions

When UA and PA relation instances have been created, it should be possible

to view the contents of those relations from both the user and role perspec-

tives. For example, from the UA relation, the administrator should have the

facility to view all the users assigned to a given role as well as to view all the

roles assigned to a given user. In addition, it should be possible to view the

results of the supporting system functions to determine some session attrib-

utes—like the active roles in a given session and the total permission

domain for a given session. Since not all RBAC implementations provide

facilities for viewing role, user, and session permissions or active roles for a

session, these functions have been designated as optional or advance func-

tions in the requirement specification. Mandatory (M) and optional (O)

review functions are described as follows:

◗ AssignedUsers (M): Returns the set of users assigned to a given role;

◗ AssignedRoles (M): Returns the set of roles assigned to a given user;

◗ RolePermissions (O): Returns the set of permissions granted to a given

role;

◗ UserPermissions (O): Returns the set of permissions a given user gets

through his or her assigned roles;

◗ SessionRoles(O): Returns the set of active roles associated with a session;

8.1 The ANSI/INCITS RBAC standard 175

◗ SessionPermissions (O): Returns the set of permissions available in the

session (i.e., the union of all the permissions assigned to a session’s

active roles);

◗ RoleOperationsOnObject (O): Returns the set of operations a given role

may perform on a given object;

◗ UserOperationsOnObject (O): Returns the set of operations a given user

may perform on a given object (obtained either directly or through his

or her assigned roles).

8.1.5 Functional specification for hierarchical RBAC

Hierarchical administrative functions

The administrative functions required for hierarchical RBAC include all the

administrative functions that were required for core RBAC. However, the

semantics for DeassignUser must be redefined because the presence of role

hierarchies gives rise to the concept of authorized roles for a user. In other

words, a user may inherit authorization for a role even if he or she is not

directly assigned to the role. The hierarchy allows users to inherit permis-

sions from roles that are junior to their assigned roles. An important issue is

whether a user can only be deassigned from a role that was directly assigned

to the user or can be deassigned from one of the (indirectly) authorized

roles. The appropriate course of action is left as an implementation issue and

is not prescribed in this specification.

The additional administrative functions required for the hierarchical

RBAC model pertain to the creation and maintenance of the partial order

relation (RH) among roles. The operations for a partial order involve either

(1) creating (or deleting) an inheritance relationship among two existing

roles in a role set, or (2) adding a newly created role at an appropriate posi-

tion in the hierarchy by making it the ascendant or descendant role of an

another role in the existing hierarchy. The name and purpose of these

functions are summarized as follows:

◗ AddInheritance: Establishes a new immediate inheritance relationship

between two existing roles, creating a junior/senior role relationship;

◗ DeleteInheritance: Deletes an existing immediate inheritance relation-

ship between two roles;

◗ AddAscendant: Creates a new role and adds it as an immediate ascendant

of an existing role;

176 RBAC Standards and Profiles

◗ AddDescendant: Creates a new role and adds it as an immediate descen-

dant of an existing role.

The model provides for both general and limited hierarchies. A general

hierarchy allows multiple inheritances, while a limited hierarchy is essen-

tially a tree structure (in some cases represented as an inverted tree). For a

limited hierarchy, the AddInheritance function is constrained to a single

ascendant role.

The outcome of the DeleteInheritance function may result in multiple

scenarios. When DeleteInheritance is invoked with two given roles—for

example, role A and role B—the implementation system is required to do

one of two things:

1. The system may preserve the implicit inheritance relationships that

roles A and B have with other roles in the hierarchy. That is, if role A

inherits other roles—say C and D—through role B, role A will main-

tain permissions for C and D after the relationship with role B is

deleted.

2. A second option is to break those relationships because an inheri-

tance relationship no longer exists between role A and role B. The

question of which semantics the DeleteInheritance should carry is

left as an implementation issue and is not prescribed in the specifica-

tion.

Supporting system functions

The supporting system functions for hierarchical RBAC are the same as

those for core RBAC and provide the same functionality. However because

of the presence of a role hierarchy, the functions CreateSession and

AddActiveRole have to be redefined. In a role hierarchy, a given role may

inherit one or more of the other roles. When a user activates that given role,

the question of whether the inherited roles are automatically activated or

must be explicitly activated is left as an implementation issue, and no one

course of action is prescribed as part of this specification. However, when

the latter scenario is implemented (i.e., explicit activation), the correspond-

ing supporting functionality will be provided in the supporting system func-

tions. For example, in the case of CreateSession function, the active role set

created as a result of the new session will include not only roles directly

assigned to a user but also some or all of the roles inherited by those

“directly assigned roles” (that were previously included in the default active

role set) as well. Similarly, in the AddActiveRole function, a user can

8.1 The ANSI/INCITS RBAC standard 177

activate a directly assigned role or one or more of the roles inherited by the

“directly assigned role.”

Review functions

All the review functions specified for core RBAC remain valid for hierarchi-

cal RBAC as well. In addition, the user membership set for a given role

includes not only users directly assigned to that given role, but also those

users assigned to roles that inherit the given role. Analogously, the role mem-

bership set for a given user includes not only roles directly assigned to the given

user but also those roles inherited by the directly assigned roles. To capture this

expanded “User Memberships for Roles” and “Role Memberships for a User”

the following functions are defined:

◗ AuthorizedUsers: Returns the set of users directly assigned to a given

role as well as those who were members of those “roles that inherited

the given role”;

◗ AuthorizedRoles: Returns the set of roles directly assigned to a given

user as well as those “roles that were inherited by the directly

assigned roles.”

Because of the presence of partial order among the roles, the permission

set for a given role includes not only the permissions directly assigned to a

given role but also permissions obtained from the roles that the given role

inherited. Consequently, the permission set for a user who is assigned that

given role becomes expanded as well. These “permissions review” functions

are listed below. As already alluded to, since not all RBAC implementations

provide this facility, these are treated as advanced/optional functions:

◗ RolePermissions: Returns the set of all permissions either directly

granted to or inherited by a given role;

◗ UserPermissions: Returns the set of permissions of a given user through

his or her authorized roles (sum of directly assigned roles and roles

inherited by those roles);

◗ RoleOperationsOnObject: Returns the set of operations a given role may

perform on a given object (obtained either directly or by inheritance);

◗ UserOperationsOnObject: Returns the set of operations a given user may

perform on a given object (obtained directly or through his or her

assigned roles or through roles inherited by those roles).

178 RBAC Standards and Profiles

8.1.6 Functional specification for static separation of duty

(SSD) relation

Administrative functions

The administrative functions for an SSD RBAC model without hierarchies

will include all the administrative functions for core RBAC. However since

the SSD property relates to the membership of users in conflicting roles, the

AssignUser function will incorporate functionality to verify and ensure that

a given user assignment does not violate the constraints associated with any

instance of an SSD relation.

As already described under the SSD RBAC reference model, an SSD rela-

tion consists of a triplet—(SSD_Set_Name, role_set,SSD_Card). The

SSD_Set_Name indicates the transaction or business process in which com-

mon user membership must be restricted to enforce a COI policy. The

role_set is a set containing the constituent roles for the named SSD relation

(and is referred to as the named SSD role set). The SSD_Card designates the

cardinality of the subset within the role_set to which common user mem-

berships must be restricted. Hence, administrative functions relating to the

creation and maintenance of an SSD relation are operations that create and

delete an instance of an SSD relation, add and delete role members to the

role-set parameter of the SSD relation, and change or set the SSD_Card

parameter for the SSD relation. These functions are summarized as follows:

◗ CreateSSDSet: Creates a named instance of an SSD relation;

◗ DeleteSSDSet: Deletes an existing SSD relation;

◗ AddSSDRoleMember: Adds a role to a named SSD role set;

◗ DeleteSSDRoleMember: Deletes a role from a named SSD role set;

◗ SetSSDCardinality: Sets the cardinality of the subset of roles from a

named SSD role set for which common user membership restriction

applies.

For the case of SSD RBAC models with role hierarchies (both general

role hierarchies and limited role hierarchies), the above functions produce

the same end result with one exception: Constraints governing the combi-

nation of role hierarchies and SSD relations will be enforced when these

functions are invoked. For example, roles within a hierarchical chain cannot

be made members of a role set in an SSD relation.

Supporting system functions

The supporting system functions for an SSD RBAC model are the same as

those for the core RBAC Model.

8.1 The ANSI/INCITS RBAC standard 179

Review functions

All the review functions for the core RBAC model are needed for the imple-

mentation of the SSD RBAC model. These include (1) a function to reveal

the set of named SSD relations created, (2) a function that returns the set of

roles associated with a named SSD role set, and (3) a function that gives the

cardinality of the subset within the named SSD role set for which common

user membership restriction applies. These functions are summarized as

follows:

◗ SSDRoleSets: Returns the set of named SSD relations created for the

SSD RBAC model;

◗ SSDRoleSetRoles: Returns the set of roles associated with a named SSD

role set;

◗ SSDRoleSetCardinality: Returns the cardinality of the subset within the

named SSD role set for which common user membership restriction

applies.

8.1.7 Functional specification for a DSD relation

Administrative functions

The semantics of creating an instance of DSD relation are identical to that of

an SSD relation. While constraints associated with an SSD relation are

enforced during user assignments (as well as while creating role hierar-

chies), the constraints associated with DSD are enforced only at the time of

role activation within a user session. The list of administrative functions that

will be provided for a DSD RBAC model and their purposes are listed as

follows:

◗ CreateDSDSet: Creates a named instance of a DSD relation;

◗ DeleteDSDSet: Deletes an existing DSD relation;

◗ AddDSDRoleMember: Adds a role to a named DSD role set;

◗ DeleteDSDRoleMember: Deletes a role from a named DSD role set;

◗ SetDSDCardinality: Sets the cardinality of the subset of roles from a

named DSD role set for which user activation restriction within the

same session applies.

Supporting system functions

Recall that the supporting system functions for core RBAC are (1)

CreateSession, (2) AddActiveRole, and (3) DeleteActiveRole. These system

functions will be available for a DSD RBAC model implementation without

180 RBAC Standards and Profiles

role hierarchies as well. However, the additional functionality required of

these functions in the DSD RBAC model context is that they should enforce

the DSD constraints. For example, during the invocation of the

CreateSession function, the default active role set that is made available to

the user should not violate any of the DSD constraints. Similarly, the

AddActiveRole function will check and prevent the addition of any active

role to the session’s active role set that violates any of the DSD constraints.

The semantics of the supporting system functions for a DSD RBAC

model with role hierarchies (both general role hierarchy and limited role

hierarchy) are the same as those for corresponding functions for hierarchi-

cal RBAC:

◗ CreateSession: Creates a user session and provides the user with a

default set of active roles;

◗ AddActiveRole: Adds a role as an active role for the current session;

◗ DropActiveRole: Deletes a role from the active role set for the current

session.

Review functions

All the review functions for the core RBAC model are needed for the imple-

mentation of the DSD RBAC model. Additional functions required include

(1) a function to reveal the set of named DSD relations created, (2) a func-

tion that returns the set of roles associated with a named DSD role set, and

(3) a function that gives the cardinality of the subset within the named DSD

role set for which common user membership restriction applies. They are

described as follows:

◗ DSDRoleSets: Returns the set of named SSD relations created for the

DSD RBAC model;

◗ DSDRoleSetRoles: Returns the set of roles associated with a named DSD

role set;

◗ DSDRoleSetCardinality: Returns the cardinality of the subset within the

named DSD role set for which user activation restriction within the

same session applies.

8.1.8 Options and packaging

Not all RBAC features are appropriate for all environments, nor do vendors

necessarily implement all RBAC features. Accordingly, the standard pro-

vides a method of packaging features through the selection of model and

associated functional components and feature options within a component,

8.1 The ANSI/INCITS RBAC standard 181

beginning with a core set of RBAC features that must be included in all

packages. Other components that may be selected in arriving at a relevant

package of features pertain to role hierarchies, static constraints (static SoD),

and dynamic constraints (DSD). A RBAC system conforms to this technical

specification if it complies with all the requirements for a specified compo-

nent and feature option.

Standards conformance

A conformity assessment would be done through a supplier’s declaration,

with the cost of assessing conformity borne by suppliers. The Common Cri-

teria protection profile for RBAC [4] provides means for assessing confor-

mance with some parts of the standard and could be expanded to

encompass other parts of the standard.

Functional specification packages

The standard defines a family of four functional components to include core

RBAC, hierarchical RBAC, static SoD relations, and dynamic SoD relations.

Each functional component includes three sections—administrative opera-

tions for the creation and maintenance of RBAC sets and relations, adminis-

trative review functions, and system-level functions for the binding of roles

to a user’s session and making access control decisions.

This section describes a logical approach for defining packages of func-

tional components, where each package may pertain to a different threat

environment or market segment. The basic concept is that each component

can optionally be selected for inclusion into a package with one excep-

tion—core RBAC must be included as a part of all packages. See Figure 8.1

for an overview of the methodology for composing functional packages.

In defining functional packages, core RBAC is unique in that it is funda-

mental and must be included in all packages. Thus, any package must begin

with the selection of core RBAC. Core RBAC includes an advanced review

feature that may be optionally selected. For some environments, the selec-

tion of the single core RBAC component may be sufficient.

Hierarchical RBAC includes two subcomponents—general role hierar-

chies (in which permissions can be inherited from roles above and below in

the hierarchy) and limited role hierarchies (a strict tree structure). System

managers who select hierarchical RBAC for inclusion in a package must

choose which of these subcomponents to include. Like core RBAC, hierar-

chical RBAC includes an advanced review feature that may be optionally

selected.

The static SoD relations component also includes two subcomponents—

static SoD relations and Static SoD relations in the presence of a hierarchy. If

this component is selected for inclusion in a package then a dependency

182 RBAC Standards and Profiles

relation must be recognized. That is, if the package includes a hierarchical

RBAC component then static SoD relations in the presence of a hierarchy

must be included in the package; otherwise it is necessary to select the static

SoD relations subcomponent.

The final component is dynamic SoD relations. This component does not

include any options or dependency relations other than core RBAC.

8.1.9 Other RBAC standards

Following the development of INCITS 359, industry consortia and standards

bodies have initiated additional RBAC standardization efforts. RBAC stan-

dards are now being established by a variety of organizations, both for broad

usage and for specific industries.

INCITS CS1.1 Role-based access control implementation standard

The INCITS CS1 Cyber Security Working Group initiated a standards devel-

opment activity in 2005 to define implementation requirements for RBAC

systems. The INCITS 359 standard specifies RBAC requirements in three

categories: administrative operations, administrative reviews, and

8.1 The ANSI/INCITS RBAC standard 183

Core RBAC

Hier. RBAC
a. Limited
b. General

SSD Relations
a. w/hierarchies
b.wo/hierarchies

DSD
relations

Select core RBAC
Option: Advanced review

Choose a or b
Option: Advanced review

Adhere to
dependency

Requirements
package

Figure 8.1 Methodology for creating functional packages.

system-level functionality. The CS1.1 standard is intended to specify how

these features are to be implemented in order to “provide a basis for the

interchange of data and functional interoperability among services and

applications” [5]. The CS1.1 standard is intended to include specifications

for core and hierarchical RBAC, plus static separation of duty and dynamic

separation of duty relations.

A more recent project proposal within INCITS CS1, Enterprise Dynamic

Access Control (EDAC) [6], would extend the capabilities of INCITS 359 to

address the needs of organizations with rapidly changing role assignments.

In many large organizations, personnel assignments may change frequently

in response to external events, particularly in military or government orga-

nizations that have rapid response requirements. External conditions—such

as threat level or a natural disaster—may also change. Managing access con-

trol in such an enterprise could be cumbersome if system administrators

were needed to make temporary adjustments in user permissions. EDAC

addresses this problem by incorporating real-time evaluation of resource

characteristics and environmental characteristics (e.g., threat level) in role

assignments.

ASTM E31.20: Privilege management infrastructure

This draft standard [7] is defining a standardized role based privilege man-

agement infrastructure for the health care industry. According to the draft,

the “privilege mechanisms in this standard support the contexts of

role-based access control, privileges of a user who wishes to (digitally) sign a

document, privileges required to connect to a resource, access a file, or

access the data and functions of a protected application (or other resource).”

Designed to provide interoperability across the industry, the ASTM stan-

dard will specify privilege management not only for a single enterprise, but

also for external suppliers and healthcare providers. Because of the rapid

improvements in information technology within healthcare, organizations

need to support a wide variety of distributed applications, in addition to

integrating information that may reside on external systems. E31.20 estab-

lishes a foundation for industry standard permissions for users, categorizing

roles as either structural or functional [8]. Structural roles are based on the

ASTM E1986-98 Standard Guide for Information Access Privileges to Health

Information, which defines 107 healthcare role names. In addition, the

E31.20 standard provides a framework for establishing functional roles (e.g.,

Admitting Physician). The U.S. Department of Veterans Affairs, Veterans

Health Administration (VHA) has adopted the set of ASTM role names as

structural role names for interoperability among healthcare organizations,

proposing additional role names to extend E1986-98 coverage [9].

184 RBAC Standards and Profiles

The VHA work and its successor activities within the HL7 organization

(see below) can be expected to influence the future course of healthcare

RBAC standards. ASTM E31.20 is interesting because it is perhaps the most

comprehensive effort to establish an industry-wide role structure and role

based privilege management infrastructure. The VHA role engineering work

continues under the auspices of HL7, within its Security Technical Commit-

tee. VHA and the Health Level Seven (HL7) Security Technical Committee

have been working to identify a standard set of healthcare permissions

(operations on objects) rather than roles. The rationale is that role defini-

tions will vary among organizations, but the permissions attached to the

roles can be standardized [10]. As of January 2006, HL7 had voted affirma-

tively for the following as a Draft Standard for Trial Use:

◗ HL7 RBAC Healthcare Permission Catalog v2.2;

◗ HL7 Healthcare Scenario Roadmap v2.19;

◗ HL7 RBAC Healthcare Scenarios v2.0;

◗ HL7 RBAC Role Engineering Process v1.1;

◗ HL7 RBAC Role Engineering Process Applied Example v1.1.

It is anticipated that adjustments and additions will be made to these

standards after the trial use period.

8.2 XACML profile for role-based access control

This document [11] provides a basis for implementing the INCITS 359

RBAC standard using the OASIS eXtensible Access Control Markup Lan-

guage (XACML). That is, the XACML profile does not specify a complete

implementation of INCITS 359, but can be used as a foundation. The profile

can be used without changes or extensions to XACML Versions 1.0 or 1.1.

The 2004 XACML RBAC profile is also consistent with XACML Version 2.0,

although minor changes to the syntax specified in the RBAC profile are

needed for conversion to XACML 2.0; these changes are described in the 2.0

version of the RBAC profile. The XACML RBAC profile describes a set of

building blocks based on XACML that can be used in implementing the vari-

ous sections of INCITS 359, and includes a detailed example to illustrate the

process. It specifies three types of policies: “Role PolicySet,” “Permission

PolicySet,” and “Separation of Duty PolicySet,” and describes an additional

nonnormative type: “Role Assignment <PolicySet>.”

A subsequent version of the XACML profile for RBAC issued in 2005

[12] updated the RBAC profile for XACML 2.0 and extended the original

8.2 XACML profile for role-based access control 185

version to include a recommended AttributeId for roles, but reduces the

scope to cover only core and hierarchical RBAC (i.e., SSD is not included).

The normative portion of the document prescribes a specific set of XACML

Attributes and Attribute IDs that are to be used in constructing an RBAC

implementation using XACML.

This profile does not deal with separation of duty functions (in the nor-

mative text), although OASIS indicates that a future profile may address

advanced requirements such as SoD. A Role Assignment PolicySet can be

used to prevent assigning conflicting roles during role setup in both the 1.0

and 2.0 versions of the profile, thus enforcing SSD, but this type of policy is

not normative. Version 1.0 allows a subject to have conflicting roles

enabled, but the subject will be denied access in this case. Either static or

dynamic separation of duty is possible, depending on which types of roles

are included in the decision context. If the access decision is made in an

environment in which all statically assigned roles are included, then SSD is

enforced. If the access decision is made in an environment in which only the

dynamically assigned roles are included in the decision context, then DSD is

enforced. The policy enforcement point and the context handler determine

which assigned roles are used in making the decision. This approach does

not work well for DSD, because the role required for a given request may

not be known until the request is evaluated. For SSD, it does not prevent

the user from being assigned to conflicting roles, but does prevent using

them when requesting access.

The XACML RBAC profile is significant because it brings practical RBAC

solutions to the Web services environment. Web services are critical in most

e-commerce and other advanced online applications today. Managing priv-

ileges in a distributed environment is far from a fully solved problem, but

RBAC solutions can provide greater control with reduced complexity. The

XACML RBAC profile makes it possible to handle security policies in a dis-

tributed environment because it supports retrieval of both attributes

(including roles) and policies from distributed sites that may be independ-

ently managed. It is also integrated with the OASIS SAML Profile that pro-

vides secure transport and authentication for distributed environments.

References

[1] Sandhu, R., D. F. Ferraiolo, and D. R. Kuhn, “The NIST Model for Role-Based

Access Control: Towards a Unified Standard,” Proc. of 5th ACM Workshop on

Role Based Access Control, July 26–27, 2000.

186 RBAC Standards and Profiles

[2] National Institute of Standards and Technology, Proposed Standard for

Role-Based Access Control, http://csrc.nist.gov/rbac/rbacSTD-ACM.pdf, 1995.

[3] ANSI/INCITS 359-2004, Information Technology—Role Based Access Control,

InterNational Committee for Information Technology Standards, February 3,

2004.

[4] Reynolds, J., and R. Chandramouli, Role Based Access Control Protection Profile,

Version 1.0,

http://www.commoncriteriaportal.org/public/files/ppfiles/RBAC_987.pdf, July

1998.

[5] Coyne, E. J., Role Based Access Control Implementation Standard, Version 0.1,

January 2006, INCITS CS1.1 Working Group.

[6] Fernandez, R., “Enterprise Dynamic Access, Version 2 Overview,” January 1,

2006, U.S. Navy COMPACFLT, http://csrc.nist.gov/rbac/EDACv2overview.pdf.

[7] ASTM E31.20 Working Group, Privilege Management Infrastructure, January 4,

2006, http://www.va.gov/rbac/docs/ASTMEPMV0_9.doc.

[8] Blobel, B., “Analysis, Design and Implementation of Secure and Interoperable

Distributed Health Information Systems,” Studies in Health Technology and

Informatics, Vol. 89, IOS Press, September 2002.

[9] VARBAC, http://www.va.gov/rbac/.

[10] VHA RBAC Newsletter, Vol. 27, May 2006.

[11] OASIS, XACML Profile for Role Based Access Control (RBAC), February 13, 2004,

oasis-open.org, http://www.oasis-open.org/committees/xacml.

[12] OASIS, Core and Hierarchical Role Based Access Control (RBAC) Profile of XACML

v2.0, oasis-open.org, http://www.oasis-open.org/committees/xacml, February

1, 2005.

8.2 XACML profile for role-based access control 187

Role-Based Administration of
RBAC

One of the principal purposes of RBAC is to provide a

cost-effective and more accurate approach to the manage-

ment of access control data. However, the deployment of RBAC

can potentially result in the creation of a large number of user

roles, which in turn need to be administered. In a large enter-

prise the number of roles can be in the hundreds or thousands;

the number of users can be in the tens, hundreds of thousands,

or in extreme circumstances over a million; and the number of

objects can easily exceed a million. In other words, the deploy-

ment of RBAC replaces the very difficult and intractable problem

of managing authorization data, scattered over numerous plat-

forms and administrative domains, with a less difficult but signif-

icant problem of managing roles. An appealing concept is to

administer RBAC relations through the use of RBAC. One can

consider role administration to be just another application of

RBAC.

9.1 Background and terminology

In administering RBAC with RBAC we need to make a distinc-

tion between administrative roles and user roles, between

administrative objects and user objects, and between adminis-

trative operations and user operations. This distinction is

clearly defined by Sandhu et al. in their popular RBAC model

commonly referred to as RBAC96 [1]. Figure 9.1 illustrates

189

9
Contents

9.1 Background and
terminology

9.2 URA02 and PRA02

9.3 Crampton-Loizou
administrative model

9.4 Role control center

C H A P T E R

190 Role-Based Administration of RBAC

Users

Roles

Admin.
roles

Admin.
permissions

Permissions

Constraints

Role hierarchy

Admin. role hierarchy

Sessions

..

.

The use of RBAC principles for managing RBAC systems have not been

studied to the extent of that of RBAC models in general. Nonetheless, signif-

icant advances have been made. The NIST model and Web implementation

of RBAC incorporates an administrative tool that provides rudimentary sup-

port for an RBAC database that stores information about user and permis-

sion role assignments and role hierarchies [2]. Nyanchama and Osborn [3]

defined a role graph model that rigorously specified operational semantics

for manipulating role relations in the contexts of a role hierarchy. ARBAC97

built on these previous attempts to construct administrative models [4] over

all aspects of the RBAC model. ARBAC97 has three components: URA97

(user-role assignment ’97), PRA97 (permission-role assignment ’97), and

RRA97 (role-role assignment ’97), incorporating the functionality provided

by the NIST implementation and the administrative operations defined by

the role graph model. Fundamental to ARBAC97 and to all subsequent

efforts to develop role-based models for RBAC administration are the princi-

ples of decentralization of administrative authority, administrative autonomy, and

control over anomalous side effects. Although ARBAC97 can be credited with

identifying these essential administrative principles, each of its components

has been systematically updated and improved upon in attempts to alleviate

identified erroneous conditions and to provide greater administrative

flexibility and control.

Central to RRA97 is the notion of an encapsulated range for defining the

administrative scope of control. An encapsulated range is a self-contained

subhierarchy defining a set of roles and relations over which an administra-

tive role may perform administrative operations. The idea is that adminis-

trative operations cannot cause side effects to occur outside of the range.

The Crampton-Loizou model [5] provides a simpler yet more flexible means

of defining the administrative scope of control than that of RRA97 while

preserving many of its intended properties (e.g., support for decentralization

and autonomy and prevention of anomalous changes to the hierarchy).

Both ARBAC97 and the Crampton-Loizou models are defined in the con-

text of RBAC96.

URA97 and PRA97 authorize administrative roles by means of role ranges

and prerequisite conditions in terms of an existing role hierarchy. For example,

before a user may be assigned to a role, the user must exist as a member of

some other role lower (<) in the hierarchy, or before a permission can be

assigned to a role, the permission must be currently assigned to a role higher

(>) in the hierarchy. Acknowledging this dependency’s unacceptable impact

on role hierarchies, Oh and Sandhu [6] have redefined prerequisite condi-

tions in terms of external organizational structures and thereby alleviated

their dependence and erroneous impact on a role hierarchy. In keeping

9.1 Background and terminology 191

with a consistent nomenclature to that of ARBAC97, Oh and Sandhu called

their new administrative components URA02 and PRA02.

On a completely different research track than that of ARBAC97 is the

role control center [7, 8], an RBAC administrative tool for managing (creat-

ing and deleting) and mapping abstract users, roles, and permissions rela-

tions onto concrete system-level user accounts, groups, and ACLs. The role

control center supports still a third approach to supporting administrative

authority and autonomy through its ability to define administrative views,

encompassing roles, inheritance relations, and user and permission role

assignments in terms of a connected role graph and a fine-grained delega-

tion feature.

The remainder of this chapter examines the Sejong and Sandhu admin-

istrative components (ARA02 and PRA02), the Crampton-Loizou alterna-

tive model component to that of RRA97, and the role control center

implementation.

9.2 URA02 and PRA02

URA02 and PRA02 are two of three components in ARBAC02 that are

required in administering RBAC relations through the use of administrative

roles. The development of these model components was driven by support

of decentralized administration, autonomy of control, and the prevention of

anomalous changes with regard to user-role and role-permission assign-

ments in the presence of a role hierarchy.

We explain these components with an example, using the end-user role

hierarchy and administrative role hierarchy of Figure 9.2. Sejong and

Sandhu and others have traditionally used these examples, which first

appeared in an earlier paper by Sandhu, to illustrate administrative con-

cepts. Figure 9.2(a) models the roles within an engineering department

(ED). PE1 and PE2 are production engineers; QE1 and QE2 are quality engi-

neers; PL1 and PL2 are project leader roles for engineers E1 and E2, respec-

tively. E represents the employee role, and DIR is the director of the

engineering department.

User-role assignment is managed under a can-assign relation that

includes three parameters: can-assign(x, y, z), where a is an administrative

role, y is a prerequisite condition, and z is a role range consisting of a set of

roles.

The administrative roles belong to any role included in the role hierar-

chy. The prerequisite condition is a Boolean expression that indicates the

user’s positive membership within an organizational unit (indicated by the

192 Role-Based Administration of RBAC

@ symbol to distinguish organizational units from roles) or a condition

regarding the user’s nonmembership within an existing role of the end-user

hierarchy, or both. For example, can-assign (PSO1, @ED ^ ¬ E2, [E1, PL1])

indicates that any user who is authorized for the administrative role PSO1

can assign any user who is currently a member of the @ED organizational

unit and is not assigned to the E2 role to any of the roles included in the

range between and including E1 and PL1 (i.e., {E1, PE1, QE1, PL1}). Mem-

bership within an organization is treated outside the scope of the URA02

model and, thus, is not regulated by the model. Intuitively, prerequisite

conditions can afford a level of safety. For example, before a user can be

assigned to the role PE1, the user must be known to possess a competency,

officially recognized by the enterprise. This competency may be implied, for

example, by the human resource department granting the user membership

within the organizational unit engineering department. The use of the @

symbol signifies reference to an organizational unit.

9.2 URA02 and PRA02 193

DIR

PE1

PL1

QE1

E1

ED

E

PE2 QE2

PL2

E2

Senior security officer (SSO)

Project security officer 1 (PSO1) Project security officer 2 (PSO2)

Department security officer (DSO)

(a)

(b)

Figure 9.2 (a) Example end-user role hierarchy, and (b) administrative role

hierarchy.

Organizational units are typically organized as a simple tree structure as

depicted by Figure 9.3. A user—or for that matter any employee not

intended to be a system user—is given membership into an organizational

unit, which may imply implicit membership in higher-order organizational

units. By virtue of the human resource department granting an employee

membership within the quality control organizational unit, for example, the

user also becomes a member of the manufacturing department and the pro-

duction department.

Regarding the role range, left or right brackets or parentheses may be

used in defining a range. A bracket indicates the inclusion of an end point,

and a parenthesis indicates the exclusion of an end point. For example, [E2,

PL2) defines the roles included in the set {E2, PE2, QE2}.

User revocation is managed under a can-revoke relation that includes two

parameters: can-revoke(x, z), where x is an administrative role, and z is a role

range. Note that under the URA02 model component, the revoke relation

does not include a prerequisite condition and thus is much simpler.

Although not explicitly included in URA02, a practical implementation of

ARBAC02 might require the revocation of user-role assignments in the

event that a user’s membership within an organizational unit is revoked.

Tables 9.1 and 9.2 show example can-assign and can-revoke administrative

policies under URA02.

PRA02 is similar to URA02. PRA02 has two subcomponents, one for

assigning permissions to roles and one for revoking permissions from roles.

Permission assignment is managed under a can-assignp relation that includes

three parameters: can-assignp(x, y, z), where x is an administrative role, y is a

prerequisite condition, and z is a role range. Similar to the can-assign rela-

tion of the URA02, for the can-assignp relation the administrative roles may

belong to any role included within the role hierarchy. The prerequisite con-

dition is a Boolean expression that indicates the permission’s positive mem-

bership within a unit of an organizational structure (indicated by the @

194 Role-Based Administration of RBAC

Production division (PRD)

Engineering dept. (ED) Manufacturing dept. (MD)

Project 1 (PJ1) Project 2 (PJ2) Quality Control (QC)

Inventory control (IC)

Figure 9.3 Example organization units.

symbol to distinguish the organizational unit from that of a role) or a condi-

tion regarding the permission’s exclusivity among the existing permissions

that are currently assigned to a role within the end-user hierarchy.

Opposite that of the organizational user structure, the organizational

unit permission structure is organized as an inverted tree. For example, con-

sider the permission structure depicted in Figure 9.4. Common permissions

are included in the lower units of the organizational structure, and the more

specialized permissions are included in the higher units of the organization

structure. Thus, permission containment is inherited up the tree. For exam-

ple, all units would contain the permissions that are assigned to the produc-

tion division unit, while the project 1 unit would contain the permissions

assigned to the project 1 unit as well as the permissions that would be

assigned to the engineering department and production division units.

Unlike organizational user structures that are likely to be managed by the

human resource department, permission assignments within permission

9.2 URA02 and PRA02 195

Table 9.2 Example can-revoke in URA02

Administrative Role Role Range

PSO1 [PE1, PL1)

PSO2 [PE2, PL2)

DSO (ED, DIR)

Table 9.1 Example can-assign in URA02

Administrative Role Prerequisite Condition Role Range

PSO1 @PJ1 ∧ ¬ QE1 [PE1, PE1]

PSO2 @PJ2 ∧ ¬ PE2 [PE2, PE2]

DSO @ED (ED, DIR)

Project 1 (PJ1) Project 2 (PJ2) Quality control (QC) Inventory
control (IC)

Production division (PRD)

Engineering dept. (ED) Manufacturing dept. (MD)

Figure 9.4 A sample permission organization.

units are likely to be managed by the IT department, affording safety poli-

cies. For example, before a transaction may be assigned to the engineering

department role, the IT department may need to test and certify its correct

operation. Once testing and certification is completed, the IT department

may only then publish the transaction by assigning it to the engineering

department organizational unit. This has the effect of preventing the arbi-

trary assignment of permissions to sensitive roles. Table 9.3 includes sample

can-assignp relations.

Similar to the can-revoke relation of the of the URA02 subcomponent, the

can-revokep relation of the PRA02 subcomponent consists of two parameters

of the form can-revokep(x, z) where x is an administrative role, and z is a role

range. Although not explicitly included in PRA02, a practical implementa-

tion of ARBAC02 might require the revocation of permission-role assign-

ments in the event that a permission entry is deleted from an associated

organizational permission unit.

9.3 Crampton-Loizou administrative model

Central to the Crampton-Loizou model is the concept of administrative

scope and its use in controlling hierarchical operations.

Crampton-Loizou recognizes the following operations: AddRole(r, ▲r,

▼r), DeleteRole(r), AddEdge(c, p), and DeleteEdge(c, p), where ▲r is the set of

immediate children of r, ▼r is the set of immediate parents of r, c the child

role, and p the parent role.

Administrative scope is defined in terms of what we refer to as up-roles

and down-roles respectively written as ↑r and ↓r.

As an example, consider the role hierarchy depicted in Figure 9.2(a):

↑E1 = {E1, PE1, QE1, PL1, DIR} and ↓QE1 = {QE1, E1, ED, E}.

196 Role-Based Administration of RBAC

Table 9.3 Example can-assignp in PRA02

Administrative Role Prerequisite Condition Role Range

PSO1 @PJ ∧¬ QE1 [PE1, PE1]

PSO2 @PJ2 ∧¬ QE2 [PE2, PE2]

DSO @ED [ED, DIR)

Let S ⊆ R; define S = {r R: r ≥ s for some s S} and ↓S = {r R: r s for some

s S}

Definition of up-role and down-role

Informally speaking role s is an element of A(r), the administrative scope

of r, if and only if s is a down-role of r such that each up-role of s is either an

up-role of r or a down role of r.

Consider the following examples depicted in Figure 9.5. The down-roles

of PL1 = {PL1, PE1, QE1, E1, ED, E}. The up-roles that subsume the

down-roles of PL1 = A(PL1) = {PL1, PE1, QE1, E1}. Note that ED and E are

not included in A(PL1) because their up-roles include {E2, PE2, QE2, PL2,

DIR}, which are not included in the down-roles of PL1.

Crampton and Loizou formally define administrative scope as follows:

9.3.1 Flexibility of administrative scope

The administrative scope of a role is dependent on the current inheritance

relations of the role hierarchy and therefore changes dynamically as the

hierarchy changes. For example, as Figure 9.6 shows, the operation

AddRole(X, {QE1}, DIR}), removes {E1, QE1} from A(PL1) because their

up-roles now include X, which is not included in the down-roles of PL1.

9.3 Crampton-Loizou administrative model 197

A(r) = {s R: s ≤ r, ↑ s \ ↑r ≤ ↓r}

Crampton-Loizou formal definition of administrative scope

DIR

PE1

PL1

QE1

E1

ED

E

PE2 QE2

PL2

E2

Figure 9.5 Calculating A(PL1).

9.3.2 Decentralization and autonomy

As noted earlier, RBAC96 makes a distinction between administrative and

end-user roles. The Crampton-Loizou RBAC administrative model does not

assume the existence of disjoint administrative roles. In other words, admin-

istrative roles may exist within the same role graph as end-user roles.

According to the definition of administrative scope, for all roles r in the role

hierarchy, r is included in A(r). Under many circumstances, an administrator

role should not be in its own administrative scope. Accordingly, Crampton

and Loizou define the concept of strict administrative scope. The strict

administrative scope of r is A(r) minus {r}, denoted as A
S
(r). If s is included as

an element of A
S
(r), r is said to be the administrator of s. Although s may be

an element of both A
S
(x) and A

S
(y), where x ≠ y, either x > y or y > x. From a

practical perspective, any two administrative roles of s are always compara-

ble, and thus, s will always have a minimum administrative role, which is

referred to by Crampton and Loizou as the line manager of s.

9.3.3 A family of models for hierarchical administration

This section describes the four subcomponents of Crampton-Loizou—RHA
1

thru RHA
4
, where RHA

1
is considered the base model, and each sequential

model subcomponent adds increased rigor.

198 Role-Based Administration of RBAC

DIR

PE1

PL1

QE1

E1

ED

E

PE2 QE2

PL2

E2

X

Figure 9.6 Recalculating A(PL1) after adding role X.

9.3.3.1 RHA
1

RHA
1

is the most basic subcomponent of the Crampton-Loizou model. It is

defined in terms of administrative scope and the circumstances under which

a hierarchical operation may be permitted.

A role a is permitted to perform a hierarchical operation as follows:

◗ AddRole(r, ▲r, ▼r) provided r has at least one parent or child, ▲r

A
S
(a), ▼r A(a);

◗ DeleteRole(r) provided r A
S
(a);

◗ AddEdge(c, p) provided c, p A(a);

◗ DeleteEdge(c, p) provided c, p A(a).

RHA
1
allows an existing role within the role hierarchy to assume admin-

istrative authority over a designated portion of the hierarchy defined by

administrative scope. For example, the project leader PL2 may perform the

administrative operations defined earlier on the set of roles and relations

included in project 1.

9.3.3.2 RHA
2

RHA
2

extends RHA
1

by requiring that in addition to satisfying the adminis-

trative scope condition that the administrative role a must be assigned the

appropriate administrative privileges. As such RHA
2

adds a finer granularity

of specificity regarding administrative operations that may be applied over

the roles and relations defined by administrative scope.

9.3.3.3 RHA
3

RHA
3

extends RHA
2

by introducing an administrative authority binary rela-

tion. If (a, r) ∈ admin-authority then role a is said to be the administrative

role and is the controller of r. The set of roles that are controlled by role a is

denoted by C(a).

Imposing the admin-authority relation effectively extends the hierarchy.

Consider the effect of the following admin-authority relations on the example

role hierarchy depicted in Figure 9.7 where the elements are represented by

broken lines:

◗ Admin-authority (PSO1, PL1);

◗ Admin-authority (DSO, DIR);

◗ Admin-authority (DSO, PSO1).

9.3 Crampton-Loizou administrative model 199

Note that C(PSO1) = {PL1} and C(DSO) = {DIR, PSO1}.

In addition, RHA
3

requires that the second field of the admin-authority

relation must be unique. This ensures that each role r is controlled by, at

most, one administrative role. This constraint is introduced to underscore

the concept of a line manager.

Crampton and Loizou extend the definition of administrative scope, by

including administrative control (see Figure 9.7):.

For example, A(PSO1) = {PL1, PE1, QE1, ED1}. Note also that A(DSO)

includes PSO1 and A(PSO1).

9.3.3.4 RHA
4

RHA
4

extends RHA
3

to allow the administration of the admin-authority rela-

tion. This type of administration can be conducted in one of two ways. The

first is through adding or deleting admin-authority relations to the extended

200 Role-Based Administration of RBAC

PE1

PL1

QE1

E1

ED

E

PE2
QE2

PL2

E2

DIR
PSO1

DSO

Figure 9.7 Extended hierarchy that includes administrative roles.

A(a) = {r R: ↑r \ ↑C(a) ⊆ ↓ C(a)}

A
S
(a) = A(a) \ C(a)

Extended definition of administrative scope

hierarchy. The second is by performing hierarchy administrative operations

on the nodes and relations of the extended hierarchy.

Adding or deleting an admin-authority relation is equivalent to adding or

deleting a corresponding edge to or from the extended hierarchy. The

ordered pair (a, r) can only be removed from the set of admin-authority rela-

tions by an administrative role a’ provided that a A(a’) and r A
S
(a’). In

the event that r was removed from A(a’) as a result of the deletion of an

edge then it would follow that a new edge (a’ r) would be added to preserve

the administrative scope of a’. The rule for adding a relation is similar to

deleting a relation. The relation (a, r) can only be added by a’ provided that

a ∈ A(a’) and r ∈ A
S
(a’).

As a consequence of performing an administrative operation on the

hierarchy, it may be necessary to update the set of admin-authority relations

to preserve the administrative scope or to remove any redundancies that

result from the application of the operation.

In the event of performing an AddRole operation to the extended hierar-

chy where there is no parent role, the new role would have no administra-

tors and thus would require that (a, r) be added to the existing set of

admin-authority relations. For example, assume the need to create a new role

QE2’ for the establishment of an independent quality engineering function

as indicated in Figure 9.8. The new role QE2’ is added as a parent of QE2,

were QE2’ has no parent of its own. As a consequence of this operation,

QE2’ has no administrators. To elevate this situation (DSO, QE2’) is added

to the admin-authority relation.

In the event that a role r is deleted from the hierarchy, where (a, r) ∈
admin-authority, there is the possibility that administrator a may lose ad-

ministrative control. However this is not necessarily always the case. In

Figure 9.8, if QE2’ were deleted, DSO would not lose any administrative

control over any of the remaining roles included in A(DSO). On the other

hand, if PL1 were deleted, as indicated in Figure 9.9, PSO1 would lose

administrative control over PE1, QE1, and E1. Accordingly, we add (PSO1,

PE1) and (PSO, QE1) in order to reestablish PSO1’s appropriate administra-

tive control. Note that PE1 and QE1 were child roles of PE1 that were

included in the original A(PSO1).

Adding an edge to the role hierarchy makes it possible to introduce

redundancies in administrative control. Although such redundancies do not

undermine administrative control, they add clutter and, therefore, the

opportunity for confusion and error. As an example, consider the invoca-

tion of the operation AddEdge(QE2’, DIR), as indicated in Figure 9.10. As a

consequence of the AddEdge operation, QE2’ is redundantly included in

A(DSO). Therefore, we remove (DSO, QE2’).

9.3 Crampton-Loizou administrative model 201

202 Role-Based Administration of RBAC

PL1 PL2

PE1 QE1

E1

ED

E

PE2 QE2

E2

DIR
PSO1

DSO

QE2´

Figure 9.8 AddRole(QE2´, {QE2}).

