
AppArmor Technical Documentation

Andreas Gruenbacher and Seth Arnold
{agruen,seth.arnold}@suse.de

SUSE Labs / Novell

Contents

1 Introduction 2

2 Overview 2

3 The AppArmor Security Model 3

3.1 Symbolic Links . 3
3.2 Namespaces . 4
3.3 Disconnected Files and Pseudo File Systems 4
3.4 Mount . 5
3.5 The Kernel NFS Daemon . 5
3.6 Why are the computed pathnames meaningful? 5
3.7 Path Permission Checking . 6
3.8 Profile Permissions . 7
3.9 System Calls Taking File Handles, At System Calls 8
3.10 File Descriptor Passing and Revalidation 8
3.11 Deleted Files . 8
3.12 The access System Call . 9
3.13 The ptrace System Call . 9
3.14 Secure Execution . 9
3.15 Exec Mode Merging in Profiles, Exact Matches 10
3.16 Capabilities . 10
3.17 The sysctl System Call and /proc/sys 10
3.18 Subprofiles aka. Hats . 10
3.19 Association of Profiles with Processes 11
3.20 Profile Loading, Replacement, and Removal 11

4 AppArmor Walk-Through 12

4.1 Kernel Patches and Configuration 12
4.2 The securityfs file system . 13
4.3 Profile Loading . 13
4.4 Anatomy of a Profile . 13
4.5 Logging . 15
4.6 Generating Profiles By Hand . 15

1

{agruen,seth.arnold}@suse.de

1 Introduction

In this paper we describe AppArmor from a technical point of view, introduce
its concepts, and explain the design decisions taken. This text is intended for
people interested in understanding why AppArmor works the way it does. You
may be looking for less detailed, low-level, or kernel centric documentation; in
that case, please refer to the AppArmor documentation web site [1].

Sections 2 and 3 discuss the AppArmor security model, while Section 4
shows how to use it from a low-level point of view. Please be aware that lots
of details are discussed here which the higher-level tools hide from the average
user.

2 Overview

AppArmor protects systems from insecure or untrusted processes by running
them in confinement, still allowing them to share files with other parts of the
system, exercising privilege, and communicating with other processes, but with
some restrictions. These restrictions are mandatory; they are not bound to iden-
tity, group membership, or object ownership. In particular, the restrictions also
apply to processes running with superuser privileges. AppArmor achieves this
by plugging into the Linux Security Module (LSM) framework. The protections
provided are in addition to the kernel’s regular access control mechanisms.

The AppArmor kernel module and accompanying user-space tools are avail-
able under the GPL license. (The exception is the libapparmor library, available
under the LGPL license, which allows change hat(2) to be used by non-GPL
binaries.)

At the moment, AppArmor knows about two types of resources: files, and
POSIX.1e (draft) capabilities. By controlling access to these resources, App-
Armor can effectively prevent confined processes from accessing files in unwanted
ways, from executing binaries which they are not meant to execute, and from
exercising privileges such as acting on behalf of another user (which are tradi-
tionally restricted to the superuser).

One use case for this kind of protection is a network daemon: even if the
daemon is broken into, the additional restrictions imposed by AppArmor will
prevent the attacker from attaining additional privileges beyond what the dae-
mon is normally allowed to do. Because AppArmor controls which files a process
can access in which ways down to the individual file level, the potential damage
is much limited.

There is work going on for teaching AppArmor about additional resources
like ulimits, and interprocess and network communication, but at this time,
these resource types are not covered. This is less severe than it might initially
seem: in order to attack another process from a broken-into process like a net-
work daemon, that other process has to actively listen. The set of actively
listening processes is relatively small, and this sort of interprocess communica-
tion is a natural security boundary, so listening processes should be validating
all their input already. For protection against bugs in the input validation of
those processes, they should also be confined by AppArmor though, thus further
limiting the potential damage.

2

AppArmor protection is selective: it only confines processes for which poli-
cies (referred to as profiles) have been defined. All other processes will continue
to run unrestricted by AppArmor.

To confine a process, all it takes is to write a profile for it, take an existing
profile, or automatically generate a profile: for the latter, the process can be
run in learning or complain mode in which AppArmor allows all accesses, and
logs all accesses that are not allowed by the current profile already. This log
can then be used to automatically generate a suitable new profile, or refine an
existing one. The application does not need to be modified.

An example profile together with a complete low-level walk-through of App-
Armor can be found in Section 4. The apparmor.d(5) manual page contains
further details.

AppArmor is not based on labeling or label-based access and transition rules,
so it does not stick a label on each each file in the file system (or more generally,
on each object). It identifies files by name rather than by label, so if a process
is granted read access to /etc/shadow and the system administrator renames
/etc/shadow to /etc/shadow.old and replaces it with a copy (that may have
an additional user in it, for example), the process will have access to the new
/etc/shadow, and not to /etc/shadow.old.

3 The AppArmor Security Model

When a file is accessed by name with open(2), mkdir(2), etc., the kernel looks
up the location of the object associated with the specified pathname in the file
system hierarchy. The lookup is relative to the root directory for pathnames
starting with a slash, and to the current working directory otherwise. Different
processes can have have different working directories as well as different root
directories. See path resolution(2) for a detailed discussion of how pathname
resolution works.

Either way, the result of the lookup is a pair of (dentry, vfsmount) kernel-
internal objects that uniquely identify the location of the file in the file system
hierarchy. The dentry points to the object if the object already exists, and is a
placeholder for the object to be created otherwise.

