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Abstract 

Stickel, M.E., A Prolog technology theorem prover: a new exposition and implementation in 

Prolog, Theoretical Computer Science 104 (1992) 109-128. 

A Prolog technology theorem prover (P’ITP) is an extension of Prolog that is complete for the 

full first-order predicate calculus. It differs from Prolog in its use of unification with the occurs 

check for soundness, depth-first iterative-deepening search instead of unbounded depth-first search 

to make the search strategy complete, and the model elimination reduction rule that is added to 

Prolog inferences to make the inference system complete. This paper describes a new Prolog-based 

implementation of PTTP. It uses three compile-time transformations to translate formulas into 

Prolog clauses that directly execute, with the support of a few run-time predicates, the model 

elimination procedure with depth-first iterative-deepening search and unification with the occurs 

check. Its high performance exceeds that of Prolog-based PTTP interpreters, and it is more concise 

and readable than the earlier Lisp-based compiler, which makes it superior for expository purposes. 

Examples of inputs and outputs of the compile-time transformations provide an easy and precise 

way to explain how PTTP works. This Prolog-based version makes it easier to incorporate PTTP 

theorem-proving ideas into Prolog programs. Some suggestions are made on extensions to Prolog 

that could be used to improve PITP’s performance. 

1. Introduction 

A Prolog technology theorem prover (PlTP) is an extension of Prolog that is 

complete for the full first-order predicate calculus 1391. Its name connotes two 
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things: PTTP employs Prolog technology in its implementation. It is also a technology 

theorem prover in the same way that TECH was a technology chess program [lo], 
i.e., it is a “brute force” theorem prover that relies less on detailed analysis than 

on high-speed execution of small logical steps and whose capabilities will increase 

as Prolog machine technology progresses. We present here a new exposition and 

implementation of PTTP that uses Prolog to explain and implement PTTP. 

PTTP is characterized by the use of sound unification with the occurs check where 

necessary, the complete model elimination inference procedure rather than just 

Prolog inference, and the depth-first iterative-deepening search procedure rather 

than unbounded depth-first search. These particular inference and search methods 

are used instead of other complete methods because they can be implemented using 

basically the same implementation ideas, including compilation, that enable Prolog’s 

very high inference rate. Other inference systems and search methods may explore 

radically different and smaller search spaces than P’ITP, but PTTP’s design enables 

it to come closer to matching Prolog’s inference rate. 

Several PTTP-like systems have been implemented: 

l a Lisp-based interpreter [37]; 

l a Lisp-based compiler [39]; 

l F-Prolog, a Prolog-based interpreter [45]; 

l Expert Thinker, a commercial version of F-Prolog [32]; 

l Parthenon [3] and METEOR [2], parallel implementations based on the Warren 

abstract machine and SRI model for OR-parallel execution of Prolog, for shared- 

memory and nonuniform-access memory machines; 

l SETHEO [18] and PARTHEO [33], sequential and parallel Warren abstract 

machine implementations inspired by the connection method with input-formula 

preprocessing and additional inference and search strategy options. 

Several other deduction systems developed in recent years also use features associ- 

ated with PTTP, such as compiled inference operations for the full first-order 

predicate calculus, especially for linear strategies, and the use of depth-first iterative- 

deepening search in deduction. 

Besides being useful for deduction, the model elimination procedure and PTTP 

can be extended for use in abductive reasoning in diagnosis [30,6,7], design 

synthesis [8], and natural-language interpretation [ 11,41,42]. Adding the capability 

to “skip” and thereby assume literals instead of prove them permits this extension 

from deductive to abductive reasoning [24,34, 131. The model elimination procedure 

and PTTP can then play a fundamental role in the computation of default logics 

[4,29], circumscription [3 1,141, and truth-maintenance systems [ 121. 

We present here a new implementation of Prolog using a Prolog-based compiler. 

First-order predicate calculus formulas are translated by the PTTP compiler, written 

in Prolog, to Prolog clauses that are compiled by the Prolog compiler and will then 

directly execute the PTTP inference and search procedure. 

The new implementation has several advantages. First, its performance is high, 

although still not equal to that of the Lisp-based compiler implementation. 
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Second, the Prolog-based PTTP should generally produce much shorter object 

code than our Lisp-based compiler and compilation speed should also be improved. 

The Prolog clauses produced by the PTTP compiler typically will be compiled by 

the Prolog compiler to a concise abstract-machine target language. Our Lisp-based 

PTTP compiled its input to Lisp code that was then compiled to machine code 

rather than a Prolog abstract-machine language, so object code could be quite large 

and compilation time long. 

The code for the Prolog-based version is also shorter and more perspicuous than 

that for the Lisp-based version. Modifiability is enhanced. Elements of PTTP, like 

logical variables and backtracking, that are basic features of Prolog had to be 

explicitly handled in the Lisp version of the PTTP compiler. In effect, we had to 

write a PTTP-to-Prolog compiler and a Prolog-to-Lisp compiler for the Lisp version; 

for this Prolog-based version, only the former is necessary. 