PL2

PE1 QE1

E1

ED

E

PE2 QE2

E2

DIR
PSO1

QE2´

DSO

Figure 9.9 DeleteRole(PL1).

Deleting an edge (c, p) from the role hierarchy presents the possibility for

the loss of administrative control. For example, deleting (PL2, DIR) results

in DSO’s loss of control over PL2 and PE2. Accordingly, we add (PL2, DSO)

as indicated in Figure 9.11.

9.4 Role control center

Role control center (RCC) is a role graph–centric implementation of the

RBAC model, providing support for the management of user-role assign-

ments, role-privilege assignments, and role-role inheritance relations to

include exclusivity relations of user membership among roles [7, 8]. RCC—

like the models for the administration of RBAC relations described above

—provides support for the principles of decentralization of administrative

authority, administrative autonomy, and control over anomalous side

effects. To support these principles, RCC provides support for authority

through use of an RCC structure referred to as a view. Each view is defined

as a subset of the nodes that are included within the overall role graph. The

concept of a view supports a coordinated and logical approach to carving up

9.4 Role control center 203

PL2

PE1 QE1

E1

ED

E

PE2 QE2

E2

DIR
PSO1

QE2´

DSO

Figure 9.10 AddEdge(QE2´, DIR).

the overall administrative responsibility of managing the role relations

defined by the role graph into local administrative interests, while support-

ing the administration of global policies over collections of administrative

interests (i.e., a view may contain a view). Consistent with Crampton-

Loizou, RCC does not assume the existence of disjoint administrative roles.

The administrative roles exist within the same role graph as end-user roles.

Unlike the administrative models and model components described previ-

ously in this chapter, RCC provides support for the delegation of administra-

tive operations over defined views from a more powerful administrator (one

with more permissions) to a less powerful administrator. Through RCC’s

delegation feature, virtually any number and type of role administrator can

be conveniently created, down to the granularity of a single RCC

administrative operation on a single node of the role graph.

9.4.1 Inheritance and the role graph

RCC assumes that the inheritance relation ≥ defines both the privilege

inheritance and user membership containment (i.e., r
1

≥ r
2

if and only if all

privileges of r
2
are also privileges of r

1
, and all users of r

1
are also users of r

2
).

204 Role-Based Administration of RBAC

PL2

PE1 QE1

E1

ED

E

PE2 QE2

E2

DIRPSO1

QE2´

DSO

Figure 9.11 DeleteEdge(PL2, DIR).

In the role graph, nodes represent both users and roles, and the arcs drawn

as “→” represent the edges of the graph. We denote by →* the reflex-

ive-transitive closure of the inheritance relation (i.e., r
1

→* r
2

iff r
1

= q
1
→ …

→ q
n
= r

2
, where n 1). (Note that the definition allows for roles r

1
and r

2
to

coincide.) RCC requires the inheritance relation →* to be a partial order on

the set of RBAC users and roles. Consequently, the role graph is a directed

acyclic graph. We represent the graph with the arcs corresponding to the

inheritance relation → oriented top-down. Thus, we can say that the role

membership is inherited top-down, and the role privileges are inherited

bottom-up.

RCC includes the users in the role graph, using the same relation → to

denote the user assignment to roles, as well as the privilege inheritance

from a role to its assigned users. Regarding the terminology, a user u is said

to be assigned to role r if u → r, while u is said to be authorized for role r if u

→+
r, where →+

is the transitive closure of the → relation.

For example, in the role graph of Figure 9.12, where the users are repre-

sented by double ellipses and the roles by single ellipses, user David is

assigned to role PayrollSuper and is authorized to roles PayrollSuper,

PayrollClerk, Taxes, and Payroll. Also, the privileges of PayrollSuper are the

union of the privilege sets of Payroll, Taxes, PayrollClerk, and the privileges

directly granted to PayrollSuper.

9.4 Role control center 205

Super

RossVickyMikeJimGrayLaura

DavidSheila

rbac

SuperAdminsPayroll

AuditingTaxesPayrollClerk

PayrollSuper

Figure 9.12 A role graph.

In Figure 9.12, the role rbac is the base role defined as the least common

node within the role graph. The remainder of this section will use the name

rbac to designate the base role. The base role serves several purposes. It

guarantees that the graph is always connected. Implementing the base role

as the smallest element of the role set requires the following actions: When

a user or role is created without specifying whose ascendant it is, the new

user or role is made a direct ascendant of rbac. When a role r is set to inherit

another role r‘, the direct inheritance r→rbac is deleted if it exists. When an

inheritance r→r‘ is deleted and consequently role r has no direct descen-

dants, then the direct inheritance r→rbac is established.

9.4.2 Constraints

RCC can enforce a rule of SSD. This means that a user may be authorized as

a member of a role only if that role is not designated as mutually exclusive

with any of the other roles for which the user already is authorized. For

example, in the graph of Figure 9.12, the role Auditing should be mutually

exclusive with Taxes and PayrollClerk. This means that no user may be

authorized for Auditing and PayrollClerk, or Auditing and Taxes, or Audit-

ing and PayrollSuper.

9.4.3 Role views

RCC introduces the concept of a role view, as a means of defining users,

roles, and role inheritance relationships within the role graph. Views can be

defined to represent organizational units, divisions, projects, or any other ad

hoc collection of relations down to the granularity of a single user.

A role view defined by a set of roles {r
1
,…,r

n
} is defined as a subgraph of

the overall role graph with the following properties:

◗ The view contains r
1
,…,r

n
as nodes.

◗ If the view contains a role r, then it contains any user or role q such that

q r.

◗ The view contains no other nodes except those included by rules 1, 2.

◗ The view contains an arc q r if q and r are included in the view, and

q→r is an arc in the original graph.

As a consequence, to define a view it suffices to indicate the “most gen-

eral” roles contained in that view, which are called the principal nodes of the

view. If the view obtained from those principals applying the above

206 Role-Based Administration of RBAC

properties is not a connected graph, then a base role is added when display-

ing the view. For example (see Figure 9.13), roles PayrollClerk and Auditing

define the view shown in Figure 9.14. Note that the subgraph is built from

the principals, their direct and indirect ascendants, and their inheritance

relationships and is augmented with the base role rbac as a direct descendant

of the principals PayrollClerk and Auditing. Views may overlap; for example,

PayrollSuper, Sheila, and David are common to the views defined by the prin-

cipals {PayrollClerk, Auditing} and {Taxes}.

RCC uses role views to define sets of relevant users and roles to delegate

administrative privileges for certain portions of the role graph to administra-

tive roles.

9.4.4 Delegation of administrative permissions

The number of roles and role relationships within a large enterprise can

become overwhelming for a single administrator to maintain. In addition,

administrators who are closer to the day-to-day operations of a specific

organization are typically better suited to administer the roles and role rela-

tionships for that organization. To deal with this issue, RCC supports the

delegation of administrative permissions (i.e., the assignment of access

9.4 Role control center 207

Super

RossVickyMikeJimGrayLaura

DavidSheila

rbac

SuperAdminsPayroll

AuditingTaxesPayrollClerk

PayrollSuper

Figure 9.13 Defining a role view.

rights necessary to manage the roles and role relationships from one role

administrator to a second role administrator).

In the context of RCC, delegation refers to the administrative operation

of transferring administrative permissions for the management of roles and

role relations from one administrative role to another. Furthermore, it is

often desirable to impose policy constraints across administrative bound-

aries. Administrative permissions are just ordinary permissions defined on

(abstract) resources, which happen to be roles and role relations. An RBAC

application is a good example of a role-aware application, which uses roles,

their assigned users, and their permissions to control access to its data: roles,

users, relationships, and permissions.

In order for one role administrator to transfer permissions to another

role administrator, the first role administrator must possess (be assigned)

the set of permissions that are being transferred and the permission to dele-

gate permission. Because delegation refers to a collection of roles and rela-

tions over which delegated administrative operations are applied, role

hierarchies are considered a valuable supporting feature.

The delegation process is best described by an example. Assume that the

enterprise role graph is much more complex than that of Figure 9.12 but

still contains the view with the principal Payroll. The super user, which may

208 Role-Based Administration of RBAC

Ross JimGrayLaura

DavidSheila

rbac

Auditing
PayrollClerk

PayrollSuper

Figure 9.14 A view displayed by RCC.

perform all RCC operations on all users and roles, may want to delegate the

administration of the Payroll view to user Ronald. To that purpose, super may

create a new, administrative role, called PayrollAdmins, grant it all permis-

sions on the roles included in the Payroll view (see Figure 9.15), and assign

the user Ronald to PayrollAdmins. Ronald will be able to perform all RCC

operations, but only on roles included in the Payroll view. Note that the RCC

user interface allows for defining permissions on all roles in a view by

checking the “Apply to Entire View” box. Figure 9.16 shows the per-user

review of permissions for Ronald. The small arrow in front of permissions

indicates that the permission is inherited from an assigned role, and not

directly granted to Ronald.

9.4 Role control center 209

Figure 9.15 Granting permissions to PayrollAdmins.

Administrative operations, such as change permissions and create ascendant,

are just ordinary operations defined on (abstract) objects that happen to be

roles (RccRole in Figure 9.13 denotes the class of role objects).

In turn, Ronald may want to delegate the administration (or at least some

administrative duties) of the Taxes view to a third administrator, Michael. To

this purpose, Ronald may create a new administrative role TaxAdmins (but

as an ascendant of Payroll—remember that Ronald has no access to roles out-

side the Payroll view), grant TaxAdmins some administrative permissions to

the Taxes view, and assign Michael to TaxAdmins. Ronald is allowed to grant

TaxAdmins permissions on roles in the Taxes view if and only if super has

granted him (through the PayrollTaxes role) the permission to change per-

missions on those roles.

9.4.5 Decentralization and autonomy

In contrast to the Crampton-Loizou model, RCC does not include an

extended hierarchy to define administrative scope, but rather administra-

tive roles are included in a separate role class as to the user roles for which

210 Role-Based Administration of RBAC

Figure 9.16 Ronald’s permissions.

they manage. Under this management scheme, each role may (but is not

required to) have single a line manager. For example, in Figure 9.17, the

Chief Admin has management authority over the entire role graph, includ-

ing administrative roles. The Payroll Admin has administrative authority

over the entire payroll department, including the Adjustments roles and

relation. Furthermore, the Adjustment Admin only has administrative

authority over the Adjustments branch. Therefore, the Adjustment Admin

is considered the line manager of the adjustment branch; the Payroll Admin

is the line manager of the Taxes branch. Also, if the Chief Admin granted

the Payroll Admin permission to grant administrative permissions to other

administrators, the Payroll Admin may have, in turn, granted this permis-

sion to the Adjustment Admin. Note that because of the Payroll Admin’s

position in the Administrative hierarchy, the Payroll Admin inherits the

Adjustment Admin’s permissions to any roles or relations that may be

created by the Adjustment Admin.

The autonomy of control is less precise. Because administrative author-

ity is based on the concept of a view, nothing prevents an administrator of

view 1 from creating a parent relation to some role that is included within a

second view for which the administrator has no administrative authority.

Although RCC permits the creation of such a relation, RCC effectively does

not extend the administrator’s authority into the second view. Thus, there is

no local administrative action that can be used to undermine administrative

authority. However, if a more powerful administrator wishes to grant

administrative permission into overlapping views that is the administrator’s

prerogative.

9.4 Role control center 211

Payroll dept.

…

Adjustments Taxes

Payroll admin

Chief admin

Adjustment admin

Figure 9.17 Administrative authority by view.

References

[1] Sandhu, R., et al., “Role-Based Access Control Models,” IEEE Computer, Vol.

29, No. 2, February 1996.

[2] Ferraiolo, D., and J. Barkley, “Specifying and Managing Role-Based Access

Control Within a Corporate Intranet,” Proc. of 2nd ACM Workshop on Role-Based

Access Control, 1997, pp 77–82.

[3] Nyanchama, M., and S. Osborn, “The Role Graph Model and Conflict of

Interest,” ACM Transactions on Information and System Security, Vol. 2, No. 1,

1999, pp. 3–33.

[4] Sandhu, R., V. Bhamidipati, and Q. Munawer, “The ARBAC97 Model for

Role-Based Administration of Roles,” ACM Transactions on Information and

System Security, Vol. 1, No. 2, 1999, pp. 105–135.

[5] Crampton, J., and G. Loizou, “Administrative Scope and Role Hierarchy

Operations,” Proc. of 7th ACM Symposium on Access Control Models and Technologies,

2002, pp. 145–154.

[6] Oh, S., and R. Sandhu, “A Model for Role Administration Using Organization

Structure,” Proc. of 7th ACM Symposium on Access Control Models and Technologies,

2002, pp. 155–162.

[7] Ferraiolo, D., and S. Gavrila, “A Method for Visualizing and Managing

Role-Based Policies on Identity-Based Systems,” Proc. of 1999 ACM

INFOSECU99, October 1999.

[8] Ferraiolo, D., G. Ahn, and S. Gavrila, “The Role Control Center: Features and

Case Studies,” Proc. of 8th ACM Symposium on Access Control Models and

Technologies, June 2003.

212 Role-Based Administration of RBAC

Role Engineering

In recent years, RBAC has become the authorization scheme of

choice for medium and large enterprises as organizations

begin deploying identity management and provisioning sys-

tems, broaden their scope of access, and meet their regulatory

and reporting requirements. Arguably, the biggest obstacle to

RBAC is the initial complexity involved in setting it up, a process

that has come to be known as role engineering. Role engineering

for RBAC is the process of defining roles, user-role assignments,

permission-role assignments, role hierarchies and constraints

within an RBAC deployment [1]. As with most complex pro-

jects, RBAC is best implemented by applying a detailed and

structured framework that breaks down each task into its com-

ponent parts.

Unlike early role engineering efforts that were primarily

based on an interview process, which more often than not

resulted in a poor or failed outcome, the industry as a whole

has become more educated on the topic. Chief among the les-

sons learned is that role engineering is a technical, social, and

business process. As researchers and practitioners have sug-

gested, a formal and structured role engineering process is

helpful in achieving a desired outcome [2, 3]. In many

respects, role engineering draws from the same or similar sets

of techniques as requirements engineering [4, 5]. Since the pri-

mary tasks in role engineering involve aggregation of access

rights for supporting a business process or transaction to deter-

mine roles and role hierarchies, any technique used in role

213

10
Contents

10.1 Scenario-driven
role-engineering approach

10.2 Goal driven/hybrid role
engineering approach

10.3 Tools for role discovery
and role management

10.4 Example RBAC
installations

10.5 Role engineering: health
care example

C H A P T E R

engineering should adopt a business perspective rather than merely an IT

system perspective.

Later in this chapter we discuss a number of strategies in performing role

engineering. Regardless of the strategy, a role engineering effort must begin

with a well-thought-out plan. In development of this plan, it should be

recognized that role engineering is a kind of requirements analysis that

addresses both functional and quality requirements. Functional require-

ments define a system purpose or how the system is to be used, while qual-

ity requirements consider system characteristics such as manageability and

interoperability. Included in the plan is a clearly defined project scope,

required resources, a strong commitment by upper management, lines of

communication and a commitment of cooperation among business units,

and a strategy for ongoing life-cycle management. Both business and tech-

nical representatives should be involved in the project and both a bottom-

up and a top-down approach should be taken into consideration.

A bottom-up approach is an attempt to define existing roles by examina-

tion of user permission assignments as currently reflected by system and

application access control data sets. Deriving such roles is often performed

with the aid of a role discovery tool. A bottom-up analysis can be hampered

if the existing authorization database is inaccurate—user-permission assign-

ments do not accurately reflect the functions that users legitimately perform

within their organizations. This inaccuracy (which is usually an over specifi-

cation of permissions) may be the result of poor authorization practices of

the past. For example, the practice of cloning has and probably continues to

be a common method for the assignment of user permissions. Through clon-

ing, a user obtains permissions based on the duplication of permissions of

another user that performs a similar function. Also, over time as new func-

tions are created and updated, existing user permissions are augmented, but

rarely are obsolete permissions ever deleted. Experience has shown that

nearly all organizations have some degree of excessive user permissions.

A top-down approach consists of an analysis of the functions and goals

of the enterprise. Although a first pass may reveal a number of obvious

roles, the challenges of a top-down analysis are that of completeness and

granularity. Overlooking any function or task may result in a set of users

that cannot effectively perform their jobs. Defining roles that are too large

or small will respectively detract from the enterprise’s goal of adhering to

the property of least privilege or will create an undue administrative

burden.

In the hybrid approach, roles are initially determined according to the

bottom-up approach and later modified based on information gained during

the top-down approach. It is important to recognize that although a

214 Role Engineering

bottom-up approach may be relatively quick and easy, this method may not

consider regulatory requirements that as presented below are addressed as a

goals-driven top-down approach.

In spite of evolving best practices and tool support, role engineering

remains a technically challenging and expensive process. However, the

long-term benefits of an RBAC deployment should far outweigh these near

term costs.

10.1 Scenario-driven role-engineering approach

Neumann and Strembeck have developed an adaptation of the software

requirements engineering process for use in the role-engineering approach

[4]. Their scenario-driven role-engineering approach or some derivation

thereof is perhaps the most cited role-engineering approach and is the

approach that is currently being followed by the U.S. Department of Veter-

ans Affairs RBAC Task Force, which will be used as an example of the pro-

cess later in this chapter. It is based on requirements engineering techniques

for discovery of functional RBAC roles and can be applied to build an enter-

prise-specific RBAC implementation.

In general, scenarios identify actions and step sequences, commonly

specified with text descriptions and diagrams. As an example of such a spec-

ification, Figure 10.1 is a message sequence chart as modified from

10.1 Scenario-driven role-engineering approach 215

Insert bank card

Enter PIN code

Enter amount to withdraw
Check PIN

Check
availability
of funds

Return card

Emit notes
Take card

Take notes

Debit account

Customer ATM

Figure 10.1 Example scenario for the withdrawal of funds from an ATM.

Neumann and Strembeck [4], depicting a simple scenario for the with-

drawal of money from an automated teller machine (ATM).

An arrow with an accompanying text description represents each step in

the scenario. Each associated action and event of a scenario step can be used

to identify a particular permission or set of permissions. Any user that is

expected to perform the actions of a scenario must ultimately posses the

permissions that are associated with the entire scenario (via one or more

roles). Figure 10.1 depicts a scenario from the perspective of a customer. It

should be noted that a different scenario might be defined from the perspec-

tive of the ATM.

In addition to specifying basic functionality for a role, a given scenario

may additionally assist in deriving system functionality. For example, the

check PIN, check availability of funds, and debit account events may each be

represented by a message sequence chart where the ATM may interact with

a server.

10.1.1 Scenarios and roles

An obvious question is how are roles associated with scenarios? To provide

structures and a method for identifying scenarios, Neumann and Strembeck

[4] identified a top-down approach where work profiles are identified and

composed of a set of one or more tasks. A task may be thought of as a

sequence or collection of actions in performing a unit of work (e.g., process-

ing a damage claim in an insurance company or registering a patient in a

hospital.) Once identified, tasks can be combined in defining a work profile.

A work profile comprises the tasks that a certain type of user may perform

within the context of an organization. In addition each task is associated

with one or more scenarios. Since scenarios are created to define required

permissions, the identified permissions can eventually be mapped back to

work profiles, which are considered to be logically equivalent to functional

roles. Figure 10.2 depicts this delineation from work profile to permission.

It is important to note that while work profiles, tasks, steps, and permis-

sions are the prescribed abstractions of work or activities per the Neumann

and Strembeck scenario-driven role engineering process, other abstractions

could be considered as well. For example, one might consider the use of

roles, functions, tasks, entitlements, and privileges as proposed by the Stan-

ford model, as an alternative delineation of units of work (see Section 4.6

for a description of the Stanford model). Another alternative in deriving

permissions for roles might be that roles could be associated directly with

individual scenarios or tasks, as well as work profiles.

216 Role Engineering

10.1.2 Steps in the scenario-driven process

As defined by Neumann and Strembeck, the scenario-driven role engineer-

ing process is composed of seven subprocesses:

1. Identify and model usage scenarios: System usages are identified and

specified in terms of scenarios. To identify scenarios and their corre-

sponding step sequences, role engineers rely on the cooperation of

domain experts (e.g.,, a doctor, nurse, and clinician in a hospital, or a

teller, loan officer, and manager in a bank). As a first step, each sce-

nario could be characterized by a simple sentence, such as “open

new account” in a banking system, or “register a new patient” in a

hospital system.

2. Derive permissions from scenarios: For each scenario, identify, name,

and catalog permissions. Permissions are identified by the actions

that are associated with each step of the scenario. The result of this

10.1 Scenario-driven role-engineering approach 217

Task 2Task 1 Task n……

Work profile

Task 2Task 1 Task n

Scenario 2Scenario 1 Scenario 1……

Step 2Step 1 Step n

Perm 2Perm 1 Perm n……

……

Figure 10.2 The delineation of abstractions of work per Neumann and Strembeck [4].

subprocess is the permission catalog that contains the set of permis-

sions that were generated as a consequence of the scenario. Each

permission should be uniquely identified as a pair <operation,

object>. Because some of the steps (e.g., “check account balance”)

may be associated with multiple scenarios, so will their derived per-

missions. (see Section 3.2.2 for a more detailed description of

permissions).

3. Identify constraints: Constraints to be enforced over permissions are

identified. Typical constraints may pertain to separation of duty or

temporal constraints (see Chapter 5 for a detailed description of con-

straints). Selection of the types of constraints to be specified and

ultimately enforced is dependent on the RBAC product or services

that will be deployed.

4. Refine scenarios: The scenarios that have been identified in subprocess

1 are reviewed and for similar scenarios a common generalization is

defined.

Subprocesses 1–4 are repeated until the scenario model is completed.

5. Define tasks and work profiles: Scenarios are logically combined to form

tasks, while taking any identified constraints into consideration.

Constraints may, for example, pertain to specific separation of duty

requirements. Once tasks are identified and cataloged, tasks are logi-

cally combined to form work profiles. A scenario may be associated

with one or more tasks and a task may be associated with one or

more work profiles. As indicated above, permissions are not explic-

itly associated with work profiles, but an association can be indirectly

derived through a work profile’s mapping to scenarios that are

explicitly associated with permissions.

6. Derive preliminary role-hierarchy: The work profiles and the permis-

sion catalog are analyzed for overlapping permissions and as such

senior and junior work profiles (proposed roles) are organized into a

hierarchy. Any redundant work profiles are marked for deletion.

Similar work profiles are considered for combining.

7. Define RBAC model: The preliminary roles (work profiles), role hierar-

chy, permission catalog, and constraint catalog are applied in

definition of a concrete RBAC model (RBAC deployment). The spe-

cifics of the concrete RBAC model to be deployed are of course

dependent on the RBAC relations that are supported by the RBAC

218 Role Engineering

product(s) at hand. For example, not all products offer support for

role hierarchies or support for constraints.

The scenario-driven role-engineering process is meant to be iterative.

Subprocesses 1–4 are repeated until scenarios are completely defined to

include detailed entries in the permissions catalog. With the assistance of

subject experts, scenarios may first be identified and annotated by a short

sentence description. Prior to development of a detailed message sequence

chart for any one scenario, a collection of scenario descriptions should be

developed for a domain area such as processing a damage claim within an

insurance company. This initial pass may be thought of as a brainstorming

session. Upon further reflection, analysis opportunities for generalization

(two or more scenarios may be combined) or further refinement may be

presented, in a second iteration. Permissions that are associated with a step

of a scenario may be first stated abstractly, like “transfer money,” and later

refined to include specific permissions like “read account” or “write

account.” Starting at an abstract level, a set of permissions may be high-

lighted for consideration in their association with a number of scenarios,

tasks, and work profiles. On the other hand, as permissions become more

refined, a need to disassociate permissions may arise. For example, consider

the following permission refinement: <write, patient record>, → <write,

treatment field of patient record>, → <append only, treatment field of

patient record>. Although at first blush, a number of tasks and work profiles

may in general be able to write in some form to a patient record, a far fewer

number should be able to write to the treatment field of a patient record,

and upon further reflection only a primary caregiver and the associated

tasks should be to appending information to the treatment field of a patient

record in ensuring the integrity and pedigree of information for past patient

treatments.

As user profiles and permission associations are identified, a role hierar-

chy can begin to be constructed. As with profiles, the construction of a role

hierarchy is an iterative process. Roles with the same permissions are ini-

tially noted, but not yet consolidated. In a later iteration such roles may be

associated with additional permissions, or permissions may be deleted. In

either case one role may be identified as a junior to the other. In general,

the process of constructing a role hierarchy consists of a comparison of roles

for the identification of subsets of permissions. If the permissions of roles r
1

and r
2
have the relation r

1
⊆ r

2
, then we note r

2
→ r

1
, where r

1
is the junior of

r
2
. This process continues for each identified role.

10.1 Scenario-driven role-engineering approach 219

10.2 Goal driven/hybrid role engineering approach

As proposed by Qingfeng He of North Carolina State University [5], a

goals-driven requirements analysis [6] can be used to derive RBAC entities

and relationships. As a component of requirements engineering, a goal is

treated as an objective of a task, a business process, or a system. As an illus-

tration, let us take up the example of privacy requirements that form an

integral part of overall functional requirements for IT systems carrying per-

sonally identifiable information for applications in healthcare and e-govern-

ment systems. Starting from these privacy requirements, one could derive

privacy goals that serve as an intermediary between high-level privacy poli-

cies and low-level privacy enforcement rules. Analyzing the use cases or

scenarios taking into account the privacy goals helps to derive an RBAC

model that meets both security and privacy requirements. Thus goals and

scenarios could play a complimentary role in the overall role engineering

process because of the following:

◗ Goals are abstract and declarative statements of requirements, while

scenarios are concrete, narrative, and procedural statements.

◗ Goals can be considered when defining scenarios and scenarios can be

analyzed to help identify goals.

There are some situations where a goal-driven role engineering

approach or a combination of goal-driven and scenario-driven approaches

(as opposed to just a scenario-driven approach) is needed. One such situa-

tion is where the access rights requirements (permissions) must conform to

privacy policies. “Purpose” is one of the important elements in a privacy pol-

icy. As already stated, from a requirements analysis standpoint, we consider

role engineering to be conceptually a specialization of requirements engi-

neering where the requirements are restricted to resource access rights.

Hence the methodologies adopted in requirements engineering can provide

a road map for role engineering in an environment that includes privacy

requirements in addition to security (access control) requirements.

In that vein, we examined two goal-driven requirements engineering

approaches [7, 8] and two goal-scenario-driven (hybrid) approaches [9, 10].

We found that the goal-driven approach is suitable for purpose identifica-

tion and hence is a good candidate for modeling privacy requirements (poli-

cies). In the case of goal-scenario-driven (hybrid) approaches, we found that

either goal hierarchies are used to organize requirements as scenarios, goal

obstacles, and constraints as in [9], or a goal-scenario bidirectional coupling

technique is used between goal discovery and scenario authoring as [10]. A

common theme emerging from the hybrid approaches is that scenarios can

220 Role Engineering

be used to discover goals and goals can be operationalized through scenarios

and refined into requirements.

From the above discussion of the goal-scenario-driven approach for

requirements engineering, we can draw parallels for the role engineering

process. Potentially scenarios can be used to elicit new goals and derive

requirements such as permissions and roles. Going the other way, the goal

hierarchies can be used to organize scenarios and purpose hierarchies. It is

these principles that have been utilized in a goal-scenario (hybrid) driven

approach to perform a role engineering approach in [5], which we will dis-

cuss here in detail. Although the discussion may refer to privacy require-

ments in some places, it is equally applicable for any general functional

requirements.

In [5], the objective is to develop a structured role engineering process

for privacy-aware RBAC systems (see Chapter 7 for a detailed discussion).

The process as described consists of the following three major phases:

◗ Role-permission analysis (RPA);

◗ Role-permission refinement (RPR);

◗ Role-permission maintenance (RPM).

The phases have been formulated based on the hypothesis that role engi-

neering is a life-cycle process. The artifacts generated by the role engineer-

ing process—roles, role hierarchies, permissions, role-permission

assignments, and constraints may not remain constant throughout the life

of the enterprise and hence a maintenance phase should be an integral

phase of the whole process.

Let us see in detail the major activities taking place in each of the three

phases. In the RPA phase the business processes and business tasks are ana-

lyzed using goal- and scenario-driven requirements analysis techniques.

The artifacts generated by this phase include role and permission candi-

dates, permission context, and permission constraints. If privacy require-

ments are involved, the purposes for each of the roles are identified as well.

Possible inputs to the RPA phase are the following:

◗ Business process description;

◗ Policy statements (including regulatory requirements);

◗ Functional requirements specification.

The main activities in RPA are the following:

10.2 Goal driven/hybrid role engineering approach 221

◗ Identify a task (and its associate goals) for supporting a business

process;

◗ Identify the task domain;

◗ Author scenarios (sequences of events) to model task details;

◗ Translate events into permissions (or permission candidates);

◗ Identify permission contexts, attributes of permissions, permission con-

straints, and conditions to be satisfied to exercise the permissions;

◗ Identify role candidates from the actors of events;

◗ Associate permission candidates with role candidates;

◗ Associate purposes with each role candidate (if privacy requirements

exist).

To see an example of each of the above activities, let us consider the

business process “purchase or procurement.” A task to support this business

process is “approve payment.” This task is done through a “procurement

application system” that defines the domain. The goal for performing the

task is to pay the supplier of a particular goods or service. Two possible sce-

narios can be associated with this task.

Scenario 1:

◗ Receive a payment request from service beneficiary, accompanied by

a service completion approval report;

◗ Approve service fees for payment.

Scenario 2:

◗ Receive a payment request from a purchase officer, accompanied by a

goods inspection report;

◗ Approve invoice for payment.

From the above two scenarios, let us take the second one and look at all

possible permissions. Based upon the events associated with the scenario

this could be:

◗ Read payment request record;

◗ Read goods inspection record;

◗ Read goods delivery record;

◗ Read invoice;

◗ Write (create) a payment authorization record.

222 Role Engineering

After identifying the permissions, the next steps are to determine per-

mission context(s), permission attribute(s), and permission constraint(s),

conditions that must be satisfied to exercise the permissions and the actors

involved. An example for each of these entities with reference to the sce-

nario under discussion is given below:

◗ Permission context: The date of the goods inspection report is not less

than 15 days.

◗ Permission attributes: The invoice amount is not greater than $1M.

◗ Permission constraint: The approver should not be the same person who

made the purchase request (to satisfy conflict of interest policy if one

exists).

◗ Conditions that must be satisfied to exercise the permission: The quantity of

goods in the delivery record, inspection record, and invoice should all

match.

◗ Actors involved: The actors involved in the payment authorization may

be the manager of the purchase department if the items purchased

come under the category of noncapital goods or the financial control-

ler if the goods and service are capital in nature.

The actors of events become role candidates. In our situation, purchase

manager and financial controller are candidate roles. The permissions iden-

tified above are associated with these candidate roles. Since no pri-

vacy-impacting information is associated with this task, no “purpose” is

associated with these roles. The RPA phase can be said to be complete only

when all tasks have been identified and a set of candidate roles and permis-

sions and permission contexts emerges.

In the next phase (i.e., role-permission refinement or RPR phase), the

roles, permissions, and role-permissions assignments identified in the RPA

phase may be refined taking into account business process efficiency consid-

erations, organizational structures, and safeguards, and so on. The activities

performed during this phase are:

◗ Refine permissions, roles, and role-permission assignments;

◗ Define role hierarchies;

◗ Identify role constraints;

◗ Identify purposes and associated hierarchies (if required).

For example, in our situation the organization would like to provide the

financial controller an overriding power over a payment authorization made

10.2 Goal driven/hybrid role engineering approach 223

by a purchase manager. Hence a new permission “Void payment authoriza-

tion record” must be given to the financial controller role. As another exam-

ple, if it is found that the goods inspection report includes the goods delivery

details, it is not necessary for the payment authorization task to include the

permission “Read goods delivery record” and hence this redundant permis-

sion can be removed from the list of permissions for both purchase manager

and financial controller roles. Role hierarchies could be defined based on

identification of permission containment sets. For example, if the purchase

officer has permissions to request a purchase and issue a purchase request

amendment while the purchase manager has permissions to request a pur-

chase, issue an amendment, and also cancel a purchase request, then by the

permission containment principle, a hierarchy can be created with the pur-

chase manager being the senior role and the purchase officer being the

junior role. Similarly a purpose hierarchy can also be built, if a purpose con-

tainment relationship is identified among the identified purposes.

The final artifact emerging from all the above tasks is a deployable RBAC

model. The activities in the role-permission maintenance phase (RPM) have

the potential to alter the contents and in some instance the structure of the

RBAC model itself. These activities are:

◗ Merge or split roles;

◗ Add new roles;

◗ Change role-permission assignments;

◗ Change contexts, constraints, purpose, and hierarchies.

In the RPM phase, it is necessary to define some heuristics to control the

extent of changes to the deployed RBAC model. One such heuristic may be

that the total number of role mergers, role splits, and changes to role hierar-

chies cannot exceed more than 10% of the roles in the RBAC model. If that

threshold is exceeded, the role engineering process has to be initiated afresh

starting from the RPA phase. It is also crucial to keep an audit trail of all

changes made to the deployed RBAC model, since if the business process

modifications that triggered the changes are rolled back, the corresponding

changes to the RBAC model can be rolled back easily, making the overall

RBAC administration more efficient.

10.3 Tools for role discovery and role management

The definition of a concrete RBAC deployment (role engineering) is a diffi-

cult process that can be performed in a top-down, bottom-up, or hybrid

224 Role Engineering

approach. Top-down approaches such as those discussed above are time

consuming, resource intensive, and in some sense are considered idealistic.

An alternative perspective is that existing users already have the necessary

permissions to do their work, and roles can be derived from these permis-

sion assignments using data mining techniques. Although the state of per-

mission assignments may not be perfect, the application of data or role

mining can at least provide a place to start, or can complement, validate, or

replace role discovery through a top-down role engineering process.

Although role discovery is an important component of role engineering,

once roles are initially created these roles and their relationship also need to

be managed. This latter aspect of role engineering is sometimes referred to

as change management. Existing role discovery and change management

tools include SmartRoles by Bridgestream, Sage Discovery and Audit (DNA)

by Eurekify, the Contouring Engine by Prodigen, and Role Miner by Beta

Systems. In this section we discuss interactive role-mining tools that predict

roles based on such techniques as clusters of existing permission assign-

ments, organizational hierarchies, and analysis of user actions through

examination of audit records. The interactive nature of these tools allows

the user to apply domain knowledge to guide the clustering of permissions

and ultimate specification of roles and role hierarchies.

The role-mining process is much different from the top-down

approaches described above:

◗ Discover: The first phase in role mining is an analysis of existing per-

missions, organizational structures, and past activities producing a

suite of proposed roles. Sources of permissions include directories,

workflow processes, and applications.

◗ Cleanup: The second phase addresses the inevitability of noise in the

data, for example existing permissions that have been granted errone-

ously or due to poor authorization management practices of the past.

As with any data mining process, either prior to and/or immediately

following initial role discovery role, data cleansing must occur to deal

with anomalies and obvious mistakes. During the cleanup phase dor-

mant accounts may be identified and deleted, and permissions to obso-

lete applications and workflows may be discovered and deleted.

◗ Reconcile: Role mining necessitates an interactive process often requir-

ing the assistance of domain experts. With reporting tools that produce

reconciliation reports, roles can be reviewed for permissions that fall

outside of the intention of the role.

10.3 Tools for role discovery and role management 225

◗ Approve: Once strong role candidates have been identified, and prior to

deployment, these roles are often required to be approved by a security

or privacy board.

◗ Maintain: Finally, roles like any system object have a life cycle—they

are created, may be periodically reviewed and modified, and may

eventually be declared obsolete and deleted.

10.3.1 Sage DNA

Eurekify Sage Enterprise Role Manager (ERM) provides the functionality to

define a role-based privileges model, manage it over time to reflect business

changes, and utilize it in a variety of provisioning, compliance, and security

tasks.

Eurekify uses pattern recognition technology to assist in role engineering

and role management tasks. The pattern recognition technology is used to

identify role candidates from existing individual privileges, and to refine

them as needed. It is also used to identify out-of-pattern privileges that need

to be cleansed, or otherwise explicitly justified and authorized. The software

is divided into two parts: (1) an analytical workstation called Sage Discovery

& Audit (DNA), which is used to identify and refine role definitions, and to

audit role definitions and individual privileges; and (2) a Web-based server

that is used for reporting and for business collaboration processes that

involve business managers.

A variety of processes can be used in the role engineering process:

◗ Simple top-down attaches privileges to users based on a business

analysis, then fills up common privileges based on the current actual

assignment;

◗ Augmented top-down creates roles that are “modeled-after” an identi-

fied set of users and/or privileges, where the software fills the gaps for

the role modeler;

◗ Automated discovery of provisioning rules along hierarchies such as

organizational, functional, and location-based;

◗ Automated discovery of provisioning rules (rule-based roles) that are

characteristic of any set of users that share a subset of their HR

attributes;

◗ Automated discovery of membership-style roles that may or may not

be related to their HR attributes.

226 Role Engineering

Sage DNA also provides role refinement to deal with potentially clut-

tered data and to optimize the role model. The tools are also used to identify

exceptions and clean up privileges on individual platforms and applications

(e.g., in preparation to role engineering and/or deployment of identity man-

agement (IdM) systems). Eurekify provides separate functionality for defin-

ing rule-based organizational policies such as segregation of duty and other

business process constraints and verifying compliance with such policies. A

Web-based reporting server provides reports for a variety of administrative

functions, role critiquing and approval functions, and auditing and

compliance reports.

10.3.2 Role Miner

Beta Systems provides a tool called Role Miner to aid in the implementation

of a concrete RBAC model. The deployment concept of Role Miner includes

seven stages:

1. Select the relevant information sources;

2. Prepare and select the data;

3. Describe a role trend and initial cross check;

4. Mine for roles;

5. Role definition;

6. Compare the defined roles with the preexisting infrastructure;

7. Role distribution.

The role-mining process begins with collection and cleansing of relevant

authorization data. With the assistance of domain experts, this is followed

by the creation of an initial working hypothesis regarding the role structures

and role distribution into organization units. Statistical data mining of the

input data provides suggestions regarding the composition and distribution

of the roles, based on methods such as clustering analysis or association, in

the identification of similarities in the authorization data. Role mining, like

data mining in general, is an iterative process, where evaluation of prelimi-

nary results can lead to correction of the hypotheses or the statistical

threshold values and render additional iteration steps necessary.

The ultimate goal of Role Miner is to distribute the largest possible share

of access rights across the smallest possible number of roles. The candidate

roles are next imported into the Role Miner structure, where a further

10.3 Tools for role discovery and role management 227

comparison is made with the preexisting infrastructure in order to ensure

that the roles which are created are consistent with the requirements of

business processes and organizational structures. Prior to the assignment of

users to roles, existing role definitions can be “test driven” with business

unit representatives to verify proper functionality. After verification of role

functionality, perhaps through random sampling, the roles are actually

assigned to users. An important component of Role Miner is a facility for

any portion of the process to be repeated. This allows the selective definition

of role to be updated and improved over time and with experience. Role

Miner can also be used if existing role concepts have to be verified, or if a

system-specific point solution is to be extended to an enterprise role

concept.

10.3.3 SmartRoles

Bridgestream’s SmartRoles applies a multidimensional process in defining

and managing roles. The process starts with definition of a business frame-

work that exists within departments, across divisions, and throughout the

extended enterprise of stakeholders such as contractors, vendors, and part-

ners. A central concept behind SmartRoles is that a person can have direct,

indirect, and auxiliary relationships with multiple teams, and as such can

play different roles in each relationship. Enterprise role repositories and

associated tools capture the policies and rules that are translated into IT

terms, to enable an RBAC model that can be used by identity management

and provisioning systems. To build these relations and policies, SmartRoles

includes three components: a data model representing multiple and inter-

secting hierarchies across the extended enterprise, a set of tools for creating,

managing, visualizing, and analyzing hierarchical information to define

roles and their relationships, and a temporal model that enables role

definitions to evolve as organizational context changes over time.

The SmartRoles repository captures multiple enterprise-wide hierarchies

that are considered in automating role creation and management. Typical

hierarchies include reporting, cost center, and location. However, hierarchies

can vary significantly among organizations. Other hierarchies may define

organizations, positions, and teams. Also, hierarchies can be interdepen-

dent—a change in one hierarchy can cause a change in another. Through

the SmartRoles repository, the role engine reduces or in many cases elimi-

nates the need to manually define role relations. This is made possible

because the system can consider the underlying organizational model.

For example, a cost center manager is a person who is in a manager rela-

tionship with an organization in a cost center hierarchy; or a European

228 Role Engineering

account executive is a person with a specific job code or team membership

who is in the sales branch of a reporting hierarchy and who is also located in

the European branch of the location hierarchy. As aspects of any of these

hierarchies change, so will the characteristics of the associated roles.

In order for the role information to be useful to the enterprise, it must be

made available to its applications. To accomplish this, the SmartRoles inte-

gration bus manages the transfer of information into the SmartRoles reposi-

tory as well as to the applications. The SmartRoles integration bus includes

interfaces for importing user and position data from human resource man-

agement systems (HRMS), such as PeopleSoft, into the organizational

model of the repository, and exporting roles into IBM Tivoli, Oracle, and

Sun Identity Manager systems.

10.3.4 Contouring Engine

Prodigen’s Contouring Engine captures and establishes activity profiles

(contours) that reflect the normal activities of users. The engine can consoli-

date activities across platforms and applications, providing a point of refer-

ence to all exercised entitlements and utilizations to corporate resources.

One of the greatest problems in the bottom-up role engineering pro-

cesses has to do with contending with inaccurate authorization data. The

legitimate set of permissions for a user can be defined as (the user’s current

set of permissions) ∩ (the set of permissions that are exercised in perform-

ing legitimate activities). By identifying contours over time (assuming that

the user is only performing legitimate accesses) and identifying all of the

permissions of the user makes it possible to isolate and subsequently delete

inappropriate permissions for the user.

Depending on the type of resource being accessed, adaptors collect and

deliver the “what do users access” data by searching for and extracting the

“what can users access” data from platforms, applications, servers, directo-

ries, and databases.

10.4 Example RBAC installations

Organizations planning a move to RBAC are often unsure of what to expect,

in both the transition process and the end result. While RBAC is not univer-

sal, it has become widely used in many industries, and a substantial experi-

ence base has developed. Enterprise software vendor Beta Systems suggests

that in most cases, relatively few roles are assigned to each user—typically

one to five—but the number of roles in an organization can vary

10.4 Example RBAC installations 229

significantly. Organizations sometimes include location information in roles;

for example, Branch Manager/Atlanta and Branch Manager/Los Angeles,

which can lead to an explosion of roles. But by designing a role hierarchy

properly, such a large number of roles can be managed with the same effi-

ciency as a more compact structure. Table 10.1 summarizes some example

RBAC installations across a variety of organizations.

A more detailed look at some of these organizations is useful in illustrat-

ing real-world applications of RBAC in environments with diverse applica-

tions and enterprise software. RBAC is rarely, if ever, the sole access control

system in use. Most organizations have an installed base of application soft-

ware, database management systems, end-user platforms, and existing

security layers. Introducing RBAC in such an environment can be challeng-

ing, but very large firms have managed it successfully. Here we review two

of these conversion efforts, then derive lessons learned that can be helpful

to others planning a migration to RBAC.

