
$ 19.99 US
£ 12.99 UK
€ 17.99 EU

Prices do not include
local sales tax or VAT
where applicable

Packt Publishing

Birmingham - Mumbai

www.packtpub.com

Pluggable Authentication Modules

PAM (Pluggable Authentication Modules) is a modular and flexible authentication management
layer that sits between Linux applications and the native underlying authentication system.

The PAM framework is widely used by most Linux distributions for authentication purposes.
Originating from Solaris 2.6 ten years ago, PAM is used today by most proprietary and free
UNIX operating systems including GNU/Linux, FreeBSD, and Solaris, following both the
design concept and the practical details. PAM is thus a unifying technology for authentication
mechanisms in UNIX.

This book provides a practical approach to UNIX/Linux authentication. The design principles are
thoroughly explained, then illustrated through the examination of popular modules. It is intended
as a one-stop introduction and reference to PAM.

What you will learn from this book
• Install, compile, and configure Linux-PAM on your system
• Download and compile third-party modules
• Understand the PAM framework and how it works
• Learn to work with PAM’s management groups and control fl ags
• Test and debug your PAM confi guration
 • Install and configure the pamtester utility to check your PAM confi guration
 • Work with PAM modules common to various operating systems
 • Use PAM services for authentication in applications
 • Mount encrypted home directories, automatically load SSH, and work with directory

services like Winbind and LDAP
 • Restrict access to r-services and limit resources used by users
 • Extend PAM’s functionality by developing new modules and PAM-aware applications
 • Create custom PAM modules in C using the PAM API

Pluggable A
uthentication M

odules
K

enneth G
eisshirt

Who this book is written for
This book is for experienced system administrators and developers
working with multiple Linux/UNIX servers or with both UNIX and
Windows servers. It assumes a good level of admin knowledge, and that
developers are competent in C development on UNIX-based systems.

F r o m T e c h n o l o g i e s t o S o l u t i o n s

Pluggable Authentication Modules

The Definitive Guide to PAM for Linux SysAdmins and
C Developers

A comprehensive and practical guide to PAM for Linux:
how modules work and how to implement them

Kenneth Geisshirt

Pluggable Authentication
Modules
The Definitive Guide to PAM for Linux
SysAdmins and C Developers

A comprehensive and practical guide to PAM
for Linux: how modules work and how to
implement them

Kenneth Geisshirt

 BIRMINGHAM - MUMBAI

Pluggable Authentication Modules
The Definitive Guide to PAM for Linux SysAdmins and
C Developers

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means, without
the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure
the accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or implied.
Neither the author, Packt Publishing, nor its dealers or distributors will
be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information
about all the companies and products mentioned in this book by the
appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

First published: January 2007

Production Reference: 1211206

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-904811-32-9

www.packtpub.com

Cover Image by www.visionwt.com

Credits

Author

Kenneth Geisshirt

Reviewers

Ralf Hildebrandt

Huang Zhen

Development Editor

Louay Fatoohi

Assistant Development Editor

Nikhil Bangera

Technical Editor

Mithil Kulkarni

Editorial Manager

Dipali Chittar

Project Manager

Patricia Weir

Indexer

Bhushan Pangaonkar

Proofreaders

Martin Brooks

Chris Smith

Layouts and Illustrations

Shantanu Zagade

Manjiri Nadkarni

Cover Designer

Shantanu Zagade

About the Author

Kenneth Geisshirt is a chemist by education, and is a strong free
software advocate. He spent his Christmas holidays in 1992 installing
SLS Linux, and GNU/Linux has been his favorite operating systems
ever since.

Currently, he does consultancy work in areas like scientific computing and
Linux clusters. He lives in Copenhagen, Denmark with his partner and
their two children. You can find him at http://kenneth.geisshirt.dk/.

About the Reviewers

Ralf Hildebrandt is an active and well-known figure in the Postfix
community, working as a systems engineer for T-Systems, a German
telecommunications company.

He speaks about Postfix at industry conferences and hacker conventions
and contributes regularly to a number of open source mailing lists. Ralf
Hildebrandt is co-author of The Book of Postfix.

Huang Zhen is a software engineer at IBM China Development Labs.

He has been working on the Linux-HA project since 2004 and contributed
several components to the project.

PAM-related functions in the Linux-HA project were developed by him.

Table of Contents
Preface 1
Chapter 1: Introduction to PAM 7

History of PAM 7
PAM Solves the Authentication Problem 8
Need for PAM 9
Installing Linux-PAM 9

Downloading 10
Compiling 10
Extra Modules 12

PAM Implementations 12
Summary 14

Chapter 2: Theory of Operation 15
PAM File System Layout 15
The PAM Framework 17
Online Documentation 19
Services 20
Management Groups 22

The Auth Group 23
The Account Group 24
The Session Group 25
The Password Group 25

Stacking 26
Control Flags 26

Requisite 27
Required 27
Sufficient 27
Optional 28
Order matters 28

Table of Contents

[ii]

Consolidating Your PAM Configuration 29
Securing Your Environment 32

An Example 32
Summary 35

Chapter 3: Testing and Debugging 37
Where to Test? 37
Leaving a Back Door Open 38
Test Cases 39
Getting Backstage 40

Enabling Logging 40
Reading the Log 42

The pamtester Utility 44
Automating PAM Tests 46
Bad Example 47
Summary 49

Chapter 4: Common Modules 51
Parameters 51

debug 52
use_first_pass 53
try_first_pass 55
expose_account 55

Modules Related to User Environments 56
pam_mkhomedir 56
pam_mount 57

Modules Used to Restrict Access 58
pam_succeed_if 58
pam_nologin 59
pam_wheel 60
pam_access 60
pam_deny 61

Modules Related to Back-End Storage 62
pam_unix 62
pam_winbind 63
pam_ldap 63
pam_mysql 64

Summary 65
Chapter 5: Recipes 67

Encrypted Home Directories 67
Working with Secure Shell 68
Apache htaccess Made Smart 71

Table of Contents

[iii]

Directory Services 72
Winbind 73

Overview 73
Winbind Configuration 75
Kerberos 76
Joining the Directory 77
Finally PAM 78

LDAP 80
Installation 81
The LDAP Client 81
The Name Service Switch 82
PAM Configuration 82

Limiting r-Services 83
Limiting Resources 85
Summary 87

Chapter 6: Developing with PAM 89
PAM-aware Applications 89

Opening and Closing a PAM Session 91
Authenticating the User 92
Account Health Check 93
Manipulating the PAM Handling Data Structure 93
Conversation Functions 94
Working with Error Messages 95

Developing your Own PAM Modules 95
The Management Groups 96
Return Codes 97
Supporting Functions 98
Compiling 99

Summary 100
Appendix A: Source code 101

Vault – Secure Database 101
The ssh_tunnels Module 103

Index 107

Preface
PAM (Pluggable Authentication Modules) was introduced in 1996 by two
developers at SUN Microsystems, and Solaris 2.6 was the first operating
system that used PAM for authentication of users. Today, most UNIX
and Linux operating systems implement PAM, and it unifies UNIX across
hardware and software. PAM is a modular and flexible authentication
management layer that sits between Linux applications and the native
underlying authentication system. PAM can be implemented with
various applications without having to recompile the application when
PAM configuration is changed. This book is a short guide to how PAM
works, how it is configured, and how to develop with PAM.

What This Book Covers
Chapter 1 begins with an introduction to the problem of authentication. It
outlines the problems of authentication, and discusses how the framework
of PAM can provide solutions for the authentication problems and reduce
the complexity. This chapter also discusses installing Linux-PAM, and
downloading and compiling third-party modules.

Chapter 2 gives you a detailed view on working of PAM, its framework,
the PAM file structure, and its architecture diagram. The four
management groups (auth, account, session, and password) are
introduced and we discuss how they interact with each other using
control flags. We then explain the logon process using an example. An
example PAM configuration is provided at the end.

Preface

[2]

Chapter 3 gives the reader methods and guidelines for testing
and debugging a PAM configuration. Typical problems in PAM
configurations are discussed and a number of simple test cases are
analyzed and dissected. We cover the pamtester utility and finally see
what not to do when configuring PAM.

Modules are a very central concept in PAM. PAM modules provide the
actual services that the application expects. Chapter 4 is a short guide to
modules and the parameters found in most PAM implementations. The
usage of modules is explained with suitable examples.

Chapter 5 presents a number of short recipes for using PAM in the
real world. This chapter shows how to work with PAM for mounting
encrypted home directories, automatic SSH key loading, and directory
services like Winbind and LDAP. We also look at a PAM-based
alternative to using Apache’s htaccess file. We round up the chapter
with a discussion on restricting access to r-services and limiting the
resources used by users.

The power of PAM lies in its capability to let users extend its functionality
by developing new modules. Chapter 6 introduces us to PAM
development and we develop a PAM-aware application. This chapter will
also explain how to develop your own custom PAM module in C.

The Appendix provides the source code for a PAM-aware application and
a PAM module (ssh_tunnels module).

What You Need for This Book
Knowledge of UNIX (or Linux) is required. The reader should not
be afraid of command lines. Some knowledge of programming is
desirable, in particular of C or related programming languages. No prior
knowledge of PAM is required.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish
between different kinds of information. Here are some examples of these
styles, and an explanation of their meaning.

There are three styles for code. Code words in text are shown as follows:
"The application initializes the PAM runtime by calling the pam_start
library function in the PAM library."

A block of code or command-line statements will be set as follows:

pamela@pamela:~$ apropos pam

pam (7) - Pluggable Authentication Modules
for Linux

pam_authenticate (3) - authenticate a user

pam_chauthtok (3) - updating authentication tokens

pam_end (3) [pam_start] - activating Linux-PAM

pam_fail_delay (3) - request a delay on failure

pam_get_item (3) - item manipulation under PAM

pam_getenv (8) - get environment variables from /
 etc/environment

When we wish to draw your attention to a particular part of a code/
command block, the relevant lines or items will be made bold:

pamela@pamela:~$ apropos pam

pam (7) - Pluggable Authentication Modules
for Linux

pam_authenticate (3) - authenticate a user

pam_chauthtok (3) - updating authentication tokens
pam_end (3) [pam_start] - activating Linux-PAM

pam_fail_delay (3) - request a delay on failure

pam_get_item (3) - item manipulation under PAM

pam_getenv (8) - get environment variables from /
 etc/environment

New terms and important words are introduced in a bold-type font.

Preface

[4]

Reader Feedback
Feedback from our readers is always welcome. Let us know what you
think about this book, what you liked or may have disliked. Reader
feedback is important for us to develop titles that you really get the most
out of.

To send us general feedback, simply drop an email to feedback@
packtpub.com, making sure to mention the book title in the subject of
your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in
either writing or contributing to a book, see our author guide on
www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of
things to help you to get the most from your purchase.

Downloading the Example Code for
the Book
Visit http://www.packtpub.com/support, and select this book from
the list of titles to download any example code or extra resources for this
book. The files available for download will then be displayed.

The downloadable files contain instructions on how to use them.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our
contents, mistakes do happen. If you find a mistake in one of our
books—maybe a mistake in text or code—we would be grateful if you
would report this to us. By doing this you can save other readers from
frustration, and help to improve subsequent versions of this book. If you
find any errata, report them by visiting http://www.packtpub.com/
support, selecting your book, clicking on the Submit Errata link, and
entering the details of your errata. Once your errata have been verified,
your submission will be accepted and the errata added to the list of
existing errata. The existing errata can be viewed by selecting your title
from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a
problem with some aspect of the book, and we will do our best to
address it.

Introduction to PAM
Welcome to the wonderful world of PAM. PAM is an acronym for
Pluggable Authentication Modules. Together with boot loaders PAM lives
a quiet life—only a few specialists know and care about their existence.

PAM can do many things for you but the primary focus is to authenticate
your users. Moreover, PAM lets you set up the environment the users
will work in. And when the users log out, PAM will tear down the
working environment in a controlled way.

History of PAM
The history of PAM goes back to 1995 when developers from Sun
Microsystems implemented a generic framework for Solaris. When
Solaris 2.6 was released in August 1997, PAM was an integrated
component of the operating system. Ever since then, Solaris has been
using PAM for authentication. In February 1997, the Linux-PAM project
began, and most GNU/Linux distributions today are using PAM.

The official website of Linux PAM is http://www.kernel.org/pub/
linux/libs/pam/, while SUN Microsystems documents the Solaris
PAM at http://www.sun.com/software/solaris/pam/, and OpenPAM
used by FreeBSD can be found at http://trac.des.no/openpam/. PAM
implementations are based on an open standard from the Open Group
named XSSO, which can be found at http://www.opengroup.org/pubs/
catalog/p702.htm.

Introduction to PAM

[8]

The primary operating system of this book is GNU/Linux, but PAM does
exist for many operating systems. Configuration files are almost identical
across Linux and UNIX operating systems—module names might differ
slightly and some modules are not supported on every contemporary
UNIX. This means that the examples in this book can be carried from one
UNIX environment to another with minor adjustment.

The examples in the book have been tested under Ubuntu Linux 6.06 LTS
or SuSE Linux Enterprise Server 9 SP2 (as VMware guests).

PAM Solves the Authentication
Problem
Before you can begin working with your computer, you have to log in.
At least, this is true in the UNIX world and corporate Windows world.
In order to gain access to the computer, the installed software, and data,
you have to prove who you are. This is the authentication problem
(or solution, depending on your view). Typically, you have to provide
two items: a user name and a password. Only if the user name exists
in the user database and the password matches, will you gain or be
granted access.

Traditionally, UNIX authentication is done by comparing the (encrypted)
password for the user in the password file (/etc/shadow for most modern
UNIX and Linux systems, and /etc/passwd in the old days), but each
program that requires authentication implements its own authentication
mechanisms. The wilderness of authentication mechanisms becomes
more visible when you add various applications that are doing some
sort of authentication. Logging in directly to a graphical user interface
requires a display manager, which must be able to validate the users.
Now add services like FTP, TELNET, IMAP, SSH, and possibly a growing
set of web applications, which require authentication of their users. As a
system administrator you will end up spending a lot of time maintaining
many user databases besides /etc/passwd. Your might have a nightmare
if the user databases become inconsistent, for example, a misspelled user
name in one place can be difficult to find. Moreover, the users have to
remember many user names and passwords.

Chapter 1

[9]

Need for PAM
PAM and PAM-aware applications reduce the complexity of
authentication. With PAM, the system administrator can use the same
user database for every login process of your system—if he or she
wishes to do so. Moreover, it is possible to use more than one underlying
authentication mechanisms (or back end)—controlled by PAM and
transparent to the users. The good news for the systems administrator
is that knowledge in one UNIX operating system (one particular PAM
implementation) can easily be carried over on to another UNIX
operating system. Learning PAM will make you a better UNIX
systems administrator.

PAM has a well defined API, and PAM-aware applications will
not break if the system administrator changes the underlying
authentication configuration.

Furthermore, the password file does not scale. It might work with 100
users, but working with 5000 users is a completely different story. PAM
can easily scale to tens of thousands depending on the chosen back end;
changing the back end user database, for example, from a flat file to an
LDAP server will be painful if you are not using PAM.

Application programmers can take advantage of PAM if an application
requires some kind of authentication. Using PAM for authentication
requires much less programming than developing a complete set of
authentication functions, and the application programmer can rely on
the system administrator to choose an appropriate back end to store user
names and passwords.

Installing Linux-PAM
In general, the Linux distributions, the BSD family, and Solaris come
with a PAM implementation bundled with the operating system as part
of the operating environment. In these cases, installation is done as
you install the operating system. Slackware is one of the last PAM-free
Linux distributions and in UNIX operating systems like AIX, PAM is an
add-on product.

Introduction to PAM

[10]

In this section, the installation of Linux PAM on Slackware 11 is
explained. Installing PAM can be dangerous since you can leave your
computer in a state where you cannot log in and correct mistakes.