AppArmor uses the (dentry, vfsmount) pair to compute the pathname of the
file within a process’s filesystem namespace. The resulting pathname contains
no relative pathname components (“.” or “..”), or symlinks.

AppArmor checks if the current profile contains rules that match this path-
name, and if those rules allow the requested access. Accesses that are not
explicitly allowed are denied.

3.1 Symbolic Links

When looking up the (dentry, vfsmount) pair of a file, the kernel resolves sym-
links where appropriate (and fails the lookup where symlink resolution is inap-
propriate).

The pathname that AppArmor computes from a (dentry, vfsmount) pair
never contains symlinks. This also means that if symlinks are used instead
of directories for paths like /tmp, profiles need to be adjusted accordingly. A

3

future version of AppArmor may have built-in support for this kind of pathname
rewriting.

3.2 Namespaces

Linux allows different processes to live in separate namespaces, each of which
forms an independent file system hierarchy. A recent paper by Al Viro and Ram
Pai [2] discusses all the intricate things possible with namespaces in recent 2.6
kernels.

From the point of view of a process, an absolute path is a path that goes all
the way up to the root directory of that process. This is ambiguous if processes
have different root directories. Therefore, instead of paths relative to process
root directories, AppArmor uses paths relative to the namespace root.

Pathnames are meaningful only within a namespace. Each namespace has a
root where all the files, directories, and mount points are hanging off from.

The privilege of creating new namespaces is bound to the CAP SYS ADMIN
capability, which grants a multitude of other things that would allow a process
to break out of AppArmor confinement, so confined processes are not supposed
to have this privilege, and processes with this capability need to be considered
trusted.

In this setup, privileged processes can still create separate namespaces and
start processes in those namespaces; processes confinement will be relative to
whatever namespace a process ends up in. It is unclear at this point how App-
Armor should support separate namespaces — either by computing all path-
names relative to one particular namespace considered global (assuming that
such a globally meaningful namespace will exist in all setups in which App-
Armor is relevant), or by allowing different sets of profiles to be associated with
different namespaces.

3.3 Disconnected Files and Pseudo File Systems

In some situations, a process can end up with a file descriptor or working di-
rectory that was looked up by name at some point, but is not connected to
the process’s namespace anymore (and hasn’t been deleted, either). This can
happen when file descriptors are passed between processes that do not share
the same namespace, or when a file system has been lazily unmounted (see the
MNT DETACH flag of umount2(2)). Such files may still be visible to other
processes, and they may become reconnected. AppArmor cannot compute the
pathnames of such files. Granting unrestricted access would be insecure, and so
AppArmor denies access to disconnected files.

As a special case, the kernel supports a number of file systems that users
can have file descriptors open for, but that can never be mounted. Those files
are by definition disconnected. Anonymous pipes, futexes, inotify, and epoll are
all examples of that. Accesses to those files is always allowed.

Future versions of AppArmor will have better control over disconnected files
by controlling file descriptor passing between processes.

4

3.4 Mount

Mounting can change a process’s namespace in almost arbitrary ways. This is a
problem because AppArmor’s file access control is pathname based, and grant-
ing a process the right to arbitrarily change its namespace would subvert this
protection mechanism. AppArmor therefore denies confined processes access to
the mount(2), umount(2), and umount2(2) system calls.

Future versions of AppArmor may offer fine-grained control over mount, and
may grant confined processes specific mount operations.

3.5 The Kernel NFS Daemon

The security model of the various versions of NFS is that files are looked up
by name as usual, but after that lookup, each file is only identified by a file
handle in successive acesses. The file handle at a minimum includes some sort
of filesystem identifier and the file’s inode number. In Linux, the file handles
used by most filesystems also include the inode number of the parent directory;
this may change in the future. File handles are persistent across server restarts.

This means that when the NFS daemon is presented with a file handle,
clients must get access without having specified a pathname. A pathname can
be computed from a (parent, child) inode pair that identifies the file down to the
directory level if the dentry is properly connected to the dcache, but multiple
hardlinks to the same file within the same directory cannot be distinguished,
and properly connecting dentries comes at a cost in the NFS daemon. Because
of this overhead and the questionable benefit, most setups do not guarantee
that dentries will be connected, and so pathnames cannot always be computed.
(See the no subtree check option in exports(5).)

In addition, the NFS daemon is implemented in the kernel rather than as a
user space process. There is no memory separation or other protection between
the daemon and the rest of the kernel. This means that at best, the NFS daemon
could cooperate with an additional access control mechanism like AppArmor —
but there would be no enforcement.

Because of all of this, it makes little sense to put the kernel NFS daemon
under AppArmor control. Administrators are advised to not assign profiles to
the kernel nfsd daemons.

3.6 Why are the computed pathnames meaningful?

Whenever a process performs a name-based file access, the pathname or path-
name component always refers to a specific path to that file: the path is either
relative to the chroot if an absolute path is used, or else relative to the current
working directory. The chroot or current working directory always has a unique
pathname up to the namespace root (even if the process itself has no direct
access above the chroot). This means that each name-based file access maps to
a unique, canonical, absolute pathname. There may be additional paths point-
ing to the same file, but a particular name-based access still always refers to
only one of them. These are the pathnames that AppArmor uses for permission
checks.