Case 1 A large European bank has an environment that is typical of many

organizations in a variety of industries: 90,000 users, extensive installation of

SAP enterprise software, RACF access control, with a number of applications

relying on DB2 and LDAP. Employees use Windows 2000 platforms to inter-

act with the application base. This firm spent about 1 year in their transition to

RBAC, including concept definition, planning, review, and implementation.

The project initially involved six FTEs, but later reduced the effort to three

FTEs. Roles were established iteratively, one department at a time, with the

completed role hierarchy reflecting organizational units. A structure of

approximately 1,500 roles was developed, with one to two roles per user. The

RBAC software (SAM Jupiter) manages access to roughly 75 resources per

230 Role Engineering

Table 10.1 Role-Based Access in Various Organizations

Industry Users Roles Roles Per User

Insurance 167,000 1,890 3 to 5

Insurance 17,000 120 Few

Banking 31,000 450 Approximately 1

Banking 15,000 3,800 Approximately 4

Banking 14,500 474 1 to 2

Airline 160,000 100 Approximately 3

Banking 90,000 1,500 1 to 2

Banking 186,000 3,700 Approximately 5

Banking 45,000 1,000 5 to 10

Source: Beta Systems.

role, with extensive connections to RACF-, DB2-, and LDAP-based applica-

tions. RACF limitations on group size required parameterized roles to be cre-

ated in some cases. Role management is centralized in a single department,

with business managers requesting changes in role structure and permissions.

Most access permission modifications and assignments are automated, with

occasional manual intervention.

Case 2 A large international bank provides an example of RBAC installa-

tion in a very complex application environment that includes 30 RACF sys-

tems, large IMS/CICS transaction processing applications, OS/2 (currently

being migrated to Windows), plus Unix systems. Roles are applied to both

general purpose (3,700 roles) and department-specific (4,900 roles) applica-

tions. Despite the large number of roles, employees average only about five

roles per user. As with the example above, parameterized roles are used with

RACF. For branch operations, approximately four target systems are con-

nected per role. Maintaining the role structure requires less than one FTE.

Business departments request role additions or changes, and updates are

implemented by an application security team. Access rights are audited on a

daily basis to ensure consistency.

Based on their experience with roles in these and other firms, Beta Sys-

tems has developed a mixed approach to role engineering that combines

top-down analysis of business processes with bottom-up extraction of exist-

ing permissions. An automated tool, Role Miner (see Section 10.3.2) is used

to survey existing group and individual authorizations to resources. These

permissions are then consolidated into a proposed role structure. The Role

Miner tool also performs data cleansing of redundant or missing permission

assignments. Analysis of workflow, organization structure, and job descrip-

tions can be used at the business process layer to develop roles as well. Role

engineering is a continuous process that must be conducted as business

operations and organization structure change. Beta Systems uses the follow-

ing role engineering approach to implementing RBAC:

◗ Start without role structure fully defined. Changes are inevitable as

more is learned about the enterprise’s permission structure and busi-

ness processes.

◗ Determine the correct parameters.

◗ Introduce a few roles. These can be general-purpose roles, followed by

clearly recognizable sets of permissions required for particular job func-

tions (e.g., teller).

◗ Start small—do the easy parts of the enterprise first (e.g., branches).

Roles may be applied to a limited number of target systems at first.

10.4 Example RBAC installations 231

◗ Gradually extend the role model. Most organizations operate a mixed

combination of systems in which some applications are controlled via

roles, while others retain conventional access control. As experience

is gained, some organizations choose to extend RBAC across the

enterprise.

10.5 Role engineering: health care example

This section describes the role engineering process followed by the U.S.

Department of Veterans Affairs [11], using an example scenario from the

HL7 Orders/Observations Technical Committee. Steps in this process are

based on the Neumann/Strembeck methodology. This case study illustrates

how permissions, tasks, and work profiles can be derived using typical sce-

narios from the application domain. In this case, an emergency room physi-

cian deals with an incoming patient who complains of chest pains. The

process is detailed using sequence diagrams and textual descriptions of the

steps followed by the emergency room personnel.

10.5.1 Identify and model usage scenarios

Step 1: Develop scenarios using storyboards and access patterns derived from system

application logs and other resources.

The VA scenario begins with the arrival at the emergency room of Mr. A,

complaining of chest pains. He is seen by Dr. Emergency, who orders imme-

diate tests, followed by an order for blood samples to be taken every 8 hours

for the next two days. The order is entered into the ordering system, and

then transmitted to the laboratory. A phlebotomist, Nurse N, is dispatched

by the lab to collect the initial sample after the order is received. Nurse N

takes the sample, labels it, and carries the sample back to the lab. Upon

arrival, a lab technician processes the sample and sends an extract of the

serum to a laboratory workstation. The workstation transmits a notification

back to the ordering system indicating that the sample is being processed.

Notify laboratory results

An initial lab test is conducted and the result sent from the laboratory to the

results reporting system. A second test, which takes longer to complete, has to

await additional processing, so the first test is reported as preliminary. When

the second test is completed, the results are added to the earlier results,

marked as final, and sent to the results reporting system. The “notify labora-

tory results” step will be repeated as samples are taken at 8-hour intervals.

232 Role Engineering

Intent to perform occurrence

Following up on the order to obtain samples every 8 hours, a nurse takes the

sample, then the lab collects it for processing (see Figure 10.3). When arrival

processing is completed at the lab, the sample is sent to the workstation,

which sends a notice to the ordering system that the sample is being tested.

Notify laboratory results

This process is repeated using the same steps as described above under

“notify laboratory results.”

Processes “notify laboratory results” and “intent to perform occurrence”

are repeated according to the emergency room physician’s orders.

Step 2: Assign names to the scenario.

Develop text descriptions and sequence diagrams for each scenario.

Scenarios developed in discussions with users are diagrammed and

described. Examples from the “intent to perform order” workflow are

shown below. Users are set off in boxes at the top of the diagrams (note that

not all users are human), with the interactions between them detailed

below. Operations shown in the user interactions will be used to determine

permissions needed.

Step 3: Validate scenarios

Domain experts validate scenarios and update/revise as needed.

Step 4: Compile scenarios

Each workflow, developed in storyboard construction, may contain one or

more scenarios. In this step, scenarios are consolidated and assigned to the

appropriate workflows.

10.5 Role engineering: health care example 233

Labels specimen

Prints STAT label

Collects specimen

<<Receives STAT order>>

ER physician Phlebotomist Laboratory
system

Figure 10.3 Intent to perform order—collect sample scenario.

10.5.2 Derive permissions from scenarios

Scenarios developed above are used to derive permissions by identifying

each user and the [operation, object] pairs that users execute in the scenario

steps.

Step 1: Review scenarios and identify actors and steps they perform

In this part of the process, each scenario is reviewed and the actors and steps

are identified (see Table 10.2). Table 10.3 contains the actor-to-step mapping.

Figure 10.4 illustrates how the scenarios, actors, and steps are consoli-

dated and tied to specific workflows.

Step 2: Identify operations and objects from the scenarios

In this example, an established set of operations, create, read, update,

delete, and execute (C, R, U, D, E) have been used, tied to objects defined in

an industry standard. In other application areas, entirely different opera-

tions may apply, with different objects (see Table 10.4).

Step 3: Combine the associated {operation, object} pairs and consolidate into the per-

mission catalog

Permissions are the [operation, object] pairs, produced by simply merging

the information in the last two columns of the previous table. Some

234 Role Engineering

Table 10.2 Identification of Actors and Steps

Workflow Scenario Actor Step

Frequency lab

order with results

Intent to perform

order—collect

specimen

Phlebotomist Receives STAT

order

Frequency lab

order with results

Intent to perform

order—collect

specimen

Phlebotomist Collects specimen

Frequency lab

order with results

Intent to perform

order—collect

specimen

Phlebotomist Printes STAT label

Frequency lab

order with results

Intent to perform

order—collect

specimen

Lab tech Process specimen

Frequency lab

order with results

Intent to perform

order—collect

specimen

Lab tech Logs specimen

Frequency lab

order with results

Intent to perform

order—collect

specimen

Laboratory system

(lab tech,

phlebotomoist,

and/or pathologist?)

Notifies order

basic steps appear in many different scenarios, but each permission is listed

only once in the permission catalog. These will be normalized in the next

step.

10.5 Role engineering: health care example 235

Table 10.3 Actor-to-Step Mapping

Workflow Scenario Actor Step {Operation, Object}

Frequency lab

order with results

Intent to perform

order—collect

specimen

Phlebotomist Receives STAT

order

{R, Order}

{C, Observation}

Frequency lab

order with results

Intent to perform

order—collect

specimen

Phlebotomist Collects

specimen

{C, Observation}

{U, Order}

{R, WorkList}

Frequency lab

order with results

Intent to perform

order—collect

specimen

Phlebotomist Prints STAT

label

{C, Device}

Frequency lab

order with results

Intent to perform

order—collect

specimen

Lab tech Process STAT

specimen

{U, Observation}

Frequency lab

order with results

Intent to perform

order—collect

specimen

Lab tech Logs specimen {U, Observation}

Frequency lab

order with results

Intent to perform

order—collect

specimen

Laboratory

system (lab tech,

phlebotomoist,

and/or

pathologist?)

Notify order {U, Order}

Phlebotomist Lab tech Laboratory
system

Order entry
system

Processing
specimen

Logs specimen

Notifies order

<<Arrives specimen>>

Figure 10.4 Intent to perform order—process sample scenario.

10.5.3 Identify permission constraints

Constraints may be attached to some permissions. For example, some

operations may only be conducted during specific times, or at specific loca-

tions. Constraints are identified from the information collected in step 1 in

Section 10.5.1.

10.5.4 Refine scenario model

Complex processes may require additional refinement, breaking down sce-

narios identified in previous stages into multiple scenarios.

Concretion

Step 1 For each complex storyboard, define multiple scenarios as necessary

Step 2 Update the scenario model

Generalization

The scenario definition process normally results in a significant degree of

duplication. Duplicate scenarios must be identified and consolidated into

canonical scenario definitions.

236 Role Engineering

Table 10.4 Identification of Objects

Workflow Scenario Actor Step Operation

HL7 DIMM

Object

Frequency lab

order with

results

Intent to perform

order—collect

specimen

Phlebotomist Receives

STAT

order

R,

C

Order,

Observation

Frequency lab

order with

results

Intent to perform

order—collect

specimen

Phlebotomist Collects

specimen

U

U

R

Observation,

Order,

WorkList

Frequency lab

order with

results

Intent to perform

order—collect

specimen

Phlebotomist Prints STAT

label

C Device

Frequency lab

order with

results

Intent to perform

order—collect

specimen

Lab tech Process

specimen

U Observastion

Frequency lab

order with

results

Intent to perform

order—collect

specimen

Lab tech Logs

specimen

U Observation

Frequency lab

order with

results

Intent to perform

order—collect

specimen

Laboratory system (lab

tech, phlebotomoist,

and/or pathologist?)

Notifies

order

U Order

Step 1 Identify duplicate scenarios

Scenarios can be combined if they have the same actor and same [operation,

object] permission sets.

Step 2 Consolidate the list of similar steps and {Operation, Object}, eliminating

duplicates

Step 3 Define an abstract type for the scenario (if necessary)

Step 4 Group the similar scenarios and derive a common abstract type

Permissions identified earlier as [operation, object] pairs are given unique

names within the permission catalog.

10.5.5 Additional process activities

Construction of the role hierarchy depends on completion of all scenarios.

After these are completed and names are normalized, a role hierarchy can

be defined based on subset relations between role permissions.

References

[1] Coyne, E. J., “Role Engineering,” Proc. of 1st ACM Workshop on Role-Based Access

Control, 1996.

[2] Schaad, A., J. Moffett, and J. Jacob, “The Role-Based Access Control System of

a European Bank: A Case Study and Discussion,” Proc. of 6th ACM Symposium

on Access Control Models and Technologies, 2001, pp. 3–9.

[3] Schimpf, G., “Role-Engineering Critical Success Factors for Enterprise Security

Administration,” Proc. of 16th Annual Computer Security Applications Conference,

2000.

[4] Neumann, G., and M. Strembeck, “A Scenario-Driven Role Engineering

Process for Functional RBAC Roles,” Proc. of 7th ACM Symposium on Access

Control Models and Technologies, 2002, pp. 33–42.

[5] He, Q., “A Goal-Driven Role Engineering Process for Privacy-Aware RBAC

Systems,” 11th IEEE International Requirements Engineering Conference, Doctoral

Symposium, 2003.

[6] van Lamsweerde, A., “Goal-Oriented Requirements Engineering: A Guided

Tour,” Proc. of IEEE 5th International Symposium on Requirements Engineering,

2001, pp. 249–262.

[7] Kavakli, E., “Goal-Oriented Requirements Engineering: A Unifying

Framework,” Requirement Engineering Journal, Vol. 6, No. 4, 2002, pp. 237–251.

10.5 Role engineering: health care example 237

[8] Van Lamsweerde, A., “Goal-Oriented Requirements Engineering: A Guided

Tour,” Proc of IEEE 5th International Symposium on Requirements Engineering,

2001, pp. 249–262.

[9] Anton, A. I., “Goal-Based Requirements Analysis,” Proc. of 2nd International

IEEE Conference on Requirements Engineering, 1996, pp. 136–144.

[10] Rolland, C., C. Souveyet, and C. Ben Achour, “Guiding Goal Modeling Using

Scenarios,” IEEE Transactions on Software Engineering, Vol. 24, No. 12, 1998, pp.

1055–1071.

[11] Coyne, E., “Role-Based Access Control Role Engineering Process, Version 3.0,”

Healthcare RBAC Task Force, May 2004.

238 Role Engineering

Enterprise Access Control
Frameworks Using RBAC and
XML Technologies

An enterprise access control framework (EAF) refers to the

infrastructure needed to administer access control on the

various IT resources of the enterprise. These IT resources encom-

pass a combination of hardware, operating systems, general-

purpose software (e.g., DBMS and Web server software) and

business application systems. Before we proceed to build

an infrastructure for an EAF, it is first necessary to obtain a

clear conceptual understanding of what constitutes such a

framework.

11.1 Conceptual view of EAFs

Any access control system or module can be looked upon con-

ceptually as having the following building blocks:

1. A policy specification component with its associated access

control model;

2. An access enforcement mechanism.

The policy specification component is used to specify the

access control policy. An access control policy defines autho-

rized modes of access (e.g., read and write) for all IT resources

in the enterprise for the various business processes and, by

implication, for the various users who use the IT system to

239

11
Contents

11.1 Conceptual view of EAFs

11.2 Enterprise Access Central
Model Requirements

11.3 EAM specification and
XML schemas

11.4 Specification of the
ERBAC model in the XML
schema

11.5 Encoding of enterprise
access control data in
XML

11.6 Verification of the ERBAC
model and data
specifications

11.7 Limitations of XML
schemas for ERBAC model
constraint representation

11.8 Using XML-encoded
enterprise access control
data for enterprisewide
access control
implementation

11.9 Conclusions

C H A P T E R

carry out those business processes. The access enforcement mechanism

implements the policy by mediating all user accesses and ensuring that

those accesses comply with the policy requirements. The policy require-

ments themselves are not arbitrary free-form stipulations but are specified

using a formal framework called an access control model.

An access control model contains mathematical formalisms and abstrac-

tions for describing the entities involved (and their attributes) in any IT

resource access. For example in the lattice-based access control model (a

variant of the MAC model), the entities involved are subjects (users or their

invoked programs, or both) and objects (such as files and databases). The

attributes that govern the accesses of subjects on objects are the clearance

levels of subjects and the classification levels of objects (also called labels).

These clearance levels (or classification levels) are organized in the form of

a mathematical structure called the lattice. Thus, the lattice-based access

control model provides the formalism for an access control policy based on

labels.

A desirable feature in an access control module would be a logical sepa-

ration between its constituent entities—policy specification component (and

associated access control model) and enforcement mechanism. This separa-

tion would enable different enforcement mechanisms to enforce the same

policy or to have mechanisms enforce multiple policies. However, in practi-

cally all platforms (e.g., operating systems, DBMSs, and Web servers) where

an access control module is present, the supported access control models

and their corresponding enforcement mechanisms are geared to meet the

requirements of a specify policy. This tight coupling between the policy and

the enforcement mechanism forces the security administrator to state or

cast the protection requirements for objects in a given application system in

terms of the artifacts of the policy that is supported on the platform that is

hosting the application system. Those protection requirements that cannot

be cast into the supported policy framework are implemented as part of the

application code itself.

In spite of living with the reality of an integrated access control policy

specification and enforcement modules on all its platforms in its IT infra-

structure, an enterprise would still be required to specify, represent, and

maintain a business process view of access control requirements for all its IT

resources. This requirement may be due to a combination of reasons: inter-

nal audit and control requirements as well as external statutory require-

ments like HIPAA [1]. Apart from control and legal requirements, there

may be situations where an enterprise is expected to maintain separation of

policy specification and enforcement components even for technical rea-

sons. For example, let us say that an enterprise has to develop access control

240 Enterprise Access Control Frameworks Using RBAC and XML Technologies

specifications for a distributed system. A typical distributed system consists

of many application components, each hosted on different platforms with

their own native access control modules. In this situation, the enterprise

should definitely have a means for specifying access control policies for all

the IT resources that will be under the control of the distributed system

regardless of the exact platform in which the individual IT resources will be

hosted.

The above discussion underscores the need for an enterprise to create

and maintain a platform-independent specification of access control policies

and requirements. In a platform-dependent specification, the access control

requirements are stated in terms of the data structures provided by the

access control modules in the various platforms. Examples of plat-

form-dependent specifications are ACLs in Windows NT and protection bits

in UNIX platforms. However, in a platform-independent specification,

access control policies and requirements are stated at a higher level of

abstraction than platform-dependent artifacts. In other words, the concep-

tual framework for a platform-independent policy specification (i.e., the

access control model) should also be at a higher level of abstraction. This

abstract higher-level access control model is what we call an enterprise

access control model to distinguish it from an access control model, which

refers to the access control policy specification framework supported in a

given platform and which is dependent on the access enforcement

mechanism on that platform.

A mere specification of access control requirements for all IT resources in

an enterprise (which we shall refer to as enterprise access control data) in a

platform-independent manner using an enterprise access control model

(EAM) alone will not be practically useful. There should be a means to map

the data in these specifications into the format of the native access control

models in the various heterogeneous platforms in the enterprise. Such map-

ping is only possible if the EAM as well as its associated enterprise access

control data is in machine-readable form. Hence we need tools and pro-

grams to create and maintain the EAM and its associated data as well as to

map the data to artifacts of access control module in the various applica-

tion-hosting platforms in the enterprise. Thus we see that a supporting

infrastructure is needed for a centralized enterprise level specification and

implementation of access control. This supporting structure is the EAF. The

exact components required to support this EAF framework very much

depend on the characteristics of the enterprise—its size and the diversity

and distribution of IT resources. However, based on our discussion, we can

identify a minimal set of required components for supporting an EAF. They

are listed as follows:

11.1 Conceptual view of EAFs 241

◗ EAF-COMP1 (MODEL): An enterprise access control model (EAM);

◗ EAF-COMP2 (ACCESS CONTROL DATA): Enterprise access control

data that corresponds to the model;

◗ EAF-COMP3 (TOOL SETS): A set of administrative tools and programs

to create, maintain, and validate the EAM and its data as well as to

map that data to the various heterogeneous systems within the enter-

prise (called Target Systems).

This chapter illustrates an approach to develop an EAF using RBAC and

XML technologies. In terms of the minimal components identified above,

the candidate for the enterprise access control model is RBAC and the sup-

porting tool and programming infrastructure is provided by XML technolo-

gies. This chapter is organized as follows: Section 11.2 outlines the general

requirements for the EAM and describes how RBAC meets those require-

ments. We call the resultant RBAC model used in an enterprise context the

enterprise RBAC (ERBAC) model. Section 11.3 discusses EAM specification

issues and how XML-based schemas are good candidates for representing an

EAM. Section 11.4 details the development of an model for a commercial

bank using one of the XML schema languages called the XML schema.

Section 11.5 provides the encoding of the enterprise access control data that

is associated with the XML schema representation of the model for a bank-

ing enterprise in XML. Sections 11.6 to 11.8 deal with the following:

1. The verification of enterprise access control data in XML documents

for conformance to the XML schema representation of the model

using XML APIs and tool sets (Section 11.6);

2. The limitations of XML schemas for RBAC model constraint repre-

sentation (Section 11.7);

3. The use of XML-encoded access control data for enterprisewide ac-

cess control implementation (Section 11.8).

11.2 Enterprise Access Central Model Requirements

The EAM is the structure used to represent the various elements (as well as

the relationships among them) involved in specifying access restrictions on

the various IT resources within the enterprise. The two basic requirements

for the EAM are multiple-policy support and administrative ease.

242 Enterprise Access Control Frameworks Using RBAC and XML Technologies

11.2.1 EAM’s multiple-policy support requirement

The diverse nature of IT resources in the enterprise calls for different sets of

access control policies for different resources. Hence the EAM should have

the requisite structural flexibility to represent many different types of poli-

cies. In other words, the EAM should be policy-neutral.

Chapter 6 shows that RBAC is policy-neutral by illustrating that RBAC

components can be used to specify traditional access policies like DAC and

MAC. On examining the approach adopted in Chapter 6, we find that the

RBAC modeling features that enabled support for the previously discussed

access control policies are role relationships (e.g., hierarchies), user-role

assignments, and role-privilege assignments. It has been shown in [2–4]

that these same features can be used to support arbitrary, organization-spe-

cific policies in the form of authorization constraints. Several authorization

constraints may need to be enforced in an organization to prevent fraud and

information misuse. An important class of authorization constraints is SoD.

This class of constraints seeks to reduce the risk of fraud by not allowing any

individual to possess sufficient privileges within the system to single-

handedly commit fraud. The RBAC features that can be used to enforce an

SoD constraint are (1) role-privilege assignment—by not allowing the two

privileges that together enable fraud commitment to be on the privilege set

of the same role—and (2) user-role assignment—by disallowing the assign-

ment of roles that together grant the fraud-enabling privileges to the same

user.

11.2.2 EAM’s ease of administration requirement

The second requirement for an EAM is that it should be easy to administer.

Since the EAM is a structured representation of enterprise access control

policies, which may be continuously evolving in light of changes in the busi-

ness environment and IT infrastructure, it is imperative that the EAM

should undergo changes as well. To manage these changes efficiently, the

EAM should facilitate ease of administration.

Security administration on any access control model has two facets: user

management and privilege management. Both these facets of administra-

tion are greatly simplified in RBAC by the use of roles to organize the privi-

leges. Users are granted membership into roles based on their competencies,

credentials, and responsibilities in the enterprise. If a user moves to a new

area of responsibility, the system administrator can simply remove the user

from existing roles and assign a new set of roles commensurate with the

new functions. In many access control models this user migration will

11.2 Enterprise Access Central Model Requirements 243

involve revocation of the user’s old privileges individually and the granting

of new privileges.

The privilege set associated with a job function may have to be updated

either due to redefinition of the job function or changes in IT application

system technologies. The privilege management tasks that this entails are

again simplified in RBAC since the privilege set in the roles that represent

that job function can be easily updated without updating the permissions

for every user (who performs that job function) on an individual basis. The

determination of the initial privilege set for a job function is also facilitated

through the use of role hierarchies or role graphs that allow roles to implic-

itly include the privileges of the descendant roles in the role hierarchy or the

role graph.

Furthermore, RBAC provides for the modular security administration of

EAMs of very large enterprises. This is done in RBAC through the definition

of special administration roles that are designated to manage other roles.

These administrative roles can also be hierarchically organized to provide a

well-organized security management structure, especially for enterprises

with diverse IT application systems (such as legacy systems and multitier

Web-based systems).

11.3 EAM specification and XML schemas

Having chosen RBAC as the EAM (which we shall henceforth refer to as the

ERBAC model), the next step in our development of EAF is the specification

of this model and the associated enterprise access control data in a form that

can be easily manipulated and evolved. The approach commonly adopted

for the specification of many access control models is the use of a policy

specification language [5, 6], since every access control model has been tai-

lored to explicitly meet the requirements of a specific policy. However, these

specification languages cannot be used for the specification of our ERBAC

model since our model potentially can represent any access control policy

(or policies), and since each specification language by itself has limitations in

the types of policies it can express. Even if a particular policy specification

language is powerful enough to express an EAM for a given enterprise

context, it may be lacking the capability to analyze the policy for conflicts

and inconsistencies and may not be extensible enough to cater to a new

type of policy. Furthermore, the access control model specification and

its associated data represented in a proprietary policy specification lan-

guage may not be accessible from all the different types of heterogeneous

244 Enterprise Access Control Frameworks Using RBAC and XML Technologies

systems in an enterprise that needs to translate the enterprise access con-

trol data into a format suitable for enforcement by its native access control

mechanisms.

Many of the challenges and limitations in representing structured infor-

mation (such as models and their associated data) using policy specification

languages have been overcome in the language specifications provided by

XML technologies [7]. Apart from the core mark-up language XML [which

is a simplified version of the generalized markup language (SGML)], the

XML specifications provide several meta or schema languages like DTD and

XML Schema [8, 9]. A schema language is used for metadata specifica-

tion—description of the structure and the data content of an XML docu-

ment. For example, the XML schema language will specify the various

elements found in an XML document (also called the XML tags), its struc-

ture (e.g., nesting), its occurrence constraints (number of times it can occur

in a document), and its data types (both standard and user-defined).

The XML schema and XML are now being increasingly used for repre-

sentation and exchange of metadata and associated data content, respec-

tively, in a platform-independent fashion. Because of its support for

structural, occurrence and data-typing constraints, the XML schema lan-

guage has the necessary constructs for describing the role structures,

user-role assignments, and role-privilege assignments that are the key struc-

tural relationships in an RBAC model. There have been some research

approaches to specify RBAC models in terms of the other schema languages

such as DTD [10] but these fall short in terms of modeling capabilities.

Hence, we choose to employ the XML schema language to define a gram-

mar (or schema) for our ERBAC model. We shall call the specification of

the ERBAC model in the XML schema syntax an “ERBAC XML schema.”

The enterprise access control data based on the model will be encoded

in XML.

Let us now take stock of where we are with respect to our goal of build-

ing the components EAF-COMP1, EAF-COMP2, and EAF-COMP3 (refer to

Section 11.1) needed for the EAF. Based on our discussion in Section 11.2,

we have chosen RBAC as the candidate for the EAM (EAF-COMP1) and

have called the resulting model the ERBAC model. Our survey on the avail-

ability of specification languages for access control models has led us to

choose the XML schema language for the specification of the ERBAC model,

and we call the resulting specification the ERBAC XML schema. The choice

of XML schema for the EAM automatically chooses for us the representation

framework for the enterprise access control data (EAF-COMP2) [i.e., the

extensible markup language (XML)].

11.3 EAM specification and XML schemas 245

11.4 Specification of the ERBAC model in the XML
schema

Before representing the ERBAC model using the XML schema we have to

choose the exact RBAC model itself from the many RBAC models proposed

in the literature. We have chosen the NIST RBAC reference model [11] here

because of its comprehensiveness and formal definition. In the NIST RBAC

reference model, the main components are users, roles, permissions, and

sessions. If we are simply to specify the NIST RBAC reference model without

a specific enterprise context (e.g., a healthcare enterprise or bank enter-

prise), we would be specifying only the structural aspects of the various

RBAC components (like users, roles, permissions, and sessions) and the var-

ious associations between the components, such as user-role assignment

and role-privilege assignment. We would not be able to specify some enter-

prise context–related constraints like the valid names of roles and the maxi-

mum (or minimum) number of users who can be assigned to any role. An

RBAC model without these types of constraints cannot be called an ERBAC

model since any EAM should contain constraints related to the enterprise

context. We generally refer to these types of constraints as the domain con-

straints to distinguish them from the category of structural constraints that

are more related to the model structure than to any aspect of the enterprise.

Since our objective is to provide a specification of an ERBAC model, we

have to choose a reference enterprise context and then specify the RBAC

model for that enterprise context. For the purpose of our EAF framework

here we will choose a commercial banking enterprise. Hence, the RBAC

model we will be specifying here will be an ERBAC model for a banking

enterprise and will therefore contain constraints related to the banking

enterprise context. Therefore, the XML schema specification of our ERBAC

model for banking enterprise context should attempt to represent con-

straints not only related to our ERBAC model structure but also some

domain constraints related to the banking enterprise environment. There-

fore, during our XML schema development process, we will be pointing out

the distinction between the structural and domain constraints.

Before developing the XML schema for the ERBAC model, we view our

ERBAC model as consisting of two sets of entities: model elements and model

relations. The model elements are user, role, privilege, and session. The

model relations are role hierarchies, user-role assignment, role-privilege

assignment, user-session assignment, and privilege-session assignment. In

the XML schema specification we will only be modeling user, role, and priv-

ilege components and not the session component. This is because a session

is a platform-dependent artifact. For example, the definition of a session

246 Enterprise Access Control Frameworks Using RBAC and XML Technologies

varies from, for example, an operating system (OS) and a DBMS and even

varies within different OSs and DBMSs. Hence in the specification of an

enterprise-level RBAC model, the specification of a session is not relevant.

The concept of privilege is also dependent on the type of resource or appli-

cation objects within a platform (e.g., files in an OS and tables within a

DBMS), but since a specification of an EAM does not make sense without

the specification of privileges, we will use generalized resources in our XML

schema specification.

Hence our overall strategy for developing the XML schema specifications

for our ERBAC model for a banking enterprise will be as follows: We will

first develop specifications for the RBAC model elements user, role, and

privilege and then proceed to develop specifications for the RBAC model

relations—role hierarchies, user-role assignments, and role-privilege

assignments.

11.4.1 XML schema specifications for ERBAC model

elements

An RBAC model element is represented by the concept element in the XML

schema. A user-defined data type for that XML schema element is used to

capture the internal structure of the RBAC model element. For example, the

XML schema element and an associated type for representing the RBAC

model element User are as follows:

<xs:element name= user type= userType/>

After having designated the data type for the user element as

“userType,” the definition of that type in the XML schema provides the

structural representation of the RBAC element User. If our structural repre-

sentation of the element User consists of two attributes: userID and fullname,

then the definition for the data type “userType” will be as follows:

<xs:complexType name= userType>

<xs:attribute name= userID type= xs:ID

use= required/>

<xs:attribute name= fullname type= xs:string

use= optional/>

</xs:complexype>

The above XML schema syntax defines that the user-defined data type

called the “userType” has two attributes userID and fullname. The type for

userID is “xs:ID,” which means that the value for this attribute must be

11.4 Specification of the ERBAC model in the XML schema 247

unique. The type for the attribute fullname is simply a string and this attrib-

ute is optional when representing any user.

Let us now proceed to define the XML schema specification for our next

RBAC model element—role. Here we must remember that what we are

developing is not a generic ERBAC model but a model that is relevant in the

context of a particular enterprise environment. The difference between a

generic ERBAC model and an ERBAC model for a particular domain is that

some domain-specific constraints must be incorporated into the RBAC

model representation. The XML schema language has limitations with

respect to representation of an arbitrary domain constraint. However, con-

straints relating to cardinality, enumeration, and nature of existence

(optional and mandatory) can be expressed because of XML schema’s sup-

port for complex data types. Some of these constraints are used to define the

data type called the “roleType” for the element “role,” which stands for the

RBAC model element role.

<xs:element name= role type= roleType/>

<xs:complexType name= roleType/>

<xs:attribute name= roleID type= xs:ID

use= required/>

<xs:attribute name= rolename type= validRole

use= required/>

<xs:attribute name= cardinality type= role-

Limit use= optional/>

</xs:complexType>

The above syntax means that the structured representation of a role con-

sists of attributes roleID, rolename, and cardinality of types xs:ID, validRole,

and roleLimit, respectively. For our ERBAC model, we need the rolename to

be one of the valid roles for the banking enterprise. Supposing this valid set

consists of the following roles: BranchManager, Customer_Service_Rep,

Loan_Officer, Accounting_Manager, Internal_Auditor, Teller, and Accoun-

tant. To represent the fact that the attribute role name can take on values

only from this set of valid strings, its corresponding type (i.e., valid Role)

should be an enumerated type:

<xs:simpleType name= validRole>

<xs:restriction base= xs:string>

<xs:enumeration value= BranchManager/>

<xs:enumeration value= Customer_Service_Rep/>

<xs:enumeration value= Loan_Officer/>

<xs:enumeration value= Accounting_Manager/>

248 Enterprise Access Control Frameworks Using RBAC and XML Technologies

<xs:enumeration value= Internal_Auditor/>

<xs:enumeration value= Teller/>

<xs:enumeration value= Accountant/>

</xs:restriction>

</xs:simpleType>

Similarly a domain-specific constraint that states that the value for the

cardinality attribute of a role (which stands for the maximum number of

users who can take on that role) can only take on values between 0 and 10

can be represented using the range data type definition of the XML schema

as follows:

<xs:simpleType name= roleLimit>

<xs:restriction base= xs:integer>

<xs:minInclusive value= 0/>

<xs:maxInclusive value= 10/>

</xs:restriction>

</xs:simpleType>

Now the only RBAC model element we need to specify is the Privilege. A

privilege or permission (as it is often referred to) is represented as a tuple

<data_resource, operation>. It stands for a particular operation on a given

data resource. There are valid sets of operations associated with a given data

resource. For example, the valid set of operations on a text file is read,

delete, modify, and append. The valid operations on a relational database

table include read (select), update (modify), delete, and insert. However,

specifying privileges relevant to a specific type of resource requires making

assumptions about the platform in which that resource will be hosted.

Hence, in the ERBAC model, we use the concept of a generalized data

resource. A generalized data resource stands for assets in an enterprise that

are designated from a business perspective. For example, in our banking

enterprise these generalized data resources include deposit accounts (e.g.,

savings and checking), loan accounts, line-of-credit accounts, term deposits,

and investment accounts. To specify privileges on these generalized data

resources, we have to use generalized operations. These generalized opera-

tions should be consistent with the business process designations in the

enterprise domain. For example, the generalized operations associated with

deposit accounts are Open (create a new account for a customer), Close

(close the account), Credit (withdraw money from the account), and Debit

(deposit money into the account). The generalized privilege definition then

becomes the tuple <generalized_data_resource, generalized_operation>.

11.4 Specification of the ERBAC model in the XML schema 249

Using the generalized privileges discussed above, the XML schema speci-

fication for the RBAC element Privilege is given as

<xs:element name= privilege type= privilegeType/>

<xs:complexType name= privilegeType>

<xs:attribute name= privilegeID type= xs:ID

use= required />

<xs:attribute name= gen_resource

type= xs:String use= required/>

<xs:attribute name= gen_oper type= operType

use= required/>

</xs:complexType>

The data type “operType” should be used to enumerate the valid set of

operations and hence is declared as an enumerated type as follows:

<xs:simpleType name= operType >

<xs:restriction base= xs:string >

<xs:enumeration value= Open/>

<xs:enumeration value= Close/>

<xs:enumeration value= Debit/>

</xs:enumeration value= Credit/>

</xs:restriction>

</xs:simpleType>

11.4.2 XML schema specifications for ERBAC model relations

Now that we have completed the XML schema specifications for the ERBAC

model elements—user, role, and privilege—we are ready to develop similar

specifications for the ERBAC model relations.

First, we will discuss the role inheritance structures. Although the orga-

nization of roles can theoretically take on any structures, the structure that

very often results based on the composition of privilege sets in the roles is

the hierarchy. This is not really surprising since roles represent organiza-

tional functions or domains of responsibilities, and these domains are gener-

ally organized in a hierarchical fashion. Hence our specification of the role

inheritance structure is as follows:

<xs:element name= role_inherit type= InheritType/>

<xs:complexType name= InheritType>

<xs:sequence>

<xs:element name= FromRole type= validRole

minOccurs= 1 maxOccurs= 1/>

250 Enterprise Access Control Frameworks Using RBAC and XML Technologies

<xs:element

name= ToRole type= validRole

minOccurs= 1 maxOccurs= 1/>

</xs:sequence>

</xs:complexType>

Please note that in each specification of the role inheritance relation,

we can have only one instance of a parent role and child role (as the num-

ber of allowed occurrences for both “FromRole” and “ToRole” should be

exactly 1).

Next we take up the specification of user-role assignment relations. In

modeling the user-role assignment relations we have two choices. In each

instance of a user-role assignment specification we can either specify all the

roles that are associated with a single user (user-centric) or specify all the

users that are associated with a single role (role-centric). In any enterprise,

since the number of roles is much fewer than the number of users, choosing

a role-centric representation results in economy of specification:

<xs:element name= UserRoleAssignment type= URAType/>

<xs:complexType name= URAType>

<xs:sequence>

<xs:element name= role type= xs:IDREF/>

<xs:element

name= user type= xs:IDREF maxOccurs= 10/>

</xs:sequence>

</xs:complexType>

Please note that in our above specification of the user-role assignment

relationship, the data type for both the elements “role” and “user” is

“xs:IDREF,” meaning that any instance of the UserRoleAssignment in the

associated XML document should refer to a valid role and valid user, respec-

tively. More specifically, the valid value for a string under the element tag

“role” (or user) should be one of the “roleID” (or “userID”) values used

under the specification of RBAC model component “role” (or user).

Now the only RBAC model relation we have to model and specify is the

role-privilege assignment relation. Similar to the user-role assignment rela-

tionship, we have theoretically two choices here. We can model the

role-privilege assignment in either a role-centric (associating the privileges

for a single role) or privilege-centric (providing the list of roles where a priv-

ilege can be found) fashion. From a practical viewpoint, we never ask the

question, “What are the roles in which a privilege is found?” Rather we

always ask the question, “What are the privileges associated with or

11.4 Specification of the ERBAC model in the XML schema 251

assigned to a given role?” since our main objective is to ensure that a role

has been assigned the most appropriate set of privileges (no more and no

less) to perform the requisite enterprise functions without compromising

the security of the operations of the enterprise.

Based on the above discussion, we provide here a role-centric XML

schema specification of the role-privilege assignment relationship:

<xs:element name= RolePrivilegeAssignment

type= RPAType/>

<xs:complexType name= RPAType>

<xs:sequence>

<xs:element name= role type= xs:IDREF/>

<xs:element name= privilege type= xs:IDREF/>

</xs:sequence>

</xs:complexType>

Again to ensure referential integrity (that an instance of

RolePrivilegeAssignment refers to a valid instance of a role and privilege)

we have used the data type “xs:IDREF” for both these elements.

After representing the individual elements and relations of the ERBAC

model for the banking enterprise, the entire model itself is represented

using an element called “BANK_RBAC_Model” with elements representing

all the model elements and relations as subelements.

<xs:element name= Bank_RBAC_Model type=

BankRBACModelType/>

<xs:complexType name= BankRBACModelType>

<xs:sequence>

<xs:element ref= user maxOccurs= unbounded/>

<xs:element ref= role maxOccurs= unbounded/>

<xs:element ref= privilege maxOccurs= unbounded/>

<xs:element

ref= role_inherit maxOccurs= unbounded/>

<xs:element

ref= UserRoleAssignment maxOccurs= unbounded/>

<xs:element ref= RolePrivilegeAssignment

maxOccurs= unbounded/>

</xs:sequence>

</xs:complexType>

252 Enterprise Access Control Frameworks Using RBAC and XML Technologies

11.5 Encoding of enterprise access control data
in XML

Now that we have completed the XML schema specification of the ERBAC

model, we are ready to encode the enterprise access control data in XML.

The structure of the resulting XML document should conform to the XML

schema specification of the ERBAC model (which we will refer to as the

ERBAC XML schema).

We encode a sample set of users as follows:

<userid= DrayJ fullname= Jim Dray/>

<userid= GranceT fullname= Tim Grance/>

<userid= VincentH fullname= Vincent Hu/>

<userid= MiraM fullname= Mira Mouli/>

<userid= JansenW/>

<userid= TomK fullname= Tom Karygiannis/>

<userid= MellP fullname= Peter Mell/>

<userid= MorganK fullname= Kim Morgan/>

We see that our above encoding does not violate our XML schema defi-

nition of the “user” element. Since the “fullname” attribute is optional, it

need not be present in every user instance. Also, there can be no repeating

value for the userid attribute since it is of type “xs:ID.”

We encode a sample set of roles in the banking enterprise as follows:

<roleID= BRM rolename= BranchManager

cardinality= 1/>

<roleID= CSR rolename= Customer_Service_Rep

cardinality= 3/>

<roleID= LNO rolename= Loan_Officer cardinality= 2/>

<roleID= ACM rolename= Accounting_Manager

cardinality= 1/>

<roleID= AUD rolename= Internal_Auditor

cardinality= 1/>

<roleID= TEL rolename= Teller cardinality= 6/>

<roleID= ACC cardinality= 2/>

Our XML representation of the set of privileges in the banking enterprise

is as follows:

<privilege privilegeID= PV111 gen_resource=

DepAcct gen_oper= Open />

<privilege privilegeID= PV112 gen_resource=

DepAcct gen_oper= Debit />

11.5 Encoding of enterprise access control data in XML 253

<privilege privilegeID= PV113 gen_resource=

DepAcct gen_oper= Credit />

<privilege privilegeID= PV114 gen_resource=

DepAcct gen_oper = Close />

<privilege privilegeID= PV211 gen_resource=

LoanAcct gen_oper= Open />

<privilege privilegeID= PV212 gen_resource=

LoanAcct gen_oper= Debit />

<privilege privilegeID= PV213 gen_resource=

LoanAcct gen_oper= Credit />

<privilege privilegeID= PV214 gen_resource=

LoanAcct gen_oper = Close />

We have provided an XML-encoded set of data corresponding the

ERBAC model elements. We now provide data corresponding to the ERBAC

model relations. Again these encodings should conform to the correspond-

ing XML schema specifications. Recall that we have three types of ERBAC

model relations for which to provide data—role inheritance, user-role

assignment, and role-privilege assignment.

Our sample set of data for role inheritance relations corresponds to the

role structure for a hypothetical banking enterprise given in Figure 11.1.

The XML encoding of the role inheritance data for our banking enter-

prise (corresponding to Figure 11.1) is given next:

254 Enterprise Access Control Frameworks Using RBAC and XML Technologies

Branch_Manager

Customer_
Service_Rep

Loan_Officer
Accounting_
Manager

Internal_
Auditor

Teller Accountant

Figure 11.1 Role hierarchies in a banking enterprise.

/* Customer Service Representative Role inherits

its privileges from Teller Role */

<role_inherit>

<FromRole>Teller</FromRole>

<ToRole>Customer_Service_Rep</ToRole>

</role_inherit>

/* Accounting Manager Role inherits its privileges

from Accountant Role */

<role_inherit>

<FromRole>Accountant</FromRole>

<ToRole>Accounting_Manager</ToRole>

</role_inherit>

The following XML encodings represent the various inheritance rela-

tions involving the branch manager role. It represents the fact that the

branch manager role inherits its privileges from the customer service repre-

sentative, loan officer, accounting manager, and internal auditor roles.

