
Theoretical Computer Science 104 (1992) 109-128

Elsevier

109

A Prolog technology theorem
prover: a new exposition and
implementation in Prolog*

Mark E. Stickel
Artificial Intelligence Center, SRI International, Menlo Park, CA 94025, USA

Abstract

Stickel, M.E., A Prolog technology theorem prover: a new exposition and implementation in

Prolog, Theoretical Computer Science 104 (1992) 109-128.

A Prolog technology theorem prover (P’ITP) is an extension of Prolog that is complete for the

full first-order predicate calculus. It differs from Prolog in its use of unification with the occurs

check for soundness, depth-first iterative-deepening search instead of unbounded depth-first search

to make the search strategy complete, and the model elimination reduction rule that is added to

Prolog inferences to make the inference system complete. This paper describes a new Prolog-based

implementation of PTTP. It uses three compile-time transformations to translate formulas into

Prolog clauses that directly execute, with the support of a few run-time predicates, the model

elimination procedure with depth-first iterative-deepening search and unification with the occurs

check. Its high performance exceeds that of Prolog-based PTTP interpreters, and it is more concise

and readable than the earlier Lisp-based compiler, which makes it superior for expository purposes.

Examples of inputs and outputs of the compile-time transformations provide an easy and precise

way to explain how PTTP works. This Prolog-based version makes it easier to incorporate PTTP

theorem-proving ideas into Prolog programs. Some suggestions are made on extensions to Prolog

that could be used to improve PITP’s performance.

1. Introduction

A Prolog technology theorem prover (PlTP) is an extension of Prolog that is

complete for the full first-order predicate calculus 1391. Its name connotes two

Correspondence to: Mark E. Stickel, Artificial Intelligence Center, 333 Ravenswood Avenue, Menlo Park,
CA 94025, USA.

* This is a revised version of a paper presented at the International Symposium on Design and

Implementation of Symbolic Computation Systems, Capri, Italy, April 1990.

This research was supported by the National Science Foundation under Grants CCR-8611116 and

CCR-8922330. The views and conclusions contained herein are those of the author and should not be

interpreted as necessarily representing the official policies, either expressed or implied, of the National

Science Foundation or the United States government.

0304-3975/92/$05.00 @ 1992-Elsevier Science Publishers B.V. All rights reserved

110 M. E. Stickel

things: PTTP employs Prolog technology in its implementation. It is also a technology

theorem prover in the same way that TECH was a technology chess program [lo],
i.e., it is a “brute force” theorem prover that relies less on detailed analysis than

on high-speed execution of small logical steps and whose capabilities will increase

as Prolog machine technology progresses. We present here a new exposition and

implementation of PTTP that uses Prolog to explain and implement PTTP.

PTTP is characterized by the use of sound unification with the occurs check where

necessary, the complete model elimination inference procedure rather than just

Prolog inference, and the depth-first iterative-deepening search procedure rather

than unbounded depth-first search. These particular inference and search methods

are used instead of other complete methods because they can be implemented using

basically the same implementation ideas, including compilation, that enable Prolog’s

very high inference rate. Other inference systems and search methods may explore

radically different and smaller search spaces than P’ITP, but PTTP’s design enables

it to come closer to matching Prolog’s inference rate.

Several PTTP-like systems have been implemented:

l a Lisp-based interpreter [37];

l a Lisp-based compiler [39];

l F-Prolog, a Prolog-based interpreter [45];

l Expert Thinker, a commercial version of F-Prolog [32];

l Parthenon [3] and METEOR [2], parallel implementations based on the Warren

abstract machine and SRI model for OR-parallel execution of Prolog, for shared-

memory and nonuniform-access memory machines;

l SETHEO [18] and PARTHEO [33], sequential and parallel Warren abstract

machine implementations inspired by the connection method with input-formula

preprocessing and additional inference and search strategy options.

Several other deduction systems developed in recent years also use features associ-

ated with PTTP, such as compiled inference operations for the full first-order

predicate calculus, especially for linear strategies, and the use of depth-first iterative-

deepening search in deduction.

Besides being useful for deduction, the model elimination procedure and PTTP

can be extended for use in abductive reasoning in diagnosis [30,6,7], design

synthesis [8], and natural-language interpretation [11,41,42]. Adding the capability

to “skip” and thereby assume literals instead of prove them permits this extension

from deductive to abductive reasoning [24,34, 131. The model elimination procedure

and PTTP can then play a fundamental role in the computation of default logics

[4,29], circumscription [3 1,141, and truth-maintenance systems [121.

We present here a new implementation of Prolog using a Prolog-based compiler.

First-order predicate calculus formulas are translated by the PTTP compiler, written

in Prolog, to Prolog clauses that are compiled by the Prolog compiler and will then

directly execute the PTTP inference and search procedure.

The new implementation has several advantages. First, its performance is high,

although still not equal to that of the Lisp-based compiler implementation.

A Prolog technology theorem prover 111

Second, the Prolog-based PTTP should generally produce much shorter object

code than our Lisp-based compiler and compilation speed should also be improved.

The Prolog clauses produced by the PTTP compiler typically will be compiled by

the Prolog compiler to a concise abstract-machine target language. Our Lisp-based

PTTP compiled its input to Lisp code that was then compiled to machine code

rather than a Prolog abstract-machine language, so object code could be quite large

and compilation time long.

The code for the Prolog-based version is also shorter and more perspicuous than

that for the Lisp-based version. Modifiability is enhanced. Elements of PTTP, like

logical variables and backtracking, that are basic features of Prolog had to be

explicitly handled in the Lisp version of the PTTP compiler. In effect, we had to

write a PTTP-to-Prolog compiler and a Prolog-to-Lisp compiler for the Lisp version;

for this Prolog-based version, only the former is necessary.

The Prolog-based version is also more readily usable by those who would like to

incorporate PTTP reasoning for some tasks into larger logic programs written in

Prolog. Since the output of this PTTP-to-Prolog compiler is pure Prolog code, it is

easy to achieve parallel execution of PTTP inference by simply executing the code

on any parallel implementation of standard, sequential Prolog. PTTP has been run

essentially unaltered on the Aurora OR-parallel implementation of Prolog [21].