Downloading
Linux PAM can be downloaded from its website hosted by kernel.
org. Currently the 0.99.6.3 version of Linux PAM is used. The following
commands download and unpack Linux PAM:

 # wget http://www.kernel.org/pub/linux/libs/pam/pre/
 library/Linux-PAM-0.99.6.3.tar.gz

 # tar xzf Linux-PAM-0.99.6.3.tar.gz

The source code is now located in a directory called Linux-PAM-0.99.6.3.
But if you are going use PAM, you will need to have PAM-aware
applications. The Linux utility (the name of the package is linux-utils)
contains a set of applications that are used for letting users log in.
Downloading and unpacking this package is done by the following
two commands:

 # wget http://www.kernel.org/pub/linux/utils/util-
 linux/util-linux-2.12r.tar.gz

 # tar xzf util-linux-2.12r.tar.gz

Both source code archives are 1-2 MB in size.

Compiling
After you have downloaded and unpacked the files, you are ready to
compile the source code.

Compiling Linux PAM is straightforward. The following sequence of
commands will compile and install Linux PAM:

cd Linux-PAM-0.99.6.3

./configure

make

Chapter 1

[11]

make install

cp conf/pam.conf /etc

The last command will copy a simple configuration file. Chapter 2 will
explain in detail how this configuration file is written.

Turning to the linux-utils package, the compilation requires a bit more
work. The source code is unpacked in the directory util-linux-2.12r.
In this directory, you have to edit a file named MCONFIG. The file is a long
series of configuration options for the utilities. The important option is
called HAVE_PAM. In order to have the Linux utilities use PAM, set this
option to YES. The line in the MCONFIG file should read:

HAVE_PAM=yes

Compilation is now done by the following commands:

 # make

 # cd login-utils

 # make login

 # cp login /usr/bin

The login program is used to validate the user at the console as he or she
tries to log in. The last command above replaces the original version
with a PAM-aware version. The next log in will be authenticated by
PAM. Slackware stores log messages for authentication in the file
/var/log/secure, it is possible to check if PAM is being used by reading
this file.

The last few line of /var/log/secure should be:

Dec 10 17:27:10 pamela login: pam_unix(login:session)
session opened for user root by LOGIN(uid=0)
Dec 10 17:27:10 pamela login: ROOT LOGIN ON tty1

Introduction to PAM

[12]

Extra Modules
Linux PAM is distributed with a large set of modules but you might be
in the situation where you wish to use a third-party module. In Chapter
2, an example is presented. This example uses a PAM module called
pam_mount. This module is not distributed with Linux PAM or any other
PAM implementation.

The module is downloaded from its website
(http://pam-mount.sourceforge.net). Once the module is downloaded,
it is compiled and installed by the following commands:

 # tar xjf pam-mount-0.18.tar.bz2
 # cd pam_mount-0.18
 # ./configure
 # make
 # make install

Fortunately, most modules can be compiled in a similar way using the
following commands:

 # ./configure
 # make
 # make install

PAM Implementations
As mentioned previously, PAM is not a new framework. Today, many
operating systems are using PAM for authentication, including Solaris,
GNU/Linux, FreeBSD, NetBSD, Mac OS X, AIX 5L, and HP-UX 11.
OpenVMS does not implement PAM but uses a similar concept called
ACME, and OpenBSD does not use PAM but PAM can be added.

FreeBSD and NetBSD share the code base for PAM. In older versions
of FreeBSD, Linux-PAM is used, but in newer versions (5.x and 6.x)
OpenPAM is used. According to the design principles of OpenPAM, it
tries to take the best from the PAM implementations under Solaris and
GNU/Linux. The OpenPAM implementation has a limited number of

Chapter 1

[13]

modules in the default installation but in the port collection (archive of
FreeBSD packages) a larger set of PAM modules can be found.

The situation in the Linux world is somewhat more complicated. The
Linux-PAM project lives a quiet life and has just reach version 0.99 (April
2006). The major Linux distributions are using PAM, including Novell/
SuSE, Red Hat, and Debian/Ubuntu. It seems that Slackware is probably
the last pocket of resistance. The table below correlates the version of the
distributions and Linux-PAM. As the table indicates the diversity is large.
The current versions of Linux-PAM is 0.99.6 and it seems that the Linux
distributions do not follow the advancement of Linux-PAM development,
as they are using older versions. For example, Ubuntu Linux is a very
popular distribution due to its frequent updates to recent version of
software. But in the case of PAM, Ubuntu 6.10 (November 2006) is using
a version of Linux-PAM released in March 2005. Exceptions are SuSE
Linux Enterprise Server 10 and Fedora Core 6, which use recent versions
of Linux-PAM.

Distribution Version PAM version Features Released
SuSE Linux
Enterprise Server

8 0.76 July 2002

9 0.77 Some third-
party modules

September 2002

9 service
pack 3

0.77 Some third-
party modules

December 2005

10 0.99.3 January 2006
Red Hat Enterprise
Linux

3 update 6 0.75 April 2001

4 0.77 September 2002

4 update 4 0.77 Newer build April 2006

Fedora Core 5 0.78 November 2004

6 0.99.6.2 November 2006
Debian GNU/
Linux

3.1 release 2 0.76 Many third-
party modules

July 2002

4.0 0.79 Many third-
party modules

Excepted
December 2006

Introduction to PAM

[14]

Distribution Version PAM version Features Released

Ubuntu Linux 5.10 0.76 Many third-
party modules

October 2005

6.06 0.77 Many third-
party modules

July 2006

6.10 0.79 Many third-
party modules

November 2006

Arch Linux 0.7.1 0.81 November 2005

Summary
This chapter outlines the problem and the roots of complexity of
authentication, and discusses how the framework of Pluggable
Authentication Modules (PAM) can provide solutions and reduce
the complexity. This chapter also discusses installing Linux PAM:
downloading its packages as well as compiling them. A brief introduction
about extra PAM modules is provided at the end.

PAM is a concept and a framework. It can be implemented in many
different ways, for example, PAM for Solaris, GNU/Linux, and FreeBSD/
NetBSD are implemented independently. Even among the GNU/Linux
distributions we see differences due to different versions. PAM bridges
the UNX operating systems since PAM implementations are very similar.
This book may be focused on GNU/Linux, but you should be able to
apply the concepts to your favorite UNIX operating system.

Theory of Operation
The PAM framework is complex and not very forgiving when it comes
to errors. This chapter gives you a detailed view of the working of PAM.
The theory of operation is independent of the operating system and
PAM implementation.

The complexity of PAM has many roots, and this chapter will introduce
many new concepts. General advice would be to read this chapter
carefully, and come back to it as you read further in the book. In order
to configure PAM successfully, you need to have all the components
working together correctly. So you need to understand the complete PAM
framework, which is covered by this chapter.

PAM File System Layout
Before we begin our tour into the world of PAM configurations we
should take a look at where PAM files are stored.

Theory of Operation

[16]

The PAM-aware applications are linked against the PAM library.
This library is typically located in the /lib directory with the name
libpam-X.so.0 where X is the version number. Typically, it is a symbolic
link to the real library, which makes it easier to have more than one
version installed. If you're an application developer who wishes to use

Chapter 2

[17]

PAM in your application, you will find the relevant header file as the file
named pam_modules.h in the /usr/include/security directory.

Any PAM implementation consists of a set of modules. The modules are
shared objects (.so files), which can be dynamically loaded as the PAM
configuration requests them. The shared objects are typically located in
/lib/security (GNU/Linux), or /usr/lib (FreeBSD) and have pam as
suffix in their names.

The configuration of PAM can be done in two equivalent ways. You
can either put everything in one single file /etc/pam.conf or split the
configuration by service in the directory /etc/pam.d. Most contemporary
implementations use the latter because it is easier to work with one
service at a time. The Solaris operating system uses the single file
model, while Linux-PAM will ignore /etc/pam.conf if the /etc/pam.d
directory exists. PAM-aware applications are located at different places in
the file system. The program for controlling login at the console is called
login and is located as /bin/login while other services like secure
shell is stored in the directory /usr/sbin. Some PAM modules required
configuration files beside the PAM configuration to operate. These
module-specific configuration files are stored in /etc/security.

PAM is not case sensitive when it comes to service and parameter
names, while file and directory names follow the rules govern by the file
system. This means that you might find examples in lower or upper case
depending on the conventions followed by the system administrator.
Mostly, lower case is preferred since it tends to be easier to read.

The PAM Framework
As a generic framework, PAM relies on dynamically loaded modules
(implemented as shared objects or so-files). A module can provide
mechanisms to authenticate users from user information stored in a
particular back end, for example, a flat file (like /etc/passwd) or a
directory server.

A PAM service module is a shared library that provides authentication
and other security services to applications such as login, or telnet.

Theory of Operation

[18]

The four types of PAM services are:

Authentication service modules
Account management modules
Session management modules
Password management modules

PAM modules can implement one or more of these services.
The PAM framework implements a well-defined API (Application
Programming Interface), and all modules must adhere to this API.
Applications communicate with the PAM library through the PAM
application programming interface (API).

•
•
•
•

Chapter 2

[19]

A module can provide methods for authenticating users with a particular
back end or setting up the working environment for the users.

Stacks of modules enable you to try more than one validation technique
during a single login attempt. You can even require that all modules in a
stack must accept the login attempt in order to authenticate the user, or
you can choose that one accepting module is sufficient, or mix and match
as needed without having to recompile your programs or reboot your
computer. This means that changing the back-end user database does not
require you to recompile the applications, and you can change it without
scheduling downtime for the users.

In the wonderful world of PAM you will find modules for almost anything
you can think of. Most UNIX and Linux operating systems only package a
limited set of modules. The Linux-PAM website has a large set of links—
see http://www.kernel.org/pub/linux/libs/pam/modules.html.

But if your search for functionality is not fruitful, you can implement your
own module. Chapter 6 of this book explains how to implement your own
modules. Modules are written in the ISO C programming language.

Online Documentation
PAM is documented as a set of man pages. The manual for UNIX and
Linux operating systems is often referred to as the man pages since the
program man is used to search and display the manual. As always, the
utility apropos can search your online documentation. The output of
apropos on Ubuntu Linux is shown below:

pamela@pamela:~$ apropos pam

pam (7) - Pluggable Authentication Modules
 for Linux

pam_authenticate (3) - authenticate a user

pam_chauthtok (3) - updating authentication tokens

pam_end (3) [pam_start] - activating Linux-PAM

pam_fail_delay (3) - request a delay on failure

pam_get_item (3) - item manipulation under PAM

Theory of Operation

[20]

pam_getenv (8) - get environment variables from /
 etc/environment

pam_open/close_session (3) [pam_open_session] -
 PAM session management

pam_open_session (3) - PAM session management

pam_set_item (3) - item manipulation under PAM

pam_setcred (3) - set the credentials for the user

pam_start (3) - activating Linux-PAM

pam_strerror (3) - return a textual description of a
 Linux-PAM error

pamtester (1) - test pluggable authentication
 module (PAM) facility

Services
Those applications that require authentication can register at PAM using
a service name. The name of the service is determined by the application
at the initial call to the PAM library during the authentication process,
which is a call to the library function pam_start. It is rare that the name
can be set by the user in a configuration file. The Linux box has the
following services:

pamela@pamela:~$ ls /etc/pam.d/

atd common-auth groupadd other useradd

charge common-pammount groupdel passwd userdel

chfn common-password groupmod ppp usermod

chsh common-session login su

 common-account cron newusers sudo

Besides the file names beginning with common, each file represents a
service, and PAM will use a configuration file named as the service if
the /etc/pam.d directory exists. If PAM is configured by the single file,
/etc/pam.conf, the service name is written in the configuration file in
the first column:

Chapter 2

[21]

login auth required pam_unix.so nullok_secure

login auth optional pam_mount.so use_first_pass debug

login auth optional pam_ssh.so use_first_pass debug

In the example above, the service name is login. The second and the
third columns are management group and control flags respectively.
These two concepts are the key concepts of PAM and they will be
explained later in this chapter.

As you can see, the services are closely related to specific applications and
system administration tools. You can easily guess which application or
utility corresponds to which service.

The name of the service is determined by the application itself. The
application initializes the PAM runtime by calling the pam_start library
function in the PAM library. One of the arguments is the service name.
Most applications and utilities have the service name hard coded, and
it can only be changed by a recompilation. Only vsftpd (very secure ftp
daemon) allows the system administrator to change the service name
through the configuration file—the pam_service_name directive sets the
service name.

It is rare to see this flexibility in PAM-aware applications and utilities,
but it would be so much nicer to have it. This flexibility could be used
by two FTP daemons bound to two different ports with very different
configurations on the same computer serving two different customers.
Each FTP daemon could use a different service name (for example, ftp1
and ftp2). The two FTP daemons could use two different back ends with
user data in order to separate the two customers.

The service name OTHER is reserved. Often it is written in upper case in
order to put emphasis on it. If an application requests a service that is not
found in the configuration, OTHER is used. In other words, the OTHER
service is a sort of default service, and it will typically be configured to
deny access to the computer.

Theory of Operation

[22]

Management Groups
Each service can use PAM in four different stages of the authentication
process. In PAM, these stages are called management groups. A module
provides the functionality for one or more management groups but it
might be easier to think about it as a different module for each group.

A complete PAM configuration for one service is listed below. The service
is called login and it provides validation of users logging in from the
console of the computer. The PAM file is /etc/pam.d/login.

The login service

auth required pam_unix.so

auth optional pam_mount.so use_first_pass

session required pam_unix.so

session optional pam_mount.so use_first_pass

account required pam_unix.so

password required pam_unix.so

Chapter 2

[23]

The figure below helps you understand the service for user validation:

Let us examine each management group one at a time.

The Auth Group
The auth group provides two functions. First, the user can be validated,
that is the user provides proof of authenticity. The proof is typically a
user name and a matching password.

Second, credentials are granted by the auth management group. The
credentials include group membership.

By using PAM, the user validation and group membership are
independent of the back-end storage. Traditionally, UNIX systems store
user name, passwords, and group memberships in the files /etc/passwd,
/etc/shadow, and /etc/group. Of course PAM implementations provide

Theory of Operation

[24]

modules, which use these files for storing the data, but it is possible to use
other back ends including LDAP and relational databases.

The login service example on the previous page has two lines for the
auth management group. The pam_unix module validates the user, that
is, whether the user exists and the typed password matches the stored
password. It is uses the /etc/passwd and /etc/shadow files to check the
password. The second module is the pam_mount module. It is used to
mount the user's home directory, which can be encrypted. The encryption
key is the same as the user's password, and the use_first_pass
parameter will reuse the password from the pam_unix module.

Many Linux distributions allow only root to log in on the console. This
is often controlled by PAM by using the pam_nologin module by having
the following line in the configuration of the login service before any
other PAM module:

auth requisite pam_nologin.so

The pam_nologin will block non-root users attempting to log in if the file
/etc/nologin exists.

The Account Group
The access to a service is controlled by the account management group.
You might only be allowed to use a service a number of times per week,
in certain periods of the day, or if your account is not yet expired. PAM
allows you as system administrator to have fine grained access control—if
you wish to do so.

In the above example, the login service uses the pam_unix module to
do account management. The module will use the information in the file
/etc/shadow to check whether an account is expired or the password
needs to be changed.

Chapter 2

[25]

The Session Group
The environment for a given service is built up by the session
management group, and when you stop using a service, the session
group tears down the environment. When creating the environment
(or the session), data required for proper operation will be loaded. This
includes opening data sources and mounting home directories. The
previous example mounted an encrypted partition as home directory. Let
me briefly remind you of the configuration:

session required pam_unix.so

session optional pam_mount.so

In this example, the two modules will write log messages. When the user
logs out, the mount module will unmount the home directory since PAM
keeps track of the modules involved in the session.

The session group allows you to automate the environment for the users
in a dynamical fashion. Many modules exist, and you can build complex
environments for your users. In Chapter 4, we look at modules, and
Chapter 5 explains how to create different environments for a number
of situations.

The Password Group
The last management group is the password group. It is only used
when a user wishes to update the password. With PAM you separate
passwords changing application (for example the passwd utility) from the
back-end storage.

The pam_unix module implements the classic behavior of the UNIX
operating system, but it is possible to control the quality of the new
passwords through options about minimum length. The pam_cracklib
module can help system administrators to enforce high quality password.

Theory of Operation

[26]

Stacking
One of the most useful concepts of PAM is the stacking of modules.
For each management group you can define a set or a stack of modules,
which are used in turn. When an application calls the PAM library
function, for example to authenticate, the PAM runtime will call each
authentication function in each module—one at a time like cards from a
stack. The order of calling is determined by the order in the configuration
(service) file. You have to be careful—changing the order in the stack
might have great impact on the functionality.