<role_inherit>

<FromRole>Customer_Service_Rep</FromRole>

<ToRole>BranchManager</ToRole>

</role_inherit>

<role_inherit>

<FromRole>Loan_Officer</FromRole>

<ToRole>BranchManager</ToRole>

</role_inherit>

<role_inherit>

<FromRole>Accounting_Manager</FromRole>

<ToRole>BranchManager</ToRole>

</role_inherit>

<role_inherit>

<FromRole>Internal_Auditor</FromRole>

<ToRole>BranchManager</ToRole>

</role_inherit>

The sample set of XML-encoded data for the user-role assignment rela-

tions follows:

<UserRoleAssignment>

<role>BRM</role>

<user>GranceT</user>

<user>JansenW</user>

</UserRoleAssignment>

<UserRole Assignment>

11.5 Encoding of enterprise access control data in XML 255

<role> CSR</role>

<user> TomK</user>

</UserRoleAssignment>

<UserRoleAssignment>

<role>LNO</role>

<user>MarksD</user>

</UserRoleAssignment>

<UserRoleAssignment>

<role>ACM</role>

<user>DrayJ</user>

</UserRoleAssignment>

<UserRoleAssignment>

<role>AUD</role>

<user>MorganK</user>

</UserRoleAssignment>

<UserRoleAssignment>

<role>ACC</role>

<user>VincentH</user>

</UserRoleAssignment>

Now the only RBAC model relation for which we are left to provide data

is the role-privilege assignment relation. A sample set of data for this rela-

tion is given below:

<RolePrivilegeAssignment>

<role>TEL</role>

<privilege>PV112</privilege>

<privilege>PV113</privilege>

</RolePrivilegeAssignment>

<RolePrivilegeAssignment>

<role>CSR</role

<privilege>PV111</privilege>

<privilege>PV114</privilege>

</RolePrivilegeAssignment>

<RolePrivilegeAssignment>

<role>LNO</role>

<privilege>PV211</privilege>

<privilege>PV212</privilege>

<privilege>PV213</privilege>

<privilege>PV214</privilege>

</RolePrivilegeAssignment>

256 Enterprise Access Control Frameworks Using RBAC and XML Technologies

11.6 Verification of the ERBAC model and data
specifications

We have now completed the encoding in XML of all enterprise access con-

trol data. So far we have talked about the XML specification of the ERBAC

model and the XML encoding of the enterprise access control data without

really mentioning the tools we have used to create these specifications.

Merely using a text editor to create these two documents is not sufficient for

the following reasons:

1. The metadata descriptions (or rather element descriptions) in the

ERBAC XML schema document should conform to the syntax of the

XML schema language. This verification process is called checking

for well-formedness of the XML schema specification.

2. The XML encoding of the enterprise access control data should

conform to the XML language specification. Again, verifying this

property is called checking for well-formedness of the XML document.

Stated more formally, an XML document is said to be well-formed if

the physical structure of the document obeys the XML tag rules (i.e.,

every opening tag should have an ending tag).

3. Since the encoding syntax in the XML document containing enter-

prise access control data should conform to the specification rules

(structural, cardinality, and data typing) in the ERBAC XML schema

document, we should have a means for checking this property. This

verification process is called checking for the validity of the XML doc-

ument. More formally, an XML document is said to be valid if it

conforms to the specifications in the XML schema it references.

Fortunately there are many commercial tools under the category of XML

parsers or processors [12, 13] that help in the creation of well-formed XML

schema and XML documents as well as valid XML documents (ones that

conform to associated XML schema specifications). We have used one such

tool, XML Spy [12], to create the ERBAC XML schema and the XML docu-

ment containing the enterprise access control data.

In fact we have deliberately introduced some errors in our XML encod-

ing to test the validation capabilities of our tool. For example in our encod-

ing of the following role (refer to Section 11.5), we left out the mandatory

rolename attribute:

<role roleID>= ACC cardinality= 2 />

11.6 Verification of the ERBAC model and data specifications 257

Our XML parser tool produced the following error message:

Validation Error:

Reason: Required Attribute rolename is missing

Similarly in our user-role assignment data, we used an invalid user (a

user we did not specify in our list of users) in the following specification.

<UserRoleAssignment>

<role>LNO</role>

<user>MarksD</user>

</UserRoleAssignment>

Since this is in violation of the following referential constraint in the

XML schema specification,

<xs:element name= UserRoleAssignment type=

URAType />

<xs:complexType name= URAType >

<xs:sequence>

<xs:element name= role type= xs:IDREF />

<xs:element name= user type= xs:IDREF

maxOccurs= 10 />

</xs:sequence>

</xs:complexType>

Our XML parser tool produced the following error message:

Validation Error:

Reason: The ID MarksD is referenced but not

defined in the document

11.7 Limitations of XML schemas for ERBAC model
constraint representation

We can see from our XML schema specification of the ERBAC model that

the XML schema language has provided us with flexibility in the syntac-

tic representation of enterprise access control data. An example of syntactic

flexibility follows:

◗ The attributes “roleID” and “userID” are mandatory attributes in the

specification of a particular role or user, respectively. However, the

258 Enterprise Access Control Frameworks Using RBAC and XML Technologies

attributes “fullname” and “cardinality” for the user and role specifica-

tions, respectively, are optional.

A critical reader would have noticed by this time that the XML schema is

able to provide a good syntactic representation of the ERBAC model but not

much semantic information pertaining to the enterprise context. Semantic

information pertaining to an enterprise context can only be specified in a

metadata representation using constraints that are based on the content or

value of the data. These constraints are generally called the domain con-

straints. For example, in the ERBAC model for a banking enterprise, we

would like the following domain constraints to exist:

◗ No more than one user can be assigned to the role of “branch man-

ager” (role cardinality constraint).

◗ The roles “auditor” and “accountant” cannot be assigned to the same

user (SoD constraint).

The above domain constraints will translate to following respective

requirements on the XML encoding of the enterprise access control data (we

will refer to the string under a particular tag as the value of the tag).

◗ When the value of the “role” tag under a roleAssignment tag is

“BRM” (which is the roleID for branch manager), there cannot be

more than one instance of a “user” tag under that roleAssignment tag.

◗ None of the user tag values under a roleAssignment tag (with

role tag value “AUD”) should match with user tag values under a

roleAssignment tag (with role tag value “ACC”).

From the above examples it should be clear that any practical domain

constraint is content-based. However, we should point out at this juncture,

that the XML schema language can be used to specify a limited class of

domain constraints through its data typing and occurrence features. An

example of a domain constraint that can be specified using data typing and

occurrence features is described as follows:

◗ Constraint using data typing feature: The role name (or identifier for

a role) should occur from a valid list. We have already placed this

constraint in our XML schema by specifying the data type associated

with a “rolename” attribute of the role element as an enumerated

type.

11.7 Limitations of XML schemas for ERBAC model constraint representation 259

◗ Constraint using occurrence feature: The total number of roles in the

enterprise cannot exceed 10. We already have inserted this constraint

into our XML schema by specifying the value associated with the

maxOccurs attribute of the role element as 10.

The reason for the limitation of the XML schema in the specification of

domain constraints is the fact that the XML schema is a grammar-based lan-

guage, and a grammar-based language cannot deal with content-based con-

straints. Hence an XML schema is not sufficient for a complete specification

of the ERBAC model for an enterprise since the latter contains con-

tent-based domain constraints.

One of the common approaches proposed in the literature to overcome

the limitations of the XML schema in representing semantic information

pertaining to the domain is to augment the XML schema specification with

semantic information using domain modeling languages such as RDF [14]

or pattern-based languages like Schematron [15]. In the following para-

graphs we provide a few examples of how content-based constraints using the

Schematron language can be included in an XML schema specification of the

ERBAC model. The reader is certainly encouraged to look at approaches

involving the annotation of XML schemas with RDF schemas for incorpo-

rating domain constraints in the research journals and conference proceed-

ings.

Augmenting the XML schema specifications with Schematron

constraints The Schematron language was developed for the validation of

the contents of XML documents through features for expressing rules. These

rules are expressed using the syntax of Xpath, which, in turn, provides

expressions for locating information within an XML document. For example,

to refer to a role whose text content is “TEL” within a UserRoleAssignment

(i.e., locating user role assignments for the teller role), the Xpath syntax is:

UserRoleAssignment[role[text ()= TEL]]

Using the above content-addressing syntax provided by Xpath, a

Schematron rule expression that expresses the fact that there should exists

an instance of UserRoleAssignment where the role has the text “TEL”

(meaning that there should be at least one user assignment for the teller

role) has the form:

UserRoleAssignment[count(role[text ()= TEL])

>= 1]

260 Enterprise Access Control Frameworks Using RBAC and XML Technologies

In Schematron, constraint expressions can be used for generating alerts

(or diagnostic messages) both for the situation where a constraint is violated

as well as for a situation where it is found to be true within the XML docu-

ment contents. The Schematron specification of the constraint expression in

the case where a violation should trigger an alert (or diagnostic message) is

specified under an <assert> tag as follows:

<sch:assert

test= UserRoleAssignment[count(role[text (

)= TEL])>= 1] >

There should be an assignment for Teller Role

</sch:assert>

However, a constraint or rule expression alone does not constitute the

complete Schematron specification. The context in which the rule expres-

sion must be evaluated should also be provided. For the above constraint,

the context is the topmost element in the XML schema specification of the

ERBAC model (i.e., ERBAC XML schema) since the “UserRoleAssignment”

element is a subelement under this topmost element.

<sch:rule context= Bank_RBAC_Model >

We have so far provided an example of how a domain constraint can be

expressed using a Schematron specification. The next issue that arises is

where this Schematron specification is located. A Schematron specification

is never provided as a standalone specification for an XML document con-

tent but is always embedded within the associated XML schema specifica-

tion. In fact, the exact location for a Schematron specification is within the

“annotation” tag of the XML schema specification. This feature is intended

to help the software tool (called the Schematron validator [16]) to not only

locate the Schematron constraints but also to establish the proper context

for validating a given XML document for conformance to those constraints.

Based on the above discussion, the complete Schematron specification

(including its location within the XML schema specification) of the banking

domain constraint that states there should exist at least one user assignment

for the teller role is as follows:

<xs:complexType name= BankRBACModelType >

-(Start of Schematron constraint)

<xs:appinfo>

<sch:pattern name= Role Assignment Rules >

<sch:rule context= Bank_RBAC_Model >

11.7 Limitations of XML schemas for ERBAC model constraint representation 261

<sch:assert test= UserRoleAssignment[count

(role[text ()= TEL])>= 1] >

There should be an assignment for Teller

Role

</sch:assert>

</sch:rule>

</sch:pattern>

</xs:appinfo>

</xs:annotation> -(End of Schematron constraint)

<xs:sequence>

<xs:element ref= user maxOccurs= unbounded />

As already alluded to, the validation of our enterprise access control data

in the XML document for conformance to the above domain constraints

expressed through the Schematron specifications is done through a class of

tool called Schematron Validator [16]. The reader could see that the

Schematron Validator performs, in the context of Schematron specifica-

tions, a function identical to what the XML Parser does in the context of the

XML schema specification.

The error generated by the Schematron Validator on our XML document

containing enterprise access control data is illustrated here (since we delib-

erately did not provide an assignment for the teller role).

From pattern Role Assignment Rules :

Assertion fails: There should be an assignment

for Teller Role at

/Bank_RBAC_Model[1]

<Bank_RBAC_Model

xsi:noNamespaceSchemaLocation= A:\Bank_RBAC_model.

xsd >...</>

11.8 Using XML-encoded enterprise access control
data for enterprisewide access control implementation

At this stage in our EAF development effort, we have accomplished the

following:

◗ An XML schema specification of the ERBAC model augmented with

Schematron specifications (for representation of some domain con-

straints). Let us call this document Bank_RBAC_model.xsd.

262 Enterprise Access Control Frameworks Using RBAC and XML Technologies

◗ The XML encoding of the enterprise access control data (in a docu-

ment we will call the Bank_RBAC_data.xml). We also validated the

contents of the Bank_RBAC_data.xml document for the satisfaction

of structural and some rudimentary domain constraints through an

XML schema validator. In addition, we validated the access control

data in that document for the satisfaction of some domain constraints

expressed through the Schematron specification using a Schematron

validator.

(The complete listing of the XML document Bank_RBAC_data.xml and

the XML schema specification augmented with Schematron constraints in

the document Bank_RBAC_model.xsd are given in appendixes at the end of

the book.)

Now, the practical value of the enterprise access control data in

Bank_RBAC_data.xml can only be realized if it can be programmatically

interpreted, extracted, and mapped to define the access control information

in the native format of the several application platforms in the enterprise.

Consistent interpretation of the data in an XML document across all pro-

grams is only possible if a standardized API is defined for processing the con-

tents of XML documents. Fortunately, there are two prominent APIs that

have been standardized and utilized in the industry. They are (1) the DOM

API [17] that was issued as a W3C recommendation in October 1998 and

(2) the SAX API [18]. These APIs have been implemented in a class of tools

called XML processor or parsers. In other words, an XML parser provides a

library of routines or methods that have implemented either a DOM or SAX

API and those in turn are then callable from a procedural language. For

example, the library of methods in an XML parser for Java can be utilized by

Java programs to access (and even modify) the structure and content of

XML documents.

We will now illustrate the process of interpreting and extracting the

enterprise access control data in Bank_RBAC_data.xml using a Java pro-

gram that makes use of IBM’s XML parser for Java [13] (which has imple-

mented the DOM API). In the same Java program we will also show how

the extracted data can be utilized to define access control information for a

SQL relational database application platform. Before we proceed to describe

our Java program (let us call it Bank_RBAC_to_SQL.java), we have to

understand the basic logic involved in the extraction of contents from XML

documents using the DOM API. In DOM, an XML document is represented

as a tree-structured object (an object of a type called document) whose

nodes are such items as elements and texts. An XML parser parsing an XML

document generates an instance of this tree (also called a DOM object) and a

11.8 Using XML-encoded enterprise access control data 263

processing program (that is utilizing the same XML parser) is able to manip-

ulate the nodes of the tree through the set of DOM-provided APIs.

To programmatically parse the document Bank_RBAC_data.xml for the

purpose of extraction of its contents, the first task our Java program

(Bank_RBAC_to_SQL.java) has to do is create a DOM object from the

Bank_RBAC_data.xml document by specifying the URL of this XML docu-

ment [19]. Our Java code for this task (including all the other house-keep-

ing activities) is as follows:

import com.ibm.xml.parser.*;

import org.w3c.dom.*;

Try {

URL u = new URL(http://RBAC_BOOK.org/xml/

Bank_RBAC_data.xml);

InputStream i = u.openStream ();

Parser ps = new Parser (Extracting enterprise

access control data for SQL DBMS application);

Document doc = ps.readStream(i);

} catch (Exception e) { }

By creating the DOM object (called the document object) of our

Bank_RBAC_data.xml file using the XML parser, we have prepared our-

selves to extract the information contained in that XML file. The document

object (created from our BANK_RBAC_Data.xml file) now contains a tree of

nodes (this is the DOM’s view of the XML file). There are methods available

in the node interface to check the following information about each node:

◗ The type of the node (there are two important node

types—ELEMENT_NODE and TEXT_NODE);

◗ The value (or string) contained in the node (this is true for nodes of type

TEXT_NODE);

◗ Whether a node has children (this is true for nodes of type

ELEMENT_NODE).

Now our enterprise access control data in Bank_RBAC_data.xml has

become the document object that, in turn, is nothing but a container of

nodes. We also know that there are two types of nodes—TEXT_NODE and

ELEMENT_NODE. To meaningfully process the contents of the nodes in our

document object, we need to know the association between these nodes

and the elements in our XML schema specification. This is because of the

fact that our understanding of the structure and semantics of the ERBAC

264 Enterprise Access Control Frameworks Using RBAC and XML Technologies

model is in terms of the elements in the XML schema specification

document Bank_RBAC_model.xsd. Fortunately there exists an association

between the nodes generated by the XML parser and the elements in the

XML schema specification. It so happens that there is an interface called ele-

ment in the DOM API that extends the node. More specifically, a node of

type ELEMENT_NODE is also an element.

Now that we know that there is a node of type ELEMENT_NODE (or ele-

ments), information under the various tag names like role and user (that we

encounter in our Bank_RBAC_data.xml file) can be accessed since these tag

names correspond to elements in the XML schema file. However, then we

find that in our XML file there is no single instance of tag names like role or

user. These tag names occur several times, denoting the number of roles and

number of users in the enterprise, respectively. Hence we need an interface

(and a corresponding object) that can refer to a list of nodes (instead of a

single node) based on common property (e.g., tag name). Fortunately, the

DOM specification provides for such an interface by name NodeList inter-

face. The NodeList objects are generated by node objects of type

ELEMENT_NODE (or element objects). Since our document object (called

doc in our case) is also an element object, it has a method called

getElementsByTagName (string tagname) that returns a NodeList of all ele-

ments with that tag name.

To solidify the above discussion, Table 11.1 provides the association

between various entities in the XML document, the XML schema specifica-

tion, and the DOM API nodes.

We now have a fair idea of how to interpret the tags in an XML docu-

ment and extract the values under the various tags as well as speci-

fied attributes. To illustrate how we interpret the contents of the

11.8 Using XML-encoded enterprise access control data 265

Table 11.1 Mapping from XML Document Tags to DOM API Interfaces

XML Document

XML Schema

Spec

DOM API

Interface/Method

Tag Element Node of type ELEMENT_NODE or

Element

Text string under

a tag (or tag value)

Node of type TEXT_NODE

Group of tags with

the same tag name

NodeList

Value associated

with a tag

Node.getNodeValue ()

Value of a named

attribute under a

given tag

Node.getAttribute(named attribute)

Bank_RBAC_data.xml document, let us assume that we are interested in

extracting the names of all the roles in the document for the purpose of

defining these roles in the SQL DBMS application environment. To do this

we have to obtain a reference to an object that contains a list of nodes

whose tag name is “role.” In other words, we have to create a NodeList

object that contains element objects with the tag name “role” from our doc-

ument object . The Java code to create this NodeList object containing a list

of “role” elements is as follows:

NodeList listofRoles = doc.getElementsByTagName

(role);

Now that we have the NodeList object containing all the “role” elements

(which are also nodes), we can iterate over the set of nodes to extract infor-

mation about each individual “role” element (node). There are two methods

in the NodeList interface that help us to carry out this process. They are

listed as follows:

◗ NodeList.getLength(): gives the total number of nodes that the NodeList

object is pointing to;

◗ NodeList.item(int index): returns the specific node located by the index.

Specifically, within each “role” element we are interested in getting the

value of the attribute “rolename.” We can obtain the value associated with a

named attribute on a given “role” Element (i.e., specific node) using the

method: getAttribute(string name) where name is the name of the attribute.

Making use of the methods referred above, here is the code to iterate

over the set of “role” elements (or nodes) and obtain the names of the roles

(value associated with the attribute “rolename”):

int numberOfRoles = listOfRoles.getLength ();

for (int i=0 ; i < numberOfRoles ; i ++) {

String rolename = ((Node) listOfRoles.item(i)).

getAttribute(rolename);

}

Recall that our interest in extracting the role names is to define those

roles in the SQL DBMS application environment. Java programs generally

connect to SQL database servers using a piece of software called a database

driver (which provides the necessary communication pipe) as well as a set

of libraries called a Java Database Connectivity (JDBC). In fact, the JDBC

266 Enterprise Access Control Frameworks Using RBAC and XML Technologies

libraries provide a class called the DriverManager into which the loaded

driver must be registered. The java command to load a driver is:

String mydriver = weblogic.jdbc.oci.driver ;

Class.forName(myDriver);

Once a driver is loaded, it creates an instance of itself and automatically

registers itself with the DriverManager. Once the driver has been loaded, we

are in a position to open a database connection and obtain a connection

object by simply calling the driver manager’s static getConnection()

method. The getConnection method requires as its parameters the follow-

ing: (1) the database location specified using a URL syntax (consisting of

protocol:subprotocol:server address:database name), (2) a user name, and

(3) a password. The code snippet to create an instance of a connection object

consists of:

String DB_URL= jdbc:weblogic:oracle:bankdb ;

String user= dba ;

String password= manager ;

Connection dbcon = DriverManager.getConnection

(DB_URL, user, password);

Before using any SQL statement to create the required roles, a statement

object needs to be obtained using the connection object. This is accom-

plished using:

Statement stmt = dbcon.createStatement ();

Now the statement interface of the JDBC specification provides methods

to send both queries and updates/creates to the database. Since our inten-

tion here is to send in a SQL statement to create a new role, it is an example

of a create statement, and the appropriate statement interface method is

executeUpdate, since this executeUpdate method returns an integer whose

value should be zero if the SQL create statement is successful. Constructing

a java string of the SQL create statement for the creating a role with name

“rolename” and passing that string as a parameter to executeUpdate method

we get:

SqlString = create role + rolename;

int count = stmt.executeUpdate(sqlString);

11.8 Using XML-encoded enterprise access control data 267

In summary, we have now illustrated the case of using the DOM API and

JDBC libraries within a Java program to parse our Bank_RBAC_data.xml

and extract the role names and create those roles in a target application

hosted on a relational DBMS platform. In fact the above logic can be used to

parse all DOM nodes (and hence all the tags and their values in the XML

document that contains our enterprise access control data) and define the

necessary access control information for the various target application plat-

forms. It is needless to state that the appropriate SQL statement for creating

an instance of each type of access control information should be used. The

SQL command strings for creating these instances of access control informa-

tion (which in the target application platform are also considered to be

RBAC-based access control data) are:

SqlString = Create user + username;

(for creating a user)

SqlString = grant role + fromRole + to +

toRole; (for creating a role hierarchy with the

toRole as the parent and fromRole as the child).

11.9 Conclusions

This chapter has illustrated an approach for developing an EAF. This frame-

work provides the infrastructure to specify the access control requirements

(using the formalism of an access control model) for all the IT resources in

an enterprise that embodies multiple policies in a platform-independent for-

mat and to map those specifications to the various access control modules

found in the diverse application environments of the enterprise. We have

shown that RBAC (more specifically ERBAC)—because of its support for

multiple policies and ease of administration—is the candidate of choice for

an EAM. We have described in detail how the XML language vocabularies,

APIs, and tool sets can be used to specify an ERBAC model, encode the cor-

responding enterprise access control data, and map that data into the format

required by access control modules in the heterogeneous application plat-

forms within the enterprise.

References

[1] Department of Health and Human Services, “Security and Electronic

Signature Standards; Proposed Rule,” Federal Register, Vol. 63, No. 155, August

12, 1998.

268 Enterprise Access Control Frameworks Using RBAC and XML Technologies

[2] Ferraiolo, D., J. Cugini, and D. J. Kuhn, “Role-Based Access Control (RBAC):

Features and Motivations,” Proc. of 11th Annual Computer Security Applications

Conference, New Orleans, LA, December 1995.

[3] Ferraiolo, D. F., J. F. Barkley, and D. R. Kuhn, “A Role-Based Access Control

Model and Reference Implementation Within a Corporate Intranet,” ACM

Transactions on Information and Systems Security, Vol. 2, No. 1, February 1999,

pp. 34–64.

[4] Sandhu, R. S., et al., “Role-Based Access Control Models,” IEEE Computer, Vol.

29, No. 2, February 1996, pp. 38–47.

[5] Bai, Y., and V. Varadharajan, “A Logic for State Transformations in

Authorization Policies,” Proc. of IEEE Computer Security Foundations Workshop,

June 1997.

[6] Jajodia, S., P. Samarati, and V. S. Subhramanian, “A Logical Language for

Expressing Authorizations,” Proc. of IEEE Symposium on Security and Privacy,

May 1997.

[7] The Extensible Markup Language, Version 1.0, http://www.w3.org/TR/

REC-xml, February 1998.

[8] Guide to the W3C XML Specification (“XMLspec”) DTD, Version 2.1,

http://www.w3.org/XML/1998/06/xmlspec-report-v21.html.

[9] XML Schema Part 0: Primer W3C Recommendation, May 2, 2001,

http://www.w3.org/TR/xmlschema-0.

[10] Vuong, N. N., G. S. Smith, and D. Yi, “Managing Security Policies in a

Distributed Environment Using Extensible Markup Language (XML),” Proc. of

16th ACM SAC2001 Symposium on Applied Computing, Las Vegas, NV, March

2001.

[11] Ferraiolo, D. F., et al., “Proposed NIST Standard for Role-Based Access

Control,” ACM Transactions on Information and Systems Security, Vol. 4, No. 3,

August 2001.

[12] http://www.xmlspy.com/download.html.

[13] XML Parser for Java, http://www.ibm.com/xml.

[14] Resource Description Framework (RDF), http://www.w3.org/RDF.

[15] Schematron—Pattern-Based Schema Language, http://www.ascc.net/xml/

resource/schematron/schematron.html.

[16] Schematron Schema Validator, http://www.topologi.com.

[17] Document Object Model—Level—1 Recommendations, http://www.w3.org/

TR/REC-DOM-Level-1, October 1998.

[18] SAX—Event-Driven API for XML, http://www.megginson.com/SAX.

[19] Maruyama, H., K. Tamura, and N. Uramoto, XML and Java—Developing Web

Applications, Reading, MA: Addison-Wesley, 1999.

11.9 Conclusions 269

Integrating RBAC with
Enterprise IT Infrastructures

This chapter discusses the research concepts and associated

prototypes that have been developed to integrate RBAC

model concepts into existing enterprise IT infrastructures. Our

choice of technologies under the umbrella of enterprise IT infra-

structures is motivated by the success achieved so far in integrat-

ing RBAC into the building blocks of these technologies. The

technologies we have considered include WFMSs, Web applica-

tions, the UNIX OS, distributed file systems or network file sys-

tems (NFSs), Java, and federated database system (FDBS). The

reader is reminded that this chapter deals only with research

frameworks and prototypes. Chapter 14 focuses on the imple-

mentation of RBAC into commercial products.

Our discussion of the integration of RBAC with each of the

above mentioned technologies is organized as follows: We first

provide brief background information on each of these tech-

nologies and then refer to the research ideas that have been

proposed for incorporation of role-based access enforcement

(i.e., integrating a RBAC model) in the deployment of these

technologies. We also discuss the salient features of the proto-

type tools (if any) that have been developed based on these

research ideas. In the course of the discussions of each particu-

lar RBAC integration aspect, we refer readers to conference

and journal articles providing more details on that topic.

Section 12.1 discusses the integration of RBAC model con-

cepts into WFMSs. Section 12.2 deals with the integration of

the RBAC model into the Web applications’ access control

271

12
Contents

12.1 RBAC for WFMSs

12.2 RBAC integration in Web
environments

12.3 RBAC for UNIX
environments

12.4 RBAC in Java

12.5 RBAC for FDBSs

12.6 RBAC in autonomous
security service modules

12.7 Conclusions

C H A P T E R

framework through cookies and X.509 digital certificates. Section 12.2 also

discusses a prototype that has integrated RBAC into an e-commerce-type

Web application where the user base is not known in advance. Section 12.3

describes a prototype that has integrated RBAC into the access control

framework of a commercial UNIX operating System (i.e., Solaris) and illus-

trates how it facilitates decentralized administration. In addition, Section

12.3 discusses a prototype describing the incorporation of RBAC into a

well-established distributed file system NFS (from Sun Microsystems).

Section 12.4 illustrates research ideas that have been proposed to incorpo-

rate role-based access enforcement in the Java 2 Security Model (JDK 1.2)

enhanced with the Java Authentication and Authorization Service (JAAS).

Section 12.5 describes the architecture of a role-based authorization and

access control subsystem that has been developed as part of the security sys-

tem of a FDBS. Section 12.6 describes an implementation of RBAC model in

an autonomous security services module.

12.1 RBAC for WFMSs

WFMSs are computerized systems used for supporting (coordinating and

streamlining) business processes in various application domains like finance

and banking, health care, telecommunications, and manufacturing. Exam-

ples of business processes in a manufacturing organization are order pro-

cessing, goods procurement, and production scheduling.

WFMSs, as they support the definition of business processes and the

enforcement of control over those processes, are called upon to support var-

ious policies including access control policies. RBAC, with its policy-support

capabilities and ease of access management, becomes a natural candidate for

incorporation into WFMSs.

To appreciate the usefulness of the RBAC framework for the enforce-

ment of access control policies in WFMSs, we need a good overview of

workflow concepts and the distinct access control requirements of WFMSs.

These are the topics of Sections 12.1.1 and 12.1.2. Subsequently, we discuss

some of the research concepts and prototypes that have used RBAC to spec-

ify and enforce access control policies within WFMSs.

12.1.1 Workflow concepts and WFMSs

Based on the definition provided by the Workflow Management Coalition

(WFMC) [1], an international organization of workflow vendors, users, and

research groups, a workflow is a representation of an organizational or

272 Integrating RBAC with Enterprise IT Infrastructures

business process in which “… documents, information, or tasks are passed

from one participant to another in a way that is governed by rules or proce-

dures.” A workflow separates the various activities of a given organizational

process into a set of well-defined tasks. Hence, typically, a workflow (often

synonymous with a process) is specified as a set of tasks and a set of depend-

encies among the tasks. The various tasks in a workflow are usually carried

out by several users in accordance with organizational rules relevant to the

process represented by the workflow.

A WFMS is a computerized information system that is responsible for

scheduling and synchronizing the various tasks within the workflow, in

accordance with specified task dependencies, and for sending each task to

the respective processing entity (e.g., Web server or database server). The

data resources that a task uses are called work items.

As already stated, the representation of a business process using a

workflow involves a number of organizational rules or policies. An impor-

tant class of organizational policies is security policies. Within the realm of

security policies, access control policies play a key role, and hence defining

and enforcing access control requirements becomes a key function of a

WFMS.

It has been found, from the point of view of ease of security administra-

tion, that specifying access control requirements for workflows in terms of

roles is preferable to specifying them in terms of individuals (e.g., only the

department manager can approve a purchase order for the department).

Furthermore, role-based authorization is particularly beneficial in workflow

environments in facilitating dynamic load balancing when several individu-

als can perform a task. This is the reason that commercial WFMSs, such as

Lotus Notes and Action Workflow, support role-based authorizations [2, 3].

12.1.2 WFMS components and access control requirements

WFMSs consist of two main components—design time and run time. The

design-time component consists of a set of tools (called the process defini-

tion tools) that are used for defining and modeling the business processes

and their constituent tasks. A process definition consists of process name

(e.g., purchase order process), the definition of various tasks within the pro-

cess (e.g., purchase order approval task), and a set of business rules associ-

ated with the process (e.g., task sequence or data flow among tasks). The

run-time component of a WFMS (also called a workflow engine) consists of

a set of servers that interpret the process definition and create and maintain

process instances. Task instances associated with each process instance are

also created (based on process definition). The list of instantiated tasks

12.1 RBAC for WFMSs 273

pending to be executed is presented to the user (for his or her action)

through a worklist server. The tasks themselves are executed in task servers.

Data servers act as repositories of data that is needed by tasks (referred to

earlier as work items). In addition, there are monitor servers that maintain

the execution history for various processes or tasks instances to facilitate

run-time access control decisions. Figure 12.1 presents a schematic diagram

of the overall architecture of a WFMS.

12.1.3 Access control design requirements

The overall business rules that have gone into the definition of various pro-

cesses in a workflow are also the determinants for the access control design

requirements for WFMSs. A characteristic feature of these access control

design requirements is the incorporation of execution-context information.

To appreciate the importance of context information for access control

specification in workflow environments, let us consider the workflow repre-

sentation for a purchase order business process. This process involves four

tasks: initiate a purchase order, approve a purchase order, authorize pay-

ment, and sign checks. Figure 12.2 provides a representation of the pur-

chase order workflow along with role-task assignment.

From Figure 12.2, it should be clear that a role can be assigned to per-

form more than one task (e.g., manager role can perform tasks T1 and T2)

and that a task can be performed by more than one role (e.g., T1 can be

performed by the roles employee and manager). Furthermore, we see

from Figure 12.2 that a certain task may have to be executed more than

once (e.g., task T4) in a workflow. Each invocation of a task is called task

274 Integrating RBAC with Enterprise IT Infrastructures

D

W M

T1

T2 T3

Data servers

Task servers

Worklist servers Monitor servers

Design-time component
(process definition tools)

Run-time component
(workflow engine)

Figure 12.1 Components of the WFMS.

activation. In other words, certain tasks in a workflow may have more than

one activation. A particular purchase order—for example, “purchase order

#1003 initiated by Jack for purchasing 100 Zip disks on 8/23/02”—is called a

workflow instance.

At first glance it might appear for the above workflow specification, that

the designated role-task assignments, along with a suitable role hierarchy

and user-role assignments would complete the access control specification

(and in our case an RBAC model specification) for the “purchase order”

workflow environment. However, close examination reveals that our access

control specification in its present form does not have answers to the follow-

ing questions:

◗ Question 1 (Q1): Can a manager who is authorized to both initiate and

approve purchase orders approve an order instance that he or she has

initiated himself or herself?

◗ Question 2 (Q2): Can a manager approve a purchase order that does not

carry price quotes?

◗ Question 3 (Q3): Can both activations of task T4 (sign checks) be done

by the same user?

It should be clear from the nature of the above questions that they can

only be answered if we carry information pertaining to execution history

(e.g., who performed the order initiation task for the workflow instance

identified by purchase order #1003) and the contents of the data resource

12.1 RBAC for WFMSs 275

Initiate_Order

Approve_Order

Authorize_Payment

Sign_Checks

Task T1: Roles: Employee, Manager

Task T2: Roles: Manager

Task T3: Roles: Finance_Controller

Task T4: Roles: Accountant
No. of invocations required: 2

Figure 12.2 Purchase order workflow with role-task assignment.

affected by a task (e.g., purchase order table in a relational database). More

specifically, execution history is required for answering queries Q1 and Q3,

and the content information on a data resource is required for answering

query Q2.

Having seen the necessity for context information in the access control

specification for a WFMS, let us now take a look at the various access con-

trol design requirements that have been identified by researchers [4]. These

requirements—strict least privilege, order of events, and SoD—are collec-

tively called context-sensitive access control requirements:

1. Strict least privilege: The concept of least privilege requires that a user

receive no more access permissions than those required to carry out

his or her job responsibilities. Strict least privilege reinforces that

concept by taking into account that some of these permissions in

some specific instances may be inappropriate. For example, a man-

ager may be authorized to both initiate and approve purchase orders.

As part of the purchase order initiation activity, the manager may

have permission to edit the details of an order. However, when the

manager is approving a purchase order initiated by some other

employee, he or she should not be allowed to make changes to (or

edit) the contents of that particular order.

2. Order of events: This requires that certain privileges can only be

granted or exercised once others have been exercised. For example,

a manager cannot approve a purchase order until the initiating

employee has submitted it; similarly, a purchase order cannot be

submitted until quotes have been obtained and filled up against the

requested items.

3. SoD: The primary objective of this concept is the prevention of fraud

and errors, thus maintaining the semantic integrity of business infor-

mation. This requirement is formulated as a set of business rules such

as “a person may not approve his or her own purchase order” or “a

check requires two different signatures.”

12.1.4 RBAC model design and implementation requirements

for WFMSs

Let us now take a look at the RBAC model design and implementation

requirements based on the access control design requirements we saw in

the previous section. The RBAC model design requirements for WFMSs

have an impact on the following activities:

276 Integrating RBAC with Enterprise IT Infrastructures

◗ User-role assignment: Certain SoD requirements (those that deal with

preventing situations that should never occur) must be enforced dur-

ing design or administration time. These requirements are referred to

in the RBAC literature as static SoD. For example, in the purchase

order process, the roles Accountant and Finance_Controller should

not be assigned to the same person. This may result in a Finance_Con-

troller approving and releasing a company check based on a phony

order approved by a manager friend.

◗ Role hierarchy definition: The design of roles and role structures should

be based on task responsibilities within the various workflow processes

and not on the reporting structure of an organization. For example, an

Accountant may report to a Finance_Controller, but the Finance_Con-

troller role should not be made the parent role for the Accountant,

making the former inherit all the latter’s permissions. This would defeat

the basic motive behind the process definition for the purchase order

process where the Finance_Controller and Accountant are expected to

have distinct nonoverlapping responsibilities.

◗ Role-permission assignment: The definition of permissions directly

assigned to the roles must be abstract and tied to the semantics of the

workflow processes. For example with respect to the purchase order

process the following should be role-permission assignments (since

tasks are the semantic entities representing the user operations):

<employee, initiate_order (T1)>

<manager, approve_order (T2)>

<finance_controller, authorize_payment (T3)>

<accountant, sign_check (T4)>

The permissions required on the underlying data sources (object-level

permissions) for the successful execution of each of the tasks (stated in the

role-permission assignments) should also be mapped as part of the RBAC

model definition. Thus, the overall role-permission assignment is complete

only when we have role-task assignments and task-permission assign-

ments [5]. This is depicted through tables in Figure 12.3.

Having seen the RBAC model design-time requirements, let us take a

look at the RBAC model implementation requirements for workflow envi-

ronments. These implementation requirements are also called run-time

requirements since they are to be enforced when a business process instance

has been defined and its constituent tasks are being executed in a WFMS.

The run-time requirements are described as follows:

12.1 RBAC for WFMSs 277

◗ Role-activation constraints: These types of constraints must be defined

and enforced during run time to ensure that certain permissions are

not misused. These requirements are referred to in the RBAC litera-

ture as dynamic SoD constraints. An example of such a constraint

would be “a manager may not approve his own purchase order.” The

enforcement of these types of constraints is possible in WFMSs due to

the information provided by the worklist and monitor servers. The

monitor server keeps a log of execution history (i.e., who performed

task T1—say an initiation of a purchase order—in workflow (process)

instance #35). The worklist presents a list of pending tasks associated

with process instance #35. Suppose that a manager who has initiated

the purchase order in the instance #35 wants to approve that same

order by executing task T2. To execute the pending task T2 (approv-

ing the purchase order with instance #35), a manger has to activate

the “manager” role but he or she will be prevented from doing so, if a

suitable role activation constraint is defined.

278 Integrating RBAC with Enterprise IT Infrastructures

Tasks

Roles

xR4

xR3

xxR2

xR1

T4T3T2T1

Role task assignments-

O3

M33M32M31

R W WT4

WRT3

WWRT2

WRT1

O2

M22M21

O1

M12M11

Objects

Tasks

Task–object permissions assignment

Figure 12.3 Complete role-permission assignments in WFMS.

12.1.5 RBAC for workflows—research prototypes

Research in the area of applying RBAC concepts for access control in

workflow systems covers the gamut of formal models [6] and research pro-

totypes [7, 8]. Since one of the research prototypes [7] makes use of the

model referenced in [6], we will confine our discussion to the research pro-

totypes. A common feature of the two research prototypes is that the RBAC

specification and enforcement modules (let us call them collectively the

workflow authorization server) are layered on top of existing WFMSs. Spe-

cifically the workflow engine component of WFMSs (refer to Figure 12.1)

interacts with the workflow authorization server to obtain and revoke

authorizations during workflow execution time.

In the prototype by Payne et al. [7] (referred to as the Napoleon proto-

type), the workflow authorization server is the Napoleon tool, a multilay-

ered role definition and enforcement tool. Each of the levels in Napoleon is

used to define roles at various policy levels or levels of abstraction. The bot-

tom-most layer is used to define application-specific roles (i.e., roles in terms

of application resources and the access control mechanism of the hosting

platform). Each of the higher layers contains progressively more abstract

roles, while the roles at the top-most layer are assigned to the users. Figure

12.4 shows these multiple layers.

Each of the semantic layers is defined based on the particular enterprise

requirements. In the Napoleon prototype, a new layer called the workflow

layer, which is structurally similar to other semantic layers, is built. This

layer contains roles and role constraints directly associated with workflow

tasks in the various processes. The workflow engine managing a workflow

(process) instance requests Napoleon to grant access to an active task. The

12.1 RBAC for WFMSs 279

Application
roles

Layer of
semantic roles

Users assigned

Layer of
semantic roles

Auditor

AccountantConsultant

Caregiver

ReviewerAdminProvider
auditor

Application
Developer

Local
sysadmin

Workflow
administrator

Task 1 Task 2 Task 3 Task 4

Doctor
Support staff

Insurance

App. suite
integrator

Figure 12.4 Layers of roles in the Napoleon tool.

Napoleon receives a request along with a host of other information, such as

user identities. Napoleon then makes use of information such as user-role

assignments, role constraints, execution history of the process instance, and

role-task assignments to associate roles for the current active task. Since

the subsequent lower layers in Napoleon contain more application-specific

roles, eventually resource-specific permissions are generated to enable the

current active task to be carried out if the dynamic role-task association is

successful. Similarly, the WFMS can request Napoleon to revoke access to

all inactive tasks.

Like the Napoleon prototype, the prototype by Huang et al. [7] (the

SecureFlow prototype) is also designed to work with existing WFMSs. In the

SecureFlow prototype, a workflow authorization server (WAS) interacts

with the workflow engine (called the workflow execution server) to provide

authorization support during workflow execution. The WAS consists of an

authorization specification module (ASM), an authorization generation

module (AGM), and an authorization repository. The ASM allows security

administrators to state workflow-related access control policy specifications

that, in turn, are written to the authorization repository to be enforced dur-

ing the workflow execution. The various specifications are user specifica-

tion, role specification, user-role assignments, authorization template (AT)

specification (static role-task assignments and role-to-object permissions),

object type specification, and constraint specification. The AGM generates

authorizations during workflow execution time. It makes use of a constraint

manager submodule to assemble all constraints relevant to the current task,

executes the constraints, and generates what is called the eligible subject set

(ESS). The ESS contains a subset of the original subjects assigned to the role,

since some of the subjects might have been eliminated due to the imposition

of the constraints. If the current subject(s) requesting authorization is in the

ESS, the AGM makes use of the AT specifications to generate the required

authorization. Figure 12.5 is a schematic diagram showing the contents of

the WAS and its interactions with the components of the WFMS in the

SecureFlow architecture.

12.2 RBAC integration in Web environments

A survey of the suitability of various access control models for Web-based

applications reveals that RBAC models have the most desirable features [9].

The heterogeneous platform-based, distributed nature of Web-based appli-

cations requires an access control model that is flexible, multipolicy-

supportable, and scalable, thereby providing good support for security

280 Integrating RBAC with Enterprise IT Infrastructures

management and administration. RBAC models do possess these character-

istics. Consequently, several architectures have been proposed and demon-

strated for providing access control services for Web-based applications

using RBAC. A common thread through these several research ideas and

prototypes is that most of them, if not all, rely on public key infrastructure

(PKI) facilities with a major portion of RBAC model information residing on

Web servers.

12.2.1 Implementing RBAC entirely on the Web server

One of the earliest implementations of RBAC on the Web server was the

project initiated at NIST by Ferraiolo et al. [10]. The first step in their archi-

tecture was the definition of signatures of various function calls needed to

define an RBAC model and to query the model for enforcing access control

by designing what they called the RBAC/Web API. Implementing the

RBAC/Web API for a given Web server environment will result in support

for role-based access enforcement for all the applications on a Web server.

They came up with two prototype RBAC implementations on the Web

server. One type implemented the RBAC model as a CGI program on a

Microsoft IIS server and did not involve any change to the Web server

source code. The second type implemented the RBAC model by modifying

the Apache Web server source code to implement access enforcement on its

12.2 RBAC integration in Web environments 281

User-role
assignments

User
specification

Object type
specification

Constraint
specification

Role
specification

Authorization
template
specification

Constraint
manager

Authorization
generator

Workflow repository Authorization repository

Workflow
specification
module

Workflow
execution
server

Workflow
management system

Workflow authorization server

Figure 12.5 Modules in SecureFlow WAS.

resources based on the user roles and role permissions instead of user iden-

tity. Neither implementation required any change to the client or the Web

browser.