If directories along the path get renamed after a process changes into them
(either with chroot(2) or with chdir(2)), the resulting pathname will differ from

5

the pathnames that the process used. Consider the following sequence of oper-
ations for example:

Process 1 Process 2

chdir(”/var/tmp/foo”);
rename(”/var/tmp/foo”, ”/var/tmp/bar”);

creat(”baz”, 0666);

The creat operation will check against the path /var/tmp/bar/baz, even
though Process 1 never used bar. This is the expected behavior; we are interested
in the names of the objects along the path at the time of the access, not in their
previous names.

As already mentioned, a path lookup results in a pair of (dentry, vfsmount)
kernel-internal objects. The pathname that AppArmor checks against is com-
puted from these two objects after these objects have been looked up. The
lookup and the pathname computation are not atomic, which means that path-
name components could even be renamed after the lookup but before the path-
name has been computed.

It matters that the AppArmor access check is performed between the lookup
and the actual access, but atomicity between the lookup and that access check
is not necessary: there is no difference between a rename before the lookup and
a rename after the lookup from AppArmor’s point of view; all we care about is
the current pathname at some point between the lookup and the access.

A special case occurs when the lookup succeeds, but the file is deleted before
the AppArmor access check. In this case the access is denied and errno is set
to ENOENT, the same behavior as if the lookup had failed.

3.7 Path Permission Checking

On UNIX systems, when files are looked up by name, the lookup starts either
at the root or the current working directory of a process. From there, each
directory reached is checked for search permission (x). The permissions on the
directories leading to the current working directory are not checked. When a
file is being created or deleted, the parent directory of that file is checked for
write and search access (wx). When a file is being accessed, the permissions of
that file are checked for r, w, or x access, or a combination thereof. Each check
can result in a failure with errno set to EACCES (Permission denied).

In contrast, AppArmor first computes the pathname to a file. If a file is
being created, the name being looked up is the name of the new file and not the
name of the parent directory.

If the file being looked up is a directory, AppArmor appends a slash to the
pathname so that directory pathnames always end in a slash; otherwise the
pathname will not end in a slash.

It then checks for file access rules in the process’s profile that match that
pathname, and decides based on that. With some exceptions for execute modes
as described in Section 3.15, the permissions granted are the union of permissions
of all matching rules.

6

r Read.
w Write.
ix Execute and inherit the current profile.
px Execute under a specific profile.
Px Execute secure and under a specific profile.
ux Execute unconfined.
Ux Execute secure and unconfined.
m Memory map as executable.
l Link.

Table 1: File Access Permissions in Profiles

3.8 Profile Permissions

AppArmor differentiates between slightly more permissions than UNIX does,
as shown in Table 1: file access rules in AppArmor support the read (r), write
(w), execute (x), memory map as executable (m), and link (l) permissions.
The execute permission requires a modifier that further specifies which kind
of execution is being granted: inherit the current profile (ix), use the profile
defined for that executable (px), or execute unconfined without a profile (ux).
In addition, the px and ux permissions have Px and Ux forms that will trigger
Secure Execution (see Section 3.14 below). The different permissions are used
as follows:

Read. The profile read permission is required by all system calls that require
the UNIX read permission. This includes open with O RDONLY, getdents
(i.e., readdir), listxattr, getxattr, and mmap with PROT READ.

Write. The profile write permission is required by all system calls that require
the UNIX write permission, except for operations that create or remove
files: while UNIX requires write access to the parent directory, AppArmor
requires write access on the new file in this case (which does not exist at
the time of the permission check for file creates). Operations that create
files include open with O CREAT, creat, mkdir, symlink, and mknod.
Operations that remove files include rename, unlink and rmdir.

Operations that require write access in UNIX as well as AppArmor include
open with O WRONLY (O RDWR requires read and write), setxattr,
removexattr, and mmap with PROT WRITE.

Other system calls such as chmod, chown, utime, and utimes are bound
to file ownership or the respective capabilities in UNIX. AppArmor also
requires profile write access for those operations.

Execute. As mentioned above, AppArmor distinguishes a few different ways
how files may be executed as described above.

For directories, the UNIX execute permission maps to search access. App-
Armor does not control directory search access. Traversing directories is
always granted.

Memory map as executable. The Linux kernel only requires read access to
files in order to memory map them for execution with the PROT EXEC

7

flag. AppArmor makes a distinction here, and requires the m profile per-
mission in order for files to be mapped as executable. That way, it is more
obvious in profiles what applications are allowed to do even if from a secu-
rity point of view, the m permission provides a similar level of protection
as the ix permission — execute under the current profile.

Link. Creating a hardlink requires the profile link permission (l) on the new
path. In addition, the new path must have a subset of the r, w, x, and
m permissions of the old path, and if the new path has the x permission,
the execute flags (i, u, U, p, and P) of the old and the new path must be
equal.

Rename. A rename requires profile read and write access for the source file,
and profile write access for the target file.

Stat. Retrieving information about files is always allowed. We believe that
providing policy for file information retrieval is more troublesome than
the benefit it would provide.

3.9 System Calls Taking File Handles, At System Calls

A number of system calls take file descriptors instead of pathnames as their pa-
rameters (ftruncate, fchmod, etc.), or take directory file descriptors, and resolve
pathnames relative to those directories (openat, mkdirat, etc.). These system
calls are treated like their non-f and non-at equivalents, and the same access
checks are performed. At the point where AppArmor is asked to validate those
file accesses, it is passed a (dentry, vfsmount) pair no matter which system call
variant is used.

