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view of logic programming is identified. Second, an actual language called λProlog is
developed by applying this view to a higher-order logic. Finally, a methodology for
computing with specifications is exposed by showing how several computations over
formal objects such as logical formulas, functional programs, λ-terms, and π -calculus
expressions can be encoded in λProlog.
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Preface

Formal systems in computer science frequently involve specifications of
computations over syntactic structures such as λ-terms, π -calculus expres-
sions, first-order formulas, types, and proofs. This book is concerned, in part,
with using higher-order logic to express such specifications. Properties are often
associated with expressions by formal systems via syntax-based inference rules.
Examples of such descriptions include presentations of typing and operational
semantics. Logic programming, with its orientation around rule-based specifi-
cations, provides a natural framework for encoding and animating these kinds
of descriptions. Variable binding is integral to most syntactic expressions, and
its presence typically translates into side conditions accompanying inference
rules. While many of the concepts related to binding, such as variable renam-
ing, substitution, and scoping, are logically well understood, their treatment at
a programming level is surprisingly difficult. We show here that a program-
ming language based on a simply typed version of higher-order logic provides
an elegant approach to performing computations over structures embodying
binding.

The agenda just described has a prerequisite: We must be able to make sense
of a higher-order logic as a programming language. This is a nontrivial task that
defines a second theme that permeates this book. Usual developments of logic
programming are oriented around formulas in clausal form with resolution
as the sole inference rule. Sometimes a semantics-based presentation is also
used, expanding typically into the idea of minimal (Herbrand) models. Neither
of these approaches is suitable in a higher-order setting: Model theory is not
a well-developed tool here, and substitutions for predicate variables that can
appear in a higher-order logic can take formulas in a restricted form, such as the
conjunctive-normal clausal form, into new formulas that no longer adhere to
this form. Faced with this situation, we have turned in our work to the sequent
calculus of Gentzen. We have found this to be a versatile and flexible tool for
understanding and analyzing the metatheory and computational properties of

xi



xii Preface

logics. Using it, we have been able to identify logic programming languages
as ones that support a particular goal-directed approach to proof search. This
viewpoint allows us to extend naturally the Horn clause logic that underlies
languages such as Prolog to richer first-order logics that offer support at the
programming level to scoping mechanisms. The same approach generalizes to
higher-order logic and also to contexts that we do not explicitly treat here, such
as linear logic and the dependently typed λ-calculus. Indeed, understanding
proof search through the perspective of the sequent calculus seems to be an
essential part of grasping the significance of logic as a tool for computing. We
accordingly expose this line of thinking as we develop a higher-order logic for
programming.

Gaining facility with new ideas in programming usually requires concrete
experimentation with them. Many of the ideas that we expose here have an actual
realization in the language λProlog. Programs written in λProlog often will be
used to illuminate discussions of logic and theoretical principles. These pro-
grams can be run using the Teyjus implementation of λProlog that we provide
an introduction to in the Appendix. The Teyjus system can be freely down-
loaded, and the distribution material accompanying it contains many programs,
including the ones discussed in this book, that illustrate the special capabilities
of λProlog. We anticipate that a reader of this book eventually will have enough
expertise to develop his or her own programs in a number of application areas
where binding is an important part of syntactic structure.

This book, then, covers three broad topics: a proof search–based view of
computation, a higher-order logic–based approach to programming, and a par-
ticular language that realizes these ideas. We hope to leave the reader in the end
with an appreciation of how higher-order logic may be used to specify com-
putations and with the ability to use a logic programming language based on
such a logic to build actual systems. We believe that this kind of background is
becoming increasingly useful as demands of the programming process get more
sophisticated. One pertinent application area is that where logic and deduction
function as “gatekeepers” that ensure the security and integrity of lower-level
processes; a specific example of this kind appears within the proof-carrying-
code framework that has been proposed as a vehicle for ensuring, for instance,
the safety of mobile code. Another application area is the mechanization of
the metatheory of logics and languages that is the focus, for example, of the
recently posed POPLmark challenge. This book develops a fruitful approach to
specifying computations over logical expressions and program phrases, all of
which are central to such metatheoretic manipulations. The λProlog language
also provides a means for prototyping and implementing such specifications.
While we do not discuss this issue significantly in this book, these λProlog
specifications should further facilitate rich and interesting new approaches to
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reasoning about metatheoretic properties of the logics and languages encoded
in them.

The material we present here owes a lot to collaborations with colleagues.
The foundational ideas relating to logic programming were developed in the late
1980s in interactions with Frank Pfenning and Andre Scedrov. We also received
valuable input from Natarajan Shankar during this phase.AProlog-based imple-
mentation of λProlog followed soon after. The understanding we now have of
the capabilities of this language derives significantly from the experiments con-
ducted with this system by Amy Felty, Elsa Gunter, John Hannan, Fernando
Pereira, Remo Pereschi, and Frank Pfenning, among many other researchers
who we surely err in not mentioning explicitly. The language subsequently has
received implementations in Common Lisp by Conal Elliott and Frank Pfen-
ning; in C by Pascal Brisset and Olivier Ridoux; and in Standard ML by Conal
Elliott, Amy Felty, Dale Miller, Frank Pfenning, and Philip Wickline. Gopalan
Nadathur has led a long-term project focused on compiling this language in
whichAndrew Gacek, Steven Holte, Bharat Jayaraman, Keehang Kwon, Dustin
Mitchell, Xiaochu Qi, and Zachary Snow have participated. This work has
resulted in two different versions of the Teyjus system. We have received com-
ments and helpful suggestions on this book from Jim Blandy, Iliano Cervesato,
Giorgio Delzanno, Joern Dinkla, Zhiping Duan, Daniel Friedman, Andrew
Gacek, Clément Houtmann, H. Krishnapriyan, Gary Leavens, Chuck Liang,
Jim Lipton, Tong Mei, Catuscia Palamidessi, Olivier Ridoux, Jenny Simon,
and Yuting Wang. INRIA has provided support during the writing of this book
by facilitating a sabbatical visit by Gopalan Nadathur and through its “Equipes
Associées” Slimmer. The National Science Foundation has funded the devel-
opment of the ideas we present through grants at various points, most recently
through the Grants CCF-0429572 and NSF/CCF-0917140. Any opinions, find-
ings, and conclusions or recommendations expressed in this book are those of
the authors and do not necessarily reflect the views of the National Science
Foundation.

Palaiseau, France Dale Miller
Minneapolis, MN, USA Gopalan Nadathur
October 2011





Introduction

This book is about the nature and benefits of logic programming in the set-
ting of a higher-order logic. We provide in this Introduction a perspective on
the different issues that are relevant to a discussion of these topics. Logic pro-
gramming is but one way in which logic has been used in recent decades to
understand, specify, and effect computations. In Section I.1, we categorize the
different approaches that have been employed in connecting logic with compu-
tation, and we use this context to explain the particular focus we will adopt. The
emphasis in this book will be on interpreting logic programming in an expres-
sive way. A key to doing so is to allow for the use of an enriched set of logical
primitives while preserving the essential characteristics of this style of speci-
fication and programming. In Section I.2, we discuss a notion of expressivity
that supports our later claims that some of the logic programming languages
that we present are more expressive than others. The adjective “higher order”
has been applied to logic in the past in a few different ways, one of which might
even raise concern about our plan to use such a logic to perform computations.
In Section I.3, we sort these uses out and make clear the kind of higher-order
logic that will interest us in subsequent chapters. Section I.4 explains the style
of presentation that we follow in this book: Broadly, our goal is to show how
higher-order logic can influence programming without letting the discussion
devolve into a formal presentation of logic or a description of a particular pro-
gramming language. The last two sections discuss the prerequisites expected
of the reader and the organization of the book.

I.1 Connections between logic and computation

The various roles that logic has played in analyzing and performing compu-
tations can be understood as falling under two broad categories that we call
the computation-as-model and the computation-as-deduction approaches. We
describe these below.

1



2 Introduction

In the computation-as-model approach, computations are understood
abstractly via mathematical structures that are based on notions such as nodes,
transitions, and states. Logic is employed in an external sense in this context
to make statements about such structures. That is, computations are treated
as models for logical expressions. Intensional operators, such as the triples of
Hoare logic or the modals of temporal and dynamic logics, are often employed
to express propositions about change in state. This use of logic to describe and
reason about computations probably represents the oldest and most broadly
successful interactions between the two areas.

In contrast, the computation-as-deduction approach uses logical expressions
such as formulas, terms, types, and proofs directly as elements of the specified
computation. In this more rarefied setting, two rather different methods have
been employed in describing computations. The proof normalization approach
views the state of a computation as a proof term and the process of comput-
ing as reducing such a term to normal form via, say, β-reduction. This view
of computation provides a theoretical basis for the functional programming
paradigm. In the proof normalization approach, one uses the fact that a given
program (proof) has at most one normalized value, and one focuses on produc-
ing this value. If types are used, they generally denote “abstract domains” of
values, such as the integers and function spaces. In the alternative proof search
approach, the state of a computation is viewed as a sequent that comprises a
formula that is to be proved and a collection of assumptions from which the
formula is to be established. The process of computing is identified with the
search for a derivation of a sequent: The changes that take place in sequents
during proof search capture the dynamics of computation. This view of compu-
tation can be used to provide a proof-theoretic basis for the logic programming
paradigm.

Of course, proof search is a rather general activity. For example, mathemati-
cians can be said to be searching for proofs when they try to determine the
validity of a proposition. However, it is not sensible to identify the steps that
mathematicians take in building proofs with the low-level steps that are used to
propel computations associated with a logic program. A particularly important
difference between proofs used to realize computations and unrestricted proofs
is the fact that in general reasoning, lemmas are discovered and used routinely.
In the general setting, the attempt to prove one proposition, say, B, often results
in the enunciation of a lemma, say, C, and subsequent attempts to find proofs of
C and C ⊃ B. This process may be repeated—another lemma D may be helpful
in proving C, and so on—and the result could be a large number of lemmas
whose proofs are all used to support the proof of B. In the sequent calculi, i.e.,
the calculi that have been proposed for proving sequents, the cut rule provides
the mechanism for introducing lemmas in the course of proof search. As such,
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this rule is a frequent and critical component in any attempt to model genuine
mathematical reasoning using such calculi.

Since choosing lemmas involves creativity, the cut rule poses a problem for
the mechanization of reasoning. A result that has obvious connotations in this
context is Gentzen’s famous cut-elimination theorem (for classical and intu-
itionistic logic) that says that if a formula can be proved using the cut rule, then
it also can be proved without the cut rule. The proof of this theorem is based
intuitively on the observation that lemmas always can be in-lined or re-proved
each time they are needed. The derivations that result from the elimination of
uses of the cut rule are often huge and of little value to a mathematician. The
fact that they can be constructed, however, is quite interesting from the perspec-
tive of computation. The in-lining of proofs, via cut elimination or the closely
related operation of β-reduction, is the process that underlies computation in
the functional programming paradigm. In the logic programming paradigm as
we describe it here, the cut rule is excluded from the execution of logic pro-
grams, and computation is based on the search for cut-free proofs. The cut rule
and the cut-elimination theorem, however, can be used to reason about logic
programs; i.e., they are part of the metatheory of the paradigm.

I.2 Logical primitives and programming expressivity

In the logic programming setting, one generally partitions formulas into two
classes. A formula can be a member of a logic program, and as such, it provides
part of the computational meaning of the nonlogical constants that appear in it.
A formula also can be a goal or query, and in this role, it represents something
to be derived from a given logic program. We shall often idealize the state of
the search for a proof by a collection of sequents. A sequent in this context will
be an expression written as �; P −→ G, comprising three parts: a signature
� that is a set of typed, nonlogical constants; a logic program P; and a goal G

that is to be proved. The signature � denotes the set of constants and predicates
that are available for building the terms and formulas in G and P .

An important aspect of logic programming is that a complete proof strategy,
in principle, can be structured in the following goal-directed fashion. If the goal
formula is not an atom, that is, if its top-level symbol is a logical constant or
quantifier, then the search for a proof is completely committed to dealing with
that top-level logical constant. Thus the “search semantics” of the logical con-
nectives is fixed and independent of the logic program. On the other hand, if the
goal formula is atomic, then the logic program P is consulted to discover how
that atom might be proved. Typically, this involves using backchaining, which
is the process of finding in the logic program an implicational formula whose
consequent matches the atom and then trying to prove its antecedent. Logic
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programming can be seen abstractly as a logical framework in which a strategy
that alternates between goal reduction and backchaining is complete, i.e., is
capable of finding a proof whenever one exists. This viewpoint is developed in
more detail in Section 2.2.

The computational dynamics in logic programming arises from the way the
signature, the program, and the query change during the search for a proof.
We therefore can understand this dynamics qualitatively by considering the
following question.

Assume that during an attempt to prove the sequent �; P −→ A, the search yields
the attempt to prove the sequent �′; P ′ −→ A′. What differences can occur when
moving from the first to the second sequent?

In this book, we shall consider logic programs based on Horn clauses and on a
more general class of formulas called hereditary Harrop formulas. If P is a Horn
clause program (either first order or higher order), then �′ and P ′ must be iden-
tical to � and P , respectively. Thus the signature and logic program are global
and immutable and have a flat structure during computation; in particular, Horn
clauses do not support the capability of using some data structures and some
clauses locally and only for auxiliary calculations. The differences between the
atoms A and A′ are determined, on the other hand, by the logic program P , and
these can be rich enough to capture arbitrary computations. Notice, however,
that the dynamics of such computations has a largely nonlogical character; that
is, it is dependent on the meaning associated with predicate symbols through
the assumptions in the logic program. If programs are allowed to involve more
logical primitives, more of the character of the dynamics of computation may
depend on the logical structure, and as a result, the metatheory of the logic can
be of more value in proving properties of those programs.

Using hereditary Harrop formulas improves the dynamics of proof search:
In particular, both the signature �′ and the program P ′ can be larger than �

and P , respectively. As a particular consequence, it is possible for a program
to grow by the addition of clauses that can be used only in a local proof search
attempt. Similarly, it is possible to introduce data constructors that are available
only for part of the computation. In this way, the logical framework is capable
of supporting the use of modular programming and data abstraction techniques.

We shall limit our attention to classical and intuitionistic logic as they are
applied to Horn clauses and to hereditary Harrop formulas. If one were to con-
sider proof search in the more general setting of linear logic, the alternation
between goal reduction and backchaining still would yield a complete proof
procedure (for a suitable presentation of linear logic), and the dynamics of
proof search would improve beyond what we have observed for the two frag-
ments of logic just discussed. Although this is an interesting direction to pursue,
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logic programming based on linear logic is beyond the scope of the topics we
consider here.

I.3 The meaning of higher-order logic

The term higher-order logic has been used ambiguously in the literature. We
identify three common interpretations below and then explain the sense in which
we will be using the form in this book.

Philosophers of mathematics often distinguish between first-order logic and
second-order logic. The latter logic, which is used as a formal basis for all of
mathematics, involves quantification over the domain of all possible functions.
A consequence of Kurt Gödel’s celebrated first incompleteness theorem is that
truth in this logic cannot be recursively axiomatized. Thus higher-order logic
interpreted in this sense consists largely of a model-theoretic study, typically
of the standard model of arithmetic.

Proof-theoreticians take logic to be synonymous with a formal system that
provides a recursive enumeration of the notion of theoremhood. A higher-
order logic is understood no differently. The distinctive characteristic of such
a logic, instead, is the presence of predicate quantification and of compre-
hension, i.e., the ability to form abstractions over formula expressions. These
features, especially the ability to quantify over predicates, profoundly influence
the proof-theoretic structure of the logic. One important consequence is that the
simpler induction arguments of cut elimination that are used for first-order logic
do not carry over to the higher-order setting, and more sophisticated techniques,
such as the “candidats de réductibilité ” due to Jean-Yves Girard, must be used.
Semantical methods also can be employed, but the collection of models now
must include nonstandard models that use restricted function spaces in addition
to the standard models used for second-order logic.

Implementers of deduction usually interpret higher-order logic as any com-
putational logic that employ λ-terms and quantification at higher-order types,
although not necessarily at predicate types. Notice that if quantification is
extended only to non–predicate function variables, then the logic is similar
to a first-order one in that the cut-elimination process can be defined using an
induction involving the sizes of (cut) formulas. However, such a logic may
incorporate a notion of equality based on the rules of λ-conversion, and the
implementation of theorem proving in it must use (some form of) higher-order
unification.

Clearly, it is not sensible to base a programming language on a higher-order
logic in the first sense. Our use of this term therefore is restricted to the second
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and third senses. Notice that these two views are distinct. As we have already
commented, a logic that is higher order in the third sense may well not permit
quantification over predicates and thus may not be higher order in the second
sense. Conversely, a logic can be higher order in the second sense but not in the
third: There have been proposals for adding forms of predicate quantification
to computational logics that do not use λ-terms and in which the equality of
expressions continues to be based on the identity relation.

The actual higher-order logic that we shall use in this book is a simpli-
fied form of an intuitionistic version of the Simple Theory of Types that was
developed by Alonzo Church. Our simplification leaves out axioms concerning
extensionality, infinity, and choice that are needed for formalizing mathemat-
ics but that do not play a role in and indeed interfere with use of the logic in
describing computations. The resulting logic extends first-order logic by permit-
ting quantification at all types and replaces both first-order terms and first-order
formulas by simply typed λ-terms complemented by a notion of equality based
on β- and η-conversion. This logic does permit predicate quantification, which
makes theorem proving in it particularly challenging. In first-order logic, sub-
stitution into an expression does not change its logical structure, and all the
needed instantiations in a proof can be produced simply through the unification
of atomic formulas. With the inclusion of predicate quantification, instantia-
tions can introduce new occurrences of logical connectives and quantifiers in
formulas, and as a result, unification is not rich enough to find all substitutions
needed for proofs. However, we shall, restrict the uses of predicate variables
in the logic programming languages we consider in such a way that unification
becomes sufficient once again for finding all the necessary instantiations.

I.4 Presentation style

This book is intended to be an exposition of programming techniques based on
the use of a higher-order logic. In order to discuss these techniques in detail,
we need to be able to present actual logic programs. More specifically, a con-
crete syntax must be picked for programs and goals, language principles such
as modularity and typing must be established, and strategies for dealing effec-
tively with nondeterministic proof search must be chosen. Toward meeting these
requirements, we introduce the programming language λProlog, which repre-
sents one way of addressing these pragmatic aspects. This language also gives
us a setting in which to discuss relevant issues concerning the computational
use of higher order logic. Thus goal-directed search for higher-order hereditary
Harrop formulas must be translated into an operational semantics and, subse-
quently, an implementation of λProlog. Similarly, higher-order logic and a rich
use of logical primitives raises the issue of solving equations between λ-terms
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modulo β- and η-conversion rules and in the presence of mixed quantifier pre-
fixes. The λProlog language gives us a concrete setting in which to understand
the structure of such issues as well as to appreciate practical approaches to
solving them.

Although we discuss λProlog explicitly, this is not intended to be a book
about λProlog. We introduce the syntax of this language and we display sev-
eral λProlog programs, but we do not provide enough information about the
language for this book to serve as a programming manual. Rather, the focus
is on painting a broad picture of the interplay between proof search in higher-
order logic and computational principles: This focus underlies the discussion
of language structure initially and the presentation later of several applications
where higher-order logic programming techniques lead to appealing and natural
solutions. A reader who is not satisfied with this kind of exposure to the lan-
guage and wants a more detailed, manual-like presentation should consult the
documentation accompanying one of its implementations, such as the Teyjus
system that is briefly described in the Appendix.

While our emphasis is on understanding high-level, logic-related aspects
of programming, we emphasize that this book is not a formal development of
logic in any sense. In particular, we try to build a good intuitive understanding
of higher-order logic characteristics, but we do this without providing many
formal definitions and theorems. Instead, most formal aspects of this logic
are exposed through examples and probed by tracing computational behavior.
However, detailed bibliographic references to literature containing such formal
presentations are included at the end of many chapters for the interested reader.

I.5 Prerequisites

The ideal reader of this book would have had prior exposure to high-level
programming and to the rudiments of logic and logic programming. We specif-
ically assume that the reader knows how to write and execute simple programs
in some dialect of Prolog. We use small programming examples in λProlog
to bring out the different ideas we present. A reader who has a programming
feel for Prolog will find these examples easy to understand because λProlog
inherits many features and conventions from Prolog. Conversely, someone not
familiar with how computations are organized in logic programming languages
may have difficulty in understanding the λProlog examples in detail. Knowl-
edge of “advanced” aspects of Prolog, however, is not necessary. In fact, such
knowledge could be confusing: Advanced Prolog features often derive from
nonlogical aspects of the language, whereas our focus here will be on finding
logical solutions to the problems that have led to the proliferation of nonlogical
solutions that are familiar to Prolog programmers.
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I.6 Organization of the book

This book has four conceptual parts that are identified in Figure I.1 together
with their dependencies.

The first part introduces a proof-theoretic foundation for logic programming
in the setting of first-order logic. Chapter 1 describes how symbolic objects
might be represented using simply typed first-order terms that are manipulated
using first-order unification. Chapter 2 presents an abstract framework for logic
programming and elaborates this framework using first-order Horn clauses.
The resulting language then is extended in Chapter 3 by using a richer class of
formulas known as first-order hereditary Harrop formulas.

The second part of this book generalizes the structure of logic programming
languages discussed in the first part to the higher-order setting. Chapter 4 intro-
duces simply typed λ-terms and exposes some of the properties of the reduction
computation and the process of solving equations relative to these terms. For-
mulas are identified as the specific collection of simply typed λ-terms that have
a certain type, and Church’s Simple Theory of Types defines a logic over these
formulas. Chapter 5 identifies higher-order versions of Horn clauses and hered-
itary Harrop formulas within this logic. These classes of formulas provide the
basis for higher-order logic programming, some characteristics of which we
also expose in this chapter.

The third part of this book deals with pragmatic issues related to program-
ming. Chapter 6 shows how code-structuring possibilities can be realized by
exploiting features of higher-order hereditary Harrop formulas. The Appendix

Programming system: Chapter 6, Appendix

Higher-order logic foundations: Chapters 4, 5

First-order logic foundations: Chapters 1, 2, 3

λ-Terms as data: Chapters 7, 8, 9, 10, 11

Figure I.1 Dependency and grouping of chapters.
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describes how the logic specifications presented in this book can be written as
λProlog programs and executed using the Teyjus implementation of λProlog.

The fourth part of this book is devoted to showing the benefits of the ability to
compute directly on λ-terms. One part of this discussion consists of explaining
the general structure that supports this approach. Chapter 7 illustrates how com-
putations on λ-terms can be used to encode and manipulate syntactic objects that
contain binding operators. Proof search in higher-order logic requires solving
variously quantified equalities between λ-terms, and as a result, higher-order
unification plays an important role in the implementation of such logic program-
ming languages. Chapter 8 discusses the structure of procedures for higher-order
unification and the more limited higher-order pattern unification that underlies
computation in an important subset of higher-order hereditary Harrop formulas
that is known as Lλ. The remaining chapters in this fourth part, which can be read
independently of each other, present different applications that involve com-
puting on symbolic structures encoded using λ-terms. In particular, Chapter 9
considers the problem of implementing natural deduction and sequent calculus
proof systems as well as tactic-based provers, Chapter 10 considers several
computations in the context of the untyped λ-calculus and a simple functional
programming language built on it, and Chapter 11 considers specifications and
computations related to the π -calculus.



1

First-Order Terms and
Representations of Data

Our initial discussion of logic programming focuses on first-order languages.
In this chapter, we limit our attention to the capabilities for representing data
that are present in such languages. These capabilities are provided for by first-
order terms. The terms that we use in our exposition of data representation
here are similar to those in a conventional logic programming language such
as Prolog with one difference: We shall be interested in a typed version of
these terms. In the first two sections that follow, we describe the structure
of the types that are employed to classify terms. Section 1.3 then introduces
typed first-order terms, and the following section discusses the pragmatics of
using such terms to represent structured and recursively constructed data. The
last section in this chapter considers the operation of first-order unification,
the primary mechanism for analyzing data that are encoded using first-order
terms. To ground this discussion—in particular, to show how the type and term
languages may be identified in a programming setting—we use the actual syntax
of λProlog in our presentation.

1.1 Sorts and type constructors

The starting point for a type system is a set of atomic or unanalyzable types. We
shall refer to such types as sorts. Most typed programming languages have a set
of built-in sorts associated with them. In the case of λProlog, any implementa-
tion of the language is expected to support at least the following collection of
sorts with the corresponding denotations:

int an implementation dependent range of integers
real an implementation dependent set of real numbers
string sequences of characters
in_stream character streams that can be read from

10
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out_stream character streams that can be written to and
o formulas,

The last of these sorts has a special status in a logic programming language that
we will discuss in later chapters. The first three sorts have a built-in collection
of constants associated with them, as we explain in Section 1.3. To use the
sorts in_stream and out_stream in a meaningful way in programming, we will
need some means to associate them with specific files that reside within an
encompassing file system. We will consider this issue in due course. For the
moment, we focus simply on the names of these types and how they may be
used in constructing larger type expressions.

The λProlog language also possesses built-in type constructors that are
mechanisms for constructing new types from other types. An example of such
a type constructor is list, which takes a type as argument and produces a new
type that represents lists of objects that have the argument type. For example,
the expression (list int) denotes the type of lists of integers. Once again,
we delay a discussion of how objects of such a type may be constructed till
Section 1.3.

Sorts and type constructors themselves can be thought of as typed objects in a
language for constructing types. To elaborate on this idea, let us use the symbol
type to denote the collection of type expressions. Then the sort int can be
viewed as an object of the category type. Similarly, the constructor list can be
conceived of as an object of the category type -> type; that is to say, listneeds
to be supplied an object of the category type to produce another object of this
category. It is sensible, of course, to consider type constructors of arity greater
than 1. For example, we can think of a constructor pair that takes two types
and returns a new type corresponding to pairs of objects of the given types. This
constructor, then, would be an object of the category type -> type -> type;
we assume that -> associates to the right in this expression. Notice also that a
sort can be seen as a special case of a type constructor, in particular, one that
has the arity 0.

We refer to the “types” that we have just used to categorize sorts and type
constructors as kinds, to be distinguished from the types that we will soon use
to categorize terms. The language of kinds that is used in λProlog is simple and
given by the following grammar:

〈kind exp〉 ::= type | type -> 〈kind exp〉.
In principle, we can permit a richer collection of kind expressions.An interesting
possibility is that of giving up on a strict hierarchy among kind, type, and term
expressions, thus allowing the types of some data to be parameterized by other
data. However, we do not explore such a direction in this book.
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The λProlog language permits the user to extend the collection of built-in
sorts and type constructors. In particular, new sorts and type constructors can
be introduced using kind declarations, which have the structure

kind c1, . . . , cn 〈kind exp〉.
Such a declaration identifies the symbols c1,. . ., cn as new type constructors
that have 〈kind exp〉 as their kind. Thus we might write the declaration

kind pair type -> type -> type.

after which we will be free to use the newly declared constructor to form
type expressions such as (pair string int). Application of type constructors
associates to the left, a convention that matches the right associative reading of
-> in kind expressions.

1.2 Type expressions

The λProlog language incorporates polymorphic typing in a manner that has
similarities to that followed in modern functional programming languages. This
polymorphism arises initially from including variables in type expressions. The
full collection of types, in fact, is obtained by closing sorts and type variables
under the operations of forming constructed types and function types. More
specifically, this set is given by the following syntax rule

〈type exp〉 ::= 〈type variable〉 |
(〈type exp〉 -> 〈type exp〉) |
(〈tyc〉 〈type exp〉 . . . 〈type exp〉)

where 〈tyc〉 represents a type constructor. We assume here that each such type
constructor is provided with as many arguments as it needs to produce an
expression of kind type. Implicit also in this rule is the fact that we consider
each (well-formed) type expression to have the kind type. The function type
constructor is represented in concrete syntax by the symbol ->, written in infix
form. We shall depict this symbol by → in mathematical notation. Notice that ->
is also used for a similar purpose in kind expressions. However, the overloading
that is present here is harmless because kind and type expressions will be used
in distinct contexts. We also observe that unlike in the kinds language, there is
no restriction on the use of the constructor -> in type expressions. In particular,
this symbol may be nested within the type expression that appears to the left of
a ->, and it also may appear in the argument provided to a type constructor.

The concrete syntax we use adopts the convention that tokens that begin with
uppercase letters represent type variables and those that begin with lowercase
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letters represent type constructors. Notice that type variables are expressions of
kind type, i.e., they cannot take types as arguments. We permit the omission of
parentheses in writing type expressions by assuming that -> is right associative.
Thus the type expression a -> b -> c is to be interpreted as a -> (b -> c).
To further reduce the number of necessary parentheses, we use the convention
that the application of a type constructor binds more tightly than the function
type construction operation; e.g., the expression list A -> B corresponds to
((list A) -> B) in a fully parenthetized form. The expressions in the follow-
ing list use the type constructors presented in the preceding section to illustrate
the syntax of type expressions and the conventions for writing them that we
have just described.

int -> int -> o

o -> int -> o

int -> real -> string

(int -> real) -> string

int -> real -> pair int real

list A -> (A -> B) -> list B -> o

list (list A) -> list A -> o

(A -> B) -> list (A -> B)

((A -> B) -> A) -> A

The right-associative reading of the function type constructor can be
exploited to depict any type τ in the form

τ1 → · · · → τn → τ0 (n ≥ 0)

where τ0 is a type expression that does not have a function type constructor at its
top level. When written in this form, we say that τ0 is the target type of τ and the
types τ1, . . . , τn are the argument types of τ . A type expression is a functional
type if it has at least one argument type; otherwise, it is a nonfunctional type. A
nonfunctional type that is not a variable is called a primitive type.

The order of a type expression τ , denoted by ord(τ ), is defined by recursion
on the structure of the expression:

ord(τ ) = 0 provided τ is non-functional

ord(τ1 → τ2) = max(ord(τ1) + 1, ord(τ2))

Figure 1.1 shows examples of type expressions of different orders. Intuitively,
the order of a type counts the number of times the function type constructor
is nested to the left. A somewhat peculiar property is that the order of a type
expression that contains variables can increase under the substitutions for those
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Order Examples of Types
0 int, A, list (int -> int), pair int A
1 int -> int, string -> list (pair string int) -> o

int -> string -> o, int -> string -> A
2 (string -> string) -> string, int -> (int -> o) -> o

(int -> int) -> (int -> o) -> int

Figure 1.1. Some example type expressions and their orders.

variables. For example, while the order of (A -> list A -> o) is 1, substitut-
ing a type expression of order 1 for A transforms it into a type expression of
order 2. This kind of behavior will be absent in a first-order language, where we
restrict types to be of order at most 1 and where we require that type variables
be substituted for only with expressions of order 0. This peculiarity also will be
harmless when we discuss higher-order languages later because the restrictions
we place on syntax there will not be based on the orders of types.

1.3 Typed first-order terms

A term language is determined in significant part by its constant and function
symbols. In a typed setting, each of these symbols has an associated type. It
is customary not to distinguish between constants that have functional and
nonfunctional types in a higher-order language such as λProlog, i.e., we refer
in their context to what traditionally are known as function symbols in Prolog
or first-order logic also as constants. However, we sometimes will use the term
value constructor for a constant of functional type to emphasize its role in
representing structured data.

The λProlog language provides a basic set of constants corresponding to the
built-in sorts. We refer to these built-in constants also as pervasive constants
because they are present in every setting.1 We delay a presentation of the per-
vasive constants of type o until Chapter 2. Nonnegative integers, written as a
sequence of digits, constitute built-in constants of the type int. There are, in
addition, several constants of functional type that have int as their target type.
These constants represent the usual arithmetic operators. One example of such a
constant is ˜ of type int -> int, which represents the unary minus on integers.
The term formation rules that we present more formally shortly allow ˜ to be
applied to integer constants to construct expressions such as (˜ 1) that repre-
sent negative numbers. Constants such as + and * that denote binary arithmetic
operators have special conventions associated with them that permit them to be
written as infix and left associative operators in terms. The pervasive constants

1 The built-in sorts and type constructors similarly are called pervasive type symbols.
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of type real correspond to the nonnegative real numbers and are written as two
sequences of digits with an intervening period and such that at least one of the
two sequences is nonempty. As is the case for integers, there are several addi-
tional constants of functional type that have real as their target type, serving to
represent the arithmetic operators on reals. Pervasive constants of type string

that denote strings are written as sequences of characters enclosed within dou-
ble quotes; unprintable control characters are rendered into suitably chosen
letters preceded by a backslash (i.e., the character \) in this sequence. Finally,
we assume that the constant std_in of type in_stream represents the standard
input stream and that the constants std_out and std_err of type out_stream

represent the standard output and standard error streams.
The built-in type for lists illustrates the features of polymorphism and

recursion in the data structures that are provided by λProlog. List objects are
constructed using the constants nil, representing the empty list, and the value
constructor ::, pronounced “cons,” that creates a new list by placing an element
in front of an already existing list. The constants nil and :: have the types (list
A) and (A -> list A -> list A), respectively. Constants that have variables
in their types are polymorphic: Such constants have all the types that can be
obtained by possibly instantiating the type variables. Thus nil has simultane-
ously the types (list int), (list (list int)), and (list A), among other
possibilities. The type of :: is such that one of its argument types is identical
to its target type. This property allows it to be used to construct a new data
object by applying it to an object that is perhaps constructed in a similar fash-
ion. For example, starting from nil, we can use :: repeatedly to obtain the
terms ((:: 1) nil), ((:: 2) ((:: 1) nil)), and so on of type (list int);
we have assumed here a syntax and typing rules for forming terms using appli-
cation that we will describe precisely later in this section. The constant :: is
defined to be an infix and right associative operator in λProlog so that the last
two terms actually would be written thus:

1 :: nil

2 :: 1 :: nil

Another example of a list term that brings out the polymorphic nature of the
constants for constructing lists is the following:

(2 :: 1 :: nil) :: (1 :: nil) :: nil

This term has the type (list (list int)). Notice especially that the first
two occurrences of nil in this term have type (list int), whereas the last
occurrence has the type (list (list int)).
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We obviously have not presented a complete catalog of the built-in constants
of λProlog here. For such a description, we refer the reader to the docu-
mentation for particular implementations of the language, such as the Teyjus
system described in the Appendix. The λProlog language also allows the user
to extend existing collections of constants. New constants are identified using
type declarations that have the following structure:

type c1, . . ., cn 〈type exp〉.
A declaration of this kind defines the symbols c1, …, cn to be constants that
have the type 〈type exp〉. For example, the declaration

type pr A -> B -> pair A B.

identifies pr as a constant for constructing representations of objects of the pair
type that we considered earlier in this chapter. Using this constant, we can con-
struct, for instance, the expression ((pr "three") 3) to denote a term of type
(pair string int). The full language allows arbitrary type expressions to be
used in type declarations. However, the first-order fragment that we are con-
sidering currently requires two conditions to be satisfied: The type expressions
must be of order at most 1, and the sort o must not be used in them. Notice that
these restrictions are satisfied by all the built-in constants we have considered
up to this point.

The λProlog language allows the user to identify newly declared constants
as operators of particular fixity and precedence. This is done via operator
declarations that have the form

〈fixity〉 c1,. . ., cn 〈precedence〉.
Here, 〈fixity〉 may be one of the keywords

prefix, prefixr, postfix, postfixl, infix, infixl, and infixr

denoting operators that are prefix, postfix, or infix and possibly left- or right-
associative as relevant. Further, 〈precedence〉 ranges over positive integers (in
some implementation-dependent range) and indicates the precedence level of
the defined operator. As an example, the declaration

infixl pr 5.

identifies pr as a left-associative infix operator with precedence level 5. After
such a declaration, we may write (3 pr 4 pr "three") for the term ((pr ((pr

3) 4)) "three"). Operator and type declarations, of course, must be consistent
with each other. For example, a constant that is defined to be an infix operator
must have a functional type with at least two argument types, and its first
argument type must have common instances with its target type if the constant,
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in addition, is identified as being left-associative. Violations of such conditions
will show up at least in the ill-formedness of particular term expressions. A
compiler for the language also may check type and operator declarations directly
for this kind of compatability.

The other constituents of terms besides constants are variables; we will
refer to these as term variables when it is necessary to distinguish them from
the variables appearing in types. Variable occurrences can be explicitly bound
in terms, as we shall see later. However, many occurrences of variables are also
implicitly bound, and some convention then is necessary to distinguish them
syntactically from constants. We will assume here that (unbound) tokens that
begin with uppercase letters denote (implicitly bound) variables. Each variable
must have a type associated with it. Such a type can be inferred by a process
that we will presently describe. The type of a variable also may be indicated
together with an operator that binds it, as we discuss in later chapters. In the
first-order setting, the types of variables are limited to being of order 0, and
they also must be distinct from o.

In the preceding discussions, we have assumed informally the ability to con-
struct terms using application. Formally, given two terms t1 and t2, application
of t1 to t2 is represented by the expression (t1 t2). Not all such applications are
well formed. To be well formed, t1 must have the functional type α → β, where
t2 has the type α. The type of the overall term in this case is β. Typed first-order
terms are all the expressions of nonfunctional type different from o that can be
generated using well-formed application, starting from variables and constants
that satisfy the first-order typing conditions we have described for them. There
is a subtlety to how we may determine the types of occurrences of constants
and variables related to the fact that the declared types of these symbols may
have type variables in them. An occurrence of a constant can have any type
that is obtained by instantiating these type variables. We note especially that
different occurrences of the same constant in a given term may have different,
even incompatible types. It is, in fact, only when types are picked in this way
for the different occurrences of nil and :: that the term ((1 :: nil) :: nil)

is determined to be well formed. The requirement is much more restrictive for a
variable: No instantiation of type variables is permitted at any of its occurrences.
Thus the term (X pr X) is well formed only if the type of pr that appears in it
is an instance of (A -> A -> (pair A A)) and there is no possible assignment
of types that would make the term ((X :: nil) :: X :: nil) well formed.

We make the preceding description of the structure of typed first-order terms
precise by presenting in Figure 1.2 the inference rules for a type assignment
calculus for these terms. These rules allows us to derive judgments of the form
�; 	 ��f t : τ that assert that t is a term of type τ with respect to a signature �

that assigns types to constants and a context 	 that assigns types to variables. In
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c : σ ∈ � τ 
f σ

�; 	 ��f c : τ

x : τ ∈ 	

�; 	 ��f x : τ

�; 	 ��f g : τ1 → τ2 �; 	 ��f t : τ1

�; 	 ��f (g t) : τ2

Figure 1.2. Rules for defining typed first-order terms

the present setting, we assume that the types in � are of order at most 1, those
in 	 are of order 0, and none of the types in these two sets contains occurrences
of the sort o. We also assume that no symbol is given a declaration in both �

and 	. The typing rule for constants makes use of the relation τ 
f σ between
two first-order types τ and σ . This relation holds if τ and σ are such that the
former results from the latter through the substitution of type expressions of
order 0 that are distinct from o for type variables. Notice that 
f is an ordering
relation on types: It is reflexive, transitive, and antisymmetric in the sense that
if both τ 
f σ and σ 
f τ hold, then σ and τ are equal up to changes in the
names of type variables.2

The type assignment rules are used by letting � be the assignment of types
to the built-in and user-defined constants that are prevalent in a particular pro-
gramming context. We also assume that terms have been preprocessed so as to
transform operator occurrences into a standard applicative form. We then say
that t is a typed first-order �-term if the judgment �; 	 ��f t : τ is derivable
for some type τ that is of order 0 and distinct from o; noting that typing is
intrinsic to our setting and that the knowledge of the specific signature may be
irrelevant to the discussion at hand, we also may refer to t simply as a first-order
term under these circumstances. In general, t may contain (unbound) variables,
and 	 then must contain assignments of types to these variables. However,
rather than requiring 	 to be determined beforehand, we can use the constraints
imposed by the occurrences of variables and the typing rules to infer types for
variables. In general, a family of typings can be inferred in this way for the
variables and, correspondingly, for the overall term. For example, the term (X

:: nil) :: nil is a well-formed first-order term if X has either the type int or
the type (list int), yielding the types (list (list int)) or (list (list

(list int))) for the overall term.An important fact about the terms that we are
considering is that if there is a satisfactory assignment of types to a term and to
the free variables appearing in it, then there is an assignment that is (pointwise)
most general, up to the renaming of type variables, under the ordering relation

2 Subscripts are used in ��f and 
f to signal a restriction to the first-order setting of the more
general versions of these relations that will be described in Chapter 4.
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f . For example, in the case of the term (X :: nil) :: nil, a type assignment
with this property is the one that associates the type A with X and the type (list
A) with the full term. We discuss a procedure for inferring such types in more
detail in Section 2.1. In the meantime, we use the existence of such a procedure
to sometimes omit mention of types for variables in the first-order terms we
consider.

Application is taken to be a left associative operator. This convention, which
accords well with the right-associative reading of the function type constructor,
allows us to reduce the number of parentheses in displaying terms; for example,
we can write (t1 t2 t3) instead of ((t1 t2) t3). Based on this convention, we can
describe a “canonical form” for typed first-order terms: Such a term is a variable,
a constant, or an application of nonfunctional type that has the form (f t1 . . . tn),
where f is a constant and t1, . . . , tn are themselves typed first-order terms. In the
last case, the term is said to have f as its head and the list of terms t1, . . . , tn as its
arguments. By an abuse of notation, we will allow n, the number of arguments,
to be 0 in this form, thereby extending the terminology for applications to also
cover constants.

1.4 Representing symbolic objects

In this section we consider the use of first-order terms in representing collections
of structured data. Lists provide an example of such a collection. The first step
in describing a suitable encoding consists usually of identifying a type, through
the choice of a sort or a type constructor, to represent the data class as a whole.
The data objects belonging to the class in many cases can be constituted in
one of a few different ways. For instance, lists can be either empty or of a
form that has a head element and a tail list. This kind of subdivision can be
captured in a representation based on first-order terms by using distinct value
constructors that have a common target type and whose argument types are the
types of the relevant subcomponents. Such a structure, in fact, is exhibited in
the built-in representation of lists that uses two different constructors, nil and
::, to encode empty and nonempty lists. Structured data also can be recursive
in nature. In this case, some of the argument types of the constructors that
are used would be identical with their target type; the :: constructor whose
second argument is also of list type exemplifies this aspect in the context of
lists.

The ideas that we have just outlined have several uses, especially in encod-
ing the abstract syntax of languages that we might wish to manipulate in a
computational setting. We use examples from such contexts to provide detailed
illustrations of the style of representation that we have described.
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1.4.1 Representing binary trees

Like lists, binary trees are an example of a structured and recursively defined
collection of data that is used frequently in computing. We will first describe a
representation for such trees that is polymorphic in a way that is parameterized
by the type of the elements in the tree. Toward this end, we identify a type
constructor for this type as follows:

kind btree type -> type.

Using this constructor, the type of a binary tree whose elements are integers can
be identified as (btree int), and the type of a binary tree of string elements
would be written as (btree string).

As an object, a binary tree is either empty or a structure that consists of a data
item and two subtrees. To encode these different possibilities, we introduce two
value constructors through the following declarations:

type empty btree A.

type node A -> btree A -> btree A -> btree A.

Using the newly declared constants, we can represent specific binary trees
through first-order terms such as

(node 3 (node 1 empty empty) (node 4 empty empty))

and

(node "dog" (node "cat" empty empty) (node "mouse" empty empty))

Notice that these two terms are of type (btree int) and (btree string),
respectively.

The type and value constructors we have chosen here do not allow us to
represent trees that contain data of a “mixed” variety. For example, the putative
term

(node 3 (node "cat" empty empty) (node 4 empty empty))

that we might want to use to represent a tree that has both integer and string
elements is ill formed for typing reasons. A characteristic of the representation
that we have described is that while it can be used to encode binary trees whose
elements are of arbitrary type, it must be the case that the types of all the
elements in any given tree are identical. This type-based regularity results from
two properties of our declarations: The type of a binary tree contains in it the type
of the elements in the tree, and the variables in the argument types of each value
constructor also appear in its target type. The “parametric polymorphism” that
results from these restrictions has practical benefits: It allows more properties
of data to be encoded in their types and to be checked in a compilation phase.
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We will discuss this issue in more detail in Section 2.7, after we have presented
a notion of computation to go along with data representation.

The type system of λProlog does not actually force adherence to parametric
polymorphism. It is, for example, possible to describe a representation for binary
trees that contain elements of mixed type. In fact, changing the declarations of
the type and value constructors for binary trees to the ones shown below results
in such a representation:

kind btree type.

type empty btree.

type node A -> btree -> btree -> btree.

Notice that under this representation, the type btree for binary trees no longer
contains any information about the data elements that appear in the tree.

It is interesting to compare the encoding that we have described for trees
using first-order terms with ones that might be provided for them in other
programming languages. The most common approach in a C-like procedural
language uses a structure to represent a node and a pointer to such structures to
represent trees; the empty tree is represented by a null pointer. There is clearly
a correspondence between constructed terms in our setting and the structures
used in the described representation in procedural languages. Another common
approach in a (procedural) object-oriented language such as Java is to use two
distinct derived classes of an abstract binary tree class to represent empty and
nonempty trees. This encoding resembles the one based on first-order terms
that we have described here much more closely: Different value constructors
for a particular type in λProlog are similar to different derived classes whose
disjoint union makes up an abstract class in the object-oriented setting.

Procedural languages provide a view of data that exposes their machine
representation. Thus, in both Java and C, it is necessary for the programmer to
explicitly create objects corresponding to tree nodes rather than treating trees
directly as values. These languages also do not allow for polymorphism in
the controlled way that we have described here. Our encoding is, in this sense,
much more like the one that typically is used in a typed functional programming
language such as ML or Haskell. For example, a datatype declaration would
be used in ML to identify a type constructor for binary trees together with
value constructors that can be used to produce objects of this type. Such a
declaration combines the separate kind and type declarations that we have
shown for defining a data representation in λProlog. One difference that now
becomes apparent is that the set of constructors for data objects can be extended
in λProlog, whereas they are completely determined by a single declaration
in ML. Another difference, illustrated by the second encoding for binary trees
considered earlier, is that unlike in ML, type variables appearing in the argument
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types of a value constructor are not forced also to appear in the target type in
λProlog; i.e., polymorphism can be nonparametric in λProlog. At the level
of data objects, an important difference is that terms in a logic programming
language can contain variables. This feature allows a term to describe a class
of data objects that satisfy certain structural constraints.

1.4.2 Representing logical formulas

We now consider the use of first-order terms in encoding linguistic entities. The
first example we consider is that of representing the formulas in an (untyped)
first-order logic. There are two categories of expressions that are of interest
in such a logic: terms and formulas. We accordingly introduce two sorts for
representing these classes:

kind term, form type.

To represent the terms of the logic, we will need encodings of its constants
and function symbols. Let us suppose that the logic has the two constant sym-
bols a and b and a binary function symbol f. Encodings for these symbols are
provided by the following declarations:

type a, b term.

type f term -> term -> term.

Terms in the logic also can contain variables. We could represent these by using
variables from the metalanguage, i.e., variables from λProlog. However, such
an encoding is not flexible. In particular, the scopes of variables in the object
language will be governed entirely by the scoping rules of the metalanguage
and cannot be controlled explicitly. An alternative is to use chosen constants to
denote variables. A variant of this idea is to represent a variable such as x in the
logic by the λProlog term (var "x"), where var is a constructor given by the
declaration

type var string -> term.

We will adopt this second approach here. Using it, the term f(a,f(x,b)) in the
object language will be represented by the expression (f a (f (var "x") b))

of type term in λProlog.
To represent formulas, we will first need to encode the vocabulary of pred-

icate symbols of the logic. If this vocabulary consists of the unary predicate
symbol q and the binary predicate symbol p, then it can be encoded by means
of the following declarations:

type p term -> term -> form.

type q term -> form.
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A similar set of declarations can be used to describe a representation for propo-
sitional connectives; in this case, we also may want to identify some of the
constants as operators so as to be able to use syntax that has a more familiar
structure. For concreteness, let us suppose that the logic that we want to encode
includes the symbols ⊥ and � denoting the false and true propositions and
the binary infix connectives ∧, ∨ and ⊃ denoting conjunction, disjunction, and
implication. We might encode these through the following declarations:

type ff, % encoding the false proposition

tt form. % encoding the true proposition

type &&, % encoding conjunction

!!, % encoding disjunction

==> form -> form -> form. % encoding implication

infixl && 5.

infixl !! 4.

infixr ==> 3.

These declarations also illustrate the use of comments in λProlog that begin
with the occurrence of a % symbol and extend to the end of the line and that
are meant to help the reader understand the declarations but are otherwise to be
ignored. Subsequent to these declarations, we can write the term

(p a b) && (q a) !! (q (f a b)) ==> (p b (f b a))

to represent the formula ((p(a, b) ∧ q(a)) ∨ q(f (a, b))) ⊃ p(b, f (b, a)).
Extending the representation of quantifier-free formulas to formulas that

include quantifiers is somewhat complicated. Suppose, for example, that we
want to encode the formula ∀x(p(a, x) ∧ q(x)). One possible approach to
doing this is to introduce a new constant all through the declaration

type all term -> form -> form.

and then to use the term

(all (var "x") ((p a (var "x")) && (q (var "x"))))

This expression reflects the recursive structure of the formula it is meant to
represent, but it does not adequately capture the binding force of the quanti-
fier. In particular, the connection between the binding and bound occurrences
of the variable x in the formula is not governed by any principles underlying
the first-order term language that we have used to represent it. Binding prop-
erties therefore will need to be accounted for explicitly in any user-defined
computations over a term that contains the constructor all. This is a funda-
mental limitation of first-order approaches to the treatment of syntax. Chapter 7
presents ways to overcome this deficiency through the use of features found
within higher-order logic.
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It is sometimes necessary to encode classes of logics that possess a common
set of connectives and quantifiers (such as the ones considered in this section)
but that then extend this base in different ways. We will describe a modular
approach to realizing a collection of such encodings in Chapter 6. The ability to
declare value constructors in an incremental fashion, rather than being required
to present them all in one datatype declaration, as in ML, plays an important
role in making such an approach possible.

1.4.3 Representing imperative programs

The second kind of linguistic objects whose representation we consider are
programs in a typed imperative language. For simplicity, we assume that the
language of interest has only two types of values: integers and booleans.

In devising a representation for programs, a question to be addressed is how
object language types should be treated. One possibility is to build these types
into the metalanguage encoding, i.e., to use terms of different types in λProlog
to represent integer- and boolean-valued program expressions. However, it is
usually not a good idea to do this. To understand why, let us consider the
encoding of object language identifiers. These identifiers share a collection of
properties, such as the ability to appear on the left-hand side of an assignment
expression, that are independent of the type of values they can hold. A uniform
treatment of such properties is convenient for syntactic processing, but this
requires representations of identifiers not to be distinguished based on their
object language types. For reasons such as this, the preferred representation for
programming language expressions is often type neutral; type distinctions that
are necessary in particular analyses such as type checking are made explicit in
later “semantics processing” phases.

Based on the preceding considerations, our representation of programs will
use only two sorts: expr for expressions and stmt for statements. We encode
identifiers by using a constructor id that converts their name, given by a string,
into objects of type expr. We designate a constructor c for similarly coercing
integers into expressions. Our encoding of the atomic boolean values is simpler:
Since there are only two such values, we designate t and f as constants that
represent them. Let us assume that the only operations available on program
expressions of boolean type are conjunction and disjunction. We will repre-
sent these using the infix operators && and !!. Similarly, let the operations on
integer program expressions be restricted to addition, subtraction, multiplica-
tion, and less than; observe that the last of these operations yields a boolean
value. We will encode these using the constructors plus, minus, mult, and <.
Finally, suppose that the only statement forms in the programming language
are assignments, conditionals, while loops, and statement composition. The
following declarations constitute a signature for representing such programs:
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kind stmt, expr type.

type id string -> expr.

type c int -> expr.

type t, f expr.

type &&, !!,

plus, minus,

mult, < expr -> expr -> expr.

type := expr -> expr -> stmt. % for assignment

type cond expr -> stmt -> stmt -> stmt. % for conditionals

type while expr -> stmt -> stmt. % for while loops

type seq stmt -> stmt -> stmt. % for composition

infixl &&, mult 5.

infixl !!,

plus, minus 4.

infix < 3.

infix := 2.

To illustrate the representation we have described, let us consider the
following program, written using a C-like syntax for the object language:

v = 1; i = n;

while (0 < i) {

v = v * i; i = i - 1;

}

This program would be represented by the first-order term

(seq ((id "v") := (c 1))

(seq ((id "i") := (id "n"))

(while ((c 0) < (id "i"))

(seq ((id "v") := (id "v") mult (id "i"))

((id "i") := (id "i") minus (c 1))))))

The reader might notice a similarity between this encoding and what is referred
to as the abstract syntax of the program. This similarity is a natural consequence
of the fact that first-order terms are a generalization of the labeled trees that are
used in depicting abstract syntax. Another aspect to note is that representations
of “good” programs must satisfy syntactic constraints beyond those arising
from types in the object language that we discussed earlier. For example, the
left-hand side of an assignment in such a representation must be the encoding of
a variable. We will see in Chapter 2 that such properties can be checked through
logic programs that compute over first-order term–based representations.
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1.5 Unification of typed first-order terms

The ability to analyze complex data objects into their subparts and to use such
analyses in constructing new data objects plays an important role in program-
ming. The unification operation on terms provides the basis for such capabilities
in logic programming languages. We restrict our attention here to a version of
this operation that applies to typed first-order terms, i.e., to typed first-order uni-
fication. In this setting, a unification problem is a finite multiset3 of equations
between first-order terms such that the two terms in each equation are of the
same type. Such a multiset asks whether there is a type-preserving substitution
of terms for variables that, when applied to the terms in the multiset, would
make the two terms in each equation identical. A substitution that has this char-
acteristic is said to be a unifier for the unification problem. As an example, if X
and L are variables of type int and (list int), respectively, then the multiset

{(X :: L) = (1 :: 2 :: nil)}
is a unification problem; note that we use the same notation for multisets as for
sets, allowing the context to determine which one is meant in any particular
instance. Writing substitutions as a collection of variable-term pairs, a unifier
for this problem is given by the set {〈X, 1〉, 〈L, 2::nil〉}.

The example just considered shows that unification can be used to decompose
data structures: The term on the left-hand side of the equation constituting the
multiset serves as a “pattern” for extracting the head of a list into a binding
for X and the tail into a binding for L. The same pattern also functions as a
structure recognizer: It will successfully unify only with lists that have at least
one element and thus characterizes nonempty lists. Interestingly, a variable
may have more than one occurrence in the same term. This feature endows
considerable strength to the structure recognition capability of such patterns. For
example, consider the term (node El T T) in the context of the representation
for binary trees discussed in the preceding section. This term constitutes a
pattern for recognizing nonempty binary trees in which the left and right subtrees
are identical. Thus the unification problem

{(node El T T) = (node 1 (node 2 empty empty) (node 2 empty empty))}
has a solution, whereas the problem

{(node El T T) = (node 1 (node 2 empty empty) (node 3 empty empty))}

3 A multiset is similar to a set except that the same item may appear more than once in a multiset.
Alternatively, a multiset is like a sequence, with the difference that the order of elements is to
be ignored. We use multisets of equations here to avoid having to find and remove duplicate
elements in carrying out computations and because multiplicity does not cause problems at a
conceptual level.
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does not. Clearly, unification problems that provide deeper structural informa-
tion of this kind about data require nontrivial effort to solve. When we consider
higher-order terms later in the book, we will see that unification can be used to
extract even more information about data and that it, correspondingly, becomes
computationally more complex.

In a programming context, we can view the left-hand side of an equation
as something that comes from a statically provided program and the right-
hand side as something that arises dynamically as a result of user interaction.
Observing now that variables can occur in terms on either side of an equation,
we see that unification is a mechanism not just for decomposing data but also for
constructing new structures. As an illustration, consider the following multiset
of equations:

{(X :: L1) = (1 :: nil), L2 = (2 :: nil), (X :: L2) = L3}.
Solving the first of the equations listed leads, as before, to the decomposition
of an input value. However, once this decomposition has been carried out, a
component extracted through it is combined with a second input value by means
of the pattern (X :: L2). This newly constructed value is returned eventually
in a binding for the “output” variable L3.

A unification problem can have more than one unifier. For example, consider

{(X :: L) = (Y :: Z :: nil)},
assuming that the two terms in the sole equation in this multiset are of type
(list int). One unifier for this problem is given by the substitution of Y for X
and (Z :: nil) for L. A different unifier consists of substituting X for Y instead,
leaving the substitution for L unchanged. Other unifiers can be obtained by
picking particular integer values to substitute for X and Y and possibly choosing
such a value for Z as well; the collection of such unifiers is, in fact, infinite. This
situation raises the following question: Is it necessary to consider the entire set
of unifiers for a given unification problem, or can all these be circumscribed in
a finite, possibly unitary way?

Substitutions in a computational setting serve as constraints on the values of
variables. For example, the substitution {〈X, Y〉} constrains the values of X and Y

to be the identical. The substitution {〈X, 1〉, 〈Y, 1〉} satisfies the earlier constraint
but further refines it by requiring the value of these variables to be chosen to
be 1. Viewing substitutions in this way, we say that one substitution is more
general than than another if the latter is obtained from the former by making
further substitutions for variables. A desirable property for a unifier is that it
be as general as possible: Such a unifier may become a constraint on a further
computation, such as finding a unifier for a subsequent unification problem, and
making it too specific may prevent a successful completion of that computation.
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An important characteristic of (typed) first-order unification problems is that
they have most general unifiers whenever they have unifiers. Moreover, these
most general unifiers are unique up to substitutions that “rename” variables.
For example, the substitution {〈X, Y〉, 〈L, Z :: nil〉} is a most general unifier
for the unification problem {(X :: L) = (Y :: Z :: nil)} that we considered
earlier. This problem has {〈Y, X〉, 〈L, Z :: nil〉} as another most general unifier.
Finally, these two substitutions differ only by a substitution that renames X to Y

or vice versa.
Of course, we are interested in a method for finding most general unifiers. In

describing such a method, we initially assume that there are no type variables
in the types of the variables and constants that appear in unification problems.
A general approach to structuring the search for unifiers is to apply transfor-
mations to the equations constituting a unification problem in such a way that
the collection of unifiers is preserved, but the problem itself is successively
simplified to a point where it is easy to tell that it does not have a unifier or
a most general unifier can be read off immediately from it. Let ⊥ represent
a unification problem that has no unifiers. Then, using the canonical form for
first-order terms that was described at the end of Section 1.3, we present the
following set of transformations for resolving a unification problem given as
the multiset of equations E :

Term reduction. Let (f t1 . . . tn) = (g s1 . . . sm) be an equation in E for
some constant symbols f and g. If f and g are distinct constants, or if
they are occurrences of the same symbol with two different types, replace
E with ⊥. Otherwise, transform E by replacing this equation with the ones
in the sequence t1 = s1, . . . , tn = sn; notice that m and n must be identical
in this case.

Reorientation. Let t = x be an equation in E where x is a variable but t is
not. Replace this equation by x = t .

Variable elimination. Let x = t be an equation in E for some variable x that
also has an occurrence in t or some other equation in E . Suppose first that
x occurs in t . In this case, remove the equation from E if t is identical
to x, and replace E by ⊥ if t is different from x. On the other hand, if x

does not appear in t , then transform E by substituting t for x in the terms
of all the other equations in E .

Let us say that a first-order term is rigid if it is not a variable, i.e., if it
has the structure (f t1 . . . tn), where f is a constant symbol and n ≥ 0.
Applying a substitution to this term produces the term (f t ′1 . . . t ′n), where
t ′1, . . . , t ′n are terms that result from t1, . . . , tn via the same substitution. In other
words, the head of a rigid term remains unchanged under a substitution, and
the substitution simply passes through to its arguments. Thus, if an equation
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has two rigid terms that have different heads, either because they have different
names or because they have the same names but with different types, then no
substitution can make the two sides of the equation identical. On the other hand,
if the heads of the two terms are the same, then the set of substitutions that make
their arguments identical must be the same as the set of substitutions that make
the terms themselves identical. These observations underlie the term reduction
transformation.

The second transformation is essentially a bookkeeping one that may be
needed to reorient equations so that the variable elimination transformation can
be applied to them. Underlying the last transformation is the observation that
terms must be of finite size; this follows from the fact that the well-formedness
rules discussed in Section 1.3 require them to be constructed in a finite number
of steps starting from constants and variables. If terms have this property, then
it is easy to see that an equation of the form x = t cannot have a solution if x is
a variable that has an occurrence in the first-order term t but is not t itself. If x

does not appear in t , on the other hand, then this equation is solvable, but x must
have the structure of t in any of its solutions. This “most general” constraint
can be propagated to the other places where x appears to refine the search for
unifiers, as the variable-elimination transformation does.

A multiset E of first-order term equations is in solved form if the left-hand
side of each equation in it is a variable, and in addition, a variable occurring on
the left of any equation does not occur elsewhere in E . Such a multiset cannot
have more than one equation with the same variable on the left. We therefore
can read it as a substitution, with the term on the right of each equation being
the mapping for the variable on the left. Confusing a solved multiset with a
substitution in this way, it is easy to see that it must be its own most general
unifier. Moreover, it can be shown that if we are careful not to use the variable-
elimination transformation on the same (unchanged) equation more than once,
then any sequence of applications of the transformations must terminate, reduc-
ing a given unification problem either to ⊥ or to a solved form. Combining these
two observations, it follows that the transformations we have presented define
a nondeterministic algorithm for finding most general unifiers.

To illustrate the unification algorithm, let us consider the problem

{(node El T T) = (node 1 (node 2 empty empty) (node 2 empty empty))}

By applying term reduction to the only equation in this problem, we can
transform it into

{El = 1, T = (node 2 empty empty), T = (node 2 empty empty)}

Using variable elimination with respect to the second equation now produces
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{El = 1, T = (node 2 empty empty),
(node 2 empty empty) = (node 2 empty empty)}

Applying term reduction based on the last equation further transforms the
problem into

{El = 1, T = (node 2 empty empty), 2 = 2, empty = empty, empty = empty}
The last three equations can be removed using term reduction to produce the
multiset {El = 1, T = (node 2 empty empty)} that represents a most general
unifier for the original problem.

The algorithm we have described, of course, also will discover nonunifia-
bility. One example of a unification problem that leads to such a conclusion is
the following:

{(node El T T) = (node 1 (node 2 empty empty) (node 3 empty empty))}
Proceeding as in the earlier example, this multiset can be transformed into

{El = 1, T = (node 2 empty empty), 2 = 3, empty = empty, empty = empty}
Applying term reduction to the third equation in this multiset reduces the unifi-
cation problem to ⊥. The cause of the failure in this case is commonly referred to
as a constant clash. Another problem that has no unifiers is {T = (bt 1 T T)}.
In this case, failure is caused by the occurrence of T embedded inside the term
on the right-hand side of the equation, a fact that would be discovered when
trying to use variable elimination. The test that leads to failure in this case is
often called an occurs-check.

We have simplified presentation of the unification algorithm by assuming
that no type variables appear in the types of terms. We now consider how to
proceed in the presence of such variables. Types enter into the calculation only
in the term-reduction transformation, and moreover, this happens only when
the heads of the two rigid terms have the same name. In this case, we have
to match up the types of the two occurrences of this name. When there are
no type variables in the types, this “matching up” is straightforward: The two
types must be identical. When type variables are present, we also consider
substitutions for these variables that could make the types of the two head
symbols identical; unification in this sense, is considering refinements not only
to term variables but also to (term) constants toward making the terms on the
two sides of the equations in a unification problem identical. Of course, such
substitutions should be as little constraining as possible. Now the language of
types is seen easily to be a special instance of that of typed first-order terms,
one, in fact, in which every well-formed expression has a (variable free) type
constructed using only the sort type. Thus the algorithm that we have just
described can be used to match up the types of head symbols encountered in
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term reduction in a most general way. Notice that including such a computation
could result in the instantiation of type variables in the course of solving (term)
unification problems.

We have assumed that the two terms in each equation in a unification problem
have identical types. An interesting question is whether the satisfaction of this
condition at the beginning eliminates the need to consider types any further in
unification. The answer to this question is negative in the general case. More
specifically, the need to consider types dynamically in unification arises from
two aspects of our language. First, polymorphic constants can be used in terms
at instances of their defined types, and looking at just their names therefore does
not convey complete information about the types of their occurrences. Second,
when such a constant is applied to other terms, the types of its arguments get
“erased” from the type of the resulting term, making it necessary to look at these
argument types explicitly in order to determine the identity of the constant.
To illustrate these points, let us consider the multiset {(c 1 Y) = (c X a)},
assuming that c and a are constants whose declared types are A -> A -> i and
i, respectively, where i is a user-defined sort. The two terms in the equation have
identical types, making this a bona-fide typed unification problem. However,
if we do not consider types during unification for this reason, then we will
generate the ill-typed unification problem {1 = X, Y = a} and, consequently,
also the ill-typed unifier {〈X, 1〉, 〈Y, a〉}.

An observation about types in the first-order setting is that while they deter-
mine the well formedness of unification problems and hence the existence of
solutions, they do not affect the shapes of the unifiers that exist if typing con-
straints are respected. Thus, if the well typedness of the intermediate multisets
produced by versions of our transformations that do not look at types is guar-
anteed by the type correctness of the original multiset of equations, then types
can be eliminated safely from the unification computation. A particular case of
practical interest in which this happens is when term constructors are defined so
that all the type variables in their argument types also appear in their target type.

We have imposed no limitations on the appearance of constants in the instan-
tiations for variables in the discussions in this section. In a logical setting, and
especially when we consider higher-order terms later in the book, constants usu-
ally correspond to universally quantified variables, and instantiatable variables
similarly correspond to existentially quantified ones. Based on this identifica-
tion, the unification problems that we have considered in this section can be
represented by logical formulas of the form

∀x1 . . . ∀xn∃y1 . . . ∃ym[t1 = s1 ∧ . . . ∧ tp = sp]
We will examine the relationship between finding unifiers for unification prob-
lems and proving such formulas in more detail in Section 4.4. Notice that the
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formulas corresponding to the unification problems considered here have a ∀∃
quantifier prefix; i.e., they have a prefix consisting of a sequence of universal
quantifiers followed by a sequence of existential quantifiers. We will encounter
situations later that have more complex alternations of quantifiers.

The occurs-check test is an important part of the variable elimination trans-
formation as we have described it here: Success in this test must result in a
failure to unify. Our rationale for failure in this case is that there can be no finite
structure that constitutes a solution to the equation x = t when x occurs in t

but is distinct from it. This test is actually omitted in many implementations of
unification with the justification that there is a structure with a finite circular
description that can be substituted for x to yield a solution to the equation. How-
ever, we will require failure in any case where the occurs-check test is satisfied.
Finiteness of terms, enforced through this test, will be important to encoding
quantifier dependencies in the representations of logics and to capturing similar
properties in many other applications that we will consider for our languages.

1.6 Bibliographic notes

Our discussion of the use of first-order terms to represent symbolic and recursive
objects draws on standard techniques from logic programming. The reader who
is not already familiar with such techniques and who is in search of a larger
collection of examples can find them in a number of texts (Clocksin and Mellish
1984; Maier and Warren 1988; O’Keefe 1990; Sterling and Shapiro 1986).

A major difference between the usual treatment of first-order terms and the
one we have adopted here is that we take types to be fundamental to their
structure. λProlog (Nadathur and Miller 1988) appears to be the first logic pro-
gramming language to have used a polymorphic typing discipline; however,
see Mycroft and O’Keefe (1984) for an early proposal for adding polymorphic
types to Prolog. The type system of λProlog was inspired by the one used in ML
(Gordon et al. 1979; Damas and Milner 1982; Milner et al. 1990). However,
as indicated in Section 1.4, there are differences in the precise form in which
types are used in these languages. These differences, as well as the broader dif-
ferences between functional and logic programming languages, have an impact
on the way types affect the computational process. This matter is discussed in
detail in Nadathur and Pfenning (1992); a brief discussion also appears in this
book in Section 2.7. Type systems for logic programming languages are far
from canonical, and many designs and uses of types are possible. For example,
the Prolog/Mali (Brisset and Ridoux 1992) and the Gödel (Hill and Lloyd 1994)
systems implement variations on the typing described here, whereas other ver-
sions based on interpreting types as sets of values were considered by Lakshman
and Reddy (1991).
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We have distinguished between three categories of expressions in our
description of the syntax of terms: the kind expressions, the type expressions,
and terms. We have maintained a separation between expressions in these cat-
egories, thinking of them in a strictly hierarchical fashion. Such a separation is
not essential, and dependently typed λ-calculi such as the Edinburgh Logical
Framework or LF (Harper et al. 1993) represent an alternative treatment. These
dependently typed λ-calculi can be used as the basis for logic programming, as
has been done in Twelf (Pfenning 1989; Pfenning and Schürmann 1999). Such
languages permit rich constraints on the structures of objects to be presented
through types. These constraints also can be captured in λProlog but require
encoding dependent types in predicate definitions using the methods we discuss
in Chapter 2 (Felty and Miller 1990; Snow et al. 2010).