Even prior to the measurement and tuning we plan to do to optimize its performance

on Aurora, PTTP has demonstrated good speedup on large enough problems.

Finally, we feel that this version of PITP in Prolog has pedagogical value. This

description, and the code for the PTTP-to-Prolog compiler, explain clearly and

precisely the principles of a Prolog technology theorem prover. Example inputs and

outputs of the transformations used by PTTP clearly describe PTTP’s operation.

We illustrate by example PTTP’s recipe for transforming first-order predicate

calculus formulas to Prolog clauses that, when executed, perform the complete

model elimination theorem-proving procedure on the formulas.

First-order predicate calculus formulas are first translated to Prolog clauses and

their contrapositives. The exact input format allowed is a conjunction of assertions

that are in negation normal form (possibly nested conjunctions and disjunctions of

literals) and a conclusion that is a conjunction of literals. The assertions are implicitly

universally quantified and the conclusion is implicitly existentially quantified; it is

assumed that all quantifiers have been removed previously by skolemization. It

would be easy to extend the input format to other connectives and to do the

skolemization. We will not describe the translation process, since it is not specific

to PTTP. The resulting Prolog clauses are then transformed to new ones that

incorporate sound unification, bounded search, and model elimination inference.

The recipe uses the following three compile-time transformations.

l A transformation for sound unification that linearizes clause heads and moves

unification operations that require the occurs check into the body of the clause

where they are performed by a new predicate that does sound unification with

the occurs check.

112 ME. Srickel

l A transformation for complete depth-bounded search that adds extra arguments

for the input and output depth bounds to each predicate and adds depth-bound

test and decrement operations to the bodies of nonunit clauses.

l A transformation for complete model elimination inference that adds an extra

argument for the list of ancestor goals to each predicate and adds ancestor-list

update operations to the bodies of nonunit clauses; additional clauses are added

to perform the model elimination reduction and pruning operations.

The recipe also requires run-time support in the form of

l The unify predicate that unifies its arguments soundly with the occurs check.

l The search predicate that controls iterative-deepening search’s sequence of

bounded depth-first searches.

l The identical-member and unif iable_member predicates that determine if a literal

is identical to or unifiable with members of the ancestor list.

An additional compile-time transformation enables collection of the information.

required to print the proof after it is found. We will not describe this transformation,

since it is not part of PTTP’s inference or search procedure, but it does contribute

substantially to PTTP’s usefulness.

2. Sound unification

The first obstacle to general-purpose theorem proving that must be overcome is

Prolog’s use of unification without the occurs check. For efficiency, many

implementations of Prolog do not check whether a variable is being bound to a

term that contains that same variable. This can result in unsound or even nonterminat-

ing unification. The following Prolog programs “prove” that there is a number that

is less than itself and that in a group uoz = z for some z. Group theory problems

are sometimes presented as here using the literal p(X,Y,Z), which denotes xoy = z,

where 0 is the group multiplication operation. In the example below, the literal

p(X,Y,f (X,Y) 1 states that every X and Y have a product f (X,Y)).

x<(x+l). P(X,Y,f(X,Y))
:-Y<Y. : -p(a,Z,Z) .

The invalid results rely upon the creation of circular bindings for variables during

unification.

Although applying the occurs check in logic programming can be quite costly, it

is less likely to be too expensive in theorem proving, since the huge terms sometimes

generated in logic programming are less likely to appear in theorem proving.

Although it is easy to write a Prolog predicate unify that performs sound

unification with the occurs check [26,36], the trick is to invoke this unification

algorithm instead of Prolog’s whenever necessary during the unification of a goal

and the head of a clause.

A Prolog technology theorem prover 113

It has often been noted that one case in which the occurs check is certain to be

unnecessary is in the unification of a pair of terms with no variables in common

(as is the case of Prolog goals and clause heads) provided at least one of the terms

has no repeated variables (terms without repeated variables are called linear).

Based on the existence of a Prolog predicate unify that performs sound unification

with the occurs check and the observation that the occurs check is unnecessary if

the clause head is linear, there is an elegant method of transforming clauses to

isolate parts that may require unification with the occurs check [26,27]. Repeated

occurrences of variables are replaced by new variables to make the clause head

linear. Unifying the clause head with a goal can then proceed without the occurs

check and will not create any circular bindings. The new variables in the transformed

clause head are then unified with the original variables by sound unification with

the occurs check in the transformed clause body.

In the examples above, the clauses

Xc(X+l). p(X,Y,f(X,Y)).

are replaced by the clauses

x-c (x1+1) : -
unify(X,Xl).

p(X,Y,f(Xl,Yl)) :-
unify(X,Xl),

unify(Y,Yl).

in which the occurs check needs to be performed only during the calls to unify in

the body.

This transformation makes it easy to incorporate sound unification into Prolog

systems that lack it. A new predicate unify that performs sound unification must

be added, but no changes to the Prolog-machine instruction set are necessary. The

predicate unify can be written in Prolog, although writing it in a lower-level language

may yield a large improvement in performance.

For those Prolog systems that support unification of infinite terms, it is sufficient

to add to the body of a clause acyclicity tests for repeated variables in the head of

the clause.

3. Complete search strategy

Even if we disregard the incompleteness of Prolog’s inference system for theorem

proving, Prolog is still unsatisfactory as a theorem prover because many theorem-

proving problems cannot be solved using Prolog’s unbounded depth-first search

strategy.

A simple solution to this problem is to replace Prolog’s unbounded depth-first

search strategy with bounded depth-first search. Backtracking when reaching the

114 M. E. Stickel

depth bound would cause the entire search space, up to a specified depth, to be

searched completely. A complete search strategy could perform a sequence of

bounded depth-first searches: first one tries to find a proof with depth 0, then depth

1, and so on, until a proof is found. This is called depth-jirst iterative-deepening

search [15]. The effect is similar to breadth-first search except that results from

earlier levels are recomputed rather than stored. The lower storage requirements

and greater efficiency of the stack-based representation for derived clauses used in

depth-first search compensate for the recomputation cost.

