Access Control in
Data Management Systems

Synthesis Lectures on Data
Management

Editor
M. Tamer Ozsu, Uniwversity of Waterloo

Synthesis Lectures on Data Management is edited by Tamer Ozsu of the University of Waterloo.
The series will publish 50- to 125 page publications on topics pertaining to data management. The
scope will largely follow the purview of premier information and computer science conferences,
such as ACM SIGMOD, VLDB, ICDE, PODS, ICDT, and ACM KDD. Potential topics include,
but not are limited to: query languages, database system architectures, transaction management,
data warehousing, XML and databases, data stream systems, wide scale data distribution,
multimedia data management, data mining, and related subjects.

Access Control in Data Management Systems

Elena Ferrari
2010

An Introduction to Duplicate Detection
Felix Naumann and Melanie Herschel
2010

Privacy-Preserving Data Publishing: An Overview
Raymond Chi-Wing Wong and Ada Wai-Chee Fu
2010

Keyword Search in Databases
Jeffrey Xu Yu, Lu Qin, and Lijun Chang
2009

Copyright © 2010 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in

printed reviews, without the prior permission of the publisher.

Access Control in Data Management Systems
Elena Ferrari

www.morganclaypool.com

ISBN: 9781608453757 paperback
ISBN: 9781608453764 ebook

DOI 10.2200/500281ED1V01Y201005DTM004

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON DATA MANAGEMENT

Lecture #4

Series Editor: M. Tamer Ozsu, University of Waterloo
Series ISSN

Synthesis Lectures on Data Management

Print 2153-5418 Electronic 2153-5426

Access Control in
Data Management Systems

Elena Ferrari
University of Insubria, Varese, Italy

SYNTHESIS LECTURES ON DATA MANAGEMENT #4

1\@ MORGAN CLAYPOOL PUBLISHERS

ABSTRACT

Access control is one of the fundamental services that any Data Management System should provide.
Its main goal is to protect data from unauthorized read and write operations. This is particularly
crucial in today’s open and interconnected world, where each kind of information can be easily made
available to a huge user population, and where a damage or misuse of data may have unpredictable
consequences that go beyond the boundaries where data reside or have been generated.

This book provides an overview of the various developments in access control for data man-
agement systems. Discretionary, mandatory, and role-based access control will be discussed, by
surveying the most relevant proposals and analyzing the benefits and drawbacks of each paradigm
in view of the requirements of different application domains. Access control mechanisms provided
by commercial Data Management Systems are presented and discussed. Finally, the last part of the
book is devoted to discussion of some of the most challenging and innovative research trends in the
area of access control, such as those related to the Web 2.0 revolution or to the Database as a Service
paradigm.

This book is a valuable reference for an heterogeneous audience. It can be used as either an
extended survey for people who are interested in access control or as a reference book for senior
undergraduate or graduate courses in data security with a special focus on access control. It is also
useful for technologists, researchers, managers, and developers who want to know more about access
control and related emerging trends.

KEYWORDS

data management systems, data protection, confidentiality, integrity, access control,
discretionary access control, mandatory access control, role-based access control, au-
thorization administration

Contents

Acknowledgments xi
Preface.o xiii
1 Access Control: Basic Conceptsoi i 1
1.1 IntrodUCtion 1
1.2 Historical Prospectiveo 1
1.3 Data Protectiono.uu i 2
1.4 Basic Components.ouuuinintnitit it e 3
1.5 Access Control Policies.ot 4
1.6 Access AUthOriZationS. u .ttt ettt e e 6
1.6.1 Authorization Subjects..........ouvuiiiiii i 6

1.6.2 Authorization ObJectso.uuiniuii i 7

1.6.3 Authorization Privileges o i 7

1.6.4 Authorizations: Further Components..................coiiiiiiiiia... 7

1.7 Administration Policies it 9
1.8 Access Control Models . ..ot 10
2 Discretionary Access Control for Relational Data Management Systems.. 11
2.1 The Access Matrix Modelouii e 11
2.2 The System R Access Control Model.................oooiiiiiiiiiiiii., 13
2.2.1 GRANT Command.ottt 14

2.2.2 REVOKE Command.ot 16

2.2.3 Authorization Storageo 17

2.2.4 Authorization Management and Enforcement 18

2.2.5 Recursive Revocationot 19

2.2.6 Authorizations on VIEWSvutnn ettt ettt 22

viii

2.3 DAC Supportin SQL 25
2.4 Extensions to the System R Access Control Model 26

2.4.1 Positive and Negative Authorizations.oviuiiiiinienan.. 27

2.4.2 Temporal Authorizations.oueueunininiini i inenen.s 29
2.5 Oracle Virtual Private Database 30
Discretionary Access Control for Advanced DataModels 37
3.1 Access Control for Object DMSsouiiiiiii i 37
3.2 Access Control for XIVIL Data. e e e e e e e e e 39

3.2.1 Access Control Requirementso, 40

3.2.2 Access Control Models . ..ot 41

3.2.3 Efficiency of Access Control........... ..o 46
Mandatory Access Control i 49
41 Belland LaPadula Model 50
4.2 Multilevel Relational Data Model. ... 54
4.3 Mandatory Access Control for Object DMSs ..., 56
4.4 MAC S DAC oo 57
4.5 Information-flow Control Models.......... i i 59
Role-based Access Control. i 61
5.1 The ANSI/ZINCITS RBAC Standardoounenieie e 62

5.1.1 Core RBAC .. i e 62

5.1.2 Hierarchical RBAC 64

5.1.3 Constrained RBAC e e e e e e e e 65
5.2 RBAC Supportin SQL . ..o 67
5.3 Role AdmiInistrationovttttttttt 70
5.4 RBAC EXtensionsttt ettt e e e e 74
Emerging Trendsin Access Controlo ... 77
6.1 Access Control under the Database as a Service Modelccu... 77

6.2 Access Control for Data Stream Management Systems........................ 80

CONTENTS ix

6.3 Access Controlinthe Web 2.0 Era. ..., 82
6.3.1 OSN Access Control Requirements..............coooiiiiiiiiiiinan.. 82
6.3.2 Proposed Solutionsoiiiiiiiiiiiiii 83
6.4 Further Research Directions in Access Controloouueeeeennneennnn.. 85
Bibliography 89

Author’s Biography. 103

Acknowledgments

A work of this kind depends on the cooperation of many people, students, colleagues, and
researchers who have worked with me on topics related to access control. Without their efforts this
project would not have been possible. I would like to thank Barbara Carminati who read the final
draft of this book and provided valuable comments. Special thanks go to M. Tamer Ozsu who gave
me the opportunity to write this book and provided many valuable comments to improve its quality.
I really appreciate the Morgan & Claypool staft, in particular Executive Editor Diane D. Cerra for
help throughout this project and Dr. C.L. Tondo and his crew for handling the production of the
camera-ready pages. Last, but not least, special thanks to my family for their great and warm support
through this exciting but time-consuming project. In particular, I am really indebted to my little son
Tommaso Piero, to which this book is dedicated, with love.

Elena Ferrari

April 2010

Preface

We live in a time of unprecedented opportunities for storing, managing, and analyzing data
referring to any kind of information, from personal to business-oriented, recorded by a variety of
devices that follow us during our daily activities. This huge amount of information is both a challenge
and a risk. Indeed, the availability of this source of information is the basic building block of the idea
of the knowledge society: a society where knowledge is a major component of any human activity and
decisions—big or small—can be taken on the basis of reliable knowledge, distilled from ubiquitous
generated data. Moreover, the Web 2.0 revolution and its collaborative tools have made access to
data easier by potentially unknown users.

In such ascenario, data become one of the most crucial assets and, as such, their protection from
any kind of intrusions, improper modifications, theft, and unauthorized disclosures is a fundamental
service. Therefore, there is a strong need of models and mechanisms to protect data managed by
any Data Management System (DMS). Due to the open and interconnected digital world we are
immersed in today, data protection is much more difficult than in the past, because it is almost
impossible to design safe boundaries where data can be confined.

Data security [Ferrari, 2009¢] is a broad concept that deals with different aspects of data
protection (e.g., authentication, integrity, auditing). Such security properties are usually enforced
through a set of security services, using a variety of techniques (e.g., encryption, digital signatures,
trusted hardware/software).

This book is about one of the key components of the security infrastructure of any data
management system, that is, access control [Ferrari, 2009a]. Access control aims at preventing unau-
thorized operations (such as read and write) on the managed data. In this book, we first examine what
is needed to control access to data, then we explore the major approaches that have been applied in
designing access control mechanisms. As we will see in the reminder of the book, the developments
in access control are mainly driven by two factors: the development of new data models and the needs
of new applications and environments. The overall goal of these developments is to provide more
expressive access control models without compromising the security and efficiency of the systeml.

The book is organized as follows. We start our journey in Chapter 1 by providing the basic
concepts on access control that will be developed throughout the book. Then, Chapters 2 and 3 are
devoted to discretionary access control. Chapter 2 is about relational data management systems. It
revises the most important research proposals as well as discusses the access control support provided
by SQL and some of the most innovative features provided by relational DMSs. Chapter 3 is devoted
to discretionary access control, however it considers data models beyond the relational one and, in

THere, and in what follows, expressivity is related to the set of access control requirements that the access control model possibly
supports.

xiv. PREFACE

particular, the object and XML data models. We believe that the discussion of access control for
XML data is fundamental due to the role played by XML for Web data management. Chapter 4 is
devoted to the other big family of access control models, besides discretionary ones, that is, mandatory
access control models. Besides describing the most relevant proposals in the field, we discuss the
main differences with respect to discretionary access control, the environments that can benefit from
mandatory access control, as well as the possible drawbacks that have to be considered. Chapter 5
is devoted to the third major player in the access control area, that is, Role-based Access Control
(RBAC). We describe the ANSI/INCITS RBAC standard and some of its recent developments.
One of the primary goals of RBAC is to simplify administration of access rights. Therefore, a part
of the chapter is devoted to discussing the administration models for RBAC proposed so far. In
Chapter 6, we highlight several interesting research issues regarding access control; for instance,
how to protect data when they are outsourced to a third party, how to protect data streams that
should be securely managed on-the-fly, and how to protect resources and personal information in
an On-line Social Network. All these environments pose new and fascinating challenges for what
concerns access control that sometimes requires rethinking the way access control has been managed
so far.

An heterogeneous audience can benefit from this book. First of all, the book could be used as
a reference for senior undergraduate or graduate courses in data security which has a special focus
on access control. However, it is also useful for technologists, researchers, managers, and developers
who want to know more about access control and emerging trends.

Elena Ferrari

April 2010

CHAPTER 1

Access Control: Basic Concepts

1.1 INTRODUCTION

Access control [Bertino and Sandhu, 2005; Ferrari, 2009a; Ferrari and Thuraisingham, 2000] is one
of the most relevant services provided by any Data Management System (DMS). Its overall goal
is to protect the managed data from unauthorized operations. In this chapter, we provide the basic
concepts on access control and data protection needed to understand the various access control
models and mechanisms discussed in the rest of the book. We start with a brief history of the main
developments in the field of access control. Then, we cast access control in the more general field of
data protection. In the subsequent sections, we illustrate the basic components of access control, that
is, access control policies and authorizations. Authorization management is described in Section 1.7
and Section 1.8 ends with a brief introduction of the main access control paradigms.

1.2 HISTORICAL PROSPECTIVE

A DMS exploits the services of the underlying operating system to manage its data (for instance,
to store data into files), and this also applies to access control. This is one of the reasons why access
control models for DMSs have been greatly influenced by the models developed for the protection
of Operating System (OS) resources, such as the model proposed by Lampson [1971], known also
as the access matrix model (see Section 2.1 for a description of this model).

Much of the early work on data protection was on inference control in statistical databases.
Then, in the 1970s, as research in relational databases began, attention was directed toward ac-
cess control. A lot of early work on access control for relational database systems [Fagin, 1976;
Griffiths and Wade, 1976] was done as part of the research on System R at IBM Almaden Research
Center. The developed model strongly influenced most of the subsequent research activities as well
as the access control models and mechanisms of current commercial relational DMSs (see Section
2.2 for more details on this topic). At the same time, some early work on mandatory access control for
Data Management Systems began, but it was the Airforce Summer Study [Air Force Studies Board,
1983] that started much of the developments in this field. Later, in the mid-1980s, pioneering re-
search was carried out at SRI International and Honeywell Inc. on systems such as SeaView and
LOCK Data View [Castano et al., 1995]. Some of the technologies developed by these research ef-
forts were transferred to commercial products by corporations such as Oracle, Sybase, and Informix.
In the 1990s, numerous other developments started, mainly to meet the access control requirements
of new applications and environments, such as the World Wide Web, data warehouses and decision
support systems, distributed, active, and multimedia DMSs, workflow management systems, col-

2 1. ACCESS CONTROL: BASIC CONCEPTS

laborative systems, and, more recently, peer-to-peer systems, geographical information systems, and
data stream management systems. This has resulted in several extensions to the basic access con-
trol models previously developed, by including, for instance, the support for temporal constraints,
derivation rules, positive and negative authorizations, strong and weak authorizations, and content
and context-dependent authorizations. Some of these developments have also been partially trans-
ferred to commercial DMSs (for instance, see Oracle Virtual Private Database described in Section
2.5). In the mid-1990s, Role-based Access Control (RBAC) was proposed [Sandhu et al., 1996]
as a way to simplify authorization management within companies and organizations. In the 2000s,
there have been numerous other developments in the field of access control, mainly driven by de-
velopments in Web data management. For example, standards such as XML (eXtensible Markup
Language), RDF (Resource Description Framework), and all the technologies related to the Se-
mantic Web require proper access control mechanisms [Carminati et al., 2006]. Also, Web Services
are becoming extremely popular and therefore research is currently carried on to address the related
access control issues [Ferrari and Thuraisingham, 2004]. Access control is also currently being ex-
amined for new application areas such as Database as a Service [Ferrari, 2009b] and location-based
services [Decker, 2008]. Additionally, privacy is becoming a primary concern and this has been
reflected in research work trying to enhance protection mechanisms for DMSs with the protection
of personal data [Agrawal et al., 2005; Byun and Li, 2008; Ni et al., 2009].

Other interesting developments are related to the Web 2.0 revolution that has evolved the Web
from a simple tool for publishing textual data into a complex collaborative knowledge management
system. This evolution is mainly due to the rapid spread of social computing services, such as blogs,
wikis, social networks, and social bookmarking services. The management of this huge and complex
knowledge base poses several new challenges and requires complete re-design of the way we assure
protection to the managed data. Some of these new trends will be discussed in Chapter 6.

1.3 DATA PROTECTION

Traditionally, protecting data stored into a DMS requires addressing three main issues:

* Data secrecy or confidentiality, that is, preventing improper or unauthorized read operations
on the managed data. When data are related to personal information, the term privacy is used.
However, it is important to note that protecting privacy requires some additional countermea-
sures with respect to those employed to ensure data confidentiality. For instance, additional
factors must be taken into account, such as the data retention period, the user consent, or
the purpose for which data are collected (see Bonchi and Ferrari [2010]; Li [2005] for more
details on privacy-preserving data management systems).

* Data integrity, that is, protecting data from unauthorized or improper modifications or dele-

tions.

1.4. BASIC COMPONENTS 3

* Data availability, that is, prevention and recovery from hardware and software errors and
from malicious data denial attacks making the data or some of their portions unavailable to
authorized users.

Generally, each of the above security properties is ensured by more than one DMS service.
The access control mechanism, which is the focus of this book, is one of the most relevant security
services, since it is the basis of enforcing both data confidentiality and integrity.

Indeed, whenever a user tries to access a data object, the access control mechanism checks the
rights of the subject against the set of specified authorizations. The access is granted only if it does
not conflict with the stated authorizations. Data confidentiality is also obtained through the use of
encryption technigues [Stallings, 2003], either applied to the data stored on secondary storage or when
data are transmitted on the network, to prevent an intruder from intercepting the data and access their
contents. Besides the access control mechanism, data integrity is also ensured by integrity constraints,
provided by most of current DMSs. Integrity constraints allow one to express correctness conditions
on the stored data, and therefore avoid incorrect data updates and deletions. These constraints are
automatically checked by the DMS upon the request for each update operation. Furthermore, digital
signature techniques are applied to detect improper data modifications. They are also used to ensure
data authenticity. Finally, the recovery subsystem and the concurrency control mechanism ensure
that data are available and correct despite hardware and software failures and despite data accesses
from concurrent application programs. Data availability, especially for data that are available on the
Web, can be further enhanced by the use of techniques avoiding query floods [Squicciarini et al.,
2008] or other Denial-of-Service (DoS) attacks.

In this book, we focus on access control mechanisms and related access control models. We refer
the reader to any database textbook (e.g., Garcia-Molina et al. [2008]) for an extensive discussion
of recovery and concurrency control mechanisms, and for details on integrity constraints.

It is important to note that an access control mechanism basically regulates data accesses of
users which have been already authorized to use the services of the DMS. Therefore, for its proper
functioning it must rely on some authentication mechanism which identifies users and confirms
their identities [Blanton, 2009].

1.4 BASIC COMPONENTS

Access control is usually performed against a set of authorizations stated by Security Administrators
(SAs) or users according to the access control policies of the organization. An access control policy
defines the high-level rules according to which access control must be regulated. These may depend
on many heterogeneous factors, such as the in-force legislation, the domain in which the owner of
the data operates (e.g., business, education, healthcare), local rules, or the specific user requirements.
Simple examples of access control policies are: “Psychological evaluations of employees can be seen only
by their managers" or “Drugs prescribed to a patient while he/she is in the hospital can be seen only by
his/her family doctor once the patient has been discharged'.

4 1. ACCESS CONTROL: BASIC CONCEPTS

Access control policies can be seen as high-level requirements concerning data protection
that, in order to be automatically enforced, should be translated into a set of authorizations. An
authorization states which subjects can perform which actions on which objects and, optionally,
under which condition. Authorizations are stored into the DMS and are then used to verify whether
or not an access request can be authorized. How to represent and store authorizations depends on the
protected resources, but the standard way is to use a uniform representation for authorizations and
the managed data. For instance, in a relational DMS, authorizations are usually modeled as tuples
stored into system catalogs. In contrast, when resources to be protected are XML data, authorizations

are usually encoded using XML itself.

Example 1.1 Consider once again the access control policy: “Psychological evaluations of employees
can be seen only by their managers" and suppose there are three employees Ann, Bob, and Chris.
Suppose, moreover, that Ann is the manager of Bob. Let PEval g be a file containing the psychological
evaluation of Bob. Authorization (Ann,PEvalp,read) correctly enforces the policy since Ann is
the manager of Bob, whereas the authorization (Chris,PEvalp,read) is notentailed by the policy
since Chris is not Bob’s manager.

Authorizations are expressed according to an access control model, which provides a formal
representation of the authorizations and their enforcement. The formalization allows the proof of a
set of properties (e.g., security, complexity) on the corresponding access control systems.

Authorizations are then processed by the access control mechanism (or reference monitor) to
decide whether each access request can be authorized (totally or partially) or should be denied. The
reference monitor is a trusted software module in charge of enforcing access control. It intercepts each
access request submitted to the system (for instance, SQL statements in case of relational DMSs)
and, on the basis of the specified authorizations, it determines whether the access can be partially or
totally authorized, or it should be denied. The reference monitor should be non-bypassable, that is,
it should mediate each access request. Additionally, the hardware and software architecture should
ensure that the reference monitor is famper proof, that is, it cannot be maliciously modified (or at
least that any improper modification can be detected). Main components of access control and their
interactions are illustrated in Figure 1.1.

1.5 ACCESS CONTROL POLICIES

As we have seen in the previous section, access control policies are high-level guidelines according
to which accesses are regulated in the system. Therefore, they have to deal with several different
dimensions. One key dimension is how much information a user should be allowed to access. In this
respect, we have two main general principles.

* Need to know (Principle of least privilege). This is a very conservative principle according
to which each user must be able to access only those information that are necessary to his/her
legitimate purpose.

1.5. ACCESS CONTROL POLICIES

Access
control
policies

Authorizations

access granted

% s Reference |7 (totally/partially)
_—

monitor
I

access denied

Figure 1.1: Access control: main components.

* Maximized sharing. This principle allows the maximum sharing of information among the
users, still preserving the confidentiality/integrity of some highly sensitive information.