First-order unification has a long history. Herbrand’s thesis (Herbrand 1930)
contains a description of how to solve such problems. Robinson (1965) intro-
duced the idea of most general unifiers and then presented an algorithm similar
to that of Herbrand that he proved correctly computed such unifiers. The
worst-case complexity of Robinson’s algorithm is exponential. Martelli and
Montanari (1982) improved the algorithm to one that has almost linear worst-
case complexity. Their algorithm begins with the idea of transforming multisets
of equations, which is described in this chapter, but then imposes a particular
order on the selection of equations and transformations to achieve its efficiency.
Paterson and Wegman (1978) presented a different algorithm that is actually
of linear worst-case complexity. Most Prolog implementations use Robinson’s
exponential algorithm because this requires fewer bookkeeping steps and has
good behavior in most problems that occur in practice. Another practical matter
is whether or not to implement the occurs-check. If this check is implemented
naively, it can result in basic programming operations taking unacceptable
amounts of time: Setting a variable to a term is often considered to be a constant-
time operation, but performing an occurs-check makes it an operation that is
linear in the size of the term. Leaving the occurs-check out can lead to unsound
deduction. There are situations, however, in which this check can be omitted
safely, and there are known implementation and compilation techniques for
determining several of these cases. If infinite terms are permitted, it is possible
to view unification without the occurs-check as a sound operation that also has
programming applications (Colmerauer 1982).
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First-Order Horn Clauses

Chapter 1 discussed the use of first-order terms to represent data. This chapter
describes logic programming over such representations using a typed variant
of first-order Horn clauses. We begin this presentation by developing a view
of logic programming that will allow us to introduce extensions smoothly in
later chapters, leading eventually to the full set of logical features that under-
lie the λProlog language. From this perspective, we will take this paradigm
of programming to have two defining characteristics. First, languages within
the paradigm provide a relational approach to programming. In particular,
relations over data descriptions are defined or axiomatized through formu-
las that use logical connectives and quantifiers. Second, the paradigm views
computation as a search process. In the approach underlying λProlog, this
view is realized by according to each logical symbol a fixed search-related
interpretation. These interpretations lead, in turn, to specific programming
capabilities.

The first two sections that follow provide a more detailed exposition of a
general framework for logic programming along the lines just sketched. The
rest of the chapter is devoted to presenting first-order Horn clauses as a specific
elaboration of this framework.

2.1 First-order formulas

The first step toward allowing for the description of relations over objects rep-
resented by first-order terms is to ease a restriction on signatures: We permit the
target types of constants to be o. Constants that have this type are called rela-
tion or predicate symbols. Well-formed first-order expressions are otherwise
constructed in the same fashion as that described in Section 1.3. Expressions
that have the type o in this setting are referred to as first-order atomic formulas.
When displayed in canonical form, such an expression must have a predicate

34
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symbol as its head and first-order terms as its arguments.As particular examples,
the constants memb and append introduced through the declarations

type memb A -> list A -> o.

type append list A -> list A -> list A -> o.

are (first-order) predicate symbols. Atomic formulas are formed by applying
such predicate symbols to as many terms as required to produce a term of type
o. For example, the following are two such formulas.

memb 1 (1 :: 2 :: nil)

append (1 :: nil) (2 :: nil) (1 :: 2 :: nil)

Each of these formulas can be understood to represent the proposition that the
objects denoted by their argument terms stand in the relationships named by
their heads.

To permit the construction of complex formulas, we add to signatures a
special, pre-defined set of logical constants or propositional symbols. Written
in mathematical notation, the particular such constants that we include are �
standing for the always true proposition, ∧ standing for conjunction, ∨ standing
for disjunction, and ⊃ standing for implication. The concrete syntax used in
λProlog for these constants is the following:

true of type o representing �
=> of type o -> o -> o representing ⊃
& of type o -> o -> o representing ∧
, of type o -> o -> o representing ∧
; of type o -> o -> o representing ∨ and
:- of type o -> o -> o representing implication written in reverse

Notice that many of these constants have the sort o as an argument type, a
violation of a restriction placed earlier on the types of constants contained in
signatures. We permit this violation in the first-order setting only with respect
to the types of these logical constants. All but the first of the λProlog con-
stants shown are defined to be infix operators. Further, the first two of these
operators are taken to be right associative, the next two are considered to be
left-associative, and the last is nonassociative. Finally, the precedences of these
operators follow the order in which they are listed, and they all bind less tightly
than application.

Well-formed expressions of type o that can be constructed with the enhance-
ments up to this point constitute quantifier-free first-order formulas. Examples
of such formulas that use the predicate symbols declared earlier are the
following:
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(memb 1 (2 :: 1 :: nil) :- memb 1 (1 :: nil)), memb 1 (1 :: nil)
memb 1 (1 :: nil) => memb 1 (2 :: 1 :: nil) & memb 1 (1 :: nil)
(memb 1 (1 :: nil) => memb 1 (2 :: 1 :: nil)) & memb 1 (1 :: nil)
(append nil nil nil ; memb 1 (2 :: nil)), append (1 :: nil) nil (1 :: nil)

The parentheses around the implication expression in the third formula are
redundant by virtue of the assumed operator precedences; this formula is, in
fact, structurally equivalent to the second one that omits the parentheses. The
parentheses surrounding the implication in the first formula and the disjunction
in the last formula are, however, essential for the readings intended in these
cases. The first two formulas, which have an identical logical structure, illustrate
a redundancy in the concrete syntax in that two different symbols are provided
for representing conjunction and implication. In each of these cases, the different
symbols are intended to be used in λProlog in distinct, mutually exclusive
situations; we describe the convention governing their use later in this chapter.

The final addition that leads to the full set of first-order formulas is that of
universal and existential quantification. Both forms of quantification range over
explicit domains specified by types. In mathematical notation, the universal and
existential quantification of x over the formula F at the type τ are written as
∀τ x F and ∃τ x F , respectively. Both quantifiers bind a variable and establish a
scope for its binding. In concrete syntax, the depicted expressions are written
as (pi (x:T)\ F) and (sigma (x:T)\ F), respectively, where F, T, and x are
themselves the concrete syntax renditions of the formula F , the type τ , and
the variable x. While quantification must take place at a specified type, this
type often can be left implicit, to be filled in in a most general way that we
describe shortly. Thus we may depict quantified formulas simply as ∀x F and
∃x F in mathematical notation or as (pi x\ F) and (sigma x\ F) in concrete
syntax. It is apparent from the representation of quantification that the backslash
token plays the role of a binding operator. This role will become precise in
Chapter 4 when it will be identified officially as an infix operator representing
λ-abstraction. In that context,pi andsigmawill be recognized to be polymorphic
constants of the type (A -> o) -> o. For the moment, however, we treat pi x\

and sigma x\ simply as unanalyzed, concrete syntax forms for the quantifiers
depicted by ∀x and ∃x in our metalinguistic discourse.

The following expression illustrates the concrete syntax for quantified
formulas:

(pi x\ (pi z\ (append x z x =>

(sigma y\ (append x y z, pi x\ (append y z x)))))).

By convention, the scope of a bound variable introduced by a backslash extends
as far to the right as possible, limited only by parentheses and the end of the
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expression. Using this convention, the expression shown above can be written
simply as

pi x\ pi z\ append x z x => sigma y\ append x y z, pi x\ append y z x.

The scope convention is especially useful in reducing parentheses when a
series of quantifiers appears at the beginning of the formula. For example,
the expression

pi x\ pi y\ pi z\ append x y z

that represents the closure of the atomic formula append x y z under universal
quantification avoids the use of parentheses altogether. Further examples of
quantified formulas are the following:

pi x\ pi k\ memb x (x :: k)

pi X\ pi L\ pi K\ pi M\ append (X::L) K (X::M) :- append L K M

sigma X\ pi y\ sigma h\ append X y h

The various examples also illustrate a rule that governs the syntax of bound
variable names: These can be any contiguous sequence of characters beginning
with an upper- or lowercase letter.

An important principle concerning quantification is that the pattern of bind-
ing is key and the names chosen for variables to indicate this structure are
unimportant. A consequence of this principle is that the names of bound
variables can be changed systematically without affecting the meaning of a
quantified formula. For example, the following four formulas are all logically
equivalent to each other.

pi x\ (p x) => sigma y\ (q x y, pi x\ (q y x))

pi x\ (p x) => sigma U\ (q x U, pi x\ (q U x))

pi z\ (p z) => sigma y\ (q z y, pi x\ (q y x))

pi z\ (p z) => sigma y\ (q z y, pi v\ (q y v))

In Chapter 4 we shall see that these equivalences are actually a consequence of
the notion of α-convertibility for λ-terms.

The syntax that we have described for (typed) first-order formulas can be
formalized through an extension of the type assignment calculus presented in
Section 1.3. In the extended setting, we assume that signatures contain the neces-
sary association of types with logical constants and that the types they associate
with other (nonlogical) constants may have o as their target type. We then aug-
ment the typing rules presented in Figure 1.2 with the rules in Figure 2.1,
which treat expressions containing quantifiers; the third rule in this figure,
which is justified by the principle of bound variable renaming, may need to
be used in type assignment derivations in order to satisfy the proviso associated
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�; 	, x : τ ��f B : o

�; 	 ��f ∀τ x B : o

�; 	, x : τ ��f B : o

�; 	 ��f ∃τ x B : o

provided x is not assigned a type by either � or 	.

�; 	 ��f B : τ

�; 	 ��f C : τ

provided B and C differ only in the names of bound variables.

Figure 2.1. Rules added to those in Figure 1.2 for typing expressions with
quantifiers.

with the first two rules. Finally, we say that an expression F is a typed first-order
�-formula if the judgment �; ∅ ��f F : o is derivable in the resulting calculus;
noting that typing is intrinsic to our setting, we may in such a case also refer
to F as a first-order �-formula or, simply, as a first-order formula when the
identity of the signature is not important to the discussion at hand.

The preceding characterization of first-order formulas assumes that each
occurrence of a variable in such a formula is within the scope of a quantifier
that binds the variable, i.e., that the formula is closed. Each such quantifier is
also assumed to indicate explicitly the type of the domain of quantification.
In reality, the concrete λProlog syntax allows this type to be left implicit, and
indeed, this is the preferred way of writing quantified expressions. This style can
be accommodated because the missing types can be filled in by a type inference
process. Formally, this process tentatively associates a new type variable with
the variable of quantification in the augmented contexts shown in the premises of
the first two rules in Figure 2.1. This type variable then is refined incrementally
in as minimal a way as possible so as to ensure a continued adherence to the
typing rules in the course of type assignment. The unification computation
described in Section 1.5 can be applied to type expressions to realize such
refinements and thereby to infer an association of types with quantified variables
that is most general with respect to the 
f relation. We assume such a type
inference process to be operative in all future discussions.

2.2 Logic programming and search semantics

Four ingredients are essential to our abstract presentation of logic program-
ming: (1) signatures, (2) program clauses, (3) goals or goal formulas, and (4)

a calculus for constructing proofs. Signatures identify the nonlogical constants
that can be used to build data objects and to state the relationships that hold
between these objects. Once the signature � has been fixed, we assume that
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the logical context makes precise the collection of well-formed terms and for-
mulas that we will refer to as �-terms and �-formulas; we have seen how
these notions are formalized in the first-order setting. Some of the �-formulas
are now identified as program clauses. These formulas are the ones that might
be used as assertions or axioms to partially define the relations denoted by
the predicate symbols in �. A collection of such formulas constitutes a logic
program. Another, possibly different class of �-formulas is admitted as the
collection of goal formulas, also called queries. These formulas are the ones
whose derivations may be attempted from a given logic program.

We make use of sequent calculi to describe the structures of proofs. For our
purposes here, a sequent is a triple consisting of a signature �, a set P of �-
formulas (the logic program), and a �-formula G (the goal). Such a sequent will
be written as �; P −→ G. We also sometimes shall talk of a signature-program
pair 〈�, P〉 that defines a context in which varied queries can be posed. The
sequent �; P −→ G denotes the judgment, which may or may not hold, that the
formula G can be proved from the assumptions P and the signature �. Sequent
calculi are characterized by particular collections of inference rules that permit
a sequent judgment to be derived from a possibly empty collection of premises
that are themselves sequent judgments. Such calculi have been described for
classical, intuitionistic and linear logic as well as many other logics.

Goal-directed proof search can be presented through a collection of transition
or reduction rules that transform the task of solving a given sequent into the
task of solving other related sequents. We use the following rules to associate
a search behavior with each of the logical constants and quantifiers:

AND Reduce �; P −→ B1 ∧ B2 to the two sequents �; P −→ B1 and
�; P −→ B2.

OR Reduce �; P −→ B1∨B2 to either �; P −→ B1 or �; P −→ B2; the
sequent that is selected must be solved to yield a solution to the original
sequent.

INSTAN Reduce �; P −→ ∃τ x B to �; P −→ B[t/x], for some term
�-term t of type τ ; the resulting sequent thus is parameterized by the
chosen �-term t .

AUGMENT Reduce �; P −→ B1 ⊃ B2 to �; P , B1 −→ B2.
GENERIC Reduce �; P −→ ∀τ x B to c : τ , �; P −→ B[c/x], where c

is a token that is not in the current signature �. We shall refer to c as a
new constant.

TRUE The sequent �; P −→ � is provable immediately and does not
need to be reduced further.

These rules assign a fixed search semantics that is independent of the signature
and the program to each of the logical symbols. For example, the connectives
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�; P −→ � �R
�; P −→ B1 �; P −→ B2

�; P −→ B1 ∧ B2
∧R

�; P −→ B1

�; P −→ B1 ∨ B2
∨R

�; P −→ B2

�; P −→ B1 ∨ B2
∨R

�; P , B1 −→ B2

�; P −→ B1 ⊃ B2
⊃R

�; P −→ B[t/x] �; ∅ ��f t : τ

�; P −→ ∃τ x B
∃R

c : τ , �; P −→ B[c/x]
�; P −→ ∀τ x B

∀R

The ∀R rule has the proviso that c is not declared in �.

Figure 2.2. Right-introduction rules.

∧ and ∨ in goals are always mapped into AND and OR search steps regardless
of the signature-program context in which they are encountered.

The reduction rules just listed treat sequents as if they are characterizations
of the state of an interpreter. Specifically, �; P −→ G might be read in the
context of these rules as an attempt to solve G given the signature-program
pair 〈�, P〉. However, we also have noted a logical interpretation for such a
sequent: It represents the judgment that the �-formula G is true whenever
the �-formulas in P are true for a suitable notion of truth. Under this second
viewpoint, it makes sense also to reverse the reduction rules, reading them as
inference rules of logic instead. Interpreted this way, the INSTAN rule, for
example, translates into the following: If the sequent �; P −→ B[t/x] can be
proved for some �-term t of type τ , then we have a justification for the sequent
�; P −→ ∃τ x B. Figure 2.2 displays the inference rules corresponding in this
manner to each of the reduction rules. These inference rules are called right-
introduction rules because they justify the introduction of a logical symbol to
the right of the arrow in the sequent constituting the conclusion of the rule, i.e.,
in the sequent that appears below the horizontal line in the presentation of the
rule. We have adopted some conventions commonly used with sequent calculi
in displaying the inference rules in Figure 2.2: In the ⊃R rule, the expression
P , B1 denotes the set P ∪ {B1} of formulas, and in the ∀R rule, the expression
c : τ , � denotes the set {c : τ }∪� of type declarations. Notice also that we have
used the judgment �; ∅ ��f t : τ in the ∃R rule to formalize the requirement
that t must be a �-term of type τ . This is somewhat limiting in that it assumes
a restriction to the first-order setting. A more general form of this rule will be
presented in Section 5.2 after higher-order terms have been introduced.

We have, at this point, two views of sequents and, thereby, of logic program-
ming: an abstract, declarative interpretation based on logic and an operational
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interpretation based on understanding logical symbols as specific search instruc-
tions. The desire is, of course, that these two interpretations coexist. This
naturally raises the question of the extent to which the inference rules in
Figure 2.2 correspond to logic. It is easy to see that each of these inference
rules is sound in any interesting logic; i.e., if the premise sequents—the sequents
above the horizontal line in each rule—are provable, then the conclusion sequent
also must be provable. The converse property, that of logical completeness, can
be phrased as follows: If a sequent with a nonatomic goal is provable, then
must the premise sequent(s) of the rule corresponding to such a goal also be
provable? Completeness is a more intricate question and depends both on the
formulas we permit in programs and queries and on the logic that we use to
provide the declarative semantics. To illustrate some of the issues involved, let
us take the signature � to be {p : o, q : o, r : i → o, a : i, b : i}, where i is
some fixed sort. Then we observe the following:

1. The OR rule reduces the sequent �; p∨q −→ q∨p to either �; p∨q −→ q

or �; p ∨ q −→ p. Neither of these sequents is provable, although the
original sequent is provable in classical and intuitionistic logics.

2. The OR rule reduces �; −→ p ∨ (p ⊃ q) to either �; −→ p or �; −→
p ⊃ q. The first sequent cannot be proved. The second sequent reduces
by virtue of the AUGMENT rule to �; p −→ q, which also cannot be
proved. However, in classical logic—a logic that is often used to formalize
mathematical arguments—p ∨ (p ⊃ q) is a tautology. Within this logic,
it is assumed that any given proposition is either true or false. Using this
assumption in the situation at hand, if p is true, then the disjunction p∨(p ⊃
q) is true, and if p is false, then p ⊃ q is true, and again, the disjunction is
true.

3. The INSTAN rule reduces the sequent

�; (r a ∧ r b) ⊃ q −→ ∃ix (r x ⊃ q)

to the sequent �; (r a ∧ r b) ⊃ q −→ r t ⊃ q, where t is some �-term
of type i. However, there is no possible choice for t that makes this sequent
provable: If we pick t to be a, then the AUGMENT rule reduces this sequent
to the unprovable sequent

�; (r a ∧ r b) ⊃ q, r a −→ q.

Similar observations apply if we pick t to be b or something different from
a and b. While no sequent it reduces to can be proved, the original sequent
itself is true (and, hence, provable) in classical logic according to the fol-
lowing reasoning: We know that r a is either true or false. If it is false, then
∃ix (r x ⊃ q) is true (by picking a for x). If r a is true, then (r a ∧ r b) ⊃ q
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is equivalent to r b ⊃ q, from which it follows easily that ∃ix (r x ⊃ q)

again must be true.

Completeness is important to the integrity of the framework we have
described. A central question concerning the design of logic programming lan-
guages therefore becomes the following: Is it possible to restrict the program and
goal formulas and to choose the underlying logic in such a way that interesting
and useful programming behavior is supported on the one hand and complete-
ness is assured on the other? We shall need to think of both kinds of refinements
in developing the logical basis of λProlog. As the first example illustrates, it
seems likely that we will have to prohibit disjunctions from appearing in our
programs. In fact, the formulas we eventually allow in programs are also called
definite formulas because they do not contain indefinite information of the kind
let in by disjunctions. The last two examples illustrate that this step by itself may
not be enough because classical logic, as we have seen, has a kind of indefinite
assumption built into it: It assumes that B ∨¬B is true for any formula B. This
assumption is known as the principle of the excluded middle. To overcome the
problem raised by it, we shall move to intuitionistic logic, a weaker logic than
classical logic in which the principle does not hold.

The focus on search semantics has led to our describing reductions only for
nonatomic goals. We must, of course, also consider how to reduce atomic goals.
Clearly, progress when these are encountered should depend on the program.
At a logical level, inference rules that introduce logical symbols in the program
that appears to the left of the sequent arrow, i.e., left-introduction rules, should
govern what happens at this point. From a pragmatic perspective, features of
the atomic goal, such as the predicate symbol at its head, should influence the
particular choice of rules. We will see these intuitions being substantiated in the
particular logics that we propose for programming. However, we do not build
them into the framework for two reasons. First, we are presently interested only
in an abstract characterization of search behavior in which the logical symbols
in goals are the primary players. Second, greater specificity in the treatment of
atomic goals requires detailed assumptions about the structure of the formulas
permitted in programs, something that is to be avoided in describing a general
framework.

We have presented computation as the process of solving a query or, equiv-
alently, searching for a proof. There is, of course, also interest in what the
eventual result of such a computation should be. If the attempt to solve the
goal is unsuccessful, the answer is easy: The result should be an indication
of the failure. If the attempt is successful, the result could be the proof that
has been found. However, proofs are complete traces of computations, and
in programming situations, it is often useful to provide back only a summary
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of a computation. The INSTAN rule indicates a possible way to satisfy this
requirement. By virtue of this rule, an existential goal is solved by finding a
particular instance of it that is solvable. The term that yields this instance then
can be considered to be the result of the computation. Extending the idea a bit
further, we may allow a goal to contain free variables with the interpretation
that these variables are existentially bound at the head. The result of solving
such a goal—which we refer to as an answer substitution—is then the mapping
from these variables to terms that leads to the successful computation.

In the rest of this chapter we consider a particular example of the framework
for logic programming that we have just described. This example, called the
logic of first-order Horn clauses, or fohc, provides the logical foundations
for the programming language Prolog. The syntax of goals in the Horn clause
setting is restricted in such a way that the AUGMENT and GENERIC reduction
rules become redundant. We shall remove these restrictions in Chapter 3 to
obtain a more expressive language. Later we will extend the language further
to incorporate a richer term structure and quantification over predicate and
function symbols while preserving the principle of goal-directed proof search
discussed here.

2.3 Horn clauses and their computational interpretation

Let A be a syntactic variable denoting first-order atomic formulas. Goals and
program clauses in the setting of fohc are then the first-order formulas corre-
sponding to the syntactic variables G and D that are given, respectively, by the
following rules:

G ::= � | A | G ∧ G | G ∨ G | ∃τ x G

D ::= A | G ⊃ D | D ∧ D | ∀τ x D

We have used here the richest of different but logically equivalent ways to
describe these classes of formulas. In this formulation, only ⊃ and ∀ are disal-
lowed at the top level in G-formulas, and only ∨ and ∃ are disallowed at the
top level in D-formulas.

The program clauses that we have described include formulas of the form

∀τ1x1 . . . ∀τmxm (A1 ∧ . . . ∧ An ⊃ A0)

for m, n ≥ 0; we let m = 0 denote the situation where there are no universal
quantifiers at the front of the formula and n = 0 denote the situation where
there is no implication. A formula that has this structure should be familiar
from Prolog, where it serves as a partial definition of the predicate symbol that
appears as the head of A0. Notice, however, that such formulas are only special
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cases of our program clauses. In particular, in our setting, the right-hand side of
an implication need not be an atomic formula: What we might think of as the
eventual “head” of an implication may be to the right of further implications
and buried under conjunctions and universal quantifiers.

Given a set of program clauses P and a goal formula G defined over the
signature �, computation in the model we described in the preceding section
consists of attempting to construct a derivation for the sequent �; P −→ G. The
previously presented reduction rules determine the manner in which to proceed
in the case where G has a complex structure. To complete this picture, it is
necessary to explain what is to be done when G has been reduced to an atomic
formula. Considering some simple cases leads us naturally to an answer to this
question. If the goal G is the atomic formula A and the program P contains this
formula, then clearly the computation should succeed immediately. Similarly,
if P contains a clause of the form G′ ⊃ A, then it should suffice to derive G′

from P: From a logical perspective, since G′ ⊃ A and G′ follows from P ,
so must A. Thus, in this case, one possibility would be to reduce the sequent
�; P −→ A to �; P −→ G′.

The process that we just described for advancing proof search when the goal
is atomic is commonly known as backchaining. Since program clauses in our
setting can be more than atomic formulas or implicational formulas with atomic
consequents, we need to describe backchaining in a more general way for it
to be adequate. The inference rules in Figure 2.3 provide such a description.

The sequent �; P D−→ A in these rules is used to indicate that an attempt is
being made to prove the atomic goal A by backchaining on the program clause
D. The first rule in Figure 2.3 has the proviso that D appears in P , and it
encodes the selection of D as the clause on which to backchain. The second
rule has an obvious connotation: If the atom that we are attempting to derive is
identical to the one on which we are backchaining, then the computation along
this branch ends. If, on the other hand, the formula chosen for backchaining is
the implication G ⊃ D, then we must do two things: derive G from the same
program and continue the backchaining process using D in place of G ⊃ D.
This behavior is encoded in the third rule. The next two rules allow for reducing
backchaining on a conjunction to backchaining on either conjunct. The last
rule describes backchaining on universal formulas: The selected universally
quantified formula is instantiated by a chosen �-term, and the resulting formula
becomes the basis for backchaining.

The backchaining rules other than the first one in Figure 2.3 can be com-
piled into a simple and familiar form when the structure of program clauses is
restricted to that in Prolog, i.e., when they are all of the form

∀τ1x1 . . . ∀τmxm (A1 ∧ . . . ∧ An ⊃ A0)
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�; P D−→ A

�; P −→ A
decide

�; P A−→ A
initial

�; P D−→ A �; P −→ G

�; P G⊃D−→ A
⊃L

In the decide rule, D is a formula that is selected from P .

�; P D1−→ A

�; P D1∧D2−→ A
∧L

�; P D2−→ A

�; P D1∧D2−→ A
∧L

�; P D[t/x]−→ A �; ∅ ��f t : τ

�; P ∀τ x D−→ A
∀L

Figure 2.3. Rules for backchaining.

where m, n ≥ 0. In particular, if D is such a formula, then the inference rule

�; P −→ A1θ · · · �; P −→ Anθ

�; P D−→ A

suffices to describe backchaining. This rule has an associated “side condition”
that θ must be a substitution for the variables x1, . . . , xm that maps each xi to a
�-term ti of type τi and that is such that A is equal to A0θ . The soundness of
this rule in a logical sense can be seen as follows: Assume that A1θ , . . . , Anθ

follow from P (i.e. that the premises of the inference rule are derivable). Since
P contains the clause ∀τ1x1 . . . ∀τmxm (A1 ∧ . . . ∧ An ⊃ A0), the instance
(A1θ ∧ . . . ∧ Anθ ⊃ A0θ) also must follow from P . But then, using modus
ponens, it must be the case that A0θ follows from P .

The formula that appears above the sequent arrow in the rules in Figure 2.3
can be thought of as being a part of the left side of the sequent; placing it above
the arrow merely puts the focus on using it in the next step in the derivation.
Interpreting this formula in this way makes these inference rules instances of
left-introduction rules: They introduce a new occurrence of a logical connec-
tive in the formulas appearing on the left of the sequent arrow in the sequent
that constitutes the conclusion of the rule. These rules thus complement the
right-introduction rules in Figure 2.2, and when read bottom-up, these two sets
together with the rules in Figure 1.2 for identifying first-order �-terms provide
a collection of reductions that can be used in deriving a goal. These reduc-
tions actually yield a proof procedure for the logic of first-order Horn clauses
that is complete with respect to both classical and intuitionistic logic. More
specifically, let us call a proof that is constructed using the inference rules from
Figures 1.2, 2.2, and 2.3 an O-proof. A known result, then, is that if P is a logic
program and G is a goal in fohc, then �; P −→ G has an O-proof if and only
if it has a proof in classical logic or, equivalently, a proof in intuitionistic logic.

As discussed in Section I.2, an important measure of the expressiveness of
a logic programming language is the different ways in which sequents in that
language can change during proof search. For fohc, we have the following
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property: Every sequent in an O-proof of the sequent �; P −→ G is of the

form �; P −→ G′ or �; P D−→ A, for some A, G′, and D. Thus every goal
formula that is encountered during a computation ends up having to be proved
with respect to the same signature-program pair.Another way to understand this
is that signatures and programs are flat and global in fohc: Every clause and
every constant that is needed during the construction of a proof must already be
a member of the initial logic program and signature. In later chapters we will
extend the syntax of formulas in fohc so that the AUGMENT and GENERIC
rules become applicable to them. These rules support the capability of enlarging
both the program and the signature during a computation.

2.4 Programming with first-order Horn clauses

The preceding two sections have provided an abstract view of computation
based on a fragment of first-order logic. We now turn to understanding the use
of this framework in actual programming tasks. We begin by taking a more
concrete, system oriented view of fohc that is based on λProlog. In particular,
we present a concrete syntax for program clauses and queries, and we describe
a mode of interaction that corresponds to constructing derivations for sequents.
We then explore the programming capabilities afforded by this setup by con-
sidering its use in encoding search related problems and in the specification of
relations over recursively structured data.

2.4.1 Concrete syntax for program clauses

Programs are presented in λProlog as a sequence of clauses, each terminated
with a period. The program clauses that we want to write often have several
universal quantifiers at the outermost level. To make such clauses simpler to
write and display, the following conventions are used:

• A token in a program clause that is not explicitly quantified or otherwise
reserved is assumed to be a variable that is implicitly universally quantified
over the entire clause if it begins with an uppercase letter and to be a constant
otherwise. Type declarations must be included in the program that make
explicit the types of nonpervasive constants that appear in any clause. The
λProlog system attempts to infer types for implicitly quantified variables
using the process discussed earlier.1

• The underscore symbol _ also may be used to denote a variable that is
implicitly universally quantified over the entire clause. Each occurrence of

1 The user also may indicate types for these variables, as we discuss in Section 2.7.3.
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this symbol corresponds to a distinct variable. Such variables are said to be
anonymous.

• Quantifiers also may be included explicitly in clauses. The names of the
variables that such quantifiers bind may begin with either an uppercase or
a lowercase letter. Types may be provided for these variables at the binding
site. If they are not provided, the λProlog system will try to infer them.

Let append be a constant that is identified by the following type declaration:

type append list A -> list A -> list A -> o.

Then the following program fragment illustrates these conventions:

append nil L L.

append (X :: L1) L2 (X :: L3) :- append L1 L2 L3.

These clauses also may be written in more verbose form as

pi L\ append nil L L.

pi X\ pi L1\ pi L2\ pi L3\

append (X :: L1) L2 (X :: L3) :- append L1 L2 L3.

Regardless of which syntax is used, λProlog will certify the clauses as being
well typed, inferring the type (list A) for L in the first clause and the types A for
X and (list A) for L1, L2, and L3 in the second clause. The second presentation
also can be modified to

pi l\ append nil l l.

pi x\ pi l1\ pi l2\ pi l3\

append (x :: l1) l2 (x :: l3) :- append l1 l2 l3.

Here, tokens beginning with lowercase letters have been used for variables
that are explicitly quantified. As another example, consider the following type
declaration and clause:

type sublist list A -> list A -> o.

sublist L K :- append _ T K, append L _ T.

The clause here contains two occurrences of the anonymous variable and
equivalently could have been written as

sublist L K :- append U T K, append L V T.

As noted in Section 2.1, there are two symbols in λProlog for conjunction,
namely, & and the comma. There is also a redundancy in the representation of
implication in that => is available for writing “implies” and :- can be used
to write “is implied by.” Stylistic conventions for using the different symbols
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motivate these redundancies. The symbol & is intended to be used when forming
the conjunction of two program clauses, whereas the comma is to be used to
construct a conjunction of two goal formulas. Similarly, the symbol :- is to
be used to represent the implication that appears in the syntax rules for D-
formulas, and => is to be used for implications that appear at the top level in
queries. Since fohc does not permit implications in queries, the last convention
makes the => symbol redundant in this setting and has a positive impact only in
the richer logics we consider later. The conventions that we have described can
be ignored without affecting the well-formedness of expressions, but following
them can ease the reading of program clauses and queries.

It is possible to embed conjunctions and implications in program clauses,
and this allows us to write the same programs in different ways. For example,
suppose that we are given the kind and type declarations shown below:

kind bool type.

type neg bool -> bool.

type and, or, imp bool -> bool -> bool.

type ident bool -> bool -> o.

Consider then the following clauses:

ident (neg B) (neg D) :- ident B D.

ident (and B C) (and D E) :- ident B D, ident C E.

ident (or B C) (or D E) :- ident B D, ident C E.

ident (imp B C) (imp D E) :- ident B D, ident C E.

The “bodies” of the last three clauses are identical. Using the fact that the right-
hand sides of implications in program clauses can contain conjunctions, this
part can be factored out, as in the following set of clauses.

ident (neg B) (neg D) :- ident B D.

ident (and B C) (and D E) &

ident (or B C) (or D E) &

ident (imp B C) (imp D E) :- ident B D, ident C E.

Recall here that the precedence of & is higher than that of :-. It is possible
to compress this presentation of clauses even further into the following single
clause:

ident (neg B) (neg D) &

(ident (and B C) (and D E) &

ident (or B C) (or D E) &

ident (imp B C) (imp D E) :- ident C E) :- ident B D.
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Implicit in this discussion is the fact that all three forms presented here are
equivalent in terms of the goals that can be derived from them as well as
in terms of any observable operational behavior that results from them. This
observation follows from examining the way the backchaining rules structure
the use of the clauses in the different presentations.

Rather than aiding in readability, a compact representation sometimes may
make programs more difficult to understand and so should be used with care.
From an execution perspective, a naive application of the rules in Figure 2.3
when a program clause is in compressed form can be costly. A more sophis-
ticated implementation therefore might use the structure of the backchaining
rules to preprocess a program clause in the form presented last into the first set
of program clauses.

2.4.2 Interacting with the λProlog system

The search for a derivation can begin only after a sequent �; P −→ G has
been presented. In the typical programming scenario, the left-hand side of the
sequent is specified first. There is a part of this signature-program pair that
comes with the λProlog system and therefore is always available. The signature
part of this ambient or pervasive signature-program pair includes all the type
and value constructors for representing integers, strings, reals, and streams that
were discussed in Chapter 1 and the logical constants described in Section 2.1
of this chapter. For the program part, we assume that it contains built-in defini-
tions of certain predicates that are broadly useful or that are difficult to encode
in a purely logical manner. For instance, included in this component are the
following:

<, >, =<, >= each of type int -> int -> o, representing the usual
comparison operators on integers and correctly used
only when both arguments are instantiated to numbers

read of type A -> o, which reads a line from the standard
input stream (std_in), parses the portion of it
up to a period, and succeeds if this unifies with the
argument and

print of type string -> o, which prints the argument to
the standard output stream (std_out); this
predicate is meaningfully used only when its
argument is instantiated to a string constant.

We introduce more pervasive predicates as we need them in various parts of
this book.
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Aprogrammer can add declarations and program clauses by using the module
system of λProlog, which is discussed in detail in Chapter 6. For the moment,
it suffices to view a module as a named collection of signature declarations and
program clauses. The following code provides an example of a module called
lists that declares the predicate constant append and provides program clauses
defining it:

module lists.

type append list A -> list A -> list A -> o.

append nil L L.

append (X::L) K (X::M) :- append L K M.

end

When initiating an interaction session, the user of the system must provide the
name of the module whose signature and clause declarations are to augment
the ambient signature-program pair before parsing and solving queries. If the
user indicates lists to be this module, then the system will build the relevant
left-hand side of the sequent and present the user with the prompt

[lists] ?-

At this stage, the system enters a mode of interaction that is referred to as the
read-prove-print loop. Although interactions take place relative to modules, we
shall simplify the prompt to just ?- if the name of the module is not important
for understanding the issues in a given context.

The read phase
At this stage, all that remains to initiate a computation is providing a query,
which is done at the prompt. An example of this is the following:

[lists] ?- sigma X\ sigma Y\ append X Y (1 :: 2 :: nil).

Notice that queries are terminated by a period.
In Section 2.4.1 we noted a convention for omitting quantifiers at the head

of a program clause. A dual convention applies to goals typed in at the prompt:
Tokens that are not explicitly quantified and which start with an initial uppercase
letter are assumed to be implicitly existentially quantified with outermost scope,
and all other tokens that are not special symbols or explicitly bound are taken to
be constants that must be declared in the signature. Using this convention, the
following queries are equivalent to the one presented earlier, at least in terms
of the search behavior to which they give rise:

[lists] ?- sigma Y\ append X Y (1::nil).

[lists] ?- append X Y (1::nil).
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As with program clauses, the symbol _ can be used to represent an anonymous
variable. Thus these queries also may be written as

[lists] ?- append _ _ (1::nil).

There is, however, a pragmatic difference between these varied forms that will
be explained in the presentation of the print phase below.

The prove phase
The prove phase corresponds to trying to find an O-proof for a sequent.2 It
is in this phase that computation takes place in λProlog. Later in this chapter
we consider in more detail the manner in which this computation might be
structured. For the moment, we adopt a simplistic view of the search procedure
that is oriented around the treatment of the goal under consideration. If the goal
has a logical connective as its top-level symbol, the procedure tries a right rule
from Figure 2.2; for example, if the goal is a conjunction, then an attempt is
made to construct two separate proofs, one for each conjunct. If the goal is
atomic, then backchaining is initiated by the decide rule from Figure 2.3 and
is elaborated by the other rules in the same collection. Such a proof search
can have three outcomes: A proof might be found, it may be determined that
no proof exists because all possible paths to a proof have led to failure, or the
search may never terminate. We note that the provability of a goal formula from
a set of program clauses in fohc is an undecidable question in general. Thus the
possibility of nontermination is one faced by any interpreter for this language
and is not a facet merely of a simple-minded search engine.

The print phase
If a proof has been found, or if it has been determined that no proof exists, then
this needs to be reported to the user. In the latter situation, i.e., when it is known
that no proof exists, the system simply can respond with a no. For example, we
may have the following interaction:

[lists] ?- append (1::nil) (2::nil) (3::nil).

no

[lists] ?-

On the other hand, if a proof is found, then the system might respond with an
indication of success:

[lists] ?- append (1::nil) (2::nil) (1::2::nil).

2 For brevity, we shall refer to an O-proof simply as a proof in what follows.
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solved

[lists] ?-

The response also can be more informative in the case of a success. One
possibility is to show the successful proof. However, this is too verbose, as
we have noted previously. The common practice in logic programming lan-
guages is to present instead a trace of the proof in the form of instantiations
for the implicitly existentially quantified and named variables in the original
query that result in the success. Such instantiations are what we have previ-
ously referred to as an answer substitution. Viewing such a substitution as the
outcome of the computation does not change the response when success is
encountered in the earlier query because there are no variables to instantiate in
it. However, this idea underlies the result that λProlog shows in the following
interaction:

[lists] ?- append (1::nil) (2::nil) X.

X = (1::2::nil)

[lists] ?-

Under the convention described, instantiations for explicitly quantified vari-
ables and for anonymous variables are not presented. This is illustrated by the
following interactions:

[lists] ?- sigma X\ append (1::nil) (2::nil) X.

solved

[lists] ?- append (1::nil) (2::nil) _.

solved

[lists] ?-

It is also possible to mix the different kinds of variables, as illustrated in the
following queries:

[lists] ?- sigma Y\ append X Y (1::nil).

X = nil

[lists] ?- append X _ (1::nil).

X = nil

[lists] ?- append X Y (1::nil).

X = nil
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Y = (1::nil)

[lists] ?-

These queries all result in an attempt to prove the same sequent, but there are
differences in what is presented back to the user.

Multiple solutions
There might, of course, be more than one proof of a sequent, each with a different
answer substitution. In light of this, when an answer substitution is presented,
the system will pause for the user to provide input on what to do next. The user
can signal that no additional proofs are needed by typing in a carriage return;
this is what occurs in the last of the preceding queries. Alternatively, the user
may request a search for another proof by typing in a semicolon. The following
variation on the last preceding interaction illustrates this possibility:

[lists] ?- append X Y (1::nil).

X = nil

Y = 1::nil;

X = 1::nil

Y = nil;

no

[lists] ?-

Two proofs are found here, and the corresponding answer substitutions are
displayed. The final no in response to the user’s request for yet one more proof
indicates that there are no others to be found.

2.4.3 Reachability in a finite-state machine

As our first illustration of the programming capabilities of fohc, we consider
its use in encoding and solving search-related problems. The particular task we
consider is that of determining whether or not a finite-state machine accepts a
given word.3 This task is an example of a reachability problem that has a rather
natural encoding in a logic programming language: The existence of a path can
be linked directly to the existence of a proof.

3 We assume familiarity here with such machines and the notions related to them.
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kind state, letter type.
type q1, q2, q3, q4, q5 state.
type a, b letter.
type start, final state -> o.
type path, trans state -> list letter -> state -> o.
type accept list letter -> o.

path S nil S.
path S Letters T :- trans S Arc M, append Arc Rest Letters,

path M Rest T.
accept W :- start S, path S W F, final F.

Figure 2.4. Declarations for encoding finite-state machines and tracing transitions
in them.

start q1 & final q2 & final q3.
trans q1 (a::nil) q1 & trans q1 (b::nil) q1.
trans q1 (a::b::nil) q2 & trans q1 (b::a::nil) q3.

Figure 2.5. Predicate definitions for a three state nondeterministic machine.

start q1 & final q4 & final q5.
trans q1 (a::nil) q2 & trans q1 (b::nil) q3.
trans q2 (a::nil) q1 & trans q2 (b::nil) q4.
trans q3 (a::nil) q5 & trans q3 (b::nil) q1.
trans q4 (a::nil) q5 & trans q4 (b::nil) q3.
trans q5 (a::nil) q2 & trans q5 (b::nil) q4.

Figure 2.6. Predicate definitions for a five-state deterministic machine.

A finite-state machine is determined by an alphabet, a set of states, an enu-
meration of the labeled transitions between states, and the designation of a
start state and a set of final states. Figure 2.4 contains declarations that identify
types and constants that can be used to encode finite-state machines. These
declarations provide for an alphabet that has only the letters (labels) a and b

and for machines that have at most five states. This can, of course, be changed
by modifying the declarations that enumerate the letters and the states. Notice
also that we can cater to a potentially unlimited number of states by using the
built-in domain of integers to generate the set of states via a constructor of type
int -> state. Figure 2.4 also contains a definition of the predicate path that
explores transitions between states and the predicate accept that uses path to
find accepting transitions and thereby to identify accepted words.

Figures 2.5 and 2.6 present two different finite state machines that both
accept the same language, namely, the set of all words over the alphabet {a, b}
that end in either the string ab or ba; this language is denoted by the regular
expression (a + b)∗(ab + ba). The first machine is nondeterministic, whereas
the second is deterministic. If we collect the definition of append and the code
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in Figures 2.4 and 2.5 into a module called fsm1, then the following interaction
is possible:

[fsm1] ?- accept (b::b::a::b::nil).

solved

[fsm1] ?- accept (b::a::X::Y::nil).

X = a

Y = b ;

X = b

Y = a ;

no

[fsm1] ?-

The answer to the first query confirms that the string bbab is accepted by this
machine, and the answer to the second query shows that there are only two
four-letter words starting with ba that are accepted by this machine.

To explore a bit more the set of accepted words, one could systematically
generate all lists of letters and then check them for acceptance. The polymorphic
predicate lists defined by the code

type lists list A -> o.

lists nil.

lists (_::L) :- lists L.

identifies all lists. This predicate also can be used to generate all lists: A depth-
first search engine, such as that underlying λProlog, will systematically produce
lists of increasing length. Thus, if we assume that this definition of lists is also
part of the module fsm1, then the following interaction is possible:

[fsm1] ?- lists L.

L = nil ;

L = T1 :: nil ;

L = T1 :: T2 :: nil ;

L = T1 :: T2 :: T3 :: nil

[fsm1] ?- lists L, accept L.
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L = a :: b :: nil ;

L = b :: a :: nil ;

L = a :: a :: b :: nil ;

L = a :: b :: a :: nil ;

L = b :: a :: b :: nil

[fsm1] ?-

Notice that both these queries have an unbounded number of successful proofs,
each with a different answer substitution.

The reader should confirm that if the specification in Figure 2.6 were to
replace the one in Figure 2.5 in the preceding interactions, then exactly the
same behavior would be observed.

2.4.4 Defining relations over recursively structured data

Section 1.4.1 describes the encoding of data objects such as lists and trees using
first-order terms: In such an encoding, one recognizes the recursive structure
of the objects, and one chooses constructors to represent the base and recursive
cases. Program clauses complement this style of representation by providing a
natural way of defining relations over these encodings. Such relations can be
described first for the objects constituting the base cases of the type through
program clauses that are the (implicit) universal closures of atomic formu-
las. These definitions then can be extended to cover all objects of the type
through program clauses whose bodies are “rules” of the form G ⊃ A; here,
A corresponds to a description of the relation relative to a recursive case that
may be conditioned, via G, on the relation holding for subcomponents of the
same type.

This structure underlies the definition that we have already seen of the append
predicate, which is a relation among three lists that is defined by recursion on
the structure of the first list. When this list is nil, the second and third lists must
be identical for the relation to hold. This fact is asserted by the clause

append nil L L.

When the first list has a head element, then the relation holds if that element
is also the head of the third list and if the rest of the third list is in the append



2.4 Programming with first-order Horn clauses 57

relation to the tail of the first list and the second lists. This is the intended reading
of the second clause

append (X :: L1) L2 (X :: L3) :- append L1 L2 L3.

that completes the definition of append.
The same idea also may be applied to the definition of relations over binary

trees whose representation is based on the following declarations:

kind btree type -> type.

type empty btree A.

type node A -> btree A -> btree A -> btree A.

For example, suppose that we wish to define an insert relation between an
integer and two ordered, integer binary trees that holds just in the case that the
second tree corresponds to the result of inserting the given integer in the first.
This relation is given by the following clauses:

type insert int -> btree int -> btree int -> o.

insert X empty (node X empty empty).

insert X (node A L R) (node A NL R) :- X < A, insert X L NL.

insert X (node A L R) (node A L NR) :- X >= A, insert X R NR.

The recursion in this definition is on the structure of the “input” tree.
Let us suppose that the definitions pertaining to binary trees presented in

this section are collected into a module called btree. The following interaction
uses the insert relation:

[btree] ?- insert 4 (node 3 (node 2 empty empty) empty) T.

T = node 3 (node 2 empty empty) (node 4 empty empty)

[btree] ?-

An important observation about this specification is that since the arguments
of the comparison operators must satisfy the constraints described for them in
Section 2.4.2, insert is well defined only when its first and second arguments
are restricted to closed terms.

2.4.5 Programming over abstract syntax representations

In Chapter 1 we discussed how first-order terms can be used to realize tradi-
tional abstract syntax representations. Given the recursive structure of these
expressions, program clauses in fohc provide a natural means for describing
relations over abstract syntax. We illustrate this idea through the encoding of a
provability relation over logical formulas.
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	, ⊥ −→ �
⊥L

	, A −→ �, A initial

	, A −→ � 	, B −→ �

	, A ∨ B −→ �
∨L

	 −→ �, A, B
	 −→ �, A ∨ B

∨R

	, A, B −→ �

	, A ∧ B −→ �
∧L

	 −→ �, A 	 −→ �, B
	 −→ �, A ∧ B

∧R

	 −→ �, A 	, B −→ �

	, A ⊃ B −→ �
⊃L

	, A −→ �, B
	 −→ �, A ⊃ B

⊃R

Figure 2.7. Inference rules for a propositional fragment of logic.

Section 1.4.2 described an encoding of formulas constructed using the logical
constant ⊥ and the connectives ∧, ∨, and ⊃. That encoding was based on the
following declarations:

kind term, form type.

type ff, tt form.

type &&, !!, ==> form -> form -> form.

infixl && 5.

infixl !! 4.

infixr ==> 3.

type a,b term.

type f term -> term -> term.

type p,q term -> term -> form.

Let us now suppose that we wish to define provability for sequents of the form
	 −→ �, where 	 and � are multisets of formulas. In a mathematical setting,
this relation is given by the rules in Figure 2.7. In using these rules, we assume
that a multiset matches with an expression of the form 	, P just in the case that
P is a formula in it, and the rest of the multiset corresponds to 	. What we
desire now is a translation of these inference rules into an fohc program.

In the encoding we describe, we use lists to represent multisets. In this con-
text, the predicate memb_and_rest, defined by the following clauses, provides
a means for selecting an item from a multiset:

type memb_and_rest A -> list A -> list A -> o.

memb_and_rest X (X :: L) L.

memb_and_rest X (Y :: L) (Y :: L1) :- memb_and_rest X L L1.

The inference rules in Figure 2.7 lead to provability judgments about sequents
that can be encoded as a relation between the two lists of formulas constituting
the left and right sides of sequents. The following type declaration introduces
a binary predicate that provides the basis for such an encoding:
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type prv list form -> list form -> o.

Inference rules can be translated into program clauses defining prv in the fol-
lowing way: The conclusion of the rule can be encoded by A and the premises
of the rule by G in a clause of the form G ⊃ A. Specifically, the sequent rules
in Figure 2.7 yield the following set of λProlog clauses:

prv Gamma Delta :- memb_and_rest ff Gamma _.

prv Gamma Delta :- memb_and_rest A Gamma _,

memb_and_rest A Delta _.

prv Gamma Delta :-

memb_and_rest (A && B) Gamma Gamma’,

prv (A :: B :: Gamma’) Delta.

prv Gamma Delta :-

memb_and_rest (A !! B) Gamma Gamma’,

prv (A :: Gamma’) Delta, prv (B :: Gamma’) Delta.

prv Gamma Delta :-

memb_and_rest (A ==> B) Gamma Gamma’,

prv Gamma’ (A :: Delta), prv (B :: Gamma’) Delta.

prv Gamma Delta :-

memb_and_rest (A && B) Delta Delta’,

prv Gamma (A :: Delta’), prv Gamma (B :: Delta’).

prv Gamma Delta :-

memb_and_rest (A !! B) Delta Delta’,

prv Gamma (A :: B :: Delta’).

prv Gamma Delta :-

memb_and_rest (A ==> B) Delta Delta’,

prv (A :: Delta) (B :: Gamma’).

Notice that the schema variables 	, �, A, and B that possibly appear in an infer-
ence rule translate into the variables Gamma, Delta, A, and B that are implicitly
universally quantified over the program clause encoding the rule.

Let all the declarations in this subsection be collected into a module called
logic. We then would pose the query prv nil (F :: nil) relative to this
module in order to determine if a formula represented by F is provable. For
instance, the interaction

[logic] ?- prv nil (((p a b) !! ((p a b) ==> (q a a))) :: nil).

solved

[logic] ?-

shows that the formula (p a b) ∨ ((p a b) ⊃ (q a a)) is provable.
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2.5 Pragmatic aspects of computing with Horn clauses

We consider briefly the practical issues associated with constructing a deriva-
tion for a goal formula from a program in the fohc setting. When read with
an upward proof-search orientation, the right-introduction rules of Figure 2.2
and the backchaining rules of Figure 2.3 provide the structure for a procedure
for finding such derivations. Since nondeterminism is involved in the applica-
tion of some of these rules, we must specify how choices are to be resolved
so that the behavior of an interpreter is more predictable; such predictability is
essential for understanding the computations that actually result from a given
logic program. For this reason, unlike automatic theorem provers, where rich
and sophisticated methods are often used to search for proofs, the procedure
for λProlog employs a simple and rigid search strategy. Using such a strat-
egy has certain implications. First, the proof search that is conducted may be
incomplete: There may be sequents that have derivations but for which no
derivations will be found because of the strategy. In fact, the chosen strat-
egy even can cause indefinite looping when a more flexible search strategy
might be able to find a proof. However, since the search strategy is known
beforehand, it usually will be possible to restructure programs so as to avoid
incomplete behavior. Second, since a search strategy is the vehicle that carries
a logic program into an actual series of computation steps, a simple strat-
egy means that a programmer can predict to a large degree the computational
resources such as time and space that the execution of a logical specifica-
tion will consume. This kind of transparency is important for a programming
paradigm.

Turning to the details, we see that there are two possible rules that can be
used when the goal is a disjunction or the formula selected for backchaining
is a conjunction. The convention in these situations is to always try the rule
that involves the left subformula before the one involving the right subformula.
Another choice that must be made in a sequential implementation concerns the
subgoal to try first when a conjunctive goal is encountered. Here again, a left-
to-right textual ordering guides the search; i.e., a derivation of the left premise
of the ∧R rule is constructed first, before one for the right premise is attempted.
Yet another place where a selection must be made pertains to the choice of the
formula from P that is to be used in the decide rule of Figure 2.3. In making
this choice, a program P is viewed as a list rather than as a set; i.e., the order
and multiplicity of formulas in P affects the way proofs are attempted. More
specifically, a program is presented as a module that occurs textually in a file,
and such a presentation naturally imposes a listing order on the clauses that
appear in it. The search strategy uses this order to determine the (next) formula
to try in the decide rule.
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The only remaining choices pertain to the term t that is to be used to instan-
tiate the existential quantifier in the ∃R rule of Figure 2.2 and the universal
quantifier in the ∀L rule of Figure 2.3. Both inference rules have �; ∅ ��f t : τ

as one of their premises. If there are a small number of terms of type τ , as is
the case in the example in Section 2.4.3, where there are just two terms corre-
sponding to the type letter, then using this typing judgment to step through all
the terms of that type might be an effective approach to proof search. However,
many types have an infinite number of terms corresponding to them. A more
reasonable strategy, therefore, is to use the other premise in these rules to con-
strain the terms to be considered in the typing judgment. Logic variables, used
in combination with unification, provide a means for doing this. A logic vari-
able serves as a “placeholder” for a value for t in the ∃R and ∀L rules. Unlike
the usual variables in a proof system but rather like the variables considered
in Section 1.5, these variables can be instantiated during the course of proof
search. Using these variables, the ∃R and ∀L rules take the form

�; ∅ ��f X : τ �; P −→ B[X/x]
�; P −→ ∃τ x B

and

�; P D[X/x]−→ A �; ∅ ��f X : τ

�; P ∀τ x D−→ A

respectively, where X is a logic variable that is new in the sense that it has not
been used previously in this proof search computation. The place where the
choice of instantiation for such variables becomes significant is in the applica-
tion of the initial rule of Figure 2.3. In determining suitable instantiations in the
fohc setting, the unification operation discussed in Chapter 1 can be used. In
particular, the initial rule can be modified to

�; P A′−→ A

initial

with the proviso that A and A′ are unifiable and the requirement that the substi-
tutions for the logic variables that are chosen to unify them be percolated all over
the derivation that has been constructed thus far. Of course, all the remaining,
delayed typing judgments must be provable for instances of the logic variables,
something that is guaranteed to be true if typed unification is used.

A naive scheme for implementing the decide rule will try every clause that
is available in the program context. This approach can be improved on by
precomputing the effects of applying the ⊃L and ∧L rules, thereby transforming
the original program into a listing of clauses that have the form

∀τ1x1 . . . ∀τmxm (G1 ∧ . . . ∧ Gn ⊃ A)
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where A is an atomic formula and G1, . . . , Gn are G-formulas.4 Such a trans-
formation preserves the operational interpretations of program clauses, as
mentioned previously, and is also justified at a logical level by the discus-
sions in the next section. Now, in trying to solve an atomic goal with a specific
predicate as its head, only the clauses in this form in which the head of A0 is
identical to the predicate in question need be considered by the decide rule;
in all other cases, unification will quickly lead to failure. Thus the clauses
in a large program can be partitioned into separate subsequences indexed by
predicate names. Further, in a model that supports compilation, each of these
subsequences can be realized as code for the separate clauses surrounded by
instructions that cause them to be tried one after another. The use of a particular
clause eventually leads to an attempt to unify the head of the clause with the
query to be solved. Since this head is known statically, several decisions that
have to be made in unification are predetermined and hence also can be com-
piled. Finally, it is possible in some cases to make quick checks on the form of
the arguments in an atomic query to rule out the use of specific clauses before
a full-fledged, and potentially costly, unification computation is invoked. This
idea can be realized through special code that allows for an indexed access to
clauses even within those pertinent to a particular predicate name. These vari-
ous ideas usually are deployed in practical, compiled implementations of logic
programming based on fohc.

2.6 The relationship with logical notions

Our presentation of logic programming up to this point has been predominantly
operational. In Section 2.2 we characterized logical connectives and quantifiers
in goals as vehicles for specifying search. When we introduced fohc, we once
again focused on the backchaining rules that have the flavor of being directed
by the atomic goal that is to be solved. This operational notion of provability
is, however, related to truth in well known and well understood logical sys-
tems. In fact, an underlying theme of logic programming is a duality between
a declarative and an operational interpretation of formulas: We would like the
solvability of a goal from a program to be an assertion of both the fact that it
follows from the program in a relevant logical system and the fact that a certain
kind of derivation can be constructed for it. As we pointed out in Section 2.3,
this duality finds exact expression in the fact that the O-proofs using fohc are
sound and complete for both intuitionistic and classical logic.

4 As usual, we let m = 0 represent the case in which there are no universal quantifiers at the
beginning of the clause and n = 0 denote the situation in which there is no implication.
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2.6.1 The cut rule and cut-elimination

Finding proofs in a mathematical setting can demand cleverness and inven-
tion. A common technique in such a context is the invention of a sequence
of lemmas that breaks a proof into small pieces. The justification for this
approach is provided by the cut rule (which has no connection to Prolog’s
pruning operator !).

The cut rule has the following form:

�; P −→ B �; P , B −→ G

�; P −→ G

In trying to prove G in the context 〈�, P〉, this rule allows a formula B to
be used in the proof after this formula has been shown to hold in the con-
text. The intuition here is that a well-chosen B can shorten the proof for
G considerably. While attempting to automate the selection of such lemmas
is an interesting problem, the ingenuity involved makes it fall outside the
domain of mechanisms that can be used in the execution of even a high-
level programming language such as λProlog. Focusing on proofs that do not
involve the use of lemmas means that we are not really thinking of automating
provability in a rich mathematical setting: Proofs of nontrivial mathematical
theorems are manageable only through the use of lemmas. Our goals are much
more modest in that we are thinking of using logic in computations such as
those involving sorting and merging of lists or the manipulation of abstract
syntax.

While the cut rule is not used in effecting computation (i.e., in carrying out
proof search), it has a role to play in reasoning about computation. A result
known as the cut-elimination theorem tells us that this rule can be added to both
classical and intuitionistic logic without changing the set of sequents that are
derivable. The completeness of the limited derivation system for fohc implies
that a suitably adapted form of the cut rule is also admissible in that system.
One consequence of such a cut-elimination or cut-admissibility theorem, then,
is that if we replace a subformula in a logic program with a logically equivalent
subformula, the resulting logic program proves the same goals (in the sense
of O-provability, although maybe not under a depth-first search strategy). We
exploit this aspect of logical equivalence to provide alternative formats for Horn
clauses.

2.6.2 Different presentations of fohc

The definition of fohc program clauses introduced in Section 2.3 is the most
liberal of a few roughly equivalent alternatives. A different, and perhaps more
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common, definition for these clauses is given by the following grammar:

F ::= A | F ∧ F

D ::= A | F ⊃ A | ∀τ x D

In this version, program clauses have the form

∀τ1x1 . . . ∀τmxm (A1 ∧ . . . ∧ An ⊃ A0)

for m, n ≥ 0. A compact presentation for fohc program clauses also can be
given by identifying them simply as

D ::= A | A ⊃ D | ∀τ x D

In this definition, program clauses are formulas that are formed using only
implications and universal quantifiers with the additional proviso that the nest-
ing of implications and universal quantifiers can occur only in the conclusion
of an implication and not in its premise. Note that we change the syntax of only
the program clauses in these alternative presentations; the original syntax for
goal formulas is retained.

These three ways of defining program clauses give rise to logical languages
of the same expressive power in the sense that a program clause in one definition
is classically (and also intuitionistically) equivalent to a set of program clauses
in any of the other definitions. This is easily shown through use of the following
logical equivalences:

∀x (B1 ∧ B2) ≡ (∀x B1) ∧ (∀x B2)

B1 ⊃ (B2 ⊃ B3) ≡ (B1 ∧ B2) ⊃ B3

B1 ∧ (B2 ∨ B3) ≡ (B1 ∧ B2) ∨ (B1 ∧ B3)

B1 ∨ (B2 ∧ B3) ≡ (B1 ∨ B2) ∧ (B1 ∨ B3)

(B1 ∨ B2) ⊃ B3 ≡ (B1 ⊃ B3) ∧ (B2 ⊃ B3)

B1 ⊃ (B2 ∧ B3) ≡ (B1 ⊃ B2) ∧ (B1 ⊃ B3)

B1 ⊃ (∀x B2) ≡ ∀x (B1 ⊃ B2)

(∃x B2) ⊃ B1 ≡ ∀x (B2 ⊃ B1)

In the last two equivalences, the assumption is that x is not free in B1.
If we take the size of a program to be the number of occurrences of logical

connectives it contains, programs that use the definition in Section 2.3 generally
are smaller than ones equivalent to them that are based on syntax rules presented
in this section. For example, a program clause of the form G ⊃ (D1 ∧ D2) is
logically equivalent to the formula (G ⊃ D1) ∧ (G ⊃ D2), but the second
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formula, in which G is duplicated, could be much larger than the first. Thus,
prohibiting conjunctions on the right side of implications can cause the size
of the formula to grow, in the worst case exponentially. As another example,
consider the following propositional program clause permitted by our original
definition:

((p ∨ r) ∧ (q ∨ t)) ⊃ s

Using the preceding equivalences, most notably the distributivity of conjunction
over disjunction, this formula can be transformed into the following set of
clauses that is based on the first definition in this section:

(p ∧ q) ⊃ s (r ∧ q) ⊃ s (p ∧ t) ⊃ s (r ∧ t) ⊃ s

The cumulative size of the formulas in this collection can be much more than
the original formula because it contains two occurrences each of p, r , q, and
t , and each of these could themselves be large formulas. In general, this kind
of conversion can lead to an exponential growth in the number of symbols in
the set of formulas. Another important point to note is that the transformation
used here is not guaranteed, in general, to preserve operational behavior. For
example, if the original formula is selected by the decide rule in Figure 2.3,
then there is at most one derivation that will be constructed for p. However,
in the transformed version, there are two different clauses in which p occurs,
and a separate derivation will have to be constructed for it when each of these
formulas is selected by the decide rule.

The problems just described actually can be avoided if we are willing to
introduce new predicate constants. For example, if the propositional constants
pr and qt are introduced to denote the disjunctions p ∨ r and q ∨ t , then the
program clause

((p ∨ r) ∧ (q ∨ t)) ⊃ s

can be transformed instead into the collection containing the clauses

p ⊃ pr r ⊃ pr q ⊃ qt t ⊃ qt (pr ∧ qt) ⊃ s

Replacing disjunctions in this fashion can cause a growth in the sizes of formulas
that is at most linear in the number of disjunctions they contain. Since we have
introduced new constants, the original formula is not logically equivalent to
the new set of formulas. The following statement about their relationship can,
however, be made: Let D1 denote the original program clause, and let �1 be
the signature {p : o, q : o, r : o, s : o, t : o}. Further, let �2 be the
union of {pr : o, qt : o} and �1, and let D2 denote the collection of program
clauses shown earlier that are obtained by transforming D1. Then, for any goal
formula G that is also a �1-formula, the sequent �1; P , D1 −→ G is provable
if and only if �2; P , D2 −→ G is provable. If we are concerned only with
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provability over the original signature, a transformation that satisfies such a
property is acceptable. We shall return to this transformation again after we
introduce higher-order Horn clauses in Chapter 5.

2.7 The meaning and use of types

Types are an integral part of the logic that we have presented in that they help
to identify the expressions that are well formed. Types also have a conceptual
role in the programming language, and they affect computations. We discuss
these aspects in this section.

2.7.1 Types and the categorization of expressions

The typical interpretation of types is that they classify expressions. In the first-
order setting, the main distinction that types force is that between propositions
and other kinds of expressions. All other distinctions can be suppressed by
restricting the language to having exactly one sort in addition to o. In the higher-
order setting that we shall encounter later, a further distinction that realizes a
functional hierarchy based on the order of types is forced. Of course, even in
the first-order setting, we have chosen to build in more distinctions by including
additional sorts for integers, strings, etc. and by including a constructor for list
types. We also have provided the programmer with the ability to augment these
collections further and hence to add to the distinctions that are possible.

It is important to understand the exact nature of the sets of expressions that
types denote. An important notion in this context is that of equality between
syntactic expressions. In λProlog, two closed expressions are equal only if
they are exactly the same.5 For example, the expressions 2 + 3, 3 + 2, and
5 all have the type int, but they are different elements of that type. This is in
contrast to the viewpoint taken in the setting, say, of functional programming: In
that context, the expressions 2 + 3, 3 + 2, and 5 all have type int and are also
equal in that type because of an underlying meaning attached to the + operator.
Thus, in λProlog, the goal formula (2 + 3 = 5) fails, whereas in functional
programming, this expression evaluates to true. Similarly, the type o denotes
a set of formulas in λProlog rather than a set of truth values. As we shall see
later, understanding types as sets of expressions rather than as sets of more
abstract values allows us to carry out interesting computations on expressions
of functional type that are not possible in functional programming: Testing
equality at a functional type in our context reduces to checking whether the
“code” has the same shape and does not require determining equality of the

5 When we introduce λ-terms, we will extend this notion to include λ-conversion.
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(possibly infinite) graphs of functions that are their “values.” Computation in
functional programming corresponds to the rewriting of an expression until it
has been converted into a normal form that may be thought of as a representation
of its value. In λProlog, there is no rewriting phase: Expressions of a given type
are themselves the intended members of that type. Computation in the logic
programming setting is based not on rewriting but on the search for proofs.

It is, of course, useful even in the logic programming context to know that
the expressions 2 + 3, 3 + 2, and 5 all denote the same mathematical value (the
number 5). For this reason, λProlog is equipped with a simple evaluator that is
invoked through a special nonlogical predicate called is (see Section A.4.1 of
the Appendix). Although such evaluation and rewriting can be accommodated
in logic programming, it is important to note that they are not part of the logical
foundations.

2.7.2 Polymorphic typing

One way to understand a type declaration in λProlog is to think of the keyword
type as a predicate relating a token and a type; we ignore here the problem of
what type to associate with the predicate type itself. The type variables that
appear in types would, in this rendition, translate into quantified term variables.
A question that arises here is what the scope of the quantifier over the type
variables should be in such an interpretation. Thus we could view the type
association with nil as being given either by the clause

∀A (type nil (list A))

or by the clause
type nil (∀A (list A))

The first rendition is closest to the way we have been viewing variables in types:
nil has many types associated with it, but all of these are substitution instances
of a particular structure. Similarly, the type association with theappendpredicate
can be given by the clause

∀A (type append (list A -> list A -> list A -> o))

It is interesting to note the consequence of such a type association: append can
be applied to three lists, all of which have to have the same type of elements,
but the particular value of this type is not fixed.

Consider a type expression of order 1 written in the canonical form τ1 →
· · · τn → τ0. A type variable that appears in τ0 is called a transparent type
variable for that expression. If all the type variables in a type are transparent,
then that expression is said to be determinate. Knowing the target type of
a determinate type allows the argument types to be determined uniquely, a
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fact that has an interesting consequence for recursively constructed terms. For
example, the types we have chosen for nil and :: ensure that the types of all
the elements in any given list must be the same. However, if we had used the
constructors null and cons identified by the following declarations

kind lst type.

type null lst.

type cons A -> lst -> lst.

that do not have transparent types, then a term of type lst would represent
sequences of elements of heterogeneous type. A similar observation was made
in Section 1.4.1 relating to the representation of binary trees.

2.7.3 Type checking and type inference

Type checking is a process that determines whether a given term or formula is
built correctly using the typed constants that have been declared. This process
essentially uses the rules in Figures 1.2 and 2.1 to establish typing judgments.
A characteristic of the type system of λProlog is that once the types of all the
constants and variables occurring in an expression have been specified, type
checking of the expression can be done statically. Languages that have this
character are said to be strongly typed. Strong typing is useful for detecting
statically many situations that otherwise would cause errors at run time. For
example, a program that successfully passes the type checking phase is likely
to have all the arguments to predicates present and in the right order and to have
the names of all the constant symbols it uses spelled correctly.

In describing strong typing, we assumed that the types of all the variables
appearing in an expression are known before the type-checking phase. As noted
in Section 2.1, this is not necessarily true in λProlog: Types may be missing for
variables, in which case these will need to be inferred in a most general form in
the course of type checking. We recall, in this context, that every occurrence of
a variable in an expression is expected to have the same type, although different
occurrences of a constant can have different types. For example, the formula

append (1::nil) (2::nil) X, append ("abc"::nil) ("efg"::nil) Y.

is well typed and requires X and Y to have the types list int and list string,
respectively. Notice also that the two occurrence of the constant append, whose
declared type appeared earlier in this section, are given the following two types:

list int -> list int -> list int -> o.

list string -> list string -> list string -> o.
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Finally, observe that if Y is replaced by X, then the formula will not pass type
checking because there is no type that can be given to X that would be acceptable
at both its occurrences.

Thus not only does λProlog check types, but it also infers types for variables.
Not all types have to be inferred: Some also can be supplied by the user. One
way to do this is by indicating it at the binding occurrence of a variable, as
illustrated by the expression

pi (X:list int)\ append X X Y.

The type also may be presented at an (implicitly) bound occurrence of the
variable, as shown in the expression

append (X:list int) X Y.

When a type is provided in one of these ways, the actual type attributed to the
variable must be some instance of the one shown, and once again, an identical
type must be used at all occurrences.

2.7.4 Types and run-time computations

Since λProlog makes use of typed unification, types play more than a static
role: They also may be needed during execution. In the higher-order setting
that we look at later, types can determine unifiability as well as affect the shape
of unifiers. Relative to first-order terms, types have a more benign effect in that
they influence only the existence of unifiers and do not have a bearing on their
structure.

In a statically type checked language, one may imagine that all the type
information relevant to a program is already available at compile time and
therefore that types do not need to be computed at run time even if they are
used in the course of unification. This image does not fit with the reality for
two reasons. First, because of polymorphism, we may not know the precise run-
time types of constants and variables prior to execution. Second, since types are
not required to be determinate and specifically cannot be so for polymorphic
predicates, it may be necessary to look dynamically at the type of an argument.