Because the size of the search space grows exponentially as the depth bound is

increased, the number of recomputed results is not excessive. In particular, depth-first

iterative-deepening search performs only about b/(b - 1) times as many operations

as breadth-first search, where b is the branching factor [43] (for b = 1, when there

is no branching, breadth-first search is O(n) and depth-first iterative-deepening

search is O(n’), where n is the depth). Korf [15] has shown that depth-first

iterative-deepening search is asymptotically optimal among brute-force search

strategies in terms of solution length, space and time: it always finds a shortest

solution; the amount of space required is proportional to the depth; and, although

the amount of time required is exponential, this is the case for all brute-force search

strategies; in general, it is still only a constant factor more expensive than breadth-first

search.

Consider the following fragment of a set of axioms of group theory:

p(e.X,X). % left identity

P(U,Z,W) :- p(X,Y,U), p(Y,Z,V), p(X,V,W).% associativity clause (1 of 2)

Use of these clauses can be controlled during depth-first iterative-deepening search

by adding extra arguments for the depth bound before and after the literal is proved.

The depth bound is reduced by one at each inference step and the computation is

allowed to proceed only if the depth bound remains nonnegative. The transformed

clauses are:

p(e,X,X,DepthIn,DepthOut) :-

DepthIn >= 1, DepthOut is DepthIn - 1

p(U,Z,W.DepthIn,DepthOut) :-

DepthIn >= 1, Depth1 is DepthIn - 1,

p(X,Y,U,Depthl,Depth2),

p(Y.Z,V,DepthP,DepthS),

p(X,V,W,Depth3,DepthOut).

Counting inferences at the time they are performed as above is comparatively

inefficient. The depth bound is often reached with many goals still pending; the

search should have been stopped earlier. Reducing the depth bound when subgoals

are added to the set of pending goals by an inference operation instead of when

they are removed results in much better performance through earlier cutoffs and

A Prolog technology theorem prover 115

lower overhead. In this method, the transformed clauses are:

p(e,X,X,Depth,Depth).

p(U,Z,W,DepthIn,DepthOut) :-

DepthIn >= 3, Depth1 is DepthIn - 3,

p(X,Y,U,Depthl,Depth2),

p(Y,Z,V,Depth2,Depth3),

p(X,V,W,Depth3,DepthOut).

Technically, this employs the iterative-deepening A* algorithm [16], not simply

depth-first iterative-deepening search, because the depth bound is reduced by the

albeit trivial admissable estimator that estimates n inference steps will be required

to prove the n subgoals in the body of a clause. Better, but still admissable, estimators

are possible [39] but may require a test of whether a potentially complementary

ancestor exists, which is costly in this implementation (see Sections 4 and 6.3).

A “driver” predicate search can be written easily to try to prove its goal argument

with progressively greater depth bounds within specified limits. The execution of

search (Goal, Max, Min , Inc) attempts to solve Goal by a sequence of bounded depth-

first searches that allow at least Min and at most Max subgoals, incrementing by Inc

between searches. Max can be specified to bound the total search effort. It can also

be reduced by specifying Min when it is known that no solution can be found with

fewer than Min subgoals. When the branching factor is small and there are few new

inferences for each additional level of search, total search effort may be reduced

by skipping some levels by specifying an Inc value greater than one.

The search predicate succeeds for each solution it discovers. Backtracking into

search continues the search for additional solutions. When only a single solution

(proof) is needed, the search call can be followed by a cut operation to terminate

further attempts to find a solution.

In this approach to bounded search, the number of inference steps in the proof

(i.e., the length of the proof) is bounded. Other measures on proof size could be

bounded instead. Notable alternative measures are the maximum length of the list

of ancestor goals (see Section 4) or the maximum number of instances of each

clause that are used in the proof, both of which have been used in other systems

[9,181.
None of these measures is uniformly superior to the others. A strong reason for

our preferring to bound the number of inference steps in the proof (besides its often

performing well) is the relatively slow, smooth growth in the size of the search space

as the bound is increased. Increasing the maximum allowed length of the list of

ancestor goals, or uniformly increasing the maximum number of instances of each

clause that can be used in the proof, can result in an explosive increase in the size

of the search space from one bound to the next.

When there is large, unpredictable variability in the results of searches that use

alternative cost measures, it can be beneficial to try to prove a theorem by using

multiple cost measures in parallel (e.g., by running n copies of the theorem prover)

116 M. E. Stickel

and stop as soon as one of the proof attempts succeeds. A major reason why the

SETHEO system [18] sometimes significantly outperforms PTTP is its (simulated)

parallel execution of these three search strategies (SETHEO’s overall computation

time is computed as three times the proof time for the fastest strategy).

4. Complete inference system

Prolog’s inference system is often described in terms of the reduction of the initial

list of literals in the query to the empty list by a sequence of Prolog inference steps.

Each step matches the leftmost literal in the list with the head of a clause, eliminates

the leftmost literal, and adds the body of the clause to the beginning of the list. If

the list of literals is : - ql, . . ,qn then the lists

:- q2,...,qn

:- pl,...,pm,q2,...,qn

can be derived by resolution with the clauses ql and ql : - pl, . . . ,pm.

Prolog’s incompleteness for non-Horn clauses can be demonstrated by its failure

to prove Q from P v Q and 1P v Q. All the contrapositive clauses of P v Q and

1PvQ

q : - not-p.

p :- not-q.

q :- p.

not-p :- not-q.

are insufficient to reduce :- q to the empty list of literals. We represent the comple-

ment of the literal p by not-p. Rather than use a negation operator, we use pairs

of predicate names p and not-p, q and not-q, and so on.

Prolog employs the input restriction of resolution; derived clauses are allowed to

be resolved only with input clauses. Although input resolution is complete for Horn

clauses, it is incomplete in general. However, the linear restriction of resolution, in

which derived clauses can be resolved with their own ancestor clauses or with input

clauses, is complete in general.