12.2.2 Implementing RBAC for Web server access using

cookies

Park, Sandhu, and Ahn [11] have developed a prototype implementation of

RBAC for access control on a Web server using the concept of secure cook-

ies. Cookies were invented to maintain continuity and state information as

the HTTP protocol that enables communication between a browser and Web

server is stateless. When a user visits a cookie-using Web server through his

or her browser, the Web server creates a string of text characters called a

cookie, encoding relevant information about the user and sends them to

user’s machine via the browser. When the user revisits the same Web

server, the Web server can obtain information about the user from the

cookie instead of asking for the information all over again. (In some

instances, a different Web server can recognize the cookie generated by

another Web server.) However, cookies are generally transmitted in clear

text and therefore cannot be used for sending sensitive information.

Park et al.’s motivation in making cookies secure is to use them as a

medium for transmitting sensitive authorization information. Specifically

they use cookies as the medium for clients (browsers) to present their

authorized role(s) to the Web servers. The rest of the RBAC model informa-

tion—role hierarchies, permission role assignment, and constraints—are all

stored in the Web server and are used by the Web server to enforce access

control on resources accessed by the user. In fact, the user obtains his or her

authorized role(s) from a central role server that stores the user role assign-

ment information. The set of assigned roles (let us call it the role credentials)

is presented to the Web server through the medium of cookies along with

the requested URL. In Park et al.’s “RBAC-using secure cookie” prototype,

the role server generates a set of secure cookies (the secure cookie set) after

the user logs into the role server with a user identification and password.

Table 12.1 lists the names of the various cookies generated and the main

information that they contain.

The role server uses the following information to generate each of the

cookies in the above set. The user identification and password (needed for

Name_Cookie and Pswd_Cookie, respectively) are provided by the user dur-

ing login to the role server. The encryption of the password is done using

the Web server’s public key by making use of encryption software like the

PGP. The IP address of the user’s machine (needed in IP_Cookie) is directly

282 Integrating RBAC with Enterprise IT Infrastructures

retrieved by the role server. The role(s) assigned to the user (and set in the

Role_Cookie) are obtained from a user-role assignment database in the role

server. Finally, the role server creates a hash of the information in all the

cookies and digitally signs it using its private key and sends it as the

Seal_Cookie.

The above set of secure cookies generated by the role server is sent to the

user’s (client) machine and stored securely in the user’s hard drive so that

the user does not need to go back to the role server to get his or her assigned

roles until the cookies expire. When the user requests access to a Web

server—by typing the server URL in his browser as well as by typing a user

id and password through a HTML form—the browser sends the correspond-

ing set of secure cookies to the Web server. The Web server is provided with

a special program to process the cookies. The Web server cookie program

checks the authenticity of the owner of the cookie by using the relevant

cookies, such as the IP_Cookie and Pswd_Cookie, by comparing the values

in the cookies with the values from the user (the encrypted password is

decrypted using the Web server’s private key). The Web server cookie pro-

gram then verifies the integrity of the cookie set by verifying the digital sig-

nature in the Seal_Cookie with the role server’s public key. If all the cookies

are valid and successfully verified, the Web server is in a position to trust the

role information in the cookie set, and hence the Web server cookie pro-

gram retrieves the user’s role information from the Role_Cookie to be used

by the Web server to determine the user’s permissions. Figure 12.6 is a sche-

matic diagram of the cookie set presentation and verification process.

An efficiency-related limitation of Park et al.’s secure cookie RBAC pro-

totype is that every Web server has to go through the entire verification pro-

cess for a user. Within a corporate domain, there may be many Web servers

with hyperlinked Web documents, and it is clearly very inefficient if the

same user has to go through the verification process for each Web server

accessed within a given user browser session. Recognizing the fact that the

12.2 RBAC integration in Web environments 283

Table 12.1 Cookies in the Secure Cookie Set

Cookie Name Main Information

Name_Cookie User identification

Role_Cookie Role(s) Assigned to the user

Life_Cookie Expiry date for the presented cookie set

Pswd_Cookie User Password encrypted using Web server’s public key

IP_Cookie IP address of the user’s machine

Seal_Cookie Role server’s digital signature of cookie contents

role authorization for a user is different in different Web servers, Shim and

Park [10, 12] have proposed a slightly modified architecture using secure

cookies. In Shim’s et al.’s architecture, the user presents only authentication

cookies to a Web server (say WS_A). If the authentication is successful

WS_A then generates what is called a “Valid_Cookie” containing the user

name and password and sends it to the user to be stored in the user’s

memory space (and not in the user’s hard disk). In the meantime, WS_A

retrieves the authorized roles for the user directly from a role server

and based upon the permissions associated with retrieved roles, grants or

denies the user’s URL request. When the same user visits another Web

server in the same domain (say WS_B), the WS_B does not go through the

verification process for the user. Based on the information from the

“Valid_Cookie,” the WS_B lets the user access the Web server resources

based on the roles and role permissions applicable for WS_B (which

is obtained by WS_B from role server). In this architecture, the

“Valid_Cookie” is valid only as long as the user’s browser is open.

12.2.3 RBAC on the Web using attribute certificates

The concept that is gaining widespread acceptance for providing access con-

trol for Web-based applications is the use of attribute certificates (ACs). Edi-

tion 4 of X.509 [13] published by ITU-T in 2001 was the first edition to fully

standardize the X.509 AC. Hence, there are now two major types of X.509

284 Integrating RBAC with Enterprise IT Infrastructures

Authentication

User-role
assignment

Set secure
cookies

Get cookies

Authentication

Check integrity

Retrieve roles

RBAC

Role server
(Cookie issuer)

Web Server

Client
(browser)

Get cookies
(Name,Life, IP,
Role,Password,Seal) Response

Access

Send cookies
(Name,Life, IP,
Role,Password,Seal)
and URL Request

Assigning roles and
creating secure cookies Verifying secure cookies and RBAC

Figure 12.6 RBAC on the Web using secure cookies.

certificates: the X.509 identity certificate and the X.509 AC. While X.509

identity certificates (also called public key certificates) are used to maintain

a strong binding between a user’s name and his or her public key, an AC

maintains a strong binding between a user’s name and one or more privi-

lege attributes. Each privilege attribute is defined using a combination of

attribute type and attribute value. Just like a X.509 public key certificate

forms the basis for a PKI, X.509 AC forms the basis for a privilege manage-

ment infrastructure (PMI). While public key certificates are issued by a cer-

tification authority (CA), the ACs are issued by an attribute authority (AA).

The root of trust in a PKI is called the root CA. Similarly, the root of trust in

a PMI is called the source of authority (SOA). In short, X.509 PMI is to

authorization what X.509 PKI is to authentication.

The European Commission (EC)–funded Privilege and Role Manage-

ment Infrastructure Standards Validation (PERMIS) Project [14] was the

first project to build an RBAC-based X.509 PMI that could be used by differ-

ent Web-based applications. The PERMIS project defines several ACs to

store RBAC-model information. Table 12.2 lists the names of the various

ACs and the RBAC model information they contain.

Table 12.2 shows that the PERMIS project used two types of ACs. The

role-assignment AC and the role-specification AC (the first two ACs) are

collectively called the role ACs. The ACs numbered 3 through 9 are called

policy ACs. The encoding of policy information in the policy ACs has been

done using XML syntax. It is interesting to note that the role-specification

AC has two attribute types: role and permission. Those ACs containing roles

as attribute types associate one or more roles with the holder (which is also

a role) and are thus used to carry role hierarchy information. Both the role

12.2 RBAC integration in Web environments 285

Table 12.2 ACs and Contents in PERMIS Project

AC Name

Certificate

Holder Privilege Attributes

1. Role-Assignment AC User Roles assigned to user

2. Role-Specification AC Role Roles and permissions

3. Subject-Policy AC SOA or AA Subject domains within the policy scope

4. RoleHierarchyPolicy AC SOA or AA Allowable role hierarchies

5. SOA-Policy AC SOA or AA Identifiers for trusted SOAs or AAs

6. RoleAssignmentPolicy AC SOA or AA Allowable role assignments

7. TargetPolicy AC SOA or AA Target (resource) domain within the policy scope

8. ActionPolicy AC SOA or AA Actions or methods supported by the targets

9. TargetAccessPolicy AC SOA or AA Which roles have permission to perform actions

on which targets

ACs and policy ACs are issued by a SOA or AA and stored in a publicly

accessible LDAP directory. Since ACs are digitally signed by the SOA or AA,

they are tamper-resistant, and hence there is no modification risk.

The PERMIS project implemented a Java-based API to enable various

Web applications to obtain access control decisions. It is a modification of

the Open Group’s AZN API [15] that, in turn, is based on ISO 10181-3

access control framework that specifies the interface between the access

enforcement function (AEF) and the access decision function (ADF). The

PERMIS API architecture (shown in Figure 12.7) enables a user to access

resources (targets) via an application gateway. The AEF authenticates the

user and then asks the ADF if the user is allowed to perform the required

action on the particular target resource. The ADF accesses one or more

LDAP directories to retrieve the set of policy and role ACs relevant to the

user and bases its decision on these.

The AEF authenticates the user using his or her client certificates and

thus obtains the user’s distinguished name (DN)—the unique identifier for a

user in the X.500 directory structure used in the LDAP directory. Further-

more, since the AEF is application-platform resident, it also contains the

trusted SOA for the application as well as the list of the LDAP uniform

resource identifiers (URIs). The AEF passes all this information to the ADF,

which then retrieves the policy ACs and role ACs relevant for the user. The

ADF parses the XML encodings in the policy ACs and uses the information

there to validate the information in the role ACs. Invalid Role ACs are

discarded, and the valid role ACs then constitute the credential information

for the user. At each user access attempt, the AEF passes the target name

and attempted action to the ADF that now contains the credential informa-

tion. The ADF also associates a time-out period with the credential informa-

tion thus preventing the user from keeping a connection open for a long

time.

286 Integrating RBAC with Enterprise IT Infrastructures

LDAP
DIRECTORY

Retrieve policy
and role attribute
certificates

Submit user
access request

AEF

ADF
(The PERMIS API)

Decision
request

Decision

Application
gateway

Present
access
request

Target

Authentication service

Figure 12.7 Privilege verification subsystem in PERMIS project.

There is an earlier prototype implementation of RBAC using X.509 cer-

tificates by Park, Sandhu, and Ahn [11]. In Park et al.’s prototype, the user’s

role information was carried in the “extensions” field of a regular X.509

identity certificate. When a user presents this certificate to a Web server, the

Web server verifies the certificate, and then uses the role information there

to enforce role-based access enforcement. The rest of the RBAC model

information, like the role hierarchies and role-permission assignments are

already defined and stored in the Web server. The user obtains the bundled

X.509 identity certificate (as it contains both identity and authorization

information) from a role server that contains the user-role assignment data-

base after proper authentication.

All the RBAC implementations for the Web-based applications we have

seen so far are based on the assumption that we have a pre-established and

known set of users and that what is required by the Web server (or any

program based on the Web server) is to authenticate them and verify the

integrity of their role credentials. However in the case of sensitive

(trust-requiring) Web transactions originating from users whose identity is

not known in advance (which is the case in many e-commerce applica-

tions), the Web server must first establish the trust in the requesting user

before finding the mapping from the user to his or her authorized roles.

Herzberg, Mass, and Mihaeli [16] have presented an implementation that

will enable an unknown user to establish this trust with a Web server by

presenting certain attribute information (not roles) through a specially

designed TE certificate and then be mapped to a set of predefined business

roles. The TE and role mapping tasks are accomplished by a TE module. The

rest of the RBAC model information—role hierarchies, role permission

assignments, and associated constraints—are resident on the Web server

itself and collectively provide the role-based access control. The TE module

has been implemented in two different ways by Herzberg et al. in their two

prototypes. It was implemented as a CGI program in an Apache Web server

and as a servlet under the IBM WebSphere Application Server.

Let us now take a look at the specially designed TE certificate. The TE

certificate has been designed by adding some attributes (or fields) to a

X.509v3 certificate making use of its extension field. Since as many exten-

sions as needed can be defined, Herzberg et al.’s TE certificate contains the

mandatory attribute fields shown in Table 12.3.

The TE module maps the subject that is presenting these TE certificates

to a role (or roles) based on the attribute values in these certificates using a

policy set by the owner of the resource for which the subject is requesting

access. (Please note that the issuer of the certificate has nothing to do with

this policy.) The policy can therefore be said to perform the dual task of trust

12.2 RBAC integration in Web environments 287

establishment as well as access authorization. The policies in the TE module

are defined using an XML-based language called trust policy language

(TPL). A typical policy may involve requirements based on a combination of

the affiliation of the TE certificate issuer as well as attribute values in the TE

certificate. An example policy statement may run as:

A subject (identified by its public key) can be added to the hospital role pro-

vided it presents at least two certificates issued by “Partner_Hospital_Group”

and the “Level” field in each of these certificates contains the value “1.”

Some policies may demand multiple TE certificates, and due to the limi-

tation of the client machine, a subject (client) may be able to provide only

one certificate. In such situations, the client may indicate through the

IssuerCertRepository and SubjectCertRepository attributes in the TE certifi-

cate pointers to URL locations for extracting more certificates. A submodule

of the TE module called the “certificate collector” collects certificates from

certificate repositories referred to by the subject. Thus we see that the TE

module is made up of a certificate collector and the policy engine along with

associated databases (for storing TE certificates and policy definitions).

The sequence of steps involved in processing a user’s request (through a

browser) in Herzberg et al.’s RBAC-based TE architecture is as follows:

1. The user (client) requests a resource (or transaction) from the Web

server through his or her browser. The resource is requested through

288 Integrating RBAC with Enterprise IT Infrastructures

Table 12.3 Mandatory Attributes in TE Certificate

Mandatory Component Purpose

Issuer’s public key Serves as identifier of the issuer

Subject’s public key Serves as identifier of the subject

Certificate type Intended for supporting multiple certificate types (e.g., X.509v3, SPKI,

PGP, and KeyNote); only X.509v3 implementation has been presented.

Certificate version Self-explanatory

ProfileURL URL that describes the certificate type, namely its structure and

semantics

IssuerCertRepository Addresses to look for more certificates for the issuer—to establish the

trust in issuer as well as most recent CRL’s to verify certificate validity

SubjectCertRepository Addresses to look for more certificates for the subject—in situations

the subject can only present one certificate due to client device or

protocol limitations

an SSL session, and the Web server is configured to use SSL client

authentication. The Web server asks the browser for a certificate and

the browser in turn displays on the user screen a list of TE certificates

to choose from. The user selects a certificate and sends it to the Web

server.

2. The Web server runs a CGI/servlet program and passes the client cer-

tificate to it.

3. Based on the type of resource requested, the CGI/servlet retrieves

the associated policy and along with the certificate sends it to the TE

module for deciding on the role(s) for the user.

4. The TE module verifies compliance to policy requirements

(described using TPL) in light of the information retrieved from the

certificates and, if successful, returns to the CGI/servlet program the

set of role(s) for that user.

5. The CGI/servlet determines the permissions associated with the re-

turned roles and allows or denies the user request. (Figure 12.8

shows the information exchange between CGI/servlet and the TE

module.)

Herzberg et al.’s RBAC-based TE architecture based on the TE certificates

described above is useful in situations where an unknown user accessing

an enterprise’s resources through the Web server has to be dynamically

assigned to one of the enterprise-defined roles so as to regulate his or her

access to resources within the enterprise. However there are other types of

12.2 RBAC integration in Web environments 289

Web server Trust establishment module (TE)

Policy
evaluator

Certificate
collector

Policy database Certificate repository

CGI/
Servlet

TE certificates
from client

Assigned
roles

Figure 12.8 Information exchange between the CGI/servlet and TE module.

e-commerce transactions wherein it is not only required to authenticate an

unknown user from another enterprise (hereafter referred to as interacting

enterprise) who has initiated a transaction (e.g., sent a purchase order docu-

ment) but also to ensure that the unknown user (hereafter referred to as

agent) is authorized to act on behalf of the interacting enterprise and is act-

ing in a legally binding way (i.e., the interacting enterprise can be made lia-

ble for the digital signatures its authorized agents provide). To address these

issues, Oppliger, Pernul, and Strauss [17] have proposed a scheme where

ACs can be used to carry the role credentials of an interacting enterprise’s

agent. In this scheme it is assumed that there exists a set of certificate

authorities TCA = { CA1, CA2…. } for a state or country (established using a

general accreditation or certification scheme) and a set of attribute authori-

ties TAA = {AA1, AA2… } registered with an appropriate national body,

such as a chamber of commerce. It is further assumed that each organiza-

tion or enterprise Y has at least one attribute authority AA(Y). Each AA(Y)

holds a public key and private key pair of which the public key is certified

(and digitally signed) by an accredited CA (a member of TCA). The AA(Y)

issues and revokes ACs (ACs) for the authorized agents of the enterprise Y.

The ACs contain the bindings between a name (that is unique within the

enterprise Y) and a specific role within the corresponding enterprise. For

example if John is an authorized agent for enterprise Y, he will have a certif-

icate for his public key and an AC for the role he plays within the enterprise

Y. The public key certificate is issued by a CA that is a member of the

TCA, whereas the AC is issued by an attribute authority [which, in our

example, is AA(Y)]. Whenever John has to sign a document that must be

legally binding in one way or another, such as a contract (e.g., a commit-

ment a buy an expensive custom-made piece of equipment), he uses his

private key to digitally sign the document and provides his public key certifi-

cate together with the AC that certifies his role within the company Y to the

intended recipients (e.g., the company that manufactures the expensive

equipment). The recipient(s) in turn, use(s) the public key certificate to

verify the following:

◗ The digital signature provided by John;

◗ The corresponding public key certificate presented by John (to see

whether it has been issued by an accredited CA);

◗ The AC presented by John [issued by AA(Y)]—for appropriate authori-

zation for John within enterprise Y;

◗ The nomination of AA(Y) by an established commerce/trade entity

(e.g., chamber of commerce).

290 Integrating RBAC with Enterprise IT Infrastructures

12.3 RBAC for UNIX environments

We have seen that general-purpose application software like a Web server

has its own implementation of RBAC regardless of the platform on which it

is hosted (e.g., Windows NT, Windows 2000, or any flavor of UNIX). Hence,

our study of RBAC integration in the UNIX environment will be restricted to

the implementation of RBAC for access control to resources that are directly

under the control of the operating system. Our first case study deals with

the details of the RBAC model prototypes
1

for administration of Solaris and

Trusted Solaris, both of which are UNIX OS offerings by Sun Microsystems.

Let us call this the RBAC-Solaris prototype. Our second case study deals

with implementation of RBAC in the UNIX-based distributed file system

NFS.

12.3.1 RBAC for UNIX administration

The primary motivation for the development of the RBAC-Solaris prototype

is to use roles as an alternative to the traditional UNIX superuser or root. Tra-

ditionally, in all UNIX flavors, root access is required to perform all aspects

of administration. For example, setting the system date requires root access,

which in turn, provides full access to the system. This lack of granularity

with respect to the assignment of privileged operations to administrators

not only makes the root user powerful but also makes other users weak,

thereby hampering proper distribution of administrative functions. In effect,

this results in no hierarchy of privileged operations, no separation of pow-

ers, and no ability to delegate any of the powers to others—effectively pre-

venting enforcement of all access administration policies that are required

for effective decentralized administration. The RBAC model prototype for

Solaris and Trusted Solaris operating systems from Sun Microsystems as

described in [18] addresses these deficiencies while at the same retaining

many of the core UNIX administrative concepts. The retention of the core

UNIX administrative concepts resulted in a system that allowed existing

applications and interfaces to work with RBAC without requiring that they

be rewritten to work with new interfaces and databases.

12.3.1.1 Role semantics in the prototype

In the RBAC-Solaris prototype, RBAC has been used to partition some of

the superuser’s (root’s) powers into a set of discrete roles. This has been

done to parcel out certain capabilities to others and is not meant to restrict

12.3 RBAC for UNIX environments 291

1. These prototypes have since evolved into commercial-grade products.

the root’s powers. In this prototype both roles and users are types of UNIX

accounts. In this sense, a role becomes an authenticated principal. However,

roles cannot be used as primary logins or be assumed without prior authori-

zation (without being assigned to a user including the root user), and they

must be formally assumed by authorized users to exercise its underlying

permission set. For example, if a “root” role has been created encapsulating

all superuser permissions, only an authorized user who has been assigned

the “root” role and assumes that role after logging in, can exercise the root

permissions. Merely logging in as root using the root password will not pro-

vide the necessary permissions. The above discussed features that enable

roles to be used as special shared accounts have been implemented in the

RBAC-Solaris prototype using existing mechanisms of UNIX without mak-

ing changes to the kernel. Specifically, the system’s pluggable authentica-

tion module (PAM) has been extended to recognize role accounts.

However, it must be mentioned that a few privileged operations may still

have to be directly assigned to the user instead of a role since the context

here is an OS, and bootstrapping an OS has to be performed along with a

login process before assuming any role.

The roles used in the prototype are not organized into any hierarchies.

Hence, roles can only be assigned to users, not to other roles. The main set

of attributes associated with a role is the permission sets (Section 12.3.1.2

discusses the structuring of these permission sets). In addition, roles are

defined to carry other attributes. Cardinality is an attribute that specifies

how many times a role can either be assigned or assumed. Mutual exclusion

(denoted by mutex) specifies that a SoD relationship exists between this role

and another specified role.

Assuming a role is the discrete action of activating a role that has been

assigned to a user. Since roles are limited to authorized users, the identity of

the user must be authenticated before the role assumption takes place.

Therefore, roles cannot be used as primary login accounts. The user must

first log in to the system and then use an appropriate interface to assume a

role. The process of assuming a role itself involves authentication and

authorization checks. An authentication check is required for assuming a

role since there is a password associated with a role. Authorization checks

associated with role assumption include verification that the role has been

assigned to the user who is assuming it and that any dynamic restrictions,

such as cardinality and mutual exclusion, are not violated.

12.3.1.2 Structuring of permissions

The last section discussed the semantics of the role in the RBAC-Solaris pro-

totype as well as the dynamics involved in the user assuming a role. Let us

292 Integrating RBAC with Enterprise IT Infrastructures

now see how the permissions are structured and assigned to the various

defined roles. In most of the literature on access control, the terms permis-

sion, privilege and authorization are frequently used interchangeably. However

in the context of the RBAC-Solaris prototype (or for that matter within the

general UNIX environment itself in some cases), each of these terms carries

different semantics. A permission is a generic term that is used to describe a

transaction that a user is permitted to do through the execution of one or

more programs. Since the term permission is used in an abstract sense in the

UNIX content, what is of practical relevance with respect to access control

on the resources of a UNIX system are the terms privileges and authoriza-

tions. The term file is frequently encountered in the UNIX literature. This is

due to the fact that the files are used as an abstraction for most of the system

resources in UNIX. Hence files may just contain data (data files), or they

may be executable. Executable files are also called programs.

Associated with an executable file or program is a set of attributes called

privileges (also called process attributes). The most important of these pro-

cess attributes or privileges are described as follows:

◗ The read, write, and execute attributes associated with levels user,

group, and other, totally giving rise to nine attributes or privileges.

◗ The effective user id (euid) and effective group id (egid) attributes that

allow a program to run with the same privileges as the owner’s userid

and group, respectively. Usually these attributes are set only in

trusted programs. One category of trusted programs are the

set-userid-to-root programs that are owned by the root and are

assigned these attributes. This will enable any user to run these pro-

grams with root privileges.

Having discussed the concept of privileges (which are process attributes),

we turn our attention to the concept of authorizations. An authorization is a

right assigned to a user or a role that is used to grant access to an otherwise

restricted function. Authorizations, like privileges, are also fine-grained but

not directly associated with programs (or processes). Instead they are associ-

ated with a user or a role and stored in a database indexed using roles or

users. Authorization checks are done by applications as opposed to privilege

checks, which are done in the UNIX kernel. Authorizations are expressed

using a hierarchical naming convention as in Java. The first component

refers to the organization or enterprise name, the second to the class of

authorizations, and the third component refers to the specific function

within a class or organization. For example, the authorization to create new

roles, modify their attributes, and delete them is

12.3 RBAC for UNIX environments 293

Solaris.role.write

where Solaris refers to the enterprise name; role refers to the authorization

class; and write refers to the write function [create, delete, edit (modify

attributes)]. Table 12.4 lists authorizations pertaining to the “role” authori-

zation class and the rights associated with each of them.

In addition to associating authorizations with a user or role directly, it

would be good if the ability to run certain trusted programs with root privi-

leges (by suitably setting the process attributes discussed earlier) were

restricted to only certain users or roles (since setuid-to-root programs can be

run by any user). It would be still better from the point of view of distribut-

ing administrative responsibilities, if these sets of trusted programs could be

run with different privileges by different users. To enable this, different sets

of process attributes must be defined and dynamically associated with these

trusted or privileged programs during execution time. To facilitate the

implementation of these concepts, the concept of execution profile has been

defined in RBAC-Solaris prototype. An execution profile is a collection of

permissions that has the following components:

◗ A list of authorizations;

◗ A list of trusted executables and associated process attributes.

A user or role is assigned one or more execution profiles. The set of per-

missions available to a user or role is the cumulative set of authorizations

and executables found in all the assigned execution profiles.

Now it is not sufficient if execution profiles are merely associated with a

user or roles. When the trusted executables in the execution profile are

294 Integrating RBAC with Enterprise IT Infrastructures

Table 12.4 Authorizations and Rights in the RBAC-Solaris Prototype

Authorization Name Associated Rights

Solaris.role.write Create new roles; modify their rights and delete

them

Solaris.usermgr.passwd Create role’s password (here the authorization class

used is usermgr since roles share some semantics

with the “user”—both are UNIX accounts)

Solaris.role.assign The right to assign (revoke) any role to (from) a user

Solaris.role.delegate The right to delegate one’s own assigned roles to

other users

Solaris.role.* Wild card authorization—covers all authorizations

under the class “role”

executed, the interpreter for each executable type should be able to associ-

ate the set of attributes specified in the profile and then execute those pro-

grams. To achieve this, the RBAC-Solaris prototype made use of a profile

execution program called pfexec. The standard UNIX shells, sh, csh, and ksh

were modified to invoke pfexec for profile-based execution. Examples of

executables are UNIX commands and executable objects in the common

desktop environment (CDE) (called CDE actions).

Based on the implementation details we have discussed so far, we are

now ready to summarize the layout of the RBAC database and the

role-based access enforcement process in the RBAC-Solaris prototype. Table

12.5 presents the layout of the RBAC database.

Examples are listed as follows:

◗ User_Name= Fred Roles=SysAdmin, Profiles= All;

◗ Role_Name=SysAdmin, mutex=SecAdmin,cardinality =2, Profiles=

Audit_Review,File_Mgmt;

◗ Profile_Name=Audit_Review, Authorizations=solaris.audit.read;

◗ Profile_Name=File_Mgmt, [Executable_ID=/usr/sbin/tunefs; Pro-

cess_Attributes=(euid =0,egid=3)].

The access enforcement process in the RBAC-Solaris prototype is sum-

marized as follows:

1. A valid user logging into the Solaris UNIX system is authenticated.

12.3 RBAC for UNIX environments 295

Table 12.5 Layout of RBAC Database in the RBAC-Solaris Prototype

Database

Component

DB Name in the

Prototype Associated Attributes

User User_attr User name, list of assigned roles, list of execution

profiles

Role User_attr Role name, list of execution profiles, cardinality limit,

list of mutually excluded profiles

Profiles

(permission sets)

Profile_attr List of authorizations (refer Auth_attr), list of

executable objects and associated process attributes

(refer Exec_attr)

Authorizations Auth_attr Authorization name and its help description file

Executable objects

and associated process

attrbutes

Exec_attr Fully qualified executable name, associated profile, type

of executable (UNIX command or CDE), value of

process attributes

2. The authenticated user can then assume a role by using the tradi-

tional su command (after supplying the password associated with

the role provided that he or she has been assigned that role).

3. The information in the execution profiles assigned to the role is set

up. This information consists of a list of authorizations and a list of

executables with their associated process attributes. When an exe-

cutable file is invoked, the binding of process attributes in the profile

with the executable is enabled by the profile execution program

pfexec.

12.3.2 RBAC implementation within the NFS

A prototype implementation of RBAC within the NFS (a file system that

provides distributed file service in networked UNIX systems) was developed

by a group of researchers at Linkoping University [19] (we shall refer to it as

the Linkoping-RBAC prototype) in Sweden. Their implementation platform

was the Linux User Space NFS server running on a Linux 2.0 system. The

implementation was based on a design that modified the NFS server to use

the access control information from a role-based security information data-

base to set the access attributes for a file. To understand how RBAC was

incorporated into the NFS access control process, we have to take a brief

look at some background information with respect to the overall architec-

ture of NFS and how it normally enforces access control.

The NFS is a distributed file system that was introduced by Sun Micro-

systems to provide transparent access to remote file systems on UNIX plat-

forms. NFS provides file service based on a client-server protocol. The

system that requests a remote file system is called an NFS client. A system

that makes its file systems available for remote access (exports) is called an

NFS server. Hence a single machine can be both an NFS client and an NFS

server. Since the file systems on remote machines can be different from the

one on client machine, clients use an abstract file system called the virtual

file system (VFS). The VFS enables clients to obtain a common view (or

interface) of both their local and remote files. Access to files in remote sys-

tems is enabled through a network transport mechanism called the remote

procedure call (RPC) that uses a platform-neutral representation of data

called the external data representation (XDR). Before a client can access the

contents (files and directories) of a remote file system, it needs to incorpo-

rate the remote file system into its own VFS. This operation is called mount,

and the client uses a command of the same name. Through this mount com-

mand the NFS client specifies the host name, the name of the file system,

and the file type. The NFS server on the remote host on receiving this

296 Integrating RBAC with Enterprise IT Infrastructures

request checks whether the file system is available for export and then

returns a file handle to the requesting NFS client. The NFS client creates a

node of its virtual file system (called VNODE) with a pointer to another

node called RNODE where the returned file handle from the remote host is

stored. The NFS client through the newly created VNODE then accesses the

contents of the remote file system.

With the above background information on NFS, let us now take a look

at how NFS normally enforces access control on the resources under its con-

trol—directories, directory trees, and files. When an NSF server receives a

resource (say a file) access request from a NFS client, it also receives with

each request, the effective user and group identities (UID and GID, respec-

tively) of the caller as well as the file handle. The NFS server uses these

identities to authenticate the file handle, the calling machine, and the call-

ing user. It then accesses the file and makes the file available to the client

along with file access attributes (generally called the permission bits). The

main responsibility for access control still rests with the kernel of the client

that allows or disallows access based on the file access attributes, as reported

by the NFS server.

The central design idea in the Linkoping-RBAC prototype is to mount

the remote file system as usual but then to sidestep the default permis-

sion-checking behavior. The sequence of steps involved in role-based access

enforcement in the Linkoping-RBAC prototype using the modified NFS

server (marked as RBAC NFS server in Figure 12.9) is as follows:

(a) Activate roles: The user (through an NFS client) starts out an NFS

access request by using a special application (resident in a server

called the role state server that is located in the same network

domain as the NFS server to which it is making the NFS access

request) to activate one or more roles. The list of roles assigned to the

user is stored in a user/role database attached to the role state server.

Since a user can only activate roles to which he or she has been

assigned, the role state module checks with this user/role database to

verify whether the user has been assigned that role. The role state

module then stores the activated roles indexed by the UID of the

user.

(b) Request NFS: The user application accesses the contents of a mounted

file system. This results in an NFS service request from the NFS client

to the RBAC-NFS server.

(c) Get activated role list: The RBAC-NFS server contains two modules.

The first one is what we call the role retriever (RR) (though not

12.3 RBAC for UNIX environments 297

explicitly mentioned by this name in the prototype), and the second

module is called the access control and filtering (ACF) module. The

RR retrieves the set of activated roles from the role state server (refer

to step a) using the UID of the user.

(d) Retrieve role permissions: The active roles retrieved by RR are passed

along with the NFS service request to the ACF. The ACF retrieves

permissions associated with the active roles from a role/permission

database. The permissions are in the form of access modes from a

predefined set. These access modes pertain to files, directories or di-

rectory trees. Tables 12.6 and 12.7 list the access modes specified for

the RBAC-NFS server and sample contents of the role/permission

database.

(e) Obtain file system access: The RBAC-NFS server maps the access modes

obtained from the role/permission database to the format in which

the file access attributes are usually specified in UNIX. (Note that the

access modes in the role/permissions database are specified in terms

of mnemonics, whereas the file access attributes in UNIX are speci-

fied in terms of privileges read, write, and execute at owner, group,

298 Integrating RBAC with Enterprise IT Infrastructures

Client

Role state
server

RBAC-NFS
server

Access
control and
filtering

a

b

f

c

d

e

User/role
database

Role/permission
database

Target file
system

Role
retriever

Figure 12.9 Access enforcement in Linkoping-RBAC prototype: (a) activate roles,

(b) NFS request, (c) get activated role list, (d) retrieve role permissions, (e) file

system access (NFS request and file access attributes, and (f) reply (retrieved file

and access attributes).

and other levels.) Based on the access attributes, the RBAC-NFS

server performs the corresponding operation on the target file sys-

tem (e.g., retrieve a file). (Note that the access attributes stored for a

file on the target file system are ignored.)

(f) Reply: The retrieved file along with the mapped file access attributes

are sent in the reply to the NFS client. As already stated the kernel in

the client machine enforces access control on the retrieved file using

the file access attributes supplied by the RBAC-NFS server.

12.4 RBAC in Java

Java is both a modern object-oriented programming language and a com-

plex software architecture. Java, developed by Sun Microsystems, offers

12.4 RBAC in Java 299

Table 12.6 Defined Access Modes

for RBAC-NFS Server

Access Mode Mnemonic

Read file FR

Create file FC

Write file FW

Append to file FA

Delete file FD

Execute file FX

Create directory DC

List directory DL

Remove Directory DR

Toggle execute bit XT

Create symbolic link LC

Table 12.7 Layout of Role/Permission Database

Path Role Permissions

/usr/apps/dbms/audit.log DBA FR:FC:FA:FD

/usr/apps/dbms/audit.log Db_User FR

/usr/apps/dbms DBA FC:FD:FR:FX

/usr/apps/dbms Db_User FR:FX

sophisticated solutions for the design of distributed and mobile applications,

where the software can be partitioned on distinct network nodes and down-

loaded from one node to be executed on another. The biggest security

problem in such an architecture is to protect the local system from the

downloaded executable code (called the applets), especially those from

untrustworthy hosts. Hence, successive evolutions of the access control

model for Java (also called the Java Security Model) provided through JDK

has been code-centric (i.e., associates permissions with pieces of Java code).

Before we take a look at some of the research concepts and prototypes

that have incorporated the RBAC model concepts into the Java security

model, we need to understand the principles behind the evolution of the

successive versions of Java security models. This is the focus of Section

12.4.1. Section 12.4.2 describes the current version of the Java security

model (i.e., the Java 2 security model) to provide the proper context for the

introduction of roles into the Java 2 security model (also referred to as the

JDK 1.2 security model). Section 12.4.2 also briefly describes the salient fea-

tures of JAAS, a set of Java packages that extend the Java 2 security model

to offer services for user authentication and management of access control

rights. The following sections describe the two research concepts/prototypes

proposed for incorporating the RBAC model paradigms into the Java 2 secu-

rity model.

12.4.1 Evolution of Java security models

The first security model of Java, the one associated with JDK version 1.0

(JDK 1.0) is based on partitioning the set of Java programs into trusted and

untrusted programs. The JDK 1.0 security model considered every local pro-

gram as trusted and every remote program downloaded (i.e., Applet) as

untrusted. This untrusted downloaded code was made to execute in a

restricted run-time environment called the sandbox. A program running in

a sandbox has rigid restrictions on the set of local resources that could be

used (e.g., cannot access files on the local file system) and limits on network

access (e.g., can open network connections only if the target host is the host

from where the code was downloaded). The concept of trusted downloaded

code (also called dynamically loaded code) was introduced in JDK 1.1,

where downloaded code that was digitally signed by a trusted code provider

(e.g., signed applet) was allowed to execute with the same permissions as

local code.

The Java 2 Security Model supported by JDK 1.2 has provided an exten-

sible access control scheme that applies to both local code and dynamically

300 Integrating RBAC with Enterprise IT Infrastructures

loaded code (in fact, it does not make a distinction between the two). In the

JDK 1.2 security model, the sandbox concept has been replaced by the con-

cept of the protection domain. A protection domain refers to a group of pro-

grams that come from a specific location or origin (called a code base),

signed with a specific set of public keys (signers), that have the same set of

permissions. The origin of a program is specified through a URL location,

and the association between the origin and the set of public keys is called

the code source. In other words, a protection domain can be looked upon

as a customized sandbox associated with every Java program that belongs to

a particular code source. Figure 12.10 shows a schematic diagram that

explains the concept of the protection domain.

12.4.2 JDK 1.2 security model and enhancement

The JDK 1.2 security model requires the definition of a policy file. A policy is

a set of rules that permit one to derive the set of permissions associated with

a code source (origin and signers). A policy file therefore consists of a set of

entries, each of which grants a set of permissions to a specified code source

using the following syntax:

Grant CodeBase URL ,

SignedBy { signer_name1 , signer_name2 , .}

{

permission1;

.

Permission2;

};

12.4 RBAC in Java 301

a.class
b.class
c.class
d.class
e.class

Protection
domain A

Permissions

PermissionsClasses in the run time
Protection
domain B

Figure 12.10 The concept of protection domains in the JDK 1.2 security model.

The URL notation (based on a predefined relation) can be used to denote

either class files or JAR files (or both) in a single directory or in all subdirec-

tories. Since an origin (code base) plus a set of signers with the same set of

permissions defines a protection domain, in effect, each policy entry is a

mapping from a protection domain to its associated permissions. It is this

mapping relation P that defines the policy:

() { }P d P→ r (12.1)

where d stands for a protection domain and {Pr} stands for sets of

permissions.

A policy is implemented by subclassing the java.security.Policy abstract

class. Permissions are defined using subclasses of the abstract class java.secu-

rity.Permission. An example of such a subclass is the FilePermission class

used to represent access rights on files and directories (permissions of a

particular type). There is also a PermissionCollection abstract class that rep-

resents a homogeneous collection of permission objects (i.e., it holds per-

missions of the same type). For example, the FilePermissionCollection class

is used to hold FilePermission objects.

The JDK 1.2 security model enforces access controls based on where

code came from and who signed it. To enforce similar access controls based

on who runs the code, the JDK 1.2 requires additional support for user

authentication and requires extension to existing authorization compo-

nents to enforce new access controls based on who was authenticated.

The JAAS framework was designed to augment the JDK 1.2 with such

support.

First of all, the JAAS framework defines the concept of subject to repre-

sent the source of the request. A subject in Java represents a single entity

such as a person or service. Associated with each subject is a set of identities

and a set of security-related attributes. Each identity is represented as a prin-

cipal within the subject. Hence, a subject could have many principals. Exam-

ples of principals include names such as e-mail addresses, employee

numbers, group identification headings such as departments, and driver’s

license numbers.

JAAS facilitates authentication of a subject by providing a LoginModule

interface that can implemented by the Java application depending upon the

type of authentication the application requires (e.g., passwords, smart cards,

or biometrics). Once a subject is authenticated, permissions have to be asso-

ciated with the subject (indirectly though), through the principals associated

with that subject.

302 Integrating RBAC with Enterprise IT Infrastructures

Recall that a policy entry in the JDK 1.2 policy file only associated code

source (origins and signers) with permissions. Now, principals also must be

included in these entries. In other words, the concept of a protection

domain in JDK1.2 enhanced with JAAS (we will refer to this as

JDK1.2-JAAS) now comprises code source (practically a URL+ set of sign-

ers) or principals. To define permissions for the JDK1.2-JAAS protection

domain, JAAS provides the JAAS policy class. An example of a grant entry

then in JDK1.2-JAAS is as follows:

Grant CodeBase http://foo.com,

SignedBy "Jim",

Principal UnixPrincipal "Joe" {

Permission java.io.FilePermission "/user/Joe",

read, write ;

};

Hence semantically a protection domain can now be defined from either

a code-centric or principal-centric (by implication user or subject-centric)

point of view. In the principal-centric point of view, principals with similar

security properties are grouped into protection domains and permissions are

granted to protection domains, thus establishing an indirect relationship

between principals and access rights.

We have already stated that many principals might be associated with a

single subject or user. However, not all principals may be activated in any

login session. Usually the activation of principals associated with a subject

takes place at the time of login (soon after authentication of the subject),

and the logic for activating which subset of associated principals is an appli-

cation-specific feature.

When a subject logins in and starts a session, a number of principals

associated with a subject might be also activated. Then the subject may

make a series of method calls. Each of the invoked methods may be from

different code sources and hence may be from different protection domains.

Hence the execution environment (access control context) for a subject

after a sequence of method calls consists of a sequence of protection

domains and a set of active principals. When a subject makes a new access

request p (permission), the subject is granted access only if permission p can

be derived from the intersection of permission sets from all the domains

crossed under the set of currently active principals. In other words, the

access control context is automatically set up by the sequence of protection

domains associated with the subject’s method call chain. The verification of

the permission is done by the checkPermission method of SecurityManager

class.

12.4 RBAC in Java 303

12.4.3 Incorporating RBAC into JDK 1.2 security model

with JAAS

A survey of existing research projects or prototypes that have incorporated

RBAC concepts into JDK1.2-JAAS reveals that the RBAC model has been

incorporated using the following approaches:

◗ Defining appropriate policy entries;

◗ A new implementation of the security manager class that contains

methods for the enforcement of RBAC constraints.

12.4.3.1 IBM research project

In the research project by Gunter Karjoth of IBM Research [20] (hereafter

referred to as the Gunter project), a formal specification of the

JDK1.2-JAAS access control model has been developed. The expressiveness

of the JDK1.2-JAAS model has been illustrated by using the building blocks

of the specification to express role-based authorizations. In the Gunter pro-

ject a role is treated as a named principal. A user group is also treated as a

named principal. A distinction made between groups and roles is that roles

can be “activated” and “deactivated” by users (subjects) at their discretion,

whereas a group membership always applies. The incorporation of various

aspects of RBAC model concepts in the JDK1.2-JAAS model based on speci-

fication in the Gunter project is given as follows:

◗ Role-permission assignment: The assignment of permissions to roles that,

in effect, is equivalent to the assignment of permissions to named

principals is implemented through grant entries in the Java policy file.

An entry in a policy file that states that “only somebody who is a man-

ager and a member of project X is allowed to change project X’s time

schedule” will be:

Grant Principal Role manager ,

Principal Group project-X {

Permission SchedulePermission change ;

}

Stated in terms of the policy mapping relation (12.1), the above pol-

icy entry is:

P(<E,$,{manager,project-X}>) = {<schedule,

change>}

304 Integrating RBAC with Enterprise IT Infrastructures

where (<E,$,{manager,project-X}>) denotes a domain with an empty

code base (E), a null set of signers ($) and the set of principals denoted

by {manager,project-X}. The expression {schedule,change} represents

the permission where schedule is the target object and the change is the

action.