Both principles have some advantages and drawbacks. The main advantage of need to know is
its strong protection guarantees; the drawback is that it may result in an overprotected system where
some accesses that would not violate the security of the system are nevertheless prevented. Moreover,
this principle may be very difficult to fully implement because it is hard to precisely determine the
least amount of privileges each user needs. In contrast, the maximized sharing principle has the
advantage of allowing the satisfaction of the maximum number of access requests, however its full
applicability is limited to environments where information protection is not a primary concern.

A further distinction is between open and closed systems. In a closed system, nothing is al-
lowed except what is explicitly granted by an authorization. According to this principle, which is
the one adopted by most commercial DMSs, an authorization states the privileges granted to a
user. Therefore, a closed system can be used to implement the need to know principle in that each
user may receive the authorizations corresponding to the least amount of privileges he/she needs.
In contrast, an open system is a system where by default access to all the resources is granted un/ess
an explicit denial has been specified. Therefore, in an open system authorizations are negative in
that they are used to specify prohibitions. An open system can easily implement the principle of
maximized sharing by specifying a negative authorization only for each sensitive resource that must
be kept reserved. All the other resources are by default accessible. Clearly, a closed system offers
stronger security guarantees with respect to an open one. For instance, the accidental deletion of
an authorization does not make the system less secure since it restricts the set of accesses that can
be performed; in contrast, in an open system, since authorizations are used to express denials, the

6 1. ACCESS CONTROL: BASIC CONCEPTS

accidental removal of an authorization will result in the grant of a non-authorized privilege. This is
one of the reasons why most access control mechanisms provided by commercial DMSs are based
on the closed system assumption.

1.6 ACCESS AUTHORIZATIONS

The basic building block on which access control relies is a set of authorizations, which state who can
access which resource and under which mode. In its basic form, an authorization can be conceptually
modeled as a triple (5,0,p) that specifies that subject s is authorized to exercise privilege p on object
0. This basic format can be extended to take into account further information in the access control
process (see Section 1.6.4). However, in what follows, we start to describe the meaning of these three
basic components.

1.6.1 AUTHORIZATION SUBJECTS

uthorization subjects are the “active” entities in the system, that is, those that require access to the
Auth t bject the “active" entit the system, that is, those that req to th
protected data. They are therefore an abstraction of any active entity that performs computation in
the system. Subjects can be classified into the following categories:

* users, that is, individuals logging into the system;
* groups, that is, sets of users;

* roles, that is, specific job functions within an organization with an associated collection of
privileges needed to perform the activities connected to the corresponding job functions (see

Chapter 5 for more details);

* processes, executing programs on behalf of users.

As will be described in the following chapters, the above subject categories are not mutu-
ally exclusive. For instance, some access control models may support all the categories of subjects
described above, others only some of them (e.g., users and groups).

Roles and groups may be hierarchically organized. Hierarchical organization of subjects is
usually a means of reducing the burden of authorization administration in that the hierarchy usually
entails a propagation principle according to which authorization propagates along the hierarchy.
The semantics of the hierarchy and the way authorizations propagate along it depend on the kind
of subject being considered. For instance, the hierarchy imposed on groups usually reflects the
membership of a group in another group. Therefore, authorizations propagate down the hierarchy,
in that an authorization given to a group is equivalent to giving the same authorization to all the
group members. In contrast, the role hierarchy usually reflects the relative position of roles within an
organization. The higher the level of a role in the hierarchy, the higher its position in the organization.
Therefore, authorizations usually propagate up the hierarchy.

1.6. ACCESS AUTHORIZATIONS 7
1.6.2 AUTHORIZATION OBJECTS

Authorization objects are the “passive” components of an access control system, in that they are an
abstraction of the resources to which protection from unauthorized accesses should be given. The set
of objects to be protected depends on the considered environment. Files and directories are examples
of objects of an operating system environment, relations, views, tuples, and attributes are examples
of resources for a relational DM, whereas user profiles are examples of resources to be protected in
a social network. On the basis of the adopted access control model, authorizations can be specified at
difterent granularity levels, that is, on a whole object or only on some of its components. Fine-grained
access control is a useful feature when an object (e.g., a relation) contains information (e.g., tuples)
of different sensitivity levels and that therefore require a differentiated protection. As in the case of
subjects, objects can also be hierarchically organized. The semantics of the object hierarchy depends
on the underlying data model (e.g., object-oriented, XIML) but it usually represents a “part-of”
relation, that is, how objects are organized in terms of other objects. Similar to subject hierarchies,
the object hierarchy entails a notion of authorization propagation in that an authorization given on
an object usually implies an authorization on each of its components.

1.6.3 AUTHORIZATION PRIVILEGES

Authorization privileges (or access modes) state the types of operations that a subject can exercise
on the objects in the system. As with objects, the set of privileges depends on the resources to
be protected. For instance, read, write, and execute privileges are typical of an operating system
environment, whereas in a relational DMS privileges refer to operations that can be requested through
SQL commands (e.g., select, insert, update, delete). Moreover, other less traditional environments,
such as digital libraries, are characterized by new access modes, such as the usage or copying access
rights, whereas in a social network environment we may have the post privilege to post a message
on a user wall. An hierarchical organization of privileges is possible, which usually represents a
subsumption relation among privileges. Privileges toward the bottom of the hierarchy are subsumed
by privileges toward the top (for instance, the write privilege can be at a higher level in the hierarchy
with respect to the read privilege, since write usually subsumes read operations). Even in this case, the
rationale behind the hierarchical organization of privileges is to limit the number of authorizations
to be specified in that an authorization for a privilege implies an analogous authorization for all the
privileges it subsumes.

The notion of derived authorizations has been further extended in the context of logic-based
access control models (e.g., Bertino et al. [2000b, 2003]; Bonatti and Olmedilla [2007]; Jajodia et al.
[2001]) to support arbitrary derivation rules, not necessarily based on the hierarchical organization
of objects, subjects, and privileges.

1.6.4 AUTHORIZATIONS: FURTHER COMPONENTS

In the previous sections we have seen that the basic components of an access authorization are
subjects, objects and privileges. However, it may often be the case that further information should

8 1. ACCESS CONTROL: BASIC CONCEPTS

be taken into account to determine an access control decision. Therefore, a lot of research has been
done with the aim of extending the basic authorization format [Ferrari and Thuraisingham, 2000].
All these extensions are driven by the goal of augmenting the expressive power of the authorization
language in terms of access control requirements it may express. A first direction in this respect is to
enhance the way objects and subjects are denoted in an authorization.

o Subject specification. It is often useful to specify authorizations based on subject characteristics,
rather than on their identity (for example, a user can be given access to an R rated video, only
if he/she is older than 18 years, or a user can be given access to a movie only if he/she has
paid a particular type of subscription). Subject attributes are usually encoded into a profile or
credential, that may be partially or totally certified by a trusted party. Besides those stored into
credentials/profiles, other subject properties may be relevant for access control. For instance, in
a social network, access control is mainly relationship-based [Carminati and Ferrari, 2008], that
is, access to a resource is granted provided that between the requestor and the resource owner
there exists a direct or indirect relation of a specific type. In access control models where access
decisions are not only based on subject identity, the subject component of an authorization is
extended with the possibility of containing a predicate (or a boolean combination of predicates)
expressing conditions on the subject properties.

* Object specification. Besides providing access at different granularity levels, authorized objects
may also be identified on the basis of conditions on their content (usually this is referred to
as content-dependent access control). As an example, in a relational DMS supporting content-
dependent access control, it is possible to authorize a subject to access information only of
those employees whose salary is not greater than 50K. There are two most common approaches
according to which content-based access control is enforced. The first approach is to define
a view which selects the objects whose content satisfies a given condition, and then granting
the authorization on the view instead of on the basic objects. This solution has been exploited
in the context of relational DMSs and, more recently for XML data (cfr. Section 3.2) and
data streams (cfr. Section 6.2). The second solution is to extend the object specification with
the possibility of specifying a predicate (or a boolean combination of predicates) on the object
content (for instance, all the documents dealing with cooking). Clearly, the enforcement of
such authorizations is conditioned to the availability of a set of metadata describing the object

content (e.g., keywords, tags).

Other extensions are related to the temporal dimension that is common in authorizations and it
is not captured by the basic format (see, e.g., Bertino et al. [1998a,2000a,2001a]; Joshi et al. [2005]).
These extensions are motivated by the fact that, in many situations, an authorization should hold
only for a specific time period (for instance, because of resource optimization or to obtain stronger
security guarantees). Moreover, there must be some temporal relations between the authorizations
given to different subjects. For instance, a user may be given access to a document each time another
user has the same authorization. This paradigm has been generalized to the notion of context-based

1.7. ADMINISTRATION POLICIES 9

authorizations [McDaniel, 2003], which is supported by access control models where the access
control decision depends on the context in which the request has been issued (e.g., time, location,

IP address).

1.7 ADMINISTRATION POLICIES

Access control administration deals with granting and revoking of authorizations. This function is
usually regulated by proper administration policies that state who can grant and revoke privileges
to other subjects, or perform other administrative operations related to access control, such as cre-
ation and deletion of roles. Administration policies may be classified according to the following
categories [Ferrari, 2009d]:

* SA administration. According to this policy, only the Security Administrator(s) can perform
administrative operations regarding access control. Main advantages of this policy are in terms
of simplicity of the implementation and on the strict control performed over the managed
data in that only one trusted entity (or few) is in charge of authorization management. The
main disadvantage is that it is highly centralized (even though different SAs can manage
authorization administration for different portions of the data) and therefore it is seldom used
in practice, apart from very simple systems.

* Owner administration. This is the policy commonly adopted by DMSs and OSs. According
to this policy, the creator of an object becomes its owner and he/she is the only one authorized
to grant and revoke authorizations on the object.

* Joint administration. Under this policy, particularly suited for collaborative environments,
several subjects are jointly responsible for administering specific authorizations. For instance,
under the joint administration policy it can be required that the authorization to write a certain
document is given by two different users, for instance with two different functions within an
organization. Authorizations for a subject to access an object require that all the administrators
(or the majority of them) of the object issue a grant request.

Administration policies can be further combined with administration delegation, according
to which the administrator of an object can grant other subjects the right to grant and revoke
authorizations on the object. Delegation can also be specified for selected privileges, for example only
for read operations. Most current DIMSs support the owner administration policy with delegation
(see Chapter 2 for more details).

Finally, note that the joint administration policy is becoming more and more important in the
Web 2.0 scenario, where social computing services require going beyond the owner administration
policy. For instance, if we consider the social network scenario, it is clear that this collaborative
environment requires taking into account additional subjects-to-objects relationships, besides the
traditional ownership one. For example, if we consider a general purpose social network like Facebook,
users “own" a photo, but they can also be “tagged" to a photo; they can “post” a comment to a wall,

10 1. ACCESS CONTROL: BASIC CONCEPTS

but also they can “reply " to an existing post. In this context, a joint administration policy seems more
appropriate, requiring, for instance, the consent of the tagged users before the release of a photo.

1.8 ACCESS CONTROL MODELS

A basic distinction when dealing with access control is between discretionary and mandatory access
control. Discretionary Access Control (DAC) governs the access of subjects to objects on the basis of
subjects’ identity and a set of authorizations that state, for each subject, the set of objects that he/she
can access in the system and the allowed access modes. When an access request is submitted to the
system, the access control mechanism verifies whether the access can be authorized or not according
to the specified authorizations. The system is discretionary in the sense that a subject, by proper
configuration of the set of authorizations, is able both to enforce various access control requirements,
and to dynamically change them when needed (simply by updating the authorization state). In
contrast,in Mandatory Access Control (IMAC) the accesses that subjects can exercise on the objects in
the system are derived from subjects and objects security classification [Ferrari and Thuraisingham,
2000]. The security classification of an object is a measure of the sensitivity of the information
it conveys (the higher is the classification, the higher is the protection that must be assured). In
contrast, the subject classification is a measure of how much the subject is trustworthy with respect
to information released to unauthorized subjects. This type of security has also been referred to as
multilevel security, and DMSs that enforce multilevel access control are called Multilevel Secure Data
Management Systems (MLS/DMSs). When mandatory access control is enforced, authorizations are
implicitly derived by subjects and objects security classes. Indeed, the decision as to whether to grant
an access or not depends on the access mode and the relation existing between the classification
of the subject requesting the access and that of the requested object. MAC and DAC policies are
not mutually exclusive. If they are jointly applied, then an access is granted only of it is allowed by
both MAC and DAC. In addition to DAC and MAC, Role-Based Access Control (RBAC) has been
more recently proposed [Sandhu et al., 1996]. RBAC is an alternative to DAC and MAC, mainly
conceived for regulating accesses within companies and organizations. In RBAC, permissions are
associated with roles, instead of with users, and users acquire permissions through their membership
to roles. The set of authorizations can be inferred by the sets of user-role and role-permission
assignments. DAC is covered by Chapters 2 and 3, whereas MAC and RBAC are described in
Chapters 4 and 5, respectively.

11

CHAPTER 2

Discretionary Access Control for
Relational Data Management
Systems

Most of the access control mechanisms of current data management systems enforce discretionary
access control (DAC) (see Section 1.8). The main reason is the flexibility of DAC, in terms of pro-
tection requirements it can support, that makes it suitable for a variety of contexts in the commercial
as well as in the industrial environments.

This chapter is devoted to explaining how discretionary access control is enforced in relational
DMSs. We start by briefly describing the access matrix model, which, although it has been mainly
developed for the protection of operating systems, has highly inspired most of the discretionary
models later developed for data management systems. Then, in Section 2.2 we describe the System
R access control model [Griffiths and Wade, 1976], a milestone in the field of access control that has
inspired most of the research in access control, as well as the access control mechanisms provided by
commercial relational DMSs. In Section 2.3, we briefly review the support for discretionary access
control provided by the SQL standard. Section 2.4 presents some of the main extensions proposed
to the System R access control model, whereas Section 2.5 presents the innovative DAC features
provided by Oracle Virtual Private Database.

2.1 THEACCESS MATRIXMODEL

Among the models developed for operating systems the one that has most influenced access control
models for DMSs is the model defined by Lampson [1971], later refined by Graham and Denning
[1972] and formalized by Harrison et al. [1975] (HHRU model). This model is the conceptual reference
model to represent authorizations in system adopting DAC. In what follows, we present only the
basic concepts of this model, whereas we refer the interested readers to Graham and Denning [1972];
Harrison et al. [1975]; Lampson [1971] for all the details.

The name of the model derives from how the authorization state is represented within the
system, that is, as a matrix. More precisely, in the access matrix model, the authorizations currently
holding in the system are represented as a triple (S, O, M), where: S is the set of authorization
subjects, O is the set of objects to be protected, and M is the access matrix. In the access matrix,
rows denote subjects, columns denote objects, and the element M[i, j] contains the privileges that

12 2. DISCRETIONARY ACCESS CONTROL FOR RELATIONAL DATA MANAGEMENT

marc.doc edit.exe | games.dir

Marc | read,write | execute | execute

Ann | - execute | execute,read,write

Figure 2.1: An example of access matrix.

subject 5; holds on object 0. An access is granted only if there is the corresponding privilege in the
access matrix.

Example2.1 Figure 2.1 shows an example of access matrix. For instance, with reference to Figure
2.1, both Marc and Ann can run the programs stored in directory games . dir. In contrast, only Ann
can modify and read the files contained in this directory, whereas Marc is the only user authorized
to read and modify the file marc.doc.

Although the matrix represents a good and intuitive conceptual representation of authoriza-
tions, it is not appropriate for real implementations since, usually, the access matrix will be enormous
in size and will be sparse (most of its cells are likely to be empty). This is because, typically, subjects
have access only to limited portions of the data managed by a data management system. Storing the
matrix as a two-dimensional array is therefore a waste of memory space. Thus, there are two main
alternative approaches to implementing the access matrix in real systems:

* Access Control List (ACL). The access matrix is implemented through a set of lists, one for
each object (i.e., the columns of the matrix) in the system. The list associated with an object
has an element for each subject holding a privilege on the object. This element contains the set
of privileges the subject can exercise on the object. This is the way usually adopted by modern
operating systems.

* Capability List. The access matrix is implemented through a set of lists associated with the
subjects (i.e., the rows in the matrix) in the system. The capability list of a subject contains an
element for each object which can be accessed by the subject. The element contains the list of
privileges the subjects can exercise on the object. This approach can be suitable to distributed
systems, where subjects can request access to objects hosted by different nodes. For instance, a
user can authenticate once, gains his/her capabilities, and then uses them at the various hosts
composing the system to get access to the protected objects. However, the system should be
equipped with mechanisms avoiding the use of fake or invalid capabilities (e.g., those referring
to revoked privileges).

Aswe mentioned at the beginning of this chapter, the access matrix model and, more generally,
the access models developed for OSs, have greatly influenced the models developed for the protection
of DMSs, such as the System R access control model presented in the next section.

2.2. THE SYSTEM R ACCESS CONTROL MODEL 13

However, also it should be noticed that protecting the two environments has many substantial
differences, that require the development of ad-hoc mechanisms for DMSs. In particular, protecting
data stored in a DMS requires addressing further issues besides those faced in an OS environment.
One of the main reasons for this is that the data model of a DMS is usually richer than that of an OS.
For instance, in a relational DMS data are represented at different levels of abstraction (i.e., physical,
logical, view level), whereas an operating system adopts a unique representation of data (that is, data
are stored in files) and this simplifies their protection. Furthermore, in a DMS different abstractions
are used to represent data at the logical level (e.g., relations, objects/classes, XIML files) that require
different ways of protections. Furthermore, DIMSs usually require a variety of granularity levels for
access control. For instance, in a relational DMS data can be protected at the relation or view level.
However, sometimes finer granularity levels are needed, such as selected attributes or selected tuples
within a table, since different attributes/tuples may have different sensitivity. The same applies if
we use XML to represent data. Sometimes, a whole document (or all the documents conforming
to an XMLSchema) has the same protection requirements; sometimes, different elements within
the same document must be protected differently. Other times, we need a finer granularity in that
selected attributes within an element need differentiated protection (e.g., attribute salary within an
employee element). In contrast, in an operating system data protection is usually enforced at the file
level. Another difference between the two environments is that in a DMS, objects at the logical level
are usually related by different semantic relations, and these relations must be carefully protected (for
instance, in a relational DMS, data in different tables are linked through foreign keys). Moreover,
several logical objects (e.g., different views) may correspond to the same physical object (e.g., the same
file), or the same logical object (e.g.,a view) may correspond to different physical/logical objects (e.g.,
different files/relations on which the view has been built). These issues do not have to be considered
when protecting data in an operating system. Finally, data in a database are usually accessed through
a variety of access modes (e.g., in a relational DMS access modes roughly correspond to those that
can be exercised through SQL statements), whereas in an OS access modes are usually read, write,
and execute.

In the following section, we will see how some of these issues have been addressed by the
System R access control model.

2.2 THE SYSTEM R ACCESS CONTROL MODEL

A milestone in the history of access control is the discretionary access control model proposed
by Griffiths and Wade [1976], and later revised by Fagin [1976], in the framework of the relational
DMS System R, a prototype system developed at the IBM Research Laboratory at San Jose. The
importance of System R access control model relies on the fact that this model has influenced most
of the research subsequently done on DAC, and it has also served as a basis for the development of
most of the authorization mechanisms provided as part of commercial DMSs, such as those provided

by Oracle or DB2, as well as for the SQL standard [ISO, 2003].

14 2. DISCRETIONARY ACCESS CONTROL FOR RELATIONAL DATA MANAGEMENT

Since the model has been designed for the protection of relational databases, objects to be
protected are either relations or views. For simplicity, in what follows, we use the term “relation” to
refer to both views and base relations, unless a distinction between the two is needed.

Privileges supported by the model correspond to those executable through an SQL command
(e.g., select, insert, delete, update). Subjects are users requiring access to relations through
the issuing of SQL commands. Groups and roles are not supported in the original formulation of
the model.

Authorization administration is ownership-based with delegation (cfr. Section 1.7). There-
fore, whenever a user creates a relation, he/she receives all the supported privileges defined on it.
Additionally, he/she can grant or revoke other users all the privileges (except drop) on the created
relation. Moreover, the owner of a relation can grant authorizations with the grant option. If a user
owns an authorization for a privilege on a relation with the grant option, he/she can grant the
privilege, as well as the grant option, to other users.