The model elimination (ME) procedure [19,201 can be viewed as a very convenient

and efficient way to implement linear resolution. It is a complete inference system

for non-Horn as well as Horn sets of clauses. The SL resolution procedure [17] is

similar; the principal difference is its need for an additional factoring operation.

Prolog’s inference system is often referred to as SLD resolution (SL resolution for

definite, i.e., Horn, clauses). The model elimination procedure does not eliminate

the leftmost literal in the resulting list of literals as Prolog does, but instead retains

it as a framed literal:

:- [qll,q2,...,qn
:- pl,... ,pm,lqll,q2,....qn

A Prolog technology theorem prover 117

The literal ql is framed (and shown as [qll to signify its framed status); the literals

pl,... ,pm are unframed; the literals 92, . .qn are framed or unframed as they

were in :- ql,... ,qn. Leftmost framed literals are removed immediately.

The ME reduction inference rule uses framed literals to eliminate complementary

literals:

:- q2....,qn

can be derived from : - ql, . . . , [qil, . . . ,qn if ql is complementary to some framed

literal qi.

This inference rule makes it possible to prove Q from P v Q and 1P v Q:

:- q % initial goal

:- p,[ql % resolve with q :- p

:- not_q,[p],[q] % resolve with p :- not-q

:- [pl,[ql % use ME reduction rule
._ % delete leftmost framed literals

The ME reduction rule employs reasoning by contradiction. If, as in the above

proof, in trying to prove Q, we discover that Q is true if P is true and also that P

is true if 1Q is true, then Q must be true. The rationale is that Q is either true or

false; if we assume that Q is false, then P must be true, and hence Q must also be

true, which is a contradiction: therefore, the hypothesis that Q is false must be

wrong and Q must be true.

The list of framed literals to the right of a literal is just the list of that goal’s

ancestors. The list of ancestor literals can be passed in an extra argument position;

the current goal can be added to the front of the list and the new list passed to

subgoals in nonunit clause bodies.

The clauses

p(e,X,X).

P(U,Z,W) :- P(X,Y,U), P(Y,Z,V), P(X,V,W).

can be transformed to

p(e,X,X,Ancestors).

p(U,Z,W,Ancestors) :-

NewAncestors = [p(U,Z,W) 1 Ancestors],

p(X,Y,U,NewAncestors), p(Y,Z,V,NewAncestors),

p(X,V,W,NewAncestors).

An extra clause that performs the ME reduction operation is included in each

transformed procedure:

p(X,Y,Z,Ancestors) :- unifiable_member(not_p(X,Y,Z),Ancestors).

This clause succeeds each time the literal p(X,Y, Z) can be made complementary to

an ancestor literal. The unifiable-member predicate is a membership-testing predi-

cate that uses sound unification with the occurs check.

118 M. E. Stickel

For propositional goals, the ME reduction operation can be optimized:

p(Ancestors) :- identical_member(not_p,Ancestors), !

The identical-member predicate tests whether a literal is identical (by using the ==

predicate) to a literal in the list.

In addition, an extra clause at the beginning of each procedure that eliminates

some cases of looping has been found to be cost-effective. The model elimination

procedure remains complete with this search-space pruning by identical ancestor

operation.

p(X,Y,Z,Ancestors) :- identical_member(p(X,Y,Z),Ancestors), !, fail.

This pruning operation eliminates the possibility of infinite branches in the case

of propositional problems and some more general problems, which can then be

solved, if desired, with unbounded instead of bounded search.

A problem with unrestricted use of the reduction operation is some unnecessary

redundancy in the search space. For example, in addition to the earlier proof we

gave, Q can also be proved from P v Q and 1 P v Q by

:- q % initial goal

: - not-p, Iql % resolve with q :- not-p

:- not_q,Inot_pl,lql % resolve with not-p :- not-q

:- [not-pl,[ql % use ME reduction rule

:- % delete leftmost framed literals

Note that when solving not-p by reduction by the ancestor goal p, q is an intervening

ancestor goal in the first proof and not-q is an intervening ancestor goal in the

second. Whenever a reduction operation applies to a goal and an ancestor goal with

intervening ancestor goals Q1 , . . . , Qn, there is an alternative deduction with inter-

vening ancestor goals -IQ~, . . . , 19, (i.e., the complements of the goals, in reverse

order). By assigning labels from (-1, 0, +l} in a particular way to literals in the

contrapositives, and allowing reduction only if the labels of the goal to be reduced

and the intervening ancestor goals sum to greater than zero, the footholdformat will

eliminate one of the two alternative deductions [35].

A positive rejnement of model elimination also reduces the number of allowable

reduction operations [28]. In this refinement, only goals that are positive literals

are eligible for solution by the reduction operation, and thus only negative-literal

ancestor goals need be recorded. The need to record fewer ancestors can make

inference faster and also make caching intermediate results more feasible, since a

cache “hit” could occur for goals with the same negative ancestors instead of for

goals with all the same ancestors.

We have tried these refinements, but they are not part of “standard” PTTP. They

have some disadvantages as well as their obvious advantages, and the tradeoffs have

not yet been fully evaluated. The foothold format adds some complexity and run-time

A Prolog technology theorem prover 119

cost. Both refinements sometimes eliminate the shortest model elimination proof

and make it necessary to search deeper to find a proof (there may still be a net

benefit [25]). The positive refinement makes it more frequently necessary to add

the negation of the query as an additional assertion; PTTP’s model elimination

procedure requires this only when seeking indefinite answers.

Indefinite answers are a feature of full first-order predicate calculus theorem

proving that is absent in Prolog. Prolog and PTTP can compute answers to queries

as well as determine their truth. When provided with the goal P(x), they will attempt

to find terms t such that p(t) is true. In theorem proving with non-Horn clauses,

however, there may be indefinite answers. For example, in proving 3xP(x) from

P(a) v P(b), there is no single term t for which it is known that P(t) is true.

The example can be expressed in PTTP as

p(a) :- not-p(b).

p(b) :- not-p(a).

:- p(x).

These assertions and the described inference procedure are still insufficient to

solve the problem. To solve problems with indefinite answers, it is necessary to add

the negation of the query as another assertion (n contrapositive assertions if the

query has n literals).