The Prolog-based version is also more readily usable by those who would like to 

incorporate PTTP reasoning for some tasks into larger logic programs written in 

Prolog. Since the output of this PTTP-to-Prolog compiler is pure Prolog code, it is 

easy to achieve parallel execution of PTTP inference by simply executing the code 

on any parallel implementation of standard, sequential Prolog. PTTP has been run 

essentially unaltered on the Aurora OR-parallel implementation of Prolog [21]. 

Even prior to the measurement and tuning we plan to do to optimize its performance 

on Aurora, PTTP has demonstrated good speedup on large enough problems. 

Finally, we feel that this version of PITP in Prolog has pedagogical value. This 

description, and the code for the PTTP-to-Prolog compiler, explain clearly and 

precisely the principles of a Prolog technology theorem prover. Example inputs and 

outputs of the transformations used by PTTP clearly describe PTTP’s operation. 

We illustrate by example PTTP’s recipe for transforming first-order predicate 

calculus formulas to Prolog clauses that, when executed, perform the complete 

model elimination theorem-proving procedure on the formulas. 

First-order predicate calculus formulas are first translated to Prolog clauses and 

their contrapositives. The exact input format allowed is a conjunction of assertions 

that are in negation normal form (possibly nested conjunctions and disjunctions of 

literals) and a conclusion that is a conjunction of literals. The assertions are implicitly 

universally quantified and the conclusion is implicitly existentially quantified; it is 

assumed that all quantifiers have been removed previously by skolemization. It 

would be easy to extend the input format to other connectives and to do the 

skolemization. We will not describe the translation process, since it is not specific 

to PTTP. The resulting Prolog clauses are then transformed to new ones that 

incorporate sound unification, bounded search, and model elimination inference. 

The recipe uses the following three compile-time transformations. 

l A transformation for sound unification that linearizes clause heads and moves 

unification operations that require the occurs check into the body of the clause 

where they are performed by a new predicate that does sound unification with 

the occurs check. 
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l A transformation for complete depth-bounded search that adds extra arguments 

for the input and output depth bounds to each predicate and adds depth-bound 

test and decrement operations to the bodies of nonunit clauses. 

l A transformation for complete model elimination inference that adds an extra 

argument for the list of ancestor goals to each predicate and adds ancestor-list 

update operations to the bodies of nonunit clauses; additional clauses are added 

to perform the model elimination reduction and pruning operations. 

The recipe also requires run-time support in the form of 

l The unify predicate that unifies its arguments soundly with the occurs check. 

l The search predicate that controls iterative-deepening search’s sequence of 

bounded depth-first searches. 

l The identical-member and unif iable_member predicates that determine if a literal 

is identical to or unifiable with members of the ancestor list. 

An additional compile-time transformation enables collection of the information. 

required to print the proof after it is found. We will not describe this transformation, 

since it is not part of PTTP’s inference or search procedure, but it does contribute 

substantially to PTTP’s usefulness. 

2. Sound unification 

The first obstacle to general-purpose theorem proving that must be overcome is 

Prolog’s use of unification without the occurs check. For efficiency, many 

implementations of Prolog do not check whether a variable is being bound to a 

term that contains that same variable. This can result in unsound or even nonterminat- 

ing unification. The following Prolog programs “prove” that there is a number that 

is less than itself and that in a group uoz = z for some z. Group theory problems 

are sometimes presented as here using the literal p(X,Y,Z), which denotes xoy = z, 

where 0 is the group multiplication operation. In the example below, the literal 

p(X,Y,f (X,Y) 1 states that every X and Y have a product f (X,Y)). 

x<(x+l). P(X,Y,f(X,Y)) 
:-Y<Y. : -p(a,Z,Z) . 

The invalid results rely upon the creation of circular bindings for variables during 

unification. 

Although applying the occurs check in logic programming can be quite costly, it 

is less likely to be too expensive in theorem proving, since the huge terms sometimes 

generated in logic programming are less likely to appear in theorem proving. 

Although it is easy to write a Prolog predicate unify that performs sound 

unification with the occurs check [26,36], the trick is to invoke this unification 

algorithm instead of Prolog’s whenever necessary during the unification of a goal 

and the head of a clause. 
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It has often been noted that one case in which the occurs check is certain to be 

unnecessary is in the unification of a pair of terms with no variables in common 

(as is the case of Prolog goals and clause heads) provided at least one of the terms 

has no repeated variables (terms without repeated variables are called linear). 

Based on the existence of a Prolog predicate unify that performs sound unification 

with the occurs check and the observation that the occurs check is unnecessary if 

the clause head is linear, there is an elegant method of transforming clauses to 

isolate parts that may require unification with the occurs check [26,27]. Repeated 

occurrences of variables are replaced by new variables to make the clause head 

linear. Unifying the clause head with a goal can then proceed without the occurs 

check and will not create any circular bindings. The new variables in the transformed 

clause head are then unified with the original variables by sound unification with 

the occurs check in the transformed clause body. 

In the examples above, the clauses 

Xc(X+l). p(X,Y,f(X,Y)). 

are replaced by the clauses 

x-c (x1+1) : - 
unify(X,Xl). 

p(X,Y,f(Xl,Yl)) :- 
unify(X,Xl), 

unify(Y,Yl). 

in which the occurs check needs to be performed only during the calls to unify in 

the body. 