In what follows, we first illustrate the main commands to modify the authorization state (that
is, GRANT and REVOKE). Then, we discuss how authorizations are stored and managed, and how
access control is enforced. In Section 2.2.5, we deal with the semantics of the revoke operation,
which should be carefully considered due to administration delegation. Finally, in Section 2.2.6 we
show how authorizations on views are used in the System R access control model to both increase
the flexibility of the model in terms of requirements it may support and to provide better security
guarantees.

2.2.1 GRANT COMMAND
Authorizations are specified through the GRANT command, with the following SQL-like syntax':

GRANT {<privileges> | ALL[PRIVILEGES]}
ON <relation>
TO {<users> | PUBLIC} [WITH GRANT OPTION];

where:

* <privileges> is the set of privileges granted through the command. Therefore, a single grant
command can be used to grant more than one privilege (the privileges should be separated
by a comma in the GRANT command). Keywords ALL and ALL PRIVILEGES are a shortcut to
denote all the supported privileges.

* <relation> is the name of the relation on which the privileges are granted.

* <users> denotes the set of users to which the grant command applies. If the keyword PUBLIC
is used, authorizations granted through the command apply to all the users in the system.
1Here and in what follows, to present the SQL syntax we use square brackets to denote optional parts of a command, and curly

brackets to denote alternative components, divided by symbol ', from which one should be mandatory selected. Moreover, we
use capital letters to denote SQL reserved keywords, even if the language is case insensitive apart from values of string type.

2.2. THE SYSTEM R ACCESS CONTROL MODEL 15

* The optional clause WITH GRANT OPTION allows the grantor to delegate privilege adminis-
tration. If the grant option is not specified, than the users receiving the privileges have only
the right to exercise them, but not giving them to others. In contrast, when the grant option is
specified, the users receiving the privileges can also grant the received privileges to other users.

All the privileges that can be specified in a GRANT command apply to whole relations. The
only exception is the update privilege for which the set of attributes to which it applies can be
specified, with the format update(ay, ...,a,), where aj, ..., a, are selected attributes within
the relation in the GRANT command.

Example 2.2 As a running example throughout the book, we consider a database that stores
information about the customers and videos offered by a video library. In particular, customer
information (e.g., name, address, phone number) are stored into the relation Customers, whereas
information about the videos and the corresponding movies are stored into relations Videos and
Movies, respectively. Suppose that Leo is the owner of relations Videos, Customers, and Movies.
The following are examples of GRANT commands?:

Leo: GRANT update(phone) ON Customers TO Marc;

Leo: GRANT select ON Videos TO Beth, Gena WITH GRANT OPTION;

Gena: GRANT select ON Videos TO Matt;

Leo: GRANT ALL PRIVILEGES ON Movies, Videos TO Helen WITH GRANT OPTION;
Helen: GRANT insert, select ON Videos TO Beth;

With the first command Leo authorizes Marc to update the attribute phone of the tuples
stored in relation Customers, whereas by the second command he grants Gena and Beth the privilege
to query the Videos relation. Since the privilege is granted with the grant option, Beth and Gena
can also authorize other users to query the Videos relation. Therefore, they become administrators
of the Videos relation with respect to the select privilege. Because of this, Gena grants Matt
the select privilege on Videos through the third command. The fourth command authorizes
Helen to exercise all the supported privileges on the relations Movies and Videos. These privileges
are granted with the grant option and therefore Helen becomes a further administrator of the two
relations. Due to this privilege, Helen specifies the fifth command, by which she authorizes Beth to
insert and select tuples from the Videos relation.

Since the System R access control model supports administration delegation, it may happen
that a user receives the same privilege on the same relation twice or more (from different users). For
instance, with reference to Example 2.2, Bett receives twice the privilege to select tuples from the

2We use notation u: to specify that user u is the grantor of the authorizations, that is, the user who requests the execution of the
GRANT command.

16 2. DISCRETIONARY ACCESS CONTROL FOR RELATIONAL DATA MANAGEMENT

Videos relation, one from Leo (with grant option) and the other from Helen (without the grant
option). As we will see in Section 2.2.5, this impacts the side effects of privilege revocation.

Moreover, the privileges a user holds may be divided into two groups: those that have been
received with the grant option, that is, the grantable privileges, and those that have been received
without the grant option, that is, the non-grantable privileges. For access control enforcement, both
these two sets of privileges must be checked, whereas to decide the result of a GRANT command only
the grantable privileges should be considered (see Section 2.2.4 for more details).

2.2.2 REVOKE COMMAND

The REVOKE command is used to revoke privileges previously granted through a GRANT command.
Its syntax is as follows:

REVOKE {<privileges> | ALL[PRIVILEGES]}
ON <relation>
FROM {<users> | PUBLIC};

where:

* <privileges> denotes the set of privileges to be revoked. Keywords ALL or ALL PRIVILEGES
denote that all the previously granted privileges are revoked to the users listed in the REVOKE
command.

* <relation> denotes the name of the relation on which the privileges are revoked.

* <users> is the set of users to which the privileges are revoked. Keyword PUBLIC is a shortcut
for all the users to which the privileges have been previously granted.

Each user can only issue REVOKE commands referring to privileges he/she previously granted.
A REVOKE command implies the revocation also of the grant option.

Example 2.3 Let us consider the GRANT commands of Example 2.2 and the following REVOKE
commands, issued by Leo:

REVOKE update, insert ON Movies FROM Helen;
REVOKE update ON Customers FROM Marc;
REVOKE select ON Videos FROM Gena;

The first command revokes Helen the authorization to insert and modify tuples in the Movies
relation. It also revokes the privilege to authorize other users to perform such operations. The
second command revokes Marc the right to update the phone attribute of the tuples stored into the
Customers relation. Finally, the third command revokes Gena the right to query relation Videos.

2.2. THE SYSTEM R ACCESS CONTROL MODEL 17

Since a user may receive the same authorization from different sources, the execution of a
REVOKE command does not always imply that the involved user loses the revoked privileges, as the
following example shows.

Example 2.4 Let us consider the GRANT commands of Example 2.2 and the following REVOKE
command:

Leo: REVOKE select ON Videos FROM Beth, Gena;

After the execution of this command, Gena is no longer allowed to query the Videos relation,
whereas Beth can still query the relation due to the authorization she received from Helen. What
she looses is the possibility of granting other users the select privilege on Videos.

2.2.3 AUTHORIZATION STORAGE

System R uses a uniform representation for authorizations and data. Therefore, authorizations are
stored into two system catalogs, called Sysauth and Syscolauth, respectively. Sysauth stores
information on the privileges granted on the objects in the system, whereas Syscolauth is used to
manage the update privilege that, different from the other ones, can apply on selected attributes
within a relation. More precisely, Sysauth schema consists of the following attributes:

* user: the id of the user to which privileges are granted,;
* rel: the name of the relation on which privileges are granted;

* type € {R,V} denotes whether the privileges are granted on a relation (type=R’) or on a view
(type=7);

* select: it denotes whether the user has the privilege to query the specified relation. The value
of this attribute is a zimestamp, representing the time at which the privilege has been granted.
If the value is 0, this means that the user does not hold the privilege. Sysauth contains an
attribute with a similar semantics for each distinct access mode supported by the model;

* grantor: the id of the user who granted the privileges;

* grantopt € {Y,N}, specifies whether the privileges are grantable (grantopt =¢Y’) or not
(grantopt =‘N’).

Timestamp information are needed to correctly manage revoke operations (See Section 2.2.5).
The timestamp can be the value of a counter or it can denote a real time instant. The only requirement
is that it satisfies the following two properties: (7) it monotonically increases; (77) no two GRANT

18 2. DISCRETIONARY ACCESS CONTROL FOR RELATIONAL DATA MANAGEMENT

user rel type select insert update grantor grantopt
Leo Customers R 20 20 20 Y
Leo Videos R 22 22 22 Y
Leo Movies R 25 25 25 Y
Marc Customers R 0 0 30 Leo N
Beth Videos R 32 0 0 Leo Y
Gena Videos R 32 0 0 Leo Y
Matt Videos R 35 0 0 Gena N
Helen Videos R 40 40 40 Leo Y
Helen Movies R 40 40 40 Leo Y
Beth Videos R a7 a7 0 Helen N

Figure 2.2: An example of Sysauth catalog.

commands exist with the same timestamp. Privileges granted through the same GRANT command
have the same timestamp.

Example2.5 Figure 2.2 reports an example of entries in Sysauth referring to the select, insert,
and update privileges and relations Customers, Videos, and Movies. The portion of Sysauth in
Figure 2.2 refers to the authorization state after the execution of the GRANT commands in Example
2.2. Timestamps have been arbitrarily assigned based on the constraints described above. Note that
the first three tuples in the catalog have been automatically inserted when the three relations have
been created by Leo. The timestamp denotes the time of the CREATE TABLE command.

Given a relation R, for each pair of users 1 and u7, such that u, grants u| some privileges on
R, Sysauth contains at most two tuples, one referring to the privileges u, grants u with the grant
option, and the other referring to the privileges u, grants u without the grant option.

Note that Sysauth records whether a user has the update privilege on a relation, but it does
not store information on the columns over which the privilege can be exercised (see, for instance,
the 4th row of the catalog in Figure 2.2). Such information are stored into Syscolauth. More
precisely, Syscolauth stores a tuple: (user,rel,attr,grantor,grantopt) for each attribute
attr of relation rel that user can update due to an authorization received from grantor. Attribute
grantopt records whether the update privilege is grantable or not. For instance, given the Sysauth
catalog in Figure 2.2, Syscolauth will contain the tuple (Marc,Customers,phone,Leo,N).

2.2.4 AUTHORIZATION MANAGEMENT AND ENFORCEMENT

Catalogs Sysauth and Syscolauth are checked by the system to (a) enforce access control; and (b)
decide the result of a GRANT/REVOKE command. Access control enforcement is conceptually very easy;
verifying whether an access request can be authorized or not can be done simply by querying Sysauth
and Syscolauth. For access control enforcement both grantable and non-grantable privileges are
considered.

In contrast, to decide the result of a GRANT command only the grantable privileges should be
taken into account. Let us see the steps to be performed. First of all, Sysauth and Syscolauth are

2.2. THE SYSTEM R ACCESS CONTROL MODEL 19

queried to check whether the user who issues the command has the right of granting the specified
privileges. To perform this check, the intersection between the privileges in the GRANT command
and the grantable privileges held by the user is performed. Note that grantable privileges can be
easily retrieved from Sysauth and Syscolauth by selecting those tuples with grantopt =‘Y’.
Three different results are possible. If the intersection is empty, than the command is not executed
since the user does not have the right to grant any of the privileges in the GRANT command. If the
intersection is equal to the privileges listed in the command, than the command is fully executed.
Otherwise, the command is partially executed and, as a result, only the privileges in the intersection
of the two sets are granted.

Example 2.6 Let us consider the Sysauth and Syscolauth catalogs described above, and the
following GRANT commands:

Marc: GRANT update (phone) ON Customers TO Robert;
Leo: GRANT delete ON Customers TO John, Ann;
Beth: GRANT select, insert ON Videos TO Alice;

The first command is not executed since, according to the information in Sysauth and
Syscolauth, Marc holds the update privilege on the phone attribute of the Customers relation
but without the grant option. The second command is fully executed since Leo is the owner of
the Customers relation. Finally, the last command is partially executed; Beth holds the select
privilege on the Videos relation with grant option, whereas she holds the insert privilege without
grant option. As such, the result of the command execution is that Alice only receives the select
privilege on Videos.

Authorization revocation can be performed only by the user that previously granted the
privilege being revoked. Even in this case, verifying whether a user has the right of issuing a REVOKE
command requires to simply querying Sysauth and Syscolauth. However, since a user may grant
a privilege on a relation not only because he/she is the relation owner but also because he/she has
received that privilege with the grant option, what happens to the authorizations granted by a user
must be further determined when the privileges he/she used to grant the authorizations are revoked.
This is the topic of the following section.

2.2.5 RECURSIVE REVOCATION

Interesting issues are related to the semantics of the revoke operation, since, because of the grant
option, more users can be authorized to grant the same privilege on the same relation. The issue
to be considered is the following. Suppose there are three users, u1, u2, and u3, and that u; grants
uy privilege p on relation rel with the grant option. Later on, suppose that us grants u3 privilege
p on rel. Moreover, suppose that, after some time, u| revokes us p on rel. What happens to the
authorization uy granted to u3? The System R access control model enforces recursive revocation.
This means that whenever a user revokes an authorization on a relation from another user, all

20 2. DISCRETIONARY ACCESS CONTROL FOR RELATIONAL DATA MANAGEMENT

the authorizations that the revokee had granted because of the revoked authorization are removed
from the authorization state. The revocation is iteratively applied to all the users that received an
authorization for the revoked privilege from the revokee.

More formally, the semantics of the revoke operation is captured by the following definition.

Definition2.7 (Recursiverevoke) Let G1, ..., G, be a sequence of GRANT commands, all grant-
ing the same privilege on the same relation, such that, ifi < j, 1 <i, j < n, then command G; has
been executed before G ;. Let R; be the REVOKE command revoking the privilege granted by G;.
The semantics of recursive revoke requires that the authorization state after the execution of the
sequence of commands:
Gi,....Gy, R;
is equal to the state that one would have after the execution of the sequence of commands:
Gi,...,Gi—1,Giy1,...,Gp.

Therefore, to correctly enforce recursive revocation it is important to remove from the system
all the effects of the revoked authorization, that is, all the authorizations that were not grantable
if the revoked authorization would not have been specified. The problem can be better modeled
and understood by representing the authorization state as a graph, called authorization graph. An
authorization graph models the state of the authorizations with respect to a specific privilege p and a
relation re/. The authorization graph contains a node for each user that holds p on 7e/. There is an arc
going from node %] to node uy, if u1 granted p on re/ to up. The arc is labeled with the authorization
timestamp and with symbol ‘¢’ if the privilege has been granted with the grant option. The graph
always contains a node corresponding to the relation owner since, at the beginning, he/she is the only
one that can grant privileges on the relation. Figure 2.3(a) depicts the authorization graph referring
to the select privilege and the Videos relation, representing the authorization state corresponding
to the Sysauth catalog of Figure 2.2.

Example 2.8 Consider Figure 2.3(a), and suppose that Leo revokes the select privilege on the
Videos relation to Gena. This entails the revocation of the select privilege granted by Gena to
Matt on relation Videos, since this privilege has been specified only thanks to the authorization
Gena received from Leo.

Timestamps are fundamental to correctly enforce recursive revocation, as the following ex-
ample shows.

Example2.9 Consider the authorization graph in Figure 2.3(b), referring to the select privilege
and the Videos relation, and suppose that Leo revokes the select privilege on Videos to Gena.
This does not cause the revocation of the select privilege granted by Gena to Matt on Videos,
since this privilege could have been granted by Gena at time 50 even without the privilege being
revoked. Indeed, Gena received from Bett the select privilege on Videos at time 40 with the grant
option. The result of the revoke operation would be different if the timestamp of the authorization

2.2. THE SYSTEM R ACCESS CONTROL MODEL 21

(b)

Figure 2.3: Examples of authorization graphs.

granted by Beth to Gena would be greater than 50. In such a case, the revoke operation issued by
Leo would entail also the revocation of the privilege granted by Gena to Matt, since this privilege
could not have been granted if Gena would not have received the authorization from Leo.

Recursive revocation has the advantage of a well-defined semantics and of being the most
conservative solution with respect to data protection. These are the main reasons why it has been
implemented by almost all commercial relational DMSs. However, the drawback of such a revoke
operation is that it is too disruptive in same cases. For instance, if we consider the example of an
organization, the authorizations a user possesses are usually related to his/her particular role within
the organization. If a user changes his/her tasks (for instance, because of a promotion), it is desirable
to remove only the authorizations of the user, without revoking all the authorizations granted by this
user, as recursive revocation would entail. To overcome such limitations, alternative semantics for
the revoke operation have been proposed. For instance, noncascading revocation has been proposed
by Bertino et al. [1997]. This revoke operation differs from recursive revocation in that no recursive
revocation is performed upon the execution of a revoke request. In contrast, whenever a user revokes
a privilege on a relation from another user, all the authorizations the user may have granted by using
the privilege received by the revoker are restated as if they had been granted by the revoker. Then,
recursive revocation is applied to the resulting state.

22 2. DISCRETIONARY ACCESS CONTROL FOR RELATIONAL DATA MANAGEMENT

The limitations of recursive revocation have also been recognized by the SQL standard that,
starting from SQL:1999, implements a variation of the System R recursive revocation. In SQL, the
revoke command can be issued with two options, namely RESTRICT and CASCADE. If the RESTRICT
option is specified, the revoke operation is not executed if it entails the revocation of other authoriza-
tions or the deletions of some objects from the database schema. In contrast, if the CASCADE option
is specified, a variation of recursive revocation is implemented. The difference with the original
formulation of System R is that timestamps are not considered to decide whether an authorization
should be revoked. As a result, an authorization A granted by a user u is not removed from the
system, if, upon the execution of the REVOKE command, u still has an authorization A granting
him/her the right to specify A, regardless of the relations between the timestamps of A" and A. The
following example clarifies the differences between the two revoke operations.

Example 2.10 Let us consider again Figure 2.3(b) and suppose that Beth has granted the select
privilege with grant option on Videos to Gena at time 55, instead of at time 40. Moreover, suppose
that Leo revokes Gena’s authorization that was granted at time 32. According to the semantics
of recursive revocation, this implies the revocation of the authorization granted by Gena to Matt
since 50 < 55. In contrast, according to the semantics adopted by the SQL cascade revocation, the
privilege granted by Gena to Matt is not revoked, because of the privilege granted her by Beth at
time 55.

2.2.6 AUTHORIZATIONS ON VIEWS

Views are a key components of any relational DMS and are also the mechanism used by the System
R access control model to implement more expressive form of access control with respect to the ones
explained so far. For instance, a very important requirement in many environments is to be able to
enforce fine-grained access control, that is, different protection requirements at a fine granularity level.
In the relational data model, this means, for instance, being able to enforce different authorizations
on the various attributes in a relation (e.g., the attribute storing the salary of an employee is more
sensitive than the attribute name and therefore should be accessed by a restricted number of users).
The syntax of the GRANT command presented in Section 2.2.1 does not allow one to specify an
authorization which applies only to selected attributes within a relation, with the only exception
of the update privilege. Another important requirement is to be able to support content-dependent
access control (cfr. Chapter 1). In a relational database, this means the ability of authorizing a user
to access only selected tuples within a relation, where selection conditions are in terms of attribute
values. Furthermore, it is often the case that raw data are very sensitive, whereas aggregate data are
less sensitive and, as such, they can be accessible to a wider set of users. For instance, a user can
be authorized to see how many videos each customer has rented per month, but he/she should not
be allowed to see the titles of these videos. All these requirements cannot be supported through
the GRANT command provided by the System R access control model. However, the mechanism
to support them is through the use of views. The idea is simple: define a view containing the

2.2. THE SYSTEM R ACCESS CONTROL MODEL 23

information the user is authorized to see and then authorize the user to access the view, instead of
the base relation(s) over which the view has been built. The query defining the view may contain
only selected attributes of a relation, it may select only some tuples of a relation based on the values
of some of its attributes, or it may perform aggregate functions on the tuples stored into a relation.
Therefore, views can be used to enforce all the protection requirements discussed above. For instance,
if we want to authorize a user to access only the information about comedies, we first define a view
over Movies where the query in the CREATE VIEW command selects only those tuples whose type
attribute is equal to comedy. Then, the user is given access to the view instead of to Movies. A
similar approach can be used to give a user access only to aggregate information or only to selected
attributes within a relation.

Views are therefore a powerful means with respect to access control. However, we need to pay
attention to some aspects related to their management. First of all, a user can create a view only if
he/she has the select privilege over the views/relations appearing in its definition. Then, it must
be determined which privileges the creator of a view has over it. For base relations, we have seen at
the beginning of Section 2.2, that the creator of a relation has all the privileges over it as well as the
right to delegate authorization administration to others. For views, this is not true anymore since the
privileges a user holds over a created view V depend on two factors: (1) the authorizations the user
holds over the relations/views over which V has been defined;(2) the semantics of the view, that is,
its definition in terms of other relations/views. Let us first consider point (7). If a view is defined in
terms of a single relation (or view), than the privileges that the creator has on the view are potentially
all those he/she holds on the relation/view appearing in the CREATE VIEW command. If the view is
defined in terms of more than one relation/view, the privileges over the view are potentially all those
obtained by intersecting the privileges the user has on each view/relation appearing in the CREATE
VIEW command. Moreover, a privilege on a view is grantable only if the user holds this privilege with
the grant option on each view/relation appearing in the CREATE VIEW command. As far as point (2)
is concerned, it is well known that the SQL standard [ISO, 2003] puts some restrictions on the set
of commands executable on a view. The rationale behind these restrictions is that it is not allowed to
perform on a view operations that are not unequivocally mappable to the base relations over which
the view has been defined. These restrictions may clearly reduce the set of privileges the creator of
a view can exercise over it. Therefore, the authorizations a user may potentially exercise on a view
according to the rules explained above, are really executable on the view on/y if the execution of these
privileges is allowed by the restrictions posed by SQL on the operations that can be performed on
views.