In this example, addition of the Prolog assertion not-p(Y) results in the discovery

of two proofs (p(X) can be matched with p(a) and not-p(Y) with not-p(b), and

vice versa for the second proof). Note that no matter how many alternatives may

appear in an indefinite answer (e.g., four in the case of proving 3xP(x) from

P(a) v P(b) v P(c) v P(d)), only a single occurrence of the goal’s negation not-p(Y)

need be added, since any assertion can always be used arbitrarily many times with

different instantiations. To extract an indefinite answer from a proof, one instance

of the query is included for each use of the query in the deduction (i.e., its use as

the initial list of goals and each use of its negation).

PTTP can thus be used to derive either definite or indefinite answers. As in Prolog,

definite answers can be derived by simply solving a query. Indefinite answers can

be obtained by solving the query with its negation included among the axioms and

examining the proof to find the query’s instantiations.

Unfortunately, because the derivation of indefinite answers requires inclusion of

the query’s negation among the axioms, an otherwise static assertional database

may have to be modified and partly recompiled when indefinite answers are sought.

If PTTP were to use the positive refinement of model elimination instead of the

standard model elimination procedure, the negation of the query would have to be

included even in the case of definite answers. For example, in proofs of 1P from

1P v Q and 1P v lQ, the subgoal P cannot be solved by reduction in the positive

refinement, so it must be solved by use of the query’s negation l?

Finally we note that PTTP can handle nonclausal assertions and goals in the same

manner as Prolog.

120 M.E. Stickel

For example, the clauses

P(U.Z.W) :- P(X,Y,U), p(Y,Z,V), P(X.V,W).
% associativity clause (1 of 2)

P(X,V,W) :- P(X.Y,U), P(Y.Z.V), P(U,Z,W).

% associativity clause (2 of 2)

can be replaced by the single clause

P(U*Z,W) :- P(X,V,W), ((P(X,Y,U), p(Y,Z,V)) ; (p(U,Y,X), p(Y,V,Z))).

This can result in a substantially diminished search space. Wilkins [46] developed

the first nonclausal version of the model elimination procedure and nonclausal

formulas are also a vital feature of the TABLOG logic programming language [23].

If the query is nonclausal, its negation must be included among the assertions

even when only definite answers are sought. For example, the proof of P(a) v P(b)

from P(a) v P(b) requires the clauses

da) : - not-p(b).

p(b) :- not-p(a).

not-p(a).

not-p(b).

:- p(a); p(b).

where the extra clauses not-p(a) and not_p(b) comprise the negation of the query.

Further refinement of the inference system may make it unnecessary to include the

negation of the query among the assertions.

Another presentation of the model elimination procedure and its implementation

in the manner of Prolog can be found in Maier and Warren [22].

5. Example

Following is a sample model elimination proof found by PTTP. This is Example 8

from Chang and Lee [5, pp. 298-3051, for which statistics are presented in Table 1.

The special literal query is used to specify the initial goal in the proof attempt.

The literal search((p(X) , d(X,a))) attempts to solve the goals p(X) and d(X,a)

by using depth-first iterative-deepening search; the conjoined cut operation ! discon-

tinues the search after the first solution is found.

A clause-by-clause description of the input is as follows: (1) a is greater than 1;

(2) x divides x; (3) if x is not prime, then it has a divisor g(x) that is (4) greater

than 1 and (5) less than x; (6) the negation of the theorem, necessary when seeking

A Prolog technology theorem prover 121

indefinite answers; (7) if x divides y, and y divides z, then x divides z; (8) the

induction hypothesis that for all x between 1 and a there is a prime f(x) that (9)

divides x; (10) the theorem that a has a prime divisor.

PTTP input formulas:

1 l(l,a).

2 d(X,X).

3 P(X) ; d(g(X),X).

4 p(X) ; l(l,g(X)).

5 P(X) ; l(g(X),X).

6 not-p(X) ; not_d(X,a).

‘7 not_d(X,Y) ; not_d(Y,Z:) ; d(X,Z).

8 not_l(l,X) ; not_lo(,a) ; p(f(X)).

9 not_l(l,X) ; not_l(X,a) ; d(f(X),X).

IO query :- search((p(X) , d(X,a))) , !.

Begin cost 0 search...

Begin cost 1 search... 3 inferences so far.

Begin cost 2 search... 9 inferences so far.

Begin cost 3 search... 27 inferences so far.

Begin cost 4 search... 57 inferences so far.

Begin cost 5 search... 118 inferences so far.

Begin cost 6 search... 212 inferences so far.

Begin cost 7 search... 405 inferences so far.

Begin cost 8 search... 700 inferences so far.

Begin cost 9 search... 1317 inferences so far.

Begin cost IO search... 2291 inferences so far.

Begin cost 11 search...

Proof:

Goal# Wff # Wff Instance
--__- ___- _________-__

101 10 query :- [II, [131.

[II 4 p(a) :- [21.

121 8 not_l(l,g(a)) :- 131, 151.

[31 5

(41 red

[51 6

161 7

[71 9
181 red

191 5
[IO] red

l(g(a),a) :- 141.
not-p(a).

not_p(f(g(a))) :- 161.

d(f(g(a)),a) :- 171

d(f(g(a)),g(a))

l(l,g(a)).
l(g(a),a) :-

not-p(a).

I [Ill.

:- 181 , 191.

1101.

122 M. E. Stickel

[Ill 3 d(g(a),a) :- [121.
(121 red not-p(a).

1131 2 d(a,a).
3830 inferences.

A 13-step proof is discovered during the cost 11 search; each step eliminates a

single goal by resolution of reduction. The query has 2 goals and 11 are introduced

by resolution operations, totalling 13. The proof is printed as a list of the final

instantiations of the clauses that are used in each proof step. The initial clause is

query :- p(a) , d(a,a). Its subgoals are p(a) and d(a,a) whose solutions start

on lines [l] and [131. Indentation is used to help identify subgoal relationships.