An illustration of the need for run-time computations on types is provided by
the declarations and clauses in Figure 2.8. This code identifies constructors for
building heterogeneous lists. The list constructor cons used here has a type that
is not determinate. The predicate separate, whose definition also appears in
this figure, can be used to separate a heterogeneous list containing only integers
and reals into two homogeneous lists, one containing only integers and the other
containing only reals. Computationally, the type that is shown for X in the first
two clauses for separate must be matched with the type of the head element
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kind lst type.
type null lst.
type cons A -> lst -> lst.
type separate lst -> list int -> list real -> o.

separate (cons (X:int) L) (X::K) M :- separate L K M.
separate (cons (X:real) L) K (X::M) :- separate L K M.
separate null nil nil.

Figure 2.8. Heterogeneous lists.

kind numb type.
type inj_int int -> numb.
type inj_real real -> numb.
type separate list numb -> list int -> list real -> o.

separate ((inj_int X)::L) (X::K) M :- separate L K M.
separate ((inj_real X)::L) K (X::M) :- separate L K M.
separate nil nil nil.

Figure 2.9. Lists contain only integers and reals.

of the incoming list argument to effect the desired separation; i.e., a dynamic
processing of types is essential to realize the intent of this code.

Figure 2.9 contains another specification of the separate predicate with a
related functionality. Here, the run-time determination of which clauses to select
for processing the first element of the list that is the first argument of separate
is provided by examining terms and not types: If the first item of the list in the
first argument has the top-level function symbol inj_int (intended to be read
as “inject an integer”), then the first clause is selected; otherwise, if it has the
top-level function symbol inj_real, then the second clause is selected.

To contrast the two different implementations of separate, consider proving
the goal

separate (cons 1.0 (cons 2 (cons 3.0 null))) L K

relative to the definition in Figure 2.8 and the goal

separate ((inj_real 1.0)::(inj_int 2)::(inj_real 3.0)::nil) L K

relative to the definition in Figure 2.9. In both cases, the query will be solved by
binding K to (2 :: nil) and L to (1.0 :: 3.0 :: nil). A natural question at
this point is which of these implementations is to be preferred. We discuss below
some reasons for preferring programs in which constructors are defined to have
determinate types. The conclusion from this is that the second implementation
of separate should be favored.
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Better static analysis is possible When data constructors have determinate
types, the type of the composite expression places constraints on the type of its
subexpressions. Conversely, knowledge about the type of a subexpression can
be used to deduce information about other parts of the expression. For example,
in the homogeneous list structure, if one element of the list is determined to be
of a particular type, every other element of that list also must be of that type.
As a result, the static process of type checking is likely to provide more useful
information about a program. In the context of the two different definitions of
the separate predicate, for example, we know from a static examination that
the second definition is meaningful only when it is applied to a list of elements
of type numb that, from other type declarations, is clearly meant to correspond
to integers and reals. By contrast, the first specification will permit queries to
be constructed that involve lists with elements that have a type different from
int and real. An error of this kind will be observed only as a run-time failure
of a goal that is actually expected to always succeed by separating a given list
into its integer and real elements.

More type information can be omitted during proof search One way to
understand the role of types in λProlog is to think of constants and variables as
being given by their names as well as their types. Under this model, when check-
ing the equality of two constants, not only will we have to determine whether
their names are the same, but we also will have to check the unifiability of their
types. The declarations occurring in a program already fix a considerable part
of the type of a constant statically. This structure therefore can be assimilated
into the name of the constant, making it necessary only to record the bindings of
the variables that appear in this “type skeleton.” In a setting where types affect
only unifiability, we can even go a step further: We can dispense with types
altogether if we can determine otherwise that unification over them is bound to
succeed. A particular situation where this is possible occurs when the types of
constants are determinate. In this case, noting that unification examines terms
in an outside-in fashion, once we have checked that the type bindings of the
top-level constructors are compatible, no further type checking need be done.
In the concrete setting of the practical computational model we elaborated in
Section 2.5, the use of determinate types for all but predicate constants ensures
that all the type information that is needed can be supplied by a few extra
arguments to predicates.

The type system of λProlog allows us to identify the type of a constant as
just a variable, leading potentially to a trivialization of typing. For example,
it is possible to give the constructors cons and null the type A, i.e., to define
these constants as having every possible type. It then would be possible to build
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terms such as (null (cons cons) cons) using these constants, many of which
have nothing to do with list structures. Of course, the use of these kinds of type
declarations is not helpful either to a programmer or to program analysis and
ought to be avoided.

2.8 Bibliographic notes

The metatheory of first-order Horn clauses has been considered in a number
of papers (Apt and van Emden 1982; van Emden and Kowalski 1976). Most
of these papers have based their analyses on resolution refutations. Resolution
refutations, however, have a number of characteristics that make them undesir-
able for all but the most simple designs of logic programming languages. For
example, resolution (Bachmair and Ganzinger 2001; Robinson 1965) generally
is applicable only to formulas that are in the intersection of a variety of normal
forms: conjunctive normal form, prenex normal form, Skolem normal form,
etc. An arbitrary formula can be transformed into a satisfiability-equivalent one
that adheres to all these normal forms in the setting of classical logic. However,
such a transformation can cause the size of the formula to increase dramatically
and also can force some information such as quantifier alternation to be encoded
in different and not entirely equivalent ways [via, say, Skolemization (Miller
1992a)]. There is also something unsatisfactory about using refutations rather
than proofs:As we have observed in this chapter, the activity of a logic program-
ming interpreter profitably is seen as that of trying to find proofs, leading to a
search behavior that alternates naturally between goal-directed reductions and
backchaining. A more serious problem for resolution is that some of the normal
forms are meaningful only for first-order classical logic. In the chapters that
follow we wish to describe logic programming languages that are also based
on intuitionistic logic and on higher-order quantification. Although variations
of the resolution method have been described for higher-order logic (Andrews
1971; Huet 1973b) and for intuitionistic logic (Fitting 1987), there are other
elegant and well understood proof formats, such as the sequent calculus, for
these logical systems.

The sequent calculus was introduced as a vehicle for formulating and study-
ing logical provability by Gentzen (1969). Gentzen’s paper also introduced
the cut rule and established the fundamental property of cut-elimination for
first-order classical and intuitionistic logic. The sequent calculus is a conve-
nient setting for describing the high-level structure of computation in logic
programming: For example, normal forms for program clauses and goals are
not required, and sequent calculi for both classical and intuitionistic logic are
well known. Many textbook treatments of the sequent calculus are available
(Gallier 1986; Girard et al. 1989; Troelstra and Schwichtenberg 1996). Miller
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(2002, 2006) has considered uses of the cut rule and the cut-elimination theorem
to reason about logic programs.

Early in our work on the foundations of logic programming, we used the
sequent calculus to develop the metatheory of first-order and higher-order Horn
clauses (Miller and Nadathur 1986; Nadathur 1987; Nadathur and Miller 1990).
In collaboration with colleagues, we later went on to introduce the technical
device of uniform proofs within the sequent calculus as a way to formalize
the notion of goal-directed proof search (Miller et al. 1987, 1991). The term
abstract logic programming language also was proposed by us as a name for a
logical language in which a procedure that searches for uniform proofs consti-
tutes a complete proof procedure. Both fohc and the logic of hereditary Harrop
formulas that is presented in Chapter 3 are examples of abstract logic program-
ming languages. The idea of uniform proofs has been used to demonstrate that
other logics, such as those based on Girard’s linear logic (Girard 1987), are
abstract logic programming languages (Hodas and Miller 1994; Miller 1996).

Provability in the sequent calculus presented here is characterized using
two phases: the goal-reduction phase (using right-introduction rules) and the
backchaining phase (using left-introduction rules). An abstract logic program-
ming language is one where this two phase proof structure is complete.Andreoli
(1992) generalized this two-phase proof structure to what he called focused
proofs and showed that these are complete for linear logic. Focusing concep-
tually groups several “small” inference rules (such as those in Figure 2.2) into
“larger” inference rules (such as the backchaining in Figure 2.3). Liang and
Miller (2009) described comprehensive focused-proof calculi for intuitionis-
tic and classical logic. The completeness of the focused-proof system LJF of
Liang and Miller (2009) provides an alternative proof of the completeness of
O-provability.

A common application area of logic programming is the manipulation
of the syntax of languages, both natural and artificial. A number of books
cover approaches to performing computations on natural languages using
Prolog (Covington 1994; Pereira and Shieber 1987). Prolog has been used
often to manipulate Prolog programs: This kind of meta-level programming
has included building interpreters, type checkers, static analyzers, declarative
debuggers, and partial evaluators for Prolog and logic programming–related
systems (Hill and Lloyd 1994; Shapiro 1983).Alarge number of the applications
of λProlog involve using it to represent and reason about specification and pro-
gramming languages, including first-order logic formulas, λ-terms, functional
programs, and π -calculus expressions.Acommon feature of all these languages
is the presence of bound variables in expressions. A declarative treatment of
this aspect requires higher-order techniques that we present in Chapter 7. We
therefore delay a discussion of these applications until that point.
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The type system ofλProlog is inspired by that for ML(Milner et al. 1990), and
the type inference algorithm is similar to that used in ML and other polymorphic
languages (Damas and Milner 1982). There are differences, however, in what
types mean and how they affect computation in our setting. We have discussed
some of these differences here. Nadathur and Pfenning (1992) have provided
a more detailed analysis. Caires and Monteiro (1994) developed an approach
to strengthening λProlog typing to allow for richer polymorphisms. We have
taken a prescriptive view of types here, assuming that they are an integral part
of the logical language. Other views are possible within the context of logic
programming (Pfenning 1992). Many type systems are essentially “static” in
that they treat typing as an issue to be considered and dispensed with prior to
execution of a program. As we have seen, types in λProlog also can play a role
during program execution. The run-time impact of typing has been analyzed in
a number of papers (Kwon et al. 1994; Brisset and Ridoux 1992; Nadathur and
Qi 2005).

We have used o to denote the type of propositions. This usage comes directly
from Church’s use of the Greek letter omicron as the type of formulas in his
Simple Theory of Types (Church 1940). The choice of pi and sigma to denote
universal and existential quantification also mimics Church’s use of the Greek
letters 
 and � for the same purpose.

We have touched briefly on the implementation of a logic programming
language based on fohc. Work on this topic by several researchers culmi-
nated eventually in a virtual machine structure known as the Warren Abstract
Machine (Warren 1983). Aït-Kaci (1991) provides a tutorial exposition of this
machine. While implementation techniques have evolved considerably since
its description, the structure of this machine still underlies many current Prolog
implementations.
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First-Order Hereditary Harrop Formulas

A logic programming language that is based on the logic of first-order Horn
clauses or fohc does not make very strong use of the structure afforded by logic
in general even while providing significant computational capabilities. Part of
this weakness arises from the fact that goal formulas and the bodies of program
clauses in the setting of fohc, are not permitted to contain implications and
universal quantifiers. In the first section of this chapter, we introduce the logic
of first-order hereditary Harrop formulas, or fohh, that eases this restriction.
The computational interpretation of these additional logical symbols then leads
to a logic programming language in which programs and signatures can grow
dynamically in the course of searching for a proof. We consider some of the
pragmatic benefits of these capabilities in the second and third sections of this
chapter; a full realization of the richness arising especially from universal quan-
tifiers must await the introduction of higher-order features later in this book.
In the last section of this chapter, we discuss logical aspects of fohh, relating,
for example, its operational semantics to provability in classical, intuitionistic,
and minimal logic.

3.1 The syntax of goals and program clauses

Let A denote first-order atomic formulas. Goal formulas and program clauses
in the setting of fohh then are the first-order formulas corresponding to the
syntactic variables G and D given by the following rules:

G ::= � | A | G ∧ G | G ∨ G | ∃τ x G | D ⊃ G | ∀τ x G

D ::= A | G ⊃ D | D ∧ D | ∀τ x D

In contrast to the situation in the context of fohc, goal formulas now are allowed
to contain all four logical connectives (�, ∧, ∨, and ⊃) and both quantifiers (∀
and ∃). Goals are, however, still not freely generated from atomic formulas using
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these logical symbols. In particular, the premise of an implication appearing at
the top level in a goal formula is restricted to being a D-formula. The structure of
a program clause also is restricted, in a sense more so than that of a goal formula:
Program clauses cannot contain disjunctions and existential quantifications at
the top level, and the premise of a top-level implication must be a G-formula.
The limitations on program clauses are, in fact, identical to the ones present in
the fohc setting, but the resulting formulas represent a larger class than before
because the syntax of G-formulas is now more permissive. A D-formula that
is given by the preceding syntax rules will be called a first-order hereditary
Harrop formula. This terminology is somewhat ambiguous because we also
refer to the framework for logic programming that results from the present
choices for goal formulas and program clauses as the logic of first-order hered-
itary Harrop formulas, or fohh, but the context always will clarify the intended
usage.

When implications are present in formulas, it becomes meaningful to talk
about their positive and negative subformula occurrences. These notions are
defined as follows:

• B is a positive subformula occurrence of B.
• If C is a positive subformula occurrence of B, then C is a positive subformula

occurrence of B ∧ B ′, B ′ ∧ B, B ∨ B ′, B ′ ∨ B, B ′ ⊃ B, ∀τ x B, and ∃τ x B,
and C is a negative subformula occurrence of B ⊃ B ′.

• If C is a negative subformula occurrence of B, then C is a negative subfor-
mula occurrence of B ∧ B ′, B ′ ∧ B, B ∨ B ′, B ′ ∨ B, B ′ ⊃ B, ∀τ x B, and
∃τ x B, and C is a positive subformula occurrence of B ⊃ B ′.

In other words, if C occurs to the left of an even number of occurrences of
implications in B, then it is a positive subformula occurrence of B, and if C

occurs to the left of an odd number of occurrences of implication in a formula
B, then it is a negative subformula occurrence of B.

Given the recursive definition for fohh, it is clear that positive subformulas
of G-formulas are G-formulas, and negative subformulas of G-formulas are
D-formulas. Dually, positive subformulas of D-formulas are D-formulas, and
negative subformulas of D-formulas are G-formulas. Also notice that if G

is a goal formula in fohc, then G has no negative subformulas. We also can
characterize a hereditary Harrop formula as a formula in which no positive
subformula occurrence is either disjunctive or existentially quantified.

The clausal order of a first-order formula is defined by the following
recursion on its structure:

clausal(A) = 0 if A is atomic or �
clausal(B1 ∧ B2) = max(clausal(B1), clausal(B2))
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clausal(B1 ∨ B2) = max(clausal(B1), clausal(B2))

clausal(B1 ⊃ B2) = max(clausal(B1) + 1, clausal(B2))

clausal(∀x B) = clausal(B)

clausal(∃x B) = clausal(B)

Notice that in fohc, goal formulas have clausal order 0, and clauses have clausal
order of either 0 or 1. In fohh, both goals and clauses can have arbitrary clausal
order. If we interpret the implication symbol as the function type constructor
→, then the clausal order of a formula has a definition that is similar to that
given in Section 1.2 for the order of a type. The identification of ⊃ with → and,
consequently, the similarity in the definitions of order in the two cases are not
accidental, and we will have opportunities to use this similarity in describing
computations. For example, we will provide a description of equality and sub-
stitution for terms containing constants of higher-order types in Section 7.6
that will use a clause of clausal order n for a constant that has a type of
order n.

The framework that we have described in Section 2.2 already provides the
search semantics for implications and universal quantifiers that appear at the
top level in goals: These are to be treated by the AUGMENT and GENERIC
reduction rules. To complete the picture, we also have to decide how to pro-
ceed when the goal has been reduced to an atomic form. Here we use, once
again, the backchaining rules in Figure 2.3. Notice that this is possible because
D-formulas have exactly the same structure in fohh as in fohc, modulo the
structure of G-formulas. As with fohc, we shall use the term O-proof for a
derivation that is constructed in the fohh setting using the rules in Figure 1.2, 2.2,
and 2.3.

3.2 Implicational goals

An attempt to prove the goal D ⊃ G from the signature � and the program
P results in an augmentation of the program: The AUGMENT rule transforms
the objective into one of trying to prove the goal G from the same signature
but the larger program {D} ∪ P . To take a more involved example, attempting
to prove the goal

(D0 ⊃ ((D1 ⊃ G1) ∧ (D2 ⊃ G2))) ∧ G3

from the program P will result in attempts to prove G1 from the program
{D1, D0} ∪ P and G2 from {D2, D0} ∪ P and, finally, G3 from the program
P . In Section 2.3 we noted that during proof search in fohc, both programs
and signatures remained fixed. As seen from this example, implicational goals
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allow logic programs to grow and shrink following a stack-based discipline
during proof search. In Section 3.3, universal quantifiers in goals will be seen
to allow signatures to change similarly in the course of computation.

In the depth-first search procedure that is used in implementations of logic
programming languages such as λProlog, the order in which clauses are tried
in the course of backchaining becomes important: Using different orders for
the same clauses can have different outcomes. In this setting, programs are
best thought of not as sets but rather as lists of clauses where the list ordering
determines the order of use. When new clauses are added to the current context,
it is important to know where these new clauses are placed in the list. λProlog
uses the rule that when an implicational goal augments the current program, it
does so by adding the new clauses at the front of the program: That is, the most
recently added clauses are the first to be used in backchaining. To illustrate this
convention, assume that the current context contains just the atomic formula
(p 1) for some predicate p of type int -> o. Then the following queries should
yield the corresponding answer substitutions in the order that they are shown:

?- p 2 => p 3 => p X.

X = 3;

X = 2;

X = 1

?- (p 2 & p 3) => p X.

X = 2;

X = 3;

X = 1

?-

3.2.1 Inferences among propositional clauses

As a simple example of using implications in goals, we consider proving entail-
ments among propositional Horn clauses of the form (A1 ∧ . . . ∧ An) ⊃ A0,
where n ≥ 0 and A0, . . . , An are propositional constants. Let the symbols q, r,
s, t, and u all denote propositional symbols; i.e., let them all have the type o,
and consider the logic program composed of the following propositional Horn
clauses:

s :- r, q.

t :- q, u.

q :- r.
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Although these clauses do not have any atomic consequences, other clauses can
be proved from them. For example, the Horn clauses

t :- r, u.

and

s :- r.

are both provable from the shown logic program. To work the second of these
out in more detail, the query

?- s :- r.

which, following the conventions described in Chapter 2, is better written as

?- r => s.

would result in an attempt to prove the goal s from a program obtained by
extending the current program with the clause r. At this point, traditional Horn
clause reasoning would provide a proof of s, thereby leading to a successful
conclusion to the original query from the starting program. In a similar fashion,
the formula

(r => u) => (r => t)

can be seen to be provable. In this case, the conclusion will follow from attempt-
ing to prove the goal t after the the program has been extended with the two
propositional Horn clauses r and r => u.

As a final example, consider the query

?- (q :- (q => q)) => (q :- (q => q)).

which is an formula of the form B ⊃ B. The reader should be able to show
that there is an O-proof of this query from the empty program. Unfortunately,
there are limitations to what can be done using a depth-first search procedure:
It is not too difficult to conclude that such a procedure will not terminate on the
given query.

3.2.2 Hypothetical reasoning

Implications in goals can be used to formulate hypothetical reasoning.
Figure 3.1 contains an encoding of some simple database-like facts about
courses completed by students, rules for inferring who is a computer science
major and who graduates, and a constraint that says that it is inconsistent for
someone to have completed the two courses numbered 210 and 250. Relative
to these definitions, the following query can be interpreted as asking whether
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kind entry type.
type fact entry -> o.
type false o.
kind person type.
type kim, dana person.
type finished person -> int -> entry.
type cs_major, graduates person -> entry.

fact (finished kim 102) & fact (finished dana 101).
fact (finished kim 210) & fact (finished dana 250).

fact (cs_major X) :-
(fact (finished X 101); fact (finished X 102)),
fact (finished X 250), fact (finished X 301).

fact (graduates X) :-
(fact (finished X 101); fact (finished X 102)),
(fact (finished X 210); fact (finished X 250)),
fact (finished X 301).

false :- fact (finished X 210), fact (finished X 250).

Figure 3.1. An encoding of a small course-related database.

there is a course such that if Dana completed it, then the database would become
inconsistent:

?- fact (finished dana X) => false.

X = 210;

no

?-

The answer indicates that the course numbered 210 is such a course (and that
it is the only course that leads to such an inconsistency). Similarly, one can ask
the hypothetical question, “If person X took just one more course Y, will he or
she graduate with a CS degree?” The following query provides the one answer:

?- fact (finished X Y) => (fact (graduates X), fact (cs_major X)).
X = dana
Y = 301;
no

?-

We can try to find out what courses Kim should take in order to graduate and
be a computer science major. The response to the preceding query indirectly
implies that there is no single course she can take to achieve that goal. The
following query considers the same question but this time allowing Kim to take
two courses:
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type db o.
kind command type.
type do command -> o.
type enter, query, whatif, check entry -> command.
type quit, consis command.

db :- print "Command?", read Command, do Command.

do quit.
do (enter Fact) :- fact Fact => db.
do (query Q) :- (fact Q, !, print "yes\n"; print "no\n"), db.
do (whatif Conjecture) :- (fact Conjecture => db),

print "Resuming\n", db.
do consis :- false, print "no\n", !; print "yes\n".
do (check Entry) :- (fact Entry, print "yes\n", !;

fact Entry => false, print "no\n", !;
print "no, but it could be true\n"), db.

Figure 3.2. A program that allows hypothetical queries against an encoded
database.

?- fact (finished kim X) => fact (finished kim Y) =>
(fact (graduates kim), fact (cs_major kim)).

X = 250
Y = 301

?-

Thus Kim can graduate as a computer science major by taking courses 250 and
301. Unfortunately, taking these two courses leads to an inconsistency:

?- fact (finished kim 250) => fact (finished kim 301) => false.

solved

?-

A little reflection on the given database leads to the conclusion that there is no
consistent way for Kim to graduate as a computer science major.

A simple interactive database program that is capable of considering hypo-
thetical situations is presented in Figure 3.2. In this program, the predicate db

implements a loop that repeatedly reads a command from the keyboard and
carries out that command. As is common with interactive programs, this code
uses several nonlogical predicates of λProlog. We have discussed all the pred-
icates used in Chapter 2 except for the “cut” (!) predicate that we assume the
reader to be familiar with from a previous exposure to Prolog. The following
interaction sequence illustrates the use of this code:

?- db.

Command? query (graduates dana).
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no

Command? whatif (finished dana 301).

Command? query (graduates dana).

yes

Command? query (cs_major dana).

yes

Command? quit.

Resuming.

Command? query (finished kim 101).

no

Command? query (graduates kim).

no

Command? whatif (finished kim 301).

Command? query (graduates kim).

yes

Command? query (cs_major kim).

no

Command? whatif (finished kim 250).

Command? query (cs_major kim).

yes

Command? consis.

no

Command?

3.3 Universally quantified goals

The GENERIC reduction rule transforms the attempt to prove the universal
goal ∀τ x G(x) from the signature-program pair 〈�, P〉 into an attempt to prove
G[c/x] from the signature-program pair 〈� ∪ {c : τ }, P〉 for some token c

that does not occur in �. While there are several choices for the token c here,
it is a property of O-proofs that the particular selection does not matter from
the perspective of finding a derivation as long as c is picked so as to not be a
member of �. In the proof-theoretic setting, a token that satisfies this kind of
constraint is often called an eigenvariable. Since such eigenvariables do not
get instantiated (i.e., they do not vary) during computation, we will also refer
to them as scoped constants. The reader might notice a similarity in the inter-
pretation of implicational goals and universal quantifiers: Implicational goals
cause the existing program to be augmented for a part of the computation, and
universal quantifiers cause a similar augmentation but to the existing signature.

For a simple illustration of the use of universal quantifiers in goals, consider
the following problem. Assume that a jar is sterile if every bug (germ) in it is
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dead, that a bug in a heated jar is dead, and that a given jar has been heated.
These assumptions about jars and bugs are encoded by the following λProlog
program:

kind jar, bug type.

type j jar.

type sterile, heated jar -> o.

type dead, bug bug -> o.

type in bug -> jar -> o.

sterile J :- pi x\ bug x => in x J => dead x.

dead B :- heated J, in B J, bug B.

heated j.

Notice that the signature corresponding to this program does not provide for
any particular constants of type bug, and hence no assumption is being made
in the program about the existence of any bugs. Now consider solving the goal
sterile j from this logic program. Backchaining on the first clause yields the
goal

pi x\ bug x => in x j => dead x.

To solve this universal goal, we proceed by selecting a constant, say, g, that does
not occur in the current signature. Using this constant, the goal gets transformed
into

bug g => in g j => dead g.

This goal would succeed if the goal dead g were to follow from the original
program augmented with the program clauses bug g and in g j.Afew straight-
forward backchaining steps suffice to convince us that this is indeed the case.
After this goal succeeds, the constant g is removed from the signature, and the
two clauses bug g and in g j are similarly removed from the program.

This example shows that the interpretation of universal quantifiers in fohh

is intensional in nature: Proofs of universal goals do not make any assump-
tions about the structure of the domain of quantification, and in fact, the same
generic proof must work for every element of the domain. Universal statements
also can be treated extensionally, i.e., their proofs can be given by showing,
possibly in different ways, that every one of their instances over the domain
of quantification holds. In the case that τ represents an inductively given set,
such as the set of natural numbers or lists, a common way to provide a proof of
an extensionally interpreted goal of the form ∀τ x G is to use induction. How-
ever, the fohh logic does not encompass rules for induction and therefore is



84 3 First-order hereditary Harrop formulas

incapable of providing such proofs. To illustrate this fact, let us consider the
λProlog program given by the following declarations:

kind nat type.

type zero nat.

type succ nat -> nat.

type plus nat -> nat -> nat -> o.

plus zero L L.

plus (succ N) M (succ P) :- plus N M P.

First, notice that the generic treatment of the universal quantifier will not allow
the query

?- pi N\ plus N zero N.

to be proved from the program shown even though plus N zero N is true for
every instantiation of N with a closed term of type nat. To pursue the example
further, an inductive proof of the universal query would proceed by choosing
an invariant and then showing that it holds for the base and inductive cases
of closed terms of type nat. In the example being considered, the base and
inductive cases of the obvious invariant can, in fact, be proved in the setting of
fohh. More specifically, the following goal is provable:

?- plus zero zero zero,

pi N\ plus N zero N => plus (succ N) zero (succ N).

However, there is no rule in the fohh setting that allows these facts to be used
to conclude that pi N\ plus N zero N is true, so this universal goal remains
unprovable in that logic.

3.3.1 Substitution and quantification

As we have seen in Section 2.6, Horn clauses can be presented as formulas
of the form ∀τ1x1 . . . ∀τmxm (A1 ∧ . . . ∧ An ⊃ A0), where A0, . . . , An are
atomic formulas. When this format is used, only universal quantifiers appear
in these formulas, and they also appear only at the outermost level. Moreover,
backchaining over such a clause can be viewed as a process that simultane-
ously instantiates all these quantifiers. In this situation, substitution becomes
a particularly simple operation: Given a formula ∀τ1x1 . . . ∀τmxm D, where D

has no quantifiers in it, to instantiate its quantifiers with the terms t1,…,tn, we
simply replace the occurrences of x1,…,xn in D with these terms.

The quantificational structure of program clauses in a language that is based
on fohh can be more complex. While we will describe restricted versions of
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fohh in Section 3.4.3 that use program clauses of a simpler form than that
presented in Section 3.1, these formulas still can have occurrences of quantifiers
whose scopes are narrower than the entire formula. Thus, in the fohh setting,
substitutions may have to be applied to formulas containing bound variables.
The simple replacement operation just described may not be a logically correct
realization of substitution in this situation. For example, consider substituting
(f y) for X in the formula

p X :- pi y\ q X y.

Notice that the token y occurs as a constant in the substitution term and as
a bound variable in the formula. If we implement substitution via a naive
replacement, we will get

p (f y) :- pi y\ q (f y) y.

This formula is not a logical consequence of the one that was “instantiated”:
Where there was only one bound occurrence of y in the original formula, there
are two such occurrences in the formula produced from it. The reason for this
discrepancy is that an illegal variable capture has occurred in the process of
blind replacement. Proper substitution must avoid such captures.

Let x be an occurrence of a free variable in a formula B, and let t be some term
of the same type as x. We say that t is free for x in B if no free occurrence of x in
B is in the scope of a quantifier that binds a variable free in t . The replacement
of x with t in B, written as B[t/x], is a sound substitution operation if t is free
for x in B. Notice that if t is not free for x in B, it is always possible to change
bound variables names in B to obtain an equivalent formula B ′ for which t is
free for x in B ′. Of course, there are many choices for such a B ′, but they differ
only in the names used for bound variables and therefore are equivalent to each
other as well as to B. If we pick any such B ′, we can carry out the substitution
naively on it to realize a logically sound version of the desired operation. Thus,
to continue the example considered earlier, the result of correctly substituting
(f y) for X is a formula such as

p (f y) :- pi z\ q (f y) z.

where many other tokens could have been used instead of z. We shall assume
that substitution is always performed in this logically sound fashion.

Possibly the simplest example illustrating the relevance of quantifier scopes
in computation is the query

?- sigma x\ pi y\ x = y.

This query is not provable because (pi y\ t = y) is not provable for any term t

in which y does not appear. While this expression is true in a model with exactly
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one object in the domain, which then also must be the denotation of t, not all
models are required to have singleton domains. Thus this formula generally is
not true. Proof search as we have presented it here correctly determines that
this formula is not derivable. In particular, the GENERIC goal reduction step
generates a new scoped constant, say c, and attempts to prove the equality c = t,
which must fail. One could try to solve the goal (sigma x\ pi y\ x = y) by
choosing the variable y to instantiate the existential quantifier. However, the
capture avoiding aspect of substitution will end up producing an expression of
the form (pi z\ y = z) as a result of this instantiation and the earlier discussion
applies to this formula.

3.3.2 Quantification can link goals and clauses

As discussed in Section 2.5, implementation of the ∃R and ∀L quantifier rules
often uses a combination of instantiatable or logic variables and unification to
delay the determination of actual substitution terms. Thus, although the query
and the program at the start of a computation do not contain such variables,
intermediate values of both kinds of objects may end up containing them. In
Prolog, where the program remains fixed throughout the computation, logic
variables find their way only into goal formulas. However, such variables also
may appear eventually in program clauses in λProlog.

The ability to have logic variables in program clauses can be useful in
programming. To illustrate this, let us consider first the specification of the list-
reversal predicate reverse that is shown in Figure 3.3. The definition of this
predicate uses an auxiliary predicate rev whose definition has a tail-recursive
structure. The clauses for rev are assumed only for the duration of addressing a
query involving reverse. Notice that the universal quantification that is written
explicitly in these clauses cannot be dropped: Doing so will change the scope
of the quantification and hence also the meaning of the predicate the clauses
define.

Let the code in Figure 3.3 determine the ambient setting. Then the query

?- reverse (1::2::nil) P.

effectively reduces to the query

?- rev (1::2::nil) P nil.

with the existing program being augmented with the clauses

rev nil L L.

rev (X::L) K M :- rev L K (X::M).
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type reverse list A -> list A -> o.
type rev list A -> list A -> list A -> o.

reverse L K :-
((pi L\ rev nil L L) &
(pi X\ pi L\ pi K\ pi M\ rev (X::L) K M :- rev L K (X::M)))

=> rev L K nil.

Figure 3.3. An implementation of the reverse using a three-place auxiliary
predicate.

type reverse, rev list A -> list A -> o.

reverse L K :-
(rev nil K &
(pi X\ pi L\ pi K\ rev (X::L) K :- rev L (X::K)))

=> rev L nil.

Figure 3.4. Another implementation of the reverse using a two-place auxiliary
predicate.

The rest of the computation proceeds as expected, leading eventually to the
instantiation of P with the term (2::1::nil).

There is another way to visualize the reversal computation. First, observe
that if we start with the program

rv nil (c::b::a::nil).

rv (X::N) M :- rv N (X::M).

then we should be able to prove the goal (rv (a::b::c::nil) nil). Gener-
alizing on this observation, we see that if (c::b::a::nil) in the first clause
above is replaced with any list L, then we will be able to prove the atomic
goal (rv K nil) if and only if L and K are reverses of each other. While this is
a natural approach to specifying reverse, perhaps more natural than the first
definition of reverse that we considered, it is not possible to code it directly in
fohc because to do so we require the ability to “tie” the binding for a variable
in the specification of the reverse predicate to one that appears in a goal at
a particular point in the computation. It is easy, however, to write this rela-
tion in fohh: This is, in fact, what is done in Figure 3.4. With respect to that
specification, the query

?- reverse (1::2::nil) P.

reduces to the query

?- rev (1::2::nil) nil.

with the program being augmented with the clauses
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rev nil K.

rev (X::L) K :- rev L (X::K).

Notice, however, that the variable K in the first clause is not like the usual
implicitly universally quantified variables that appear in clauses because its
binding is tied to that of P in the original query; our convention for displaying
clauses using implicit quantification actually becomes somewhat misleading
when such variables can appear in clauses, but we will continue to use it with
the appropriate qualifications. Proceeding further with the computation, the rev
goal is reduced using the second rev clause to (rev (2::nil) (1::nil)) and
then to (rev nil (2::1::nil)). This final goal now succeeds by binding the
variable K and hence P to the list (2::1::nil). Since P is implicitly existentially
quantified in the original query about the reverse of the list (1::2::nil), its
binding is reported as the answer substitution for the overall computation.

3.4 The relationship with logical notions

One reason for using logic as the basis of programming is that useful metathe-
oretic principles then become available in analyzing programs. For example,
if B and C are program clauses or queries that are logically equivalent when
viewed as formulas, a fact that is denoted by writing B ≡ C, then we might
expect that these can be used interchangeably in programming contexts. If the
logic programming language allows for side effects or for incomplete proof
search, such replacements actually may not preserve computational behavior.
For example, in logic, conjunction is commutative, that is, G1 ∧G2 ≡ G2 ∧G1,
but switching the order of goals does not always leave the computational sig-
nificance unaltered. Thus, switching the order of the conjuncts in the goal
print "yes", print "no" causes different side effects. Similarly, switching
the order of the conjuncts in the goal loop, fail, where loop is defined by the
sole clause

loop :- loop.

and fail is an atom with no defining clauses, yields different behaviors under
a depth-first prover: One goal loops forever, whereas the other fails quickly.

Nevertheless, logic still might be useful in understanding idealized behavior.
In particular, if we rule out programs with side effects and consider complete
proof-search strategies, then logical equivalences can be used meaningfully
in reasoning about logic programs. It is in this spirit that we make connec-
tions in this section between first-order hereditary Harrop formulas understood
through the prism of O-proofs and their interpretation as formulas in classical,
intuitionistic, and minimal logics.
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3.4.1 Classical versus intuitionistic logic

It was observed in Section 2.3 that the rules of inference restricted to fohc

were complete with respect to both classical and intuitionistic logics. The sit-
uation is different for fohh: The operational semantics for sequents in fohh is
sound and complete for intuitionistic logic, but classical logic is not sound for
this operational semantics. The latter fact can be demonstrated through varied
examples.

As a first example, consider constructing an O-proof for the formula p∨(p ⊃
q) from the empty program. This formula (as a goal) is provable if and only if
either p is provable from the empty program or q is provable from the program
containing just the atomic propositional symbol p. Since neither of these cases
holds, the goal is not provable. This conclusion about O-proofs also coincides
with provability in intuitionistic logic. In classical logic, however, the following
equivalences all hold:

B1 ∨ (B2 ⊃ B3) ≡ B1 ∨ ¬B2 ∨ B3 ≡ (B2 ⊃ B1) ∨ B3 ≡ B2 ⊃ (B1 ∨ B3)

As a consequence, the interpretation we desire for implication as a scoping
mechanism is not valid in classical logic. More precisely, classical logic allows
scopes to be “extruded” over disjunctions: The formula p ∨ (p ⊃ q) is equiva-
lent to p ⊃ (p ∨q) in classical logic, and the latter formula is clearly provable.

As additional examples, the reader can check that none of the following goal
formulas has an O-proof, although every one of them is provable in classical
logic:

(r a ∧ r b ⊃ q) ⊃ ∃x (r x ⊃ q)

((p ⊃ q) ⊃ p) ⊃ p

∃x ∀y (p x ⊃ p y)

The middle formula is also commonly known as Pierce’s formula. It is clear from
all these examples that classical logic cannot provide the declarative semantics
of λProlog.

3.4.2 Intuitionistic versus minimal logic

Negation of the formula B, usually written as ¬B, can be defined in a logical
setting as B ⊃ ⊥, where ⊥ is a logical constant denoting the false proposition.
Of course, we must include inference rules for ⊥ in order to make sense of this
translation. There are two common ways to describe the meaning of ⊥, and they
lead to rather different interpretations of negation. The minimal logic approach
treats ⊥ as, essentially, a nonlogical constant. The intuitionistic logic approach
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provides an additional inference rule for ⊥, namely, that one can infer any
formula from it; this logical principle is called ex falso quodlibet. In particular,
intuitionistic logic contains the following inference rule:

�; P −→ ⊥
�; P −→ B

We say that a logic program P is inconsistent if it entails ⊥. Thus the preceding
rule says that if a logic program P is inconsistent, then it, in fact, entails any
formula.

Within λProlog, the weaker form of falsity can be accommodated by picking
a propositional constant, say, false, to denote ⊥. Since false is a nonlogical
constant, the rule “from false, anything can be proved” is not available for this
proxy of falsehood. The (weak) form of negation that results from translating
¬B to B ⊃ ⊥ and this interpretation of falsity is called minimal logic negation.
There are programming uses for this notion, as we illustrated in Section 3.2.2.

Although the λProlog interpreter does not support intuitionistic negation
directly, it can be extended to do so. Toward this end, before failing on a given
query, the interpreter would try to determine if false is provable. If it is, then it
would have to succeed on the query in question. Such a check for inconsistency
would have to be coordinated with each (sub)query that leads to the program
being augmented.

Minimal logic is weak but does satisfy some laws generally connected with
negation. For example, the following implications in which p and q are constants
of type o are provable queries in λProlog:

(p => q) => ((q => false) => (p => false)).

p => ((p => false) => false).

The converse of these implications are provable neither in minimal logic nor in
intuitionistic logic but are provable in classical logic.

The query

?- p; (p => false).

which encodes a particular instance of the principle of the excluded middle, is
not provable in the logic of fohh. The doubly negated version of this formula,
written as the goal formula,

?- ((p; (p => false)) => false) => false.

is provable. A proof of this is interesting to see and is indicated through the
display of a partial list of the queries that arise from attempting to solve this
goal from an initially empty program. In this display we show the formulas that
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get added to the program prior to the invocation of a subgoal by writing them
to the left of the symbol ?- used to indicate queries.

(p; (p => false)) => false ?- false.

(p; (p => false)) => false ?- p; (p => false).

(p; (p => false)) => false ?- p => false.

p, (p; (p => false)) => false ?- false.

p, (p; (p => false)) => false ?- p; (p => false).

p, (p; (p => false)) => false ?- p.

This last query succeeds immediately because the goal p is also in the program
at that point.

It is a theorem that when P is a fohh logic program and G is a fohh goal
formula (both over the signature �), then the sequent �; P −→ G has an
O-proof if and only if it is provable in minimal logic. Now program clauses
and goal formulas in fohh do not actually contain any occurrences of ⊥ and
negation—in the preceding discussions we have used only a nonlogical constant
to simulate their presence. Minimal and intuitionistic provability therefore are
indistinguishable with respect to sequents containing only these formulas. For
this reason, we shall say that the declarative semantics of λProlog is also given
by intuitionistic logic.

3.4.3 Notable subsets of fohh

Goal formulas and program clauses in fohh were defined through the following
mutually recursive syntax rules in Section 3.1:

G ::= � | A | G ∧ G | G ∨ G | ∃x G | D ⊃ G | ∀x G

D ::= A | G ⊃ D | D ∧ D | ∀x D (3.1)

It is interesting to consider whether this rich collection of formulas might be
restricted without limiting the kind of specifications that could be written. In
this section we present two restrictions that have this property.

It can be shown, in a manner analogous to that sketched in Section 2.6,
that program clauses written using the preceding syntax can be preprocessed
without changing their essential operational interpretation into a form where
all the top-level implications in them have atomic conclusions. In other words,
program clauses in fohh could be restricted to those adhering to the following
syntax rule:

D ::= A | G ⊃ A | D ∧ D | ∀x D (3.2)
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The restriction in syntax also can be justified at a declarative level: Any
D-formula satisfying the definition (3.1) is equivalent in intuitionistic (and
minimal) logic to a set of D-formulas based on the definition in (3.2).

We also can consider a simplification that eliminates all occurrences of
disjunctions and existential quantification in goals. In this case, the G- and
D-formulas will be given by the rules

G ::= A | G ∧ G | D ⊃ G | ∀τ x G

D ::= A | G ⊃ A | D ∧ D | ∀x D

Notice that now the G- and D-formulas are identical. Thus another restriction
of fohh results from letting both program clauses and goal formulas be given
by the rule

D ::=A | D ⊃ D | D ∧ D | ∀x D (3.3)

In this version, goal formulas and program clauses are constructed from atomic
formulas via unrestricted use of implications, conjunctions, and universal
quantifications.

The relationship between the versions of fohh given by the syntax rules
(3.1) and (3.2) and the version in (3.3) that excludes disjunctions and existential
quantifiers is not based on logical equivalences. To see this, observe that the
formula

(p ⊃ (q ∨ r)) ⊃ s

is a legal program clause using (3.2) but it is not equivalent in intuitionistic logic
to any set of D-formulas using the syntax described by (3.3). This formula does
imply

((p ⊃ q) ⊃ s) ∧ ((p ⊃ r) ⊃ s)

in intuitionistic logic, but the converse implication does not hold.1 As program
clauses, however, these two formulas prove exactly the same atomic formulas,
so the former can be replaced by the latter in the limited context of fohh.
Another way to remove disjunctions and existential quantifiers is to treat them as
nonlogical predicates and to realize their proof-search impact via Horn clauses.
This approach requires using higher-order Horn clauses, and we shall consider
it in Section 5.6.

1 The reader might notice that the two formulas in question are equivalent in classical logic.
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3.5 Bibliographic notes

Extensions to Horn clauses that permit implications in goals have been con-
sidered by several researchers. Gabbay and Reyle (1984) described such an
extension and used intuitionistic logic to provide the semantics of the result-
ing language. Their motivation for considering implicational goals was largely
that this allowed the language to capture more of its own metatheory. For
example, the demo predicate of Bowen and Kowalski (1982) can be encoded
using implication: The goal demo(D,G), which should succeed if the goal G

is provable from the program D, can be encoded as the goal D => G. War-
ren (1984) investigated a simpler version of the logic we have described
here as the basis for a database updating program. His “modal” operator
assume(A)@G can be approximated by A ⊃ G. Warren also provided a pos-
sible worlds semantics for this modal operator. Miller (1986, 1989c) presented
implicational goals as a means for supporting modular structuring of code.
The proof theory of implications in goals also has been developed by Hall-
näs and Schroeder-Heister (1990). A stronger logical language, which includes
full intuitionistic negation and universally quantified goals, was investigated by
McCarty (1988a,b) as the basis for knowledge representation and commonsense
reasoning.

It is of interest to understand the circumstances under which the provability
of the formula F1 ∨ F2 in intuitionistic logic guarantees that either F1 or F2 is
provable, and similarly, the provability of ∃x F guarantees that there is a term
t such that F [t/x] is provable. Harrop (1960) showed that if all the assumption
formulas, i.e., the formulas on the left-hand side of a sequent, are restricted to
ones given by the syntax rules

H ::= � | A | H ∧ H | B ⊃ H | ∀τ x H

in which A represents an atomic formula and B an arbitrary formula, then
the so-called disjunctive and existential properties hold. These H -formulas,
which are often called Harrop formulas, essentially disallow appearances of
disjunctions and existential quantifiers in the top-level positive context of a
formula. Notice that Harrop’s restrictions guarantee that the disjunctive and
existential properties hold only at the root of a proof, whereas we have wanted
them to hold at all points in the proof. To get the latter effect, we prohibit
disjunctions and existential quantifiers not just at the top level but hereditarily
at all positive locations in the formula. The resulting formulas are what have
been called hereditary Harrop formulas (Miller 1987a; Miller et al. 1987, 1991).
The higher-order version of these formulas, presented formally in Section 5.2,
can be used to provide a declarative basis for modularity and abstract datatypes
in logic programming (Miller 1990).
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Classical and intuitionistic logic are distinguished at a semantic level by
providing different notions of models for them. Satisfiability for classical logic
is defined relative to a world that fixes the interpretation of predicate, constant,
and function symbols, whereas the more general notion of Kripke models that is
used for intuitionistic logic allows these interpretations to vary based on a set of
possible worlds (Doets 1996; Fitting 1969; Hodges 1997). Logic programming
in fohh can be considered as satisfying the “open-world assumption”: If we
identify worlds as signature-program pairs, then computations can carry us
from one world to another, larger world. It is possible to build a Kripke model
for hereditary Harrop formulas based on this kind of interpretation of the open-
world assumption (Miller 1992b). The open-world assumption does not allow
for an interesting notion of negation: The formula A ⊃ ⊥ for atomic A can
never be true because there is always some future world in which A is true
(simply add it to the program in the current world). To achieve an interesting
notion of negation, one must move to a closed-world assumption and not allow
signatures and programs to grow during proof construction.

In contrast to the situation for fohc, computations in fohh can give rise to
goals in which there are alternations between essential existential and universal
quantifiers. If logic variables are used to delay instantiations for existentially
quantified variables in this setting, then unification must be modified from what
was described in Section 1.5 so as to ensure that quantifier scopes are respected.
Miller (1989b) and Nadathur (1993) have presented proof procedures for fohh
that take this aspect into account. Unification problems can be generalized
to include explicit quantifiers, as we shall see in Section 4.4. The issue of
finding unifiers for problems in this form in a higher-order setting is discussed
in Chapter 8.

The intensional and extensional readings of the universal quantifier touched
on in Section 3.3 can be distinguished in the form of generic and universal
judgments. A generic judgment is justified by an argument that is parametric in
some new object (the eigenvariable or scoped constant). In contrast, a universal
judgment is valid for every possible term in a domain. Clearly, a generic reading
of the goal ∀τ x G implies the universal reading: Just substitute the scoped
constant with a term in the formula and the proof. On the other hand, under
the “open-world assumption,” where signatures and programs can grow during
computation (as is the case with proof search in fohh), the universal reading of
∀τ x G implies the generic reading: Just consider extending the type τ with a new
constant c, and we know that G[c/x] is provable. If one embraces the “closed-
world assumption,” then, of course, there are distinctions to be made between
generic and universal judgments. Miller and Tiu (2005) have introduced the
∇-quantifier to capture generic quantification in that setting.
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In Section 3.4.1 we used the term scope extrusion. This term is borrowed
from the π -calculus (Milner et al. 1992a) where it also applies to an abstraction
extending its scope over parallel composition. The π -calculus will be discussed
in more detail in Chapter 11.

The problem of removing all occurrences of disjunctions from program
clauses that was discussed in Section 3.4.3 has been addressed by Miller
(1989c).



4

Typed λ-Terms and Formulas

The previous chapters have dealt with logic programming in the context of
first-order logic. We are now interested in moving the discussion to the setting
of a higher-order logic. The particular logic that we will use for this purpose is
one based on the simply typed λ-calculus, generalized to allow for a form of
polymorphic typing. This underlying calculus has several nontrivial computa-
tional characteristics that themselves merit discussion. We undertake this task
in this chapter, delaying the presentation of the higher-order logic and the logic
programming language based on it until Chapter 5.

The first two sections of this chapter describe the syntax of the simply
typed λ-calculus and an equality relation called λ-conversion that endows
the expressions of this calculus with a notion of functionality. The λ-
conversion operation brings with it considerable computational power. We
discuss this aspect in Section 4.3. In the logic programming setting, λ-
conversion will not be deployed directly as a computational device but
instead will be used indirectly in the course of solving unification prob-
lems between λ-terms. A discussion of this kind of unification, commonly
called higher-order unification, is the focus of the second half of this chapter.
Section 4.4 presents a general format for such problems, introduces termi-
nology relating to them, and tries to develop intuitions about the solutions
to these problems. Section 4.5 begins to develop the structure for a pro-
cedure that might be used to solve higher-order unification problems; this
discussion is incomplete and meant only as a prelude to the more detailed
treatment of higher-order unification that appears in Chapter 8. The last
section of this chapter provides illustrations of the computational power that is
contained in higher-order unification. In particular, it shows how two prob-
lems that are known to be undecidable—the Post correspondence problem
and Hilbert’s Tenth Problem—can be translated into higher-order unification
problems.

96
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4.1 Syntax for λ-terms and formulas

Typed λ-terms are built from typed collections of constants and variables using
the syntactic operations of application and abstraction. Application, denoted
by juxtaposition, has already been used in the construction of first-order terms.
Abstraction, however, is a new operation that takes an expression in which
a particular (typed) variable possibly appears free and creates from it a term
denoting a function ranging over values for that variable. If t is the expression
and x is the variable that has the type α, then the function expression, which
is said to be an abstraction that binds x and whose body is t , is written in
mathematical notation as λ(x : α) t . In concrete syntax, abstraction is written
in infix form, being denoted by a backslash placed between the bound variable
and its type on the one hand and the abstraction body on the other. Thus, if T
is the representation of the term t in which the token x is used to denote the
variable x and A is the representation of the type α, the term λ(x : α) t is written
as (x:A)\ T. The type of the variable also can be omitted—i.e., this expression
may be written simply as λx t in mathematical notation or as x \ T in concrete
syntax—in which case the type will be filled in using an inference process that
we explain later in this section.

When an abstraction is being read, its body is to be understood to go as far
to the right as is possible, given the presence of delimiting parentheses and
the end of the expression. This convention implies that application binds more
tightly than does abstraction and that abstraction is right associative. As exam-
ples, the terms λf λx (f (f (f x))), λx (f (g λy (h x y)) x), and λx λy x in
mathematical notation can be written in concrete syntax as f\x\ f (f (f x)),
x\ f (g y\ h x y) x, and x\y\ x, respectively. We shall assume that the con-
crete syntax disallows a backslash in the name of a constant or variable. No space
therefore is needed before or after this symbol in writing an abstraction term.

The syntax of typed λ-terms can be formalized through a type assignment
calculus in a manner similar to that done for first-order terms and formulas.
The judgments for this calculus have the form �; 	 �� t : τ . These judgments
generalize the ones of the form �; 	 ��f t : τ that we described in Section 2.1.
As before, we assume that � provides an assignment of types to constants that
include the logical constants and that 	 is an assignment of types to variables.
However, in contrast to the first-order setting, there are no longer any restric-
tions on the types that can be assigned by � and 	. The rules defining the
new judgment appear in Figure 4.1. There are several noteworthy differences
between these rules and the first-order typing rules presented cumulatively in
Figure 1.2 of Chapter 1 and Figure 2.1 of Chapter 2. First, the judgment τ 
f σ

is replaced by τ 
σ , although this judgment continues to hold between any two
types τ and σ if τ is a substitution instance of σ ; as with the main typing judg-
ment, the dropping of the subscript signals the shift away from the first-order
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c : σ ∈ � τ 
 σ

�; 	 �� c : τ

x : τ ∈ 	

�; 	 �� x : τ

�; 	 �� g : τ1 → τ2 �; 	 �� t : τ1

�; 	 �� (g t) : τ2

�; 	, x : τ �� t : σ

�; 	 �� λ(x : τ) t : τ → σ
(†)

�; 	 �� B : τ

�; 	 �� C : τ
(‡)

The proviso (†) requires that x is not declared as a type or kind in � or 	, and the proviso
(‡) requires that B and C differ only in the names of bound variables.

Figure 4.1. Rules for typing λ-terms.

restrictions. Second, we have a new rule for typing abstractions. Finally, we no
longer have special rules for typing existential and universal quantifications.
These quantifiers are captured using abstractions and two new logical constants,
as we note below, and the rules for typing applications and abstractions then
suffice also for typing judgments pertaining to them.

An expression t is said to be a well-formed λ-term over the signature �

or, alternatively, a well-formed (higher-order) �-term exactly when there is a
context 	 and a type τ such that the judgment �; 	 �� t : τ is derivable. We are
typically interested only in well-formed λ-terms, and the signature also may
not be directly relevant to the discussion. We therefore will often refer to t as a
λ-term or, more simply, as a term under these circumstances. A term is closed
if there is a derivable judgment �; 	 �� t : τ for which 	 is empty. Terms that
are not closed are open.

In the general case, the type assigned to a term or to one of its subcomponents
may contain variables in it. Terms that do not contain type variables in this way
are called simply typed λ-terms. While we usually will treat all typed λ-terms, it
will be necessary occasionally to restrict our attention to simply typed λ-terms.
This happens especially when we discuss the details of a unification procedure
for these terms.

Given the way we have presented λ-terms and the associated typing rules,
the bound variable of each abstraction is expected to be annotated with a type.
When this principle is followed, it can be shown that the type associated with
each well-formed λ-term is unique up to the renaming of type variables. It is
often convenient, however, to omit the types of bound variables. In this case, we
can fill in the missing types through a type inference process that is similar to
the one described for quantified variables in the first-order setting: A new type
variable is assigned tentatively to the variable bound by the abstraction, and
this assignment then is refined in as minimal a way as possible in the course of
checking adherence to the typing rules. The type that is obtained for the λ-term
in this way is, once again, guaranteed to be unique up to type variable renaming.
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We will often write abstractions without type annotations and expect their types
to be inferred in this way.

Well-formed λ-terms that have type o are also called formulas. This class
already contains expressions that can be formed using propositional connec-
tives such as those for conjunction, disjunction, and implication. In Section 2.1
we had introduced special notation for quantifiers. This notation can be given
formal status in the present context as follows: First, we extend the global sig-
nature � to include the constants ∀ and ∃ that have the type (A → o) → o,
where A is a type variable. These constants are represented in concrete syn-
tax by the symbols pi and sigma that we have already presented. Now, using
these constants, we write the universal and existential quantification of the
variable x over the term F as ∀ (λx F ) and ∃ (λx F ), respectively. Finally,
consistent with the syntax described in Chapter 2, we use here ∀x B and ∃x B

as alternative notation for ∀ (λx B) and ∃ (λx B), respectively. Sometimes it
may be important to depict the type of the bound variable, and we shall do this
by adding a type subscript to the quantifier symbol in this notation. Thus the
expressions ∀ (λ(x : τ) B) and ∃ (λ(x : τ) B) may be rendered as ∀τ x B and
∃τ x B, respectively.

For an example of a quantified formula and the association of a type with
it, assume that � is a signature such that the judgment �; 	, x : σ �� B : o

is provable, where σ is some type expression. Thus B is a formula that may
contain the variable x free. Using the typing rule for λ-abstractions, we obtain
a derivation for �; 	 �� λx B : σ → o. Since � is assumed to contain ∀ : (τ →
o) → o, we can derive the judgment �; 	 �� ∀ : (σ → o) → o. Combining
this with the earlier derivation, we obtain a derivation for �; 	 �� ∀ (λx B) : o,
thereby showing that ∀x B is a well-formed term. As another example, this time
using λProlog syntax, we can apply an instance of the logical constant pi that
has type (list int -> o) -> o to the abstraction term

y\ append (1::2::nil) y X.

which has type list int -> o to get the quantified formula

pi y\ append (1::2::nil) y X.

The removal of restrictions on the types that can be assigned by a signature
makes it possible to construct terms in which logical connectives appear inside
the arguments of nonlogical symbols. Higher-order programming, which we
discuss in Chapter 5, is based substantially on this possibility. To understand
the kinds of terms that can be constructed now, consider the following type
declaration:

type foreach (A -> o) -> list A -> o.



100 4 Typed λ-terms and formulas

This declaration identifies a constant that yields an atomic formula when pro-
vided with two arguments. The first of these arguments must be a predicate over
the type A, and the second argument must be a term denoting a list of items of
type A. A concrete example of an atomic formula that can be formed using this
constant is

foreach (x\ x > 5, x < 9) (3::10::6::8::nil).

Notice that in this atomic formula the subterm (x > 5, x < 9) appears within
an argument of the nonlogical symbol foreach. This subterm has in it an
occurrence of the logical constant corresponding to conjunction.

Our higher-order logic contains only one binding operation, namely, abstrac-
tion. As we have just seen, this binding operation can be used to form the ones
associated with the universal and existential quantifiers. We shall see later that
other binding operations in terms and formulas also can be encoded using
abstraction in an analogous manner.

4.2 The rules of λ-conversion

The rules of λ-conversion partially formalize the intended interpretation of
abstraction and application as the operations of function definition and function
application in the context of λ-terms. To define these rules, we must generalize
terminology governing the substitution of terms into quantified formulas that
we presented in Section 3.3.1. We shall say that the λ-term t is free for a variable
x in the λ-term s if the free occurrences of x in s are not in the scope of any
abstractions that bind free variables of t . For example, the term (f x) is free
for u in λw (g u w), whereas the term (f w) is not free for u in λw (g u w). If
x and t are, respectively, a variable and a term that have the same type and t is
free for x in s, then s[t/x] denotes the result of replacing all free occurrences
of x in the term s by t . The “free for” proviso is needed in this substitution
operation for reasons similar to those encountered in the context of quantified
formulas in Chapter 3: If it is not satisfied, free variables in t will get bound in
a logically unsound way in the course of substitution.

The rules that are of interest now comprise the following operations on
terms:

• Replacing a subterm λx s by λy s[y/x], provided that y is free for x in s

and y is not free in s, is called an α-rewriting. The reflexive, symmetric, and
transitive closure of α-rewriting is called α-conversion.

• Replacing a subterm (λx s) t by s[t/x], provided that t is free for x in s, is
called β-contraction. The converse operation is call β-expansion. The reflex-
ive and transitive closure of the union of α-conversion and β-contraction is
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called β-reduction, and the symmetric and transitive closure of β-reduction
is called β-conversion.

• Replacing a subterm λx (s x) by s, provided that x is not free in s, is called
η-contraction. The converse operation is call η-expansion. The reflexive and
transitive closure of η-contraction is called η-reduction, and the symmetric
and transitive closure of η-reduction is called η-conversion.

As an illustration of these relations, consider the following terms in concrete
syntax:

x\y\ f (g x) y

X\Y\ f (g X) Y

x\ f (g x)

x\y\ f ((u\v\v) (2 + 3) (g x)) y

The first two terms are related by α-conversion. The third term results from the
first through an η-contraction. Finally, a β-contraction on the fourth term yields

x\y\ f ((v\v) (g x)) y

and another β-contraction on this term yields the first term.
The transitive closure of α-, β-, and η-conversion is called λ-conversion.

This relation is clearly an equivalence and congruence. It also will be taken
as the notion of equality within higher-order logic. If we use this relation for
equality, it will not be possible to distinguish among the four terms displayed
above in the logic. It also will be impossible to write a specification in the logic
that determines the name of the bound variable in an abstraction: This follows
from the fact that the name of such a variable always can be changed using
α-conversion while maintaining equality with the original term.

For convenience, we extend the notation s[t/x] to the case where t is not
necessarily free for x in s. We do this by first picking a term s ′ that is α-
convertible to s and such that t is free for x in s ′ and then setting s[t/x] to the
result of substituting t for x in s ′. Although the result depends on the actual term
s ′ that is picked, all possible results themselves will be α-convertible and hence
equal. In this sense, the extended operation s[t/x] is well defined. Moreover,
this extension allows us to modify β-contraction to cover the replacement of a
subterm of the form (λx s) t by the term s[t/x] with no restrictions on t . We
assume this more liberal interpretation henceforth.

4.3 Some properties of λ-conversion

A term of the form (λx s) t that can be the target of a β-contraction is also called
a β-redex. Similarly, a term of the form λx (t x) in which x does not occur free
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in t is referred to as an η-redex. A term t that contains no β-redexes is said to be
a β-normal form, and it is said to be a λ-normal form if, in addition, it contains
no η-redexes. Sometimes, a λ-normal form is also referred to as a βη-normal
form.

If t is a λ-normal form and s is λ-convertible to t , then t is said to be a
λ-normal form of s. It is well known that every λ-term in our typed language
has a λ-normal form and that this normal form is unique up to α-conversion.
We denote the λ-normal form of s by λnorm(s). There is an easy algorithm
for computing such a normal form for a term: We repeatedly replace subterms
of the form (λx s) t by s[t/x] to produce a β-normal form and then repeatedly
replace subterms of the form λx (s x) with s provided that x is not free in s.
From this, we also obtain an algorithm for determining if two λ-terms of the
same type are equal (modulo λ-conversion): We first compute their respective
λ-normal forms and then determine if these are equal up to α-conversion.

As we have already observed, λ-terms can contain logical constants. For
example, let p and q be predicates of type i → o. The expression λx (p x) ∧
(q x) (also of type i → o) contains an occurrence of the conjunction symbol.
While logical constants can appear in terms, the equality of expressions con-
taining them is not affected by any logical equivalences pertaining to them. For
example, the λ-term above is not equal (as a term) to the term λx (q x)∧ (p x).
This situation is consistent with the view presented in Section 2.7 that types
(such as i → o that is relevant in this case) are inhabited by expressions and not
more abstract values such as the set of objects that satisfy a particular property.

The computation of λ-normal forms is a rich operation largely because of
the presence of β-reduction. When (λx s) t is replaced by s[t/x], there may be
many or no occurrences of x in s. If there are many, then s[t/x] may contain
many copies of the term t . Also, while both t and s may be in λ-normal form,
the term s[t/x] may not be in such a form. Given these complexities, it is not
surprising that λ-normalization can be used as a device for computing.

To appreciate this possibility in more detail, let us see how λ-terms and
β-reduction can be used to encode functions over natural numbers. To begin
with, we need an encoding of the natural numbers themselves. Let i be a sort,
and assume that there are no constants of type i. The only closed λ-normal
forms of the (second-order) type (i → i) → i → i then are those which are
α-convertible to one of the following:

λf λx x, λf λx (f x), λf λx (f (f x)), . . . , λf λx (f n x), . . .

We write f n x here to denote the n-fold application of f to x, i.e., the expression
that written out in full form would be f (f · · · (f x) · · · ) with n occurrences
of f . The terms displayed above are called the Church numerals and can be



4.3 Some properties of λ-conversion 103

used to denote the nonnegative integers by encoding the number n ≥ 0 as
λf λx (f n x).

Once we have picked this representation for the nonnegative integers, it is
an easy matter to write down λ-terms that encode functions such as those for
producing the successor of such a number or for adding or multiplying two
of these numbers. Thus consider the λ-term λn λf λx f (n f x). This term
represents the successor function for the following reason: When it is applied
to the encoding of a nonnegative integer, we get a new term that is equal modulo
λ-conversion to the encoding of the successor or that integer. To take a concrete
example, consider its application to the encoding of the number 3:

(λn λf λx f (n f x)) (λf λx f (f (f x)))

This term has the normal form λf λx f (f (f (f x))) that is the encoding
of 4, the successor of 3. In a similar fashion, addition and multiplication on
nonnegative integers can be encoded by the λ-terms

(λn λm λf λx n f (m f x)) and (λn λm λf λx n (m f ) x)

respectively. Since a λProlog interpreter computes the λ-normal form of expres-
sions prior to printing them out, we can use it to see these functions in action, so
to speak. For example, to compute the multiplication of 2 with 2 using Church
numeral encoding, one simply can pose the query1

?- N = ((n\m\f\x\ n (m f) x) ((f:i -> i)\x\ f (f x)) (f\x\ f (f x))).

N = f\x\ f (f (f (f x)))

?-

The result is, as expected, the Church numeral for 4.
While a large collection of functions over nonnegative integers can be

encoded by our λ-terms using the preceding ideas, it turns out that the functions
that can be so represented are limited to the polynomial ones. The presence of
types and the fact that we have used closed terms of a particular type—the type
(i → i) → i → i—to represent the nonnegative integers greatly limits what
can be expressed by these terms.

Define the size of a λ-term to be the number of occurrences of application
within the term. The encoding examples discussed earlier can be used to show
that the size of a λ-term can be made at least polynomially larger by passing to
its λ-normal form. For a more dramatic example of the increase in size, consider

1 We assume here and below that the ambient λProlog signature includes the sort i corresponding
to the sort shown as i in mathematical notation.
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the series of λ-terms of which the following are the first four (switching to the
concrete syntax of λProlog):

(g\e\ e) (e\f\ e (e f)) (f\x\ f (f x)).

(g\e\ g e) (e\f\ e (e f)) (f\x\ f (f x)).

(g\e\ g (g e)) (e\f\ e (e f)) (f\x\ f (f x)).

(g\e\ g (g (g e))) (e\f\ e (e f)) (f\x\ f (f x)).

We assume here the following types for the bound variables:

x : i

f : i -> i

e : (i -> i) -> i -> i

g : ((i -> i) -> i -> i) -> (i -> i) -> i -> i.

The subterms that start with g\e\ are a version of Church numeral but with
the type i replaced with the type (i -> i) -> i -> i: For example, the term
g\e\ g (g e) has the fourth-order type

(((i -> i) -> i -> i) -> (i -> i) -> i -> i) ->

((i -> i) -> i -> i) -> (i -> i) -> i -> i.

The (n + 1)th term of this series has the size n + 6. The normal form of the
first term in this series is f\x\ f (f x), encoding the numeral 2, whereas the
normal form for the second term is the encoding of the numeral 4. The third
λ-term normalizes to

f\x\ f (f (f (f (f (f (f (f (f (f (f (f

(f (f (f (f x)))))))))))))))

which encodes the numeral 16. The fourth λ-term normalizes to the encoding
of the numeral 256. It is easy to show that the (n + 1)th term of this series has
a λ-normal form that is of size

222···
2 }

n+1

(i.e., there are n+ 1 occurrences of 2). Even for small values of n, this increase
in the size of terms is dramatic and is not the kind of value that one expects to
be calculating within any practical computational setting.

When we consider logic programs that contain λ-terms, such blow-ups in
the sizes of λ-normal terms generally do not occur during the search for proofs.
There are at least three reasons for this.

• When computing with structures such as integers, we make use of built-in
integers instead of those constructed from λ-terms, as above. Thus computa-
tions on integers are carried out in a familiar and efficient fashion. Similarly,
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while it is possible to encode other structures, such as binary trees, using
closed typed λ-terms with no special constants, this is typically not the way
it is done. The usual practice is instead to introduce new nonlogical constants
that serve as constructors for such structures.

• When λ-abstraction within a term is needed, bound variables generally
have types that are of order 0. If all the bound variables in a term T have
primitive types, then the dynamics of β-reduction is simple. In particular, if
in the β-redex (λx s) t both s and t are λ-normal, then the β-reduction s[t/x]
is in λ-normal form: While substituting t for x may yield many copies of t

at several different positions, no new β-redexes are created.
• There is a subset of higher-order logic programs that belongs to a sub-

language, called Lλ (described in Section 7.8), in which β-contraction is
restricted to β0-contraction, which involves replacing a subterm of the form
(λx s) x with s. Notice that with this restriction on β-contraction and, corre-
spondingly, on β-reduction, passage to the λ-normal form produces smaller
terms.

4.4 Unification problems as quantified equalities

In Section 1.5, a unification problem was defined to be a finite multiset of
equations of the form {t1 = s1, . . . , tp = sp}, where, for 1 ≤ i ≤ p, ti and si are
first-order terms of the same type. We also observed there that such a problem
is related to a logical formula of the form

∀y1 . . . ∀ym ∃x1 . . . ∃xn [t1 = s1 ∧ · · · ∧ tp = sp]
where the variables y1, . . . , ym correspond to the constants of the language, and
x1, . . . , xn is a listing of the variables that are free in the terms in the multiset of
equations. We now adopt such formulas as the preferred style of presentation
for unification problems. Solutions to unification problems in the earlier style
will correspond to proofs of the associated quantified formulas in a sense that
we make precise later in this section.