◗ User-role assignment: The user role assignment (which in our case is

association of subjects with principals) is handled by administrators

outside of the JDK1.2-JAAS model implementation.

◗ Activation of user roles in a session: The activation of a role in a user (sub-

ject) session (which in our case is the dynamic association of princi-

pals with the current access-control context) is accomplished using

the java.security.auth.subject.doAs method, which adds additional

principals to the current access control context. It is thus equivalent to

defining a session during which a subset of user roles is simulta-

neously activated. The permissions available to the user are thus the

union of the permissions of all roles activated in that session (i.e., the

role principals given to the subject.doAs method).

12.4.3.2 RBAC for a Java-Web application

Luigi Giuri has defined an extension to the JDK1.2-JAAS model [21] to

incorporate RBAC model concepts for Web-based server-side Java applica-

tions (i.e., Java Servlet). Just like in the Gunter Project, the concept of a

role is treated as a named principal. Giuri created a new class called

“RolePrincipal” for this purpose. In addition, Guiri has implemented a class

called “UserPrincipal.” The UserPrincipal class has no semantic significance.

It is merely a place holder for assigning RolePrincipal instances (in effect,

assigning roles to a user or subject). There is, at most, one UserPrincipal

object associated with a subject. The association between a subject and a

UserPrincipal object is established soon after the subject is authenticated

using the LoginModule by making use of an implementation of a newly cre-

ated RoleLoginModule:

◗ Role-permission assignment: Just like in Gunter’s project, the assignment

of permissions to roles that in our case is equivalent to the assignment

of permissions to RolePrincipal principals is implemented through

grant entries in the JDK1.2-JAAS policy file. An entry for a policy

that states, “Only Departmental heads can modify task assignments,”

will be:

12.4 RBAC in Java 305

Grant Principal RolePrincipal "depthead" {

Permission TaskAssignmentPermission

modify ;

◗ User-role assignment (also role-hierarchy creation): The user role assign-

ment (which in our case is the assignment of RolePrincipal objects to a

UserPrincipal object) is accomplished through a new RolePolicy

abstract class. An implementation of the RolePolicy class uses a file

called RolePolicy file (similar to JDK1.2-JAAS policy file) to store grant

entries pertaining to assignment of RolePrincipal objects to a

UserPrincipal (in effect assigning roles to users). The same file can also

be used to grant RolePrincipal objects to other RolePrincipal objects in

effect creating a role hierarchy.

Grant principal [RolePrincipal "role-name" |

UserPrincipal "user-name"]

{

RolePrincipal "role-name1" ,

RolePrincipal "role-name2"

};

◗ Activation of user roles in a session: The activation or deactivation of a

role in a user (subject) session (which in our case is dynamic associa-

tion/disassociation of RolePrincipal with the UserPrincipal) is accom-

plished in Guiri’s project through a separate RoleController class. Two

methods of RoleController class that are useful for this are described

as follows:

1. ResetDefaults(): Enable or activate only a predefined set of default

roles associated with the subject;

2. EnableRole(String rolename): Add the role identified by the rolename

to the set of activated roles.

12.5 RBAC for FDBSs

A FDBS consists of an interoperable layer providing access to data stored in

several heterogeneous databases. The individual databases for which the

FDBS provides access are called component database systems (CDBSs). The

FDBS gives the users the illusion of a homogeneous central database system.

306 Integrating RBAC with Enterprise IT Infrastructures

The process of specifying the individual CDBSs and configuring the software

at the interoperable layer to enable access to data residing in the CDBSs is

called “creating the federation.” Depending upon who is responsible for cre-

ating and maintaining the federation, FDBSs can be classified as loosely cou-

pled and tightly coupled. In a loosely coupled FDBS, the user is responsible

for creating and maintaining the federation, and the FDBS and its adminis-

trators exercise no control. In a tightly coupled FDBS, the administrators are

responsible for creating and maintaining the federation and actively control

the CDBSs.

Although sophisticated RBAC models have been implemented in indi-

vidual commercial DBMSs (refer to Chapter 14), there are not very many

research frameworks and prototypes that have been developed to support

authorization and access control in the context of a FDBS. This section dis-

cusses the architecture of a role-based authorization and access control sys-

tem that has been developed as part of the security subsystem for a FDBS

called the interoperable relational and object-oriented database (IRO-DB).

The IRO-DB is a FDBS that is designed to provide access to several heteroge-

neous relational and object-oriented CDBSs. The IRO-DB FDBS as well as its

authorization and access control subsystem is currently under implementa-

tion as part of the IRO-DB ESPRIT-III project [22], a joint project that

involves several European union countries. Before we discuss the features

of the role-based authorization and access control subsystem of IRO-DB, we

need to take a look at the overall architecture of the IRO-DB itself and the

services provided by its security system (in which the authorization and

access control system is a subsystem).

12.5.1 IRO-DB architecture

The goal of IRO-DB is to provide homogeneous access to heterogeneous and

distributed databases. To fulfill this requirement, IDO-DB has be designed

with a three-layer architecture—a local layer, a communication layer, and

an interoperable layer.

The local layer supports a uniform data model and provides access to

heterogeneous component databases through the use of local database

adapters. The communication layer provides services for remote databases

and object access. The interoperable layer integrates the various local sche-

mata (structure of the database) into an interoperable schema that is able to

combine related data from local databases and to overcome inconsistencies

in such areas as structure, naming, and semantics.

The IRO-DB security system (ISS) is located at the interoperable layer

and performs the following functions:

12.5 RBAC for FDBSs 307

◗ Communicates with the user application in providing identification

and authentication mechanisms;

◗ Communicates with the interoperable layer’s query processor and

object manager in providing access control features;

◗ Communicates with the interoperable layer’s data dictionary from

which information about authorization subjects (explained below),

objects and rules is retrieved.

12.5.2 RBAC model implementation in IRO-DB

The role-based authorization and access control model in the ISS consists of

the following: authorization subjects (ASs), authorization objects (AOs),

authorization types (ATs), and authorization rules. Figure 12.11 shows

the security metaclasses that implement the model, together with their

interrelationships.

Roles are ASs of IRO-DB and represent jobs. Hence authorizations asso-

ciated with roles should be limited to those required to perform the func-

tions associated with the job. Consequently, it is possible to define a role

hierarchy that reflects the organizational and functional structure of the

enterprise that deploys IRO-DB. Users are assigned several roles, but they

can play only one role at a time. The AOs of IRO-DB are classes that can

have one or more of the following structures:

◗ Relationships (related class);

◗ Hierarchy (subclasses and superclasses);

◗ Class composition (comp-class).

308 Integrating RBAC with Enterprise IT Infrastructures

User

name

Role Class

name name

type

access

Has-a

Plays-a

Authorized-to

Subrole Subclass

Comp-
class

Related-class

Figure 12.11 Security metaclasses of the IRO-DB security system.

The AT with which a role may access a class can be either read (R),

write (W), create (C), and delete (D) for covering relational CDBSs, or

method-access for covering object-oriented CDBSs. There is also the owner-

ship (T), which is the most powerful authorization type that implies all

other authorization types. Finally, an IRO-DB authorization rule is defined

as a triple (s,t,o) where

s belongs to the set of authorization subjects (roles);

t belongs to the authorization types (e.g., R, W, C, T);

o belongs to the set of authorization objects (e.g., class, database).

Both positive and negative authorizations can be specified using the

above formalism. The RBAC model in IRO-DB employs a combination of

administration and ownership paradigm. In this paradigm, when a role “r1”

that creates an authorization object “O1” becomes its owner with authoriza-

tion type ‘T’, a corresponding authorization rule (r1, T, O1) is added auto-

matically to the authorization database. Automatically such a rule is also

added for an administrator role making the administrator a joint owner of

the object “O1.” The ownership authorization on object “O1” for role “r1”

does not imply the ability to change authorization rules (i.e., to delegate

authorizations to other authorization subjects).

The RBAC model implemented in IRO-DB through security metaclasses

is stored in the IRO-DB authorization database. This database can only be

edited by one or more designated administrator roles. The administrative

features provided in IRO-DB for maintaining the RBAC model consists of

the following:

◗ Adding, removing, and modifying users;

◗ Associating users to roles;

◗ Adding, removing, and modifying roles in the role hierarchy;

◗ Adding, removing, and modifying authorization rules in the authori-

zation database.

12.6 RBAC in autonomous security service modules

In the previous sections, we have seen the research frameworks and proto-

types that have incorporated RBAC model concepts into various enterprise

IT infrastructures to achieve role-based access enforcement. Dridi, Fischer,

and Pernul [23] describe an implementation where an RBAC model has

been incorporated into an autonomous security services module called

12.6 RBAC in autonomous security service modules 309

“communication, security, authentication, and privacy” (CSAP) module to

provide an access control service called the “RBAC service.” The CSAP is a

generic and adaptable security module that offers programming interfaces

to core security services such as user identification, authentication, access

control, auditing, and security management. The CSAP security services

module was originally developed to work with Web application system

WEBOCRAT, which supports the concept of e-government, although it has

been designed in a generic way to work with any Web-based application.

The layered design of CSAP enables an application designer to integrate

new security services or to enhance existing security services depending

upon the changing security needs of the application system. This is possible

since CSAP facilitates the exchange or enhancement of security mechanisms

via a plug-in concept based on abstract classes. Before we discuss how the

CSAP provides the RBAC service, we need to understand the functionality

of the three layers—the API layer, the service layer, and the data layer in

the CSAP. The API layer provides a unified access to the security services

implemented by CSAP by providing common interface that separates the

usage of a security service from its implementation. Applications request

services only through the CSAP API. The service layer is built upon the ker-

nel of CSAP and provides the infrastructure for changing an existing secu-

rity service or plugging in new services. All the security services discussed

above are integrated in this layer. The clients (which in our case are applica-

tions) use a security service via the API layer. The data needed by the service

is provided by the third layer of CSAP called the data layer. The data layer

provides the flexibility to access and manage user security information (e.g.,

permissions and passwords).

The service layer in CSAP contains two kinds of classes—service classes

and product classes. A product class is an instance of modeling low-level

objects within CSAP, such as user, object, operation, permission, session,

and role. The service classes are responsible for creating product classes and

implementing security services. For example, CSAP contains a service class

called “RBACService.” The “RBACService” service class contains all the

methods necessary to implement the core RBAC model of the NIST stan-

dard. By implementing these methods, an access control service based on

roles (called as the “RBAC service” within CSAP) can be implemented. This

is what has been exactly done in the European Union–funded Webocracy

project.

The functionality of the RBAC service in the CSAP implementation is as

follows: On the API layer, the authenticated user requests a certain role

from the RBAC service at the service layer. Based on the role data stored at

the data layer, the RBAC service presents the set of available roles. After the

310 Integrating RBAC with Enterprise IT Infrastructures

user has chosen a certain role, the RBAC service verifies, based on the secu-

rity information gathered from the data layer, whether the user is allowed

to activate that role. After the user activates the role, a session object (with a

designated session ID) containing the user object and the activated role is

created by CSAP. When a user invokes an operation on an object within

that session, a method called checkAccess containing three arguments (session

ID, operation name, and object name) is invoked. The RBAC service then

retrieves the user’s active role by accessing the corresponding session object

based on session ID and then determines the permissions associated with

the active role. If there exists a permission tuple <object, operation> that

matches the object name and the operation name in the checkAccess invo-

cation, access is granted; otherwise it is denied.

12.7 Conclusions

The motivations behind the development of prototypes integrating the

RBAC model into the various enterprise technologies are quite varied in

nature. A common thread running through these motivations is better pol-

icy support and ease of access administration. Hence it is not surprising that

authorization management through RBAC is being explored for some

emerging enterprise infrastructures like XML repositories.

A research proposal to this effect can be found in [24].

References

[1] Workflow Management Coalition, http://www.wfmc.org/about.htm.

[2] Lotus Notes Administrator’s Reference Manual, Release 4, Lotus Corporation, 1996.

[3] Georgakopoulos, D., M. Hornick, and A. Sheth, “Overview of Workflow

Management: From Process Modeling to Workflow Automation

Infrastructure,” Distributed and Parallel Databases, 1995, pp. 119–153.

[4] Botha, R. A., and J. H. P. Eloff, “A Framework for Access Control in Workflow

Systems,” Information Management and Computer Security, Vol. 9, No. 3, 2001,

pp. 126–133.

[5] Kang, M. H., J. S. Park, and J. N. Froscher, “Access Control Mechanisms for

Interorganizational Workflow,” 6th ACM Symposium on Access Control Models and

Technologies, 2001, pp. 66–74.

[6] Bertino, E., E. Ferrari, and V. Atluri, “Specification and Enforcement of

Authorization Constraints in Workflow Management Systems,” ACM

Transactions on Information and System Security, Vol. 2, No. 1, 1999, pp. 65–104.

12.7 Conclusions 311

[7] Huang, W. K., and V. Atluri, “SecureFlow: A Secure Web-Enabled Workflow

Management System,” 4th ACM Workshop on Role-Based Access Control, 1999,

pp. 83–94.

[8] Payne, C., et al., “Napoleon: A Recipe for Workflow,” 15th Annual Computer

Security Applications Conference, 1999, pp. 134–142.

[9] Joshi, J. B. D., et al., “Security Models for Web-Based Applications,”

Communications of the ACM, Vol. 44, Issue 2, 2001, pp. 38–44.

[10] Ferraiolo, D. F., J. F. Barkley, and D. R. Kuhn, “A Role-Based Access Control

Model and Reference Implementation Within a Corporate Intranet,” ACM

Transactions on Information and System Security, Vol. 2, No. 1, 1999, pp. 34–64.

[11] Park, J. S., R. Sandhu, and G. J. Ahn, “Role-Based Access Control on the

Web,” ACM Transactions on Information and System Security, Vol. 4, No. 1, 2001,

pp. 37–71.

[12] Shim, W. B., and S. Park, “Implementing Web Access Control System for

Multiple Web Servers in the Same Domain Using RBAC Concept,” 8th

International Conference on Parallel and Distributed Systems (ICAPDS), 2001,

pp. 768–773.

[13] ISO/ITU-T Recommendation X.509, “The Directory: Authentication

Framework,” 2001.

[14] Chadwick, D. W., and A. Otenko, “The PERMIS X.509 Role-Based Privilege

Management Infrastructure,” 7th ACM Symposium on Access Control Models and

Technologies, 2002, pp. 135–140.

[15] The Open Group (2000), “Authorization (AZN) API, Generic Application

Interface for Authorization Frameworks,” http://www.opengroup.org/

publications/c908.htm.

[16] Herzberg, A., et al., “Access Control Meets Public Key Infrastructure, Or:

Assigning Roles to Strangers,” IEEE Symposium on Security and Privacy, Oakland,

CA, 2000, pp. 2–14.

[17] Oppliger, R., G. Pernul, and C. Strauss, “Using ACs to Implement Role-Based

Authorization and Access Control,” Swiss Federal Office of Information

Technology and Systems, 2001.

[18] Faden, G., “RBAC in UNIX Administration,” 4th ACM Workshop on Role-Based

Access Control, Fairfax, VA, 1999, pp. 95–101.

[19] Gustafsson, G., B. Deligny, and N. Shahmehri, “Using NFS to Implement

Role-Based Access Control,” 6th IEEE Workshop on Enabling Technologies:

Infrastructure for Collaborative Enterprises, 1997, pp. 299–304.

[20] Karjoth, G., “An Operational Semantics of Java 2 Access Control,” 13th

Computer Security Foundations Workshop, 2000, pp. 224–232.

[21] Giuri, L., “Role-Based Access Control on the Web Using Java,” 4th ACM

Workshop on Role-Based Access Control, 1999, pp. 11–18.

312 Integrating RBAC with Enterprise IT Infrastructures

[22] Elmayr, W., et al., “Authorization and Access Control in IRO-DB,”

International Conference on Data Engineering, 1996.

[23] Dridi, F., M. Fischer, and G. Pernul, CSAP—An Adaptable Security Module for the

E-Government System WEBOCRAT, A Report on the Webocracy Project Funded

by European Commission, 2002.

[24] He, H., and R. K. Wong, “A Role-Based Access Control Model for XML

Repositories,” 1st International Conference on Web Information Systems Engineering,

2000, pp. 138–145.

12.7 Conclusions 313

Migrating to RBAC—Case Study:
Multiline Insurance Company

This chapter documents the experience of a real company in

its transition from conventional access control methods to

RBAC. This case study was conducted by the Research Triangle

Institute (RTI) as part of an evaluation of the economic impact of

RBAC on U.S. industry, and this section was excerpted with per-

mission from the RTI report, The Economic Impact of Role-Based

Access Control [1] distributed by NIST. The case study provides an

opportunity to more fully explore the benefits and costs of RBAC

from the vantage point of a software end user.

RTI conducted the case study with a multiline insurance

company (referred to here as “the company”). RTI selected the

company for the case study for two principal reasons. First, the

company is implementing RBAC to manage both its employ-

ees’ access permissions and its extranet users’ permissions. The

case study was able to capture, with one software end user,

insights from implementing RBAC in these two environments.

Second, because the company’s extranet users are contracting

agencies, the case study could also capture insights related to

delegated administration and other functionalities afforded

RBAC users.

This section discusses the company’s line of business and

how the company intends to leverage RBAC to enrich its busi-

ness model and improve employee productivity. The installa-

tion and implementation will cost the company an estimated

$783,636 over the course of 12 to 18 months. Once fully imple-

mented, however, RTI estimates that the annual administrative

315

13
Contents

13.1 Background

13.2 Benefits of using RBAC
to manage extranet users

13.3 Benefits of using RBAC
to manage employees
(intranet users)

13.4 RBAC implementation
costs

13.5 Time series of benefits
and costs

C H A P T E R

and productivity estimates will total nearly $661,330. In addition, the com-

pany estimates that its RBAC-enabled e-business strategy will increase its

annual amount of new business by 10% to 20%.

13.1 Background

The company’s primary line of business is the provision of an array of insur-

ance products, including home, auto, business, and life insurance. Like

many multiline insurers, the company does not sell directly to policy-

holders, but it instead teams with locally operated independent insurance

agents. These local insurance agents market and sell products within their

area, contracting with the company upon selling a policy. The company’s

annual revenues are measured in the billions; it has several thousand

employees; and it works with hundreds of agencies located across the

United States.

The company is in the middle of rolling out RBAC to its internal and

external user population; the rollout is occurring in two stages. First, the

company is providing electronic services to its customer base, the local

insurance agencies, via the Internet. The system will use RBAC to provide

systems security and to relieve maintenance and administrative pressures by

delegating administration. As this process nears completion, the company

will devote more resources to its internal migration from identity-based

ACLs to RBAC.

The company expects that using RBAC will increase productivity and

increase its amount of new business annually. RBAC will also provide the

level of security required by an institution with a large number of users and

a wide variety of user types, including potentially competing insurance

agents. The company was not able to provide any quantitative information

concerning security benefits; however, it openly discussed the other benefits

it expected to accrue and costs it expected to incur. These costs and benefits,

quantified by RTI, are presented in Table 13.1. The company’s strategy

should save it at least $661,330 annually, but to reap these benefits it must

first outlay $783,636 in labor, software, and hardware expenses.

13.2 Benefits of using RBAC to manage extranet users

The company’s client base consists of hundreds of independent insurance

agencies located across the United States, each employing approximately

three agents and their support personnel. Traditionally, insurance agents

316 Migrating to RBAC—Case Study: Multiline Insurance Company

have interacted with the company through telephone calls and written

communication. Agents contact the company directly to determine rates,

receive quotes, and obtain other information. After receiving information

from the company, agents then recontact prospective policyholders to

inform them of the results. The process of contacting the company directly

to determine rates and to gather other information translated into a signifi-

cant amount of time between a customer’s inquiry and the sale of the pol-

icy. If the customer should choose to purchase the policy, the agent must

then initiate a process whereby the policy is enacted and the appropriate

forms filed at the agency and mailed to the company. The company would

supplement its records with information obtained from agents in the

13.2 Benefits of using RBAC to manage extranet users 317

Table 13.1 Summary of the Company’s Costs and Estimated Benefits

Variable

Dollar

Value

Economic

Metric

Enhanced organizational

productivity

$471,040 Reduced paper- and telephone-based

workload for insurance claims and

policy-processing professionals

Delegated administration of

extranet user accounts

$161,086 Avoided cost of corporate systems

administrators;

maintaining extranet users’ accounts

Reduction in new employee

downtime

Undisclosed Reduction in the amount of time an

employee is without access

permissions

Improved management of

employees’ permissions

$29,204 The cost difference between RBAC and

non-RBAC policies to manager

employees’ user accounts

Total annual benefits $661,330

Software expenses $120,000 Software purchases, including

maintenance and support agreements

Hardware expenses $20,000 Hardware purchases to support

systems migration and e-business

strategy

Consulting fees $24,000 Fees paid to consultants to assist in

the implementation process

Labor expenses $608,088 Labor expenses of employees tasked

with implementing RBAC systems and

e-business strategy

Role engineering expenses $14,548 Labor expenses related to determining

the characteristics of roles to be used

Total one-time costs $783,636

additional mailings and other communications. The process of completely

selling a policy, including mailing and final data entry, could take as long as

4 to 6 weeks.

RBAC is the technology enabling the company’s strategic e-business ini-

tiative. The RBAC software will grant or deny access to users to data and

applications as users’ roles dictate. In essence, the software is the platform to

which data and applications will be linked. Agents will interact with the

company over the Internet. Agents will be assigned roles that allow them to

enter policyholder information, examine rates, and sell products instantly to

customers. The goal is to allow agents to maintain, access, determine, and

interact with policy information and details electronically. The company

also estimates that the ability to instantly register and sell products to pro-

spective policyholders will increase its amount of new business by 10% to

20% annually.

The company could have selected an alternative access control model,

but it would have been more costly, although the extent of the additional

cost is unknown. What is known, however, is that a non-RBAC solution

would have entailed a larger programming component, which would have

increased installation and customization costs. The system would also have

been far more costly to operate and less secure for several reasons related to

systems administration and maintenance, such as user directory mainte-

nance and user account maintenance (i.e., no delegated administration).

13.2.1 Simplifying systems administration and maintenance

The company will use RBAC’s delegated administration capability to estab-

lish an administrator at each agency who will be tasked with performing the

basic systems administration and role maintenance for its agency. It will

take the company less than 1 hour per agency to establish administrators

and set up the basic structure, a cost that is included in the labor cost esti-

mates presented in Section 13.4. Delegated administration of the company’s

agents is expected to decrease the systems administrator’s workload by

approximately 1.5 full-time employees annually, compared to using an

alternative access control model. Based on data from 2000 National Occupa-

tional Employment and Wage Estimates published by the Bureau of Labor

Statistics, the average, fully loaded wage of the systems administrators per-

forming these functions is estimated at $51.62 per hour. At this wage, the

company would save $161,086 annually.

Delegated administration does not push costs further down the supply

chain, rather there may be benefits to those organizations to which account

administration has been delegated. For example, the cost of having the

318 Migrating to RBAC—Case Study: Multiline Insurance Company

office manager at a local insurance agency assign a role to a new agent may

be outweighed by the benefit of that agent having his or her permissions

quickly. If the office manager does not have to arrange account setup and

administration with the company, he or she avoids the labor and lag time

expenses. The agent is also able to assume his or her regular duties.

13.2.2 Enhancing organizational productivity

Policy and policyholder information is transmitted to the company securely

over the Internet, reducing the company’s administrative and data entry

burden as well as the amount of paper circulating among its departments.

The company currently employs 40 people tasked solely to maintain the

communication and data entry associated with managing relationships with

agents in the mailroom, call center, support, and data entry departments. It

estimated that the new initiative would make available about 20% of their

time. Based on information gathered from the Bureau of Labor Statistics,

the mean national loaded wage for insurance claims and policy processing

clerks is estimated to be $29.44 per hour. The e-business strategy should

free up 16,000 person hours annually, given its current level of employ-

ment. The value of those hours is therefore at least $471,040.

13.3 Benefits of using RBAC to manage employees
(intranet users)

The company is replacing its current, identity-based access control system

with a role-based one. The company employs a few thousand people at sev-

eral offices. IT systems administrators at the headquarters facility currently

maintain each employee’s access permissions using ACLs. The company

estimates that once it implements RBAC, its principal benefits will fall into

two categories: reduced new employee downtime and simplified systems

administration and maintenance.

13.3.1 Reduction in new employee downtime

The administrative benefits of allowing a new employee to quickly assume

his or her duties by having access permissions more quickly are potentially

substantial. Being a large insurer, the company has scores of employees in

similar job functions. With RBAC, it can create and define a role once and

then assign that role to new employees as opposed to adding the employee’s

user ID to each ACL. The company indicated that the time until a new

13.3 Benefits of using RBAC to manage employees (intranet users) 319

employee is fully enabled is currently 2 to 3 days, including the routing of

paperwork. The role-based system and accompanying administrative poli-

cies are expected to reduce the amount of time significantly; therefore, the

employee is able to access data and applications more quickly.

Because information on employee turnover and employment at the

company is confidential, we do not present the impact estimates. However,

if we assume that the amount of downtime is reduced by one-half, and that

during that time the employee is 85% productive, we can estimate the

approximate benefits. For a new policy-processing clerk, the reduction in

new employee downtime would be worth $44.16. [The reduction in down-

time (50% of 2.5 days = 1.25 days = 10 hour) is multiplied by the loaded

wage rate for policy-processing clerks ($29.44 per hour) and the productiv-

ity loss (15%).] This number is excluded from the total benefits calculation

for the company case study because it is meant solely to illustrate the

benefit.

13.3.2 Simplified systems administration and maintenance

As explained in the previous section, the company expects that the ability to

more quickly assign access privileges will reduce its systems administration

and maintenance costs. The time that otherwise would have been spent

determining and assigning privileges will be free for other tasks. Alterna-

tively adjusting or terminating privileges for employees that are either

leaving the company or moving to new positions internally will be

equally facilitated. The aggregate effect is an improvement in administra-

tors’ productivity. It is estimated that using RBAC rather than identity-based

ACLs to manage user permissions will save the company $29,204 annually.

(Results from a survey of firms using RBAC allowed RTI to calculate the

number of minutes administrators save by using RBAC rather than other

access control models, and estimate the average number of times adminis-

trative tasks such as assigning and terminating permissions were performed

annually.)

13.4 RBAC implementation costs

The migration to RBAC and the implementation of the e-business strategy

will cost the company approximately $784,000. The labor costs associated

with installation as well as the software and hardware costs are one-time

costs. The company will intermittently incur role engineering costs as its

business activities warrant redefining roles over the life of the system. The

320 Migrating to RBAC—Case Study: Multiline Insurance Company

company’s total user population is expected to be 10,000; thus, the imple-

mentation cost per user will be approximately $78.36.

13.4.1 Software and hardware expenses

The company’s costs included software and hardware purchases, consulting

fees, and labor expenses. The access control software, which complements

the e-business platform and other software, cost the company $120,000,

including a one-year maintenance and support agreement. The company

also hired consultants to assist in the implementation at a cost of $24,000. It

purchased two additional servers to facilitate the migration and to support

the e-business initiative at a total cost of $20,000. Thus, the company’s total

software and hardware outlay totaled $164,000.

13.4.2 Systems administrators’ labor expenses

Three computer systems managers are tasked full time to accomplish both

the e-business and RBAC rollout to independent agencies and the internal

RBAC rollout. These systems managers anticipate that the entire process

will take between 12 and 18 months. Included in these costs are several

tasks such as the following:

◗ Software customization;

◗ Programming related to Web-enabling applications;

◗ Software and hardware installation;

◗ Training and education;

◗ Defining roles within the software package;

◗ All other labor activities related to the software rollout.

Using data provided by the Bureau of Labor Statistics, the loaded wage

rate of computer and information systems managers was estimated to be

$77.96 per hour. The midpoint of the company’s time horizon and the

number of administrators tasked yield an estimated labor expense of

$608,088.

13.4.3 Role engineering expenses

The final labor activity to be included is role engineering. The company has

yet to complete the role engineering process and is unsure of the amount of

time, and therefore the expense, it will take to complete the task. The

13.4 RBAC implementation costs 321

company anticipates that several more meetings in the coming months will

be required to determine and establish administrative policies and roles and

to work out organizational issues. Role engineering is an iterative process

and the company will most likely revisit role definitions established during

initial rollout.

The role engineering cost is also a recurring cost as the company grows

and its organizational structure shifts. New tools and experience with role

engineering should make the process less costly in the future. However, it is

impossible to hypothesize how the company’s future business environment

may affect the need to redefine the roles established during the rollout. For

this case study we assumed that role engineering is a one-time cost and that

the organizational structure of the company is fixed.

At the time the interviews were conducted, the company had held 40

hours of meetings, each with an average of five individuals consisting

equally of general managers and computer and information systems manag-

ers. The loaded wage rate of computer and information systems managers

was estimated to be $72.74, using the 2000 National Occupational Employ-

ment and Wage Estimates published by the Bureau of Labor Statistics. Using

the wage rates for these two groups of employees, we calculate the cost of

these meetings to be $14,548.

13.5 Time series of benefits and costs

The RBAC software and model will be in place indefinitely. Because of the

significant capital and labor expense of implementing access control policies

and products, it is unlikely that the company will migrate to an alternative

model in the foreseeable future. It may deepen or adjust the model it has

chosen, which may include further labor and capital investment for soft-

ware revisions or the creation of new roles or redefinition of existing ones.

At present the company has no plans to deepen or adjust its model once

RBAC has been fully deployed.

Table 13.2 presents a time series of the company’s estimated costs and

benefits, based on its current expenditure plans. The time series assumes

that real wage rates are constant and that the company’s organizational

structure remains fixed. All dollars are 2001 dollars. The company’s costs

are spread over six quarters encompassing 3 calendar years. Because some

employees will be managed using RBAC while others are being migrated to

the new system, costs and benefits overlap. The total estimated annual ben-

efit to the company is not first accrued until 2003.

322 Migrating to RBAC—Case Study: Multiline Insurance Company

Expenses are distributed over a six-quarter period. The company pur-

chased the hardware and RBAC software during the final quarter of 2000.

The time series assumes the company began implementation at the start of

the first quarter of 2001 and completed it 15 months later at the end of the

first quarter of 2002. Hence, there was a one-quarter lag between software

and hardware purchases and the beginning of implementation. The role

engineering process was completed before users were migrated to the new

system; therefore, the implementation labor expense is distributed evenly

over the five-quarter period, but the role engineering expense was limited

to the first two quarters.

The company plans to first bring its extranet users into the system and

then its employees. The entire process will take nine months; during three

months both extranet users and employees will be migrated. The process

began in the third quarter of 2001 and will be completed at the end of the

first quarter of 2002. Although some benefits will be accrued in 2001, the

total estimated annual benefit does not begin to accrue until 2003.

Figure 13.1 illustrates the net benefits to the company on a quarterly

basis. Although the software and hardware costs were incurred solely dur-

ing the fourth quarter of 2000, Figure 13.1 conceptualizes these particular

costs over the entire 2000 calendar year. This adjustment was made because

the labor costs were distributed evenly over time, when in reality some

months may have seen more labor activity than others. If the software and

hardware costs had been depicted as a spike in net cash flows, the resulting

data point would have made the curve’s cost area difficult to illustrate and

understand.

Figure 13.1 illustrates the flow of the company’s net benefits on a quar-

terly basis from implementation to full operation.

13.5 Time series of benefits and costs 323

Table 13.2 Time Series of the Company’s

Costs and Benefits

Year Costs Benefits

2000 $164,000 —

2001 $501,018 $159,857

2002 $121,618 $659,505

2003 — $661,330

2004 — $661,330

2005 — $661,330

2006 — $661,330

Reference

[1] Gallaher, M. P., A. C. O’Connor, and B. Kropp, The Economic Impact of

Role-Based Access Control, Planning Report 01-2, National Institute of Standards

and Technology, 2002.

324 Migrating to RBAC—Case Study: Multiline Insurance Company

-$80,000

-$60,000

-$40,000
-$20,000

$0
$20,000

$40,000

$60,000

$80,000

$100,000

$120,000

$140,000

2002 2002 2002 20022001 2001 200120012000 2000 2000 2000
Q4 Q4

Time

N
e

t
c

a
sh

fl
o

w

Q4Q3 Q3 Q3Q2 Q2 Q2Q1 Q1 Q1

$116,196

Figure 13.1 Quarterly flow of net benefits.

RBAC Features in Commercial
Products

This chapter discusses the RBAC features found in two impor-

tant classes of commercial software: relational DBMS products

and enterprise security administration (ESA) products (also

called system management software). The motivations for

using RBAC in these two classes of software are different. In

DBMS products, the RBAC model forms an integral compo-

nent of the access control mechanism, and hence the RBAC

model data is used for enforcing access control on the various

resources (database objects) under the control of the DBMS

product. In ESA products, the RBAC model is used as an

abstract higher-level model for capturing authorizations to

enterprise-wide resources resident in various heterogeneous

systems (OSs and application systems). We call this the enter-

prise authorization model (or simply the authorization model

based on roles). The authorization model data in ESA products

is then mapped to the access control entities (components) in

the various systems (called target systems) distributed through-

out the enterprise. The actual access enforcement is performed

by the native access control mechanisms in the target systems,

many of which may not support RBAC. Thus, while the RBAC

model is used for access enforcement in DBMS products, it is

used for authorization modeling and management in ESA

products.

325

14
Contents

14.1 RBAC in relational DBMS
products

14.2 RBAC in enterprise
security administration
software

14.3 Conclusions

C H A P T E R

14.1 RBAC in relational DBMS products

More than any other class of commercial application software, DBMSs pro-

vide access control at several levels of granularity including provision for

content-based controls. An application system developed using a DBMS can

contain a large amount of data with highly differentiated access permissions

for different users depending upon their job function(s) or role(s) within the

organization. Hence it was no surprise that DBMS products were one of the

earliest classes of commercial products to support RBAC. Also the set of

RBAC features supported in DBMS products far outnumber the features

supported in other classes of commercial products.

Our analysis and discussion of RBAC in the context of DBMS products

will go beyond the RBAC model features (e.g., the ability to build role hier-

archies) to also cover the implementation features relating to certain admin-

istrative tasks such as role propagation, role maintenance, and the control of

permission sets for roles. Hence, our RBAC model description in various

commercial DBMS products is organized in terms of various broad catego-

ries of RBAC administrative functions. These broad categories are listed as

follows:

◗ Role creation;

◗ User role assignments and role propagation;

◗ Role activation;

◗ Creation of role hierarchies and constraints;

◗ Assignable privileges.

We have chosen the following three commercial DBMS products for our

discussion. Our choice was not motivated by any commercial factors such as

market share but to present to the reader the total set of all RBAC model

capabilities (which is in fact a combination of RBAC model features and sup-

ported administrative functions) in this class of commercial products. All the

information needed for our analysis was obtained from DBMS product

manuals or textbooks.

◗ Informix Dynamic Server version 9.3 [1–3];

◗ Oracle Database 10g Release 2 (10.2) [4];

◗ Sybase Adaptive Server version 15.0 [5].

326 RBAC Features in Commercial Products

14.1.1 Informix Dynamic Server version 9.3 (IBM)

◗ Role creation: In Informix only the database administrator (DBA) can

create a role. An example of the CREATE ROLE command to create a

teller role is

CREATE ROLE teller

The role name cannot be a user name that is known to the DBMS

server or to the operating system of the DBMS server. No authentica-

tion information can be attached to a role.

◗ User role assignments and role propagation: The DBA has the authority to

grant an existing role to a single user, a specified list of users or—by

using the keyword PUBLIC to all users. Examples for each of these vari-

ations are

GRANT teller TO Mary

GRANT teller TO Mary, John, Joe

GRANT teller TO PUBLIC

A user can be granted more than role. A role can be granted to a user

with the GRANT OPTION. A user who receives a role with GRANT

OPTION can grant that role to other users or to another role. In addi-

tion the receiving user can also drop that role. For example, if Mary

receives the teller role with GRANT OPTION through the command

GRANT teller TO Mary WITH GRANT OPTION;

Mary can grant that teller role to any other user or even drop the role

using the command

DROP ROLE teller

◗ Role activation: The privileges in the various roles received by a user

(through a DBA or another user) are not available to the user automati-

cally by opening up a session through successful login. The user has to

activate a role in the session to exercise the privileges in the role’s privi-

lege set. At login time all users are, by default, assigned the dummy role

NULL or NONE. The roles NULL and NONE have no privileges. The user

can enable a role assigned to him or her by means of the SET ROLE

14.1 RBAC in relational DBMS products 327

command. If Susan has been assigned the role Customer_Rep she can

activate that role by the command

SET ROLE Customer_Rep;

The SET ROLE allows for the specification of only one role, so the

command can be used for enabling or activating only one role at a

time. Moreover, if a user executes the SET ROLE command after a

role is already set, the new role replaces the old role. This implies that

a user can be active in one and only one role at any point in time dur-

ing the user session. Informix provides no feature to specify a default

active role, other than NULL or NONE, for a user.

◗ Creation of role hierarchies and constraints: As already stated, users who

have been granted a role with GRANT OPTION as well as the DBAs can

grant a role to another role. This feature enables building nested roles,

so it is possible to build a role hierarchy. Informix has no features to des-

ignate a set of roles as mutually exclusive roles, meaning that all roles in

that designated set cannot be granted to the same user. Hence it does

not support static SoD. There is also no support for a cardinality con-

straint to restrict the maximum and minimum number of users that can

be assigned to a role. Informix does in a sense support the dynamic SoD,

which is preventing a set of designated roles from being activated

simultaneously (within the same user session). However, this is more a

side effect of the fact that only one role can be activated at a time rather

than an independent feature in its own right.

◗ Assignable privileges: There are seven categories of privileges in

Informix. The most important of these are: database-level privileges,

table-level privileges, and routine-level privileges. Database-level

privileges enable a user to create new objects (such as tables and

views) in the database as well perform some administrative functions

like granting privileges on objects to other users and allocating disk

spaces. Table-level privileges enable a user to perform operations on a

named application table (e.g., ledger table). These operations include

SELECT (which retrieves rows from the table), INSERT, DELETE, and

UPDATE (which update the contents of the table), INDEX (which cre-

ates new indexes), ALTER (which changes the table definition—add-

ing or deleting columns), and REFERENCES (which specifies

referential constraints on the table). Routine-level privileges allow a

user to execute stored procedures. Out of the three privilege catego-

ries discussed above, Informix allows only table-level and

328 RBAC Features in Commercial Products

routine-level privileges to be granted to roles. The object owners, the

DBA, as well as users who have been granted these privileges with

GRANT OPTION can grant these privileges to roles.

14.1.2 Oracle Database 10g Release 2 (10.2) (Oracle

Corporation)

Role creation: Oracle 10g provides a set of predefined roles to facilitate

database administration. These roles listed in Table 11-1 of [4] are automati-

cally defined when a database is created. Three of these roles—CONNECT,

RESOURCE, and DBA—are likely to be deprecated in future versions of Ora-

cle to enable enterprises to create their own roles, assigning only those privi-

leges that are needed so as to maintain finer granularity of control over

administrative privileges and roles.

In contrast with predefined roles, user-defined roles are created by a

DBA or other administrators or users. The CREATE ROLE system privi-

lege is needed for creating roles. The command to create a role (i.e.,

CREATE ROLE command) has an option to specify an activation condition

that should be satisfied by the role assignee (the specific user to whom the

role has been granted) to activate or enable a role. This activation condition

(called authorization method for a role by Oracle) can be specified as part of

the role creation statement as follows:

CREATE ROLE <role name> [NOT IDENTIFIED |

IDENTIFIED]

[BY <password> | USING <package> |

EXTERNALLY | GLOBALLY];

An example of creating a role that does not require an activation condition

is:

CREATE ROLE employee NOT IDENTIFIED;

Four activation conditions can be specified:

◗ By the database using a password;

◗ By the application using a specified package;

◗ By the operating system, network, or other external sources

(externally);

◗ By an enterprise directory service (globally).

14.1 RBAC in relational DBMS products 329

The following statements are examples for creating roles that can be acti-

vated by a password, a package, externally and globally, respectively:

CREATE ROLE teller IDENTIFIED BY mysecret;

CREATE ROLE auditor IDENTIFIED USING banking.admin;

CREATE ROLE accountant IDENTIFIED EXTERNALLY;

CREATE ROLE manager IDENTIFIED GLOBALLY;

In the above examples, a user assigned the teller role has to provide a

password to enable that role in a user session. The auditor role is an exam-

ple of an application role that can be enabled only by applications using an

authorized PL/SQL package (in our case the package name is bank-

ing.admin). Because the package is activating the role, it can perform any

desired validation to ensure that certain conditions are met before issuing

the SET ROLE command (e.g., the user session was created by a proxy, the

request comes from a specific IP address, or that the user was authenticated

using an X.509 certificate).

Continuing with our discussion of the above examples, a role can be

specified (in our case accountant role) to be activated through an external

source such as the operating system or network authorization server. The

manager role is an example of a global role that can only be assigned to a

global user (a user created at the enterprise level as opposed to a data-

base-specific user) and can only be activated using the enterprise directory

service. The global role can be defined locally in the database and be

assigned privileges and/or other roles. However it cannot be assigned

directly to a user or another role in the database. The assignment of a global

user to a global role or a set of global roles is made through an artifact called

enterprise role, which acts as a container or directory for multiple global

roles in the enterprise directory. This assignment is queried when a global

user connects to a database and the associated set of global roles are acti-

vated. A global role always applies to only one database.

The activation mechanism associated with a role can be changed using the

ALTER ROLE statement.

ALTER ROLE <role name> [NOT IDENTIFIED |

IDENTIFIED]

[BY <password> | USING <package> |

EXTERNALLY | GLOBALLY];

User role assignments and role propagation: Oracle 10g allows a role to be

granted to multiple users and a user to be granted multiple roles. A role can

also be granted to all users in a single statement using the usergroup PUBLIC.

330 RBAC Features in Commercial Products

This feature is very useful when a generic role such as “employee role” that

contains permissions common to all employees of the company needs to be

assigned to all users. In addition a role granted to a user with ADMIN OPTION

provides the following expanded capabilities—the grantee can grant or

revoke that role to or from any user or other role in the database, further grant

the role with ADMIN OPTION, and also can alter (changing the activation

mechanism) or drop the role. The general syntax for the GRANT statement is

given below:

GRANT <role1> [,<role2>, <role3>, .] TO <user1>

[,<user2>, <user3>, <user4>] [WITH ADMIN OPTION];

The following are examples for each of the options provided by the

GRANT statement.

GRANT auditor TO john, susan;

GRANT accountant, budget_analyst TO jack;

GRANT employee TO PUBLIC;

GRANT loan_officer TO smith WITH ADMIN OPTION;

The last statement grants smith the capability to grant, revoke, alter, or

drop the loan_officer role.

Role activation: In Oracle, a user who has been granted one or more roles

can invoke the SET ROLE command to enable or disable those roles for the

current user session. Roles that are defined to be activated externally or glob-

ally cannot be enabled using SET ROLE command. The SET ROLE in Oracle

has the following three options:

1. Specify a list of roles to be enabled, providing the password for each if

it has one. (Please note that for those roles that are to be activated

using a password, this command is invoked at the command line or

in a login script while for those roles that are to be activated through

an application package, it is always found inside a PL/SQL

procedure.)