As example, let us examine the contents of the configuration file for the
XDM service.

pamela@pamela:~$ cat /etc/pam.d/xdm

$Id: xdm.pam 189 2005-06-11 00:04:27Z branden $

auth required pam_unix.so nullok_secure

auth requisite pam_nologin.so

auth required pam_env.so envfile=/etc/default/locale

For simplicity, only the auth management group is shown. The stack
consists of three elements or modules (unix, nologin, and env). The
nullok_secure parameter used by the pam_unix module is only
applicable to Debian (and Ubuntu) and can be used to allow login
without passwords on ttys listed in the /etc/security file. The
pam_nologin module can block non-root users if the file /etc/nologin
exists, while the module pam_env sets environment variables for
the user.

Control Flags
The primitive view of the stack discussed in the previous section is that a
module can either return OK/success or not-OK/failure. Some answers
are more important than others, and the control flags can change the flow
and how decisions are made. The control flags are listed in the second
or third column in the configuration file depending on whether the
/etc/pam.d or /etc/pam.conf style of configuration is used.

Chapter 2

[27]

The following control flags are addressed in the following sections:

Requisite
Required
Sufficient
Optional

In particular Solaris (version 8 and later) has a much richer set of
control flags.

Requisite
The requisite flag is probably the strongest of the flags. If a module is
flagged as requisite, and it fails (returns not-OK), PAM will return to the
calling application instantly and report the failure.

Required
The return code for a required module is stored. In the case of failure,
execution is not stopped but continues to the next module. When the
stack of modules has been executed, and at least one required module has
failed, PAM will return failure to the calling application. Moreover, the
failure is associated with the first failing module.

The required control flag is useful in keeping unauthorized persons out
of your computer, particularly since the other modules in the stack are
applied as well. This means that a cracker will not know at which module
he or she failed leaving him or her with many more possibilities of what
went wrong.

Sufficient
A sufficient module can actually be quite strong. The processing of the
stack is stopped if a sufficient module returns OK, if no previous required
module has failed. If there are required modules after the sufficient
modules, these modules are not called. Let's take a look at how the

•

•

•

•

Theory of Operation

[28]

authentication for secure shell against an NT domain (or Active
Directory) could look.

pamela@pamela: ~$ cat /etc/pam.d/sshd

auth required pam_nologin.so

auth sufficient pam_winbind.so

auth required pam_unix2.so use_first_pass

The existence of an /etc/nologin file implies that only root is allowed
to log in. In order to have data for ordinary users stored centrally, it is
sufficient to validate using winbind. Validating the administrator user
(root) over the network is not a good idea. If the network is not working,
you will not be able to log in as root. So if winbind fails (for example due
to network failure) to validate a user, the unix2 module (emulating the
classic UNIX authentication through the local files /etc/passwd, /etc/
shadow, and /etc/group) is called.

Optional
When a module is flagged as optional, a failure does not alter the execution
of the stack as in the case of the requisite flag. Moreover, the return code is
ignored, and neither failure nor success is taken into account.

Order matters
The order of the modules and the control flags matters. In particular
you have to be careful with the order of modules flagged required and
requisite, and even sufficient and required.

The PAM modules in the stack are tried one by one. It is very much
like executing a series of steps in a procedure. Modules can have side
effects like printing information about how they were called or why they
failed, or creating/mounting directories. These effects may give crackers
information on how to perform better attacks. In other situations order
matters simply because the effect of one module is required for the next
module to work correctly (such as mounting a home directory prior to
reading a SSH key).

Chapter 2

[29]

A concrete example is the configuration of the login service, which will
work as expected: valid users can log in.

 # /etc/pam.d/login

 auth required pam_unix.so

 auth optional pam_deny.so

On the other hand, if the order is changed, which leads to the following
change in the configuration, your system will be left in a state where no
one can log in.

 # Wrong /etc/pam.d/login

 auth optional pam_deny.so

 auth required pam_unix.so

Consolidating Your PAM
Configuration
Most services need to be configured in the same way, that is the
authentication of valid users is done in exactly same way, and it is
obviously a bad idea to have replicates of the configuration for all services.

Many, but not all, PAM implementations allow you to consolidate the
configuration. From version 0.78 of Linux-PAM (released November 2004),
it has been possible to use the @include directive. As you might guess,
the @include directive can take the contents of another file and include
these in the current file. Ubuntu Linux utilizes consolidation of PAM
configuration heavily. An example for the ppp service is given below:

#%PAM-1.0

Information for the PPPD process with the 'login'
option.

auth required pam_nologin.so

@include common-auth

@include common-account

@include common-session

Theory of Operation

[30]

The file /etc/pam.d/common-auth contains common or shared
configuration for the auth management group, and so forth with the
account and session groups.

If your PAM implementation does not support the @include directive,
it is not too difficult to craft procedures to consolidate the PAM
configuration. The short shell script below generates a set of PAM
configurations for each service.

!/bin/bash

#

pam-consolidate.sh

Generate PAM configurations

#

(C) Copyright 2006 by

Kenneth Geisshirt <http://kenneth.geisshirt.dk/>

Packt Publisher <http://www.packtpub.com/>

#

PATH=/usr/bin:/bin

mkdir -p pam.d

grep @include * | cut -f2 -d: | sort | uniq | cut -f2 -d"
"| while read file ; do

 egrep -v '^#' $file > pam.d/$file

done

grep @include * | cut -f1 -d: | sort | uniq | while read
file ; do

 egrep -v '^#' $file | sed 's/@include \(.*\)/#include
"pam.d\/\1" /g' | cat -s | cpp - - | egrep -v '^#' >
pam.d/$file

done

It takes the service configuration in the current directory and includes the
consolidated configuration files. All the comments in the original PAM
files are lost in this process due to the fact that the C preprocessor treats
the hash mark # as a special character.

Chapter 2

[31]

As an example, consider that you have your PAM configuration in the
directory /usr/local/conf. The script on the previous page is used as
follows. The common files and the login service are from a standard
Ubuntu Linux.

cd /usr/local/conf

ls

common-account common-auth common-password common-
session login

pam-consolidate.sh

cd pam.d

cat login

auth requisite pam_securetty.so

auth requisite pam_nologin.so

session required pam_env.so readenv=1

session required pam_env.so readenv=1 envfile=/etc/
default/locale

auth required pam_unix.so nullok_secure

auth optional pam_mount.so use_first_pass debug

auth optional pam_group.so

session required pam_limits.so

session optional pam_lastlog.so

session optional pam_motd.so

session optional pam_mail.so standard

account required pam_unix.so

session required pam_unix.so

session optional pam_mount.so debug

password required pam_unix.so nullok obscure min=4 max=8
md5

The file login in the directory /usr/local/conf/pam.d can be copied to
/etc/pam.d and used as PAM configuration for the login service.

Theory of Operation

[32]

Securing Your Environment
PAM is a powerful framework, and it can be difficult to foresee everything
that can go wrong. If PAM is wrongly configured, your environment can
easily be compromised by crackers and even script kiddies.

The pam_deny module must be regarded as an essential component
in modern PAM configuration. The module can be included as the last
module in any stack for every service as a failsafe solution. If no other
module has either denied or granted access to the service, it might be nice
to know that access is always blocked at the last stage.

Moreover, it is important to keep an eye on the OTHER service. The
reason is that if a service is not configured explicitly then PAM falls back
to the OTHER service. In other words, the OTHER service can easily
become your weakest link—in particular when you do not think about
it. A simple version of the OTHER service could involve the pam_deny
module, which will stop unauthorized access:

auth required pam_deny.so

The system administrator is then forced to change (and think about) the
PAM configuration for any new service as it is added to the system.

An Example
PAM is a simple solution to the authentication problem but PAM is very
powerful, and you can configure PAM to do very complex things during
the login process. This section outlines a nontrivial usage of PAM. Don't
worry if you cannot understand how the example works—the rest of the
book is dedicated to giving you that kind of understanding.

Laptops are owned by people who frequently travel, and they carry their
valuable data with them all the time. Losing a laptop (forgetting it in the
subway, or if someone steals it) can be very problematic if the user has
confidential data on the hard drive. Here, the use of encrypted files, file
system, or block devices comes to mind.

Chapter 2

[33]

Wouldn't it be great if an encrypted file system were to become
operational when you log in by giving your user name and password as
you normally do? With PAM and a number of Linux utilities, you can do
exactly this. The solution presented in this example is partially based on
http://deb.riseup.net/storage/encryption/dmcrypt/.

First of all, you need an empty partition, which is going to hold your
home directory. In this example, we will use the second partition of the
first SCSI disk (/dev/sda2). Next, you need to install the proper software
packages. Under Ubuntu Linux you need to install libpam-mount,
cryptsetup, and openssl.

apt-get install libpam-mount cryptsetup openssl

If you are running SuSE Linux Enterprise Server, you need to install
the packages pam-mount and openssl. Unfortunately, you must
compile cryptsetup yourself—it can be downloaded from
http://www.saout.de/tikiwiki/tiki-index.php?page=cryptsetup.

The encryption scheme needs to be created, and the utility cryptsetup is
a convenient way to do it.

cryptsetup -c aes -h ripemd160 -s 256 -y create pamela
/dev/sda2

The volume name of the partition is pamela, and the encryption
algorithm is a 256-bit AES. The passphrase must be the same as the
user's password. Now, format the partition with your favorite file
system (for example, mkfs.ext3 /dev/sda2), and try to mount it
(mount /dev/sda2 /mnt/sda2). If mount succeeds, then change the
owner to the proper user (chmod -R pamela.pamela /mnt/sda2), and
umount the partition (umount /mnt/sda2).

The pam_mount module can mount directories on demand as users log
in. The login program is configured to use two PAM modules, pam_unix
and pam_mount.

Theory of Operation

[34]

The configuration file resides in /etc/security/pam_mount.conf. The
following line must be added to the file:

volume pamela crypt - /dev/sda2 /home/
 pamela ciphers=aes - -

The PAM configuration must include the pam_mount module, that is,
the pam_mount module must be used at log in. The file /etc/pam.d/
common-auth is a common set of configuration related to authentication.
The following lines should be added to the file (probably only the second
line should be added to the file since the pam_unix module is used
already for validating passwords):

auth required pam_unix.so nullok_secure

auth optional pam_mount use_first_pass

The pam_mount module has the optional control flag. The reason is that
not all users have encrypted file systems, and pam_mount will fail. If the
control flag was required this will lead to the situation where users with
encrypted home directories cannot log in.

Chapter 2

[35]

The user environment is to some extent controlled by the file /etc/pam.
d/common-session, and the file should be as follows:

session required pam_unix.so

session optional pam_foreground.so

session optional pam_mount.so

The session management group will primarily write log messages and
keep track on the number of times the user is currently logged in. The
counting is used for deciding whether a log out is the last, so it is safe to
unmount the home directory.

Using encrypted file systems with PAM has two disadvantages. First,
if the user changes password, he or she will be prompted for two
passwords as he or she logs in. Many organizations have strict password
policies where users are required to change passwords every month or
quarter. Second, if the password is guessable, it will be easy to decrypt
the file system.

Summary
PAM configuration is almost a black art for a novice user. The concepts
are well-defined but the pieces must fit finely together, or it will not
work. The PAM implementations vary but all share the concepts of
services, management groups, and control flags. The management groups
and control flags discussed in the chapter make a subset of the PAM
implementations. Unfortunately, not every PAM implementation can
consolidate configuration through the @include directive; but it would
not be too hard to generate the actual configuration files by using a set of
shell scripts.

The example previously given in this chapter might be slightly geeky one,
but it shows you how to solve an interesting problem in an elegant way.

Read this chapter more than once, and come back to be reminded of
its meaning.

Testing and Debugging
Changing the configuration of PAM is a serious business. Using a
module incorrectly might leave your system in a state where you
cannot log in and correct the mistake. But the worst scenario is that an
unauthorized person can log in to your computer and abuse it. Testing
PAM configurations can be challenging. This chapter is about how to test
your new PAM configuration so that you are on safe ground; also advice
on creating test cases is discussed here. This chapter also shows how the
pamtester utility works together with Expect to automate test procedures.

Where to Test?
My very first advice is that you should never try out new PAM
configurations on a production system; use either a test computer or
a virtual computer (VMware, Xen, etc.). The reason is obvious — if
you make any mistakes in the PAM configuration, you might leave a
production server in a state where the system administrator cannot log in.

Using VMware or any virtualization system is of great advantage. With
VMware Server, a free product, it is possible to take snapshots of the
entire computer, which can be used to recover from fatal mistakes. A
fatal mistake in this context is that you cannot log in. If you are using
a physical computer to test your PAM configuration, you might have
to boot it using a live or rescue CD to correct a fatal mistake. And your
test computer can be located in a server room far from your office, so
correcting a mistake can take much longer than expected.

Testing and Debugging

[38]

Of course, the major disadvantage of using VMware is that the host
computer has to be able to run VMware and its entire guest operating
system. But even a small laptop (with a 1.3 GHz processor and 1 GB
memory) can easily be used to test the integration between Linux and
Microsoft Active Directory.

Leaving a Back Door Open
It's not general advice but during the test phase of a new PAM
configuration you should be able to correct mistakes using an
open back door.

In the case of PAM, a back door can be left open in two ways. The first
way is to work only on one service (for example, ssh) but enable another
log in protocol (for example, telnet). When the first service is working,
you can either switch service or disable the backdoor service. The
disadvantage of using a backdoor service is that you open a door for
unauthorized usage of the computer. In particular, if you use telnet or rsh
as backdoor service, you lower the security strength of your computer.
During the test phase, an unauthorized user might log in.

Another way to let a door be open is to log in and never log out before
you have finished configuring. Once logged in, changes in PAM
configuration will not force you out and you will be able to correct
mistakes. So you should be careful not to accidentally type Ctrl-D.

Which of the two ways is preferred to use depends on the how long the
job will take. If it's expected to take an hour or two, simply log in and
never log out during the PAM reconfiguration. But if it's expected to
take longer (typically it does when a completely new back end is to be
used), leave a back door open so that you can shut down his or her work
computer and get some sleep.

Chapter 3

[39]

Test Cases
One of the major disciplines of software engineering is how to do testing.
A test suite cannot prove that the software is working due to the limited
set of test cases. To prove the correctness of computer software is one of
the harder disciplines of theoretical computer science. Instead a test suite
is used to find as many errors or bugs as possible. A test case consists of
both the user input and the expected outcome.

The behavior of PAM can be very complex. To find a minimum set of
test cases can be difficult. For example, in some situations, accounts are
required to expire after 60 days of inactivity. Expiration of an account
is difficult to test since you are supposed to wait for 60 days. In order
to perform such a test case, you can move the clock ahead by 60 days
instead of waiting. But such a test case can often be safely ignored since
expiration is not configured directly by PAM.

While testing a particular service, three possibilities for each module must
be considered:

Valid user and valid password
Valid user but invalid password
Invalid user

In the first case, the expected outcome is that the user is authenticated,
while in the two other test cases the expected outcome is an
authentication failure.

PAM makes heavy use of stacks of modules where more than one module
is used in a sequence to authenticate. Each module in a stack adds new
possibilities for how the authentication can be done. A valid user for one
module might not be valid for another module. This situation will add
further to the possible scenarios and thereby to the number of test cases.

Moreover, additional test cases should be constructed in order to test
the interaction within the stack. Interaction is a combination of the
location within the stack and the control flag. For example, changing a
control flag from required to requisite changes the authentication process

•

•

•

Testing and Debugging

[40]

dramatically since the module might terminate the process in the case of a
negative authentication.

Testing the PAM configuration (encrypted home directories) as in
Chapter 2 requires at least five test cases. They are:

A user with an encrypted home directory (e.g. pamela with the
correct password)
The above case but with a mistyped password
A user without an encrypted home directory (e.g. root with the
correct password)
The above case but with a mistyped password
A non-existent user (e.g. blah)

Testing the possible expiration of an account or a password (forcing the
user to change it) might be difficult to do due to the fact that you have to
wait for a long period of time. Moreover, in the name of completeness,
the test of a user with an encrypted home directory where the password
and the encryption key differ should be considered. These last cases
will probably often be ignored since they do not reveal errors in the
PAM configuration.