Example2.11 Consider the Sysauth catalog of Figure 2.2, and suppose that Helen executes the
following command:

CREATE VIEW Comedies AS
SELECT =*

FROM Movies

WHERE type = ‘comedy’;

24 2. DISCRETIONARY ACCESS CONTROL FOR RELATIONAL DATA MANAGEMENT

The execution of this command is authorized, since Helen has the select privilege on
Movies. According to the Sysauth catalog of Figure 2.2, Helen has also the update and insert
privilege on Movies. Such privileges can be exercised by Helen also on the newly created view
because no restrictions on the operations that can be performed on it are posed by SQL. Since, the
privileges on Movies have been granted to Helen with the grant option, she can authorize other
users to exercise them on Comedies.

Suppose now that the database of the video library contains a further relation Rentals, owned
by Helen, storing information on the videos rented by the video library customers. Moreover, suppose
that Helen creates the view Rental_Number that contains the number of rented videos for each
customer, as follows:

CREATE VIEW Rental_Number AS

SELECT customer, COUNT (%) AS rental_num
FROM Rentals

GROUP_BY customer;

Consider, for simplicity, the select, insert, and update privileges only. Since Helen is the
creator of the Rentals relation, she has the select, insert, and update privileges on it with
grant option. These privileges are, in principle, inherited by Helen also on the view, unless they are
prevented by the restrictions imposed by SQL on the operations that can be performed over views.
These restrictions do not allow one to perform update and insert operations over Rental_Number.
As a result, Helen can only query the created view and give others such privilege.

Granting and revoking privileges on a view is very similar to the same operations over base
relations. You can grant a privilege on a view only if you hold it on the view with the grant option.
The revoke operation is recursive. Additionally, when users are allowed to create views it may happen
that revocation of a select privilege (either over a view or a relation) causes the deletion of one or
more views, that is, all the views that have been defined because of the revoked privilege.

Example2.12 Let us consider the views of Example 2.11 and the Sysauth catalog of Figure 2.2,
and suppose that Leo revokes from Helen the select privilege on Movies. As a side effect, the
view Comedies is deleted, since Helen was allowed to create the view only because of the select
privilege granted by Leo. Suppose now that Beth creates the following view that counts the number
of available videos for each movie offered by the video library:

CREATE VIEW HowManyVideos AS

SELECT movie_id, COUNT(x) AS video_num
FROM Videos

GROUP_BY movie_id;

Suppose now that Leo revokes from Beth the select privilege on Videos. The decision
whether to delete or not the view HowManyVideos depends on the timestamp of the CREATE VIEW

2.3. DAC SUPPORT INSQL 25

command. If the timestamp is greater than 47, the view is not deleted, since Beth received at time
47 the select privilege on Videos by Helen. In contrast, if the CREATE VIEW command has been
executed by Beth before time 47, the view is recursively deleted.

2.3 DACSUPPORT IN SQL

The commands to enforce discretionary access control provided by the SQL standard® are mainly
based on the System R access control model. The standard provides two basic commands, namely
GRANT and REVOKE, with the same purpose as the analogous commands in the System R access
control model. However, there are some relevant differences between the two models, the most
important ones are the support for Role-based Access Control (see Chapter 5 for more details)
and a different semantics for the revoke operation (see Section 2.2.5). Additionally, SQL adds to
the System R access control model a new set of privileges and authorization objects, to reflect the
extensions made to the relational data model since the design of System R. For instance, SQL
supports the usage privilege, to authorize a user to make use of a user-defined data type in the
definition of the database schema. Additional privileges provided by SQL are references, to allow
a subject to use an attribute in the specification of a constraint/assertion; trigger, that allows one
to specify triggers on a given relation; under, that allows one to create sub-types and sub-tables,
and execute, to allow the execution of a procedure/function. There are some restrictions on the
granting of these privileges. For instance, usage and execute privileges cannot be specified for
relations, whereas trigger can only apply to base relations. We refer the reader to ISO [2003] for
all the details. Other extensions related to the set of supported privileges refer to the select and
insert privileges that, differently from the System R access control model, can also be given on
selected attributes of a relation.

In addition to the grant option, the SQL GRANT command may contain the Aierarchy op-
tion. This clause can be specified for the select privilege only, and it allows one to propagate
authorizations from a table to all its sub-tables.

Example 2.13 The following are examples of SQL GRANT commands:

GRANT usage ON TYPE address TO Gena WITH GRANT OPTION;
GRANT execute ON updateCustomers TO Helen;
GRANT select(name, address), references(customer_id) ON Customers TO Marc;

The first command authorizes Gena to use the type address to define other schema ob-
jects. Moreover, since the privilege is granted with grant option, she can authorize other users to
make use of the address type in the definition of schema objects. The second command authorizes
Helen to run procedure updateCustomers, whereas the third command authorizes Marc to query

3Here and in what follows we refer to the SQL:2003 standard [ISO, 2003].

26 2. DISCRETIONARY ACCESS CONTROL FOR RELATIONAL DATA MANAGEMENT

the name and address attributes of the Customers relation. Additionally, the command authorizes
Marc to specify constraints involving attribute customer_id of the Customers relation.

As far as the REVOKE command is concerned, apart from the different semantics for the
revocation that we have discussed in Section 2.2.5, the main difference with respect to the anal-
ogous command in the System R access control model is that it is possible to revoke only the
grant/hierarchy option (through the clauses GRANT OPTION FOR and HIERARCHY OPTION FOR,
respectively), without revoking the corresponding privilege.

Example 2.14 With reference to the GRANT commands of Example 2.13, the REVOKE command:
REVOKE GRANT OPTION FOR usage ON TYPE address FROM Gena;

revokes from Gena the authorization to grant other users the right to use the address type in the
definition of other objects of the database schema. However, Gena still maintains the privilege to
use type address.

2.4 EXTENSIONSTOTHE SYSTEM R ACCESS CONTROL
MODEL

Because of its relevance, the System R access control model has been extended along several directions
with the aim of enhancing its expressive power and adapt it to the requirements of new application
scenarios and/or data models. We have already discussed the proposals for an alternative semantics
of the revoke operation (cfr. Section 2.2.5). In what follows, we briefly survey the main additional
extensions that have been proposed.

Extensions to the System R access control model can be categorized along many different
dimensions. In what follows, we classify them into three main categories:

1. Extended access control models for relational DMSs. A lot of research propos-
als have extended the capabilities of the System R access control model with a vari-
ety of features, such as the support for group management [Wilms and Lindsay, 1981],
negative authorizations [Bertino et al,, 1997], role-based [Sandhu etal., 1996] and task-
based authorizations, temporal authorizations [Bertino etal., 1998a], and trust manage-
ment [De Capitani di Vimercati et al., 2007]. Moreover, the System R access control model
has been extended for the distributed DMS System R* [Wilms and Lindsay, 1981],
whereas Bertino and Haas [1988] extended it with distributed views. Related to those ex-
tensions is the problem of developing appropriate tools and mechanisms to efficiently support
those extended models.

2. Development of access control models for advanced data management systems, like object-
oriented, object-relational, active, multimedia, stream-based, XIML/RDF-based DMSs, GIS

2.4. EXTENSIONS TO THE SYSTEM R ACCESS CONTROL MODEL 27

(Geographical Information System), and data warehouses. These data management systems
are usually characterized by data models richer than the relational model. Therefore, access
control models developed for relational DMSs must be properly extended to deal with the
additional modeling concepts contained in such advanced data models.

3. Development of access control models for advanced applications and new environments,
such as Web applications and Web Services, applications in the context of Digital Libraries
(DLs), or Workflow Management Systems (WFMSs). More recent developments in this field
are the access control models developed for Web 2.0 tools, like for instance those developed
for social networks, or access control models developed for location-based services.

A detailed description of all the above-mentioned extensions is out of the scope of this
book. In what follows, we briefly survey some of the extensions proposed for relational DMSs.
Role-based access control is covered in Chapter 5, whereas in Chapter 3 we review some of the
developments in the field of object and XIML DMSs. We refer the reader to Bertino and Sandhu
[2005]; Ferrari and Thuraisingham [2000] for further research results in the context of advanced
data management systems. Finally, some of the most recent developments in the field of discretionary
access control for advanced applications and new environments will be discussed in Chapter 6.

2.4.1 POSITIVE AND NEGATIVE AUTHORIZATIONS

Bertino et al. [1997] proposed a new semantics for the revoke operation, and provided the support
for negative authorizations. The System R access control model, like those of most DMSs, does not
allow explicit denials to be expressed. The main drawback of such an approach is that the lack of
a given authorization for a given user does not prevent this user from receiving this authorization
later on (for instance, by one of the users entitled to authorization administration through the grant
option). However, there are situations in which the owner of an object (or one of its administrators)
would like to prevent others from authorizing the access to that object to specific users. To cope with
these requirements, the System R access control model has been extended with the possibility of
specifying explicit denials, modeled through negasive authorizations [Bertino et al., 1997]. Negative
authorizations are also supported by SeaView [Lunt et al., 1990], by means of a special privilege
denoted as “null". A subject that has the null privilege on a relation cannot exercise any access on it.
Thus, it is not possible to deny a subject only selected privileges on a relation. For instance, it is not
possible to authorize a subject to see the tuples in a relation and, at the same time, deny it to write on
that relation, whereas this is allowed by the model proposed by Bertino et al. [1997]. The support
for negative authorizations has been also proposed for RBAC [Al-Kahtani and Sandhu, 2004] and
for different data (e.g., Web resources [Bertino et al., 2009], XML [Bertino et al., 2001b]). The
drawback of supporting positive and negative authorizations is that authorization enforcement has to
deal with conflicts that happen when a subject has both a positive and a negative authorization for the
same privilege on the same object. Conflicts between positive and negative authorizations are solved
by Bertino et al. [1997] in the most conservative way, that is, according to the “denials take precedence”

28 2. DISCRETIONARY ACCESS CONTROL FOR RELATIONAL DATA MANAGEMENT

policy, which implies that, whenever a user has both a positive and a negative authorization on the
same object for the same privilege, the user is prevented from accessing the object since the negative
authorization takes precedence over the positive one. When objects are hierarchically organized,
negative authorizations have a further benefit in that they may be used to specify exceptions to the
authorization propagation entailed by the hierarchy and therefore they are a means to reduce the
number of authorizations that should be specified. As an example, consider the XIVIL data model
and an XML document modeling information about projects. Suppose that all the project elements,
apart from one, must be accessed by an employee, say Bob, since the information of this project is
strictly confidential. Suppose, moreover, that the organization is currently involved in 1000 projects.
If negative authorizations are not supported, then 999 authorizations must be specified for Bob, one
for each project he is allowed to access. Suppose now that the system supports positive and negative
authorizations and that the “denials take precedence” policy is adopted to solve conflicts between
them. In such a case, only two authorizations are needed for Bob: a positive one, specified at the
document root level, which propagates by default to all the subelements, and a negative authorization
specified for the element corresponding to the project that must be kept reserved.

However, although the denials take precedence, policy has the advantage of being intuitive and
offering strong protection guarantees, since denials always prevail, it does not fit all the application
domains. For instance, when used in combination with subject or object hierarchies it may happen
that less specific negative authorizations (that is, authorizations specified at higher levels in the
hierarchy) prevail over more specific positive ones. Therefore, different alternative conflict resolution
policies have been proposed, in addition to the denials take precedence one, among which:

* No conflicts. The presence of a conflict is prevented. Therefore, whenever a user requires the
insertion of a new authorization, the system checks whether this authorization conflicts with
other authorizations already present in the system and, in this case, rejects the insertion of the
new authorization.

* Permissions take precedence. The positive authorization prevails over the negative one.

Nothing takes precedence. Neither the positive nor the negative authorization takes precedence.
The final result is equivalent to the case where no authorizations had actually been specified.
This policy differs from the no conflicts one in that it allows the presence of conflicting autho-
rizations. However, the simultaneous presence of two conflicting authorizations invalidates

both of them.

* Most specific takes precedence. This policy applies when subjects/objects or privileges are hierar-
chically organized. In this case, the authorization that is more specific with respect to one of
the hierarchies prevails.

Priority driven. Authorizations are associated with a priority level. The authorization with the
highest priority prevails.

2.4. EXTENSIONS TO THE SYSTEM R ACCESS CONTROL MODEL 29

* Strong/weak. Authorizations are classified into strong and weak, and this drives how con-
flicts are solved. Strong authorizations always override weak ones. Conflicts among strong
authorizations are solved according to the no conflicts policy, whereas conflicts among weak
authorizations are solved according to the nothing takes precedence policy.

Note, moreover, that the application of only one of this conflict resolution policies may not
allow one to decide what authorization prevails. For instance, consider a domain where subjects and
objects are hierarchically organized and consider two authorizations (Bob,read,reports,+) and
(Manager,read,ri,-) 4 where reports is a directory containing all the project reports, whereas
r1 is one of them. Now suppose that Bob is a manager requiring to read ry and that the most specific
takes precedence policy is adopted for conflict resolution. If we consider the object hierarchy the
negative authorization prevails, whereas according to the subject hierarchy the positive one wins.
Therefore, a further conflict resolution policy is needed, such as one assigning a priority to the various
hierarchies [Bertino et al., 2009].

As it is clear from this simple example, different approaches can be taken to deal with con-
flicts among positive and negative authorizations and the more features the model supports (e.g.,
hierarchies) the more complex is to deal with conflicts. Additionally, there is no solution that fits all
the environments. For this reason, some approaches have been proposed (e.g., Bertino et al. [2003];
Jajodia et al. [2001]) with the aim of providing a flexible framework able to support multiple conflict
resolution policies to be customized according to the environment. The importance of supporting
negative authorizations has also been recognized by commercial DMSs. For instance, Microsoft
SQL Server provides, in addition to the GRANT and REVOKE commands, the DENY command to be
used for the specification of negative authorizations.

242 TEMPORAL AUTHORIZATIONS

A further extension that has been proposed to the System R access control model is the possibility of
attaching a validity period to authorizations [Bertino et al., 1998a]. Traditional authorizations are
valid from the time they are entered into the system, until they are explicitly removed. However, there
are many application scenarios where permissions should be constrained to specific time intervals
or periods. An example of policy with temporal constraints is the following: “Programmers can
modify the project files every working day except Friday afternoons”, because on Friday afternoon
a review of the weekly activities is performed. To cope with these requirements, temporal interval
can be attached to every authorization representing the time instants in which the authorization is
valid [Bertino et al., 1998a]. When the interval expires, the authorization is automatically revoked.
The interval associated with an authorization may also be periodic, thus consisting of several intervals
that are repeated in time. In addition, the model provides deductive temporal rules to derive new
authorizations based on the presence or absence of other authorizations in specific periods of time.
For instance, it is possible to specify that two users must be authorized to access an object in the

#“When positive and negative authorizations are supported, the basic format of authorizations described in Chapter 1 is extended
with a further component, i.e., the sign, stating whether the authorization is positive (sign = ‘+’) or negative (sign = -').

30 2. DISCRETIONARY ACCESS CONTROL FOR RELATIONAL DATA MANAGEMENT

same time periods or that a user must be authorized to access an object each time another user does
not have this right. The periodic access control model proposed by Bertino et al. [1998a] has been
extended by Bertino et al. [2000a] to deal with heterogeneous, distributed systems and with the
support for subject and object hierarchies.

Different temporal constraints can be specified through the model defined by Atluri and Gal
[2002]. The model which has not been defined for the protection of relational DMSs, but rather for
information portals, allows one to specify authorizations, based on the temporal attributes associated
with data (such as transaction time and valid time). By this model, it is, for instance, possible to
implement a policy authorizing a user to read an object one week after it has been written.

2.5 ORACLE VIRTUAL PRIVATE DATABASE

Oracle Virtual Private Database (VPD) [Oracle Corporation, 2009] is, up to now, one of the most
powerful tools supported by commercial DMSs, with the aim of enhancing and simplifying the
specification of complex discretionary access control policies. VPD is provided by Oracle starting
from version 8i. Main features of Oracle VPD are the support for:

* fine-grained content-based access control. An access control policy (i.e., a policy function) can be
attached directly on a relation/view providing access only to selected tuples (row-level security)
or attributes. Tuples authorized by the policy may be selected on the basis of their content.

* context-dependent access control. The support for application contexts makes it possible to define
context-based access control policies (cfr. Chapter 1), that is, policies that depend on some
attributes of the session issuing the access request (e.g., IP address, host name) and/or on
some characteristics of the profile of the subject issuing the request (e.g., whether the user is
a database administrator).

One of the main advantages of VPD is its increased flexibility in terms of supported access
control requirements. For instance, by using the access control support provided by SQL, the only way
to enforce context-based access control is to embed the access control checks into application pro-
grams. VPD provides better security with respect to this solution, since policies are server-enforced
and therefore they are checked whatever is the application accessing the database. Additionally, VPD
achieves better scalability, since the support for fine-grained, content-based access control does not
require the management of a huge number of views. As an example, consider once again the video
library database and suppose we would like to enforce a policy stating that each customer can ac-
cess information only on his/her rentals. Enforcing this policy using the support provided by SQL
requires the generation of a number of views equal to the number of customers of the video library.
Using VPD, enforcing the same policy requires the generation of only one po/icy function and its
attachment to the Rentals relation. This also makes policy specification easier.

Let us now see how VPD works. First of all, a function coding the access control policy to be
enforced must be specified and attached to the object being protected. Objects can be relations, views,

2.5. ORACLE VIRTUAL PRIVATE DATABASE 31

or synonyms. The policy function returns a predicate encoding the access control checks implied by
the policy. When a user accesses an object protected by a policy function, the issued SQL statement
is dynamically modified by the Oracle DMS. This modification is transparent to the user and creates
a WHERE condition containing the predicate(s) returned by the attached policy function(s). Then,
the modified query is executed and the results returned to the user.

VPD functions may exploit application contexts. An application context stores a set of prop-
erties of users/sessions that may be used by VPD policies to enforce context-based access control
constraints. Application contexts may be system or user defined. Oracle provides a default context,
namely USERENV, that contains a set of properties of user sessions (such as user id, IP address, host
name, etc.). Attributes of the USERENV context cannot be modified. If one wants to specify a policy
exploiting additional attributes with respect to those contained into USERENV, he/she can create
his/her own contexts, through the CREATE CONTEXT command. To create a context a user must be
granted the CREATE ANY CONTEXT system privilege. Context attributes may be queried through
the command:

SYS_CONTEXT (<namespace>,<attribute>);

where: <namespace> is the name of the application context to be queried, and <attribute> is one
of its attributes.
Attributes of user-defined contexts may be modified through the following command:

DBMS_SESSION.SET_CONTEXT (<namespace>,<attribute>,<value>);

Example 2.15 Let us consider the policy described above, authorizing each customer to access
only his/her rentals. Moreover, suppose that Admin can access the rentals of any customer and let
us see how the policy can be implemented using VPD. In this case, it is not necessary to create a
context since all the information needed to enforce this policy can be found in the USERENV context.
Therefore, the first step is to create a policy function. This can be done as follows:

CREATE FUNCTION check_access (p_schema VARCHAR2, p_obj VARCHAR2)
RETURN VARCHAR2 AS user VARCHAR2(100);

BEGIN
IF(SYS_CONTEXT(’USERENV’, °ISDBA’)) THEN
RETURN > 7;
ELSE
user := SYS_CONTEXT(’USERENV’, ’SESSION_USER’);
RETURN ’customer =’ || user;
END IF;
END;

where the parameters of the policy function denote the schema and the object (table, view, synonym)
over which the function is invoked. Then, a VPD policy invoking the newly created policy function

32 2. DISCRETIONARY ACCESS CONTROL FOR RELATIONAL DATA MANAGEMENT

video customer rental_date return_date

1245 Leo 2-12-2009 2-14-2009
1374 Ann 8-1-2010 8-1-2010

1374 Leo 5-3-2010 5-4-2010

1521 Alice 4-16-2010 null

Figure 2.4: Rentals relation.

should be attached to the Rentals relation. This can be done through the ADD_POLICY procedure,
as follows:

DBMS_RLS.ADD_POLICY (object_schema => ’VideolLibrary’,
object_name => ’Rentals’,
policy_name => ’secure_access’,
policy_function => ’check_access’,
statement_types => ’select, update, insert’);

where statement_types lists the SQL commands for which the policy should be enforced. Now
suppose that Ann issues the following SQL command:

SELECT * FROM Rentals;

The query is rewritten by attaching a WHERE clause having as predicate the result of check_access,
that is:

SELECT * FROM Rentals WHERE customer = ’Ann’;

VPD policies can also be based on user-defined contexts. To create a user-defined context, the
first step is to create a PL/SQL package that sets the attributes of the context. Then, through the
CREATE CONTEXT command, it is possible to create a namespace for the new application context
and associate it with the PL/SQL package.