In this proof, lines [4], [8], [lo] and [12] show subgoals being solved by the

reduction operation. In particular, the goals not-p(a) of lines [4], [lo] and [12]

match the complement of their ancestor goal p(a) in line [11, while the goal 1(1, g(a))

of line [8] matches the complement of its ancestor goal not-1 (1 ,g(a)) in line [2].

Examination of the proof shows clauses 10 and 6, the theorem and its negation,

each appearing once in the proof. The instantiations used reveal the answer to be

that either (a) a is prime and a divides a or (b)f(g(a)), a prime divisor of a divisor

of a, divides a.

This problem requires all of PTlP’s extensions of Prolog: sound unification,

complete search, the reduction operation, and indefinite answers.

6. Evaluation

The cost of PITP compared to Prolog in terms of size of the input can be

determined as follows.

l A Prolog clause is required for each literal (all contrapositives are required).

l Two clauses are added to each procedure: one for the model elimination reduction

operation and one for the identical-ancestor pruning operation.

l An extra unify literal is added to the body of a clause for each repeated occurrence

of a variable in the head of the clause.

l Three extra literals are added to the body of each nonunit clause: one to test the

depth bound, one to decrement it, and one to save the head on the list of ancestor

goals.

l Two extra arguments are added to each literal for the input and output depth

bounds.

l One (or more-our implementation uses two) extra argument is added to each

literal for the list of ancestor goals.

l Additional arguments and literals may optionally be added to compute the

information needed to print the proof after it is found.

A Prolog technology theorem prover 123

Table 1 gives results for the examples that appear in Chang and Lee [5, pp. 298-

3051, for both the Lisp implementation [39] and this Prolog implementation of

PTTP running on a Symbolics 3600 with IFU. The Prolog implementation performs

one thousand to three thousand model elimination inferences per second. This is a

high inference rate for a theorem prover, although it is low for Prolog. The Lisp

implementation of PTTP is somewhat more efficient.

We examine here some sources of inefficiency in this Prolog implementation of

PTTP. Because many of these are inherent limitations of Prolog, this discussion can

be taken as identifying some problems with Prolog that inhibit the development of

the highest possible performance PTTP in Prolog and arguing for particular

extensions to Prolog. Similar extensions exist in some Prolog implementations. In

particular, there have been many proposed schemes for destructive assignment

operations on data structures or global variables, though none has become standard

or widely available.

6.1. InefJiciency of sound unification

The sound unification procedure with the occurs check is written in Prolog. For

Prolog implementations that allow predicates programmed in lower-level languages,

it should be possible to substantially speed up the unification done by unify calls

introduced by the sound-unification transformation and unif iable_member calls

introduced by the complete-search transformation. Ideally, Prolog systems should

provide an efficient unify predicate.

The principal reason for the Lisp implementation of PTTP performing fewer

inferences than the Prolog implementation is that the Lisp implementation performs

a cut operation if the head of a unit clause subsumes rather than merely unifies

Table 1

PITP Performance on Chang and Lee examples

Example Number of Depth of

clauses proof

Lisp implementation Prolog implementation

Number of Run time Number of Run time

inferences (set) inferences (set)

4 5 0.002 5 0.005

10 1589 0.373 1938 0.637

10 206 0.046 264 0.095

7 26 0.005 32 0.010

4 4 0.001 4 0.002

7 26 0.005 32 0.010

6 24 0.004 24 0.006

13 3104 0.652 3830 2.522
10 163 0.027 191 0.135

Total 5147 1.115 6320 3.422

124 M. E. Stickel

with the goal. For example, no alternatives need be tried, and a cut operation can

be performed if the goal p(e,a,a) is solved by the unit clause p(e,X,X), since the

goal has been solved without instantiation. But if the goal p(e,Y ,a) is solved with

this clause, alternatives that do not match Y and a must still be considered. A cut

operation can likewise be performed in the ME reduction operation if a goal is

identical to the complement of an ancestor goal, not merely unifiable with it.

Determining whether to cut is done at very little cost in the Lisp implementation

of PTTP by checking whether the unification operation added any entries to the

trail. It would be desirable if this could be done equally cheaply in Prolog. Unification

with the clause head would be constrained so that the substitution would instantiate

only the head if possible, and the user would be able to determine if subsumption

occurred. This eliminates the need to perform both unification and subsumption tests.

6.2. Inejiciency of complete search

We see the possibility of only relatively small improvements of the basic method

of incorporating iterative-deepening search. The extra operations appear to be quite

efficient.

However, there is an occasionally useful optimization of the iterative-deepening

search strategy that is expensive to implement in Prolog. Suppose that, in an

exhaustive depth-bounded search, every time a goal fails due to the depth-bound

test, the number of subgoals in the clause exceeds the depth bound by more than

one. Then incrementing the depth bound by only one for the next search will surely

lead to failure again. To ensure the possibility of finding a new proof in the next

search, the depth bound should be increased by the minimum amount by which

the number of subgoals exceeds the depth bound. Adding the extra in-line code or

procedure for this in Prolog would probably be ineffective. The only way of saving

this minimum in Prolog is with database assertions, which makes accessing and

especially updating the minimum quite expensive. The extra time required would

be noticeable; only rarely would search levels be skipped in compensation.

Another example of inefficiency is the extremely high cost of optionally counting

the number of inferences so that the total can be printed at the end of each bounded

depth-first search and when a proof is found. Because inferences on success and

failure branches must both be counted, the count can be saved only with database

assertions. Assignable global variables would be much more efficient for keeping

track of the inference count and the minimum amount by which the number of

subgoals exceeds the depth bound.

6.3. Ineficiency of complete inference

The retention and access of ancestor goals in lists is quite inefficient. This

inefficiency is difficult to remedy in Prolog.

A Prolog technology theorem prover 125

There are two major problems. The first is that in the transformed clause

p(U,Z,W,Ancestors) :-

NewAncestors = [p(U,Z,W) 1 Ancestors],

p(X,Y,U,NewAncestors) , p(Y,Z,V,NewAncestors),

p(X,V,W,NewAncestors).

the goal that matches p(U,Z, W) is reconstructed and added to the front of Ancestors

to form NewAncestors. This is quite wasteful since the goal (or rather its arguments)

is already stored on the stack. Making the ancestor goal directly available to the

user as a term could eliminate the need for reconstructing it to add it to the ancestor

list.