We actually shall generalize the preceding kind of presentation in one impor-
tant respect: We shall allow for arbitrary quantification in the prefix over the
conjunction of equations between terms. More specifically, a (generalized)
unification problem henceforth will be a formula of the form

Q1x1 . . . Qnxn [t1 = s1 ∧ . . . ∧ tm = sm]
where n, m ≥ 0, Qi is either ∀ or ∃ for 1 ≤ i ≤ n, and t1, s1, . . . , tm, sm are
λ-terms such that, for 1 ≤ j ≤ m, tj and sj are of the same type. Notice that in
the present higher-order context, the bound variables x1, . . . , xn are allowed to
have types of arbitrary order.
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As a result of this generalization, a unification problem will have a mixed
prefix of quantifiers. The reasons for wanting a more complicated prefix are
twofold. First, while the earlier form was adequate from the perspective of
implementing proof search in fohc, proof search in fohh naturally gives rise to
unification problems where existential and universal quantifiers can appear in
any order. For example, consider the query

?- pi y\ X = y.

no

?-

The associated unification problem, written in mathematical notation, is
∃x ∀y [x = y]. The order of the quantifiers is important: The query fails because
instances of X cannot contain the eigenvariable used to instantiate y. Second,
binders that may be present in λ-terms are closely related to universal quantifiers
that appear inside the scope of existential quantifiers in unification problems.
For example, consider the query

?- (y\ X) = (y\ y).

no

?-

The unification problem associated with this query is ∃x [(λy x) = (λy y)].
Since the equation (λy t) = (λy s) and the universally quantified equation
∀y [t = s] are logically equivalent, one can argue that the unification problem
being considered is logically the same as ∃x ∀y [x = y]. It follows then that the
second query fails for essentially the same reason as the first: No instance of X
can contain a variable that gets bound by the abstraction within whose body X

occurs.
In the fohc setting, ∀∃-unification problems, i.e., problems in which the

quantifier prefix consists of a sequence of universal quantifiers followed by a
sequence of existential quantifiers, form a natural class. When we allow higher-
order terms into this setting, these problems correspond more accurately to ∀∃∀-
unification problems, i.e., ones that have prefixes in which a block of existential
quantifiers can be preceded and followed by blocks of universal quantifiers.
The outer ∀ quantifiers arise, as we have noted already, from constants. As for
the inner universal quantifiers, we see that equations between λ-terms of type
τ → σ can be replaced by universally quantifying a variable of type τ around
an equation between terms of type σ and that these quantifiers can be moved
to scope over the entire conjunction of equations. To illustrate this sequence of
transformations, let f and a be constants of type i → i and i, respectively, and
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consider the unification problem initially given by

∃G ∃H [(λw f a) = (λw f (G w)) ∧ (λw f w) = (λw H (H w))]
It is easy to see that the types of H and G must be i → i here. Making the
quantifiers over the constants explicit yields the (closed) unification problem

∀f ∀a ∃G ∃H [(λw f a) = (λw f (G w)) ∧ (λw f w) = (λw H (H w))]
Next, using the equivalence mentioned earlier between the equation (λy t) =
(λy s) and the quantified equation ∀y [t = s], we can transform the preceding
unification problem into

∀f ∀a ∃G ∃H [∀w [(f a) = (f (G w))] ∧ ∀w [(f w) = (H (H w))]]
This is not a unification problem in the accepted form, but we can obtain from
it one in such a form by moving the ∀w quantifiers to the prefix, getting, for
example,

∀f ∀a ∃G ∃H ∀w ∀w′ [(f a) = (f (G w)) ∧ (f w′) = (H (H w′))]
It is possible to consider unification problems that are not in prefixed form.

In particular, we may allow quantifiers to also appear internal to the conjuncts.
Such a generalization might, in fact, be preferable because moving quantifiers
out to the prefix can lead to the introduction of variable dependencies that are not
genuine aspects of a given unification problem. However, such dependencies
are logically harmless, and we find it more convenient here to assume that all
quantification is contained entirely within the prefix.

4.4.1 Simplifying quantifier prefixes

Using higher-order variables, it is possible to transform a unification problem
with an arbitrary prefix into one with only a ∀∃∀ prefix. To see how this can
be done, consider the two formulas ∀y ∃x G and ∃h ∀y G[h y/x], where the
bound variables x, y, and h have types τ , σ , and σ → τ , respectively. It is
easy to show that one of these formulas can be proved if and only if the other
formula can be proved. In one direction, assume that the first formula can be
proved by substituting the new constant c for y and the term t , which possibly
may contain c, for x. Then the second formula can be proved by substituting
λc t for h and c for y; notice that c is not free in λc t . For the converse, assume
that the second formula is proved by substituting the term s for h and the new
constant c for y. In this case, c cannot be free in s. The first formula then
is proved by substituting c for y and substituting the term (s c) for x. Using
equivalences of this kind, we can move any existential quantifier that is to
the right of an (explicit) universal quantifier to be on the left of that universal
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quantifier instead. The cost of this transformation, which is called raising, is
that the type of the variable that is existentially quantified needs to be “raised”
by the type of the universally quantified variable. By repeatedly applying this
raising transformation, a unification problem with an arbitrary quantifier prefix
can be changed into one in which there is only a ∀∃∀ (or even just an ∃∀) prefix.

Raising bears some resemblance to the technique of Skolemization, which
is known from automated reasoning contexts. To understand the relationship
between the two, let us first recall how Skolemization is used. Suppose that
∀x ∃y D is an assumption. Let x and y have the types σ and τ here. Then
Skolemization applied to this formula produces the formula ∀x D[f x/y],
where f is a new function constant of type σ → τ ; this kind of constant is
typically called a Skolem constant. Since goals are the duals of assumptions, the
roles of the quantifiers gets switched in Skolemizing them. Thus the Skolemiza-
tion of the goal ∃x ∀y G yields ∃x G[f x/y], where f is again a new function
constant; we assume that the types of x, y, and f are as before. Given our earlier
comments about constants, we see that this goal formula alternatively is written
as ∀f ∃x G[f x/y].

From the preceding discussion, we see that Skolemization is a dual to raising
in two senses. First, Skolemization moves an existential quantifier to a smaller
scope, whereas raising moves a universal quantifier to a smaller scope. Sec-
ond, Skolemization causes the introduction of a new constant (eigenvariable)
of a raised type, whereas raising causes the introduction of a new existen-
tially quantified variable of a raised type. These observations notwithstanding,
there are differences between Skolemization and raising at a logical level. In
particular, relating unifiers for Skolemized unification problems to original, un-
Skolemized unification problems is problematic, especially when unification
involves variables of higher-order type.

4.4.2 Unifiers, solutions, and empty types

We wish to tie the existence of a solution to a unification problem as described
in Section 1.5 to the provability of the quantified formula that we associate with
the problem. The connection is a bit more complicated than might appear at
first glance. Consider, for example, the set of equations {X = X}, which is a
unification problem in the terminology of Chapter 1. We now wish to describe
this problem by the formula ∃x [x = x]; we assume here that X and x are both
variables of some primitive type i. The original unification problem has a trivial
solution. To prove the quantified formula, on the other hand, we have to use the
following rule

�; P −→ B[t/x] �; ∅ �� t : τ

�; P −→ ∃τ x B
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which is an adaptation of the ∃R rule in Figure 2.2 that appears in Chapter 2 to
the higher-order context. This rule has two premises. Applied to the formula at
hand, it requires us to construct a closed term t and to show that t = t . While the
second task is trivial once we have a closed term of type i, showing that there
is such a term is more involved and requires an examination of the available
signature. As another example, consider the quantified formula ∃x ∃y ∃z [x =
(f y) ∧ y = (f z)], which corresponds to the unification problem

{X = (f Y ), Y = (f Z)}
in the style of Chapter 1; we assume here that f is a constant of type i → i

and that x, y, z, X, Y , and Z are all variables of type i. Following the earlier
description, we can conclude that this unification problem has the most general
unifier {〈X, f (f Z)〉, 〈Y , (f Z)〉}. The existence of a proof of the associated
quantified formula, on the other hand, depends on whether or not there are
closed terms of type i.

Consider the unification problem given by the ∀∃∀-formula

∀u1 . . . ∀up ∃x1 . . . ∃xn ∀w1 . . . ∀wq [t1 = s1 ∧ · · · ∧ tm = sm]
where p, q, n, m ≥ 0, the types of the variables x1, . . . , xn are τ1, . . . , τn,
respectively, and the ambient signature is �. Let θ be a substitution for the
existentially quantified variables in the prefix, i.e., for the variables x1, . . . , xn.
The range of θ is the set {θ(x1), . . . , θ(xn)}. We shall consider legitimate only
those substitutions in which the variables w1, . . . , wq do not appear free in
any term in the range of θ . If θ is such a substitution, then it is said to be a
unifier for the problem in question just in the case that the terms θ(tj ) and θ(sj )

are λ-convertible to each other for j = 1, . . . , m. Furthermore, θ is said to
be a solution to a unification problem if θ is a unifier and the only variables
that appear free in the terms in the range of θ are those contained in the list
u1, . . . , up. As the examples we have considered in this section illustrate, it is
possible for a unification problem to have a unifier but not a solution. It is the
solution to a unification problem that ensures the provability of the quantified
problem that represents it.

Notice that in Section 1.5, the term solution was used as a synonym for the
term unifier. There are certain technical reasons underlying our desire to now
distinguish these terms. In most treatments of first-order classical logic, the
domain of every type is assumed to be nonempty. In higher-order intuitionistic
logics, however, such an assumption generally is not made. For example, in
Section 4.3 we took each term of type (i → i) → i → i to be a Church
numeral. This identification is possible only if there is no closed term t of type i;
otherwise, the term λf λx t would be a closed term of type (i → i) → i → i,
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that is not a Church numeral. For reasons such as this, we shall not always
assume that types are inhabited by closed terms.

4.4.3 Examples of unification problems and their solutions

Let i be a type and let g : i → i → i be a constructor for this type. The
unification problem ∀a ∃F [(F a) = (g a a)] has four solutions corresponding
to the instantiation of F by one of the terms λx g a a, λx g x a, λx g a x, and
λx g x x. If we now switch the order of the quantifiers, we get the problem
∃F∀a [(F a) = (g a a)] , which has the instantiation of F by λa g a a as its
unique solution.

Suppose now that the only constructors that have i as a target type are u

and v and that both these constructors have the type i → i. In this case, there
are no closed terms of type i. Further, all closed terms of type i → i can be
viewed as words over a two letter alphabet with one letter being u and the other
being v. Thus λw w corresponds to the empty string, λw u w to the string “u,”
and λw u (v (u w)) to the string “uvu.” In this context, the unification problem

∃F ∃G [(λw F (G w)) = (λw u (v (u w)))]
in which F and G are variables of type i → i, has four solutions:
the substitutions that bind F and G, respectively, to λw u (v (u w)) and
λw w, or λw u (v w) and λw u w, or λw u w and λw v (u w), or λw w and
λw u (v (u w)). In general, any unification problem obtained from this one by
preserving the term on the left of the equation while replacing the one on the
right by some other closed term can be viewed as an attempt to find all pairs
of words over the two-letter alphabet whose concatenations yield the word
corresponding to the term on the right. The unification problem

∃F [(λw u (F (u w))) = (λw u (v (v (u w))))]
has as its only solution the substitution that binds F to λw v (v w). The term
on the left in this case can be thought of as a pattern for checking if the first and
last letter of the word represented by a closed term of type i → i is the letter u.
The unification problem

∃F [(λw u (F w)) = (λw (F (u w)))]
has as a solution any substitution that binds F to one of the terms from the
infinite sequence λw w, λw u w, λw u (u w), λw u (u (u w)), etc.

Finally, suppose that the type i has as its constructors at least the constants
a, b, c, and d , all of type i. In this setting, the unification problem

∃F [(F a) = b ∧ (F c) = d]
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has no solution. The first equation is solved uniquely by instantiating F with
λx b, but this instantiation does not solve the second equation. This example
clearly illustrates that our typed λ-terms embody a relatively weak notion of
functionality: While there clearly is a function that maps a to b and c to d, such
a function is not expressible using these terms.

4.5 Solving unification problems

In Chapter 8 we shall consider in detail how the unification of simply typed
λ-terms, often called higher-order unification, can be structured as a search
procedure. Here, we develop vocabulary for that discussion and also provide
high-level insights useful in predicting unifiers and solutions to unification
problems.

A typed λ-term that is in β-normal form has the structure

λx1 . . . λxn (h t1 · · · tp) (n, p ≥ 0)

where h is either a constant or a variable, and the terms ti (for i = 1, . . . , p)
are also in β-normal form. The list of variables x1, . . . , xn is the binder of this
term, the symbol h is its head, the terms t1, . . . , tp are its arguments, and the
application (h t1 · · · tp) is its body.

A βη-long normal form is a variant of a β-normal form that also takes into
account η-conversion. A typed λ-term is in this form if it has the structure

λx1 . . . λxn (h t1 · · · tp) (n, p ≥ 0)

where h is either a constant or a variable, the terms ti (for i = 1, . . . , p) are
also in βη-long form, and the body (h t1 . . . tp) has nonfunctional type.2 Any
β-normal form can be converted into a βη-long normal form that is equal to it
by using η-expansions. For example, if f is of type ((i → i) → i), where i is a
sort, then the term f itself is in β-normal form. Using a η-expansion on it yields
the term λw f w, where the type of w is (i → i). This term is not yet in βη-long
normal form: The subterm w has nonprimitive type. Using η-expansion again
yields λw f (λu w u), where the type of u is i. This term is in βη-long normal
form.

Given a β-normal form λx1 . . . λxn (h t1 · · · tp), there are three possibil-
ities for what its head h might be: It might be a variable that is bound by
a universal quantifier, a member of the binder x1, . . . , xn, or an existentially
quantified variable. In the first two cases, this term is said to be rigid, and in the
third case, it is said to be flexible. This terminology is meant to be suggestive:

2 If we restrict our attention to only simply typed λ-terms, the body of a βη-long form must have
a primitive type.
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If a term is rigid, then the β-normal form of any substitution instance of it will
have the same head, but if it is flexible, then a substitution can alter its head.

Suppose that we wish to unify two rigid terms of the same type that have
the forms λx1 . . . λxn (h t1 · · · tp) and λx1 . . . λxn (k s1 · · · sq); notice that
the presence of α- and η-conversion allows us to assume that the binders of
these β-normal forms are identical. Since the heads of these forms cannot be
modified by substitution, a necessary condition for the existence of a unifier for
the original terms is that the heads h and k are the same symbols.

As concrete examples of the preceding observation, consider the following
unification problems:

{(λx (d (c (F x)))) = (λx (c (d (G x))))}
{(λx (x (F x))) = (λx (c (G x)))}

{(λx λy (x (F x y))) = (λx λy (y (G x y)))}
Capital letters in these expressions denote instantiatable or logic variables,
and the symbols c and d are constants. We have reverted here to showing
unification problems as multisets of equations. Using more precise notation,
the first problem might have been written instead as

∃F ∃G [(λx (d (c (F x)))) = (λx (c (d (G x))))]
or, making the quantification over constants also explicit, as

∀c ∀d ∃F ∃G [λx (d (c (F x))) = λx (c (d (G x)))]
Returning to the actual unification problems, we see that none of them have
unifiers. The two terms in each of the equations are rigid, and they have different
heads.

Another important structural property of substitution is that it cannot intro-
duce new variables into a term that end up being captured by any of the existing
abstractions in the term. Thus, if a variable in the binder of a β-normal form has
no free occurrence in its body, then any substitution instance of this term also
will not have any free occurrences of that variable in its body. For example, the
unification problem

{(λx λy x (F x y)) = (λx λy G y y)}
cannot have a unifier because the body of any instance of the first (rigid)
term always will contain an occurrence of the variable bound by the outer-
most abstraction, whereas the body of no substitution instance of the second
term can contain such an occurrence. In a manner similar to what we saw in
Section 3.3.1, it is possible to instantiate G with a term containing x free, but
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this will not result in the introduction of a new binding occurrence of x in the
second term above.

Notice that a flexible term can be transformed by substitution into almost
any term (of the appropriate type) except for the way this term uses the vari-
ables in the binder. Thus the term λx λy F (f x (G x)) can be transformed via
substitution into any term of the form λx λy t , where t does not contain x and
y free. A substitution instance of the given term also may have occurrences
of x free in its body (e.g., λx λy (f x x) is an instance of it), but none of its
instances can have y free in the body.

As an extension of the preceding observations, consider unifying the pair of
flexible terms λx λy G x and λx λy H y. Instances of the first term leave the
binding for y vacuous, and instances of the second term leave the binding for
x vacuous. Thus any common instance of these two terms must be a term of
the form λx λy t , where neither x nor y occurs free in t . As we shall see in
Chapter 8, the “most general” unifier for the two given terms is the substitution
of λw T for both G and H , where T is a new free variable of suitable type.

When a unification problem is presented as a formula involving quan-
tifications over a conjunction of equations between β-normal terms, a term
occurrence in the equations is classified as either rigid or flexible as follows:
If its head is a variable that occurs in its binder or is bound by a universal
quantifier in the prefix, then the term occurrence is rigid, and if the head vari-
able is bound by an existential quantifier in the prefix, then the occurrence is
flexible. An equation t = s in such a presentation is classified as rigid-rigid,
rigid-flexible, flexible-rigid, or flexible-flexible depending on the status of the
terms t and s. Finally, a unification problem is called flexible-flexible if all the
equations in it are flexible-flexible. This classification of equations and unifi-
cation problems will be used in the presentation of higher-order unification in
Chapter 8.

4.6 Some hard unification problems

Undecidable problems are encountered often in the course of trying to carry
out deduction. For example, determining whether or not an atomic formula is
derivable from a collection of fohc program clauses is, in general, undecidable.
Similarly, it is not always possible to decide if two typed λ-terms are unifiable
modulo the λ-conversion rules. In this section we present reductions from two
different undecidable problems to unification problems that establish the latter
fact. Although these examples show that unification problems can encode rich
computations, the approach to constructing logical specifications using higher-
order logic that we develop in later chapters will give rise to unification problems
that have a much tamer computational behavior.
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4.6.1 Solving Post correspondence problems

Consider the two letter alphabet {u, v}, a number n ≥ 1, and two lists of strings
s1, . . . , sn and t1, . . . , tn over the alphabet {u, v}. The Post correspondence prob-
lem given these inputs is the problem of determining whether or not there is
a nonempty sequence i1, . . . , ik such that 1 ≤ ij ≤ n for 1 ≤ j ≤ k and
si1 · · · sik = ti1 · · · tik . This problem is known to be undecidable in the general
case. We establish the undecidability of higher-order unification by showing
how to transform an arbitrary instance of the Post correspondence problem into
an equivalent unification problem.

First, we need an encoding of strings over u and v. We have seen how to do
this in Section 4.4.3 if we have a sort i and two constants u and v of type i → i:
The string r = r1 · · · rm, where r1, . . . , rm are letters, can be represented by the
term r̂ = λw (r1 (· · · (rm w) · · · )). Using this encoding, the concatenation of
the strings r and q is given by the term λw (r̂ (q̂ w)).

In what follows, we assume the existence of a sort i that has no constructors
at the outset; the needed constructors will be introduced by universal quantifiers.
In this context, the Post correspondence problem given by the two lists of strings
s1, . . . , sn and t1, . . . , tn is encoded by the unification problem

∃F ∃G ∀u ∀v [(F ŝ1 · · · ŝn) = (F t̂1 · · · t̂n) ∧ (F u · · · u) = λw (u (G u w))]

where u and v are both of type i → i, (F ŝ1 · · · ŝn) has type i → i, G has
type (i → i) → i → i, and the representations ŝ1, t̂1, . . . , ŝn, t̂n of the given
strings are built using the universally quantified variables u and v as the needed
constants. As an example, the Post correspondence problem given by the two
lists of words uv, u and u, vu is encoded as the unification problem

∃F ∃G ∀u ∀v [(F (λw u (v w)) u) = (F u (λw v (u w))) ∧ (F u u)

= λw (u (G u w))]

In this particular case, F and G have the (second-order) types (i → i) → (i →
i) → i → i and (i → i) → i → i, respectively.

To prove that this encoding is correct, notice that the only closed instan-
tiations for F are terms of the form λx1 . . . λxn λw d, where d is a term of
type i that is built from the variables x1, . . . , xn and w. Moreover, since there
are no constructors for i in the ambient signature, the only possibility for the
shape of d is xi1(· · · (xikw) · · · ), where k ≥ 0 and {i1, . . . , ik} ⊆ {1, . . . , n}. If
this unification problem has a solution, the structure of d describes a solution
to the Post correspondence problem except in the case that k = 0. The sec-
ond equation is used to rule out this degenerative case: If the substitution for
F is (part of) a solution for this second equation as well, then k cannot be 0.
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The opposite direction, that of constructing a solution to the unification problem
from a solution to the given Post correspondence problem, is easy.

The preceding argument showed that there is a solution to a particular uni-
fication problem just in the case that there is a solution to the associated Post
correspondence problem. It is straightforward to strengthen this argument to
show that a unifier to the unification problem also yields a solution to the Post
correspondence problem. It is similarly possible to remove the restriction that
the type i has no constructors.

4.6.2 Solving Diophantine equations

Let N denote the set of natural numbers. Diophantine equations (over N) are
equations constructed from variables and natural numbers using only the oper-
ations of addition and multiplication. A solution to a set of such equations is
an assignment of natural numbers to the variables that satisfy the equations.
Hilbert’s Tenth Problem then is the following question: Does there exist a
universal algorithm for solving Diophantine equations? A seminal result in
computability theory is that no such algorithm can exist and that the existence
of solutions to such equations is in general undecidable.

We outline here a reduction of the question of solvability of a set of Dio-
phantine equations into the question of existence of a solution to a unification
problem. We initially limit the equations to be encoded to one of the following
forms: x = 1, x + y = z, or x × y = z, where x, y, and z are (N-valued)
variables. We also assume a sort i with no constructors for this type. Thus the
only closed terms of the type (i → i) → i → i are the Church numerals that
we saw in Section 4.3. We shall write �n� to denote the encoding of n ∈ N as
a Church numeral.

We now observe the following facts, assuming that all the existentially quan-
tified variables in the formulas below have the type (i → i) → i → i: (1) The
(flexible-flexible) unification problem

∃N [(λf λx N f (N f x)) = (λf λx (N f (f x)))]
has the unique solution {(N , �1�)}, (2) the flexible-flexible unification problem

∃M ∃N ∃P [(λf λx (N f ) (M f ) x) = (λf λx P f x)]
has the solution {(N , r), (M , s), (P , t)} if and only if for some n, m ≥ 0, r is
�n�, s is �m�, and t is �n+m�, and (3) the flexible-flexible unification problem

∃M ∃N ∃P [(λf λx N (M f ) x) = (λf λx P f x)]
has the solution {(N , r), (M , s), (P , t)} if and only if for some n, m ≥ 0, r is
�n�, s is �m�, and t is �n × m�. Using these observations, it is easy to see
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that any finite set of equations in the limited forms above can be transformed
into a flexible-flexible unification problem that has a solution if and only if
there is an assignment of natural numbers to the variables appearing in the
equations that make each of them true. In this encoding, each variable that
appears in the equation gives rise to an existentially quantified variable and
each equation translates into a flexible-flexible equation. Further, as already
noted, the existentially quantified variables in this encoding have types of order
at most 2; the unification problem in this case is said to be of third order.

The reduction just described can be extended in an obvious way to treat sets
of arbitrary Diophantine equations. Since the problem of determining if there
is an N-valued solution to such a set of equations is known to be undecidable,
the problem of determining whether a (third-order) flexible-flexible unification
problem has a solution also must be undecidable.

The reduction of Diophantine equations that we have described is based on
solutions to unification problems rather than on the less restrictive notion of
unifiers. In fact, our encoding gives rise to a unification problem that always
has a unifier. Such a unifier can be obtained by first picking a (new) variable
U of type i and then instantiating every variable that is existentially quantified
in the prefix with the term λf λx U . Of course, such a term is not closed, and
hence this unifier is not also a solution.

4.7 Bibliographic notes

Church (1936, 1941) invented the λ-calculus and subsequently used a simply
typed version of it to formulate a higher-order logic (Church 1940). There are a
number of good references that cover the details, background, and history of the
λ-calculus; e.g., see (Barendregt 1984, 1992) and Hindley and Seldin (1986).
Statman (1979b) has analyzed various aspects of the computational complexity
of λ-conversion in the simply typed λ-calculus.

The unification of simply typed λ-terms was first given a full and systematic
presentation by Huet (1975). Snyder and Gallier (1989) provided an alterna-
tive presentation of Huet’s search procedure using transformations on sets of
term equations. Miller (1991b, 1992a) developed the presentation of unifica-
tion problems as quantified conjunctions and described the use of raising and
Skolemization to simplify quantifier alternations in the prefixes of unification
problems.

Huet (1973a) originally developed the reduction of Post correspon-
dence problems (Post 1946) to third-order unification. The presentation in
Section 4.6.1 is modeled closely on his ideas. Goldfarb (1981) showed how
to reduce the task of solving Diophantine equations to that of finding unifiers to
second-order unification problems. The reduction outlined in Section 4.6.2 is
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due to Miller (1992a). This reduction uses ideas from Goldfarb’s development
but differs from it in two important respects: The transformation here is to a
third-order unification problem, and it shows that the question of existence of
solutions—as opposed to unifiers—to such problems is undecidable.

All the formal results about the λ-calculus that we have described here con-
cern the simply typed λ-terms in which types do not contain variables. In this
setting, Church (1940) encoded “polymorphic” constants by using a distinct
constant at each of the instance types; thus the universal quantifier was repre-
sented by an infinite number of constants 
τ , one for each type τ . We have
allowed type variables into the type system because these provide significant
convenience at a programming level. For example, in λProlog, a single type
declaration that uses a type variable suffices for identifying the constant pi. In
our description of unification, however, we have not permitted substituting for
type variables. In this situation, these variables behave like sorts, and all the
results for the simply typed λ-calculus continue to hold even when such vari-
ables are allowed into type expressions.Another, possibly more useful approach
is to let these type variables be instantiated in the course of unification. Caires
and Monteiro (1994) describe a treatment of unification under such an inter-
pretation of type variables and approximations to this approach also have been
used in implementations of λProlog such as the first version of the Teyjus sys-
tem. Nadathur and Qi (2005) describe a comprehensive treatment of this kind
of polymorphism in the context of a restricted form of higher-order unification
known as Lλ unification.
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Using Quantification at Higher-Order Types

First-order logic programming uses first-order terms to represent objects and
predicate constants to represent relations between such objects. In Chapter 4
we presented an enrichment to formulas that replaces first-order terms with
λ-terms and that permits quantification over predicate names. These additions
can have significant practical benefits: For example, since predicates correspond
to procedures, the ability to treat predicates as variables can be used as the basis
for higher-order programming. Before we can harness this potential, however,
it is necessary to explain how the enhanced logic can be used to define a logic
programming language. We do this in the first two sections of this chapter. The
rest of the discussion concerns the practical utility of the resulting language.
Specifically, we explore in detail the use of predicate variables in realizing
conventional forms of higher-order programming. We also show that function
variables, when combined with λ-terms and higher-order unification, can lead
to a new kind of programming capabilities. Several subsequent chapters explore
varied applications that exist for these capabilities.

5.1 Atomic formulas in higher-order logic programs

In Chapter 3 we defined the logic programming language of first-order heredi-
tary Harrop formulas, or (fohh), which is based on goal formulas and program
clauses given, respectively, by the following syntax rules:

G ::= � | A | G ∧ G | G ∨ G | ∀x G | ∃x G | D ⊃ G

D ::= A | G ⊃ D | ∀x D | D ∧ D

The language of first-order Horn clauses, or fohc, corresponds to the subset
of fohh that is obtained by disallowing universal quantifiers and implication
in goal formulas. In these definitions, all the quantification is limited to being
first order. Now that we have permitted quantification at higher-order types in
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the logic, it is possible to consider extensions to fohh and fohc that exploit this
flexibility. In these extensions, we would like to preserve the top-level logical
structure permitted in program clauses and goal formulas in the corresponding
first-order versions. Apart from higher-order quantification, the main change,
then, is in what is allowed for the atomic formulas A in the preceding syntax
rules. In the higher-order setting, these formulas may contain arbitrary occur-
rences of function and predicate variables as well as of logical symbols. It
turns out that we will need to restrict the latter two possibilities to obtain lan-
guages that are suitable for logic programming. We motivate these restrictions
below in preparation for a formal definition of the higher-order versions of fohc
and fohh.

5.1.1 Flexible atoms as heads of clauses

The λ-normal form of a higher-order atomic formulas has the shape
(h t1 · · · tn), where h is either a variable or a nonlogical constant, and t1, . . . , tn
are terms. If h is a (nonlogical) constant, this formula is a rigid atom. If h is a
variable, it is a flexible atom.Allowing flexible atoms to appear in goal formulas
is essential for a natural treatment of higher-order programming, as we see, for
example, in Section 5.3. Allowing the formula A in the definition of program
clauses to be a flexible atom, on the other hand, is problematic for at least two
reasons.

We say that a theory (or logic program) is inconsistent if any arbitrary formula
is provable from it and that the theory is consistent if it is not inconsistent. It
is easy to show that any logic program based on fohc or fohh is consistent.
In fact, consistency of a logic program seems to be a desirable property for
programming. Otherwise, if an interpreter is to be complete, it must establish
that the program is consistent before it can decide that a given goal is not
provable from it. Such a check might be sensible in the context of databases
with “integrity constraints,” but it seems to be unacceptable in a programming-
language setting. More specifically, the syntax of the programming language
should be structured in such a way that it prevents inconsistent programs from
being constructed.

Allowing flexible atoms in the syntax rule for program clauses leads to a
language in which it is possible to construct inconsistent programs. For example,
consider the two clauses

P 5 :- q.

q.

Let B be any formula over the ambient signature of the (full) logic program. To
prove B, we simply backchain over the first clause above, instantiating P with
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λx B. This leads to the goal q, which is provable. Thus any formula is provable
from this “program.” An even simpler example of an inconsistent program is
that consisting of the single clause ∀p p.

The second reason for wanting to disallow flexible atoms as program clauses
arises from the way we want to think of such clauses in a programming situation.
Consider a clause of the form

∀x1 . . . ∀xm (A1 ∧ . . . ∧ An ⊃ A0)

where A0, . . . , An are atomic formulas. We typically interpret this clause as
part of the specification of a relation named by the head of A0. If that head is
a variable, then such a clause has to be considered as adding meaning to every
predicate, a possibility that seems to be counter to modularity and effective
implementation.

For the two reasons just described, the definition of higher-order hereditary
Harrop (hohh) formulas that we will adopt will require atomic formulas to be
rigid to qualify as program clauses. Despite the rationale we have provided,
this restriction appears to be draconian in some respects: There are situations
in which it may be useful to allow flexible atoms to be program clauses. We
present two examples of this kind below. However, we argue that even in these
cases, the restriction may be justifiable.

Leibniz’s definition of equality states that two terms are equal if and only if
they satisfy the same properties. Thus the equation x+0 = x could be specified
using the two clauses

P (X + 0) :- P X.

P X :- P (X + 0).

Given these clauses, any attempt to prove a goal containing an occurrence of
a subterm of the form X + 0 can be replaced by the attempt to prove the same
goal but with that subterm replaced with X (and vice versa). While this style
of reasoning is meaningful logically, it is operationally problematic because it
introduces into proof search too many choices and looping computations. For
example, if a goal has n ≥ 0 occurrences of the term, say, 5 + 0, then there are
2n different ways to abstract those occurrences to form an instance for P. Even
if the goal has no occurrences of such a subexpression, there still remains one
way to use the first clause in backchaining.

Disallowing flexible atoms as the head of clauses also means that it is not
possible to construct a formula by means of a computation and then to use
that formula as a program clause. For example, suppose that we are given a
program that contains clauses that define the binary predicate convert that
relates descriptions of programs given as terms to the actual syntactic structure
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of program clauses. In this context, consider the “query”

?- convert d P, P => g.

where g is some formula, P is a variable of type o, and d is closed term describ-
ing a particular program. Intuitively, this query embodies a computation that
constructs a logic program from d and then invokes the goal g relative to this
program. Such a computation is related to the eval function in Lisp that allows
a term to be evaluated. Notice that the second occurrence of P in the pur-
ported query shown above is in a position where a program clause is expected.
Thus, ruling out flexible atoms as program clauses disallows it as a query
and hence also disallows the evaluation-like computations that such queries
embody. However, a little thought reveals that supporting such computations
can be complicated. In particular, there seems to be no simple yet general way
to statically guarantee that the value bound to P by the convert predicate in any
particular instance actually will have the structure expected of a legal program
clause.

5.1.2 Logical symbols within atomic formulas

The higher-order language we have described allows logical symbols to appear
within atomic formulas. We show later in this chapter that arguments of atomic
formulas that contain such symbols provide the basis for many natural higher-
order programming capabilities. Allowing implications to occur within such
arguments, however, is problematic: The language that results from permitting
such occurrences does not constitute a logic programming language in the sense
that formulas then can be constructed that should be provable in any reason-
able logic but that do not have goal-directed proofs. For example, consider the
formula

∃Q [∀p ∀q [r (p ⊃ q) ⊃ r (Q p q)] ∧ Q (t ∨ s)(s ∨ t)]
where r is a constant of type o → o, s and t are constants of type o, Q is a
variable of type o → o → o, and p and q are constants of type o. In order to
prove the first formula in the conjunction, the existentially quantified variable
Q must be instantiated with the term λx λy (x ⊃ y), which makes the second
formula in the conjunction equal to (t ∨ s) ⊃ (s ∨ t). This formula should be
provable, but it cannot be derived using only the rules for goal-directed proof
construction presented in Chapter 2.

When implications are not allowed in terms, there is a natural and useful
way to define the polarity of all logical symbols. For example, in the language
of higher-order hereditary Harrop formulas that we present in the next section,
an occurrence of a logical symbol is considered to be positive if and only if it
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is either within an atomic formula or is in the scope of only logical constants
and to the left of an even number of implications. All other occurrences of
logical symbols are taken to be negative. As the search for (cut-free) proofs
proceeds and formulas within sequents are rearranged, positive occurrences
remain positive occurrences, and negative occurrences remain negative. As the
preceding example shows, if implications are allowed within atomic formulas,
this invariant fails. In particular, both occurrences of the disjunction are positive
in the original query, but after instantiation of the quantifier for Q, one of these
occurrences becomes negative.

5.2 Higher-order logic programming languages

We present in this section a higher-order version of the Horn clause language that
we call hohc and two higher-order versions of the hereditary Harrop formulas
language that we call hohh and hohh+, respectively. Two special classes of λ-
terms, each parameterized by a signature that is assumed to contain at least all
the logical constants, will be useful in describing these languages. The Herbrand
universe for hohc based on the signature � is denoted by H�

1 and is defined to
be the set of all (possibly open) λ-normal terms over � that do not contain the
logical constants ∀ and ⊃. Note that terms in H�

1 may contain the constants
�, ∧, ∨, and ∃ and that there is also no restriction on the types of these terms.
The Herbrand universe for hohh based on the signature � is denoted by H�

2

and is defined to be the set of all (possibly open) λ-normal terms over � that
do not contain the logical constant ⊃; thus the constants �, ∧, ∨, ∀, and ∃ may
appear in the terms of H�

2 . The difference between H�
1 and H�

2 is that terms in
the latter can have occurrences of ∀.

5.2.1 Higher-order Horn clauses

We assume an ambient signature � that, of course, contains all the logical
constants. In this context, let A be a syntactic variable ranging over atomic
formulas in H�

1 , and let Ar be a syntactic variable ranging over rigid atoms in
H�

1 . Then the goals formulas and program clauses of the higher-order Horn
clause or hohc language are defined to be the collections of formulas whose
λ-normal forms are given by the following syntax rules:

G ::= � | A | G ∧ G | G ∨ G | ∃τ x G

D ::= Ar | G ⊃ D | D ∧ D | ∀τ x D

There are no restrictions here on what τ , the type of the quantified variable,
might be. Notice that G-formulas are exactly the formulas in H�

1 . The D

formulas just defined are also called higher-order Horn clauses.
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Computation in the hohc language involves constructing a derivation for a
sequent of the form �; P −→ G, where P is a set of closed program clauses and
G is a closed goal formula. Goal-directed proof search for higher-order Horn
clauses is given, as in the first-order case, by the inference rules in Figures 2.2
and 2.3. There are, however, some differences in how these rules are interpreted.

One difference is the use of λ-conversion for equality. Concretely, this means
that we assume that the formulas in a sequent are in λ-normal form when we
try to match this sequent with the lower sequent of any of the inference rules in
question.Arelated observation is that we must take into account α-convertibility
in applying the initial rule. Thus this rule is modified to be

�; P A′−→ A

initial

with the proviso that A′ and A are α-convertible formulas.
Another important difference is in the kind of terms that might be picked

for instantiating the quantifiers in the ∀L and ∃R rules. These terms must, of
course, now be λ-terms. Thus the two rules in question must be replaced by the
following:

�; P −→ B[t/x] �; ∅ �� t : τ

�; P −→ ∃τ x B
∃R

�; P D[t/x]−→ A �; ∅ �� t : τ

�; P ∀τ x D−→ A
∀L

However, this change alone is not enough. The coherence of the operational
semantics defined by the collection of inference rules depends on the formulas
to the left and above the sequent arrow being program clauses and the formula
to the right of the sequent arrow being a goal formula. If we allow t to be
an arbitrary λ-term in the quantifier rules just shown, this “normal form” for
sequents may be lost. For example, instantiating the goal formula ∃p p with the
term ∀x q x (for some suitable predicate constant q ∈ �) produces the formula
∀x q x, which is not itself a goal formula.

To overcome the difficulty just described, we limit t in the two quanti-
fier rules to being terms from H�

1 . This requirement suffices at a technical
level because substituting a term from H�

1 into a goal formula or a program
clause preserves its categorization. The restriction also has considerable intu-
itive appeal: It is, in a sense, merely stating that we should not substitute into
a program clause or goal formula something that cannot appear as the argu-
ment of an atomic formula or in the structure of a goal formula. A set of terms
that functions in logical contexts in the way H�

1 does in our inference rules
is called a Herbrand universe, thereby justifying our terminology for this set.
Another interesting observation, which we do not explore here in any detail,
is that derivability for goal formulas from program clauses in a calculus with
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these restrictions coincides exactly with provability in classical higher-order
logic.

5.2.2 Higher-order hereditary Harrop formulas

Let � once again be a signature that contains all the logical constants, let A

be a syntactic variable ranging over atomic formulas in H�
2 , and let Ar be a

syntactic variable ranging over rigid atoms in H�
2 . The goals formulas and

program clauses of the higher-order hereditary Harrop or hohh language then
are defined by the following syntax rules:

G ::= � | A | G ∧ G | G ∨ G | ∃τ x G | D ⊃ G | ∀τ x G

D ::= Ar | G ⊃ D | D ∧ D | ∀τ x D

Notice that goal formulas for hohh are richer than the set of formulas in H�
2 :

In particular, goal formulas are allowed to contain implications, whereas no
formula or term in H�

2 contains an implication. The D-formulas given by this
definition are also called higher-order hereditary Harrop formulas.

As before, computation in the hohh language involves constructing a deriva-
tion for a sequent of the form �; P −→ G, where P is a set of closed program
clauses and G is a closed goal formula. Once again, the rules in Figures 2.2 and
2.3 are modified to treat λ-convertibility and to take into account the fact that
we are now dealing with λ-terms. The only additional issue to consider is the
collection of terms to use in the ∃R and ∀L rules. These must be restricted for
reasons similar to those in the hohc context. However, we can be more liberal
about the terms we use in this case: Any term drawn from H�

2 is acceptable,
where � here is the signature in existence at the point in the derivation where the
rule is used. The terms that are used in quantifier instantiations thus are limited
to those which can appear in the arguments of atomic predicates. The logical
constants that can appear in such terms are more restrictive than what is permit-
ted at the top level in goal formulas for the reason discussed in Section 5.1.2:
Substituting a term that includes an implication into a goal formula can pro-
duce a formula that is not itself a goal. An interesting observation from a logical
perspective is that derivability for goal formulas from programs defined in this
way coincides with provability in higher-order intuitionistic logic for the same
sequents.

The higher-order Horn clause language shares with its first-order counterpart
the property that the signature and the program remains fixed throughout a
computation. In particular, the ∀R and ⊃R rules play no role in its semantics.
This aspect changes with the hohh language in a manner similar to the one we
have observed at the first-order level.
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5.2.3 Extended higher-order hereditary Harrop formulas

It is possible to further extend the collections of goal formulas and program
clauses in the hohh language without changing its essential computational
behavior. In particular, we can allow the head of an atomic program clause to be
a variable, but only if this variable is bound by an essentially universal quantifier
that contains this clause in its scope. The rationale for relaxing the constraint on
atomic program clauses in this way is the following. When the enclosing goal
formula is encountered in the course of computation, the universal quantifier
will be instantiated with a constant that is added to the signature at that point.
Thus, by the time the clause containing this atomic formula becomes a part of the
program, it satisfies the requirements of program clauses in the hohh language.

The language that results from liberalizing program clauses in this manner
is what we call the hohh+ language. To understand the practical interest in this
extension, note first that universal quantifiers in goals limit the visibility of
the names they bind in the program. Thus, when this kind of quantification is
applied at predicate type and combined with the enrichment to program clauses
just described, it becomes possible to introduce definitions for predicates that
are “closed”; i.e., they are completely independent of the environment to which
they are added.

To concretely illustrate the benefits of the extended syntax allowed by hohh+,
we show how it helps in improving the definition of the reverse relation pre-
sented in Figures 3.3 and 3.4. In the earlier specifications, the scope of two
clauses for the auxiliary predicate rev was limited to a goal appearing in the
body of the reverse program clause. However, the visibility of the name rev

was not limited. In particular, those definitions cannot guarantee that the con-
text in which the reverse program is invoked does not already have program
clauses that provide part of the meaning of rev; if there are such clauses, the
reverse relation may not be defined as intended. By using a universal quantifier,
however, it is possible to limit the visibility of the name rev and hence to circum-
scribe its definition. The specifications in Figure 5.1 and 5.2 modify the earlier
specifications by adding such a universal quantifier. In attempting to prove the
goal (reverse (1::2::3::nil) K) from the clause in, say, Figure 5.1, an inter-
preter would first generate a new predicate symbol, say, c, then add the Horn
clauses

pi L\ c nil L L.

pi X\ pi L\ pi K\ pi M\ c (X::L) K M :- c L K (X::M).

to the current program, and then try to prove (c (1::2::3::nil) K nil).After
the answer substitution K = (3::2::1::nil) is discovered, both c and the new
clauses pertaining to c would be removed from the program context.
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type reverse list A -> list A -> o.

reverse L K :- pi rev\
(pi L\ rev nil L L) &
(pi X\ pi L\ pi K\ pi M\ rev (X::L) K M :- rev L K (X::M))
=> rev L K nil.

Figure 5.1. Definition of reverse in Figure 3.3 modified to hide the name of the
auxiliary predicate.

type reverse list A -> list A -> o.

reverse L K :- pi rv\
( rv nil K &
(pi X\ pi N\ pi M\ rv (X::N) M :- rv N (X::M)))
=> rv L nil.

Figure 5.2. Definition of reverse in Figure 3.4 modified to hide the name of the
auxiliary predicate.

5.3 Examples of higher-order programming

Figure 5.3 presents examples of program clauses in λProlog syntax that use
predicate quantification. These clauses define relations that can be understood
as follows. If the goal (mappred P L K) is provable, then L and K are lists of
equal length, and corresponding members of these lists are related through the
predicate P. If the goal (forsome P L) is provable, then L is a list in which
some member satisfies the predicate P. If the goal (foreach P L) is provable,
then L is a list all of whose members satisfy the predicate P. Finally, if the goal
(sublist P L K) is provable, then K is a list of some of the elements of L that
preserves the original order and is such that all its elements satisfy P. The order
of the clauses in the specification of sublist is such that maximal solutions are
found first if the usual sequencing of search options is used.

The following sequence of queries uses the specifications in both Figures 5.3
and 5.4.

?- mappred age (ned::bob::sue::nil) L.

L = (23::23::24::nil)

?- mappred age L (23::24::nil).

L = (bob::sue::nil);

L = (ned::sue::nil)

?- sublist male (ned::bob::sue::nil) L.

L = ned::bob::nil;
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type foreach, forsome (A -> o) -> list A -> o.
type mappred (A -> B -> o) -> list A -> list B -> o.
type sublist (A -> o) -> list A -> list A -> o.

foreach P nil.
foreach P (X::L) :- P X, foreach P L.

forsome P (X::L) :- P X; forsome P L.

mappred P nil nil.
mappred P (X::L) (Y::K) :- P X Y, mappred P L K.

sublist P (X::L) (X::K) :- P X, sublist P L K.
sublist P (X::L) K :- sublist P L K.
sublist P nil nil.

Figure 5.3. Examples of higher-order relational programs.

kind name type.
type bob, sue, ned name.
type age name -> int -> o.
type male, female name -> o.

age bob 23 & age sue 24 & age ned 23.
male bob & female sue & male ned.

Figure 5.4. A simple collection of facts.

L = ned::nil;

L = bob::nil;

L = nil;

no

?- forsome female (ned::bob::sue::nil).

solved

?- foreach female (ned::bob::sue::nil).

no

?-

The following declarations specify the reflexive, symmetric, and transitive
closures of a binary relation:

type ref, sym, trans (A -> A -> o) -> A -> A -> o.
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ref R X Y :- X = Y; R X Y.

sym R X Y :- R X Y; R Y X.

trans R X Y :- R X Y.

trans R X Z :- R X Y, trans R Y Z.

To illustrate the content of the predicate definitions provided here, assume that
we are additionally given the following specification of a graph:

kind node type.

type a, b, c, d, e node.

type adj node -> node -> o.

adj a b & adj b c & adj b d & adj d c & adj c e.

These clauses then will support the following interaction

?- trans adj a d.

solved

?- sym adj b a.

solved

?-

which shows that a and d are related by the transitive closure of adj and that b and
a are related by the symmetric closure of adj. The equivalence closure of adj can
be written simply as (trans (sym (ref adj))). Since the reflexive closure of
a relation is not defined recursively, it is easy to write a λ-term that captures such
a closure applied to adj. In particular, the λ-term (x\y\ x = y ; adj x y)will
do. Similarly, the symmetric closure of adj also can be expressed through the
λ-term (x\y\ adj x y ; adj y x). Describing transitive closure in a similar
way is more challenging. From a declarative point of view, the expression

x\y\ pi p\

(pi U\ pi V\ adj U V => p U V) =>

(pi U\ pi V\ pi W\ adj U V => p V W => p U W) => p x y

captures the transitive closure of adj. However, this term is not a legal H�
2 term

(for any relevant �) because it contains occurrences of the implication symbol.
As a result, such a characterization of transitivity cannot be used as an argument
of a λProlog goal.
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We exploit the specifications in Figures 5.3 and 5.4 to provide further illus-
trations of using predicate variables and λ-terms of predicate type. The two
λ-terms

x\ age jane x and n\ age n 24

are of types int -> o and name -> o, respectively. Notice that the first term is
η-convertible to just (age jane). The query

?- (n\ age n 24) W.

is equal modulo β-conversion to

?- age W 24.

and this goal has one answer substitution, the one that binds W to sue. The
following interactions further illustrate the possible uses of λ-terms in atomic
goal formulas.

?- mappred (x\y\ age x y) (ned::bob::sue::nil) L.

L = (23::23::24::nil)

?- mappred (x\y\ age y x) (23::24::nil) K.

K = (bob::sue::nil);

K = (ned::sue::nil)

?- foreach (x\ sigma y\ age x y) (ned::bob::sue::nil).

solved

?- foreach (x\ age x A) (ned::bob::sue::nil).

no

?-

The penultimate query succeeds because every person in the list has an age.
The last query fails because not everyone in the list has the same age A. By
contrast, the query

?- foreach (x\ age x A) (ned::bob::nil).

A = 23

?-

succeeds and returns the age that is common to both ned and bob.
The higher-order predicate definitions in Figure 5.5 support further familiar

computations on relations. For example, if R and S are two binary relations,
then (union R S) is the union of their extensions, and (compose R S) is their
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type union (A -> B -> o) -> (A -> B -> o) -> A -> B -> o.
type compose (A -> B -> o) -> (B -> C -> o) -> A -> C -> o.
type foldl (A -> B -> B -> o) -> list A -> B -> B -> o.

union R S X Y :- R X Y; S X Y.
compose R S X Y :- R X Z, S Z Y.

foldl P nil X X.
foldl P (Z::L) X Y :- P Z X W, foldl P L W Y.

Figure 5.5. More examples of higher-order relational programs.

relational composition (natural join). Notice that since union and compose are
not defined recursively, they can be expressed using λ-terms: The predicate
denoted by (union R S) can be written instead as the expression

x\y\ R x y; S x y.

and the predicate denoted by (compose R S) can be written instead as the
expression

x\z\ sigma Y\ R x Y, S Y z.

If P is an A-indexed set of binary relations over B, that is, if it has type

A -> B -> B -> o

then (foldl P) iteratively composes P to get a predicate of type

list A -> B -> B -> o.

Part of the code in Figure 5.6 provides a specification of a stack. The two
constructors emp and stk are used to represent stacks: For example, the stack
that has 1 as its top element, 2 below it, and 3 as its bottom-most element is
built as (stk 1 (stk 2 (stk 3 emp))). The predicate empty serves to initialize
stacks, and the predicates enter and remove are logic programming versions
of pushing and popping functions on stacks. Figure 5.6 also contains another
definition of the predicate reverse that relates a list to its reverse. This definition
uses a stack in conjunction with the earlier described higher-order predicates
on relations. Intuitively, a list can be reversed by pushing its elements one by
one onto a stack and then unloading the stack into another list. The predicate
foldl is used twice in this process, once to put items from a list into a stack
and once to move items from the stack to a list. These two phases are combined
using the compose predicate.

Using higher-order quantification, it is possible to convert any purely Horn
clause program into one that contains only binary clauses, i.e., clauses whose
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kind stack type -> type.
type emp stack A.
type stk A -> stack A -> stack A.
type empty stack A -> o.
type enter, remove A -> stack A -> stack A -> o.
type reverse list A -> list A -> o.

empty emp.
enter X S (stk X S).
remove X (stk X S) S.

reverse L K :- compose (foldl enter L) (foldl remove K) emp emp.

Figure 5.6. An implementation of list reverse.

bodies consist of at most one, possibly complex atomic formula. This trans-
formation illustrates what can be called the continuation passing style (CPS)
approach to programming within logic programming. Specifically, for each
predicate p of type τ1 → · · · → τj → o, let us introduce a new predicate p′

of type τ1 → · · · → τj → o → o. Further for every atomic formula A of the
form (pi t1 · · · tj ), let us write A′ to denote the term (p′

i t1 · · · tj ) of type o → o.
Then the binary form of the Horn clause

∀x̄ [A1 ∧ . . . ∧ An ⊃ A0] (n > 0)

is the clause

∀x̄ ∀K [(A′
1 (. . . (A′

n K) . . .)) ⊃ (A′
0 K)]

and the binary clause form of the atomic clause ∀x̄ A0 is the clause ∀x̄ ∀K [K ⊃
(A′

0 K)]. Of course, K is a variable of type o. In the translation that is produced,
top-level conjunctions will have been replaced by explicit sequencing of goals.
To take a concrete example, if this transformation is applied to the collection
of Horn clauses

adj a b.

adj b c.

path X Y :- adj X Y.

path X Y :- adj X Z, path Z Y.

it would produce the following set of higher-order Horn clauses

adj’ a b K :- K.

adj’ b c K :- K.

path’ X Y K :- adj’ X Y K.

path’ X Y K :- adj’ X Z (path’ Z Y K).

It is easy to see that query
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type fib_memo int -> ((int -> int -> o) -> o) -> o.

fib_memo N G :-
pi memo\ pi loop\

memo 0 0 => memo 1 1 =>
(pi F1\ pi F2\ pi F3\ pi C\ pi C’\

(loop C F1 F2 :- (C > N, (G memo)) ;
(C =< N, C’ is C + 1, F3 is F1 + F2,
memo C F3 => loop C’ F2 F3))) =>

loop 2 0 1.

Figure 5.7. A “memo-ized” version of the Fibonacci predicate.

?- path X Y.

is provable if and only if the query

?- path’ X Y true.

is provable.
All the examples that we have presented so far use the higher-order version

of Horn clauses; i.e., they are all contained within the hohc language. Figure 5.7
contains a logic program from the hohh+ fragment of logic that mixes higher-
order programming and the dynamic addition of clauses during computation.
Goals of the form V is M + N bind to the variable V the sum of the integer
expressions M and N. The predicate fib_memo computes and stores an initial part
of the Fibonacci relation in the context: It then calls a goal in that extended
context. That goal is parameterized by the name of the binary predicate that is
used to store the Fibonacci relation. For example, using this code, the following
query could be used to search for all numbers 0 ≤ n ≤ 20 such that the nth

Fibonacci number is n2.

?- fib_memo 20 (fib\ sigma M\ fib N M, M is N * N).

There are exactly three values for N that make this atom provable.

5.4 Flexible atoms as goals

We have already seen examples of flexible goals in the higher-order programs
considered in the preceding section. Such a goal appears, for example, in the
definition of the mappred predicate in Figure 5.3. In all the cases considered
there, however, the predicate head of the flexible goal is instantiated by the time
invocation of the goal is considered. We could, of course, consider dynamically
invoking a predicate goal that is flexible.An example of such a goal is the flexible
atom (P bob 23). Suppose that we try to prove this goal from the clauses in
Figure 5.4. One possible answer substitution for this query is the substitution
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kind i type.
type jane, mary, john i.
type mother, father, wife, husband i -> i -> o.
type primrel, rel (i -> i -> o) -> o.

primrel father & primrel mother & primrel wife & primrel husband.

rel R :- primrel R.
rel (x\y\ sigma z\ R x z, S z y) :- primrel R, primrel S.

mother jane mary & wife john jane.

Figure 5.8. An example of computing relations from other relations.

(x\y\ age x y) (or simply age) for P. However, many other substitutions also
lead to a provable goal. For example, substituting

x\y\ age x 23, age ned y

for P also works in this sense. In fact, the substitution x\y\g for P for any
closed goal g that is provable will lead to the goal (P bob 23) being provable.
Thus (x\y\ age sue 24) and (x\y\ memb 4 (3::4::5::nil)) (if the clauses
defining the basic list operations are included in the current context) both can
be considered to be answer substitutions for P. Clearly, there are a large number
of answer substitutions for this goal, many of which seem to have little to do
with the actual query that was posed. It seems undesirable for an interpreter to
search for all of these systematically. A flexible goal seems, in this sense, to be
underconstrained.

Of course, not all flexible goals that are written in a program have this
character. Whether a flexible goal is constrained or underconstrained depends
on when the goal is invoked. For example, a computation may restrict the
range of substitutions for a predicate variable through suitably defined clauses
before it attempts to search through these possibilities for one that satisfies
a given goal. Thus, consider the program in Figure 5.8. Simply asking for
a predicate R that is satisfied by john and mary is not meaningful in its
context. The programmer can, however, specify some collection of predi-
cates that are considered relevant or interesting and then restrict the choice
of substitutions for the predicate variable to that collection. For example,
the query

?- rel R, R john mary.

is one that is meaningful. This query is solvable only if R is substituted for by
the term

x\y\ sigma Z\ wife x Z, mother Z y.
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The predicate rel, also defined in Figure 5.8, provides structure to the kinds
of answer substitutions that we want to consider as being meaningful for the
query R john mary.

In light of the preceding discussion, three different approaches seem possible
in treating a flexible goal that is encountered during computation in a higher-
order language:

1. Such a goal may be suspended in the hope that processing other goals will
further instantiate the predicate variable at its head. If some later substitu-
tion changes this goal from flexible to rigid, then the search for a proof for it
may be resumed. In the event that all rigid goals have been solved and only
flexible ones are left, all the remaining goals may be solved immediately by
instantiating the predicate variable at the head of each of them with a term of
the form λx1 . . . λxn �, where n ≥ 0 is the number of argument types in the
type of that variable. The instantiation proposed here represents the univer-
sally true relation of the correct type; this substitution is the (extensionally)
largest one that works.

2. Instead of suspending a flexible goal, we may solve it eagerly by using the
universally true relation described earlier as a substitution for the predicate
variable at its head.

3. A run-time error message may be issued when such a goal is encountered.

The first option has been shown to be complete with respect to provability
in intuitionistic higher-order logic. The latter two are incomplete. Experience
with implementations of λProlog suggests that the third choice is most useful
for developing code. In practice, the flexibility of an atomic goal at the time
this goal is encountered using the usual depth-first search strategy usually has
been traceable to a mistake—such as the mistyping of a predicate constant with
a capital letter—made by the programmer. Thus it seems best to generate an
error message in these cases rather than rearranging goals in unexpected ways.

5.5 Reasoning about higher-order programs

One of the virtues of the logic programming view that we have developed
here is that computation is clearly specified through a high-level opera-
tional semantics description. Moreover, there is a connection with logics
for which several deep properties have been established previously. These
properties give us a means for reasoning about the programs we write in
this framework. In the higher-order context, this reasoning capability can be
enhanced when we use the ability provided by the hohh+ language to hide
predicate names and thereby to tightly circumscribe the definitions of such
predicates.
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We use the definition of the reverse predicate presented in Figure 5.2 to
illustrate the reasoning possibility just described. Let us suppose that we wish
to show that the relation corresponding to this predicate is symmetric. To
develop an intuition about how to prove this, consider the attempt to show
that reverse holds of the two lists [a,b,c] and [c,b,a]. This goal causes the
“hidden” predicate rv to be invoked successively with the following pairs of
arguments:

(a :: b :: c :: nil) nil

(b :: c :: nil) (a :: nil)

(c :: nil) (b :: a :: nil)

nil (c :: b :: a :: nil)

The fact that reverse is a symmetric relation now can be seen by noticing
that if we flip the columns and flip the rows in the preceding “table,” we
get a valid computation trace to demonstrate that the reverse of [c,b,a] is
[a,b,c].

We shall use this observation to develop an actual proof of the symme-
try property of reverse. Specifically, we shall assume that (reverse L K)

is provable from the definition in Figure 5.2, and we shall then show that
(reverse K L) is also provable. Now, there is only one way to prove the atom
(reverse L K), and that is by backchaining on the definition of reverse. Thus
the formula

pi rv\ ( rv nil K &

(pi X\ pi N\ pi M\ rv (X::N) M :- rv N (X::M)))

=> rv L nil

must be provable. Since this universally quantified expression is provable, by
logical principles, any instance of it also must be provable. Let us then instantiate
it with the λ-term x\y\ (not (rv y x)), where we are using not to denote
logical negation (instead of negation-as-failure). Intuitively, the swapping of
the order of the arguments in this term gives us one of the flips in the informal
proof, and the negation gives us the other flip. The formula resulting from the
instantiation is

not(rv K nil) &

(pi X\ pi N\ pi M\ not(rv M (X::N)) :- not(rv (X::M) N))

=> not(rv nil L).
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This formula can be simplified by using the contrapositive rule from logic for
negation and implication (p ⊃ q is equivalent to ¬q ⊃ ¬p), yielding

rv nil L & (pi X\ pi N\ pi M\ rv (X::M) N :- rv M (X::N))

=> rv K nil.

Since the contrapositive equivalence is classically valid, the resulting provabil-
ity is classically valid. Since this is a deduction involving only (first-order)
Horn clauses, and since classical logic and intuitionistic logics coincide on
Horn clauses (see Section 2.3), we also can conclude that this is an intuition-
istic entailment. If we now universally generalize on rv, we again have proved
the body of the reverse clause, but this time with L and K switched. Thus we
have proved that (reverse K L) also holds.

This proof exploits the explicit hiding of the auxiliary predicate rv, which
provides a site into which a “reimplementation” of the predicate can be placed.
Notice that the description of goal-directed search alone does not suffice for
constructing this proof of symmetry of the reverse predicate. Knowledge of the
metatheoretic properties of the specification logic is also needed; in particular,
the proof uses the correspondence between goal solvability in that logic and
provability in classical and intuitionistic logic.

5.6 Defining some of the logical constants

The hohc program clauses in Figure 5.9 provide a definition of the logical
constants ⊥, �, ∨, and ∃. This definition is a partial one because the clauses
describe only how to prove goals in which these symbols are the top-level
ones and not how to use such formulas as an assumption or program clause.
For example, the rule of cases, which describes how a disjunctive assumption
can be used in a proof, is not specified by these clauses. In the language of
the sequent calculus (Section 2.6), the clauses in Figure 5.9 specify the right-
introduction rules but not the left-introduction rules for the connectives under
consideration. Notice that there are no clauses defining ff: The behavior of this
constant as a goal is encapsulated in the fact that trying to prove it results in
failure.

If one uses hohh+ formulas, then goal formulas with these four logical con-
nectives can be rewritten in terms of universal quantification and implication
as follows: The hohh goal ∀p p can be used for ⊥ and the hohh+ goals

∀p (p ⊃ p) ∀p ((B ⊃ p) ⊃ (C ⊃ p) ⊃ p) and ∀p ((∀x (G x ⊃ p)) ⊃ p)

can be used for �, B ∨ C, and ∃x (G x), respectively.
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type tt, ff o.
type or o -> o -> o.
type exists (A -> o) -> o.

tt. % true
or P Q :- P. % disjunction
or P Q :- Q.
exists B :- B T. % existential quantifier

Figure 5.9. The “definition” of some logical constants.

Of course, an encoding of these logical symbols is not needed in λProlog:
An implementation can treat them as primitive and build in their proof search
behavior directly.

5.7 The conditional and negation-as-failure

The built-in vocabulary of Prolog includes several predicates whose opera-
tional behavior includes aspects of the “cut” operator that prunes search. The
relationship between cut and some of these predicates can be made explicit in
an λProlog setting.

One such operator is the “conditional” if. This operator is used to construct a
goal from three other goal formulas. This conditional can be defined in λProlog
as follows

type if o -> o -> o -> o.

if P Q R :- P, !, Q.

if P Q R :- R.

Proving a goal of the form (if P Q R) involves first attempting to prove P and,
if that succeeds, then attempting to prove Q. If the proof attempt for P fails, only
then is an attempt made to prove R.

The negation-as-failure predicate can be defined similarly using the code

type not o -> o.

not P :- P, !, fail.

not P.

Instead of the two preceding clauses, we also could use the following:

not P :- if P fail true.

The use of predicates such as these that rely on the pruning operator ! can
lead logic programming rather far from its roots in logic. For example, the query

?- X = 2, not (1 = X).
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succeeds, whereas switching the order of these two goals, namely,

?- not (1 = X), X = 2.

fails. Thus even a basic property such as commutativity of conjunctions
becomes invalid in this setting. For this reason, we will use these predicates
extremely sparingly. In the cases where we use them, we will discuss explicitly
our reasons for doing so.

5.8 Using λ-terms as functions

The programming examples considered up to this point in this chapter have
focused on the use of predicate variables that are instantiated by λ-terms and
that then go on to form expressions that are invoked as goals. The logic we have
described also allows for higher-order variables that are not of predicate type.
When these variables are instantiated, they can give rise to expressions that
need to be evaluated using the rules of λ-conversion. We provide illustrations
of this possibility in this section. As we have seen Chapter 4, the class of func-
tions that can be expressed and computed in this way using our typed λ-terms
is quite weak. They are much weaker, in fact, than ones that can be encoded
through predicate definitions and goal invocation. This weakness, however can
be an asset for a different kind of computation: Rather than instantiating func-
tion variables with λ-terms, we can think of finding values for them by solving
unification problems. The ability to express such computations is perhaps the
single most novel aspect of higher-order logic programming and one that has a
large number of interesting applications. We present only simple examples here
to illuminate this possibility, leaving a detailed discussion to later chapters.

5.8.1 Some basic computations with functional expressions

Figure 5.10 contains the definition of the mapfun predicate that is a natural
“functional” counterpart to the mappred predicate seen earlier. This predicate
relates a term of functional type to two lists of equal length if the elements of
the second list are the result of applying that functional term to corresponding
elements of the first list. Of course, function computation here is simply βη-
conversion for typed λ-terms. For example, suppose that the ambient signature
defines a type i, four constants a, b, c, and d of this type, and a constant g of
type i -> i -> i, and then consider the query

?- mapfun (x\ g a x) (a::b::nil) L.

There is exactly one answer substitution to this query:

L = ((g a a)::(g a b)::nil).
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type mapfun (A -> B) -> list A -> list B -> o.
type reducefun (A -> B -> B) -> list A -> B -> B -> o.

mapfun F nil nil.
mapfun F (X::L) ((F X)::K) :- mapfun F L K.

reducefun F nil Z Z.
reducefun F (H::T) Z (F H R) :- reducefun F T Z R.

Figure 5.10. Program clauses that use higher-order function variables.

To produce this substitution, an interpreter would form the terms
((x\ g a x) a) and ((x\ g a x) b) and λ-normalize them.

The example just considered shows that the (function) evaluation that is
embodied in uses of mapfun is mainly β-reduction. By contrast, calls to mappred

produce expressions that constitute goals of arbitrary complexity and that are
invoked as such to produce the elements of the “output” list. It is of little
surprise, therefore, that mappred can encode much stronger computations than
mapfun can. A vivid demonstration of this difference is the fact that we could
have defined mapfun alternatively as follows:

mapfun F L K :- mappred (x\y\ y = F x) L K.

The weakness of the functional computation carried out by mapfun actually
allows us to think of running this computation in reverse; i.e., given a list of
arguments and a list of results, ask for the function that may relate the two. An
example of such a query is the following:

?- mapfun F (a::b::nil) ((g a a)::(g a b)::nil).

This goal is solvable and has exactly one answer substitution: The one that binds
F to the term (x\ g a x). In producing this result, an interpreter for the higher-
order language would need to consider unifying the pair of terms (F a) and (g

a a) and also the pair of terms (F b) and (g a b). The first of these unification
problems has four unifiers that correspond to substituting the following terms
for F:

(x\ g x x) (x\ g a x) (x\ g x a) (x\ g a a)

Only the second of these substitutions will work as a unifier for (F b) and (g

a b). Thus, if the interpreter picks any substitution other than this one first, it
will have to backtrack in its computation to eventually select the right answer.

The kinds of function terms that can be synthesized in this way are quite
weak. To understand this, consider the following goal:

?- mapfun F (a::b::nil) (c::d::nil).
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This goal actually will fail because there is no typed λ-term that maps a to c

and b to d—this despite the fact that we can conceive of an infinite number of
functions that map a and b in this way. (Recall a related discussion at the end
of Section 4.4.3.)

Figure 5.10 contains the definition of another predicate called reducefun.
The following interaction illustrates some possible uses of this predicate:

?- reducefun (x\y\ x + y) (3::4::8::nil) 6 R.

R = 3 + (4 + (8 + 6));

?- reducefun F (4::8::nil) 6 (1 + (4 + (1 + (8 + 6)))).

F = x\y\ 1 + (4 + (1 + (8 + 6)));

F = x\y\ 1 + (x + (1 + (8 + 6)));

F = x\y\ 1 + (x + y);

no

?-

The second query has three answer substitutions. If the query is modified by
replacing the occurrences of 6 in it by a variable that is quantified univer-
sally inside the scope of the (implicit) quantifier binding F, then only the last
substitution works as an answer:

?- pi z\ reducefun F (4::8::nil) z (1 + (4 + (1 + (8 + z)))).

F = x\y\ 1 + (x + y);

no

?-

The reason why substitutions such as the first two for the previous query do not
work in this case is that instantiations of F cannot contain occurrences of the
new constant introduced for z in proving the universal goal.

5.8.2 Functional difference lists

From a programming point of view, logic variables provide a means for marking
locations in data structures into which additional information can be inserted.
An interesting exploitation of this perspective appears in a data structure called
the difference list. This data structure describes a list by providing two lists, the
second of which is intended to be a suffix of the first: The list that is actually
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represented is the prefix of the first component that is obtained by removing the
elements of the second component from it.

Part of the declarations in Figure 5.11 implement the traditional first-
order version of this data structure in λProlog. The type constructor dlist

allows the type of any given difference list to be parameterized by the type
of its elements. Using the constant dl, we represent a difference list of type
(dlist A) as (dl L K), where L and K are both of type (list A). For exam-
ple, (dl (1::2::3::4::5::nil) (4::5::nil)) and (dl (1::2::3::L) L) are
both difference lists. Moreover, both of them denote the same “regular” list,
namely, (1:2::3::nil). If a representation such as the second one is used for
lists, it becomes possible to implement the concatenation of lists without an
explicit recursion over either of the input lists. The definition of the predicate
concat in Figure 5.11 shows how this can be done. As another illustration, dif-
ference lists are used in the definition in Figure 5.11 of the predicate collect

that forms a list of the elements in a binary tree by carrying out an in-order
traversal over it.

A higher-order language allows for another approach to realizing difference
lists: A λ-term in which the abstracted variable is used to isolate the suffix of

kind dlist type -> type.
type dl list A -> list A -> dlist A.

type concat dlist A -> dlist A -> dlist A -> o.
concat (dl L1 L2) (dl L2 L3) (dl L1 L3).

kind btree type -> type.
type empty btree A.
type bt A -> btree A -> btree A -> btree A.

type collect btree A -> list A -> o.
type aux btree A -> dlist A -> o.
collect Bt L :- aux Bt (dl L nil).
aux empty (dl A A).
aux (bt N L R) (dl A B) :- aux L (dl A (N::C)), aux R (dl C B).

kind fdlist type -> type.
type fdl (list A -> list A) -> fdlist A.

type collect’ btree A -> list A -> o.
type aux’ btree A -> fdlist A -> o.
collect’ Bt (A nil) :- aux’ Bt (fdl A).
aux’ empty (fdl x\ x).
aux’ (bt N L R) (fdl x\ A (N::(B x))) :- aux’ L (fdl A),

aux’ R (fdl B).