3.10 File Descriptor Passing and Revalidation

After a file descriptor has been obtained, the permitted accesses (read and/or
write) are encoded in the file descriptor, and reads and writes are not revalidated
against the profile for each access. This is consistent with how access checks are
done in UNIX; such access checks would have a severe performance impact.

The picture changes when a file descriptor is passed between processes and
the other process is running under a different profile, or when a process switches
profiles: in that case, read and write accesses are revalidated under the new
profile. If the new profile does not allow them, the access is denied and errno is
set to EACCES (Permission denied).

File descriptors opened by unconfined processes are exempt from this rule.
This is so that processes will still have access to their stdin, stdout, and stderr
without having to list all possible sources of input and output in all profiles.

3.11 Deleted Files

Revalidation is problematic for deleted files for which a process still has an open
file descriptor — after all, the idea of the pathname of a deleted file is somewhat
peculiar: the file is no longer reachable by any pathname, and it also cannot
become re-attached to the filesystem namespace again.

8

The traditional UNIX behavior is to determine access upon file access, and
to never check again. Applications depend on this, particularly for temporary
files. In addition to temporary files, deleted files can be used as an interpro-
cess communication mechanism if the file descriptor is shared among multiple
processes.

AppArmor grants access to deleted files, just like it grants access to files
opened by unconfined processes. It may control interprocess communication,
including file descriptor passing, in a future version.

3.12 The access System Call

This system call determines whether a process has a given mode of access to a
file in terms of the read, write, and execute permissions. This is not a sufficient
replacement for performing the access check at the time of access even under
traditional UNIX, because the access system call and the subsequent access
are not atomic, and the permissions might change between the two operations.
Applications are not supposed to rely on access(2).

AppArmor introduces additional restrictions, some of which cannot be mod-
eled in terms of read, write, and execute: for example, an AppArmor profile
may allow a process to create files /tmp/foo-*, but not any other files in /tmp.

There is no way to express this with access(2); in traditional UNIX, all that
is required for creating files is write access to the parent directory. Access(2) will
indicate that some accesses are allowed even when AppArmor will eventually
deny them.

3.13 The ptrace System Call

The ability to ptrace allows a process to look up information about another
process, read and write the memory of that process, and attach to (or trace)
that process in order to debug it, or analyze its behavior. This gives total control
over the process being traced, and so the kernel employs some restrictions over
which processes may ptrace with other processes.

In addition to these restrictions, AppArmor requires that if the tracing task is
confined, it must either have the CAP SYS PTRACE capability, or be confined
by the same profile and sub-profile as the process being traced. Attempts to
switch to another profile or sub-profile by a process being traced is denied.

3.14 Secure Execution

In this mode, the kernel passes a flag to user space. When glibc finds this flag set,
it unsets environment variables that are considered dangerous, and it prevents
the dynamic loader from loading libraries controlled by the environment. With
non-secure exec, the LD LIBRARY PATH environment variable can be used to
switch to a different set of libraries, for example. The secure exec mechanism is
not specific to AppArmor: set-user-id and set-group-id executables also use it,
as well as SELinux, which introduced this glibc feature.

9

3.15 Exec Mode Merging in Profiles, Exact Matches

When more than one rule in a profile matches a given path, all the permissions
accumulate except for ix, px, Px, ux, and Ux: those permissions would conflict
with each other; it would be unclear how to execute the new binary if more than
one of these flags was set. To deal with this situation, AppArmor differentiates
between rules that define exact matches and wildcard rules (see Table 2 on
page 14). Execute flags in exact matches override execute flags in wildcard
matches.

If the execute flags of multiple rules still disagree, the profile is rejected at
profile load time.

3.16 Capabilities

AppArmor uses the standard Linux capability mechanism. When the kernel
checks if a certain capability can be exercised, AppArmor additionally checks
if the current profile allows the requested capability, and rejects the use of the
capability otherwise.

3.17 The sysctl System Call and /proc/sys

The sysctl system call and files below /proc/sys can be used to read and modify
various kernel parameters. Root processes can easily bring the system down by
setting kernel parameters to invalid values. To prevent against that, AppArmor
denies confined processes that do not have the CAP SYS ADMIN capability
write access to kernel parameters.

3.18 Subprofiles aka. Hats

Profiles can contain subprofiles that processes may switch to from the main
profile. Switching from a subprofile into a sibling subprofile or back to the
parent profile is allowed depending on how the subprofile was entered, and
provided that the child knows a magic cookie.1 See the change hat(2) manual
page for details.

Each process may consist of multiple tasks. Each task may only change its
own subprofile. The superuser cannot put a task into a different hat, but he
can replace the entire profile and its subprofiles, or he can put a process in a
different top-level profile (see Section 3.19).

Internally, change hat(2) is implemented by writing to a special kernel-
provided file. This is equivalent to a command like:

$ echo "changehat 123^hat_name" > /proc/$PID/attr/current

Here, the number is the magic cookie value, and hat name obviously is the
name of the hat; either may be replaced by the empty string (but not both).

1 A word of warning about change hat(2): When used with a non-zero magic cookie
for changing into a subprofile, that magic cookie can be used to change back out of the subpro-
file; in this mode, change hat(2) is not a strong confinement mechanism. If the code running
in the subprofile can guess the magic cookie, it can break out of the subprofile. Likewise,
if that code can manipulate the processes’ behavior beyond the point where the process re-
turns from the subprofile, it can influence what is done under the parent profile. Therefore,
change hat(2) with a non-zero magic cookie is only safe in combination with restricted code
environments, such as when the subprofile is used for executing Safe Perl (see Safe(3pm)), etc.