The second problem is the retention of the goals in an unindexed linear list. So,

our implementation uses two extra arguments for ancestors-one for positive-literal

ancestors and one for negative-literal ancestors-instead of the single list described

here. The ME reduction operation will then always check for membership of a goal

in an empty list of positive-literal ancestors when the problem is Prolog-like, i.e.,

Horn clauses with negative query.

Further indexing of ancestor goals would be beneficial. Even indexing on just

the sign and predicate symbol, as in the Lisp implementation of PTTP, appreciably

reduces the number of attempted matches in the model elimination reduction and

pruning operations.

Although looking up a goal in a linear list is expensive, using a more complex

data structure may be even more costly because clause heads are added to the

ancestor list frequently (whenever solving the body of nonunit clauses) and their

addition must be temporary (the head of a clause must be in the ancestor list only

for the duration of the solution of the body).

A separate linear list could be used for each signed predicate, but this could result

in a very large number (twice the number of predicates in the problem) of extra

arguments to each predicate. Separate lists for each signed predicate are used in

the Lisp implementation of PTTP, but instead of being passed as extra arguments,

they are maintained in global variables that can be dynamically rebound.

Adding global variables that can be dynamically rebound like the special variables

of Lisp would likewise provide an efficient mechanism for Prolog to access this

information without the cost of passing the information through extra argument

positions. Global variables, if they can be dynamically rebound, can be very useful

even without destructive assignment operations. They could be a “conservative

extension” of Prolog that promotes efficiency without adding side-effects that would

damage or conceal the logical, nonprocedural interpretation of logic programs.

Anything that can be done with nonassignable, dynamically rebindable global

variables can be done in standard Prolog with some loss of efficiency, convenience,

and clarity by adding extra arguments to predicates (e.g., one for each global

variable).

126 M. E. Shekel

7. Conclusion

We have described and demonstrated by example the extension of Prolog to full

first-order predicate calculus theorem proving, with sound unification, a complete

search strategy, and a complete inference system, by means of three simple compiler

transformations. The result is an implementation of a Prolog technology theorem

prover (PTTP) in which transformed Prolog clauses perform PTT’P-style theorem

proving at a rate of thousands of inferences per second. We have also suggested

some extensions to Prolog that would enable higher performance.

Writing the transformations in Prolog and transforming first-order predicate

calculus formulas to Prolog clauses minimizes the effort necessary to implement a

PTTP, makes PTTP-style theorem proving readily available in Prolog, and makes

it easy to explain how PTTP theorem proving works.

PTTP’s high inference rate is achieved at the cost of not allowing more flexible

search strategies or elimination of redundancy in the search space by subsumption.

Although PTTP is one of the fastest theorem provers in existence when evaluated

by its inference rate and performance on easy problems, and it has been used to

solve reasoning problems in planning and natural-language-understanding systems

effectively, its high inference rate can be overwhelmed by its exponential search

space and it is unsuitable for many difficult theorems for which conventional theorem

provers have demonstrated some success.

Besides being used as a stand-alone theorem prover, PITP can play a useful

subordinate role in the proof of difficult theorems if the theorem can be decomposed

into manageable chunks [44], by performing fast refutation checks on newly derived

clauses [l], or by executing the theory resolution [38] or linked inference principle

[47] procedures. We are currently investigating the latter approach by developing

an extension of PTTP that, instead of proving a query outright, finds single literal

assumptions that would suffice to complete a proof. This “Unit-Resulting PTTP”

can then perform by fast, compiled inference operations essentially the computation

of linked unit-resulting resolution and can be used in a larger deduction system in

the same manner.

A technical report contains full source code and sample output for PTTP in Prolog

[401.

Acknowledgements

I would like to thank Fernando Pereira and Mabry Tyson for their useful comments

on the text of this paper and to thank Fernando for giving me feedback on the

Prolog code in the technical report as well.

A Prolog technology theorem prover 127

References

[II

[21

[31

r41

[51

[61

[71

PI

[91

[lOI
[Ill

r121

r131

[I41

[I51

[I61

r171

[I81

[I91
r201
[211

WI
u31

u41

u51
[26l

[271

G. Antoniou and H.J. Ohlbach, Terminator, in: Proc. 8th Internat. Joint Con$ on ArtiJcial Intelligence,

Karlsruhe, Germany, August 1983, 916-919.

0. Astrachan, METEOR: model elimination theorem proving for efficient OR-parallelism, Masters

Thesis, Department of Computer Science, Duke University, 1989.

S. Bose, E.M. Clarke, D.E. Long and S. Michaylov, Parthenon: a parallel theorem prover for

non-Horn clauses, in: Proc. 4th IEEE Symp. on Logic in Computer Science, Asilomar, CA, June 1989.

M.A. Casanova, R. Guerreiro and A. Silva, Logic programming with general clauses and defaults

based on model elimination, in: Proc. 11th Internat. Joint Conf: on Artificial Inrelligence, Detroit,

MI, August 1989, 395-400.

C.L. Chang and R.C.T. Lee, Symbolic Logic and Mechanical Theorem Proving (Academic Press,

New York, 1973).
P.T. Cox and T. Pietrzykowski, Causes for events: their computation and applications, in: Proc.

8th Conf: on Automated Deduction, Oxford, July 1986, 608-621.

P.T. Cox and T. Pietrzykowski, General diagnosis by abductive inference, in: Proc. 1987 Symp. on

Logic Programming, San Francisco, CA, August 1987, 183-189.

J.J. Finger, Exploiting constraints in design synthesis, Ph.D. dissertation, Department of Computer

Science, Stanford University, Stanford, CA, February 1987.

S. Fleisig, D. Loveland, A. Smiley and D. Yarmush, An implementation of the model elimination

proof procedure, J. ACM 21 (1974) 124-139.

J.J. Gillogly, The technology chess program, Arrijcial Infelligence 3 (1972) 145-163.