Getting Backstage
In the phase of testing and debugging, it is often useful to get some
information about which modules are called, and what they are
doing. Most modules support the debug parameter. If the module is
configured by a configuration file and not only by parameters in the PAM
configuration files, it is highly possible that you can increase the amount
of logging in the configuration file.

Enabling Logging
Most modules support the debug parameter for enabling print out of
debug messages. These messages are written to log files using syslog. An
example of two PAM modules with enabled debugging is shown next.

•

•

•

•

•

Chapter 3

[41]

auth required pam_unix.so nullok_secure debug

auth optional pam_mount.so use_first_pass debug

The debug parameter will enable basic logging, that is you will be able
to see when a user tried to log in and which PAM modules were used in
order to authenticate him or her.

Many modules can extend the logging. If it is possible, it is typically
enabled in a module configuration file and not in the PAM configuration
files. In each case, you must refer the module's manual.

The pam_mount module introduced in Chapter 1 has a configuration file
(/etc/security/pam-mount.conf). The logging is configured in this file
by setting the directive debug to 1. This is shown by a snippet from the
configuration file as given below:

debug 1

The directive can be set to either the value 0 or 1, where 0 means no
debugging information while 1 means printing it. When you enable
debug logging for the pam_mount module, a lot of debug information
will both be printed on the console and to the log files using syslog

Current Linux and UNIX systems use syslog as a general systems logging
facility (a modern implementation called syslog-ng exists but in this
context does the same job). Syslog consists of a set of library functions
and a daemon. The programmer calls the syslog library functions, which
send the log messages to the syslog daemon. The syslog daemon writes
the log messages to a file.

Where the PAM logging is directed to is dependent on the actual
configuration of the syslog facility. The syslog facility is configured by
the file /etc/syslog.conf. In the case of Ubuntu/Debian, the logging is
directed to the /var/log/auth.log file.

You can follow the log files as they are written using the standard tail
utility. The –f option of the tail utility is for following (keeping a watch
on) continuously written files. When syslog writes the log message to a

Testing and Debugging

[42]

log file, it will also write a time stamp. Moreover, the name of the user
who is running the program will be written. In the case of PAM, the user
name will be the user who is trying to log in.

Reading the Log
As already mentioned, the pam_mount module will write its log in two
places: the console and to syslog. While the console might be useful for
the power user, the syslog (which writes to /var/log/auth.log in the
case of PAM) is probably practical for the system administrator. When
the pam_mount module has debugging enabled, the amount of data
written to the log files is quite large. A small fraction of the log file is
shown below:

 Aug 5 05:12:46 pamela login[3822]: pam_mount:
 about to start building mount command

 Aug 5 05:12:46 pamela login[3822]: pam_mount: command:
 /bin/mount [-t] [crypt] [-ocipher=aes]
 [/dev/sda2] [/home/pamela]

 Aug 5 05:12:46 pamela login[3840]: pam_mount:
 setting uid to 0

 Aug 5 05:12:46 pamela login[3840]: pam_mount:
 real user/group IDs are 0/1000,
 effective is 0/1000

 Aug 5 05:12:46 pamela login[3822]: pam_mount:
 mount errors (should be empty):

 Aug 5 05:12:46 pamela login[3822]: pam_mount:
 pam_mount: setting uid to 0

 Aug 5 05:12:46 pamela login[3822]: pam_mount:
 pam_mount: real user/group IDs are 0/1000,
 effective is 0/1000

 Aug 5 05:12:46 pamela login[3822]: pam_mount:
 waiting for mount

 Aug 5 05:12:47 pamela login[3822]: pam_mount:
 clean system authtok (0)

 Aug 5 05:12:47 pamela login[3822]: pam_mount:
 command: /usr/sbin/pmvarrun [-u] [pamela]

Chapter 3

[43]

 [-d] [-o][1]

 Aug 5 05:12:47 pamela login[3860]: pam_mount:
 setting uid to 0

 Aug 5 05:12:47 pamela login[3860]: pam_mount:
 real user/group IDs are 0/1000,
 effective is 0/1000

 Aug 5 05:12:47 pamela pmvarrun: pmvarrun:
 creating /var/run/pam_mount

 Aug 5 05:12:47 pamela pmvarrun: pmvarrun:
 parsed count value 0

 Aug 5 05:12:47 pamela login[3822]: pam_mount:
 pmvarrun says login count is 1

 Aug 5 05:12:47 pamela login[3822]: pam_mount:
 done opening session

Every log entry contains a time stamp and the user name (pamela in this
case). After the user name you find the name of the PAM service, which
in this case is login. Actually, it is the name of the program but the PAM
service name is always almost identical to the name of the program.

Reading the snippet from the top, you find that the pam_mount module
builds up the proper mount command. In the second line you find the
mount command with all its parameters. But the mount command must
be executed as root (user ID or UID zero) so the following lines show that
pam_mount is changing its user ID to zero.

The aux. utility pmvarrum is called with the user name pamela as one of
the options. The utility ensures that if the computer is using SELinux,
then a security context for SELinux will be created. SELinux is a security
enhanced Linux kernel. Moreover, the utilities find that the user pamela
has not mounted the directory yet (parsing count value 0), and the login
service will be the first (count is 1). If the user logs in twice, pam_mount
should not try to mount the directory the second time. Mounting a file
system that is already mounted will generate an error. If pam_mount
encounters an error at some point in the process, it will not allow the user
to log in. Moreover, if a user is logged in twice, it is important that the
user's home directory is not unmounted the first time the user logs out.
All this counting should take care of these cases.

Testing and Debugging

[44]

We can learn many things from reading log files generated by PAM. If a
module can do some kind of extended logging as the pam_mount module
can, we can actually get an insight on how the module is working.
Working on complex PAM configuration, the log files will give you
strong hint on why it is not working.

The pamtester Utility
The pamtester utility is developed by Moriyoshi Koizumi in order to
help module developers, but it can also help systems administrators to
test new PAM configurations. The utility has not yet been included in
any UNIX or Linux distribution. It can be downloaded from its website
(http://pamtester.sourceforge.net). It is distributed as a gzip'ed
tar file. Compilation and installation is straightforward. The following
commands are required to compile and install the pamtester utility:

 # tar xzf pamtester-0.1.2.tar.gz

 # cd pamtester-0.1.2

 # ./configure --prefix=/usr/local

 # make

 # make install

Once installed you can start using the utility. It is a pure command-line
utility and it takes three parameters. The first parameter is the name of
the PAM service, the second one is the user name, and the third is the
operation to test. The operation is related to the management groups that
were discussed in Chapter 2. The following operations are supported:

authenticate—the auth management group
acct_mgmt—the account management group
open_session—the session management group
close_session—the session management group
chauthtok—the password management group

•

•

•

•

•

Chapter 3

[45]

Testing the authentication of the user pamela for the login service can be
done as follows:

pamela@pamela:~$ pamtester login pamela authenticate

Password: XXXXXX

pamtester: successfully authenticated

The simple usage of pamtester is to test whether a user can be
authenticated. Consider the case where you have installed the Apache
module, which takes advantage of PAM in order to validate users for
htaccess control (Chapter 5 will cover Apache's AuthPAM module). The
htaccess access control mechanism is used by the Apache web server.
When pages are subject to htaccess, web surfers must be authenticated
in order to see the restricted pages. This kind of restricted access is often
used for hiding the administrative interface of a website. From PAM the
Apache server is simply a service called httpd, and the configuration file
/etc/pam.d/httpd could be as shown below:

 # For AuthPAM Apache module

 auth required pam_unix.so debug

 account required pam_unix.so debug

At least three test cases must be tried as discussed in the Test Cases
section. First, a valid user with a invalid password, second valid user
with valid password, and finally an unknown (invalid) user.

 root@pamela:~# pamtester httpd pamela authenticate

 Password: XXXXXX

 pamtester: Authentication failure

 root@pamela:~# pamtester httpd pamela authenticate

 Password: XXXXXX

 pamtester: successfully authenticated

 root@pamela:~# pamtester httpd foobar authenticate

 Password: XXXXXX

 pamtester: User not known to the underlying
 authentication module

Testing and Debugging

[46]

The pamtester utility issues ordinary PAM requests and they will
therefore end up in the log files. The example above has two cases of
authentication failure, which can be found in the log (/var/log/auth.log
on Ubuntu).

 Aug 6 05:11:56 pamela pamtester:
 (pam_unix) authentication failure;

 logname=root uid=0 euid=0 tty= ruser= rhost=
 user=pamela

 Aug 6 05:12:29 pamela pamtester:
 (pam_unix) check pass; user unknown

 Aug 6 05:12:29 pamela pamtester:
 (pam_unix) authentication failure;

 logname=root uid=0 euid=0 tty= ruser= rhost=

Automating PAM Tests
The authentication procedure is a manual one. The user has to type in a
user name and password. If you have a complex PAM configuration with
many modules, manually testing it will take some time. Moreover, when
you change a minor thing, you have to go though all the test cases again.

The pamtester utility introduced in the previous section is an interactive
command-line program—you have to type in the authentication token
(password) for each test case.

It is possible to automate PAM testing by combining pamtester with
Expect. Expect is a general software package, which can be used to turn
interactive command-line programs into non-interactive programs. It
is out of the scope for this book to describe Expect in detail but you can
learn more at http://expect.nist.gov/. An Expect script for automated
testing of the httpd service is shown below:

 #!/usr/bin/expect -f

 # pamtest - automated PAM tests

 send_user "Valid user, valid password"

 spawn pamtester httpd pamela authenticate

Chapter 3

[47]

 expect "assword: "send "qwerty"

 expect

 set timeout 60

 send_user "===================="

 send_user "Valid user, invalid password"

 spawn pamtester httpd pamela authenticate

 expect "assword: "send "bar"

 expect

 set timeout 60

 send_user "===================="

 send_user "Invalid user"

 spawn pamtester httpd foo authenticate

 expect "assword: "send "bar"

 expect

 set timeout 120

 send_user "==================="

The timeouts in the script are set to fairly high values (1 and 2 minutes;
the unit in the script is seconds). The default value is 10 seconds but
PAM authentication can easily take much longer, and Expect will kill the
pamtester process before authentication finishes.

Bad Example
The usage of systematic testing while working with PAM might be
seen as a too serious approach to validating the correctness of the
authentication process. In order to demonstrate that systematic testing
is important, an example of a wrong PAM configuration will be
given in this section. Without systematic testing the error in the PAM
configuration might never be found, and it could leave your system in a
state where unauthorized persons can log in. The PAM configuration for
the login service is supposed to be as the following:

auth required pam_unix.so

auth optional pam_nologin.so

Testing and Debugging

[48]

The goal is that any user except root is not allowed to log in if the file
/etc/nologin exists. But setting the control flag to optional for the
pam_nologin module is wrong. Setting a control flag as optional will not
lead to rejection of a non-root user even if the file /etc/nologin exists.
The control flag for pam_nologin should be required in order to make
the module work as excepted.

A set of test cases can be defined. They are:

An existing user with valid password (pamela)
A existing user with invalid password (pamela)
The system user (root) with valid password
The system user (root) with invalid password
A non-existing user (blah)

Moreover, the first two test cases should be tested in two different
situations: when the file /etc/nologin either exists or does not exist. So a
systematic test will have seven test cases.

In order to get to the point of the example faster, we begin by examining
the case where the file /etc/nologin does exist:

1. The size of the file does not matter—even an empty file can be
used. The following commands executed as root, create the file.

 # cd /etc

 # touch /etc/nologin

2. The pamtester utility can be applied for testing whether the user
pamela can be authenticated. The excepted outcome is that the
user is rejected or not authenticated; but now see what happens:

 root@pamela: ~# pamtester login pamela authenticate

 Password: XXXXXX

 pamtester: successfully authenticated

•

•

•

•

•

Chapter 3

[49]

3. The mistake in the PAM configuration of the login service is
realized, and the configuration is changed to the correct one.

 auth required pam_unix.so

 auth requisite pam_nologin.so

4. Running the test again has the opposite outcome:
 root@pamela: ~#: pamtester login pamela authenticate

 Password: XXXXXX

 pamtester: Authentication failure

This time the outcome is as expected, and if all test cases have the
expected outcome, the login service has a higher probability of
correctness. Crafting a systematic test will help you to think about how
PAM configuration is supposed to work, and performing the test might
reveal errors so that you find them before an unauthorized person does.

Summary
This chapter gives you an idea on how to test your new PAM
configuration. It is important to think carefully about tests since a
wrongly configured PAM may lead to unauthorized access to your
computers.

Enabling logging can give you a clue on why your bright ideas do not
work. It cannot be said: The Devil is in the detail. The pamtester utility
can help you generate log messages. Using systematic testing of PAM
configuration cannot be underestimated. Using Expect to drive the
pamtester utility, it is possible to create automatic testing.

Common Modules
PAM is a generic framework, which is implemented on different
operating systems. The typical operating systems are similar to UNIX
including Linux, FreeBSD, and Solaris. Each implementation varies for
each operating system, but a common set of modules can be found in
all. Furthermore, many modules are portable, and can easily be installed
from source.

A set of basic parameters used by most modules are the same. Moreover,
these basic parameters are independent of the operating system. The
parameters are typically used to control the amount of debug information
and reuse of passwords.

This chapter presents the common parameters and modules of PAM.
Using common modules unifies the various UNIX operating systems,
and you as system administrator will be more robust against changing
UNIX platforms.

Parameters
Many modules support a set of parameters across different PAM
implementations. Knowing these parameters and their meaning can help
us move between various UNIX platforms and use different modules.

Common Modules

[52]

debug
The debug parameter is probably the most used parameter, in
particular during the implementation and testing phases of a new PAM
configuration. The parameter can be used in all four management groups.
As the name suggests, using this parameter turns on a debugging mode
for the particular module.

Debugging in the context of PAM modules implies writing information to
syslog about the progress of the work done by the module.

The syslog facility is the standard log facility on UNIX operating systems.
A new implementation named syslog-ng (next generation) exists, and it
provides better facilities for storing log messages on a central log server.
Syslog-ng is not yet common but Debian and Ubuntu have packages in
their repository for syslog-ng. It consists of a set of system calls and a
daemon (or service). Typically, it is configured by the file /etc/syslog.
conf. A logging message has two quantities associated: facility and
priority. The facility indicates by which subsystem the logging is done,
for example, LOG_AUTH and LOG_AUTHPRIV are primarily used
for logging authentication messages and LOG_MAIL is used by mail
handling systems software like the SMTP and IMAP daemons. For most
PAM implementations, including Linux-PAM, the authpriv facility is
chosen. Looking at the configuration file of the syslog facility, you will
find the authpriv configured as the following:

 auth,authpriv.* /var/log/auth.log

The log messages for the authpriv facility will be written to the log file
/var/log/auth.log, and the wildcard (*) means that logging is done
independently of the chosen priority. The priority can be used to control
how much logging data is actually written to the log files. For example,
the LOG_ERR marks a message as an error condition, and LOG_INFO
marks a message as informational (not an error). The syslog daemon
can filter out unimportant log messages by setting the priority. Without
this, it could be difficult to get an overview. The PAM system is typically
small, and even with every log message written to disk, the amount of
logging is small, for example, a moderate busy server will daily generate
less than 2 MB authentication log file.

Chapter 4

[53]

The example below implements policies that are used in programs
used for changing passwords. The pam_cracklib module states that the
password should be of at least six characters (minlen=6) and at least three
characters must be changed in the new password (difok=3). Moreover,
pam_cracklib will check the password against a number of dictionaries in
order to eliminate easily guessed passwords. The pam_unix module will
store the password in the /etc/passwd framework using MD5 hashes for
encryption. The module will use the user name (use_authtok) in order to
select which user to change password for.

 password required pam_cracklib.so debug retry=3
 minlen=6 difok=3

 password required pam_unix.so debug use_
 authtok nullok md5

Both modules have the debug parameter set. This means that both
modules will write messages to syslog. Eventually, the messages are
stored in the /var/log/auth.log file. The log messages for the command
to set the password pamela are shown below. The cracklib module
complains that the password is too easy to guess (second line) but the
password is forced, by confirming it.