◗ Example 1

SET ROLE teller IDENTIFIED BY mysecret, intern

IDENTIFIED by guest;

14.1 RBAC in relational DBMS products 331

2. Activate all roles assigned to the user except those specifically identi-

fied. (Please note that this statement option cannot be used if roles

have any activation mechanism associated with them.)

◗ Example 2

SET ROLE ALL EXCEPT AUDITOR;

3. Disable all roles for the current session

◗ Example 3

SET ROLE NONE;

The SET ROLE command described above can be used to dynamically

alter the set of active roles during a user session. In addition, Oracle provides

the ALTER USER command to specify the initial set of roles that should be

enabled at the start of a session (called the default role set). Similar to SET

ROLE usage, the ALTER USER command cannot include any role that has

been specified to be activated externally or globally as a default role. This

means that only those roles that have either a password, PL/SQL package or

no activation mechanism can be included in the default role set.

The ALTER USER statement provides three sets of options identical to

those in the SET ROLE command as the examples below demonstrate:

1. Specify the list of roles that should be part of the set of enabled roles

at the start of the session (default role set).

◗ Example 1

ALTER USER john DEFAULT ROLE accountant,

loan_officer;

2. Make all assigned roles as default roles except the specified ones.

◗ Example 2

ALTER USER scott DEFAULT ROLE ALL EXCEPT

auditor;

3. Make the default role set null.

◗ Example 3

332 RBAC Features in Commercial Products

ALTER USER mary DEFAULT ROLE NONE;

Creation of role hierarchies and constraints: As already stated, Oracle’s

GRANT command can be used to assign a role (or a list of roles) to another role

(or list). This enables building a hierarchy of roles. An interesting feature in

Oracle is that the GRANT command with ADMIN OPTION can be used when

assigning a role to another role just as in assigning a role to a user. Thus when

a junior role is assigned to a senior role with ADMIN OPTION, a member of

the senior role becomes a local role administrator since he or she can grant or

revoke the junior role or the system privileges (see discussion on Assignable

privileges) contained in the junior role to or from any user or role in the data-

base. Oracle does not have features to specify and enforce static and dynamic

SoD constraints. It is also not possible to specify the maximum number or

minimum number of users that can be assigned to a role.

Assignable privileges: Privileges that can be assigned to a role in Oracle fall

into two categories: system privileges and object privileges. System privileges

are either: (a) commands for managing various RBAC model enti-

ties—CREATE USER, DROP USER, CREATE ROLE, DROP ANY ROLE, and so

on, or (b) commands to perform appropriate operations on different database

objects—CREATE TABLE, CREATE VIEW, CREATE PROCEDURE, and so on.

Object privileges on the other hand deal with different types of permissions

on specific application objects (e.g., SELECT on Customer_Deposit_Accounts,

UPDATE on Loan_Accounts, and so forth). A system privilege can be granted

to a role by a security administrator or by a user who has been granted that

specific system privilege with ADMIN OPTION. An object privilege can be

granted to a role by the object owner or by a user who has been granted that

object privilege with GRANT OPTION.

14.1.3 Sybase Adaptive Server Enterprise 15.0 (Sybase)

Role creation: The Sybase Adaptive Server provides support for two types

of roles—system roles and user-defined roles. The system roles are roles that

are predefined in the adaptive server. The roles created for the purpose of

access control on different objects (tables, views, procedures, and so forth) in

various application databases are called user-defined roles. There are a total of

12 system roles. However, from a security perspective, the following two sys-

tem roles are important:

14.1 RBAC in relational DBMS products 333

1. sa_role (system administrator role): The user who has been assigned this

role is called a system administrator. A system administrator has per-

missions to perform certain server-level (as opposed to

database-level) tasks such as allocating and managing physical

resources (e.g., allocation of disk spaceor disk mirroring), creating

databases, shutting down the server, and so on. The system adminis-

trator can also grant permission to any object on any database to

users since it is treated as the object owner as far as this privilege is

concerned. In addition, the system administrator has some

user(login) management privileges such as dropping logins (remov-

ing user IDs) as well as lock and unlock logins.

2. sso_role (system security officer): The user who has been assigned this

role is called system security officer. The system security officer has

permissions to create user-defined roles and grant those roles to

users or other roles. As far as login management is concerned, the

system security officer can create new logins, change login pass-

words, and lock and unlock login accounts. In addition, the system

security officer can grant permission to users/roles to use the set proxy

or set session authorization commands that enable the user/role

assignee (recipient of the permission) to assume the identity of

another user.

User-defined roles can be created in the adaptive server using the create

role statement. This statement provides the following options:

◗ Specifying a password the user must enter to activate the role;

◗ Specifying a password expiration interval in days;

◗ Specifying a minimum length for password;

◗ Specifying the number of “failed password attempts” while activating

a role before the login account will get automatically locked.

The general syntax of create role statement in the adaptive server is:

CREATE ROLE <role_name> [WITH PASSWD password

[, {PASSWD EXPIRATION | MIN PASSWD LENGTH |

MAX FAILED LOGINS } <option_value>]]

Examples of create role statements are given next:

CREATE ROLE teller WITH PASSWD tell123, PASSWD

EXPIRATION 30

334 RBAC Features in Commercial Products

CREATE ROLE accountant WITH PASSWD accounting123,

MIN PASSWD LENGTH 8

CREATE ROLE auditor WITH PASSWD check123, MAX

FAILED LOGINS 10

The role names must be unique to the entire Sybase adaptive server and

cannot be the same name as a database userID (login).

The passwords can be added, dropped (removed as an activation require-

ment), or changed for a role after creation using the alter role command.

The same command also has options to lock/unlock roles and to spec-

ify/change password expiration interval, minimum password length, and

maximum number of failed (wrong) password attempts allowed by the

database server.

ALTER ROLE < role_name> [ADD PASSWD password |

DROP PASSWD] [LOCK | UNLOCK]

ALTER ROLE {<role_name> | all overrides }

SET { PASSWD EXPIRATION | MIN PASSWD LENGTH |

MAX FAILED LOGINS } <option_value>

To change the password for a role, the existing password must be

dropped and the new password must be added. Hence it requires two invo-

cations of the “alter role” statement. The alter role statement also comes

with an option called “all overrides” and is invoked to override the

server-wide values set for the following parameters: password expiration,

max failed_logins, and min passwd length.A user-defined role can be

removed by using the DROP ROLE command with the following syntax:

DROP ROLE <role_name> [WITH OVERRIDE]

If the role has any access privileges already granted, all those privileges

granted to that role in all databases must be revoked before role can be

dropped, otherwise the drop role command will fail. However, when the

WITH OVERRIDE option is used, all access privileges in all databases

(server-wide) for that role are automatically dropped and hence the drop

role command succeeds. However, as far as role membership is concerned,

dropping a role automatically removes any user’s membership in that role,

regardless of whether you use the OVERRIDE option.

User role assignments and role propagation: Once roles have been created,

any role or a list of roles can be granted to a user or role (to a list of users or

14.1 RBAC in relational DBMS products 335

roles) using the grant role command. To assign roles financial_analyst and

accountant to Susan and John, the following command is to be used:

GRANT ROLE financial_analyst, accountant TO Susan,

John

Thus we see that in Sybase a role can be granted to one or more users

and that any user can be granted more than one role. However, there is no

feature in Sybase for granting a user-defined role to a user with the grantee

being able to propagate that role to other users.

Roles granted to a user or a role can be revoked using the REVOKE

ROLE as illustrated below:

REVOKE ROLE financial_analyst FROM John

Role activation: Sybase allows users to activate multiple roles in a user ses-

sion. Although the SET ROLE statement (the one that activates a user’s

assigned role during a session) allows for specifying only one role, by repeated

invocation of this statement, the user can activate multiple roles from the set

of his/her assigned roles. Roles that have a password can be activated only

using this statement. Roles that do not have a password can be activated auto-

matically at login time by including them in the default activation list (see

next section). These activation options are needed only for user-defined roles.

System roles are automatically activated, if they do not have passwords asso-

ciated with them. Roles that are already active during a session can also be

deactivated using this statement. The general syntax for SET ROLE is as

follows:

SET ROLE {<role_name> [WITH PASSWD password]} {ON

| OFF}

Some examples of SET ROLE statements are:

SET ROLE sa_role OFF (deactivates the sa_role)

SET ROLE auditor WITH PASSWD check123 ON (acti-

vates the auditor role by providing the associated

password)

As referred to in the previous section, automatic activation of roles at

login time can be enabled for those roles that do not have attached pass-

words. This is done using the SP_MODIFYLOGIN statement in Sybase.

336 RBAC Features in Commercial Products

Similar to the SET ROLE statement, the SP_MODIFYLOGIN statement also

allows for specifying only one role at a time, but by repeated invocation of

this command, a default list of roles to be automatically activated at login

time can be created, as the following examples illustrate.

SP_MODIFYLOGIN jack ADD DEFAULT ROLE chief_accoun-

tant

SP_MODIFYLOGIN jack ADD DEFAULT ROLE budget_analyst

The default list of roles that will be activated for Jack at login time con-

sists of chief_accountant and budget_analyst roles.The default list can also

be modified since this statement has the feature to drop roles as well.

SP_MODIFYLOGIN jack DROP DEFAULT ROLE

budget_analyst

The maximum number of roles that a user can activate per user session

can be specified in Sybase through the configuration parameter “max roles

enabled per user.” The allowable range for the value of this parameter is

from 10 to 127 with 20 being the default value. The system limit for the

maximum number of roles that can be activated in the entire adaptive

server is 992.

Creation of role hierarchies and constraints: As already stated, the GRANT

ROLE command in Sybase can be used to assign a role (roles) to one or more

other roles thus providing a means for creating a role hierarchy. To create a

hierarchy with the chief_accountant role containing the accountant and

financial_analyst roles, we need to specify:

GRANT ROLE accountant, financial_analyst TO

chief_accountant

In addition to the role hierarchy creation feature, Sybase provides sup-

port for specification and enforcement of both static and dynamic separation

of duty constraints through the following two “mutual exclusivity” features:

◗ If any two roles are defined as “mutually exclusive for membership,”

the system will prevent any one user from being assigned both roles;

◗ If any two roles are defined as “mutually exclusive for activation,” the

system will prevent a user from activating or enabling both these two

roles at the same time.

14.1 RBAC in relational DBMS products 337

Example specifications for each of the above two features are given

below:

ALTER ROLE accountant ADD EXCLUSIVE MEMBERSHIP audi-

tor (defines roles accountant and auditor as mutually exclusive for mem-

bership and hence cannot be assigned to the same user).

ALTER ROLE accountant ADD EXCLUSIVE ACTIVATION finan-

cial_analyst (defines roles accountant and financial_analyst as mutu-

ally exclusive for activation and hence these pair of roles cannot be

activated or enabled at the same time by a user even though both of them

are in the list of his/her assigned roles).

Just as in Oracle, it is also not possible in Sybase to specify the maximum

number or minimum number of users that can be assigned to a role.

Assignable privileges: In Sybase, the following categories of privileges

(permissions) can be granted to roles:

◗ Object access permissions;

◗ Permission to use built-in functions;

◗ Object creation permissions;

◗ Permission to execute “set proxy”;

◗ Permission to execute dbcc commands;

◗ Default permissions on system tables.

Object access permissions on a database object can be granted to

(revoked from) a role by the object owner (or system administrators). It can

also be granted by the database owner who has successfully used the setuser

command to assume the identity of the owner of the database object. The

applicable access permissions for each type of object is given in Table 14.1.

The following examples illustrate as to how object access permissions

can be granted to roles:

GRANT SELECT, INSERT, DELETE ON acct_tran TO

accountant

338 RBAC Features in Commercial Products

Table 14.1 Object Access Permissions in Sybase

Object Permission List

Table Select, insert, delete, update,

references, update statistics,

delete statistics, truncate table

View Select, insert, delete, update

Column Select, update, references

Stored procedure Execute

GRANT TRUNCATE TABLE, UPDATE STATISTICS, DELETE

STATISTICS ON audit_tran TO auditor

Sybase provides certain built-in functions to retrieve (or set) attribute

values relating to an application context. For example, Sybase provides an

application context called SYS_SESSION and in order to retrieve ses-

sion-specific information from this context, a function called

“get_appcontext” is provided. The statement that grants permission to exe-

cute this built-in function for the auditor role is:

GRANT SELECT ON BUILTIN get_appcontext TO auditor

Object creation permissions granted to a role enables the user of the role to

create objects. These permissions can be granted only by a system adminis-

trator or a database owner. Object creation commands include create data-

base, create procedure, create rule, create table, and create view. The

following command grants permissions to the user of chief_financial_officer

role to create tables and stored procedures:

GRANT CREATE TABLE, CREATE PROCEDURE TO

chief_financial_officer

Note that a user who has created a stored procedure by virtue of possess-

ing the CREATE PROCEDURE privilege becomes the owner of that stored

procedure object and hence automatically acquires permissions to delete

and modify (combination of delete and create) that object. Proxy authoriza-

tion permission enables the user of the role to impersonate another user in

the Sybase adaptive server. This permission can only be granted by system

security officer. The command to grant this permission is shown below:

GRANT SET PROXY TO chief_account (OR)

GRANT SET SESSION AUTHORIZATION TO chief_accountant

The user who uses the chief_account role can exercise this permission

using SET ROLE or SET SESSION AUTHORIZATION command.

The DBCC commands are commands that enable a user to check the val-

ues of configuration parameters either at the database level or at the server

level. For example, the command to check the storage space in any database

is “checkstorage.” To grant permission to execute this dbcc command to a

role by name “storage_admin_role” on a database by name “fin_DB,” the

following statement has to be used:

14.1 RBAC in relational DBMS products 339

GRANT DBCC checkstorage ON fin_DB to stor-

age_admin_role

In Sybase adaptive server, permissions for the use of system tables can be

controlled by the database owner, just like permissions on any other tables.

However, from an operational viewpoint, it would be good if users have

minimal privileges (say Select) on subset of system tables (say sysindexes

table to view the list of indexes available for an application table). These

minimal privileges are encapsulated under “default permissions” and made

a parameter for GRANT and REVOKE statements. The syntax for a GRANT

statement that uses this parameter is:

GRANT DEFAULT PERMISSIONS ON SYSTEM TABLES

The list of system tables for which the default permissions apply in any

database is given in [2].

14.2 RBAC in enterprise security administration
software

This section analyzes and discusses the RBAC model concepts that have

been implemented in another class of commercial software called the ESA

products. ESA products enable centralized management of access control for

a wide variety of security systems (called target systems) resident in several

heterogeneous platforms throughout the enterprise. The various types of

target system platforms include the following:

◗ Server operating systems (e.g., UNIX and Windows NT);

◗ Web servers (e.g., Apache, WebSphere, and BEA);

◗ DBMSs (e.g., Oracle and Sybase);

◗ Mainframes.

Although the term target system refers to the native access control

mechanism, since many platforms have only one native access control

mechanism (with the exception of mainframes that support many mecha-

nisms like RACF and ACF2), we refer to a target system by its platform

name (e.g., UNIX). In general the ESA software does not replace the native

access control mechanism in the target systems. In a few cases, it might

extend the access control capabilities of the native access control mecha-

nisms by providing add-on modules.

340 RBAC Features in Commercial Products

ESA products can be used to perform several enterprise security func-

tions like single sign-on, password synchronization, and delegated adminis-

tration. For our purposes, we are only interested in the following two

general functions:

◗ Defining an enterprise authorization model and storing authorization

data pertaining to all the IT resources in the enterprise in the model;

◗ Mapping authorization data under the enterprise authorization model

to access control entities in the various native access control mecha-

nisms (target systems).

Our interest is mainly in the set of ESA products whose enterprise

authorization model uses the concept of roles. Since the design motivation

in ESA products is to reduce the administrative complexity involved in

managing authorizations for hundreds of users and a still larger number of

IT resources throughout the enterprise, it is necessary that the enterprise

authorization model based on roles supported in these products should not

be complex. Hence the RBAC model features found in the enterprise autho-

rization model of ESA products is not as extensive as those supported in the

DBMS products. Many of them support the definition of role hierarchies but

do not provide support for constraints like static SoD and dynamic SoD. An

important distinction to note is that while the authorization data based on

roles is used for enforcing access control on resources in DBMS products,

the authorization data stored under the enterprise authorization model in

ESA products is only used for mapping to the relevant access control entities

in the various target systems. In fact many of these target systems may not

have the concept of roles as part of their access control mechanism. Based

on the above observations, our analysis and description of RBAC features

found in the various ESA products is organized under the following

headings:

◗ Enterprise authorization model and target system access control

entities;

◗ Connecting users to enterprisewide resources (provisioning).

In addition, we also provide a brief overview of the architecture of each

of the ESA products highlighting the functions performed by the product’s

components.

We have analyzed the RBAC model features found in the following

commercial ESA products. Just as in the case of DBMS products, our choice

of these products was not based on market positions or other considerations

14.2 RBAC in enterprise security administration software 341

but with a view to present to the readers the total landscape of RBAC fea-

tures available in the ESA product category. All the information needed for

our analysis was obtained from product manuals or published technical

reports:

◗ Control-SA [6];

◗ DirX Identity V7.0 [7];

◗ SAM Jupiter [8];

◗ Tivoli Identity Manager [9, 10].

14.2.1 CONTROL-SA (BMC software)

CONTROL-SA, the ESA product from BMC Software provides centralized

security administration through the following main components (refer to

Figure 14.1):

◗ Enterprise security station (ESS);

◗ Several SA-agents.

The ESS, the management component of CONTROL-SA, communicates

through gateways to several SA-agents each running on top of a target

342 RBAC Features in Commercial Products

SA-Agent SA-Agent SA-Agent

Security
Administration
database

Resident security systems (RSSs)(Target Systems)

RACF Unix Windows NT

Enterprise
security
station

Figure 14.1 BMC’S CONTROL-SA components.

system. The ESS uses a central security administration database to store

authorization data for the entire enterprise (contents of enterprise authori-

zation model). SA-agents (an instance of which runs on each of the target

platform) receive commands (as well as pass messages to) from the ESS and

pass them to the native access control system on the target platform. Each

native access control system is referred to as a resident security system (RSS)

in CONTROL-SA. The RSS may be the native security kernel of the operat-

ing system (e.g., Solaris, HP-UX, or Novell Netware) or any other product

implementing access control (e.g., RACF and ACF2).

Enterprise authorization model and target system access control

entities

From an administration standpoint, CONTROL-SA does not make a distinc-

tion between the enterprise authorization model entities and the RSS (tar-

get system) access control entities. This is due to the fact that the

management component of CONTROL-SA—the ESS handles the tasks of

configuration of even RSS entities (e.g., creating RSS groups and assigning

resources to those groups) through its own interface instead of those tasks

being handled by an RSS administrator through RSS native interfaces. Fur-

thermore, the ESS itself needs a number of additional entities for the

administration of CONTROL-SA. However, for our goal of understanding

the structure of enterprise authorization model and the use of the model for

access enforcement on various RSS (target systems), consideration of the

following entities is sufficient:

◗ Enterprise user;

◗ Job code (role);

◗ RSS user;

◗ RSS user groups;

◗ Resources.

Figure 14.2 shows the relationships among the above entities. A brief

discussion on the semantics of the above entities is as follows:

◗ Enterprise user represents a person in the enterprise who may need

access to a number of resources resident in several different platforms.

◗ A job code (role) represents a job function. The definition of the job

code itself includes the set of user groups in various RSSs in which the

user requires membership to perform the job function represented by

the job code. Thus we see that the authorization model in

CONTROL-SA does not make a distinction between the concept of a

14.2 RBAC in enterprise security administration software 343

role and the concept of permission since the definition of role (job code)

includes the concept of permission (RSS user group memberships). An

enterprise user can be assigned to any number of job codes depending

upon the job functions associated with his or her organizational

position in the enterprise.

◗ An RSS user represents a single user login ID in a specific RSS (target

system). A single enterprise user may be connected to many RSS users

in one or more RSSs.

◗ RSS user group represents a named collection of one or more RSS users

in a specific RSS.

◗ A resource represents a logical or physical IT asset (e.g., files, directo-

ries, and printers) in a specific RSS. An RSS user group may be con-

nected to any number of resources in a specific RSS.

Out of the entities described above, information pertaining to enterprise

user and job code (role) is carried in the central security administration

database that is an integral component of CONTROL-SA. The entities RSS

user, RSS user groups, and resources are resident in various RSSs, and infor-

mation regarding these entities is carried in the local RSS databases like the

344 RBAC Features in Commercial Products

Enterprise user

RSS user Job code (role)

User group

Resource

Figure 14.2 Authorization model and access control entities in CONTROL-SA.

ACL (a table listing the RSS users and user groups with access rights for a

specific resource and the type of access for which each is authorized). In

addition, one or more template entities can be defined for each of the above

entity types. These template entities carry a set of absolute values or rules

used to assign default values for fields when a new entity record is created.

Please note that the job code definition only contains references to RSS user

groups in various RSSs. The actual RSS user groups are resident in the vari-

ous RSSs.

In CONTROL-SA, two or more job codes can be connected to form a

hierarchical structure called as multilevel job code. Also the hierarchical

structure can have any number of levels. Thus CONTROL-SA supports role

hierarchies. A multilevel job code can be used to either represent a complex

job function (with the junior roles representing the simple or basic job func-

tions) or a complete job description (with the junior roles representing the

job functions related to the job title).

Connecting users to enterprisewide resources

In established enterprises, a set of job codes (roles) would be already

defined. Since a job code contains the references to RSS user groups in vari-

ous RSSs, we can also assume that the RSS user groups in various RSSs

would have been defined as well and resources connected to those RSS user

groups. Hence the association between job codes, RSS user groups, and

resources is relatively static in established enterprises. Hence the major

administrative tasks are adding users and assigning them the appropriate job

codes.

Let us see the process involved in connecting a new IBM mainframe sys-

tems developer John Smith to the IT resources using CONTROL-SA. To start

performing his job activities John needs access to e-mail and connection to

systems program development utilities. The ESS administrator uses the

ESS’s GUI interface to perform the following tasks:

◗ Create the enterprise user John Smith;

◗ Connect John Smith to CORP_NETMAIL and SYS_DEV job codes to

enable John to use the corporate e-mail and invoke systems program-

ming utilities.

The ESS automatically performs the following tasks:

◗ The CORP_NETMAIL contains references to “Domain_User” group on

a NT server and “General” group on Corporate Exchange Server. The

CORP_NETMAIL job code has also associated with it

“NT_DOMAINUSERS” template and “EX_GENERAL” template. These

14.2 RBAC in enterprise security administration software 345

templates provide the attributes for creating an account for John

Smith in the NT server and corporate exchange server, respectively.

Using these templates, the ESS automatically creates those accounts

(RSS users) and connects those RSS user Ids to the relevant RSS user

groups (in our case Domain_User group on the NT server and “Gen-

eral” group on the corporate exchange server).

◗ The SYS_DEV job codes contain reference to SYS_DEV user group on

two different MVS/RACF systems. A template “RACF_DEV” is also

attached to this job code. Using this template the ESS creates new

RACF accounts and connects those accounts to SYS_DEV groups.

14.2.2 DirX Identity V7.0 (Siemens)

DirectX Identity V7.0 (HiPath SIcurity DirectX Identity) is the main compo-

nent of the product suite from Siemens [7] that can be used to perform

enterprise-wide identity and authorization (access control) management in

an environment that consists of many different types of IT systems (target

systems). DirX Identity’s support of target systems include database drivers

such as ODBC and JDBC, mainframe security systems such as IBM’s RACF,

application systems such as SAP R/3, e-mail systems such as Microsoft

Exchange and Lotus/Domino, O/S such as Windows NT, and directory

systems such as Active Directory.

The main components in DirX Identity are the following (see Figure

14.3):

◗ Identity Manager;

◗ Identity Server;

◗ Identity Store;

◗ Agents and Connectors.

The Identity Manager is the client for DirX Identity that provides access

through a Java-based GUI. It communicates with DirX Identity’s data repos-

itory (i.e., identity store) through SSL. The Identity Server is the primary

module of DirX Identity that implements the business logic through its vari-

ous identity services. The services include the policy execution service, which

runs rules for such tasks as automated role assignment, and role resolution

service, which maps abstract permissions associated with roles to detailed

access rights in various target systems as well as two types of provisioning

workflow services—event-triggered provisioning and scheduled provisioning. The

identity store is the repository for all DirX Identity data, including user data,

346 RBAC Features in Commercial Products

privileges, policies, target system account, group and account-group mem-

berships, as well as configuration and operational data. The technology for

the identity store’s data repository is an LDAPv3 directory. DirX Identity

agents and connectors enable data exchange between identity store and dif-

ferent target systems during provisioning as well as synchronization. An

agent supports the interfaces to a specific target system whereas connector is

a thread that runs in the identity server and enables data exchange between

identity store and a target system (which may have a proprietary API) via

Service Provisioning Markup Language (SPML) request/response messages.

Enterprise authorization model and target system access control entities: The

enterprise authorization model in DirX Identity (called in vendor documenta-

tion the “DirX Identity role model” and shown in Figure 14.4) consists of two

entities: User and Privileges. The target system entities include account,

group, resource, and native access control structure that assign various per-

missions on resources to groups. A brief description of the entities in DirX

Identity role model and target systems is given below:

◗ The user represents a person inside or outside of the enterprise for the

purpose of privilege assignment. Privilege is the generic name for vari-

ous access rights modeled in the DirX Identity role model. There are

three types of privileges: groups, permissions, and roles, that are orga-

nized in a hierarchical fashion to form a privilege structure (see below

for discussion).

14.2 RBAC in enterprise security administration software 347

Identity
manager

Identity
store

Agents and
connectors

Identity server with its
identity services

Target
system

Target
system

Target
system

Figure 14.3 DirX Identity architecture.

◗ A target system represents an IT system, examples being operating sys-

tems, directories, databases, and application systems such as Enterprise

Resource Planning (ERP).

◗ An account represents a user in a target system. A single user can have

accounts in many different target systems.

◗ Resources represent IT assets in target systems such as databases,

files,and so on..

◗ Access control structures are native schemes for representing authori-

zation data in various target systems.

The components of the privilege structure referred to above are

described here as follows:

◗ The group is the lowest element of the privilege structure. It is target-

system specific and represents a set of access rights (it does not con-

tain the actual access rights) in that target system. Thus it represents

the link between DirX Identity role model and the target system

access control model. A group in the DirX Identity role model can be

assigned directly to a user or indirectly through permissions and roles

that include the group.

348 RBAC Features in Commercial Products

Policies

Users

Policy-based
and

manual
assignments

Account

Role

Permission

Group
Target
system
artifacts

Privileges

Figure 14.4 DirX Identity model.

◗ A permission represents an aggregation of groups. It is target-sys-

tem-neutral as the aggregation could involve groups from one or more

target systems. A permission can be directly assigned to a user or indi-

rectly through roles that include the respective permissions.

◗ The role is the topmost (abstract) element of the privilege structure

and aggregates a collection of permissions, collection of roles, or both

and is directly assigned to a user. The reason that a role can contain a

collection of roles is that the DirX Identity role model supports role

hierarchies. The DirX role model also supports static separation of

duty (by providing the feature to designate a set of roles or permis-

sions or groups that cannot be assigned to the same user) and hence

functionally conforms to Level 3 (RBAC with SSD) of the ANSI/

INCITS 359-2004 standard.

The privileges (roles, permissions, groups) can be assigned to users man-

ually (through administrative action or workflow requests) or automatically

via provisioning policies. An example of a provisioning policy is a rule that

specifies privilege assignments for a specific user based on his/her attributes.

In addition to provisioning policies DirX Identity provides two other means

of controlling the assignment of privileges—they are role parameters and

permission parameters associated with roles and permissions, respectively,

in the privilege structure. An example for each method of controlling privi-

lege assignments is discussed below:

Using a provisioning rule: A provisioning rule can stipulate role assign-

ments for a user based on the value of the “user type” attribute. For example,

if the user type value is “Staff,” the user will be assigned the “Employee” role,

otherwise not. Provisioning rules can also be defined for making user-permis-

sion assignments and could also use more than one user attribute. For exam-

ple, a provisioning rule can be defined that specifies that users with user type

attribute value “Staff” and department attribute “Sales” obtain “Sales Track-

ing Application” permission.

Using role parameters: Each role can be associated with one or more role

parameters. Defining such generic roles helps to reduce the number of roles in

the enterprise. For example, in an enterprise that has several projects, a

generic ProjectManager role with role parameter project is defined instead of

defining ProjectManager roles for each of the different projects. When a user

is assigned to this generic role, a value for the role parameter project (also

called role-assignment attribute) is provided. Corresponding to a role param-

eter, an attribute has to be associated with a group or groups as well. Then

14.2 RBAC in enterprise security administration software 349

using a matching rule that matches the role parameter values with corre-

sponding group attribute values, a user assigned to the ProjectManager role

with a specific value for the role parameter project is automatically assigned to

groups whose project attribute value matches the corresponding role param-

eter value (in this case project) for the user. In the DirX Identity role model, a

group attribute should also be defined as a permission parameter.

Using permission parameters: A permission can also be indexed by a

parameter just as a role. Such a permission is a generic or parameterized per-

mission. The permission parameter must be a group/user attribute. A match-

ing rule for the permission can then be defined that determines group

assignment for a user based on the matching of values for a specific user attrib-

ute and a specific group attribute. For example, a teller in a large bank may be

assigned the generic permission “Customer Accounts Access” which carries

the locality attribute of the user as its parameter. When a specific user is

assigned this permission, the locality attribute of the user is matched with

locality attributes of the group(s) and the user is assigned to only those match-

ing groups. The net result of this matching rule is that the user can only access

customer accounts for all customers in his/her own locality and not any other

customers in the bank database.

Connecting users to enterprise-wide resources: The user-privilege assign-

ments (more specifically user-role assignments) made in the DirX Identity

role model must ultimately be mapped to access rights in various target sys-

tems to enable users to connect to appropriate enterprise wide resources to

carry out their assigned business processes. The access rights can only be

established using a combination of authentication data (e.g., the accounts)

and the authorization data (e.g., the account-group memberships, or account

attribute assignments in systems such as LDAP, which do not have the con-

cept of groups). The process of establishing these access rights (called

provisioning) is done through a two-step process in DirX Identity.

In the first step of the process (called role resolution or sometimes more

generically, privilege resolution), the accounts, groups, target systems to

which accounts and groups belong, and account-group memberships that

result from role assignment to users are calculated. The calculated data is

then stored in the identity store. The calculation process may involve the

instantiation of provisioning policies (that contain user attributes), role

parameters or permission parameters as appropriate.

In the second step, the connectivity infrastructures (such as agents and

connectors) provided by DirX Identity are used to physically transfer the

350 RBAC Features in Commercial Products

access rights to the target systems either immediately or through a sched-

uled batch run.

14.2.3 SAM Jupiter (Beta Systems)

SAM Jupiter is an identity management solution from Beta Systems Soft-

ware AG [8]. It provides a central point of administration for several secu-

rity systems (target systems) deployed across the enterprise. SAM’s support

of target systems include those on mainframe platforms such as RACF,

ACF2 and TopSecret, on UNIX platforms (AIX, Solaris, and HP-UX), on

Windows Domain (Windows NT, Win2003), on DBMS products (Oracle

and DB2), on directory systems (Active Directory, LDAP and Netware), as

well as on standard applications (SAP).

SAM Jupiter has a three-tier architecture consisting of presentation,

application, and communication layers with the following components (see

Figure 14.5):

◗ SAM client;

◗ SAM server;

◗ SAM provisioning engine;

◗ Bulk processing interface;

◗ SAM repository;

14.2 RBAC in enterprise security administration software 351

SAM client

SAM server

SAM repository

Presentation
layer

Application layer

Communication
layer

Agentless
connector

SAM
provisioning

engine

Bulk
processing

Master courier

Target
system

Target
system

Target
system

Agent Agent

Figure 14.5 Sam Jupiter architecture.

◗ Master courier.

The SAM client forms part of the presentation layer, the SAM server

together with SAM provisioning engine, bulk processing interface, and SAM

repository constitutes the application layer, while the master courier

belongs to the communication layer.

The SAM client has a Web-based graphical user interface developed

according to ISO 13407. The SAM server implements the business logic of

SAM Jupiter. It contains mechanisms for managing the presentation layer

for the user and for gathering administrative input, including definition and

maintenance of roles and policies (security and administration) within SAM

Jupiter. It also has functions for importing data and queue processing from

external data sources through the bulk-processing interface. The SAM

provisioning engine connects with identity repositories such as HR systems

or corporate directories and helps to automate the definition of enterprise

authorization model entities through processes such as policy-based account

creation, resource authorization, and role connections. The SAM repository

is the identity store (the database for an identity management system) that

holds all the data created by SAM server. This repository is built using SQL

databases such as DB2 or Oracle. The master courier communicates with

target systems through SAM connectors, which either reside as agents in the

target systems or act from a central server. The agents propagate the enter-

prise authorization data generated in the SAM server (and stored in SAM

repository) to their associated target system and also performs the function

of synchronizing data in the SAM repository with that in target systems in

situations where authorization data changes in target systems.

Enterprise authorization model and target system access control entities:

The enterprise authorization model used in SAM Jupiter is called ERBAC

(which stands for enterprise role-based access control (see Figure 14.6). The

entities in the ERBAC model are users, enterprise roles, and permissions. The

target system entities are accounts, groups (and/or roles in some cases), and

resources. The semantics of both ERBAC and target system entities are

described below:

◗ A user in SAM Jupiter is an employee in the enterprise. Some com-

mon information associated with an employee like organizational

unit, location, and job description are stored as attributes of a user.

◗ An enterprise role represents a business task in the enterprise. Since

performing a business task may involve using functions or transaction

features in multiple IT systems, enterprise roles may span multiple

352 RBAC Features in Commercial Products

target systems in their scope and hence may consist of permissions per-

taining to several application systems or platforms.

◗ A permission in ERBAC is a reference to a group (see two bullets down

for definition) in a target system. If the target system supports the con-

cept of a role, a permission may also refer to a role. Hence the assign-

ment of one or more permissions to an enterprise role is nothing but a

set of enterprise-role-to-group connections.

◗ An account is a user ID in a specific target system.

◗ A group is a target system entity that bundles permissions. An account

that is made a member of a group obtains the group’s underlying

permissions.

◗ A resource (represented as TS Object in Figure 14.6) is an entity

whose definition depends upon the target system platform on which

it is resident. A resource may refer to a file (in an O/S platform) or a

database or database table (in a DBMS platform).

The ERBAC model in SAM Jupiter supports the assignment of one role

to another (when we say role in the context of SAM Jupiter we only refer to

the enterprise role since the underlying model is ERBAC), thus supporting

the definition of a role hierarchy. The role hierarchy can be of any length.

ERBAC implements static SoD by making use of rules defining constraints

14.2 RBAC in enterprise security administration software 353

Account
in TS

User
User
assignment

Permission
assignment

Enterprise
role

Permission

Static SoD Role hierarchy

Enterprise level

Operation Object

Permission in TS

TS
operation

TS
object

Target systems

Figure 14.6 SAM Jupiter’s ERBAC model.

between roles. These rules are evaluated when assigning users to roles (to

ensure that the receiver does not receive two roles that are defined to be in

static SoD) and roles to roles (to prevent the static SoD requirement from

being circumvented by a role hierarchy). Because of the above features, the

ERBAC model in SAM Jupiter is functionally equivalent to the “constrained

RBAC” model (Level 3) of the ANSI RBAC standard 359-2004.

To support rule-based provisioning, SAM Jupiter provides a rule engine

as part of the SAM provisioning module. Rules can be created using the

SAM client to define accounts, policy, and role assignments for users. These

rules use either user attributes, user-role assignment attributes, or role

attributes and facilitates automation of the following functions in the cre-

ation of enterprise authorization model.

User-role assignment: Rules can be formulated to map the user attributes

to roles, enabling the automation of the user-to-role assignment process. An

example of a rule is:

IF Department of User = Loans

AND Type of User = Processor

THEN connect to role Loan Officer {codeend}

User-permission(group) assignment using user attributes: To reduce the

number of roles, SAM Jupiter supports the concept of a dynamic or generic

role. The permission for a generic role is a joker (or wild card) group. For

example, a large commercial bank could have a generic role called “Teller”

and assign the joker group “Customer Accounts Access” to it. The wild card

parameter for this joker group is “User Location.” When a user whose location

attribute has the value “Boston” is assigned the teller role, the associated joker

group (i.e., Customer Accounts Access group) gets instantiated to “Boston

Customer Accounts Access” group by a rule that associates the value of the

user location attribute with the specific group.

User-permission assignment using role-assignment attributes: Instead of

using user attributes, SAM Jupiter supports a second way of doing role

parameterization by allowing the administrator at the time of assigning a role

to a user to specify certain attribute values. For example if the same employee

(Susan) is a project leader in project A and project engineer in another project

(say project B), the administrator can specify value “project A” while assign-

ing Susan to the “Project Leader” role and the value “project B” while assign-

ing Susan to the “Project Engineer” role so that Susan is assigned appropriate

groups (permissions) in the corresponding project-related target systems.

354 RBAC Features in Commercial Products

User-permission assignment using role attributes: Dynamic group assign-

ments can also be created using role attribute values. For example, when a

junior loan processor in a bank is assigned the “Loan Officer” role, the maxi-

mum value of the loan he or she can approve can be set using the “maximum

amount” attribute of the “Loan Officer” role. Depending upon the value of

this attribute, the user may be assigned different groups in the loan processing

system. For example, if the maximum amount value is $500,000, then the

user may be assigned the group “moderate value loans” but if the same attrib-

ute is set to $5 million for another user assigned to that role, that user may be

assigned to the group “high value loans” in the same system.

Fine-grained permissions for applications: Application security involves

defining fine-grained access rules as compared to system security. For exam-

ple, a bank may stipulate that loan officers on probation can only process and

approve auto (for vehicle purchase) loans for local residents and that too up to

a limit of $50,000. In order to deal with these types of access rules, mere group

assignments as permissions in the ERBAC model will not suffice. Permissions

in this type of environment have to involve a combination of process and

object attributes. More specifically, in this instance, the permission may

involve the process by name “Approve Loans” with Loan Type attribute =

“Auto” and object by name “Loan Applicant” with Residence attribute =

“Local Branch Area” in addition to the maximum amount attribute in the

Loan Officer role set to $50,000. While SAM provides infrastructure objects to

define such fine-grained application specific permissions, it is left to the enter-

prise deploying SAM Jupiter to define such permissions.

Connecting users to enterprisewide resources: Let us assume that a new

teller John Smith joins a bank that has branches nationwide. The set of cus-

tomer accounts that John Smith can access depends upon his location. The set

of all customer accounts is carried in an IBM mainframe (with a RACF secu-

rity system) with separate database views defined for retrieving customer

records from a particular region. All the access permissions for a particular

view are defined in a separate RACF group. For example the BOSTON_VIEW

enables retrieval of customer records from the BOSTON region. The access

permissions for the records under the BOSTON_VIEW are included in the

RACF group named BOSTON. The teller also needs access to a Windows NT

account to enter the total cash receipts for the day. All permissions needed for

a teller are included in the role teller in SAM Jupiter. The role teller is con-

nected to two permissions. One permission is a joker permission that can be

resolved using the user attribute “location.” The other permission is a normal

permission that has the group connection CASH_RECEIPTS in the NT server.

14.2 RBAC in enterprise security administration software 355

The SAM administrator first defines John Smith as a user in SAM Jupiter

with the user ID Smith01. This user ID is then assigned to the teller role. If

John Smith’s work location is the BOSTON region, this attribute of John

Smith is passed on to the joker permissions associated with the teller role.

The joker permission is resolved and John’s group connection is determined

(i.e., BOSTON group in RACF). John Smith’s other group connection

CASH_RECEIPTS is directly obtained from the second permission assigned

to the teller role. A user account is created for John Smith (for Smith01

userID) in RACF and is assigned the BOSTON group. A user account is cre-

ated in NT server and the group CASH_RECEIPTS is assigned to that

account.

SAM Jupiter eliminates the need for separate administrators for each of

the target systems it manages. When these systems are connected to SAM

Jupiter and their data loaded into SAM repository, the security administra-

tors need to work only with SAM interfaces. All administrative work is done

in SAM Jupiter and automatically propagated to the underlying systems in

the format required.

14.2.4 Tivoli Identity Manager version 1.1 (IBM)

The Tivoli Identity Manager version 1.1 from IBM provides centralized

access control administration for the various systems and applications (tar-

get systems) throughout the enterprise using the following components (see

Figure 14.7):

◗ Identity manager server;

◗ Tivoli user administration version 3.8;

◗ Tivoli security manager version 3.8;

◗ Tivoli management framework version 3.7.1.

The identity manager server is the management module of the Tivoli

Identity Manager that coordinates with other components. It has a

Web-accessible interface. The Tivoli user administration component man-

ages user accounts on various target systems. The Tivoli security manager

provides centralized security policy enforcement for multiple target systems

by managing access control. In addition to enforcement of access control

rules, the security manager manipulates other security policy aspects like

platform password policy, login policy, and audit configuration. An impor-

tant module of the Tivoli management framework component is the Tivoli

management server (TMR). The TMR communicates with agent software

(called end points in Tivoli) used to manage each of the native access control

356 RBAC Features in Commercial Products

systems on target system platforms and thus is able to monitor events in the

various target systems. The target platforms for which Tivoli identity man-

ager provides end points include the following: Solaris, HP-UX, AIX, Linux,

Windows NT/2000, OS/390, AS/400, OS/2, and Novell NetWare.

Enterprise authorization model and target system access control entities: The

entities in the enterprise-level authorization model in the Tivoli identity man-

ager are users, groups, roles, and resource definitions (actual resources exist

in various target platforms). User IDs, groups, and actual resources reside on

target systems. Figure 14.8 shows a schematic diagram showing the relation-

ship among these entities. The semantics for these entities are described as

follows:

◗ A user represents an employee of an enterprise who needs access to IT

resources.

◗ A group (at the enterprise level) represents a set of users within an

enterprise. Example groups include divisions, departments, project

teams, and job titles. A user can be a member of only one group.

◗ A role defines a set of capabilities required to carry out a given job. Roles

in Tivoli identity manager are system-independent, and the resources

associated with them may reside in many different target system plat-

forms. The combination of target systems and roles is called a subscrip-

tion within the Tivoli management framework. In Tivoli identity

14.2 RBAC in enterprise security administration software 357

Unix Win-NT Novell S/390

Tivoli user administration/Tivoli
Security manager/Tivoli management
framework

Identity manager
management server

End points
(agents in target
system platforms)

User registry

User profiles/
security profiles

Figure 14.7 Tivoli Identity Manager and its associated components.

manager, it is possible to derive a child role from a parent role object.

However, a permanent role hierarchy is not created or maintained in

the authorization model. A child role is often used to add new capabili-

ties, override parent capabilities, or subtract capabilities to define a new

role. In other words, the role object inheritance is used only for

facilitating easy creation of new roles.

◗ The entity resource at the enterprise level actually stands for resource

definitions rather than actual resources since the latter physically exist

at the target system. A resource definition can be a member of more

than one role.

◗ An account is a user ID in a specific managed target (target system). A

user can have many accounts.

◗ A resource at the target system level stands for programs, files, and

databases that need some form of access protection.