10

3.19 Association of Profiles with Processes

Profiles are associated with kernel tasks, which roughly correspond to threads in
user space (see clone(2) for details). Currently there are two ways how a profile
can be associated with a task: when an executable is started and a profile is
defined for that executable, or when the administrator assigns a profile to a task
explicitly.

In addition to that, once a task is confined by a profile, that profile deter-
mines which other executables may be executed, and under which profile they
may run (under the profile defined for that executable, the same profile as the
current task, or unconfined; see Section 3.8).

A process will consist of a single task after an exec, so in the exec case, the
entire process will be confined. New tasks (threads as well as processes) inherit
the same profile and subprofile as their parent task.

Unconfined processes with the CAP SYS ADMIN privilege may assign a
profile to a task with a command like this:

$ echo "setprofile /name/of/profile" > \

/proc/$PID/attr/current

After that, the task will be in the new top-level profile, even if the process
was in a subprofile before.

Processes with the CAP SYS ADMIN privilege as well as the process itself
can query the profile a process is in by reading from that file:

$ cat /proc/$PID/attr/current

unconfined

$ cat /proc/$PID/attr/current

/name/of/profile (complain)

$ cat /proc/$PID/attr/current

/name/of/profile^hat_name (enforce)

The output includes the name of the profile and subprofile as well as the
mode the active profile is in. (When a task is in a subprofile, the subprofile is
the active profile.)

3.20 Profile Loading, Replacement, and Removal

Before the kernel can use any profiles, they must be loaded. The profile sources
consist of plain text. This text representation is converted into in a binary
representation that the kernel can more easily deal with by the user-space profile
loader.

Profiles contain potentially long lists of file access rules that may include
wildcards. In order to make the lookup efficient, the AppArmor kernel module
does not actually go through all the file access rules when checking for access.
Instead, the profile loader takes those rules and compiles them into transition
tables. Pathnames are then looked up in those tables with a simple and efficient
algorithm, the theory behind which is explained in the Lexical Analysis section
of the Dragon Book [3].

11

An init script loads all the known profiles into the kernel at an early boot
stage. This happens automatically and the system administrator tools will take
care of loading, reloading, or removing profiles after they manipulate them, so
end users will not usually notice this step.

Profiles can be replaced at any time during runtime, and all processes run-
ning under old profiles will transparently be switched to the updated versions.
Profiles can also be removed. All processes running under a profile that is
removed will become unconfined.

Profiles are always replaced together with all their subprofiles. It may be
that an updated profile no longer contains a specific subprofile. If that happens
while processes are using that subprofile, those processes will be put in a profile
that denies all accesses. Such processes may still change to sibling subprofiles
or back to the parent profile subject to the change hat(2) semantics.

4 AppArmor Walk-Through

AppArmor consists of a set of kernel patches and accompanying user-space tools,
both of which are available at http://developer.novell.com/wiki/index.

php/Apparmor.

4.1 Kernel Patches and Configuration

The AppArmor kernel patches are provided in a format convenient for use
with quilt,2 however, other tools for applying the patches can be used, too.
The patches are supposed to apply against recent kernel.org git kernels. A
copy of the current git tree can be obtained from git://git.kernel.org/

pub/scm/linux/kernel/git/torvalds/linux-2.6.git with git clone (see the
git-clone(1) manual page). In case the the differences between the latest git tree
and the tree the AppArmor patches are based on is too big, the patches won’t
apply cleanly. In this case, trying an older git tree may work better.

After obtaining the AppArmor patches tarball and the git tree which will
end up in the linux-2.6 directory by default, the AppArmor patches can be
applied to the git tree as follows:

$ tar zxvf apparmor.tar.gz

$ cd linux-2.6/

$ ln -s ../apparmor patches

$ quilt push -a

When configuring the kernel, make sure that AppArmor is built in or as a
module (CONFIG SECURITY APPARMOR must be ’y’ or ’m’). AppArmor
cannot be used together with other Linux Security Modules, so if CONFIG
SECURITY CAPABILITIES or CONFIG SECURITY SELINUX is set to ’y’,
they must be disabled by adding selinux=0 and/or capability.disable=1 to
the kernel command line (grub, lilo, yaboot, etc.). It is not sufficient to put
SELinux into permissive mode — at this time, AppArmor cannot be combined
with other LSMs.

2 http://savannah.nongnu.org/projects/quilt

12

http://developer.novell.com/wiki/index.php/Apparmor
http://developer.novell.com/wiki/index.php/Apparmor
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git
http://savannah.nongnu.org/projects/quilt

4.2 The securityfs file system

AppArmor uses securityfs for configuration and to report information. The
usual mountpoint for securityfs is /sys/kernel/security. Unless your distribution
automatically does so, you can mount securityfs with:

$ mount securityfs -t securityfs /sys/kernel/security

Once securityfs has been mounted and the apparmor module loaded, /sys/
kernel/security/apparmor/profiles will show the profiles loaded into the kernel,
as well as mark if the profiles are in enforcement mode or in learning mode:

$ cat /sys/kernel/security/apparmor/profiles

/usr/bin/opera (complain)

/usr/lib/firefox/firefox.sh (complain)

/sbin/lspci (enforce)

...

Profile loading, replacement, and unloading, as well as configuration of App-
Armor is also done via securityfs.