 Sep 3 06:19:56 pamela passwd[4025]:
 (pam_unix) username [pamela] obtained

 Sep 3 06:20:00 pamela PAM-Cracklib[4025]:
 bad password: it is based on a dictionary word

 Sep 3 06:20:04 pamela passwd[4025]:
 (pam_unix) username [pamela] obtained

 Sep 3 06:20:04 pamela passwd[4025]:
 (pam_unix) password changed for pamela

 Sep 3 06:20:04 pamela passwd[4025]:
 (pam_unix) Password for pamela was changed

use_first_pass
The use_first_pass parameter is commonly used in the auth
management group. The parameter lets PAM modules reuse the first
password entered—from the first module in the stack. If the parameter
is not applied in an auth stack, the user will be prompted a number of
times—once for each module.

Common Modules

[54]

Chapter 2 outlines the usage of a stack of two modules for authentication:
pam_unix and pam_mount. The password used by the user for validating
identity is also used as encryption token. The example from Chapter 2 is
as follows:

 auth required pam_unix.so nullok_secure

 auth optional pam_mount use_first_pass

If the use_first_pass parameter is omitted in the second line, the
pam_mount module will have to prompt the user for the password again.

There is a common configuration mistake in PAM. During the PAM
configuration, the two modules are swapped (this is common during
implementation in order to get PAM to work as required). The new PAM
configuration is then:

 auth optional pam_mount use_first_pass

 auth required pam_unix.so nullok_secure

Clearly, this is a mistake, since no password has been entered prior to
the first line. The PAM system and the pam_mount module will also
complain loudly as shown below:

 Ubuntu 6.06.1 LTS pamela tty2

 pamela login: pamela

 pam_mount: could not get password from PAM system

 Password: ****

 pam_mount: error trying to retrieve authtok
 from auth code

 reenter password: ****

If the reused password is incorrect, PAM will not authenticate the user.
In other words, the use_first_pass parameter should only be used in
situations where the passwords in a stack are identical.

Chapter 4

[55]

try_first_pass
The try_first_pass parameter is a relaxed version of the
use_first_pass parameter. While use_first_pass leads to
authentication failure if the passwords are not identical, the
try_first_pass will give the user a second chance.

If the first password turns out to be incorrect, PAM will prompt the user
for a new password.

The example in Chapter 2 could be formulated as follows:

 auth required pam_unix.so nullok_secure

 auth optional pam_mount try_first_pass

The advantage of using this PAM configuration instead of the
configuration presented in Chapter 2 is that it allows the user to change
password. Changing the encryption key is impossible, and if the user
changes password, it will be possible to access the encrypted directories by
entering the encryption key (the old password).

expose_account
In general PAM implementers are very concerned with security—at
least we, the users, hope that. This means that modules will not print
out information about the user since that would make it easier for a
potential attacker.

The system administrator uses the expose_account parameter to advise
the PAM framework that the current module can print more sensitive
information about the user. It can include the user's name or login
name—printing this information can make the system appear friendlier to
its users since they can easily figure out what kind of data the system
is requesting.

Common Modules

[56]

Modules Related to User
Environments
PAM can do much more than authenticating users. It can also build up
the user's environment at log-in time. A number of modules have been
developed in order to support this functionality. Many of the modules are
related to the session management group.

Not all modules mentioned here will be part of the standard PAM
distribution but source code is available and modules can be compiled.
Chapter 1 discusses installation of extra modules, and fortunately most
module developers stick to the "configure; make; make install" style
when releasing their modules. This makes it less complicated to
install modules.

pam_mkhomedir
The mkhomedir module helps while doing a massive rollout of UNIX
accounts. In large installations, centralized authentication is common
since the time it takes to create accounts on every server is too large.
Centralized authentication schemes include NIS (in the old days) and
LDAP. If accounts are not created on each server, the users will lack
home directories when they log in the first time. The mkhomedir module
creates a home directory if the user does not have one.

A simple example of how to use the mkhomedir module is shown below:

 session sufficient pam_mkhomedir.so skel=/etc/
 skel/ umask=0022

 session required pam_unix2.so

 session required pam_limits.so

The module can use a skeleton directory for creating default settings
(for the shells). Moreover, the default mask for creating files (umask) can
be set.

Chapter 4

[57]

The mkhomedir module is distributed with Linux-PAM and AIX.
Moreover, FreeBSD has a port of the module in the port tree. A port for
Solaris exists, and the author claims that it is working. The source code is
found at http://mega.ist.utl.pt/~filipe/pam_mkhomedir-sol/.

pam_mount
In Chapter 2 of this book, the pam_mount module is shown in an
example on how to have encrypted home directories. The module can
mount a directory as the user logs in.

The supported directory types are not only encrypted file systems but
also Novell and Windows shares. Mounting the user's home directory on
a Netware or Windows server is the primary focus.

The example with encrypted home directories is:

 auth required pam_unix.so nullok_secure

 auth optional pam_mount use_first_pass

 session required pam_unix.so

 session optional pam_foreground.so

 session optional pam_mount.so

Both the auth and session management groups are required. The nullok_
secure parameter is specific to Debian (and thereby Ubuntu). It is used
to control how a password-less account can log in—the tty to log in must
be listed in the /etc/security file. The parameter nullok has a different
meaning. When this parameter is used, the user can set the password
if it is empty. If a newly created user's password were set to a standard
password (say, Welcome2U!), it would be too easily compromised.

The module is packaged with some Linux distributions (Debian and
Ubuntu) while it can be found at unofficial repositories for Red Hat and
Fedora (see http://dag.wieers.com/packages/pam_mount/). If you are
using another Linux distribution or OpenBSD, you have to download
the source code from http://pam-mount.sourceforge.net/ and compile
the module. Chapter 1 shows how to compile the module for the Linux
distribution Slackware.

Common Modules

[58]

Modules Used to Restrict Access
When user validation is centralized (NIS, LDAP, etc.), a number of issues
emerge. All users are not allowed to log in to all servers, and it is possible
to use PAM modules for restricting access to certain computers.

pam_succeed_if
The pam_succeed_if module can be used to restrict access so that only
listed groups can log in. The example below will validate user accounts
against a Microsoft Domain/Active Directory or local account. If the user
is not member of either of the groups with ID 10006 or 10963, the user will
not be allowed to log in.

 account sufficient pam_winbind.so

 account required pam_unix2.so

 account required pam_succeed_if.so gid=10006,10963

The test expressions (gid=... in the example) can test on user name (user),
user ID (uid), group ID (gid), shell, and home directory (home). Moreover,
expressions do not have to have simple equalities; inequalities are
supported as well. For example, you can limit access to your computer
so that no system users (user ID greater than 1000 for Debian and
Ubuntu) can log in and users must have bash as shell by the following
configuration:

 auth requisite pam_succeed_if.so uid >=
 1000 shell ~= bash

The module is distributed with Linux-PAM, and newer versions support
the usage of symbolic names so it is possible to restrict access to the
petromod group by the following configuration

 auth required pam_rhosts_auth.so no_rhosts

 auth required pam_nologin.so

 auth required pam_succeed_if.so user ingroup petromod

Chapter 4

[59]

If a user, who is a member of the petromod group, executes the command
rsh localhost ls, the log file (the file /var/log/messages in the case of
SuSE Linux Enterprise 9) will be:

Nov 9 23:24:53 srv611 in.rshd[15605]: connect from
127.0.0.1 (127.0.0.1)

Nov 9 23:24:53 srv611 pam_rhosts_auth[15605]: allowed to
pamela@localhost as pamela

Nov 9 23:24:53 srv611 in.rshd[15606]: pamela@localhost
as pamela: cmd='ls'

The log file shows you which remote host the user is logging in from
(127.0.0.1), which command the user is executing (ls).

pam_nologin
Many UNIX operating systems have a policy that only root is allowed to
log in if the file /etc/nologin exists. This task is delegated to the pam_
nologin module in the world of PAM.

The module is often used in default PAM configurations by Linux
distributions in order to make it easy for system administrators to reuse
their long experience of UNIX systems.

A simple example is shown below (only the auth management group)—
the login service is changed so that it includes the nologin module.

 auth required pam_nologin.so

 auth required pam_unix.so

If the file /etc/nologin does not exist, valid users can log in at the
console. But if the file exists (you can create it by the command touch
/etc/nologin), then only root can log in. The login process will look
similar to the following:

 Ubuntu 6.06 LTS pamela tty1

 pamela login: pamela

 Login incorrect

Common Modules

[60]

The user pamela is a valid user, but with the /etc/nologin present, PAM
will simply respond as to an invalid user.

pam_wheel
In the old days, members of the wheel group were the system
administrators (or roots). In order to change user ID to root's ID (zero),
the su utility is used.

The pam_wheel module enforces the old tradition. Used together with
the su service it will only allow users who are members of the wheel
group to change ID to root's ID. But the pam_wheel module expands the
possibilities by having a large number of configuration combinations. For
example, it is possible to let members of the wheel group to change ID
to root without password by the following PAM configuration line (the
parameter trust implies that users in the wheel group are trusted by the
system owners).

 auth sufficient pam_wheel.so trust

But for emulation of the traditional UNIX style, the PAM configuration
for the su service must be as follows. A password is then required to
become root but it is required to be member of the wheel group first.

 auth required pam_wheel.so

pam_access
The pam_access module can be used to obtain the same functionality as
the pam_succeed_if module. But the pam_access module is primarily
focused on logging in from networked hosts, while the pam_succeed_if
module has no hint on where the user is coming from.

The restriction on accepting users is at first configured by the following
line in the appropriate service:

 account required pam_access.so debug
 accessfile=/etc/security/access.conf

Chapter 4

[61]

The actual restriction is then configured in the /etc/security/
access.conf file. A simple example is shown below. Only users who
are members of the petromod group are allowed to log in. A further
restriction is that the user must log in only from computer pamela. The
second line is a catch-all line: simply deny access from anything else.

 +:petromod:pamela

 -:ALL:ALL

The syntax of the configuration file is similar to tcpwrapper. Three
columns are separated by colons (:). The first column is either plus (+) or
minus (-) for allow or deny, respectively. The second column is the name
of a UNIX group, while the third column is used to specify a computer
name. ALL is a wild card that matches everything.

pam_deny
The pam_deny module is a very strong module since it will always return
non-OK. This implies that no matter what the user input is, the module
is able to restrict users from obtaining access to the system. As noted in
Chapter 2, the module can be used in the OTHER service at the end of the
auth stack in order to prevent weaknesses due to misconfigurations.

For example you can disable a service by adding the pam_deny module
at the top of a stack.

 auth required pam_deny.so

 auth required pam_unix.so

When the module is used in the password management stack, it can
prevent the user from changing his or her password. Locking the
password can in some situations help the system administrator to ensure
that passwords are strong enough if the cracklib module is not used.

When used in the session management stack, the module will not let the
user to start up a session—most commonly a shell. The user can deduce
that his or her account is valid but for some reason he or she is not
allowed to log in to the computer.

Common Modules

[62]

Modules Related to Back-End
Storage
Login name and password are stored in a proper back-end system, and
PAM can take advantage of a number of different systems.

pam_unix
The pam_unix module is one of the most used modules in any PAM
installation. The module is used to validate users against the /etc/passwd
file in the classic UNIX authentication process, and /etc/shadow in
modernized UNIX operating systems. Linux-PAM has a module called
pam_unix2, which also uses the /etc/passwd file as back end. Moreover,
the pam_unix2 module supports NIS/NIS+ (by the NSS mechanism found
in GNU C Library), strong encryption of passwords, and password aging.

Most PAM implementations have shared objects (so-files) for each
management group, so you will often find a set of pam_unix modules.
Older implementations might have one module supporting all
management groups.

The original standard (DCE RFC 86, dated October 1995) mentions
the module many times. The default settings for most UNIX operating
systems include pam_unix for authentication.

Ubuntu Linux (version 6.06) uses the pam_unix module for
authentication, that is, the auth management group. The configuration file
(/etc/pam.d/common-auth) is taken directly from a standard installation
of Ubuntu.

 auth required pam_unix.so nullok_secure

The pam_unix module supports the common parameters debug,
use_first_pass, and try_first_pass. Moreover, a large number of
parameters are supported depending on the management group.

Chapter 4

[63]

pam_winbind
Microsoft Domains and Active Directories can be used as back-end storage
by using the pam_winbind module. The module is part of the Samba suite,
and it compiles easily under various UNIX operating systems.

The application of the module is discussed in Chapter 5. The common
parameters discussed previously in this chapter are supported. Moreover,
a parameter named require_membership_of can be used to restrict access
to a group of users.

An example of the usage of this module is shown below (auth group only)
for the ssh service. If the file /etc/nologin is present, only root is allowed
to log in. The pam_winbind module is tried first to validate the user. If
this does not succeed, pam_unix is tried with the same password. There
are two reasons for including pam_unix in the PAM configuration: first,
storing system administrators' credentials on a remote directory server is
not wise since the directory server can be compromised and thereby all
other servers are compromised. Second, in the case of a directory server or
the network failure, it will become impossible to log in.

 auth required pam_nologin.so

 auth sufficient pam_winbind.so

 auth required pam_unix.so use_first_pass

pam_ldap
Today, LDAP is probably the most widely used distributed user database.
Microsoft Active Directory (AD) and Novell eDirectories are both
examples of (nearly) LDAP implementations. AD stores a lot of user data
but the actual passwords are checked through Kerberos 5. Furthermore, a
number of commonly used (pure) LDAP implementations exist, including
OpenLDAP.

The pam_ldap module enables PAM to receive user data from an LDAP
server. Actually, more than one implementation of the module exists. The
Open Source module can be obtained from PADL (http://www.padl.
com/OSS/pam_ldap.html) and can be compiled for any UNIX operating

Common Modules

[64]

system. SUN offers LDAP support in Solaris 9 and later through its LDAP
module, and IBM AIX also has an LDAP module installed.

pam_mysql
MySQL is a widely used relational database engine, and due to the
dual license of MySQL, it is considered as Open Source Software. The
pam_mysql module can be used to authenticate users with credentials
stored in a database.

The example below is taken from the Cyradm HOWTO documentation
(http://www.delouw.ch/linux/Postfix-Cyrus-Web-cyradm-HOWTO/
html/t1.html). The module is highly flexible.

 auth sufficient pam_mysql.so user=mail passwd=secret
host=localhost db=mail table=accountuser
usercolumn=username passwdcolumn=password crypt=1
logtable=log logmsgcolumn=msg logusercolumn=user
loghostcolumn=host logpidcolumn=pid logtimecolumn=time
 auth sufficient pam_unix_auth.so

 account required pam_mysql.so user=mail passwd=secret
host=localhost db=mail table=accountuser
usercolumn=username passwdcolumn=password crypt=1
logtable=log logmsgcolumn=msg logusercolumn=user
loghostcolumn=host logpidcolumn=pid logtimecolumn=time
 account sufficient pam_unix_acct.so

Most parameters supported by the module are related to the database.
But the common parameters debug, use_first_pass, and try_first_
pass are all supported with their usual meaning. In the example above,
the rest of the parameters are related to the database. The parameters
user, secret, and host are related to opening a connection to the MySQL
server, while parameters like db, table, usercolumn, passwdcolumn,
and crypt are related to validating the credentials of the user. A set of
parameters has the prefix log, and they configure where the pam_mysql
module will store the log messages in the database.

Chapter 4

[65]

The pam_mysql module is not distributed as any PAM implementation
but it can be compiled from source. Some Linux distributions support
it (Debian and Ubuntu as the libpam-mysql package) and it should be
possible to compile on most UNIX operating systems. The source code
can be downloaded from http://pam-mysql.sourceforge.net/.

Summary
Many PAM implementations exist but fortunately they all build on the
same set of concepts. PAM became an open standard a decade ago,
and the implementations do not vary much; it is possible to find a set
of modules that are common to all existing PAM implementations.
Moreover, many modules exist as Open Source Software, and they are
easily compiled under the various UNIX operating systems.

Recipes
The focus of this chapter is practical applications of PAM. Since PAM is a
generic framework, it can be used in many different situations.