This transformation makes it easy to incorporate sound unification into Prolog 

systems that lack it. A new predicate unify that performs sound unification must 

be added, but no changes to the Prolog-machine instruction set are necessary. The 

predicate unify can be written in Prolog, although writing it in a lower-level language 

may yield a large improvement in performance. 

For those Prolog systems that support unification of infinite terms, it is sufficient 

to add to the body of a clause acyclicity tests for repeated variables in the head of 

the clause. 

3. Complete search strategy 

Even if we disregard the incompleteness of Prolog’s inference system for theorem 

proving, Prolog is still unsatisfactory as a theorem prover because many theorem- 

proving problems cannot be solved using Prolog’s unbounded depth-first search 

strategy. 

A simple solution to this problem is to replace Prolog’s unbounded depth-first 

search strategy with bounded depth-first search. Backtracking when reaching the 
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depth bound would cause the entire search space, up to a specified depth, to be 

searched completely. A complete search strategy could perform a sequence of 

bounded depth-first searches: first one tries to find a proof with depth 0, then depth 

1, and so on, until a proof is found. This is called depth-jirst iterative-deepening 

search [15]. The effect is similar to breadth-first search except that results from 

earlier levels are recomputed rather than stored. The lower storage requirements 

and greater efficiency of the stack-based representation for derived clauses used in 

depth-first search compensate for the recomputation cost. 

Because the size of the search space grows exponentially as the depth bound is 

increased, the number of recomputed results is not excessive. In particular, depth-first 

iterative-deepening search performs only about b/(b - 1) times as many operations 

as breadth-first search, where b is the branching factor [43] (for b = 1, when there 

is no branching, breadth-first search is O(n) and depth-first iterative-deepening 

search is O(n’), where n is the depth). Korf [15] has shown that depth-first 

iterative-deepening search is asymptotically optimal among brute-force search 

strategies in terms of solution length, space and time: it always finds a shortest 

solution; the amount of space required is proportional to the depth; and, although 

the amount of time required is exponential, this is the case for all brute-force search 

strategies; in general, it is still only a constant factor more expensive than breadth-first 

search. 

Consider the following fragment of a set of axioms of group theory: 

p(e.X,X). % left identity 

P(U,Z,W) :- p(X,Y,U), p(Y,Z,V), p(X,V,W).% associativity clause (1 of 2) 

Use of these clauses can be controlled during depth-first iterative-deepening search 

by adding extra arguments for the depth bound before and after the literal is proved. 

The depth bound is reduced by one at each inference step and the computation is 

allowed to proceed only if the depth bound remains nonnegative. The transformed 

clauses are: 

p(e,X,X,DepthIn,DepthOut) :- 

DepthIn >= 1, DepthOut is DepthIn - 1 

p(U,Z,W.DepthIn,DepthOut) :- 

DepthIn >= 1, Depth1 is DepthIn - 1, 

p(X,Y,U,Depthl,Depth2), 

p(Y.Z,V,DepthP,DepthS), 

p(X,V,W,Depth3,DepthOut). 

Counting inferences at the time they are performed as above is comparatively 

inefficient. The depth bound is often reached with many goals still pending; the 

search should have been stopped earlier. Reducing the depth bound when subgoals 

are added to the set of pending goals by an inference operation instead of when 

they are removed results in much better performance through earlier cutoffs and 
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lower overhead. In this method, the transformed clauses are: 

p(e,X,X,Depth,Depth). 

p(U,Z,W,DepthIn,DepthOut) :- 

DepthIn >= 3, Depth1 is DepthIn - 3, 

p(X,Y,U,Depthl,Depth2), 

p(Y,Z,V,Depth2,Depth3), 

p(X,V,W,Depth3,DepthOut). 

Technically, this employs the iterative-deepening A* algorithm [16], not simply 

depth-first iterative-deepening search, because the depth bound is reduced by the 

albeit trivial admissable estimator that estimates n inference steps will be required 

to prove the n subgoals in the body of a clause. Better, but still admissable, estimators 

are possible [39] but may require a test of whether a potentially complementary 

ancestor exists, which is costly in this implementation (see Sections 4 and 6.3). 

A “driver” predicate search can be written easily to try to prove its goal argument 

with progressively greater depth bounds within specified limits. The execution of 

search (Goal, Max, Min , Inc ) attempts to solve Goal by a sequence of bounded depth- 

first searches that allow at least Min and at most Max subgoals, incrementing by Inc 

between searches. Max can be specified to bound the total search effort. It can also 

be reduced by specifying Min when it is known that no solution can be found with 

fewer than Min subgoals. When the branching factor is small and there are few new 

inferences for each additional level of search, total search effort may be reduced 

by skipping some levels by specifying an Inc value greater than one. 

The search predicate succeeds for each solution it discovers. Backtracking into 

search continues the search for additional solutions. When only a single solution 

(proof) is needed, the search call can be followed by a cut operation to terminate 

further attempts to find a solution. 