4.3 Profile Loading

Profile loading, replacement, and removal is performed by the apparmor parser
utility from the apparmor-parser package. The package can easily be built by
running make in the package’s top-level directory. Once that is done and the
AppArmor module loaded, you may use the parser to load profiles with:

$ echo "/tmp/ls { /tmp/ls rm, }" | apparmor_parser

Once a profile for a program has been loaded into the kernel, you must use
the –replace option for replacing the existing profile with a new one (this option
may be used even if no profile by that name exists):

$ echo "/tmp/ls { /tmp/ls rm, }" | apparmor_parser --replace

4.4 Anatomy of a Profile

AppArmor profiles use a simple declaritive language, fully described in the
apparmor.d(5) manual page. By convention, profiles are stored in /etc/app-
armor.d/. The AppArmor parser supports a simple cpp-style include mechanism
to allow sharing pieces of policy. A simple profile looks like this:

/bin/ls flags=(complain) {

/bin/ls rm,

/lib/ld-2.5.so rmix,

/etc/ld.so.cache rm,

/lib/lib*.so* rm,

/dev/pts/* w,

/proc/meminfo r,

/var/run/nscd/socket w,

/var/run/nscd/passwd r,

13

? Any single character except “/”.
* Any number of characters except “/”.
** Any number of characters including “/”.
[ab] One of “a” or “b”.
[a-c] One of “a”, “b”, or “c”.
{ab,cd} Alternation: either “ab” or “cd”.

Table 2: Globbing in File Access Rules. Alternation counts as an exact match
in file access rules; all others count as wildcards (see Section 3.15).

/var/run/nscd/group r,

/tmp/ r,

}

Here, the first /bin/ls is the name of the profile. This profile will be au-
tomatically used whenever an unconfined process executes /bin/ls. The flags
instruct AppArmor to put the profile in complain (aka. learning) mode: in this
mode, all operations are allowed, and any events that would have been denied
are logged. This helps users to incrementally deploy AppArmor in production
environments. The default if no flags are specified is enforcement mode, in which
all operations not allowed by the profile are logged and denied.

Complain mode can be enabled individually for profiles as shown above
(followed by reloading the profile), or by globally putting all profiles in complain
mode with:

$ echo 1 > /sys/kernel/security/apparmor/control/complain

The user-space tools also include two small utilities, enforce and complain,
which will put profiles into enforce or complain mode:

$ enforce firefox

Setting /usr/lib/firefox/firefox.sh to enforce mode.

Inside the body of the profile are any number of rules consisting of a path-
name expression that may include globbing, and a set of permissions. Table 2
shows the supported shell-inspired globbing constructs; Section 3.8 on page 7
describes the permissions.

When AppArmor looks up a directory the pathname being looked up will
end with a slash (e.g., /var/tmp/), otherwise it will not. Only rules that match
that trailing slash will match directories. Some examples, none matching the
/tmp directory itself, are:

/tmp/* Files directly in /tmp.
/tmp/*/ Directories directly in /tmp.
/tmp/** Files and directories anywhere underneath /tmp.
/tmp/**/ Directories anywhere underneath /tmp.

As explained in Section 3, AppArmor does not require execute access to
allow directory traversal, or write access on a directory to create or rename
files inside the directory. Instead, write access is required on the specific files

14

that a confined process attempts to create, remove, rename, etc. Read access is
required for reading the contents of a directory.

AppArmor also mediates the use of POSIX 1003.1e draft capabilities; capa-
bilities that a process is allowed to use are listed in the profile by their name in
lower-case (with “CAP ” stripped off), e.g.,

#include <tunables/global>

/sbin/lspci {

#include <abstractions/base>

#include <abstractions/consoles>

capability sys_admin,

/sbin/lspci mr,

/sys/bus/pci/ r,

/sys/bus/pci/devices/ r,

/sys/devices/** r,

/usr/share/pci.ids r,

}

This profile uses predefined include files which are part of the apparmor-
profiles package.

4.5 Logging

AppArmor uses the kernel standard audit facility for reporting. When a profile
is in complain mode, the log messages look like this:

type=APPARMOR msg=audit(1174506429.573:1789): PERMITTING r access

to /home/sarnold/ (ls(16504) profile /tmp/ls active /tmp/ls)

When a profile is in enforcement mode, the log messages look like this:

type=APPARMOR msg=audit(1174508205.298:1791): REJECTING r access

to /bin/ (ls(16552) profile /tmp/ls active /tmp/ls)

These log messages are sent to the kernel auditing facility; if auditd is not
running, the kernel will forward these messages to printk for collection by klogd.
Auditd must be configured with –with-apparmor to enable the #defines to han-
dle AppArmor’s message type correctly.

AppArmor also logs some important events in the process lifecycle, such
as when processes in learning mode fork and change domain via exec. These
other events, while not strictly related to permissions requested by the pro-
cess, help the genprof profile generation tool reconstruct when specific accesses
are required by processes — this allows the tool to make more relevant and
meaningful policy suggestions.

4.6 Generating Profiles By Hand

While the majority of our users are expected to generate profiles with the help
of our profile tools, it is possible to write policy by hand. This final section
gives a very quick walkthrough generating a simple profile for firefox.

15

Since the kernel resolves symlinks to their “final destinations” before pre-
senting AppArmor with policy questions, we first must see if /usr/bin/firefox is
a symlink or the shell script that starts firefox; on our system, it is a symlink:

$ ls -l /usr/bin/firefox

lrwxrwxrwx 1 root root 25 Mar 21 13:36 /usr/bin/firefox ->

../lib/firefox/firefox.sh

So we will start a profile for /usr/lib/firefox/firefox.sh. This shell script will
execute firefox-bin, as we will see later; when it does so, we will tell AppArmor
to inherit this profile. Thus, firefox-bin will be executing under the profile for
/usr/lib/firefox/firefox.sh.