The number of recipes presented in this chapter is limited, and they
should not be read as a cookbook but merely as a set of working
solutions. Probably, you will have to adjust a recipe to your environment
and your problem. The art of the systems administrator is the art of
adjustment. The purpose of the recipes is to show how various PAM
modules can work together in real-world situations.

Encrypted Home Directories
The example in Chapter 2 discussed how to get PAM to mount encrypted
home directories transparently as you log in. Both Linux and OpenBSD
support encrypted home directories, but the configuration is slightly
different. The previous chapters have provided the background, and it is
time to return to the example in order to understand it.

The authentication configuration can be boiled down to this
(the /etc/pam.d/common-auth file in many current Linux distributions):

 auth required pam_unix.so nullok_secure

 auth optional pam_mount use_first_pass

Recipes

[68]

The first line does the actual authentication of the user. The classic
UNIX style (pam_unix) is chosen, but it is not hard to imagine using
another back end, for example, LDAP or NIS. It is required that the user
is authenticated, and if the user is either not found or the password is
wrong, the login is rejected. In the second line, the password from the
first module (pam_unix.so) is reused (the use_first_pass option), and
pam_mount uses it as key for the encryption algorithm. If pam_mount
fails for some reason, the login is not rejected due to the optional nature
of the second line.

The module pam_mount is configured by the /etc/security/pam_
mount.conf file for global settings. If a user has a pam_mount.conf file
(or what is configured by the luserconf directive of the /etc/security/
pam_mount.conf file) in his or her home directory, it is possible for the
user to control which directories are to be mounted.

Encrypted home directories are not the only supported file system. The
original goal of the module was to mount Windows and Netware shares.
In both cases, a user name and a password are required in order to
access the remote file system. Moreover, it is possible to mount loopback
devices. A loopback device is a non-physical device, where an ordinary
file in the file system emulates the role of a physical device (or partition).
Instead of encrypting the complete home directory, only highly sensitive
information is encrypted leaving most files unencrypted. Using loopback
devices makes backups much easier since the backup software will see an
ordinary file.

Working with Secure Shell
The secure shell (ssh) is regarded as a much better protocol than telnet
and rsh for connecting to remote hosts. The Secure shell can be used
for logging in, copying files, executing commands, and building VPN
solutions. The connection is encrypted from the beginning, and most
secure shell implementations are able to detect man-in-the-middle
attacks. With contemporary fast computers, the overhead of encrypting
the communication is not noticeable except for very large files, and there
is no excuse to keep using telnet and ftp. ssh clients exist for Microsoft

Chapter 5

[69]

Windows so even webmasters can be forced to shift from the insecure ftp
solution of the past.

Working with ssh involves creating a pair of encryption keys. The private
key is kept at your computer, while the public key can be stored on the
remote computer, and you can log in without typing in your password
every time. Many hard-working system administrators see this as a big
time-saver. But in order to keep your environment secure, the private
key must be protected. This is done by encrypting the private key using a
passphrase, which only the owner of the key must know.

The generation of a private/public key pair is done by the ssh-keygen
utility. The example below generates a key pair using the DSA
authentication protocol.

pamela@pamela:~$ ssh-keygen -t dsa

Generating public/private dsa key pair.

Enter file in which to save the key
 (/home/pamela/.ssh/id_dsa):

Enter passphrase (empty for no passphrase): XXXXX

Enter same passphrase again: XXXXX

Your identification has been saved in
 /home/pamela/.ssh/id_dsa.

Your public key has been saved in
 /home/pamela/.ssh/id_dsa.pub.

The key fingerprint is:

fe:7c:70:dd:f4:48:8c:7a:b4:87:77:76:ee:38:e3:7b
 pamela@pamela

The passphrase (written here as XXXXX) must be the same as the
password—otherwise it cannot easily work with PAM. Generally, it is
recommended to change a password periodically but for systems in less
secure environments, these recommendations might be softened a bit.
The public key can be copied to the remote hosts and added to the list
of known hosts (the file .ssh/authorized_hosts in the user's home
directory) so the user can log in without typing in a password. Some
Linux distributions have the ssh-copy-id utility, which can do the job.

Recipes

[70]

pamela@pamela:~$ ssh-copy-id -i .ssh/
 id_dsa.pub alpha.pamela.local

15

pamela@alhpa.pamela.local's password: XXXXXX

Now try logging into the machine, with ssh aplha.pamela.local, and
check in:

 .ssh/authorized_keys

to make sure we haven't added extra keys that you
 weren't expecting.

The private key must be decrypted when a connection is going to be
made. In order to minimize the time to type in the passphrase, an ssh
agent can cache the decrypted private keys. Fortunately, a PAM module
exists that will start up the agent with the correct passphrase as the user
logs in.

The pam_ssh module can be compiled against Linux-PAM, and Debian
and Ubuntu both have the module in their repositories. The installation of
the module is straightforward:

apt-get install libpam-ssh

But the module must be configured manually. A configuration for the
login service is shown below. The configuration also supports encrypted
home directories as discussed previously.

auth required pam_unix.so nullok_secure

auth optional pam_mount.so use_first_pass

auth sufficient pam_ssh.so try_first_pass

session required pam_unix.so

session optional pam_mount.so debug

session optional pam_ssh.so

The pam_ssh module makes use of the PAM facility to reuse the password
in order to launch the ssh agent transparently. The user obtains a more
secure environment and must only remember one password/passphrase.

Chapter 5

[71]

Apache htaccess Made Smart
The Apache web server supports the use of a htaccess file in order to
restrict access to some areas of websites. User names and passwords
are maintained by the htpasswd utility, which is part of the main
Apache distribution.

The architecture of Apache is very modular, and there is a module that
can use PAM for authentication purposes instead of standard htaccess
files. The major disadvantage is that the module is currently not
maintained but most current Linux distributions and FreeBSD do include
the module.

The module provides the usual htaccess authentication, but in addition
it is possible to require membership of a particular group (the /etc/
group in traditionally UNIX authentication). The Debian/Ubuntu
developers have split the PAM authentication module in two packages.
Installation is straightforward:

 # sudo apt-get install libapache2-mod-auth-pam

 # sudo apt-get install libapache2-mod-sys-group

The latter command installs the module for checking group membership.
Using that module it is possible to allow one particular UNIX group access
to a directory. In the snippet below from an Apache configuration file, the
directory /var/www/ is limited to users who are members of the UNIX
group named developers. When a user tries to load a page from that
directory, Apache will prompt for user name and password. If the user
name is valid, the password can be verified, and the user is a member of
the developers group, then the page is loaded. Otherwise, Apache will
reject the request with a message that it could not authorize the user.

 <Directory /var/www/>

 Options Indexes FollowSynLinks MultiView

 AllowOverride None

 Order allow,deny

 allow from all

 RedirectMatch ^/$ /apache2-default/

Recipes

[72]

 AuthPAM_Enabled On

 AuthType Basic

 AuthName "PamTest"

 require group developers

 </Directory>

If Apache is not running under a privileged user, (which is recommended
and common for most Linux distributions), then the Apache user must be
added to the shadow group. This is the case with Debian/Ubuntu, and it
is necessary to execute the following command:

 # adduser www_data shadow

This might weaken the security of the web server. Furthermore, during
an Apache authentication, the user name and password are transmitted
in clear text, and it is probably a good idea to use SSL.

Directory Services
In the UNIX world, directory services like NIS and NIS+ have a long
history, but both are fairly tight-coupled with UNIX. Integrating Linux
in a NIS environment does not require any modification in the PAM
configuration, while the Name Service Switch (NSS) in the GNU C
Library embraces NIS for authentication purposes, and the pam_unix
module can be used.

The Lightweight Directory Access Protocol (LDAP) is on the other hand a
generic framework, and a set of protocols and data format, which can be
used to capture any information about an organization—including users
and computers.

Many vendors have embraced LDAP, but one particular implementation
is very popular—Microsoft Active Directory (AD). AD is Microsoft's own
version of LDAP and Kerberos. Prior to AD, Microsoft had its proprietary
mechanisms for authenticating users. But even Microsoft is approaching
integration with Linux/UNIX by using open standards. Of course,
Microsoft adds small deviations to the open standards, because otherwise
it would too easy to integrate other operating systems.

Chapter 5

[73]

Winbind
The Samba project offers implementation of various protocols related
to Microsoft's products, in particular the Common Internet File System
(CIFS). Both server and client side are supported, but in this context only
the client side is of interest.

Winbind is a small part of the Samba distribution. It is a small daemon,
which mediates authentication requests. Moreover, PAM can use
Winbind as back end by using the pam_winbind modules. Samba
supports Linux and UNIX, and using Winbind can be a method for
integrating any Linux/UNIX computer with Microsoft Active Directory
or with a legacy Microsoft Domain Controller.

The integration with AD is divided in three steps. First, Winbind must be
configured. Next, the Linux/UNIX computer must join the directory (or
the domain), and finally PAM must be configured to use Winbind. The
integration will be discussed in detail in the following subsections.

Overview
The integration with AD is not trivial, and many steps can fail. The
diagram overleaf shows the flow during a login attempt.

Recipes

[74]

Two computers are involved in this scenario: a Linux-(or UNIX)-based
client and a Microsoft Windows server. When a user logs in, the user
interacts with an application represented as a PAM service. It could
be sshd (the secure shell service). Six steps are involved in the
authentication process.

1. The application (sshd) wishes to authenticate user.
2. The PAM winbind module asks the winbind daemon.
3. Winbind send a request to the AD server.

Chapter 5

[75]

4. The AD server replies back.
5. The reply is forwarded to PAM and the winbind module.
6. PAM notifies the application.

Winbind Configuration
The configuration of Winbind is done in the same file as the rest of
Samba, which is the smb.conf file. Most commonly, the file is located in
the directory /etc/samba, but it may vary. A number of directives related
to Winbind can be tuned. The global section of the smb.conf file could
look like:

[global]

 workgroup = PAMELA

 username map = /etc/samba/smbusers

 auth methods = winbind # choose winbind

 netbios name = pamela

 unix charset = LOCALE

 realm = pamela.corp # For Kerberos
 (Active Directory)

 server string = pamela-test

 security = ADS # Use Active Directory

 encrypt passwords = yes

 ldap ssl = no

 template primary group = "Domain Users"

 winbind separator = + # The rest
 is for Winbind

 winbind cache time = 10

 winbind use default domain = yes

 template shell = /bin/bash

 template homedir = /home/%U

 idmap uid = 10000-20000

 idmap gid = 10000-20000

 password server = *

Recipes

[76]

 valid users = domadm

 winbind enum users = yes

 winbind enum groups = yes

But smb.conf is only a minor step. Before starting Winbind and using the
above configuration, the Linux/UNIX computer must join the domain. As
already mentioned, AD is based on a combination of Kerberos and LDAP.
In the sample configuration file above, a number of lines are important to
Winbind; the rest are used by Samba for its services. The realm is often
set to the domain name when NT dominates the organization. Otherwise,
the realm can be used in the TXT record associated with the internal
(internet) domain name. A quick lookup using the command host -t
TXT pamela.local or similar will give you the realm.

Kerberos
Kerberos is used to log in to the directory, but the login is a single sign-
on (this is one of the main features of Kerberos). This is important if the
infrastructure consists of more than one server. But in order to get Linux
or UNIX to work with AD, Kerberos runtime libraries and clients must be
installed. In the case of SLES 9, the Heimdal Kerberos packages work fine.
The configuration is stored in the file /etc/krb5.conf. For a simple AD
setup with a domain called PAMELA.LOCAL and with an AD server named
adtest.pamela.local, the configuration file is shown below:

/etc/krb5.conf

[libdefaults]

 default_realm = PAMELA.LOCAL

 clockskew = 300

[realms]

 PAMELA.LOCAL = {

 kdc = adtest.pamela.local

 admin_server = adtest.pamela.local

 kpasswd_server = adtest.pamela.local

[logging]

Chapter 5

[77]

 default = SYSLOG:NOTICE:DAEMON

 kdc = FILE:/var/log/kdc.log

 kadmind = FILE:/var/log/kadmind.log

[appdefaults]

 pam = {

 ticket_lifetime = 1d

 renew_lifetime = 1d

 forwardable = true

 proxiable = false

 retain_after_close = false

 minimum_uid = 0

 debug = false

 }

 }

Notice the clockskew directive in the configuration file. A difference of
five minutes (300 seconds) is allowed between servers when comparing
the time. A check of time is done in order to prevent a replay attack. A
replay attack is an attack where a person obtains a Kerberos key and
by changing his or her computer's clock back in time, he or she might
be able to use an expired Kerberos ticket. It is required that servers that
participate in an AD-based environment synchronize time from a central
source, for example, by using NTP.

The case sensitivity of Active Directory (and its usage of Kerberos, DNS,
and LDAP) is somewhat a mystery—in particular for people coming
from UNIX. The first advice when things are not working is to try
changing case.

Joining the Directory
The single sign-on to the directory is done by the kinit command. This
command will receive a Kerberos ticket, which will be used to identify
the client. The command is as follows:

 kinit Administrator

Recipes

[78]

The password of the administrator account at the AD server is required
for this operation.

A valid Kerberos ticket can be used to join the directory. With the net
command, which is part of Samba (samba-client package on SLES 9),
joining the directory is done by a single command:

 # net ads join -S adtest.pamela.local -U Administrator

The computer has now joined the directory (or domain in pre-2000
terminology). It is possible to do some preliminary tests by using the
wbinfo command. Two options are nice to know: -u for listing users and
-g for listing groups.

 # wbinfo -u

 # wbinfo -g

Finally PAM
It might feel like a big detour but finally PAM can be configured to take
advantage of Winbind. The PAM module pam_winbind has already been
outlined as the solution, but if the C runtime library will use Winbind, the
name service switch configuration must be modified slightly so that the
passwd and group settings include winbind.

 # /etc/nsswitch.conf

 passwd: winbind compat

 group: winbind compat

 hosts: files dns

 networks: files dns

 services: files

 protocols: files

 rpc: files

 ethers: files

 netmasks: files

Chapter 5

[79]

 netgroup: files

 publickey: files

 bootparams: files

 automount: files nis

 aliases: files

For example, a complete PAM configuration for ssh is shown below. It is
highly recommended that winbind authentication is followed by pam_
unix (or pam_unix2) for local accounts. Local accounts include root and
it should always be possible to log in as root in situations where the
network or the AD server is not available.

 # /etc/pam.d/sshd

 auth required pam_nologin.so

 auth sufficient pam_winbind.so

 auth required pam_unix2.so use_first_pass

 auth required pam_env.so

 account sufficient pam_winbind.so

 account required pam_unix2.so

 account required pam_succeed_if.so
gid=10006,10963

 password required pam_pwcheck.so nullok

 password required pam_unix2.so nullok use_
 first_pass use_
authtok

 session sufficient pam_mkhomedir.so skel=/etc/
skel/
 umask=0022

 session required pam_unix2.so none # debug or
trace

 session required pam_limits.so

The account section features the pam_succeed_if module. In this example,
the module is used to limit the access to users who are members of two
groups (10006 and 10963). In large organizations it is probably wise to
limit access to servers as precisely as possible.

Recipes

[80]

Turning to the session section, the pam_mkhomedir module is used.
The module creates a home directory for each user, first time the user
logs in. The pam_mkhomedir module is a trick of the trade when AD
authentication is used on servers. Administrators might never log
in so why bother to create home directories? But if a home directory
does not exist, the user will be left with the root directory (/) as home
directory. Having / as home directory can be a serious threat to security
and availability since users can either intentionally or unintentionally
overwrite or delete important system files.

The main advantage of using Winbind is that your Linux/UNIX
computer is regarded as another client in AD. A machine account will
be created, and it can be treated equally. The AD administrator will like
that. The disadvantage is that the users lose quite a lot of flexibility. They
have to use the same shell, and the home directories cannot be picked
randomly but must reside relative to a common parent.

LDAP
The lightweight directory access protocol (LDAP) is a widely supported
directory standard. Many vendors offer LDAP servers, including Sun
Java Directory Server, Novell eDirectory, and Red Hat Directory Server.
Even Microsoft Active Directory can be accessed as an LDAP server. In
the Open Source community, OpenLDAP is a highly respected LDAP
server and client library. The RFC 2307 standard can be read at
http://rfc.net/rfc2307.html.