Figure 5.11. Difference lists and functional difference lists and examples of
their use.
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the list may be used. Figure 5.11 contains further declarations illustrating this
approach. Specifically, consider the type (fdlist A)—fdlist here is the type
constructor for functional difference lists—and its one constructor fdl, which
takes an argument of type list A -> list A. Using these, we can construct
the term (fdl x\ (1::2::3::x)) of type (fdlist int) that denotes the usual
list (1::2::3::nil) while also maintaining a “pointer” to the tail of this list.
The head and tail of a list represented in this way can be extracted by unifying
it with x\(H::(T x)): The head is directly the binding found for H, whereas the
tail is given as a functional difference list by (fdl T). Similarly, the last element
and the list of all but the last element of the list can be obtained by unifying
its representation with the term x\ F (Y::x): Here, Y will be bound to the last
element, and (fdl F) will be a functional difference list representation of the
front of the list. The concatenation of two functional difference lists (fdl A)

and (fdl B) is given by (fdl x\ A (B x)); conceptually, the concatenation is
formed by composing the two function terms A and B. Figure 5.11 contains the
definition of the predicate collect’, which uses functional difference lists to
collect the elements in a binary tree into a list based on an in-order traversal of
the tree.

For another example of the use of functional difference lists, suppose that
we want to define a predicate that determines whether or not a given list is a
palindrome, i.e., a list that reads the same both forward and backward. Since
it is possible to access the first and last elements of a functional difference list
in one unification step, this predicate has a particularly simple specification if
such a representation is used for a list:

type palindrome fdlist A -> o.

palindrome (fdl x\x).

palindrome (fdl x\ Y::x).

palindrome (fdl x\ Y::(F (Y::x))) :- palindrome (fdl F).

The following interaction illustrates the use of this definition:

?- palindrome (fdl x\ a::b::c::b::a::x).

solved

?- palindrome (fdl x\ a::b::a::(F x)).

F = x\ x;

F = x\ b::a::x;

F = x\ a::b::a::x;
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F = x\ Y::a::b::a::x;

F = x\ Z::Z::a::b::a::x;

F = x\ Y::Z::Y::a::b::a::x;

F = x\ Y::Z::Z::Y::a::b::a::x;

F = x\ Y::Z::U::Z::Y::a::b::a::x;

F = x\ Y::Z::U::U::Z::Y::a::b::a::x

?-

The second query asks for a “functional difference list” F such that concatenating
this with the “difference list” (x\ a::b::a::x) yields a palindrome. There
are an infinite number of answers to this query, some of which are displayed
above.

An important point to note about objects of the types (dlist A) and
(fdlist A) is that they must satisfy certain structural properties for it to be
possible to interpret them as lists, but these properties are not enforced by the
type. Thus neither of the terms

(dl (1::2::3::nil) (4::5::nil)) and (fdl x\ (1::2::3))

represents a list in the sense intended for difference lists, but these terms are,
nevertheless, well formed and have the right types.

5.9 Higher-order unification is not a panacea

Learning to use a programming paradigm well involves learning also how not
to write programs within it. Since combining unification with λ-terms is a rather
novel programming idiom, one needs to learn to avoid pitfalls in its use. We
discuss a couple of these in this section.

Consider the problem of abstracting over all occurrences of a constant in a
given structure. For example, given the signature

kind i type.

type a,b i.

type f i -> i -> i.

we may be interested in abstracting over the occurrences of a in the term
(f a (f a b)) to produce the term (x\ f x (f x b)). Now, one may imagine
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that this problem can be solved by higher-order unification as in the definition
of the predicate extract_a presented below:

type extract_a i -> (i -> i) -> o.

extract_a (F a) F.

Unfortunately, this specification turns out to be a poor solution. Consider the
following:

?- extract_a (f a (f a b)) F.

F = x\ f x (f x b);

F = x\ f x (f a b);

F = x\ f a (f x b);

F = x\ f a (f a b);

no

?-

There are several solutions to this query, only one of which is the desired
expression. In general, if there are n occurrences of a in a term, there are 2n

possible ways to “extract” a from that term using this predicate.
If unifiers are produced in the order just shown, it is possible to use a Prolog-

like cut predicate to eliminate all but the first answer substitution above by
defining extract_a as follows:

extract_a (F a) F :- !.

However, this is a rather nondeclarative solution and also relies on an inti-
mate knowledge of how unification is implemented. A more satisfying solution
involves changing the scopes of the quantifiers in the query. For example, while
the query

pi a\ sigma F\ (F a) = (f a (f a b)).

has four different proofs involving four different instantiations for F, the query

sigma F\ pi a\ (F a) = (f a (f a b)).

has exactly one proof, and in that proof, F is instantiated with the term
x\ (f x (f x b)).

The recourse to reordering the quantifiers in the query may, however, not
always be available. In this case, the extract_a predicate could be written as
a recursion over the syntax of terms instead of using higher-order unification
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directly. The following definition of extract_a, for example, implements this
idea:

extract_a a x\x.

extract_a b x\b.

extract_a (f T S) (x\ f (U x) (V x)) :- extract_a T U, extract_a S V.

Of course, unlike a unification-based approach, this encoding uses information
about the signature of the type i in organizing the recursion. The payback is
that there is more control over the steps in the computation and over the set of
valid solutions.

A second task in which we might think of using higher-order unifica-
tion is that of term rewriting. We could, for instance, define the predicate
rewrite to encode (parallel) one-step rewriting based on some simple arithmetic
identities:

type rewrite int -> int -> o.

rewrite (0 + X) X.

rewrite (1 * X) X.

rewrite (X - X) 0.

rewrite (C X) (C Y) :- rewrite X Y.

The first three clauses specify the identities that are to be used. The last clause
is a naive specification of the fact that two terms are equal if a subexpression
is replaced by an equal subexpression.

Given the definition just shown, the goals

rewrite ((5 - 5) + 6) (0 + 6) and rewrite ((1 * 5) - 5) (5 - 5)

have derivations. Thus the definition captures the intended meaning in
several cases. Unfortunately, there are far too many derivations for such
goals for this definition to be computationally effective. For example, the
goal rewrite ((1 * 5) - 5) (5 - 5) has an infinite number of deriva-
tions, each obtained by using the last clause a (chosen) finite number
of times with C instantiated to x\x until eventually it is picked to be
x\ x - 5.

A better, more controlled approach to rewriting can again be obtained by
using an explicit recursion over the structure of terms. This solution, must of
course, integrate the signature used in constructing terms into the program.
Examples of this style of rewriting are provided at three other places in this
book: Section 7.4.1, Section 9.4.1, and Section 10.3.2.
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5.10 Comparison with functional programming

At this point it is worth contrasting the form of higher-order programming
that we have considered in this chapter with the higher-order programming
capabilities available within functional programming languages such as Scheme
and ML. On the one hand, as the examples using mappred and sublist show,
most of the higher-order programming capabilities in the functional framework
can be transferred easily to the logic programming setting. On the other hand,
there are at least two ways in which the notion of higher-order programming
that we have described here is stronger than the notion found in functional
programming. We discuss these differences below.

First, predicate variables, which allow capturing the idea of functions-as-data
in functional programming, are only one kind of variable of functional type in
logic programming. Since the proof theory of the general form of quantification
at higher types is well understood, it is natural to design a logic program-
ming language that exploits this more inclusive capability. The examples in
Section 5.8 have illustrated new kinds of computations that become possible
when the language includes nonpredicate function variables. We develop this
idea further in Chapter 7, where we show that such variables can be used in
manipulating the syntax of λ-terms and thereby to provide logic programming
with an expressiveness not found directly in functional programming languages.

Even if we restrict our attention to predicate quantification, there is already a
difference between higher-order notions in functional and logic programming.
In languages such as Scheme and ML, it is not possible to compare functional
expressions. By contrast, two predicate expressions are compared easily in the
logic programming setting. For example, the following set of declarations is
legal:

type eq_pred (A -> o) -> (A -> o) -> o.

eq_pred R R.

A goal with eq_pred as its head would succeed if its two arguments are equal
(or, more precisely, unifiable) predicate expressions. Note, however, that such
a check on equality is based on the intension and not the extension of the two
expressions. For example, the query

?- eq_pred (x\ p x, q x) (x\ q x, p x).

will fail no matter what clauses provide the meaning for p and q. Equality is
decided based only on the structure of λ-terms, and the fact that these terms
denote sets that are equal is not considered. Functional programming does not
allow for such checks between functions chiefly because the intended semantics



5.11 Bibliographic notes 147

of functional programming languages is an extensional one, and determining
extensional equality is, in general, undecidable.

If our aim had been to generalize logic programming to capture only the
higher-order capabilities of functional programming, then this could have been
achieved by using a syntax that is more restricted than the one we have con-
sidered here. For example, quantification over higher-order nonpredicate types
could have been disallowed. While a limited goal of this kind has its merits,
adopting it would provide us with features that are already well appreciated at a
programming level. The benefit of considering quantification at general higher-
order types is that hitherto unknown and unexplored programming features
begin to emerge. These new features—the use of λ-terms to represent syntactic
objects encompassing binding notions and functional quantification to manip-
ulate such objects—have provided much of the impetus for the development of
λProlog.

5.11 Bibliographic notes

The Simple Theory of Types that provides the moorings for our treatment
of higher-order notions in logic programming was first presented by Church
(1940). The textbook of Andrews (1986) and the handbook article of Leivant
(1994) are good starting points for learning about this logic. As a formal sys-
tem, this logic is not complete with respect to the standard semantics for second
order logic (Gödel 1965). Henkin (1950) developed a more liberal notion of
models known as general models that provide an accurate semantical counter-
part.1 Many standard proof-theoretic results—such as cut-elimination (Girard
1986; Girard et al. 1989; Takahashi 1967), unification (Huet 1975), resolution
(Andrews 1971), and Skolemization and Herbrand’s theorem (Miller, 1987b)—
have been established for the classical logic version of the Simple Theory of
Types without the axioms of extensionality, infinity, and choice. Our use of
the type o for formulas and of pi and sigma for the universal and existential
quantification follows directly from Church’s use of o as a type and 
 and �

as quantifiers (Church 1940).
The relevance of the model-theoretic view of second order logic for math-

ematical practice is discussed, for example, by Shapiro (1985). Variants of
higher-order logic that do not contain, for example, λ-abstraction have been
considered as the basis of adding higher-order programming features to logic
programming (Chen et al. 1993; Wadge 1991).

1 Henkin’s original description of such models had a subtle error that was noticed and corrected
by Andrews (1972).
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The fact that goal-directed search in the context of hohc is complete with
respect to both the classical and the intuitionistic versions of the Simple Theory
of Types without the axioms of extensionality, infinity, and choice was estab-
lished by Nadathur (1987) in his doctoral dissertation (see also (Nadathur and
Miller 1990)). The critical part of this argument was noticing that predicate sub-
stitutions could be limited without loss of completeness to H�

1 , the Herbrand
universe for hohc described in Section 5.2; the cut-elimination result for the
logic provided the rest of the machinery for the proof. These techniques were
extended subsequently to show that goal-directed search in the context of hohh is
complete with respect to an intuitionistic version of the same higher-order logic
(Miller et al. 1991). These results provide the foundations for a unification-based
interpreter for the respective languages that explicitly delays the consideration
of flexible-flexible unification problems as well as flexible goals. Nadathur and
Miller (1990) provided an interpreter for hohc that incorporates such delays.

The proceedings of the 1987 Symposium on Logic in Computer Science
contain two closely related proposals for specification logics: the hohh logic first
advanced by Miller, Nadathur, and Scedrov (1987) and the Logical Framework
(LF) proposed by Harper, Honsell, and Plotkin (1987). These logics became the
bases for the computer languages λProlog and Twelf (Pfenning and Schürmann
1999), respectively.An encoding of the dependently typed λ-calculus of LF into
hohh that preserved provability was presented by Felty and Miller (1990) and
Felty (1991). A less redundant and hence more efficient encoding that can be
used as the basis for implementing Twelf through a translation into λProlog has
been developed by Snow, Baelde, and Nadathur (2010). Another type system
that is closely related to higher-order logic is the Calculus of Constructions
(Coquand and Huet 1988). Felty (1993b) showed how to encode the Calculus
of Constructions into higher-order logic. She also showed that if disjunctions
and existentials are not allowed within formulas and terms, then it is possible
to allow implications within terms and still maintain the completeness of goal-
directed provability; this restriction should be contrasted with the one described
in Section 5.2 that leads to hohh.

Combining functional and logic programming capabilities into one language
has been an active topic for research. The logic programming language that we
have described is sometimes thought to be such a combination, but this is a
mistaken view:As we discussed in Chapter 4, the typed λ-terms are expressively
rather weak and hence do not encompass a significant functional programming
capability. For more on mixing functional and logic programming, we refer the
reader to Hanus (1994).

Binary forms of Horn clauses have been used in the compilation of Prolog
(Tarau 1992) and in the transformation of the operational semantics of simple
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function programming languages into abstract machines (Hannan and Miller
1992).

In Section 5.6 we illustrated how hohc clauses could be used to implement
right-introduction rules for some logical connectives. Hallnäs and Schroeder-
Heister (1991) describe a scheme for deriving the left-introduction rules from
such hohc clauses.

As we shall show in Section 6.5.4, higher-order programming features can
be mixed with modularity constructs in an unproblematic and natural way when
hohh is used as the foundation of a logic programming language. In contrast,
most other approaches to adding higher-order and modular programming fea-
tures to Prolog are based on nonlogical mechanisms. As a result, the mixing of
these two styles of programming can lead to ambiguities and may sometimes
be beset with serious semantical problems (Haemmerlé and Fages 2006).

Some aspects of higher-order relational programming can be obtained in a
first-order setting by using an encoding process, some of which are presented by
D.H.D. Warren (1982) and Reddy (1994). The HiLog system of Chen, Kifer, and
D.S. Warren (1993) provides a more systematic and declarative way of obtaining
higher-order programming features while remaining within a first-order setting.

The functional version of difference lists presented in Section 5.8.2 has been
explored in some detail by Brisset and Ridoux (1991).

There are only a few examples of using higher-order substitution to reason
directly about logic programs. The proof in Section 5.5 that reverse is sym-
metric is due to Miller (2002). Miller (2006, 2008) also has presented a scheme
for static analysis of Horn clauses using higher-order substitutions.
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Mechanisms for Structuring Large Programs

In the early stages of developing a programming language or paradigm, the
focus is on programming-in-the-small.As the language matures, programming-
in-the-large becomes important and a second modules language is often imposed
on the previously existing core language. This second language must support
the partitioning of code and name spaces into manageable chunks, the enforce-
ment of encapsulation and information hiding, and the interactions between
separately defined blocks of code. The addition of such modularity features
typically is manifest syntactically in the form of new constructs and directives,
such as local, use, import, and include, that affect parsing and compilation.
Since the second language is born out of the necessity to build large programs,
there may be little or no connection between the semantics of the added modular
constructs and the semantics of the core language. The resulting hybrid language
consequently may become complex and also may lack declarativeness, even
when the core language is based on, say, logic.

In the logic programming setting, it is possible to support some of the abstrac-
tions needed for modular programming directly through logical mechanisms.
For example, the composition of code can be realized naturally via the conjunc-
tion of program clauses, and suitably scoped existential quantifiers can be used
to control the visibility of names across program regions. This chapter develops
this observation into the design of a specific module language.

6.1 Desiderata for modular programming

When designing a module system for logic programming, we should ask more
than that it separate code elements and that it can be implemented efficiently.
In particular, adhering to the following principles is also desirable:

• The additional syntax for programming-in-the-large should be natural and
readable and should support

150
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• Rich forms of abstraction, information hiding, and parametrization
• A high-level view of code interactions via the notion of interfaces
• Separate compilation and reusability of individual code components

• Constructs for modularization and encapsulation should not complicate the
meaning of the underlying declarative core language. A particular challenge
here is to ensure that higher-order programming works smoothly with mod-
ularity constructs; in the usual Prolog setting, this translates to getting the
call/1 predicate to interact correctly with modules.

• Modules should support transitioning from high-level program specifications
to lower-level program implementations. This entails that

• There should be a nontrivial notion of module equivalence that guaran-
tees that such replacements will not alter the semantics of a larger pro-
gram; this property is sometimes called representation independence.

• The notion of equivalence should facilitate a rich calculus of transfor-
mations pertaining to modules based on ideas such as partial evalua-
tion, folding, and unfolding clauses and perhaps even encompassing
compilation.

One approach to developing a principled modular programming language is
to reduce programming-in-the-large to programming-in-the-small. In the logic
programming setting, this can be done by explaining the constructs for modular
programming completely in terms of the logical connectives of the underlying
logical language. We develop this approach in the following sections. In par-
ticular, we describe a modules language that is designed initially to satisfy the
first of the principles just described. We then show how a collection of modules
would be mapped to a (possibly large) collection of (possibly large) formulas
by exposing a correspondence between the combinators for module interaction
and logical connectives. The second principle is naturally supported under this
viewpoint, and the idea of logical equivalence becomes the basis for the third.

6.2 A modules language

Programming-in-the-small, as we have described it so far, consists of iden-
tifying sorts and type constructors through kind declarations, using these to
declare constants through type and operator declarations, and finally, writing
down clauses to describe relations that then may be queried. In a simplistic
approach, we could view all these declarations as contributing incrementally
to one monolithic collection. We introduce modules as a means for structuring
this space.

The module construct actually serves not just to limit the scope of a set
of declarations and program clauses but also to name such collections. In the
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proposed syntax—already briefly encountered in Chapter 2—the first line of
the text for a module has the form

module <name>.

The argument of the keyword module is any token that satisfies the syntactic
requirements of being an identifier. This line names the module that is composed
of the sequence of kind, type, and clause declarations that follows this line.
We use the keyword end to denote the end of the module. If modules are
associated with disk files, the end point of a module declaration alternatively
can be determined by the end of the file.

Figure 6.1 illustrates the use of the syntax just described in identifying a
module called smlists. This module brings together a small collection of
list-oriented predicate definitions. This code assumes the availability of the
list type constructor and the associated data constructors nil and ::. As

module smlists.

type id list A -> list A -> o.
type memb, member A -> list A -> o.
type revapp list A -> list A -> list A -> o.
type reverse list A -> list A -> o.
type append list A -> list A -> list A -> o.
type memb_and_rest A -> list A -> list A -> o.

id nil nil.
id (X::L) (X::K) :- id L K.

memb X (X::L).
memb X (Y::L) :- memb X L.

member X (X::L) :- !.
member X (Y::L) :- member X L.

revapp nil L L.
revapp (X::L1) L2 L3 :- revapp L1 (X::L2) L3.

reverse L1 L2 :- revapp L1 nil L2.

append nil K K.
append (X::L) K (X::M) :- append L K M.

memb_and_rest X (X::L) L.
memb_and_rest X (Y::K) (Y::L) :- memb_and_rest X K L.

end

Figure 6.1. A module defining list operations.



6.2 A modules language 153

explained in Chapter 1, certain sorts, type constructors, and constants—a col-
lection that includes list, int, real, string, and the constants associated with
these types—are assumed to be pervasive and can be used freely in any module
or query.

It is often useful to be able to abstract away from the actual contents of
a module, providing only an “interface” to it. A signature provides such an
abstraction. Signature declarations begin with a line of the form

sig <name>.

This line is used to name the immediately following kind, type, and operator
declarations. As with modules, the extent of a signature may be specified by
the keyword end or, in a file-oriented view, by the end of file.

In the model we propose, each module must be mediated by a signature,
and a common name links these two entities. Thus the signature shown in
Figure 6.2 is associated with the module smlists. Such an association gives
rise to certain consistency requirements. For example, the declarations in the
signature must be matched exactly by any declarations of the same constants
and type constructors that appear in the module. The signature also restricts the
external visibility of the names defined in a module to exactly those which are
mentioned in it. This restriction has an impact on the availability of predicate
definitions: The definition of the predicate revapp is, for example, hidden within
the module smlists. It is also possible to hide constants and data constructors
within a module: Such hidden symbols remain hidden even through the results
of computations. Later in this chapter we formalize the relationship between
a module and its signature using the notion of signature matching and the
translation of modules into logical formulas.

The simplest use of modules occurs at the query level. As we observed in
Chapter 2, queries typically are posed relative to the definitions provided by a
given module. The module that is in use in a particular interactive session is
shown to the left of the ?- symbol in a prompt. For example, the prompt for

sig smlists.

type id list A -> list A -> o.
type memb, member A -> list A -> o.
type reverse list A -> list A -> o.
type append list A -> list A -> list A -> o.
type memb_and_rest A -> list A -> list A -> o.

end

Figure 6.2. An interface specification for list operations.
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queries that are to be evaluated against the definitions in the module smlists

has the form

[smlists] ?-

The exact way that a module is associated with a top-level query depends on
the implementation, and we do not discuss it any further here; the Appendix
provides an example of how this might be done by describing the manner in
which the Teyjus implementation of λProlog realizes this association.Assuming
that a module is associated with the top level, a query can use only pervasive
constants and types or those which appear in the signature corresponding to the
module determining the query context. Relative to the prompt just shown, this
means that a query about the append predicate is allowed, but one that involves
the revapp predicate is ill formed because that predicate constant is unknown
(out-of-scope) at that point.

When the contents exported by one module are needed to define predicates
in another module, we use the accumulation declaration that takes the form

accumulate <name1>, ..., <namen>.

and can be placed amid other declarations and definitions in a module. Concep-
tually, the effect of this declaration is to insert into the module in which it appears
all the code appearing in the modules in the list following the accumulate key-
word. However, before such a textual insertion is carried out, the constants
and type constructors private to the module being inserted are renamed so as
to distinguish them from those appearing in the other accumulated modules
as well as the ones appearing in the accumulating module. This requirement
is formalized later via the logic-based interpretation of accumulation and the
associated definition of module elaboration.

Figure 6.3 contains an illustration of module accumulation. The module
smpairs that is defined here implements an association list data structure. In
doing so, it uses the predicates memb and member defined in the module smlists.
The code for these predicates is made available within the module smpairs

by using an accumulate declaration. Notice that the semantics of the modules
language ensures that the accumulated copy of smlists is entirely local to
smpairs: None of the predicates defined in smlists are exposed through the
signature of smpairs, and hence these are not directly available for use in a
context that accumulates smpairs or in queries posed against this module.

When it is pertinent to pass on definitions from accumulated modules,
one can include the declarations of relevant accumulated constants and type
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sig smpairs.

kind pair type -> type -> type.
type pr A -> B -> pair A B.

type assoc, assod A -> B -> list (pair A B) -> o.
type domain list (pair A B) -> list A -> o.
type range list (pair A B) -> list B -> o.

end

module smpairs.
accumulate smlists.

kind pair type -> type -> type.
type pr A -> B -> pair A B.

type assoc, assod A -> B -> list (pair A B) -> o.

assoc X Y L :- memb (pr X Y) L.
assod X Y L :- member (pr X Y) L.

type domain list (pair A B) -> list A -> o.

domain nil nil.
domain ((pr X Y)::Alist) (X::L) :- domain Alist L.

type range list (pair A B) -> list B -> o.

range nil nil.
range ((pr X Y)::Alist) (Y::L) :- range Alist L.
end

Figure 6.3. An illustration of module accumulation.

constructors in the signature of the accumulating module. Thus, by placing
the declaration

type append list A -> list A -> list A -> o.

in the signature for smpairs, we make it possible to use the append predi-
cate in any context where smpairs is accumulated or available. We sometimes
even may want to export from an accumulating module all the definitions that
emanate from an accumulated module. This, of course, can be done by includ-
ing each declaration in the signature of the accumulated module again in the
signature of the accumulating module. However, this is cumbersome. A simpler
way to realize the same effect is to use signature accumulation, a declaration
that takes the form

accum_sig <name1>, ..., <namen>.
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Conceptually, this declaration, which is analogous to module accumulation,
results in the insertion in the place where it occurs of the signatures whose
names follow the accum_sig keyword. As an example, we may add the line

accum_sig smlists.

to the signature smpairs to produce a module that implements both list
operations and association list operations.

The accumulation of signatures was introduced as a means for composing
signatures. Signatures also can be accumulated meaningfully into modules with
a similar semantics.

6.3 Matching signatures and modules

A key part of the formalization of the modules language is making precise
the intended relationship between signatures and modules. We deal with the
syntactic aspects of this correspondence here by discussing the matching of a
signature with a module, leaving the treatment of the logical and search related
aspects to the next section.

Before we can discuss signature matching, it is necessary to understand
how the full content of a given signature is to be extracted. This is done by a
process that we call signature elaboration that also simultaneously determines
if a signature is well formed. The process is easily defined in the case that the
signature contains no accumulation directives: It simply collects all the kind
and type declarations appearing in the signature. As for the well-formedness
conditions, one set of these is obvious: All the type constructors used in the
signature either should be defined in it or should be drawn from the globally
available set, and each of these symbols should be used with its specified arity.
The second set of conditions stems from the fact that kind, type, and operator
associations must be functional in nature. For kind and operator declarations,
this amounts to requiring that all such associations with any given token in the
signature be identical. For type declarations, the requirement takes into account
the presence of type variables: All the types associated with a token must be
identical up to (type) variable renaming. If this requirement is fulfilled, any one
of the alphabetic variants is treated as the type associated with the token by the
extracted signature.

Signature elaboration for a signature that contains accumulation directives
requires the notion of signature merging. A collection of elaborated signatures
is mergeable if the following properties hold:

• If a token has a kind declaration in more than one signature in the collection,
then all the declarations pertaining to it are identical.
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• If a token has a type declaration in more than one signature in the collection,
then all the types associated with it through such declarations are identical
up to a renaming of type variables.

• If a token has an operator declaration in any one signature, then it has an
identical operator declaration in any other signature that identifies it as a
constant.

Now suppose that � is a signature that accumulates the signatures �1, . . . , �n.
A prerequisite for the well-formedness of � is that there be no accumulation
cycles going through it; i.e., no sequence of accumulations starting at any one of
�1, . . . , �n should include �. If this is the case, then the next requirement is that
each of �1, . . . , �n should be well formed. Let this property also hold, and let
�′

1, . . . , �′
n be the elaborations of these signatures. Then the third requirement

for � to be well formed is that �′
1, . . . , �′

n be mergeable. Suppose this also
to be true, and let �′ be the signature obtained by replacing the accumulation
directives in � by the elaborations �′

1, . . . , �′
n. Then �′ is the elaboration of �,

and the latter signature is well formed only if the former (accumulation-free)
one is.

Another important step in the syntactic checking of a module consists of
verifying that it is well formed and simultaneously identifying an implicit sig-
nature for it. This step, once again, has an easy explanation in the case of a
module that does not accumulate any other modules. The implicit signature
here is determined by signature elaboration applied to the result of dropping all
the clauses from the module. The module then is well formed if this signature
is well formed, if every constant used in the clauses is defined in the signature
or is drawn from the list of pervasive constants, if each such constant is used
at an instance of its defined type and in a manner consistent with any operator
declaration pertaining to it, and finally, if each clause is well typed.

To treat the general case, suppose that a module M accumulates, in this order,
the modules M1, . . . , Mn that have specified signatures �1, . . . , �n. There are
then three requirements for M to be well formed:

• M must not be part of a module accumulation cycle; i.e., no sequence of
module accumulations starting at one of M1, . . . , Mn should include M .

• Each of the modules M1, . . . , Mn must be well formed and must match its
specified signature.

• The module M ′ that is obtained from M by replacing the accumulation
of modules M1, . . . , Mn with an accumulation instead of the signatures
�1, . . . , �n must be well formed by virtue of the criteria already described
for modules that do not accumulate other modules.
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module m1. sig m1.
kind item type. kind item type.
type p,q item -> o. type p,q item -> o.
type a item. type a item.
type r list item -> o. end
p X :- q X.
r (a :: nil).
end

module m2. sig m2.
kind item type. kind item type.
type q, r item -> o. type q, r item -> o.
type a item. type a item.
q X :- r X. end
r a.
end

module m3. sig m3.
accumulate m1, m2. kind item type.
type s, t item -> o. type s, t item -> o.
type b item. type a item.
s X :- p X. end
t b.
end

Figure 6.4. A set of modules for illustrating signature matching.

Suppose that all these conditions are met. The implicit signature for M then is
identical to that associated with the module M ′ that we have just described.

Let M be a well-formed module with the implicit signature �. Then we
say that M matches a signature �′ just in the case that � and the (signature)
elaboration of �′ are mergeable.

We illustrate the ideas described in this section by considering the dec-
larations shown in Figure 6.4. These declarations first present the modules
m1 and m2 together with their associated signatures and then use these via
module accumulation to define the module m3. It is easily seen that the
modules and signatures m1 and m2 are well formed and that the modules
match their respective signatures. For example, consider the module m1.
The implicit signature corresponding to it is characterized by the following
declarations:

kind item type.

type p,q item -> o.

type a item.

type r list item -> o.
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We use concrete syntax here and below to show the (conceptual) associations
of kinds and types with tokens. Now this signature contains (the elaboration of)
the signature m1 and therefore must be mergeable with it.

Turning now to the module m3, we see that this also must be well formed:
There are no module accumulation cycles beginning with m3, the accumulated
modules m1 and m2 each are well formed and match with their defined signatures,
and the module

module m3’.

accum_sig m1, m2.

type s,t item -> o.

type b item.

s X :- p X.

t b.

end

which is the result of replacing the accumulation of modules in m3 with an
accumulation instead of their signatures, also can be shown to be well formed.
We can observe further that module m3 matches its specified signature. The
implicit signature for this module is identical to that for the module m3’,
which is

kind item type.

type p,q,r,s,t item -> o.

type b item.

This signature is clearly mergeable with (the elaboration of) the signature m3.
Suppose that the signature m1 has the following definition instead of the one

shown in Figure 6.4:

sig m1.

kind item type.

type p,q item -> o.

type a item.

type r list item -> o.

end.

Then the signatures m1 and m2 will not be mergeable because they associate
types with the common constant r that cannot be made identical simply by the
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renaming of type variables. The module m3’ defined earlier therefore will not
be well formed, and hence neither will m3.

6.4 The logical interpretation of modules

The modules language gives expression to two notions of scope: It allows
queries to be relativized to predicate definitions emanating from a module, and
it provides a means for controlling the visibility of names of predicates and
data constructors used in different blocks of code. Implications and universal
quantifiers that are permitted in goals in hohh+ already lead to a treatment of
both these aspects. Thus it appears possible to use a translation into the core
language constituted by hohh+ to formalize the meaning of the modularity con-
structs. There is, however, one issue that requires further consideration before
a satisfactory translation can be provided: A logic-based mechanism must be
described that allows names of constants to be localized to (sets of) program
clauses. We show below how such a device may be obtained through a benign
extension of hohh+ syntax and then use this extended language to present a
translation-based semantics.

6.4.1 Existential quantification in program clauses

Explicit universal quantifiers in goals provide a mechanism for designating the
scope of constants. Thus consider a goal formula of the form ∃y∀x(D(x) ⊃
G(y)). The universal quantification over x will lead to x being treated as a
constant in the process of solving this goal, but this constant cannot be used in
a term instantiating the existentially quantified variable y. Now suppose that
x does not appear in the subformula G(y). In addition to the restriction on
instantiations just described, it is legitimate to think of x as a constant that is
known only within D(x), i.e., as one that is local to this program clause.

We would, of course, prefer a syntactic device that allows us to identify
local constants directly with program clauses. A look at logical equivalences
suggests a natural way for realizing this. In most logical systems, a formula of
the form ∃y∀x(D(x) ⊃ G(y)) is equivalent to one of the form ∃y((∃xD(x)) ⊃
G(y)) in the case that x is not free in G(y). Thus, if our syntax is extended
to permit existential quantifiers over program clauses at appropriate places, we
would obtain a mechanism for signaling the locality of names directly with
such clauses. A further useful equivalence is that between ∃x(D1(x)∧D2) and
(∃xD1(x)) ∧ D2. This property justifies an extension of syntax that allows the
scopes of existential quantifiers to be narrowed to subparts of a large program
clause, thereby enabling a finer-grained control over the visibility of names.

We modify the syntax of hohh+ in keeping with the preceding observations.
In particular, we let program clauses and goal formulas to be given now by the
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D- and G-formulas defined by the following syntax rules:

G ::= � | A | G ∧ G | G ∨ G | ∃x G | E ⊃ G | ∀x G

D ::= Ar | G ⊃ D | D ∧ D | ∀x D

E ::= D | E ∧ E | ∃xE.

The heads of atoms designated by Ar in the definition of hohh had to be constants
(from a relevant signature �) or variables captured by a universal quantifier
in a goal that embeds that atom. In hohh+, this constraint is now expanded to
allow such heads also to be variables that are bound by the existential quantifier
in an E-formula inside which such atoms might appear.

The main change in the new version of hohh+ is that the left contexts of
implicational goals are now permitted to contain existential quantifiers that
have program clauses in their scope. Some care is needed in the treatment of
such formulas in the operational semantics associated with the language. If we
naively use the ⊃R rule from Figure 2.2 in Chapter 2, namely,

�; P , B1 −→ B2

�; P −→ B1 ⊃ B2

then E-formulas would be added to programs, and this is problematic because
programs are restricted to contain only D-formulas.

To resolve this problem, we reflect the logical equivalences that justified the
introduction of existential quantifiers over program clauses into the treatment
of implicational goals. Specifically, we replace the ⊃R rule with the set of rules
shown in Figure 6.5 and introduce a new kind of sequent �; P −〈�〉 → G,
where � is a multiset of E-formulas. When reading proof rules bottom up,
the ⊃R rule is replaced by a sequence of derivations that starts with ⊃R′,
ends with finish, and contains some number of occurrences of ∧L′, ∃L′, and
reclassify rules. This new phase designed to process E-formulas is essentially
an extension to the goal-directed reduction phase, at least in the sense that all
the inference rules in this new phase are invertible (i.e., no backtracking is
needed). During this new phase, the local constants are introduced dynamically

�; P −〈E〉→ G

�; P −→ E ⊃ G
⊃R′ �; P −→ G

�; P −〈 〉→ G
finish

�; P , D −〈�〉→ G

�; P −〈D, �〉→ G
reclassify

�; P −〈E1, E2, �〉→ G

�; P −〈E1 ∧ E2, �〉→ G
∧L′ �, y; P −〈E[y/x], �〉→ G

�; P −〈∃xE, �〉→ G
∃L′

The ∃L′ rule has the proviso that y is not present in � and hence is not free in the
concluding sequent.

Figure 6.5. Modified proof rules for processing E-formulas.
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into computation, and the clauses using these new constants are integrated with
the ambient logic program.

The extended hohh+ syntax allows (the more liberal) E-formulas to be used
instead of D-formulas arbitrarily as the antecedents of implicational goals. We
refine this syntax by restricting the expressions that a programmer might write
within a module or in a query to those permitted by the original definition of the
hohh+ language, allowing the richer syntax to be used only in the translation
of modularity constructs. Thus existential quantifiers over program clauses are
used only to explain the localization of the scopes of constants to modules in
the manner we discuss below.

6.4.2 A module as a logical formula

The logical semantics of a well-formed module and a well-formed matching
signature are formalized by identifying an E-formula corresponding to the
combination. The translation to such a formula is easy to describe in the case
that the module in question does not accumulate any other modules. First, we
collect the constants contained in the implicit signature for the module that do
not also appear in the explicitly provided signature; these constitute the hidden
or local constants of the module. We then construct a D-formula by conjoining
all the program clauses contained in the module. Finally, we obtain the desired
E-formula by inserting existential quantifiers over the hidden constants at the
head of the D-formula.

The translation in the situation where the module accumulates other modules
is only slightly more complicated. We proceed as before to identify the hidden
constants for the module; notice that constructing the implicit signature will
require us also to look at the (explicit) signatures of the accumulated modules
in this case. We then extract an E-formula corresponding to each of the accu-
mulated modules. This step involves a recursion that is well defined because
of the absence of accumulation cycles. Next, we construct an E-formula by
conjoining the E-formulas corresponding to the accumulated modules with the
program clauses contained in the module. The formula to be associated with the
given module now is obtained by existentially quantifying the hidden constants
over this E-formula.

We illustrate the semantics that we have just described by considering the
modules and signatures shown in Figure 6.4. As we have seen already, each of
these is well formed, and each of the modules matches its respective signature.
Examining the module m1, we observe that it has r as its sole local constant.
Thus the E-formula corresponding to it is

∃r((∀x(q x ⊃ p x)) ∧ (r (a::nil)))
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The module m2 has no local constants, and it therefore translates simply to the
D-formula

∀x(r x ⊃ q x) ∧ (r a)

Turning now to the module m3, we see that it hides the constants p, q, r, and
b. Using the translation of module accumulation, we obtain the following E-
formula for this module:

∃p∃q∃r∃b(∃r((∀x(q x ⊃ p x)) ∧ (r (a::nil))) ∧
(∀x(r x ⊃ q x) ∧ (r a)) ∧
(∀x(p x ⊃ s x) ∧ (t b)))

6.4.3 Interpreting queries against modules

The informal description of posing a query against modules given in Section 6.2
now can be made more formal. As noted already, one role that modules play
is a syntactic one: They provide a signature for interpreting terms and types
used in the query. Formally, this signature is what we have called the explicit
signature of the module. At a logical level, the query is treated as a request
to solve an implicational goal in which the antecedent of the implication is
the E-formula associated with the module and whose consequent is the query
presented by the user. A point to emphasize concerning this translation is that
the implicitly existentially quantified variables in the user presented query are
treated as being quantified over the entire implicational goal. Thus consider an
interaction depicted schematically as

[m] ?- g X.

Assuming that the formula associated with the module m is E, this query is
logically equivalent to the request to solve the goal ∃x(E ⊃ g x).

The explicit signature that mediates the external view of a module already
leads to a static notion of scoping. Consider, for example, the modules shown
in Figure 6.4. The predicate r that is defined in module m1 but is not exposed by
its signature is unknown in an external context and hence cannot be confused
with the predicate of the same name that appears in the module m2. As another
example, the query

[m3] ?- p a.

is ill formed. Notice that this is the case even though the predicate p is known
within the module m3; in fact, the query

[m3] ?- s a.
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leads to an attempt to solve the same goal (p a) in the richer context internal
to m3, and this results eventually in a success.

The E-formula-based interpretation of modules fits in well with this frame-
work for giving names a scope while adding an interesting dynamic dimension
to it. To see this, consider the query

[m3] ?- sigma x\ t x.

This query has a successful solution that is based on instantiating the existential
quantifier with the constant b. By contrast, the seemingly identical query

[m3] ?- t X.

fails. Logically, the difference arises from the scope of the existential quantifier
in the two cases. Pragmatically, we can understand this phenomenon as the
difference between using a constant in the course of searching for a solution, as
happens in the first query, and attempting to expose the identity of this constant
externally, as happens in the second query.

6.4.4 Module accumulation as scoped inlining of code

The translation semantics for modules constructs a possibly large conjunction
in which existential quantifiers have scopes over component formulas. The
proof rules in Figure 6.5 break up such formulas into new scoped constants
and new program clauses. Rather than executing these proof rules each time a
module is queried, it is possible to preprocess a module so that it is devoid of
accumulation directives and still maintains an equivalent behavior with respect
to queries. We refer to this process as module elaboration: Its essential content
is that of inlining accumulated signatures and modules while renaming local
variables in a way that ensures that their relative scopes are preserved.

At a formal level, module elaboration associates a pair consisting of a sig-
nature and a list of clauses with each well-formed module; the composite
module simply combines these two items together. The elaboration process has
a straightforward definition if the module does not accumulate any other mod-
ules: The signature component is determined by signature elaboration applied
to the result of dropping all the clauses from the module, and the list of clauses
is obtained by dropping all directives to accumulate signatures and all the kind,
type, and operator declarations. For the general case, suppose that a (well-
formed) module M accumulates, in this order, the modules M1, . . . , Mn for
which module elaboration yields the signatures �1, . . . , �n and the clause lists
P1, . . . , Pn, respectively. Further suppose that the implicit signature of M is �0

and that the clauses contained in M form the list P0. Now, for 1 ≤ i ≤ n, let
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�′
i be obtained from �i by possibly renaming sorts, type constructors, and con-

stants that appear in it but not in the explicit signature of module Mi to ensure
that these names do not appear in the implicit or explicit signature of M and are
also distinct from the names used in �′

j for 1 ≤ j ≤ n and i �= j . Moreover,
for 1 ≤ i ≤ n, let P ′

i be obtained from Pi via the same renaming that produced
�′

i from �i . Then the signature and list of clauses associated with M by module
elaboration are, respectively, the combination of the signatures �′

1, . . . , �′
n, �0,

and the result of appending, in this order, the lists P ′
1, . . . , P ′

n, P0.
To illustrate the process just described, consider, once again, the modules

shown in Figure 6.4. The signature extracted by module elaboration for module
m3 is

kind item type.

type p,q,r,r’,s,t item -> o.

type a,b item.

and the list of clauses is

p X :- q X.

r’ (a :: nil).

q X :- r X.

r a.

s X :- p X.

t b.

Here, r’ is a new name for the constant r local to the module m1; this name
is selected so as to avoid confusion with the constant of the same name that is
exported from module m2. By combining these two components, we obtain a
module that, when mediated by the signature m3, behaves the same with posed
queries as does module m3.

6.5 Some programming aspects of the modules language

Notwithstanding its syntactic and semantic simplicity, the modules lan-
guage that we have described is capable of supporting important aspects of
programming-in-the-large. We illustrate a few of these aspects now.

6.5.1 Hiding and abstract datatypes

The signature associated with a module controls the visibility of the constants
and types defined within it. By hiding the data constructors corresponding to
a given type while exposing the type itself along with predicates using that
type, one can build an abstract datatype. When designed in this way, objects
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sig stack.
kind store type -> type.
type init store A -> o.
type add, remove A -> store A -> store A -> o.
end

module stack.
kind store type -> type.
type emp store A.
type stk A -> store A -> store A.
type init store A -> o.
type add, remove A -> store A -> store A -> o.
init emp.
add X S (stk X S).
remove X (stk X S) S.
end

Figure 6.6. Implementing a stack abstract datatype.

of the abstract type can be used and manipulated by the exposed predicates
wherever the module is available: At the same time, the details of the actual
data representation can remain hidden.

The signature and the module defined in Figure 6.6 illustrate how to imple-
ment an abstract datatype. The code contained in the module defines a type
constructor for a store, data constructors for stores, and the predicates for ini-
tializing a store and for adding and removing objects from it using a stack-based
discipline. The signature associated with this module exposes the store type
constructor and the predicates but not the data constructors. Thus the query

[stack] ?- init A.

that attempts to exhibit the representation of the empty stack to the user will
fail. However, stack objects can be used “anonymously” even at the top level.
For example, the query

[stack] ?- sigma A\ sigma B\ sigma C\ init A, add 1 A B, remove X B C.

that uses the stack representation to store and then retrieve the integer 1 will
succeed by binding X to 1.

We illustrate the high level of functionality and abstraction afforded by both
abstract datatypes and module accumulation by developing an implementation
of a heuristic-based graph search procedure. Such a procedure would initialize
a collection of states and then expand this set based on the rules for generating
new states and an underlying strategy for selecting the next state for expan-
sion. This procedure will need a mechanism for recording the set of states that
are candidates for expansion. If the desire is to perform a (heuristics-driven)
depth-first search, a natural choice for the store regimen would be a stack. The
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sig graph_search.
kind action type.
type graph_search list action -> o.
end

module graph_search.
accumulate stack.
kind state, action type.
type graph_search list action -> o.
type init_open store state -> o.
type expand_graph store state -> list state -> list action -> o.
...
graph_search Soln :- init_open Open, expand_graph Open nil Soln.
init_open Open :- start_state State, init Op, add State Op Open.
expand_graph Open Closed Soln :-

remove State Open Rest, final_state State, soln State Soln.
expand_graph Open Closed Soln :-

remove State Open ROpen,
expand_node State NStates,
add_states NStates ROpen (State::Closed) NOpen,
expand_graph NOpen (State::Closed) Soln.

...
end

Figure 6.7. The skeleton of a graph search module.

implementation of such a store can be obtained by accumulating the module
stack. Figure 6.7 displays part of the definition of a graph search module based
on this idea. The main predicate defined by this module is graph_search, which
ultimately produces a list of actions to achieve a desired goal. The definition of
this predicate depends on the predicates init_open, which initializes a list of
“open” nodes in the graph, and expand_graph, which expands a given graph by
selecting an open node and generating its successors based on the actions that
apply to it. These predicates must know of a type for stores, and their implemen-
tation will need operations for initializing stores and for adding to and removing
from them. These components are naturally provided by the accumulated mod-
ule stack. Note that while the (universally quantified) variables in the program
clauses in the graph_search module can be instantiated with store representa-
tions, these representations are completely opaque; they can be examined and
manipulated only by means of the operations provided by the stack module.

6.5.2 Code extensibility and modular composition

In logic programming, it is possible for the definition of a predicate or pro-
cedure to be distributed across a set of clauses. Thus, in contrast to other
programming styles, an existing procedure definition always can be extended.
In the framework we have described, this kind of extensibility also applies to
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data representations: New type declarations can be added to extend the con-
structors corresponding to an existing type, and these additions can occur in
different modules.

The modules and signatures shown in Figure 6.8 illustrate the use of this
capability. The purpose of this code is to build a theorem prover for a fragment
of intuitionistic first-order logic. While the theorem prover itself is simple, the
interesting part of this example is the manner in which it is built. First, the
part of this prover that works on the propositional fragment of this logic is
presented in the module proplogic. This code can be used in a stand-alone
fashion or can be used to deal with the propositional fragment of different
quantificational logics. In this particular example, it is accumulated into the
module quantlogic, where it is extended to a first-order logic. (The treatment of
encoded first-order quantifiers within the quantlogic module is fully explained
in Chapter 7.) Notice that both the collection of constructors for objects of
type form and the definition of the provability predicate are extended after the
accumulation.

6.5.3 Signature accumulation and parametrization of modules

Module accumulation can be used to get a private copy of an existing func-
tionality for new code that is being developed. In many cases, this is the right
kind of interaction; this is especially true when the smaller components that
are being used are the result of a stepwise refinement process and do not have
significance in their own right. In other situations, however, the functionality
that is needed in the code being developed is not intended to be of a restricted
use, privately developed variety. Rather, it is expected to be something that is
provided by an external “library” module. In this case, it is better to think of the
module that is being built as one that is expecting to be given this library mod-
ule before it can fulfill the functionality it promises. Thus the expected external
module plays the role of a parameter. Of course, the parameter must satisfy
certain requirements. These requirements can be specified by a signature.

Explicitly defined signatures and signature accumulation provide a natural
way to capture such module parametrization. The essential idea is to accu-
mulate a signature prescribing the needed capability into the module being
defined and into its signature rather than accumulating the library capability
directly. Of course, the module is complete only when it is combined with the
expected functionality: This combination can be done at a subsequent level in
the hierarchy by bringing the two modules together through a simultaneous
accumulation. To illustrate this idea, consider the theorem prover in Figure 6.8.
Both the proplogic and the quantlogic modules use list functions. In the code
shown, this functionality is obtained by accumulating smlists immediately into
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sig proplogic.
kind form type.
type ff, tt form.
type and, or ==> form -> form -> form.
type prove list form -> form -> o.
end

module proplogic.
accumulate smlists.
kind form type.
type ff, tt form.
type and, or ==> form -> form -> form.
type prove list form -> form -> o.
prove L F :- member ff L.
prove L F :-

memb_and_rest (and A B) L L’, prove (A::B::L’) F.
prove L (and F1 F2) :- prove L F1, prove L F2.
prove L (==> F1 F2) :- prove (F1::L) F2.
prove L F :- memb_and_rest (or A B) L L’,

prove (A::L’) F, prove (B::L’) F.
prove L (or F1 F2) :- prove L F1; prove L F2.
prove L F :- member F L.
prove L F :- memb_and_rest (==> F1 F2) L L’,

prove L F1, prove (F2::L’) F.
end

sig quantlogic.
accum_sig proplogic.
kind term type.
type all, some (term -> form) -> form.
end

module quantlogic.
accumulate proplogic, smlists.
kind term type.
type all, some (term -> form) -> form.

prove L F :- memb_and_rest (some P) L L’,
pi c \ prove ((P c)::L) F.

prove L (all P) :- pi c\ prove L (P c).
prove L (some P) :- prove L (P T).
prove L F :- memb_and_rest (all P) L L’,

append L’ [all P] L’’, prove ((P T)::L’’) F.
end

Figure 6.8. A first-order theorem prover in two modules.

the modules. Such an accumulation is at least wasteful: Two “private” copies
of the smlists module are used where one library version would have sufficed.
Moreover, the signatures of the two new modules do not clearly indicate the
dependency on an implementation of lists.
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sig mylogic.
accum_sig quantlogic.
type a, b term.
type q form.
type p term -> form.
end

module mylogic.
accumulate quantlogic, smlists.
type a, b term.
type q form.
type p term -> form.
end

Figure 6.9. Combining functionalities to obtain an actual theorem prover.

An alternative development that overcomes these problems eliminates
the accumulation of the smlists module from both the proplogic and the
quantlogic modules and instead accumulates the signature of smlists into
these modules and their signatures. Then, when we actually want to use the
theorem prover (when the nonlogical vocabulary has been fixed), we sim-
ply accumulate all modules into the relevant context. Such accumulation is
illustrated in Figure 6.9.

Another interesting observation is that the relationship between the mod-
ules smlists and quantlogic is different from that between proplogic and
quantlogic. In the former case, the functionality that is provided by smlists is
intended to be used without modification, whereas in the latter case, the mean-
ings of the types and predicates are expected to change. Attaching annotations
to predicates to indicate their fixed usage at module interfaces is useful as doc-
umentation for human readers and for compilers. The Teyjus implementation
of λProlog includes mechanisms for providing such annotations.

6.5.4 Higher-order programming and predicate visibility

A higher-order logic programming language allows defining predicates that
are parameterized by other predicates. For example, a collection of such
higher-order predicates related to lists is shown in Figure 5.3. Such predicate
definitions have general applicability and therefore may be usefully collected
into a library module. The invocation of such predicates, of course, will supply
them with specific predicate names as arguments. Prolog dialects that pro-
vide notions of both modules and higher-order predicates (e.g., the call/1

predicate) need to determine how names of predicates that are provided as
arguments to other predicates are interpreted. To see that such interpretations
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sig comblibrary. module comblibrary.
type call o -> o. type call o -> o.
end type p list int -> o.

p (1 :: nil).
call Q :- Q.
end

sig test. module test.
type test list int -> o. accumulate comblibrary.
end type test list int -> o.

type p list int -> o.
p (2 :: nil).
test X :- call (p X).
end

Figure 6.10. Interpreting predicate names in higher-order programs.

can be problematic, consider the following query posed against the module in
Figure 6.10.

[test] ?- test X.

The attempt to solve this query will lead to invocation of the goal call (p X),
which, in turn, will cause the goal p X to be called. What should be the definition
of the name p when it is called? Two competing possibilities have been sug-
gested: Its denotation may be determined by whatever is visible in the context
where the predicate call is defined or by the environment in which the name is
explicitly used. In this instance, the top-level query will succeed either way, but
with different results depending on which answer one takes: X will be bound to
1 :: nil in the first case and to 2 :: nil in the second.

The second interpretation is the commonly used resolution. This interpreta-
tion has the advantage that the denotations of names are determined statically,
an important requirement for any good notion of modularity. Notice that this
interpretation is a natural consequence of the semantics that we have presented
for our modules language. The possibility of two different interpretations arises
from a separation between the calling and the called context. This separation
plays no role in our semantics. The module test is, in fact, treated as one collec-
tion of declarations in which existential quantifiers with limited scope control
the visibility and hence the identity of names. Using module elaboration, we see
that the module test is equivalent to the following collection of declarations:

type test list int -> o.

type call o -> o.

type p, p’ list int -> o.
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p’ (1:: nil).

p (2 :: nil).

call P :- P.

test X :- call (p X).

The name p has an unambiguous interpretation in this context, and the only
answer substitution to the query shown earlier is the binding 2 :: nil for X.

6.6 Implementation considerations

In order for a module language to be effective, it should have an efficient
implementation and support separate compilation. While a detailed discussion
of these issues is beyond the scope of this book, we sketch possible ways to
implement modules effectively.

Module elaboration can play an important role in the efficient realization of
our module language. In the first instance, we can think of a preprocessor that
carries out the inlining of various accumulated modules and signatures while
carefully renaming constants to avoid clashes and inadvertent capture. Once a
complete list of declarations without accumulations has been produced, stan-
dard compilation techniques can be used to generate code for the (elaborated)
module. Some care is needed in the runtime treatment of the constants local
to this module. However, the mechanisms that are already present in the lan-
guage for treating alternating sequences of existential and universal quantifiers
in goals suffice also for handling this aspect. The only additional requirement,
then, is to make sure that local constants are annotated properly at the time the
module is used to prove queries.

The main problem with the scheme that we have just described is that
it depends on an explicit compile-time inlining of the code of accumulated
modules. Rather than assimilating the code of an accumulated module and
recompiling it each time the accumulating module is compiled, we might like
to be able to compile this once and then somehow use the code that is pro-
duced anyplace where it is needed. Such a separate compilation strategy can
be realized by moving the inlining of code to a linking phase and carrying it
out over compiled code instead of source code. Of course, the compiler will
have to produce additional information for use in the linking phase. For this
scheme to be practically acceptable, the linking process must be designed so
that it combines the separately generated code for blocks of clauses for a given
predicate in such a way that the runtime performance of the resulting code is
not significantly different from that of the code obtained via a compile-time
inlining.
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6.7 Bibliographic notes

As with all major programming paradigms, techniques for the modular con-
struction of code have been of considerable interest within logic programming.
Mechanisms for supporting modularity are, in fact, part of most advanced imple-
mentations of Prolog and also have been the topic of Prolog standardization
(ISO/IEC, 2000). Much of this focus on modularity has been pragmatic and has
dealt with questions such as the interpretation of metalogical predicates like
call/1, the treatment of declarations that affect the interpretation of syntax, or
the problem of language extensibility (Cabeza and Hermenegildo, 2000).

There have been number of papers dealing with more theoretical approaches
to modularity in logic programming. Bugliesi et al. (1994) have surveyed this
landscape. Their survey classifies the various approaches to modularity into two
groups: those which treat modularity features as manifestations of an algebra
for program composition built on top of a fixed core language and those which
attempt to extend the underlying logical language to derive support for notions
of scoping pertaining to names and predicate definitions. The first of these
two approaches was initiated by O’Keefe (1985) and followed up in a more
complete fashion by Sannella and Wallen (1992) and by Hill and Lloyd (1994)
within the Gödel programming language.

The second approach, pioneered by Miller (1989c), extended Horn clauses
with implications and universal goals in order to allow for varying and control-
ling the programs and signatures during the course of computation. A related
idea for controlling predicate definitions was studied by Monteiro and Porto
(1989) within their framework of contextual logic programming. The dynamic
addition of program clauses means that previously existing predicates can
change meanings, and hence the meaning of a module becomes dependent on
the context in which it is used rather than being self-contained. Giordano and
Martelli (1991) have described a way to ensure the fixity of predicate definitions
by using modal interpretation of formulas. A later proposal by Miller (1994)
includes the idea of module accumulation. As we have seen here, when com-
bined with the use of existential quantifiers to narrow the visibility of names,
this simple static device provides control over the availability of predicate def-
initions as well. Holte and Nadathur (2006) describe the particular modules
language discussed in this chapter that realizes this combination.

The modularity constructs that we have described resemble the signatures
and structures used in the language Standard ML(Milner et al. 1990). Moreover,
our use of existential quantification in programs looks enticingly similar to
existential types that underlie hiding in functional programming (Mitchell and
Plotkin 1988). There are differences, however: Logic programming is based on
proof search rather than on proof normalization, and much of our effort here
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has centered on explaining how well our modularity ideas fit with proof search.
In contrast, Sannella and Wallen (1992) employ the constructs from Standard
ML mainly as external mechanisms for organizing logic programs. Harper and
Pfenning (1998) have adapted an ML-like approach to modularity to a logic
programming language based on dependent types and consider the ramifications
of using such an approach to modularity in the proof search paradigm.

The modules language described in this chapter is available in the Teyjus
implementation of λProlog. The first implementation of Teyjus used the inlining
approach in its realization (Nadathur and Tong 1999). A more recent implemen-
tation has refined this approach to incorporate separate compilation (Holte and
Nadathur 2006).
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Computations over λ-Terms

In Chapter 1 we observed that first-order terms can be used as data structures to
represent a variety of symbolic objects. The higher-order language developed in
Chapter 5 allows λ-abstraction to be used to build terms of higher-order type.
We discussed briefly in that chapter how such terms can be used to encode
data structures containing bindings, such as functional difference lists. We now
explore in greater detail the uses of λ-terms in encoding data objects that contain
bindings and show that the hohh language provides elegant and declarative
means for describing a range of computations over such representations.

7.1 Representing objects with binding structure

There are many commonly used mathematical expressions that involve bind-
ings. For example, the expressions

∫
f (x) dx

d(x3 + 1)

dx

100∑
x=1

x2

which represent integration, differentiation, and summation, all contain x as a
bound variable. Similarly, in the programming language context, declarations
of local variables and formal parameters usually constitute binders. Thus, in
the Java code below, the tokens n, g, and i are all bound within the body of the
function.

static List[] empty (int n) {

List[] g;

int i;

g = new List [n];

for (i=0; i <= n-1; i = i+1) {g[i] = null;}

return(g); }

175
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Likewise, in the following function definition in Standard ML, the variables n,
this, prev, count, and iter are bound over relevant parts of the code.

fun fib 0 = 0 |

fib n =

let fun iter(this,prev,count) =

if count = n then this

else iter(this+prev,this,count+1)

in iter(1,0,1)

end;

Many other examples of this kind can be given. Quantifiers in logical formu-
las obviously involve binding variables. Expressions encountered in certain
type systems, such as those based on polymorphic typing, often contain quanti-
fied type variables. Certain treatments of proofs introduce objects that contain
abstractions over proofs and formulas. Expressions in the π -calculus, a frame-
work for modeling concurrent processes, have binding operators that provide
scope to communication channel names.

We are often interested in writing programs that compute over the kinds
of objects just described: This happens, for instance, when we think of con-
structing symbolic differentiators for mathematical expressions or analyzers,
compilers, interpreters, or transformers for programs written in Java or Standard
ML. In such cases, it is useful to have a representation of the objects that explic-
itly recognizes the properties of the binding operators they contain. Many of
these properties have a common structure. For example, in all these situations,
there are closely related notions of free and bound occurrences of variables.
Similarly, while the actual name used for a bound variable might be helpful
for certain purposes, such as printing the object—in much the same way that
good line breaks and indentations are helpful—this name is not semantically
relevant, just as indentation generally has no bearing on meaning; in particular,
the names used for these variables can be systematically changed to other ones
without changing the intended semantics of the expression. Also, in all these
contexts, there is a need for a notion of substitution associated with the binding
operator. Thus quantifier instantiation in logical formulas involves substitution,
and the evaluation semantics of some functional programming languages can
be described by means of the substitution of actual parameters for the formal
ones.Acomputational treatment of such binding-related notions is complicated,
and programming language support for realizing them can be valuable.

There is actually a similarity between abstraction in the λ-terms that con-
stitute the data structures of λProlog (Chapter 4) and the binding operator in
the symbolic objects that we are presently considering. We show in this section
how this similarity can be exploited to develop representations of such objects
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using λ-terms. There are a number of advantages to this kind of encoding.
For example, if an implementation of λProlog already has grappled with the
complexities of α- and β-conversion, then these representations considerably
simplify the programmer’s task in supporting substitution and variable renam-
ing. Also, since the treatment of the conversion rules is internal to the logic
rather than being provided by auxiliary library functions, our approach has a
declarative nature, and reasoning about the programs that we write can benefit
from foundational observations about the logic. We illustrate this perspective
briefly in this section and use it later in this chapter to develop programs that
carry out computations that are of broad interest.

7.1.1 Encoding logical formulas with quantifiers

Section 1.4.2 presented an encoding of first-order formulas. In particular, the
sorts term and form were used to encode the syntactic categories of object-level
terms and object-level formulas. Constants then were introduced through the
following declarations:

type ff, % encoding the false proposition

tt form. % encoding the true proposition

type &&, % encoding conjunction

!!, % encoding disjunction

==> form -> form -> form. % encoding implication

type neg form -> form. % encoding negation

infixl && 5.

infixl !! 4.

infixr ==> 3.

to represent object-level logical connectives; these constants could be used to
construct terms of type form. We also described an encoding for quantifiers
using only first-order terms, but that representation did not capture the binding
aspect of quantifiers.

This situation can be rectified by using the abstraction present in λ-terms.
For concreteness of discussion, suppose that we have the following additional
declarations that introduce some of the nonlogical constants of the object logic:

type p term -> form.

type q term -> term -> form.

type f term -> term.

type a term.

By virtue of these declarations, p and q denote predicates of one and two argu-
ments, respectively, f denotes a function symbol of one argument, and a denotes



178 7 Computations over λ-terms

a constant. The following expressions denote terms of type term -> form that
can be thought of as a new syntactic type for an abstraction of a term over a
formula:

x\ (p x) ==> (p (f x)) Z\ (p Z) ==> (p (f Z)) Z\ (p Z) && (p (f Z))

Notice that the first two expressions here are equal as λ-terms because they
differ only in the name of bound variables. Now the abstraction that is used in
these terms captures the scoping effect of a quantifier over the body of the cor-
responding term. However, none of these terms are themselves representations
of formulas because their type is term -> form rather than form. To obtain the
representation of quantified formulas from them, we introduce two constants
through the following declaration:

type all, some (term -> form) -> form.

These constants, whose types are of order 2, can be applied to the preced-
ing abstractions to yield expressions of type form. For example, consider the
λ-terms

all x\ (p x) ==> (p (f x)) some Z\ (p Z) && (p (f Z))

These terms are both of type form and can be viewed as the representations of
the formulas

∀x (p(x) ⊃ p(f (x))) and ∃Z (p(Z) ∧ p(f (Z))),

respectively. Notice that the mechanism that we have described divides the
encoding of the object logic quantifiers into two parts: a second order constant
that identifies the quantifier and an abstraction that captures its binding effect.

This style of encoding extends smoothly to formulas with multiple occur-
rences of quantifiers that do not necessarily scope over the entire expression.
For example, the formula ∀x ∀y (q(x, y) ⊃ ∃z (p(z) ∧ q(z, y))) is encoded by

all x\ all y\ (q x y) ==> some z\ p z && q z y.

7.1.2 Encoding untyped λ-terms

For another example, consider encoding untyped λ-terms. If the object language
terms are pure, i.e., no special object-level constants occur in them, then we need
only two meta-level constants, one denoting application and the other denoting
abstraction, for the encoding. These can be given by the following declarations:

kind tm type.

type app tm -> tm -> tm.

type abs (tm -> tm) -> tm.
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We list below several examples of untyped λ-terms and their representation
using the preceding constants:

λx x (abs x\x)

λx (x x) (abs x\ (app x x))

λx λy x (abs x\ abs y\ x)

λx λy y (abs x\ abs y\ y)

λx λy (y x) (abs x\ abs y\ app y x)

λx λy λz ((x z) (y z)) (abs x\abs y\abs z\ (app (app x z) (app y z)))

(λx (x x)) (λx (x x)) (app (abs x\ app x x) (abs x\ app x x))

Notice that for every implicit application in an untyped term, there is an
occurrence of the constant app in its encoding, and for every occurrence of
a λ-abstraction in the untyped term, there is an occurrence of abs followed by
an occurrence of a meta-level λ-abstraction in its encoding. The latter aspect
reflects, once again, the idea of dividing the representation of a binding operator
into a constant that identifies the operator and an abstraction that captures its
scoping effect. For readability, we have given corresponding bound variables
in the untyped terms and in their encodings the same name. This is, of course,
not necessary.

It is useful to introspect briefly on how terms of type tm are built. Notice
first that the constant app needs to be given two expressions of type tm in order
to yield a new expression of the same type. From this, it follows easily that no
closed terms of type tm can be built by using just app. The constant abs will
yield a term of type tm if it is given a term of type tm -> tm. This (meta-level)
type does contain terms: For example, both x\x and x\ app x x are of this type.
The meta-level abstraction serves also to introduce new objects of the type tm

that can be used in the body of the abstraction. For example, if a term starts with
the two abstractions abs x\ abs y\, then what follows can be built from app

and abs as well as from the two “constructors” x and y, each of type tm. In this
sense, the type tm can be seen as admitting new constructors as one descends
under binders.

7.1.3 Properties of the encoding of binding

In the preceding two examples, the syntactic categories that are needed for
encoding first-order formulas (term and form) and untyped λ-terms (tm)
make use of additional syntactic categories (respectively, term -> form and
tm -> tm) for encoding abstractions over syntax. The equality notion that
applies to these categories has α-conversion built into it. This is a useful
property from the perspective of the object language because equality typically
is invariant under the renaming of bound variables.



180 7 Computations over λ-terms

Since α-conversion is included within the logical notion of equality, it is
impossible to access the names of bound variables. While this fact may appear
initially to be a deficiency, a little reflection shows that it is, in fact, a strength.
Since no importance is given to the names of bound variables that are also
a semantically meaningless part of the objects being encoded, programmers
using the hohh language can give more attention to the conceptually significant
aspects of the computation. Furthermore, an implementer of the language has
the freedom to use names for bindings or to abandon them altogether. Of course,
since syntax is treated in a more abstract fashion, print and parsing of such
syntactic objects can be a bit more complex: For example, human-readable
names of bindings may need to be generated in order to conveniently print such
syntactic expressions.

Beside α-conversion, meta-level equality also includes β- and η-conversion.
Much of the rest of this chapter explores the usefulness of β-conversion in
computation. The impact of η-conversion is rather mild: It allows us to identify
expressions that, in the simply typed λ-calculus setting, seem rather natural to
identify. For example, if f is a constant of type, say, i → i, then η-conversion
identifies f with λx (f x). This conversion rule also implies that the object-
level formula ∀x (p x) can be encoded as either (all x\ p x) or (all p).
Thus not only does the hohh language abstract away from names of bindings,
but it also sometimes allows one to abstract away from the presence of actual
binders.

7.2 Realizing object-level substitution

Substitution for bound variables is germane to many computations involving
syntax with bindings. Since equality in our logic includes β-conversion, we
have an immediate and elegant approach to performing substitutions into such
syntactic expressions. We provide examples to illustrate this observation in this
section.

A common operation on quantified formulas is that of instantiation. Thus,
given the formula ∀x (p x ⊃ ∃y (q x y)) and a term t , we might want to
construct the formula that results from instantiating the top-level quantifier
with t ; this formula is what we often write as (p x ⊃ ∃y (q x y))[t/x]. Given
our representation of formulas, such a substitution can be effected simply by
constructing a suitable application. To see this, observe first that the formula
being considered is represented by the term

all x\ p x ==> some y\ q x y

of type form. The application of the argument of all to the term (f a) of type
term is given by the expression
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(x\ p x ==> some y\ q x y) (f a)

of type form. By virtue of β-conversion, this term is equal to

p (h a) ==> some y\ q (f a) y.

This is what we expect to have as a result of carrying out the desired substitution.
This technique for instantiating bound variables can be used within logic

programs: The following clauses specify the predicate list_instan that relates
a list of n ≥ 0 terms and an object-level formula with at least n outer most
universal quantifiers with the result of instantiating the first n of the quantifiers
with the corresponding terms in the list.

type list_instan list term -> form -> form -> o.

list_instan nil B B.

list_instan (T::Ts) (all B) C :- list_instan Ts (B T) C.

The head of the second clause for list_instan has the expression (all B),
which, using η-conversion, is equal to (all x\ B x). The body of this clause
contains the expression (B T), which, as we have just seen, is equal to the result
of substituting T for x in the expression B x. Thus the substitution for a bound
variable is realized simply by writing down (B T).

As another example, consider the interpreter for object-level Horn clauses
shown in Figure 7.1. The predicate interp defined here relates the encoding
of a program to that of a goal just in the case that the latter is derivable from
the former. The declarations in Figure 7.2 that define a predicate prog show
how programs are encoded in this context; here, Horn clauses describe a small
graph via its adjacency relation and also define the path relation over graphs.
One case to focus on in the definition of interp is the treatment of existentially

type interp form -> form -> o.
type backchain form -> form -> form -> o.
type atom form -> o.

interp D tt.
interp D (G1 && G2) :- interp D G1, interp D G2.
interp D (G1 !! G2) :- interp D G1; interp D G2.
interp D (some G) :- interp D (G X).
interp D A :- atom A, backchain D D A.
backchain D A A.
backchain D (D1 && D2) A :- backchain D D1 A; backchain D D2 A.
backchain D (all D1) A :- backchain D (D1 X) A.
backchain D (G ==> D1) A :- backchain D D1 A, interp D G.

Figure 7.1. An interpreter for fohc written in hohc.
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type a, b, c term.
type adj, path term -> term -> form.
type prog form -> o.

atom (adj _ _) & atom (path _ _).
prog ((adj a b) && (adj b c) &&

(all x\ all y\ (adj x y) ==> (path x y)) &&
(all x\ all y\ all z\ (adj x y) && (path y z) ==>

(path x z))).

Figure 7.2. Encoding of a sample object-level fohc program.

type cbn, cbv tm -> tm -> o.

cbn (abs R) (abs R).
cbn (app M N) V :- cbn M (abs R), cbn (R N) V.

cbv (abs R) (abs R).
cbv (app M N) V :- cbv M (abs R), cbv N U, cbv (R U) V.