VDP also supports column-level policies, that is, policies that are evaluated only when selected
columns are referenced either directly or indirectly in a query. If a VPD column-level policy is
specified for a column C of a relation R, then, when C is referenced in a query, the system returns by
default only the rows of R that satisfy the policy. Columns that trigger the evaluation of the policy
can be specified by using the sec_relevant_cols parameter of the ADD_POLICY procedure.

Example2.16 Consider the relation in Figure 2.4 and suppose that the following policy should be
enforced over it: each user can see all the information in the Rentals relation, apart from information

SWe refer the interested readers to Oracle Corporation [2009] for the whole list of parameters that can be used in the ADD_POLICY
procedure.

2.5. ORACLE VIRTUAL PRIVATE DATABASE 33

on the rented videos, in that each user can access only his/her own video information. Such policy can
be easily implemented through a column-level VPD policy as follows. First of all, a policy function
is created implementing the required checks:

CREATE FUNCTION check_access_video (p_schema VARCHAR2,
p_obj VARCHAR2)
RETURN VARCHAR2 AS user VARCHAR2(100);

BEGIN
user := SYS_CONTEXT(’USERENV’, ’SESSION_USER’);
RETURN ’customer =’ || user;

END;

Then, the policy function is attached to Rentals:

DBMS_RLS.ADD_POLICY (object_schema => ’VideoLibrary’,
object_name => ’Rentals’,
policy_name => ’secure_access_video’,
policy_function => ’check_access_video’,
sec_relevant_cols => ’video’);

The access control policy applies when the columns listed in the sec_relevant_cols pa-
rameter are referenced, explicitly or implicitly, in a query.
Now suppose that Leo issues the following query:

Q1: SELECT customer, rental_date FROM Rentals;

In such a case, the policy secure_access_video is not evaluated since the query does not
reference attribute video. As a result, the query is executed as it is, and the result returned to Leo
is the one in Figure 2.5(a). In contrast, suppose that Leo issues the following query:

Q2: SELECT video, rental_date FROM Rentals;
In such a case, the secure_access_video policy is enforced and the query is rewritten as follows:
SELECT video, rental_date FROM Rentals WHERE customer = ’Leo’;

The result returned to Leo is the relation shown in Figure 2.5(b).

Finally, it is also possible to request a masking behavior with respect to the enforcement of
column-level policies. In this case, all the rows satisfying the query are returned, but a null value is
displayed for the columns to which the policy refers to, if the corresponding value does not satisfy the
policy. For instance, consider the queries in Example 2.16 and suppose that the masking behavior
has been required instead of the default one. The result of query Q; does not change, whereas the
new result for query Qo is shown in Figure 2.6.

34 2. DISCRETIONARY ACCESS CONTROL FOR RELATIONAL DATA MANAGEMENT

customer rental_date

Leo 2-12-2009
Ann 8-1-2010
Leo 5-3-2010 A
Alice 4-16-2010

video rental_date
1245 2-12-2009 (b)
1374 5-3-2010

Figure 2.5: Examples of column-level policy enforcement.

video rental_date
1245 2-12-2009
null 8-1-2010
1374 5-3-2010
null 4-16-2010

Figure 2.6: Masking behavior.

To obtain the masking behavior, it is necessary to set the sec_relevant_cols_opt param-
eter of the DBMS_RLS.ADD_POLICY procedure to DBMS_RLS.ALL_ROWS. There are a number of
restrictions for the application of the column-masking behavior, such as that it can apply only to
SELECT statement, and the result of the invocation of the policy function should be a simple Boolean
expression.

Views/tables and synonyms can be protected by multiple policies. When several policies are
attached to a schema object, they are enforced with the AND syntax. This means that they need to be
all satisfied to get access. This is different from the approach enforced by the System R access control
model and SQL, where policies are enforced with the OR syntax (that is, the privileges a user can
exercise are the union of those he/she receives through different GRANT commands). Finally, policies
can be deleted by invoking DBMS_RLS . DROP_POLICY, whereas DBMS_RLS . ENABLE_POLICY can be
used to temporarily enable a previously specified policy.

Note that there are two classes of users that by-pass VPD policies. The first is SYS users,
which are exempt by default by VPD policies. Additionally, it is also possible to authorize other

2.5. ORACLE VIRTUAL PRIVATE DATABASE 35

users to by-pass the checks of VPD policies, by granting them the EXEMPT ACCESS POLICY system
privilege.

A VPD policy function runs by default as if it had been declared with definer’s rights, that
is, it executes with the privileges of its owner, not of its current user. For better security, the Oracle
guide recommends not to declare it as invoker’s rights.

In conclusion, VPD provides a very powerful tool to specify access control policies without
the need for coding their logic into application programs outside the DMS and, up to now, it is
the only example of this type of advanced tools provided by commercial DMSs. However, because
of the expressive power and the flexibility it provides, it may be very difficult to verify whether or
not a particular user has the right to access a particular object in a particular state. Therefore, VPD
policies must be used by trading-off the complexity of the requirements one would like to enforce
and the possibility of easily determining the authorization state.

Moreover, VPD query rewriting may, in same cases, cause inconsistencies between what the
user requires and what the system returns [Rizvi et al., 2004], as the following example shows.

Example 2.17 Consider again the policy authorizing each customer to see only his/her rentals.
Suppose that a customer, say Ann, issues the following query to know how many videos have been
rented in the video library:

SELECT COUNT(*) FROM Rentals;
Because of the VPD policy defined over Rentals the query is rewritten as follows:
SELECT COUNT(*) FROM Rentals WHERE customer = ’Ann’;

giving Ann the impression that the numbers of rented videos is equal to the number of videos she
rent. Moreover, suppose that Ann issues a query to find all the customers who have rented more
videos than her. Because of the VPD policy, the query does not return any tuple.

VPD query rewriting belongs to the class of models, referred to as Truman models [Rizvi et al.,
2004]. In a Truman model, each user has a personal and restricted view of the database (in Oracle
VPD, the view is determined by the evaluation of the defined policy functions). User queries are then
modified transparently to avoid that the user accesses anything outside his/her view of the database.
However, as shown by Example 2.17, this may result in misleading query answers, in some cases. An
alternative approach is the non-Truman model [Rizvi et al., 2004]. Under the non-Truman model,
a query undergoes a validity test, and only if the validity test succeeds it is executed, it is rejected,
otherwise. If the query passes the test, than it is executed without modification. The problem is how
to define the validity of a query and how to test for it. The risk is that a lot of queries are not executed
because they do not pass the validity test.

37

CHAPTER 3

Discretionary Access Control for

Advanced Data Models

In Chapter 2, we surveyed discretionary access control models developed for relational data man-
agement systems. New developments in the field of Discretionary Access Control (DAC) have been
determined by the evolution in the data models adopted by data management systems. In this chap-
ter, we discuss the access control models proposed for the object and the XML data models. These
data models are semantically richer than the relational one, and therefore their protection requires
an extension to the models proposed for relational data.

3.1 ACCESS CONTROL FOR OBJECT DMSs

Access control models developed for relational DMSs should be redesigned when dealing with
object-oriented and, recently, object-relational DMSs (in what follows, we will refer to both kind
of systems as object data management systems—QODMSs for short) because of the deep differences
in the underlying data model. The main difference between the relational model and the object one
is that relations are a flat structure, whereas classes in the object data model may be hierarchically
organized. Moreover, the object model is characterized by semantic modeling concepts such as those
of composite objects and versions that are not present in the relational data model. Such modeling
concepts need to be taken into account when developing an access control model. For instance,
the semantic relationships existing in the object model can be exploited to establish relationships
between the authorizations given on semantically related objects. The other key difference between
the object model and the relational one is that an object, besides being a data container, can have
methods associated with it. Therefore, method invocation and their accesses to the managed data
should be properly regulated.

The most comprehensive access control model developed for ODMSs is the one developed
for the Orion DMS [Rabitti et al., 1991]. The Orion access control model offers a variety of features,
such as the support for positive and negative authorizations, as well as weak and strong authorizations
(cfr. Section 2.4.1). Authorizations are granted to roles instead of to single users. Roles form a rooted
directed acyclic graph called role lattice. Roles, objects, and privileges are organized into hierarchies to
which a set of propagation rules apply. Propagation rules along the role hierarchy allow the derivation
of implicit authorizations, according to the following criteria: 1) if a role has an authorization to
access an object, all the roles preceding it in the role hierarchy have the same authorization; 2) if a
role has a negative authorization to access an object, all the roles that follow it in the role hierarchy

38 3. DISCRETIONARY ACCESS CONTROL FOR ADVANCED DATA MODELS

have the same negative authorization. Similar propagation rules are defined for privileges. Finally,
propagation rules on objects allow authorizations on an object to be derived from the authorizations
on objects semantically related to it. For example, the authorization to read a class implies the
authorization to read all its instances. A consistency condition is defined on propagation rules,
which requires that, given a weak or strong authorization, the application of the propagation rules
supported by the model to the authorization does not generate conflicting authorizations. Further
extensions to the Orion access control model have been proposed by Bertino and Weigand [1994],
such as, the definition of new authorization types and the revisiting of some propagation rules. The
model has been further extended by Bertino et al. [2000b] along different directions: the support for
both roles and groups with a clear functional distinction between them, the possibility of granting
authorizations to single user and not only to roles; the support for user-defined derivation rules
to derive implicit authorizations not only along the role, object, and privilege hierarchies, like in
the Orion access control model. Another difference is related to the concept of strong and weak
authorizations. In the Orion model, strong authorizations cannot be overridden. This implies that
the insertion of a strong authorization is rejected by the system if it conflicts with an existing strong
authorization. This clearly prevents strong authorizations to be granted through derivation rules. To
allow strong authorizations to be derived through derivation rules, an approach has been proposed
that allows strong authorizations to be overridden by other positive or negative strong authorizations.

Another relevant proposal is the access control model developed for Iris [Ahad et al., 1992].
The distinguishing feature of this model with respect to the Orion access control model is that it
considers methods as authorization objects. More precisely, in Iris both attributes and methods are
represented as functions. Therefore, the only privilege supported by the model is the call privilege,
that authorizes a subject to call a function. The call privilege can be granted or revoked both on a
per-group and on a per-user basis. A user can belong to several groups and groups can be nested.
Similar to the System R access control model, the creator of a function is the owner of the function
and automatically receives the call privilege on it as well as the authorization to grant other subjects
the call privilege on the function. Call privileges can be granted with the grant option, therefore
making the user receiving the privilege able to grant others the received call privilege.

Functions can also be defined in terms of other functions. In such a case, they are called de-
rived functions. The protection of derived functions can be managed under two different approaches.
Under the first, called szatic authorization, the subject requesting the execution of a derived function
must have the call privilege only on the derived function. The second mode, called dynamic autho-
rization, is more restrictive since it requires that the caller must have the call privilege both on the
derived function and on all the functions that are executed by the derived function. The protection
mode is specified by the creator of the derived function. To provide a better control over a function
invocation, the Iris access control model provides two novel constructs: guard and proxy functions.
Guard functions allow one to express preconditions on the call of a function and are therefore used
to restrict the access to a given function and to enforce content-based access control. The function
to which a guard function refers to is called the target function. A target function is executed only if

3.2. ACCESS CONTROL FORXML DATA 39

the corresponding guard function is evaluated successfully. Conditions are imposed to guarantee that
the evaluation of guards will terminate. The main advantage of guard functions is that they restrict
the access to a function without requiring changes to the function code. Proxy functions provide
different implementations of a specific function for different subjects (or groups of subjects). When
a function is invoked, the appropriate proxy function is executed instead of the original one.

We are not aware of access control models specifically developed for object-relational data
management systems, however some of the ideas developed for object-oriented data management
systems can be applied to the object-relational model as well. For instance, object-relational data
management systems provide methods associated with user-defined types. Methods are therefore
objects to be protected, like in an object-oriented data management system.

3.2 ACCESS CONTROL FOR XML DATA

XML [Bray et al., 2004] is the standard today for modeling and transmitting data on the Web and
one of the key technologies of the Semantic Web.

The most important characteristic of XIML, that distinguishes it from other markup languages,
such as HTML, is the notion of semantic tags, allowing one to structure a document into different
portions, called elements, with an associated semantics. An element may also contain attributes,
whose purpose is to provide additional information on the element. XML documents may have a
nested or hierarchical structure, since elements can be organized into sub-elements; they may be
inter-linked, through IDREFs/URI attributes; they may have an associated DTD/XMLSchema,
specifying their structures. A DTD/XMLSchema is a concept closely related to that of relation
schema or class, in that it is used to intensionally describe the structure of a set of XML documents.
However, unlike relational data, XML documents are not always instances of a DTD/XMLSchema.
The term valid XML document is used to denote those XML documents which are instances of
some DTD/XMLSchema.

Because of the relevance of XML, a lot of effort has been spent in addressing its security. A
set of W3C standards have been defined, such as XML Encryption and XML Signaturel. As far as
access control is concerned, the most relevant standardization effort is the OASIS standard language
XACML (eXtensible Access Control Markup Language) [Moses, 2005]. The XACML specification
has a twofold goal: 7) it describes the vocabulary and syntax of the language for expressing access
control policies, and 2) it states the framework to support the access control decision process, based
on such a language.

Additionally, a lot of research work has been done towards the development of access con-
trol models and mechanisms for XML data. In what follows, we first discuss the main protection
requirements of XML data, then we review the literature. Finally, we survey some of the strategies
that have been proposed to speed-up access control.

1http://www.wB.org/.

40 3. DISCRETIONARY ACCESS CONTROL FOR ADVANCED DATA MODELS
3.2.1 ACCESS CONTROL REQUIREMENTS

XML documents can be represented as graphs, as shown in Figure 3.1. In the graph representation,
white nodes represent elements, whereas gray nodes represent attributes. A node representing an at-
tribute contains its associated value. The graph contains edges representing the element-to-attribute
and the element-to-subelement relationships. Edges are labeled with the tag of the destination node
(i-e., an element or an attribute) and are represented by solid lines.

As far as access control is concerned, first of all, the nested interlinked structure of XML data
calls for a flexible specification of protection objects. Access control should be fine grained in that
protection objects can be selected elements/attributes/links within a document (e.g., the attribute
salary of the employee element). Additionally, access control policies can also be specified for whole
documents, when all their portions have the same protection requirements. Furthermore, data may
have an associated intensional description of their structure (i.e., DTD/XMULSchema) and this
intensional description should be exploited for policy specification. For example, it must be possible
to specify access control policies at the DTD/XMLSchema level, which apply to all valid documents
conforming to that DTD/XMULSchema. Moreover, the access control model should also be able to
manage documents not conforming to any DTD/XMLSchema.

Department_monthly_report

10/1/2010

name balgnce name alance

hardware 10K software 5k

Figure 3.1: An example of XML document.

3.2. ACCESS CONTROL FORXML DATA 41

Besides the variety of granularity levels, a further requirement is the support for content-
dependent access control. This is particularly relevant for XML data where elements may contain
unstructured text of various length (element data content).

Example 3.1 With reference to the XML document in Figure 3.1, secretaries, managers and
accountants working in the R&D department can be entitled to see the information contained in
the monthly report of their department, whereas secretaries working in different departments can
be entitled to see all the information in the report apart from balance sheet variations. Additionally,
the company managing director can be authorized to see the monthly reports of all the company
departments (this last requirement can be modeled through a policy specified at the DTD level,
which applies to all the monthly report files).

A further requirement derives from the heterogeneous user population accessing the Web.
In this context, conventional identity-based access control scheme, where the authorizations a user
holds are determined on the basis of his/her id are no more appropriate, in that they can result in a
huge number of authorizations to be managed. Moreover, access control decisions are usually based
on a set of properties of the user that goes beyond his/her identity. In this context, credential-based
access control is more appropriate [Biskup and Wortmann, 2004]. A credential (or profile) contains
a set of characteristics of a user, which are considered relevant for access control purposes (e.g., age,
nationality, membership to some associations). Access control policies may then be specified on the
basis of credential properties.

Another important requirement is the support for different dissemination modes for the
managed data. Indeed, in the Web, it is worthwhile to be able to support at least two dissemination
modes: pull and push. According to a pull dissemination mode, data reside at one or more servers
and the subjects ask them when needed, by issuing proper access request(s). This is the dissemination
mode usually adopted by commercial DMSs. However, besides the traditional pull mode, also a push
dissemination mode can be successfully adopted. Such mode is suitable for documents that must be
released to a large community of subjects which show a regular behavior with respect to their release
(e.g., they must be periodically distributed or when some pre-defined events happen). According to
a push mode, a data management system periodically broadcasts (portions of) its XML documents
to authorized subjects, without the need of an explicit access request by a subject.

3.2.2 ACCESS CONTROL MODELS

To protect XIMIL data it is possible to borrow some ideas from the access control models developed
in the context of object data management systems (see Section 3.1). For instance, the support for
policy propagation from DTD/XMLSchema to their instances, as well as the exploitation of se-
mantic relationships among different portions of an XML document (e.g., element-to-subelements,
element-to-attributes) as a further means to propagate authorizations and simplify their manage-
ment.

42 3. DISCRETIONARY ACCESS CONTROL FOR ADVANCED DATA MODELS

Paseq-1x2)u0d Paseq-1X2)u0d - - - SJurensuo))
suonoe aoxd
2ouapadard saxyey 2ouapadard 2ouapadard 2ouapadard
Surgiou soye} furorrd uo SoYe} soye} uonN[osax
- uorssturzad /[eruop [eruop paseq Teruop oyyads 3souw PIguo)
1j0s/pIey
uSrs uo uSrs uo uSts uo “urs uo uSisuo | juowaSeurw
- paseq paseq paseq paseq paseq uondoadxyy
umop bmmm mu-.u:om bnaw wuﬁaom QATSINDAT tu:mxu
- pue dn YITYM 0} YIIYM 0} pue [ed0] pue yordur uvonededorg
$2013qNS 0} $2211qNS 01
9399p 3eO1d 9399 3eO1d Suroyine
pear 2)1Im ‘peax o1epdn ‘peax prar pear pue Sursmoiq sapoux
$5200y
- sak sak - saf sak JouoisuszuL
saf sof saf saf sof saf JU27U0)
mme:o-.uﬁB
/edX Aq yedx 4q yedx 4q edx 4q pegx 4q yedx 4q
paymads paymads paymads paymads paymads paymads
2)nquIe pue anquie pue anquie pue 2InquIe pue anqLIe pue anque pue Apavpnuvid
Juowape Aue Judwad Aue Juowad Aue Judwapd Aue Judwad Aue Juowad Aue
+2ads [qO
sdnox3
sajo1 sa[01 sdnoi8 pue sdnoig ‘uonedof [qs S[ENUIPIId
SpI 1osn SpT 198N 9101 pue spr 1osn spr [qs (qs *2ads [qg

[900z “* 32 vzuey] | [000T “®PPH put opny]

_ [900¢ “Te 30 vaean]A]

[[cooz ‘ounig pue uonqen]

_ [2007 “Te 30 TueIUIR(] _

[9100¢ “Te 30 ounag]

lep "TINX 10J s[opowx %HNQOCDHU&@ Jo CwaNQEOO HNY O—Q.G'HL

juswaxnmbay

3.2. ACCESS CONTROL FOR XML DATA 43

Discretionary access control mechanisms for XML data have been proposed by many
researchers and some of them are described in what follows. Nearly all of them use
XPath [Melton and Buxton, 2006] to denote protection objects, since through XPath it is pos-
sible to provide support for fine-grained and content-based access control. Then, they mainly differ
with respect to the requirements they are able to express, how authorization propagation and con-
flicts are managed, how authorization subjects are specified, and how access control is enforced.
Table 3.1 provides a comparative analysis of the presented models. In what follows, we review them
by classifying the proposals according to the way they enforce access control.