J.R. Hobbs, M. Stickel, D. Appelt and P. Martin, Interpretation as abduction. Technical Note 499,

Artificial Intelligence Center, SRI International, Menlo Park, CA, December 1990.

K. lnoue, Procedural interpretation for an extended ATMS, Technical Report TR-547, Institute for

New Generation Computer Technology, Tokyo, March 1990.

K. Inoue, Consequence-finding based on ordered linear resolution, in: Proc. 12fh Infernat. Joint

Conf on Artificial Inrelligence, Sydney, Australia, August 1991, to appear.

K. Inoue and N. Helft, On theorem provers for circumscription, in: Proc. 8th Biennia\ Conf of rhe

Canadian Society for Computational Studies of Intelligence, Ottawa, Canada, May 1990, 212-219.

R.E. Korf, Depth-first iterative-deepening: an optimal admissible tree search, Artijcial Inrelligence

27 (1985)97-109.

R.E. Korf, Iterative-deepening A*: an optimal admissable tree search, in: Proc. 8th Inlernat. Joint

Conf: on Artificial Infelligence, Los Angeles, CA, August 1985, 1034-1036.

R. Kowalski and D. Kuehner, Linear resolution with selection function, Artijicia1 Intelligence 2

(1971) 227-260.

R. Letz, J. Schumann, S. Bayer1 and W. Bibel, SETHEO: a high-performance theorem prover,

J. Automated Reasoning, to appear.

D.W. Loveland, A simplified format for the model elimination procedure, J. ACM 16 (1969) 349-363.

D.W. Loveland, Automated Theorem Prooingc A Logical Basis (North-Holland, Amsterdam, 1978).

E. Lusk, R. Butler, T. Disz, R. Olson, R. Overbeek, R. Stevens, D.H.D. Warren, A. Calderwood,

P. Szeredi, S. Haridi, P. Brand, M. Carlsson, A. Ciepelewski and B. Hausman, The Aurora or-parallel
Prolog system, New Generation Compul. 7 (1990) 243-271.

D. Maier and D.S. Warren, Computing with Logic (Benjamin/Cummings, Menlo Park, CA, 1988).

Y. Malachi, Nonclausal logic programming, Ph.D. Dissertation, Department of Computer Science,

Stanford University, March 1986.

E. Minicozzi and R. Reiter, A note on linear resolution strategies in consequence finding, Artificial

Intelligence 3 (1972) 175-180.

X. Nie, Model elimination and its positive refinement, AAR Newsletter 15 (May 1990) 2-3.

R.A. O’Keefe, Programming meta-logical operations in Prolog, DA1 Working Paper No. 142,
Department of Artificial Intelligence, University of Edinburgh, June 1983.
D.A. Plaisted, Non-Horn clause logic programming without contrapositives, J. Automated Reasoning

4 (1988) 287-325.

128 M. E. Stickel

[28] D.A. Plaisted, A sequent-style model elimination strategy and a positive refinement, /. Automated

Reasoning 6 (1990) 389-402.

[29] D. Poole, A logical framework for default reasoning, Artijcial Intelligence 36 (1988) 27-47.

[30] H.E. Pople, Jr., On the mechanization of abductive logic, in: Proc. 3rd Internat. Joint Conf: on

Artijicial Intelligence, Stanford, CA, August 1973, 147-152.

[31] T.C. Przymusininski, On algorithm to compute circumscription, Artificial Intelligence 38 (1989)

49-73.

[321
I331

[341

[351

[361
[371
[381
[391

[401

[411

[421

[431

[441

[451

[461

[471

R.W. Satz, Expert Thinker software package. Transpower Corporation, Parkerford, PA, 1988.

J. Schumann and R. Letz, PARTHEO: a high-performance parallel theorem prover, in: Proc. 10th

Internat. Conf: on Automated Deduction, Kaiserslautern, Germany, July 1990, 40-56.

P. Siegel, Representation et utilisation de la connaissance en calcul propositionnel, These d’Etat,

Universitt de Aix-Marseille II, 1987.

B. Spencer, Avoiding duplicate explanations, in: Proc. North-American Conf: on Logic Programming,

Austin, TX, October 1990.

L. Sterling and E. Shapiro, The Art of Prolog (MIT Press, Cambridge, MA, 1986).

M.E. Stickel, A Prolog technology theorem prover, New Generation Computing 2 (1984) 371-383.

M.E. Stickel, Automated deduction by theory resolution, J. Automated Reasoning 1 (1985) 333-355.

M.E. Stickel, A Prolog technology theorem prover: implementation by an extended Prolog compiler,

J. Automated Reasoning 4 (1988) 353-380.

M.E. Stickel, A Prolog technology theorem prover: a new exposition and implementation in Prolog,

Technical Note 464, Artificial Intelligence Center, SRI International, Menlo Park, CA, June 1989.
M.E. Stickel, A Prolog-like inference system for computing minimum-cost abductive explanations

in natural-language interpretation, Ann. Math. Artijcial InteHigence, to appear.

M.E. Stickel, Rationale and methods for abductive reasoning in natural-language interpretation,

in: Proc. IBM Symp. on Natural Language and Logic, Hamburg, Germany, May 1989.

M.E. Stickel and W.M. Tyson, An analysis of consecutively bounded depth-first search with

applications in automated deduction, in: Proc. 9th Internat. Joint Conf: on Artificial Intelligence, Los

Angeles, CA, August 1985, 1073-1075.
M. Tarver, An examination of the Prolog technology theorem prover, in: Proc. 10th Internal. Conf

on Automated Deduction, Kaiserslautern, Germany, July 1990, 322-335.

Z.D. Umrigar and V. Pitchumani, An experiment in programming with full first-order logic, in:

Proc. 1985 Symp. on Logic Programming, Boston, MA, July 1985, 40-47.

D.E. Wilkins, QUEST: a non-clausal theorem proving system, M.Sc. Thesis, University of Essex,

England, 1973.
L. Wos, R. Veroff, B. Smith and W. McCune, The linked inference principle, II: the user’s viewpoint,

in: Proc. 7th Internat. Conf: on Automated Deduction, Napa, CA, May 1984, 316-332.