In this approach to bounded search, the number of inference steps in the proof 

(i.e., the length of the proof) is bounded. Other measures on proof size could be 

bounded instead. Notable alternative measures are the maximum length of the list 

of ancestor goals (see Section 4) or the maximum number of instances of each 

clause that are used in the proof, both of which have been used in other systems 

[9,181. 
None of these measures is uniformly superior to the others. A strong reason for 

our preferring to bound the number of inference steps in the proof (besides its often 

performing well) is the relatively slow, smooth growth in the size of the search space 

as the bound is increased. Increasing the maximum allowed length of the list of 

ancestor goals, or uniformly increasing the maximum number of instances of each 

clause that can be used in the proof, can result in an explosive increase in the size 

of the search space from one bound to the next. 

When there is large, unpredictable variability in the results of searches that use 

alternative cost measures, it can be beneficial to try to prove a theorem by using 

multiple cost measures in parallel (e.g., by running n copies of the theorem prover) 
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and stop as soon as one of the proof attempts succeeds. A major reason why the 

SETHEO system [18] sometimes significantly outperforms PTTP is its (simulated) 

parallel execution of these three search strategies (SETHEO’s overall computation 

time is computed as three times the proof time for the fastest strategy). 

4. Complete inference system 

Prolog’s inference system is often described in terms of the reduction of the initial 

list of literals in the query to the empty list by a sequence of Prolog inference steps. 

Each step matches the leftmost literal in the list with the head of a clause, eliminates 

the leftmost literal, and adds the body of the clause to the beginning of the list. If 

the list of literals is : - ql, . . ,qn then the lists 

:- q2,...,qn 

:- pl,...,pm,q2,...,qn 

can be derived by resolution with the clauses ql and ql : - pl, . . . ,pm. 

Prolog’s incompleteness for non-Horn clauses can be demonstrated by its failure 

to prove Q from P v Q and 1P v Q. All the contrapositive clauses of P v Q and 

1PvQ 

q : - not-p. 

p :- not-q. 

q :- p. 

not-p :- not-q. 

are insufficient to reduce :- q to the empty list of literals. We represent the comple- 

ment of the literal p by not-p. Rather than use a negation operator, we use pairs 

of predicate names p and not-p, q and not-q, and so on. 

Prolog employs the input restriction of resolution; derived clauses are allowed to 

be resolved only with input clauses. Although input resolution is complete for Horn 

clauses, it is incomplete in general. However, the linear restriction of resolution, in 

which derived clauses can be resolved with their own ancestor clauses or with input 

clauses, is complete in general. 

The model elimination (ME) procedure [ 19,201 can be viewed as a very convenient 

and efficient way to implement linear resolution. It is a complete inference system 

for non-Horn as well as Horn sets of clauses. The SL resolution procedure [17] is 

similar; the principal difference is its need for an additional factoring operation. 

Prolog’s inference system is often referred to as SLD resolution (SL resolution for 

definite, i.e., Horn, clauses). The model elimination procedure does not eliminate 

the leftmost literal in the resulting list of literals as Prolog does, but instead retains 

it as a framed literal: 

:- [qll,q2,...,qn 
:- pl,... ,pm,lqll,q2,....qn 
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The literal ql is framed (and shown as [qll to signify its framed status); the literals 

pl,... ,pm are unframed; the literals 92, . .qn are framed or unframed as they 

were in :- ql,... ,qn. Leftmost framed literals are removed immediately. 

The ME reduction inference rule uses framed literals to eliminate complementary 

literals: 

:- q2....,qn 

can be derived from : - ql, . . . , [qil, . . . ,qn if ql is complementary to some framed 

literal qi. 

This inference rule makes it possible to prove Q from P v Q and 1P v Q: 

:- q % initial goal 

:- p,[ql % resolve with q :- p 

:- not_q,[p],[q] % resolve with p :- not-q 

:- [pl,[ql % use ME reduction rule 
._ % delete leftmost framed literals 

The ME reduction rule employs reasoning by contradiction. If, as in the above 

proof, in trying to prove Q, we discover that Q is true if P is true and also that P 

is true if 1Q is true, then Q must be true. The rationale is that Q is either true or 

false; if we assume that Q is false, then P must be true, and hence Q must also be 

true, which is a contradiction: therefore, the hypothesis that Q is false must be 

wrong and Q must be true. 

The list of framed literals to the right of a literal is just the list of that goal’s 

ancestors. The list of ancestor literals can be passed in an extra argument position; 

the current goal can be added to the front of the list and the new list passed to 

subgoals in nonunit clause bodies. 

The clauses 

p(e,X,X). 

P(U,Z,W) :- P(X,Y,U), P(Y,Z,V), P(X,V,W). 

can be transformed to 

p(e,X,X,Ancestors). 

p(U,Z,W,Ancestors) :- 

NewAncestors = [p(U,Z,W) 1 Ancestors], 

p(X,Y,U,NewAncestors), p(Y,Z,V,NewAncestors), 

p(X,V,W,NewAncestors). 

An extra clause that performs the ME reduction operation is included in each 

transformed procedure: 

p(X,Y,Z,Ancestors) :- unifiable_member(not_p(X,Y,Z),Ancestors). 