3.2.2.1 Query Rewriting

In the majority of the access control models for XIML data, access control enforcement is based on
query rewriting with the aim of pruning from the node set resulting from query evaluation those nodes
that a subject is not authorized to access according to the specified access control policies. Models
adopting this strategy are also referred to as Truman models (cfr. Section 2.5). Query rewriting is for
instance exploited by the model proposed by Damiani et al. [2002] that allows the specification of
policies based both on subject identity (i.e., ids), and subject location (i.e., IP addresses), as well as for
groups, that are either sets of users, or location patternsidentifying a set of physical locations. As many
other access control models for XML data, the model is quite rich in the types of authorizations that
can be specified, in that it provides support for positive and negative authorizations and for soft and
hard authorizations. As far as authorization propagation is concerned, different options are possible.
Authorizations can be either local or recursive. A local authorization on a document element applies
to all the element attributes, but it does not propagate to the sub-elements, whereas this propagation
is enacted by recursive authorizations. In contrast, soft authorizations apply to a document, unless
an authorization has been specified at the DTD level, whereas hard authorizations are specified at
the DTD level and apply to all the DTD instances, with no exceptions.

Another proposal exploiting query rewriting to enforce access control is the model
by Gabillon and Bruno [2002] that makes use of XPath to denote the protection objects to which a
policy applies. Subject specification can be either in terms of user ids or groups. Policies can be either
positive or negative. Explicit propagation is supported, in that if a subject is allowed (or denied) to
access a document node n, he/she is automatically allowed (or denied) to access also the sub-tree
rooted at n. Access control policies could have an optional priority component, which states the
importance of the policy in evaluating an access request and therefore is used for conflict resolution
between positive and negative authorizations.

The distinguishing feature of the model proposed by Kudo and Hada [2000] is the support
for provisional access control. An access request is authorized provided that the requesting subject
(and/or the system) performs certain security actions. An example of provisional authorization
is: “You are allowed to read sensitive data, but you must sign a terms and conditions statement
first" [Kudo and Hada, 2000]. Subjects can be either users or roles. Additionally, the model supports
the notion of context, allowing data such as the time and location of the access request to be used

44 3. DISCRETIONARY ACCESS CONTROL FOR ADVANCED DATA MODELS

in policy specification. The model supports a variety of conflict resolution policies (i.e., denials take
precedence, permissions take precedence, and nothing takes precedence) and propagation policies
(propagation up and down in the document hierarchy) to be selected when a policy is specified (see
Table 3.1).

The most comprehensive solution in the framework of discretionary models for protect-
ing XML documents up to now is the one developed in the framework of the Author-X sys-
tem [Bertino and Ferrari, 2002; Bertino et al., 2001b]. Author-&’ is a Java-based system enforcing
credential-based discretionary access control on XML documents. Author-X" takes into account
XML document characteristics, the presence of DTDs/XMLSchemas intensionally describing the
structure of documents, and the types of actions that can be executed on XML documents (i.e.,
authoring and browsing). Authorizations can be either positive or negative. Conflicts are solved
according to the “most specific takes precedence” principle (cfr. Section 2.4.1). In particular, access
control policies defined for specific documents prevail over those defined for DTDs (because the
latter are considered less specific) and policies defined at a lower level in a document or DTD hi-
erarchy prevail over those defined at higher levels. The model supports both implicit and explicit
propagation of authorizations. Implicit propagation implies that an authorization specified for a
DTD/XMLSchema applies to all the instances, and an authorization specified for an element prop-
agates to all its attributes and links. Exceptions to implicit propagation can be managed by specifying
explicit positive and negative authorizations. Additionally, a user may explicitly require the propa-
gation of authorizations from an element to all the direct/indirect sub-elements (CASCADE option),
or to the direct sub-elements only (FIRST_LEVEL option), or state that no propagation is enacted
(NO_PROP option).

Example 3.2 Figure 3.2 reports the Author-X" policies modeling the protection requirements
described in Example 3.1. In Author-X, credentials are expressed in XML and the policy subject
specification is an XPath expression on the XML files coding credentials. Note that the requirement
that secretaries not working in the R&D department are entitled to see all the information in the
report apart from balance sheet variations is modeled by means of two policies: a positive policy on
the Department_monthly_report element referring to the R&D department and a negative policy
on the balance_sheet element.

However, the distinguishing features of Author-AX" are not related to the policy specification
language, but rather to the various dissemination modes it provides and to the support for cooperative
distributed updates of XML documents. More precisely, Author-&" supports both the pull and
push dissemination modes. Pull distribution is based on query rewriting, whereas push distribution
is efficiently obtained through the use of encryption techniques: different portions of the same
XML document are encrypted with different encryption keys, on the basis of the specified access
control policies. Then, the same encrypted copy of the document is distributed to all subjects,
whereas each subject receives only the key(s) for the portion(s) he/she is enabled to access. To
limit the overhead implied by key management, Author-X" adopts a hierarchical key management

3.2. ACCESS CONTROL FOR XML DATA 45

<policy_base>

<policy_spec cred_expr="//manager [Department="R&D"]" target="Department_monthly_report.xml"
path="//Department_monthly_report [@Department="R&D"]" priv="VIEW" type="GRANT"
prop="CASCADE"/ >

<policy_spec cred_expr="//secretary[Department="R&D"]" target="Department_monthly_report.xml"
path="//Department_monthly_report [@Department="R&D"]" priv="VIEW" type="GRANT"
prop="CASCADE"/ >

<policy_spec cred_expr="//accountant [Department="R&D"]" target="Department_monthly_report.xml"
path="//Department_monthly_report [@Department="R&D"]" priv="VIEW" type="GRANT"
prop="CASCADE"/ >

<policy_spec cred_expr="//secretary[Department#"R&D"]" target="Department_monthly_report.xml"
path="//Department_monthly_report [@Department="R&D"]/balance_sheet" priv="VIEW" type="DENY"
prop="CASCADE"/ >

<policy_spec cred_expr="//secretary[Department#"R&D"]" target="Department_monthly_report.xml"
path="//Department_monthly_report.xml [@Department="R&D"]" priv="VIEW" type="GRANT"
prop="CASCADE"/ >

<policy_spec cred_expr="//company_managing_director" target="Department_monthly_report.dtd"
path="" priv="VIEW" type="GRANT" prop="CASCADE"/ >

</policy_base>

Figure 3.2: An example of Author-X" policy base.

scheme [Bertino et al., 2002] that requires the permanent storage of a number of keys linear in the
number of access control policies.

The other important service provided by Author-AX’ is the support for distributed cooperative
updates. This allows to totally or partially specify, at the beginning of the update process, the path
that the document must follow, that is, the subjects that should modify it and the order in which these
updates must take place. Then, through a combination of hash functions, digital signature techniques
and digital certificates [Mella et al., 2006] each subject receiving the document can: 7) update the
document portions he/she is authorized to modify; and 2) check the integrity of the document with
respect to the update operations performed so far, without interacting with the document server.

The push dissemination mode for XML documents is also addressed by Crampton [2004],
where the hierarchical structure of XML documents is exploited to form a hierarchy of permissions,
which are then grouped to form roles. Access control enforcement is based on the use of cryptographic
techniques, and each role basically corresponds to the keys associated with its permissions.

3.2.2.2 Static Analysis

According to this approach to access control enforcement, authorizations are not checked at run-
time, rather they are statically evaluated to decide the result of an access request. Among the proposals
in this direction, a static analysis approach based on automata, has been proposed by Murata et al.
[2006]. By means of an automata, it is possible to verify whether a query accesses only authorized
nodes with respect to the specified access control policies without accessing the XIML documents.
For those queries that are szatically indeterminate a further run-time check is needed. The most inno-
vative contribution of this approach is related to the proposed static analysis technique, whereas the
underlying access control model is quite standard and subsumed by the already discussed proposals.

46 3. DISCRETIONARY ACCESS CONTROL FOR ADVANCED DATA MODELS

Authorization subjects are either roles or groups, whereas protection objects are denoted through
XPath. Authorizations (positive and negative) can either propagate downward through the XML
document structure, or just apply on the nodes for which they are explicitly specified. Conflicts
among positive and negative authorizations are solved in favor of the negative ones.

A non-Truman model for XML data access control has been proposed by Kanza et al. [2006],
where a query that violates the specified access control policies is rejected, rather than modified. Query
that can be safely answered are called wa/id queries. In this model access control rules are specified
through XPath. These rules specify relationships between elements that should be concealed from
users. This means that the model is able to protect not only elements but also edges and paths in the
XML graph. Different from the other models illustrated so far, authorization rules specify denials,
that is, what relationships should be concealed, rather than permissions. Access control rules may
be parameterized with context information, such as location, date, time, etc. Although Kanza et al.
[2006] did not give a precise definition of which kinds of subjects the model supports, the included
examples suggest that the model provides support for roles and users. Two notions of query validity
are given. The first is local validity, which requires that, given a document and a query, all relationships
protected by the specified access control rules are concealed in the query answer. For queries against
documents that conform to an XMLSchema, a stronger notion may be given, that is, global validity.
Given a set of access control rules and an XMLSchema, a query is globally valid for the set of rules
and the schema if it is locally valid for the rules and each document that conforms to the schema.

3.2.3 EFFICIENCY OF ACCESS CONTROL

Other relevant work in the field of XIVIL access control focus on the efficiency of access control en-
forcement. Indeed, the fine-grained access control provided by most access control models for XIMIL
data, possibly combined with credential-based access control and the huge population accessing the
Web, may result in a great overhead for access control, due to the large number of authorizations that
must be checked. Therefore, whichever access control model is adopted, it must be equipped with
suitable strategies for speeding-up access control. The approaches proposed so far for this purpose
may be roughly classified into three groups:

* View materialization. The idea of this approach is to define a view for each subject (or subject
group), containing all and only the accessible document portions. This approach is, for instance,
explored by Fan et al. [2004], where a different view (called security view) is defined for each
subject group, which consists of all and only the information accessible to the group according
to the specified access control policies. An algorithm is then given to rewrite XPath queries in
terms of security views. The main drawback of view-based approaches is the huge number of
views that could be potentially generated and maintained.

* Query pre-processing. The idea of this approach is to pre-process the subject query to stat-
ically determine whether or not it accesses unauthorized document portions. For instance,
an approach based on a non-deterministic finite automata has been proposed by Luo et al.

3.2. ACCESS CONTROL FOR XML DATA 47

[2004] for checking a user query against access control policies, and defining a new query in
such a way that it will return only authorized portions. Another pre-processing approach is
the one proposed by Murata et al. [2006], where, by performing a static analysis of the access
control policies, the query, and the target XIMLSchema, it is possible to classify queries as
either authorized or prohibited.

Auxiliary data structures. According to this approach, ad-hoc data structures are defined
to speed up access control enforcement. For instance, Yu et al. [2004] defined a compressed
accessibility map (CAM) making it easier to determine the XML data item to which a subject
has access. An accessibility map is built directly on the XML document for each different
subject and access mode, by marking each node with information stating whether or not it is
accessible by the subject. A method to reduce the storage space needed for the accessibility
map is also defined, which considers the propagation according to which a policy applying to
a node is inherited by its children nodes. Qi and Kudo [2005] proposed a tree data structure,
called Policy Matching Tree (PMT), that traces each access control policy applied on an
XML source. The tree is built by analyzing each access control policy and by inserting a non-
leaf node for each test imposed by the object specification of the considered access control
policy. The access control policies that match a subject query are all those identified by the
paths connecting the root node to a leaf node. The main drawback of this approach is the
possible high complexity of the PMT structure when access control policies with complex
path expressions are specified. An XIML-based structure, called AC-XML document, has
been proposed by Carminati and Ferrari [2005]. AC-XML documents are associated with
the DTDs/XMLSchemas belonging to the data source being protected, and they keep track
of the policies applicable to each portion of the instances of the schema to which they refer
to. AC-XML documents are built during a start-up phase of the access control procedure,
which incrementally binds policies with protected objects each time a new access request is
submitted.

49

CHAPTER 4

Mandatory Access Control

One of the main advantages of discretionary access control is its flexibility in terms of the access con-
trol requirements it can support. Indeed, by properly configuring the authorization state a variety of
different confidentiality/integrity requirements can be modeled. This is why DAC has been adopted
by most commercial DMSs and supported by the SQL standard. However, the main drawback of
DAC is that it does not provide control on the information flow within the system. Indeed, once an
authorized subject has gained access to an object, it can pass the information it contains to an unau-
thorized subject (for instance, by writing such information into another object), without bypassing
the checks performed by the reference monitor. This makes DAC vulnerable to malicious attacks,
such as Trojan Horses embedded in application programs. A Trojan Horse is a malware that appears
to perform or actually performs a useful function for the user but, in addition, makes unauthorized
accesses to the protected objects possible. The following is an example of a Trojan Horse.

Example 4.1 Suppose that Ann and Paul are both employees of the video library and that Ann
is Paul’s manager. Moreover, suppose that, according to the access control policies in place in the
video library, Ann is authorized to read and modify the content of all the relations in the database,
as well as to grant other users access authorizations on them, whereas Paul is not allowed to see
the name of the movies rented by the customers of the video library. Now suppose that Paul gives
Ann a program for calendar management in which he has maliciously inserted some lines of codes
(that is, the Trojan Horse) to get access to the names of the movies rented by the customers of the
video library. More precisely, the Trojan Horse performs the following operations (see Figure 4.1):
(1) it creates a new relation CustomerMovies that stores, for each customer, the name of the movies
he/she has rented; (77) it grants Paul the select privilege on the newly created relation. When
Ann executes the program, the reference monitor checks the access/granting requests made by the
program against Ann’s authorizations. As a result, Paul, without bypassing the reference monitor,
can access information he is not authorized to see by the stated access control policies.

Some of the drawbacks of DAC in terms of unauthorized information flow are overcome by
Mandatory Access Control (MAC), whose early implementations mainly focused on the protection
of military-oriented environments. According to MAC, authorizations are not explicitly specified.
Rather, authorized accesses are derived from the security classification given to subjects and objects,
on the basis of a set of rules that specify which relation should hold between a subject and object
classification, because the first can gain access to the second. In the next sections, we first review
the Bell and LaPadula model which represents the root of MAC. Then, in Sections 4.2 and 4.3, we

50 4. MANDATORY ACCESS CONTROL

CREATE TABLE CustomerMovies(
customer DECIMAL(10),
title VARCHAR(30),
PRIMARY KEY (customer,title));

INSERT INTO CustomerMovies

SELECT customer, title
/ FROM Rentals NATURAL JOIN Videos NATURAL JOIN Movies;
'GRANT select ON CustomerMovies TO Paul;

A//.

(Ann,all,Movies)

(Ann,all,Videos)

AW

CustomerMovies

(Ann,all,Rentals)
Movies

Information flow

. Videos 1 2

(Paul,select, CustomerMovies)

Figure 4.1: An example of Trojan Horse.

discuss how MAC can be applied to the relational and object data models, respectively. In Section
4.4, we discuss some of the hard problems to be solved in real-world MAC applications. Finally, in
Section 4.5 we present some proposals aimed at combining DAC and MAC.

4.1 BELLAND LAPADULA MODEL

Many of the mandatory access control models proposed so far have been designed based on the Bell
and LaPadula (BPL) model [Bell and LaPadula, 1975], specified for operating systems. In the BPL
model subjects are either users or processes. The privileges supported by the model are: read, that
allows a subject to read the information in an object; append, to modify an object; write, to both
read and modify an object; and execute, to execute an object (e.g., an application program). In what
follows, we consider only the read, write, and append privileges since they are those strictly related
to data management. Additionally, for the sake of simplicity, some of the details of the model are
omitted. In the BPL model, subjects and objects are assigned an access class. An access class consists
of two components: a security level and a set of categories. The security level is an element from a totally
ordered set, for instance: Top Secret (TS), Secret (S), Confidential (C), and Unclassified
(U), where TS > S > C > U. The set of categories is a possibly empty set of elements, dependent
from the application area in which the access control model is used. For instance, if we consider
the military domain, examples of categories are: Army, Navy, Air Force, and Nuclear, whereas
if we consider a commercial domain, examples of categories are: Management, Sales, and R&D.
For instance, a file containing confidential management information can be assigned the following

4.1. BELL AND LAPADULA MODEL 51

access class: (Confidential, {Management}), whereas an air marshal can be classified as (Top
Secret,{Air Force,Nuclear}). Therefore, categories provide a fine grained classification of
subjects and objects based on the domain they belong to, as such they are the basis to enforce the
need to know principle (cfr. Chapter 1).

Because of their definition, access classes are a partially ordered set, defined by a dominance
relationship >, formally defined as follows.

Definition4.2 (Dominance relationship) An access class acy = (L1, Caty) dominates an access
class acy = (L2, Carty), denoted as acy > acy, if both of the following conditions hold: (i) the
security level of acy is greater than or equal to the security level of acs, that is, L1 > Lo; (ii) the set
of categories of acy includes the set of categories of acy, thatis, Cat; 2 Caty.

If Ly > Ly and Caty D Caty, we say that acy strictly dominates acy (written acy > acs).
Finally, acy and ac; are incomparable (written acy <> acy), if neither acy > acy nor acy > acy
hold.

Access classes and the dominance relationship defined as above form a lattice [Sandhu, 1993].

Example 4.3 Consider the following access classes:

ac] = (TS, {Nuclear,Navy})
acy = (TS,{Nuclear})
ac3 = (C,{Navy})

ac] > acy, since both acy and acy have the same security level, but the set of categories of acy
includes those of acy; acy > acs, since TS > C and {Navy} is a proper subset of {Nuclear,Navy}.
Finally,acy <> acs3;indeed, acy # acs, since {Nuclear}2 {Navy} and ac3 ¥ acp, since TS > C.

The state of the system is described by the pair (A, £)!, where:

* A is the set of current accesses, that is, the accesses currently under execution in the system; A is
a set of triples (s, 0, p), stating that subject s is exercising privilege p on object 0.

* L is the Jevel function that associates with each object and subject its access class. Formally,

L:0US — AC,where O and S denote the set of objects and subjects in the system, respec-
tively, and AC is the set of access classes.

Each update to the state of the system is performed through a reguest. Examples of requests
are the request to access a given object, or the request to modify the access class of an object. The
system answer is called decision. If a request is executed, this causes a transition of the system from
one state to another (that is, the one resulting from the action required by the request). Given a
n the original formulation of the BPL model, the state of the system is described by two more components, namely, the access

matrix and the object hierarchy. For simplicity, we omit here these two components since they do not impact the following
discussion.

52 4. MANDATORY ACCESS CONTROL

request and the current state, the decision and the new state are determined on the basis of a set
of axioms. These axioms define the conditions that should be satisfied to accept the request and
therefore to perform a transition state. The system is secure if only the requests that verify the axioms
are executed.

In what follows, we focus on access control requests. Access control requests are regulated by

two axioms?:

Simple security property. A state (A, L) satisfies the simple security property if, for each element
(s, 0, p) € A such that p=read or p=write: L(s) > L(0).

The main goal of the simple security property is to prevent subjects from reading data with
access classes dominating or incomparable with respect to their access class. It therefore ensures
that subjects can read only information for which they have the necessary access class. The simple
security property is also known as the 7o read-up property in that it avoids illegal flows of information
originated by read operations on higher level objects.

Example4.4 According to the simple security property, a subject with access class (C, {Navy}) is
not allowed to read objects with access class: (C,{Navy,Air Force}) or (U,{Air Force}).In
contrast, the subject can read objects with access class (U, {Navy}).

However, the simple security property is not enough to protect the system against any unau-
thorized flow of information, in particular those flows enacted by write operations. For instance,
a subject with access class (TS, J) might read an object with access class (TS,) and write the
obtained information into an object with access class (U, ¥), without violating the simple security
property. This would make Top Secret information available to Unclassified subjects. To avoid this,
a further axiom has been added, specifically designed to regulate write operations.

x property (read star property). A state (A, L) satisfies the * property if, for each element (s, 0, p)
€ A such that p=append or p=write: L(s) < L(0).

The * property, known also as the 7o write-down property, has been designed to prevent
unauthorized flows of information due to write operations on lower or incomparable objects.