To get started, we can make some assumptions about the privileges that
firefox will need (both as a shell script and as a fairly complex GUI application):

$ cat /etc/apparmor.d/usr.lib.firefox.firefox.sh

/usr/lib/firefox/firefox.sh flags=(complain) {

/usr/lib/firefox/firefox.sh r,

/bin/bash rmix,

/lib/ld-2.5.so rmix,

/etc/ld.so.cache rm,

/lib/lib*.so* rm,

/usr/lib/lib*.so* rm,

}

$ apparmor_parser --reload < \

/etc/apparmor.d/usr.lib.firefox.firefox.sh

Replacement succeeded for "/usr/lib/firefox/firefox.sh".

The easiest way to see what accesses AppArmor allows, start a tail -F /var/
log/audit/audit.log (or /var/log/messages, or wherever your audit messages are
being sent). In another terminal, start firefox. tail will show a few hundred
PERMITTING audit events like these:

type=APPARMOR msg=audit(1174512269.026:1804): PERMITTING rw access

to /dev/tty (firefox(16950) profile /usr/lib/firefox/firefox.sh

active /usr/lib/firefox/firefox.sh)

type=APPARMOR msg=audit(1174512269.026:1805): PERMITTING r access

to /usr/share/locale/locale.alias (firefox(16950) profile

/usr/lib/firefox/firefox.sh active /usr/lib/firefox/firefox.sh)

type=APPARMOR msg=audit(1174512269.026:1806): PERMITTING r access

to /usr/lib/locale/en_US.utf8/LC_IDENTIFICATION (firefox(16950)

profile /usr/lib/firefox/firefox.sh active

/usr/lib/firefox/firefox.sh)

Because we want this profile to be fairly simple we’ll be fairly permissive,
add a few more rules to the profile and reload:

/dev/tty rw,

/usr/share/locale/** r,

/usr/lib/locale/** r,

16

Now re-run firefox. There is no need to handle all log entries at once. In
complain mode, AppArmor will only report accesses that are not in the pro-
file. This makes it fairly easy to add a few rules and re-run the application to
determine what privileges are still necessary. We get a few more messages:

type=APPARMOR msg=audit(1174512791.236:5356): PERMITTING r access

to /usr/lib/gconv/gconv-modules.cache (firefox(17031) profile

/usr/lib/firefox/firefox.sh active /usr/lib/firefox/firefox.sh)

type=APPARMOR msg=audit(1174512791.236:5357): PERMITTING r access

to /proc/meminfo (firefox(17031) profile

/usr/lib/firefox/firefox.sh active /usr/lib/firefox/firefox.sh)

type=APPARMOR msg=audit(1174512791.240:5358): PERMITTING x access

to /bin/basename (firefox(17032) profile

/usr/lib/firefox/firefox.sh active /usr/lib/firefox/firefox.sh)

type=APPARMOR msg=audit(1174512791.240:5359): LOGPROF-HINT

changing_profile pid=17032

type=APPARMOR msg=audit(1174512791.240:5360): PERMITTING r access

to /bin/basename (firefox(17032) profile

null-complain-profile active null-complain-profile)

...

type=APPARMOR msg=audit(1174512791.240:5364): PERMITTING mr access

to /bin/basename (basename(17032) profile

null-complain-profile active null-complain-profile)

So now, we add a few more rules:

/usr/lib/gconv/** r,

/proc/meminfo r,

/bin/basename rmix,

We selected “rmix” for /bin/basename — most small shell utilities should
not have a profile for themselves. There’s nothing wrong with giving basename
a profile, but the value of such a profile would be very limited. Giving other shell
utilities their own profiles would be worse: the profile would need read access to
the whole filesystem for shell scripts to function reliably. In our case, basename
simply inherits privileges from another profile, then it has no more and no fewer
privileges than the calling program — which is often a fine tradeoff.

The loader will need r and m access to execute basename, and we use ix to
execute basename in the same profile. The kernel logs only reported r, m and x
access; we have to choose the execute mode ourselves. Again, the standard user
tools would prompt users for this decision and give consequences of decisions.

We continue in this fashion, iteratively adding and changing rules as needed
by the logs. Some of the logs report attribute modifications, such as:

type=APPARMOR msg=audit(1174519157.851:10357): PERMITTING

attribute (mode,ctime,) change to

/home/sarnold/.gnome2_private/ (firefox-bin(17338) profile

/usr/lib/firefox/firefox.sh active /usr/lib/firefox/firefox.sh)

17

These need to be represented in the profile with simple w access.