It is out of the scope of this book to explain how LDAP operates. Gerald
Carter's LDAP System Administration (published by O'Reilly & Associates)
gives a good and thorough introduction to LDAP. For UNIX and Linux
accounts, RFC 2307 specifies a set of schemas that are appropriate to
capture the information needed to validate users.

Chapter 5

[81]

Installation
PAM can use LDAP as back-end storage of user credentials by using
the pam_ldap module. Most Linux distributions have a package for this
module. Installation of the PAM module for Debian/Ubuntu is done by
the following command:

 apt-get install libpam-ldap

For SuSE Enterprise Linux Server, the package is called pam_ldap. For
SLES 9 SP3 the package is found on CD 1, and the installation is done by
the following command.

 rpm –i pam_ldap-169-28.4.i586.rpm

In both cases, the packages will depend on the OpenLDAP client libraries.
You are required to install these libraries as well. For Debian/Ubuntu
depending packages will be installed, while the rpm command will not
automatically install the required packages.

The LDAP Client
The pam_ldap module is a client, and any LDAP client has to be
configured with information about the LDAP server. The LDAP client
configuration is a plain text file. A minimal example is shown below.

 ldap_version 3

 host dir.pamela.local

 base dc=pamela,dc=local

The first line will request the client to use version 3 of the protocol. The
second line sets which LDAP server to use, while the third line sets the
base name for the directory searches.

The location of the configuration file varies from one Linux distribution
to another. Debian uses the file /etc/ldap.conf while SLES used the file
/etc/openldap/ldap.conf.

Recipes

[82]

The Name Service Switch
Operating systems like Linux, Solaris, and FreeBSD use a name service
switch to control how names (hosts, users, etc.) are looked up. The
configuration file is /etc/nsswitch.conf and it must be modified in
order to use LDAP. An example of this configuration file is as follows:

 passwd: files ldap

 group: files ldap

 shadow: files ldap

 hosts: files dns

 networks: files

 protocols: db files

 services: db files

 ethers: db files

 rpc: db files

 netgroup: nis

The first three lines in the configuration file instruct the run-time
environment (the C library) to validate password, group credentials, and
shadow passwords using the common UNIX files (/etc/passwd, /etc/
group and /etc/shadow) and LDAP.

PAM Configuration
With the entire LDAP client configuration in place, you can now
configure a service in the PAM framework. The secure shell service (sshd)
can be configured in the following way in the /etc/pam.d/sshd file:

auth sufficient pam_ldap.so

auth required pam_unix.so use_first_
 pass nullok_secure

session required pam_unix.so

account sufficient pam_ldap.so

account required pam_unix.so

Chapter 5

[83]

password sufficient pam_ldap.so md5

password required pam_unix.so nullok obscure min=4
max=8 md5

The pam_unix module is included in the configuration so the root and
other systems account are not stored in the LDAP server.

Limiting r-Services
The old r-services (rsh, rcp, and rlogin) are considered harmful and
should never be used, due to security weaknesses. On the other hand,
you cannot just neglect them since legacy applications rely on them. For
example, you find legacy engineering applications which use rsh for
parallel execution.

You can use PAM to restrict the usage of r-services. First of all, restriction
on the r-services can be imposed, but another powerful restriction is to
limit the availability of the services to a small group of users.

The basic module for working with the r-services is called pam_rhosts.
This module is at least supported by Linux, FreeBSD, and Solaris. It
provides the authentication methods found in the original r-services, for
example, the use of host.equiv and rhosts files. The /etc/host.equiv
file lists which hosts are equivalent to localhost, while a .rhosts file in
the user's home directory can allow the user to log in without giving
a password.

The pam_rhosts module can disable the use of hosts.equiv and rhosts
files by setting the no_hosts_equiv and no_rhosts options. Disabling the
rhosts file is highly recommended since knowledge of only a user name
can otherwise enable unauthorized log in.

In order to limit the use of r-services, additional modules must be used. In
SuSE Linux Enterprise Server 8 the module pam_access can be used. The
granularity of the access provided by the module is to the UNIX group
level. That is, it is possible to control access by adding or removing users
to or from a single group. The PAM configuration is shown overleaf.

Recipes

[84]

 # PAM configuration for rsh (SLES 8)

 auth required pam_rhosts_auth.so no_rhosts

 auth required pam_nologin.so

 account required pam_access.so accessfile=
 /etc/security/rsh-access.conf

 password required pam_unix.so

 session required pam_unix.so none # debug or trace

The access module is configured by the file set by the accessfile option.
The access to rsh on this particular host is limited to the petromod group,
and the user can only log in from either localhost or ux0001.

 # /etc/security/rsh-access.conf

 # RSH access

 # Last modified: 2005-08-11

 +:petromod:localhost,ux0001

 -:ALL:ALL

The reason why localhost is included is that, in the particular situation,
the application that requires rsh can run in parallel and spawn extra
processes using rsh.

Turning to SuSE Linux Enterprise Server (SLES) 9 the pam_succeed_if
module can be used. The pam_access module is supported in SLES 9 but
the pam_succeed_if module is much more flexible that pam_access and
no configuration file except the PAM configuration file needs to be edited.
It is possible to use Boolean expressions, and the PAM configuration is
as follows.

 # PAM configuration for rsh - /etc/pam.d/rsh

 auth required pam_rhosts_auth.so no_rhosts

 auth required pam_nologin.so

 auth required pam_succeed_if.so user
 ingroup petromod

 account required pam_unix2.so use_authtok

 password required pam_unix2.so

 session required pam_unix2.so none # debug or trace

Chapter 5

[85]

The user ingroup petromod expression can be read easily. In this
solution, there is no restriction on, from which host log in is attempted,
but the entire configuration is captured in one configuration file.

One important difference between the access and the succeed_if modules
is that they are applied at difference stages of the log in process. For the
user it does not matter—the effect is the same.

Limiting Resources
If you are running a computer with many users, it might be a good idea
to limit the resources for particular users. Resources in this context are the
maximum amount of memory to be used, and for how long a program
can run.

UNIX and Linux operating systems implement resource limits. The
ulimit command in the Bash shell shows your resource limits. Moreover,
it can change your resource limits (only downwards). The default limits
for most Linux computers today are only bound by the physical limitation
of the computer. An example on checking the limits is shown below.

 pamela@pamela:~$ ulimit

 core file size (blocks, -c) 0

 data seg size (kbytes, -d) unlimited

 max nice (-e) 0

 file size (blocks, -f) unlimited

 pending signals (-i) 8119

 max locked memory (kbytes, -l) 32

 max memory size (kbytes, -m) unlimited

 open files (-n) 1024

 pipe size (512 bytes, -p) 8

 POSIX message queues (bytes, -q) 819200

 max rt priority (-r) 0

 stack size (kbytes, -s) 8192

 cpu time (seconds, -t) unlimited

 max user processes (-u) 8119

Recipes

[86]

 virtual memory (kbytes, -v) unlimited

 file locks (-x) unlimited

The resource limits can be control by the system-wide shell configuration
files (/etc/bash.bashrc for Bash, /etc/csh.cshrc for csh and tcsh).
Using these files the limits are the same for every user. The pam_limits
module is able to do a fine-grained limit configuration. Fine-grained in this
context means it is possible to control the limits down to a particular user.

The pam_limits module works in the session management group only. A
simple PAM configuration for the login service could be as follows.

 auth required pam_issue.so

 auth required pam_unix.so

 session required pam_limits.so

The resource limits are set in the /etc/security/limits.conf file.
Setting the size of data segments for each program to 25 MB and the
maximal CPU time to 1 hour (60 minutes) is done by the following
configuration file.

* hard data 25000

* hard cpu 60

Each line of the configuration file represents a resource limit and has four
columns. The first column is called the domain. The domain controls to
whom the limit applies to. A star (*) means everybody, and groups can
be addressed by the group name prefixed with an @ sign (e.g. @chem
means users in the chem group). Users are address by their user name.
The second column can either be hard, soft, or – (minus). This is how
the limit is enforced, where minus means both. The user cannot change
a hard limit while it is possible to change a soft limit within certain
(kernel-defined) ranges.

Chapter 5

[87]

The third and fourth columns refer to the resource limit and its value.
Many different limits can be set, including core (maximum size of
allowed core dumps), data (size of data segments), stack (size of stack),
nproc (number of processes), and priority (the UNIX priority set for
the user's programs). The default configuration file for the pam_limits
module lists all the possible limits.

Summary
This chapter presents a number of short recipes on how to use PAM in
the real world. The recipes are neither representative for all PAM uses
nor are they optimal solutions. PAM is a set of bricks, which can be put
together in endless number of ways.

Using the right modules, it is possible to authenticate Linux and
UNIX users against directory services like Microsoft Active Directory.
Unfortunately, the success of such a project depend on how AD
is configured.

Letting the users in to the computer is one thing but restricting access to
certain services and resources is another thing. Again, PAM has a rich set
of modules to cope with almost anything you can come up with.

Developing with PAM
As seen in the previous chapters, PAM is a very powerful and flexible
framework. Of course, applications that require authentication must be
aware of PAM. But most basic applications and utilities in the UNIX and
Linux world have been migrated. If you are an application programmer
and your application requires authentication, you might wish to dig into
the possibilities of PAM.

You can find modules for almost any situation, or maybe a combination
of modules can solve your problem. But still you might end up in the
situation where you cannot find a suitable module. In this chapter, you
will learn how to develop your own modules.

PAM-aware Applications
The PAM runtime library has a well-defined API (Application
Programming Interface). The PAM API is to a large extent the same
on every UNIX and Linux operating system. Only a small number
of differences exist, but any programmer can make a portable work-
around. The differences are primarily related to the conversation function
discussed later in this chapter. Linux-PAM provides one as a library
function while other PAM implementations require the programmer
to develop a conversation function. The pamtester utility discussed in
Chapter 3 provides a conversation function, which might be applicable to
other applications.

Developing with PAM

[90]

The example application presented here is very simple. It can store and
retrieve data (strings) in a simple (GNU DBM) database. In order to gain
access, authentication through the PAM system is required. The idea is
that the system administrator can control the access as he or she wishes
by configuring PAM in a suitable fashion. This application is called vault
and the source code is found in the Appendix of this book.

The figure below outlines how a typical application uses PAM for
authentication. Most of the usage is straightforward; the application calls
a set of well-defined functions, which creates, operates on, and destroys
data structures related to PAM. But PAM applies a little trick: the modules
can call back to the application in order to retrieve user-related data.

Chapter 6

[91]

In order to call PAM functions in your applications you must include the
pam_appl.h header file. The sample application includes two:

#include <security/pam_appl.h>

#include <security/pam_misc.h>

The second header file is special to Linux-PAM and it is related to a
text-based conversation function and a few other utility functions.

Opening and Closing a PAM Session
Any PAM session begins with creating and initializing a data structure.
The data structure (C-type) is called pam_handle_t. During the
application run time, it is required to hold one variable of this data
structure. It contains all relevant data about the PAM session.

The creation of the data structure is equivalent to opening a PAM
session. The data structure is initialized by the function pam_start. Four
parameters must be supplied when calling the pam_start function. In the
sample application the call to pam_start is:

retval = pam_start(“vault”, user, &conv, &pamh);

The first parameter is the service name. It is a simple text string, and if
the application programmer permits it, the service name can be set by
the user instead of hard-coding the service name in the application. In
the sample application the service name is set to vault precisely at the
call, and at this point the PAM runtime will try to find the configuration
file associated with the service (/etc/pam.d/vault in this example) or
the appropriate lines in the /etc/pam.conf file. The second parameter
is the user name. The standard C runtime library provides the getlogin
function, which returns the user’s login name as a text string.

The third parameter is a pointer to the conversation function, which
is, the function that takes care of the callbacks from the modules. We
will return to the conversation function shortly. The fourth and last
parameter is a pointer to the PAM handling data structure (actually, a
pointer to a pointer). The call to pam_start returns an integer. If the return

Developing with PAM

[92]

value is PAM_SUCCESS, the initializing of the PAM handler was as it
should have been. Linux-PAM provides—as defined in the pam_appl.h
header file—a conversation function, while other PAM implementations
require the application programmer to develop conversation functions.
Conversation functions are discussed in a later section.

When the application does not need the PAM handling data structure, it
can destroy it by calling the pam_end function. This is typically just before
the application is to stop executing. In the sample application, the call to
pam_end at the end of the main program is as follows:

pam_end(pamh, retval);

The argument retval is carried along from the last call to the PAM
runtime, and depending on the return value of the previous call, PAM
might have to shut down a PAM session differently.

Authenticating the User
When an application has initialized the PAM handling data structure, the
next step is to authenticate the user. Since the service name and the user
name are set by the call to pam_start, the authentication can be done by
a simple call to the function pam_authenticate. The call is typically
as simple as:

retval = pam_authenticate(pamh, 0);

The first parameter is the PAM handling data structure while the second
parameter is optional flags. 0 (Zero) means silence authentication but
others flags might be valid depending on the PAM implementation.

The return value (stored in the variable retval above), is set to
PAM_SUCCESS if the user is authenticated. If the user is it not known
to PAM, the return value is PAM_UNKNOWN_USER, while a general
authentication failure will lead to PAM_AUTH_ERR. In the case of Linux-
PAM, the only flag is PAM_DISALLOW_NULL_AUTHTOK which will
lead the return value PAM_AUTH_ERR if the user is not known to PAM.

Chapter 6

[93]

In order to authenticate a user for a particular service, the auth
management group cannot be empty, that is the auth stack must have at
least one module. If there are no modules the return value will be PAM_
AUTHINFO_UNAVAIL.

Account Health Check
It is one thing to authenticate the user, but it is another thing to say
whether the user is allowed to use the account. A number of issues
influence the health of an account. For example, an account can be
expired or the user may not currently be allowed to log in.

The PAM function pam_acct_mgmt is used to check the health of the
requested account. The simple call to the function is

retval = pam_acct_mgmt(pamh, 0);

The second parameter can be set to PAM_SILENT, which suppresses
any messages from the PAM runtime, or to PAM_DISALLOW_NULL_
AUTHTOK in order to require an authentication token. The flag has the
same effect as for the pam_authenticate function.

Manipulating the PAM Handling Data
Structure
In the sample application, the user name is set at the time of the call to
the pam_start function, but this might not be always possible, so you
need a function to set any piece of data. PAM data should not be accessed
directly, so PAM provides methods for storing and retrieving the data
items. The function's name is pam_set_item.

Many types of items are used by PAM; the table overleaf summarizes
the most important types. A complete list can be found in the
Linux-PAM documentation and the Open Group's single-sign on service
(see http://www.opengroup.org/pubs/catalog/p702.htm for details).

Developing with PAM

[94]

PAM item Meaning
PAM_USER User name
PAM_SERVICE Service name
PAM_USER_PROMPT Text asking for user name

Conversation Functions
The callback feature is also called the PAM conversation as outlined in
the figure at the beginning of this chapter. The PAM conversation trick
requires the application programmer to implement a function that can
handle the call-backs. The conversation function is used by the modules
to get the application to prompt the user for authentication-relevant
information, for example, the user's password.

The conversation function is implemented by the application and must
follow certain calling conventions, for example, which parameters the
conversation function must have. The conversation function receives a
number of messages from a PAM module, and when the function returns
execution to the module, a set of data structures must be set.

But fortunately Linux PAM does implement a generic conversation.
The function conv in the header file pam_misc can be used in most
applications. The call to pam_start in the sample application as discussed
in the section Opening and Closing a PAM Session is as follows:

retval = pam_start(“vault”, user, &conv, &pamh);

The third parameter is a pointer to the conversation function as
implemented by the Linux-PAM library. In order to use this function in
your applications you must include the pam_misc header file, by having
the include statement at the beginning of the application:

#include <security/pam_misc.h>

If you are not using Linux-PAM, you might find the conversation function
in the pamtester utility (http://pamtester.sourceforce.net) a place to
learn how such a function is programmed—see the compat.c file for details.