Example4.5 According to the * property, a subject with access class (C,{Army,Nuclear}) is not
allowed to write on objects with access class (U, {Army,Nuclearl}), since these objects are accessible
to subjects that, according to their classification, are not allowed to read information classified as
(C,{Army,Nuclear}).

However, the applications of the two properties above may result in too rigid restrictions that
may prevent common activities in the system, as the following example shows.

Example4.6 Consider once again the military domain and suppose that (TS, {Army, Nuclearl})
is the access class associated with a general, say Matt, whereas one of his colonels has access class

21n what follows, the terms axiom and property are used synonymously.

4.1. BELL AND LAPADULA MODEL 53

(C,{Army}). According to the BPL axioms, the colonel can communicate with the general, since
he can exercise the append privilege on objects with higher access classes. In contrast, Matt cannot
communicate with his/her colonel since the * property prevents write operations on lower level
objects.

To avoid situations like the one discussed in Example 4.6, users can connect to the system at
any access class lower then the one assigned to them. When a user connects to the system with a
certain access class, he/she is considered by the system as a subject with an access class equal to the
one the user has selected to connect to the system. So, for instance, to be able to communicate with
his colonel, the general in Example 4.6 can connect to the system with access class (C,{Army}).

As far as access control is concerned, a system is secure if, for each element added to the set of
current accesses, both the simple security and the * property are satisfied.

Example 4.7 Consider Example 4.1 and let us see how the Trojan Horse can be avoided by the
BPL model. For simplicity, we consider access classes consisting only of the security level component.
A possible classification that reflects the sensitivity of the managed information and the clearance
of the involved users is as follows: Secret for Ann and relation Rentals, storing information on
the movies rented by the customers of the video library, and Unclassified for Paul and relation
CustomerMovies. When Ann runs the application she receives from Paul, the authorized accesses
depend on the access class she chooses for the connection. If she connects at the Confidential/Secret
level, the write operation on CustomerMovies is prevented by the s property, whereas if she connects
at the Unclassified level the read operation on Rentals is prevented, because of the simple security
property. In both cases, the unauthorized transfer of information to Paul described in Example 4.1
does not take place.

A side effect of the * property is that an Unclassified user may append information into a
Secret file and this may cause integrity problems. To avoid this situation, when BPL axioms are
applied to DMSs, write up operations are usually prevented. This means that subjects can only
modify objects who have access class the same as the one of the subject.

It is important to note that the definition of secure system given above does not totally
guarantee the security of the system, as shown by McLean [1990]. For instance, consider a system
with the following access control policy: whenever a subject s requests any type of access on an
object o, the access class of each object/subject is set to the lowest one and the access is granted. A
system enforcing this policy satisfies the BLP definition of secure system. However, it is obviously
not secure in that after the first access, everybody can access everything. The reason for this is that
the BLP model offers strong security guarantees only when subject and object access classes do
not change during normal operation of the system (this property is also known as strong tranquility
principle). If this principle is not enforced, the security of the system depends on how the access
classes of subjects and objects can be modified. However, the strong tranquility principle is too strict
to be widely applied in real world scenarios, since it requires that subjects and objects are statically

54 4. MANDATORY ACCESS CONTROL

assigned to their access classes. Indeed, it may often be the case that subjects and objects should
be dynamically assigned to different access classes on the basis of the system evolution. For this
purpose, alternative less restrictive principles have been defined that allow the modification of access
classes under specific conditions. Moreover, to allow for more flexibility, the notion of #rusted subject is
introduced, as a subject to which some of the restrictions of MAC does not apply. This, for instance,
is supported by Oracle Label Security [Oracle Corporation, 2009], the component of Oracle DMS

providing mandatory access control.

4.2 MULTILEVEL RELATIONAL DATA MODEL

The original formulation of the BPL model has been designed for protecting objects in an operating
system environment. In such an environment, objects are mainly files. The first issue to be dealt
with when applying MAC to DMSs is that objects to be protected are at a variety of granularity
levels. If we consider the relational data model, an object can be a whole relation, but also a selected
tuple within a relation, an attribute, or the value of an attribute for a specific tuple (data element).
This means that an access class can be in principle assigned to all these objects. For instance, if
we consider the Rentals relation of our running example, the rental of different movies may have
different sensitivity levels and this may result in different access classes assigned to the tuples of the
Rentals relation, or to selected attributes of a tuple (e.g., the title of the movie).

A maultilevel relational DMS should therefore represent multiple versions of the same entity,
action, or event at different security levels®, without violating the integrity of the database or the
access control rules. The finer the granularity of security levels, the more difficult it is to achieve this
goal. Addressing this issue requires extensions to the relational model itself and to some of its basic
concepts, such as, for instance, the notion of primary key. This has been achieved by defining the
so-called multilevel relational data model, characterized by the fact that each attribute of a relation
has an associated security level.

The key mechanism to represent multiple versions of an entity at different security levels
is called polyinstantiation, a term firstly used in the framework of the SeaView project [Lunt et al.,
1990]. Polyinstantiation enables two tuples with the same primary key to exist in a relational database
at different security levels. However, having two tuples with the same primary key violates the
integrity property of the standard relational data model. In contrast, if polyinstantiation is not
supported, then it is possible for signaling channels to occur.

To understand the problem, let us consider the Emp multilevel relation in Figure 4.2, where
a security level is attached to each data element, and attribute name is the key. For simplicity, we
consider only two security levels: U (Unclassified) and S (Secret). Different subjects have different
views of the relation in Figure 4.2, depending on their security classification. For instance, Figure
4.3 reports the view of the relation in Figure 4.2 for an Unclassified subject.

The first obvious constraint that should hold to not violate the integrity constraints implied by
primary keys is that: 7) all the attributes forming a primary key should have the same classification;

31n what follows, for simplicity, we consider access classes consisting only of security levels.

4.2. MULTILEVEL RELATIONAL DATA MODEL 55

name L age L salary L
Leo U 28 U b5OK U
Ann U 35 S 100K U
Marc S 40 S 95K S
Figure 4.2: An example of multilevel relation.
name L age L salary L
Leo U 28 U bOK U
Ann Uu - U 100K U
Figure 4.3: The view of Emp for Unclassified subjects.
name L age L salary L
Leo U 28 U bOK U
Ann U 35 S 100K U
Marc S 40 S 95K S
Marc U 40 U 100K U

Figure 4.4: An example of polyinstantiated relation.

and 2) the classification of non-key attributes should dominate the one of key attributes, otherwise
the view at some level may contain a null value for key attributes.

Now suppose that an Unclassified subject requests the insertion of the tuple (Marc,40,100)
into the Emp relation of Figure 4.2. If the tuple is accepted, then it violates the primary key constraint,
since a tuple already exists in the relation whose attribute name is equal to Marc. In contrast, if the
tuple is rejected due to an integrity violation, then the actions of a Secret subject have interfered
with those of an Unclassified one, and this causes a secrecy violation since the Unclassified subject
would know the existence of an higher tuple referring to Marc. Finally, if the Unclassified tuple
overwrites the Secret one, this is in principle acceptable from a pure security point of view. However,
this solution may not be acceptable in many cases since Secret data would be lost. Polyinstantiation
allows the simultaneous presence of the two tuples, the resulting relation is shown in Figure 4.4.

A similar problem arises for update operations requested by Unclassified subjects. For instance,
with reference to Figure 4.2, an Unclassified subject may request to update Ann’s age. Refusing the
update operation compromises secrecy, whereas overriding the Secret value would compromise in-
tegrity. With aztribute polyinstantiation, two tuples may exist for Ann, with two different values for
attribute Age, with Secret and Unclassified level, respectively. Polystantiation may also be caused by
insertion/update operations performed by Secret subjects. For instance, consider again the Emp rela-
tion of Figure 4.2, and suppose that a Secret subject requires the insertion of the tuple (Leo,29,100).

56 4. MANDATORY ACCESS CONTROL

Overriding the existing tuple causes a covert channel, whereas denying the insertion would cause
a Denial-of-Service for the Secret user. Polyinstantiation allows the simultaneous presence of two
tuples referring to Leo, with different security levels.

Earlier work on multilevel relational DMSs consider polyinstantiation necessary to design
multilevel database systems with higher levels of assurance (see, for example, Denning et al. [1987]).
Some argue that it is important to maintain the integrity of the data and that polyinstantia-
tion violates the integrity (see, for example, Burns [1990]). Some have used partial polyinstanti-
ation together with security constraint enforcement (see, for example, Sandhu and Chen [1998];
Stachour and Thuraisingham [1990]) to preserve data integrity in the presence of polyinstantia-
tion. Others have attempted to give a precise semantics of the database states in the presence of
polyinstantiation. However, probably because of all the side-effects connected with polyinstantia-
tion, fine-grained multilevel relational DMSs did not have much success, and DMSs supporting
MAC restrict the granularity of access classes at the tuple level.

Difterently from DAC, MAC is not directly supported by SQL. However, since 1988, Multi-
level Secure relational DMS products have been developed (e.g., Sybase’s Secure SQL Server, Trusted
Oracle, Trusted Informix) but some of these products are not on the market anymore because of the
lack of success that confined them into a market niche. Furthermore, some of the corporations have
merged so the ownership of these products has also changed. However, recently, there is a renewed
interest in the basic principles underlying MAC [Saydjari, 2004], because of the strong security
guarantees required today by many non-military applications. This has resulted in a revitalization
of the market, see, for instance, Oracle Label Security [Oracle Corporation, 2009], or implementa-
tions such as SELinux (incorporated into Linux kernels since version 2.6) and Mandatory Integrity
Control (incorporated into Windows Vista and newer).

4.3 MANDATORY ACCESS CONTROL FOR OBJECT DMSS

The application of MAC to the object data model requires addressing a number of issues due to the
semantic richness of the object model and the fact that objects consist of both attributes and methods.
Additionally, the task is further complicated by the lack of a well-accepted standard for both the
object data model and the related query language [Olivier and von Solms, 1994]. Up until now the
research has focused on object-oriented DMSs only, whereas we are not aware of any proposal for
the object-relational data model.

Keefe et al. [1989] were the first to incorporate multilevel security in the object-oriented data
model. The resulting model is called SODA (Secure Object-oriented DAtabase). In SODA, both
objects or instance variables are assigned ranges of sensitivity levels, whereas subjects are assigned
clearance levels. A method activation is assigned a current classification level and a clearance level,
thatis the same as that of the associated user and serves as an upper bound on the current classification
level. Authorized operations are designed to enforce the BPL properties. For this purpose, a set of
rules determines whether a method should be permitted access to an object or variable, on the basis
of the method current sensitivity and clearance level, and the object’s or variable’s sensitivity level.

4.4. MACVSDAC 57

Method activations in SODA have their classifications dynamically upgraded whenever an
object or variable with a higher sensitivity is accessed. More details can be found in Keefe et al.
[1989].

Thuraisingham also investigated MAC in the framework of the ORION object-oriented data
model. The resulting model was called SORION [Thuraisingham, 1989]. In SORION, subjects and
objects are assigned security levels. Protection objects include classes, their instances, methods, and
instance variables. SORION defines a set of constraints that the protection object security levels
must satisfy. For instance, the security levels of the instances of a class must dominate the security
level of the class, whereas the security level of a subclass must dominate the security level of the
superclass. Other constraints are defined on the security levels of methods, for instance the one
that implies that the security level of a method must be greater than the least upper bound of the
security levels of the classes in its domain. SORION enforces the BPL axioms stated in Section 4.1.
Other rules have been added to deal with method execution. More precisely, in SORION, a subject
can execute a method if the subject’s security level dominates the security level of the method and
that of the class with which the method is associated. A method executes at the level of the subject
who initiated the execution; during the execution of a method mj, if another method m; has to be
executed, then my can execute only if the execution level of m| dominates the level of m; and of
the class with which m is associated. Reading and writing of objects during method execution are
governed by the BPL axioms.

A different approach has been introduced by Jajodia and Kogan [1990], who proposed en-
forcing MAC on the basis of a message-filtering algorithm. According to this model, objects can
communicate only by means of messages. Every message is intercepted by the message filter that
determines, on the basis of the message type and the classifications of the sender and receiver, if the
message will cause an illegal flow of information within the system. All more complex messages are
divided into a sequence of messages of the following four types: 1) read: a method that reads the
value of an attribute; 2) write: a method that modifies the value of an attribute; 3) invoke: a method
that invokes another method via the sending of a message; and 4) create: a method that creates a
new object. Different filtering rules are enforced depending on whether the messages are sent from
one object to another, or from an object to itself (for instance, for object creation).

44 MACVSDAC

Although mandatory policies provide stronger security guarantees than DAC, they are still vulnerable
to security threats originated by covers channels. A covert channel allows the transfer of information
that violates the security policy. Covert channels are usually classified into two broad categories:
storage and fiming channels, depending on what is exploited to transfer the information. In timing
channels the information is conveyed by the timings of events or processes, whereas storage chan-
nels do not require any temporal synchronization since they exploit access to system information.
Therefore, the development of a MLS/DMS requires not only the extension of the underlying data
model, but also the main components of the system architecture in order to close all the possible

58 4. MANDATORY ACCESS CONTROL

covert channels [U.S. Department of Defense, 1975]. For instance, a well-known covert channel in
multilevel DMSs is based on the exploitation of the two Phase Locking (2PL) concurrency control
protocol, as the following example shows.

Example 4.8 Consider a multilevel relational database storing information at two different security
levels: Unclassified (U) and Confidential (C), and suppose that accesses are governed by the BPL
axioms. Consider two transactions Ty and T¢ with security level Unclassified and Confidential,
respectively, and an Unclassified data item d;. Suppose now that T¢ requires a read lock on dj.
The lock is granted, because no other transaction has a lock on dj. Suppose now that transaction
Ty wishes to write d. Therefore, it requires a write lock on d. Since transaction 7¢ holds a read
lock on dj, transaction Ty has to wait until T¢ releases its lock. By selectively issuing requests to
read Unclassified data, transaction 7¢ can modulate the delay experienced by transaction Ty . Since,
Tc has full access to classified data, this delay can be used to transfer confidential information to
transaction Ty . Thus, a timing channel is established between the two transactions.

Moreover, other forms of covert channels can be established if system resources and/or system
information are not properly managed and protected. This happens, for instance, when an Unclas-
sified subject can access information on the resource usage made by Confidential subjects, or when
information on data locks are visible to Unclassified subjects.

The above examples have been provided only to demonstrate that MAC does not fully protect
against attacks through covert channels and therefore needs to be engineered in order to close all
covert channels. For instance, with reference to concurrency control, many alternative protocols
have been proposed. The majority of such proposals are based on the principle that transactions
cannot be delayed or aborted, because of a lock conflict with a higher level transaction. Therefore,
low-level transactions always have higher priority on low-level data than higher-level transactions.
The consequence is that even though a transaction may have acquired a read lock on a lower-level
data item, it may be forced to release this lock if a lower-level transaction requires a write lock on
it. Because of such priority, transaction execution histories may not be always serializable. Several
approaches have been proposed to address the issue of how to synchronize transactions so that timing
channels do not occur and at the same time serializability is achieved. However, they suffer from
several shortcomings, such as starvation of high-level transactions, that can be repeatedly aborted,
or they require multiple versions of data, or force high-level transactions to read stale data. To
overcome these limitations, Bertino et al. [2001c] proposed an approach based on the use of nested
transactions and single-version data items. The developed concurrency control mechanism, based
on application-level recovery and notification-based locking protocols, it is free of timing channels
and avoids many of the shortcomings of the previously developed concurrency control mechanisms,
such as transaction starvation and resource waste. However, although the problem of designing
concurrency control algorithms free of timing channels has been extensively investigated, most of
the research proposals have not been engineered into any commercial DMSs. The only exception is

represented by Trusted Oracle whose concurrency control mechanism was based on 2PL combined

4.5. INFORMATION-FLOW CONTROL MODELS 59

with multiversion techniques in order to avoid timing channels. However, such algorithm does not
generate serializable schedules [Atluri et al., 1996].

Another notable hard problem is the inference problem. Inference happens when, by posing
queries, a subject is able to deduce sensitive information from the legitimate responses received.
Many efforts have been discussed in literature to handle the inference problem. Thuraisingham
[1991] proved that the general inference problem was unsolvable. This means that a complete and
general solution to the inference problem is impossible. Therefore, most of the work done so far
provides solution only for particular types of inferences [Farkas and Jajodia, 2002]. The definition
of a practical solution that offers reasonable security guarantees is still an open issue.

4.5 INFORMATION-FLOW CONTROL MODELS

An alternative way to overcome the drawbacks of MAC and DAC is to complement discretionary
access control with some form of flow control, borrowing some ideas from MAC. Along this line is,
for instance, the approach by Karger [1987] that restricts programs to access objects satisfying given
patterns only. Other approaches (e.g., McCollum et al. [1990]) prevent unauthorized information
flow by propagating the access control list associated with an object, once its information has been
accessed. The work by Samarati et al. [1997] enforces information flow control by means of the
so-called szrict policy, based on the same principles as the mandatory policy. According to the strict
policy, a process can write an object o only if o is at least as read-protected as all the objects read by
the process up to that point. An object o is at least as read-protected as another object o’ if the set
of subjects allowed to read o is contained in the set of subjects allowed to read o’. The model is
still discretionary in that authorizations are explicitly specified, however the strict policy reduces the
flexibility of the system. Indeed, after reading an object 0, a process is unable to write any object less
read-protected than o, even if this write operation would not result in any improper information
leakage.

Bertino et al. [1998b] presented a flow control model for object-oriented systems that allows
for more flexibility in the enforcement of the strict policy. The model is based on the observation that
blocking or allowing a write operation required by a process ultimately depends on the information
such an operation releases, and not on the information accessed by the process. A process may
access sensitive data, and yet not release any sensitive information through the write operations it
executes. Such write operations should therefore be allowed. Alternatively, information released by a
process may be more sensitive than the information that the process has accessed. Although they do
not violate the strict policy, write operations releasing this sensitive information should be blocked.
These situations may be handled through exceptions (either more restrictive or permissive) to the strict
policy. As an example of the benefits of these exceptions, consider a procedure accessing personal
information regarding employees of an organization and returning the benefits to be granted to
each employee. The benefits of each employee can be released to users not authorized to read the
information provided as input of the benefit calculation (e.g., salaries, evaluations).

60 4. MANDATORY ACCESS CONTROL

Therefore, each procedure may have associated a set of exceptions to the restric-
tions/permissions stated by discretionary authorizations. Exceptions can be of two different types:
invoke exceptions, applicable within a method execution, and reply exceptions, applicable to the
information returned by a method. Exceptions can be permissive (that is, they override a restric-
tion imposed by the strict policy) or restrictive (that is, they override a permission stated by the
strict policy). The enforcement mechanism is based on the notion of message filter, first introduced
by Jajodia and Kogan [1990] (cfr. Section 4.3). To determine whether a write operation should be
blocked, the message filter proposed by Bertino et al. [1998b] keeps track of the information trans-
mitted between method executions together with the users to whom the information can be released.
A write operation on object o is authorized by the message filter if, based on the authorizations on
the objects read and on the exceptions encountered, the information can be released to all users who
have read privileges on o.

A more recent work is the FlexFlow logic based framework proposed by Chen et al. [2003],
where a variety of control flow policies may be specified as a set of stratified Horn clauses. The
framework has been further extended by Alghathbar et al. [2006] to specify and validate information
flow policies in UML-based designs.

61

CHAPTER 5

Role-based Access Control

One challenging problem in managing large systems is the complexity of security administration.
Security administration entails, among other tasks, assigning and revoking authorizations to subjects
on the objects to be protected. Whenever the number of subjects and objects is high, the number of
such authorizations can become extremely large. If, moreover, the user population is highly dynamic,
the number of grant and revoke operations to be performed can become very difficult to manage.
Role-based Access Control (RBAC) has been proposed as an alternative approach to traditional
discretionary and mandatory access control with the goal of simplifying authorization administra-
tion [Ferraiolo et al., 2001].

The basic idea underlying RBAC is based on the simple consideration that the permissions a
user has on the data he/she manages are generally related to his/her functions within an organization,
rather than on his/her identity. Therefore, the key component of RBAC is the concept of role — a
function within a given organization to which a set of privileges are assigned. The privileges assigned
to a role are related to the authorizations needed to perform the corresponding job function. Access
authorizations are then granted to roles instead of to single users. Users are then simply authorized
to “play” the appropriate roles, thereby acquiring the roles’ authorizations. This means that between
objects and subjects a further level is introduced, that is, the level of roles, with the aim of simplifying
authorization administration. A milestone of RBAC is the paper by Sandhu et al.[1996], that defined
a family of RBAC models, known as the RBAC96 model.