Figure 7.3. Encodings of call-by-name and call-by-value evaluation for the
untyped λ-calculus.

quantified goals represented by expressions of the form (some G). Such quanti-
fiers are instantiated by forming the expression (G X). A similar computation is
generated by the definition of backchain for instantiating universal quantifiers
in program clauses that are given by expressions of the form (all D1). The def-
inition of interp also makes use of the atom predicate to recognize encodings
of atomic formulas. This predicate is defined by identifying all the predicate
constants in the object logic. The query

?- prog P, interp P (path a X).

asks for nodes to which there is a path from a in the given graph. The two
answer substitutions that will be produced bind X to b and then to c.

It is an easy matter to specify evaluation for the untyped λ-calculus by using
β-reduction. For example, the declarations in Figure 7.3 define the predicate
cbn, for call-by-name evaluation, and the predicate cbv, for call-by-value eval-
uation. Under both evaluation schemes, an abstraction evaluates to itself. When
given the application represented by (app M N), both evaluators compute the
value of M, expecting back an abstraction given by (abs R). That abstraction
is instantiated with N in the call-by-name evaluator and by the value of N (i.e.,
the term U such that eval N U is provable) in the call-by-value evaluator. The
resulting expression then is evaluated to compute the value of the original
application term.
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Notice that (the representation of) the term (λx (x x)) (λx (x x)) will be
associated with no value by either of these predicates because it will lead
to an infinite search for a derivation. On the other hand, the call-by-name
evaluator will terminate with a value when given (the representation of)
the term (λx λw w)((λx (x x)) (λx (x x))), whereas the call-by-value evalu-
ator will not terminate (because it will require a value to be computed for
(λx (x x)) (λx (x x))). More specifically, given the query

?- cbn (app (abs x\ abs w\w) (app (abs x\ app x x) (abs x\ app x x))) V.

the binding (abs w\w) will be produced for V, whereas the query

?- cbv (app (abs x\ abs w\w) (app (abs x\ app x x) (abs x\ app x x))) V.

will result in an infinite search.
The various specifications in this section are succinct and declarative because

all the details regarding object-level bound variables and object-level sub-
stitution has been relegated to the meta-level. Notice, however, that these
specifications still are formal and precise: The details regarding object-level
syntax have not gone away; they simply have become the burden of an imple-
mentation of a metalogic such as λProlog. The benefit of this approach is that a
programmer using λProlog is relieved of dealing with the details behind such
“concrete nonsense” as binder names, capture avoiding substitutions, etc. and
can focus instead on the really meaningful aspects of computation.

7.3 Mobility of binders

A commonly accepted principle concerning equality between syntactic expres-
sions is the following: If one decomposes two equal expressions into their
subcomponents, then corresponding subparts also should be equal. For exam-
ple, if we are given two nonempty lists that are equal, the heads and tails of
these lists should be equal as well. If we apply this principle to λ-terms, it
leads to the natural conclusion that we should not be able to decompose an
abstraction into the variable that it binds and its body. For example, while the
terms (all x\ some y\ p x ==> p y) and (all z\ some y\ p z ==> p y)

are equal, the names x and z are not equal, and hence these by themselves
should not be meaningful subparts of the given terms. Similarly, the bodies of
the outermost abstractions, namely,

(some y\ p x ==> p y) and (some y\ p z ==> p y)

are also not equal. Such decompositions, in fact, have no logical status within
the hohh language: Because equality includes α-conversion, the name for a
bound variable is a fiction, and an implementation may not represent it at all.
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The recursive manipulation of data objects with binding structure eventually
requires a descent into the body of a binding. There is actually a rather elegant
approach to realizing this in the higher-order logic programming context that
exploits mobility among three different kinds of bindings. In particular, this
approach uses the fact that during proof search, a term-level binding (i.e., a
λ-abstraction) can be converted into a formula-level binding (i.e., a quantifier),
which then can be converted into a proof-level binding (i.e., an eigenvariable).
To illustrate such mobility, let us consider the problem of defining a predicate
term of type tm -> o in λProlog such that it identifies expressions that are
of type tm. Relying on the existing typing discipline, such a predicate can be
defined simply by the following declarations:

type term tm -> o.

term T.

That is, type checking would enforce that the argument given to term is of type
tm. Another, more flexible way to define this predicate is to reflect the structure
of terms of type tm into program clauses. As described in Section 7.1.2, the type
tm has two constructors given by the declarations

type app tm -> (tm -> tm).

type abs (tm -> tm) -> tm.

As a result, the term predicate can be defined by two clauses, one for each
constructor. These clauses, written in a form that makes their logical content
clear, would be

pi M\ term M => pi N\ term N => term (app M N).

pi R\ (pi x\ term x => term (R x)) => term (abs R).

We could have written these clauses equivalently as

term (app M N) :- term M, term N.

term (abs R) :- pi x\ term x => term (R x).

To understand how the second definition gives rise to a mobility of binders,
consider the attempt to derive the goal

?- (term (abs y\ app y y)).

This leads to an attempt to prove the goal

?- pi x\ term x => term ((y\ app y y) x).

which is equal (via β-conversion) to the goal

?- pi x\ term x => term (app x x).
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This goal-reduction step, in effect, moves the term-level binder for y in the
original query to the formula-level binder for x in the second query; the actual
move takes place via the reduction of ((y\ app y y) x) to (app x x) that
leads to a term-level bound variable being replaced by a formula-level bound
variable. At this stage, the usual operational semantics of a universally quanti-
fied goal causes the formula-level binding to move to a proof-level binding via
the introduction of an eigenvariable. In particular, to derive the new universally
quantified goal, a new eigenvariable, say, c, is introduced, and an attempt is
made to solve the query

?- term (app c c).

from a program that has been augmented with the atomic clause (term c). This
reduction step evidently involves substituting a proof-level (implicitly) bound
variable c for a formula-level bound variable x. Since this final goal clearly
succeeds, the original goal has been established.

The preceding example illustrates an important programming idiom for the
hohh language that can be summarized as follows:

In order to continue a recursive analysis within the scope of a binder, first, apply
that binder to a universal quantified goal variable, for which the metalogic will
substitute an eigenvariable, and second, using an implicational goal, assume new
clauses that extend the definition of various predicates so that they can deal with
the presence of this new eigenvariable.

In the example considered, the first step is achieved by applying (y\ app y y)

to the universally quantified variable x, which an interpreter will replace with an
eigenvariable such as c, and the second step is achieved by assuming the clause
(term c). It is in this way that the abstraction (y\ app y y) is decomposed
into a (proof-level) binding c and the term (app c c).

7.4 Computing with untyped λ-terms

We consider a varied set of computations involving untyped λ-terms in this
section and use these to show how binder mobility can be used to realize
recursion over abstraction structure.

7.4.1 Computing normal forms

An untyped λ-term is in β-normal form if it does not contain any β-redexes. An
equivalent, positive definition is the following:An untyped λ-term is in this form
if it has the structure λx1 . . . λxn (v t1 . . . tm), where n and m are nonnegative
integers, v is a variable, and for each i = 1, . . . , m, ti is in β-normal form. The
term of the form v t1 . . . tm in this context will be said to be β-body-normal.
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This second definition translates easily into the following logic program:

type bnorm, bbnorm tm -> o.

bnorm (abs M) :- pi x\ bbnorm x => bnorm (M x).

bnorm H :- bbnorm H.

bbnorm (app M N) :- bbnorm M, bnorm N.

Here, bnorm recognizes β-normal terms, and bbnorm recognizes β-body-normal
terms.

If we accept this specification of β-normal forms, then the correspondence
between goal-directed search and intuitionistic provability gives us a substitu-
tion lemma “for free.” Assume that from this specification and a collection of
assumptions 	 of the form

{bbnorm c1, . . . , bbnorm cn}, (n ≥ 0)

we can derive the goals (bnorm (abs R)) and (bbnorm S). Since deriv-
ability is based on intuitionistic logic, it must be the case that
(pi x\ bbnorm x => bnorm (R x)) is provable and, by instantiating the quan-
tifier in this formula with S and using modus ponens, (bnorm (R S)) must be
provable. Thus, if an abstraction λx t is β-normal and s is β-body-normal, then
the substitution t[s/x] must be β-normal.

The specification in Figure 7.4 can be used to compute β-normal forms. The
predicate redex relates β-redexes to their one-step reduction. The predicate
red1 relates two terms if the second is the result of replacing exactly one redex
somewhere in the first term. The predicate reduce relates two terms if the sec-
ond is the β-normal form of the first. This predicate uses the bnorm predicate to
decide whether or not to carry out an additional reduction. A second implemen-
tation of this predicate, called reduce’, is also defined in Figure 7.4. Viewed
procedurally, reduce’ computes the reduction by using a looping computation
realized through the higher-order predicate repeat that results in the predicate
red1 being called repeatedly until it no longer succeeds. Notice that the defini-
tion of repeat’ uses the predicate ! to prune away alternative solutions to the
parent goal.

There is a natural relationship between our encoding of the untyped λ-
calculus and a common approach to describing models for this calculus. This
approach to semantics is based on providing a suitable domain D, an associated
notion of the function space [D → D], and two mappings f : D → [D → D]
and g : [D → D] → D. The correspondence to our encoding of the untyped
λ-calculus is the following: The domain D corresponds to the type tm, and the
constructors app and abs correspond to f and g, respectively. The analogy can
be extended a bit further. The semantic equality captured by the redex rule
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type redex, red1, reduce tm -> tm -> o.

redex (app (abs R) N) (R N).
red1 M N :- redex M N.
red1 (app M N) (app P N) & red1 (app N M) (app N P) :- red1 M P.
red1 (abs M) (abs N) :- pi x\ red1 (M x) (N x).

reduce M M :- bnorm M.
reduce M N :- red1 M P, reduce P N.

type repeat (A -> A -> o) -> A -> A -> o.
type reduce’ tm -> tm -> o.

repeat Pred M N :- Pred M P, !, repeat Pred P N.
repeat Pred M M.

reduce’ M N :- repeat red1 M N.

Figure 7.4. Specifying reduction to β-normal form.

for β-reduction (Figure 7.4) can be understood as stating that for all values
R ∈ [D → D] and N ∈ D, (f (g R) N) = (R N) or ((f ◦ g) R) N = R N

or, in other words, (f ◦ g) R = R. Similarly, the semantic equality captured
by the redex rule

redex (abs x\ app M x) M.

for η-reduction can be interpreted as saying that for all values M ∈ D,
(g (λx (f M x))) = M or, in other words, (g ◦ f ) M = M . Thus these two
redexes essentially state that f ◦ g is the identity mapping on [D → D] and
g ◦f is the identity mapping on D. These are the familiar properties stating that
f and g are, in fact, retracts. Since there are strong parallels between the syntax
used to encode the untyped λ-calculus and their semantical models, one should
expect that formal properties of hohh programs that manipulate the untyped
λ-calculus often would be easy to state and prove.

7.4.2 Reduction based on paths through terms

In this section we present a different way of computing β-normal forms that
is based on the idea of a path through an untyped λ-term. Intuitively, a path is
obtained by moving from the top of the term to a variable occurrence in it as
follows: When we encounter an abstraction, we simply pass through it, whereas
when we encounter an application, we choose to move either through its left
argument or through its right argument. The following code introduces a type
for paths, three constants for constructing them, and the predicate path that
relates a term to each one of its paths:
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kind path type.

type bnd (path -> path) -> path.

type left, right path -> path.

type path tm -> path -> o.

path (app M _) (left P) &

path (app _ M) (right P) :- path M P.

path (abs R) (bnd S) :- pi x\ pi p\ path x p => path (R x) (S p).

From these definitions, it should be easy to see that the following three paths
are associated with the term (abs x\ app x (abs y\ app y x)):

bnd u\ left u

bnd u\ right (bnd v\ left v)

bnd u\ right (bnd v\ right u)

It is also possible to think of this relationship in the converse direction: Given
a list of paths, one can identify a λ-term that has these paths. We can, in fact,
use the foreach predicate defined in Section 5.3 to pose a query that exhibits
this behavior:

?- foreach (path N)

((bnd u\ left u) ::

(bnd u\ right (bnd v\ left v))::

(bnd u\ right (bnd v\ right u))::nil).

N = abs W1\ app W1 (abs W2\ app W2 W1);

no

?-

A more interesting notion of a path through a term is one that does something
different when encountering a β-redex (app (abs R) N): In particular, a path
through this term proceeds through the body of the abstraction R, and if the
bound variable of that abstraction is encountered in this process, then the path
gets redirected to N. This changed idea of a path allows for an exploration of
the effect of reducing the β-redexes in a term a little bit at a time.

Suppose now that we do not explore all β-redexes in this way but only
specially marked ones. Let us represent the marked redexes by representing
them as (beta N R) rather than as (app (abs R) N), where beta is a new con-
structor for type tm. Figure 7.5 contains a generalization of the path predicate,
called bpath, that explores these specially marked β-redexes in the manner just
described. If we wish to explore all β-redexes in a given term in this way, we
can use the predicate addbeta to mark them all in this way at the outset.
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type beta tm -> (tm -> tm) -> tm.
type addbeta tm -> tm -> o.
type bpath tm -> path -> o.

bpath (app M _) (left P) &
bpath (app _ M) (right P) :- bpath M P.
bpath (abs R) (bnd S) :- pi x\ pi p\ bpath x p =>

bpath (R x) (S p).
bpath (beta N R) P :-

pi x\ (pi Q\ bpath x Q :- bpath N Q) => bpath (R x) P.

addbeta (app (abs R) N) (beta M S) :- addbeta (abs R) (abs S),
addbeta N M.

addbeta (app (app M N) P) (app O Q) :- addbeta (app M N) O,
addbeta P Q.

addbeta (abs R) (abs S) :-
pi x\ (pi M\ pi N\ addbeta (app x M) (app x N) :- addbeta M N) =>

(addbeta x x) => addbeta (R x) (S x).

Figure 7.5. Realizing β-reductions using paths.

Suppose now that we want to contract all the marked β-redexes in a given
term. We can do this by first producing a list of paths (in the extended sense) in
that term by using the bpath predicate and then synthesizing a new term with
those paths using the path predicate. An interaction illustrating this possibility
is the following:

?- sigma B\ addbeta (app (abs x\x) (abs x\x)) B, bpath B Path.

Path = bnd W1\ W1;

no

?- foreach (P\ path T P) (bnd (W1\ W1) :: nil).

T = abs W1\ W1;

no

?-

Here, the synthesis of a term was particularly simple. The next example is
slightly more complicated and involves the untyped λ-term (K(SK)), for the
usual combinators K (i.e., λx λy x) and S (i.e., λx λy λz (xz)(yz)). The query

?- sigma K\ sigma S\ sigma B\ K = (abs x\ abs y\ x),

S = (abs x\ abs y\ abs z\ app (app x z) (app y z)),

addbeta (app K (app S K)) B, bpath B Path.
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first marks all β-redexes in this term, after which bpath computes four paths
through it. Collecting these four paths into a list allows us to partially normalize
this term.

?- foreach (path T)

((bnd W1\ bnd W2\ bnd W3\ left (left (bnd W4\ bnd W5\ W4)))::

(bnd W1\ bnd W2\ bnd W3\ left (right W3))::

(bnd W1\ bnd W2\ bnd W3\ right (left W2))::

(bnd W1\ bnd W2\ bnd W3\ right (right W3))::nil).

T = abs W1\ abs W2\ abs W3\

app (app (abs W4\ abs W5\ W4) W3) (app W2 W3);

no

?-

The resulting term, namely, λw1 λw2 λw3 (((λw4 λw5 w4) w3) (w2 w3)), is not
in β-normal form. However, we can iterate this process, marking more β-
redexes in this term, generating all the bpaths in the resulting term, collecting
these paths into a list, and synthesizing a term containing those paths. Since we
are dealing with the untyped λ-calculus, this iterative process may not terminate,
but if it does, it will yield a β-normal form.

In the description of the β-normalization procedure using paths, there is
one step that is difficult to formalize using the logic programming paradigm
described here, namely, the step that collects all paths into a list so that the
foreach predicate can be applied to them. Turning a series of answers into a
single list is not formally possible in the simple proof-theoretic framework that
we have described here. Some versions of Prolog come equipped with a bagof

operator that does exactly this. If a logic programming implementation comes
with a persistent memory, such as a database of facts or a file system, then it is
possible to realize a form of the bagof operator.

7.4.3 Type inference

Consider the following declaration of a datatype for object-level simple types
and the specification of a predicate that relates an (object-level) term with an
(object-level) simple type.

kind ty type.

type arr ty -> ty -> ty.

type typeof tm -> ty -> o.

typeof (app M N) A :- typeof M (arr B A), typeof N B.

typeof (abs M) (arr A B) :- pi x\ typeof x A => typeof (M x) B.
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Based on this specification, we can have the following interaction:

?- typeof (abs x\ abs y\ abs z\ app (app x z) (app y z)) Ty.

Ty = arr (arr T1 (arr T2 T3)) (arr (arr T1 T2) (arr T1 T3))

?- typeof (abs x\x) Ty.

Ty = arr T1 T1

?- typeof (abs x\ app x x) Ty.

no

?-

Interpreting this interaction, the λ-term λx λy λz ((x z) (y z)) is given the
(polymorphic) type (α → β → γ ) → (α → β) → (α → γ ), the term
λx x is given the type α → α, and the term λx (x x) cannot be assigned a
type. Since the only constructor here for type ty is arr (for the functional
arrow type constructor), there are no closed terms of type ty: Thus, only open
expressions can be reported by λProlog for inferred types. Of course, if we add
more constructors to the datatype ty, we can work with closed expressions for
object-level types. For example, if i is declared to be a constant of type ty, then
the following queries are derivable:

?- typeof (abs x\x) (arr i i).

yes

?- typeof (abs x\x) (arr i Ty).

Ty = i

?-

Now that we have a specification of evaluation and of typing for untyped
λ-terms, it is natural to consider the subject-reduction theorem (also called the
type-preservation theorem), which states that if a program P has a given type T

and this program evaluates to V , then V also has type T . Given the high-level
nature of our specifications and their connection to intuitionistic logic, this kind
of metatheorem can be proved easily. We show below how this might be done
for the call-by-name evaluation scheme formalized in Figure 7.3. The result
also holds for the call-by-value evaluation scheme, but we leave the detailed
proof of this to the reader.

We prove by induction on the derivation of the goal (cbn P V) that if
(typeof P A) is derivable, then (typeof V A) is derivable. The base case
corresponds to (cbn P V) being derived by using the first clause for cbn. In
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this case, P and V are equal, and the result is immediate. If, on the other
hand, the second clause for cbn is used to construct this derivation, then P

has the form (app M N), and we have shorter derivations of (cbn M (abs R))

and (cbn (R N) V). Since the goal (typeof (app M N) A) is derivable, it
must be the case that there is a type B such that (typeof M (arr B A)) and
(typeof N B) are derivable. Using the induction hypothesis, we conclude that
(typeof (abs R) (arr B A)) is derivable, and hence it must be the case that
the formula (pi x\ typeof x B => typeof (R x) A) is derivable. Invoking
the correspondence to intuitionistic provability now to instantiate the universal
quantifier in this last formula with N and then using modus ponens, we have that
(typeof (R N) A) is derivable. Finally, using the induction hypothesis again,
we can conclude that (typeof V A) is provable.

The proof just provided involved a straightforward induction. The hard tech-
nical part in such a proof is establishing a substitution lemma: In this case, given
that an abstraction λx.R has type β → α and that N has type β, one must show
that the result of the substitution R[N/x] has type α. Often establishing such a
substitution lemma requires a challenging additional proof. Here, that substitu-
tion lemma is obtained essentially for free by referring to well-known properties
of intuitionistic logic.

7.4.4 Translating to and from de Bruijn syntax

A popular representation of binding in implementations of the λ-calculus uses
de Bruijn numerals or nameless dummies. In this representation, variables are
encoded not by names but by positive integers. A variable represented by the
number n is bound by the nth abstraction above it. A few examples of untyped
λ-terms and their corresponding representation in de Bruijn style are given
below:

λx x λ1
λx (x x) λ(1 1)

λx λy x λλ2
λx λy y λλ1
λx λy (y x) λλ(1 2)

λx λy λz ((x z) (y z)) λλλ((3 1)(2 1))

λx (x (λy x)) λ(1 λ2)

λx (x (λy (x (λw (w x))))) λ(1 (λ(2 (λ(1 3)))))

Notice that in the last two examples, the variable x has more than one occur-
rence, and because each of these occurrences is in the scope of a different
number of abstractions, it is translated to a different number.
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To encode this style of syntax for λ-terms, we introduce a new type (for the
new syntactic category of “de Bruijn” terms) and introduce three constructors
for it: one for abstraction, one for application, and one for embedding integers
into the syntax.

kind deb type.

type ab deb -> deb.

type ap deb -> deb -> deb.

type deb int -> deb.

A predicate trans that translates between terms of type tm and deb is given by
the following declarations:

type trans int -> tm -> deb -> o.

type depth int -> tm -> o.

trans D (abs M) (ab P) :- pi c\ depth D c =>

(E is D + 1, trans E (M c) P).

trans D (app M N) (ap P Q) :- trans D M P, trans D N Q.

trans D X (deb E) :- depth N X, E is (D - N).

This example makes use of the special “built-in” predicate is, which, as
explained previously, forces an (arithmetic) evaluation of its right argument and
unifies the resulting value with its left argument. Now, the given specification
supports the following interaction:

?- trans 1 (abs x\ app x (abs y\ app x (abs w\ app w x))) D.

D = ab (ap (deb 1) (ab (ap (deb 2) (ab (ap (deb 1) (deb 3))))))

?- trans 1 P

(ab (ap (deb 1) (ab (ap (deb 2) (ab (ap (deb 1) (deb 3))))))).

P = abs W1\ app W1 (abs W2\ app W1 (abs W3\ app W3 W1))

?-

To see how this predicate computes in detail, consider attempting to solve
the query

?- trans 1 (abs x\ abs y\ abs z\ y) P.

This leads to the substitution of (ab P1) for P and to the addition of depth c 1

(for some eigenvariable c) to the program before attempting the next subgoal:

?- trans 2 (abs y\ abs z\ y) P1.
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In a similar fashion, this query will lead to the substitution of (ab P2) for P1
and to the additional assumption depth d 2 (for some eigenvariable d) before
attempting the next (internal) query:

?- trans 3 (abs z\ d) P2.

Finally, this query will lead to the substitution of (ab P3) for P2 and to the
additional assumption depth e 3 (for some eigenvariable e) before attempting
the next (internal) query:

?- trans 4 d P3.

At this point, only the third clause for trans can be applied, yielding the
substitution of (deb E) for P3 and the next query

?- depth N d, E is (4 - N).

Using the second assumption that was added to the program, N gets bound to
2 and E gets bound to the result of evaluating 4 − 2, i.e., to 2. Thus the final
answer substitution for the entire computation is the instantiation of P with
(ab (ab (ab (deb 2)))).

It is possible to organize this same computation differently by dropping
the additional auxiliary predicate depth and adding extensions to the main
translation predicate directly. In particular, consider the following clauses:

trans D (app M N) (ap P Q) :- trans D M P, trans D N Q.

trans D (abs M) (ab P) :- pi u\

(pi N\ pi H\ trans N u (deb H) :- H is (N - D))

=> (D’ is D + 1, trans D’ (M u) P).

This program starts out with just two clauses for trans: No clause is present for
the general “variable” case.As the computation proceeds, additional clauses are
added for trans in order to treat particular eigenvariables as they are generated.
Attempting to solve the query

?- trans 1 (abs x\ abs y\ abs z\ y) P.

with this new specification leads to the assumption of the following three clauses
for trans:

pi N\ pi H\ trans N c (deb H) :- H is (N - 1).

pi N\ pi H\ trans N d (deb H) :- H is (N - 2).

pi N\ pi H\ trans N e (deb H) :- H is (N - 3).

When the query

?- trans 4 d P3.

is called eventually, the second of these three assumed clauses will be used to
finish the proof.
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7.5 Computations over first-order formulas

We now illustrate the virtues of the λ-term based representation of first-order
formulas by considering several different computations that one may want to
perform over these formulas. The predicate vacuous, defined in Figure 7.6, can
be used to recognize and drop vacuous quantifiers in such formulas. This pred-
icate succeeds exactly when the top-level abstracted variable does not appear
in the body of the formula and, in this case, binds the second argument to the
body. The same figure shows the definition of the predicate quantfree, which
succeeds on an object-level formula just in the case that that formula does not
contain quantifiers. This definition uses the predicate atom, whose definition
is constructed from the predicates of the object logic: See the discussion in
Section 7.2 and an example definition in Figure 7.2.

To consider a more complicated example, suppose that we are interested in
transforming formulas into normal forms that are useful in the implementation
of theorem provers for classical logic. One such normal form is the negation
normal form: Such a formula contains no occurrences of implications, and all
occurrences of negation have only atomic scope. Another normal form is the
prenex normal form. A formula has this form if no quantifier occurrence in
it is in the scope of a logical connective; i.e., all the quantifiers occur at the
outermost level. It is a theorem of first-order classical logic that every formula
is equivalent to one in negation normal form and also to one in prenex normal
form and hence to one that is in both negation normal and prenex normal form.

The following classical logic equivalences are useful in transforming any
given formula into a negation normal form:

¬¬B ≡ B B1 ⊃ B2 ≡ ¬B1 ∨ B2

¬∀x B x ≡ ∃x ¬B x ¬(B1 ∧ B2) ≡ ¬B1 ∨ ¬B2

¬∃x B x ≡ ∀x ¬B x ¬(B1 ∨ B2) ≡ ¬B1 ∧ ¬B2

These equivalences can be oriented from left to right and used as rewrite rules.
The specification of the predicate nnf in Figure 7.7 uses this idea. Since no

type vacuous form -> form -> o.
type quantfree form -> o.

vacuous (all x\ P) P.
vacuous (some x\ P) P.

quantfree tt & quantfree ff.
quantfree F :- atom F.
quantfree (neg F) :- quantfree F.
quantfree (F && G) & quantfree (F !! G) & quantfree (F ==> G) :-

quantfree F, quantfree G.

Figure 7.6. Two predicates concerning object-level formulas.
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type nnf form -> form -> o.

nnf A A & nnf (neg A) (neg A) :- atom A.
nnf (neg (neg B)) D :- nnf B D.
nnf (neg (B && C)) (D !! E) &
nnf (neg (B !! C)) (D && E) :- nnf (neg B) D, nnf (neg C) E.
nnf (B ==> C) (D !! E) :- nnf (neg B) D, nnf C E.
nnf (B !! C) (D !! E) &
nnf (B && C) (D && E) :- nnf B D, nnf C E.

nnf (neg (all B)) (some D) &
nnf (neg (some B)) (all D) :- pi x\ nnf (neg (B x)) (D x).
nnf (all B) (all D) &
nnf (some B) (some D) :- pi x\ nnf (B x) (D x).

Figure 7.7. Relating a formula to an equivalent formula in negation normal form.

two heads of the clauses for nnf overlap, it is easy to see that the relation nnf

specifies a partial function. A simple argument by induction shows also that the
function represented is total.

Next, consider computing prenex normal forms of formulas that are in nega-
tion normal form (this restriction to negation normal forms is not necessary
and is used only to shorten the specification of this relation). The following
equivalences of classical logic provide the basis for the transformation process:

(∀x B1 x) ∧ (∀x B2 x) ≡ ∀x (B1 x ∧ B2 x) (∃x B1 x) ∨ (∃x B2 x) ≡ ∃x (B1 x ∨ B2 x)

B1 ∧ (∀x B2 x) ≡ ∀x (B1 ∧ B2 x) (∀x B2 x) ∧ B1 ≡ ∀x (B2 x ∧ B1)

B1 ∧ (∃x B2 x) ≡ ∃x (B1 ∧ B2 x) (∃x B2 x) ∧ B1 ≡ ∃x (B2 x ∧ B1)

B1 ∨ (∀x B2 x) ≡ ∀x (B1 ∨ B2 x) (∀x B2 x) ∨ B1 ≡ ∀x (B2 x ∨ B1)

B1 ∨ (∃x B2 x) ≡ ∃x (B1 ∨ B2 x) (∃x B2 x) ∨ B1 ≡ ∃x (B2 x ∨ B1)

Figure 7.8 contains the specification of a binary predicate prenex that relates
a negation normal formula to an equivalent formula in prenex normal form.
An auxiliary predicate is used in this definition to merge two formulas that are
already in prenex normal form. Given this specification of prenex, the unique
prenex normal form of the formula

(all x\ (p x) && (all y\ q x y) && (p (f x))) !! (p a).

is the formula

all x\ all y\ ((p x) && (q x y) && (p (f x))) !! (p a).

In general, the predicate prenex is not functional: That is, a single formula can
have multiple prenex normal forms to which it is equivalent using the shown
equivalences. For example, the query

?- prenex ((all x\ q x x) && (all z\ all y\ q z y)) P.
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type prenex, merge form -> form -> o.

prenex A A & prenex (neg A) (neg A) :- atom A.
prenex (B && C) D :- prenex B U, prenex C V,

merge (U && V) D.
prenex (B !! C) D :- prenex B U, prenex C V,

merge (U !! V) D.
prenex (all B) (all D) &
prenex (some B) (some D) :- pi x\ prenex (B x) (D x).

merge ((all B) && (all C)) (all D) :-
pi x\ merge ((B x) && (C x)) (D x).

merge ((all B) && C) (all D) &
merge ((some B) && C) (some D) :-

pi x\ merge ((B x) && C) (D x).
merge (B && (all C)) (all D) &
merge (B && (some C)) (some D) :-

pi x\ merge (B && (C x)) (D x).
merge ((some B) !! (some C)) (some D) :-

pi x\ merge ((B x) !! (C x)) (D x).
merge ((some B) !! C) (some D) &
merge ((all B) !! C) (all D) :-

pi x\ merge ((B x) !! C) (D x).
merge (B !! (some C)) (some D) &
merge (B !! (all C)) (all D) :-

pi x\ merge (B !! (C x)) (D x).

merge B B :- quantfree B.

Figure 7.8. Computing the prenex normal form of formulas in negation normal
form.

will generate the following five answer substitutions for P:

all z\ all y\ (q z z) && (q z y)

all x\ all z\ all y\ (q x x) && (q z y)

all z\ all x\ (q x x) && (q z x)

all z\ all x\ all y\ (q x x) && (q z y)

all z\ all y\ all x\ (q x x) && (q z y)

As another example of a computation over first-order formulas, consider
the problem of identifying which object-level formulas are goals or definition
clauses for first-order Horn clauses and for first-order hereditary Harrop formu-
las. The clauses in Figure 7.9 specify four (meta-level) predicates that can make
these determinations: fohcG and fohcD recognize goals and clauses within the
first-order Horn clause setting, and fohhG and fohhD recognize goals and clauses
within the first-order hereditary Harrop formula setting. These definitions need
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type fohcG, fohcD, fohhG, fohhD form -> o.

fohcG tt.
fohcG A :- atom A.
fohcG (some B) :- pi x\ fohcG (B x).
fohcG (B && C) & fohcG (B !! C) :- fohcG B, fohcG C.

fohcD A :- atom A.
fohcD (G ==> D) :- fohcG G, fohcD D.
fohcD (D1 && D2) :- fohcD D1, fohcD D2.
fohcD (all D) :- pi x\ fohcD (D x).

fohhG tt.
fohhG A :- atom A.
fohhG (D ==> G) :- fohhD D, fohhG G.
fohhG (B && C) & fohhG (B !! C) :- fohhG B, fohhG C.
fohhG (some B) & fohhG (all B) :- pi x\ fohhG (B x).

fohhD A :- atom A.
fohhD (D1 && D2) :- fohhD D1, fohhD D2.
fohhD (G ==> D) :- fohhG G, fohhD D.
fohhD (all D) :- pi x\ fohhD (D x).

Figure 7.9. Specifying various syntactic classes of object-level formulas.

a specification of the predicate atom that we have already discussed in earlier
examples. The code that appears in these definitions deviates a little from the
idiom discussed at the end of Section 7.3 in that the universally quantified goals
that they contain do not have implications immediately within their scope: Such
implications are not needed because the eigenvariables introduced by those uni-
versal quantifiers correspond to terms, and the atom predicate does not examine
the structure of terms.

Based on the specifications provided in Figure 7.9, we get substitution the-
orems of the following kind for free: If ∀x D is a first-order Horn clause and t

is a term, then D[t/x] is a first-order Horn clause.
Figure 7.1 presented an interpreter for first-order Horn clauses. It is easy

to extend that interpreter to all of first-order hereditary Harrop formulas: We
simply add the two clauses

interp D (D1 ==> G) :- interp (D1 && D) G.

interp D (all G) :- pi x\ interp D (G x).

Thus, just as object-level conjunction, disjunction, and existential quantification
in goals in the fohc language are handled by the corresponding meta-level log-
ical primitives, universal quantifiers in goals of the fohh language are handled
by meta-level universal quantifiers.
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7.6 Specifying object-level substitution

We have seen that object-level substitution can be specified using meta-level
β-reduction. Thus the predicate defined by

type subst (tm -> tm) -> tm -> tm -> o.

subst R N (R N).

can be used to substitute into the body of an abstraction over untyped λ-terms.
As we have seen in Section 4.6, full β-conversion is a complex operation on
terms. We now consider a specification of object-level substitution that does
not use general β-reduction.

Figure 7.10 provides such a specification of the subst predicate based on
an auxiliary predicate copy. This copy predicate specifies equality between two
untyped λ-terms; that is, copy is a relation between two closed terms that is
derivable if and only if those terms are equal. To illustrate in detail how copy

works, consider finding a solution to the goal

?- copy (abs x\ abs y\ app y x) M.

Backchaining using the second clause for copy reduces this query to

?- copy (abs y\ app y c) (M1 c).

where c is a new eigenvariable, after M has been unified with (abs M1), and the
clause (copy c c) has been added to the current program. Backchaining again
on the same clause yields the subgoal

?- copy (app d c) (M2 d).

where d is another new eigenvariable, after (M1 c) has been unified with
(abs M2), and the clause (copy d d) has been added to the current program.
This last goal leads to three more backchainings, one each using the copy clauses
for app, c, and d. At the end of this sequence, (M2 d) must be unified with
(app d c). Solving for all the variables yields the unique answer substitution

M2 = u\app u c M1 = v\abs u\app u v M = abs v\abs u\app u v.

Thus the result of “copying” (abs x\ abs y\ app y x) is (abs v\ abs

u\ app u v); these two terms are obviously equal modulo α-conversion. View-
ing the clauses for copy operationally, we can say that these clauses copy the
top-level constructor from, say, the first argument to the second argument and
use recursion for copying the subterms. Of course, if the immediate subformula
is of type tm -> tm instead of tm, then we need to use the principle of binder
mobility to deal with the subexpression that is of higher type.
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type copy tm -> tm -> o.
type subst (tm -> tm) -> tm -> tm -> o.

copy (app M N) (app P Q) :- copy M P, copy N Q.
copy (abs M) (abs N) :- pi x\ copy x x => copy (M x) (N x).

subst M T S :- pi x\ copy x T => copy (M x) S.

Figure 7.10. Specification of substitution into untyped λ-terms.

The substitution of a term T for the bound variable in the body of an abstrac-
tion M to produce S can be realized operationally by copying the structure of
the body of M into S with the exception that the outermost abstracted variable is
copied to T. The specification of subst follows this prescription: First, it con-
verts the outermost abstracted variable of M into the variable x that is universally
bound at the formula level; second, it assumes that that variable copies to T by
augmenting the current program with the clause (copy x T); and finally, it calls
the copy goal in the context of the augmented program to compute the result of
“copying” (M x).

The structure of the definitions of the subst and copy predicates in
Figure 7.10 gives us an easy way to argue that if (subst M T S) is derivable,
then S is equal to the term (M T). If (subst M T S) is derivable, it must be the
case that

pi x\ copy x T => copy (M x) S

is derivable. As observed earlier, copy relates two equal terms in the context of
the unaugmented definition of copy. Thus it must be the case that (copy T T)

is derivable. Instantiating the preceding universally quantified goal with T

and using modus ponens implies that (copy (M T) S) is derivable from the
unaugmented set of clauses for copy, which implies that (M T) is equal to S.

The substitution of terms for abstracted variables in first-order formulas can
be specified in a similar fashion. Suppose, for example, that our first order logic
has a set of nonlogical constants given by the following declarations:

type a term.

type f term -> term.

type g term -> term -> term.

type p term -> form.

type q term -> term -> form.

The specification of the subst and copy predicates in this case is given by the
declarations in Figure 7.11. There are actually two versions of the copy pred-
icate now, one for terms and another for formulas. It is interesting to observe
that the clauses for these predicates can be derived from the identity relation
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kind term, form type.

type copyterm term -> term -> o.
type copyform form -> form -> o.
type subst (term -> form) -> term -> form -> o.

copyterm a a.
copyterm (f X) (f U) :- copyterm X U.
copyterm (g X Y) (g U V) :- copyterm X U, copyterm Y V.

copyform tt tt.
copyform ff ff.
copyform (neg B) (neg D) :- copyform B D.
copyform (B && C) (D && E) &
copyform (B !! C) (D !! E) &
copyform (B ==> C) (D ==> E) :- copyform B D, copyform C E.
copyform (all B) (all D) &
copyform (some B) (some D) :- pi y\ copyterm y y =>

copyform (B y) (D y).

copyform (p X) (p U) :- copyterm X U.
copyform (q X Y) (q U V) :- copyterm X U, copyterm Y V.

subst M T N :- pi x\ copyterm x T => copyform (M x) N.

Figure 7.11. Specifying substitution for first-order formulas.

on constants essentially by a process of “lowering” the type on this relation.
To describe this more precisely, let [[t , s : τ ]]+ and [[t , s : τ ]]− represent formu-
las defined by recursion on the structure of the type τ (which, in the present
context, is assumed to be built only from the base types term and form) in the
following way:

[[t , s : term]]+ = [[t , s : term]]− = copyterm t s

[[t , s : form]]+ = [[t , s : form]]− = copyform t s

[[t , s : τ → σ ]]+ = ∀x ([[x, x : τ ]]− ⊃ [[t x, s x : σ ]]+)

[[t , s : τ → σ ]]− = ∀x ∀y ([[x, y : τ ]]+ ⊃ [[t x, s y : σ ]]−)

Using this definition, we see, for example, that [[all, all : (term -> form) ->

form]]− is equal to

∀x ∀y ([[x, y : term -> form]]+ ⊃ [[(all x), (all y) : form]]−)

Expanding this further, we get the expression

∀x ∀y ((∀z [[z, z : term]]− ⊃ [[(x z), (y z) : form]]+)

⊃ [[(all x), (all y) : form]]−)
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Using the equality predicate at the atomic types, we finally get

∀x ∀y (∀z (copyterm z z ⊃ copyform (x z) (y z))

⊃ copyform (all x) (all y))

This clause corresponds to the one shown for the constant all in Figure 7.11.
In fact, the clauses in that figure are exactly the formulas [[c, c : τ ]]− for each
of the constants c : τ of the object logic.

As we have seen with the encoding of untyped λ-terms, it is a simple matter
to show that (copyterm T S) is derivable from the specification in Figure 7.11
if and only if T and S are equal terms and that (copyform B C) is derivable if
and only if B and C are equal formulas. Using these facts, we can see once again
that if (subst M T S) is provable, then S is equal to (M T).

The specifications of the copy predicates we have just seen are examples of
signature-dependent logic programs in the sense that the object-level signature
is used explicitly in defining the copy and subst predicates. By contrast, the
earlier one-line specification of subst that used β-reduction does not refer to
the object-level signature.

The development of the definition of a relation or predicate by the device
of lowering the relation to be defined at a higher type to a version at a lower
type that is already defined is, in fact, quite general. We can imagine doing this
for other types: In that case, each primitive type will need to map to a distinct
predicate. Notice that the relation we are defining by this process is also not
restricted to being one of arity two. To take a concrete example, the definition
of term presented in Section 7.3 can be seen as the result of applying this
technique to a predicate of arity one in a context where the signature contains just
abs and app.

It is possible to specify object-level substitution by a direct recursion on
the structure of expressions without using a copy predicate. The (signature
dependent) clauses in Figure 7.12 provide such a specification.

The subst predicate, whether given by the code in Figure 7.10, Figure 7.11,
or Figure 7.12, is relational and not functional. Thus, given a term T and a
formula S, it is possible to compute an abstraction M such that (subst M T S)

is derivable. For example, the query

?- subst M (f a) ((p (f a)) && (q a (f a))).

yields the following four answer substitutions:

M = x\ (p x) && (q a x)

M = x\ (p x) && (q a (f a))

M = x\ (p (f a)) && (q a x)

M = x\ (p (f a)) && (q a (f a))
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type subst (term -> form) -> term -> form -> o.
type substterm (term -> term) -> term -> term -> o.

subst (x\ tt) T tt.
subst (x\ ff) T ff.
subst (x\ neg (B x)) T (neg D) :- subst B T D.
subst (x\ (B x) && (C x)) T (D && E) &
subst (x\ (B x) !! (C x)) T (D !! E) &
subst (x\ (B x) ==> (C x)) T (D ==> E) :- subst B T D,

subst C T E.
subst (x\ all (B x)) T (all D) &
subst (x\ some (B x)) T (some D) :-

pi y\ substterm (x\y) T y => subst (x\ B x y) T (D y).

subst (x\ p (X x)) T (p U) :- substterm X T U.
subst (x\ q (X x) (Y x)) T (q U V) :- substterm X T U,

substterm Y T V.

substterm (x\ x) T T.
substterm (x\ a) T a.
substterm (x\ f (F x)) T (f S) :- substterm F T S.
substterm (x\ g (F x) (G x)) T (g S R) :- substterm F T S,

substterm G T R.

Figure 7.12. Specification of substitution without using the auxiliary copy clauses.

Notice that such a nondeterministic computation is implied by the usual state-
ment of the rule of existential generalization: If a formula M(t) holds for
some t , then ∃x M(x) holds. As this example illustrates, if the expression M(t)

denotes the formula p(f (a))∧q(a, f (a)), then there are four possible existen-
tial generalizations of this based on the term f (a), namely, ∃x p(x) ∧ q(a, x),
∃x p(x) ∧ q(a, f (a)), ∃x p(f (a)) ∧ q(a, x), and ∃x p(f (a)) ∧ q(a, f (a)).

7.7 The λ-tree approach to abstract syntax

The term concrete syntax generally refers to the syntactic representation of
expressions using text or strings. Concrete syntax is intended for interactions
with humans, and as a result, it contains devices that help reading, such as
white space (e.g., carriage returns and indentation), parentheses, infix operators,
comments, multiple typefaces, etc. While all these devices can aid in human
consumption, they generally obstruct the formal manipulation based on the
meanings of expressions. In order to treat syntax in a way that corresponds
more closely to its intended semantics, one generally parses concrete syntax
into some form of abstract syntax. In particular, parsing returns a representation
of syntax where infix and prefix distinctions of operators are removed, where
white space and comments are discarded, and where the information provided
by parentheses is reflected in a treelike representation within abstract syntax.
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There are many alternatives for structuring abstract syntax. One possibility
involves explicitly treating the names of bound variables present in concrete
syntax. If the metalanguage supports abstraction directly, then one also might
map binding in the concrete syntax into the corresponding device in the met-
alanguage. The syntactic representation that results from doing this is often
called higher-order abstract syntax because abstraction mechanisms in meta-
languages typically arise from explicit treatments of higher-orderness.The exact
meaning of this term, however, depends on the specific computational context
in which it is embedded: As a result, the term higher-order abstract syntax
denotes a range of encoding techniques. To take a specific example, as was
discussed in Section 5.10, there is a significant difference between the inter-
pretation of λ-terms and abstraction in functional programming and in logic
programming. In the former setting, as also in constructive type theories that
use function evaluation to determine values of expressions, meta-level abstrac-
tion is used to build rich function spaces. Because of the richness of these
spaces, it is not possible to compare function-valued expressions for equality
in any simple way. If such expressions are used in the representation, for exam-
ple, of first-order logic formulas with quantifiers, it follows that we cannot also
compare or structurally analyze formulas under such an encoding. Most logic
programming languages do not, in fact, have meta-level binders that can be used
within expressions, so a higher-order approach to abstract syntax is not available
within them. However, abstraction is available within the λ-terms of the logic
we have considered here, and these can be used to encode binding in syntactic
structures. This treatment of binding uses a λ-calculus with a weak notion of
functionality that makes it possible to analyze the structures of objects under the
encoding.

Clearly, the two extremes in the treatment of binding—one using functions
that are best thought of extensionally and the other using λ-expressions that
are easily treated intensionally—can differ significantly. We shall use the term
λ-tree syntax to denote the approach to higher-order abstract syntax that uses
typed λ-terms modulo equality based on α-conversion, some sufficiently weak
form of β-conversion, and possibly η-conversion. Our treatment in this chapter
of the abstract syntax of object-level logics and languages is an example of this
approach; β-conversion is weakened in this context by the use of simple types.
In the next section we identify a subset of hohh in which a much weaker version
of β-conversion is needed for proof search.

7.8 The Lλ subset of λProlog

Now that we have identified λ-tree syntax as an approach to syntactic rep-
resentation and manipulation that is supported by the hohh language and its
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implementation in λProlog, it is natural to ask if the full power of this language
is needed to support this approach to syntax. This seems not to be the case. For
example, while the predicate quantification of λProlog is probably useful for
manipulating λ-tree syntax, it is certainly not central to it. Can anything else be
removed? As we now will illustrate, it is possible to further weaken the role of
β-reduction in computations on λ-tree syntax.

This chapter has discussed two important principles for carrying out com-
putations over syntactic structures involving binding. First, such structures can
be treated more abstractly by equating two terms if they are identical up to α-
conversion: As a result, the names of bound variables become a fiction. Second,
binders are permitted some mobility in the sense that during a computation, they
can move from term level to formula level to proof level. The movement of
formula-level binding (represented specifically by universally quantified vari-
ables in goals) to a proof-level binding (corresponding to eigenvariables) was
discussed in Section 7.3. We discuss next a restricted form of the hohh lan-
guage that still caters to the mobility of term-level binders to formula-level
bindings.

Let G be a goal formula. We say that a bound variable occurrence in G

is essentially universal if it is bound by a positive occurrence of a universal
quantifier, by an negative occurrence of an existential quantifier, or by a (term-
level) λ-abstraction. A bound variable occurrence is essentially existential if it
is not essentially universal. To express this positively, an essentially existential
bound variable occurrence in a goal formula is one that is bound by either a
negative universal quantifier or a positive existential quantifier. Occurrences of
bound variables in program clauses are classified by dualizing this definition. In
particular, a bound variable occurrence in such a clause is essentially universal
if it is bound by a negative occurrence of a universal quantifier, by a positive
occurrence of an existential quantifier, or by a (term-level) λ-abstraction, and it
is essentially existential if it is bound by either a positive universal quantifier or
a negative existential quantifier. Within the context of proof search, it is essen-
tially existential bound variables that can be instantiated with general terms
(via logic variables and unification), whereas essentially universal bound vari-
ables can be instantiated only with eigenvariables. It is the essentially universal
bound variable occurrences that provide mobility during proof search.

The logic programming language Lλ is the result of restricting hohh by
requiring all quantification to be over nonpredicate types and by limiting essen-
tially existential bound variable occurrences as follows: Each such occurrence
may appear applied to at most distinct essentially universal variables, all whose
binding scope is contained within the scope of the quantifier binding the essen-
tially existential variable occurrence that is in question. Expressed in another
way, a program clause or goal formula B is in the Lλ class if
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Every subterm in B with an essentially existential variable occurrence as its head,
that is, a subterm of the form (x t1 . . . tn) (n ≥ 0), where x is essentially
existentially quantified in B, must be such that t1, . . . , tn are distinct essentially
universal variable occurrences bound in the scope of x.

This restriction ensures that if x is ever instantiated by some term, say, t , then
the only β-redexes that follow that substitution are of the form (t y1 . . . yn),
where the variables y1, . . . , yn are not free in t . Using α- and η-conversions,
we can assume that t is of the form λy1 . . . λyn t ′. Thus β-reduction simply
transforms (λy1 . . . λyn t ′) y1 . . . yn to t ′.

Let β0-conversion be that subcase of β-conversion that is expressed as the
equation

(λx s) x = s (β0)

In the presence of α-conversion, this is equivalent to the conditional equation

(λy s) x = s[x/y], provided x is not free in λy s (β0)

Almost all hohh programs presented in this chapter have been examples
of Lλ programs as well. In particular, all the program clauses in Figures 7.7
through 7.12 belong to Lλ. Further, there is exactly one clause in Figure 7.4
that does not belong to Lλ, and this is the redex clause: The subterm (R N) is
an example of an essentially existential variable occurrence applied to a second
essentially existential variable occurrence. Of course, not all hohh program
clauses and goals are Lλ program clauses and goals, respectively. For example,
if the constant p has type i → o and f has type i → i, then the formula

∀i→ix ∀iy (p (x y) ⊃ p (f y))

is an example of a goal in Lλ but not a program clause. As a program clause,
this formula has a subterm occurrence (x y) where both x and y are essen-
tially existential and thus does not satisfy the Lλ restriction on such variable
occurrences.

An hohh program that is not an Lλ program often can be rewritten into an
Lλ program. To illustrate this, let us consider the clause

redex (app (abs R) N) (R N).

from Figure 7.4, which is not an Lλ clause. If this clause is used as is, proof
search may lead to β-conversions that are not also β0-conversions. However, if
we have access to the clauses in Figure 7.10, then we can rewrite this clause as

redex (app (abs R) N) S :- subst R N S.

If we do this, we obtain a specification that is entirely within Lλ.
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The translation of hohh programs to Lλ programs just described is, however,
not without problems. First, the encoding using suitable subst and copy predi-
cates requires reflecting the signature of the terms into which one is substituting
into program clauses using the [[t , s : γ ]]± translation described in Section 7.6.
Second, the operational behavior of the copy predicate can be quite different
from that of the equality notion it encodes. For example, if M and N are variables,
the query

?- M = N.

can be solved immediately with an answer substitution that binds M to N. In
contrast, the call

?- copy M N.

will attempt to actually build terms t using the clauses for copy recursively and,
if successful, will bind both M and N to the t that is constructed. To see this more
vividly, consider the following code where a small signature is encoded using
copy clauses:

kind i type.

type a i.

type f i -> i.

type copyi i -> i -> o.

copyi a a.

copyi (f X) (f Y) :- copyi X Y.

The goal

?- copyi M N.

will succeed by binding M and N successively to a, (f a), (f (f a)), etc. If the
order of the clauses for copyi were reversed, then this query would cause the
depth-first λProlog interpreter to loop without providing any solution.

The complexity of the reduction rules based on

(λx M) N = M[N/x] (β) and (λx M) x = M (β0)

are vastly different. When moving from the left-hand term to the right-hand
term of the β0-equality, one abstraction and application pair disappears, and the
resulting term is strictly smaller: In particular, no new β-redexes are introduced.
In contrast, with the β rule, the right-hand side might be smaller (if, for example,
the variable x is not free in M), or it might be significantly larger (if x has
several occurrences in M and N has a complex structure), and furthermore, it
may contain new β-redexes (if x occurs with arguments within M).
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The complexity of β-conversion naturally suggests that unification modulo
βη-conversion also may be complex. The simplicity of β0-conversion similarly
suggests that unification in Lλ could be significantly simpler. We shall see
that these observations are indeed true in Chapter 8, where we consider these
forms of unification in detail. In particular, we shall see that while unification
modulo βη-conversion is undecidable and may admit multiple, most general
unifiers, unification in Lλ is much more like first-order unification in that both
are decidable, and if unifiers exist, a single unifier that is most general also
exists. Thus, working within the Lλ subset could have a significant impact on
the implementation of the overall language. From a programming perspective,
this restriction may be acceptable because an overwhelming majority of clauses
in “typical” λProlog programs are within the Lλ fragment of the hohh language.

It is useful to observe that while all Lλ unification problems are instances
of unification modulo α, β0, and η, the converse is not true: For example,
the problem of finding an instance of F such that ∀x (F x x = x) is prov-
able requires only β0-reduction to justify the fact that the substitution of either
λu λv u or λu λv v for F represents a solution. This latter unification problem
is not in Lλ because the variable occurrence F is applied to two essentially uni-
versal occurrences of the same variable. While unification modulo α-, β0-, and
η-conversion is not as complex as unification modulo α-, β-, and η-conversion,
it is also not unitary in the sense that more than one incomparable, most general
unifier can exist for particular problems.

It is sometimes of interest in a computational setting to simplify quantifier
alternations in goal formulas. For example, we may wish to transform the goal
formula ∀y ∃x G into the form ∃h ∀y G[(h y)/x]. We have seen how to do this
in Section 4.4.1 using the technique of raising. An interesting observation is
that this technique, which is employed often in implementations of the logic,
is one that preserves the class of Lλ formulas.

7.9 Bibliographic notes

A major focus in this chapter has been on using the abstraction operator that is
available with λ-terms to encode the varied forms of binding that are present
in syntactic structures. This idea is an old one and dates back at least to Church
(1940) and his presentation of the Simple Theory of Types. Church’s logic has
several binding operators, such as the quantifiers, the choice operator, and the
definite description operator, all of which were encoded using λ-abstraction and
a suitably chosen constant. That treatment of quantifiers is used in the various
logics we have presented, and as we have already mentioned, the names pi and
sigma in the λProlog syntax for the universal and existential quantifiers derive
from the ones Church used for them. The first six axioms in the logic that Church
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described yield a higher-order logic that is similar to the one we have used; the
main difference is that Church developed a classical logic, whereas we prin-
cipally consider intuitionistic logic. Using just these six axioms, the equality
notion over λ-terms is quite weak and is akin to our treating these terms in a
rather intensional manner. Church’s full system includes several more axioms,
especially ones for extensionality, choice, infinity, and descriptions. This richer
logic is well suited to the task of formalizing mathematics but supports an
equality notion over λ-terms that makes it difficult to see them as the basis for
λ-tree syntax.

Two early papers that describe computing directly with λ-tree syntax are
those by Huet and Lang (1978) and Miller and Nadathur (1987). These papers
argued that matching, unification, and proof search over simply typed λ-terms
modulo the equality theory of α-, β-, and η-conversion provides novel, interest-
ing, and declarative approaches to manipulating object-level syntax. Pfenning
and Elliott (1988) used the term higher-order abstract syntax to describe an
approach to syntax representation that used typed λ-terms modulo α-, β-, and
η-conversion as well as containing polymorphic types and equalities for prod-
ucts. Shortly afterwards, however, it appears that the term higher-order abstract
syntax came to denote the general principle of using a meta-level abstraction
to encode binding structure in object-level syntax. While this is an accurate
description of the kind of logic specifications presented in this chapter, this prin-
ciple also can be considered in the functional programming setting, where the
main abstraction mechanism is that of functions. In fact, higher-order abstract
syntax frequently deals with identifying term-level abstractions with such func-
tions (Despeyroux et al., 1995; Hofmann, 1999; Honsell et al., 2001; Röckl
et al., 2001). As discussed in Section 7.7, the use of a rich notion of function to
encode term-level λ-bindings can be problematic. In order to differentiate the
approach to encoding syntax that is described here from the other “function-
based” approach, the term λ-tree syntax was introduced (Miller and Palamidessi
1999; Miller 2000) for the brand of higher-order abstract syntax used here.

Several of the examples in this chapter have concerned the untyped
λ-calculus. A good reference for various aspects of this well-studied calcu-
lus is the book by Barendregt (1984). The approach to λ-term syntax that
avoids names and uses numerical indices for bound variable occurrences was
developed by de Bruijn (1972). This kind of representation of λ-terms plays
a significant role in recent work that allows substitutions over such terms to
be represented directly in syntax; exemplars of such work are the calculus of
explicit substitutions (Abadi et al., 1991) and the suspension calculus (Nadathur
and Wilson 1990, 1998).

There are a number of alternatives to using λ-tree syntax to representing and
manipulating bindings in syntax. For example, Pitts (2003, 2006) and Gabbay
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and Pitts (2001) have developed nominal logic as a first-order logic containing
primitives for renaming via name swapping and for the freshness of names:
The notion of binding can be derived from these primitives.

The idea of copy clauses to specify object-level substitution was first used
at the second-order level by Miller (1991a). Felty (1991, 1992) extended that
definition to arbitrary orders and also showed how to encode a dependently
typed λ-calculus (Harper et al. 1993) into hereditary Harrop formulas. The
recursive definition of subst that does not use copy-clauses (Figure 7.12) is
loosely based on an equational presentation of λ-conversion (Andrews 1971,
1986).

An implementation of the hohh language eventually must treat unification
of simply typed λ-terms (also known as higher-order unification). A study
of the kinds of unification problems that arise typically in this setting led
Miller (1989a, 1991b) to identify the Lλ subset of hohh. The restricted form
of unification that is needed for proof search in Lλ is called Lλ-unification or,
more commonly, higher-order pattern unification Nipkow (1993). Unification
is discussed in greater detail in Chapter 8.



8

Unification of λ-Terms

The computations that arise in the course of proof search with higher-order
logic programs often require finding substitutions for essentially existentially
quantified variables that make two different terms λ-convertible. In Chapter 4
we characterized such higher-order unification problems using a mixed quan-
tifier prefix over a “matrix” involving a conjunction of equations. Specifically,
unification problems are formulas of the form

Q1x1 . . . Qnxn [t1 = s1 ∧ . . . ∧ tm = sm]
where n, m ≥ 0, Qi is either ∀ or ∃ for 1 ≤ i ≤ n and t1, s1, . . . , tm, sm are λ-
terms such that, for 1 ≤ j ≤ m, tj and sj are of the same type. In Chapter 4 we
made a distinction between the notion of a unifier and a solution to a unification
problem in this general form: Only the latter checks for the existence of closed
terms and therefore embodies an actual proof of the quantified formula. Fol-
lowing common practice, we will limit ourselves in this chapter to the simpler
task of finding unifiers.

As we discuss in the first section of this chapter, the unification of λ-terms
is algorithmically complex. This complexity is to be expected because find-
ing unifiers requires inverting β-reduction, an operation that has considerable
computational power, as we observed in Section 4.3. Nevertheless, as we show
in Section 8.2, a systematic way to structure the search for unifiers can be
described. When applied to arbitrary unification problems, this procedure is
nondeterministic and may not terminate. However, this procedure becomes
both deterministic and terminating when we restrict our attention to the unifi-
cation problems that arise in the setting of the Lλ subset of hohh described in
Chapter 7. In Section 8.3 we present a unification algorithm for proof search in
Lλ. The final section of this chapter discusses pragmatic issues involving this
form of unification in the context of λProlog programs.

211
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8.1 Properties of the higher-order unification problem

The general form that we have described for unification problems allows for
arbitrary alternations between universal and existential quantifiers in the prefix.
In the first three sections of this chapter, we shall restrict prefixes to be of the
form ∀∃∀: That is, a sequence of universal quantifiers in the prefix can be
followed by a sequence of existential quantifiers that can be followed again by
a sequence of universal quantifiers. As we have seen in Section 4.4, existential
quantifiers in a prefix can be moved outside universal quantifiers using raising.
Thus any unification problem can be transformed into an equivalent one in the
∀∃∀ form. While the outermost sequence of universal quantifiers is not strictly
needed, these quantifiers provide a convenient way to represent the symbols in
the ambient signature comprising the declared constants in an λProlog program,
and we will interpret them as such.

Let t be a term, and let θ = {〈x1, t1〉, . . . , 〈xn, tn〉} be a substitution. The
application of the substitution θ to t , denoted by θ(t), can be given formally by
the expression

((λx1 . . . λxn t) t1 . . . tn)

Given the λ-conversion rules, this term is equal to the result of replacing the
free occurrences of x1, . . . , xn in t by the terms t1, . . . , tn, making sure to rename
bound variables within t to avoid capture of free variables in t1, . . . , tn. Defining
substitution in this way ensures that θ(t) is equal to θ(t ′), where t ′ is any term
that results through λ-conversion from t . Thus, in considering questions of
unification, without loss of generality, we can replace terms by their β-normal
forms. Using the η-conversion rule, we can further ensure that the binders of
the terms t and s in an equation t = s that appears in the matrix of a unification
problem are of identical length. Finally, using the equivalence between the
formulas λx t = λx s and ∀x (t = s), the formulas (∀x (t = s)) ∧ F) and
∀x ((t = s) ∧ F), and the formulas (F ∧ (∀x (t = s)) and ∀x (F ∧ (t = s)),
we can transform the abstractions appearing at the heads of the equations in the
matrix of a unification problem in a ∀∃∀ form into quantifiers that extend the
inner sequence of universal ones. Using these transformations, we can convert
any unification problem into a form where not only the quantifier prefix is
of the form ∀∃∀, but also the equations in the matrix are between terms that
have empty binders. We shall assume that all unification problems are of this
kind.

We presented the notion of a most general unifier for first-order unification
problems in Section 1.5. Such a unifier is one from which all other unifiers can
be obtained by making further substitutions. Most general unifiers are useful
in a computational setting because they satisfy all the constraints expressed in
the unification problem while also allowing other possible ways of satisfying
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them to be easily generated at later stages. However, most general unifiers
may not exist for higher-order unification problems. For example, consider the
unification problem

∀a ∀g ∃F [(F a) = (g a a)]
where the types of the variables a, g, and F are i, i → i → i, and
i → i, respectively, for some primitive type i. It is easy to see that this prob-
lem has four different unifiers given by the substitutions {〈F , λx (g x x)〉},
{〈F , λx (g a x)〉}, {〈F , λx (g x a)〉}, and {〈F , λx (g a a)〉}. Moreover, no other
substitution can be made for F that makes the two terms in the equation iden-
tical. Finally, each of the substitutions shown replaces F with a closed term.
Thus none of these unifiers can be obtained by applying a substitution to any
of the others. It follows, therefore, that there cannot be a most general unifier
for this unification problem.

Given that we cannot guarantee the existence of a single most general unifier,
we may think of generalizing this notion to that of a covering set of unifiers.
Such a set, called a complete set of unifiers, should satisfy two requirements:
First, every substitution in the set should be a unifier for the given unification
problem, and second, every other unifier should be obtainable from one in the
set by applying a further substitution. A desirable property for such a set in
computational settings is that it be finite. Unfortunately, this is another property
that does not generally hold in the higher-order context. For example, consider
the unification problem

∀u ∃F ∀w [(u (F w)) = (F (u w))]
assuming that the variable w has type i, and F and u both have type i → i, for
some primitive type i. There is an infinite number of solutions to this problem,
given by the substitution of the terms

λy y, λy (u y), λy (u (u y)), . . .

for F . Since these are each closed substitutions, any complete set of unifiers
for the given problem must include all of them.

We might think of weakening the desire of finiteness for complete sets of
unifiers to the requirement that these sets cover all the unifiers in a nonredundant
way; in particular, we might want it to be the case that no two substitutions in
the set should have the same unifier as a substitution instance. It is more difficult
to demonstrate this fact explicitly but once again, a general guarantee of this
kind of nonredundancy cannot be given in the higher-order setting.

In a computational context, we are also often interested in just the question of
unifiability, i.e., in simply determining whether or not a given unification prob-
lem has any unifiers. Considering this issue shows, yet again, the complexity
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of the higher-order unification problem: There is no general way to guarantee
a definite response to such questions. In Section 4.6 we showed how to trans-
form any instance of the Post correspondence problem into the task of finding
a unifier for a unification problem. Since Post correspondence problems are, in
general, undecidable, higher-order unification also must be undecidable.

The observation of undecidability notwithstanding, it is still possible to
describe a systematic procedure for exploring the existence of unifiers for any
given problem. In the next section we outline the structure of such a procedure.
The properties of higher-order unification that we have described still appear
quite daunting and also seem to contrast sharply with the practical usefulness of
this operation that seems to be implied by the many examples we have consid-
ered in earlier chapters. In Section 8.3 we resolve this dichotomy by showing
that unification problems in the Lλ subset of hohh are much better behaved.

8.2 A procedure for checking for unifiability

In Section 4.5 we noted that a term in β-normal form can be either rigid or
flexible. Applying that terminology to unification problems, a term that appears
on the left or right of an equation is rigid if its head is bound by a universal
quantifier in the quantifier prefix and is flexible if its head is bound by an
existential quantifier.

8.2.1 Simplification of rigid-rigid equations

An important observation about a rigid term is that its head is unaffected by any
substitutions that might be made for existentially quantified variables. Thus
a rigid-rigid equation in a unification problem can be simplified as follows.
If the heads of the terms in the equation are distinct, the entire unification
problem can be marked as unprovable. If, on the other hand, the heads of the
terms are identical, then the equation is logically equivalent to the conjunction
of equations between the arguments of the two terms and can be replaced by
this conjunction; as a special case, if the terms do not have any arguments,
we can replace the equation by �. In other words, an equation of the form
(c s1 . . . sn) = (c t1 . . . tn), where c is a variable that is bound by a universal
quantifier in the quantifier prefix, can be replaced by s1 = t1 ∧ · · · ∧ sn = tn or
by � if n = 0. Carrying out such a transformation also simplifies the problem in
a quantifiable sense: There are two fewer symbols in the overall conjunction of
equations. The process of repeatedly treating all rigid-rigid pairs in this fashion
will be called simplification.

8.2.2 Substitutions for equations between flexible and rigid terms

The property that the head of a rigid term cannot be changed through substitution
also underlies the treatment of equations in which one term is flexible and the
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other is rigid. Let
(F t1 . . . tn) = (c s1 . . . sm)

be such an equation, where F and c are variables bound by an existential and a
universal quantifier, respectively. This equation can be proved only by making
the head of the left term identical to c. Moreover, there are only two broad
categories of substitutions for F that can result in such a transformation of the
left term: that in which the head of the term substituted for F is itself c and that
where this term uses one of the arguments of F to make the head of the left
term identical to c.

Imitation substitutions The first kind of substitution for F , called imitation,
is logically correct only when the quantification over F occurs within the scope
of the quantifier that binds c. If this is the case, and if F and c have the types
τ1 → · · · → τn → β and σ1 → · · · → σm → β, respectively, then the
imitation substitution for F has the form

λx1 . . . λxn(c (H1 x1 . . . xn) (Hm x1 . . . xn))

where, for 1 ≤ i ≤ m, Hi is a new variable of type τ1 → · · · → τn → σi .
Moreover, we replace the quantification over F in the prefix by a sequence of
existential quantifiers over the Hj variables to reflect a transformation of the
obligation to find a substitution for F into ones for finding substitutions for
the Hj variables under the same constraints. Notice that the proposed imitation
substitution term has as its arguments flexible terms whose arguments include
all the variables bound by abstractions at its head. Replacing F by this term
and contracting the resulting β-redexes therefore will produce a term that has
c as its head and has as its arguments flexible terms that each have as their
arguments the original arguments of F . Thus this substitution has the effect of
fixing only the head of the substitution term, leaving all choices of what the
arguments should be to the determination of substitutions for the Hj variables
in subsequent steps in the transformation process.

Projection substitutions The second kind of substitution for F , called projec-
tion, is used to get one of the arguments of F to become the new head of the
flexible term. Assume, again, that F has the type τ1 → · · · → τn → β. The
type of the i th argument of F then is τi . A term that is to be substituted for F can
have a head of this type only if the target type of τi is identical to β. Suppose
that this is the case and that τi is, in fact, the type ϕ1 → · · · → ϕk → β. Then
there is an i th projection substitution for F that is given by the term

λx1 . . . λxn(xi (H1 x1 . . . xn) (Hk x1 . . . xn))

where, for 1 ≤ j ≤ k, Hj is a new variable of type τ1 → · · · → τn → ϕj .
Further, as in the case of imitation, we replace the quantification over F in the
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prefix with a sequence of existential quantifiers over the Hj variables. Notice
that the arguments of the substitution term have been chosen so as to commit F

at this stage only to projecting onto its i th argument; how the rest of the eventual
substitution for F is to be structured is left entirely open, to be determined by
later computations that yield substitutions for the Hj variables.

Suppose that the head of the flexible term in a flexible-rigid equation has type
τ1 → · · · → τn → β, where β is a primitive type. Then there may or may not
be an imitation substitution corresponding to this equation, and there can be
between 0 and n valid projection substitutions. Thus up to n + 1 substitutions
may have to be considered for such an equation in the course of determining
unifiability.

8.2.3 The iterative transformation of unification problems

We can try to check for unifiability by iterating the use of the steps described for
removing rigid-rigid, flexible-rigid, and rigid-flexible equations from a given
unification problem. To illustrate this process, consider the unification problem

∀a ∀g ∃F [(F a) = (g a a)]
where the types of the variables a, g, and F are i, i → i → i, and i → i,
respectively, for some primitive type i. The imitation and project substitutions
for this flexible-rigid equation yield the substitution terms

λx (g (H1 x) (H2 x)) and λx x

for F , where H1 and H2 are new variables, each of type i → i. These sub-
stitutions are, respectively, the imitation and the one projection substitution.
The application of the second substitution to the original unification problem
transforms it (after β-normalizing) into

∀a ∀g [a = (g a a)]
The sole equation in this case has an unprovable rigid-rigid form: Thus this
choice of substitution leads to a dead end. Using the first substitution, on the
other hand, leads to the problem

∀a ∀g ∃H1 ∃H2 [(g (H1 a) (H2 a)) = (g a a)]
Simplification now can be applied, and doing so results in the problem

∀a ∀g ∃H1 ∃H2 [((H1 a) = a) ∧ ((H2 a) = a)]
The left conjunct here leads us to consider the substitutions

λx a and λx x
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for H1. Using either of these reduces the problem to

∀a ∀g ∃H2 [� ∧ ((H2 a) = a)]
The only remaining equation yields λx a and λx x as the imitation and projec-
tion substitutions for H2. Both substitutions transform the unification problem
into a form where the matrix is equivalent to �; i.e., they result in a formula
that is obviously provable. Composing the different steps together yields four
different substitutions for F—the terms λx (g a a), λx (g a x), λx (g x a), and
λx (g x x)—any one of which is a unifier for the original problem.