This clause succeeds each time the literal p(X,Y, Z) can be made complementary to 

an ancestor literal. The unifiable-member predicate is a membership-testing predi- 

cate that uses sound unification with the occurs check. 
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For propositional goals, the ME reduction operation can be optimized: 

p(Ancestors) :- identical_member(not_p,Ancestors), ! 

The identical-member predicate tests whether a literal is identical (by using the == 

predicate) to a literal in the list. 

In addition, an extra clause at the beginning of each procedure that eliminates 

some cases of looping has been found to be cost-effective. The model elimination 

procedure remains complete with this search-space pruning by identical ancestor 

operation. 

p(X,Y,Z,Ancestors) :- identical_member(p(X,Y,Z),Ancestors), !, fail. 

This pruning operation eliminates the possibility of infinite branches in the case 

of propositional problems and some more general problems, which can then be 

solved, if desired, with unbounded instead of bounded search. 

A problem with unrestricted use of the reduction operation is some unnecessary 

redundancy in the search space. For example, in addition to the earlier proof we 

gave, Q can also be proved from P v Q and 1 P v Q by 

:- q % initial goal 

: - not-p, Iql % resolve with q :- not-p 

:- not_q,Inot_pl,lql % resolve with not-p :- not-q 

:- [not-pl,[ql % use ME reduction rule 

:- % delete leftmost framed literals 

Note that when solving not-p by reduction by the ancestor goal p, q is an intervening 

ancestor goal in the first proof and not-q is an intervening ancestor goal in the 

second. Whenever a reduction operation applies to a goal and an ancestor goal with 

intervening ancestor goals Q1 , . . . , Qn, there is an alternative deduction with inter- 

vening ancestor goals -IQ~, . . . , 19, (i.e., the complements of the goals, in reverse 

order). By assigning labels from (-1, 0, +l} in a particular way to literals in the 

contrapositives, and allowing reduction only if the labels of the goal to be reduced 

and the intervening ancestor goals sum to greater than zero, the footholdformat will 

eliminate one of the two alternative deductions [35]. 

A positive rejnement of model elimination also reduces the number of allowable 

reduction operations [28]. In this refinement, only goals that are positive literals 

are eligible for solution by the reduction operation, and thus only negative-literal 

ancestor goals need be recorded. The need to record fewer ancestors can make 

inference faster and also make caching intermediate results more feasible, since a 

cache “hit” could occur for goals with the same negative ancestors instead of for 

goals with all the same ancestors. 

We have tried these refinements, but they are not part of “standard” PTTP. They 

have some disadvantages as well as their obvious advantages, and the tradeoffs have 

not yet been fully evaluated. The foothold format adds some complexity and run-time 



A Prolog technology theorem prover 119 

cost. Both refinements sometimes eliminate the shortest model elimination proof 

and make it necessary to search deeper to find a proof (there may still be a net 

benefit [25]). The positive refinement makes it more frequently necessary to add 

the negation of the query as an additional assertion; PTTP’s model elimination 

procedure requires this only when seeking indefinite answers. 

Indefinite answers are a feature of full first-order predicate calculus theorem 

proving that is absent in Prolog. Prolog and PTTP can compute answers to queries 

as well as determine their truth. When provided with the goal P(x), they will attempt 

to find terms t such that p(t) is true. In theorem proving with non-Horn clauses, 

however, there may be indefinite answers. For example, in proving 3xP(x) from 

P(a) v P(b), there is no single term t for which it is known that P(t) is true. 

The example can be expressed in PTTP as 

p(a) :- not-p(b). 

p(b) :- not-p(a). 

:- p(x). 

These assertions and the described inference procedure are still insufficient to 

solve the problem. To solve problems with indefinite answers, it is necessary to add 

the negation of the query as another assertion (n contrapositive assertions if the 

query has n literals). 

In this example, addition of the Prolog assertion not-p(Y) results in the discovery 

of two proofs (p(X) can be matched with p(a) and not-p(Y) with not-p(b), and 

vice versa for the second proof). Note that no matter how many alternatives may 

appear in an indefinite answer (e.g., four in the case of proving 3xP(x) from 

P(a) v P(b) v P(c) v P(d)), only a single occurrence of the goal’s negation not-p(Y) 

need be added, since any assertion can always be used arbitrarily many times with 

different instantiations. To extract an indefinite answer from a proof, one instance 

of the query is included for each use of the query in the deduction (i.e., its use as 

the initial list of goals and each use of its negation). 

PTTP can thus be used to derive either definite or indefinite answers. As in Prolog, 

definite answers can be derived by simply solving a query. Indefinite answers can 

be obtained by solving the query with its negation included among the axioms and 

examining the proof to find the query’s instantiations. 

Unfortunately, because the derivation of indefinite answers requires inclusion of 

the query’s negation among the axioms, an otherwise static assertional database 

may have to be modified and partly recompiled when indefinite answers are sought. 

If PTTP were to use the positive refinement of model elimination instead of the 

standard model elimination procedure, the negation of the query would have to be 

included even in the case of definite answers. For example, in proofs of 1P from 

1P v Q and 1P v lQ, the subgoal P cannot be solved by reduction in the positive 

refinement, so it must be solved by use of the query’s negation l? 