The use of roles has several, well-recognized advantages. First of all, because roles represent
organizational functions, an RBAC model makes the mapping of organization access control policies
onto a set of authorizations easier. Authorization administration is also greatly simplified. First of
all, the number of roles is usually much fewer than the number of users. Moreover, because of their
semantics, roles are far more stable than users that can frequently change their function within
the system. For instance, if a user moves to a new function within the organization, this does not
have any impact on the roles and their authorizations. Therefore, there is no need, as in traditional
discretionary access control models, to revoke the authorizations he/she had in the previous function
and grant the authorizations he/she needs in the new function. The security administrator simply
needs to revoke and grant the appropriate role membership. Finally, RBAC has been shown to
be policy-neutral [Osborn et al., 2000] since, by appropriately configuring the set of roles, one can
support different policies, including the mandatory and discretionary ones.

Because of its relevance, RBAC has been widely investigated, resulting in several role-based
access control models for a variety of application domains [Zhang and Joshi, 2009]. RBAC has
also attracted the attention of the main DMS vendors (e.g., Oracle, DB2, Microsoft SQL Server,

62 5. ROLE-BASED ACCESS CONTROL

PostgreSQL), who have incorporated the support for roles in their products. These different im-
plementations have created a standardization problem, since often the same term has been used
with different meanings by the various models, or the same concept has different interpretations. To
overcome this problem, a standardization effort, both in terminology and classification of models,
has been undertaken, which has resulted first in the NIST RBAC standard [Ferraiolo et al., 2001]
which was later modified in 2004 into the ANSI/INCIT'S standard [ANSI, 2004]. In what follows,
we first illustrate the ANSI/INCITS RBAC standard and the support to RBAC provided by SQL.
Then, in Section 5.3 we address the problem of role administration. Finally, we conclude the chapter

by discussing of the main extensions to RBAC96 and the NIST standard proposed so far.

5.1 THE ANSI/INCITS RBAC STANDARD
The ANSI/INCITS RBAC standard [ANSI, 2004] has been modularly conceived so that it can

be customized for different needs and environments. It consists of three components: Core RBAC,
Hierarchical RBAC, and Constrained RBAC. Core RBAC standardizes the basic features that any
RBAC model should posses, whereas Hierarchical RBAC and Constrained RBAC are two independent
extensions of Core RBAC. Hierarchical RBAC adds to Core RBAC the support for role hierarchies,
whereas Constrained RBAC adds to Core RBAC the support for separation of duties constraints.
By combining these modules, RBAC can adapt to different environments and application domains.
In what follows, we illustrate the three main components of the standard in more details.

5.1.1 CORERBAC

Core RBAC is a model consisting of the following four components: a set of users USERS, a set of
roles ROLES, a set of permissions PRMS, and a set of sessions SESSIONS.

A user is essentially a human being, although the concept of user may be extended to include
a machine, a network, a process, or an intelligent autonomous agent. A 7o/e is a function within the
context of an organization with an associated semantics regarding its authority and responsibility.
A permission is the right to perform a certain action on a given object in the system. More precisely,
PRMS is a set of pairs (obj, op), where obj € OBS is an object from the set of protected objects
OBS, and op € O P S denotes an operation from the set O P S of operations allowed in the system.
Clearly, the members of OB S and O P S depend on the system being protected.

Sessions have been introduced to model the fact that, when a user logs in the system, he/she
may activate a subset of the roles he/she is authorized to play. Therefore, a session maps a given user
to the set of active roles and determines the set of permissions the user holds during the session.

Besides defining the core components, Core RBAC also defines the relationships that exist
among them, the most relevant ones are illustrated in Table 5.1. With reference to Table 5.1, U A
and P A identify many-to-many relations, in that a user may be assigned to many roles (all the
ones needed to perform his/her functions within a given organization), and a role may be assigned
to different users (that is, all the users authorized to take the associated job function). Similarly, a
permission may be assigned to many roles (all the roles that need this permission to perform the

5.1. THE ANSI/INCITS RBAC STANDARD 63

Table 5.1: Mappings defined for Core RBAC

Mapping Meaning

UACUSERS x ROLES user-role assignment, it specifies
the roles users are enabled to play
PAC PRMS x ROLES permission-role assignment, it assigns

roles the permissions needed

to complete their jobs

Assigned_prms: ROLES — 2PRMS it maps a role onto the set of

assigned permissions, Assigned_prms(r) =
{p|pe PRMS, (p,r) € PA}

Assigned_users: ROLES — QUSERS it maps a role onto the set of associated
users, Assigned_users(r) ={u |u € USERS, (u,r) € UA}
Session_usr: SESSIONS — USERS it maps a session onto the

corresponding user

Session_roles: SESSIONS — 2ROLES [it maps a session onto a set of

roles, Session_roles(s) C

{r e ROLES | (Session_usr(s),r) € UA}
Avl_sess_prms: SESSIONS — 2PRMS | 3¢ gives the set of permissions available

to a user during a session, Avl_sess_prms(s) =
) Assigned_prms(r)

UrESessionJoles (s

corresponding job function), and a role may be given many permissions (all the ones needed to
perform the corresponding function). A user may activate many sessions, but each session refers to
a single user. A session may be associated with many roles (all the roles that are activated by the user
to which the session belongs to), and the same role may be associated with different sessions (all
the sessions where it has been activated). Clearly, the constraint exists that the set of roles activated
during a session s be a subset of the roles assigned to the user u establishing the session, whereas the
permissions u can exercise in the section are given by the union of the set of permissions associated
with the roles activated by u in s.

Example5.1 A typical domain of application for RBAC is the healthcare environment. In such an
environment typical functions that can be modeled as roles include nurse, patient, doctor, voluntary
personnel, and researcher, whereas examples of data to be protected include patients’ name, address,
clinical data, and anonymized statistical data. Once roles have been defined and permissions have
been associated with them, users may be assigned to roles. For example, when a new person joins the
healthcare staff, the only required management action is to authorize him/her to play the appropriate
roles, instead of granting him/her all the necessary permissions individually. Similarly, when a user
leaves the healthcare staff, this simply requires revoking from the user the authorization to play the
roles corresponding to his/her functions as staff (these are usually significantly less than the number
of access permissions the user was authorized to exercise).

64 5. ROLE-BASED ACCESS CONTROL
5.1.2 HIERARCHICAL RBAC

Core RBAC, also known as flat RBAC, does not support any structuring of the set of roles. However,
it is often the case that roles are hierarchically structured within an organization to reflect a line
of authority and responsibility. Such a requirement is captured by Hierarchical RBAC, which adds
to Core RBAC the possibility of structuring roles into an hierarchy. For this purpose, a partial
order relation on ROLES is introduced, referred to as role hierarchy. The role hierarchy, defined as
RH C ROLES x ROLES, and denoted as >, identifies the pairs of roles (r;, r;) such that role
r; inherits from role r;. The role hierarchy implies a relation among 4) the permissions associated
with the roles in the hierarchy and 4) the set of users authorized to play the roles in the hierarchy.
More precisely, given two roles 71,7 € ROLES, r; > r! implies that:

1. 71 inherits all the permissions associated with 7y, that is, Assigned_prms(ry) C
Assigned_prms(ry);

2. All users associated with 7| are also users associated with 7, that is, Assigned_users(r;) C
Assigned_users(ry).

The principles above are motivated by the fact that usually a role should be authorized to
perform on the objects in the system all the operations that are allowed to its junior roles. Clearly,
there could be situations where this general principle does not work. For instance, consider a critical
infrastructure where only some highly skilled employees are able to perform certain operations,
whereas their supervisors are not. This exception can be handled by configuring the role hierarchy
in such a way that the roles corresponding to the highly skilled employees and their supervisors are
not linked by the inheritance relation.

Therefore, in the presence of a role hierarchy, the definition of Assigned_prms and
Assigned_users (cfr. Table 5.1) is modified in such a way that they make a transitive closure
of the non hierarchical mappings with respect to the role hierarchy, that is, given r, ¥’ € ROLES:

* Assigned_prmsy(r) = Assigned_prms(r) U {p | p € Assigned_prms(r'),r > r'};
o Assigned_usersy(r) = Assigned_users(r) U {u | u € Assigned_users(r'),r' > r}.

In general, role inheritance represents an additional means to reduce the burden of authoriza-
tion management. For instance, when a new kind of data is made available to the system, what is
needed is only to identify, in the role hierarchy, the least privileged roles that must be able to access
it, and grant the appropriate permissions to them, thus greatly reducing the number of needed grant
operations.

Example5.2 An example of role hierarchy referring to the healthcare domain is depicted in Figure
5.1. According to Figure 5.1, users assigned to roles Cardiologist,Dermatologist,Specialist,

L1 is the senior role, whereas 7 is the Junior role.

5.1. THE ANSI/INCITS RBAC STANDARD 65

A Dermatologist Cardiologist

Ny

Specialist

T S wReogey

© o oge O e =y

. r
General practitioner Nurse

AR

Healtchare staff

Figure 5.1: An example of role hierarchy.

General practitioner and Nurse are all members of the role Healthcare staff.A dermatol-
ogist has all the authorizations given to a general practitioner. Moreover, he/she can have additional
authorizations with respect to the ones given to general practitioners.

The definition of role hierarchy given so far (referred to as general role hierarchy), does not
impose any restriction to the partial order that serves as the role hierarchy, which may include
the concept of multiple inheritance, that is, a role may inherit from many roles. However, many
data management systems impose restrictions on the role hierarchy, the most common one is that
hierarchies are limited to simple structures such as trees or inverted trees. The support for this concept
is achieved in the standard by introducing the notion of /imited role hierarchy.

5.1.3 CONSTRAINED RBAC
Constrained RBAC adds to Core RBAC the possibility of expressing constraints on roles and their

assignment to users. In its current form, the standard provides support for one type of constraint only,
that s, Separation of Duties (SoD) constraints. SoD is the most investigated type of constraint, because
of its relevance in many application domains. Other relevant classes of constraints, such as cardinality
constraints [Ferraiolo et al., 1999] or temporal constraints [Bertino et al., 2001a; Joshi et al., 2005]
are not yet considered by the standard.

SoD is a widely studied and relevant concept that aims at reducing the risk of fraud by not
allowing any individual to have sufficient authority within the system to perpetuate a fraud on his/her
own. This can be achieved in two different ways that result in two different classes of SoD constraints
supported by the standard, that is, szatic and dynamic SoD.

66 5. ROLE-BASED ACCESS CONTROL

Static SoD constraints define a mutual exclusion (or conflict of interests) relation among the
roles a user is authorized to play. For instance, there may exist an organizational policy stating that
if a user is authorized to play the role of town clerk, he/she cannot be authorized to play the role
of auditor, since the second role has the duty of controlling the operations made by the first. In
the standard, the notion of non-compatible roles is generalized to more than two roles, in order to
support a variety of different SoD requirements. More formally, a static SoD constraint is a pair
(RS, n),where RS € ROLES, and n is a natural number greater than one. The constraint (RS, n)
states that a user can be authorized to play no more than n — 1 roles among those in RS. If roles are
hierarchically structured such constraint propagates along the role hierarchy in that both inherited
and directly assigned roles are considered when enforcing the constraint.

The second option is referred to as dynamic SoD, in that the constraint must be dynamically
validated, by guaranteeing at the time of role activation that a user is prevented from activating
conflicting roles within the same session. This differs from static SoD constraints that can be statically
checked at the time of role assignment. Similar to static SoD constraints, dynamic SoD constraints
are also represented as pairs (RS, n), where RS € ROLES, and n is a natural number greater than
one. However, the semantics is different in that a dynamic SoD constraint (RS, n) states that a user
may not activate n or more roles from RS within a single session. Both forms of mutual exclusion
constraints are relevant for several application environments, as the following example shows.

Example 5.3 Consider once again the healthcare domain. In such an environment, it is possible
to identify several cases requiring both kinds of separation of duties. An example of static separation
of duties is the intuitive prohibition to play both the nurse and doctor role, whereas an example of
dynamic separation of duties is that a doctor cannot have himself/herself as a patient. Such constraint
can be enforced by requiring that the roles doctor and patient cannot be activated by a user within
the same session, whereas the same user can play the roles of doctor and patient in different sessions.

Figure 5.2 gives a graphical representation of the three components of the standard. Arrows
indicate the cardinality of the relations (i.e., many-to-many, one-to-many).

A detailed critical analysis of the RBAC standard has been done by Li et al. [2007] where
a set of critical issues have been identified and suggestions have been made on how they can be
addressed. Among the criticality identified by Li et al. [2007] are the fact that the standard does
not accommodate the design that only one role can be activated in a session. This solution, which
is adopted by some RBAC systems (e.g., SELinux), provides better support of the least privilege
principle (cfr. Chapter 1). Other critical issues identified are related to the role hierarchy. In particular,
they argue that the use of partial orders to represent role hierarchies may be inappropriate when
updates to the role hierarchy are considered. Furthermore, a better specification of the semantics of
role inheritance is needed in that the standard leaves open several possible interpretations of a role
hierarchy (e.g., user inheritance, permission inheritance). An answer to these concerns is discussed
by Ferraiolo et al. [2007].

5.2. RBACSUPPORT INSQL 67

PRMS

Figure 5.2: ANSI/INCITS RBAC standard.

5.2 RBACSUPPORT IN SQL

DMS vendors have recognized the importance and the advantages of RBAC, and today most of
commercial DMSs offer RBAC features at some extents. This interest has also been reflected in the
current version of the SQL standard [ISO, 2003] that provides support for RBAC. In the following,
we briefly presents the SQL commands related to role management.

Roles can be created through the command CREATE ROLE (role_name), and deleted with
the command DROP ROLE (role_name), where role_name denotes the name of the role to be
created/deleted, respectively.

Once a role has been created, privileges can be assigned to it through the GRANT command,
whose basic format for what concerns privileges assignment to roles, has the following syntax:

GRANT {<privileges> | ALL PRIVILEGES}
ON [<object_type>] <object_name>
TO {<roles> | PUBLIC};

where:

* <privileges> denotes the set of operations authorized with the GRANT command. The
keyword ALL PRIVILEGES denotes the set of all the supported operations.

* <object_name> is the object on which the authorization is granted. In some cases, it is
necessary to specify what the type is of the object to be protected (for instance, TYPE is used
for user-defined types).

* <roles> denotes the set of roles to which the privileges are granted. Keyword PUBLIC is used
to denote all the roles in the system.

68 5. ROLE-BASED ACCESS CONTROL

Moreover, the GRANT command can also be used to assign users/roles to roles. In this case,
the syntax is as follows:

GRANT <granted_roles>
TO {<users> | <roles> | PUBLIC}
[(WITH ADMIN OPTION];

where:
* <granted_roles> is the set of roles granted with the command.

* <users>/<roles> denotes the list of users/roles authorized to play the roles granted by the
command. The keyword PUBLIC is used to authorize all the users/roles in the system to play
the roles granted by the command.

* If the optional clause WITH ADMIN OPTION is specified, this means that who is authorized to
play the specified roles can not only exercise all the privileges assigned to the roles but also
grant others the authorization to play the specified roles. It is therefore similar to the grant
option illustrated in Section 2.2 but it applies to roles instead of to privileges.

It is important to note that, according to the syntax of the GRANT command, it is possible to
authorize a role to play another role. This is the way according to which the SQL standard supports
role hierarchies, whereas in its current version it does not provide any support for SoD constraints.

Example 5.4 Consider once again Example 5.1 and Figure 5.1. The following are examples of
commands related to role management:

CREATE ROLE Nurse;

CREATE ROLE Cardiologist;

CREATE ROLE Healthcare_staff;

GRANT select(name,address) ON Patients TO Healthcare_staff;
GRANT Nurse TO John WITH ADMIN OPTION;

GRANT Cardiologist TO Ann;

GRANT Healthcare_staff TO Nurse;

The first three commands create roles Nurse, Cardiologist, and Healthcare_staff,
respectively, whereas the fourth command authorizes the role Healthcare_staff to query the
name and address of patients. By the fifth command, John is authorized to play the role Nurse as
well as to grant others the authorization to play that role, whereas by the sixth command Ann is
authorized to play the role Cardiologist but not to grant others the authorization to play this role.
Finally, the last command establishes a hierarchical relation between the roles Healthcare_staff

5.2. RBACSUPPORT INSQL 69

and Nurse, that is, Nurse > Healthcare_Staff (cfr. Section 5.1.2). One effect of this command
is that John is authorized to query the name and address attributes of the Patients relation.

Roles can be activated within a session through the command SET ROLE.

Finally, privileges can be revoked from roles through the REVOKE command, whose syntax is as

follows:

REVOKE <privileges>

ON [<object_type>] <object_name>
FROM <roles>

{RESTRICT|CASCADE};

where:

<privileges> denotes the set of privileges being revoked,;

<object_name> is the object on which the privileges are revoked. In some cases, it is necessary
to also specify what the type is of the object on which privileges are revoked;

<roles> denotes the set of roles from which the privileges are revoked,;

RESTRICT and CASCADE are used to manage the side effects of the revoke operation, with the
same meaning explained in Section 2.2.5. The default is RESTRICT.

The REVOKE command can also be used to revoke the authorization to play a role. In this case,

the syntax is as follows:

REVOKE [ADMIN OPTION FOR] <revoked_roles>
FROM {<users> | <roles>}

{RESTRICT | CASCADE};

where:

If the optional clause ADMIN OPTION FOR is specified, the effect of the command is to revoke
the admin option only, still maintaining the authorization to play the roles listed in the REVOKE
command.

<revoked_roles> denotes the set of roles being revoked.

<users>/<roles> denotes the set of users/roles to which the authorization to play the roles
is being revoked.

RESTRICT and CASCADE have the same meaning explained in Section 2.2.5.

Example 5.5 Consider the GRANT commands of Example 5.4. The following are examples of
REVOKE commands:

70 5. ROLE-BASED ACCESS CONTROL
REVOKE ADMIN OPTION FOR Nurse FROM John;
REVOKE select ON Patients FROM Healthcare_staff;
REVOKE Cardiologist FROM Ann;

The first command revokes the admin option from John for the role Nurse. This means that,
after the execution of the command, John is still authorized to play the role Nurse but he is not
authorized to grant others the authorizations to play that role. The second command revokes from
role Healthcare_staff the authorization to query the name and address of the patients. This
means that all the users authorized to play the role of Healthcare_staff lose this privilege as
well. Finally, the effect of the last command is that Ann is no longer authorized to play the role
Cardiologist.

5.3 ROLEADMINISTRATION

Aswe have seen at the beginning of this chapter, the main goal of RBAC is to simplify authorization
management. However, large RBAC systems may have hundreds of roles and tens of thousands of
users. For example, a case study carried out with Dresdner Bank, a major European bank, resulted
in an RBAC system that has about 40,000 users and 1,300 roles [Schaad et al., 2001]. In such kinds
of environments the support for decentralized role administration is a fundamental need. Therefore,
many proposals have been made of an administrative model for RBAC.

ARBAC97 (Administrative RBAC) [Sandhu et al.,, 1999] is the first attempt to specify a
comprehensive decentralized administrative model for RBAC. The underlying idea is to use roles
themselves for role administration. This is achieved by introducing administrative roles, to be used for
the management of regular roles. Similar to regular roles, administrative roles may be hierarchically
organized and may have associated constraints. ARBAC97 is actually a family of models, consisting of
URA97, for managing user-role assignment, PRA97, for managing permission-role assignment, and
RRA97, for managing role-role assignment, that is, the role hierarchy. Common to all the submodels
is the notion of role range that identifies a set of roles constituting the administrative domain of an
administrative role. Formally, a (closed) role range is denoted as [x, y] ={r € ROLES | x >r Ar >
v}. Ranges may be closed, open and half open.

URA97 defines which administrative roles can assign/revoke which users to which regular
roles by means of the relations can_assign/can_revoke. can_assign(ar, prereq, range) states that a
member of the administrative role ar (or of one of its senior roles) may assign users to roles denoted by
range provided that the users satisfy the precondition prereq®. prereq is a role name or a boolean
combination of role names. For instance, suppose that prereq =ri Vv (ry A —r3). A user u satisfies
pr