8.2.4 Unification problems with only flexible-flexible equations

In the problem considered in the preceding subsection, each of the possible
sequences of applications of the simplification and substitution steps terminates,
and each succeeds in eliminating all the equations from the matrix. However,
we cannot be assured that this will happen for every unification problem. One
reason why this might fail to happen is that the process might terminate, yielding
a matrix that contains a nonempty conjunction of flexible-flexible equations.
For example, consider the unification problem

∀a ∀g ∃X ∃Y [(X a) = (g (Y a))]
where the variable a has type i and the variables X, Y and g have type i → i.
Using the imitation substitution λx (g (H x)) for X and then simplifying yields
the unification problem

∀a ∀g ∃H ∃Y [(H a) = (Y a)]
While this problem cannot be reduced further, it has at least one unifier: Sub-

stituting the term λx a for both H and Y (thereby also refining the substitution
for X to λx (g a)) makes the two terms in the equation identical. More generally,
a unifier always can be generated for a problem whose matrix is a conjunction
of equations that are all of flexible-flexible form by using the following recipe:
First, associate with each primitive type τ a fixed new variable Hτ of existential
strength. Then, for every type τ1 → . . . → τn → σ , where σ is a primitive
type, let λx1 . . . λxn Hσ be the canonical constant term of that type; notice that
n may be 0, in which case the proposed term has no abstractions at its head.
Finally, let the canonical substitution relative to a unification problem be the
substitution that maps each existentially quantified variable appearing in the
quantifier prefix to the canonical constant term corresponding to its type. As a
specific example, letting W be the selected variable for type i, this recipe yields
{〈H , λx W 〉, 〈Y , λx W 〉} as the canonical substitution for the final unification
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problem shown earlier. It is easy to see that the canonical substitution for a uni-
fication problem containing only flexible-flexible equations is actually a unifier
for that problem.

The reduction of a unification problem to a flexible-flexible form thus con-
stitutes success from the perspective of determining unifiability. The process of
carrying out such a reduction is known as pre-unification, and the substitution
that leads to the corresponding success is called a pre-unifier. Full unification
requires also finding a unifier for the remaining flexible-flexible equations. As
we have just seen, it is easy to provide a unifier for a problem in this form.
However, the attempt to characterize all its unifiers is often not a fruitful exer-
cise. Consider, for instance, the final flexible-flexible unification problem in
the example discussed earlier. Any substitution for H and Y that is obtained by
picking a term t constructed using a, g, and existential variables other than H ,
Y , and X and abstracting over some of the occurrences of a in t would yield a
unifier for this problem. This is clearly too large and uncontrolled a set to try
to generate explicitly.

8.2.5 Nontermination of reductions

The iterated use of simplification and imitation or projection substitutions may
not succeed in eliminating all the equations from the matrix of a unification
problem for another reason: The process may be nonterminating. To illustrate
this possibility, let us consider the problem

∀g ∃F ∀x [(F (g x)) = (g (F x))]
where the variable x has type i and the variables g and F have types i → i.
This unification problem has only one flexible-rigid equation. There is exactly
one projection substitution for F in this case, and this is given by the term
λx x.Applying this substitution yields an obviously solved unification problem.
However, we also might consider using the imitation substitution λx (g (H x))

for F . Applying this substitution and then simplifying results in the unification
problem

∀g ∃H ∀x [(H (g x)) = (g (H x))]
This problem is identical to the original problem except for the fact that the
variable F has been replaced by H . It is easy to see from this that we can gen-
erate an infinite sequence of transformations by repeatedly using the imitation
substitution followed by a simplification. Notice also that tracing the different
paths to completion leads to the substitutions

λx x, λx (g x), λx (g (g x)), . . .

for F that constitute an infinite set of unifiers for the original problem.
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{(F a) = (g a a)}

{(H1 a) = a, (H2 a) = a}

{(H2 a) = a} {(H2 a) = a}
{〈H2, λx x〉}

{}{} {} {}

{〈H2, λx x〉}

F

{〈H2, λx a〉}{〈H2, λx a〉}

{〈F , λx x〉}{〈F , λx g (H1 x) (H2 x)〉}

{〈H1, λx a〉} {〈H1, λx x〉}

Figure 8.1. A matching tree for ∀a ∀g ∃F ((F a) = (g a a)).

8.2.6 Matching trees

The procedure that we have outlined for checking unifiability is nondeterminis-
tic in that it may need to make choices between substitutions generated through
imitation and projection. The search space for the procedure can be depicted by
a structure referred to as a matching tree. The nodes in this tree are the simpli-
fied equations in the matrix of the unification problem represented as multisets;
the quantifier prefix is left implicit. The arcs correspond to the different possi-
bilities in the imitation and projection substitutions. The matching tree for the
unification problem ∀a ∀g ∃F ((F a) = (g a a)) considered earlier is shown
in Figure 8.1; we have used F to represent failure nodes in this tree, i.e., nodes
corresponding to unification problems for which it is immediately apparent that
there are no solutions. The leaves in such a tree are either failure nodes or uni-
fication problems with matrices of at most flexible-flexible equations. We refer
to the latter kind of leaf as a success node. The reduction of the original unifica-
tion problem to a success node represents a pre-unification; the corresponding
pre-unifier is obtained by composing the substitutions labeling the arcs leading
to the success node.

An important property of a matching tree is that if the problem at its root
has a unifier, then it must have a success node at a finite depth. Moreover, the
unifier for the problem at the root can be obtained by composing the correspond-
ing pre-unifier with a unifier for the problem at the success node. In creating
a matching tree, we may have choices in the equation to use for generating
the imitation and projection substitutions and hence the next nodes in the tree.
Thus, in the matching tree in Figure 8.1, we may have selected the equation
(H2 a) = a instead of (H1 a) = a at the left child of the root. The completeness
property for matching trees that we have just described holds independently of
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how this choice is made. Matching trees may have some paths in them that go
on forever. For example, from the discussion in the preceding subsection, it
follows that there would be one such path in any matching tree for the prob-
lem ∀g ∃F ∀x ((F (g x)) = (g (F x))). As we have observed previously, the
question of unifiability is an undecidable one in general. This implies that there
are unification problems with matching trees that have at least one infinite path
and no finite paths ending in success nodes. As a concrete illustration, consider
the unification problem

∀g ∃F ∀x [((F (g x)) = (g (F x))) ∧ (F a) = (F b)]
where a and b are constants of type i. The second equation in the matrix here
causes each of the unifiers that we have seen for the first equation to be rejected.
Thus the matching tree for the overall problem will have no success nodes
but will have an infinite path arising from repeated attempts to unify the first
equation.

8.3 Higher-order pattern unification

In Section 7.8 we introduced the Lλ subset of λProlog and discussed its utility
from a programming perspective. To recall the defining characteristic of this
subset, a program clause or goal formula B is in Lλ if all quantification in B

is over nonpredicate types and every subterm of B of the form (x t1 . . . tn) in
which x is an essentially existentially quantified variable is such that t1, . . . , tn
are distinct variables that are universally quantified within the scope of the
quantifier binding x. We shall refer to this property as the Lλ condition. The
β-reduction operation that results from substituting for an essentially existen-
tially quantified variable in this situation corresponds to simply replacing the
bound variables within the body of an abstraction with a new set of names.
This operation, called β0-reduction, is a particularly simple one: Transforming
((λy s) x) into s[x/y] decreases the size of the term. Consequently, we might
expect its inversion, i.e., unification in the setting of Lλ, to be a better behaved
operation than general higher-order unification. We will see this to be the case
in this section.

Lλ unification, also known as higher-order pattern unification, can be real-
ized by the procedure we have described in the preceding section refined to
take into account the restriction on terms in the Lλ setting. It is easy to see
that computations in Lλ (as also in hohh) yield unification problems in which
essential existential quantifiers in goals and program clauses become existential
quantifiers in the prefix, and essential universal quantifiers translate similarly
into universal quantifiers. At the outset, the ordering of such quantifiers in the
prefix can be arbitrary. However, raising substitutions can be used once again,
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and such substitutions obviously preserve the Lλ condition. Thus we may con-
tinue to limit our attention to problems in which the quantifier prefix has a
∀∃∀ form while simultaneously assuming that the Lλ condition is satisfied. The
simplification process for rigid-rigid equations applies unchanged in the new
situation. When considering a flexible-rigid equation, the special properties of
the Lλ class ensure that all the projection and imitation substitutions with at most
one exception will result in failure in the immediately following simplification
phase. To see this, suppose that the equation being considered is

(F c1 . . . cn) = (c t1 . . . tm)

where F is an existentially quantified variable, and c, c1, . . . , cn are universally
quantified variables. If F is bound within the scope of the quantifier binding c,
then c must be distinct from c1, . . . , cn. In this case, every one of the possible
projection substitutions for F will lead immediately to a nonunifiable equation.
On the other hand, if c is bound within the scope of the quantifier binding F ,
then the imitation substitution is not a possibility. Moreover, unless it is the case
that ci is identical to c, applying the i th projection substitution to the flexible
term will leave it with a head that does not match that of the rigid term. Since
the variables in the sequence c1, . . . , cn are all distinct, there can be at most one
useful projection to consider.

The preceding observations can be built into the substitution selection pro-
cess so as to make it entirely deterministic. Another important property to note
about the class of Lλ unification problems is that the application of an imita-
tion or projection substitution preserves this class. For example, consider the
equation shown earlier. The substitutions that have to be considered for F in
this situation are of the form

λx1 . . . λxn (@ (H1 x1 . . . xn) . . . (Hk x1 . . . xn))

where @ is c or xi for some i such that 1 ≤ i ≤ n. Since the new variables
H1, . . . , Hk will be quantified at the same location as F , replacing F with the
indicated substitution term in a context where it is applied to distinct constants
and then effecting a β-reduction clearly will yield a new term that also satisfies
the Lλ condition.

By using imitation or projection substitutions repeatedly, we may succeed in
transforming the equations in the matrix of the unification problem into flexible-
flexible ones. While it is not profitable to solve such equations in the general
case, the special properties of the Lλ subset change this situation. In this setting,
these equations have the form

(F c1 . . . cn) = (G d1 . . . dm)
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where c1, . . . , cn and d1, . . . , dm are variables that are universally quantified
within the scope of the existential quantifiers binding F and G; note that since
the prefix is assumed to have a ∀∃∀ form, F and G are effectively bound “at the
same place.” Let us suppose first that F and G are distinct variables.Any unifier
for the equation must transform both sides of it to a common term t . Such a
term obviously cannot contain any of the variables c1, . . . , cn in it unless that
variable also appears in the sequence d1 . . . , dm. A converse property applies to
the variables d1, . . . , dm. Let e1, . . . , e� be some listing of the variables common
to both c1, . . . , cn and d1, . . . , dm, let H be a new variable for which an existential
quantifier will be introduced in the prefix at the same place as the one for F , and
consider the substitution λc1 . . . λcn (H e1 . . . e�) for F . It is easy to see that
any term of the form of t can be generated by first applying this substitution to
(F c1 . . . cn) and then using a substitution for H . Asimilar observation applies
to the term (G d1 . . . dm) with the substitution λd1 . . . λdm (H e1 . . . e�) for
G. Finally, we note that the posited substitutions for F and G make the two
sides of the flexible-flexible equation equal. Thus these substitutions for F and
G constitute a most general unifier for the problem posed by the equation.

Let us now consider the case where F and G are identical; notice that n

then must be equal to m. The main difference in this situation from the earlier
case is that the same substitution will be applied to the heads of the terms on
both sides of the equation. It follows from this that a variable ci or di from the
sequences c1, . . . , cn and d1, . . . , dn can appear in a common instance of the
terms on the two sides of the equation only if ci = di . Let e1, . . . , e� be a listing
of the variables satisfying this property. The observations that we have made
then imply that the substitution of λc1 . . . λcn (H e1 . . . e�) for F is a most
general unifier for the flexible-flexible unification problem in this case.

By combining the completeness property of matching trees with the obser-
vations that there is at most one productive path in the tree and that most
general unifiers can be provided for flexible-flexible pairs in the Lλ setting, it
follows that the higher-order pattern unification problem possesses the prop-
erty of having most general unifiers. Another property that we may desire of
unification is decidability. Unfortunately, the procedure that we have sketched
up to this point is not guaranteed to terminate. In fact, it may not terminate even
when applied to first-order unification problems. To see this, let us consider
the problem ∀f ∃X [X = (f X)]. The only potentially useful substitution for
the flexible-rigid equation here is imitation, i.e., substituting the term (f H)

for X. Transforming the unification problem based on this substitution yields
∀f ∃H [H = (f H)]. This problem is identical to the one with which we
started. It is clear, then, that the process we have described will go on endlessly
in this case.
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Nonterminating behavior of the kind just illustrated obviously is restricted
in the Lλ setting to the situation where the unification problem does not have
a solution. This observation can be further refined: Such behavior occurs only
when the variable that is the head of the flexible term also occurs in the rigid term
in a flexible-rigid equation. We therefore can ensure termination for the unifica-
tion procedure by adding an “occurs-check” to the substitution-generation step
that treats such equations: We examine the rigid term and reduce the problem
to a nonunifiable one if the flexible head appears in it and produce the relevant
imitation or projection substitution only otherwise.

The imitation and projection substitutions that are used when a flexible-
rigid equation is treated realize a traversal over term structure that is also
repeated many times in the course of conducting an occurs-check. It is possible
to combine these different computations into a larger, more efficient substi-
tution generation operation. We will call this operation variable elimination
because of its similarity to an operation of the same name discussed for first-
order unification in Section 1.5. Specifically, let the flexible-rigid equation under
consideration be (F c1 . . . cn) = t . There may be, in general, occurrences of
existentially quantified variables in t . Suppose that such an occurrence is as the
head of a term of the form (G d1 . . . dm). If not all the variables in d1, . . . , dm

are contained in c1, . . . , cn, then one part of variable elimination involves gen-
erating a substitution for G that prunes such variables. This pruning substitution
replaces G with the term λd1 . . . , λdm (G′ e1 . . . e�), where G′ is a new exis-
tentially quantified variable, and e1, . . . , e� is some listing of the variables that
are common to c1, . . . , cn and d1, . . . , dm. Now let the result of applying these
auxiliary substitutions to the term t be t ′. Then the main part of variable elim-
ination checks whether there are occurrences in t ′ either of F or of variables
different from the ones in c1, . . . , cn that are quantified universally within the
scope of the quantifier binding F . If there are such occurrences, then it marks
the problem as one for which no unifiers exist. Otherwise, it generates the
substitution λc1 . . . λcn t ′ for F and replaces the equation under consideration
by �.

To illustrate the higher-order pattern unification algorithm in its final evolved
form, let us consider the unification problem

∀f ∀g ∃U ∃V ∀w ∀x ∀y [(f (U x y)) = (f (g (V y w)))]

assuming that x, y, and w are of type i, f and g are of type i → i, and U and V

are of type i → i → i. Using the simplification transformation for rigid-rigid
equations, this problem reduces to

∀f ∀g ∃U ∃V ∀w ∀x ∀y [(U x y) = (g (V y w))]
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At this stage, variable elimination becomes applicable. Using it first generates
the pruning substitution λy λw (V ′ y) for V and subsequently the substitution
λx λy (g (V ′ y)) for U . These substitutions together constitute a most general
unifier for the original problem. If the unification problem had been

∀f ∀g ∃U ∃V ∀w ∀x ∀y [(U x y) = (g (U y w))]
instead, then variable elimination would determine nonunifiability because of
the occurrence of U , the head of the flexible term, in the rigid term. Similarly,
the problem

∀f ∀g ∃U ∃V ∀w ∀x ∀y [(U x y) = (g w)]
has no unifiers because the universally quantified variable w, which is not one
of the arguments in (U x y), appears on the right-hand side of the equation and
in a position that is not the argument of a flexible term.

It is evident at this stage that higher-order pattern unification is a simpler
kind of problem than general higher-order unification. It is, in fact, an oper-
ation that is computationally similar to first-order unification: In both cases,
term simplification and variable elimination constitute the critical parts of the
computation, although variable elimination has a more involved structure in
the higher-order pattern unification case. Another interesting observation con-
cerns the role of types. In the Lλ setting, types are needed to constrain terms
and thereby to guarantee the correctness of the unification computation. How-
ever, the algorithm that we have described for higher-order pattern unification
makes no use at all of type information in determining unifying substitutions.
In particular, types have no bearing on the shapes of unifiers.

8.4 Pragmatic aspects of higher-order unification

Our discussion of higher-order unification has assumed that these problems
are presented in a form where the quantifier prefix has a ∀∃∀ structure. The
computations that result from λProlog programs often yield a prefix that does
not adhere to this structure. While raising can be used to transform arbitrary
prefixes into the more restricted form, such a transformation can be costly. To
begin with, such raising has to be performed dynamically. Moreover, existen-
tial quantifiers may have to be raised over long lists of universally quantified
variables; this is especially true of the computational paradigm discussed in
Chapter 7, in which recursion over binding structures in λ-tree syntax is real-
ized by using universal goals. A further observation is that such raising often
can be redundant and may have to be undone by a pruning substitution at a
later point. To illustrate this, let us consider the higher-order pattern unification
problem ∀f ∃U ∀x ∀y ∀z ∃V [(U x) = (f V )]. The quantifier prefix for this
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problem can be transformed into a ∀∃∀ form by raising the existential quantifier
over V to obtain the problem ∀f ∃U ∃V ′ ∀x ∀y ∀z [(U x) = (f (V ′ x y z))].
A unifier for this problem now will be computed using variable elimination that,
as a first step, would apply a pruning substitution of the form λx λy λz (W x)

to V ′.
An alternative approach that might be better in practice is to note the possi-

bility of raising but to delay its application up to a point where it is clear how
this needs to be done. To realize this approach, it is necessary to maintain with
each existentially quantified variable a list of universally quantified variables
over which it can be raised. For example, consider the problem

∀f ∃U ∀x ∀y ∀z ∃V [(U x) = (f V )]
We would record here the information that U can be raised over f and that V

can be raised over x, y, z, and f . In solving this problem using higher-order
pattern unification, this information would be used in variable elimination. In
particular, we can immediately proceed to computing a binding for U , but
noting the presence of x as an argument of the flexible term and the possibility
of raising V over x, we would replace V with the term (V ′ x), where V ′ is a new
variable quantified at the same place in the prefix as U and would produce the
unifying substitution λx (f (V ′ x)) for U . This approach also seems to be costly
initially because it requires us to maintain different lists of universal variables
with existentially quantified ones. However, these lists are all initial segments
of the sequence of variables that are universally quantified in the prefix, and
thus an efficient representation based on sharing is possible. Moreover, it is
mainly the alternations between universal and existential quantification that
are relevant to unification, and this information can be maintained and used
efficiently by attaching numerical indices to the quantified variables.

We have motivated higher-order pattern unification by assuming a static
adherence to the Lλ subset of the hohh language. While the spirit of this class
underlies many practical examples, a strict imposition of the restriction can
rule out some useful programming idioms. For example, consider the use of
(meta-level) β-reduction to realize substitution. This idiom is epitomized by
the following definition of the subst predicate that we discussed in Chapter 7:

type subst (tm -> tm) -> tm -> tm -> o.

subst R N (R N).

Observe that R and N represent essentially existentially quantified variables in
the program clause shown. The term (R N) therefore does not satisfy the Lλ

condition.
A common practical resolution to this dilemma is to not impose the Lλ

restriction on program clauses statically but rather to expect the condition to
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be satisfied by the unification problems that are encountered dynamically. The
rationale is that while we sometimes might want to generate computations by
using predicate definitions that lie outside the Lλ class, we never intend these
to be used to produce general higher-order unification problems. For example,
consider the clause defining subst. When we use this clause, we expect the
variables R and N to be fully instantiated. Thus the term (R N) is meant only
to compute the effect of substitution through reduction and is not intended
to yield a unification problem. A further generalization to this “dynamic Lλ

programming” idea is also possible: We can think of approaching arbitrary
higher-order unification through the higher-order pattern class. In this view, we
would treat any unification problem as if it is a higher-order pattern-unification
one. In the course of such a treatment, we might discover that a particular
equation does not respect the Lλ condition. In this case, we might defer further
consideration of this equation until such time that substitutions resulting from
solving other parts of the problem have altered its status.

Our desire to allow for programs outside the Lλ class is motivated by exam-
ples such as the definition of the subst predicate. Going in the other direction,
we have seen in Section 7.6 that if we can make explicit the signature of object
language expressions, then this predicate also can be defined within the Lλ sub-
set of hohh. By an extension of this argument, it also may be possible to describe
general higher-order unification as a logic program in the Lλ language. If com-
pletely developed, such an approach can yield an alternative declarative way
to realize the general unification computation that could be useful in practical
settings.

8.5 Bibliographic notes

Interest in higher-order unification first arose from a desire to mechanize
theorem proving in higher-order logics. Early investigations of this prob-
lem are due to Guard (1964) and Gould (1966), who showed that in certain
instances it was necessary to consider infinite sets of unifiers. Darlington (1971)
described an incomplete algorithm called f -matching for the second-order case.
Pietrzykowski (1973) provided a complete enumeration algorithm for this case
and extended it together with Jensen (1972) to the full higher-order setting.
Huet (1976) undertook a comprehensive study of higher-order unification in
his doctoral dissertation. Among various results, he showed that the problem
was undecidable in the third-order case (Huet 1973a) [a result that also was
established independently by Lucchesi (1972)], he defined the notion of com-
plete sets of unifiers (Huet 1975), and he showed that the search for such a set
of unifiers has to be redundant (Huet 1976). Goldfarb (1981) later established
undecidability of unification even for the second-order language.
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Aproblem related to unification is that of matching, where only one of the two
terms in an equation contains existentially quantified variables. Decidability for
this problem was shown early for the second-order (Huet and Lang 1978) and
third-order (Dowek 1992) cases, but the question remained open for a while for
the general case until Stirling (2009) finally answered it in the affirmative.

The procedure for general higher-order pre-unification described in this
chapter is due to Huet (1975). Snyder and Gallier (1989) provided an alter-
native presentation of Huet’s procedure in the form of transformations of sets
of equations. Huet (1973b) developed a notion of constrained resolution that
uses his procedure to yield a mechanization of higher-order logic by building
on the idea of resolution in type theory due to Andrews (1971). Huet’s pre-
unification procedure has been adapted by Dowek et al. (2000) so as to draw
benefit from the idea of explicit substitutions in the λ-calculus. Dougherty
(1993) developed an alternative to Huet’s procedure based on translating λ-
terms to combinatory logic. This procedure has the advantage that it does not
use types, but it also has the drawback that it conducts a redundant search;
by contrast, Huet’s procedure, which is limited to determining unifiability, is
nonredundant.

Unlike unification in Prolog systems, unification in hohh requires dealing
with explicit quantifiers and their alternations. Miller (1992a) developed the
notion of unification under a mixed quantifier prefix and described raising as
a means for simplifying quantifier alternations in the prefix. The notion of
∀-lifting used in Isabelle (Paulson 1989) is essentially a combination of rais-
ing with a backchaining step. The effect of quantifier alternations also can be
understood via hierarchies of term universes and captured directly in unification
by associating universe level tags with variables and constants; see Nadathur
(1993) and Nadathur and Linnell (2005) for specific uses of this idea.

The higher-order pattern unification problem was defined and first studied
by Miller (1991b), who proved that such unification is decidable and possesses
the property of having most general unifiers. Miller (1991a) also discussed
the encoding of general higher-order unification via a logic program in the
Lλ language. Qian (1996) showed that the complexity of higher-order pattern
unification is linear. Nipkow (1993) provided an implementation of higher-
order pattern unification in a functional programming language. Dowek et al.
(1996) described an algorithm for the problem that uses a presentation of λ-
terms based on explicit substitutions in an intrinsic way.All these developments
treat quantifier alternations essentially through raising: The algorithm used by
Nipkow assumes that the quantifier prefix has been simplified through raising
in a preprocessing phase, whereas the behavior of the algorithm of Dowek et al.
is more subtle but still may manifest the effect of raising in a nondiscriminating
way. Avoiding such raising can be important in a situation where quantifier
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prefixes are created dynamically through computations. Nadathur and Linnell
(2005) have developed an alternative algorithm that obviates explicit raising by
encoding quantifier dependencies through universe-level tags. This algorithm
has been used in several practical systems such as Bedwyr (Baelde et al. 2007),
Abella (Gacek 2008), and the Teyjus implementation of λProlog (Qi 2009).

While systems that incorporate unification modulo α-, β-, and η-conversion,
such as λProlog and Isabelle (Paulson 1990), contain implementations of Lλ

unification, there are other systems that have focused on implementing only Lλ

unification even when the term language does not satisfy the Lλ restriction on
essentially existential variable occurrences. Two systems that do this are Twelf
(Pfenning and Schürmann 1999) and Minlog (Schwichtenberg 2006). While
the first version of the Teyjus implementation (Nadathur and Mitchell 1999) of
λProlog provided for (pre-)unification in the setting of unrestricted higher-order
terms, the second version (Qi 2009) only implements Lλ unification. Using Lλ

unification has auxiliary practical effects such as obviating type information
during execution; some of these consequences are explored by Nadathur and
Qi (2005).



9

Implementing Proof Systems

We showed in Chapter 7 that λ-terms provide a natural means for representing
logical formulas and, in particular, for capturing the binding aspects of quan-
tification. We illustrated the benefits of such representations by considering
structural manipulations on formulas, such as the implementation of substi-
tution and conversion to normal forms. A common computation concerning
logical formulas is that of attempting to show that they are theorems in a given
proof system. In this chapter we show how a higher-order logic programming
language can be used to specify and implement proof systems. In the first two
sections we consider proof systems for intuitionistic logic, and in the third
section we discuss a proof system for classical logic. Our main goal here is
to illustrate how natural deduction and sequent calculus proof systems can be
specified in λProlog. Occasionally, such specifications can be converted into
simple theorem provers using a λProlog implementation. However, rich forms
of theorem proving require more careful control over search in deduction. In
the last section of this chapter we discuss an approach to encoding such control
within the λProlog setting.

9.1 Deduction in propositional intuitionistic logic

In Section 1.4.2 and again in Section 7.1.1 we described a representation
for propositional formulas that uses the types and constants identified by the
following declarations:

kind term, form type. % types for terms and formulas

type ff, % encoding the false proposition
tt form. % encoding the true proposition

type &&, % encoding conjunction
!!, % encoding disjunction
==> form -> form -> form. % encoding implication

229
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	, A −→ A
initial, A atomic

	, ⊥ −→ G
⊥L

	 −→ � ⊥L

	, A, B −→ G

	, A ∧ B −→ G
∧L

	 −→ A 	 −→ B

	 −→ A ∧ B
∧R

	, A −→ G 	, B −→ G

	, A ∨ B −→ G
∨L

	 −→ A

	 −→ A ∨ B
∨R

	 −→ B

	 −→ A ∨ B
∨R

	, A ⊃ B −→ A 	, B −→ G

	, A ⊃ B −→ G
⊃L

	, A −→ B

	 −→ A ⊃ B
⊃R

Figure 9.1. Inference rules for a fragment of propositional intuitionistic logic.

infixl && 5.
infixl !! 4.
infixr ==> 3.

We also will use this representation for propositional formulas in this chapter.
In Section 2.4.5 we described how a sequent calculus proof system can be

turned into a λProlog specification of provability. The λProlog specification in
Figure 6.8 provides another such illustration, this time including a treatment of
quantifier rules; while not explicitly presented, the sequent calculus in that case
can be extracted transparently from the specification. The soundness of such
direct translations of a sequent proof system into a λProlog specification is often
easy to verify. On the other hand, such λProlog specifications are far from being
complete: Depth-first search usually steers the interpreter into endless loops
when trying to work backwards from a given sequent. Consider, for example,
the sequent calculus proof system in Figure 9.1 for propositional intuitionistic
logic. Here, the left-hand side of the sequents are multisets. As one moves
from conclusion to the premises in these rules, the number of occurrences of
logical connectives in a sequent diminishes in all cases except that of the ⊃L

rule. In the ⊃L rule, the formula that is the focus of the rule, A ⊃ B, appears
in the conclusion as well as in the left premise. A particular instance of this
rule is

p ⊃ q −→ q q −→ q

p ⊃ q −→ q

While the right premise is proved using the initial rule, the left premise is
identical to the conclusion. The straightforward translation of this rule into a
λProlog clause therefore will lead to a program that loops.

Sequent calculi have been proposed for intuitionistic propositional logic that
ensure that the premises of a rule are always simpler than the conclusion in some
well-defined sense. For example, one can replace the ⊃L rule in Figure 9.1 with
the four rules displayed in Figure 9.2 to produce an alternative proof system that
is complete while also guaranteeing that any sequence of sequents produced
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	, A, B −→ G

	, A, A ⊃ B −→ G
⊃L1, A atomic

	, C ⊃ D ⊃ B −→ G

	, (C ∧ D) ⊃ B −→ G
⊃L2

	, C ⊃ B, D ⊃ B −→ G

	, (C ∨ D) ⊃ B −→ G
⊃L3

	, D ⊃ B −→ C ⊃ D 	, B −→ G

	, (C ⊃ D) ⊃ B −→ G
⊃L4

	 −→ G

	, ⊥ ⊃ B −→ G
⊃L5

	, B −→ G

	, � ⊃ B −→ G
⊃L6

Figure 9.2. Replacements for the ⊃L rule.

during proof search is terminating. In particular, it is possible to attribute a
weight to logical connectives and to sequents in a way that ensures that the
weight assigned to the conclusion of a rule is always greater than the weight
assigned to any of its premises. As a consequence, the direct translation of this
proof system into the λProlog specification that is presented Figure 9.3 actually
constitutes a decision procedure for proposition intuitionistic logic.

The specification in Figure 9.3 makes use of the predicate memb_and_rest

that is defined in Section 2.4.5: The goal memb_and_rest A Gamma Gamma’ is
solvable exactly when Gamma is a list containing an occurrence of A and Gamma’

is obtained from Gamma by removing that occurrence of A. The specification
also does not include a definition of the atom predicate that is meant to identify
all the propositional symbols. This predicate can be defined simply by adding
clauses to the program that enumerate all the propositional letters that appear
in a formula. For example, if we wish to prove the formula

(a ==> (a ==> b) ==> (a ==> b ==> c) ==> c

we might add to Figure 9.3 the following declaration and formula

type a, b, c form.

atom a & atom b & atom c.

The query

?- pi a\ pi b\ pi c\ atom a => atom b => atom c =>

seq nil (a ==> (a ==> b) ==> (a ==> b ==> c) ==> c).

achieves the same effect by introducing three new constants and assuming that
each of them satisfies the atom predicate.

9.2 Encoding natural deduction for intuitionistic logic

We now consider the encoding of a natural deduction proof system for first-
order intuitionistic logic. Formulas for this logic are encoded using the constants



232 9 Implementing proof systems

type atom form -> o.
type seq list form -> form -> o.

seq Gamma A :- atom A, memb_and_rest A Gamma _.
seq Gamma tt.
seq Gamma (A && B) :- seq Gamma A, seq Gamma B.
seq Gamma (A !! B) &
seq Gamma (B !! A) :- seq Gamma A.
seq Gamma (A ==> B) :- seq (A::Gamma) B.
seq Gamma _ :- memb_and_rest ff Gamma _.
seq Gamma G :- memb_and_rest (A && B) Gamma Gamma’,

seq (A::B::Gamma’) G.
seq Gamma G :- memb_and_rest (A !! B) Gamma Gamma’,

(seq (A::Gamma’) G; seq (B::Gamma’) G).
seq Gamma G :- memb_and_rest (A ==> B) Gamma Gamma’,

( atom A, memb_and_rest A Gamma’ _, seq (B::Gamma’) G;
A = (C && D), seq ((C ==> D ==> B)::Gamma’) G;
A = (C !! D), seq ((C ==> B)::(D ==> B)::Gamma’) G;
A = (C ==> D), seq ((D ==> B)::Gamma’) A,

seq (B::Gamma’) G;
A = ff, seq Gamma’ G;
A = tt, seq (B::Gamma’) G ).

Figure 9.3. An encoding of a decision procedure for propositional intuitionistic
logic.

declared in the preceding section for propositional logic along with the two
constants in the declaration

type all, some (term -> form) -> form.

that were introduced in Section 7.1.1 for encoding first-order existential and
universal quantifiers.

Natural deduction proof systems are usually described through rules for
introducing and eliminating logical connectives in formulas. A proof system in
this style for intuitionistic first-order logic is shown in Figure 9.4. Notice that
three rules in this collection—the ⊃I , ∨E, and ∃E rules—use hypothetical
judgments as premises; in particular, paths in the derivation of the premises of
these rules are allowed to start with the formula shown enclosed in parentheses.
There is also a restriction on the variable y that appears in the ∀I and ∃E rules:
This variable must not be free in the conclusion of the rule or in any assumption
that remains undischarged after the rule application. The hypothetical and uni-
versal goals of λProlog provide a convenient means for specifying such aspects
of a natural deduction proof system, as will become apparent presently.

Our specification of the intuitionistic natural deduction system will take the
additional step of encoding proofs together with the first-order formulas they
prove. Figure 9.5 contains λProlog declarations for building representations of
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∧E2

A B
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...
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C
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A ∨ B
∨I2

∀xA

A[t/x] ∀E
A[y/x]
∀xA

∀I
∃xA

(A[y/x])
...
C

C
∃E

A[t/x]
∃xA

∃I

Figure 9.4. Natural deduction rules for first-order intuitionistic logic.

kind proof type.

type true_i proof.
type false_e form -> proof -> proof.
type and_i proof -> proof -> proof.
type and_e1, and_e2 form -> proof -> proof.
type imp_i (proof -> proof) -> proof.
type imp_e form -> proof -> proof -> proof.
type or_i1, or_i2 proof -> proof.
type or_e form -> form -> proof ->

(proof -> proof) -> (proof -> proof) -> proof.
type all_e term -> (term -> form) -> proof -> proof.
type all_i (term -> proof) -> proof.
type some_e (term -> form) -> proof ->

(term -> proof -> proof) -> proof.
type some_i term -> proof -> proof.

Figure 9.5. Constructors for natural deduction proof objects.

proof objects. In addition to defining the type proof corresponding to terms
that represent proofs, this set of declarations identifies one (term) constructor
for each of the inference rules in Figure 9.4. These constructors take arguments
whose meanings should be easy to interpret from looking at the relevant com-
ponents of the inference rule in Figure 9.5 that each constructor is intended to
represent.

Figure 9.6 provides a specification of the inference rules in λProlog. The infix
symbol # is used here to encode the binary relation between proofs and formulas:
The intention is that a goal of the form Pf # F should be derivable from the
specification just in the case that Pf represents a natural deduction proof of the
formula represented by F. Notice that implicational goals are used to capture
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type # proof -> form -> o.
infix # 2.

true_i # tt.
(and_i P1 P2) # (A && B) :- (P1 # A), (P2 # B).
(or_i1 P) # (A !! B) :- P # A.
(or_i2 P) # (A !! B) :- P # B.
(imp_i Q) # (A ==> B) :- pi p\ (p # A) => ((Q p) # B).
(some_i T P) # (some A) :- P # (A T).
(all_i Q) # (all A) :- pi y\ (Q y) # (A y).
(false_e A P) # A :- P # ff.
(and_e1 B P) # A :- P # (A && B).
(and_e2 A P) # B :- P # (A && B).
(or_e A B P Q1 Q2) # C :- (P # (A !! B)),

(pi p1\ (p1 # A) => ((Q1 p1) # C)),
(pi p2\ (p2 # B) => ((Q2 p2) # C)).

(imp_e A P1 P2) # B :- (P1 # A), (P2 # (A ==> B)).
(some_e A P1 Q) # B :- (P1 # (some A)),

pi y\ pi p\ (p # (A y)) => ((Q y p) # B).
(all_e T A P) # (A T) :- (P # (all A)).

Figure 9.6. Encoding of the natural deduction inference rules.

the hypothetical judgments in the ⊃I , ∨E, and ∃E rules, and universal goals
are used to introduce and subsequently abstract over the proofs of the assumed
formulas. Note also the use of universal goals to enforce the newness constraint
for the variable y in the ∀I and ∃E rules.

To illustrate the specification in Figure 9.6, let us assume that we also have
the following declarations that identify the nonlogical part of the vocabulary:

type a, b form. % propositional constants

type q term -> form. % a predicate of one argument

type c term. % a first-order constant

type f term -> term. % a term constructor

Then the λProlog specification can be used to carry out simple proof checking:
That is, the predicate # can be used to see if a given term of type proof is, in fact,
a natural deduction proof of a particular formula. For example, the following
queries are solvable:

?- (imp_i w\w) # (a ==> a).

?- (imp_i x\ imp_i y\ imp_e a x y) # (a ==> ((a ==> b) ==> b)).

?- (imp_i P\ all_i y\ imp_i Q\

(imp_e (q (f y))

(imp_e (q y) Q (all_e y (x\ (q x) ==> (q (f x))) P))
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(all_e (f y) (x\ (q x) ==> (q (f x))) P)))

# ((all x\ (q x) ==> (q (f x))) ==>

(all x\ (q x) ==> (q (f (f x))))).

As the following interaction illustrates, it is possible to use the specification of
natural deduction to compute formulas for which a proof object is, in fact, a
proof.

?- (imp_i w\ (and_i (and_e2 a w) (and_e1 b w))) # R.

R = a && b ==> b && a.

Sometimes proofs can be incompletely described by including free variables in
them: The execution of the specification or logic program can compute bindings
for these variables that complete the description of the proof. As an example,
consider the following interaction.

?- (imp_i P\ all_i y\ imp_i Q\

(imp_e (q (f y)) (imp_e (q y) Q (all_e y A P))

(all_e (f y) A’ P))) # B.

A = w\ p w ==> p (f w)

A’ = w\ p w ==> p (f w)

B = all (w\ p w ==> p (f w)) ==> all (w\ p w ==> p (f (f w)))

?-

One might wonder if the specification can be employed as a theorem prover
simply by using a logic variable for the proof term, as in the following query:

?- P # (a ==> ((a ==> b) ==> b)).

Unfortunately, this idea will not work satisfactorily in all but the simplest of
cases. For example, while there is a simple proof for the formula in the query
just presented, one that is, in fact, included explicitly in an earlier query, the
depth-first search strategy of λProlog paired with the specification in Figure 9.5
will lead to a looping computation for the query shown.

9.3 A theorem prover for classical logic

We now consider specifying and implementing a specialized sequent-style proof
system for classical logic. This sequent calculus, which we call CL, is based
on formulas in negation normal form, a form that was identified previously in
Section 7.5. Formulas in this normal form are constructed from literals (i.e.,
atoms or negated atoms), the logical constants �, ⊥, ∧, and ∨, and the existential
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� : A, L; 	; �

� : L; A, 	; �
literal

� : ¬A, L; 	; �

� : L; ¬A, 	; �
literal

� : L; 	; �, ∃τ x.B
� : L; ∃τ x.B, 	; �

∃

Rules that classify formulas into separate zones in a sequent.

� : L; �, 	; �
�R

� : L; B, 	; � � : L; C, 	; �

� : L; B ∧ C, 	; �
∧R

� : L; B, C, 	; �

� : L; B ∨ C, 	; �
∨R

� ∪ {y : τ } : L; B[y/x], 	; �

� : L; ∀τ x B, 	; �
∀R

� : A, ¬A, L; ·; �
initial

� : L; B[t/x]; �, ∃τ x B

� : L; ·; ∃τ x B, �
∃R

The introduction and initial rules. Here, A is atomic, t is a �-term, and y is not in �.

Figure 9.7. The sequent calculus proof system CL for classical logic.

and universal quantifiers. Sequents in CL, written as � : L; 	; �, consist of
four zones, described as follows:

1. The eigenvariable signature zone, given by �, that identifies the set of
eigenvariables that can be used in the formulas in the sequent

2. The literal zone, given by L, that consists of a set of literals
3. The introduction zone, given by 	, that consists of a list of formulas in

negation normal form
4. The existential zone, given by �, that consists of a list of existentially

quantified formulas

The rules that define CL are presented in Figure 9.7. In the initial and ∃R
rules in this collection, · represents an empty list. The following observations
can be made about the collection of rules: (1) The introduction zone of the
sequent in the conclusion is empty for both the initial and the ∃R rules. (2)

The introduction rules act only on the first formula in the introduction zone:
In particular, if the first formula in the introduction zone is ⊥ (false), then that
sequent is not provable because there is no introduction rule for ⊥. (3) In a
bottom-up reading of the ∃R rule, an existentially quantified formula ∃τ xB is
removed from the existential zone, and an instance of it, B[t/x], is placed into
the introduction zone of the premise. At the same time, the formula ∃τ xB is
reinserted into the existential zone at the end.

The CL proof system is designed to give some structure to the search for
classical proofs. In particular, we can view the bottom-up construction of proofs
in this proof system as being governed by the contents of the introduction
zone. If that list is nonempty, then the first element in that zone completely
determines which inference rule must be applied. If that zone is empty, then
either the initial rule or the ∃R rule may be tried. If the process is started with
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a propositional formula, say, B, then the proof for the sequent · : ·; B; · results
in a tree whose leaves (which must be proved by the initial rule) have literal
zones corresponding to the disjuncts in the conjunctive normal form of B.

The high-level description of how to conduct proof search using CL that we
have just provided can lead to a never-ending computation in some cases. For
example, for any one-argument predicate q, the sequent · : · ; ∃τ x.q(x) ; · is not
provable. When used with this sequent, proof search as described earlier leads
to the attempt to prove sequents of the form · : q(t1), . . . , q(tn) ; · ; ∃τ x.q(x),
for increasingly larger sets of terms {t1, . . . , tn}. Hence proof search in this
case does not terminate. Nonetheless, the CL proof system can be used to
provide a complete proof procedure for first-order logic by taking two steps.
First, we impose a limit on the number of times any given existentially quan-
tified expression can be instantiated by the ∃R inference rule. Second, if
no proof is found for a given bound, we increment that bound and search
again.

Our first step in specifying the proof system CL in λProlog involves special-
izing the representation of formulas to those in negation normal form. First, we
exclude ==> from our earlier collection of declared constants because implica-
tions are not permitted in negation normal forms. Second, we shall view literals
as either positive atoms or negative atoms. Formally, we introduce a new type
atm that will encode atoms, and we view predicate symbols as constructors
of this type. Thus, if q is a one place predicate symbol, it will have the type
term -> atm. The constants p and n then are used to inject terms of type atm

positively or negatively into the type of formulas. These new type and constant
declarations are give by the following signature:

kind atm type.

type p, n atm -> form.

As examples of our representation, if c is a constant of type term and r is
a constant of type term -> atm (denoting a predicate of one argument), then
(p (r c)) and (n (r c)) correspond to a pair of complementary literals, and
the term ((p (r c)) !! (n (r c))) of type form encodes an instance of the
principle of the excluded middle.

The λProlog program in Figure 9.8 provides an implementation of a queue,
i.e., a linear structure in which items are taken out from one end and inserted at
the other. Moreover, an item that enters such a queue gets to be reused a fixed
number of times that is determined by the predicate bound. However, after an
item has been used by being “popped off” the front, its reuse is delayed until
all other items currently in the queue have been used; this effect is realized by
pushing the item back at the end of the queue. In this code, we make use of
functional difference lists, discussed in Section 5.8.2, to realize a list-based data
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kind pair type -> type -> type.
type pr A -> B -> pair A B.

kind que type -> type.
type que (list (pair A int) -> list (pair A int)) -> que A.
type qpush A -> que A -> que A -> o.
type qpop A -> que A -> que A -> o.
type bound int -> o.

qpush X (que k\ Phi k) (que k\ Phi ((pr X N)::k)) :- bound N.
qpop X (que k\ ((pr X 1)::(Phi k)))

(que k\ Phi k).
qpop X (que k\ ((pr X N)::(Phi k)))

(que k\ Phi ((pr X M)::k)) :- N > 1, M is N - 1.

Figure 9.8. A queue that allows reinserting an item a bounded number of times.

structure with the twist that we access items from the front and add back items at
the end. The empty queue in this representation is given by the term (que x\x).
The code uses the constructor pr to associate the items in the queue with an
integer indicating the number of (re)uses left to reach the (preset) usage bound.
When an item is freshly put into the queue, something that is realized through
the qpush predicate, the number to be associated with it is acquired by using
the bound predicate. The predicate qpop provides the means for extracting and
thereby using items in the queue; this predicate ensures that the item is put back
at the end of the list if the bound to its reuse has not been reached. Of course, it
also must update the number of reuses left to reach the limit. To carry out the
arithmetic needed in this process, the clauses specifying the qpop predicate use
the previously discussed built-in λProlog evaluation predicate is.

Our encoding of a sequent of the form � : L; 	; � does not maintain the
eigenvariable zone explicitly. Rather, it uses λProlog-level universal quanti-
fiers and the generic constants they introduce during computation to implicitly
realize the eigenvariables together with their logical properties. Similarly, the
set of literals L is encoded implicitly by using implications in λProlog goals:
Specifically, the addition of a literal A to this zone is realized by adding the
predicate lit A to the collection of assumed formulas. Using these devices,
the proposition “the sequent � : L; 	; � has a proof in the CL proof
system” is reduced to a relation between only two explicit arguments: the intro-
duction zone and the existential zone. We use the predicate prv that takes
a list and a queue of formulas to represent this relation. Figure 9.9 presents
the declarations identifying the constants lit and prv. The figure also con-
tains clauses for prv that encode the rules for CL that were presented in
Figure 9.7.
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type lit form -> o.
type prv list form -> que form -> o.

prv (tt :: Gamma) Phi.
prv ((B && C) :: Gamma) Phi :- prv (B::Gamma) Phi,

prv (C::Gamma) Phi.
prv ((B !! C) :: Gamma) Phi :- prv (B::C::Gamma) Phi.
prv ((all B) :: Gamma) Phi :- pi x\ prv ((B x)::Gamma) Phi.
prv ((some B) :: Gamma) Phi :- qpush (some B) Phi Q,

prv Gamma Q.
prv (p A :: Gamma) Phi :- lit (p A) => prv Gamma Phi.
prv (n A :: Gamma) Phi :- lit (n A) => prv Gamma Phi.
prv nil Phi :- lit (n A), lit (p A).
prv nil Phi :- qpop (some B) Phi Q, prv ((B T)::nil) Q.

Figure 9.9. A theorem prover for classical first-order logic.

A complete theorem prover that is based on the CL proof system is now
realized through the following additional clauses.

posints 1.

posints N :- posints M, N is M + 1.

thm B :- posints N, bound N => prv (B::nil) (que x\x).

More precisely, B represents a formula in negation normal form that has a CL
proof if and only if the goal (thm B) is provable.

Now that we have a specification of a prover, it is possible to consider
improvements. For example, when moving a literal from the introduction zone
to the literal zone, one could check whether the literal zone contains a com-
plementary literal: That is, this check does not need to be delayed until the
introduction zone is empty. One could code that modification naturally by delet-
ing the three clauses in Figure 9.9 that mention the lit predicate and replacing
them with the following:

prv (p A :: Gamma) Phi :- lit (n A) ; lit (p A) => prv Gamma Phi.
prv (n A :: Gamma) Phi :- lit (p A) ; lit (n A) => prv Gamma Phi.

One also might want to insist that if the literal zone of a sequent already contains
complementary literals then no additional proof search should be conducted.
One thus is tempted to replace the two clauses above with the following two
clauses:

prv (p A :: Gamma) Phi :- lit (n A), ! ; lit (p A) => prv Gamma Phi.
prv (n A :: Gamma) Phi :- lit (p A), ! ; lit (n A) => prv Gamma Phi.

This modification is acceptable when there are no existential quantifiers in the
formula that we are trying to prove. However, when existential quantifiers are
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present, their processing introduces (free) logic variables in the interpreter for
λProlog, and the interaction between such logic variables and the Prolog-cut
(!) can lead to incompleteness in the theorem prover. As a specific example,
the formula

((p (r c)) !! (p (r t)) !! (p (g c)) !! (some x\ (n (r x)) && (n (g x)))).

is a theorem of classical logic, but it is not provable by the version of this prover
that makes use of cut (!). This fails because the logic variable that instantiates
x gets bound to t first and the cut then eliminates the path in which it would
get bound to c: Unfortunately, only this second path and binding will lead to a
proof.

9.4 A general architecture for theorem provers

We have relied up to this point on a reflection of provability relations directly
into predicates in a logic programming language. This approach has the benefit
of yielding a transparently correct specification. However, it also means that we
must use the control regimen of the interpreter for the underlying language when
searching for proofs based on the deductive calculus. This actually can be quite
a severe limitation: For example, proof search within λProlog is designed to
be predictable, whereas we may want to vary the application of inference rules
depending on the formula to be proved in the setting of more general reasoning.
We can obtain such flexibility even when using λProlog if we encode inference
rules not directly as clauses but rather, for example, as atomic formulas that
describe how the goal of trying to prove the conclusion of the rule is related to
that of trying to prove its premises. Given such declarations, we can use clauses
to build flexible search engines that can put together the effects of inference
rules in any desired way. We elaborate on this approach in the rest of this
section.

9.4.1 Goals and tactics

The first step, then, is to abstract away from the particular structure of the objects
that are to be proved and to focus instead on the abstract task of proving such
objects. We shall refer to objects such as a formula, a sequent, or a typing judg-
ment of the form (P # A) as primitive goals. Methods for proving primitive
goals are specific to the particular contexts to which this abstraction is applied.
In addition to the primitive goals, there are three compound, or nonprimitive,
goals: the vacuously true goal, the conjunctive goal, and the universally quan-
tified goal. Goals of these kinds arise in the course of trying to solve primitive
goals; for example, the task of trying to prove a conjunctive formula yields the
conjoined goals of trying to prove each of the component formulas separately.
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kind goal type.
type trueg goal. % vacuously true goal
type cc goal -> goal -> goal. % conjunctive goal
type allg (A -> goal) -> goal. % universally quantified goal
infixl cc 3.

type goalreduce, redex, red1 goal -> goal -> o.
type primgoal goal -> o.

redex (trueg cc G) G & redex (G cc trueg) G.
redex (allg x\trueg) trueg.

red1 G H :- redex G H, !.
red1 (G cc H) (Gx cc H) &
red1 (H cc G) (H cc Gx) :- red1 G Gx.
red1 (allg G) (allg Gx) :- pi x\ red1 (G x) (Gx x).

goalreduce G H :- red1 G Gx, !, goalreduce Gx H.
goalreduce G G.

Figure 9.10. The definition of goals and some operations on them.

The declarations in Figure 9.10 identify a type for goals and constants for
representing compound goals. Also defined in the figure is a binary relation
on goals called goalreduce. This relation holds between two goals when the
second is reached by a sequence of simple rewrites that essentially erase true
goals in conjunctive goals and lift such goals out of universally quantified ones.
This approach to rewriting is discussed in Section 7.4.1.

Given the notion of goal, an inference rule is captured abstractly as a relation
between a conclusion that is represented by a primitive goal and a collection of
premises given by a goal that might be nonprimitive. When abstracted in this
way, an inference rule represents a tactic for transforming a given goal. Such
tactics are encoded in our λProlog programs as predicates that have the type
goal -> goal -> o.

As an example of the use of goals and tactics, consider the problem of
determining whether or not two nodes in a graph are connected by a path.
Figure 9.11 contains a declaration for a node type and identifies five constants
representing nodes. It also declares the constants adj and path to represent
the adjacency and the path relationship between nodes. In the present context,
expressions of the form (adj X Y) and (path X Y) are to be thought of as
the primitive goals for showing, respectively, that X and Y are adjacent and
that X and Y have a path between them. Edges between nodes then are defined
through clauses for a basic tactic called adj_tac. Finally, path_base_tac and
path_rec_tac are tactics representing steps that can be taken in calculating
whether a path exists between two given nodes.
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kind node type.
type a, b, c, d, e node.
type adj, path node -> node -> goal.

primgoal (adj _ _) & primgoal (path _ _).

type adj_tac, path_base_tac, path_rec_tac goal -> goal -> o.

adj_tac (adj a b) trueg & adj_tac (adj a c) trueg.
adj_tac (adj b d) trueg & adj_tac (adj c d) trueg.
adj_tac (adj d a) trueg & adj_tac (adj d e) trueg.
path_base_tac (path X Y) (adj X Y).
path_rec_tac (path X Y) ((adj X Z) cc (path Z Y)).

Figure 9.11. Graph and reachability described as goals and tactics.

type sq list form -> form -> goal.
primgoal (sq _ _).

type initial, and_r, imp_r, all_r, and_l, imp_l, all_l, all_l’
goal -> goal -> o.

initial (sq Gamma A) trueg :- memb_and_rest A Gamma _.
and_r (sq Gamma (A && B)) ((sq Gamma A) cc (sq Gamma B)).
imp_r (sq Gamma (A ==> B)) (sq (A::Gamma) B).
all_r (sq Gamma (all A)) (allg x\ sq Gamma (A x)).
and_l (sq Gamma A) (sq (B::C::Gamma’) A) :-

memb_and_rest (B && C) Gamma Gamma’.
imp_l (sq Gamma A) ((sq Gamma B) cc (sq (C::Gamma’) A)) :-

memb_and_rest (B ==> C) Gamma Gamma’.
all_l (sq Gamma A) (sq ((B T)::Gamma) A) :-

memb_and_rest (all B) Gamma Gamma’.
all_l’ (sq Gamma A) (sq ((B T)::Gamma’) A) :-

memb_and_rest (all B) Gamma Gamma’.

Figure 9.12. Intuitionistic sequent calculus provability described via goals and
tactics.

Another illustration of the use of goals and tactics appears in Figure 9.12. In
this case, primitive goals encode the intention to prove intuitionistic sequents
containing first-order formulas, and tactics represent the rules that can be applied
toward carrying out this intention. Thus there are tactics corresponding to the
initial rule and the left and right introduction rules for conjunction, implication,
and universal quantifiers that appear in Figure 9.1. We observe that we have
included two left-introduction rules for the universal quantifier. One of these
rules, represented by the all_l tactic, instantiates the quantifier but also pre-
serves the quantified formula in the sequent. The other, reflected in the all_l’

tactic, instantiates the quantifier and drops the quantified formula. In each of the
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cases, the tactic encodes the corresponding inference rule as a binary relation
that relates the conclusion to the premise.

9.4.2 Combining tactics into proof strategies

Tactics, starting with inference rules, can be combined to yield larger sequences
of rule applications. It is also possible to abstract out of particular combinations
and to think of strategies for realizing such combinations. Such strategies can
be embedded in higher-order predicates that take tactics as arguments. We
shall refer to predicates of this kind as tacticals. Figure 9.13 presents a few
useful tacticals. As an example, the orelse tactical that appears here describes
a method for forming the union of two tactics. Similarly, the then tactical
describes the composition of two tactics. Notice that the then tactic cannot be
equally described using the following simpler clause:

then Tac1 Tac2 In Out :- Tac1 In Mid, Tac2 Mid Out.

The way we use tactics here requires that their first argument be a primitive
goal, whereas their second argument can be a compound goal. Thus the Mid

goal that is obtained from the application of Tac1 in the body of the clause
just shown cannot be given directly to Tac2 as its first argument. Rather, the
application of Tac2 must be “mapped” over all the primitive goals that appear
in the instantiation of Mid. The predicate maptac in Figure 9.13 is defined to
represent this kind of mapping action. The composition of tactics Tac1 and Tac2

then can be realized as the relational composition of the binary relations Tac1

and (maptac Tac2).
Consider again the tactics in Figure 9.12 that encode the inference rules for a

subset of intuitionistic first-order logic. A natural way to orchestrate their use in
trying to prove a sequent is to begin by repeatedly applying the and_r, and_l,
imp_r, and all_r tactics. These tactics correspond to inference rules whose
premises are true if and only if their conclusions are true; such rules are said
to be invertible, and they can be forced to appear at the end of a proof without
any loss of completeness. The repeated use of these tactics can be captured in
the invertible tactic that is defined below with the aid of some of the tactics
from Figure 9.13.

invertible In Out :-
repeat (orelse and_r (orelse and_l (orelse imp_r all_r))) In Out.

The following interaction shows applications of the invertible tactic.

?- invertible (sq [] ((a && (a ==> b)) ==> (a && b))) Out.
Out = ((sq (a :: (a ==> b) :: nil) a) cc (sq (a :: (a ==> b) :: nil) b))

?- invertible (sq [] ((all x\ (p x) ==> (p (f x))) ==>
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type maptac (goal -> goal -> o) -> goal -> goal -> o.

maptac Tac trueg trueg.
maptac Tac (I1 cc I2) (O1 cc O2) :- maptac Tac I1 O1,

maptac Tac I2 O2.
maptac Tac (allg In) (allg Out) :- pi t\ maptac Tac (In t) (Out t).
maptac Tac In Out :- primgoal In, Tac In Out.

type idtac goal -> goal -> o.
type repeat, try (goal -> goal -> o) -> goal -> goal -> o.
type then,

orelse, orelse! (goal -> goal -> o) ->
(goal -> goal -> o) -> goal -> goal -> o.

idtac In In.
then Tac1 Tac2 In Out :- Tac1 In Mid, maptac Tac2 Mid Out.
orelse Tac1 Tac2 In Out :- Tac1 In Out ; Tac2 In Out.
orelse! Tac1 Tac2 In Out :- Tac1 In Out, ! ; Tac2 In Out.
repeat Tac In Out :- orelse (then Tac (repeat Tac))

idtac In Out.
try Tac In Out :- orelse Tac idtac In Out.

Figure 9.13. The definition of some useful tacticals.

(all x\ (p x) ==> (p (f (f x))))))
Out.

Out = (allg (w\ sq (p w :: (all w\ p w ==> p (f w)) :: nil)
(p (f (f w)))))

?-

The goal that is produced by the second invocation of invertible above can be
simplified by instantiating (all w\ p w ==> p (f w)) twice. What remains at
this point is a theorem of propositional intuitionistic logic that can be proved
by using the theorem prover described in Section 9.1. To link with that theorem
prover, we can define the following tactic:

ip_decide (sq Gamma A) trueg :- seq Gamma A.

Combining all these tactic applications, we can reduce our original goal of
proving the formula

(∀x.p x ⊃ p (f x)) ⊃ (∀x.p x ⊃ p (f (f x)))

to wanting to establish a trivially true goal. The following interaction makes
this process explicit.

?- then invertible (then all_l (then all_l’ ip_decide))

(sq [] ((all x\ (p x) ==> (p (f x))) ==>

(all x\ (p x) ==> (p (f (f x))))))
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Out.

Out = allg W1\ trueg

?-

Thus the compound tactic

then invertible (then all_l (then all_l’ ip_decide))

constitutes a script that organizes the basic tactics into a tactic that proves our
original theorem.

9.5 Bibliographic notes

The specification and implementation of theorem provers described in this
chapter use natural deduction and sequent calculus based presentations
of intuitionistic and classical logic. Such calculi were first described by
Gentzen (1969). Gentzen’s sequent calculus for propositional intuitionistic
logic includes a rule called contraction that allows formulas on the left of
the sequent arrow to be duplicated in the premise. This rule does not blend
well with automated theorem proving: Working backwards from the sequent
to be proved, it breaks the requirement that the sequents left to be established
are simpler. Kleene showed that for propositional intuitionistic logic, the con-
traction rule can be dispensed with in all cases except that of an implicational
formula (Kleene 1952). The sequent calculus that is presented in Figure 9.1 is
based on this observation. A naive implementation of this calculus can lead to
a nonterminating proof search in some cases, as we have discussed. However,
simple checks for loops can be built into the process, thereby yielding a decision
procedure for intuitionistic propositional logic (Kleene 1952). Refinements to
the inference rules that obviate such loop checks were investigated by several
people, including Hudelmaier (1992) and Dyckhoff (1992), whose rules are
the ones contained in Figure 9.2. The complexity of decision procedures for
this logic has been studied by Statman (1979a), who has shown that the task
of determining whether or not a propositional intuitionistic logic formula is
provable is PSPACE complete.

The encoding of natural deduction and sequent calculus based inference
systems in a higher-order logic programming language is a topic that has been
studied extensively by Felty, starting with her doctoral dissertation (Felty 1989).
The representation of proof objects and the specification of natural deduction
rules in terms of the relation # that is discussed in Section 9.2 is modeled closely
on a presentation by her (Felty 1993a). The relation P # A can be viewed as
a typing judgment that is valid exactly when the object given by P is a proof
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for the formula corresponding to A. However, this kind of typing judgment is
external to λProlog: At the outset, an expression of the form P # A can be a
well formed even when P does not represent a proof of A. There are languages
such as LF (Harper et al. 1993) that are based on the dependently typed λ-
calculus in which relationships between proofs and formulas can be encoded
so as to be validated directly in the type checking phase. In our case, such
type checking is embodied in a logic program. Felty and Miller have elabo-
rated on this idea more generally by showing how LF typing judgments can be
translated automatically into equivalent λProlog programs (Felty 1989; Felty
and Miller 1990). However, LF expressions can have highly redundant type
information, and consequently, this translation turns out not to be a practical
way to implement LF-style type checking. Snow, Baelde, and Nadathur have
analyzed some of the type redundancy in this translation and have used their
analysis to describe a more compact and more efficient translation of LF type
judgments into λProlog (Snow 2010; Snow et al. 2010). Snow has developed
the Parinati system based on these ideas as a practical means for realizing logic
programming search within the LF framework.

The contraction rule discussed in conjunction with provability in proposi-
tional intuitionistic logic rears its head again in the quantificational setting. This
time the rule cannot be eliminated while preserving completeness. Rather, its
use must be controlled so as to still be able to describe complete proof proce-
dures. The proof system for classical logic presented in Section 9.3 is based on
the “systematic tableaux” used by Smullyan (1968) to prove the completeness
of first-order classical logic.

The tactics and tacticals based approach to organizing proof search was
developed by Gordon, Milner, and Wadsworth (1979). Their initial presentation
of these ideas used the (higher-order) functional programming language ML
as the vehicle for implementation. Many modern automatic and interactive
theorem provers have adopted this framework; a striking example of its use
appears in the system Isabelle (Paulson 1987). The implementation of tactics
and tacticals in higher-order logic programming that is sketched in Section 9.4.2
is taken from Felty and Miller (1988) and Felty (1993a).
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Computations over Functional Programs

The treatment of programs as objects is a theme common to systems such as
interpreters, compilers, and program transformers. These systems typically use
an abstract representation of programs that they then manipulate in accordance
with the syntax-directed operational semantics of the underlying programming
language. The λProlog language can capture such representation and manip-
ulation of programs in a succinct and declarative manner. We illustrate this
strength of λProlog by considering various computations over programs in a
simple but representative functional language. In the first section we describe
this language through its λ-tree syntax; we assume that the reader is suffi-
ciently familiar with functional programming notions to be able to visualize a
corresponding concrete syntax. In Section 10.2 we present two different specifi-
cations of evaluation with respect to this language. In Section 10.3 we consider
the encoding of some transformations on programs that are driven by an analysis
of their syntactic structure.

10.1 The miniFP programming language

The functional programming language that we use in this illustration is called
miniFP. While miniFP is a typed language, in its encoding we initially treat its
programs as being untyped: We later introduce a language of types and consider
a program to be proper only if a type can be associated with it.

The core of the language of program expressions, then, is the untyped λ-
calculus. We use the type tm for these expressions, and we encode them in the
manner described in Section 7.1.2 for this calculus, with the difference that we
use the symbol @ instead of app to represent the application of two expressions,
and we write @ as an infix operator. The core is enhanced with two special
forms corresponding to the conditional and recursion. These special forms are
encoded using the constants cond of type tm -> tm -> tm -> tm and fixpt

247
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kind tm type.

% Lambda calculus with special forms
type abs (tm -> tm) -> tm. % function abstraction
type @ tm -> tm -> tm. % application
infixl @ 4. % application is infix
type cond tm -> tm -> tm -> tm. % conditional
type fixpt (tm -> tm) -> tm. % recursive functions
type cns tm -> tm -> tm. % list constructor

% Builtin datatypes and builtin functions over them
type i int -> tm. % integers coercion
type and, or, ff, tt tm. % for booleans
type cons, car, cdr, nullp, consp, null tm. % for lists
type greater, zerop, minus, sum, times tm. % for integers
type equal tm. % general equality

Figure 10.1. The signature for miniFP.

of type (tm -> tm) -> tm, respectively. The first part of Figure 10.1 contains
λProlog declarations identifying these various types and constants.

Three built-in datatypes corresponding to booleans, integers, and lists are
included in miniFP. The constructors of the boolean type in miniFP are denoted
by the λProlog constants tt and ff. The integers of miniFP are represented
by an injection of the integers of λProlog using the constant i. Finally, the
λProlog constants cns and null are used to represent lists. As an illustration,
the expression

(cns (cns (i 4) null) (cns (i 5) null))

denotes a two element list in which each element is a singleton list of integers.
The miniFP language includes several built-in functions over its datatypes.

These functions are represented by constants of type tm in our encoding. Thus
we use car and cdr to denote the functions that return, respectively, the head
and tail of a list and cons to denote the function that adds an element to a list.
Similarly, there are functions over integers and booleans in our small language
that must be encoded. The declarations in Figure 10.1 identify the complete list
of constants introduced for this purpose.

Figure 10.2 uses the prog predicate to list and name four miniFP programs.
These examples denote recursive programs for computing Fibonacci numbers,
determining membership in lists, appending two lists, and mapping a function
over a list. The recursive aspect of these functions arises from the use of the
fixpt constructor, whose exact operational semantics will be given soon.

As mentioned previously, our encoding allows us to construct many λProlog
terms of type tm that do not correspond to valid miniFP expressions; thus
(cons @ (i 4) @ (i 5)) is a well-formed λProlog term of type tm, although
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type prog string -> tm -> o.
prog "fib" (fixpt fib\ abs n\

cond (zerop @ n) (i 0)
(cond (equal @ n @ (i 1)) (i 1)

(sum @ (fib @ (minus @ n @ (i 1))) @
(fib @ (minus @ n @ (i 2)))))).

prog "mem" (fixpt mem\ abs x\ abs l\
cond (nullp @ l) ff

(cond (and @ (consp @ l) @ (equal @ (car @ l) @ x)) tt
(mem @ x @ (cdr @ l)))).

prog "appnd" (fixpt appnd\ abs l\ abs k\
cond (nullp @ l) k (cons @ (car @ l) @ (appnd @ (cdr @ l) @ k))).

prog "map" (fixpt map\ abs f\ abs l\
cond (nullp @ l) null (cons @ (f @ (car @ l)) @

(map @ f @ (cdr @ l)))).

Figure 10.2. Some named miniFP expressions.

it is not a valid object in miniFP because the second argument of cons does not
represent a list. To identify the valid miniFP objects, we introduce a language
of types and use this to formalize a typing judgment over terms of type tm.
The typing discipline for miniFP is specified by the clauses in Figure 10.3. In
particular, λProlog terms of type ty will denote types for miniFP programs. The
predicate typeof is a binary relation that captures the relationship between a
miniFP expression and a type.

Notice that expressions in miniFPmay have more than one type. For example,
each of the following queries is provable

typeof (abs w\ w) (arr int int).

typeof (abs w\ w) (arr bool bool).

pi t\ typeof (abs w\ w) (arr t t).

More generally, the miniFP expression for the identity function has type
(arr t t) for every term t of type ty. As further examples, the query

?- sigma Exp\ prog Name Exp, typeof Exp Ty.

computes the following bindings for Ty for the named expressions "fib", "mem",
"appnd", and "map", respectively.

Ty = arr int int.

Ty = arr A (arr (lst A) bool).

Ty = arr (lst A) (arr (lst A) (lst A)).

Ty = arr (arr A B) (arr (lst A) (lst B)).
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kind ty type.
type int, bool ty.
type lst ty -> ty.
type arr ty -> ty -> ty.
type typeof tm -> ty -> o.

typeof (M @ N) A :- typeof M (arr B A), typeof N B.
typeof (cond P Q R) A :- typeof P bool, typeof Q A, typeof R A.
typeof (abs M) (arr A B) :- pi x\ typeof x A => typeof (M x) B.
typeof (fixpt M) A :- pi x\ typeof x A => typeof (M x) A.

typeof tt bool & typeof and (arr bool (arr bool bool)).
typeof ff bool & typeof or (arr bool (arr bool bool)).
typeof equal (arr A (arr A bool)).

typeof null (lst A).
typeof cons (arr A (arr (lst A) (lst A))).
typeof car (arr (lst A) A).
typeof cdr (arr (lst A) (lst A)).
typeof consp (arr (lst A) bool).
typeof nullp (arr (lst A) bool).

typeof (i I) int.
typeof zerop (arr int bool).
typeof greater (arr int (arr int bool)).
typeof minus (arr int (arr int int)).
typeof sum (arr int (arr int int)).
typeof times (arr int (arr int int)).