Chapter 6

[95]

Working with Error Messages
The PAM library functions return an integer, which indicates how the
request went. Mostly, the PAM functions return PAM_SUCCESS but if
an error occurs, the pam_strerror can be used to generate a text string.
From the sample application we have the following call to pam_strerror
(wrapped in a call to the standard error output printing function).

fprintf(stderr, “%s\n”, pam_strerror(pamh, retval));

Both the return value from the previous call to a PAM function and
the PAM handler are used in order to generate the text string. Even the
PAM_SUCCESS return code can be used as an error code, but this will
lead to text that does to indicate an error (the typical text is Success).

If your application should react to errors more intelligently than just
printing out an error message before failing; for example, you could give
the user a second chance to correct a wrongly typed password; you must
observe the possible error codes for each PAM function—see the section
Return Codes for a list of the most common ones.

Developing your Own PAM
Modules
The dominant programming language of UNIX is C, and it is in many
ways easier to develop new modules in C than any other language. It
might sound like a huge assignment to develop a PAM module, but
many modules are small—ranging from 100 to 1000 lines of code in the
C language. Of course, the pam_unix module is typically a very large one.
The implementation of the module in Linux-PAM is about 4500 lines of
code—a large portion is used to check new passwords.

The PAM run-time environment expects a few things from the modules.
In particular the API for a set of functions related to the management
groups must be followed. The example module presented in this chapter
is a very simple one—about 70 lines of C code. It only operates in the
session management group, and it sets up a number of Secure Shell

Developing with PAM

[96]

tunnels mapping a TCP port on your local machine to a port on a remote
port. You connect to localhost and the network traffic transparently
travels to your remote host. Tunnels are often used in order to get through
restrictive firewalls, for example, for checking email on your remote IMAP
server. The tunnels are defined in a configuration file residing in the user's
home directory. An example of a configuration file is:

pamela@pamela:~$ cat .pam_tunnels.conf

10031:www.pamela.net:8080

The syntax is straightforward. Three configuration parameters are
separated by colons (:). The first parameter is the port at the client, the
second parameter is the remote host, while the last parameter is the
remote port.

The Management Groups
A module can support one or more management groups. Each supported
management group is implemented by one or more functions in the
module. The general declaration of these functions is:

PAM_EXTERN int pam_sm_FUNC(pam_handle_t *pamh, int flags,
int argc, const char **argv)

The FUNC is explained in the table below.

FUNC Management Group Meaning
authenticate Auth Authentication of the user
setcred Auth Setting credentials
acct_mgmt Account Validating account health
chauthtok Password Manipulating passwords
open_session Session Open a new session
close_session Session Clean up when closing a session

The function operates on a PAM handle (pamh), which is created by the
pam_start function. The PAM handle contain all the data about the
current PAM session. The argc and argv represent the arguments for the
particular function.

Chapter 6

[97]

A macro (a #define construct in the C programming language) must
be defined for each management group that the module supports. The
macros follow the pattern PAM_SM_<group>. In the sample module, only
the session management group is supported, and this leads to the macro
at the top of the source code:

#define PAM_SM_SESSION

Return Codes
On behalf of the applications, the PAM runtime calls functions for
authentication, opening a session, and so on in modules defined by the
stack in the configuration of a particular service. The return codes of
functions are indicators of what the function was able to deduce about
the user. It is vital for the PAM runtime that the results from the modules
in the stack are returned. Otherwise PAM cannot make decisions on
whether the user should be allowed to log in or not.

The most obvious return code from any function in a module is
PAM_SUCCESS. This return code should be used in the case where
everything goes fine. The table below lists a subset of the return
codes—a complete list can be gathered from the Linux-PAM
documentation.

Return code Management group Meaning
PAM_SUCCESS All Everything went well
PAM_USER_UNKNOWN Auth, Account,

Password
The authentication token
(user name) is not known

PAM_SESSION_ERR Session Any error related to
opening or closing sessions

PAM_AUTH_ERR Auth, Account Authentication failed
PAM_ACCT_EXPIRED Account Account has expired

Developing with PAM

[98]

Supporting Functions
The PAM data structures might hold information gathered from one
module that can be useful for the following modules. Two important
supporting functions are: pam_get_user and pam_strerror.

The pam_get_user function is used to obtain the user name or
authentication token. The user name is supplied to PAM by the person
logging in. When the function is called, the user name might have been
already obtained by PAM in a prior module. Typically the module in the
auth stack will request the user to provide a user name.

If the user name is not known to PAM when the pam_get_user function
is called, PAM will automatically use the conversation function to get it.
Whether the conversation function is called or not is decided by PAM and
not the module developer.

The sample module calls the function as:

if (pam_get_user(pamh, &username, NULL) != PAM_SUCCESS) {

 syslog(LOG_ERR, “cannot determine user name”);

 return PAM_USER_UNKNOWN;

}

The function returns PAM_SUCCESS if a user name can be obtained.
Moreover, the user name is stored in a string pointed to by the
variable username.

The pam_strerror function has already been mentioned. Still, the function
might be useful for module developers in order to give unified error
messages. Instead of using syslog in the code, a similar code snippet is:

if ((pam_error=pam_get_user(pamh, &username, NULL)) !=
PAM_SUCCESS) {

 fprintf(stderr, “%s\n”, pam_strerror(pamh, pam_error));

 return pam_error;

}

Chapter 6

[99]

Of course, module developers can use any function that can be called
from within a C program. The sample module uses a number of standard
C functions for file and string operations. Moreover, the syslog facility is
also used.

Compiling
PAM modules are shared objects (so files). A shared object can be
loaded on demand, and the PAM subsystem does not require a complete
recompile if a module is added, removed, or modified.

Using GNU development tools, it is not difficult to compile modules
for Linux-PAM. The sample module is compiled and installed by the
following commands:

$ gcc -fPIC -c pam_tunnels.c

$ ld -x --shared -o pam_tunnels.so pam_tunnels.o

$ sudo cp pam_tunnels.o /lib/security

It is possible to compile the PAM subsystem as one big static system. It
might be feasible in embedded systems where flexibility is sacrificed for
smaller systems. In such a case, you must supply a structure in the source
code so PAM knows which function implements what. In the sample
module, the structure is set to:

struct pam_module _pam_deny_modstruct = {

 “pam_deny”,

 NULL,

 NULL,

 NULL,

 pam_sm_open_session,

 pam_sm_close_session,

 NULL

};

This is basically a listing of the functions that can be implemented by
a module.

Developing with PAM

[100]

When the new module is compiling without errors, it must be tested. A
simple testing method is to set up a test service and use the pamtester
utility as described in Chapter 3.

Summary
Developing with PAM might be a new world for you. But if you are used
to UNIX programming in C, it is not a completely strange world.

Applications can easily become PAM-aware, and that might give your
applications a great deal of flexibility when it comes to authentication.
Moreover, in situations where you cannot find a PAM module that
satisfies your demands, it is possible to write your own module.

Source code
The C programming language is a natural choice when developing either
PAM-aware applications or new modules. Chapter 6 shows examples of
an application and a module, and in this appendix you find the source
code for both examples.

Vault – Secure Database
The vault program is an example of a PAM-aware application. It provides
access to a small database where users can store key/value pairs. The
database behind vault is the GNU dbm, and it is not a sophisticated usage
of it. The program is somewhat dependent on Linux-PAM due to the fact
that the program uses the conversation function provided by Linux-PAM.

/*

 * vault.c - access to a secure data vault

 *

 * Kenneth Geisshirt <http://kenneth.geisshirt.dk/>

 *

 */

#include <security/pam_appl.h>

#include <security/pam_misc.h>

#include <stdio.h>

#include <unistd.h>

Source code

[102]

#include <gdbm.h>

#include <sys/types.h>

#include <sys/stat.h>

static struct pam_conv conv = {

 misc_conv,

 NULL

};

int main(int argc, char *argv[]) {

 pam_handle_t *pamh = NULL; /** PAM data structure **/

 int retval;

 GDBM_FILE dbh;

 datum key, data;

 int flags;

 char *user = getlogin();

 /** Creating and initializing a PAM session **/

 retval = pam_start("vault", user, &conv, &pamh);

 if (retval == PAM_SUCCESS)

 /** Authenticate user **/

 retval = pam_authenticate(pamh, 0);

 if (retval == PAM_SUCCESS) {

 dbh = gdbm_open("vault.db", 512, GDBM_WRCREAT,
 S_IREAD|S_IWRITE, NULL);

 if (argc == 3) {

 key.dptr = strdup(argv[1]);

 key.dsize = strlen(argv[1])+1;

 data.dptr = strdup(argv[2]);

 data.dsize = strlen(argv[2])+1;

 gdbm_store(dbh, key, data, GDBM_REPLACE);

 } else {

Appendix A

[103]

 key.dptr = strdup(argv[1]);

 key.dsize = strlen(argv[1])+1;

 data = gdbm_fetch(dbh, key);

 printf("%s:%s\n", key.dptr, data.dptr);

 }

 gdbm_close(dbh);

 }

 fprintf(stderr, "%s\n", pam_strerror(pamh, retval));

 /** Destroy the PAM session **/

 pam_end(pamh, retval);

}

The ssh_tunnels Module
The example of a small PAM module is the ssh_tunnels module. The
module initiates a number of SSH tunnels for the user when he or she
logs in. SSH tunnels tend to close when they are not used for a while,
and the autossh program wraps the SSH client in order to prevent this
(or more precisely—autossh will reconnect). The module use the autossh
program instead of the plain SSH client.

/* pam_tunnels module */

/*

 * based on the pam_deny module (Linux PAM)

 */

#define PAM_SM_SESSION

#include <security/pam_modules.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

Source code

[104]

#include <pwd.h>

#include <syslog.h>

/* --- session management --- */

PAM_EXTERN int

pam_sm_open_session(pam_handle_t *pamh, int flags,

 int argc, const char **argv)

{

 FILE *conffile;

 char *conffilename;

 const char *username = NULL;

 char *lport, *rport, *host;

 char cmdline[256], line[256];

 struct passwd *pwd = malloc(sizeof(struct passwd));

 if (pam_get_user(pamh, &username, NULL) != PAM_SUCCESS)
{

 syslog(LOG_ERR, "cannot determine user name");

 return PAM_USER_UNKNOWN;

 }

 pwd = getpwnam(username);

 conffilename = calloc(sizeof(char), strlen(
 pwd->pw_dir)+20);

 sprintf(conffilename, "%s/.pam_tunnels.conf",
 pwd->pw_dir);

 conffile = fopen(conffilename, "r");

 while ((fscanf(conffile, "%s\n", line)) != EOF) {

 lport = strtok(line, ":");

 host = strtok(NULL, ":");

 rport = strtok(NULL, ":");

 sprintf(cmdline, "autossh -f -N -L %s:%s:%s %s",
lport, host, rport, host);

 system(cmdline);

 }

Appendix A

[105]

 fclose(conffile);

 free(conffilename);

 return PAM_SUCCESS;

}

PAM_EXTERN int

pam_sm_close_session(pam_handle_t *pamh, int flags,

 int argc, const char **argv)

{

 return PAM_SUCCESS;

}

/* end of module definition */

/* static module data */

#ifdef PAM_STATIC

struct pam_module _pam_deny_modstruct = {

 "pam_deny",

 NULL,

 NULL,

 NULL,

 pam_sm_open_session,

 pam_sm_close_session,

 NULL

};

#endif

Index
A
authentication problem 8

C
control flags

about 26
optional 28
order 28
required 27
requisite 27
sufficient 27

L
LDAP

about 80
client 81
installing 81
name service 82
PAM, configuring 82

Linux PAM
about 9
compiling 10, 11
downloading 10
extra modules 12
installing 9-12

M
management groups

about 22
account group 24
auth group 23
password group 25
session group 25

modules, for restricted access
about 58
pam_access 60
pam_deny 61
pam_nologin 59
pam_succeed_if 58
pam_wheel 60

modules, related to background storage
about 62
pam_ldap 63
pam_mysql 64, 65
pam_unix 62
pam_winbind 63

modules, related to user environment
about 56
pam_mkhomedir 56
pam_mount 57
uses, pam_mkhomedir 56

P
PAM

about 7
Apache htaccess 71
authentication problem, solving 8
authentication stages 22, 23
configuration, consolidating 29, 30
configuration, testing 37
configuring with LDAP 82
configuring with Winbind 78, 79
control flags 26-29
directory sevices 72
encrypted home directories 67, 68
environment, securing 32
example 32-35
extra modules, Linux PAM 12

[108]

file system layout 15-19
history 7
implementations 12-14
LDAP, directory services 80-82
Linux box services 20, 21
Linux distribution 13
Linux PAM 9
Linux PAM, compiling 10, 11
Linux PAM, downloading 10
management groups 22-25
modules 56, 95, 103
need for 9, 19
PAM-aware applications 89
parameters 51-55
r-services, limiting 83, 84
recipes 67
Secure Shell 68
stacking 26
testing environment 37
tests, automating 46, 47
Winbind, directory sevices 73-79

PAM-aware applications
about 89
account health check 93
conversation functions 94
error messages 95
example 90, 91
PAM handling data structure, manipulat-

ing 93
PAM session, closing 91, 92
PAM session, opening 91, 92
user, authenticating 92
vault program 101-103

PAM configuration
backdoor, leaving open 38
bad example 47, 48
enabling logging, get backstage 40
get backstage 40-44
log reading, get backstage 42-44
pamtester utility 44-46
test cases 39

PAM modules
compiling 99
management groups 96, 97

related to background storage 62-64
related to user environments 56, 57
return codes 97
Secure Shell tunnels 95
ssh_tunnels modules 103-105
supporting functions 98
used to restrict access 58-61

PAM recipes
Apache htaccess 71
directory services 72
encrypted home directories 67, 68
r-services, limiting 83, 84
Secure Shell 70
Winbind, directory services 73-79

pamtester utility 44-46
parameters, PAM

debug 52
expose_account 55
try_first_pass 55
use_first_pass 53

Pluggable Authentication Modules.
See PAM

S
Secure Shell

about 68
ssh-keygen utility 69
working with 68

Secure Shell tunnels 95
SSH. See Secure Shell

W
Winbind

about 73
configuring 75, 76
directory, joining 77
Kerberos 76, 77
overview 73-75
PAM, configuring 78, 79

	Pluggable Authentication Modules
	Table of Contents
	Preface
	Chapter 1: Introduction to PAM
	History of PAM
	PAM Solves the Authentication Problem
	Need for PAM
	Installing Linux PAM
	Downloading
	Compiling
	Extra Modules

	PAM Implementations
	Summary

	Chapter 2: Theory of Operation
	PAM File System Layout
	The PAM Framework
	Online Documentation
	Services
	Management Groups
	The Auth Group
	The Account Group
	The Session Group
	The Password Group

	Stacking
	Control Flags
	Requisite
	Required
	Sufficient
	Optional
	Order matters

	Consolidating Your PAM Configuration
	Securing Your Environment
	An Example

	Summary

	Chapter 3: Testing and Debugging
	Where to Test?
	Leaving a Back Door Open
	Test Cases
	Getting Backstage
	Enabling Logging
	Reading the Log

	The pamtester Utility
	Automating PAM Tests
	Bad Example
	Summary

	Chapter 4: Common Modules
	Parameters
	debug
	use_first_pass
	try_first_pass
	expose_account

	Modules Related to User Environments
	pam_mkhomedir
	pam_mount

	Modules Used to Restrict Access
	pam_succeed_if
	pam_nologin
	pam_wheel
	pam_access
	pam_deny

	Modules Related to Back-End Storage
	pam_unix
	pam_winbind
	pam_ldap
	pam_mysql

	Summary

	Chapter 5: Recipes
	Encrypted Home Directories
	Working with Secure Shell
	Apache htaccess Made Smart
	Directory Services
	Winbind
	Overview
	Winbind Configuration
	Kerberos
	Joining the Directory
	Finally PAM

	LDAP
	Installation
	The LDAP Client
	The Name Service Switch
	PAM Configuration

	Limiting r-Services
	Limiting Resources
	Summary

	Chapter 6: Developing with PAM
	PAM-aware Applications
	Opening and Closing a PAM Session
	Authenticating the User
	Account Health Check
	Manipulating the PAM Handling Data Structure
	Conversation Functions
	Working with Error Messages

	Developing your Own PAM Modules
	The Management Groups
	Return Codes
	Supporting Functions
	Compiling

	Summary

	Appendix A: Source code
	Vault – Secure Database
	The ssh_tunnels Module

	Index