Finally we note that PTTP can handle nonclausal assertions and goals in the same 

manner as Prolog. 
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For example, the clauses 

P(U.Z.W) :- P(X,Y,U), p(Y,Z,V), P(X.V,W). 
% associativity clause (1 of 2) 

P(X,V,W) :- P(X.Y,U), P(Y.Z.V), P(U,Z,W). 

% associativity clause (2 of 2) 

can be replaced by the single clause 

P(U*Z,W) :- P(X,V,W), ((P(X,Y,U), p(Y,Z,V)) ; (p(U,Y,X), p(Y,V,Z))). 

This can result in a substantially diminished search space. Wilkins [46] developed 

the first nonclausal version of the model elimination procedure and nonclausal 

formulas are also a vital feature of the TABLOG logic programming language [23]. 

If the query is nonclausal, its negation must be included among the assertions 

even when only definite answers are sought. For example, the proof of P(a) v P(b) 

from P(a) v P(b) requires the clauses 

da) : - not-p(b). 

p(b) :- not-p(a). 

not-p(a). 

not-p(b). 

:- p(a); p(b). 

where the extra clauses not-p(a) and not_p( b) comprise the negation of the query. 

Further refinement of the inference system may make it unnecessary to include the 

negation of the query among the assertions. 

Another presentation of the model elimination procedure and its implementation 

in the manner of Prolog can be found in Maier and Warren [22]. 

5. Example 

Following is a sample model elimination proof found by PTTP. This is Example 8 

from Chang and Lee [5, pp. 298-3051, for which statistics are presented in Table 1. 

The special literal query is used to specify the initial goal in the proof attempt. 

The literal search( (p(X) , d(X,a))) attempts to solve the goals p(X) and d(X,a) 

by using depth-first iterative-deepening search; the conjoined cut operation ! discon- 

tinues the search after the first solution is found. 

A clause-by-clause description of the input is as follows: (1) a is greater than 1; 

(2) x divides x; (3) if x is not prime, then it has a divisor g(x) that is (4) greater 

than 1 and (5) less than x; (6) the negation of the theorem, necessary when seeking 
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indefinite answers; (7) if x divides y, and y divides z, then x divides z; (8) the 

induction hypothesis that for all x between 1 and a there is a prime f(x) that (9) 

divides x; (10) the theorem that a has a prime divisor. 

PTTP input formulas: 

1 l(l,a). 

2 d(X,X). 

3 P(X) ; d(g(X),X). 

4 p(X) ; l(l,g(X)). 

5 P(X) ; l(g(X),X). 

6 not-p(X) ; not_d(X,a). 

‘7 not_d(X,Y) ; not_d(Y,Z:) ; d(X,Z). 

8 not_l(l,X) ; not_lo(,a) ; p(f(X)). 

9 not_l(l,X) ; not_l(X,a) ; d(f(X),X). 

IO query :- search((p(X) , d(X,a))) , !. 

Begin cost 0 search... 

Begin cost 1 search... 3 inferences so far. 

Begin cost 2 search... 9 inferences so far. 

Begin cost 3 search... 27 inferences so far. 

Begin cost 4 search... 57 inferences so far. 

Begin cost 5 search... 118 inferences so far. 

Begin cost 6 search... 212 inferences so far. 

Begin cost 7 search... 405 inferences so far. 

Begin cost 8 search... 700 inferences so far. 

Begin cost 9 search... 1317 inferences so far. 

Begin cost IO search... 2291 inferences so far. 

Begin cost 11 search... 

Proof: 

Goal# Wff # Wff Instance 
--__- ___- _________-__ 

101 10 query :- [II, [131. 

[II 4 p(a) :- [21. 

121 8 not_l(l,g(a)) :- 131, 151. 

[31 5 

(41 red 

[51 6 

161 7 

[71 9 
181 red 

191 5 
[IO] red 

l(g(a),a) :- 141. 
not-p(a). 

not_p(f(g(a))) :- 161. 

d(f(g(a)),a) :- 171 

d(f(g(a)),g(a)) 

l(l,g(a)). 
l(g(a),a) :- 

not-p(a). 

I [Ill. 

:- 181 , 191. 

1101. 



122 M. E. Stickel 

[Ill 3 d(g(a),a) :- [121. 
(121 red not-p(a). 

1131 2 d(a,a). 
3830 inferences. 

A 13-step proof is discovered during the cost 11 search; each step eliminates a 

single goal by resolution of reduction. The query has 2 goals and 11 are introduced 

by resolution operations, totalling 13. The proof is printed as a list of the final 

instantiations of the clauses that are used in each proof step. The initial clause is 

query :- p(a) , d(a,a). Its subgoals are p(a) and d(a,a) whose solutions start 

on lines [l] and [ 131. Indentation is used to help identify subgoal relationships. 