Figure 10.3. Simple typing for miniFP.

Here, A and B are variables that range over type ty. Thus the last three of these
expressions have polymorphic types.

10.2 Specifying evaluation for miniFP programs

Several different approaches have been developed for specifying evaluation
in a functional programming setting. We show here how such approaches can
be formalized in our logic programming language. In particular, we present
logic programs for two different styles of evaluators for miniFP: Big-step oper-
ational semantics is used in Section 10.2.1, and evaluation contexts are used in
Section 10.2.2.

10.2.1 A big-step-style specification

We are interested here in defining a binary predicate called eval that is such that
the atomic formula (eval M V) succeeds if and only if the call-by-value evalu-
ation of the miniFP program M results in the value V. This kind of specification
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is called a big-step specification because the predicate eval relates a miniFP

expression to its final value, a computation that may take several atomic steps.
A contrasting style of specification, called a small-step specification, is one in
which a term is related only to terms from which it results by applying a small
number, typically just one, of atomic computation steps. The specification of
the π -calculus that we provide in Section 11.2 will illustrate the small-step style
of specification.

Figure 10.4 provides clauses that define the eval predicate. Some miniFP

expressions are recognized as values, and they therefore evaluate to them-
selves. These expressions consist of the constructors for each of the built-in
datatypes and the one representing abstraction. To evaluate an application, we
proceed by evaluating the function and the argument and then applying the
function to the argument; in the case where the function part is an abstrac-
tion, this application corresponds to a substitution that is realized elegantly
through β-conversion in the specification language. Evaluation of the special
forms also follows the familiar rules. For example, evaluation of a recursive
definition is given by unfolding: The value of (fixpt R) is obtained by evalu-
ating instead (R (fixpt R)). The treatment of the conditional makes use of the
predicate if defined in Section 5.7. This is done only for convenience of pre-
sentation and is not essential. For example, the goal (if (U = tt) G H) can
be rewritten as (U = tt, G ; U = ff, H) under the assumption that U must
be bound to a term that corresponds to a miniFP boolean value. Similarly, the
goal (if (M > N) G H) can be rewritten as (M > N, G ; M =< N, H) under
the assumption that M and N range over integer values.

The specification of evaluation is dominated by the treatment of the built-
in functions associated with the miniFP datatypes. The predicate special is
introduced to identify these functions together with their arities. Moreover, the
constant spec is added to the syntax of miniFP to encode the partial applica-
tion of such functions to (evaluated) arguments. For example, the expression
(spec 2 minus nil) denotes the functional object that is waiting for two argu-
ments before it can apply the “subtraction” operation to those arguments. The
specification of the apply predicate treats these special forms by first accu-
mulating the necessary arguments into the spec-term and then performing the
operation corresponding to the built-in function using the eval_spec predicate.

Given the specification of evaluation in Figure 10.4, the query

?- prog "fib" F, eval (F @ (i 12)) V.

computes the twelfth Fibonacci number (which is denoted by (i 144)) and
binds the variable V to it. The query

?- prog "fib" Fib, prog "map" Map,
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type eval tm -> tm -> o.
type val tm -> o.
type apply tm -> tm -> tm -> o.
type eval_spec tm -> list tm -> tm -> o.
type special int -> tm -> o.

type spec int -> tm -> list tm -> tm. % for specials

% Description of which expressions denote values
val (abs _) & val (i _) & val tt & val ff & val null.
val (cns _ _) & val (spec _ _ _).

% eval and apply are the heart of evaluation
eval V V :- val V.
eval (M @ N) V :- eval M F, eval N U, apply F U V.
eval (fixpt R) V :- eval (R (fixpt R)) V.
eval (cond C L R) V :- eval C B, if (B = tt) (eval L V)

(eval R V).
eval F (spec I F nil) :- special I F.

apply (abs R) U V :- eval (R U) V.
apply (spec 1 F Args) U V :- eval_spec F (U::Args) V.
apply (spec C F Args) U (spec D F (U::Args)) :- C > 1, D is C - 1.

% Declaration of the arity of the built-in functions
special 2 or & special 2 and & special 2 equal &
special 1 car & special 1 cdr & special 2 cons &
special 1 nullp & special 1 consp & special 1 zerop &
special 2 minus & special 2 sum & special 2 times &
special 2 greater.

% Description of how to compute the built-in functions
eval_spec car ((cns V U)::nil) V.
eval_spec cdr ((cns V U)::nil) U.
eval_spec cons (U::V::nil) (cns V U).
eval_spec nullp (U::nil) V :- if (U = null) (V = tt) (V = ff).
eval_spec consp (U::nil) V :- if (U = null) (V = ff) (V = tt).
eval_spec and (C::B::nil) V :- if (B = ff) (V = ff)

(if (C = ff) (V = ff) (V = tt)).
eval_spec or (C::B::nil) V :- if (B = tt) (V = tt)

(if (C = tt) (V = tt) (V = ff)).
eval_spec minus ((i N)::(i M)::nil) (i V) :- V is M - N.
eval_spec sum ((i N)::(i M)::nil) (i V) :- V is M + N.
eval_spec times ((i N)::(i M)::nil) (i V) :- V is M * N.
eval_spec zerop ((i N)::nil) V :- if (N = 0) (V = tt) (V = ff).
eval_spec equal (C::B::nil) V :- if (B = C) (V = tt) (V = ff).
eval_spec greater ((i N)::(i M)::nil) V :-

if (M > N) (V = tt) (V = ff).

Figure 10.4. Evaluation for miniFP specified by using a big-step specification.
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eval (Map @ Fib @ (cons @ (i 9) @ (cons @ (i 4) @ null))) V.

maps the Fibonacci function over a list of two integers and binds V to the
expression

(cns (i 34) (cns (i 3) null)).

Our specification of equality for miniFP values makes use of equality as it is
defined on λProlog terms. This leads to a notion of equality that is stronger that
the one usually present in functional programming languages. The difference
arises from the fact that equality in λProlog applies also to terms containing
abstraction. Thus the goal

?- eval (equal @ (abs x\x) @ (abs y\y)) V.

in λProlog will return the value tt for V. This goal is asking if two terms
that represent the identity function in the functional programming language are
equal. Most realizations of functional programming do not permit this kind of
comparison of functions. One way to more accurately reflect what is actually
permitted is to replace the formula B = C in the clause for eval_spec for the
built-in function equal with (eq B C), where eq is defined explicitly through
the clauses

type eq tm -> tm -> o.

eq (i N) (i N) & eq tt tt & eq ff ff.

eq null null.

eq (cns X Y) (cns U V) :- eq X U, eq Y V.

If we follow this approach only structures built from integers, booleans, and
lists will be checked for equality.

10.2.2 A specification using evaluation contexts

Another way to describe evaluation is as the process of repeatedly replacing
redexes in a term until such time that the term represents a value. In particular,
let R be a closed term of type tm representing a miniFP program. Then we can
specify the evaluation of R as follows. If R is a value, it evaluates to itself.
Otherwise, we scan R looking for a subexpression to rewrite. Once we find such
a subexpression, we replace it with what it rewrites to and then try to evaluate
the overall expression again. A particular evaluation strategy such as call-by-
value evaluation is determined by how we identify the next redex to rewrite.
The location of such a redex in a given term can be characterized through the
definition of an evaluation context.
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type non_val, redex tm -> o.
type reduce, evalc tm -> tm -> o.
type context tm -> (tm -> tm) -> tm -> o.

% Declare which expressions are not values
non_val (_ @ _) & non_val (fixpt _) & non_val (cond _ _ _).
non_val M :- special _ M.

% Declare which expressions are top-level reducible expressions
redex F :- special _ F.
redex (U @ V) :- val U, val V.
redex (cond tt _ _) & redex (cond ff _ _) & redex (fixpt _).

% Describe how to reduce a redex
reduce ((abs R) @ N) (R N).
reduce (fixpt R) (R (fixpt R)).
reduce (cond tt L R) L.
reduce (cond ff L R) R.
reduce F (spec C F nil) :- special C F.
reduce ((spec 1 F Args) @ N) V :- eval_spec F (N::Args) V.
reduce ((spec C F Args) @ N) (spec D F (N::Args)) :-
C > 1, D is C - 1.

% Separate an expression into an evaluation context and a redex
context R (x\ x) R :- redex R.
context (cond M N P) (x\ cond (E x) N P) R :-
non_val M, context M E R.

context (M @ N) (x\ (E x) @ N) R :-
non_val M, context M E R.

context (V @ M) (x\ V @ (E x)) R :-
val V, non_val M, context M E R.

% Evaluation repeatedly uses evaluation contexts and redexes
evalc V V :- val V.
evalc M V :- context M E R, reduce R N, evalc (E N) V.

Figure 10.5. Evaluation for miniFP via rewriting redexes.

The declarations in Figure 10.5 show how call-by-value evaluation for
miniFP can be specified in λProlog using evaluation contexts. The predicate
non_val that is defined here identifies miniFP expressions that do not repre-
sent values; such expressions should contain redexes that can be rewritten. The
predicate redex succeeds if its argument is a redex, and the binary predicate
reduce describes how such a redex is rewritten. The most interesting relation
defined here is context, which describes how to separate a nonvalue term into
an evaluation context and a redex. In particular, if the goal (context M E R)

succeeds, then R is the redex that must be rewritten next in a call-by-value
evaluation of M, and E is a term of type tm -> tm that is obtained from M by
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abstracting out the occurrence of R; thus E characterizes the context in which R

occurs. As an example, the query

?- context (cond ((abs x\ ff) @ tt) (i 2) (i 3)) E R.

succeeds exactly once, yielding the binding (abs (x\ ff) @ tt) for R and the
binding (W\ cond W (i 2) (i 3)) for E. Similarly, the query

?- context (cond ff ((abs x\ i 2) @ (i 3)) (i 4)) E R.

succeeds exactly once, binding R to the redex (cond ff (abs (x\ i 2)

@ i 3) (i 4)) and E to the term (w\ w); the binding for E indicates that the
next redex to be rewritten is, in fact, the entire term being considered. Given the
definitions of context and reduce, the evalc predicate, which is intended to
specify call-by-value evaluation in this style, is defined as one that repeatedly
looks for the next redex to rewrite using the context predicate and replaces this
with its reduced form until such time that a value has been found.

10.3 Manipulating functional programs

It is a simple conceptual step from writing evaluators for functional programs
to specifying transformations on the source code of such programs that pre-
serve their semantics while changing, for example, their efficiency or execution
behavior. We consider a few simple examples of such transformations here and
show how they can be encoded transparently in λProlog programs.

10.3.1 Partial evaluation of miniFP programs

Our specifications of the evaluation of a recursive function definition made
natural use of the meaning of fixed points. In particular, both styles of evaluators
for miniFP reduce the fixed point expression (fixpt R) to (the semantically
equivalent) expression (R (fixpt R)). From the operational point of view,
reducing a fixed point expression in this way (along with β-reduction at the
logic level) amounts to unfolding a recursive definition. For example,

?- prog "map" (fixpt Body), Unfold = (Body (fixpt Body)).

will bind the variable Unfold to the expression

abs f\ abs l\

cond (nullp @ l) null

(cons @ (f @ (car @ l)) @

(fixpt map\ abs f1\ abs l1\

cond (nullp @ l1) null

(cons @ (f1 @ (car @ l1)) @

(map @ f1 @ (cdr @ l1))) @ f @ (cdr @ l)))
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This expression also carries out the computation expected of the map func-
tion. From a pragmatic perspective, it may be useful to transform a recursive
definition this way: Doing so may, for example, enable further simplifications
statically in situations where the arguments to which map is to be applied are
known.

As another example of this kind of “static” or “partial” evaluation of pro-
grams, it might be useful to simplify parts of a function body. Our earlier
specifications of evaluation do not permit such simplification because they do
not allow for evaluation inside abstractions: The value of the term (abs R)

is always (abs R) even if there are redexes inside R that can be rewritten.
However, it is easy to extend these evaluators to allow for evaluation within
abstraction contexts. For example, consider the following simple specification
of “mixed evaluation” (i.e., mixing regular evaluation with a kind of “symbolic”
evaluation):

type mixeval tm -> tm -> o.

mixeval (abs R) (abs S) :- pi k\ val k => eval (R k) (S k).

The predicate mixeval attempts to evaluate under a top-level binder by introduc-
ing a “new value” (denoted by the bound variable) and attempting to evaluate
the resulting expression with this new assumption. As an example, the query

?- prog "appnd" App,

eval (App @ (cons @ (i 1) @ (cons @ (i 5) @ null))) R,

mixeval R S.

yields the single answer substitution, binding the variable S to

abs w\ cons @ (i 1) @ (cons @ (i 5) @ w).

Using this mixed-evaluation predicate, we have transformed the miniFP pro-
gram that uses the append program to place two elements at the front of any
given list into a program that does the same without using the append program.
Notice also that there is a theorem that can be proved about this (simple) imple-
mentation of mixed evaluation: If mixeval relates the two miniFP abstractions
(abs R) and (abs S), and if T is a value (i.e., the atomic formula (val T) is
provable), then the evaluation of (R T) yields the value (S T). Thus a certain
kind of “soundness” for mixeval is easy to guarantee.

10.3.2 Transformation to continuation passing style

A well-studied and useful transformation on functional programs is the con-
tinuation passing style (CPS) transformation. To keep our illustration of how
such a transformation may be specified simple, we limit our language to the
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type ftrans, phi tm -> tm -> o.

ftrans (abs V) (abs k\ k @ U) :- phi (abs V) U.
ftrans (M @ N) (abs k\ P @ (abs m\ Q @ (abs n\ m @ k @ n))) :-

ftrans M P, ftrans N Q.

phi (abs M) (abs k\ abs x\ (P x) @ k) :-
pi x\ pi y\ ftrans x (abs k\ k @ y) => ftrans (M x) (P y).

Figure 10.6. The Fischer CPS transformation for the call-by-value λ-calculus.

(untyped) λ-calculus fragment of miniFP; in other words, the only constructors
we permit are abs and @.

The Fischer CPS transformation for call-by-value evaluation is given by
two functions F[·] and �[·], which are defined as follows:

F[V ] = λ̄k (k �[V ])
F[M N ] = λ̄k (F[M] (λ̄m (F[N ] λ̄n (m k n))))

�[x] = x

�[λx M] = λk λx (F[M] k)

Here, V ranges over values that correspond to λ-abstractions and variables.
The function F[·] is defined for all untyped λ-terms, and �[·] is defined for all
values. Some of the λ-abstractions in the results of the transformations have
been marked as λ̄: We ignore these markings initially, treating them as the usual
abstractions.

Figure 10.6 shows a straightforward encoding of these functions in a rela-
tional specification. Using this definition, the following query computes the
CPS transformation of the λ-term ((λu u) (λu u)):

?- ftrans ((abs u\u) @ (abs u\u)) F.

F = (abs W1\ (abs (W2\ W2 @ abs W3\ abs W4\ abs (W5\ W5 @ W4) @ W3)) @
(abs W2\ (abs (W3\ W3 @ abs W4\ abs W5\ abs (W6\ W6 @ W5) @ W4)) @
(abs W3\ W2 @ W1 @ W3))).

The result of this transformation is rather complicated because it contains many
more β-redexes than there were in the original, untransformed term. Some of
these redexes are introduced solely for the purpose of providing a compositional
account of the transformation and therefore are often called administrative
redexes. These redexes are marked using the λ̄ symbol. It is possible to remove
such redexes from the transformed expression by rewriting them away. To that
end, we introduce the new constructor adm of type (tm -> tm) -> tm to denote
the marked abstractions, and we add clauses to those shown in Figure 10.6 to
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type adm (tm -> tm) -> tm.
type phi, ftrans, admred, red1, red tm -> tm -> o.

ftrans (abs V) (adm k\ k @ U) :- phi (abs V) U.
ftrans (M @ N) (adm k\ P @ (adm m\ Q @ (adm n\ m @ k @ n))) :-

ftrans M P, ftrans N Q.

phi (abs M) (abs k\ abs x\ (P x) @ k) :-
pi x\ pi y\ ftrans x (adm k\ k @ y) => ftrans (M x) (P y).

admred ((adm R) @ N) (R N).

red1 M N :- admred M N.
red1 (M @ N) (M’ @ N) & red1 (N @ M) (N @ M’) :- red1 M M’.
red1 (adm R) (abs S) & red1 (abs R) (abs S) :-

pi x\ red1 (R x) (S x).

red M N :- red1 M P, !, red P N.
red M M.

Figure 10.7. Two-phase CPS transformation for the call-by-value λ-calculus.

realize the reduction of administrative redexes. The new specification of ftrans
is given in Figure 10.7. Notice that in this transformation we eventually change
all marked abstractions back to an unmarked form. Using this two-pass design,
it is possible to compute more compact Fischer-style CPS transformations.
Revisiting the preceding example, the query

?- ftrans ((abs x\x) @ (abs x\x)) T, red T S.

will bind S to the smaller term

(abs W1\ (abs W2\ abs W3\ W2 @ W3) @ W1 @ (abs W2\ abs W3\ W2 @ W3)).

10.4 Bibliographic notes

Denotational semantics have long been used to provide programming languages
with compositional semantic specifications (Stoy 1977). Higher-order func-
tional programming languages, such as Scheme and ML, often have been used
to provide natural and immediate implementations of denotational semantics–
based specifications. In recent years, operational semantics specifications of
programming languages have become increasingly popular. Operational seman-
tics specifications typically are given via inference rules based on the syntactic
structure of expressions. As a result, logic programming languages are well
suited for providing immediate and natural implementations of such speci-
fications. Since the syntax of programs usually includes binding constructs,
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λProlog, which integrates λ-tree syntax with logic programming, is a natu-
ral setting for specifying and executing operational semantics specifications of
programming languages.

Plotkin (2004) presented operational semantics via syntax-directed inference
rules in a form that is often called small-step operational semantics or struc-
tural operational semantics. Big-step style specifications, used in the example
in Section 10.2.1, were proposed by Kahn (1987) under the name natural seman-
tics. Evaluation by evaluation contexts was first proposed by Felleisen and Hieb
(1992).

The evaluators for functional programs presented in this chapter used
β-reduction to implicitly realize substitution of an actual argument for a formal
parameter in the body of a function. It is possible also to model substitution
explicitly by using the common practice of implementing function calls via
the creation of function closures. Hannan and Miller (1992) showed how to
systematically transform specifications that use β-reduction to realize substitu-
tions into specifications that use function closures instead. By doing this, they
showed that it is possible to systematically translate big-step specifications of
evaluation into lower-level abstract machine specifications.

The mixed-evaluation example in Section 10.3 was presented by Hannan
and Miller (1989). There are many varieties of continuation passing style
transformations: The example in Section 10.3 is an implementation of the trans-
formation given by Sabry and Felleisen (1993) that is itself modeled on the
transformation given by Fischer (1972). The first examples of manipulating
programs based on a λ-tree syntax representation perhaps can be traced to Huet
and Lang (1978), who showed that simple structural analysis of recursive pro-
grams can be realized through second-order matching. Miller and Nadathur
describe an extension to such analyses by using program clauses that mix infer-
ence rules with unification (Miller and Nadathur 1987; Nadathur and Miller
1998); using this approach, they presented, for example, a λProlog program
for recognizing functional programs that are tail-recursive. The master’s the-
sis of Mottl (2000) contains several more examples of program analyses and
transformations implemented using λProlog.

The functional programming language represented by miniFP does not allow
for let expressions. It is easy to add such expressions by modeling a con-
crete syntax expression of the form let x = t in b by the λProlog term
(let t (x\b)), where let is a new constructor given by the declaration

type let tm -> (tm -> tm) -> tm.

Evaluation can be extended to include such expressions by adding a clause
such as
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eval (let T R) V :- eval T U, eval (R U) V.

The typing rules typically associated with the new construct allow for a form
of polymorphism called let-polymorphism. The usual algorithm for inferring
types in this context, which is called algorithm W (Damas and Milner 1982),
is rather difficult to specify in our logic programming setting. In particular,
no simple extension to the program provided in Figure 10.3 can realize this
algorithm. The doctoral thesis of Liang (1996) describes some approaches to
the specification and implementation of polymorphic typing in this extended
setting.

Given the logical nature of the specifications of evaluation, typing, and even
program manipulations for miniFP, it is natural to consider proving formal
properties about them. For example, one might think of proving that evaluation
of a given miniFP program can yield at most one value, that the type of a
program is preserved under evaluation, and that replacing a term by one related
to it through mixed evaluation preserves the value of the embedding term. The
Abella interactive theorem prover (Gacek 2008; Gacek et al. 2008) can be used
to prove such theorems about (restricted) hohh specifications.
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Encoding a Process Calculus Language

This chapter considers the encoding of a process calculus within a higher-order
logic programming language. Process calculi have been proposed in the litera-
ture as a means for modeling concurrent systems. The π -calculus in particular
makes use of a sophisticated binding mechanism to encode communication
between processes. Our goal here is to show that such binding mechanisms can
be treated naturally using λ-tree syntax in λProlog. Since we do not discuss the
π -calculus itself in any detail, a reader probably would need a prior exposure
to this calculus to best appreciate the nuances of our encodings. However, our
primary focus is on showing how a presentation of a formal system can be
transformed into a complete and logically precise description in λProlog and
how such a description can be used computationally. Thus a reader who has
understood the earlier chapters also should be able to follow our development
and perhaps will learn something about the π -calculus from it.

The first two sections of this chapter describe an abstract syntax represen-
tation for processes in the π -calculus and the specification of the standard
transition relation over such processes. A highlight of this specification is that
the transition rules are encoded in a completely logical fashion through the use
of λ-tree syntax: The usual side conditions involving names are captured com-
pletely using binders and their mobility. Sections 11.3 and 11.4 discuss how our
encoding can be used in analyzing computational behavior. This discussion also
illuminates shortcomings of the logic programming setting in specifying what
is known as the must behavior of processes. The last section further illustrates
our approach to abstract syntax by showing the translation of a mapping of the
λ-calculus under a call-by-name evaluation semantics into the π -calculus.

11.1 Representing the expressions of the π -calculus

The π -calculus is a language for modeling processes that interact using names.
In particular, this calculus permits communication via named channels, and

261
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the names of channels are communicated through these means. Thus there are
two syntactic categories that are important to process expressions: names and
processes.

Process expressions are defined by the following syntax rule.

P := 0 | P | P | P + P | x(y).P | x̄y.P | [x = y].P | τ .P | (y)P | ! P

In these expressions, x and y represent names. The first expression, 0, corre-
sponds to a process that cannot perform any actions. The expressions P | P

and P +P correspond, respectively, to the parallel composition and the combi-
nation via a choice of two processes. The following four expressions constitute
processes with prefixes that support interaction: x(y).P represents a process
that can accept a name on the channel x and then will transform into P with y

bound to the input name; x̄y.P is a process that can evolve by outputting the
name y on the channel x; [x = y].P is a process that can become P provided
that the names x and y are equal; and τ .P is a process that can evolve through
a silent action. The expression (y)P represents the restriction of the name y

to P : Interactions can take place internal to P through this name, but the pro-
cess cannot communicate externally along channel ȳ or channel y. Finally, ! P

denotes the parallel composition of any number of copies of P .
To represent expressions of the π -calculus in λProlog, we shall make use

of the types name and proc for names and processes. We then introduce con-
structors with appropriate argument types for each category of processes. The
declarations for these types and constructors are shown in Figure 11.1: The order
of declaration of the process constructors follows the order in which the process
expression of each kind is shown in the syntax rule. Notice that the two process
expressions x(y).P and (y)P embody a binding notion. The λ-tree syntax for
these expressions accordingly will include a λ-term with an explicit abstraction.
This fact is reflected in the types of the constructors for such processes: in and
nu each have an argument of type name -> proc.

Figure 11.1 also contains illustrations of the chosen λ-tree syntax. In partic-
ular, the clauses for the example predicate pair representations of the following
process expressions (read row-by-row) with the numbers 1 through 8:

(b(y).0) | (b̄a.0) (b(y).x̄a.0) + (b̄a.b(y).0)

(x)((x(y).0) | (x̄a.0)) (x)(āx.0)

a(y).((y(w).0) | (b̄b.0)) a(y).((y(w).b̄b.0) + (b̄b.y(w).0))

(y)āy.((y(w).0) | (b̄b.0)) (y)āy.((y(w).b̄b.0) + (b̄b.y(w).0))

The occurrences of a and b are free in all these expressions, whereas all the
occurrences of x, y, and w are bound. Free names are denoted in the abstract
syntax representation by constants of type name.
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kind name type.

kind proc type.
type null proc.
type plus, par proc -> proc -> proc.
type in name -> (name -> proc) -> proc.
type out, match name -> name -> proc -> proc.
type taup proc -> proc.
type nu (name -> proc) -> proc.
type bang proc -> proc.

type a, b, c name.
type example int -> proc -> o.
example 1 (par (in b y\ null) (out b a null)).
example 2 (plus (in b y\ out b a null) (out b a (in b y\ null))).
example 3 (nu x\ par (in x y\ null) (out x a null)).
example 4 (nu x\ out a x null).
example 5 (in a y\ par (in y w\ null) (out b b null)).
example 6 (in a y\ plus (in y w\ out b b null)

(out b b (in y w\ null))).
example 7 (nu y\ out a y (par (in y w\ null) (out b b null))).
example 8 (nu y\ out a y (plus (in y w\ out b b null)

(out b b (in y w\ null)))).

Figure 11.1. Representing π -calculus expressions.

In all but the last section of this chapter we will restrict our attention to
processes that do not include the ! operator. Processes that belong to this variant
of the π -calculus are said to be finite.

11.2 Specifying one-step transitions

The operational semantics of the π -calculus usually is given by a small-step
semantics that is presented by inference rules defining one-step labeled tran-

sitions. These transitions are denoted by expressions of the form P
A−−→ Q,

where P and Q are processes, and A is an action. The intuitive meaning of
such an expression is that the process P interacts with the environment via the
action A and then continues as Q. The π -calculus has three kinds of actions,
one each for inputting and outputting a name on a channel and a “silent” action
that occurs without involving the environment. The three lines in Figure 11.2
are the λProlog declarations for expressions representing actions: action is
the type for such expressions, tau denotes the silent action, (dn x y) denotes
the inputting of y on channel x, and (up x y) denotes the outputting of y on
channel x.

Our specification of the transition rules for the π -calculus uses two relations.
One of these will describe free actions that transform processes; this relation will
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kind action type.
type tau action.
type up, dn name -> name -> action.

type one proc -> action -> proc -> o.
type onep proc -> (name -> action) -> (name -> proc) -> o.

one (taup P) tau P.
one (out X Y P) (up X Y) P.
onep (in X M) (dn X) M.
one (match X X P) A P’ :- one P A P’.
onep (match X X P) A P’ :- onep P A P’.
one (plus P Q) A P’ :- one P A P’; one Q A P’.
onep (plus P Q) A P’ :- onep P A P’; onep Q A P’.
one (par P Q) A (par P’ Q) &
one (par Q P) A (par Q P’) :- one P A P’.
onep (par P Q) A (y\ par (P’ y) Q) &
onep (par Q P) A (y\ par Q (P’ y)) :- onep P A P’.
one (nu P) A (nu P’) :- pi y\ one (P y) A (P’ y).
onep (nu P) A (x\ nu y\ P’ y x) :- pi y\ onep (P y) A (P’ y).
onep (nu P) (up X) P’ :-

pi y\ one (P y) (up X y) (P’ y).
one (par P Q) tau (nu y\ par (P’ y) (Q’ y)) &
one (par Q P) tau (nu y\ par (Q’ y) (P’ y)) :-

onep P (up X) P’, onep Q (dn X) Q’.
one (par P Q) tau (par S (T Y)) :- one P (up X Y) S,

onep Q (dn X) T.
one (par P Q) tau (par (S Y) T) :- onep P (dn X) S,

one Q (up X Y) T.

Figure 11.2. The operational semantics of the finite π -calculus.

be given by the predicate one of type proc -> action -> proc -> o. The other
relation will characterize bound actions that yield abstracted processes. The
predicate onep of type proc -> (name -> action) -> (name -> proc) -> o

will encode this relation.
The clauses that we use to specify the predicates one and onep are based

directly on the one-step transition rules of theπ -calculus. Consider, for example,
the following rules that do not explicitly reference name bindings:

match :
P

α−−→ P ′

[x = x]P α−−→ P ′
sum :

P
α−−→ P ′

P + Q
α−−→ P ′

P
α−−→ P ′

Q + P
α−−→ P ′

These two rules have the following immediate rendition as program clauses:

one (match X X P) A P’ :- one P A P’.

onep (match X X P) A P’ :- onep P A P’.
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one (plus P Q) A P’ :- one P A P’; one Q A P’.

onep (plus P Q) A P’ :- onep P A P’; onep Q A P’.

In our setting, we must consider the use of the inference rules in the context of
both free and bound actions. For this reason, there is a clause for each for the
predicates one and onep corresponding to each rule. Notice that the type of A
in these clauses is either action or name -> action and that the type of P’ is,
correspondingly, either proc or name -> proc.

The main difference between the usual specification of the π -calculus and
the specification here is in the treatment of bindings. Consider, for example, the
following inference rule.

res :
P

α−−→ P ′

(y)P
α−−→ (y)P ′

There is a side condition associated with this rule: y must not be a name
appearing in the action α. This rule can be specified by the clauses

one (nu P) A (nu P’) :- pi y\ one (P y) A (P’ y).

onep (nu P) A (x\ nu y\ P’ y x) :- pi y\ onep (P y) A (P’ y).

In both these clauses, the variable A is implicitly universally quantified over the
entire clause, and the quantifier for y appears within the scope of the quantifier
for A. As a result, all legal substitution instances of these clauses will be such
that y will not occur in the second argument of the atomic formula in the body
of the clauses: As discussed in Section 3.3.1, logically correct substitution into
quantified formulas must not permit variable capture. Thus the side condition
associated with the res rule is realized declaratively through a proper nesting
of quantification in the clauses specifying it.

A more interesting situation involving binding is presented by the following
rules that are part of the usual presentation of the π -calculus:

input-act :
x(z).P

x(w)−−→ P {w/z}
open :

P
x̄y−−→ P ′

(y)P
x̄(w)−−→ P ′{w/y}

close :
P

x̄(w)−−→ P ′ Q
x(w)−−→ Q′

P | Q
τ−−→ (w)(P ′ | Q′)

P
x̄(w)−−→ P ′ Q

x(w)−−→ Q′

Q | P
τ−−→ (w)(Q′ | P ′)

The input-act rule has the side condition that w should not be a free name
of (z)P . The open rule requires y and x to be distinct and w to not be a
free name in (y)P ′. The expression P {w/z} denotes the result of substituting
w for z in P . These two rules model bound input and output actions. The
open rule transforms a free output action into a bound output action and also
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“opens” a scope represented by a restriction operator. The close rule permits
a corresponding closing of scope after a bound input action has combined with
a bound output action.

The preceding transition rules can be specified by the following clauses:

onep (in X M) (dn X) M.

onep (nu P) (up X) P’ :- pi y\ one (P y) (up X y) (P’ y).

one (par P Q) tau (nu y\ par (P’ y) (Q’ y)) &

one (par Q P) tau (nu y\ par (Q’ y) (P’ y)) :-

onep P (up X) P’, onep Q (dn X) Q’.

The bound input and output actions require only a clause for onep. Notice also
that the names bound by these actions are represented by an explicit abstraction
in the abstracted processes that result. The close rule is specified by a clause
only for one because it yields a τ (free) action. The illegal name capture that
is prevented in the close rule by the side condition on w in the input-act
and open rules is realized in the clause for close by the nesting of scope for
bound variables. In particular, since the abstraction over y, the name bound by
the restriction, appears within the scope of the quantifiers for P ′ and Q′, this
name cannot appear free in the abstracted processes that instantiate P ′ and Q′.
The open rule has an additional proviso that x and y must be distinct. This
requirement is realized in the corresponding clause for onep by the fact that y

is bound by an explicit universal quantifier within the scope of the quantifier
binding X.

The full specification of the labeled transition semantics for the π -calculus
is given by the declarations in Figure 11.2. This specification includes clauses
for the silent and free output actions and additional actions involving parallel
combination of processes, including the communication between a free output
and (bound) input action.

11.3 Animating π -calculus expressions

The specification of one-step transitions via a logic program gives us the
ability to animate the π -calculus. For example, assuming the declarations in
Figures 11.1 and 11.2, the following queries show how we can explore the
one-step transitions that are possible from a given π -calculus expression:

?- example 1 P, one P A P’.

P = par (in b W\ null) (out b a null)

A = up b a

P’ = par (in b W\ null) null;
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P = par (in b W\ null) (out b a null)

A = tau

P’ = par null null;

no

?- example 1 P, onep P A P’.

P = par (in b W\ null) (out b a null)

A = W\ dn b W

P’ = W\ par null (out b a null);

no

?- example 3 P, one P A P’.

P = nu W\ par (in W y\ null) (out W a null)

A = tau

P’ = nu W\ par null null ;

no

?-

The first query indicates that the π -calculus process (b(y).0) | (b̄a.0) can make
transitions labeled b̄a and τ , yielding the continuations (b(y).0) | 0 and 0 | 0,
respectively. The second query reveals that this same process has a bound input
action b(w) with continuation (0 | b̄a.0); notice, however, that this action and
continuation are shown as abstractions over type name. Finally, the last query
shows that the process (w)((w(y).0) | w̄a.0) can make a silent transition to the
process continuation (w)(0 | 0).

We can extend the one-step transition relation into a relation that pairs a
process with sequences of actions that it can take. Such sequences, called traces,
provide information about the structure of possible interactions that a process
can have with external observers. In defining this trace relation, we have to
make a choice in the treatment of processes with input prefixes. Consider, for
example, the π -calculus expression (a(y).[y = b].ȳy.0). A simplistic approach
might treat this input action as one that receives a generic input. Under such an
approach it is not possible to reveal any additional dynamics of this process. In
this particular instance, for example, traces would not be capable of showing
that if the input received on name a had been b, then the process can perform
a b̄b action.

Figure 11.3 defines a notion of traces for π -calculus expressions that permits
a more liberal treatment of bound input actions in traces. In particular, these are
defined to be terms of type trace and are constructed starting from empty traces
represented by the constant symbol empty. Actions in a trace can be bound or
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kind trace type.
type empty trace.
type tr action -> trace -> trace.
type trp (name -> action) -> (name -> trace) -> trace.

type trace proc -> trace -> o.
trace P empty.
trace P (tr Act Tr) :- one P Act Q, trace Q Tr.
trace P (trp (up X) Tr) :- onep P (up X) Q,

pi x\ trace (Q x) (Tr x).
trace P (tr (dn X Y) Tr) :- onep P (dn X) Q, trace (Q Y) Tr.

Figure 11.3. Traces in the π -calculus.

free: trp or tr is used as the constructor for extending a trace depending on the
kind of action. This figure also contains clauses defining the trace predicate.
Notice that it is necessary to consider an instantiation to continue the exploration
of a process after a bound action. When this bound action is a bound output,
the binding is instantiated with a generic value by using a universal quantifier
in the body of the trace definition. In contrast, for an input action, we would
want to consider different possible instantiations, so a free variable is used to
instantiate the bound input action and its continuation.

As with one-step transitions, we can use the trace predicate to compute the
possible traces from a given process. Thus, given the declarations in Figure 11.3,
the query

?- example 1 P, trace P Tr.

will produce all the following bindings for Tr:

empty

tr (up b a) empty

tr (up b a) (tr (dn b T) empty)

tr tau empty

trp (dn b T) empty

trp (dn b T) (tr (up b a) empty)

As a final example, the query

?- trace (in a Y\ plus (match Y b (out Y Y null))

(match Y c (out Y Y null))) Tr.

will enumerate the following traces (as bindings for the variable Tr) as the only
ones possible for the process a(y).(([y = b].ȳy.0) + [y = c].ȳy.0)):

empty

tr (dn a T) empty
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tr (dn a b) (tr (up b b) empty)

tr (dn a c) (tr (up c c) empty)

From these traces, we learn that this process can do an unrestricted input and
that if that input is chosen to be b or c, then further, distinct output actions can
follow.

11.4 May- versus must-judgments

Up to this point, we have only considered judgments involving the possible
ways in which a process can evolve. Such judgments, sometimes called may-
judgments, correspond to identifying paths in a computation tree that a process
may follow. Our logic-based encoding of the π -calculus allows the existence of
a path to be closely correlated with the existence of a proof for a query from a
specification of the transition relation. More generally, may-judgments usually
can be given declarative logic specifications.

One often wishes also to compute must-judgments. These are judgments that
involve meta-level universal quantification. For example, one might want to
know that even though a given π -calculus process can evolve in many different
ways, it can never evolve in a way that allows it to take a certain specific
action. Another example of a must-judgment is that of determining whether or
not all traces associated with one process can be matched by traces associated
with another process. Determining whether or not a process P can make any
transitions at all is another example of a must-judgment because it is a special
case of judgments concerning traces: The process P cannot make a transition
if and only if it has the same traces as the process 0.

The style of logic specifications that we have described in this book does
not, in general, provide declarative treatments of must-judgments. Negation-
as-failure can be used, however, to capture or approximate some of these
judgments. We illustrate this possibility in the rest of this section.

Our first example is that of specifying a complete trace for a process. Such
traces are ones that cannot be extended. Figure 11.4 contains clauses defining
the predicate comptrace that associates with processes their complete traces
represented in the manner discussed in the preceding section. Notice that the
specification of comptrace is similar to that of trace in Figure 11.3 except that a
trace is allowed to be empty only if no transitions are possible from the process.
Negation-as-failure is used to identify processes that have this characteristic:
The predicate possible is defined to succeed if its argument is a π -calculus
process that can make some (free or bound) labeled transition, and a process is
terminal only if possible fails on it. The following interaction shows the use
of comptrace to find complete traces:
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type possible, terminal proc -> o.
type comptrace proc -> trace -> o.
type separating_trace proc -> proc -> trace -> o.
type trace_equiv proc -> proc -> o.

possible P :- one P _ _ ; onep P _ _.
terminal P :- not (possible P).

comptrace P empty :- terminal P.
comptrace P (tr Act Tr) :- one P Act Q, comptrace Q Tr.
comptrace P (tr (dn X Y) Tr) :- onep P (dn X) P’,

comptrace (P’ Y) Tr.
comptrace P (trp (up X) Tr) :- onep P (up X) P’,

pi x\ comptrace (P’ x) (Tr x).

separating_trace P Q T :- trace P T, not (trace Q T).

trace_equiv P Q :- not (separating_trace P Q _),
not (separating_trace Q P _).

Figure 11.4. Some trace-based predicates on π -calculus expressions.

?- example 1 P, comptrace P Tr.

Tr = tr (up b a) (tr (dn b T) empty)

P = par (in b (W1\ null)) (out b a null);

Tr = tr tau empty

P = par (in b (W1\ null)) (out b a null);

Tr = tr (dn b T1) (tr (up b a) empty)

P = par (in b (W1\ null)) (out b a null);

no

?-

Also defined in Figure 11.4 is the predicate separating_trace, which is
intended to find a trace for a given process that is not a trace for another given
process (the predicate comptrace could have been used here instead of trace).
Notice again the use of negation-as-failure in the body of the clause for this
predicate to check if a trace found for the first process is not a trace for the
second. The following interaction shows the use of this predicate.

?- example 5 P, example 6 Q, separating_trace P Q T.

T = tr (dn a b) (tr tau empty)

P = in a (W1\ par (in W1 (W2\ null)) (out b b null))

Q = in a (W1\ plus (in W1 (W2\ out b b null)) (out b b (in W1 (W2\ null))));

no
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?- example 5 P, example 6 Q, separating_trace Q P T.

no

?-

The answer to the first query shows that the process given by the π -calculus
expression a(y).((y(w).0) | (b̄b.0)) can do an input, after which it can do
an internal communication (symbolized by the tau action), but the pro-
cess given by a(y).((y(w).b̄b.0) + (b̄b.y(w).0)) cannot do these actions in
sequence. This interaction also shows that this is the only trace that sepa-
rates these two processes. Moreover, if we change the initial input prefix to
a (bound) output prefix in the first process—i.e., if we consider the two pro-
cesses (y)āy.((y(w).0) | (b̄b.0)) and (y)āy.((y(w).b̄b.0) + (b̄b.y(w).0)) that
are encoded by examples 7 and 8 in Figure 11.1—then there are no separating
traces.

?- example 7 P, example 8 Q, separating_trace P Q T.

no

?- example 7 P, example 8 Q, separating_trace Q P T.

no

?-

Finally, Figure 11.4 contains a clause defining the predicate trace_equiv that
specifies a notion of equivalence between processes based on the commonality
of their traces. This definition makes use, once again, of negation-as-failure via
the not predicate.

For many applications, equivalence based on traces does not make enough
distinctions between processes. In particular, it does not capture branch points
that are internal to processes. For example, the processes x̄a.(ȳb.0 + ȳc.0) and
(x̄a.ȳb.0+x̄a.ȳc.0) are trace-equivalent, but they have an important difference:
After doing an x̄a action, the first of these processes has the potential to do two
different output actions, whereas the second process can do only one output
action. A more fine-grained equivalence is based on the notions of simulation
and bisimulation. Roughly speaking, process P is simulated by process Q if
whenever P can perform an action and evolve into a process P ′, Q can perform
an identical action that transforms it into a process Q′ that simulates P ′. Notice
that a process that makes no actions is simulated by any process. To make this
description into a formal definition, the simulation relation is usually defined
coinductively.

Figure 11.5 shows a collection of declarations that attempt to encode the
simulation relation. The predicate foreach2 is defined here to hold between
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type foreach2 (A -> B -> o) -> (A -> B -> o) -> o.
type sim proc -> proc -> o.

foreach2 P Q :- not (sigma X\ sigma Y\ P X Y, not (Q X Y)).

sim P Q :- foreach2 (A\P’\ one P A P’)
(A\P’\ sigma Q’\ one Q A Q’, sim P’ Q’),

foreach2 (A\P’\ onep P A P’)
(A\P’\ sigma Q’\ onep Q A Q’,

pi x\ sim (P’ x) (Q’ x)).

Figure 11.5. An incorrect specification of the simulation relation.

two binary relations R and S just in the case that S holds for any pair of objects
for which R holds; this definition employs the not predicate. The sim predicate,
which is defined using foreach2, is intended to hold of two processes P and Q

just in the case that any one-step transition from P can be simulated on Q. A
key part of this definition is the treatment of bound actions. The intuition that
we desire to capture here is that any bound action on P also can be performed
on Q, and the abstracted processes P ′ and Q′ that result from these respective
actions are such that any instance of P ′ is simulated by the corresponding
instance of Q′. Unfortunately, this intuition is not encoded adequately in the
definition. The problem arises from the fact that the universal quantifier in goals,
the only device available for realizing quantification over all instances in the
λProlog setting, has an intensional character: The generic goal must be derived
by showing that an identical derivation exists for any of its instances. However,
π -calculus processes may have different evolutions for different instantiations
of an input action. As a particular example, consider the following query:

?- sim (in a x\ par (in x y\ null) (out c b null))
(in a x\ plus (in x y\ out c b null) (out c b (in x y\ null))).

solved

?-

The answer in this case indicates that the simulation relation holds between the
processes that are given by the following π -calculus expressions:

a(x).(x(y).0 | c̄b.0) and a(x).((x(y).c̄b.0) + (c̄b.x(y).0)).

This simulation relationship should not hold, however, because the first expres-
sion can input the name c on channel a and then do a τ action, whereas the
second process cannot do this sequence of actions. Clearly, using the universal
quantifier in the part of the definition of simulation that deals with bounded
inputs is incorrect.

The preceding discussion makes it clear that to treat the simulation relation
properly, we need a universal quantifier that has an extensional interpretation.
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There is a similar uncomfortable situation in the use of negation-as-failure:
This is at best an ad hoc device in the λProlog setting, and there are well-known
problems with using it with goals that have uninstantiated variables in them.
Extensions can be made to the underlying logic to provide a principled treatment
of both these aspects, thereby leading to a theoretically sound framework for
capturing must behavior. A further discussion of these issues is beyond the
scope of this book.

11.5 Mapping the λ-calculus into the π -calculus

One demonstration of the expressiveness of the π -calculus as a computational
paradigm is based on showing that it can naturally encode evaluation in the
untyped λ-calculus. In the common approach to doing this, abstracted variables
in λ-terms are treated as names of channels along which the process representing
the body of the term is told where to receive its arguments. Since bound variables
can have multiple occurrences in a λ-term, we shall need to use π -calculus
expressions that include the replication operator ! in the translation. We add the
clauses in Figure 11.6 to those in Figure 11.2 to extend the one-step transition
relation to such expressions (the ! operator is written as bang).

We consider here a translation of λ-terms that is capable of capturing lazy,
call-by-name evaluation over these terms. This translation is given by the
following rules:

[[x]](u) = x̄u.0

[[λx M]](u) = u(x).u(v).[[M]](v)

[[(M N)]](u) = (v).([[M]](v) | (x).(v̄x.v̄u.!x(w).[[N ]](w)))

This translation will produce from the λ-term M a π -calculus expression given
by [[M]](u) that represents a process that will receive its arguments from the
environment via the channel u. In the first rule, x is expected to be a variable.
Further, the names v and w that appear bound in the translated forms shown
are also required to be new.

We end our discussion about the π -calculus by showing that the transla-
tion function just presented has a simple and transparent specification as a logic

one (bang P) A (par P1 (bang P)) :- one P A P1.
onep (bang P) X (y\ par (M y) (bang P)) :- onep P X M.
one (bang P) tau (par (par R (M Y)) (bang P)) :-

onep P (dn X) M, one P (up X Y) R.
one (bang P) tau (par (nu y\ par (M y) (N y)) (bang P)) :-

onep P (up X) M, onep P (dn X) N.

Figure 11.6. Add these clauses to account for bang.
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type trans tm -> (name -> proc) -> o.

trans (abs M) (u\ in u x\ in u v\ P x v) :-
pi x\ pi y\ trans x (u\ out y u null) => trans (M x) (P y).

trans (app M N)
(u\ nu v\ par (P v)

(nu x\ out v x (out v u (bang (in x Q))))) :-
trans M P, trans N Q.

Figure 11.7. Translating the lazy λ-calculus into the π -calculus.

program. In fact, consider the two clauses for the trans predicate in Figure 11.7.
This predicate relates the untyped λ-term M with abstraction λu.P if and only
if it is the case that [[M]](u) = P . Notice how the use of λ-tree syntax results in
a different treatment of the base case of the translation in the encoding shown
in Figure 11.7. In the conventional presentation, free variables are considered
to be part of the syntax and, as such, must have a case that describes their trans-
lation. In contrast, the logic specification, with its reliance on λ-tree syntactic
representation, does not formally allow free variables in syntax. Instead, the
base case is embedded into the abstraction case: When recursion moves into
the abstraction context, the trans predicate is given an additional clause that
describes how to treat occurrences of the variable bound by the abstraction. In
effect, one base case is assumed for every bound variable encountered.

To illustrate how this translation works, consider using it to transform the
λ-terms λx x and (λx x)(λx x) into process calculus expressions; note here that
the latter term evaluates to the former. To observe the behavior of the resulting
process expressions, we also apply them to a particular name b and then examine
the list of complete traces that are possible.

?- trans (abs w\ w) P, comptrace (P b) T.

P = u\ in u x\ in u y\ out x y null

T = tr (dn b T1) (tr (dn b T2) (tr (up T1 T2) empty));

no

?- trans (app (abs w\ w) (abs w\ w)) P, comptrace (P b) T.

P = u\ nu u\ par

(nu y\ out u y (out u u

(bang (in y w\ in w r\ in w s\ out r s null))))

(in u z\ in u v\ out z v null)

T = tr tau (tr tau (tr tau

(tr (dn b T1) (tr (dn b T2) (tr (up T1 T2) empty)))));

no

?-
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Notice that the second process has three silent (tau) transitions corresponding
to reduction of the term (λx x)(λx x) to λx x. After this point, the trace for the
second process becomes identical to that for the first.

11.6 Bibliographic notes

The π -calculus was proposed originally by Milner, Parrow, and Walker (1992a
1992b). Two monographs by Milner (1989, 1999) provide an introduction to the
structure and philosophy underlying this and some closely related specification
languages for concurrent systems. The book by Sangiorgi and Walker (2001)
is an encyclopedic presentation of the π -calculus and its theory.

The logic specification of the one-step transition relation for the π -calculus
that is presented here has been taken from Miller and Palamidessi (1999) and
from Miller and Tiu (2003, 2005).

Almost all the one-step transition rules for the π -calculus given in
Figures 11.2 and 11.6 are in the Lλ fragment of hohh. In particular, only the
last two rules of Figure 11.2 and the third rule of Figure 11.6 are not in Lλ.
If one deletes these non-Lλ clauses, then one gets exactly the subset of the
π -calculus that Sangiorgi (1996) called πI (π -calculus with internal mobility).
In this calculus, only new names are bound to inputs: As a result, the metalogic
only needs to implement β0-conversion instead of full β-conversion.

The translation of the call-by-name semantics of the λ-calculus into the
π -calculus is due to Milner (1989, 1990).

There has been a body of work aimed at extending the logic associated with
logic programming in order to allow for direct and declarative specifications
of must-judgments. One such development views logic specifications not as
theories (which, in principle, always can be extended) but as definitions or fixed
points (which are not extendable). McDowell and Miller (2000) and McDowell
et al. (2003) provided a proof theoretic status to negation-as-finite-failure that
extended earlier work by Hallnäs and Schroeder-Heister (1991). In this setting,
the usual universal quantifier can be given a natural extensional interpretation.
On the other hand, the treatment of bindings in abstract syntax still requires a
quantifier with an intensional or generic interpretation. Miller and Tiu (2005)
introduced a new quantifier called ∇ (read as “nabla”) for this purpose and
showed how to include it in a logic with fixed points. In such an enriched logic,
it is possible to give completely declarative descriptions of a number of may-
and of must-judgments involving the π -calculus (Miller and Tiu 2005; Tiu and
Miller 2004; Tiu 2005).





Appendix

The Teyjus System

We have presented sample λProlog programs to illustrate various computations
throughout this book. Being able to execute and experiment with those programs
should help the reader understand the λProlog programming language and the
logic underlying it. To that end, this appendix presents a short introduction to
the Teyjus implementation of λProlog. This system can be freely downloaded
over the web. The various programs presented in the earlier chapters are also
available in electronic form from the website associated with this book.

A.1 An overview of the Teyjus system

The Teyjus implementation of λProlog is based on two components. One com-
ponent is the emulator of an abstract or virtual machine that has an instruction
set and runtime system that realizes all the high-level computations implicit in a
λProlog program. The second component is a compiler that translates λProlog
programs into the instructions of the abstract machine.

Another important aspect of the Teyjus system is that it uses the modules
language discussed in Chapter 6. A programmer therefore, must, organize the
kind and type declarations and the clauses into modules and then attach signa-
tures to such modules in order to mediate their external view. The compiler is
responsible for taking a given module of λProlog code, certifying its internal
consistency, ensuring that it satisfies its associated signature, and finally, trans-
lating it into a byte-code form. This byte-code form consists of a “header” part
containing constant and type names and other related data structures as well as
a sequence of instructions that can be run on the virtual machine once it has
understood the header information. A critical part of the emulator is a loader
that can read in such byte-code files and put the emulator in a state where it is
ready to respond to user queries. The other part of the emulator is, of course,
a byte-code interpreter that steps through instructions in the manner called for
by the user input.

277
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The module directives that we have described allow large systems to be con-
structed by composing smaller modules. The Teyjus system supports separate
compilation, meaning that the compiler processes each module separately from
any other and generates code in such a way that it later can be combined with
the compiled forms of other relevant modules to build the image that is even-
tually executed. This extra “composition” information that is generated by the
compiler is actually another part of the header information in byte-code files.
The task of composing these files is taken up by a third component of the Teyjus
system, the linker.

There are two other utilities that complete the suite of executables available
with the Teyjus system. One of these is a disassembler that can be used to display
byte-code files—whether linked or unlinked—in a readable form. Of course,
knowledge of the instruction set is needed to make sense of what is obtained
from disassembling. The second utility is a dependency analyzer that can look
at a module and calculate all the signatures that are needed to understand its
code and all the other modules that are needed to produce a completely linked,
executable image of the given module. This dependency analyzer is useful in
constructing a make file that exploits the separate compilation feature of Teyjus.

Once the Teyjus system has been downloaded and built, the following dif-
ferent executables are produced: tjcc (the compiler), tjsim (the emulator),
tjlink (the linker), tjdis (the disassembler), and tjdepend (the dependency
analyzer).

A.2 Interacting with the Teyjus system

The read-prove-print loop provides the basic mode of interaction in the logic
programming setting. As explained in Section 2.4, such an interaction occurs in
the context of a program and a signature. In the simplest case, the program and
signature may be the ambient one determined by the set of built-ins provided
by the Teyjus system. Interactions of this form are initiated by invoking tjsim

with no qualifications, as shown below:

% tjsim

Welcome to Teyjus

Copyright (C) 2008 A. Gacek, S. Holte, G. Nadathur, X. Qi, Z. Snow

Teyjus comes with ABSOLUTELY NO WARRANTY

This is free software, and you are welcome to redistribute it

under certain conditions. Please view the accompanying file

COPYING for more information

[toplevel] ?-
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The name toplevel that appears in the prompt is used to signify that querying
is taking place relative to the basic environment determined by only the built-in
types and definitions.

The user can enter queries when presented with the prompt.Asimple example
of a query, which uses the built-in equality predicate = and the built-in types
and value constructors for integers and lists, is the following:

[toplevel] ?- pi x:int \ (F x) = (x :: 1 :: x :: nil).

The answer substitution:

F = W1\ W1 :: 1 :: W1 :: nil

More solutions (y/n)? y

no (more) solutions

[toplevel] ?-

In this case, Teyjus is able to make sense of the query and hence goes about trying
to solve it. If the query succeeds, the system prints out the answer substitution
it has found for the implicitly existentially quantified variables. The user may,
as usual, ask for more solutions at this stage.

Queries, of course, may not be well formed. In this case, Teyjus will print
an error message. For example, a query may not be syntactically correct, as
illustrated by the following interaction:

[toplevel] ?- pi x:int \ (F x) = (x :: 1 :: x :: nil.

(1,19) : Error : Unmatched parenthesis starting here

[toplevel] ?-

Another kind of error that is possible is that the expression does not respect the
typing rules, as shown in the following query:

[toplevel] ?- pi x:int \ (F x) = (x x).

(1,20) : Error : operator is not a function

operator type: int

in expression: x x.

[toplevel] ?-

Teyjus also can do a certain amount of type inference: That is, miss-
ing types can be inferred and inserted in order to make a query or pro-
gram well formed. Type inference was involved, for example, in deter-
mining that the variable F must have type int -> list int for the query
pi x:int \ (F x) = (x :: 1 :: x :: nil) to be is well formed. Types for
bound variables also can be omitted, as seen in the following query:



280 Appendix: The Teyjus system

[toplevel] ?- pi x \ (F x) = (x :: x :: nil).

The answer substitution:

F = W1\ W1 :: W1 :: nil

More solutions (y/n)? n

yes

[toplevel] ?-

Teyjus uses a polymorphic type system, and therefore, the types it fills in for
the abstracted variable x and the (implicitly) existentially quantified variable F

are A and A -> list A, respectively, where A denotes a type variable. The type
inference process assumes, as usual, that every occurrence of a bound variable
must have exactly the same type at all its occurrences in the expression.

Type inference in Teyjus is limited to filling missing types for only the
variables that are bound over queries or individual clauses. More specifically,
constants that are used in queries must be either pervasive (i.e., built-in) or
declared in the modules and signatures associated with a query or program
clause. Thus, while the expression

pi x \ (F x) = (x :: 1 :: x :: nil)

which uses the predefined constants 1 and ::, is acceptable to Teyjus, the
following query contains an undeclared constant and is not acceptable.

[toplevel] ?- pi x \ (F x) = (g x x).

(1,16) : Error : undeclared constant ’g’

[toplevel] ?-

Generally, we need to pose queries in contexts that contain user declared
types, constants, and program clauses. The modules and signatures of Chapter 6
are used to add such declarations and clauses. Teyjus takes a file-oriented view
of these notions. For example, suppose that we want to be able to use the dec-
larations in the module shown in Figure A.1, and suppose also that we want the
external view of these definitions to be given by the signature in Figure A.2.
We would then have to place these definitions in files named lists.mod and
lists.sig, respectively. This file-oriented view also allows for a slight sim-
plification of syntax: The keyword end can be omitted, letting the end of file
signify the end of the declarations.

Before we can use these definitions in parsing and interpreting queries,
Teyjus requires us to compile them. A module is compiled using the tjcc

executable with the desired module, as in the command

% tjcc lists
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module lists.

type append list A -> list A -> list A -> o.
append nil L L.
append (X::L) K (X::M) :- append L K M.

type rev_aux list A -> list A -> list A -> o.
rev_aux nil L L.
rev_aux (X::L1) L2 L3 :- rev_aux L1 (X::L2) L3.

type reverse list A -> list A -> o.
reverse L1 L2 :- rev_aux L1 nil L2.

type member A -> list A -> o.
member X (X::L).
member X (Y::L) :- member X L.

end

Figure A.1 The lists.mod file.

sig lists.

type append list A -> list A -> list A -> o.
type reverse list A -> list A -> o.
type member A -> list A -> o.

end

Figure A.2 The lists.sig file.

Compilation involves checking that a module is well formed and that it matches
its explicit signature. Teyjus does this by following the process described in
Section 6.3 with one exception: It adds the explicit signature of the module to
the type and kind declarations collected from the module and the signatures of
those which it accumulates in generating the implicit signature against which the
type declarations and the clauses defining predicates are checked. Concretely,
this means that type and kind declarations in the explicit signature do not have
to be replicated in the module. Thus, in the case of the lists module, the type
declarations for append and reverse can be omitted because these appear in the
signature qualifying the module. However, the type declaration for rev_aux is
essential; not providing it will result in an undefined constant error.

If the declarations in a module are deemed to be well formed, and if the
module matches the associated signature, then tjcc produces a compiled ver-
sion of the module in a file with the extension lpo; thus the compiled form of
the module lists will be left in the file lists.lpo. This code now needs to
be linked using tjlink, a process that yields a file with the extension lp. The
linked version then can be provided to tjsim to produce a context in which
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queries can be posed against the relevant module. The following interaction
illustrates these steps.

% tjlink lists

% tjsim lists

Welcome to Teyjus

Copyright (C) 2008 A. Gacek, S. Holte, G. Nadathur, X. Qi, Z. Snow

Teyjus comes with ABSOLUTELY NO WARRANTY

This is free software, and you are welcome to redistribute it

under certain conditions. Please view the accompanying file

COPYING for more information

[lists] ?- append (1::2::nil) (3::4::nil) L.

The answer substitution:

L = 1 :: 2 :: 3 :: 4 :: nil

More solutions (y/n)? y

no (more) solutions

[lists] ?-

In addition to supplying clauses defining predicates, the module also provides
a set of constants and types that can be used in constructing queries. Notice,
however, that the available such symbols are limited to those identified by the
explicit signature. Thus, while the preceding query, which uses the symbol
append, is well formed, a query using the symbol rev_aux is not well formed.

[lists] ?- rev_aux (1::2::nil) nil L.

(1,0) : Error : undeclared constant ’rev_aux’

[lists] ?-

The queries posed at the prompt in the examples in this section have all taken
the form of atomic goals. More complex goals also can be presented. The only
limitation in Teyjus with respect to the logical structure discussed in this book
is that these goals cannot contain embedded implications; i.e., they cannot have
the symbols :- or => in them. This is a restriction that applies only to top-level
goals: Implications can be embedded in the bodies of clauses that appear within
modules.

The user eventually would want to quit an interactive session. Teyjus pro-
vides the special predicate halt for this purpose. Invoking it as a goal terminates
execution of the simulator and returns control to the command level.
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A.3 Using modules within the Teyjus system

The module lists that we considered in the last section has a rather simple
structure. This might lead us to wonder whether it is really necessary to produce
the file lists.lpo that needs to be linked before it can be used by the simulator;
perhaps the compiler can produce the file lists.lp directly. The reason for this
intermediate step is that Teyjus allows modules to be composed to produce
larger collections of definitions. The two step process is needed in this context
to support separate compilation.

The composition of code is realized through the accumulation of signatures
and modules discussed in Chapter 6. An example illustrating module accu-
mulation is provided by the code in Figure A.3, which implements a simple
form of association lists. One part of the compilation of the assoclist module
involves checking that it is well formed. To do this, it is necessary to know
the declarations that are available from the lists module. This information is
obtained by consulting the lists signature. The other effect of compilation is
to produce byte code for the clauses in the module. To exhibit the intended
execution profile, the byte code for the clauses that appear in the assoclist

module also must have access to the byte code for the clauses in the lists

module. One way to realize this effect is to combine the declarations in the two
modules explicitly into one large unit and to compile that unit. Teyjus does not
do this, choosing instead to produce separate compiled forms for the assoclist
and lists modules that can be combined later to yield a version ready for exe-
cution. Notice that for such a scheme to work, the result of compiling even a

sig assoclist.

kind pair type -> type -> type.
type pr A -> B -> pair A B.
type assoc A -> B -> list (pair A B) -> o.
type addassoc A -> B -> list (pair A B) -> list (pair A B) -> o.
end

module assoclist.

accumulate lists.

kind pair type -> type -> type.
type pr A -> B -> pair A B.

type assoc A -> B -> list (pair A B) -> o.
assoc X Y L :- member (pr X Y) L.

type addassoc A -> B -> list (pair A B) -> list (pair A B) -> o.
addassoc X Y L ((pr X Y)::L).

end

Figure A.3 A simple example of module composition.



284 Appendix: The Teyjus system

seemingly stand-alone module such as lists must include additional “header”
information that allows its code to be incorporated into a larger context. The
linker (tjlink) later uses this auxiliary information in producing the desired
executable in the file accumlist.lp.

Module interactions can take two broad forms, as discussed in Section 6.5.
In one form, a large program may be constructed by incrementally extending a
collection of predicate definitions to cover more and more cases. The example
of the theorem prover discussed in Section 6.5.2 has this structure. In this case,
one module typically will need to accumulate a few other modules, add to the
definitions provided by them, and then pass a view of the result on outward,
possibly filtered by a specialized signature. The other kind of interaction is
one where different modules implement disjoint functionalities but may need
to share some of those functionalities. The assoclist example illustrates this
kind of interaction at a conceptual level: The clauses in assoclist need some of
the definitions available from the lists module, but these are only to be used,
not modified. While accumulating lists directly into assoclist as done in
Figure A.3 can achieve this effect, there is a better way to do this, as discussed
in Section 6.5.3. In this approach, we indicate the dependency by including
declarations for the parts to be “imported” in the signature of the module con-
cerned but delaying the actual module accumulation. Here, we would drop the
accumulation of the lists module from the assoclist module, adding the
declaration

type member A -> list A -> o.

to the assoclist signature instead. The module that needs to use the function-
ality of assoclist eventually must provide a definition of the member predicate,
which it can do by accumulating the “library” module lists. For example, a
testing harness for the assoclist module might have the structure

module testassoc.

accumulate lists,assoclist.

end

The kind of interaction just described involves one module making available
predicate definitions that it expects to be used unchanged and another module
using those definitions without modifying them. It can be beneficial to make
such expectations explicit: This provides for better documentation, and a com-
piler also can check adherence to such expectations. Toward this end, Teyjus
includes two variants to type declarations for predicate constants in signature
files. One of these variants uses the keyword exportdef in place of type, signify-
ing thereby that the associated module expects the relevant predicate constants
to be used but without adding clauses to their definitions in any context into
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which the module is accumulated. The converse form, needed for checking
conformity with such restrictions in a separate compilation model, uses the
keyword useonly in place of type to indicate that the module in which the dec-
laration appears will use the concerned predicate constants without modifying
their definitions. Using these variants, the lists signature might be changed to

sig lists.

exportdef append list A -> list A -> list A -> o.

exportdef reverse list A -> list A -> o.

exportdef member A -> list A -> o.

end

Correspondingly, the type declaration for member in the assoclist signature
would be replaced by

useonly member A -> list A -> o.

Sometimes it is more convenient to accumulate entire signatures rather than
to include individual type (or kind) declarations. To this end, Teyjus allows
the keyword use_sig to be used as a variant of accum_sig. When this variant
is used, declarations that have the exportdef form are changed to the useonly

form before the signature is accumulated.
A large Teyjus project may involve interactions between many modules

and signatures. Building the executable for such a project may require keeping
track of many module dependencies. Moreover, to obtain the benefit of separate
compilation, it also would be necessary to record whether or not a module has
changed since it was last compiled. Many of these aspects can be automated in
an environment that supports the make facility. The Teyjus web page provides
the skeleton of a make file that can be used in such a setting. In order to use
this capability, it is necessary to calculate module and signature dependencies
manifest through accumulation declarations. The Teyjus program tjdepend

realizes this functionality: Given a module name, it produces all the signatures
and modules that are needed for building an executable version of that module.

A.4 Special features of the Teyjus system

We discuss in this section some of the basic programming capabilities that the
Teyjus system provides through its pervasive types and predicates. The language
that is implemented also differs in a few respects from the one assumed in the
examples earlier in this book, and we discuss these differences as well.
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A.4.1 Built-in types and predicates

In addition to the type o for propositions, the Teyjus system provides built-
in support for the type int representing integers, the type real representing
reals, and the type string representing strings. Constants of the first two
types are denoted in the usual way, and string constants are given syntac-
tically by sequences of characters enclosed between double quotes. Several
function constants over these types are also supported: Examples include the
usual infix arithmetic operators such as +, -, and * that are overloaded between
the types of integers and reals; div that corresponds to division over integers;
/ that represents division over reals; and ˆ that represents (infix) concatenation
between strings and coercion operators such as int_to_string. These sym-
bols are treated intensionally, as is typical in the logic programming setting
(see Section 2.7.1). Evaluation can be forced by using the is predicate familiar
from Prolog; this predicate is also overloaded among integers, reals, and strings.
The following interaction indicates the distinction:

[toplevel] ?- X = "every" ˆ "thing".

The answer substitution:

X = "every" ˆ "thing"

More solutions (y/n)? y

no (more) solutions

[toplevel] ?- X is "every" ˆ "thing".

The answer substitution:

X = "everything"

More solutions (y/n)? y

no (more) solutions

[toplevel] ?-

Finally, at the predicate level, Teyjus includes the comparison operators <, =<,
>, and >=; these are, once again, overloaded among the int, real, and string

types.
Beyond the basic types, Teyjus supports lists and streams. The lists that are

permitted are polymorphic in the parametric sense and are realized through the
unary type constructor list and the constants nil and :: that we have seen
numerous times already. Streams can be of two kinds: in_stream for input
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and out_stream for output. The constant std_in denotes the predefined stan-
dard input stream, std_out denotes the predefined standard output stream, and
std_err denotes the standard error (output) stream. It is often useful to open
new streams that are bound to files so as to read or write from them. Teyjus
provides the built-in predicate open_in for binding an in_stream variable to a
file and open_out for binding an out_stream variable to a file. Streams opened
in this way can be closed using the predicates close_in and close_out, respec-
tively. The predicate input and output can be used, respectively, for reading
from and writing to streams that are open. The full details of these and other
predicates can be found in the documentation provided with the Teyjus system.

Teyjus also includes some logical and metalogical predicates. The former
category includes the equality predicate = that we have already encountered:
This predicate attempts to unify the two terms that appear to its left and right. At
the metalogical level, Teyjus supports the cut predicate ! familiar from Prolog,
the fail predicate that always fails, and the halt predicate that terminates
execution of the simulator. Teyjus also provides the not predicate, although
this should be used with more care than in Prolog: Negation-by-failure has a
problematic semantics in a situation where implicational goals are used in an
essential way.

Teyjus does not support predicates such as assert and retract that are used
in Prolog for realizing a notion of state. The scoping capability obtained by using
these predicates in tandem can be partially realized by using implicational goals.
Some effects of state can be simulated, albeit in a roundabout way, by writing
data to a file and later reading from the file.

A.4.2 Deviations from the language assumed in this book

The reader wanting to experiment with examples in this book should be aware
of two important differences between the language discussed here and the one
implemented in Teyjus. One difference was mentioned earlier: Teyjus does
not permit implications to be used in top-level goals. This is a characteristic
that may change in the future when the compilation model is also extended to
these goals, but for now it means that some of the examples presented, e.g., in
Section 3.2, cannot be run directly using this system. Notice that implications
are disallowed only in top-level goals: They can be used freely in goals that
appear in the body of program clauses. Thus this limitation can be overcome
by first building a suitable program clause and then using it to pose the desired
query. For example, instead of posing the query

?- p a => p b => p X.
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one can create the clause

test X :- p a => p b => p X.

and then use the query

?- test X.

The second difference is that Teyjus does not implement higher-order
unification completely, taking the approach to realizing it partially through
higher-order pattern unification, as discussed in Section 8.4. As a result, exam-
ples such as those in Section 5.9 that rely on the extended form of higher-order
unification will not display the kind of behavior presented there if they are run
using the Teyjus system.
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