/home/*/.gnome2_private/ w,

After nine iterations, the profile looks like this — we have inserted blank
lines between each iteration:

/usr/lib/firefox/firefox.sh flags=(complain) {

/usr/lib/firefox/firefox.sh r,

/bin/bash rmix,

/lib/ld-2.5.so rmix,

/etc/ld.so.cache rm,

/lib/lib*.so* rm,

/usr/lib/lib*.so* rm,

/dev/tty rw,

/usr/share/locale/** r,

/usr/lib/locale/** r,

/usr/lib/gconv/** r,

/proc/meminfo r,

/bin/basename rmix,

/usr/bin/file rmix,

/etc/magic r,

/usr/share/misc/magic.mgc r,

/bin/gawk rmix,

/usr/lib/firefox/firefox-bin rmix,

/usr/lib/firefox/lib*so rm,

/opt/gnome/lib/lib*so* rm,

/usr/share/X11/locale/* r,

/var/run/nscd/socket w,

/var/run/nscd/passwd r,

/usr/share/X11/locale/** r,

/home/*/.Xauthority r,

/usr/lib/gconv/*so m,

/home/*/.mozilla/** rw,

/etc/resolv.conf r,

/usr/lib/firefox/**.so rm,

/usr/lib/firefox/** r,

/etc/opt/gnome/** r,

/var/run/dbus/system_bus_socket w,

/etc/localtime r,

/opt/gnome/lib/**.so rm,

/var/cache/libx11/compose/* r,

/tmp/orbit-*/ w,

/dev/urandom r,

/tmp/ r,

/dev/null rw,

/opt/gnome/lib/GConf/2/gconfd-2 rmix,

/dev/log w,

18

/tmp/orbit-*/* w,

/tmp/gconfd-*/ r,

/tmp/gconfd-*/** rwl,

/home/*/.gconf/ r,

/home/*/.gconf/* rw,

/etc/fonts/** r,

/var/cache/fontconfig/* r,

/home/*/.fontconfig/** r,

/usr/share/ghostscript/fonts/** r,

/etc/passwd r,

/var/tmp/ r,

/bin/netstat rmix,

/home/*/.gnome2_private/ w,

/home/*/.gconfd/* rw,

/proc/net/ r,

/proc/net/* r,

/usr/share/fonts/** r,

/usr/lib/browser-plugins/ r,

/usr/lib/browser-plugins/** rm,

}

Sorting the entries in the profile can help show areas that can be collapsed
with even more generic rules. After doing that and making a few rules slightly
more generic, we end up with:

/usr/lib/firefox/firefox.sh {

/bin/basename rmix,

/bin/bash rmix,

/bin/gawk rmix,

/bin/netstat rmix,

/dev/log w,

/dev/null rw,

/dev/tty rw,

/dev/urandom r,

/etc/fonts/** r,

/etc/ld.so.cache rm,

/etc/localtime r,

/etc/magic r,

/etc/opt/gnome/** r,

/etc/passwd r,

/etc/resolv.conf r,

/home/*/.fontconfig/** r,

/home/*/.gconfd/* rw,

/home/*/.gconf/ r,

/home/*/.gconf/* rw,

/home/*/.gnome2_private/ w,

/home/*/.mozilla/** rw,

/home/*/.Xauthority r,

/lib/ld-2.5.so rmix,

/lib/lib*.so* rm,

/opt/gnome/lib/GConf/2/gconfd-2 rmix,

/opt/gnome/lib/**.so* rm,

/proc/meminfo r,

19

/proc/net/ r,

/proc/net/* r,

/tmp/gconfd-*/ r,

/tmp/gconfd-*/** rwl,

/tmp/orbit-*/ w,

/tmp/orbit-*/* w,

/tmp/ r,

/usr/bin/file rmix,

/usr/lib/browser-plugins/ r,

/usr/lib/browser-plugins/** rm,

/usr/lib/firefox/firefox-bin rmix,

/usr/lib/firefox/firefox.sh r,

/usr/lib/firefox/** r,

/usr/lib/firefox/**.so rm,

/usr/lib/gconv/** r,

/usr/lib/gconv/*so m,

/usr/lib/lib*.so* rm,

/usr/lib/locale/** r,

/usr/share/** r,

/var/cache/fontconfig/* r,

/var/cache/libx11/compose/* r,

/var/run/dbus/system_bus_socket w,

/var/run/nscd/passwd r,

/var/run/nscd/socket w,

/var/tmp/ r,

}

References

[1] AppArmor documentation, http://www.novell.com/documentation/

apparmor/

[2] Al Viro and Ram Pai: Shared-Subtree Concept, Implementation and Ap-

plications in Linux, Ottawa Linux Symposium, July 19-22, 2006, http:
//www.linuxsymposium.org/2006/

[3] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman: Compilers: Principles,

Techniques, and Tools (The “Dragon Book”), Addison-Wesley, 1986, ISBN
0-201-10088-6.

A second edition of this classic is available since August 2006 as ISBN
0-321-48681-1.

20

http://www.novell.com/documentation/apparmor/
http://www.novell.com/documentation/apparmor/
http://www.linuxsymposium.org/2006/
http://www.linuxsymposium.org/2006/

	Introduction
	Overview
	The AppArmor Security Model
	Symbolic Links
	Namespaces
	Disconnected Files and Pseudo File Systems
	Mount
	The Kernel NFS Daemon
	Why are the computed pathnames meaningful?
	Path Permission Checking
	Profile Permissions
	System Calls Taking File Handles, At System Calls
	File Descriptor Passing and Revalidation
	Deleted Files
	The access System Call
	The ptrace System Call
	Secure Execution
	Exec Mode Merging in Profiles, Exact Matches
	Capabilities
	The sysctl System Call and /proc/sys
	Subprofiles aka. Hats
	Association of Profiles with Processes
	Profile Loading, Replacement, and Removal

	AppArmor Walk-Through
	Kernel Patches and Configuration
	The securityfs file system
	Profile Loading
	Anatomy of a Profile
	Logging
	Generating Profiles By Hand