◗ A group at the target system level represents a set of resource access

permissions. An account assigned to a group obtains the permissions

defined for the group.

Connecting users to enterprisewide resources: All security management

information in the Tivoli security manager component is stored in security

profiles. They contain records using target system–independent formats so

that they can be used within an enterprise on many different target system

types. The following types of records exist:

358 RBAC Features in Commercial Products

Tivoli security
manager

Tivoli user
administration

Tivoli identity manager (enterprise level)

Native access control system (target system level)

User IDs Groups Resources

User Groups

Roles

Resource
definitions

Figure 14.8 Authorization model entities in Tivoli.

◗ A group record contains user, group, and role membership lists. At

the target system level they are mapped to UserID-to-groups (target

system level groups) associations.

◗ A role record defines the set of capabilities required to carry out a job

function within the organization. Groups are given the necessary capa-

bilities by assigning one or more roles to the group.

◗ A resource record defines a homogeneous collection of resource objects

in the enterprise that can be accessed by users and groups via their role

assignments.

◗ A system policy record provides the ability to define user

and resource-related security policy rules that will be applied on a

enterprise-wide basis to all subscribed (please refer to the definition of

subscription in the previous section) endpoints.

The administrator can choose how many and what combination of secu-

rity profile record types a given security profile will contain. One security

profile may contain group, role, and resource records, while another may

contain only system policy records. The exact combination of record types in

a given security profile is influenced by the security requirements of the tar-

get systems that subscribe to the profile manager that contains the security

profiles. Security profile management consists of two main functions: popu-

lation and distribution. Population of security profiles enables discovery of

security information from subscribed end points (target systems). Distribu-

tion of security profiles enables security information (e.g., user ID-to-group

associations) in target systems to be updated. Distribution of security pro-

files to target systems is enabled through endpoints (agent software) on var-

ious target system platforms and is performed by the Tivoli management

server.

14.3 Conclusions

We have seen that RBAC model implementation in DBMS products has a

rich set of RBAC model features and is actually used for access enforcement.

Thus, it supports a rich set of administrative functions defined in the RBAC

standard. In the case of ESA products, the concept of roles is merely used in

the enterprise authorization model to simplify the management of authori-

zations. Hence the RBAC model implementation found in ESA products has

only a limited set of RBAC model features (e.g., role hierarchy). The main

administrative functions in ESA products include defining roles, assigning

14.3 Conclusions 359

the relevant target system groups to roles, and assigning users to roles. The

functions relating to propagating the enterprise-level authorization infor-

mation to various target systems is done automatically using middleware

products.

References

[1] Informix Guide to SQL: Reference, Version 8.3/9.3.

[2] Administrator’s Guide for Informix Dynamic Server, Version 9.3.

[3] Informix Guide to Database Design and Implementation, Version 8.3/9.3.

[4] Oracle Database (10g Release 2) Security Guide.

[5] Adaptive Server® Enterprise 15.0—System Administration Guide: Volumes 1

& II.

[6] Enterprise Security Station—User Guide (Windows GUI)—BMC Software Inc.

[7] DirX Identity 7.0, http://solutions.fujitsu-siemens.com/software, catalog/

product.php?id=200006280&lang=en&platform=all.

[8] http://www.betasystems.com/e_beta.nsf/(Docs)/0240070501.

[9] Enterprise Security Architecture Using IBM Tivoli Security Solutions, IBM

Corporation, 2002.

[10] Tivoli Security Management Design Guide (2002)—IBM Corporation.

360 RBAC Features in Commercial Products

Appendix A

XML Schema for the RBAC Model

<?xml version="1.0" encoding="UTF-8"?>

<! edited with XML Spy v4.2 (http://www.xmlspy.com) by Ramaswamy

Chandramouli (NIST) >

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:sch="http://www.ascc.net/xml/schematron" elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xs:element name="Bank_RBAC_Model" type="BankRBACModelType"/>

<xs:element name="user" type="userType"/>

<xs:element name="role" type="roleType"/>

<xs:element name="privilege" type="privilegeType"/>

<xs:element name="role_inherit" type="InheritType"/>

<xs:element name="UserRoleAssignment" type="URAType"/>

<xs:element name="RolePrivilegeAssignment" type="RPAType"/>

<xs:complexType name="BankRBACModelType">

<xs:annotation>

<xs:appinfo>

<sch:pattern name="Role Assignment Rules">

<sch:rule context="Bank_RBAC_Model">

sch:assert test="UserRoleAssignment[count(role[text ()= TEL])= 1]"

>There should be an assignment for Teller Role

</sch:assert>

</sch:rule>

</sch:pattern>

</xs:appinfo>

</xs:annotation>

361

<xs:sequence>

<xs:element ref="user" maxOccurs="unbounded"/>

<xs:element ref="role" maxOccurs="unbounded"/>

<xs:element ref="privilege" maxOccurs="unbounded"/>

<xs:element ref="role_inherit" maxOccurs="unbounded"/>

<xs:element ref="UserRoleAssignment" maxOccurs="unbounded"/>

<xs:element ref="RolePrivilegeAssignment"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="userType">

<xs:attribute name="userID" type="xs:ID" use="required"/>

<xs:attribute name="fullname" type="xs:string" use="optional"/>

</xs:complexType>

<xs:complexType name="roleType">

<xs:attribute name="roleID" type="xs:ID" use="required"/>

<xs:attribute name="rolename" type="validRole" use="required"/>

<xs:attribute name="cardinality" type="roleLimit" use="optional"/>

</xs:complexType>

<xs:simpleType name="validRole">

<xs:restriction base="xs:string">

<xs:enumeration value="BranchManager"/>

<xs:enumeration value="Customer_Service_Rep"/>

<xs:enumeration value="Loan_Officer"/>

<xs:enumeration value="Accounting_Manager"/>

<xs:enumeration value="Internal_Auditor"/>

<xs:enumeration value="Teller"/>

<xs:enumeration value="Accountant"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="roleLimit">

<xs:restriction base="xs:integer">

<xs:minInclusive value="0"/>

<xs:maxInclusive value="10"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="privilegeType">

<xs:attribute name="privilegeID" type="xs:ID" use="required"/>

<xs:attribute name="gen_resource" type="xs:string" use="required"/>

<xs:attribute name="gen_oper" type="operType" use="required"/>

362 XML Schema for the RBAC Model

</xs:complexType>

<xs:simpleType name="operType">

<xs:restriction base="xs:string">

<xs:enumeration value="Open"/>

<xs:enumeration value="Close"/>

<xs:enumeration value="Debit"/>

<xs:enumeration value="Credit"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="InheritType">

<xs:sequence>

<xs:element name="FromRole" type="validRole" minOccurs="1"

maxOccurs="1"/>

<xs:element name="ToRole" type="validRole" minOccurs="1"

maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="URAType">

<xs:annotation>

<xs:appinfo>

<sch:pattern name="Role Assignment Rules">

<sch:rule context="UserRoleAssignment[role[text () = BRM]]">

<sch:assert test="count(user)= 1" diagnostics="MUST_BRM">

There should be only a single user assigned to

Branch Manager

</sch:assert>

</sch:rule>

</sch:pattern>

<sch:diagnostics>

<sch:diagnostic id="MUST_BRM">The actual number assigned is:

<sch:value-of select="count(user)"/>

</sch:diagnostic>

</sch:diagnostics>

</xs:appinfo>

</xs:annotation>

<xs:sequence>

<xs:element name="role" type="xs:IDREF"/>

<xs:element name="user" type="xs:IDREF" maxOccurs="10"/>

</xs:sequence>

</xs:complexType>

XML Schema for the RBAC Model 363

<xs:complexType name="RPAType">

<xs:sequence>

<xs:element name="role" type="xs:IDREF"/>

<xs:element name="privilege" type="xs:IDREF" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

364 XML Schema for the RBAC Model

Appendix B

XML-Encoded Data for the RBAC Model

<?xml version="1.0"?>

<Bank_RBAC_Model xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="A:\BankRBAC.xsd">

<user userID="DrayJ" fullname="Jim Dray"/>

<user userID="GranceT" fullname="Tim Grance"/>

<user userID="VincentH" fullname="Vincent Hu"/>

<user userID="MiraM" fullname="Mira Mouli"/>

<user userID="JansenW"/>

<user userID="TomK" fullname="Tom Karygiannis"/>

<user userID="MellP" fullname="Peter Mell"/>

<user userID="MorganK" fullname="Kim Morgan"/>

<role roleID="BRM" rolename="BranchManager" cardinality="1"/>

<role roleID="CSR" rolename="Customer_Service_Rep" cardinality="3"/>

<role roleID="LNO" rolename="Loan_Officer" cardinality="2"/>

<role roleID="ACM" rolename="Accounting_Manager" cardinality="1"/>

<role roleID="AUD" rolename="Internal_Auditor" cardinality="1"/>

<role roleID="TEL" rolename="Teller" cardinality="6"/>

<role roleID="ACC" rolename="Accountant" cardinality="2"/>

<privilege privilegeID="PV111" gen_resource="DepAcct" gen_oper="Open"/>

<privilege privilegeID="PV112" gen_resource="DepAcct" gen_oper="Debit"/>

<privilege privilegeID="PV113" gen_resource="DepAcct" gen_oper="Credit"/>

<privilege privilegeID="PV114" gen_resource="DepAcct" gen_oper="Close"/>

<privilege privilegeID="PV211" gen_resource="LoanAcct" gen_oper="Open"/>

<privilege privilegeID="PV212" gen_resource="LoanAcct" gen_oper="Debit"/>

<privilege privilegeID="PV213" gen_resource="LoanAcct" gen_oper="Credit"/>

<privilege privilegeID="PV214" gen_resource="LoanAcct" gen_oper="Close"/>

<role_inherit>

365

<FromRole>Teller</FromRole>

<ToRole>Customer_Service_Rep</ToRole>

</role_inherit>

<role_inherit>

<FromRole>Accounting_Manager</FromRole>

<ToRole>Accountant</ToRole>

</role_inherit>

<role_inherit>

<FromRole>Customer_Service_Rep</FromRole>

<ToRole>BranchManager</ToRole>

</role_inherit>

<role_inherit>

<FromRole>Loan_Officer</FromRole>

<ToRole>BranchManager</ToRole>

</role_inherit>

<role_inherit>

<FromRole>Accounting_Manager</FromRole>

<ToRole>BranchManager</ToRole>

</role_inherit>

<role_inherit>

<FromRole>Internal_Auditor</FromRole>

<ToRole>BranchManager</ToRole>

</role_inherit>

<UserRoleAssignment>

<role>BRM</role>

<user>GranceT</user>

<user>JansenW</user>

</UserRoleAssignment>

<UserRoleAssignment>

<role>CSR</role>

<user>TomK</user>

</UserRoleAssignment>

<UserRoleAssignment>

<role>LNO</role>

<user>JansenW</user>

</UserRoleAssignment>

<UserRoleAssignment>

<role>ACM</role>

<user>DrayJ</user>

</UserRoleAssignment>

<UserRoleAssignment>

<role>AUD</role>

<user>MorganK</user>

</UserRoleAssignment>

<UserRoleAssignment>

366 XML-Encoded Data for the RBAC Model

<role>ACC</role>

<user>VincentH</user>

</UserRoleAssignment>

<RolePrivilegeAssignment>

<role>TEL</role>

<privilege>PV112</privilege>

<privilege>PV113</privilege>

</RolePrivilegeAssignment>

<RolePrivilegeAssignment>

<role>CSR</role>

<privilege>PV111</privilege>

<privilege>PV114</privilege>

</RolePrivilegeAssignment>

<RolePrivilegeAssignment>

<role>LNO</role>

<privilege>PV211</privilege>

<privilege>PV212</privilege>

<privilege>PV213</privilege>

<privilege>PV214</privilege>

</RolePrivilegeAssignment>

</Bank_RBAC_Model>

XML-Encoded Data for the RBAC Model 367

About the Authors

David F. Ferraiolo is a supervisory computer scientist in the Computer

Security Division of the National Institute of Standards and Technology

(NIST). He has over 23 years of experience in computer and communica-

tions security, serving both the government and private industry. During his

last 14 years of employment at NIST, he has conducted extensive research

in various areas of access control, including formal model development, ref-

erence and prototype implementation, and product demonstration develop-

ment and evaluation. He is the author or coauthor of more than 20 papers

in the area of access control. He received a U.S. Department of Commerce

gold medal in 2002 and a 1998 Excellence in Technology Transfer award

from the Federal Laboratory Consortium for research in RBAC, and has

served on the editorial boards of the U.S. Federal Criteria and the interna-

tional Common Criteria (ISO 15408). He received a combined B.S. in com-

puter science and mathematics from the State University of New York at

Albany in 1982.

D. Richard Kuhn is a computer scientist in the Computer Security Division

of NIST. His primary technical interests are in information security and soft-

ware assurance, and he is the author or coauthor of more than 40 papers in

these areas. Mr. Kuhn, a senior member of the Institute of Electrical and

Electronics Engineers (IEEE), received a U.S. Department of Commerce gold

medal in 2002, a 1998 Excellence in Technology Transfer award from the

Federal Laboratory Consortium for research in RBAC, and a U.S. Depart-

ment of Commerce bronze medal in 1990 for his contributions to open sys-

tem standards. In addition, he is a member of Beta Gamma Sigma. He

served as program manager for the Committee on Applications and Tech-

nology of the President’s Information Infrastructure Task Force from 1994

to 1995, and from 1996 to 1999, he was a manager of the Software Quality

369

Group at NIST. He received an M.S. in computer science from the University

of Maryland at College Park and an M.B.A. from the College of William and

Mary in Virginia.

Ramaswamy Chandramouli is a computer scientist with the Computer

Security Division of the Information Technology Laboratory at NIST. Mouli

(as he has been known to his colleagues over the years) has more than

21 years of experience in the design, development, and implementation of

information systems both in the commercial and government sector in

diverse areas such as international banking, healthcare, energy, and trans-

portation. He joined NIST in 1997. Dr. Mouli’s recent research focus has

been in the area of RBAC models, security architectures, security functional

testing, healthcare IT security, and criteria-based security specifications. He

has written more than 12 conference and journal publications in the area of

computer security and is the coauthor of the “RBAC Protection Profile,”

which was the first security protection profile to be formally evaluated and

certified by CESG, United Kingdom, under the IT Security Evaluation &

Certification (ITSEC) service. He is also the coauthor of the proposed NIST

RBAC standard. Dr. Mouli holds an M.S. in operations research from the

University of Texas at Dallas and a Ph.D. in information technology from

George Mason University in Fairfax, Virginia.

370 About the Authors

Index

A

Access control

as security mechanism, 1

Clark-Wilson model, 9

defined, 1

DoD standards, 8

enforcement, 28–30

forms, 2

history of, 6–16

in mainframe era, 6–8

mechanisms, 28–29

military rules, 7

models, 4–5, 28, 29–30

objectives, 27–28

privacy requirements, 148–55

purpose and fundamentals, 2–5

secure design principles, 31–33

subjects and objects, 30–31

WFMSs, 273–76

XML-encoded data, 262–68

See also DAC; MAC; RBAC

Access control and filtering (ACF), 298

Access control checks, 29

Access control lists (ACLs)

advantages, 43

creating, 69–71

features, 11–13

groups vs. roles, 59–61

problems in using, 21

Access control matrix, 6

example of, 42

Harrison, Ruzzo, Ullman model, 38–40

protection bits method, 44

state definition, 37

Access control mechanisms

forms, 28–29

policy implications, 29

policy support, 30

Access control models

abstraction level, 29–30

policy support, 30

Access control policies

defined, 28

enforcement, 28–30

Access control triple, 49

Access decision function (ADF), 286

Access enforcement function (AEF), 286

Access matrix, 6. See also Access control matrix

Access matrix for subjects (ARS), 135

ACL. See Access control lists

Administrative authority, 199, 200–3

Administrative functions

core RBAC, 174

defined, 174

dynamic SoD, 180

hierarchical RBAC, 176–77

static SoD (SSD), 179

Administrative permissions, role control center,

207–10

Administrative roles

Crampton-Loizou model, 198

defined, 190

See also Role-based administration

Administrative support, core RBAC, 61–62

Airspace security, 16

371

American National Standards Institute (ANSI)

ANSI/INCITS RBAC, 171–81

SoD definition, 98

Analytical controls, 163

ANSI/INCITS RBAC standard

core RBAC, 174–76

dynamic SoD (DSD) relation, 180–81

functional specification, 173–79

hierarchical RBAC, 176–79

options and packaging, 181–83

overview, 171–72

RBAC reference model, 172–73

static SoD (SSD) relation, 179–80

API layer, 310

Application-level controls, 49–50

Approve phase, 225

ARBAC97, 191, 192

Assignment. See Role assignment

Association for Computing Machinery (ACM),

14–15

ASTM E31.20, 184–85

Attenuation of privilege, 41

Attribute certificates (ACs), 284–90

Attribute-matching algorithm, 29

Authentication

defined, 3

vs. authorization, 3–4

Authorization

authentication vs., 3–4

defined, 1, 3–4

RBAC features, 58

rules, 307–9

UNIX environment, 293–96

using privacy-RBAC-ACF, 160–62

See also Access control; Authorization

management

Authorization generation module (AGM), 280

Authorization management

RBAC overview, 19–23

RBAC advantages, 20–23

server pull, 22

user pull, 22

Authorization object (AO), 307–9

Authorization specification module (ASM), 280

Authorization subject (AS), 307–9

Authorization type (AT), 307–9

Autonomous security service modules, 309–11

Autonomy

Crampton-Loizou model, 198

role control center, 211

Availability, 2, 3

B

Baldwin’s permission graph, 77

Bell-LaPadula model, 7–8, 46–47

vs. Brewer-Nash model, 52

Biba’s integrity model, 47–48

Bottom-up analysis, 214

Brewer-Nash model, 51–52

Business purpose entity

identifying purposes, 157

overview, 152, 153–54

role relationship, 157

task relationship, 157–58

C

Can-assignp relation, 194, 196

Can-assign relation, 192–93

Can-revokep relation, 196

Can-revoke relation, 194, 195

Capability lists

access principles, 42

advantages, 42–43

Case study, RTI, 315–24

Categories

Bell-LaPadula model, 7–8

MLS, 139–41

Certification authority (CA), 285

checkAccess, 311

Chinese wall, 10, 50–51

Chromatic number, 115

CIA (confidentiality, integrity, and availability),

2–3

Clark-Wilson model, 9, 14

application–level controls, 49–50

integrity principles, 48–49

Cleanup phase, 225

Cloning, 62

Combiner role, 93

Common desktop environment (CDE), 295

Communication, security, authentication, and

privacy (CSAP), 310–11

Complete mediation, 32

Completeness, reference monitor, 34–35

Component database system (CDBS), 306–8

Condition

defined, 150

372 Index

privacy policy, 150

Confidentiality

Bell-LaPadula model, 47–48

Biba model, 48

defined, 2, 3

importance to users, 9

Conflict-of-interest (COI), 51, 105

Connector roles, 82–85. See also Role

hierarchies; Roles

Constrained data item (CDI), 49

Constraints

content-based, 259–62

dynamic, 109–10

MAC, 133–36

Content-based constraints, 259–62

Contouring Engine, 229

CONTROL-SA, 342–46

Cookies, 282–84

Core RBAC

administrative elements, 61

administrative support, 61–62

defined, 66

dynamic component, 64–65

functional specification, 174–76, 182

local/global users, 68–69

mapping, 65–71

permissions, 62–64

reference model, 173

role activation, 64–65

role concept, 61

Corrective controls, 164

Crampton-Loizou administrative model,

196–203

D

DAC

appropriateness of, 10–11

compared to RBAC, 17–18

defined, 8, 17, 44–45

enforcing using RBAC, 128–31

model types, 128–29

policies overview, 44–45

RBAC comparison, 127–28

weakness of, 45

with change of ownership, 128

DAFMAT, 152

Database management system (DBMS), 27

relational, 325–40

Data layer, 310

Data object entity, 151

Data object relationship, 158–60

Data typing feature, 259

Data usage entity

data object relationship, 158–60

identifying, 158–60

overview, 154–55

DDAT, 53

Decentralization

Crampton-Loizou model, 198

role control center, 210–11

Department of Defense (DoD)

Global Command and Control System, 143

Trusted Computer System Evaluation Criteria,

8–9

Direct privilege inheritance, 75–76

DirectX Identity V7.0, 346–51

Discover phase, 225

Discretionary access control. See DAC

Distinguished name (DN), 286

Domain-domain access control table (DDAT),

53

Domain-domain permissions, 53

Domain-type access control table (DTAT), 53

Domain-type enforcement (DTE) model, 52–54

Domain-type permissions, 53

DOM API, 263, 264, 265

DSD. See Dynamic separation of duty

DTAT, 53

DTE model, 52–54

Duration, 119

Dynamic constraints

in MAC, 133–36

overview, 109–10

Dynamic hierarchies, 123

Dynamic separation of duty (DSD)

functional specification, 180–81

overview, 104–5

reference model, 173

XACML profile, 186

E

EAF. See Enterprise access control framework

Economic Impact of Role-Based Access Control, The,

315

Economic model, RBAC advantages, 19–20

Economy of mechanism, 32

Index 373

Element sets, core RBAC, 174–80

Eligible subject set (ESS), 280

Employee downtime, 319–20

Employee management, 319–20

Encapsulated range, 191

Enterprise access control framework (EAF)

administration, 243–44

concepts, 239–42

multiple-policy support, 243

specification, 244–52

XML schema, 246–56

Enterprise Dynamic Access Control (EDAC),

184

Enterprise security administration (ESA)

CONTROL-SA, 342–46

DirX Identity V7.0, 346–51

motivations for using, 325

overview, 340–42

RBAC in, 340–59

SAM Jupiter, 351–56

Tivoli Identity Manager, 356–59

Enterprise view

mapping to system view, 65–71

SmartRoles application, 228–29

Entitlements, 93

ERBAC

encoding access control data, 252–56

enterprisewide implementation, 262–68

model elements, 246, 247–50

model relations, 246, 250–52

SAM Jupiter, 352–54

specifications verification, 257–58

XML schemas, limitation of, 258–62

XML specification, 246–56

ESA. See Enterprise security administration

Ethics, regulation and, 16, 18

European Commission, 285

Execution profile, 294

Extranet users, 316–18

F

Fail-safe defaults, 32

Federated database system (FDBS), 306–8

Ferraiolo-Kuhn model, 11–13, 14

File, UNIX environment, 293

Flat roles, 74–75

Flexibility

Crampton-Loizou model, 197–98

DAT, 45

description, 37

Functional roles, 10

Functional specification

core RBAC, 174–76

defined, 172

defining packages, 182–83

dynamic SoD (DSD), 180–81

function categories, 174

hierarchical RBAC, 176–78

overview, 173–74

static SoD (SSD), 179–80

Functions, job, 93

G

Generalized data resource, 249–50

Generalized TRBAC (GTRBAC) model, 118,

119–23

General role hierarchies, 90–93, 182

Geographical regions, 87–88

Global Command and Control System, 143

Goal driven/hybrid role engineering, 220–24

Gramm Leach Bailey Act (GLBA), 16, 147, 166

Grant-dependent revocation, 129

Grant-independent revocation, 129, 130–31

Granularity of access, 62–63

Granularity of method, 62–63

Graph degree, 116

Groups

ACL advantages, 43

GTRBAC model, 118, 119–23

protection bits, 44

similarity to RBAC, 13

vs. roles in core RBAC, 59–61

H

Harrison, Ruzzo, Ullman model, 38–40

Harrison, Ruzzo, Ullman undecidability result, 8

Health care systems

privilege management, 184–85

regulation, 16, 18, 166

role engineering examples, 232–37

Health Insurance Portability and

Accountability Act (HIPAA), 16, 147,

166

Hierarchical RBAC

administration, 198–203

functional specification, 176–78

374 Index

functional specification packages, 182

reference model, 173

roles, 13

security levels, MAC, 45–46

History-based SoD, 106–7

Hoffman’s implementation, 53

Human resource management systems (HRMS),

229

Hybrid role engineering

goal-driven approach, 220–24

overview, 214–15

I

IBM research project, 304–5

Immediate descendent, 91

Immediate inheritance, 81

INCITS 359–2004, 15, 172

INCITS CS1.1, 183–84

Indirect privilege inheritance, 78–80

Information security risks, 2–3

Information sharing, 28

Informix Dynamic Server, 327–29

Inheritance. See Role inheritance

Insurance company case study, 315–24

Integrity

Biba’s model, 47–48

Clark-Wilson model, 48–49

defined, 2, 3

importance to users, 9

Integrity star property, 48

Integrity verification procedure (IVP), 49

Interoperable relational and object-oriented

database (IRO-DB), 307–8

Intranet users, 319–20

IRO-DB, 307–9

IRO-DB ESPRIT-III, 307

ISO 10181-3, 286

Isolation, 35–36

J

Java, 263–68

JDK 1.2 security model

overview, 299–300

security model evolution, 300–303

Web application, 305–306

Java Database Connectivity (JDBC), 266–68

JDK 1.0 security model, 300–5

K

Kerckhoffs’ law, 32

Kuhn’s construction, MLS, 136, 138

Kuhn’s necessary and sufficient conditions, 117

Kuhn’s properties, 108–9

L

Layered design, 310

LDAP directory, 286

Least common mechanism, 33

Least privilege

and roles, 10

defined, 5, 32

in dynamic SoD, 104–5

in economic model, 20

rationale of, 57–58

strict, 276

Leeson, Nicholas, 99

Liberal DAC, 128, 130–31

Liberal *-property, 132–33

Limited role hierarchies, 90–93, 182

LOCK system, 53

M

MAC

appropriateness of, 10–11

compared to RBAC, 17–18, 127–28

defined, 8

enforcing using RBAC, 131–36

key feature, 8

policies, 45–47

running RBAC, 143–44

Mainframe era, 6–8

Maintain phase, 225

Manageability, 37

Mandatory access control. See MAC

Mapping

core RBAC, 65–71

enterprise to system view, 65–71

RBAC on MLS, 136–43

role relations, 68

Maximum security level, 143

Military access control rules, 7

Minimum security level, 143

MLS. See Multilevel secure

Model elements, ERBAC, 246, 247–50

Model relations, ERBAC, 246, 250–52

Modified privilege set, 143

Index 375

Most privileged domain, 36

Multilevel grant, 128, 131

Multilevel secure (MLS)

Bell-LaPadula model, 6–8

for classified information, 127

implementing in MAC, 133–36

information flow control, 49–50

RBAC implementation, 136–43

RBAC interrelationship, 143–44

unauthorized modification of information,

47

Multiline Insurance Company, 315–24

Multiple inheritance, 92–93, 94–95

Mutual exclusion, 110–11

N

Named protection domain (NPD), 10

Napoleon prototype, 279–80

Necessary conditions, 117

NFS, 296–99

NIST

ERBAC model, 246

RBAC international standards, 15, 191

study, 10–11

Nodelist interface, 265, 266

Nonhierarchical security levels, 46

O

Object-based SoD, 106–7

Object ownership, DAT, 45

Objects

defined, 4, 31

history of, 6

in access control, 31

in ACL groups, 59

in DTE model, 52–53

privacy policy, 149

resource, 31

resource vs. system, 31

Obligation, 150, 152–53

Occurrence feature, 260

One-level grant, 128, 130

Open design (Kerckhoffs’ law), 32

Operations

defined, 4–5

privacy policy, 149–50

Operational SoD, 105–6

Oracle Database 10g, 329–33

Orange Book, 8

Order of events, 276

Organizational productivity, 319

Organizational unit (OU), 85–87

Organization chart hierarchies, 85–87

P

Periodicity, 119

PERMIS Project, 285–86

Permission inheritance, 76–77

Permissions

core RBAC, 62–64

decommissioning, 23

defined, 5

domain-domain, 53

domain-type, 53

Java security model, 304–6

mapping in core RBAC, 69–71

NFS, 298

revocation of, 41–42

role control center, 207–10

UNIX environment, 292–96

User’s inability to pass on, 17

WFMSs, 277

See also Least privilege; Privileges

Personally identifiable information (PII), 147,

158–59

Pluggable authentication module (PAM), 292

Policy attribute certificate (AC), 285–86

Policy elements, 148–49

Policy execution service, 346

Policy specification module, 148–50

PRA02, 192, 194–96

PRA97, 191

Prerequisite conditions, 191, 192–93

Preventive controls, 163

Primitive operations, 38–40

Privacy

access control framework, 148

adding entities to RBAC, 151–55

authorization, 160–62

business purpose entity, 153–54

compliance, IT control, 163–64

data usage entity, 154–55

identifying business purposes, 157–58

identifying data usage entities, 158–60

integrating privacy support, 155–60

overview, 147

376 Index

policy specification module, 148–50

privacy-aware model, 155

regulatory compliance, 162–68

requirements, 148

rule binding, 160–62

Privacy-aware RBAC, 155, 160–62, 221

Privacy-RBAC-ACF, 160–62

Privileges

DirX Identity model, 348–51

Informix Dynamic Server, 328–29

Oracle Database 10g, 333

SoD assignment, 111–17

Sybase, 338–40

UNIX environment, 293

user’s inability to pass on, 17

XML specification, 249–50

See also Least privilege; Permissions; Privilege

sets

Privilege sets

MLS, 139–40

modified, 143

Product classes, 310

Protection bits, 44

Provisioning rule, 349

Psychological acceptability, 33

Public key infrastructure (PKI), 16, 285

Purpose

defined, 150

privacy policy, 151–52

Q

Qualifiers, role, 89–90

R

RAND Corporation report, 6–7

Range of capabilities, 46–47

RBAC

administration features, 58

authorization management, 19–23

case study, 315–24

core features, 57–71

DAC/MAC comparison, 17–18, 127–28

defined, xv

DTE model comparison, 53–54

economics of, 19–20

implementation costs, 320–22

in enterprise security administration, 340–59

for FDBSs, 306–9

in Java, 299–306

installation examples, 229–32

integrating with enterprise infrastructures,

271–72

international standards, 15

on MLS systems, 136–43

model taxonomy, 58

NIST standard, 15, 191

origins of, 9–16

privacy-aware model, 155, 160–62

productivity advantages, 15–16

regulatory compliance, 162–68

in relational DBMS products, 326–40

resource provisioning, 23

running MAC simultaneously, 143–44

in security service modules, 309–11

temporal constraints, 118–23

temporal issue policies, 58

for UNIX environments, 291–99

user functions policies, 17

in Web environments, 280–91

for WFMSs, 272–80

workflow systems, 15

XACML profile, 185–86

XML schemas, 361–67

See also Core RBAC; Dynamic constrained

RBAC; Hierarchical RBAC; Static constrained

RBAC

RBAC1 model, 14–15

RBAC2 model, 14–15

RBAC96

administrative roles, 190

features, 14–15

RBAC-Solaris, 291–96

Reconcile phase, 225

Reference model, INCITS 359, 172–73

Reference monitor

as abstraction, 33–34

completeness principle, 34–35

defined, 33

isolation principle, 35–36

sufficiency of, 37

verifiability principle, 36–37

Regulatory compliance

Gramm Leach Bailey Act, 16, 147, 166

HIPAA, 16, 166

overview, 162–64

RBAC model, 166–68

Sarbanes-Oxley Act, 16, 164–65

Index 377

Relational DBMS

motivations for using, 325

RBAC in, 326–40

Relations, core RBAC, 174–75

Remote procedure call (RPC), 296

Resource objects, 31

Resource provisioning

RBAC advantages, 20–23

RBAC overview, 19–23

Review functions

core RBAC, 175–76

defined, 174

dynamic SoD, 181

hierarchical RBAC, 178

static SoD (SSD), 180

Revocation of rights

commands, 41–42

core RBAC, 61

in DAC, 129, 130–31

static SoD, 105

RHA
1

model, 199

RHA
2

model, 199

RHA
3

model, 199

RHA
4

model, 200–3

RNODE, 297

Role ACs, 285–86

Role activation

constraints, 120–23

core RBAC, 64–65

defined, 120

Informix Dynamic Server, 327–28

Java security models, 306

NFS, 297

Oracle Database 10g, 329–30, 331–32

Sybase, 336–37

UNIX environment, 292

WFMSs, 278

Role administrator, 190

Role assignment

defined, 11

DirX Identity model, 349–50

Informix Dynamic Server, 327–29

Java security model, 305

Java security models, 306

Oracle Database 10g, 330–31

SAM Jupiter, 354, 354–55

SoD, 111–17

Sybase, 335–36

UNIX environment, 292

WFMSs, 277

XML schemas, 251–52, 256

Role authorization, 11. See also Role assignment

Role-based access control. See RBAC;

Role-based administration

Role-based administration

background and terminology, 189–92

Crampton-Loizou model, 196–203

PRA02, 192–96

role control center, 203–11

URA02, 192–96

Role control center (RCC), 203–11

Role-deactivation constraints, 121

Role discovery

overview, 224–26

Role Miner, 227–28

Sage DNA, 226–27

Role enabling

constraints, 120–23

defined, 120

Role engineering

approaches, 156

costs, 321–22

defined, 155, 213

goal-driven/hybrid approach, 220–24

health care example, 232–37

integrating privacy policy support, 155–60

overview, 213–15

RBAC installation, 229–32

role discovery, 224–28

role management, 228–29

scenario-driven approach, 215–19

Role graphs, 14, 204–6

Role hierarchies

administrative role authorization, 191–92

connector roles, 82–85

from flat roles, 74–75

general and limited, 90–93

geographical regions, 87–88

Informix Dynamic Server, 328

inheritance schemes, 75–80

Oracle Database 10g, 333

organizational structures, 81–88

organization charts, 85–87

overview, 73–74

role types, 89–90

SoD in, 108–9

Standord model, 93–95

Sybase, 337–38

378 Index

temporal, 123

WFMSs, 277

Role inheritance

as authorization, 73

direct privilege, 75–76

hierarchy structures, 81–88

immediate, 81

limiting, 84

multiple, 92–93, 94–95

permission and user membership, 76–77

role control center, 204–6

static SoD, 101

user containment, 78–80

XML schemas, 250–52, 254–56

Role management

Contouring Engine, 229

SmartRoles, 228–29

Role membership inheritance, 81

Role Miner, 227–28

Role mining. See Role discovery

Role-permission analysis (RPA), 221–23

Role-permission maintenance (RPM), 221, 224

Role-permission refinement (RPR), 221, 223–24

Role permissions. See Permissions

Role ranges, 191, 194

Role relations

concepts, 60–62

mapping, 68

Role resolution service, 346

Roles

access decisions, 17

ACL groups comparison, 59–61

administrative, 190

and scenarios, 216–17

application of, 16

assigning categories to, 140–41

assigning privileges to, 113–14

assigning to users, 114–17

authorized for users, 23

business-purpose relationship, 157–58

combiner, 93

connector, 82–85

core RBAC, 61

functional, 10

hierarchy of, 13

MLS, 138–39

permissions authorized for, 23

qualifiers, 89–90

RBAC origins, 9–10

scope of, 65, 67

Role semantics, 291–92

Role types

introduction, 14

qualifiers, 89–90

Role views, 206–7

RRA97, 191, 192

S

Safety, access matrix view, 8

Safety condition, 113

Sage Discovery & Audit (DNA), 226–27

SAM Jupiter, 351–56

Sandhu-Munawer construction, 129–30

Sarbanes-Oxley Act, 16, 164–65

SAX API, 263

Scalability, 37

Scenario-driven role engineering

overview, 215–16

scenarios and roles, 216–17

subprocesses, 217–19

Scope of a role, 65, 67

Secure design, 31–33

SecureFlow prototype, 280

Security kernel

in isolation principle, 35–36

verifiability, 6–37

Security service modules, autonomous, 309–11

Separation of duty (SoD)

ANSI definition, 98

assigning privileges, 113–14

assigning roles, 114–17

and Chinese wall, 10

in Clark-Wilson model, 50

defined, 9, 58

dynamic, 104–5

and integrity, 48–49

history- and object-based, 106–7

mutual exclusion, 110–11

operational, 105–6

overview, 97–100

privilege assignment, 111–13

in role hierarchies, 108–9

static, 100–3, 105

static and dynamic constraints, 109–10

types, 100–7

using in real systems, 107–117

WFMSs, 276

Index 379

Separation of duty (continued)

See also Dynamic separation of duty; Static

separation of duty

Separation of privilege, 32

Server pull, 22

Service classes, 310

Service layer, 310

Session, 4

Simple integrity property, 48

Simple security property, 46, 132

Simple security rule, 7

SmartRoles, 228–29

SQL DBMS environment, 266–68

Standardization

ANSI/INCITS RBAC, 171–85

ASTM E31.20, 184–85

core RBAC, 174–76

dynamic SoD relation, 180–81

functional specification, 173–78

hierarchical RBAC, 176–78

INCITS CS1.1, 183–84

INCITS 359–2004, 15

industry consensus, 15

options and packaging, 181–83

overview, 171–72

RBAC reference model, 172–73

static separation of duty relation, 179–80

XACML profile, 185–86

Stanford model, 93–95

Star property, 46

Static *-property, 133

Static constraints

in MAC, 132–33

overview, 109–10

Static separation of duty (SoD)

functional specification, 179–80

functional specification packages, 182–83

overview, 100–3, 105

reference model, 173

role control center, 206

XACML profile, 186

Strict *-property, 132, 134

Strict DAC, 128, 130

Strict least privilege, 276

Subgraph, 78–79

Subjects

defined, 4, 30

history of, 6

in access control, 30–31

in ACL groups, 59

in core RBAC, 64

in DTE model, 52

overview, 30–31

privacy policy, 149

properties of, 31

vs. users, 31

Sufficient conditions, 117

Supporting system functions

core RBAC, 175

defined, 174

dynamic SoD, 180–81

hierarchical RBAC, 177–78

static SoD (SSD), 179

Sybase Adaptive Server Enterprise, 333–40

System objects, 31

Systems administration, 318–319, 320

System view, mapping, 65–71

T

Target system access control, 347–48

Task entity, 151

Task relationship

business purpose, 157–58

TCSEC standard, 8, 9, 10, 17

DAC definition, 45

DAC policy, 17

MAC definition, 18

TCSEC standard, 8, 9, 10, 17

TE certificate, 287–90

Temporal constraints

need for, 118–19

overview, 118

support requirements, 122–23

taxonomy, 119–22

Temporal hierarchies, 123

Temporal RBAC (TRBAC), 118–23

Timely revocation of trust, 105

Tivoli Identity Manager, 356–59

Tools

role discovery, 224–28

role management, 228–29

Top-down analysis, 214, 225

Transaction authorization, 11

Transaction control expressions, 106

Transformation procedure (TP), 49

TRBAC model, 118–23

Tree hierarchy, 138

380 Index

Trojan horse attack, 45

Trusted Computer System Evaluation Criteria

(TCSEC), 8, 9, 10, 17

Trust policy language (TPL), 288

Two-level grant, 128, 130

Types, associated with objects, 53

U

Uniform resource identifier (URI), 286

UNIX environments

administration, 291–96

permissions, 282–96

RBAC implementation, 296–99

role semantics, 291–92

URA02, 192–96

URA97, 191

User containment inheritance, 78–80

User membership inheritance, 76–77

User productivity, 19

User pull, 22

User-role associations, 23

Users

assigning roles to, 114–17

defined, 4

global/local associations, 68–69

protection bit categories, 44

revoking rights, 41–42, 61, 105

vs. subjects, 31

V

Verifiability, reference monitor, 36–37

Verification, ERBAC model, 257–58

Veteran Affairs (VA) Department

privilege management, 184–85

role engineering examples, 232–37

SoD controls, 99–100

Virtual file system (VFS), 296

VNODE, 297

W

Web environments

implementing RBAC, 281–90

RBAC models suitability, 280–81

security policies, 186

Well-formed transaction

defined, 9

and integrity, 48–49

verification of, 257–58

WFMS. See Workflow management system

Workflow authorization server (WAS), 280

Workflow Management Coalition (WFMC),

272–73

Workflow management system (WFMS)

access control design, 274–76

components, 273–74

overview, 15, 16, 272

RBAC model design, 276–78

research prototypes, 279–80

temporal constraints, 118

workflow concepts, 272–73

X

X.509 certificates, 284–85, 287

XACML profile, 185–86

XML schemas

access control data encoding, 253–56

choice of, 246

enterprisewide data control, 262–68

limitations, 258–62

model entities, 246, 247–50

model relations, 246, 250–52

RBAC encoded data, 365–67

RBAC model, 361–64

specification, 246–47

verification, 257–58

Index 381

Recent Titles in the Artech House
Computing Library

Advanced ANSI SQL Data Modeling and Structure Processing, Michael M. David

Advanced Database Technology and Design, Mario Piattini and Oscar Díaz, editors

Action Focused Assessment for Software Process Improvement, Tim Kasse

Building Reliable Component-Based Software Systems, Ivica Crnkovic and
Magnus Larsson, editors

Business Process Implementation for IT Professionals and Managers,
Robert B. Walford

Configuration Management: The Missing Link in Web Engineering, Susan Dart

Data Modeling and Design for Today’s Architectures, Angelo Bobak

Developing Secure Distributed Systems with CORBA, Ulrich Lang and
Rudolf Schreiner

Future Codes: Essays in Advanced Computer Technology and the Law,
Curtis E. A. Karnow

Global Distributed Applications with Windows® DNA, Enrique Madrona

A Guide to Software Configuration Management, Alexis Leon

Guide to Standards and Specifications for Designing Web Software, Stan Magee
and Leonard L. Tripp

Implementing Electronic Payment Systems, Cristian Radu

Internet Commerce Development, Craig Standing

Knowledge Management Strategy and Technology, Richard F. Bellaver and
John M. Lusa, editors

Managing Computer Networks: A Case-Based Reasoning Approach, Lundy Lewis

Metadata Management for Information Control and Business Success, Guy Tozer

Multimedia Database Management Systems, Guojun Lu

Practical Guide to Software Quality Management, John W. Horch

Practical Process Simulation Using Object-Oriented Techniques and C++,
José Garrido

Risk-Based E-Business Testing, Paul Gerrard and Neil Thompson

Secure Messaging with PGP and S/MIME, Rolf Oppliger

Software Fault Tolerance Techniques and Implementation, Laura L. Pullum

Software Verification and Validation for Practitioners and Managers,
Second Edition, Steven R. Rakitin

Strategic Software Production with Domain-Oriented Reuse, Paolo Predonzani,
Giancarlo Succi, and Tullio Vernazza

Successful Evolution of Software Systems, Hongji Yang and Martin Ward

Systems Modeling for Business Process Improvement,
David Bustard, Peter Kawalek, and Mark Norris, editors

User-Centered Information Design for Improved Software Usability,
Pradeep Henry

Workflow Modeling: Tools for Process Improvement and Application
Development, Alec Sharp and Patrick McDermott

For further information on these and other Artech House titles,

including previously considered out-of-print books now available through our

In-Print-Forever® (IPF®) program, contact:

Artech House Artech House

685 Canton Street 46 Gillingham Street

Norwood, MA 02062 London SW1V 1AH UK

Phone: 781-769-9750 Phone: +44 (0)20 7596-8750

Fax: 781-769-6334 Fax: +44 (0)20 7630-0166

e-mail: artech@artechhouse.com e-mail: artech-uk@artechhouse.com

Find us on the World Wide Web at:

www.artechhouse.com

384