In this proof, lines [4], [8], [lo] and [12] show subgoals being solved by the 

reduction operation. In particular, the goals not-p(a) of lines [4], [lo] and [12] 

match the complement of their ancestor goal p( a) in line [ 11, while the goal 1( 1, g(a) ) 

of line [8] matches the complement of its ancestor goal not-1 (1 ,g(a) ) in line [2]. 

Examination of the proof shows clauses 10 and 6, the theorem and its negation, 

each appearing once in the proof. The instantiations used reveal the answer to be 

that either (a) a is prime and a divides a or (b)f(g(a)), a prime divisor of a divisor 

of a, divides a. 

This problem requires all of PTlP’s extensions of Prolog: sound unification, 

complete search, the reduction operation, and indefinite answers. 

6. Evaluation 

The cost of PITP compared to Prolog in terms of size of the input can be 

determined as follows. 

l A Prolog clause is required for each literal (all contrapositives are required). 

l Two clauses are added to each procedure: one for the model elimination reduction 

operation and one for the identical-ancestor pruning operation. 

l An extra unify literal is added to the body of a clause for each repeated occurrence 

of a variable in the head of the clause. 

l Three extra literals are added to the body of each nonunit clause: one to test the 

depth bound, one to decrement it, and one to save the head on the list of ancestor 

goals. 

l Two extra arguments are added to each literal for the input and output depth 

bounds. 

l One (or more-our implementation uses two) extra argument is added to each 

literal for the list of ancestor goals. 

l Additional arguments and literals may optionally be added to compute the 

information needed to print the proof after it is found. 
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Table 1 gives results for the examples that appear in Chang and Lee [5, pp. 298- 

3051, for both the Lisp implementation [39] and this Prolog implementation of 

PTTP running on a Symbolics 3600 with IFU. The Prolog implementation performs 

one thousand to three thousand model elimination inferences per second. This is a 

high inference rate for a theorem prover, although it is low for Prolog. The Lisp 

implementation of PTTP is somewhat more efficient. 

We examine here some sources of inefficiency in this Prolog implementation of 

PTTP. Because many of these are inherent limitations of Prolog, this discussion can 

be taken as identifying some problems with Prolog that inhibit the development of 

the highest possible performance PTTP in Prolog and arguing for particular 

extensions to Prolog. Similar extensions exist in some Prolog implementations. In 

particular, there have been many proposed schemes for destructive assignment 

operations on data structures or global variables, though none has become standard 

or widely available. 

6.1. InefJiciency of sound unification 

The sound unification procedure with the occurs check is written in Prolog. For 

Prolog implementations that allow predicates programmed in lower-level languages, 

it should be possible to substantially speed up the unification done by unify calls 

introduced by the sound-unification transformation and unif iable_member calls 

introduced by the complete-search transformation. Ideally, Prolog systems should 

provide an efficient unify predicate. 

The principal reason for the Lisp implementation of PTTP performing fewer 

inferences than the Prolog implementation is that the Lisp implementation performs 

a cut operation if the head of a unit clause subsumes rather than merely unifies 

Table 1 

PITP Performance on Chang and Lee examples 

Example Number of Depth of 

clauses proof 

Lisp implementation Prolog implementation 

Number of Run time Number of Run time 

inferences (set) inferences (set) 

4 5 0.002 5 0.005 

10 1589 0.373 1938 0.637 

10 206 0.046 264 0.095 

7 26 0.005 32 0.010 

4 4 0.001 4 0.002 

7 26 0.005 32 0.010 

6 24 0.004 24 0.006 

13 3104 0.652 3830 2.522 
10 163 0.027 191 0.135 

Total 5147 1.115 6320 3.422 
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with the goal. For example, no alternatives need be tried, and a cut operation can 

be performed if the goal p(e,a,a) is solved by the unit clause p(e,X,X), since the 

goal has been solved without instantiation. But if the goal p(e,Y ,a) is solved with 

this clause, alternatives that do not match Y and a must still be considered. A cut 

operation can likewise be performed in the ME reduction operation if a goal is 

identical to the complement of an ancestor goal, not merely unifiable with it. 

Determining whether to cut is done at very little cost in the Lisp implementation 

of PTTP by checking whether the unification operation added any entries to the 

trail. It would be desirable if this could be done equally cheaply in Prolog. Unification 

with the clause head would be constrained so that the substitution would instantiate 

only the head if possible, and the user would be able to determine if subsumption 

occurred. This eliminates the need to perform both unification and subsumption tests. 

6.2. Inejiciency of complete search 

We see the possibility of only relatively small improvements of the basic method 

of incorporating iterative-deepening search. The extra operations appear to be quite 

efficient. 

However, there is an occasionally useful optimization of the iterative-deepening 

search strategy that is expensive to implement in Prolog. Suppose that, in an 

exhaustive depth-bounded search, every time a goal fails due to the depth-bound 

test, the number of subgoals in the clause exceeds the depth bound by more than 

one. Then incrementing the depth bound by only one for the next search will surely 

lead to failure again. To ensure the possibility of finding a new proof in the next 

search, the depth bound should be increased by the minimum amount by which 

the number of subgoals exceeds the depth bound. Adding the extra in-line code or 

procedure for this in Prolog would probably be ineffective. The only way of saving 

this minimum in Prolog is with database assertions, which makes accessing and 

especially updating the minimum quite expensive. The extra time required would 

be noticeable; only rarely would search levels be skipped in compensation. 

Another example of inefficiency is the extremely high cost of optionally counting 

the number of inferences so that the total can be printed at the end of each bounded 

depth-first search and when a proof is found. Because inferences on success and 

failure branches must both be counted, the count can be saved only with database 

assertions. Assignable global variables would be much more efficient for keeping 

track of the inference count and the minimum amount by which the number of 

subgoals exceeds the depth bound. 

6.3. Ineficiency of complete inference 

The retention and access of ancestor goals in lists is quite inefficient. This 

inefficiency is difficult to remedy in Prolog. 
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There are two major problems. The first is that in the transformed clause 

p(U,Z,W,Ancestors) :- 

NewAncestors = [p(U,Z,W) 1 Ancestors], 

p(X,Y,U,NewAncestors) , p(Y,Z,V,NewAncestors), 

p(X,V,W,NewAncestors). 

the goal that matches p( U,Z, W) is reconstructed and added to the front of Ancestors 

to form NewAncestors. This is quite wasteful since the goal (or rather its arguments) 

is already stored on the stack. Making the ancestor goal directly available to the 

user as a term could eliminate the need for reconstructing it to add it to the ancestor 

list. 

The second problem is the retention of the goals in an unindexed linear list. So, 

our implementation uses two extra arguments for ancestors-one for positive-literal 

ancestors and one for negative-literal ancestors-instead of the single list described 

here. The ME reduction operation will then always check for membership of a goal 

in an empty list of positive-literal ancestors when the problem is Prolog-like, i.e., 

Horn clauses with negative query. 

Further indexing of ancestor goals would be beneficial. Even indexing on just 

the sign and predicate symbol, as in the Lisp implementation of PTTP, appreciably 

reduces the number of attempted matches in the model elimination reduction and 

pruning operations. 

Although looking up a goal in a linear list is expensive, using a more complex 

data structure may be even more costly because clause heads are added to the 

ancestor list frequently (whenever solving the body of nonunit clauses) and their 

addition must be temporary (the head of a clause must be in the ancestor list only 

for the duration of the solution of the body). 

A separate linear list could be used for each signed predicate, but this could result 

in a very large number (twice the number of predicates in the problem) of extra 

arguments to each predicate. Separate lists for each signed predicate are used in 

the Lisp implementation of PTTP, but instead of being passed as extra arguments, 

they are maintained in global variables that can be dynamically rebound. 

Adding global variables that can be dynamically rebound like the special variables 

of Lisp would likewise provide an efficient mechanism for Prolog to access this 

information without the cost of passing the information through extra argument 

positions. Global variables, if they can be dynamically rebound, can be very useful 

even without destructive assignment operations. They could be a “conservative 

extension” of Prolog that promotes efficiency without adding side-effects that would 

damage or conceal the logical, nonprocedural interpretation of logic programs. 

Anything that can be done with nonassignable, dynamically rebindable global 

variables can be done in standard Prolog with some loss of efficiency, convenience, 

and clarity by adding extra arguments to predicates (e.g., one for each global 

variable). 
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7. Conclusion 

We have described and demonstrated by example the extension of Prolog to full 

first-order predicate calculus theorem proving, with sound unification, a complete 

search strategy, and a complete inference system, by means of three simple compiler 

transformations. The result is an implementation of a Prolog technology theorem 

prover (PTTP) in which transformed Prolog clauses perform PTT’P-style theorem 

proving at a rate of thousands of inferences per second. We have also suggested 

some extensions to Prolog that would enable higher performance. 

Writing the transformations in Prolog and transforming first-order predicate 

calculus formulas to Prolog clauses minimizes the effort necessary to implement a 

PTTP, makes PTTP-style theorem proving readily available in Prolog, and makes 

it easy to explain how PTTP theorem proving works. 

PTTP’s high inference rate is achieved at the cost of not allowing more flexible 

search strategies or elimination of redundancy in the search space by subsumption. 

Although PTTP is one of the fastest theorem provers in existence when evaluated 

by its inference rate and performance on easy problems, and it has been used to 

solve reasoning problems in planning and natural-language-understanding systems 

effectively, its high inference rate can be overwhelmed by its exponential search 

space and it is unsuitable for many difficult theorems for which conventional theorem 

provers have demonstrated some success. 

Besides being used as a stand-alone theorem prover, PITP can play a useful 

subordinate role in the proof of difficult theorems if the theorem can be decomposed 

into manageable chunks [44], by performing fast refutation checks on newly derived 

clauses [l], or by executing the theory resolution [38] or linked inference principle 

[47] procedures. We are currently investigating the latter approach by developing 

an extension of PTTP that, instead of proving a query outright, finds single literal 

assumptions that would suffice to complete a proof. This “Unit-Resulting PTTP” 

can then perform by fast, compiled inference operations essentially the computation 

of linked unit-resulting resolution and can be used in a larger deduction system in 

the same manner. 

A technical report contains full source code and sample output for PTTP in Prolog 

[401. 
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